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Foreword: CERME10 in lovely Dublin 
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Since its beginnings in 1998, ERME, the European Society for Research in Mathematics Education 

was dedicated to supporting the so-called “three C’s”: communication, cooperation, and collaboration 

among researchers in Europe and beyond. The major occasion for the ERME spirit to come to life is 

the biannual congress, CERME. In this year, the 10th congress of ERME, CERME10, took place in 

Dublin from February 1st to February 5th, 2017.  

The congress took place in Dublin in Croke Park, the stadium that is home of the Irish national sports 

of Gaelic football and hurling. Although the conference was bigger than ever, the 774 participants 

felt few compared to the 80 000 people who fit into the stadium on large sporting and other occasions. 

However, our local chair, Thérèse Dooley, her co-chair Maurice OReilly and all their colleagues did 

a fantastic job in making us feel at home and not lost in the huge venue. Their hospitality and 

engagement were praised by all participants.  

The program of the congress was organized by the International Program Committee, chaired by 

Ghislaine Gueudet and the vice-chair Andreas Eichler in a very well structured, transparent and highly 

efficient way. Under their guidance, the IPC developed a substantial program with two very 

interesting plenaries, one presented by Elena Nardi (entitled “From Advanced mathematical thinking 

to university mathematics education: A story of emancipation and enrichment”) and the other by 

Lieven Verschaffel (entitled “Towards a more comprehensive model of children’s number sense”). 

In a panel on “Solid findings in mathematics education: What are they and what are they good for?” 

this ‘hot’ topic was discussed from different perspectives. Marianna Bosch, Tommy Dreyfus, 

Caterina Primi, and Gerry Shiel made up the panel. All of the plenary activities contributed 

substantially to the success of the conference. 

However, the core and the heart of each CERME are the seven sessions in the Thematic Working 

Groups, which offer the main place for the spirit of inclusion realized in communication and 

cooperation. The 23 Thematic Working Groups were organized by 84 group leaders, an impressive 

number of people who invest their energy and time in the success of the congress. Several external 

conference organizers expressed their surprise that during the sessions, nobody was wandering around 

in the corridors. Of course not, we said, they are communicating and cooperating! And we become 

aware again that this intensity of work is specific, and perhaps even unique, to CERME.  

Most of the CERME group leaders have taken this responsibility for several years and have 

established a long-term collaboration with substantial academic outcomes. This group of people 

engaged in the enormous effort of managing the process of quality development for 474 submitted 

papers and 94 posters, numbers much larger than ever before.  

CERME is not only getter larger from congress to congress, but also increasingly international. The 

774 participants came from 29 Europeans countries and 23 Non-European countries. The top ten 



countries in terms of numbers of participants were Germany (127), United Kingdom (60), Norway 

(55), France (47), Italy (47), Ireland (41), Spain (39), Sweden (38), Israel (32), and the US (30). 

Austria, Belgium, Croatia, Cyprus, Czech Republic, Denmark, Faroe Islands, Finland, Greece, 

Hungary, Iceland, Kosovo, Malta, Netherlands, Poland, Portugal, Russia, Slovakia, Switzerland, 

Turkey, and Ukraine were included in the European countries. Among the non-European countries 

were Algeria, Argentina, Australia, Bangladesh, Brazil, Cameroon, Canada, Chile, Hong Kong, 

Kenya, Iran, Japan, Lebanon, Malawi, Mexico, New Zealand, Nigeria, Singapore, South Africa, 

Thailand, and Tunisia. It must be the specific style of the congress and the ERME spirit which attracts 

so many people from all over the world! 

With the increasing numbers and diversity, the challenge of compiling proceedings is getting more 

and more complex. We thank the chairs who served as editors for this complex process and for 

finalizing it so quickly. 

Such a huge and complex congress as CERME could not be conducted without the engagement of 

more than 15% of all participants (including TWG leaders, IPC members, LOC members and ERME 

board members). We thank everybody who has contributed to the ongoing work behind the scenes 

which allowed the congress to be a real success. Specific thanks go to Ghislaine Gueudet, Andreas 

Eichler, Thérèse Dooley and Maurice OReilly for their hard work with a wonderful outcome.  

We encourage interested researchers to meet us at the next CERME that will take place from February 

5th to February 10th 2019, in Utrecht (the Netherlands). 

 

Susanne Prediger, ERME President since February 2017 

Viviane Durand-Guerrier, ERME President until February 2017 
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About CERME10   

The Tenth Congress of European Research in Mathematics Education (CERME 10) took place in 

Dublin (Ireland) from 1st to 5th February 2017. Ghislaine Gueudet (France) was the chair of the 

International Programme Committee (IPC) which comprised Thérèse Dooley (Ireland, chair of the 

local Programme Committee), Andreas Eichler (Germany, co-chair), Marianna Bosch (Spain), 

Markku Hannula (Finland), Jeremy Hodgen (UK), Konrad Krainer (Austria), Despina Potari 

(Greece), Kirsti Rø (Norway), Cristina Sabena (Italy), Michiel Veldhuis (Netherland), Nad’a 

Vondrová (Czech Republic). Thérèse Dooley and Maurice OReilly were chair and co-chair 

respectively of the Local Organizing Committee (LOC). 

CERME10 hosted 23 Thematic Working Groups, listed in the table below. The TWGs 21, 22, 23 and 

24 were new groups, created following a call launched just after CERME9, and a selection process 

involving the CERME10 IPC and the ERME board. They all have been very successful, and will be 

part of CERME11 in February 2019. TWG7 (Mathematical potential, creativity and talent) has 

unfortunately been cancelled, due to a lack of contributions; while TWG14 has been split in two for 

the conference, because of the large number of papers received.  

TWG Leader 

TWG1: Argumentation and proof Gabriel Stylianides (UK) 

TWG2: Arithmetic and number systems Elisabeth Rathgeb-Schnierer (Germany) 

TWG3: Algebraic thinking Reinhard Oldenburg (Germany) 

TWG4: Geometry Joris Mithalal (France)  

TWG5: Probability and statistics education Corinne Hahn (France) 

TWG6: Applications and modelling Susana Carreira (Portugal) 

TWG8: Affect and mathematical thinking Pietro Di Martino (Italy) 

TWG9: Mathematics and language Núria Planas (Spain) 

TWG10: Diversity and mathematics education: Social, 

cultural and political challenges 
Lisa Björklund Boistrup (Sweden) 

TWG11: Comparative studies in mathematics education Paul Andrews (Sweden) 

TWG12: History in mathematics education Renaud Chorlay (France ) 



 

TWG13: Early years mathematics Ingvald Erfjord (Norway) 

TWG14a: University mathematics education Alejandro Gonzalez Martin (Canada) 

TWG 14b: University mathematics education Irene Biza (United Kingdom) 

TWG15: Teaching mathematics with resources and 

technology 
Alison Clark-Wilson (UK) 

TWG16: Students’ learning mathematics with resources 

and technology 
Hans-Georg Weigand (Germany) 

TWG17: Theoretical perspectives and approaches in 

mathematics education research 
Angelika Bikner Ahsbahs (Germany) 

TWG18: Mathematics teacher education and 

professional development 
Stefan Zehetmeier (Austria) 

TWG19: Mathematics teacher and classroom practices Charalampos Sakonidis (Greece) 

TWG20: Mathematics teacher knowledge, beliefs and 

identity 
Miguel Ribeiro  

TWG21: Assessment in mathematics education Paola Iannone (UK) 

TWG22: Curricular resources and task design in 

mathematics education 
Birgit Pepin (The Netherlands) 

TWG23: Implementation of research findings in 

mathematics education 
Uffe Thomas Jankvist (Denmark) 

TWG24: Representations in mathematics teaching and 

learning 
Elisabetta Robotti (Italy) 

 

 

Editorial information  

These proceedings are available as a complete volume online on the ERME website and each 

individual text is also available on the HAL open archive, where it can be found through keywords, 

title or author name. This has been the practice since CERME9, to increase the visibility of the huge 

work done in CERME conferences.  

This volume begins with texts corresponding to the three plenary activities of CERME10: the 

presentation by Elena Nardi on University Mathematics Education; that by Lieven Verschaffel on 

Early Mathematics; and the panel on Solid Findings in Mathematics Education, chaired by Marianna 

Bosch and involving Tommy Dreyfus, Catarina Primi and Gerry Shiel.  

After the plenaries, the reader will find 23 chapters corresponding to the work done in the TWGs of 

CERME10 (we remind the reader that TWG7 has been cancelled; moreover, TWG14 was split in two 

for the conference, but all the papers are in the same section in these proceedings).   

These chapters follow a similar structure: they start with an introduction; then the long contributions 

(8-page papers) are presented – in alphabetical order by first author’s name – and finally the short 



 

contributions (2 pages). However, TWG17 has chosen a different order, corresponding to subthemes 

in the group.  

There are two kinds of introductions to the TWGs, according to the team’s choice: short introductions 

(4 pages) presenting the contributions; or long introductions (8 pages), which propose, in addition, an 

analysis of the current research on the theme of the TWG, and perspectives for the future. TWGs 6, 

14, 15, 16, 17, 19 and 23 have chosen this form of long introduction.  

The publication of these proceedings is the result of a collaborative work, involving CERME10 IPC, 

the TWG leaders and co-leaders, and the LOC co-chair. We warmly thank all these people for their 

involvement, and hope that this volume will contribute to the development of mathematics education 

research in Europe and beyond.  

 



 

Statistical overview of CERME10 

Maurice OReilly  

Dublin, Ireland, maurice.oreilly@dcu.ie 

 

CERME evolves over time, and so it is of interest to gather and present some quantitative data on the 

number of participants and on the scientific output at CERME10. The table opposite shows the 

number of submissions to these proceedings (excluding the TWG introductions and the plenary 

papers) along with other submissions that were made online by December 2016 but were not included 

here. The numbers of long and short contributions are noted. Of course, each TWG had more 

participants than the number of submissions, since (i) many papers had several authors and (ii) there 

were other participants who did not submit. The entries in the table are explained in its footnotes.  

The data for the table comes from two sources: the submissions made online (to the CERME10 

website) by mid-December 2016, and the registration and attendance database for the congress. The 

final column shows the 768 (distinct) participants at CERME10, allocating each to exactly one TWG. 

Although over 80 participants were active in more than one TWG, care was taken to ensure that no 

participant was included more than once (by fine-tuning the ‘Additional authors’ column 

appropriately). This was facilitated by taking into account the TWG explicitly chosen by each 

participant at registration. The foreword states that there were 774 participants; this figure includes 

the six presenters at the plenary sessions. 

Of the 565 submissions made in advance of CERME – comprising 466 (long) papers and 99 posters 

(or short contributions) – the attrition by the time these proceedings have been edited was only 22 

(about 3.9%). This low figure underscores the observation mentioned in the foreword that “nobody 

was wandering in the corridors”. Contributions to the proceedings as a proportion of the total number 

of participants was 0.71 (= 543/768), this figure varying from 0.56 (for TWG2) to 0.82 (for TWG16). 

Another indicator of the intensity of the work at CERME is the low number of participants (84) who 

did not contribute papers – although they did contribute to the lively discussion! This was 10.9% of 

the total number of participants, with extremes ranging from 3.0% (for TWG10) to 20.0% (for 

TWG24). Yet another perspective on the hard work undertaken in the context of the congress is 

illustrated by the number (451) of ‘long’ papers as a proportion of all contributions: 83% overall, with 

a minimum of 71% (for TWG14) and an impressive maximum of 100% (for TWG2). 

It has already been noted (in the foreword) that participants at CERME10 were drawn from 52 

countries. It is part of the ‘CERME spirit’ to support academics who would normally have limited 

access to CERME (either from underrepresented or economically weak countries). This is made 

possible through the Graham Littler Fund which draws from those who can afford, in support of those 

who cannot. For CERME10, 46 participants were awarded grants totaling €21 100 (€12 300 for 

registration and €8 800 for travel and accommodation). 

It is hoped that the data provided on these two pages helps quantify important aspects of CERME10, 

putting the scientific output in perspective. 



 

TWG 
Submissions Contributions to the Proceedings Additional Additional Total number of  

to Proceedings Online only Long Short authors participants participants in each TWG 

1 28 0 27 1 12 6 46 

2 14 2 14 0 5 4 25 

3 19 2 16 3 2 5 28 

4 20 0 15 5 4 2 26 

5 25 1 21 4 3 2 31 

6 22 2 18 4 6 5 35 

8 25 1 23 2 3 3 32 

9 26 1 22 4 6 2 35 

10 26 1 19 7 5 1 33 

11 13 0 10 3 4 1 18 

12 18 0 16 2 5 2 25 

13 20 0 15 5 7 3 30 

14 58 5 41 17 13 11 87 

15 25 0 19 6 6 4 35 

16 27 0 20 7 1 5 33 

17 16 2 12 4 2 3 23 

18 31 0 28 3 4 5 40 

19 23 0 22 1 5 5 33 

20 26 4 23 3 8 3 41 

21 25 1 23 2 7 3 36 

22 23 0 17 6 7 2 32 

23 15 0 14 1 2 2 19 

24 18 0 16 2 2 5 25 

 Total 543 22 451 92 119 84 768 

Submissions were made online by mid-December 2016, most of which are published in these proceedings (as either long or short contributions). 

In each TWG, the number of submissions is augmented by ‘Additional authors’ indicating the number of participants at CERME10 who contributed to (long or 

short) papers. The ‘Additional participants’ attended CERME10 but were not authors of these papers. 

The ‘Total number of participants in each TWG’ is then the sum of all the submissions along with the additional authors and participants. 

 



 

 



 

 

From advanced mathematical thinking to university mathematics 

education: A story of emancipation and enrichment 

Elena Nardi 

University of East Anglia, UK, e.nardi@uea.ac.uk 

 

Between CERME1 and CERME9 there have been approximately two hundred and fifty papers with 

their focus directly, or a little less so, on the teaching and learning of mathematics at university 

level, starting from about a dozen in CERME1 and rising to several dozens in CERME9. ERME 

recognised the increasing significance of this emerging field with the launch of Working Group 14 

(Advanced Mathematical Thinking) in CERME4 in 2005 which evolved into Thematic Working 

Group 14 (University Mathematics Education) in CERME7 in 2011. In this lecture, I draw on my 

experience as researcher in this field, and as participant in both groups (and inaugural leader of 

the latter), to identify epistemological – theoretical, substantive and methodological – trends in the 

transition from the one to the other. I aim that the story I tell is one of gradual emancipation from a 

relatively limited initial focus on cognitive aspects of the student learning experience in university 

mathematics to the grander vista of issues – also inclusive of pedagogical, institutional, affective 

and social issues – that studies presented at CERME nowadays address. I also aim that the story I 

tell is one of enrichment as the depth and diversity of said vista has been accomplished also through 

thoughtful appropriation of results from those earlier studies. 

Keywords: University mathematics education, developmental / cognitive and sociocultural 

approaches to the teaching and learning of mathematics. 

Introduction  

In tandem with ERME, the area of research that is the focus of this plenary, University Mathematics 

Education research, has also been evolving rapidly in the last twenty years or so. Here I focus on 

some of the milestones of this evolutionary journey, with the particular emphasis that I promised in 

the above title and abstract. Before proceeding to these though, here is a bit of a pre-amble: Figure 1 

presents a still from a scene in the film A Serious Man (2009) directed by Ethan and Joel Coen. 

 

Fig.1. Still taken from A Serious Man (2009): https://www.youtube.com/watch?v=7iggyFPls4w  

https://www.youtube.com/watch?v=7iggyFPls4w


 

 

This is a typical imagining in popular culture of how mathematics teaching looks like at university. I 

will not go much further with a discourse analysis of what the still (or the scene, or the film itself) 

may convey. In what I see as some contrast, Figure 2 presents a sequence of images, taken from the 

publicity materials of my own institution’s department of mathematics.  

  

Fig. 2. Still taken from UEA promotional video: https://www.youtube.com/watch?v=gRzVX8c1be4  

The students and the lecturer in these images work together, they are not physically too far from 

each other and there is a range of resources – from chalk to digital – present. The sequence 

illustrates how institutions may wish to present the kind of learning experience that potential 

incomers into a department of mathematics are likely to be offered.  

To me, there is a clear contrast between the movie still from A Serious Man and these two images 

from the UEA promotional video. It is a contrast between a widespread perception of university 

mathematics lectures as the ultimate form of transmissive pedagogies – with all the repercussions of 

alienation and distancing these pedagogies may entail – and the aspiration (institutional but not 

only) for a more approachable, more inclusive and more engaging learning experience in university 

mathematics that is tailored to individual student needs.  

As university lecturers today – in mathematics and in other disciplines – we lecture. But we also do 

much more: we coordinate seminars, we conduct individual or small group tutorials, we run 

workshops and drop-in clinics, we supervise dissertations, we advise students on academic and on 

pastoral matters and we assess students in a variety of ways (all the way from closed-book 

examinations to mini-projects and oral presentations).  Our professional worlds are far from 

monotonous. In fact, they require us to be quite versatile. 

I see as of little surprise, and rather pleasing, that the 

versatility of our jobs is being reflected in the diversity 

of University Mathematics Education research that is 

now presented at CERME. This diversity of focus – 

but also theoretical perspective and methodology – is 

to me a sign of richness. In fact, here I have taken the 

liberty of endorsing a metaphor, which originates in 

currently dominant theories of evolution and 

conservation (Figure 3). These theories equate species 

diversity with resilience. The story I tell here relies 

somewhat on whether this is a convincing metaphor. 

 

Fig. 3. Image from: 

https://conservationbytes.com/2014/01/08/m

ore-species-more-resilience/  

https://www.youtube.com/watch?v=gRzVX8c1be4
https://conservationbytes.com/2014/01/08/more-species-more-resilience/
https://conservationbytes.com/2014/01/08/more-species-more-resilience/


 

 

I tell this story in five parts: The “early years”, CERME 1, 2, 3; The AMT years, CERME 4, 5, 6; 

The UME years, CERME 7, 8, 9; CERME10, the split1…; and, Taking stock / What next / Coming 

soon… Before starting, I need to post a health warning though: that a lecture of this kind errs on the 

side of being impressionistic – and of course quite personal2 too. I thank you in advance for your 

tolerance. 

 

My own trajectory in CERME – and outside – mirrors some of the milestones and trends that this 

plenary aims to map out. I was present in 1999 at CERME1, in Osnabrueck, assisting with the 

coordination of Group 5, Mathematical thinking and learning as cognitive processes. To those more 

familiar with the increasingly sociocultural and discursive take that my work has been taking over 

the years, this commitment to Group 5 may sound a little surprising. It is not. I start Part I with an 

anecdote on exactly this. 

 

Part I: The “early years”, CERME 1, 2, 3; UME research evidenced in several 

TWG groups 

My 1996 doctorate’s title (Nardi, 1996) is The novice mathematician’s encounter with mathematical 

abstraction: Tensions in concept image construction and formalization. The statement of intentions 

in this doctorate are clear: 

 

Mathematics is defined as an abstract way of thinking. Abstraction ranks among the least 

accessible mental activities. In [the UK educational context where the study took place], the 

encounter with mathematical abstraction is the crucial step of the transition from informal 

school mathematics to the formalism of university mathematics. This transition is 

characterised by cognitive tensions. This study aimed at the identification and exploration of 

the tensions in the novice mathematician's encounter with mathematical abstraction. (Nardi, 

1996: Abstract) 

 

However, the study’s stated theoretical perspective is a little more perplexing. It is declared as 

“consisting of cognitive and sociocultural theories on learning”. And, the two key parts of findings 

in the final chapter promise an account of the novice mathematician's encounter with mathematical 

abstraction “as a personal meaning-construction process and as an enculturation process” (ibid.). 

It is quite easy, in hindsight, to be skeptical about the risky eclecticism of the approach – some may 

see this as standing on a fence, or, even, as pick-and-mix nonsense. But, I keep reminding myself 

that the study started in 1992 and was completed in 1996. It was therefore conducted at a time when 

                                                 

1 Continuing with the biology inspired metaphors, I use the word “split” deliberately. Cell splitting is the process of 

subdividing a congested cell into smaller cells. Cell splitting or division is associated with reproduction and the creation 

of an entire new organism. This process is typically seen as increasing many of the capacities of a cellular system. In 

fact, in Parts III and IV, I aim to show the inevitability of cell splitting, emanating from the substantive, theoretical, and 

methodological diversity of UME research presented in CERME these days. It is in these parts that the main point of 

this lecture, signposted in the abstract by the words emancipation and enrichment, will, I hope, come through. 
2 I also need to thank at this juncture two overlapping groups of colleagues: my CERME 7, 8 and 9 TWG14 co-leaders 

and my co-authors of the 20-year anniversary ERME book in which UME research has been allocated a chapter 

(Winsløw et al., in press). Since 2010, when the UME TWG group was formed – for its first appearance in CERME7, in 

2011 – these colleagues, have become what I like to call my academic family of friends. 

 



 

 

the various shades of constructivism that form its theoretical backbones were then taking shape 

themselves. To signpost this a little more emphatically, allow me the gentle reminder that the 

seminal paper Constructivist, emergent and sociocultural perspectives in the context of 

developmental research (Cobb & Yackel, 1996) – a paper and a programme more broadly that 

impacted upon our debate around the co-determinants of mathematical learning in immense ways – 

appeared in Educational Psychologist in 1996, the year that my doctorate was completed. I often use 

this excuse when the slightly embarrassing thought comes to me that my study wanted to have its 

cake and eat it too! 

So, here are some recollections from the early years, and, to start with, CERME1, that I see as 

pertinent for today: UME papers can be found in several groups but mostly in TWG1 (Nature and 

content of mathematics and its relation to teaching and learning) and TWG5 (Mathematical 

thinking and learning as cognitive processes). There is a pronounced epistemological focus on 

several papers – Grenier and Payan (1999) is one example – and there is a strong tendency in the 

few papers present to give a prominent position to the mathematical context and content of, for 

example, proposed course designs. Belousova and Byelyavtseva’s (1999) paper on course design in 

Numerical Methods comes to mind; as do the Cabri designs for Linear Algebra put forward by 

Tommy Dreyfus, Joel Hillel and Anna Sierpinska (1999). There is also a tendency to consider this 

mathematical content regardless of whether this is present in school or university mathematics: there 

are, for example, propositions in this first CERME about using CAS (Computer Algebra Systems) 

for teaching functions; or, courseware for the teaching of Geometry from across school to 

university, and all the way to Differential Geometry. 

There are two contributions to CERME1 though which, for me, stand out even more than those I 

sampled in my last comments. Both pre-empt the publication of two volumes that proved influential 

in the following years, in different, yet distinct ways. One is Leone Burton’s (1999) preliminary 

analyses of interviewed mathematicians’ epistemological perspectives which culminated in her 

monograph (Burton, 2004), Mathematicians as Enquirers. The other is Jean-Luc Dorier’s paper 

(with Aline Robert, Jacqueline Robinet and Marc Rogalski, 1999) that sets the scene for the volume 

On the teaching of linear algebra (Dorier et al., 2000).  

Both papers foreshadow – and I daresay contributed towards shaping – trends in UME research that 

became prominent in the years that followed. Burton’s work signals a broadening of the UME 

church to include in its focus the university teacher (most other work at the time concerns the 

student or the mathematics alone). Dorier’s work, and that of his colleagues, signals the still then 

not so imminent end of what I see as a shortcoming of UME research that is still present today, 

albeit to a lesser extent: the perception of research into university mathematics teaching practice as 

an a-theoretical aside of well-intended practitioners who are unaware of the epistemological and 

methodological underpinnings of mathematics education as an academic discipline. This work is 

distinct for its robust theoretical grounds and for its keen eye for intervention design, trial and 

evaluation – in a nutshell, for its systematic character. In this sense, of scope and ambition, it shares 

some common ground with another, powerful at the time – and still today –programme: that of 

APOS which originated in the USA and which was at the time also pushing the boundaries of work 

in UME beyond elementary Calculus and into Abstract Algebra. 



 

 

Continuing with my observing trends that were to become influential in later years, within TWG5 

(Mathematical thinking and learning as cognitive processes), which I mentioned earlier and which I 

assisted coordinating under the leadership of Inge Schwank, there are two themes that made an 

appearance – timidly and managing to occupy a small portion of the discussions only: the role of 

motivation in cognition (I see here inklings of evidence on the burgeoning importance of research 

on affect) and the emerging importance of theories of situated cognition.á An observation that 

stands out from these discussions was made in the paper by Pier Luigi Ferrari (1999): in advanced 

mathematical thinking, wrote Pier Luigi at the time, some learner behaviours cannot be accounted 

for simply in terms of semantics. His paper presented an argument that brings the role of language – 

ordinary and mathematical – and of communicational structures to the fore. 

CERME2 and CERME3 are the two CERMEs that I missed. Nonetheless, returning to the 

proceedings after all these years, there are several papers presented in CERME2 and a couple of 

dozen papers in CERME3 that can be found across several Working Groups and contain implicit 

references to advanced mathematics, often as extensions of what is typically found in the school 

syllabus that each paper revolves around.  

In CERME2 these papers are mostly found in Working Group 5 (Mathematical thinking and 

learning as cognitive processes) and Working Group 1 (Creating experience for structural 

thinking). Mathematical thinking (including a growing focus on proof and proving) is at the heart of 

these papers which are only implicitly and only occasionally concerned with the institutional, 

curricular and pedagogical context of university level Mathematics Education. There is concern in 

these papers with internal mental structures. Naďa Stehlíková and Darina Jirotková’s paper (2001) 

is a good example: it focuses explicitly on processes of building an inner mathematical structure, 

which the authors abbreviate as IMS and which they acknowledge as hard to observe. They then 

resort to introspective, self-reporting accounts of mathematical thinking. John Mason’s (1998) 

“researching from the inside” features largely as a theoretical influence on the paper. Naďa 

Stehlíková will carry on in this strand of work also in CERME3. 

These works concern the learning of mathematics often at the cusp of the transition from school to 

(what is in many places) university mathematics. One example of this trend is Bettina Pedemonte’s 

(2001) study of cognitive unity, or break, in the context of constructing mathematical arguments and 

proofs. Another is the paper by Baruch Schwarz, Rina Hershkowitz, and Tommy Dreyfus (2001) 

which presents a perspective on abstraction as always occurring in context and which focuses on 

three epistemic actions (Recognising, Building-With and Constructing, RBC). Its theoretical close 

relatives are an eclectic mix and include elements of Activity Theory (Alexei Nikolaevich Leontiev) 

and the construct of situated abstraction per Richard Noss and Celia Hoyles (1996).  

In tandem with abstraction, there are two studies of mathematical intuition that I would like to close 

my reference to CERME2 with. One (Tsamir, 2001) regards infinite sets and another (Chartier, 

2001) regards geometrical intuition as a stepping stone to the study of Linear Algebra. Both refer 

extensively – and in some sense stand on the solid shoulders of – the essential work on 

mathematical intuition by Ephraim Fischbein. The analysis in (Chartier, 2001) is also embedded in 

curricular and pedagogical aspects of the experiences of the post-graduate students who are its focus 

and draws out of the students’ responses the kinds of geometrical intuition – helpful and less helpful 



 

 

– they bring into their practice of Linear Algebra. Those links between mathematical encounters of 

the students in earlier and later phases of their studies will be a focus for Ghislaine Gueudet (then 

Chartier) also in CERME3.  

Transitions, for example from Algebra to Analysis – as in the work also in CERME2 by Michela 

Maschietto (2001), even though technically concerning secondary school – is a theme that features 

strongly in CERME ever after. I note though that both Gueudet and Maschietto had their CERME2 

work presented in Working Group 7 (Metaphors and Images) and that  Maschietto’s paper has an 

explicit focus on the concept of limit. This is a mathematical topic which, to this day, is a flagship 

topic for much UME research. In CERME3, for example, there are five papers with this focus, with 

three of the studies carried out in a computational environment. Again, UME research can be found 

interspersed in five (on my count) Working Groups: 1. Metaphors and images (including embodied 

cognition); 3. Building structures in mathematical knowledge; 4. Argumentation and proof; 6. 

Algebraic thinking; 7. Geometrical thinking. Colleagues such as Uri Leron, Ted Eisenberg, Cécile 

Ouvrier-Buffet contribute investigations that can be seen as closely relevant to those of us doing 

research in a university mathematics education context. However, these are works pitched beyond 

the context of the investigations at their heart. Participants are often called “subjects” and it is 

sometimes several pages into the papers that the reader learns whether these participants are school 

pupils, university undergraduates or pre-service teachers. This is a particularly evident tendency in 

the more explicitly psychologically-oriented works in Working Group 3 (Building structures in 

mathematical knowledge) and a little less pronounced in those in the rapidly growing Working 

Group 4 (Argumentation and proof) which had more than a dozen papers in it. 

A clear exception to this rule is a paper that was not presented in any of the working groups I listed 

above: it was presented and discussed in Thematic Group 8 (Social interactions in mathematical 

learning situations) and, to me, it has an incredibly modern, up to date feel to it. It embodies several 

of the characteristics that were to become more salient in much later CERMEs. The paper is by 

Andreas Andersson (2003, later Ryve) and it involves observations of engineering students as they 

interact during mathematical activity. It also deploys the then just-emerging tools from the work of 

Anna Sfard and her colleagues (e.g. 2002). The tools are used to record patterns in participants’ 

communication (preoccupational analysis for social aspects of the communication and focal 

analysis for patterns in the mathematical content of the communication). Both the explicit focus on 

a group of university students (and actually non-mathematics specialists) and the discursive tools 

deployed in the data analysis render the paper – retrospectively – a solid foreshadower of things to 

come, in CERME and elsewhere. 

Part II: The AMT years, CERME 4, 5, 6 

The quality and quantity of work I sampled so far from the first three CERMEs resulted in the 

recognition by ERME of the increasing significance of research in this area. Group 14 (Advanced 

Mathematical Thinking) was launched in CERME4 in 2005 with Joanna Mamona-Downs, Maria 

Meehan and John Monaghan as its inaugural leaders and attracted twelve papers.  

There is a clear trend emerging from the bulk of these twelve papers: many of these works focus 

squarely on the students and their habits or preferences in mathematical thinking. The perspective is 



 

 

largely developmental and dualist. Several papers explore perceived differences between the 

intuitive and the abstract, the procedural and the conceptual, processes and objects. The prevailing 

theoretical constructs are Richard Skemp’s instrumental and relational understanding (1976), 

Shlomo Vinner and David Tall’s concept image – concept definition (1981), Eddie Gray and David 

Tall’s procepts (1994), APOS theory (Dubinsky, 1991) and Anna Sfard’s theory of reification and 

process – object duality (1991).  

These dualities prevail in the analysis in many of the papers – especially in studies that concern the 

mathematical topics of Calculus and Analysis, and proof and proving. Matthew Inglis and Adrian 

Simpson (2005) capture this well in their paper about dual process theory: intuition, 

formalism/abstraction. Students in these analyses – which have a strong developmental / cognitive 

flavour – appear frequently not at ease with the latter (formalism) and uncertain about the validity of 

the former (intuition). But, we are now well into the 2000s and the broader field is moving briskly 

towards what Steve Lerman (2000) had labelled a “social turn”. (A note here: I find myself agreeing 

more though with the later labelling, by Eva Jablonka and Christer Bergsten (2010), of “social 

brand”, and Lerman’s own acknowledgment in the same volume that plurality is not a problem per 

se in mathematics education.) While attending CERME4, I was also preparing a review (Nardi, 

2005) of Carolyn Kieran’s, Ellice Forman’s and Anna Sfard’s 2002 volume Learning Discourse: 

discursive approaches to research in mathematics education. There was a palpable sense in the 

CERME4 sessions that this extended and accentuated tendency to use developmental/cognitive 

frameworks, rather than exploring connections between students’ learning behaviours and the 

institutional, pedagogical and curricular context in which these behaviours manifest themselves, 

was leaving much more to desire from the presented analyses.  

The paper by Erhan Bingolbali and John Monaghan (2005) on the impact of departmental settings 

for engineering and mathematics undergraduates’ engagement with the notion of derivative, 

expressed this desire very well. The paper had a good go at exploring the dialectic between 

departmental setting, lecturers’ teaching and student ‘positioning’. Even better was the 2008 ESM 

paper by these authors, poignantly entitled Concept image revisited.  

The paper that Paola Iannone and I presented at CERME4 (2005) also expresses, in a rudimentary 

form, this desire for more substantial exploration of the dialectic relationship between lecturers’ and 

students’ ways of communicating mathematically in writing and in speaking. We used the term 

“genre speech” (Bakhtin, 1986). The paper draws on the larger data pool that three years later 

became Amongst Mathematicians (Nardi, 2008) and has – a little over-ambitiously I admit – a 

multiple purpose. To explore the “genre speeches” of university mathematics is one. The other one 

is to bring to the fore an example of a “co-learning partnership” between university mathematics 

lecturers and mathematics education researchers. I note that “co-learning partnership” is a term that 

I had become familiar with from the work of my doctoral supervisor and research collaborator 

Barbara Jaworski (2003), who is also to be credited for introducing me to CERME in the first place! 

The rapprochement between the communities of university mathematicians and mathematics 

education researchers became a staple theme in much of the work that I became involved with in the 

years that followed – and it is one of the defining characteristics of the work that the UME group 

has showcased and also nurtured. More on this follows later. 



 

 

Joanna Mamona-Downs continued to lead the AMT group in CERME5 too and the group grew 

bigger – about 50% bigger! But was it also healthier? I recall vividly the vibrancy of the sessions 

and also the fact that substantial findings were shared. Two strands made an impression on me at the 

time: the emerging strand of studies on students' generation of examples, non-examples and counter 

examples – for example by Maria Meehan (2007) – also emerging out of the then freshly published 

work in this area by Anne Watson and John Mason (2005). I also recall an emerging focus on 

studies that explore the easing of the transition from school to university – for example, in terms of 

the mathematical reasoning required. Matthew Inglis and  Adrian Simpson (2007) at the time 

brought to our attention differences between 'vernacular logic' and 'mathematical logic' and belief 

biases in reasoning.  

Closer to the focus that my work was gearing towards at the time, I also recall Winsløw and Møller 

Madsen’s (2007) adaptation of ATD, the anthropological theory of the didactic, and their 

examination of the relationship between mathematicians' research activities and their teaching 

practices. Paola Iannone and I (2007) continued to report analyses from our interview study with 

university mathematicians: this time we chose to report a slice of our data that concerned the 

interplay between syntactic and semantic knowledge in proof production (Weber & Alcock, 2004).  

With Lara Alcock, and also Matthew Inglis and Rina Zazkis, I was delighted to act as helper to 

Joanna Mamona-Downs and to observe the many elements of continuity from CERME4 – but also 

the elements of what I, to this day, see as evidence of healthy controversy. Mamona-Downs (2007), 

in her synopsis of the group’s work captures this well. Here she lists the pertinent questions we were 

asked to engage with:  

(1) Is the perceived discontinuity between secondary and tertiary mathematics due to institutional 

and pedagogical practices, or is it caused by factors concerning the character of University 

Mathematics that demand new habits of behavior in reasoning? (2) What ways are there to ease the 

transition? (3) If AMT is taken as thinking skills needed for Advanced Mathematics, how are they 

beyond those required at school? (4) What commonalties or differences in mental processes are 

there in the two levels? (p.2228) 

She then notes that our group discussion was:  

“rather diffused and mostly sidestepped the questions despite their fundamental significance. It was 

dominated by the view of some that the research field of AMT has largely changed its main focus 

from cognitive-based studies starting in the early nineteen eighties, to the tendencies found 

nowadays based more on societal and affect factors that make the long established work 'obsolete'. 

Others countered strongly this position on the basis of the existence of different scientific 

'paradigms', in the sense of Kuhn, and on much of the actual output of recent educational research. 

Opinions were often put in a partisan spirit. […] A discussion was raised concerning the possibility 

that some tasks accessible to school students might pose the same kinds of problems in their 

resolution for undergraduates, and so it could be claimed that these tasks might be considered within 

the scope of AMT.” (p.2228) 

No consensus was found possible in the group at CERME5 as this quotation from Mamona-Downs 

suggests: 



 

 

“Several participants declared that the two interpretations are complementary and that there was no 

compelling reason not to retain the traditional name 'Advanced Mathematical Thinking' as an 

umbrella term [while there were] a few participants who felt that the themes stated in the program 

were mostly steered towards cognitive factors.” (p.2228-9) 

And, I recall, for example, the paper from Corine Castela (2007) offering evidence and taking a 

clear stance that this persistent focus on cognitive approaches may not be the most inclusive – or 

fertile – way forward for the group.  

This tendency to question whether UME research was appropriately congregating under the AMT 

umbrella continued in CERME6. The AMT group maintained its size and also, as the group leaders 

(Roza Leikin, Claire Cazes, Joanna Mamona-Dawns, Paul Vanderlind) observe in their notes on the 

proceedings (2009), attracted papers firmly focused on the latter of the two ways of interpreting 

AMT (advanced thinking in mathematics, A-MT or thinking about advanced mathematics, AM-T). 

As I was reporting a study about prospective and practising teachers’ perspectives on proof, I 

attended the proof group on that occasion. So I missed the wealth of findings in the CERME6 AMT 

papers on conceptual attainment, approaches to proof and proving, problem solving, instructional 

approaches and processes of abstraction. It is fair to say though that UME research was gaining even 

more critical mass with about twenty five papers across six groups!  

One of these is Barbara Jaworski’s (2009) paper which proposes the exploration of university 

mathematics teaching practice through a sociocultural perspective that embroiders elements of 

Activity Theory and the Communities of Practice Theory. There will be a stream of papers thereafter 

in CERME with a focus on the practices and perspectives of the university mathematics teacher.  

My own work in this period, a part of it also with Barbara Jaworski, illustrates this focus rather 

emphatically. In a nutshell, I would describe my research programme dating from 1990s to the mid-

2000s as as shifting from studies of university mathematics students’ learning of particular 

mathematical topics (as outlined earlier: Nardi, 1996; 2000) to a progressively growing focus on 

university mathematics teachers’ perspectives/practices in mathematics and mathematics 

teaching (Nardi, Jaworski & Hegedus 2005; Nardi, 2008). These two sets of work illustrate the shift 

of my focus progressively towards university mathematics teachers’ pedagogical and 

epistemological perspectives. UMTP (University Mathermatics Teaching Project) resulted in the 4-

level Spectrum of Pedagogical Awareness (Nardi et al., 2005). Amongst Mathematicians: Teaching 

and learning mathematics at University Level (Nardi, 2008) was published in 2008, following a 

gestation period of several years that had started also in CERME with the presentations, with Paola 

Iannone, that I mentioned earlier.  

Amongst Mathematicians (Nardi, 2008) tells the story of a co-learning partnership that illustrated 

research between mathematics educators and mathematicians with these five key characteristics: 

collaborative, mathematically focussed, context-specific, non-prescriptive and non-deficit as 

possible. In addition to reporting university mathematicians’ pedagogical and epistemological 

perspectives, the book served a broader purpose too. It is written in the rather unconventional format 

of a dialogue between two fictional, yet data grounded characters – M, mathematician, and RME, 

researcher in mathematics education – and is intended as reflection on the perceived benefits, 



 

 

obstacles and desires of the relationship between the two. Such conversations were of course not 

new. For example, Anna Sfard (1998) reported her discussion with Shimshon A. Amitsur, in the 

form of a dialogue and a range of authors from a variety of national and institutional contexts, 

including Michèle Artigue and Gerry Goldin, were writing at the time about this relationship. A 

common observation in these accounts was about its fragility. Research which consolidates and 

propels the rapprochement between the communities of mathematicians and mathematics educators 

remains a focus of my work today (e.g. Nardi, 2016) and it is fair to say that CERME, in the mid-

2000s provided one of the first fora for kickstarting this work.  

Let me conclude my reflections on what I labelled as “the AMT” years with a brief reference to a set 

of works that somehow foreshadow developments within the UME community in CERME: in the 

Modelling TWG, Berta Barquero, Marianna Bosch and Josep Gascón (2009) offered an ATD 

account of the institutional constraints hampering the teaching of mathematical modelling at 

university level. They coin the term “applicationism”, an epistemological perspective which 

proposes a strict separation between mathematics and other disciplines (especially the natural 

sciences) and sees mathematical tools as built to be applied to solve problems in other disciplines – 

with this application not causing any change in the discipline of mathematics or for the discipline in 

which the application is made. As UME research is rapidly growing in the area of teaching 

mathematics to non-mathematicians, works such as this, in CERME6 and earlier, now acquire 

added significance. 

Part III: The UME years, CERME 7, 8, 9 

The proposal to the ERME board for the launch of TWG14: University Mathematics Education was 

born out of two main sources. First was my reading and writing at the time: While writing Amongst 

Mathematicians, my search across the literature was broad. In fact, as Michèle Artigue (2016) has 

noted in her INDRUM2016 plenary, there is a synthesis feel to the book. A more explicit, deliberate 

synthesis of hitherto developments in research into the teaching and learning of university 

mathematics that was the chapter that Artigue (Artigue, Batanero & Kent, 2007) co-authored with 

Carmen Batanero and Philip Kent for the second NCTM Handbook. Secondly, at PME, in  Morelia 

(Nardi & Iannone, 2008) and in Thessaloniki (Nardi et al,, 2009) , two Working Sessions / 

Discussion Groups that I had co-ordinated with colleagues many of whom ended up co-leading the 

UME TWG in CERME, had attracted many colleagues and had generated vital, urgent discussions. 

I recall that this sensation of vibrancy and urgency was not universally shared outside the bubble of 

researchers in this area. I recall that when we proposed the launch of the group, we were gently 

reminded by members of the board that we would need to attract at least eight papers to make the 

new group viable! I recall that we – the inaugural co-leaders of TWG14 – were nudging each other 

that, if each one of us submitted a paper, we would only need to find three more to be able to launch 

the group! We were of course wrong.  

I need to make two brief notes at this juncture: first, that the account of the group’s work since 2011 

borrows heavily from the collectively authored texts in the CERME7, 8 and 9 proceedings (Nardi et 

al., 2011; 2013; 2015); second, that, given the volume of work presented at these conferences, I will 



 

 

from now on stay largely away from extensive exemplification from specific papers. I will instead 

focus on the themes that mark the “emancipation” and “enrichment” themes promised in the title. 

Our rationale for a UME TWG ((Nardi et al., 2011) was in a nutshell as follows. 

Research on university level mathematics education is a relatively young field, which embraces an 

increasingly wider range of theoretical approaches (e.g. cognitive/developmental, socio-cultural, 

anthropological and discursive) and methods/methodologies (e.g. quantitative, qualitative and 

narrative). Variation also characterises research in this area with regard to at least two further issues:  

 the role of the participants, students and university teachers, in the research – from ‘just’ 

subjects of the research to fully-fledged co-researchers; and,  

 the degree of intervention involved in the research – from external, non-interventionist 

research, to developmental/action research in which researchers identify problems and 

devise, implement and evaluate reforms of practice (Artigue et al, 2007).  

2011 marked the 20th anniversary of the publication of Advanced Mathematical Thinking edited by 

David Tall (1991). This is a volume that is often heralded as a first signal of the emergence of this 

new area of research. A few years later, a second signal was given by the 1998 ICMI study that 

resulted in The teaching and learning of mathematics at university level, edited by Derek Holton 

(2001). In the meantime, Advanced Mathematical Thinking (AMT) groups ran both in previous 

CERME and PME conferences; sessions exclusively on university mathematics education have 

been part of the EMF ('Espace Mathématique Francophone) conferences since 2006; the RUME, 

UMT and Delta conferences emerged in the USA, the UK and South Africa respectively; the 

International Conferences on the Teaching of Mathematics at University Level were launched in 

1998; etc. The UME TWG emerged out of the above developments and out of the realisation that 

this is a distinct area of mathematics education research.  

The distinctiveness of UME research can be attributed to several characteristics.  

Firstly, the classic distinction between ‘teacher’ and ‘researcher’ does not always apply in UME as 

researchers in mathematics education in this area are often university-level teachers of mathematics 

themselves. In particular, there is a growing group of mathematicians specializing in research on 

mathematics education at university level, where expertise and experience in advanced mathematics 

is really an asset (if not a necessity). Secondly, mathematics education theories and research 

methods find new uses, and adaptations, at the university level. These adaptations are often quite 

radical as the post-compulsory educational context is different in many ways – including the 

voluntary presence of students, the important role of mathematics as a service subject, the 

predominance of lecturing to large numbers of students, the absence of national programmes for 

university education, the required shift to the distinctly different practices of university 

mathematics, to mention but a few. In this sense, UME is a distinct area of mathematics education 

research, not merely a mirror of mathematics education research at a more advanced educational 

level. Finally, in recent years, research in this area has been growing in different parts of the world. 

TWG14 is one forum where evidence of this growing research activity from Europe and beyond has 

been accumulating. 



 

 

Across CERME7, 8 and 9, the WG14 Calls for Papers invited contributions from as wide a range of 

research topics as possible. Here is, for example, the list from CERME9: the teaching and learning 

of advanced topics; mathematical reasoning and proof; transition issues “at the entrance” to 

university mathematics, or beyond; challenges for, and novel approaches to, teaching (including the 

teaching of students in non-mathematics degrees); the role of ICT tools (e.g. CAS) and other 

resources (e.g. textbooks, books and other materials); assessment; the preparation and training of 

university mathematics teachers; collaborative research between university mathematics teachers 

and researchers in mathematics education; and, theoretical approaches to UME research. 

We opted for widening participation as much as possible, both in terms of the substantive, 

methodological and theoretical takes of the proposed papers but also in terms of the disciplinary 

background and experience of the proposers. The 21, 29 and 45 (31 long 14 short) papers accepted 

for publication in the respective proceedings met those terms. 

Across the WG14 discussions, certain themes and questions emerged as crucial. These included: 

exploring whether UME needs to generate new theories or adapt already existing ones; attending to 

issues of both theory and practice; acknowledging that research on teaching and learning in higher 

education develops also outside mathematics education, and benefiting from these developments; 

working towards the generation of new theories while valuing already accumulated knowledge in 

the field; etc. One oft-repeated observation was that, beyond staple references to classic constructs 

from the AMT years, several works presented in TWG14 employ (often in tandem with the above) 

approaches such as the Anthropological Theory of the Didactic (Chevallard, 1999) and discursive 

approaches, such as Anna Sfard’s (2008) theory of commognition. 

In CERME7 (Nardi, et al., 2011), we noted that an area of growth has certainly been studies that 

examine the different role of mathematics in courses towards a mathematics degree, courses for pre-

service teachers, as a ‘service’ subject (physics, biology, economics etc.). While a substantial 

number of papers remains in the increasingly well-trodden area of students’ perceptions of specific 

mathematical concepts (again calculus prevails in these), a focus on university teachers and teaching 

is also emerging, if often a little timidly, and diplomatically, resulting in descriptive, openly non-

judgemental studies. In conjunction with those studies, a genre of collaborative studies, with 

mathematicians engaged as co-researchers, also seems to be on the rise. We signal the emerging 

trends in the CERME7 papers as: Transitions; Affect; Teacher practices; Mathematical topics. 

In CERME8 (Nardi et al., 2013), we noted the appearance of new mathematical topics: infinite 

series and abstract algebra. We also noted that some of these papers are written by research 

mathematicians, using a mathematical, epistemological, or historical analysis, and drawing on their 

teaching experience. Others present research that makes use of different theoretical frameworks, and 

methodological tools, to analyse students’ difficulties with these specific topics, to better understand 

the teaching of a specific topic and the consequences of this teaching, or to formulate propositions 

for the design of teaching to overcome these difficulties. The range of approaches vary from 

developmental ones (such as concept image – concept definition), to models for abstraction (such as 



 

 

the RBC model), to analysis of discourse (theory of commognition) and the consideration of 

institutional matters (anthropological theory of the didactic)3.  

After CERME8, the team – in collaboration with TWG14 participants and others – worked towards 

a Research in Mathematics Education Special Issue on Institutional, sociocultural and discursive 

approaches to research in university mathematics education which focused on research that is 

conducted in the spirit of the following theoretical frameworks: Anthropological Theory of the 

Didactic, Theory of Didactic Situations, Instrumental and Documentational Approaches, 

Communities of Practice and Inquiry and Theory of Commognition. As we noted in the Editorial of 

the RME Special Issue (Nardi et al., 2014), there is a clear surge of sociocultural and discursive 

approaches – and the number of papers using ATD and TDS is also remarkable. An emerging focus 

seems to be also on systematic investigations of innovative course design and implementation and 

there is certainly a rise in the number of studies that examine the teaching and learning of 

mathematics in the context of disciplines other than mathematics, such as engineering and 

economics. Furthermore, this time we welcomed more colleagues from outside Europe and also 

noted the rise in the number of papers on assessment and examination4.  

In CERME9 (Nardi et al., 2015), there was a notable shift in terms of numbers of papers (two to 

one) in favour of the second of our two umbrella themes: Teaching and learning of specific topics in 

university mathematics; Teachers’ and students’ practices at university level. The breadth of topics 

covered especially in the latter is also telling: curriculum and assessment; innovative course design 

in UME; student approaches to study; relating research mathematicians’ practices to student 

practices; views and practices of mathematics lecturers; and, methodological and theoretical 

contributions to UME research. 

In CERME9 we also observed the further strengthening, maturity and increasingly more robust 

theorizing of studies into teaching practices. And, we also noticed in several papers the establishing 

of promising liaisons across different theoretical perspectives such as a discursive take on 

mathematical knowledge for teaching or an anthropological take on documentational approaches.     

The critical – and growing – mass and quality of the work presented at CERME9 TWG14 led to the 

launch of an ERME Topic Conference, INDRUM2016, a conference of the newly established 

International Network for Didactic Research in University Mathematics (Montpellier, March 31 – 

April 2, 2016)5. The conference attracted more than 80 submissions and more than 100 participants. 

INDRUM2018 is currently in preparation. 

                                                 

3 By the way, we closed our CERME8 text for the proceedings with a Concluding note on rigour and quality of UME 

research. While there is no space here to elaborate, I invite the reader to what I see as pertinent observations from the 

TWG14 team about these issues in CERME at large. 
4 In CERME10 there is a new TWG on assessment that spans across educational levels led by former TWG14 co-leader 

Paola Iannone.   
5 I chaired this conference with the tireless Carl Winsløw. Its launch and its 2016 success (Montpellier, France) relied 

heavily on the sterling work of ERME president Viviane Durand-Guerrier and the commitment of Thomas Hausberger. 

http://indrum2016.sciencesconf.org/?lang=en
https://indrum2018.sciencesconf.org/


 

 

Part IV: CERME10, the split… 

There were 47 UME papers and 16 UME posters accepted for presentation and discussion in 

CERME10. Their presentation and discussion was in two isomorphic groups: TWG14A and 

TWG14B. From CERME11, it is expected that papers may be invited for two, also thematically 

distinct, groups – and the debate on possible configurations for this dominated some of the 

discussions at the conference. One way forward that I personally favour is for a grouping by the 

following distinction: studies that concern the transition to university studies of mathematics and  

the transition from university studies into the (various forms of) workplace; and, studies that 

concern the teaching and learning of mathematics while at university. The challenge of debating the 

numerous configurations of how the (new) group(s) can be (re)defined is certainly non-negligible.  

Isn’t this a most wonderful place to find ourselves though, having to manage the now critical mass 

and quality of UME research present in CERME? 

Part V: Taking stock / What next / Coming soon… 

As I am drawing to a close, I would like to ask the question: what did we want to achieve with the 

establishment of TWG14? Have we achieved these objectives? Are we going to? For example: did 

we manage to encourage fledgling topics in UME research? Have we planted the seed for new ones? 

In the sprawling vista of works that I aimed to sample in this lecture – and I am fully aware of the 

wafer thin way in which I have done so – I have aimed to identify trends in UME research (overall, 

in CERME, in my own work) that signify the benefits (the richness!) of opening up, of widening 

our substantive, theoretical and methodological horizons (the what, the how and the why of our 

research). Most of my examples have aimed to illustrate the benefits that emancipation from an 

individualistic, narrowly psychological, cognitive perspective has brought to UME research. 

There are still though foci that have not yet merited our sufficient attention. One such research focus 

that seems to me to be not within the radar of current works is UME research is on more advanced 

topics in mathematics – and by that, I mean mathematics that is typically taught beyond the first two 

years of university studies. 

On a less deficit tone, I am generally satisfied that we have come a long way but I also acknowledge 

that there is an even longer way to go. It is fair to say that, within the various UME communities 

around the world, we have gone (or are still going) through what I would like to label as a 

dismissive phase: that all so-called traditional pedagogies are “bad”, lecturing in particular. I am 

observing – but I am also asking that we do so even better – that we become more nuanced and 

embracing of possibility. We are starting, for example, to recognise that lecturing can serve some 

purposes rather well; that it can be complemented by formats more tailored to the serving of 

students’ individual needs; that there are interactive lecture formats that give participants the buzz 

of community belonging and building and prepare students for the less cocooned, less protected 

world of work where interaction, team work and communication are key. We are finding out that 

not all interaction and all the time is good per se and that there are particular types of communal 

engagement with mathematics that work better than others. TWG14 papers have been offering the 

evidence base for these claims, steadily and cumulatively. In a way, I find the choice made by the 



 

 

mathematics department in my institution (see earlier snip in Figure 2) to include in its promotional 

materials images of lectures and also to close its promotional video 

(https://www.youtube.com/watch?v=gRzVX8c1be4) with a close-up of white chalk on a blackboard 

(Figure 4) somewhat refreshing.  We are perhaps starting after all to embrace diversity in the ways 

that the students need to experience mathematics! 

I believe the answers to the questions with which I started this section are reservedly optimistic and 

affirmative. In Part II, I showed an outline of my own research programme over the years and I am 

pleased to be able to say that most of the items there – and what followed these – have emerged out 

of collaborations with colleagues in CERME, including research plans for the immediate future. 

CERME has indeed been a platform where I am trialling new topics for research. My CERME8 

paper (Nardi, 2013) offers analyses of the challenges of teaching a graduate course on mathematics 

education to students with a variety of backgrounds, including bachelor degrees in pure 

mathematics, and native languages other than the language of instruction. The paper also outlines 

key didactic techniques and principles to cope with these challenges. It finally morphed into the 

more substantial analyses present in a paper included in the inaugural issue of IJRUME (Nardi, 

2015) which examined ways to facilitating paradigm shifts in the supervision of mathematics 

graduates upon entry into mathematics education. 

CERME has also been a platform where I have trialled new approaches to analysing data. In fact, I 

credit CERME for allowing me the creative space to have a go – and converse  about – discursive, 

particularly commognitive, approaches to the analyses of my data. My CERME7 paper (Nardi, 

2011) outlined interviewed mathematicians’ perspectives on their newly arriving students’ 

verbalisation skills; and, observed that discourse on verbalisation in mathematics tends to be risk-

averse and not as explicit in teaching as necessary. At CERME9, Bill Barton and I (Nardi & Barton, 

2015) presented a commognitive analysis of a “low lecture” episode (student-led inquiry oriented 

discussion on open-ended problems) to illustrate crucial steps of student enculturation into 

mathematical ways of acting and communicating, including a shift away from the lecturer’s 

‘ultimate substantiator’ role. Finally, both the papers I am involved in as co-author in CERME10 

(Virman & Nardi, 2017; Thoma & Nardi, 2017) present commognitive analyses in contexts that said 

analyses are now just about starting to appear (teaching mathematics to non-mathematicians; 

analyses of closed-book examination tasks and student/lecturers’ assessment discourses). 

Returning to the anecdote that I started with, a somewhat self-deprecating recollection of the 

theoretical ambivalence of my doctoral work, I see my own research programme as an illustration of 

the richness emanating from the emancipation, from what I now see as a narrow, individualistic 

perspective in my earlier work. To me there is nothing vacantly rhetorical about the three Cs in the 

CERME spirit: COMMUNICATION, COOPERATION, COLLABORATION. The growth of my 

research programme through each one of these is to me unshakeable evidence of the pragmatic 

strength of these three words. In TWG14 these words have taken shape as specific actions. Here are 

two: (1) Certainly, we have assisted with the arrival of several new researchers in this field, some of 

whom are currently co-leaders; many have used the reviewing process as a stepping stone for their 

writing (from poster to conference paper then to completing theses and journal papers). (2) We have 

engaged practitioners of university mathematics teaching who now see themselves also as UME 

https://www.youtube.com/watch?v=gRzVX8c1be4


researchers. To do so, we deploy the reviewing process and the discussions at the conference to 

convey the rigour that is required for UME research (in terms of engaging with theory, prior 

research and methodology) and to bridge the epistemological differences between the academic 

disciplines of mathematics and education.  

I invite the reader to the collections of papers published in the TWG14 sections of the Proceedings, 

the 2014 Research in Mathematics Education Special Issue that followed CERME8, the 

proceedings of the 2016 INDRUM conference and the imminent (publication expected in 2018) 

International Journal for Research in Undergraduate Mathematics Education Special Issue that is 

following INDRUM2016 as testimonials of the growth and diversity I have tried to map here. And 

there is more to come: INDRUM2018 will be hosted by MatRIC at the University of Agder 

(Kristiansand, Norway) in April 2018 and its Scientific Committee aims to follow it up with a state-

of-the-art volume soon after. And, of course, there is the UME chapter (Winsløw et al., in press) in 

the ERME 20th Anniversary Book that we aim to celebrate in CERME11, in 2019. The promise of 

UME research on the global scene is further corroborated by the healthy growth of the RUME and 

DELTA conferences, and the respective group within EMF. In closing, I return to the words of 

Michèle Artigue whose thoughtful INDRUM2016 plenary (Artigue, 2016) triggered the focus of the 

synthesis and analysis presented here: 

 “The emergence of the [UME] field was […] characterized by the domination of cognitive 

and constructivist perspectives. I consider as a strength of our field the fact that we have 

succeeded in emancipating ourselves from these perspectives, whose limitations are evident, 

but also the fact evidenced by the consideration of most research publications, that this 

emancipation went along a reconstruction of their main outcomes, thus making possible 

some form of incorporation of these outcomes in the new paradigms.” 

Michèle Artigue, from Mathematics education research at university level: Achievements and 

challenges, INDRUM2016 plenary lecture (p.19) 
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Young children’s early mathematical competencies: Analysis and 

stimulation 
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In this paper we take a critical look at the state-of-the-art in the research domain of early 

mathematical development and education. We start with a brief review of the influential and 

successful (neuro)cognitive research in this domain - which is heavily focused on the development 

and teaching of children’s (non-symbolic and symbolic) magnitude representation and strongly 

dominated by the theory of an approximate number system (ANS). We confront and complement this 

(neuro)cognitive approach with various other lines of research that may help to provide a more 

comprehensive picture of the development and stimulation of children’s early mathematical 

competence and how it relates to their later mathematical proficiency at school.  

Keywords: Early mathematics, approximate number system, number concepts, mathematical 

patterns and structures, preschool education. 

Introduction 

The past 10-15 years have witnessed the emergence of a remarkably productive and highly 

influential line of research on children’s early numerical magnitude representation, its development, 

its relation to school mathematics, and its assessment and stimulation (Torbeyns, Gilmore & 

Verschaffel,, 2015). 

The starting point of this line of research - which has its origins in cognitive (neuro)psychology -, is 

the idea that young children, like many other species, are equipped with some foundational innate 

core systems to process quantities. This “starter’s kit” is thought to involve (a) an “object tracking 

system” that has a limit of three or four objects and is thought to underlie “subitizing” (= to 

immediate and accurate estimate of one to four objects without serial enumeration), and (b) an 

“analogue number system” – for the internal representation of numerical magnitudes as Gaussian 

distributions of activation on a “mental number line” with increasingly imprecise representations for 

increasing magnitudes (Dehaene, 2011) - allowing them to compare non-symbolic quantities that 

are too numerous to enumerate exactly or to perform some very basic approximate arithmetic on 

these quantities (Andrews & Sayers, 2015; Butterworth, 2015).  

With these foundational core number sense systems, these magnitudes are represented non-verbally 

and non-symbolically, but, over development and through early (mathematics) education, verbal and 

symbolic representations are gradually mapped onto these foundational representations, to evolve 

into a more elaborated system for number sense (Torbeyns et al., 2015). 

People’s numerical magnitude representations are commonly assessed via magnitude comparison 

and/or number line estimation tasks, of which there exist both non-symbolic and symbolic versions 

(Butterworth, 2015; Andrews & Sayers, 2015; Torbeyns et al., 2015). Examples are shown in Figure 

1. 



 

 

    

Figure 1: Example of a non-symbolic magnitude comparison and a symbolic number line estimation 

task 

During the past decade, several research teams have set up correlational, cross-sectional and 

longitudinal studies to determine the contribution of children’s numerical magnitude understanding 

- sometimes in combination with other specific early numerical competencies (such as subitizing, 

counting or numeral recognition) - to their concurrent and/or later overall mathematical 

achievement or to specific parts of it such as mental arithmetic or algebra (see, e.g., Bailey, Geary, 

& Siegler, 2014; De Smedt, Verschaffel, & Ghesquière, 2009; Jordan, Glutting, & Ramineni, 2010; 

Nguyen, Watts, Duncan, Clements, et al., 2016; Reeve, Reynolds, Humberstone, & Butterworth, 

2012). These studies have demonstrated that children’s numerical magnitude understanding is 

positively related to their concurrent and future mathematics achievement in general or in particular 

subdomains of mathematics.  

Two recent meta-analyses have yielded a good overview of the outcomes of this research on the 

association between various measures of children’s numerical magnitude understanding and their 

concurrent and future mathematics achievement. Schneider, Beeres, Coban, Merz, et al. (2017) 

performed a meta-analysis on the research about the association between performance on the 

magnitude comparison task and measures of mathematical competence. Their literature search 

yielded 45 articles reporting 284 effect sizes found with 17,201 participants. The results support the 

view that magnitude processing is reliably associated with mathematical competence as measured at 

least up to the end of the elementary-school years and by a wide range of mathematical tasks, 

measures and subdomains. Furthermore, the effect size was significantly higher for the symbolic 

than for the non-symbolic magnitude comparison task and decreased very slightly with age. So - the 

authors conclude - symbolic magnitude processing might be a more eligible candidate than non-

symbolic magnitude processing to be targeted by diagnostic screening instruments and interventions 

for school-aged children and for adults. The association was also higher for mathematical 

competences that rely more heavily on the processing of magnitudes (i.e., early mathematical 

abilities and mental arithmetic ) than for others (i.e., more general curriculum-based tests). 

Schneider, Merz, Stricke, De Smedt, et al. (submitted) performed a similar meta-analysis for the 

association between people’s score on the other main task to assess numerical magnitude processing 

skills, namely the number line estimation task, and mathematical competence. Using exactly the 



 

 

same analytic procedure, and working with a set of 37 studies, they found that the correlations with 

mathematic competence - both in general and for particular parts of the curriculum - were 

significantly higher for number line estimation than for symbolic magnitude comparison or for non-

symbolic magnitude comparison. Whereas the correlations did not substantially increase with age 

for comparison, an increase with age was found for number line estimation, which suggests that 

different underlying cognitive systems and processes are involved in magnitude comparison vs. 

number line estimation. 

Furthermore, researchers working within this research tradition have tried to stimulate children’s 

mathematical skills with (game-based) intervention programs that were (primarily or exclusively) 

aimed at enhancing their numerical magnitude understanding before or at the beginning of formal 

instruction in number and arithmetic in elementary school. While some intervention studies have 

resulted in positive effects (e.g., Kucian, Grond, Rotzer, Henzi, et al., 2011; Ramani & Siegler, 

2011; Wilson, Dehaene, Dubois, & Fayol, 2009), the overall results are mixed (Torbeyns et al., 

2015). 

Being well aware of the prominence of this line of research in the international research of early 

mathematics education, the IPC of the 23rd ICMI study on “Whole number arithmetic” invited one 

of the leading scholars in that line of research, namely Brian Butterworth, as a plenary speaker of 

the conference, which took place in June 2015 in Macau, China. In his plenary lecture Butterworth 

(2015) presented a very informative overview of this cognitive (neuro)scientific line research, and 

strongly defended this research in the working groups and panels wherein he participated. However, 

at that conference, it also became clear that the dominant picture of early mathematical competences 

and education in current mainstream (neuro)cognitive research is dangerously narrow. In the present 

paper, we will try to broaden that picture in multiple ways. In doing so, we will partly rely on recent 

and current work done in our own research group, but also on the work of many colleagues who 

have been active in the field of early mathematics education during the past decade(s). 

The ordinal and measurement aspect of number 

A first important feature of the line of research summarized above is its focus on the cardinal aspect 

of number, or, to state it differently, its neglect of other constituent aspects of number, particularly 

its (1) ordinal and (2) measurement aspect. Hereafter we discuss these two neglected aspects. 

The distinction between the ordinal and cardinal aspect of number knowledge is well known. 

Whereas cardinality refers to the capacity to link number symbols to collections, e.g., to know that 

four or 4 is the correct representation to denote a group of four objects, ordinality refers to the 

capacity to place number words and numerals in sequence; for example, to know that 4 comes 

before 5 and after 3 in the sequence of natural numbers. Given the wide recognition of the 

importance of ordinality for the constitution of number since Piaget (1952) developed his theory of 

children’s concept of number, it is remarkable that, until recently, the ordinality aspect of number 

seems largely neglected in the above mainstream cognitive neuroscientific conceptualization, 

assessment and instruction of early numerical abilities. 

Interestingly, recent neuroscientific evidence shows that accessing ordinal information from 

numerical symbols (e.g., decide whether three numbers are in order of size) relies on a different 



 

 

network of brain regions and shows qualitatively different behavioral patterns when compared to the 

cardinal processing of magnitudes or numerical symbols or to the ordinal processing of perceptual 

magnitudes (Lyons & Beilock, 2011, 2013). And, how well a child is able to reason about ordinal 

relations between number symbols has been found to be one of the strongest predictors of 

mathematical skill such as mental arithmetic (Lyons, Price, Vaessen, Blomert, & Ansari, 2014) – 

much stronger, by the end of the first grade of elementary school, than non-symbolic or symbolic 

cardinal processing as measured by the numerical magnitude comparison task. So, the idea that 

emerges from this recent neuroscientific research is that children’s sense of ordinality of number 

symbols may be distinct from their sense of cardinality and, in terms of developing skills needed for 

success in mathematics, that ordinality may even be the more significant one (Sinclair & Coles, 

2015, see also Vogel, Remark, & Ansari, 2015).  

This line of research pointing to the importance of ordinality also led math educators to criticize the 

mainstream neuroscientific view on how children’s early number sense may be stimulated. The 

latter view suggests that working on linking symbols to sets of objects may reinforce the very way 

of thinking that young children need to overcome to become successful in school mathematics. But 

this is the current practice in many countries, where the emphasis in early mathematics education is 

firmly on linking number symbols to collections of objects - whether this is done through subitizing 

or counting. Based on the above theoretical and empirical arguments, Sinclair and Coles (2015, p. 

253) asserted that this emphasis on cardinal awareness in learning number is misplaced and argued 

that what young children above all need is “support to work with symbols in their relationship to 

other symbols”. This plea for paying more attention to the importance of ordinality has led these 

authors to the design of an innovative iPad app, TouchCounts (Sinclair & Jackiw, 2011) wherein the 

way numerosities are built, labeled and manipulated does not primarily require sense of cardinality 

but rather ordinality. 

The cardinal emphasis on number knowledge has also been attacked from another, more radical, 

perspective. In his plenary address at the ICMI23 conference, Bass (2015) described an approach to 

developing concepts of number using the notion of quantity measurement. This approach is not 

new, of course, and is quite well-known among mathematics educators (see e.g., Brousseau, 

Brousseau, & Warfield, 2004), even though it has, to the best of our knowledge, hardly led to actual 

and wide-scale implementation in national curricula.  

It has been articulated most prominently by Davydov (1990), a Soviet psychologist and educator, 

who developed, together with his colleagues, in the 1960s and 1970s, a curriculum for number and 

arithmetic based on this measurement approach. This curriculum delayed the introduction of 

number instruction until late in the first grade. Early lessons rather concentrated on “pre-numerical” 

material: properties of objects such as color, shape, and size, and then quantities such as length, 

volume, area, mass, and amount of discrete objects, but without yet using number to enumerate 

“how many”. So, in this approach number is not intrinsically attached to a quantity; rather it arises 

from measuring one quantity by another, taken to be the “unit:” How “much” (or many) of the unit 

is needed to constitute the given quantity?  

The discrete (counting) context in which whole numbers are typically developed in most approaches 

to early and elementary mathematics education is characterized by the use of the single-object set as 



 

 

the unit, so that the very concept of the unit, and its possible variability, is rarely subject to 

conscious consideration. According to Bass (2015, p. 11), “this choice is so natural, and often taken 

for granted, that the concept of a chosen unit of measurement need not enter explicit discussion. If 

number is first developed exclusively in this discrete context, then fractions, introduced later, might 

appear to be, conceptually, a new and more complex species of number quite separate from whole 

numbers. This might make it difficult to see how the two kinds of numbers eventually coherently 

inhabit the same real number line. Indeed, this integration entails seeing the placement of whole 

numbers on the number line from the point of view (not of discrete counting, but) of continuous 

linear measure.” (see also Behr, Harel, Post, & Lesh, 1992, for a similar argument coming from the 

research literature on rational numbers).  

According to Bass (2015), this measurement approach has a lot of advantages over the counting 

based approach, especially if one takes a broader long-time mathematics educational perspective. 

First, it is a way of providing coherent connections in the development of rational numbers. A 

second advantage is that it makes the geometric number line continuum present from the start of the 

school curriculum as a useful mathematical object and concept. Third, the approach provides 

opportunities for some early algebraic thinking. 

The above analysis suggests that it is important to balance cardinal, ordinal and measurement 

aspects of number in early mathematics education. This requires some serious reflection on the 

ingrained ways in which cardinality is now privileged in early mathematics education as well as 

further creative explorations of how the two other elements of ordinality and measurement can be 

mobilized to promote the development of a broad and balanced number concept. 

Arithmetic reasoning skills 

It is apparent that the mainstream analysis of early mathematics-related competences has capitalized 

on measures that emphasize children’s numerical competences, i.e., their subitizing skills, counting 

skills, the ability to compare numerical magnitudes, and the ability to position numerical 

magnitudes on an empty number line. While such measures provided empirical evidence for the 

multi-componential nature and importance of young children’s early numerical competences for 

future mathematical development, they reflect also in another way a restricted view on children’s 

early mathematical competences.  

Starting from Piaget’s (1952) logical operations framework, there is a recent renewed research 

attention to children’s early arithmetic reasoning skills, such as their understanding of the additive 

composition of number or their additive and multiplicative reasoning skills, as well as to their 

importance for later mathematical learning at school (e.g., Clements & Sarama, 2011; Nunes, 

Bryant, Barros, & Sylva, 2012; Robinson, 2016).  

As documented in her extensive review of this research, Robinson (2016) points out that the 

research on children’s conceptual understanding of these arithmetic concepts is heavily focused on 

additive concepts, that is, concepts involving the operations of addition and/or subtraction. Various 

principles including the additive composition of number but also the arithmetical properties such as 

the commutativity, the associativity, the addition-subtraction inverse, and the addition-subtraction 

complement principle have been intensively studied, sometimes also in relation to children’s actual 



 

 

use of these principles in their mental arithmetic (Baroody, Torbeyns, & Verschaffel, 2009; 

Verschaffel, Bryant, & Torbeyns, 2012). Quite a number of these studies already involve young 

children at or even before the age of 6-7 years old. 

Similar multiplication and division principles have also been investigated, however, to a much 

lesser extent and with a more restricted developmental range, from late middle childhood to 

adulthood (Larsson, 2016; Robinson, 2016), which is not surprising given that, for most children, 

these operations are typically not yet formally introduced in the first grades of elementary school.  

Only a few of these studies have explicitly addressed the question of how young children’s 

emergent understanding of these additive and multiplicative principles is predictively related to their 

(later) achievement in school mathematics, in similar ways as has been done for the numerical 

aspects of early mathematical competence reviewed in the previous section. The limited available 

evidence from these few studies suggests that early mathematical reasoning of this sort makes a 

separate and specific contribution to achievement in school mathematics, even up to several years 

later (Nunes, Bryant, Evans, Bell, et al., 2007; Nunes et al., 2012).  

As an illustration, we refer to the study of Nunes et al. (2012), which used data collected in the 

context of the Avon Longitudinal Study of Parents and Children (ALSPAC) involving about 4000 

pupils, to assess whether arithmetic reasoning makes an independent contribution, besides 

calculation skills, to the longitudinal prediction of mathematical achievement over five years. 

Arithmetic reasoning was assessed at the start of children’s elementary education (i.e., at 7 years) 

using a test that included three types of items: additive reasoning about quantities, additive 

reasoning about relations, and multiplicative reasoning items (see examples in Figure 2).  

 

Figure 2: Examples of items from Nunes et al.’s (2012) arithmetic reasoning test 

The outcome measures of mathematical achievement were standardized assessments designed to 

measure school standards by the end of elementary school. Hierarchical regression analyses were 

used to assess the independence and specificity of the contribution of arithmetic reasoning vs. 

arithmetic skill to the prediction of achievement in mathematics, science, and English at the end of 

elementary school, using age, intelligence, and working memory as controls in these analyses. 

Arithmetic reasoning and skill made independent contributions to the prediction of mathematical 

achievement, but arithmetic reasoning was by far the stronger predictor of the two. These 



 

 

predictions were also specific, in so far that these measures were more strongly related to 

mathematics than to science or English.  

In sum, according to Nunes et al. (2012), their findings provide a clear justification for making a 

distinction between arithmetic reasoning and numerical, counting and calculation skills. The 

implication for diagnosis and intervention in early mathematics education is that arithmetic 

reasoning should receive a greater emphasis from the early years in primary school on. 

Understanding patterns and structures 

In another attempt to identify and explain common underlying early bases of mathematical 

development and its stimulation, other researchers have looked at mathematical patterns and 

structures (Lüken, 2012; Mulligan & Mitchelmore, 2009; Mulligan, Mitchelmore, & Stephanou, 

2015; Rittle-Johnson, Fyfe, Loehr, & Miller, 2015)  

In what can be considered as one of the most enduring, systematic and influential research programs 

in this respect, based on a series of related studies with diverse samples of 4- to 8-year-olds, 

Mulligan and colleagues have identified and described a new construct, Awareness of Mathematical 

Pattern and Structure (AMPS) (Mulligan & Mitchelmore, 2009; Mulligan et al. 2015), that has been 

shown to be related to children’s later mathematics achievement in school. 

Mathematical pattern involves any predictable regularity involving number, space, or measure such 

as number sequences and geometrical patterns, whereas structure refers to the way in which the 

various elements are organized and related, such as iterating a single ‘unit of repeat’ (Mulligan & 

Mitchelmore, 2009). AMPS involves structural thinking based on recognizing similarities, 

differences and relationships, and also a deep awareness of how relationships and structures are 

connected.  

An interview-based assessment instrument was developed and validated, the Pattern and Structure 

Assessment - Early Mathematics (PASA) (Mulligan et al., 2015). The PASA yields an overall 

AMPS score as well as scores on five individual structures: sequences, shape and alignment, equal 

spacing, structured counting, and partitioning. Some examples of tasks are sequences that have to be 

extended (e.g., a sequence of colored pearls on a string or a series of triangular dot configurations of 

increasing size) or structured counting tasks (e.g., counting by two’s, counting the number of cells 

in a partly covered rectangular pattern). Based on the child’s response, which may include drawn 

representations and verbal explanations of patterns and relationships, five broad levels of structural 

development were identified and described: pre-structural, emergent, partial, structural, and 

advanced structural (Mulligan & Mitchelmore, 2015). Validation studies indicated that high levels 

of AMPS were correlated with high performance on standardized achievement tests in mathematics 

with young students (Mulligan et al., 2015).  

In alignment with the assessment of AMPS, an innovative, challenging alternative learning 

program, the Pattern and Structure Mathematics Awareness Program (PASMAP) was developed 

and evaluated longitudinally in the kindergarten (= the first year of formal schooling in Australia). 

This study first showed that kindergartners are capable of representing, symbolizing and 

generalizing mathematical patterns and relationships, albeit at an emergent level (Mulligan, 



 

 

Mitchelmore, English, & Crevensten, 2013). The study also tracked and described children’s 

individual profiles of mathematical development and these analyses showed that core underlying 

mathematical concepts are based on AMPS, and that some children develop these more readily and 

in more complex ways than others. Finally, this study also involved an attempt to provide an 

empirical evaluation part involving 316 kindergartners from two schools with and two schools 

without the PASMAP program. Highly significant differences on PASA scores were found for 

PASMAP children in comparison to children from the control schools, also for those children 

labeled as low ability, both at the posttest and the retention test, when children had already moved to 

Grade 1. On the other hand, there was no significant impact of PASMAP on improving children’s 

mathematical achievement as measured by a general mathematics achievement test.  

Other researchers have also performed analyses of (1) elementary school children’s perceptions and 

understandings of patterns and structures, providing nice descriptions and accounts of young 

children’s abilities and difficulties with respect to various mathematical patterns and structures 

tasks, (2) the predictive value of their mastery of pattern and structure for their later mathematical, 

i.e. algebraic proficiency, and (3) how instruction on patterns and structures can not only transfer to 

similar and other patterns and structures, but also to other mathematical domains such as ratios, and 

mathematics achievement in general (for an overview, see Rittle-Johnson, Fyfe, Loehr, & Miller, 

2015). 

Of course, the idea that patterns and structures play an important role in the learning of 

mathematics, and should play an important role in its teaching, is not new (Orton, 1999). After all, 

is the definition of “mathematics as a science of patterns” (Müller, Selter, & Wittmann, 2012) not 

one of our favorite definitions of what mathematics is all about? The critically new element in the 

research of the work of Mulligan and associates is that they give it such a prominent role in their 

diagnostic and teaching materials for early mathematics. In doing so, they contribute to broadening 

the picture of what (early) mathematics is all about – a picture that is largely undervalued in current 

early and elementary school mathematics with its strong focus on learning about numbers and 

arithmetic facts and procedures. 

Spontaneous focusing tendencies 

The studies and views on the early development of children’s mathematical competence reviewed 

so far typically take a purely “ability” perspective. In doing so, they neglect other aspects of young 

children’s early mathematical competence, such as their attention to or feeling for, numerical 

magnitudes, mathematical relations, or mathematical patterns and structures. During the past 

decade, researchers have started to explore children’s spontaneous tendency to focus on numerosity 

(SFON), its development, its cultivation, and its predictive relation to children’s later mathematical 

achievement (Hannula & Lehtinen, 2005). To a lesser extent, similar attempts have been done for 

quantitative relations (SFOR) and, even much less, mathematical patterns and structures (SFOPS). 

These SFON, SFOR or SFOPS tendencies are not about what children think and do when they are 

guided to the mathematical elements, relations or patterns in the situation, but what they 

spontaneously focus on in informal everyday situations. SFON assessment instruments must 

therefore capture whether children spontaneously use their available number recognition or 



 

 

quantitative or mathematical reasoning and patterning skills in situations where they are not 

explicitly guided or instructed to do so. So, the instruments used to assess these spontaneous 

focusing tendencies must meet several strict methodological criteria (Hannula & Lehtinen, 2005). 

As far as SFON is concerned, the most frequently used task so far is the Elsi Bird Imitation task, 

wherein the child is instructed to imitate the experimenter’s play behavior with toys, i.e., feeding 

berries into the beak of a toy parrot. A SFON score is given on an item as soon as the child is 

observed doing or saying something that shows that he or she has spontaneously attended to the 

quantitative aspect of the situation. Meanwhile several other SFON tasks have been developed, such 

as the Picture Description task, with cartoon pictures displaying both non-numerical and numerical 

information and the request to tell what is in the picture. If the child spontaneously refers to the 

exact numerosities - correct or not – in his or her verbal descriptions of the pictures, (s)he gets a 

SFON score (for an overview and critical discussion of SFON measures, see Rathé, Torbeyns, 

Hannula-Sormunen, De Smedt, & Verschaffel, 2016). 

Observations of children’s activities in SFON assessment indicated that already at the age of 3-4 

years children can be spontaneously engaged in mathematically relevant practices in their everyday 

environments (Hannula & Lehtinen, 2005). This research also revealed great inter-individual 

differences in children’s tendency to spontaneously focus on number. It further showed that 

children’s SFON at the age of 5 or 6 is a unique and strong predictor of later development of 

mathematical skills even up to the end of elementary school. The hypothetical explanation for these 

findings is that children who spontaneously focus on the numerical aspects of their environment in 

everyday situations get much more practice of magnitude recognition, number comparison, 

combining of numbers, etc. than children who only do this when explicitly instructed by parents or 

teachers. SFON may support the development of numerical skills and more elaborated numerical 

skills may further strengthen the SFON tendency. However, convincing direct empirical evidence 

for this explanatory mechanism is still scarce (Rathé, Torbeyns, Hannula-Sormunen, & Verschaffel, 

2016). 

In many everyday activities exact numerosity is not the only mathematically relevant aspect that can 

be focused on. In young children’s daily life there are many opportunities to focus on more complex 

quantitative aspects, such as quantitative relations. Children can also recognize and use 

mathematical or quantitative relations without explicit guidance to do so. Based on a series of 

studies, McMullen, Hannula, and Lehtinen (2013, 2014) proposed that there is a similar tendency to 

focus on quantitative relations as SFON, which indicates that instead of mere numerosity children 

and school pupils can also focus spontaneously on quantitative relations (SFOR). McMullen and 

colleagues (McMullen, Hannula-Sormunen, Laakkonen & Lehtinen, 2016; McMullen, Hannula-

Sormunen, & Lehtinen, 2013; McMullen, Hannula-Sormunen, & Lehtinen, 2014). designed the 

Teleportation Task to measure SFOR. This task involves a cover story telling that a set of supplies 

containing three sets of objects was sent from earth through space with a teleportation machine. 

However, when doing so, the objects are transformed. Children are asked, first, to describe the 

transformation in their own words in as many ways as possible, and, second, to draw what they 

expect to happen with a different numerosity of the same objects. When describing or drawing the 

transformation, learners can pay attention to the various non-mathematical changes (e.g., in terms of 



 

 

the colors or shapes of the objects), but also to the quantitative relation between the original and 

final numerosity of the three sets. The results of the longitudinal study of McMullen, Hannula-

Sormunen, Laakkonen, and Lehtinen (2016) showed that there were substantial individual 

differences in students’ SFOR tendencies,. It also revealed that SFOR tendency had a unique 

predictive relationship with rational number conceptual development in late primary school students 

during the 2-year follow-up period.  

Interestingly, in their conceptualization of AMPS, Mulligan and Mitchelmore (2009) also tend to go 

beyond the pure ability aspect of early mathematical competence, by stating that AMPS may consist 

of “two interdependent components: one cognitive (knowledge of structure) and one meta-

cognitive, i.e., “spontaneous” (a tendency to seek and analyze patterns)” (p. 39). According to these 

authors, both are likely to be general features of how children perceive and react to their 

environment. However, neither in their assessment nor in their intervention materials, they have 

already tried to specifically and explicitly address this spontaneous focusing aspect.  

Early mathematics and executive functions 

In the previous sections, we have discussed various kinds of domain-specific competences that all 

have been claimed, and in many cases been shown, to be predictively related to general 

mathematical competence or to knowledge and/or skill in specific subdomains of the mathematics 

curriculum. However, it is a well-established research finding that formal mathematics achievement 

is also influenced by domain-general processes, such as sustained attention, inhibitory control, 

cognitive flexibility, working memory capacity, and - even more generally - intelligence (Bull & 

Scerif, 2001; De Smedt, Janssen, et al., 2009; Friso-van den Bos et al., 2013; LeFevre et al., 2010; 

Peng, Namkung, Barnes, & Sun, 2016).). While most of that research evidence comes from research 

with older participants, there is increasing evidence on the importance of executive functions in 

early mathematical thinking and learning too. 

In one line of research, authors have analyzed the relative importance of general executive skills as 

compared to the role of domain-specific early numerical competences in predicting concurrent and 

later mathematical development. For instance, in a longitudinal study wherein we followed children 

during the first grades of elementary school, we were able to show that working memory at the start 

of primary education was predictively related to individual differences in mathematics achievement 

six months later in Grade 1 and one year later in Grade 2 (De Smedt, Janssen, et al., 2009). 

Interestingly, overviewing the research, Bailey et al. (2014), concluded that the contribution of 

domain-specific factors, such as children’s early numerical competences to their later mathematical 

development is relatively small compared to these more stable domain-general factors, such as 

intelligence and working memory.  

The relation between these executive functions and mathematical performance may also be more 

specific in nature. Research has revealed specific relations between certain executive functions, 

such as inhibition or working memory, on the one hand, and specific mathematical competences, 

such as mental arithmetic or word problem solving, on the other hand. Robinson and Dubé (2013), 

for instance, investigated the role of inhibition in children’s use of the inversion and associativity 

shortcuts on mental addition and subtraction (e.g., 6 + 23 – 23 = ?). Children who demonstrated the 



 

 

highest use of conceptually-based shortcuts also scored highest on the Stop-Signal task, a standard 

measure of inhibitory abilities. This finding suggests that these children were able to inhibit their 

tendency to routinely solve problems from left-to-right and thereby process all of the presented 

numbers before executing the clever shortcut strategy. 

So far, we have discussed the role of executive functions in children’s performance on relatively 

complex mathematical tasks. However, to make the picture about the role of executive functions 

even more complicated, these executive functions are also assumed to play a critical function in the 

early mathematical tasks, such as the magnitude comparison task, the SFON tasks, the mathematical 

reasoning tasks, and the patterns and structures tasks discussed above. Take, for instance, the non-

symbolic magnitude comparison task used to assess the approximate number system (ANS) and 

which lies at the basis of this whole line of research that has led to the pivotal role of the precision 

of children’s early ANS representations in early mathematics diagnosis and intervention (see 

Section 1). In this task it is important to ensure that participants are basing their judgements on the 

numerosity of the visual arrays, rather than possible visual cues such as the size of the dots, or the 

area that the dot arrays cover. As Gilmore, et al. (2013) have argued, in an attempt to control for this 

possible confound, researchers introduce an inhibitory control aspect to the task, as for half of the 

items with which the child is confronted inconsistent visual cues must be inhibited to indicate the 

correct set. But if the non-symbolic comparison task is, in part at least, a measure of inhibitory 

control, then it is perhaps unsurprising that it is predictive of school-level mathematics achievement, 

but for other reasons than claimed by the advocates of this task. 

Starting from the above research documenting in various ways the involvement of executive 

functions in mathematical thinking and learning, researchers have also asked the question about the 

possibility and efficacy of enhancing mathematical thinking and learning through training of these 

executive skills. At least for working memory, a recent meta-analysis by Schwaighofer, Fischer, and 

Bühner (2015) led to the general conclusion that attempts to improve working memory only 

improved performance on working memory tests but failed to improve mathematics achievement.  

So, while there is increasing research evidence that, from a very young age on, an association 

between mathematics and executive functions exists, this complex and multi-aspectual association 

and its implications for early mathematics education and assessment is not well understood yet. 

Numerous questions remain (Robinson, 2016; Van Dooren & Inglis, 2015). As (early) mathematics 

educators we are traditionally not so much interested in these general executive functions. However, 

for various reasons related to theory, diagnosis and intervention, it may be unwise to neglect them. 

The role of parents and early caregivers during the preschool years 

As amply shown in the previous sections, before the start of formal mathematics education - 

typically at the age of 5-6, children already begin their initial explorations into everyday 

mathematics at home, progressively developing and refining their mathematical knowledge and 

skills as well as their mathematics-related orientations, beliefs, and affects. However, there is wide 

variation - linked in part to socio-economic status (SES) and culture - in the kinds of early 

mathematical learning experiences children have at home and the ways in which they are stimulated 

and helped by their parents. Further, in many cultures, the majority of young children spend 



 

 

significant time in non-parental care, including family childcare and organized preschool education 

(DREME, 2016). Arguably, the quantity and quality of mathematics learning stimulation in these 

various settings also vary enormously, impacting children’s mathematical development. For evident 

reasons, mainstream cognitive (neuro)psychological research on early numerical competences has 

paid little or no attention to these informal mathematical learning environments. But also within the 

mathematics education research community this topic is “under-studied”. Indeed, we know 

relatively little about the role of parents and early caregivers during the preschool years when 

compared, on the one hand, to the development and stimulation of children’s emergent literacy, and, 

on the other hand, to mathematics education in the higher educational levels. Fortunately, the last 

few years have witnessed an increased research interest. 

First, several researchers have aimed for an understanding of children’s preschool experiences at 

home and of how these experiences affect their early mathematical development. For instance, 

starting from the well-documented finding that children’s early numerical competence before the 

start of formal schooling is highly predictive of their acquisition of mathematics in (the first grades 

of) elementary school, several authors have pleaded for a better understanding of children’s 

preschool experiences at home. In a well-known study by Lefevre, Skwarchuk, et al. (2009), the 

mathematical skills of + 150 Canadian children in Kindergarten, Grade 1, and Grade 2 were 

correlated with the frequency with which parents reported informal activities that have quantitative 

components such as board and card games, shopping, or cooking on a questionnaire. The results 

support claims about the importance of home experiences in children’s acquisition of mathematics, 

given that effect sizes were consistent with those obtained in research relating home literacy 

experiences to children’s vocabulary skills. In a more recent and more sophisticated study, 

Susperreguy and Davis-Kean (2016) analyzed the relation between the amount of mathematical 

input that preschool children hear from their mothers in their homes and their early mathematics 

ability one year later. Forty mother–child dyads recorded their naturalistic exchanges in their homes 

using an enhanced audio-recording device. Results from a sample of naturalistic interactions during 

mealtimes indicated that all mothers involved their children in a variety of mathematics exchanges, 

although there were differences in the amount of input children received. Moreover, being exposed 

to more instances of mathematics talk was positively related to children’s early mathematical ability 

one year after the recordings, even after control for maternal education, self-regulation, and recorded 

minutes. Finally, starting from the well-documented finding that early numerical competences 

amongst children vary widely and from the belief that a better understanding of the sources of this 

variation may help to reduce SES-related differences in mathematics skills, Ramani, Rowe, Eason, 

and Leech (2015) examined two sources of this variation in low SES families: (1) caregiver reports 

of number-related experiences at home, and (2) caregivers’ and children’s talk related to math 

during a dyadic interaction elicited by the researchers. Frequency of engaging in number-related 

activities at home predicted children’s foundational number skills, while caregivers’ talk during the 

interaction about more advanced number concepts for preschoolers, such as cardinality and ordinal 

relations, predicted children’s advanced number skills that build on these foundational concepts. So, 

these findings suggest that the quantity and quality of number-related experiences that occur at 

home contribute to the variability found in low-income preschoolers’ numerical knowledge. 



 

 

Complementary to these ascertaining studies, several intervention studies reported positive effects 

on children’s early numerical and later mathematics performance at school. Again, we can give only 

a few examples. In a series of high-impact studies with children from low-income backgrounds, 

who were found to lag behind their peers from middle-income backgrounds already before the 

children enter school, Siegler and Ramani (2008) found that playing a research-based designed 

numerical board game for only a couple of hours already eliminated the differences in the two 

commonly used measures of understanding of numerical magnitudes, namely numerical magnitude 

comparison and number line estimation. Moreover, in a subsequent study (Siegler & Ramani, 2009), 

children who had played the number board game also performed better in a subsequent training on 

arithmetic problems. Thus, playing number board games was found to increase not only 

preschoolers’ numerical knowledge but also to help them learn their school arithmetic. Van den 

Heuvel-Panhuizen, Elia, and Robitzsch (2016) report on a very recent field experiment with a 

pretest–posttest control group design, which investigated the potential of reading picture books to 

kindergarten children for supporting their mathematical understanding. During three months, the 

children from nine experimental classes were read picture books. Data analysis revealed that, when 

controlled for relevant covariates, the picture book reading programme had a positive effect on 

kindergartners’ mathematics performance as measured by a test containing items on number, 

measurement and geometry. Finally, we refer to one of the best known research-based early 

mathematics programs, namely the Building Blocks (BB) program of Clements and Sarama (2011). 

This program, which is organized into five major strands: (numeric, geometric, measuring, 

patterning, and classifying and data analyzing), consists of daily lessons where children are 

encouraged to extend and mathematize their daily experiences through sequenced activities, games, 

and the use of technology. The daily lessons are organized in whole group activities, small group 

activities, free-choice learning centers, and reflection time. The program is complemented with a 

parallel in-service teacher training program. Studies on the effectiveness of the BB intervention 

program (Clements & Sarama, 2007, 2011) demonstrated that 3- and 4-year-olds who received the 

BB intervention program developed stronger mathematical abilities than children in the control 

group, with effects lasting up to the end of first grade. Bojorque (2017) recently successfully 

implemented the BB program in the Ecuadorian context, with significant effects on the quality of 

the kindergarten teachers’ pedagogical actions as well as on children’s progression both on a 

standard mathematics achievement test based on the national K3 curriculum and on their SFON. 

The findings emerging from all these observational, correlational, and intervention studies are very 

informative for the design of educational environments and activities aimed at increasing young 

children’s mathematics learning - far beyond the rather narrowly oriented (computer) games aimed 

at stimulating children numerical magnitude representations that have been derived from the 

cognitive neuroscientific line of research. But still a lot of work needs to be done to further advance 

knowledge on effective ways to increase parents’ and professionals’ engagement in preschoolers’ 

mathematics learning, particularly in children growing up in poverty and/or in contexts of 

unfavorable immigration. 



 

 

Preschool to elementary school transition 

As explained in the previous sections, a large number of factors in the young child and in its home 

and caretaking environment have a strong impact on the ease with which (s)he will take the step to 

formal mathematics education at the age of 5-6 (depending on the country or culture) and profit 

from the elementary school mathematics curriculum. However, the child’s mathematical 

development and achievement will evidently also be significantly affected by the quality of the 

transition from preschool to elementary school (see also Gueudet, Bosch, diSessa, Kwon, & 

Verschaffel, 2016).  

Interestingly, researchers working on this theme typically take a much broader theoretical stance 

than the cognitive (neuro)scientific researchers who look for the elements in children’s domain-

specific and domain-general competences that are predictively related with success in school 

mathematics. Their inspiration comes from socio-cultural, sociological, anthropological, and critical 

mathematical theories (Dockett, Petriwskyj, & Perry, 2014; Perry, McDonald, & Gervasoni, 2015). 

The transition from prior-to-school to school mathematics is primarily conceived by these 

researchers as a set of processes whereby individuals “cross borders” or undergo a “rite of passage” 

from one cultural c.q. educational context or community to another and, in doing so, also change 

their role in these contexts or communities. Dockett et al. (2014, p. 3) provide the following 

summation of this approach: “While there is no universally accepted definition of transition, there is 

acceptance that transition is a multifaceted phenomenon involving a range of interactions and 

processes over time, experienced in different ways by different people in different contexts. In very 

general terms, the outcome of a positive transition is a sense of belonging in the new setting.” There 

is growing research evidence that developing practices that promote effective transitions, and that 

strive for giving agency of all involved and rely on the “Funds of Knowledge” available in 

children’s home and local environments, results in positive effects - although most of this research 

is more qualitative and descriptive in nature and thus not primarily interested in following strict 

experimental designs and providing “hard” statistical data. A nice overview of this broader 

transition perspective is provided by Perry et al. (2015). 

In an interesting newly funded project, Andrews and Sayers have begun to examine how two 

systems, England and Sweden, facilitate the early mathematical competences, and more specifically 

their foundational number sense (FoNS) (Andrews & Sayers, 2015), of children starting in Grade 1. 

Currently the project team is comparing the FoNS opportunities found in commonly used textbooks 

in the two countries (Löwenhielm, Marschall, Sayers, & Andrews, 2017a). Simultaneously the team 

has been interviewing first grade teachers in the two countries about their role as well as their 

perceptions of their pupils’ parents’ roles in the development of children’s FoNS-related 

competence. Initial analyses (Löwenhielm, Marschall, Sayers, & Andrews, 2017b) have identified 

both similarities and considerable differences in the relationship between the school and home 

environment between the two countries.   

It is a general complaint among stakeholders of early mathematics education that mathematics 

learning in preschool is often disconnected from the first grades of elementary school. This 

disconnect, which is particularly relevant for lower SES and immigrant children, can lead to 



 

 

children experiencing uneven instructional practices, which can compromise their mathematical 

development in elementary school. So, policy makers, curriculum developers, teacher trainers, etc. 

should work toward creating greater alignment of and coherence between preschool and elementary 

school mathematics education, using research-based insights and recommendations. Unfortunately, 

there is still limited research on the impact of these policies and practices on the learning 

experiences and learning outcomes of children moving from preschool through the early elementary 

grades. 

Professional development of caregivers and teachers 

In the previous section, we emphasized the importance of a high-quality mathematical learning 

environment in the preschool years, the first years of elementary school, and the transition between 

the two. Evidently, this requires highly professional (mathematics) teachers, i.e., “teachers who 

know the content, who understand children’s thinking, who know how to engage in pedagogical 

practices that support learning, and who see themselves as capable math teachers” (DREME, 2016, 

p. 4).  

At the same time, many teachers and caregivers in the early care and education field may not be 

adequately equipped to provide appropriate math-related experiences and instruction to these young 

children. Research suggests that many practitioners working with preschool, kindergarten and early 

grade children (1) are themselves not competent in mathematics, (2) have important shortcomings in 

the pedagogical content knowledge, particularly with respect to the components of the early math 

curriculum beyond counting, number, and simple addition and subtraction, and/or (3) do not see 

themselves as competent in mathematics (see e.g., Lee, 2010). And, even if practitioners are 

mathematically capable and do view themselves as such, they may still hold pedagogical 

reservations against teaching mathematics to young children, believing that early childhood 

programs should focus primarily on social emotional and literacy goals (Platas, 2008).  

While these problems have shown to be partly due to these professionals’ restricted mathematical 

talents and negative earning histories in elementary and secondary education, research also indicates 

that the nature of the pre-service and in-service training they received does not greatly help to 

overcome these problems. As DREME (2016, p. 4) argues: “Professional teacher preparation 

programs rarely address how to identify the wide range of informal mathematical understandings 

that young children bring with them to the classroom, or how to translate these into intentional, 

individualized math experiences for children with diverse backgrounds and needs.” Indeed, surveys 

of early childhood education degree programs (e.g., Maxwell, Lim, & Early, 2006) reveal that early 

education practitioners are exposed rarely to high-quality pre-service or in-service courses that 

address children’s mathematical development, or the pedagogical content knowledge necessary for 

supporting it.  

We emphasize that the above analysis is largely based on critical reflections upon the situation in 

the US. So, the situation may be better in other places in the world, although there are good reasons 

to restrain from being too optimistic, because the above observations about early math teachers’ 

professional knowledge and beliefs and previous educational histories seem to hold, at least to some 

extent, for many other countries too.  



 

 

To support the training of prospective and practicing early childhood teachers, there is a need of 

creating and implementing research-based modules for professional development that can be used in 

a variety of pre-service and in-service settings (DREME, 2016). The way forward for research is to 

attempt to figure out what are the key levers of professional development that might effect 

significant change in the quality of early math education and its learning outcomes. Given the 

above-mentioned depiction of the complex and multi-sided nature of caregivers’ and early math 

teacher’s professional knowledge base, it seems reasonable to expect the greatest effect from 

modules that do not focus on one single aspect of professionalism but work on the development of 

early math related knowledge, skills and beliefs, and that convey the idea that early mathematics is 

more than teaching young children some basic number knowledge and counting skills.  

Conclusion  

Inspired by developments in the field of neuroscience (e.g., Butterworth, 2015), the past two 

decades have witnessed the emergence of a very productive and highly influential line of 

(neuro)cognitive research on children’s early number sense, its development, and its relation to 

school mathematics. Cross-sectional and longitudinal studies have demonstrated that various core 

elements of children’s early mathematical ability - especially their numerical magnitude 

understanding, their subitizing and counting skills, and their ability to transcode a number from one 

representation to another - are positively related to concurrent and future mathematics achievement 

(Torbeyns et al., 2015).  

However, other research, most of which is situated in other scientific circles and relying on other 

theoretical and methodological perspectives, has yielded increasing evidence for uniquely 

significant relations of mathematical achievement also with (1) young children’s understanding of 

ordinal and measurement aspects of number, (2) their abilities related to mathematical relations, 

patterns and structures, and (3) their tendency to spontaneously attend to numerosities and to 

mathematical relations, patterns, and structures in their environment, and has confirmed the 

important role of domain general executive functions. 

Moreover, researchers have started to explore and analyze the rich variety of early mathematical 

learning environments at home, in preschool and kindergarten settings, as well as the coherence 

between these informal learning settings and the first years of elementary school mathematics, with 

special attention to the professional quality of the early caregivers and teachers. Also, they started to 

set up various kinds of intervention studies aimed at the improvement of the quality of these 

environments and of the professionals operating in these environments. These studies have yielded 

evidence on the short- and long-term benefits of such attempts to provide high-quality early 

mathematics education in preschool settings and in the transition from preschool to elementary 

school. 

While the small-scale, short-term and focused experimental intervention programs derived from the 

(neuro)cognitive research on early numeracy have their value in enhancing our theoretical insight 

into numerical cognition and learning, practitioners active in the field of early mathematics 

education may profit more from the studies describing the design, implementation, and evaluation 

of large-scale and more broadly conceived intervention programs that combine and balance several 



 

 

of the elements that have been found to be foundational for future mathematics learning (see 

Sections 2-6) and that also integrate aspects of teacher development, working with parents, and 

community building (see Sections 7-9), with the Building Blocks program of Clements and Sarama 

(2007) and the Pattern and Structure Mathematics Awareness Program of Mulligan et al. (2013) as 

the most visible and successful examples. Still, as math educators, we should continue to follow, 

with an open but critical mind, the cognitive neuroscientific research on mathematical cognition 

and, equally important, also try to have an impact on their research agenda (De Smedt et al., 2011). 

As a result of all this research, there is a lot of practically useful new knowledge, techniques and 

resources to promote young children’s math learning. Still there remains much to learn about how to 

optimally enhance math learning at home and at school in the preschool years and about how to help 

teachers to be well prepared for delivering high-quality instruction to those young children, 

particularly the weaker ones. In this respect, we should applaud - and may-be also strive for an 

European counterpart – of the recent initiative called the DREME Network in the US, which is 

aimed at developing new researchers and enticing current elementary math education, child 

development, and policy researchers to expand their work to include young children’s mathematical 

learning.  
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This paper presents the contributions of the participants at the CERME10 panel, as well as some of 

the questions raised during the discussion. Our main aim is to examine the notion of solid finding in 

mathematics education, the theoretical and methodological assumptions underlying their 

establishing and the degree of agreement (and disagreement) they provoke. We will consider their 

possible utilities and weaknesses, even jeopardies, taking into account two different standpoints: 

how solid findings are identified and what kind of common ground they rely upon; what are solid 

findings for, how can they be useful and what could be their risks or adverse effects. The panellists 

will adopt different perspectives on the topic, focusing on the specific selection of solid findings 

proposed by the Committee on Education of the European Mathematical Society, approaching the 

problem of the methodologies and use of psychometric models; questioning the use of evidence in 

policy development and curriculum evaluation. 
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Solid findings in mathematics education: A necessary discussion 

Marianna Bosch 

Proposing to collectively discuss on ‘solid findings’ in mathematics education at CERME10 was 

certainly motivated by the initiative of the Education Committee of the European Mathematical 

Society (EMS) to start publishing a series of articles on ‘Solid findings in mathematical education’ 

in 2011 (http://www.euro-math-soc.eu/ems_education/education_homepage.html). This can be 

interpreted as an audacious attempt to establish a stable account of our young discipline, which 

otherwise might appear as made of too diverse principles, approaches and perspectives. It is thus 

supposed to facilitate the approach by people from the outside, especially mathematicians and 

teachers, by giving more visibility of the type of questions approached and the results obtained. 

Inside the discipline, it also appears as an effort to organise and elaborate a provisional common 

hard core (in the sense of Lakatos) of sound and relevant knowledge, without denying the 

provisional and dynamic nature of the considered findings.  

http://www.euro-math-soc.eu/ems_education/education_homepage.html


 

 

Taking the EMS project and its products as initial motivation, the aim of the panel is to examine the 

notion of solid finding, the theoretical and methodological assumptions underlying studies on solid 

findings and the degree of agreement (and disagreement) they might provoke. We propose to 

consider the possible utilities and weaknesses, even jeopardies, of the reports on solid findings, 

taking into account two different standpoints: (1) how solid findings are identified and what kind of 

common ground they rely upon; (2) the purpose of solid findings, their potential utility, and also 

their possible risks or adverse effects.  

The aim of the panel was thus to open a debate on controversial questions like: 

(1) What is a solid finding in Mathematics Education?  What criteria are used to select them? 

Who decides whether a finding is solid or not? Are solid findings linked to specific 

methodologies, theories or approaches? Can they be contested and how? What kind of 

evidence is required? Is it the same kind of evidence for the different ‘findings’?  

(2) What is the purpose of identifying solid findings? What are they for? How can they be 

useful? Are they necessary for teacher education? Could they help to give more visibility to 

our field and to negotiate with educational decision makers? Can there be a risk of 

disseminating false ‘weak’ solid results instead of disseminating the persistent questions 

addressed from research in mathematics education – which do not always coincide with those 

raised by the actors of the educational system (teachers, students, parents, decision makers, 

etc.)? 

During the discussion among the participants at the panel session, the question of the diversity of 

theoretical perspectives was raised on various occasions. It is clear that solid findings are always 

anchored in a given research approach or paradigm (a set of close theories sharing the main 

theoretical principles or assumptions). Agreement on solid findings thus supposes agreement on 

these main assumptions too. This does not seem to be – at the moment – the historical situation of 

the research community in mathematics education, where a diversity of approaches coexists without 

a common shared ground. Not only the type of results provided by these approaches are different, 

but mainly the type of research questions asked, the methodologies used, and even the empirical 

units of analysis considered. If solid findings are presented without mentioning the approaches 

where they have been produced, we run the risk of interpreting solid findings as if they came from 

an a-theoretical perspective (or from a fully shared one), which is in fact a way of giving 

preponderance to the already dominant approaches in detriment of the less disseminated ones.  

Other questions related the issue of solid findings to the problem of the dissemination of results. If 

solid findings should be closely contextualised within a given theoretical framework – or research 

perspective –, how to make them accessible to people not knowledgeable of the framework? To 

what extent, and under what conditions, could solid findings be extended to include frameworks? 

The question varies of course if we think about disseminating research outcomes outside the field, 

or about highlighting what are seen as important milestone in the evolution of the field, for instance 

to build the basis for productive debates.  

Furthermore, participants also indicated that it is important to avoid not only taking the theoretical 

‘load’ of solid findings for granted, but also to pay attention to the values they implicitly carry on, 

for instance, about the purpose of education, the purpose of research on mathematics education or 



 

 

about the corresponding specific epistemology or conception of science. For instance, the choice of 

the term ‘finding’ seems related to a somewhat naturalistic perspective – the scientific discovery of 

a pre-existent reality –, while other options such as ‘claims’, ‘proposals’ or ‘questionings’ (in the 

double sense of raising questions and questioning the status quo) would entail other connotations.  

In this sense, maybe the dimension of problematizing can also be a possible direction to work with.  

In fact, one of the questions from the audience addressed the issue of the relationships between 

solid findings, persistent phenomena and educational problems: Are solid findings restricted to 

phenomena that persist? Is it also possible to have a solid finding that eliminates a problem? In 

other terms, because advancing research also modifies our ways of problematizing reality, solid 

findings can also make some problems appear as simple difficulties that can be overcome, or as 

consequences of other factors to be approached. In the other sense, a solid finding can also consist 

in the awareness that a problem has not solution – at least in the framework where it is formulated.  

The establishment of solid findings as such was also referred to by some participants. Some of them 

wondered if it is possible to identify some steps to help establish solid findings and build upon them 

more systematically. Others asked about efficient ways of guaranteeing cumulative research efforts, 

such as the replicability of the solid findings, which was proposed as a possible research avenue to 

pursue. One should not see naivety in this kind of demands – as if we were asking for ‘recipes’ –, 

but on the contrary, interpret them in terms of a reflection on the research methodologies followed 

(in terms of validity, truthfulness, reproducibility, etc.) and the level of exigence put on them. To 

enrich the debate, some participants provided related materials or counterexamples to this kind of 

reflexion, such as the U. S. webpage “What Works in Education” (http://ies.ed.gov/ncee/wwc/) or 

the special issue of the International Journal of Research & Method in Education (2016) Is the 

Educational ‘What Works’ Agenda Working? Critical Methodological Developments, including a 

paper on review procedures to optimise reviews’ impact and uptake (Green, Taylor, Buckley, & 

Hean, 2016). 

The three contributions that form the core of this paper address some of the issues raised from very 

diverse – and complementary – perspectives. Tommy Dreyfus, a member of the Education 

Committee of the EMS and co-author of some of the ‘solid findings’ articles, provides a very 

interesting account of two moments of reflection of our community around the issue of ‘results’ or 

‘findings’ in mathematics education, and their related projects. He also presents two examples of 

‘solid findings’, showing the criteria used to identify them and also some of the limitations of the 

efforts made. He argues for a collective effort toward the products of more systematic reviews on 

different topics or approaches, as a way to increase the impact of research outside the field but, also, 

to “establish and organize mathematics education as scientific discipline and to determine where we 

come from, where we are and where we might go as a research community”. From a completely 

different side, Caterina Primi, an expert in the field of quantitative educational research, addresses 

the methodology problem – measurement tools to support rigorous research designs – for findings 

to be ‘solid’ or, in statistical terms, ‘robust’, ‘reliable’ and ‘unbiased’. Even if the example taken 

and the questions raised are only related to quantitative methods – where statistical tools are more 

commonly applied –, the reader can do the mental exercise of transposing them to qualitative as 

well as theoretical studies to see how demanding the research work to make knowledge develop can 

be. Finally, Gerry Shiel, National (Ireland) Project Manager for the OECD PISA 2015 Study, 

http://ies.ed.gov/ncee/wwc/


tackles what can be called the ‘impact issue’ of educational research, considering the PISA
phenomenon, which is maybe the source of the most practical and political pressures nowadays in 
almost all countries. The relationships between ‘solid finding’ and evidence-based decision making
provides a rich paradigmatic example and reminds us how intricate is the situation, especially when 
raw data is proposed without any protection from the procedure followed to generate it and the 
theoretical framework, including political ideologies, that underlies its generation.

To end this introduction, let me quote the British sociologist Martin Hammersley (2011) who, in his 
book on methodology, notes how extremely demanding it is to achieve the ‘threshold of likely 
validity required by academic work’ (p. 8). After presenting ‘dedication’, a ‘heightened sense of 
methodological awareness’ and ‘objectivity’ as important virtues for the researcher, the author 
recalls that, besides these individual virtues: 

[The] collective character of enquiry places additional obligations on researchers, as regards how 
they present their work, how they respond to criticism and how they treat the work of colleagues. 
In large part, what is required is that academic research takes place within an enclave that is 
protected from the practical considerations that are paramount elsewhere. […] In other words, 
academic discussion must be protected from political and practical demands, so that the 
consequentiality of proposing, challenging, or even just examining particular ideas or lines of 
investigation is minimised. […] [While] the ‘findings’ of particular studies should be made 
public within research communities, they should not be disseminated to lay audiences. What 
should be communicated to those audiences, via literature reviews and textbooks accounts, is the 
knowledge that has come to be more or less generally agreed to be sound within the relevant 
research community, through assessment of multiple studies. (Hammersley, 2011, p. 10) 

I am not sure if the field of mathematics education has already reached a sufficient level of 
development to agree on what can be globally accepted as sound and relevant knowledge, and thus 
to identify, elaborate and disseminate ‘solid findings’ to lay audiences. However, I am certain that
the community of research in mathematics education is mature enough to initiate a productive 
debate on this, as a way to make different research perspectives interact in a productive way. The 
effort of gathering, summarising, organising, and discussing the research produced about certain big 
questions or issues – as the one undertaken by the EMS Educational Committee –  appears 
nowadays as an endeavour that cannot be postponed. 

What are solid findings in mathematics education?
Tommy Dreyfus 

Relying on earlier studies by an ICMI Study and the Education Committee of the EMS, the question 
what the term ‘solid finding’ might mean with respect to mathematics education is discussed and 
criteria are proposed. Examples are provided for solid findings that mathematics education 
research has produced. 
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tackles what can be called the ‘impact issue’ of educational research, considering the PISA 
phenomenon, which is maybe the source of the most practical and political pressures nowadays in 
almost all countries. The relationships between ‘solid finding’ and evidence-based decision making 
provides a rich paradigmatic example and reminds us how intricate is the situation, especially when 
raw data is proposed without any protection from the procedure followed to generate it and the 
theoretical framework, including political ideologies, that underlies its generation.    

To end this introduction, let me quote the British sociologist Martin Hammersley (2011) who, in his 
book on methodology, notes how extremely demanding it is to achieve the ‘threshold of likely 
validity required by academic work’ (p. 8). After presenting ‘dedication’, a ‘heightened sense of 
methodological awareness’ and ‘objectivity’ as important virtues for the researcher, the author 
recalls that, besides these individual virtues:  

[The] collective character of enquiry places additional obligations on researchers, as regards how 
they present their work, how they respond to criticism and how they treat the work of colleagues. 
In large part, what is required is that academic research takes place within an enclave that is 
protected from the practical considerations that are paramount elsewhere. […] In other words, 
academic discussion must be protected from political and practical demands, so that the 
consequentiality of proposing, challenging, or even just examining particular ideas or lines of 
investigation is minimised. […] [While] the ‘findings’ of particular studies should be made 
public within research communities, they should not be disseminated to lay audiences. What 
should be communicated to those audiences, via literature reviews and textbooks accounts, is the 
knowledge that has come to be more or less generally agreed to be sound within the relevant 
research community, through assessment of multiple studies. (Hammersley, 2011, p. 10) 

I am not sure if the field of mathematics education has already reached a sufficient level of 
development to agree on what can be globally accepted as sound and relevant knowledge, and thus 
to identify, elaborate and disseminate ‘solid findings’ to lay audiences. However, I am certain that 
the community of research in mathematics education is mature enough to initiate a productive 
debate on this, as a way to make different research perspectives interact in a productive way. The 
effort of gathering, summarising, organising, and discussing the research produced about certain big 
questions or issues – as the one undertaken by the EMS Educational Committee –  appears 
nowadays as an endeavour that cannot be postponed. 

  



Introduction 
Mathematics education as a research community has grown over the past approximately 50 years: 
ERME, The European Society for Research in Mathematics Education is approaching its 20th

anniversary in 2018 – CERME1, the first conference took place in Osnabrück, Germany, in August, 
1998. PME, the International Group for the Psychology of Mathematics Education has held its 40th

annual conference in 2016 - the first one took place in 1977 in Utrecht, The Netherlands. JRME, the 
Journal for Research in Mathematics Education, is now producing its 48th annual volume, and 
ESM, Educational Studies in Mathematics is currently in its 50th year of publication since Volume 1 
appeared in 1968. One of the characteristics of research results in (mathematics) education is that 
they depend on the context in which the research has been designed and carried out. Nevertheless, 
after 50 years, one would expect the community to be able to make statements that go beyond “it 
depends on the context and the learning environment”, which is often implicit in the results of even 
high quality research articles. Review articles could be expected to remedy this situation to some 
extent but few review articles are published in the domain.  

What are the results of research in mathematics education – ICMI Study 8 
The question whether we, as a research community, have obtained results with a certain scope, 
range or breadth of validity and what these results are, has been approached at least twice, once in 
the framework of the study conference of ICMI Study 8 in 1996 (ICMI stands for the International 
Commission on Mathematical Instruction), and a second time in the framework of the Education 
Committee of the European Mathematical Society (EMS) in 2011.  

The task assigned by ICMI to the Study 8 program committee was to discuss what is research in 
mathematics education and what are its results. The title of the book published two years later as 
outcome of the study is Mathematics Education as a Research Domain: A Search for Identity
(Sierpinska & Kilpatrick, 1998). Maybe significantly, the word ‘results’ has disappeared in the 
process. Nevertheless, one of the working groups at the study conference dealt with results (Dreyfus 
& Becker, 1998). One of the questions the working group dealt with was what counts as result; the 
term ‘solid’ did not appear. Rather, ‘result’ was interpreted as ‘significant result’. 

Working group members agreed that without a question, there can only be facts but no results. 
Results are more than data: They are based on data collected with questions in mind that have been 
asked within a theoretical framework, and consist of findings interpreted in that theoretical 
framework. Effects alone (e.g., statistical differences in achievements between different groups) are 
not results. In mathematics education, we need to explain the differences, not only show them. We 
need to identify the variables of the didactic situation in order to combine the different facts into a 
coherent network of reasons, which informs the circular process of understanding the learning of 
mathematics and thus improving its teaching. Hence, results are often theoretical as well as 
experimental. Many of our theoretical frameworks are mathematics-specific (e.g., process, object, 
procept), and therefore our research questions and results are often domain-specific. 

Context was seen as relevant with respect to theory as well as beyond: mathematical context 
(contents, concepts, symbols, representations and epistemological status), the community, the 
educational system, among others. Results might be tied not only to the theoretical framework but 
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What are solid findings in mathematics education? 
Tommy Dreyfus 

 

Relying on earlier studies by an ICMI Study and the Education Committee of the EMS, the question 
what the term ‘solid finding’ might mean with respect to mathematics education is discussed and 
criteria are proposed. Examples are provided for solid findings that mathematics education 
research has produced. 

Introduction 
Mathematics education as a research community has grown over the past approximately 50 years: 
ERME, The European Society for Research in Mathematics Education is approaching its 20th 
anniversary in 2018 – CERME1, the first conference took place in Osnabrück, Germany, in August, 
1998. PME, the International Group for the Psychology of Mathematics Education has held its 40th 
annual conference in 2016 - the first one took place in 1977 in Utrecht, The Netherlands. JRME, the 
Journal for Research in Mathematics Education, is now producing its 48th annual volume, and 
ESM, Educational Studies in Mathematics is currently in its 50th year of publication since Volume 1 
appeared in 1968. One of the characteristics of research results in (mathematics) education is that 
they depend on the context in which the research has been designed and carried out. Nevertheless, 
after 50 years, one would expect the community to be able to make statements that go beyond “it 
depends on the context and the learning environment”, which is often implicit in the results of even 
high quality research articles. Review articles could be expected to remedy this situation to some 
extent but few review articles are published in the domain.  

What are the results of research in mathematics education – ICMI Study 8 
The question whether we, as a research community, have obtained results with a certain scope, 
range or breadth of validity and what these results are, has been approached at least twice, once in 
the framework of the study conference of ICMI Study 8 in 1996 (ICMI stands for the International 
Commission on Mathematical Instruction), and a second time in the framework of the Education 
Committee of the European Mathematical Society (EMS) in 2011.  

The task assigned by ICMI to the Study 8 program committee was to discuss what is research in 
mathematics education and what are its results. The title of the book published two years later as 
outcome of the study is Mathematics Education as a Research Domain: A Search for Identity 
(Sierpinska & Kilpatrick, 1998). Maybe significantly, the word ‘results’ has disappeared in the 
process. Nevertheless, one of the working groups at the study conference dealt with results (Dreyfus 
& Becker, 1998). One of the questions the working group dealt with was what counts as result; the 
term ‘solid’ did not appear. Rather, ‘result’ was interpreted as ‘significant result’.  

Working group members agreed that without a question, there can only be facts but no results. 
Results are more than data: They are based on data collected with questions in mind that have been 
asked within a theoretical framework, and consist of findings interpreted in that theoretical 
framework. Effects alone (e.g., statistical differences in achievements between different groups) are 
not results. In mathematics education, we need to explain the differences, not only show them. We 



also to the institution that asked the question. It is not the result itself, but the conditions under 
which it was obtained, that make it significant.  

The contextual nature of results implies that results are neither universal nor eternal, that their 
validity is situated in space and time, and that we have to be careful when trying to generalize. The 
validity of a result depends on the interpretation within a theory, and the theory might change with 
time and place, with mathematical content, learning environment, and so on. Hence results are 
permanent but their relevance might be ephemeral.  

Characterising solid findings 
It is on this background that the members of the Education Committee (EC) of the European 
Mathematical Society (EMS) asked themselves what solid findings mathematics education has 
produced. While the question was motivated by the intention of the committee to present 
mathematics education to mathematicians, in particular to EMS members, with an interest in 
mathematics education, committee members were well aware that the exercise of identifying solid 
findings contributes to establishing and organizing mathematics education as scientific discipline 
and to determining where we come from, where we are and where me might go as a research 
community. 

Of course, the first, and possibly most difficult task of the EC was to discuss, agree and explain 
what they meant by ‘solid findings’. A major difficulty in defining what it means that a result it 
solid is the context dependence, mentioned above. A second and related difficulty is complexity. As
we know well, things are more complex than one might think; we know, for example that the 
mathematics taught and learned in parallel classes with a similar population according to the same 
curriculum may be quite different (e.g., Even & Kvatinsky, 2010; Pinto, 2013). A third, and of 
course also related difficulty is that much of the research in mathematics education is qualitative. 
Since qualitative empirical research cannot be repeated in a strict sense, reproducibility is replaced 
by the question how close the results are that one obtains in similar contexts; and the answer to this 
question of course depends on the metric used to measure closeness. This lack of reproducibility 
may appear as a serious drawback of mathematics education’s claim to be a scientific discipline;
however, reproducibility has recently been shown to be very low even in many hard sciences such 
as physics, chemistry and engineering (Baker, 2016).

Aware of these difficulties and with the ICMI 8 study characterization of (significant) results as 
background, the EC has observed that results with the potential of being considered solid usually do 
not stand alone but have emerged from a line of research consisting of a larger set of related studies.
Solid findings are typically yielded by such a line of studies. Next, the EC has built on three 
properties of research quality proposed by Schoenfeld (2007 – see there for a much more detailed 
discussion): trustworthiness, generality and importance. Each of these contributes to the solidity of 
research results. A characterisation adapted to the purposes of the EC was agreed upon and 
published in the Newsletter of the EMS (Education Committee of the European Mathematical 
Society, 2011a). I summarize this characterization here, adapting and supplementing it for the
purposes of the present CERME panel.
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need to identify the variables of the didactic situation in order to combine the different facts into a 
coherent network of reasons, which informs the circular process of understanding the learning of 
mathematics and thus improving its teaching. Hence, results are often theoretical as well as 
experimental. Many of our theoretical frameworks are mathematics-specific (e.g., process, object, 
procept), and therefore our research questions and results are often domain-specific. 

Context was seen as relevant with respect to theory as well as beyond: mathematical context 
(contents, concepts, symbols, representations and epistemological status), the community, the 
educational system, among others. Results might be tied not only to the theoretical framework but 
also to the institution that asked the question. It is not the result itself, but the conditions under 
which it was obtained, that make it significant.  
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validity is situated in space and time, and that we have to be careful when trying to generalize. The 
validity of a result depends on the interpretation within a theory, and the theory might change with 
time and place, with mathematical content, learning environment, and so on. Hence results are 
permanent but their relevance might be ephemeral.  
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It is on this background that the members of the Education Committee (EC) of the European 
Mathematical Society (EMS) asked themselves what solid findings mathematics education has 
produced. While the question was motivated by the intention of the committee to present 
mathematics education to mathematicians, in particular to EMS members, with an interest in 
mathematics education, committee members were well aware that the exercise of identifying solid 
findings contributes to establishing and organizing mathematics education as scientific discipline 
and to determining where we come from, where we are and where me might go as a research 
community. 

Of course, the first, and possibly most difficult task of the EC was to discuss, agree and explain 
what they meant by ‘solid findings’. A major difficulty in defining what it means that a result it 
solid is the context dependence, mentioned above. A second and related difficulty is complexity. As 
we know well, things are more complex than one might think; we know, for example that the 
mathematics taught and learned in parallel classes with a similar population according to the same 
curriculum may be quite different (e.g., Even & Kvatinsky, 2010; Pinto, 2013). A third, and of 
course also related difficulty is that much of the research in mathematics education is qualitative. 
Since qualitative empirical research cannot be repeated in a strict sense, reproducibility is replaced 
by the question how close the results are that one obtains in similar contexts; and the answer to this 
question of course depends on the metric used to measure closeness. This lack of reproducibility 
may appear as a serious drawback of mathematics education’s claim to be a scientific discipline; 
however, reproducibility has recently been shown to be very low even in many hard sciences such 
as physics, chemistry and engineering (Baker, 2016). 

Aware of these difficulties and with the ICMI 8 study characterization of (significant) results as 
background, the EC has observed that results with the potential of being considered solid usually do 
not stand alone but have emerged from a line of research consisting of a larger set of related studies. 



Trustworthiness includes the explanatory power of research, its rigor and specificity, and whether it 
makes use of multiple sources of evidence. However, a study may be trustworthy but trivial, in 
terms of generality or importance. 

Generality (or scope) refers to the question: What is the scope or generality of a research result? 
How widely does this finding, this idea, or this theory apply across content domains, learning 
contexts, cultures, etc.? For example, did researchers, in different countries and school systems 
obtain comparable or related empirical results? Do theoretical constructs turn out to be useful 
beyond the bounds of the individual studies in which they were developed?  

Trustworthiness and generality together are expected to impart some predictive power to a result. A 
result that has no predictive power cannot be considered solid. On the other hand, the difficulties 
mentioned above, such as context dependence, will usually limit this predictive power. If a result is 
used to predict an outcome in a new context, and the prediction failed, a trustworthy explanation of 
the failure may in fact increase the solidity of the result. 

Importance addresses the question: Does it matter? What is the (actual or potential) contribution of 
the research to theory and practice. Of course, importance is to a large extent a value judgment. As 
in any other field of study, beliefs about what is essential and what is peripheral are not static but 
change over decades, reflecting trends both within and beyond the discipline. Hence recognition of 
the significance of the result by experts contributes essentially to the solidity of a result.

The term ‘solid’ may remind the reader of the term ‘robust’ often used in related situations. 
‘Robust’ often has a technical meaning that refers to a finding having been repeatedly observed or 
confirmed in many studies reporting the same or similar results leading to the same (general) 
conclusions (see Primi, below). The term solid has been chosen intentionally, to refer to results 
rather than findings, and imply that robustness in the technical sense is not possible, nor maybe 
desirable, in mathematics education. 

While robustness can be defined and hence (dis-)proved, solidity cannot. The above is a 
characterization or description – not a definition. Hence, solidity cannot be proved but it can 
definitely be argued by on the basis of the above criteria of significance, trustworthiness, generality 
and adaptability to context.  

Examples 
The second major task of the EC with respect to solid findings was to provide a variety of examples 
of findings that are solid according to the EC’s characterization. While the selection of the examples 
to be presented was somewhat eclectic and partly determined by EC members who were willing to 
write about a topic, the EC as a whole discussed and approved the proposed topics; the EC also 
revised every draft several times. As result a sequence of brief articles has been published 
presenting a rather representative selection including solid findings about cognition and about 
affect, about teaching and about learning, about elementary school and about university, about 
specific mathematical contents and about cross domain issues such as the use of technology, and 
maybe most importantly about theoretical and about empirical results. Most of the issues of the 
EMS newsletter from Issue 82 (December 2011) to Issue 95 (March 2015) present such a solid 
finding.  
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Solid findings are typically yielded by such a line of studies. Next, the EC has built on three 
properties of research quality proposed by Schoenfeld (2007 – see there for a much more detailed 
discussion): trustworthiness, generality and importance. Each of these contributes to the solidity of 
research results. A characterisation adapted to the purposes of the EC was agreed upon and 
published in the Newsletter of the EMS (Education Committee of the European Mathematical 
Society, 2011a). I summarize this characterization here, adapting and supplementing it for the 
purposes of the present CERME panel. 

Trustworthiness includes the explanatory power of research, its rigor and specificity, and whether it 
makes use of multiple sources of evidence. However, a study may be trustworthy but trivial, in 
terms of generality or importance.  

Generality (or scope) refers to the question: What is the scope or generality of a research result? 
How widely does this finding, this idea, or this theory apply across content domains, learning 
contexts, cultures, etc.? For example, did researchers, in different countries and school systems 
obtain comparable or related empirical results? Do theoretical constructs turn out to be useful 
beyond the bounds of the individual studies in which they were developed?  

Trustworthiness and generality together are expected to impart some predictive power to a result. A 
result that has no predictive power cannot be considered solid. On the other hand, the difficulties 
mentioned above, such as context dependence, will usually limit this predictive power. If a result is 
used to predict an outcome in a new context, and the prediction failed, a trustworthy explanation of 
the failure may in fact increase the solidity of the result.  

Importance addresses the question: Does it matter? What is the (actual or potential) contribution of 
the research to theory and practice. Of course, importance is to a large extent a value judgment. As 
in any other field of study, beliefs about what is essential and what is peripheral are not static but 
change over decades, reflecting trends both within and beyond the discipline. Hence recognition of 
the significance of the result by experts contributes essentially to the solidity of a result.  

The term ‘solid’ may remind the reader of the term ‘robust’ often used in related situations. 
‘Robust’ often has a technical meaning that refers to a finding having been repeatedly observed or 
confirmed in many studies reporting the same or similar results leading to the same (general) 
conclusions (see Primi, below). The term solid has been chosen intentionally, to refer to results 
rather than findings, and imply that robustness in the technical sense is not possible, nor maybe 
desirable, in mathematics education.  

While robustness can be defined and hence (dis-)proved, solidity cannot. The above is a 
characterization or description – not a definition. Hence, solidity cannot be proved but it can 
definitely be argued by on the basis of the above criteria of significance, trustworthiness, generality 
and adaptability to context.  

Examples 
The second major task of the EC with respect to solid findings was to provide a variety of examples 
of findings that are solid according to the EC’s characterization. While the selection of the examples 
to be presented was somewhat eclectic and partly determined by EC members who were willing to 
write about a topic, the EC as a whole discussed and approved the proposed topics; the EC also 



Here, I briefly present two of these, one reason for my choice again being personal preference and 
the other representativeness, at least in the empirical – theoretical dimension. 

Do theorems admit exceptions?  

Empirical studies on students’ conceptions of proof have found that many students provide 
examples when asked to prove a universal statement. Universality refers to the fact that a 
mathematical claim is considered true only if it is true in all admissible cases without exception. A 
student who seeks to prove a universal claim by showing that it holds in some cases is said to have 
an empirical proof scheme. The same student is also likely to expect that a statement, even if it has 
been ‘proved’, may still admit exceptions. There is considerable evidence that many mathematics 
students, and some mathematics teachers, rely on validation by means of one or several examples to 
support general statements. The majority of students who begin studying mathematics in high 
school have empirical proof schemes, and many students continue to act according to empirical 
proof schemes for many years, sometimes into their college years.  

While the issue of empirical proof schemes has already been mentioned by Polya (1945), Bell 
(1976) may have been the first to report an empirical study about students’ proof schemes. 
Following Fischbein’s (1982) seminal investigation on universality, the issue has been re-examined 
many times, usually with similar results. For example, findings by Sowder and Harel (2003) 
indicate the appearance of empirical proof schemes among university mathematics graduates. 

The phenomenon of empirical proof schemes is general in the sense that it has been found in many 
cultures, countries, school systems, and age groups. It is persistent in the sense that many students 
continue to do so even after explicit instruction about the nature of mathematical proof. However, it 
is also complex. For example, the London proof study (Healy and Hoyles, 2000) showed that even 
for relatively simple and familiar questions, 14-15 years old high-attaining students’ most popular 
approach was empirical verification but that many students correctly incorporated some deductive 
reasoning into their proofs and most valued general and explanatory arguments.  

How can this pervasive phenomenon be explained? The notion of a “universally valid statement” is 
not as obvious as it might seem to mathematicians. Mathematical thought concerning proof is 
different from thought in all other domains of knowledge, including the sciences, as well as 
everyday experience. In everyday life, the “exception that confirms the rule” is pertinent. Students, 
in particular young children, have little experience with mathematics as a wonderful world with its 
own objects and rules. According to Fischbein (1982), the concept of formal proof is completely 
outside mainstream thinking, and we require students to acquire a new, non-natural basis of belief 
when we ask them to prove. These explanations contribute to the trustworthiness of the findings on 
empirical proof schemes. 

In summary, the studies on empirical proof schemes, only a few of which have been referred to 
here, firmly establish the solidity of the phenomenon of empirical proof schemes. (For a more 
detailed exposition, see Education Committee of the European Mathematical Society, 2011b.)

Concept images in students' mathematical reasoning 

Vinner and Hershkowitz (1980) were the first ones to point out that students’ geometrical thinking 
is frequently based on prototypes rather than on definitions. They have shown, for example, that 
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revised every draft several times. As result a sequence of brief articles has been published 
presenting a rather representative selection including solid findings about cognition and about 
affect, about teaching and about learning, about elementary school and about university, about 
specific mathematical contents and about cross domain issues such as the use of technology, and 
maybe most importantly about theoretical and about empirical results. Most of the issues of the 
EMS newsletter from Issue 82 (December 2011) to Issue 95 (March 2015) present such a solid 
finding.  

Here, I briefly present two of these, one reason for my choice again being personal preference and 
the other representativeness, at least in the empirical – theoretical dimension.  

Do theorems admit exceptions?  

Empirical studies on students’ conceptions of proof have found that many students provide 
examples when asked to prove a universal statement. Universality refers to the fact that a 
mathematical claim is considered true only if it is true in all admissible cases without exception. A 
student who seeks to prove a universal claim by showing that it holds in some cases is said to have 
an empirical proof scheme. The same student is also likely to expect that a statement, even if it has 
been ‘proved’, may still admit exceptions. There is considerable evidence that many mathematics 
students, and some mathematics teachers, rely on validation by means of one or several examples to 
support general statements. The majority of students who begin studying mathematics in high 
school have empirical proof schemes, and many students continue to act according to empirical 
proof schemes for many years, sometimes into their college years.  

While the issue of empirical proof schemes has already been mentioned by Polya (1945), Bell 
(1976) may have been the first to report an empirical study about students’ proof schemes. 
Following Fischbein’s (1982) seminal investigation on universality, the issue has been re-examined 
many times, usually with similar results. For example, findings by Sowder and Harel (2003) 
indicate the appearance of empirical proof schemes among university mathematics graduates. 

The phenomenon of empirical proof schemes is general in the sense that it has been found in many 
cultures, countries, school systems, and age groups. It is persistent in the sense that many students 
continue to do so even after explicit instruction about the nature of mathematical proof. However, it 
is also complex. For example, the London proof study (Healy and Hoyles, 2000) showed that even 
for relatively simple and familiar questions, 14-15 years old high-attaining students’ most popular 
approach was empirical verification but that many students correctly incorporated some deductive 
reasoning into their proofs and most valued general and explanatory arguments.  

How can this pervasive phenomenon be explained? The notion of a “universally valid statement” is 
not as obvious as it might seem to mathematicians. Mathematical thought concerning proof is 
different from thought in all other domains of knowledge, including the sciences, as well as 
everyday experience. In everyday life, the “exception that confirms the rule” is pertinent. Students, 
in particular young children, have little experience with mathematics as a wonderful world with its 
own objects and rules. According to Fischbein (1982), the concept of formal proof is completely 
outside mainstream thinking, and we require students to acquire a new, non-natural basis of belief 



junior high school students tend to think that the altitude has to reach the base (rather than its 
extension). Hence, they draw the altitude inside the triangle, even in a triangle with an obtuse base 
angle. Students' prototype altitude is one that is inside the triangle. This is so, even if the students 
know and can recite the (general) definition of altitude in a triangle.  

Authors from many countries have reported, over the past 35 years, analogous patterns in students' 
reasoning in other areas of mathematics, even among talented students in elementary school, high 
school and college. For example, and in spite of ‘knowing’ the appropriate definitions, students tend 
to act according to rules such as multiplication makes bigger, inflection points have horizontal 
tangents, definite integrals must be positive, and sequences are monotonous.  

A commonality in these and parallel studies is that students do not base their reasoning on the 
definition of the concepts under consideration (even though they are often aware of these definitions 
and can recite and explain them) but rather on what Tall and Vinner (1981) have called their 
concept image: "the total cognitive structure that is associated with the concept, which includes all 
the mental pictures and associated properties and processes" (p. 152). A student’s concept image 
need not be globally coherent and may have aspects which are at variance with the formal concept 
definition.

The notion of a student’s concept image is complex since it is influenced by all of this student’s 
experiences associated with the concept. These include examples, problems the student has solved, 
prototypes the student may have met substantially more often than non-prototypical examples, and 
different representations of the concept including visual, algebraic and numerical ones. Images may
deeply influence concept formation. As a consequence, the concept image is personal and 
continuously changing through the student’s mathematical experiences.  

How can this pervasive phenomenon be explained? While it is not possible to introduce a concept 
without giving examples, particular instances of the concept never suffice to fully determine the 
concept. As a consequence, specific elements of the examples, even if not pertinent to the 
mathematical definition of the concept, become for the student key elements characterizing the 
concept. And even if at the stage a concept is introduced a teacher might make an effort to present a 
rather varied set of examples, as the concept is being used over the coming months or years, some 
of these properties tend to be reinforced because they appear much more frequently than others that 
may recede. Examples abound, and the height of a triangle being vertical in the sense explained 
above is a typical one. Students may see many triangles in which the altitude is inside the triangle, 
and few in which it is not. They might consider these few cases as exceptions (Lakatos might say 
monsters). This explanation contributes to the trustworthiness of the findings on empirical proof 
schemes.

In summary, a solid finding of mathematics education research, supported by dozens of studies in 
many difference contexts, is that students' mathematical reasoning is frequently based on their 
concept images rather than on a mathematical concept definition. A more detailed exposition of this 
solid finding has been published elsewhere (Dreyfus, on behalf of the EC of the EMS, 2014).
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when we ask them to prove. These explanations contribute to the trustworthiness of the findings on 
empirical proof schemes.  

In summary, the studies on empirical proof schemes, only a few of which have been referred to 
here, firmly establish the solidity of the phenomenon of empirical proof schemes. (For a more 
detailed exposition, see Education Committee of the European Mathematical Society, 2011b.) 

Concept images in students' mathematical reasoning 

Vinner and Hershkowitz (1980) were the first ones to point out that students’ geometrical thinking 
is frequently based on prototypes rather than on definitions. They have shown, for example, that 
junior high school students tend to think that the altitude has to reach the base (rather than its 
extension). Hence, they draw the altitude inside the triangle, even in a triangle with an obtuse base 
angle. Students' prototype altitude is one that is inside the triangle. This is so, even if the students 
know and can recite the (general) definition of altitude in a triangle.  

Authors from many countries have reported, over the past 35 years, analogous patterns in students' 
reasoning in other areas of mathematics, even among talented students in elementary school, high 
school and college. For example, and in spite of ‘knowing’ the appropriate definitions, students tend 
to act according to rules such as multiplication makes bigger, inflection points have horizontal 
tangents, definite integrals must be positive, and sequences are monotonous.  

A commonality in these and parallel studies is that students do not base their reasoning on the 
definition of the concepts under consideration (even though they are often aware of these definitions 
and can recite and explain them) but rather on what Tall and Vinner (1981) have called their 
concept image: "the total cognitive structure that is associated with the concept, which includes all 
the mental pictures and associated properties and processes" (p. 152). A student’s concept image 
need not be globally coherent and may have aspects which are at variance with the formal concept 
definition. 

The notion of a student’s concept image is complex since it is influenced by all of this student’s 
experiences associated with the concept. These include examples, problems the student has solved, 
prototypes the student may have met substantially more often than non-prototypical examples, and 
different representations of the concept including visual, algebraic and numerical ones. Images may 
deeply influence concept formation. As a consequence, the concept image is personal and 
continuously changing through the student’s mathematical experiences.  

How can this pervasive phenomenon be explained? While it is not possible to introduce a concept 
without giving examples, particular instances of the concept never suffice to fully determine the 
concept. As a consequence, specific elements of the examples, even if not pertinent to the 
mathematical definition of the concept, become for the student key elements characterizing the 
concept. And even if at the stage a concept is introduced a teacher might make an effort to present a 
rather varied set of examples, as the concept is being used over the coming months or years, some 
of these properties tend to be reinforced because they appear much more frequently than others that 
may recede. Examples abound, and the height of a triangle being vertical in the sense explained 
above is a typical one. Students may see many triangles in which the altitude is inside the triangle, 
and few in which it is not. They might consider these few cases as exceptions (Lakatos might say 



Conclusion 
The list is of solid findings presented by the EC of the EMS is, of course, not exhaustive but limited 
by the time of service of the committee and the people who served on it. I would like to encourage 
CERME members (and other researchers) to write and publish articles about solid findings they are 
aware of and consider important. This might have the desirable effect of producing a type of article 
lacking almost completely from our literature – review articles. Let me make just one suggestion:
Work to raise the awareness of issues and of research on teaching and learning among university 
lecturers and tutors is necessary; it usually improves students’ attitudes but effects on learning are 
limited. Research in at least four countries (USA, Germany, England, Finland) has shown that work 
with students has more potential for large scale effects. It seems to me that a suitable review article 
might not only inform many mathematics educators of an important line of research but might have 
a considerable effect on university teaching centres, an effect that a single study report could (and 
should) never have.  

In conclusion, the researchers and teams referred to above have shown that mathematics education 
has, over the past 50 years, produced theoretical and empirical results that are solid in the sense that 
they have explanatory and predictive power, that they can be applied in contexts beyond those 
involved previous studies, and that they are recognised as important contributions that have 
significantly influenced the research field, for example by providing a theoretical lens that allows to 
see an observed phenomenon differently from how it was seen before.  
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Solid findings in mathematics education:  

A psychometric approach  

Caterina Primi  

 

The foundation of all rigorous research designs is the use of measurement tools that are 

psychometrically sound. The purpose of this paper is to present the scales’ proprieties such as 

reliability, validity, and invariance that are fundamental prerequisite for assuring the integrity of 

study findings. Providing examples of how to assess the psychometric properties of tools used in 

mathematics research may be helpful for future researches in this topic.  

 

In the document prepared by the Education Committee of the European Mathematics Society 

(2011), the description of “solid findings” includes an aspect of “robustness”. That means that 

findings in the research on mathematics learning and teaching should be repeatedly observed or 

confirmed in many studies reporting the same or similar results leading to the same (general) 

conclusions. To achieve this goal rigorous research designs and measurement tools that are 

psychometrically sound are needed. Starting from these premises I will try to identify the 

contribution of psychometrics to solid findings in mathematics education.  

Measurement  

In many educational measurement situations, the variables of interest such as ability, beliefs, 

attitudes, and anxiety are not directly observable. As such, they are latent variables or traits. 

Indeed, they are easily described but they cannot be measured directly, as can height or weight for 

example, since these variables are concepts rather than physical dimensions.  

To give an example of a measurement process, imagine that a researcher is interested in measuring 

mathematics anxiety (MA). Mathematical anxiety is commonly defined as an adverse emotional 

reaction to math or the prospect of doing math (Hembree, 1990). It is a state of nervousness and 

discomfort brought upon by the presentation of mathematical problems and may impede 

mathematics performance irrespective of true ability (Ashcraft, 2002; Ashcraft & Moore, 2009). 

The negative consequences of mathematical anxiety are well-documented (Morsanyi et al, 2017). 

Students with high levels of mathematical anxiety might underperform in important test situations, 

they tend to hold negative attitudes towards mathematics, and they are likely to opt out of elective 

mathematics courses, which also affects their career opportunities. Over the last decade there has 

been more interest in understanding how and when MA develops (Dowker, Sarkar, & Looiet, 2016; 

Harari, Vukovic, & Bailey, 2013; Jameson, 2013; Ramirez, Gunderson, Levine, & Beilock, 2013), 

investigating the incidence of MA, and its effects on primary school samples (e.g. Galla & Wood, 

2012; Karasel, Ayda, & Tezer, 2010; Wu, Barth, Amin, Malcarne, & Menon, 2012), as well as its 

consequent influence on math achievement (Wu et al., 2012). Given the widespread prevalence of 

MA and its detrimental long-term impact on academic performance and professional development, 

it is important to measure this construct in a valid and reliable way. 



 

 

From a measurement prospective it is not possible to directly observe MA. Following the latent trait 

theory (Lord & Novich, 1968), we can measure something that cannot be observed only by 

inference from what can be observed. Thus, while the trait itself is not observable, its interaction 

with the environment produces, at the surface level, observable indicators which can be used to 

infer the level or degree of the latent trait. Considering MA, although we cannot observe our latent 

variable, its existence may be inferred from behavioural manifestations or manifest variables (for 

example, as feeling tense, fearful and apprehensive about mathematics). These manifestations make 

it possible to measure MA asking, for example, a series of questions (the items of the instruments) 

that describe each manifestation (for example, “I feel nervous when I use numbers”). Indeed, a 

measurement instrument can be constructed using these items with the purpose of assessing the 

unobservable trait. 

However, the primary goal of educational measurement is to determine the level of the latent trait 

that a person possesses. In general, scaling is the process of establishing the correspondence 

between the observations and the latent variable. Several mathematical approaches have been 

developed in order to define how to measure a latent trait through item responses, assuming that the 

latent trait is continuous. These approaches include Classic Test Theory (CTT) and the more recent 

Item Response Theory (IRT).  

Traits, indicators, and their relationships can be represented graphically. Figure 1 represents the 

measurement structure of the Abbreviated Math Anxiety Scale (AMAS; Hopko, Mahadevan, Bare, 

& Hunt, 2003). This is a two-factor measure of MA that is considered a parsimonious, reliable, and 

valid scale. The two factors are Learning Math Anxiety, which relates to anxiety about the process 

of learning, and Math Evaluation Anxiety, which is more closely related to testing situations. The 

AMAS is one of the most commonly used measure of MA in college and high school students (for a 

review, see Eden et al., 2013). The scale has been translated into several languages, and it has been 

found to be a valid and reliable measure in a variety of populations (Polish version: Cipora, 

Szczygiel, Willmes, & Nuerk, 2015; Italian version: Primi, Busdraghi, Tomasetto, Morsanyi, & 

Chiesi, 2014; Persian version: Vahedi & Farrokhi, 2011). Recently, it has also been adapted for 

children between the ages of 8 to 11 (Italian version: Caviola et al. 2017), and 8 to 13 (English 

version: Carey et al. 2017). 

Looking at the details of Figure 1, the ovals represent latent, unobserved variables, specifically, 

Learning Math Anxiety and Math Evaluation Anxiety. The squares represent the observed variables 

(items); five for Learning Anxiety (e.g., listening to a lecture in a math class), and four for Math 

Evaluation Anxiety (e.g., thinking about an upcoming math test one day before). The relations 

between items and the latent traits are represented with arrows that indicate that the traits cause the 

corresponding indicators. In Figure 1, the error components that we have to take into account in the 

measurement process are also represented. Any observed score has two parts: The true score part 

and the error part. Intuitively, we control for the error and we estimate the true score by taking 

several measures and averaging them. We assume that averaging several measures results in a better 

estimate of the true score. These ideas are formalized in the concept of reliability. We use multiple 

indicators or items to better measure the trait. This way, we can have more information and reduce 

the error components, that is, we can maximize the reliability or precision of the measurement tool.  



 

 

Moreover, verifying the relationships among indicators and the corresponding traits, through a 

confirmative procedure, such as a confirmatory factor analysis (CFA), we can verify that the 

measurement tool truly captures the underlying trait, attesting the validity of the measurement tool 

(Zumbo, 2009). Indeed, obtaining evidence of validity is part of the measurement process. 

 

Figure 1: Model of the Abbreviated Math Anxiety Scale (AMAS) 

 

Invariance  

Measurement validity also implies that the meaning of the construct and its operationalization is the 

same in different social and cultural contexts. Testing the invariance of the test concerns the extent 

to which the psychometric properties of the test generalize across groups or conditions. Therefore, 

measurement invariance is a prerequisite of the evaluation of substantive hypotheses regarding 

differences between contexts and groups. 

If the research question is, for example, about assessing gender differences in MA, and our test 

shows that female students have higher math anxiety scores than male students, we would be 

tempted to interpret test scores in terms of the trait that they are intended to reflect, i.e., that females 

have greater MA than males. However, it is possible that the test scores do not purely reflect the 

latent trait, i.e. MA in each group. That is, it is possible that the test is biased in some way. 

Bias is used as a general term to represent the lack of correspondence between measures applied to 

different groups (Van de Vijver & Tanzer, 2004). There are different kinds of bias, for example 
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construct bias, when the meaning of the studied trait varies among groups; item bias, when the 

meaning of the item content is different in certain groups, or method bias, when the characteristics 

of instruments induce measurement errors for particular groups of respondents.  

These biases violate the assumption of measurement invariance, which holds that measurement 

properties should not be affected by group membership (Zumbo, 2009). In other words, the 

observed scores should depend only on the latent construct, and not on group membership. An 

observed score is said to invariantly measure the construct if it is affected by the true level of the 

trait in a specific person, rather than by group membership or context (Meredith, 1993). This means 

that people belonging to different groups, but with the same level of a trait, are usually expected to 

display similar response patterns on items that measure the same construct. Thus, when studying 

test invariance, we determine whether the tool functions equivalently in different groups, that is, we 

test the absence of biases in the measurement process.  

A well-known method to assess invariance is multiple group confirmatory factor analysis 

(MGCFA) in which the theoretical model is compared to the observed structure in two samples. 

Testing measurement invariance involves a step-by-step procedure in which nested models are 

organized in a hierarchal ordering. Specifically, the following invariance models are tested. The 

configural one, which refers to testing whether an instrument exhibits the same structure (Do the 

groups show the same general factor structure? Same number of factors? Same conceptual 

definition of latent constructs?). The next model, the metric one, tests whether the items function 

equally across groups. If this invariance is established, the groups can be said to have the same unit 

of measurement. The final model, the residual one, tests if measurement errors are the same across 

groups, which means that the scale is be equally reliable in both groups. 

Applying this method, we tested the equivalence of the AMAS across male and female Italian 

students (Primi et al., 2015). With regard to the measurement issue, given that the assessment of 

MA relies on self-report measures, it is important to note that females are more willing to report 

their feelings of anxiety than males (e.g., Goetz, Bieg, Lüdtke, Pekrun, & Hall, 2013). This finding 

highlights the importance of employing measures of MA which are invariant across genders. That 

is, there is a need to test if the items measure the same construct when administered to male and 

female respondents, controlling for the differences in true group means. Indeed, to compare groups 

of individuals with regard to MA, one must be sure that the values that quantify the construct are on 

the same measurement scale. 

The issue of measurement invariance has received considerable attention also in cross-cultural 

research because people from different cultures might have different understanding of the same 

questions included in an instrument (Milfont & Fischer, 2010). Indeed, testing invariance is of 

particular concern when using a translated version of a survey instrument, and it is a necessary 

prerequisite for the translated instrument to be used in cross-cultural research (e.g., Baumgartner & 

Steenkamp, 1998). 

For this reason, we tested the invariance of the Italian version of the Statistical Anxiety Scale (SAS) 

developed by Vigil-Colet, Lorenzo-Seva, and Condon (2008). Learning statistics is often associated 

with statistics anxiety, defined as “extensive worry, intrusive thoughts, mental disorganization, 

tension, and physiological arousal [. . .] when exposed to statistics content, problems, instructional 



situations, or evaluative contexts” (Zeidner, 1991, p. 319). In the original validation study, Vigil-

Colet et al. (2008) analyzed the internal structure of the SAS using exploratory factor analysis. The 

results attested a three-factor structure: Examination Anxiety (referring to the anxiety involved when 

taking a statistics class or test), Interpretation Anxiety (referring to the anxiety experienced when 

students are making a decision about or interpreting statistical data), and Fear for Asking for Help 

(referring to the anxiety experienced when asking a fellow student or a teacher for help in 

understanding specific contents). The primary aim of our work was to confirm this factorial 

structure of the Italian version using CFA. As confirmation of the same base factor model was not a 

sufficient condition to establish the equivalence of the Spanish and Italian versions of the SAS, we 

tested the invariance of the factor model’s parameters between the Italian sample and a comparison 

Spanish sample. Since the results indicated a substantial equivalence of the Italian and Spanish 

versions of the SAS, we can use the translated instrument in cross-cultural research, we can make 

meaningful comparisons between Italian and Spanish students’ statistics anxiety, and we can 

develop intervention strategies to enhance students’ achievement across Spanish and Italian 

educational frameworks.  

To sum up, if measurement tools are not “invariant”, instruments do not measure the same trait 

across the different groups or contexts, results are not comparable, and inferences about differences 

are misleading. As a consequence, methods for investigating biases should be implemented when 

new measures are created, when existing measures are adapted to new contexts or for different 

populations, or when existing measures are translated. 

Conclusion 

The foundation of all rigorous research designs is the use of measurement tools that are 

psychometrically sound. Confirmation of the validity and reliability of tools is a prerequisite for 

assuring the integrity of study findings. 

In empirical research, comparisons are often made between distinct population groups, including 

groups from different cultures, genders, or that speak different languages. These analyses implicitly 

assume that the measurement of these outcome variables is equivalent across groups, although this 

assumption often remains untested. Measurement invariance can be tested and it is important to 

make sure that the variables used in the analysis are indeed comparable across groups. 

In conclusion, testing the psychometric properties of tools, such as measurement invariance might 

help in increasing the robustness of findings across various groups and contexts. 



Can the outcomes of PISA 2015 contribute to evidence-based decision making in 

mathematics education? 

Gerry Shiel 

Drawing on data from the OECD’s Programme for International Assessment (PISA), which 

assesses mathematical literacy and other domains among 15-year olds in over 70 countries every 

three years, this paper explores the extent to which PISA outcomes in 2015 can be described as 

‘solid’ and hence contribute to evidence-based decision making. It identifies aspects of PISA that 

render its findings ‘solid’, but also points to pitfalls that arise in interpreting PISA outcomes 

related to achievement. The paper concludes by examining how PISA can contribute to thinking 

about the nature of evidence-based findings in mathematics education.  

Introduction 

A key feature of the educational landscape since 2000 has been the Programme for International 

Student Assessment (PISA), a study sponsored by the Paris-based Organisation for Economic 

Cooperation and Development (OECD) that assesses performance in mathematics, reading literacy 

and science among 15-year olds in over 70 countries every three years. In addition to administering 

tests to students, PISA administers questionnaires to students, their parents and their school 

principals. The student questionnaire asks about students’ socioeconomic status, their attitudes 

towards mathematics and other subjects, and their instructional experiences. This paper looks at 

performance outcomes in the two most recent PISA cycles – 2012, when mathematics was a major 

assessment domain, and 2015, when mathematics was a minor domain, and PISA moved from a 

paper-based to computer-based testing in most participating countries.  

Interest in the extent to which PISA provides ‘solid’ or ‘evidence-based’ findings arises because of 

the strong impact that PISA has on policy making in many participating countries. In Ireland, for 

example, a significant drop in performance in mathematics and reading literacy in PISA 2009 led to 

the implementation of a National Strategy to Improve Literacy and Numeracy 2011-2020 (DES, 

2011). The strategy set out a series of measures designed to improve performance, including plans 

to enhance initial teacher education, curriculum and assessment. In parallel with the Strategy, 

revised curricula in mathematics at post-primary level have been rolled out in a phased basis since 

2010 in an initiative known as ‘Project Maths’. This involves a strong focus on developing 

students’ conceptual understanding in mathematics, and on applying mathematical knowledge in 

solving problems in context using a range of methods. Ní Shuilleabháin (2013) described Project 

Maths as ‘a philosophical shift in Irish post-primary classrooms from a highly didactic approach 

with relatively little emphasis on problem solving towards a dialogic, investigative problem-focused 

approach to teaching and learning mathematics’ (p. 23).  

A key feature of the National Strategy is the inclusion of national targets for performance in PISA 

mathematics. In an interim review of the Strategy (DES, 2017), there are targets of 10.5% of 

students achieving below proficiency level 2 by 2020, and 12.0% achieving levels 5-6. The first of 

these is quite an ambitious relative to current performance (15% performed below Level 2 in 2015), 

while the second is more modest (11% performed at Levels 5-6 in 2015).  



Efforts to ensure that PISA findings are solid 

The procedures around the development of PISA survey instruments, including the mathematics 

test, are designed to ensure that findings can be relied on and used by participating countries to 

enhance teaching and learning, and raise performance standards. The development of the PISA 

mathematics test and scale encompasses the following:  

 An assessment framework is developed and published at the outset of each PISA cycle (e.g.,

OECD, 2013). The framework provides a definition of mathematical literacy in PISA, and

outlines the content areas (mathematical content categories) and processes to be assessed,

the contexts in which items are to be embedded and the item formats to be used. Items are

then developed in a way that ensures that all elements of the framework are adequately

addressed. The assessment framework is a key source of evidence to support the validity of

the PISA tests.

 Items based on the framework are submitted by countries, or are developed by the

consortium charged by the OECD with implementing PISA. Items are vetted by countries

for cultural and linguistic appropriateness and suitable items are forwarded for field trialling.

 The PISA field trial is conducted on a sample of 15-year olds in each participating country,

and the performance of items is assessed within and between countries. The outcomes of

both classical item analysis and item response theory scaling are taken into account in

determining the suitability of items. These items, along with any trend items not field-

trialled, are then used to compile test forms for the main study.

 Considerable effort goes into ensuring that items are scored accurately, using scoring guides

prepared by the PISA consortium. Many items are marked by two or four scorers, and real-

time indices of inter-rater reliability are used to guide the quality of scoring.

 The PISA main study is implemented. Quality control is a key aspect of the Main Study, as

countries are held accountable to quality standards (see below).

 Performance on PISA is scaled using Item Response Theory models and links with

performance on earlier rounds are established.

 A document, PISA Technical Standards (e.g., OECD, 2014), is issued in each cycle to guide 

countries in ensuring that their samples, response rates, security procedures, translation and coding 

practices are of a sufficiently high standard that their data warrants inclusion in international 

reports. For example, the 2015 Technical Standards indicate that response rates of 85% at school 

level and 80% at the student level are required. The achieved samples of countries failing to meet 

these criteria are examined in detail for potential bias. In some cases, countries have not been 

included in international reports because of low response rates (e.g., the Netherlands in 2000, and 

the UK in 2003).  

At the end of each PISA cycle, a technical report is prepared by the PISA consortium and is issued 

by the OECD (e.g., OECD, 2017). It details the procedures used in each aspect of the 

implementation of PISA, including sample design, field operations, quality control, survey 

weighting, scaling, proficiency scale construction, and coding reliability.  



 

 

The consortium charged with implementing PISA establishes expert groups for mathematics, 

science and reading literacy, and there is also a Technical Advisory Group, which advises the 

Consortium on its use of scaling and other procedures, and a Questionnaire Expert Group. These 

groups act as a further check on the quality of the PISA instruments and outcomes.  

Hence, PISA has taken several precautions to ensure the quality and solidity of its findings. 

Notwithstanding the fact that PISA assesses the mathematics that students require for life after they 

leave school (or mathematical literacy) and for future study, rather than mathematics based on 

school curricula, the steps taken to ensure that findings are solid are extensive.  

The introduction of computer-based assessment as a threat to the solidity of 

PISA findings  

Prior to 2015, PISA implemented computer-based testing in subsets of countries on an optional 

basis. In 2012, for example, mathematics was assessed on paper in all 65 participating countries, 

and on computer on an experimental basis in a subsample of 32 countries. In 2015, however, there 

was a shift to computer-based assessment in most participating countries, with 56 of 73 countries, 

including all 34 OECD member countries, administering PISA in this format. The remaining 

countries administered PISA on paper.  

The transition to computer-based testing in PISA presented some significant challenges for the 

OECD. A key component of PISA is the availability of trend data – that is, performance from one 

PISA cycle to the next must be placed on the same underlying scale so that average performance 

and performance across proficiency levels in each country and on average across OECD countries 

can be tracked from cycle to cycle. The task facing the OECD and its contractors1 was to establish 

the feasibility of linking performance on the 2015 computer-based tests to scales based on 

performance on paper-based tests in earlier cycles. This was further complicated by a requirement 

to continue to provide trend data for countries that administered PISA in paper-based form in 2015.  

There were several ways in which the transition to computer-based testing could have been 

managed, given the imperative to maintain trends. For example, all students (or equivalent samples 

of students) taking PISA 2015 could have been given paper-based and computer-based tests. Then 

trends could have been established with reference to performance on the paper-based measures and 

new computer-based scales could have been devised, based on the computer-based items, and used 

for trend analysis in the future. This would have eliminated any concerns about mode effects (an 

advantage or disadvantage arising from implementing PISA on computer).  

The approach taken by the OECD and its contractors was to make adjustments in 2015 based on 

how the same items performed on paper and on computer in the PISA 2015 Field Trial, which took 

place in all participating countries in spring or autumn 2014. In the case of mathematics, which was 

a minor domain, items used in earlier PISA cycles (i.e., trend items) were transferred from paper to 

computer, and equivalent representative samples of students from each country took the paper- and 

computer-based tests. Hence, the purpose of the mode study was to ascertain whether tasks or items 

                                                 

1 The lead contractor in PISA 2015 was the Educational Testing Service in the US. The lead contractor in all earlier 

cycles of PISA was the Australian Council for Educational Research.  



presented in one mode (i.e., paper) functioned differently when presented in another mode (i.e., 

computer) and vice versa. For the purpose of analysis, items were pooled across countries, as 

individual countries did not have sufficiently large samples of students to allow for reliable 

comparisons of individual items across modes, or for an analysis of item-by-country interactions. 

Where item parameters were judged to be ‘strongly invariant’ (that is, similar on paper and 

computer), item parameters were constrained to be the same in the 2015 Main Study (OECD, 2017). 

In the course of the Field Trial analysis, a subset of items showed mode effects. To account for 

these effects in the Main Survey, different item parameters were estimated for paired paper- and 

computer-based items. According to the OECD (2017, Chp. 7, p. 53), ‘this established an invariance 

model that assumes scalar or strong invariance for the majority of items and metric invariance for a 

minority of items for which difficulty differences were detected’. A correlation of .95 was found 

between paper-based and computer-based item parameters for mathematics in the Field Trial, 

further supporting a link between performance on computer-based tests in 2015 and paper-based 

tests in earlier cycles, as well as between computer- and paper-based tests administered in 2015.  

The PISA 2015 Field Trial yielded other interesting findings that applied to mathematics as well as 

other domains. For example, across countries, students taking the Field Trial tests on computer had 

significantly fewer omitted responses than students taking the paper versions. Furthermore, there 

were fewer effects of cluster positon on performance when tests were administered on computer 

(that is, items administered by computer were more likely to perform in the same way regardless of 

whether they appeared early or late in the test). However, as Jerrim et al. (in press) note, while the 

Field Trial did not yield large differences across modes for male and female students, no analyses 

were conducted to examine potential interactions with variables such as ethnicity or socioeconomic 

status. They also questioned the representativeness of the samples used in the Field Trial, which, in 

some countries, could be described as convenience samples. They viewed this as weakening the 

external validity of the results, given the implications for the adjustments made within Main Study 

scaling to enhance cross-mode comparability.  

Overall performance on PISA 2015 mathematics 

The PISA main study took place in all participating countries in 2015. The OECD issued two 

volumes of findings in December 2016 that included country mean scores in mathematics, and 

comparisons with performance in earlier cycles. The mean score of students in Ireland in 2015 was 

503.7 (OECD, 2016). This was significantly above the average across OECD countries (490.2), and 

was about the same as in 2012 (501.5), 2006 (501.5) and 2003 (502.8). Indeed, the only year in 

which average performance moved outside the 501-504 range was in 2009 (487.1).  

While the mean mathematics score of students in Ireland was stable in the transition to computer-

based assessment, a number of countries saw large declines in performance between 2012 and 2015. 

These included Korea (down 29.7 score points, though still well above Ireland at 517.4), Chinese 

Taipei (17.5), Hong Kong (13.3), Poland (13 points), and the Netherlands (10.7 points). On the 

other hand, a small number of countries experienced increases in achievement, including Sweden 

(15.7 points), Norway (12.4), the Russian Federation (11.9), and Denmark (11.1).  

It is noteworthy, however, that Norway, Denmark and the Russian Federation were among the 

countries with the highest use of computers by students in mathematics classes in PISA 2012 for 



purposes such as entering data on a spreadsheet, drawing a graph of a function, constructing 

geometric figures, re-writing algebraic expressions and solving equations (OECD, 2015). In 

contrast, Korea, Hong-Kong China and Ireland were among the countries with the lowest usage of 

ICTs by students in mathematics classes.  

The fact that Ireland’s overall performance on PISA 2015 is similar to 2012 can be interpreted in a 

number of ways:  

 It suggests that students in Ireland are equally adept as solving mathematical problems in

paper and computer-based formats; indeed, this would suggest that the mode of assessment

does not matter, at least for students in Ireland.

 It suggests that students in Ireland improved in their mathematics between 2012 and 2015,

but this improvement was largely hidden because of the transition to computer-based

testing.

The second of these seems the most likely. PISA 2015 was the first PISA cycle in which all 

students in Ireland’s sample had studied under the Project Maths syllabus. This interpretation is 

consistent with a finding that students in initial Project Maths schools (24 schools that had 

implemented Project Maths first) outperformed students in non-initial schools in PISA 2012 

mathematics (see Merriman et al. 2013), though the difference was relatively small (4 score points) 

and not statistically significant.  

A further relevant finding relates the optional computer-based assessment of mathematics 

administered as part of PISA 2012. In that assessment, students in Ireland had a mean score that 

was not significantly different from the corresponding OECD average score, despite achieving a 

mean score on paper-based mathematics that was significantly above the corresponding OECD 

average in the same year (Perkins et al., 2013). Hence, performance on PISA 2015 can be 

interpreted as being indicative of a possible improvement.  

Interestingly, the OECD has continued to hold the positon that mode effects in PISA 2015 

mathematics were small and did not impact on the performance of participating countries (OECD, 

2016, 2017). Implicit in this is the view that performance on computer-based assessment in 2015 

can be linked back to performance on paper-based assessment in earlier PISA cycles.  

Other threats to the solidity of PISA 2015 findings 

The transition to computer-based assessment in PISA is clearly one threat to the validity of scores 

reported by the OECD for PISA 2015 mathematics. However, there were several other changes to 

PISA 2015 which could also impact on the interpretation of outcomes, and hence the solidity of 

PISA findings. The changes – several of which occurred because a new consortium was contracted 

by the OECD to gather and analyse PISA data – include:  

 Changes in the assessment design – the design of PISA 2015 was modified to reduce or

eliminate differences in construct coverage for major and minor assessment domains for test

takers. In practice, this meant that fewer students took mathematics in PISA 2015, compared

with earlier cycles, but more mathematics items were included in the assessment, thereby

allowing for broader construct coverage.



 Changes in the calibration sample – prior to 2015, item difficulty in PISA was estimated

using the responses of students in the most recent cycle (e.g., in 2012, this comprised data

from students who took PISA in 2009). Moreover, the calibration sample in earlier cycles

comprised a random sample of 500 students per participating country. In 2015, item

parameters were re-estimated using all students in all participating countries in the previous

four PISA cycles. This change was implemented to reduce the uncertainty around estimates

of the item parameters used in calibration.

 Changes to the scaling model – in earlier PISA cycles, a one-parameter Item Response

Theory (IRT) model (with adjustment for partial credit) was used to scale performance. In

2015, item functions based on a two-parameter logistic IRT model for dichotomous data,

and a generalized partial-credit model for polytomous data were used in scaling data in the

case of new items, while functions based on a one-parameter model were used (as

previously) with trend items. Unlike its predecessor, the new approach does not give equal

weighting to all items when constructing a score, but assigns optimal weights to tasks based

on their capacity to distinguish between high- and low-achieving students.

 Changes in the treatment of differential item functioning across countries – where items

performed unexpectedly differently across countries, the calibration in 2015 allowed for a

number of country-by-cycle-specific item parameters. In previous cycles, items that showed

differential item functioning (e.g., because of differences across languages) were dropped

from scaling. The change in 2015 was intended to reduce the dependency of country

rankings on the selection of items included in the assessment (for a country) and hence

improve fairness (OECD, 2016).

 Changes in the treatment of not-reached items – in PISA 2015, not-reached items

(unanswered items at the end of a section, such as at the end of the first and second hour of

testing) were treated as not administered when estimating proficiency (i.e., scoring student

responses), whereas in previous PISA cycles they were treated as incorrect. A reason for this

change was to eliminate the opportunity for countries and test takers to randomly guess

answers to multiple-choice questions at the end of a section of the test. As in previous

cycles, not-reached items were treated as not administered when computing item parameters

(i.e., during scaling).

The OECD (2016) acknowledges that improvements to the PISA test design and to scaling in PISA 

2015 can be expected to result in reductions in link error (the error associated with particular sets of 

items used in a particular cycle) between 2015 and future cycles. However, it also acknowledges 

that the changes described above may result in increased link error between PISA 2015 and earlier 

cycles, as past cycles used a different design (paper-based assessment) and used different scaling 

procedures. Furthermore, the OECD (2016) acknowledges that the change in the treatment of not-

reached items could result in higher scores than would have been estimated in earlier PISA cycles 

for countries with many unanswered items.  



Conclusion 

The problem in terms of interpreting trend scores is that any of the changes implemented by the 

OECD and their contractors in relation to the design and scaling of PISA in 2015 could have 

impacted on the scale scores achieved by students. Interpretation becomes even more difficult when 

multiple changes are implemented, as these may interact with one another in complex ways. The 

OECD has sought to address this in a limited way by rescaling data from earlier PISA cycles using 

the methods implemented in 2015. Thus, in the case of Ireland, performance on PISA mathematics 

changed by +2 score points between 2012 and 2015 (see above), but, the change was 6.0 score 

points when newer scaling methods were applied to the 2012 mathematics data. On average across 

OECD countries, the impact of changes to scaling procedures was also reported to be small (a 

published drop of 3.7 score points between 2012 and 2015, and a drop of 2.5 score points following 

rescaling of the 2012 data) (OECD, 2016). For most countries, differences arising from re-scaling 

are within the error margins of the original difference scores reported by the OECD.  

While the readjustment of scores from PISA 2012 using the new scaling procedures implemented in 

2015 may go some way towards reassuring users that PISA outcomes are comparable over time, the 

sheer number of changes implemented in PISA 2015, including the change to computer-based 

testing, indicates that particular care should be exercised in interpreting PISA 2015 data.  

Efforts to improve the design and scaling of PISA 2015 also contain some lessons for efforts to 

generate solid data in mathematics education. On the one hand, solid findings can be obtained by 

implementing the same testing procedures and methodologies on multiple occasions (e.g., pre- and 

post-intervention). In the words of Beaton (1990), ‘when measuring change, do not change the 

measure’ (p. 165). On the other hand, at least in the case of longitudinal, multi-year surveys such as 

PISA, there is an ongoing need to build innovation into all aspects of the project to maintain 

relevance and deliver more robust measures for the future. One clear danger is that, when 

mathematics becomes a major assessment domain in PISA 2012, the construct measured will also 

change, as new items specifically designed to take advantage of the affordances computers, will be 

introduced for the first time.  
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Introduction 

The role and importance assigned to argumentation and proof in the last decades has led to an 

enormous variety of approaches to research in this area. The 27 papers and 1 poster presented in the 

Thematic Working Group (TWG) “argumentation and proof” come from 18 countries across 4 

different continents, and offer a wide spectrum of perspectives. These contributions intertwine 

educational issues with explicit references to mathematical, logical, historical, philosophical, 

epistemological, psychological, curricular, anthropological and sociological issues. 

Taking into account this diversity, the contributions were presented and discussed in working sessions 

organized under the following 7 themes: (1) assessments issues of argumentation and proof; (2) 

theoretical and philosophical issues of argumentation and proof; (3) argumentation and proof in 

textbooks; (4) tools for analyzing argumentation and proof; (5) intervention studies on argumentation 

and proof; (6) argumentation and proof at the university mathematics level; and (7) task design in 

argumentation and proof. Since the themes are intertwined, each paper could be assigned to multiple 

themes. Therefore, the assignment of papers to themes was guided by a “best fit” approach as well as 

practical considerations. We will briefly discuss each theme separately.  

Assessment issues of argumentation and proof 

This theme included three papers, related to issues of assessment in the area of argumentation and 

proof: Kónya and Kovács’ paper focused on development of inductive reasoning of prospective 

teachers by analyzing their problem-solving processes on a carefully selected problem. Hemmi, Julin 

and Pörn’s paper investigated teachers’ perspectives on the possibility of using students’ common 

misconceptions, identified in prior research, as a starting point for activities that develop students’ 

understanding and skills in proof. Demiray and Bostan’s paper investigated pre-service middle school 

mathematics teachers’ interpretations of statements regarding proof by contrapositive and the reasons 

for their incorrect interpretations. The discussion of the three papers in the TWG raised several 

important issues, such as:   

The influence of sociocultural context should be considered in assessment findings. 

Alternative variations of task design should be considered in the interpretation of students’ 

performances. 

Adopting a more positive model. Should researchers aim to identify students’ competencies rather 

than misconceptions?  



Theoretical and philosophical issues of argumentation and proof  

The two papers in this theme addressed implications of Habermas’ rationality theory. Conner’s paper 

discussed how Habermas’ rationality can be used to analyse how teachers support argumentation 

processes in their classrooms. Boero’s paper showed the added value of analyzing individual 

student’s thinking processes while attempting to prove a statement. The discussion of the papers 

raised several points, including the following:  

What is the added value of applying Habermas’ rationality to a particular kind of analysis, and what 

would be lost if it was not used?  

The difficulty of applying the categories of Habermas’ rationality to coding data and, in particular, 

the difficulty in distinguishing between teleological rationality and epistemological rationality.  

Argumentation and proof in textbooks 

The five papers presented in this theme were grouped based on their relation to argumentation and 

proof in textbooks. Žalská’s paper described how different types of arguments enacted in one 

classroom were influenced by the textbook, the teacher beliefs, and the students. Wong’s paper 

presented an examination of geometry chapters in a prominent Hong Kong textbook series and 

illustrated the limited opportunities for students to engage in the process of generalizing and providing 

proofs. Cousin and Miyakawa’s paper described the evolution of proof in Japanese geometry 

textbooks and the role of the specificity of Japanese language on that process. Mesnil’s paper 

described a reference for studying and teaching logic in France, while Bergwall engaged the TWG in 

analysis and discussion of reasoning-and-proving opportunities in Finish and Swedish textbooks on 

primitive functions. The discussion addressed several important topics, such as:  

The role of language and linguistics in introducing, teaching, and writing proofs; and how the goal 

of teaching proof is articulated in a curriculum, represented in textbooks, and enacted in classrooms.  

The role of mathematical logic in the teaching and learning of proving.  

Definitions in research frameworks. Caution is required in the interpretation of the findings from 

different studies which operationalized certain terms in different ways.  

The need for specialized analytical frameworks when examining argumentation and proof 

opportunities in textbook tasks versus textbook expositions.  

Tools for analyzing argumentation and proof 

The five papers in this theme concerned different tools for analyzing argumentation and proof. 

Ruwisch’s paper concerned a one-dimensional model to rate reasoning competences at the primary 

level, considering both mathematical reasoning and its linguistic realization. With the same goal to 

better understand primary students’ reasoning characteristics, Koleza, Metaxas and Poli used a 

simplified model of Toulmin’s argumentation, drawing also on argumentation schemes described by 

Walton. The paper by Mata-Pereira and da Ponte aimed to understand how application of design 

principles regarding tasks and teacher actions can help provide students with opportunities to justify, 

and presented a framework that accounts for the level of complexity in students’ justifications. In a 

longitudinal study, Fahse explored secondary school students’ ways of argumentation on tasks 

concerning division by zero. He identified three different types of student argumentation and showed 



how these relate to students’ age.  Focusing on teachers’ competencies, Chua’s paper presented a 

theoretical framework that classifies justification tasks by their nature, purpose and the expected 

element to be provided in the justifications. The discussion of the five papers raised some deep issues, 

including the following:  

The validity versus utility of theoretical frameworks in argumentation and proof. The utility of a 

framework depends on how well it is designed to address a particular goal. 

Multi-dimensional models of proof. Researchers should acknowledge the complexity of proof and 

specify the aspect(s) of proving that they are focusing on.  

Language and argumentation. Investigating relations between language and argumentation requires 

clarifying what we mean by “mathematical language”.  

Classroom culture should be considered in interpretations of research findings.  

Intervention studies on argumentation and proof 

The five papers in this theme related to implementing proving activities in school mathematics 

classrooms. Reid and Vallejo Vargas’ paper describes an intervention where 3rd graders learn division 

through “proof-based teaching” by developing a shared toolbox of justification principles. The study 

showed that 3rd graders are capable of reasoning deductively from premises when explaining their 

thinking. The paper by Soldano and Arzarello described students using game activities in Dynamic 

Geometry Environments (DGEs) to discover geometric properties of the mutual relationship between 

two circles. The authors found that games helped students to communicate their claims, formulate 

and check conjectures, and explain their thinking. Siopi and Koleza’s paper focused on students’ use 

of a specific tool, a pantograph, to explore geometrical properties of parallelograms. The paper by 

Pericleous and Pratt examined how a teacher helped students to foreground mathematical 

argumentation as they investigated geometrical properties within a DGE. Finally, Buchbinder 

reported on a study on professional development sessions where teachers became familiar with 

‘proof-task prototypes’, applied them in their teaching, and reflected on this application. These 

activities helped teachers to involve proof-oriented activities in their ordinary mathematics 

classrooms. The discussion included the following issues: 

What was the contribution of particular tools to students’ learning?  

Students’ investigations within DGEs and the ambiguity of the expression ‘play with the software’. 

The need for structured support for teachers to implement proving activities.  

Argumentation and proof at the university mathematics level 

The five papers in this theme were concerned with teaching and learning of proof at the university 

level. Yan, Mason and Hanna’s paper suggests an exploratory teaching style to promote the learning 

of proof, and describes specific pedagogical strategies. Selden and Selden’s paper discusses 

theoretical perspectives for proof construction and its teaching. They suggest including psychological 

aspects of proving to these perspectives, and how these aspects should be considered in teaching and 

future research. Moutsios-Rentzos and Kalozoumi-Paizi’s paper also considers psychological aspects 

by describing affective and cognitive experiences of a mathematics undergraduate student while 

producing a proof under exam-conditions. The innovative methodology of their study is to examine 



students’ facially expressed emotions during proving activities, as a way to study and influence 

students’ attitudes towards proof. Gabel and Dreyfus’ paper describes an attempt to analyze rhetorical 

aspects of proof presentation. They use Perelman's “New Rhetoric” as a framework to identify ways 

to analyze and increase the effectiveness of teachers’ argumentation in mathematics classrooms. 

Azrou’s paper suggests that students’ lack of meta-knowledge about proof, such as features of 

mathematical proof and how a proof should be organized, influences their competence to write 

mathematical proofs. The discussions of these papers raised the following issues: 

Phenomena (as behavioural issues) that have not been previously considered by psychologists or 

mathematics educators may play a role in students’ difficulties to construct proofs.  

The role of emotions and feelings in proof construction.  

Task design in argumentation and proof 

Although many papers touched on issues of task design, this was the main topic of the two papers in 

this theme. Komatsu and Jones’s paper explores how task design can facilitate students’ engagement 

with the mathematical activity of proofs and refutations in the context of a DGE. Hein and Prediger’s 

paper explored the role of task design and scaffolding to foster students’ learning of deductive 

reasoning, making explicit the logical structures and unpacking their verbal representations in 

geometry. The discussion included the following issues: 

Proving something in a particular case: how can we help students see the generality of the proof?  

The notion of scaffolding. How can we make explicit to students the logical structure of proving? 

The special place of geometry in teaching, learning and researching of argumentation and proving.  

Conclusions 

We think that the TWG on argumentation and proof has offered the participants the richness of 

diversity in this research domain and the opportunity of fruitful discussions. At the last session of the 

TWG, the participants engaged in a discussion to identify areas in which they would like, and hope, 

to see more research in future CERMEs. The following areas were identified: 

The teaching of proof and argumentation in both school and university settings, including in teacher 

education. The study of the classroom implementation of tasks rich in argumentation and proof 

opportunities, scaffolding and responding to unexpected student responses.  

Issues of language in argumentation and proof. This also includes representations, structure, oral and 

written language, rhetoric and logic.  

Aesthetics of proof and ways in which students of all levels of education can improve their attitudes, 

emotions, and beliefs about proof.  

The identification of these areas is aimed at describing the state of the art of the field, without 

suggesting prioritizing certain areas of research. The TWG is committed to representing the diversity 

of perspectives and research areas on argumentation and proof in future CERMEs. 
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We deal in this paper with a particular difficulty with proof and proving at the undergraduate level, 

which concerns knowledge about proof at a meta-level. Some undergraduate students’ difficulties 

or mistakes observed in their proof texts have been related to lack of that meta-knowledge. In order 

to test this hypothesis, interviews with a sample of students have been performed. Relationships 

with the didactic contract have been discussed. 

Keywords: Proof, meta-knowledge, theorem, undergraduate students.  

Introduction  

Most mathematics teaching at all school levels is concentrated on teaching content; at the university 

level, students learn about functions, differential equations, matrices and integrals, by manipulating 

definitions and theorems. In order to assimilate the content, students are asked to solve problems 

and prove statements. The difficulties of students with proof have been largely investigated in 

research (Moore, 1994; Epp, 2003; Selden & Selden 2007; Harel & Sowder, 1998); some of these 

difficulties are related with the fact that students do not know mathematics at the meta-level, 

particularly as it concerns proof (Morselli, 2007; Hemmi, 2008). Several students do not see clearly 

the difference between a definition and a theorem, the difference between an example and a counter 

example. Knowledge about proof at the meta-level is neither presented in textbooks nor in courses 

of specific mathematical disciplines, but it makes one of the most important differences between 

mathematicians and students. In this paper, we will consider in particular the meta-knowledge about 

proof (MKP), such as the knowledge of the notion of proof and the rules related to how a proof 

must be organized. Many researchers acknowledge the fact that high school and university students 

do not understand what is meant by “proof” and “proving” (e.g. Schoenfeld 1989, Harel & Sowder 

1998). “To most undergraduates, convincing their teacher (and thereby earning satisfactory grades) 

is typically the most important reason for constructing a proof” (Weber, 2004, p. 429) and 

“unfortunately, many students believe that they either know how to solve a problem (prove a 

theorem) or they don't, and thus, if they don’t make progress within a few minutes, they give up” 

(Selden & Selden 2007, p. 96); students often believe that non-deductive arguments constitute a 

proof, or “an argument is a proof if it is presented by or approved by an established authority, such 

as a teacher or a famous mathematician” (Weber, 2003, p. 3); other different interpretations and 

conceptions of students regarding proof are described in Harel & Sowder (1998) and in Recio & 

Godino (2001). Meta-knowledge about proof is used implicitly by mathematicians when they 

construct proofs, “what may be assumed contextually and what needs to be explicitly proved, using 

logical deduction and previously established results, is highly non-trivial and, I would suggest, is 

implicit rather than explicit in the minds of most mathematicians” (Tall, 2002, p. 3). Our focus in 

this paper will be on the lack of MKP and what it might cause as difficulties to students when 

constructing proofs. The present study is developed using a past empirical study with 

undergraduates that consisted of investigating students’ difficulties by analyzing their proof texts 
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responding to different tests (Azrou, 2015). We would like to examine if the following hypothesis is 

supported by an interview analysis: Is lack of MKP one of the reasons behind the messy proof 

texts? Moreover, we would like to answer the following question: Why students do not develop 

MKP? 

Theoretical framework  

We choose the definition of proof stated by Durand-Guerrier et al. in (Durand-Guerrier, Boero, 

Douek, Epp, Tanguay, 2012), inspired from the Vergnaud’s conceptual fields (Vergnaud, 1990). 

According to Vergnaud, a concept (in our case proof) is learnt by acquiring three components: the 

set of different representations (oral, written, formal, etc), the situations of reference (proof in 

geometry, in algebra, in calculus, etc.) and the operatory invariants (related to the logical structure 

of proof: legitimated inference rules, status of hypotheses, thesis, axioms, etc). Mastering the MKP 

is mastering the concept of proof according to Vergnaud, as it was stated by Durand-Guerrier et al. 

(2012).  

We are interested in comparing MKP that students acquire with how they have been presented 

proofs and how they have been taught MKP by their teachers. As we consider the relationship with 

the teaching regarding proof and proving, we will be referring to the didactic contract (Brousseau, 

1988) that is defined as a set of rules framing the mathematical practices of teachers and students 

under the constraints of the teacher-students institutional relationships. Most of these rules 

regarding how, why and what teachers do mathematically (and students should learn to do) are 

implicit and thereby not declared by teachers, who often suppose that students would assimilate 

them over time and practice. Often, teachers use some particular intentions and rules with the proofs 

exposed to students, without being aware of and without feeling the importance of explaining them; 

consequently, sometimes students are misguided to make correct proofs. Let us take the example of 

proof writing: ‘the processes used by mathematicians are often rough and informal, but students 

typically see proofs in their final forms, and rarely witness the process of creating a “rough draft”, 

as a result, students often do not know where to begin when writing their own proofs’ (Moore, R. 

C., 1994). We will examine what kind of MKP students learn from their teachers and how they 

manifest it.  

Methods  

We are more interested in examining in students’ proof texts their MKP considering the three 

components of the definition of Durand-Guerrier et al. (2012); students’ behaviors will be checked 

regarding definitions and other used mathematical statements (mathematical argument), regarding 

their modes of reasoning and argumentation and how they expressed them and presented them. 

Especially, how lack of MKP is manifested through students’ proof texts and their interviews. A 

test composed of open questions (to which the proof cannot be procedural but rather syntactic or 

semantic (Weber, 2004)) have been submitted to 98 undergraduates during their third academic 

year, for a complex analysis course in a high level school of engineers in Algeria. The written 

language is French, but often, Arabic dialect is used, along with French, in the oral form. The 

analysis of students’ proof texts indicates that one of the difficulties behind writing messy and 

disorganized proof texts to open questions was lack of MKP (Azrou, 2015). To receive further 

evidence for our findings, interviews were performed with a sample of students. We have chosen 



 

 

fourteen students to interview whose proof texts contained well-organized, less organized and very 

disorganized proof texts. Our aim was to investigate, by analyzing students’ words, whether they 

master the concept of proof at a conscious level, in other words if they have a mastery of its 

operatory invariants (Vergnaud, 1990).  

A-priori analysis of the test 

The test contained three questions, but in scope of this paper we can only include the first question.  

1- Is it possible to find a holomorphic function that admits 0 as a simple pole such that Residue of f 

at 0 is 0 (Res (f, 0) =0)?  

By designing such questions, we aimed at ascertaining if students were able to construct the proof, 

based on known definitions and theorems, in a clear argumentation form by providing their own 

way of expressing the answering to the question. The question is about the possibility of having (P

Q) and its negation (P and ) at the same time, which results in a contradiction and thus it is 

impossible. Logically speaking: the fact that the residue at a point is not 0 is a direct consequence of 

that point being a simple pole for the function. We have chosen to refer to the point 0 to simplify 

the formula. There was no doubt that students knew all these concepts because they had used them 

many times before, but always when performing direct calculations and procedures. However no 

request of identifying and exploring the links between concepts had been made, especially in a 

written form.   

A preliminary analysis of students’ proof texts 

We have observed in students’ proof texts, among others, the following behaviors related to the 

concept of proof:  

- Lack of justifications: students do not know when the justification is necessary and when it is not; 

they might give a justification for an obvious fact and miss to justify a non-obvious statement. 

- Students turn around confusing the hypothesis and the thesis (forwards and backwards between 

the premise and the result). 

- An example is given instead of a justification to prove that the statement is true. 

- Incomplete mathematical statements and/or formulas. 

- Missing details that make holes in the proof. 

- Lack of organization of proof steps. 

- Disconnection between statements. 

- Writing the proof text like a draft or a sketch. 

Examples of students’ proof texts 

The following excerpts show some of the difficulties cited before; the language used is French. 
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Proof text 1  

 

In this proof, the student responds by saying that such function does not exist and gives an example 

of a function that does not verify the conditions given by the statement. Clearly, the existence of a 

function that does not verify the conditions does not tell why these conditions cannot go together. 

This student considers that giving such example is the proof of the inexistence of functions 

verifying the two conditions. 

Proof text 2  

 

The student does not provide an answer to the question, the proof is a series of statements; each one 

derived from the previous one by an implication, but without any justification; moreover the last 

three ones are similar but incorrect, they present the simple pole definition, but the limit should be 

not 0.  

Interviews 

Based on the analysis of students’ written productions, in the wider investigation this study belongs 

to, we have conducted interviews to address our previous questions, but also to receive more 

information about students’ points of view. We will present only the questions of the interviews that 

deal with MKP about proof. The main interview contained three questions, each with three or four 

sub-questions. 

Q1- If your answer would have been addressed to another teacher, would you have written it the 

same way?  

a- What is important, to a teacher, to see in a student response to questions like this one? 

b- Do you think another teacher, not familiar with the course, would have understood the answer? 

c- How can the teacher know if the answer is right or not? 

d- If the question has been proposed in homework, would you have presented it in a different way? 

Q3- If a rigorous mathematician would have answered to this question, how would he presented his 

answer? 

a- What is the difference from your answer text and those we find in mathematics books?  



 

 

b- After this time, looking again to your answer, is there something you would add or change in 

yours answer or would you keep it as it is? 

Results of interviews 

Q1: Four students said ‘yes’, while the rest (ten) said ‘no’. They intended their responses to be 

given especially to their own teacher, so they made their responses intentionally focusing on what is 

important to the teacher which is, according to them, their reasoning and showing that they got the 

idea of the process and understood enough the concept at stake in order to get the credit or a part of 

it. ‘I know that my teacher will understand it even if it’s not complete’. 

Q1.a: All students responded that the teacher would check in a proof whether a student got the 

whole idea of the solution or not: ‘the teacher would see always the method’; ‘the reasoning’; ‘the 

process of the proof’.  

Q1.b: Half of the students said ‘yes’ and the others said ‘no’: ‘no, because we are used to respond 

to get the credit, so we address the response to our teacher’.  

Q1.c: All of them responded mentioning the reasoning of the student (method, the logic in his 

response, whether it is convincing, if there is no contradiction): ‘the teacher would follow the 

reasoning of the student to find out if his understanding is clear or not about the concept’.  

Q1.d: Twelve students answered ‘no’ and only two students said ‘yes’. They would keep the idea or 

the method the same but make better the organization or the presentation: ‘I would have changed 

the way I wrote, … the organization’; ’I would have given more details’. 

Q3: Two students (good ones) said ‘the same’; one didn’t answer clearly, six said with more details 

and/or better organization; two said with better reasoning and three said with more symbols: ‘a 

mathematician would have another goal, mine is to give the response and get the credit’; ‘he would 

use only symbols till getting the final result, you see, I wrote a lot of comments’.  

Q3.a: Twelve students said that they would contain more symbols and less comments; with an 

academic rigorous style: ‘it’s different’; ‘my answer is addressed to the teacher while mathematics 

books are addressed to all’; ‘with more symbols and less comments’. 

Q3.b: Four students among fourteen answered by keeping their text as they are. Five said they 

would improve the organization, three said they would add more details and two said they would 

make the explanation better: ‘I might keep the idea, but I will give more details’; ‘I would write it 

better’.  

  



 

 

Data analysis  

Analysis of the written texts  

Different students’ weaknesses emerge from the analysis of students’ written texts (difficulty of 

communication, lack of justification, using incomplete mathematical statements (or formulas) and 

lack of organization of the proof); the last three are of particular interest for MKP. Failing to give 

justification may be caused by the didactic contract supposing that the teacher would not mind it, by 

a lack of concept mastery or by a lack of meta-knowledge about proof. Mathematical statements are 

given incomplete because students might suppose that they are clear for the teacher, or because they 

are not well mastered by them or not important to be given complete in a proof text, which is related 

to MKP. The lack of organization of the statements displayed by students might be originated in 

didactic contract, in lack of concepts mastery, but also in lack of MKP. 

Results of interviews analysis  

The answers to Q1, Q1.b and Q1.c. confirm that students, when writing their proof texts, intend to 

address it particularly to their own teacher. The answers to Q1.d show that students are aware of 

their unclear text and possible missing details. According to them, they have to focus on two 

important points that have the same objective: how to get the most part of the credit and show to 

their teacher that they understood the concept at stake by presenting the main idea or the method of 

the proof; because they believe that the teacher will focus on that. This shapes their meta-

knowledge about proof writing. Most answers to the third question and to Q3.a support more details 

would be given by a rigorous mathematician and mathematics textbooks, students mention that the 

organization would be better in both cases than theirs – but they reveal how their conception about 

proofs in mathematics concerns superficial aspects when they say that proofs in textbooks contain 

more symbols and less comments and words in comparison with their proofs and do not mention the 

structure of the proof. Answers to question Q3.b confirm that students are aware that their proof 

texts need improvement – but it must be related to previous consideration about superficial aspects. 

Conclusion  

Students’ texts and interviews offered strong evidence for students’ lack of MKP and its influence 

on proof writing. Students have many situations of reference for proofs at their disposal but do not 

master the operatory invariants of the proof concept and the form of the proof texts as conscious 

objects. Findings suggest particularly that the influence of the didactic contract is strong. Teachers 

generally write proofs in a direct linear way, making unfolding the steps till the conclusion. 

Students learn to do the same: when they first set some ideas about how to solve a problem, they 

write their first exploratory draft as a final text because they were never shown how to go further to 

the written proof text. Here, the didactic contract works against to the development of MKP because 

the contractual knowledge substitutes the knowledge about the concept of proof. An important 

element emerged in the interviews, which is the intention of the students to write the proof text only 

for their teachers, which supports our hypothesis of lack of MKP. Students acknowledge that their 

texts miss details, but do not see that these missing details would make the organization of the 

different parts of the proof clearer. This shows that the MKP and the didactical contract are strongly 

related. When students compare their texts with mathematicians’ or textbooks’ proofs, they only 

point out to symbols and comments, they do not see that in these perfect proofs, the statements are 



 

 

linked through a deductive process from the hypothesis to the proof end, the proof text is organized, 

not only in its form, but also in the structure; avoiding holes, disconnections and missing 

justifications. This is evidence of students’ superficial perception of proof texts, which indicates 

lack of mastery of proof structure and representation as a concept, which is related to lack at the 

operatory invariants level. As MKP is also built up through language, we hypothesize that students’ 

weak mastery of French language, especially in the oral form, which should be translated to the 

written form, might have contributed to their unclear written texts.  

Let us examine now why students are not able to develop their MKP; it seems that they are stuck in 

a constant perception of proof that does not help them to overcome their difficulties, if not causing 

some of them, and as long as there are not alternative ways of presenting proofs, they will hold on 

it. “Students need to understand that proofs are not generally conceived of in the order they are 

written” (Selden & Selden, 2007, p. 114) and that “successful reasoning can be carried out both by 

relying on the logic and formal structures of syntactic reasoning, and by relying on the informal 

representations of mathematical objects of semantic reasoning” (CadwalladderOlsker, 2011, p. 48). 

Changing or adjusting the didactic contract may favor students’ autonomy to understand and make 

proofs; university teachers often mistakenly think that undergraduates understand what a proof is 

and how to make proofs by following the standard presented proofs. In fact, “while a traditional 

definition-theorem-proof style of lecture presentation may convey the content in the most efficient 

way, there are other ways of presenting proofs that may enable students to gain more insight” 

(Selden & Selden, 2010, p. 411). Teachers should provide samples of proof construction instead of 

final products, to be clear about what do they expect from students when they are asked to prove 

and to provide an opportunity to learn how to make proofs. “In general, professors should avoid 

“dumbing down” their assessments by asking routine questions that can be answered by mimicking. 

One needs to modify the “didactic contract” in order to achieve this; otherwise, questions requiring 

genuine problem solving and proving will be considered “unfair” ” (Selden & Selden, 2010, p.414). 

We support that “university teachers should consider including a good deal of student-student and 

teacher-student interaction regarding students’ proof attempts, as opposed to just presenting their 

own or textbook’s proofs” (cf. Selden & Selden, 2007, p. 114). Finally, in order to gain control, 

students need to master meta-knowledge about proof; “the difficulty of students to reach a structural 

axiomatic proof scheme suggests that a capstone course including some attention to meta-

mathematics as a topic might be of value to mathematics majors” (Harel and Sowder, 1998, p. 280).  
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Conceptualizing reasoning-and-proving opportunities in textbook 

expositions: Cases from secondary calculus 
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Several recent textbook studies focus on opportunities to learn reasoning-and-proving. They typically 

investigate the extent to which justifications are general proofs and what opportunities exist for 

learning important elements of mathematical reasoning. In this paper, I discuss how a particular 

analytical framework for this might be refined. Based on an in-depth analysis of certain textbook 

passages in upper secondary calculus textbooks, I make an account for analytical issues encountered 

during this process and identify aspects of reasoning-and-proving in textbooks that might be missed 

unless the framework is refined. Among them there are characterizations of generality, use of 

different representations, logical and mathematical structure, and ordering of material and student 

activities. Finally, implications beyond textbook research are discussed. 

Keywords: Reasoning-and-proving, mathematics textbook, upper secondary calculus. 

Introduction and background 

Almost two decades ago, Hanna and de Bruyn (1999) pointed out that textbook research with specific 

focus on reasoning and proving was rare. Even though a number of papers with such a focus have 

been published in prominent journals since then, the field is still young. While the ultimate goal is to 

come up with well-founded prescriptions for textbook design, research is still striving to describe the 

current state of the art for reasoning-and-proving in textbooks (Stylianides, 2014).  

Several studies have focused on (potential) opportunities to learn reasoning-and-proving (RP). 

Textbooks from different stages in mathematics education, from different educational contexts, and 

from different content areas have been studied (e.g., Davis, Smith, Roy, & Bilgic, 2014; Nordström 

& Löfwall, 2006; Otten, Gilbertson, Males, & Clark, 2014; Stacey & Vincent, 2009; Stylianides, 

2009; Thompson, Senk, & Johnson, 2012). They typically include one or several of the following 

aspects of RP: generality (are statements justified with proofs or specific cases?), elements of proof-

related reasoning (are students asked to make and investigate conjectures, find and correct errors, 

design counter examples?), proof methods (direct, indirect, by contradiction), purposes of proof 

(conviction, verification, discovery etc.), levels of formalism, and mathematical structure.  

The variety of analytical frameworks developed for textbook studies can make it difficult to compare 

findings. However, some researchers have purposefully chosen to use frameworks and methods 

developed by others. For instance, the framework by Thompson et al. (2012) has been used with 

slight modification by Otten et al. (2014) and Bergwall and Hemmi (2017), and it was the basis for 

Bergwall (2015). Their framework is similar to the one developed by Stylianides (2009), which also 

has been used by Davis et al. (2014). While this simplifies comparison of findings, there is a risk that 

certain aspects of RP always are missed in the analysis. The purpose of this paper is to examine such 

potential aspects in relation to the framework by Thompson et al. (2012) and to contribute to a more 

refined conceptualization of opportunities to learn RP in mathematics textbooks. 



 

 

 

Theory and analytical framework 

Mathematics textbooks are widely used in classrooms around the world and are important links 

between national curricula and student learning (e.g., Stein, Remillard, & Smith, 2007). Tasks and 

expository sections, as they appear in a textbook, are potential sources for opportunities to learn RP. 

The concept of RP goes beyond formal proof and includes proving elements such as developing, 

outlining, or correcting an argument; deriving a formula; making or testing a conjecture; and 

providing a counterexample.  

In this paper, I will focus on opportunities to learn RP through justifications in expository sections. I 

will use the framework and analytical procedure by Thompson et al. (2012). They employ a four item 

framework for justifications: A general proof is named a general justification (G); a deductive 

justification based on a generic case is named a specific justification (S); if the authors explicitly ask 

the student to provide a rationale it is referred to as justification left to student (L); and otherwise 

there is no justification (N). As in Bergwall and Hemmi (2017), I include all non-proof arguments in 

the S-category. 

Stylianides (2009) uses a more refined framework with a separate category for specific justifications 

that are not generic. Otten et al. (2014) made modifications to the framework by Thompson et al. 

(2012) and distinguish between specific and general statements. They also have additional categories 

for justifications that only outline the general proof and for justifications that can be found in past or 

future lessons. We have adopted Thompson et al. (2012)’s methodology for the present and other 

studies (Bergwall, 2015; Bergwall & Hemmi, 2017). It has been put forward that mathematics 

education research needs more of cumulative research (Lesh & Sriraman, 2010) and we want to 

compare with – and build on – Thompson et al.’s extensive results on US upper secondary textbooks. 

Textbook sample and analytical procedure 

Cases for the present paper are chosen from the two most commonly used textbooks in Sweden and 

the only Finnish textbook available in Swedish (for Finland’s Swedish speaking minority): 

Alfredsson, Bråting, Erixon, and Heikne (2012); Szabo, Larson, Viklund, Dufåker, and Marklund 

(2012); and Kontkanen, Lehtonen, Luosto, Savolainen, and Lillhonga (2008). I refer to them as SW1, 

SW2, and FI1 respectively. 

In Bergwall and Hemmi (2017), we report our findings from an analysis of all expository sections 

and students’ tasks on integral calculus in these textbooks (and others). In that study, we identified 

all mathematical statements presented as results and categorized their justifications using the 

framework described above. Like Thompson et al. (2012), we also checked if there were opportunities 

for the students to conjecture the result, how the statements were labeled, and what proving methods 

were used. Like researchers always do during such processes, we encountered a number of analytical 

difficulties. In the present paper, I will focus on these difficulties and on other issues that became 

apparent when the textbooks were compared to each other. I consider them a relevant base for 

discussing the development of frameworks for RP opportunities.  

An upper secondary textbook cannot present a general theory for integral calculus. Thus its authors 

face the problem of what kind of justifications to include. This makes this topic relevant when 

examining frameworks for opportunities to learn RP. I will illustrate my findings with an analysis of 

the sections where students first encounter the definition of primitive function, the statement of the 



 

 

 

representation formula 𝐹(𝑥) + 𝐶 for all primitive functions to 𝐹’, and the justification of this result. 

This particular choice was made since it includes a complete definition-theorem-proof chain for a 

central concept and a non-trivial result. Furthermore, the textbooks present this particular content 

quite differently. 

Analysis and results  

The analysis and results are presented as follows. I give a condensed description of how each textbook 

treats primitive functions, following the chronology of that textbook. This description will include all 

details needed to: (1) make an analysis according to the Thompson et al. (2012) framework, (2) 

describe analytical difficulties, and (3) make my points about the need to further develop the 

framework. Aside from the textbook’s definition, justification and statement, I describe material 

placed immediately before, after, and in between them if such exists. This is followed by my analysis 

and description of analytical difficulties and other issues. Finally, I make a short summary of aspects 

of RP opportunities that could be better incorporated in the framework.  

For easier reference, the descriptions of the justifications are presented as numbered lists. Note that 

the representation formula can be expressed as an equivalence. Therefor the (trivial) statement that 

𝐹(𝑥) + 𝐶 is a primitive function to 𝐹′(𝑥) will be referred to as ‘the sufficiency’, while the (non-

trivial) statement that all primitive functions have this form is referred to as ‘the necessity’.  

SW1 (Alfredsson et al., 2012, pp. 173-174) 

Before. There is one exercise where the student, based on graphical representations, shall identify 

which function has a certain derivative, and another where the student shall draw two different graphs 

with the same derivative. This is followed by a short note that it now is time to turn the problem of 

finding the derivative around.   

Definition. The following text is framed and labelled ‘Primitive function’: “A function 𝐹 is called a 

primitive function to 𝑓 if 𝐹′(𝑥) = 𝑓(𝑥).” 

In between. The authors write about three questions that need to be answered: How to find one 

primitive function, all primitive functions, and the primitive function satisfying a certain condition? 

Justification.  

1. 𝑥2 and 𝑥2 + 5 are presented as examples of functions with derivative 2𝑥 and the reader is told 

that “whatever constant 𝐶 we add to 𝑥2 we get a primitive function to 𝑓(𝑥) = 2𝑥”.  

2. There are plots of the graphs to 𝑥2 + 1, 𝑥2, 𝑥2 − 1 and 𝑥2 − 2, and the authors write: 

“Obviously, graphs to functions with the same derivative must for every 𝑥-value have the 

same slope. Hence the graphs have the same form, they are only translated in the 𝑦-direction”. 

3. The authors continue: “This means that if 𝑓(𝑥) = 2𝑥 then every function 𝐹(𝑥) = 𝑥2 + 𝐶, 

where 𝐶 is a constant, is a primitive function to 𝑓(𝑥)”.  

4. The authors ask if there are other functions with derivative 2𝑥 and immediately answer that it 

can be proven that there are no such functions. 

Statement. The following text is framed and labelled ‘Summary’: “If 𝐹(𝑥) is a primitive function to 

𝑓(𝑥) then 𝐹(𝑥) + 𝐶, where 𝐶 is a constant, denotes all primitive functions to 𝑓(𝑥)". 



 

 

 

After. There are two worked examples illustrating how primitive functions are determined, a table 

with some elementary primitive functions and then a student exercise set.  

Analysis. (1) provides two specific cases for the sufficiency (𝑥2 and 𝑥2 + 5), and it is said in words 

(without explanation) that any additive constant works. The necessity is touched upon in (2). This 

might be meant as an intuitive argument. But it is merely a formulation in words of the statement 

itself with no further warrants for the conclusion. The authors also chose to return to the sufficiency 

in (3) before they return to the necessity in (4), but once again without any argument. This means that 

in relation to the framework by Thompson et al. (2012) the sufficiency is justified with a specific case 

(S) and that there is no justification (N) for the necessity. 

Analytical difficulties. The first difficulty was to decide if this justification should be counted as one 

or two. In Bergwall and Hemmi (2017), we chose the second alternative. However, if the unit of 

analysis is the justification of the statement as it is formulated in the textbook one could also choose 

the first. Then there are at least two alternatives: the justification receives the code N (since there are 

not justifications for both directions) or the code S (since there is a specific case justification for at 

least one direction). 

The second difficulty was whether (2) should be counted as an intuitive justification of the necessity 

and receive the code S instead of N, since it seems to have a convincing purpose. 

Other issues. Even a specific case such as 𝑥2 + 𝐶 has some generality to it: the identity (𝑥2 + 𝐶)′ =

2𝑥 holds for all 𝑥. This indicates that when dealing with functions there is room for a more nuanced 

way of describing justifications than the categories G and S admit. Also, if the textbook statement 

had been that 𝑥2 + 𝐶 denotes all primitive functions to 2𝑥, then the justification offered for the 

sufficiency is a general proof.  

Summary. The analytical framework/method should be developed to better account for opportunities 

to learn: the difference between an equivalence and an implication and how such are justified; the 

roles of different kinds of non-proof justifications, such as intuitive arguments based on visual 

impressions from a drawing of an “arbitrary” case; and that justifications can be specific in different 

ways when statements include several kinds of variables (dependent and independent), and that 

whether a justification is general or not also depends on how general the statement is. 

SW2 (Szabo et al., 2012, pp. 154-155) 

Before. The authors demonstrate how velocity can be obtained by differentiating the distance function 

and then state that the opposite problem can be solved by asking which function has a certain 

derivative. In the margin there is a table with some elementary derivatives.  

Definition. The following text is framed and labelled ‘Primitive function’: “A function 𝐹 is a primitive 

function to 𝑓 if 𝐹’(𝑥) = 𝑓(𝑥).” 

Justification. 

1. 𝑥2, 𝑥2 + 5, and 𝑥2 − 4 are given as examples of functions with derivative 2𝑥 and in the 

margin it is emphasised that the derivative of a constant term is 0. 

2. The authors write: “You can add and subtract any constant to a primitive function without 

altering its derivative. Thus a given function has an infinite number of primitive functions”. 



 

 

 

Statement. The following text is framed and labelled ‘All primitive functions’: “If 𝐹′(𝑥) = 𝑓(𝑥) then 

𝐹(𝑥) + 𝐶, where 𝐶 is a constant, gives all primitive functions to 𝑓(𝑥).” 

After. There are two worked examples illustrating how primitive functions are determined followed 

by a student exercise set. 

Analysis. The sufficiency is justified with three specific functions in (1). That any constant 𝐶 can be 

added/subtracted is explained in (2). However, it is not clear if the first sentence cited in (2) refers to 

a primitive function to any function or to a primitive function to 2𝑥. In the former case, the argument 

could have been expressed symbolically as (𝐹(𝑥) + 𝐶)′ = 𝐹′(𝑥), which most teachers and 

mathematicians would have accepted as a proof. In the latter case, the sufficiency is only justified 

with a specific case. Concerning the necessity, there is neither a justification nor a remark that there 

is something more to prove. Summing up, this means that there is an ambivalence concerning the 

sufficiency ((S) or (G)) and that there is no justification (N) for the necessity. 

Analytical difficulties. The question arises whether (2) is a general proof or not. There are two issues 

here: The use of words instead of algebraic symbols, and clarity in what the authors refer to. 

Other issues. When comparing SW1 and SW2, we see at least three differences even though the 

classifications of the justifications are the same. First, SW1 discusses the necessity and states that it 

can be shown that there are no other primitive functions, which SW2 does not. But neither textbook 

clearly expresses the representation formula as an equivalence. Second, SW1 uses graphic 

representations and describes the meaning of the statement in terms of slope and form which SW2 

does not. Third, SW2 is less vague in its labelling and formulations. While SW1 labels the statement 

“summary” and expresses that 𝐹(𝑥) + 𝐶 “denotes” all primitive functions, SW2 uses the label “All 

primitive functions” and expresses that 𝐹(𝑥) + 𝐶 “gives” all primitive functions. 

Summary. The analytical framework/method should be developed to better account for opportunities 

to learn: what needs to be justified, what has been left out of a certain justification, or if a justification 

is a proof or not; the role of different forms of representations; and the structure of mathematics, i.e. 

what part of a mathematics text that is a definition, a statement, and a proof, and what their different 

roles are. 

FI1 (Kontkanen et al., 2008, pp. 7-8) 

Definition. The following text is framed and labelled ‘Primitive function’: “Assume that the functions 

𝑓 and 𝐹 are defined in the open interval 𝐼. The function 𝐹 is a primitive function to 𝑓 for every 𝑥 ∈ 𝐼, 

if 𝐹′(𝑥) = 𝑓(𝑥).”  

In between. In worked examples, the authors demonstrate how one checks if a certain function is a 

primitive function to another given function. In one of these examples, it turns out that two different 

functions can be primitive functions to the same function. However, the algebraic descriptions of 

these functions are not such that it is obvious that they only differ by an additive constant. 

Statement. The following text is framed and labelled “theorem”: “Assume that 𝐹0 is a primitive 

function to 𝑓. Then all functions of the type 𝐹(𝑥) = 𝐹0 (𝑥) + 𝐶 are primitive functions to 𝑓. The 

function 𝑓 has no other primitive functions.” 

Justification. The justification is labelled “proof” and divided in two steps. First the sufficiency is 

justified by differentiation of 𝐹(𝑥) = 𝐹0 (𝑥) + 𝐶. Then the necessity is justified using the fact that if 



 

 

 

a derivative is 0 everywhere the function is constant. For this fact, there is a reference to a theory 

section at the end of the book.  

After. It is pointed out and illustrated in a diagram that the additive constant 𝐶 corresponds to a vertical 

translation of the graph. The notation ∫ 𝑓(𝑥)𝑑𝑥 is introduced. This is followed by three worked 

examples on calculation of primitive functions and a set of student exercises.  

Analysis. The sufficiency and the necessity are both justified with general proofs (G).  

Analytical difficulties: There are none that have not been mentioned so far.  

Other issues: In FI1 it is clear that the statement contains two parts even though it is not formulated 

as an equivalence. The justification is labelled proof (SW1 and SW2 have no labels on their 

justifications). The justification comes after the statement (not before as in the Swedish books). There 

is a graphical interpretation of the statement but it is put after the proof (not before as in SW1) and it 

seems to have the purpose of illustrating the meaning of the statement (and not to justify it as in SW1). 

FI1 is the only textbook that emphasizes that being a primitive function actually is a global property 

(i.e. that 𝐹’(𝑥) = 𝑓(𝑥) should hold for all 𝑥 in an interval). However, as in SW1 and SW2 the 

definition is phrased using the word ‘if’ even though it should be interpreted as ‘if and only if’. 

SW1 and SW2 have activities and/or worked examples before the definition which together with their 

justifications give the student an opportunity to discover and conjecture the statement. In FI1 the 

section starts with the definition. The indefinite integral notation is used throughout FI1 but is 

completely avoided in SW1 and SW2. 

Summary. The analytical framework/method should be developed to better account for opportunities 

to learn: mathematical formalism, detail and notation; different purposes with different forms of 

representation; the conjecturing as well as the verifying nature of mathematical work; and the 

importance of clear definitions. 

Discussion 

When opportunities to learn RP are studied in textbooks there are several aspects to take into account 

and there is always a risk that important aspects are left out. The examples mentioned above illustrate 

a number of such aspects identified when a specific analytical framework was applied to a few 

textbook passages on primitive functions. Here I chose to discuss the importance of four such aspects 

of RP and their relevance in a refined framework for RP.  

The first aspect is generality and relates to opportunities to learn what makes a justification a proof. 

Students’ difficulties with understanding the difference between a general proof and an example are 

well-established (e.g., Harel & Sowder, 2007). However, justifications can have different levels of 

generality, or ‘scope of variation’, which opens up for sub-categories of non-proof justifications (e.g., 

Bergwall, 2015). Also, a justification must be judged in relation to the statement’s formulation and 

the level of detail in relevant definitions. Thus an analysis of textbook justifications should include 

an analysis of statements (which Otten et al. (2014) do) and definitions. 

The second aspect concerns forms of representation and relates to opportunities to learn how proofs 

are communicated. Sometimes a justification is better expressed in words but often algebraic symbols 

bring more precision and detail to the argument. Graphical representations may be used to illustrate 



 

 

 

meaning as well as the idea behind an argument. Frameworks should take the use of different forms 

of representation and their roles and purposes into account.  

The third aspect is structure and relates to opportunities to learn the role of proof in mathematical 

theory. Here I include the logical structure of individual definitions, statements and justifications as 

well as the overall structure of the mathematical theory, with its definitions, theorems and proofs, and 

the connections between them. To some extent this is captured in an analysis of labeling (as in 

Thompson et al. (2012)) and references to other lessons (as in Otten et al. (2014)).  

The fourth aspect is about ordering of the material, including student exercises and worked examples, 

and relates to opportunities to learn different purposes of proof, and to how justifications can serve 

different educational purposes. Student investigations, specific cases and intuitive arguments placed 

before a statements can emphasize the creative and conjecturing side of mathematical work, while 

formal general proofs placed after the statement can emphasize the verifying and organizing side. 

All four aspects have one thing in common. They concern proofs and justifications as objects and not 

only as processes (e.g., Sfard, 1991). To analyze if textbooks offer opportunities to understand proofs 

and justifications as objects, the analytical frameworks and methods need to focus on opportunities 

to learn object properties of proofs and justifications. Generality, forms of representation, structure, 

and ordering are examples of such properties.  

Finally, development of frameworks and methods that better capture important aspects of RP are of 

importance not only for textbook analysts and textbook authors. Similar frameworks can be used for 

analyzing lecture scripts and teaching episodes. Hence they can also aid teachers when they plan their 

lectures and teaching elements. A detailed framework risks being of limited analytical use but is an 

important contribution when conceptualizing opportunities to learn RP. 
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The construct of cognitive unity of theorems was introduced twenty years ago to identify suitable 

conditions for students’ “smooth” approach to proving. In this paper the Habermas’ construct of 

rationality, adapted to mathematics education in previous research, is used to identify some factors 

in the activation of cognitive unity of theorems. In particular, I consider the dependence of 

cognitive unity on the specific rationality (e.g. analytic geometry rationality, or synthetic geometry 

rationality) according to which a conjecturing and proving problem is dealt with. The analysis of 

some examples will provide evidence for it, together with hints for further research. 

Keywords: Theorems, conjecturing and proving, cognitive unity, proving as rational behavior. 

Introduction 

“Cognitive unity of theorems” (CUTHE) is a construct introduced in Garuti, Boero, Lemut & 

Mariotti (1996) to account for a phenomenon detected in a grade 8 (13-years-old students) 

classroom engaged in a conjecturing and proving activity, concerning a theorem of space geometry 

contextualized and verbally expressed in terms of Sun rays (instead of straight lines) and Sun 

shadows (instead of shapes projected on a plane according to parallel projection rules). The 

conjecturing task (see Garuti et al, 1996) may be shortly reported this way: “Is it possible that the 

Sun shadows of two non-parallel sticks are parallel on the ground? If yes, under which 

conditions?”. After comparison and standard re-phrasing (“if… then…”) of their conjectures, 

students were asked to validate their statements by “general reasoning”. We observed that, while 

trying to validate their conjectures, several students resumed some pieces of personal reasoning 

(e.g. ways of looking at the Sun rays and the Sun shadows) developed during the production of the 

conjecture and the search for reasons for its validity, and arranged them in a deductive chain of 

statements. The ways of looking at the Sun rays and the space relationships had been different for 

different students; those ways corresponded to the different ways of proving the theorem by them. 

After having found other theorems (in geometry, and in elementary arithmetic) for which students 

behaved in a similar way, we defined “cognitive unity of theorem” (CUTHE) what happens for 

some theorems when:  

during the production of the conjecture, the student progressively works out his/her statement 

through an intensive argumentative activity functionally intermingled with the justification of the 

plausibility of his/her choices. During the subsequent statement-proving stage, the student links 

up with this process in a coherent way, organizing some of the previously produced arguments 

according to a logical chain (Garuti, Boero, & Lemut, 1998, p. 345). 

The CUTHE construct was also extended to the case of the relationships between the exploratory 

phase of proving a theorem, and the subsequent construction of a proof for that theorem (Garuti et 

al., 1998): indeed, the exploratory phase of proving shares some common aspects with conjecturing 

(as re-construction of the meaning, and appropriation, of a statement; and identification of elements 

for its validity). The construct of cognitive unity resulted in various research developments. 

Pedemonte (2007, 2008) performed studies in which (given a theorem for which CUTHE is 

accessible to students) the mechanism of arranging arguments produced in the exploratory phase 



does not result in a proof for some students, due to their difficulty of re-arranging inductive or 

abductive arguments into deductive arguments. These difficulties are not likely to emerge in 

algebraic conjecturing and proving (Pedemonte, 2008), while they frequently emerge in the case of 

plane geometry (Pedemonte, 2007). Leung and Lopez Real (2003) investigated CUTHE in the case 

of computer-based learning environments, which change the nature of students’ exploration and 

make CUTHE difficult to activate, finding out ways of activating it in the new situation. Fujita, 

Jones and Kunimune (2010) studied conditions under which CUTHE may be activated in the field 

of synthetic geometry: they “analyze the circumstances when students unite, or not, their conjecture 

production and proof construction”; the potential of geometrical constructions for the activation of 

CUTHE was explored. The quoted studies suggest the opportunity of investigating the conditions 

for the activation of CUTHE for a given theorem. Boero et al. (1998) started a discussion on it, 

taking into account both the student (her skills, her knowledge and expertise in a given field of 

mathematics) and the field of mathematics in which a given statement is dealt with. Douek (1998) 

analyzed the individual variety of exploration strategies and their effects on conjecturing and 

proving; at present (personal communication) she is further deepening the idea of subject-relativity 

of CUTHE, together with the relationships between the quality of student’s exploration (including 

its semiotic features) and the construction of the proof. In this paper I will try to identify some 

aspects of the relativity of CUTHE referred to a given system of discursive practices that concern 

the truth of statements, the ways of producing and validating them, and the ways of communicating 

with others - i.e. a “rationality”, according to Habermas (1998).  

Theoretical assumptions 

Mathematical theory 

It is possible to define a mathematical theory (shortly, a theory) by its characteristic components: 

primitive notions, and definitions related to them; postulates; inference rules to get true statements 

from the postulates and other statements proved as true. ‘Characteristic components’ depend on the 

historical period and, in a given historical period, on epistemological assumptions that may be 

different, according to different fields of mathematics. The case of Euclidean geometry before and 

after Hilbert’s Grundlagen der geometrie is a well-known paradigmatic example of historical 

change in the ways of considering the requirements of a mathematical theory.  In this paper, we will 

consider the following theories: Synthetic geometry (in particular, Euclidean geometry); Analytic 

geometry (including the algebraic treatment of conic sections); Elementary, verbal-semantic 

number theory (evidence for truth and inference rules rely on properties of the concept of number 

and its representations); Elementary, algebraic-formal number theory (evidence for truth of 

statements comes from the interpretation of an algebraic expression derived, through suitable 

syntactic transformations, from the algebraic expression which represents the problem situation). 

Theorem 

Mariotti (2001) defines a theorem as a statement and its proof with reference to a theory (and 

related inference rules). The definition results in the possibility of considering different theorems 

with the same statement (in particular, when different proofs referring to different theories are 

available). The definition encompasses theorems related to various kinds of theories and related 

inference rules: Euclid’s as well as Hilbert’s geometry; analytic geometry; graph theory, with its 



reference to visual objects; 19th-century probability theory as well as Kolmogorov’s axiomatic 

theory, etc.; and the different ways of considering proof since the Greeks, including verbal-semantic 

proofs (like in Euclid) and modern algebraic-formal proofs of arithmetic statements. 

CUTHE and Habermas’ rationality  

In this paper we are interested in CUTHE, one possible aspect of the conjecturing and proving 

process, in order to identify for which theorems (in Mariotti’s sense) it may be easily activated, thus 

we need a comprehensive frame to deal with the process of proving and its relationships with the 

product (proof) to be built up in a given theory. Habermas (1998, pp. 310–317) deals with the 

complexity of discursive practices according to three interrelated components, concerning: 

knowledge at play, and the answer to “why is it true” questions in a given cultural context 

(epistemic rationality); action and its goals, and strategies to achieve them, to be evaluated 

(teleological rationality); communication and related, intentional choices in a given social context 

on a given subject (communicative rationality). In Boero & Planas (2014) a detailed elaboration of 

the reasons for adapting Habermas’ construct to mathematics education is presented, with 

references to how it has been used in different studies. In the case of proof and proving, according 

to Mariotti’s definition of theorem, the adaptation of the Habermas’ construct concerns: 

 criteria for validity of inferences and truth of statements within a theory, and their dependence 

on historical periods, mathematical domains, and institutions and cultures. Inferences may rely 

on visual evidence, or conceptual meaning, or syntactic transformations, etc.;  

 problem solving strategies that may be adopted to reach the goal of proving, along with their 

effectiveness; strategies may use analogies, abduction, and so on. Strategies and exploration are 

not constrained within the border of the reference theory;  

 the choice and use of appropriate communication means for proof in a given context,  

together with the relationships among them, taking into account the goal of the proving process — a 

proof, conforming to requirements specified for the first and the third components. The expression 

‘rationality frame’ will be used to put into evidence the system of epistemic constraints, strategies 

and forms of communication, which works as reference for proving and proof in a given theory. 

Examples  

Moving to the school, the role of the following examples is to provide evidence for the hypothesis 

that CUTHE depends, for the same statement, on the specific rationality frame in which a 

conjecturing and proving problem is dealt with by the student; and also to provide elements for 

further investigation. The examples will include some excerpts from students’ think aloud solving 

processes. Italic is for written texts. (…) is for omitted sentences.  … is for a pause in oral speech. 

Example 1 

The same conjecturing and proving problem was proposed in grades VIII and IX: “Consider all the 

products of three consecutive natural numbers. What is their GCD? Prove that it is their GCD”. S-A 

is a grade VIII (13-years-old) student not yet familiar with the use of letters to prove:  

Student S-A:   1·2·3=6           2·3·4=24          3·4·5= 60         10·11·12=1320;  it is evident that 6 

is the GCD of the first three products, because it is the greatest divisor of the first 

product and a divisor of the other products. Is it a divisor of 1320? … Yes, 1320 is 



an even number divisible by 3 because the sum of its digits is a multiple of 3. 

Then 6 might be the divisor of all the other products too. But why? Probably, by 

looking at these four products, all the products are even… But why? OK, one 

factor is always even! Even numbers go two by two, thus among three numbers 

one number … one number at least is even, and they may be two, like in the case 

of 2·3·4. Look at, three is there! And a multiple of three is in the last product! 

Why?  In the case of 2, multiples go two by two … In the case of 3, numbers go 

three by three. That is the reason! Now I try to write down the general reasoning: 

The greatest common divisor is 6 because every product is divisible by 6 because 

every three consecutive numbers contain one even number (multiple of 2) and one 

multiple of 3, because multiples of 2 go two by two, and multiples of 3 go three by 

three (The teacher writes the following question: Why greatest?) (after a while) 

Because the first product is divisible by 6, and no greater divisor is there.  

S-A resumes the examples, which conjecturing was based on, to identify general reasons for the 

truth of the conjecture. The intention of proving is related to the emerging conjecture, through “But 

why?” self-posed questions of epistemic relevance. A narrow intertwining between epistemic, 

teleological and communicative components of rationality allows the student to move continuously 

from exploration to the production of the conjecture, to proof construction by exploiting relevant 

elements got during the exploration, and then to proof writing. We may consider S-A’s solution as 

an example of CUTHE in the rationality frame of verbal-semantic elementary theory of numbers.  

S-B is a grade IX student who tries to solve the problem after some classroom work (about 10 

hours) on the use of letters to prove in an algebraic way. Note that he would be free (according to 

the didactic contract) to choose another way of solving the problem, as other schoolmates do:  

Student S-B:  (n+1)(n+2)(n+3)=(n2+2n+n+2)(n+3)=(n2+3n+2)(n+3)=n3+3n2+2n+3n2+9n+6 

=n3+6n2+11n+6. I do not see anything. But if I consider, for instance, 2·3·4=24  

3·4·5= 60   5·6·7=210   I see that… Yes, I see that 6 is always a divisor, because I 

see it as 2·3, as one half of 3·4, as 6 in the products. The same for 13·14·15. (…) 

24 is also divisible by 12, and by 8, but 60 is not divisible by 8, but it is divisible 

by 12. Let us see 210: (…) not divisible by 12, thus 6 is the only remained 

candidate! With algebra: n3+6n2+11n+6=6(n2+1)+n(n2+11). I do not see 

anything. Perhaps it is not true! 16·17·18 (…) not a good counter-example! 

Because 18 is divisible by 6. 21·22·23= (the student uses his cellular phone to 

make calculations; the product is divisible by 6). Perhaps it is easier by 

considering: (n-1)n(n+1)=n(n2-1).… I see nothing! I am not able to prove it!  

S-B tries to solve the conjecturing and proving problem in the rationality frame of elementary 

algebraic theory of numbers; the difficulty to produce a conjecture in that frame is overcome by 

moving to the rationality frame of verbal-semantic theory, where afterwards he will also try to 

dispel a doubt on the truth of the conjecture by considering a further, more elaborated example. 

Differently from S-A, no effort is addressed to find general numerical regularities that might be 

exploited to build up a verbal-semantic proof. In terms of rational behavior, this is an example of 

lack of connection between two different strategies (teleological aspect): to produce the conjecture 

and afterwards to provide some empirical evidence for it; and to produce a general reasoning for 



proving. As a consequence, CUTHE does not work in the rationality frame where it could have 

been activated (verbal-semantic theory). The same happened with the other students who tried to 

build up an algebraic - formal proof.  Note that an algebraic - formal validation of the statement 

may be performed either in combinatorics, or in modular arithmetic. Some schoolmates get the 

conjecture in the rationality frame of verbal-semantic theory of numbers, then they consider the 

products (n+1)(n+2)(n+3) or (n-1)n(n+1) and realize that in these products one number is divisible 

by three and at least one number is divisible by two; thus proving still relies on semantic 

considerations related to the number line and the positions of multiples of 2 and 3 in it, like in the 

case of S-A. The algebraic expression of the product is only a device to favor the transition to a 

general reasoning. CUTHE works thanks to the intention of finding general regularities and a proof 

in the same rationality frame of verbal-semantic theory, where the conjecture had been produced. 

Example 2 

A conjecturing and proving problem was proposed by the same teacher in grade XI, in three parallel 

classes, as an individual task: “Among the triangles with a given side and the same perimeter, find 

the triangle with the greatest area”. Those classes were familiar with conjecturing and proving in 

number theory (both in a verbal-semantic way and in an algebraic way), and in Euclidean geometry.  

The first class at that moment was familiar only with proving in plane Euclidean geometry; 

according to the conjecturing style of Euclidean geometry, some students (one third of that class) 

got the conjecture (the solution of the problem is the isosceles triangle) by considering that, after 

drawing some triangles, an isosceles triangle looks as the “widest” one (students say: “the fattest”) 

among the drawn triangles (but three students got the conjecture of a right-angled triangle with the 

same considerations); a few students got the conjecture through a “limit & symmetry” consideration 

related to the fact that, when the triangle becomes strongly asymmetric, the surface within it 

becomes very “small”, if we want to keep the same perimeter. During the discussion on the 

produced conjectures, after disproving (through measures) the conjecture concerning the right 

angled triangle, some students proposed to consider another triangle with the same height of the 

isosceles triangle (thus with the same area), and to try to prove that its perimeter is longer than in 

the case of the isosceles triangle. But a rigorous proof is not easy to build up, and in fact no student 

built it up, in spite of a long time spent for it in the classroom, by working in small groups (and then 

at home as well!); a relatively easy proof needs an auxiliary construction and the use of related 

theorems. The exploration to get the conjecture only suggests a first step of a proving process, and 

does not provide the ingredients to build up the proof: CUTHE does not work. 

The second class had already met conic sections in synthetic geometry (they knew that an ellipse is 

the locus of points whose sum of distances from two given points is constant, and its basic 

properties concerning symmetry, axes, etc.). In this class, the conjecture was produced in a similar 

way as in the first class; but one fourth of students, thanks to the drawings of some triangles with 

approximately the same perimeter, arrived also to make a link with the ellipse in synthetic 

geometry. Students shared what had been discovered; then (by working in small groups) four 

groups out of six were able to solve the proving problem by considering the properties of an ellipse 

in synthetic geometry. The exploration provided students with a visual link with the ellipse in 

synthetic geometry, thus bridging conjecturing with proving – even if proving did not rely on the 



considerations (“fatness” of triangles) that has generated the conjecture (and thus CUTHE did not 

work). Here is an excerpt from S-C’s think aloud process:                                                                           

Student S-C:  (…)  Now I have a reasonable conjecture. How to prove it? (student C draws three 

more triangles, with the same side in common with the four previously drawn 

triangles, and approximately the same perimeter). It is even more evident that the 

isosceles triangle has the largest area. But it seems to me that all those triangles 

have something in common. Their free edges are …Yes! I understand: the same 

perimeter means that the free edges are on an ellipse. Thus I may try to see if I 

succeed to build the proof by using the ellipse.  (…) 

The third class had already constructed, under the teacher’s guide, the equations of a circumference 

and a parabola by translating into algebraic equations the characteristic conditions of those 

geometric loci. They had not yet met the equation of an ellipse, or the notion of an ellipse in 

synthetic geometry. The teacher suggested to use algebra to solve the problem. Student S-D is a 

representative of those students (about one third of the class) who succeeded in finding the 

conjecture and proving it. S-D draws three triangles with (approximately) the same perimeter: 

Student S-D:  I must maximize an expression for the area of the triangle, when x changes: 

 

The maximum is when x=0. Perhaps this is the solution! But I have not 

considered the condition a+c=K. And what I found is … it is obvious: x=0 means 

the rectangle triangle. Obvious: in that case the side of length a is vertical, 

namely, maximum height of the triangle. But that side has always the same length. 

But in this problem a is related to c. I should find how to take the condition a+c=K 

into account. Perhaps it should be good to compare two expressions for the height 

of the triangle, perhaps… in order to get the area depending only on b and K. 

 

Good! Given K and b, the area depends only on x (algebraic calculations follow) 

 

Now it works: I see the equation of a parabola; … if x=b/2 I get the the vertex of 

the parabola, it means the maximum… the maximum of the area. (S-D draws an 

isosceles triangle) OK, it looks fine: the isosceles triangle looks as the widest one! 



We may observe how (as it usually happens in analytic geometry) conjecturing and proving are 

dealt with at the same time, thus CUTHE works. Exploration is driven by the goal to be attained 

through algebra, thus the initial figures are not exploited to get a conjecture. The first trial is 

abandoned after interpretation of the algebraic result, the second one develops and brings to the 

conclusion.  Epistemic control works on formalization, choice of syntactic transformations, and 

interpretation of results (see Morselli & Boero, 2011, pp. 455–456).  

Conclusion and discussion 

The aim of this paper was to elaborate the idea of cognitive unity of theorems (CUTHE) by relating 

it to the rationality frame available to (or chosen by) students to solve a conjecturing and proving 

problem. Through the examples (particularly Example 1, S-A and also Example 2, S-D) we have 

seen how the same statement may be produced in a particular rationality frame and then proved in 

the same rationality frame by exploiting some elements produced during the conjecturing phase, in 

a continuous process where the intention to achieve the conjecture and ascertain why it is true 

drives the attention of the student to relevant aspects of the problem situation, useful to build up the 

proof.  While the same statement of Example 1 resists S-B’s effort of proving it in another 

rationality frame. The same for the statement of Example 2 in the frame of Euclidean geometry. 

This paper brings some elements of novelty in the field of research, which deals with the 

relationships between the exploratory phase of conjecturing and proving (or of proving a given 

statement), and the phase of proof construction. Through the use of the rationality construct, the 

hypothesis of dependence of activation of CUTHE on the theory chosen as reference for 

conjecturing and proving, already briefly presented in Garuti et al (1998), is further elaborated, with 

a counterpart in some examples from classroom activities. The rationality perspective provides a 

lens to compare (and distinguish between) different rationalities in mathematics, with different 

opportunities to validate the same statement by activating CUTHE. The chosen examples 

(particularly in the case of S-B if compared with S-A and with some S-B’s schoolmates) also 

suggest to move to a deeper consideration of the relationships between the student’s intention (i.e. 

the teleological component of her rational behavior) and the production of those elements, which 

might be arranged in a deductive chain in order to get a proof. Another, possible research 

development (related to Douek’s present work) concerns a connection with what is called “semantic 

proof production” in Weber (2005, p. 356–357): in his reported example the student produces a 

visual-graphic representation of the sequence (an)=(1,0,1,0,1, …) and a horizontal band, which 

‘shows’ that the sequence is not convergent to a limit; that “informal representation” suggests and 

guides “the formal inferences that (she) would draw”. CUTHE does not work: elements produced 

during the exploration are not resumed as steps of the construction of the proof in the rationality 

frame of formal Calculus. But those elements allow to bridge the exploration of the proving 

situation with the construction of a proof in terms of the teleological component of rationality, with 

some analogy with the case of S-C (in Example 2); both cases suggest to widen the idea of CUTHE 

by including that kind of productive relationships between exploration and proof construction. 
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This paper reports on a professional development (PD) which aimed to support secondary teachers 

in incorporating argumentation and proof-oriented tasks in their classrooms. The teachers 

interacted with researcher-developed models of proving tasks in a variety of ways, including 

modifying the tasks to their classrooms contexts, implementing the tasks, sharing and reflecting on 

the experiences. In the process of modifying proof-oriented tasks by teachers some of the original 

researcher-intended goals were lost, while other unexpected affordances emerged. This raises 

important questions regarding modes of teacher-researcher collaborations around proof-oriented 

classroom interventions, and their potential effectiveness.   

Keywords: Reasoning and proof, professional development, instructional activities, classroom 

interventions.   

Introduction 

As the body of knowledge on reasoning and proof grows, the focus of mathematics education 

research has shifted from examining individual students’ conceptions of proof and theorizing about 

potential causes of students’ difficulties with proof towards designing classroom interventions that 

aim to remediate these difficulties and provide instructional support for students and teachers in 

classrooms (Stylianides & Stylianides, 2016). In this process teachers play a critical role, as they are 

responsible for establishing learning environments in their classrooms. In line with the wide 

recognition of the importance of argumentation and proving to students’ mathematical experiences 

(e.g., Reid & Kipping, 2010) teachers are expected to implement tasks that promote reasoning, and 

have students construct and critique mathematical arguments (CCSS, 2010).  

While many teachers agree, in principle, with this vision of mathematics classrooms, they often find 

them challenging to implement and maintain over time (Brodie, 2010). Moreover, only a limited 

number of professional development (PD) settings explicitly focus on argumentation and proving in 

connection to classroom practices (Brodie, 2010). Hence there is a need to expand the theoretical 

and practical knowledge of successful strategies for supporting teachers in this area.  

This paper reports on an experimental model of a PD intended to support teachers in incorporating 

argumentation and proving in their classrooms. The following sections describe theoretical grounds 

underlying a special feature of the PD: teachers modifying researcher-designed proof tasks for 

implication in their classrooms. I illustrate two such modified tasks and analyze them in terms of 

affordances for students’ learning, and their (mis)alignment with the original designer’s intentions. I 

close by discussing some implications for supporting teachers’ implementation of proof-oriented 

classroom activities.   



Theoretical framework 

Supporting change in teacher practices: the emphasis on argumentation and proving 

Research has identified key features of PD settings that have shown to be successful in supporting 

change in teachers’ practices. Among them are: focus on content and pedagogical knowledge, active 

learning experiences, establishing strong connections to teachers’ own classroom contexts, and 

providing ongoing support for teachers (Copur-Gencturk & Papakonstantinou, 2015). These general 

features can be adapted to provide targeted support for teaching argumentation and proving, for 

example, by emphasizing mathematical knowledge for teaching proof (MKT-P).  

Building on Stylianides’s (2011) notion of “comprehensive knowledge package for teaching proof”, 

Buchbinder et al. (2016) suggest that MKT-P includes 4 types of knowledge. Two types are related 

to pedagogical content knowledge: (a) knowledge about students’ conceptions of proof, and (b) 

knowledge of pedagogical practices for supporting students’ development of correct conceptions of 

proof. The other two types of MKT-P involve subject matter knowledge: (c) robust knowledge of 

mathematical content involved in a given task, and (d) meta-mathematical knowledge of proof, such 

as argument validity, logical connections, types of proof, and the role of examples in proving. These 

four types of knowledge were addressed in the design of the PD reported in this study. In addition, 

the PD activities established strong connections to teachers’ own classrooms by providing practical 

tools for teachers to develop and implement proof-oriented instructional tasks in their classrooms. 

Task design 

Choosing, adapting and designing mathematical tasks is one of the cornerstones of a teacher’s work.  

With textbooks providing only limited opportunities for students to engage in argumentation and 

proving (Thompson et al., 2012) teachers have been encouraged to treat textbooks’ tasks as a 

starting point for planning instruction: to modify tasks to increase their cognitive demand or develop 

their own tasks (Stein et al., 2000). Since PD efforts in this area have seldom specifically targeted 

argumentation and proving tasks, the knowledge on teachers developing and implementing such 

tasks has been limited. Adding to this concern, Stylianides and Stylianides (2016) argue that it is 

unrealistic to expect individual teachers to design their own instructional activities that successfully 

target persisting difficulties with proving. On the other hand, Kim (2016) has found that teachers 

regularly tend to omit, replace or substitute instructional activities, even when working with reform-

based, research informed curricula, which often compromises the original designer intentions.   

This dilemma can be addressed by fostering close collaboration between researcher-designer and the 

teacher (Cobb et al., 2003). While the researcher-designer brings in strong theoretical and empirical 

knowledge related to proving, the teacher has an intimate knowledge of specific instructional and 

institutional context. This partnership model was realized in this study by providing teachers with 

researcher-developed prototypes of proving tasks to modify and implement in their classrooms.  

Proof-task prototypes 

Six prototypes of proving tasks were developed by the author of this paper in a study of secondary 

students’ conceptions of proof. The tasks, which can be used as diagnostic tools and as instructional 

activities (Buchbinder & Zaslavsky, 2013), were developed in generic form, so they could be 

adjusted for a variety of mathematical topics, while maintaining the original structure and goals, 



such as recognizing the limitation of examples for proving general claims, or understanding the role 

of counterexamples. In the context of the PD reported herein, teachers received at least one content 

specific version of each type of task, and a generic template highlighting task structure. Figure 1 

shows an algebraic version of the task True-or-false; and Figure 2 shows its generic version1. 

True or False? For each statement below decide whether it is true or false and justify your answer.  

1) Every three numbers a, b, c satisfy the equation: 

c
b

a

cb

a



. 

4)  There exist four numbers a, b, c, d that satisfy: 

d

c

b

a
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ca
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2) The (positive) difference between the squares of 

any two consecutive natural numbers is equal to 

their sum. 

5) There exists a number 1a  that satisfies the 

equation: 
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3) Every two numbers n, m satisfy the equation:  

mnnm 
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6) There exist three distinct positive integers  a, b, 

c  that satisfy 
b

a

cb

ca





 

Figure 1:  Algebraic version of the task True-or-False 

The task True-or-false targets multiple aspects of proving and refuting. It requires distinguishing 

between universal and existential statements, and recognition that the type of statement affects the 

role of examples in proving or disproving it. To successfully complete the task, students need to 

construct general proofs, construct appropriate counterexamples to disprove false universal 

statements, and come up with supporting examples to prove existential statements.  

 

 

Statement 

Type of 

statement: 

U / E 

Truth 

value:  

T / F 

“Always-Sometimes-Never” 
Type of justification 

required True for all 

values 

Ture for some 

values 

True for 

no values 

1)  U F    
Refutation by a 

counterexample 

2)  U T    General proof 

3)  U F    
Refutation by a 

counterexample 

4)  E T    
Proof by a supporting 

example 

5)  E T    
Proof by a supporting 

example 

6)  E F    General refutation 

Figure 2:  The structure of the task True-or-False 

The task Always-Sometimes-Never, builds on the task True-or-false by asking whether the 

propositions of the statements in the latter task are true for all, some, or no values of relevant 

variables. This often requires construction of additional arguments, e.g., although statement #3 in 

Figure 1 can be refuted by a single counterexample, one must construct a general argument to show 

that no values of variables satisfy the statement. Sequencing these tasks allows to contrast quantified 

                                                 

1 For complete presentation of all 6 types of task prototypes see Buchbinder & Zaslavsky (2013). 



statements, which are either true or false, with non-quantified propositions, which truth-value 

depends on the value of a particular variable. Creating a combination of statements to addresses all 

these aspects of proving is a complex undertaking, which could be supported by using a generic 

version of the task (Figure 2). The goal of this study was to explore the potential of using generic 

task prototypes to support the work of mathematics teachers with respect to incorporating 

argumentation and proving in their classrooms.     

Methods 

Participants. The study was conducted with 5 secondary teachers, all female, all from different 

schools in a Northeastern area in the United States. Their teaching experience varied greatly from 5 

to over 30 years. Since the PD was advertised as explicitly devoted to classroom implementation of 

argumentation and proving tasks, all participating teachers were motivated to introduce such tasks 

in their teaching, but sought to gain practical skills in this area. Hence, the PD aimed to reinforce 

already existing teachers’ motivation, provide ongoing professional support, and foster teachers’ 

sense of self-efficacy as they transformed their practices.  

The setting. The PD consisted of 9, two-hour long weekly meetings which took place on the 

campus of a state university in the Fall of 2015. During the sessions teachers interacted with the 6 

types of researcher-developed proof tasks in several ways: they experienced the tasks as learners, 

examined samples of student work pertaining to these tasks, and analyzed opportunities to learn 

about argumentation and proving embedded in the tasks. This was done by comparing teachers’ 

own experiences and student work with the generic task prototype to examine the extent that the 

designer-intended goals have been realized. Throughout the PD teachers were encouraged to try out 

at least two types of tasks in their classrooms and share their experiences with others.  

Modes of Inquiry and Data Sources. All PD sessions were videotaped. Each teacher submitted the 

tasks they had created or modified for their classrooms, sample student work and a two-page report 

on the task implementation e.g., the mathematical topic, the number of students, and the modes of 

work: group, individual, whole class, or combined. Teachers were also asked to describe what kinds 

of learning opportunities they think their tasks afforded, and what challenges they encountered as 

they created and implemented the tasks. The teachers also completed a short survey assessing the 

perceived effect of the PD on their classroom practices.  

Results and discussion 

Perceived obstacles for classroom implementation  

Although all participating teachers expressed their commitment and motivation to incorporate 

proof-oriented tasks in their teaching, they also frequently shared concerns about feasibility of such 

shifts in their practices. Their concerns included whether incorporating proof-oriented tasks would 

compromise curriculum “coverage”, or would take out from the time originally allotted to test 

preparation; whether students would be willing to take social risks associated with sharing 

mathematical arguments in public, and to critique the arguments of others; and whether students be 

willing to engage in proof-oriented tasks that vary in form and content from what they are used to. 

These types of concerns reflect teachers’ professional obligations towards the institution of 

schooling and towards individual students’ social and emotional needs (Herbst & Chazan, 2011).  



Of the total 11 proof tasks created by the teachers, 2 were of their own design and 9 were 

modifications of one of the researcher-designed task types: Is this a coincidence?, True-or-false? 

and Always-Sometimes-Never. The tasks addressed a variety of mathematical topics in algebra, 

geometry, number and operation, and logical reasoning. The modes of implementation involved: 

enrichment activities, practice, exam review, or introducing a new topic. In the following I focus on 

one teacher, Alison (a pseudonym), to illustrate how she had modified two tasks to fit her classroom 

context. These tasks were chosen because they stood out as one of the most creative modifications 

to the researcher-designed task prototypes that occurred within this group of teachers.       

Alison’s modification of the tasks True-or-false? and Always-Sometimes-Never 

Alison has more than 20 years of teaching experience and is well-respected in her school. Similar to 

other teachers she joined the PD with mixed feelings: committed to provide students with proving 

experiences but sharing the abovementioned concerns. Alison was inspired to create two proof tasks 

when her students performed poorly on a particular item on an algebra test: a word problem about 

money invested and interest earned in two bank accounts. The students found it challenging to set 

up an equation to represent the total amount of money split between the two accounts, using a single 

variable. Alison used students’ test responses to create a sequence of tasks: Always-Sometimes-

Never (Figure 3) and a follow-up True-or-false task (Figure 4).  

 
Figure 2:  Six out of 8 items from Alison’s task Always- Sometimes-Never 



 
Figure 3:  Two out of 6 items from Alison’s task True-or-false? 

Alison’s goals in developing this sequence of tasks were to confront students with both correct and 

erroneous charts for setting an equation representing the money split between the two accounts, and 

have students analyze, validate or critique the equation setups. In the Always-Sometimes-Never task 

students were to determine whether the equation setups are true for all, some, or no values of x, 

where x is the amount of money in one account. In the True-or-false task the same setups were 

accompanied by conditional statements. Students were to determine whether each equation is 

algebraically correct, and whether it can be applied to the given word problem. The tasks were 

implemented with 74 students (4 classes). Students worked in groups of 3 or 4 on the Always-

Sometimes-Never task in class, and then completed the True-or-false task at home. 

Opportunities gained and lost through task modification 

The design on Alison’s tasks reflects the way she balanced her professional obligations. By using 

students’ test responses as a content of the tasks Alison minimized social anxiety associated with 

presenting and critiquing mathematical arguments. She also addressed her curriculum goals while 

engaging students in proof-oriented tasks. The mathematical affordances of Alison’s tasks 

encompass many of the original designer intentions. For example, the task Always-Sometimes-Never 

provided students with opportunities to reason through a variety of correct and incorrect equation 

setups, and evaluate whether they can be true for all, some or no values of the variable. The use of 

precise mathematical language echoes the goals of the original design. The two tasks build on each 

other, with True-or-false task emphasizing evaluation of conditional (if not quantified) statements. 

The tasks reflected additional learning goals Alison had for the students: to distinguish between 

equations that are mathematically correct but are inappropriate in the context of the problem. 

Further distinctions could be made between equations that do not account for an implicit problem 

requirement: the investment in either account cannot be $0 (equations D, E & F); and equations that 

do not account for the explicit requirement: the total interest earned must be $4900, meaning that 



equal sums of money cannot be invested in two accounts2 (equation A). These distinctions came up 

in students’ written responses to the tasks. Alison was very satisfied with students’ interactions with 

the tasks, and indicated that next year she plans to use them to introduce the topic of solving word 

problems, rather than a test review.  

Despite the important affordances of Alison’s task, many of the original proof-oriented goals of the 

tasks, such as the limitation of examples for proving general claims, the distinctions between 

quantified and non-quantified, universal and existential statements, were not realized in the tasks  

setup. Potentially, Alison’s tasks could be used to highlight other issues related to proving, which 

although not intended by researcher design, arise naturally in the context of her tasks. Justifications 

for dismissing solutions A, D, E and F (Figure 1) bare resemblance to arguments by contradiction – 

a proposed equation, assumed as correct, is rejected because it contradicts one of the problem 

constraints. Such interpretation could pave a way to discuss proof by contradiction in algebra class.   

Conclusions 

This paper described an exploratory study that tested a PD model which aimed to support secondary 

teachers’ implementation of argumentation and proving tasks in their classrooms. The researcher-

designed tasks served as prototypes after which teachers could model their own tasks. The generic 

versions of the same tasks provided additional support for teachers by outlining the structure of the 

tasks and highlighting specific proof-related goals. By using researcher-designed tasks as a starting 

point for creating their own tasks, teachers became critical partners in designing classroom 

interventions to promote students’ engagement with proving. As teachers collaboratively explored, 

modified and shared experiences of classroom implementation of their tasks, they negotiated a new 

understanding of what it means to engage students in argumentation and proving. In the post-PD 

survey, all participating teachers reported increased confidence in their ability to incorporate 

argumentation and proving tasks in their teaching. One teacher, called here Jenifer, wrote:  

The [PD] classes gave me great ideas to take back to my classroom, to look at proofs very 

differently than what I had always thought of as a proof. Proofs do not need to be the static, two 

column proofs from my school experience. They can take a couple of minutes or they could be 

something to wrestle with for a majority of the block. I liked that the activities were easily 

manipulated to fit a specific time frame or wanted outcome.  

The study also revealed challenges associated with supporting teachers in developing proof-oriented 

tasks. Alison’s tasks show that although she created powerful opportunities for students to engage 

with argumentation, some of the original researcher-intended goals, specifically related to proving, 

seem to have been lost. The available data sources do not provide sufficient information as to which 

aspects of proving were explicitly addressed in class, or whether they were completely 

overshadowed by discussions of the algebraic content. Hence, future studies should involve 

classroom observations. Finally, the results of this study concur with those suggesting that changing 

teacher practices is a gradual process which requires structured support (Brodie, 2010) to help 

teachers to develop a view of proof-oriented classroom activities as means to balance their 

professional obligations and enhance students’ mathematical learning.    

                                                 

2 Investing $25,000 at 6% in one account and $25,000 at 11% in another account would yield a total interest of $4,250. 
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The large corpus of research on mathematical reasoning and justification in the mathematics 

education literature has yielded a wide range of tasks that require a mathematical argument to be 

established. This paper presents the DIVINE framework that classifies justification tasks by their 

nature and purpose as well as the expected element to be provided in the justifications. The 

framework is then used as a theoretical basis for appraising justifications produced by mathematics 

teachers.  

Keywords: Mathematical justification, classification framework, teacher competency. 

Introduction 

Mathematical reasoning plays a crucial role in mathematics learning at all grade levels. It is a useful 

tool for exploring, discovering and understanding new mathematical concepts, for applying 

mathematical ideas and procedures flexibly to other situations, and for reconstructing previous 

knowledge in order to generate new arguments (Ball & Bass, 2003). To probe into the mathematical 

reasoning of students, another tool is needed to make such reasoning visible – justification. With the 

emphasis in schools worldwide on developing a broad set of competencies that are believed to be an 

imperative for success in the workplaces in the 21st century, greater demands are therefore being 

placed on students to reason and justify in the learning of mathematics. 

Mathematical reasoning and communication are two key process skills in the framework of the 

Singapore school mathematics curriculum (Ministry of Education (Singapore), 2012) that have been 

advocated for a long time. The notion of communication refers to the ability of using mathematical 

language to articulate mathematical ideas and arguments precisely, concisely and logically (Ministry 

of Education (Singapore), 2012). In this sense, mathematical justification is considered part of 

communication. But very little is known about the justification ability of Singapore mathematics 

teachers and students at the secondary level. I am thus interested to find out more about it and 

commenced the investigation with a survey of the various justification tasks that secondary school 

students had been tested in the national examinations over the past ten years. The survey has found 

that the justification tasks are of varied nature and can be classified into different categories.  

This paper seeks to address the following questions: What are the different types of justification 

tasks given to secondary school students? How might justifications for the different types of tasks 

qualify as acceptable? What elements should be present in an acceptable justification? It presents a 

theoretical framework for classifying mathematical justification tasks and discusses the expectation 

required in each type of tasks. The structure of this paper broadly follows these strands of work: (a) 

a perspective of what justification encompasses, (b) a view of justification tasks and the elements 

expected in the justifications, and (c) a discussion of justifications produced by Singapore 

mathematics teachers. 



 

 

Theoretical framework 

Justification According to Simon and Blume (1996), mathematical justification involves 

“establishing validity [and] developing an argument that builds from the community’s taken-as-

shared knowledge” (p. 28). The notion of justification as a means of determining and explaining the 

truth of a mathematical conjecture or assertion resonates strongly with many other researchers. For 

instance, it is consistent with Balacheff’s (1988) perception of justification as “the basis of the 

validation of the conjecture” (p. 225) – a view also supported by Huang (2005) as well. To Harel 

and Sowder (2007), justification for validation serves two different roles: to ascertain the truth of a 

conjecture, and to persuade others that the conjecture is true. Even these two roles have slightly 

dissimilar intention. In Ellis’ (2007) view, ascertaining the truth is meant to remove one’s own 

doubts whereas persuading is one’s attempt to remove others’ doubts. As the discussion reveals, 

expressing justification for the purpose of ascertaining truth is a cognitive process whilst convincing 

others of the truth is a social process.   

The notion of justification focuses traditionally on the notion of proof from the primary to the high 

school and university levels in the research literature (see e.g., Jones, 2010; Stylianides, 2007). Thus 

proof is viewed as a type of justification in this regard. So I think the definitions of proof available 

in the literature can help to deepen our understanding of mathematical justification. A prime 

example that stands out is Stylianides' (2007) definition of proof as a mathematical argument made 

up of a connected sequence of assertions for or against a mathematical claim. This definition echoes 

Hanna’s (1989) definition of proof as “an argument needed to validate a statement” (p. 20) and is 

considered by far the most comprehensive meaning of proof. 

Mathematical justification encompasses a broad range of arguments besides proof. The types of 

arguments that students are expected to produce depend on at least two factors: the cognitive 

abilities of students and the nature of the task. For primary and secondary school students, 

particularly those in the lower secondary grades, a justification does not need to measure up to a 

formal proof. This is because providing a theoretical argument for a mathematical result is 

sometimes not required in the light of their cognitive level until they reach higher level of study 

(Hoyles & Healy, 1999). This is illustrated by the justification task on algebra asking lower 

secondary school students to explain why  is an odd number for any positive integer . This 

task presents a mathematical claim (i.e.,  is an odd number for any positive integer ) and 

requires the students to provide supporting evidence to show why the claim is true. In short, the 

nature of such a task is to validate the claim. Therefore a reasoned argument within the conceptual 

reach of the students of this grade level could take the form as follows: with  being any positive 

integer, forming two groups of , which can be expressed as  in notation, thus generates an even 

number, therefore subtracting one from it will result in an odd number. This justification simply 

uses everyday language rather than formal mathematical language, and does not draw on any 

theorems as in a typical theoretical argument.  

Clearly not all justification tasks require a theoretical argument. Some lend themselves well to 

experiential justification, which is mainly supported by specific examples and illustrations. 

Consider asking students to justify why the rule  is true for any positive integers a, 

m and n. The students can rely on intuitive reasoning using several concrete numerical examples in 

the justification. This mode of argument may be rejected as an adequate and valid justification of 



 

 

the rule because it does not cover all cases of the variables a, m and n. Although such an 

experiential justification does not involve any theorems and somewhat lacks mathematical 

sophistication, it does convey to some extent student understanding of why the mathematical claim 

is true, albeit a far less formal argument than a typical mathematical deductive proof (Becker & 

Rivera, 2009). But it is such justification that is valued because it “explains rather than simply 

convinces” (Lannin, 2005, p. 235). 

Aside from presenting an explanation for or against a mathematical claim, a justification can also 

take the form of an elaboration of how a mathematical result is obtained, as pointed out by Becker 

and Rivera (2009). Consider, for instance, the topic of pattern generalisation. Becker and Rivera 

(2009) and Stylianides (2015) had asked students to justify how they established their general rules 

for figural patterns. The nature of this type of justification task expects the students to illuminate 

clearly the method used in rule construction. Like the validation task described previously, the 

justification for the elaboration task can also be articulated in two different modes: written as in 

paper-and-pencil tests and verbalised as in face-to-face interviews. Both modes were evident in 

Stylianides’ (2015) study. 

Justification tasks Different types of justification tasks are gleaned from the literature on 

mathematical reasoning, proof and argumentation. Justification tasks require individuals to make 

mathematical arguments, a process which is integral to mathematics learning in order for the 

individuals to make sense of the mathematical concepts and procedures, and learn mathematics with 

understanding. Additionally, these tasks provide insight into their thinking and reasoning as well. 

Justification tasks can be classified into what I call elaboration, validation and making decision 

tasks. 

Elaboration justification tasks are very popular in the literature and have been widely used in 

research studies by many researchers, including Becker and Rivera (2009), Lannin (2005) and 

Stylianides (2015). Such tasks (for e.g., Pizza Sharing in Lannin (2005)) require individuals to 

elaborate the approach that was used to obtain a mathematical result. Validation justification tasks 

are questions that seek arguments to support or refute a mathematical claim. This kind of tasks (for 

e.g., Mr. Right Triangle in Chua (2016)) is used to gain insight into how individuals reason about a 

mathematical claim. Making decision justification tasks offer options for a mathematical situation 

and individuals have to exercise decision-making power to pick one of the options so as to answer 

the question. The geometry test item from the study by Küchemann and Hoyles (2006) is a case in 

point. 

Apart from the three types of justification tasks discussed thus far, there is one more type which is 

seemingly less common in research studies but popular in the Singapore national examinations for 

secondary school students. Consider the algebra task in Figure 1 that requires individuals to make 

sense of the given context and then infer the significance of the positive solution of the quadratic 

equation from the context. Such a task exemplifies what I call an inference justification task. It is 

normally set in a real-world context and seeks an interpretation of a mathematical result. 



 

 

 

A stone was thrown from the top of a vertical tower. Its position during the flight is represented by 

the equation , where  metres is the height of the stone above the ground and  

metres is its horizontal distance from the tower. 

Explain what the positive solution of the equation  represents. 

Figure 1: Inference task on algebra 

In summary, this sub-section has highlighted four distinct types of justification tasks. All these tasks 

share a common objective, which is to elicit from someone a mathematical argument for a 

mathematical claim or result. As they vary in nature from one type to another, the essential elements 

to be expected in the argument for each type of task are therefore also not the same. In the next 

section, I introduce the DIVINE framework that classifies justification tasks by nature and purpose 

as well as the expected element to be provided in the justifications, and describe its usefulness. 

DIVINE is the acronym of the four types of justification tasks: making Decision, Inference, 

ValIdatioN, and Elaboration. 

The DIVINE framework 

The conceptualisation and development of the DIVINE framework in Table 1 was informed by the 

literature on mathematical proof, reasoning and justification in the field of mathematics education, 

by analysis of justifications produced by students and mathematics teachers that I had encountered 

in the course of my teaching in recent years, and by my own disciplinary knowledge. It describes the 

nature and purpose of the justification tasks, and the expected element to be provided by individuals 

in their attempt to produce a correct justification. 

 Nature of 

justification tasks 

Purpose of 

justification tasks 

Expected element in the justification 

 

Making Decision 

 

 

Explain whether… 

Explain which… 

a decision about the mathematical claim with evidence to support 

or refute the claim 

 

Inference Explain what… the meaning of the mathematical result, with the key words in the 

task addressed 

 

Validation Explain why… a reason or evidence to support or refute the mathematical claim 

 

Elaboration Explain how… a clear description of the method or strategy used to obtain the 

mathematical result 

 

Table 1: The DIVINE framework 

The term nature can be described as the cognitive process that an individual undertakes when doing 

the justification task. The nature of the tasks places slightly different demands on thinking and 

reasoning. Making decision, inference, validation and elaboration are the four kinds of cognitive 

processes that have been identified in this paper. The purpose of a justification task refers to the 

reason for making the mathematical argument. Finally, the expected element is used to refer to the 

details that an individual is supposed to provide in order to give a correct justification. 



 

 

It should be pointed out that although the expected element in a justification indicates what needs to 

be given for a particular type of justification task, the resulting justification may not necessarily be 

accepted as correct. For the justification to be judged as correct, I think it is imperative to also 

examine three other elements of a mathematical argument: the mathematics presented, the clarity in 

the argument and what Stylianides (2007) termed as the modes of argumentation. The mathematics 

presented refers to the mathematical concepts and procedures used in the justification, including the 

definitions and theorems that are used, the calculation that is shown and so on. The clarity in the 

argument means presenting the argument in a clear, easy-to-follow, and unambiguous way. The 

mode of argumentation concerns how a justification is developed. In other words, the form of the 

justification (such as a logical deduction, a proof by contradiction, exposition) has to be taken into 

consideration. A brief discussion of the potentiality of the DIVINE framework will now follow. 

Usefulness of the framework  Recognising whether a mathematical justification is correct is a vital 

task for teachers because they often have to evaluate the validity of students’ justifications. But as 

Chua (2016) had noted, this task is fraught with difficulties as the teachers might not be clear about 

the rigour of justification. They may accept justifications as correct even when certain elements are 

missing. Teachers therefore need guidance in teaching justification. So the DIVINE framework 

shows them what essential elements to look out for so that they know whether certain details are 

still lacking in the justification. Teachers can also discuss the three components of the framework 

for the various types of justification tasks with the students to enrich their learning and appreciation 

of justification. In this way, students can develop a deeper understanding of constructing 

mathematical justification and become more confident in doing it. This pedagogical approach is 

particularly useful for those students who do not already have the justifying skill and struggle with 

justification. Additionally, for those who get stuck when attempting a justification task, the 

framework offers a structure for them to rely on and get unstuck instead of seeking immediate help 

from their mathematics teachers.  

In the remaining sections, examples of justifications by both pre-service and in-service mathematics 

teachers will be discussed to demonstrate the rigour of the DIVINE framework as it currently stands. 

The pre-service teachers were Year 2 undergraduates undergoing their first course in mathematics 

pedagogy to prepare them to teach secondary school mathematics. The course content covers 

problem solving, learning theories and teaching strategies for a range of mathematics topics, 

including arithmetic, algebra, probability and statistics. The in-service teachers were from the same 

secondary school who attended my professional development workshop. A vast majority of them 

have taught mathematics for at least 5 years. The justifications were collected from the various 

classwork given to the teachers in my lessons. The names of the teachers are changed to protect 

their privacy. The discussion focuses specifically on making decision, inference and validation types 

of justification tasks. No elaboration task will be illustrated because the teachers were not given 

such tasks to do in my lessons.  

Making Decision task: The justifications of Angel, Betty and Carl  

The number pattern item in Figure 2 was given to the pre-service mathematics teachers. Before 

administering this item, the teachers had learnt the various generalising strategies for deriving the 



 

 

general rule for both numerical and figural patterns, but not how to deal with justification tasks. 

This item was therefore given to see how they would handle and justify a making decision task.    

The first four terms of a sequence are 5, 9, 13 and 17. 

(a) Find an expression, in terms of n, for the nth term of the sequence. 

(b) Explain whether 207 is a term in the sequence. 

Figure 2: Making decision task on number pattern 

Part (a) was answered correctly by all the teachers. They established  as the general rule of 

the sequence. However, the responses for part (b) were more varied, and the justifications produced 

by Angel, Betty and Carl are described below. 

Angel began with the supposition  and then solved the equation to obtain n = 51.5. 

He concluded: Since n has to be a positive integer, then 207 is not a term. Betty worked out the 

difference between 207 and the first term 5 to get 202. Then she wrote: No. All terms in the 

sequence are divisible by 4 after being subtracted by 5. 202 is not divisible by 4. For Carl, he started 

with the same supposition as Angel and found the value of n. He then stated: n must be a whole 

number for the given number to be a term in the sequence. The justifications of Angel and Betty, 

but not that of Carl, were considered fully correct. Their justifications contain all the vital elements 

for a making decision task: that is, a conclusion supported by evidence. Carl’s justification is 

missing the conclusion, thus judged as partially correct. In all the three examples, the justifications 

are logical and easy to follow, and the mathematics is correct. Carl’s case is a perfect example to 

illustrate the importance of the DIVINE framework. If he had known about the essential elements 

that he had to show in his justification, he would have constructed a complete and correct 

justification. 

Inference task: The justifications of David and Eve 

The algebra item in Figure 1 was administered to the in-service mathematics teachers. The item 

tested them on their understanding of the significance of the positive solution of the quadratic 

equation in the given context. I expected the teachers to explain what the following three parts mean 

in the context: (i) y = 0, which in this context means that the stone has hit the ground, (ii) positive, 

which represents the forward direction of the throw, and (iii) the numerical value of the solution, 

which refers to the horizontal distance from the tower. However, expecting all three parts was too 

demanding, so a reasonable justification should address at least (i) and (iii). The mathematics 

teachers were told to construct the justification that would get them the best mark because they were 

experienced in-service teachers. The justifications of David and Eve are illustrated below. 

David: x metres is the distance of the stone from the tower, when y = 0 (at ground level). 

                           Eve: when y = 0, height above ground = 0,  stone is lying on ground. 

David and Eve showed evidence of their attempt to explain the meaning of the positive solution. 

David’s argument was regarded as correct because he justified (i) and (iii) correctly. For Eve, her 

justification was not deemed correct since she justified only (i). Her case again underscores the 

importance of knowing the critical elements that are needed in the justification, thus manifesting the 

usefulness of the DIVINE framework.   



 

 

Validation task: The justifications of Faith and George  

A geometry item involving a triangle with all three sides provided (15 cm, 8 cm and 17 cm) was 

given to the same group of in-service mathematics teachers mentioned above. They had to justify 

why the angle opposite the 17-cm side is a right angle. Figure 3 presents the justifications of Faith 

and George. 

Faith established the condition  by separately working out the values of  and 

, and noticing that both values were equal (see Figure 3a). Subsequently, she inferred 

that angle ABC is a right angle. The mode of argumentation is correct, the justification is logical and 

easy to understand, but there is a mathematical flaw. The correct warrant to use should be the 

converse of Pythagoras’ theorem and not Pythagoras’ theorem. On the other hand, the mode of 

argumentation of George’s justification (see Figure 3b) was wrong because he began with the wrong 

supposition by assuming angle ABC is a right angle, which was what he had to prove. So Faith’s 

justification was judged as partially correct whereas George’s justification was wrong. 

 

 

 

 

 

 

 

 

  (a)  Faith              (b)  George 

Figure 3: Teachers’ justifications for Validation task on geometry 

What’s next and conclusion 

The DIVINE framework introduced in this paper is still emerging and will need further testing and 

refinement. For instance, it remains to be seen whether the framework can be put into use with 

student justifications and justification tasks in other mathematical topics. Furthermore, how do 

mathematics teachers judge what qualifies as a correct justification? What elements do they expect 

to see in the justifications? How would their judgement differ from peers and mathematics experts? 

Such evidence is needed to make the DIVINE framework more robust. 
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In this paper, I argue that Habermas’ components of epistemic, teleologic, and communicative 

rationality provide insight into the differences in teachers’ support for collective argumentation. I 

examine the teacher’s supportive actions in two different classrooms. In their interactions with 

students, the teachers emphasize different components of rationality. I suggest that teachers may act 

in ways to support students’ development of components of rationality by asking different kinds of 

questions and raise the question of whether it is useful to consider the components separately.  

Keywords: Argumentation, proof, geometry, teaching. 

Introduction 

It is generally accepted that argumentation and proof are crucial to the study of mathematics. 

Argumentation has been shown to be particularly important to the learning of mathematics through 

social interaction. Numerous examples in the mathematics education literature have unpacked aspects 

of arguments in elementary and secondary classrooms (e.g., Krummheuer, 1995; Pedemonte, 2007); 

these cases have focused on the learning of mathematics through participation in argumentation, the 

similarity of argumentation to the structure of proof, the analysis of proof as argument, and the role 

of the teacher within argumentation. Recent research has examined “successful” argumentation 

within classroom discussions (Boero, 2011), argumentation that does not meet expectations (Cramer, 

2015), and different aspects of rationality with respect to argumentation (Boero & Planas, 2014).  

This paper explores the differences in collective argumentation that can be observed in classrooms. 

It addresses a temptation to characterize the argumentation in one classroom as productive and that 

in the other as problematic and suggests an explanation for the teacher’s actions in each case can be 

found in Habermas’ (1998) constructs of rationality as described by Boero (2006).  

Background 

In this paper, we explore the teacher’s role in argumentation through the combined lenses of our 

interpretation of Toulmin’s (1958/2003) description of arguments in multiple fields, our framework 

for teacher support of collective argumentation (Conner, Singletary, Smith, Wagner, & Francisco, 

2014), and Boero’s (2006) description of Habermas’ (1998) components of rationality.  

Habermas’ (1998) components of rationality have been applied to argumentation in several ways. 

Boero (2006) analyzed a seventh grade student’s argument (and the reactions of teachers to the 

argument) using three interrelated components introduced by Habermas: epistemic, teleologic, and 

communicative rationality. Boero gave the following explanation of these components. 

 Epistemic rationality is related to the fact that we know something only when we know why the 

statements about it are true or false…the crucial requirement is that the person has elaborated an 

evaluation of propositions as true and is able to use them in a purposeful way and to account for 

their validity. The teleologic rationality is related to the intentional character of the activity, and 

to the awareness in choosing suitable tools to perform the activity…The communicative rationality 



is related to communication practices in a community whose members can establish 

communication amongst them…rational means that the subject has the intention of reaching the 

interlocutor in order that he/she can share the content of communication, with an adequate and 

conscious choice of tools to make it possible. (p. 189–190) 

Boero concluded that the student acted in a rational way, using all three components of rationality, 

while the teachers’ behavior did not meet these criteria for rationality.  

Recently, multiple researchers have taken up Habermas’ components of rationality to examine a range 

of issues with argumentation (see Boero & Planas, 2014). Within Boero and Planas’ (2014) research 

forum report, Douek introduced the construct of rational questioning, suggesting that teachers can 

ask students questions in order to “organize the mathematical discussion according to the three 

components of rationality” (p. 1-210). The teacher plays an essential role in organizing and supporting 

argumentation in classrooms. In this, Habermas’ construct of communicative rationality is key, but 

the teacher can also influence the teleologic and epistemic rationality of the classroom community. 

We follow Krummheuer (1995) in adapting Toulmin’s (1958/2003) description of argumentation to 

collective argumentation in mathematics classrooms. We define collective argumentation broadly as 

any instance in which students or teachers make a mathematical claim and support it with evidence. 

Our adaptation of Toulmin’s diagrams (see Figure 1) includes the use of color (line style) to denote 

the contributor(s) of components of an argument and the addition of contributions and actions of the 

teacher that prompt or respond to parts of arguments (teacher support).  

 

Figure 1: Adaptation of Toulmin’s (1958/2003) Diagram for an Argument 

Our framework for teacher support of collective argumentation includes three main kinds of 

supportive actions: direct contributions of argument components, questions, and other supportive 

actions such as gestures or diagrams (Conner et al., 2014). We defined a teacher’s support for 

collective argumentation as any teacher move that prompted or responded to an argument component. 

We used Toulmin’s (1958/2003) model to classify the direct contributions of argument components, 

and we used an inductive approach to develop categories of questions and other meaningful 

supportive actions the teacher used. More details about the development of the framework are 

available in Conner et al. (2014). 

Methods 

The analyses in this paper are based on data collected from a project that investigated the beliefs and 

argumentation practices of a cohort of secondary prospective teachers in the southeastern United 

States. In particular, the data for this paper include video recordings, field notes, and other artifacts 



from two days selected from a unit of instruction in each of two student teachers’ (Ms. Bell and Ms. 

Carr, all names are pseudonyms) classrooms. These days were selected as representative of the variety 

of instructional moves observed in each teacher’s instruction. We diagrammed every episode of 

argumentation from these days of instruction and categorized every supportive action of the teacher 

that we identified. We used Habermas’ (1998) components of rationality to examine the actions of 

the teacher within our framework categories.  

Episodes from two classrooms 

The episodes presented and diagrammed below capture essential qualities of the instruction in each 

teacher’s classroom. For each teacher, we present an excerpt of an episode of argumentation, our 

interpretation as captured by a partial diagram, and a summary of the teacher’s support for 

argumentation in the class. We then examine the teacher’s (and students’) actions using Habermas’ 

(1998) components of rationality and argue that the teacher’s actions with respect to argumentation 

reflect her teleologic rationality. That is, we examine the teacher’s supportive actions as tools to infer 

her goals for students’ learning and contributions to class and her classroom norms. 

Ms. Carr’s Class 

This episode occurred when Ms. Carr and her students were at the beginning of a unit on congruence. 

The students had not yet learned any of the triangle congruence theorems. Thus they were proving 

figures congruent by their definition of congruence, which required all corresponding sides and all 

corresponding angles to be congruent. Ms. Carr posed the problem in Figure 2 to her class; the 

students and she worked together to mark relevant parts of the figure, and when we enter the 

discussion, they had modified the figure as shown. (They had extended segments BC, AB, and CD, 

and they marked angle ABE and angle DCE as angles of interest.) 

 

Figure 2: Initial Problem in Ms. Carr’s Class and Modification 

541 Ms. Carr:  Okay. So, what I have marked up here in green, we said are what? What is 

their special relationship? 

543 Alice:  They are alternate interior angles. 

544 Ms. Carr:  They are alternate interior. Ok. So, let's write that down. ABE, let's call it, and 

angle, what is it? Angle DCE…[writes ABE       DCE on board, leaving 

space between the two angles] [unrelated conversation/interruption] 

Now, I left some space in there. What symbol needs to go, what do we know 

about these?  

 549 Students:  {congruent} {congruence} 

 550 Ms. Carr:  Awesome. They are congruent. Why do we know that? 

 551 Cameron:  Because they are alternate interior angles. 

AB @ CD
AB  CD
E is the midpoint of
AB and CD
Prove AEB @ DEC

E

A B

C D

E

A B

C D



 552 Ms. Carr:  Alternate interior angles theorem [writes by alt. int. angles thm. on board] 

Figure 3 shows the diagram of this excerpt of an argument. Notice that three parts of the argument 

were contributed by students with a significant amount of support from the teacher. Ms. Carr asked a 

question that prompted each of the argument components, pointed at or wrote something on the board 

for each of them, and restated or affirmed each part as well.  

  

Figure 3: Diagram of First Excerpt of Argument in Ms. Carr’s Class 

 

Figure 4: Diagram of Second Excerpt of Argument in Ms. Carr’s Class 

A little more than five minutes later, Ms. Carr and her students had compiled all of the information 

about the figure into congruence statements. They ended the proof construction by verifying that they 

had three pairs of congruent segments and three pairs of congruent angles, warranting the claim that 

the triangles were congruent with the definition of congruent triangles. In the diagram for this excerpt 

of argument (Figure 4) we see that the teacher contributed the final claim, the teacher and students 

jointly contributed the data, and a student contributed the warrant. Ms. Carr prompted both the data 

and warrant, and she supported each of these components with actions such as repeating, pointing, 

and writing on the board. 

Ms. Carr supported her students in making arguments by contributing many argument components, 

including approximately one-half of the warrants in her class. In addition, she prompted most 

argument component by asking questions (primarily factual answer and elaboration questions, 



Conner, et al., 2014), and she provided additional support for these argument components using other 

several kinds of supportive actions (including focusing, evaluating, informing, and repeating actions, 

Conner, et al., 2014). The importance of Ms. Carr’s choices in supporting her students’ arguments 

becomes clear as we reference Habermas’ (1998) components of rationality. Ms. Carr asked several 

questions (line 541, lines 547–548) that requested a factual answer and then asked for elaboration by 

asking the students to justify that answer in line 550. In this interchange we see an assumption by Ms. 

Carr of her students’ epistemic rationality. She invited them to participate in the argument and 

indicated by her questions that they should have reasons for their statements. This may be an instance 

of Douek’s rational questioning, as described in Boero and Planas (2014), although Douek’s rational 

questioning seems to presuppose all three aspects of rationality. Ms. Carr seemed to focus on 

epistemic rationality for her students, while Ms. Carr’s own statements and actions indicate a focus 

on communicative rationality for herself. She repeated or restated (and often wrote the statement on 

the board) all of the student-contributed components of the arguments. If we consider the teleological 

rationality of Ms. Carr’s actions, they appear to be very goal-directed. Her goal was student 

understanding of concepts and procedures. In search of that goal, her goal or focus for students was 

on epistemic rationality. She intended to make sure that they knew the reasons for the statements that 

were made. Across the class periods, this was evidenced by her many questions prompting argument 

components as well as her pervasive prompting and providing of warrants for arguments. 

Ms. Bell’s Class 

In Ms. Bell’s class, the excerpt exemplifying her instruction involved a task in which students had 

measured the interior angles of several polygons. Students were asked to find a formula for the sum 

of the interior angles of an n-sided polygon. The brief snippet of class we examine occurred when a 

student was presenting his group’s work at the end of class. Prior to this excerpt, a student 

representing a different group presented a solution. Martin, the student in this episode, asked to 

present his solution because his group found the solution in a different way from the first student.  

1444 Martin:  All right. I had the chart. This is the sides of the figure. That would be the 

sum of the interior angles.  

…   [Martin talks as he constructs a chart containing numbers of sides and 

corresponding sums of interior angles for polygons with three to eight sides] 

1456 Martin: And then it changes by 180 degrees each time.  

1458 Ms. Bell:  So Martin, the fact that it changes by the same number each time, when you're 

going up by one side, tells you what?  

1460 Martin:  That it has--that that's the slope. 

1461 Ms. Bell:  That's the slope. Which means it's? Karin, you said it earlier. What does that 

mean when it's? 

1463 Martin:  Linear. 

1464 Ms. Bell:  Linear. It's linear, right? If it changes the same amount each time, when you're 

going up by 1, it's going to be a linear function. 

1466 Martin:  So I did f(s) = 180s 

1467 Ms. Bell:  What is that 180? 

1468 Martin:  It's the slope. But that doesn't work out right, because 180 times 3 is like 

1470 Ms. Bell:  540 



1471 Martin:  [writes 180 x 3 = 540] 540. But then I just subtracted 180 from 540 and it 

equals 360. Yeah. So, subtract 360. [Writes f(s) = 180s - 360] 

1475 Ms. Bell:  So same thing; he got it a different way. When he got to the 540--so he got 

this 540 out when he plugging in 3 for his s, and he got 540. We wanted to 

get 180 when we plug in a 3. So he said, 'how am I going to get from 540 to 

180?' So he found the difference between them and subtracted from this 

product. Do y’all see that? 

1482 Martin:   It works with all of them too. 

Figure 5 shows the diagram of this argument. In this argument, Martin (the student) contributed all 

of the components except one warrant. Ms. Bell prompted three of the components with questions, 

and she supported five of the components by restating or rephrasing Martin’s contributions. In 

general, Ms. Bell asked questions of multiple kinds to prompt argument components, and she 

contributed some components of arguments, but only about one-eighth of the contributed warrants. 

Students in Ms. Bell’s class seemed to contribute more autonomously to arguments, as evidenced by 

components that were neither prompted by nor responded to by Ms. Bell.  

 

Figure 5: Diagram of Argument from Ms. Bell’s Class 

We see evidence of Ms. Bell’s teleologic rationality (Habermas, 1998) in her actions and questions 

in support of her goal of engaging students in doing mathematics. Ms. Bell modeled actions related 

to all three components of rationality, and she seemed to encourage all three components of rationality 

in her students. Ms. Bell’s actions show a strong emphasis on developing her students’ 

communicative rationality, not only in her communication with her students (see line 1475 in which 

she restates the student’s argument), but in her encouragement of her student to communicate his 

ideas more clearly (e.g., line 1458) and in the student’s instinctive actions and statements (e.g., lines 

1444 and following in which he explained the entries in the chart he drew on the board), which 

illustrate norms established in this class. Several times after the student gave a claim and warrant, 

Ms. Bell seemed to slow down the presentation to make sure it was clear to others, enhancing their 

understanding of communicative rationality. But instead of giving all the information herself, she 



asked the student to do so (line 1467). She seemed to be balancing engaging in acts of communicative 

rationality herself and encouraging her student to do so. In addition, Ms. Bell assumed epistemic 

rationality in her student and encouraged him to express it (line 1458). The beginning and end of the 

episode evidence a classroom norm regarding goal-directed behavior and use of appropriate tools 

(lines 1444–1455; line 1482). The student indicated by his final statement that he had intentionally 

completed his goal of finding, expressing, and justifying the formula for the sum of the interior angles 

of a polygon, showing the teacher’s encouragement of behavior exhibiting teleologic rationality. This 

episode illustrates a teacher’s use of rational questioning, bringing the students’ voices into the 

discussion and encouraging their implementation and understanding of all three components of 

rationality (Douek in Boero & Planas, 2014). 

Discussion  

The argumentation we observed in the two classes was very different. One classroom was 

characterized by a focus on students’ epistemic rationality and the teacher’s communicative 

rationality. The argumentation in this class seemed to be both somewhat shallow and more formal 

and proof-like. The other classroom was characterized by a more balanced focus on students’ 

epistemic, communicative, and even teleologic rationality, and we saw the argumentation in this class 

as somewhat informal but characterized by student autonomy. The second classroom also illustrated 

some intentionality and awareness of components of rationality (although not with those words) in 

the interactions, as Douek suggested was necessary (Boero & Planas, 2014). The teachers also used 

different kinds of tasks in their classrooms. The choice of tasks in each classroom may also be related 

to the teachers’ intentions with respect to the components of rationality; more research is necessary 

to examine this question. 

Differences were observed in the kinds of questions each teacher asked. Ms. Bell asked a wide range 

of questions, while Ms. Carr asked primarily factual answer and elaboration questions. Perhaps the 

kinds of questions teachers ask may indicate their focus on a particular component of rationality. It is 

an open question as to the significance of these components of rationality in a mathematics class, but 

if we want to encourage students to view mathematics as rational and to act in rational ways when 

engaging in the study of mathematics, then it seems that it would be helpful for teachers to act in 

ways that encourage all components of rationality at appropriate points (as Douek suggested, to 

engage in rational questioning, Boero & Planas, 2014). As Boero (2006) suggested, teachers can 

model the components of rationality for their students at appropriate times. Perhaps introducing these 

components of rationality to teachers could provoke a wider focus. Examining the kinds of questions 

teachers ask in conjunction with their argumentation shows promise for revealing which components 

of rationality are privileged in their classes. And these components of rationality provide a useful 

explanatory mechanism for the differences in support for argumentation observed in classrooms. 

Future research will have to examine how important it is for a teacher to engender all components of 

rationality and whether it is possible or productive to address each component separately. 
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This study discusses the evolution of mathematical proofs in Japanese junior high school geometry 

textbooks and the conditions and constraints that have shaped them. We analyse the evolution of 

these proofs from their inception in the Meiji era (1868–1912) to the present. The results imply that 

features of the Japanese language affected the evolution of proof form in Japan and shaped the use of 

proofs in Japan as written, but not oral, justification for mathematical statements. 
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Introduction 

Proving mathematical statements is a very important part of mathematics. However, there were no 

proofs in the texts of wasan, the traditional mathematics dominant until the mid-19th century in Japan. 

In wasan, following Chinese tradition, Japanese mathematicians concentrated on elaborating 

procedures to solve problems rather than proving statements. As one consequence of the educational 

reforms that accompanied the opening and modernization of the country in the Meiji era (1868–1912), 

axiomatic Euclidean geometry with mathematical proof was adopted in secondary school 

mathematics. 

Today, Japanese students learn mathematical proof in junior high school, and often face difficulties 

doing so (MEXT, 2009; Kunimune et al., 2009), as do students in other countries (see Mariotti, 2006; 

Hanna & De Villiers, 2012). These difficulties vary by country, for two reasons linked to the cultural 

and social dimensions of teaching. The first involves what is taught; one recent study compared 

France and Japan and showed that proof to be taught, specifically what constitutes a proof and the 

functions of proofs, is different between the countries (Miyakawa, 2017). The second reason relates 

to how students employ and understand justification and argumentation in their daily life, which 

affect how they approach mathematical proof in the classroom and which differ across cultures 

(Sekiguchi & Miyazaki, 2000). 

The Anthropological Theory of the Didactic (ATD) posits that knowledge taught/learnt in a given 

institution (here, the Japanese educational system and culture) is shaped by a process of ‘didactic 

transposition’ reflecting the conditions and constraints specific to that institution (Chevallard, 1991; 

Bosch & Gascón, 2006). In this paper, we study the didactic transposition of proofs in Japan and the 

effects of the cultural and social dimension. We expect that this will help us better understand the 

nature of these difficulties and will show the needs for studying this dimension of proof-and-proving 

in different countries to improve teaching and learning everywhere. 

Methodology 

We adopted ATD to frame our research question and determine what should be investigated so as to 

better understand the cultural and social dimension of proof. The research question we focused on is 

as follows: What cultural and social conditions and constraints shape the nature of proof to be taught 

today in Japan? To identify these conditions and constraints, we conducted a historical study of the 



evolution of the proof in Japanese junior high school geometry textbooks from its first appearance 

during the Meiji era to the present. 

From out of the many textbooks published since the Meiji era in Japan we selected those that were 

widely used, to construct a representative corpus. Textbooks from the Meiji and Taishō (1912–1926) 

eras were more important than later ones, since proofs in geometry first appeared in Japan during 

these periods and since the way they were presented and taught changed more than in later periods. 

For the Meiji period, we identified major textbooks by consulting prior research (Neoi, 1997; Tanaka 

& Uegaki, 2015); however, for the Taishō era and up to the Second World War, we had no statistics 

on the use of textbooks, and so we selected textbooks that remain relatively well known today and 

that have been the topic of historical studies (Nagasaki, 1992). For the post-war era, we selected one 

or two textbooks that were widely used from the period following each successive reform of the 

national curriculum. The current system of selection of textbooks was firmly established by 1965 

(Nakamura, 1997, p. 90) and the market share of each textbook series is known thereafter. From that 

point to the present, the most widely used textbooks have been those published by Keirinkan and by 

Tōkyō Shoseki. 

The process of analysis we followed had three steps. First, we determined the role of the proofs in the 

geometry teaching approaches employed by the textbooks: Did the textbooks reflect a general 

strategy concerning proof learning? If yes, what was it? Were proofs important in geometry learning? 

Second, for each textbook, we analysed the forms (including intermediate steps) of sample proofs 

(worked examples) related to parallelograms, which were found in most of the textbooks, for overall 

formatting or organization, use of symbols, and formulation of properties (theorems, definitions, 

axioms, etc.) and statements. We use the terms paragraph and semi-paragraph to reflect the extent of 

sentences versus symbols in a proof, with paragraphs being all written language and semi-paragraphs 

a mix of words and symbols. Third, we looked at the authors’ comments on the proof or on proof 

learning. 

Below, we first describe the proofs one finds in Japanese mathematics textbooks today, and then 

show what they evolved from and how. However, as this work is currently only at a preliminary stage, 

our analysis remains general on the evolution of proof form in Japan. 

Proof in Japanese mathematics textbooks today 

Nowadays, the term ‘proof’ is introduced in Japanese junior high school mathematics, specifically in 

grade 8 geometry. Figure 1 shows a sample proof taken from a grade 8 textbook from Keirinkan, 

proving a property of parallelograms: ‘Two pairs of opposite sides in a parallelogram are equal’. The 

figure provides an image of the proof with our own translation; the translation is quite literal, to 

maintain data integrity. One may first note the use of mathematical symbols for equality, parallelism, 

triangles, and angles. Statements (not properties) used as conditions or deduced as conclusions in a 

deductive step are written all in symbols (e.g. BAC = DCA). Deduced statements are given 

separately from other statements and properties, and some are numbered for use in later steps. In 

contrast, properties used in deductive steps, such as the condition for congruent triangles, are given as 

written Japanese phrases, without symbols—not in if-then form as in French mathematics textbooks 

(Miyakawa, 2017). The proof presented here thus represents the semi-paragraph type, with a mix of 

natural sentences and symbols; below, we consider the origin and history of such proofs. 



 

(Our translation) Draw the diagonal AC. 

In ABC and CDA, 

since the alternate-interior angles of parallel 

lines are equal, 

from AB // DC, 

BAC = DCA … (1) 

from AD // BC, 

BCA = DAC … (2) 

And, since AC is common, 

AC = CA     … (3) 

From (1), (2), and (3), a pair of sides and the 

angles of both sides are equal, 

ABC  CDA 

since corresponding sides of congruent figures 

are respectively equal, 

AB = CD, BC = DA 

Figure 1. A sample present-day proof from a Keirinkan textbook (Okamoto et al., 2016, p. 133) 

Proofs in geometry textbooks from the Meiji era to the present 

Before the Meiji era—that is, before the modernization of Japan—geometry teaching was based on 

wasan, and centred on problem-solving: questions about the measurement of geometric figures were 

asked, and procedures (sometimes employing algebraic or analytic tools) were applied to acquire the 

correct answer. Although some wasan mathematicians questioned the accuracy of the results yielded 

by this method, proofs were not used in mathematical texts until the mid-19th century, at the 

beginning of the modernization movement began (for a general view of the evolution of Japanese 

mathematics and its teaching, see Ueno, 2012, and Baba et al., 2012). 

With the Decree on Education (Gakusei, 1872), the Japanese government abandoned wasan teaching 

and imposed learning of Western-style knowledge and teaching methods (for example, one-on-one 

teaching was replaced with lecture-type classes in groups). Western textbooks were translated to 

provide teaching materials for schools of this new type, and the first geometry proofs in Japanese 

appeared in this context. Since proofs were new to Japan, no convention and no stipulation in the 

curriculum constrained how they were written or formatted, and the forms used by Western authors 

and their Japanese translators varied widely. The situation can be quite confusing. For example, in the 

Japanese translation of an American version of Legendre’s textbook (Nakamura, 1873), proofs were 

written in paragraph form only, whereas in translations of other American textbooks (Miyagawa, 

1876; Shibata, 1879), symbolic expressions were also mobilized. This situation, and the fact that no 

author-translators provided any remarks on proofs or reasoning in geometry and sometimes even 

removed remarks on the nature of mathematical statements that had been present in the original 

textbooks (see Cousin, 2013) betrays the lack of importance attached by Meiji-era scholars and 

authorities to proof learning; it also may have occurred partly because of the need for rapid translation 

of textbooks to meet new requirements, which led translators to focus on developing a basic 

vocabulary for the new geometry in Japanese and producing textbooks understandable enough for use. 

We also encountered textbooks from this period in which some functions of proofs were obscured 

compared to the original source: for example, while the axiomatic systematization function of proofs 

is emphasized in Davies (1870), the abridged Japanese version of this textbook (Nakamura, 1873) 

does not preserve this emphasis (see Cousin, 2013). 



During the 1880s, Tanaka Naonori (1853–?) compiled works by English, American, and French 

authors as well as Chinese and Jesuit translators to produce a series of textbooks that were adopted 

widely in Japanese junior high schools (see Cousin, 2013, pp. 277–282). Tanaka was better trained in 

Western mathematics than the 1870s author-translators and had teaching experience as well. His 

proofs used few formulas and provided exposition (the part of the proof where the hypothesis is 

expressed using specific names for the elements considered in the proposition) and determination (the 

conclusion expressed using these names) using only symbolic expressions. Moreover, unlike 

previous authors, Tanaka gave after each statement a reference number corresponding to the property 

he used to justify it, highlighting the need for systematic justification of every statement in a proof. 

He was also the first Japanese author to discuss the nature of proof per se, explain its role in geometry 

(see Cousin, 2013, pp. 305–310), describe inductive and deductive ways of proving, and emphasize 

that we ‘prove the propositions thanks to the axioms, the postulates and the propositions that already 

have been proven’ (Tanaka, 1882, p. 15). 

In the late 1880s, the publication of textbooks by Kikuchi Dairoku (1855–1917) marked a new stage 

in Japanese geometry textbook production, and Kikuchi fixed a new Japanese mathematical language 

and proof form that would remain for decades, as his textbooks were used until the beginning of the 

Taishō era. In his view, it was important to create a Japanese mathematical language that unified oral 

and written expression so that geometry proofs could be written in paragraph form, without relying on 

symbols. Moreover, like Tanaka, he highlighted the systematic aspect of proof by putting on the 

right-hand side the number of properties used in each deductive step (Figure 2). Kikuchi was clearly 

influenced by his education in England, where the aim of geometry teaching was to cultivate young 

spirits to reasoning: ‘Wherever Mathematics has formed a part of a Liberal Education, as a discipline 

of the Reason, Geometry has been the branch of mathematics principally employed for this purpose. 

[…] For Geometry really consists entirely of manifest examples of perfect reasoning: the reasoning 

being expressed in words which convince the mind, in virtue of the special forms and relations to 

which they directly refer’ (Whewell, 1845, p. 29). Kikuchi provided extensive explanation of 

 

 

(Our translation) 

Let ABCD be a parallelogram and AC be its diagonal; 

Then (1) AC divides it into two completely equal triangles; 

(2) AB is equal to DC, BC is equal to AD; 

(3) The angle ABC is equal to the angle CDA, the angle BCD is equal 

to the angle DAB. 

     Because the line AC intersects with the parallel lines AB and CD, 

alternate-interior angles BAC and ACD are equal; I, 7. 

And because the line AC intersects with the parallel lines BC and 

AD, the alternate-interior angles BCA and CAD are equal;   I, 7.  

Now, in the two triangles ABC and CDA, two pairs of angles are 

respectively equals, and the side AC between them is common to 

both figures. 

So (1) the two triangles are completely equals;  I, 10. 

(2) AB is equal to CD, and BC is equal to DA; 

(3) The angle ABC is equal to the angle CDA: and because the angle 

BCD is the sum of the angles BCA and ACD, it is equal to the sum of 

the angles CAD and BAD, which is the angle DAB. 

Figure 2. A sample proof from Kikuchi’s textbook (Kikuchi, 1889, pp. 53–54) 



geometric reasoning, and paid particular attention to the language used and the organization of 

geometric properties; in doing so, he tried to highlight the importance of the systematization and 

justification functions of proofs. 

However, the form of Kikuchi’s proofs (Figure 2) soon came in for criticism by his contemporaries, 

for being difficult to teach. Nagasawa Kamenosuke (1861–1927), in his own textbook, criticized the 

paragraph form of Kikuchi’s proofs in strong terms: ‘Writing proofs of theorems with sentences in a 

complete and perfect manner is the vice of those who agree with the Euclid movement that came from 

England’ (Nagasawa, 1896, pp. 3–4). Nagasawa instead wrote proofs in a semi-paragraph form very 

different from Kikuchi’s, especially in terms of the use of symbols, as seen in Figure 3. In particular, 

Nagasawa put more importance on the proof as a written form, and in fact his proofs cannot be used 

for oral justification due to certain features of the Japanese language and the use of symbols. For 

example, the statement ‘AB || DC’ would usually be read or spoken aloud in Japanese as ‘AB hēkō 

DC’ (‘AB parallel DC’). However, this is just a pronunciation of each symbol in succession and not a 

grammatically sound phrase; to be grammatical, it should instead be pronounced as ‘AB wa DC ni 

hēkō’ (‘AB is parallel to DC’), whose shortened version would be ‘AB DC ||’, as an adjective with a 

be-verb should always be placed at the end of a phrase in Japanese. Beginning around the end of the 

Meiji era, proofs written in semi-paragraphs appeared in many Japanese geometry textbooks (e.g. 

Nagasawa, 1896; Kuroda, 1917), even Kikuchi’s (Kikuchi, 1916), and Kikuchi’s goal of a language 

that unified oral and written expression was abandoned. 

 

(Our translation) 

Theorem 28. Two pairs of opposite sides of a parallelogram are equal 

to each other, and its diagonal divides it into two equal parts. 

[Exposition] In ABCD, AB = DC, AD = BC, and ABC = CDA. 

[Proof] Connect A and C,  

in such a case, AB || DC   [Hypothesis] 

and because AC intersects with these two parallel lines, 

  alt. int. BAC = alt. int. ACD. [Theorem 22] 

And because  AD || BC   [Hypothesis] 

  alt. int. BCA = alt. int. DAC,  [Theorem 22] 

so   in ABC, CDA, 

  BAC = DCA, 

  BCA = DAC, 

  the side AC is common, 

            ABC  CDA,    [Theorem 7] 

So,  AB = DC, 

  AD = BC, 

  ABC = CDA. 

Figure 3. A sample proof from Nagasawa’s textbook (Nagasawa, 1896, p. 53) 

Moreover, until the end of the 19th century, although various ways of writing proofs were seen, all 

textbooks nevertheless followed a classic pattern in the teaching of geometry: theorems and problems 

were stated one after the other and, beginning in the 1880s, statements in proofs were justified with 

the reference number of the relevant property. Beginning in the Taishō era, however, the ‘practical’ 

approach, meaning one that tried to be more related to ordinary life, gained more and more success, 

influenced by the work of Treutlein (e.g. 1911), and Japanese authors distanced themselves from the 

classic pattern. For example, in the first quarter of Kuroda’s textbook (1917), measuring instruments 

were presented and geometric matters were treated without theorems or proofs, while in the latter 



part, several practical questions were asked. This evolution of geometry teaching also had an 

influence on proof form. In Kikuchi (1889), all the statements were expressed without using symbols 

and the justifications were expressed only by presenting reference numbers for properties (Figure 2), 

whereas in Yamamoto (1943), new statements were expressed with symbols and the justifications 

were expressed using literal expressions, without using numbers to refer to properties. Under this 

practical approach, the systematic aspect of justification in geometry came to be less emphasized. 

With the 1942 curriculum reform, the national curricula explicitly adopted this practical approach. 

The general axiomatic system became less and less explicit in the textbooks, and more and more 

problems appeared that were related to everyday life. For instance, no proofs at all appeared in 1947’s 

Secondary Mathematics (Chūtō sūgaku), published by the national Ministry of Education 

(Monbushō, 1947). Nevertheless, between 1949 and 1955, proofs gradually reappeared in geometry 

textbooks. 

Since the 1960s, proofs have been introduced beginning in the 8th grade; however, although the 

concepts used in geometry teaching in Japan have not changed much in this period, proof form has 

continued to change, a little. For example, in Kodaira et al. (1974), in the New Math period, 

properties were always given on the right hand-side, in brackets, and symbols were frequently used 

(more than in any previous or later textbooks). Later, in Kodaira et al. (1986), the same authors 

returned to a strategy similar to that observed in the 1940s but also to that used today: symbols were 

used to express statements in the proofs, but natural language sentences were used to express the 

properties justifying these statements. 

Discussion and conclusion 

The proofs in Japanese mathematics textbooks take the forms they do as a result of the process of 

didactic transposition, which involves their exposure to different conditions and constraints that 

affect their nature as proofs. For instance, this study on the evolution of proofs in geometry education 

in Japan has shown that one factor that significantly affected proof form was certain features of the 

Japanese language. As mentioned above, Kikuchi tried to develop a Japanese mathematical language 

unifying oral and written expression, in order to help train students in rigorous logical thinking, 

adopting the approach of structuring proofs in paragraph form as part of this project; however, our 

study has shown that Kikuchi’s paragraph-form proofs disappeared, as they were viewed as too hard 

to teach. It was replaced by the semi-paragraph form, which is still used for proofs in Japan today. 

One consequence is that the distance between the forms of the written proof and the oral justification 

is still bigger in Japanese education than in English or French, and statements written with symbols 

cannot be directly used in the oral justification. This leads us to think that Japanese students may 

experience a proof as a particular written object (like an algebraic equation), a formalism with little 

relationship to ‘actual’ oral justification or argumentation. As such a distinction implies, it will be 

useful to investigate the distance between written proofs and oral justifications across countries, 

which will help us benefit more fully from existing research results on argumentation and 

mathematical proofs. 
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The purposes of this study are to investigate pre-service middle school mathematics teachers’ 

interpretations of logical equivalence in proof by contrapositive and the reasons for their incorrect 

interpretations. Data analysis indicated that pre-service middle school mathematics teachers were 

considerably unsuccessful in interpreting logical equivalence of statements. Lack of knowledge 

related to indirect proof methods, accepting a true statement as false, suggesting to apply direct proof 

instead of selecting given choices, and thinking contrapositive statements as unrelated could be 

regarded as the reasons for their incorrect interpretations. 

Keywords: Contrapositive, logical equivalence, pre-service middle school mathematics teachers. 

Introduction 

Proof does not have simple roles in mathematics and mathematics education; it is a fundamental 

component and includes different forms and methods (Jones, 1997). A review of the literature 

indicated that there are limited number of studies focusing on particular proof methods (Antonini & 

Mariotti, 2008; Baccaglini-Frank, Antonini, Leung, & Mariotti, 2013; Bedros, 2003; Stylianides, 

Stylianides, & Philippou, 2004). According to Stylianides, Stylianides and Philippou (2004), the least 

attention has been given to proof by contrapositive compared to other proof methods such as 

mathematical induction, proof by contradiction, and direct proof. Thus, in this study the focus is given 

to proof by contrapositive. According to Bedros (2003), proof by contrapositive is a method of 

indirect reasoning. Since a conditional statement p⇒q and its contrapositive q'⇒p' are logically 

equivalent, in order to prove a given statement p⇒q, the statement q'⇒p' can be proved by using 

direct proof (Bloch, 2000). In other words, when a statement is proved, its contrapositive is also 

proved (Antonini, 2004). This study focused on the logical equivalence of contrapositive statements, 

which is the key idea of proof by contrapositive method.  

According to Baştürk (2010), students have difficulty in deciding which proof method to use and in 

applying the selected method. Moreover, students have many more difficulties in indirect proof 

methods rather than direct proof methods (Antonini & Mariotti, 2008). For example, Dickerson 

(2008) commented that undergraduate and graduate students have difficulty in understanding the 

language and logic of indirect proof methods. In the study by Stylianides, Stylianides and Philippou 

(2004), it was stated that some undergraduate students had difficulty in understanding logical 

equivalence in contrapositive and used incorrect equivalences such as p⇒q≡p'⇒q' in their 

explanations. Similarly, many students could not distinguish proof by contradiction from proof by 

contrapositive (Goetting, 1995).  

As seen, indirect proofs such as proof by contrapositive have the potential to reveal many difficulties 

that students possess in relation to proof (Bedros, 2003). Teachers’ knowledge of proof plays an 

important role in developing students’ understanding in proof. For instance, when mathematics 



teachers present various proof methods in the class, it helps students to enhance their logical thinking 

and proof abilities (Altıparmak & Öziş, 2005). Therefore, mathematics teachers should have 

necessary knowledge and experience concerning different proof methods. Since pre-service middle 

school mathematics teachers are future teachers, their interpretations related to the logic of particular 

proof methods such as proof by contrapositive are important to investigate. Thus, to examine pre-

service middle school mathematics teachers’ interpretation of logical equivalence in proof by 

contrapositive and the reasons for their incorrect interpretations were determined as the purposes of 

the present study. Moreover, in the teacher education program, pre-service teachers take various 

mathematics courses and their ability in interpreting proof related concepts might depend on these 

mathematics courses since some of which place more importance on proof. In relation to this, how 

pre-service teachers’ success levels differ by year level in the program was also investigated. By 

considering these purposes, the research questions were stated as follows: 

1. To what extent are Turkish pre-service middle school mathematics teachers successful in 

interpreting logical equivalence in proof by contrapositive, and how does their success differ by year 

level? 

2. What are the reasons for Turkish pre-service middle school mathematics teachers’ incorrect 

interpretations? 

Method 

Since data were collected at just one point in time from a selected sample in order to describe certain 

characteristics of the population by asking questions (Fraenkel & Wallen, 2005), this study was 

designed as a cross-sectional survey. Using convenience sampling methods, the sample for this study 

was determined as 115 pre-service middle school mathematics teachers attending a state university 

in Ankara, Turkey. In terms of their year level, 19 were freshmen (16.5%), 25 were sophomores 

(21.7%), 39 were juniors (33.9%), and 32 were seniors (27.8%). 

In Turkey, the middle school mathematics teacher education programs offer mathematics courses 

such as Calculus, Algebra; mathematics education courses involving Methods of Teaching 

Mathematics, Practicum; education courses such as Classroom Management; general courses 

involving Academic Oral Presentation Skills, and elective courses. The first two years of the program 

mainly consist of mathematics courses while the last two years put more emphasis on education, 

mathematics education, and elective courses. 

This study was conducted as part of a larger study focusing on pre-service middle school mathematics 

teachers’ interpretation of the logic behind proof methods. In this study, the answers given by pre-

service teachers to three questions related to the logical equivalence of contrapositive statements were 

analyzed. These questions were prepared by reviewing the related literature (Knuth, 1999; Saeed, 

1996). In more detail, Question 1 (Q1) and Question 2 (Q2) were prepared by the researchers by 

considering the format of the multiple choice questions in the study undertaken by Knuth (1999). The 

students were asked to select the correct statement that can be used to start to prove the given 

statement and explain their answers. The correct choice involves the proposition q'⇒p' as the starting 

point to prove the proposition p⇒q which is known as proof by contrapositive. The other choices 

were not appropriate to start any proof. The correct choices were identified as (d) for Q1 and (c) for 

Q2. Questions 1 and 2 are presented below.  



 

Figure 1: Question 1 and Question 2 

Question 3 (Q3) was adapted from the study of Saeed (1996) and involves a discussion about the 

proofs of two contrapositive statements. In the question, the participants were asked to select the 

person they agreed with and explain the reasons for their choice. The students’ answers were accepted 

as incorrect if they agreed with Pınar and correct if they agreed with Ahmet. 

 

Figure 2: Question 3 

To investigate the research questions, descriptive statistics and item-based analysis were conducted. 

Firstly, pre-service middle school mathematics teachers’ interpretations of logical equivalence in 

proof by contrapositive were analyzed based on the rubric given in Table 1. Then, the reasons for 

their incorrect interpretations were examined qualitatively by generating themes. 

 Answer types in Q1 and Q2 Answer types in Q3 

 No answer No answer 

Incorrect 

answer  

Incorrect choice was marked, no explanation was 

stated 

Agreed with no one or both of them    

Agreed with Pınar, no explanation was stated 

Agree with Pınar, explanation was stated Incorrect choice was marked, explanation was stated 

Correct 

answer 

Correct choice was marked, no explanation was stated Agreed with Ahmet, no explanation was stated 

Correct choice was marked, explanation was given 

but not referring to the logical equivalence 

Agreed with Ahmet, explanation was given but 

not referring to the logical equivalence 

Correct choice was marked, explanation was given 

referring to the logical equivalence 

Agreed with Ahmet, explanation was given 

referring to the logical equivalence 

Table 1: Rubric for questions 



Findings  

In order to investigate the first research question, pre-service middle school mathematics teachers’ 

answers to Q1 and Q2 were analyzed. The results of 115 pre-service middle school mathematics 

teachers’ answers are presented in Table 2. 

Answer types Question 1  Question 2 

No answer 4 (3.5%) 4 (3.5%) 

Incorrect 

answer 

Incorrect choice was marked, no 

explanation was stated 
12 (10.4%) 

50 (43.4%) 

12 (10.4%) 

55 (47.8%) 
Incorrect choice was marked, 

explanation was stated 
38 (33.0%) 43 (37.4%) 

Correct 

answer 

Correct choice was marked, no 

explanation was stated 
43 (37.4%) 

61 (53.1%) 

33 (28.7%) 

56 (48.7%) 

Correct choice was marked, explanation 

was given but not referring to the logical 

equivalence  

7 (6.1%) 9 (7.8%) 

Correct choice was marked, explanation 

was given referring to the logical 

equivalence  

11 (9.6%) 14 (12.2%) 

Table 2: Frequencies of the answers to Q1 and Q2 

Table 2 shows that 4 students (3.5%) did not answer to Q1 and Q2. When the answers of the students 

to Q1 were investigated, it was seen that 50 students (43.4%) answered incorrectly and 61 students 

(53.1%) selected the correct choice. In addition, 43 students (37.4%) marked the correct choice 

without stating their reasons and the answers of 7 students (6.1%) were correct but their explanations 

were not related to logical equivalence. The remaining 11 students (9.6%) answered correctly by 

providing an explanation based on logical equivalence of contrapositive statements. In terms of year 

level in the program, freshmen (73.7%) had the highest percentage of correct answers and seniors 

(40.6%) had the lowest percentage of correct answers in Q1. As an example of a correct answer with 

an explanation referring to logical equivalence, Participant 52 stated as follows:  

p: mn=100  p':mn≠100  p⇒q ≡ p'˅q ≡ q˅p' ≡ q'⇒p'   

q: m≤10 ˅ n≤10 q': m>10 ˄ n>10  

q'⇒p' (If m>10 and n>10, then mn≠100) (Participant 52, junior) 

The analysis of the answers to Q2 showed that 55 students (47.8%) answered incorrectly whereas 56 

students (48.7%) answered correctly. Thirty-three students (28.7%) marked the correct choice in the 

question but did not substantiate their ideas. Moreover, 9 students (7.8%) answered correctly without 

referring to contrapositive statements, and 14 students (12.2%) answered correctly by referring to the 

logical equivalence of contrapositive statements. While sophomores (64.0%) had the highest 

percentage of correct answers, freshmen (36.8%) and seniors (37.4%) had the lowest percentages of 

correct answers in Q2. To illustrate, Participant 97 answered correctly and explained by referring to 

logical equivalence in proof by contrapositive. 

p: ac≤bc   q: c≤0    

Then, proof by contrapositive, p⇒q ≡ p'˅q ≡ q˅p' ≡ q'⇒p' (Participant 97, senior) 

Since Q3 has a different rubric from the multiple choice questions, pre-service middle school 

mathematics teachers’ answers to Q3 are presented in Table 3. 



Answer types Question 3 

No answer 4 (3.5%)  

Agreed with no one or both of them    3 (2.6%)  

Incorrect 

answer 

Agreed with Pınar, no explanation was stated  16 (13.9%) 
75 (65.2%) 

Agree with Pınar, explanation was stated 59 (51.3%) 

Correct 

answer 

Agreed with Ahmet, no explanation was stated 5 (4.3%) 

33 (28.7%) 

Agreed with Ahmet, explanation was given but not referring to the logical 

equivalence 
24 (20.9%) 

Agreed with Ahmet, explanation was given referring to the logical 

equivalence   
4 (3.5%) 

Table 3: Frequencies of the answers to Q3 

According to Table 3, 4 students (3.5%) did not answer Q3. The answers of 3 students (2.6%) showed 

that they agreed with neither Pınar nor Ahmet but did not explain their rationale. Moreover, 75 

students (65.2%) agreed with Pınar, which is accepted as incorrect answer and 33 students (28.7%) 

agreed with Ahmet, which is accepted as correct answer. Five students (4.3%) agreed with Ahmet 

without giving any explanation, 21 students (20.9%) agreed with Ahmet and explained without 

referring to logical equivalence, and 4 students (3.5%) explained their agreement with Ahmet by 

referring to logical equivalence of contrapositive statements. Moreover, juniors (38.4%) had the 

highest percentage of correct answers and sophomores (4.0%) had the lowest percentage of correct 

answers to Q3. An example of a correct answer, Participant 52 agreed with Ahmet and her explanation 

was related to logical equivalence used in proof by contrapositive. 

p: n is even  q: n2 is even   

p⇒q was proved   

p⇒q ≡ p'˅q ≡ q˅p' ≡ q'⇒p'   

Thus, if n2 is odd then n is odd. Therefore, Ahmet is right. (Participant 52, junior) 

For the second research question, pre-service middle school mathematics teachers’ explanations for 

their incorrect answers were analyzed. As presented in Tables 2 and 3, 50 students (43.4%) answered 

Q1 incorrectly and 38 of them (33.0%) gave explanations for their answers. Fifty-five students 

(47.8%) answered Q2 incorrectly, of whom 43 (37.4%) explained their answer. Lastly, 75 students 

(65.2%) answered Q3 incorrectly and 59 of them (51.3%) suggested explanations for their answers. 

Table 4 shows the reasons behind the students’ incorrect interpretations grouped under four 

categories. 

Reasons  Q1 Q2 Q3 

R1 Lack of knowledge related to indirect proof methods 30 (26.1%)  35 (30.4%) - 

R2 Accepting a true statement as false 5 (4.3%) - - 

R3 Suggesting to apply direct proof instead of selecting given choices 3 (2.6%) 8 (7.0%) - 

R4 Thinking that contrapositive statements are unrelated - - 59 (51.3%) 

Total  38 (33.0%) 43 (37.4%) 59 (51.3%) 

Table 4: Reasons for students’ incorrect interpretations 

The first reason for the incorrect interpretations is students’ lack of knowledge related to indirect 

proof methods. As a result of this inadequacy, students thought that one of the choices in the question 

was related to contradiction or contrapositive; however, this choice was not related to these methods. 



For example, in Q2, Participant 7 selected one of the incorrect choices and explained it as an 

assumption for contradiction.  

To prove by contradiction, we have to prove the converse situation. The choice b can be used in 

this situation. (Participant 7, freshman) 

The second reason behind students’ incorrect interpretations is that they accepted the given statement 

as false even though it was true and tried to find counterexamples to refute it. For instance, in Q1, 

Participant 114 could not see that the given statement was true.  

The given statement ‘Assume that m and n are positive integers. If mn=100, then m≤10 or n≤10.’ 

is not true. 

As counterexamples, m=12 and n=12 can be used. 

Then, mn=12.12=144≠100 

Therefore, ‘if mn=100 then m≤10 and n≤10’ is a true statement. (Participant 114, senior) 

The third reason is that students mentioned using direct proof instead of selecting one of the given 

choices. For instance, the answer of Participant 106 to Q1 is given below:  

Firstly, we can assume that mn=100; we can try to deduce m≤10 or n≤10. We cannot start with 

the sentences given above. (Participant 106, senior) 

The last reason for incorrect interpretations is that students thought that there was no relation between 

the given contrapositive statements A and B. For example, in Q3, Participant 30 cited that statements 

A and B were different. 

Because the statements are different, one of them starts with an even number and the other one 

starts with an odd number. The proof of statement A can’t be the same with the proof of statement 

B. (Participant 30, sophomore) 

Discussion  

According to the results of pre-service middle school mathematics teachers’ answers to questions, it 

was found that nearly half of the sample answered Q1 and Q2 correctly and almost one third answered 

Q3 correctly. In other words, students’ achievement levels in interpreting logical equivalence in proof 

by contrapositive were found to be considerably low. The findings revealed that freshmen had the 

highest achievement level for Q1, sophomores had the highest achievement level for Q2, and juniors 

had the highest achievement level for Q3. Although seniors were expected to have been the most 

successful group by considering the number of mathematics courses they took in the program, they 

were not the most successful in terms of all questions. This result might stem from the fact that seniors 

did not take any mathematics course in their last year of the program. Therefore, seniors might not 

remember the details of the logical equivalence used in proof by contrapositive. To avoid this 

situation, teacher educators could offer elective courses related to logic and proof to enhance 

prospective teachers’ reasoning skills.  

Four reasons for the incorrect interpretations were detected from three questions. The first reason is 

preservice teachers’ lack of knowledge related to indirect proof methods. This finding is consistent 

with the results of Atwood (2001), who stated that students had difficulty in using the words converse, 

contrapositive, contradiction, and counterexample, and that they might use them interchangeably, 

which is not correct. Moreover, in the case that where students generally memorize proof methods 



instead of understanding the structure of the proof might cause them to have difficulty in related proof 

methods. Therefore, the participants in this study might use proof by contrapositive and proof by 

contradiction inaccurately and interchangeably. The second reason why students answer incorrectly 

is accepting a true statement as false and trying to find counterexamples based on this idea. Some of 

the terms and signs involved in the given statement in Q1 such as ‘or’ and ‘≤’ might cause students 

to misunderstand the statement. Thus, students might have had trouble in deciding whether the given 

statement was true or false and evaluate it as false. The third reason is that students suggested proving 

the given statement with direct proof instead of selecting one of the given choices in the question. 

This situation may result from the fact that the majority of the proofs in the textbooks are given as 

direct proofs (Atwood, 2001). Therefore, students may have a tendency to use direct proofs since they 

are more familiar with this method. The last reason is that students thought that statements A and B 

given in Q3 were unrelated. In this study, students might fail to see the relation between proofs of 

given two contrapositive statements. Therefore, they might think that statement A which involves 

p⇒q and statement B which involves q'⇒p' should be proven separately.  

In mathematics teacher education programs, proof should be considered as an important theme. Thus, 

the content or place of mathematics courses in teacher education programs might be revised and 

developed in order to enhance preservice teachers’ understanding of reasoning, proof, and logical 

rules behind proof methods. For example, mathematics courses might be taught by paying attention 

to logical rules behind proof methods. This study pointed out the importance of having knowledge of 

logical rules in reading and interpreting a given proof statement or conducting proof by using 

particular proof methods. Moreover, similar findings related to the interpretation of logical 

equivalence used in proof by contrapositive might be achieved with pre-service mathematics teachers 

in different countries. Therefore, to compare and to gain a global perspective about pre-service 

mathematics teachers’ understanding of logical rules behind proof methods, cross-cultural studies 

could be conducted. Based on the findings of such studies, teacher educators might develop strategies 

to overcome pre-service mathematics teachers’ current difficulties in logic and proof by considering 

the characteristics of their teacher education programs. 

The results of the study are limited to the data collected with three questions. For further studies, pre-

service middle school mathematics teachers’ interpretations of logical equivalence used in proof by 

contrapositive might be investigated by using alternative questions in various formats. An 

investigation of the effect of pre-service mathematics teachers’ knowledge of logic on their ability to 

prove might also be undertaken. Moreover, to analyze the answers of the pre-service mathematics 

teachers and to determine the reasons for their incorrect interpretations regarding logic in-depth, 

follow-up interviews might be conducted in future studies.  
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Issues of a quasi-longitudinal study on different types of 

argumentation in the context of division by zero 

Christian Fahse 
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In this study we explore students’ ways of argumentation concerning division by zero. The answers 

of 365 students of four different grade levels in a German secondary school were analyzed on the 

basis of written texts of the students explaining their results of 7:0. Applying qualitative content 

analysis (Mayring, 2000), we were able to distinguish three different types of argumentation. The 

relative frequencies of these different types vary with the increasing age of the students: rich 

argumentations stagnate, apodictic references to an authority increase.  

Keywords: Argumentation, reasoning, communication model, division by zero. 

Motivation and interest of research 

Argumentation, besides for instance modelling and problem-solving, is one of the main issues 

especially characterizing mathematical education. The aim to develop argumentative abilities in 

mathematics has been reinforced by German authorities since 2003. Consequential, there is a need 

to measure progress in this field on the level of learning groups and educational systems. Tests like 

PISA and other test series claim to perform this measuring (OECD 2015, p. 32), even though they 

are subject to partly strong criticism (e.g., Jahnke & Meyerhöfer, 2007). The tasks used in these 

tests, pretending to measure argumentative skills, necessarily are very restricted in regard to content 

and time on task, compared to a creative argumentation process performed in classroom. 

Furthermore, the dichotomous focus on right or wrong does not seem to be suited for an observation 

on argumentation. 

The notion of “probe” in educational research 

The idea of the main study is to use a so called “educational probe” (Ger. “Sonde”). This can be best 

described by an analogy: Car insurances ask if the car is parked in a garage. If so, the insurance fee 

is reduced. This is not done due to causal inference, but for statistical reasons (information from the 

insurance company HUK-Coburg, Coburg, by telephone, 2011): there is a robust (negative) 

correlation between parking in a garage and the probability of an accident. A “probe” for detecting 

abilities is a small bundle of easily carried out measurements, observing the patterns of reactions of 

learners to some standardized impulse together with an established correlation of those patterns to 

the intended ability of the learning group.  

It is an open question if educational probes exist. As a first step, we try to find candidates for a 

“probe” on the ability of argumentation; in a second step, we have to validate these probes. A 

variety of measurements can be taken into account (e. g. videography), but here we concentrate 

simply on tasks given as impulses and evaluate written texts, thereby e. g. ignoring any social 

interaction. Several groups of tasks, all roughly of the form “Give your opinion and justify it”, were 

given to the same students. In this article we consider only the task concerning division by zero (in 

short: “7:0=? Justify your opinion.”). This special task was included in the study because of the 



 

 

variety of possible justifications discussed in the literature (Knifong & Burton, 1980) and observed 

in classroom practice (author’s experiences with eight classes of 6th graders). 

Basic assumptions and research questions 

Argumentative abilities are considered to be of general importance beyond mathematics. Therefore, 

this study does definitely not focus on proving, and argumentation is not considered as a preliminary 

step to establish a proof. This decision was a consequence of both, the observed argumentations of 

the students and a certain communication model which has shown to be compatible with the data.  

Furthermore, argumentative and mathematical abilities are considered as different constructs. 

Therefore, the correctness of the solution of the problem cannot be a primary criterion to discern 

different types of argumentations. Mistakes have to be tolerated, “misconceptions” can be of a 

distinct rationality (Prediger, Gravemeijer, & Confrey, 2015, p. 881). This pedagogical view is 

supplemented by a historic mathematical fact: It is not true that division by zero is not possible or 

not to define. E. g. the inversion (holomorphic extension of 1/z) on the Riemann Sphere is a 

continuous function which imposes 1/0=∞. 

On first sight, one can wonder if short written answers to tasks really make a difference compared to 

the testing in PISA. The described preponderant disregard of “correctness” of the given result and 

the completely different evaluation by a qualitative content analysis (QIA, see below) are 

characteristics of this study, distinguishing it from PISA. The resulting category system is developed 

by an approach which is in a first step “grounded”, that is, constructed without reference to other 

theories. This methodical choice was taken because the interest of this study lies in the opportunity 

to compare our findings to other category systems found in the literature. However, in order to 

narrow the scope of this article we have to make two limitations: First, we will not report on a 

comparison between different category systems. Second, neither the analysis of misconceptions of 

division by zero nor suggestions for classroom practice are points of interest here, but presented in 

Fahse (2014). 

Taking the hypothesis that the ability of deploying argumentation develops over time, an 

appropriate probe should provide different results for different ages of the learners. The research 

questions in this mainly descriptive study are:  

 What types of mathematical argumentation can be found?  

 Does the percentage of these types differ from grade level to grade level?  

Theoretical background 

In this section we concentrate on literature about types of argumentation and leave aside that on 

divisions by zero with the following exception: In congruence with our study, Tsamir and Sheffer 

(2000) analyze argumentation in regard to division by zero. They distinguish between concrete and 

formal (algebraic) arguments, and favor the formal ones (Tsamir & Sheffer, 2000, p. 94). In contrast 

Fahse’s (2014, p. 24) empirical examples show that the use of concrete models of division can give 

insight into the problematics of division by zero, even if a “wrong” result is given (different from 

“division is impossible”, caveat see above). Therefore, in our system, the distinctions of Tsamir & 

Sheffer can only be considered as subcategories, not as main categories. 



 

 

Different classifications of argumentation schemes without reference to any special mathematical 

topic can be found in the literature. Argumentation can be set in contrast to proof (Duval, 1991), or 

these phenomena can be treated in regard to their mutual relationship. The latter can e.g. be done by 

analyzing the process that leads to a proof, wherein argumentation is conceived “as a process of 

producing a conjecture and constructing its proof” (Boero, Douek, Morselli, & Pedemonte, 2010, p. 

183). Following Pedemonte (2007), argumentations are based on a system of conceptions and 

related to conjectures either as “structurant” or as “constructive” argumentation. Furthermore, an 

argumentation can be abductive, inductive, or deductive (Pedemonte, 2007). These characteristics 

could be applied to our data, but since our study does not focus on proof they do not adequately 

describe the variety of justifications found in our study.  

Harel & Sowder (1998) use the term “proof schemes” which refers to “what the person offers to 

convince others” (p. 275). This fits well into the model of argumentation given below. Their way of 

classification scheme (externally conviction, empirical, and analytical proof schemes as 

superordinate categories; “analytical” is changed into “deductive” in Harel, 2008, p. 491) will be 

compared to the findings of our study in another article. 

Communication models and specification of concepts 

Since essentially different (Brunner 2014, p. 231) definitions exist of the notions argumentation, 

reasoning (regarded here as synonymous to justification, if referring to one fixed claim), proving 

and explaining we have to specify these terms. They are not conceived with regard to proof, but to 

the argumentations notated by the tested students. 

Our study uses a model of argumentation that is based on communication theories (Bühler, 1934; 

Kopperschmidt, 1980, following Habermas (1984)). The sender and receiver refer to a knowledge 

(and communication) basis assumed to be shared. The objects of justifications are statements that 

have different grades of plausibility for the two interlocutors. The act of justification performed by 

the sender is an attempt to augment this grade, conceived as an ordinal structure, on the receiver's 

side. Therefore, this concept of argumentation is genuinely dialogic. Nevertheless, the receiver can 

also be an internal entity within the sender, or a universal audience.  

In the following, short definitions of the principal terms used in this article are given. The 

discussion and the comparison of these definitions to those found in the literature go beyond the 

scope of this article. But for reasons of practicability we suggest to accept these definitions in the 

frame of this article despite a lacking consensus in the wider scientific community (Brunner 2014, p. 

231).  

Argumentation is conceived as a generic term (Bezold, 2009), including the process of finding 

hypotheses, and checking common bases of knowledge and communication. Reasoning or 

justification is a communicative reaction to a questioning of a statement. The aim of reasoning is to 

increase the degree of the receiver’s acceptance (his attributed epistemic value) of the statement by 

relating the statement under discussion to the basis of knowledge and communication assumed to be 

shared (Kopperschmidt, 1980, p. 73). Proof is a sequence of argumentative steps relying on an 

accepted basis of statements approaching the ideal of a complete logical chain of deductive steps 

(Duval, 1991). A proof can be a justification, but does not necessarily be one. Explanation (of 

“why”, not “how” or “how to do”) is an addressee-oriented justification by the sender with the aim 



 

 

of creating an “understanding”, which in turn is conceived as a fitting to the (possibly 

accommodated or enlarged) factual knowledge of the addressee (Kiel, 1999, p. 72; Hanna, 2016, 

“pedagogical explanations”, p. 2). 

Justifications can attempt to explain, but also aim to refer to reliable sources. Furthermore, in this 

framework, a mathematical proof is only one method of justification and not necessarily effective, 

depending on the mathematical ability of the sender and receiver. E. g. an algebraic transformation 

7:0 = x |∙0  → 7 = 0 performed by a student does not really convince another student if their 

interpretation of the variable x is uncertain and the concept of equivalence transformation is known, 

but insufficiently familiar. 

The study 

The analysis of the data is not fully completed yet, but we can report first results on selected parts of 

the study. We asked the students to give the result of the division 7:0 and to “justify [their] opinion 

in a way that someone who doesn't know the answer is able to understand [the result]” 

(Unabbreviated original task, translated from German). The written answers of a group of N=365 

students in grade 7, 9, 11, 13 were analyzed. In regard to the relative abundance of argumentation 

types we report data from a subgroup of N=300 pupils which did not take part in interventional 

courses. These were N=73, 86, 78, 63 students in the four grades resp.. In this convenience sample 

all students were of the same secondary school (“Gymnasium”), and all students of the four chosen 

grades were tested (absence of students < 5%, no denial). 

Method of analysis 

First we applied a qualitative content analysis (QCA, Mayring, 2000) with inductive category 

development. Therefore, we analyzed the student’s written justifications in several steps. The first 

step was to classify the texts only by similarity without any recourse to theory. In the next steps we 

aggregated items with an increasing level of abstraction (“feedback loops”) leading to the different 

types of argumentation described in our coding manual. To ensure reliability this manual was used 

to perform a separate “deductive category application” (Mayring, 2000, sec. 4.2) by a pair of 

university students in a second step (Interrater Reliability κ=.967, N=365).  

Results - Three different types of argumentation 

We found three types of argumentation: rich, pseudo-factual, and apodictic. A summary is given in 

Table 1. All examples of student justifications have been translated from German.  

Rich justifications 

In this category the content and the way of reasoning are essentially reasonable (see below) even if 

the results might be wrong, or the justification is partly false or incomplete. The statement of 

justification is connected to a domain which is relatively complex. Therefore, operations (e.g. 

changing the mode of representation, calculations) are more likely to be found.  

“Essentially reasonable” means that with the same idea a correct argumentation is possible. “7 : 0 = 

7. So, if you have 7 apples and you divide them among 0 persons, you still have 7 apples.” The 

usage of a model for division in the warrant (Toulmin, 1958) can be regarded as an operation in 



 

 

which the representation of division is changed from the “algebraic view” to “partitive distribution”. 

This latter domain is sufficiently complex: it is simply not possible to distribute 7 apples to nobody. 

The mistake in the original quote, disregarded for the type of argumentation, can be interpreted in 

the following way: the result of the division does not show what is left, but how much each person 

gets. Beside partitive interpretation using concrete objects, measurement interpretations of the 

division: “0 fits infinitely often into 7”, and algebraic calculations are typical examples of rich 

arguments. 

 

Table 1: Characterization of justification types 

Pseudo-factual justifications 

Mathematical warrants (Toulmin, 1958) are quoted, but these are profoundly incorrect, e.g. if the 

link to a domain of the common knowledge basis is not reliable (one student used the analogy of 

70=1 - not an appropriate domain (power calculations), and weakly linked by analogy). In others, the 

cited domain has no sufficient structure, e.g. when including “invented” calculation rules (“all 

calculations with 0 produce 0 as result”), or making statements about the nature of the task or 

objects (“there's nothing to calculate”, “0 has no significance”). Because of the lack of rich structure 

in the used domains only few other acts or operations besides generalizations and analogies can be 

found. Other texts seem to imitate the logical and symbolic structure of a mathematical justification, 

or use invented terms.  

Apodictic justifications 

Mathematical warrants are not used, but rather references to authorities like the teacher, the 

calculator, the textbook, or the world-wide-web given instead. A simple tautological repetition of a 

statement is interpreted as a reference to one's own ultimate knowledge and thus seen as an authority 

in the sense of: “That's how it is, I know it.” Sometimes it is even stated that no justification is 

necessary. This shows a utilitarian understanding of mathematics, which can be convenient, e.g. for 

engineers in the course of their everyday work. Because there is no need for mathematical warrants, 

there are no domains and consequently no operations found. Typical examples: “[...] There is 

nothing to explain, that's the way it is”, or “The rule says you cannot divide by zero. You just have 

to learn and remember it.” This type seems to be very close to the authoritative type of Harel & 



 

 

Sowder (1998). Precautionary it was given a different name, to be able to compare thoroughly the 

two types. 

Quantitative results 

Looking at the increasing grade level of the students, the relative abundances of the used 

argumentation types accordingly develop as follows: 1) Rich argumentations remain at slightly less 

than 40%. 2) Pseudo-factual argumentation is reduced to almost a half. 3) Apodictic argumentation 

almost doubles. There are very few justifications that can be seen as an algebraic proof: Only 4% 

use multiplication as the inverse of division. Note that the percentages in Figure 1 add up to more 

than 100% because each text can show more than one type of argumentation. The observed 

decrease, resp. increase was significant. 
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Figure 1: Relative abundance of types with increasing grade and inference-statistical characteristics 

of the relative abundance of the different types when applying a linear model of increase 

Discussion 

The classification of justifications into different types presented in this study might be useful for the 

teacher’s practice. They offer a framework for the moderation of class discussions. At first sight, 

there is no valuation concerning the different types. Proof increases the logical value, non-proof 

justifications try to augment the epistemic value of the statement (Harel, 2007, p. 497). In our model 

(Table 1), we add the informational value, conceived as the reliability of the source, which is 

increased by apodictic argumentation. This can be important for non-mathematicians, e. g. in the 

realm of engineering. Also in school, an algebraic argumentation (close to proof) by another student 

can be considered hard to trust. However, the aim of school education and the standards of 

mathematical education favor rich argumentations. For the practice of teaching it is recommended 

that apodictic justifications should not be discredited right away, but first discussed: They may be 

valuable for practical needs (unexamined statements as “black boxes”), but do not initiate an 

understanding. In contrast, pseudo-factual justifications should be criticized, even though at this 

point it is an open research question if this argumentation type can be considered a preliminary stage 



 

 

of rich argumentation practice. As shown in an example in Fahse and Linnemann (2015), pseudo-

factual justifications can be very appreciated by fellow students, because they seem to be 

particularly “mathematical” at first sight. In some cases, they do not increase any value of the 

statement, but try to augment the acceptance of the justification by similarity to genuine 

mathematical justifications. With the help of our classification, such misleading contributions could 

be more clearly discerned, both in discussions and written texts. Therefore, it might even be helpful 

to inform the students of these types (for first experiences, see Fahse & Linnemann, 2015). For 

teachers, these types could be useful for diagnostic purposes: to gain insight into the individual 

development of argumentation skills and to foster these abilities.  

Taking the special task on division by zero as an educational probe seems to be promising: In all 

considered grades all three types occurred and were not marginalized. The different grades (and also 

the 16 different learning groups) showed significantly different distributions of types (not reported 

here). What is more, there are clear tendencies: The stagnation of the abundance of rich 

argumentations and the increasing of apodictic ones. One might think that this is caused by the 

increasing distance (mental and in time) of the students to this topic (taught in 5th grade). The 

following observations, though, question this interpretation: Even in 7th grade, the majority of the 

students does not remember the lessons on this topic, but refer to primary school. Similar questions 

are topics taught in grade 9 (square-root of negative numbers) and grade 10 (70, log(0)). 

Nevertheless, the use of algebra in the answers is rare. More likely, the increase of apodictic 

reasoning is caused by continuous repetition of the mere algebraic rule without any explanation, and 

perhaps by a neglect of argumentation as an educational objective. This last hypothesis will persist 

only if the used probe (division by zero) can be validated as a probe for argumentation ability in 

general. This will be a topic of future research in our investigations.  
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The notion of flow of a proof encapsulates mathematical, didactical and contextual aspects of proof 

presentation, related to the lecturer’s choices regarding the presentation. We explore the 

relationship between mathematics teaching and rhetoric, suggesting Perelman’s New Rhetoric 

(PNR) as theoretical framework to assess different rhetorical aspects of the flow of a proof. In this 

paper we relate particularly to the establishment of a shared basis of agreement between the 

lecturer and the students, and to potential fallacies in this basis. We present examples of analysis of 

the basis of agreement from a lesson in Number Theory, at the beginning undergraduate level. 

Keywords: Proof teaching, flow of proof, Perelman’s New Rhetoric, mathematical argumentation.  

Theoretical background 

Mathematics and Rhetoric - "Can two walk together, except they be agreed?" 

Mathematics “possesses not only truth, but supreme beauty – a beauty cold and austere, like that of 

sculpture, without appeal to any part of our weaker nature…” (Russell, 1917, p. 60) and is 

“independent of us and our thoughts” (ibid, p. 69). This perception of mathematics seems to stand in 

drastic contrast to rhetoric, the ancient art of persuasion, which over the centuries became mostly 

related to the study of the ostentatious and artificial aspects of discourse. Yet, over the last few 

decades, scholars have begun to discuss the mathematics- rhetoric separation and its consequences.   

A pioneering effort of associating mathematics and rhetoric was made by Davis and Hersh (1987) 

who argued “that mathematics is not really the antithesis of rhetoric, but rather that rhetoric may 

sometimes be mathematical, and that mathematics may sometimes be rhetorical” (p. 54). Davis and 

Hersh challenged the opinion that mathematics establishes truth “by a unique mode of 

argumentation, which consists of passing from hypothesis to conclusion by…small logical steps…”, 

and claimed that “mathematical proof has its rhetorical moments and its rhetorical elements" (ibid, 

pp. 59–60). They illustrated this by phrases that a college mathematics lecturer may use while 

presenting a proof (in addition to the expected logical transformations), such as: “It is easy to show 

…”, “… simple computation, which I leave to the student, will verify that…”; they identified these 

phrases as rhetorical means in the service of proof. They acknowledged that the use of such phrases 

may be related to context, but rejected the myth that behind each theorem stands a flawless, logical 

proof. For them ‘proof’ is an amalgam of formality, of convincing arguments and of appeals to 

imagination and intuition.  

Another example is the ‘rhetoric of the sciences’ movement, which studies the stylistic forms used 

by scientists in scientific texts (mathematics included), to persuade others that their claims are valid. 

So, as in the other sciences, the rhetoric of mathematics plays an essential role in maintaining its 

epistemological claims (Ernest, 1999). Ernest relates to another aspect of rhetoric in mathematics, 

namely the importance of persuasion for mathematics instruction.   



 

Reyes (2014) asserts that it should be in the interest of rhetorical scholars to explore mathematics 

discourse, as it is the basis of techno-science. He analyses conceptual mathematical metaphors as an 

example for a mode of analysis of mathematics whose roots lie in rhetorical studies. Elsewhere, 

Reyes studies the rhetorical process during the invention of mathematics, and explores the 

introduction of infinitesimals by Newton and Leibniz as an example of the role of mathematical 

rhetoric in mathematical invention, in addition to its role in communicating the mathematics.  

In conclusion, inquiry into relations between rhetoric and mathematics is growing in extent and 

richness. An increasing number of scholars explore the possibilities offered by the use of rhetorical 

concepts and ideas to gain better understanding of mathematics and mathematical education. Instead 

of viewing mathematics as a ‘perfected, austere’ product, they re-connect it to its ‘human features’, 

that in addition to formal logic utilizes persuasive argumentation and exploits rhetorical means. 

Argumentation theory and ‘The New Rhetoric’ 

Aberdein (2016) rejects the common thesis that mathematical reasoning is fundamentally different 

from everyday reasoning and that formal logic adequately models the practice of mathematical 

reasoning. Research in mathematical education uses argumentation theory to address aspects of 

mathematical argumentation other than formal logic, and for that purpose frequently uses Toulmin’s 

model that permits schematic analysis of formal proofs as well as of arguments classified as 

deductively invalid.  Toulmin’s model has been shown to be an efficient framework to discuss local 

arguments as well as global argumentation structures (e.g. Knipping & Reid, 2013) and Inglis, 

Mejia-Ramos and Simpson (2007) claim that implementing Toulmin’s full model (including 

rebuttals and qualifiers) should be used for this purpose. However, Toulmin’s model has been 

criticized for not relating to the effect of the arguments on the audience, and for denigrating rhetoric 

in argumentation (Olbrechts-Tyteca, cited in Frank, 2004). 

In 1958, Perelman and Olbrechts-Tyteca published ‘The New Rhetoric’ (PNR, translated in 1969), 

an argumentation theory based on the notion that argumentation aimed at justification of choices, 

decisions, and actions, is a rational activity complementing formal argument. PNR studies 

techniques used by an arguer to increase audience adherence to the arguer’s theses and conditions 

that allow argumentation to begin and develop. PNR asserts that reducing an argument to its formal 

aspects undermines the rhetoric features that support its meaning; it recognizes the distance between 

dialectic and rhetoric but creates an alignment between them. This complex view at times produced 

an inherent ambiguity in definitions of some concepts. However, PNR adds meaningful layers of 

analysis beyond the analysis of argument structure and type achieved by using Toulmin’s model. 

PNR describes the ‘threads that make the cloth of the argument’: the starting points that establish a 

shared basis of agreement, the scope and organization of arguments, ways of creating presence to 

arguments, and different argumentation techniques. The audience plays a pivotal role in PNR since 

each ‘thread’, or aspect, is tied to what the arguer believes will deeply persuade the audience. This 

means that argumentation techniques should be adjusted to the audience’s frame of reference, its 

previous knowledge, experiences, expectations, opinions and norms. So arguers construct 

arguments that they consider persuading for a particular audiences or convincing by a ‘universal 

audience’ (an arguer construct consisting of all reasonable humans) (van Eemeren et al., 2014). 



 

In our study, we wish to analyze rhetorical aspects of proof presentation, in a scenario of a lecturer 

presenting a mathematical proof to a class of students. We use PNR as a theoretical framework as it 

incorporates aspects of rhetoric, argumentation and lecturer-classroom relations. Elsewhere (Gabel 

and Dreyfus, 2017), we demonstrate an analysis of other PNR aspects: scope and organization of the 

argumentation, and presence of proof elements. In this paper we address a different aspect: 

establishing a shared basis of agreement with the audience.  

PNR’s basis of agreement and its adaptation to proof teaching 

According to PNR, argumentation can be successful if it advances from premises already accepted 

by the audience, i.e. the arguer established a shared basis of agreement with the audience. These 

premises are classified as follows: (1) Premises relating to the real: premises where the arguer 

claims recognition or acknowledgement of the universal audience. Those include: Facts, truths and 

presumptions. (2) Premises relating to the preferable: premises that have to do with the preferences 

of a particular audience. Those include: Values, value hierarchies and loci of preferable. 

Facts and truths are statements already agreed to by the universal audience; they are considered to 

require no further justification. Truths stand for connections between facts. Presumptions are 

opinions or statements about what is the usual course of events which need not be proved, although 

adherence to them can be reinforced, and it is expected that at some point they will be confirmed. 

Values relate to the preference of one particular audience as opposed to another. They function as 

guidelines in making choices of the arguer (even though not all would accept them as good reasons). 

Values are normally arranged in value hierarchies, which are very important since different 

audiences may possess the same set of values arranged in different hierarchies. Values and value 

hierarchies generally remain implicit, but the arguer cannot simply ignore them. Loci of the 

preferable (aka commonplaces, Topoi) are premises used to justify values or hierarchies and express 

the preferences of a particular audience (e.g. quantity, quality, essence) (van Eemeren et al., 2014).  

We have adapted PNR’s classification of premises to the context of our study (analyzing proof 

presentation in class) as described in Table 1. We do not include in the table the loci of the 

preferable since they are highly abstract mental constructs which did not need adaptation. 

 Adaptation to proof teaching 

Premises 

relating to 

the real 

Facts  Axioms, definitions, givens, previously consolidated symbols/results 

Truths Lemmas, theorems, newly established symbols/results 

Presumptions 
Statements or opinions about what previous knowledge to use, for 

example: mathematical techniques, proving methods, past theorems. 

Premises 

relating to 

the 

preferable 

Values 
The preference or adaptability to a particular audience of a certain 

proving method or technique as opposed to another.  

Hierarchies 

of values 

The hierarchies of values will affect audience preferences for 

choosing notation, proving method or mathematical technique.  

Table 1: Adapting PNR types of premises to a proof teaching context 

According to Perelman and Olbrechts-Tyteca, lack of agreement concerning the basis of agreement 

may occur at one or more of the following three levels: 



 

a)  Status of premises: e.g. if the arguer advances something as a fact but the audience wants to 

see it proven or if the arguer assumes a value hierarchy not accepted by the audience;  

b)  Choice of premises: e.g. if the arguer uses facts that the audience does not consider relevant 

to the argument or would have preferred not to see mentioned; 

c)  Verbal presentation of premises: e.g. if the arguer is presenting certain facts (acknowledged 

as relevant by the audience) in words which have connotations unacceptable to the audience.  

The ability of creating a shared basis of agreement with the audience is crucial to the success of 

argumentation. Arguers should therefore carefully consider the status they ascribe to premises, the 

selection of premises, and the wording of explicit premises (van Eemeren et al., 2014). Examine, for 

example, two possible values related to proof teaching: (1) Certainty: every argument in the proof 

should be proved formally or at least justified; (2) Pedagogy: parts pf the proof should be left for the 

students. A lecturer may choose to leave parts of the proof as homework because her/his value 

hierarchy places (2) over (1). However, if the students have an opposite value hierarchy, this implies 

that the lecturer had a fallacy in the shared basis of agreement at the level of the status of his value 

hierarchy, which might consequently weaken students’ persuasion. 

The study – description and methods 

Our research concerns the notion of ‘The flow of a proof’ (Gabel and Dreyfus, 2017) which 

encapsulates various aspects of the proof presentation. The flow is an outcome of the choices made 

by the lecturer regarding presentation of: (i) the logical structure of the proof (arranging the proof of 

the theorem into claims, which are proved in a specific order); (ii) informal features and 

considerations of the proof and proving process (e.g. examples, intuitions), and (iii) mathematical 

and instructional contextual factors. One aim of the research was to analyze global and local aspects 

the flow of the proof, in particular to examine rhetorical aspects of the proof presentation.  

The research took place in a Number Theory course, given by the same lecturer to prospective 

mathematics teachers in two consecutive years. Each year, three lessons including the same suitable 

proofs (length, richness) were observed and audio-recorded. The three proofs were unrelated to each 

other. After each lesson students answered a questionnaire relating to cognitive and affective 

aspects; also, a reflective interview with the lecturer and individual interviews with students were 

conducted. The post-lesson interviews conducted with the lecturer in Year 1 were analyzed and 

interpreted, and a list of the lecturer’s general considerations regarding proof teaching was 

produced. In this paper we relate to the second lesson in each year, in which the following theorem 

related to linear Diophantine equations ax+by=d , ,x y Z was formulated and proved:  

Theorem: The greatest common divisor (gcd) of two integers ,a b , at least one of which is not 0, 

equals the smallest natural number of the form ma nb , where ,m n  are integers: 

gcd( , ) min{ 0 : , }a b ma nb m n Z    . 

The full proof of this theorem requires the use of previously proven results. In the next section we 

present a partial analysis of the shared basis of agreement, demonstrating the different types of 

lecturer premises (in the PNR sense) reflected in the proof presentation, consider potential fallacies 

in these premises and demonstrate the lecturer’s attempt to fix these fallacies. 



 

Examples of analysis of the basis of agreement 

All post lesson interviews conducted with the lecturer in Year 1 were analyzed and interpreted as 

two sets of lecturer considerations (Gabel and Dreyfus, 2017). One of the sets contains general 

considerations for proof teaching. In the current paper we relate to three of these general 

considerations: (a) A proof should be mathematically complete and exact; (b) Some of the proof 

elements should be left for students to prove by themselves; and (c) Proof structure should be clear. 

One aspect of the clarity of proof structure was exhibited when the lecturer referred to the myth 

about Ariadne’s thread: “I use… Ariadne’s thread many times since mathematical proofs are built in 

such a way that you need to find the tip of the thread and just follow it…” We relate to these 

lecturer considerations as values that affect the lecturer’s choice and status of premises. 

Our examples stem from the last part of the proof as presented by the lecturer, and we will address 

lecturer premises as reflected in his arguments. In Year 1, just after proving that d  is a divisor of a , 

leaving the (almost identical) proof that d  is a divisor of b  to the students, the lecturer said:  

Lecturer: The same way we showed that d  is a divisor of a  it follows that d  is a divisor of 

b , so d  is a common divisor of ,a b . Now, it can’t be smaller than the gcd, yes? 

Because once I write the equation ax by d  then…like we said in the beginning 

of the lesson, we said that this d must be divisible by gcd( , )a b … so it can’t be 

smaller then gcd( , )a b and that means it is equal to gcd( , )a b . 

 

 

 

 

 

Figure 1: Toulmin’s scheme representation of 1st explanation  

The argumentation in this excerpt is represented by the Toulmin’s scheme in Figure 1. We suggest a 

possible interpretation of the lecturer’s explicit and implicit premises reflected in this explanation. 

For the lecturer this argumentation requires very little justification (if any) and he presents it as a 

chain of facts (D1, C1, D2 and possibly C2) that does not need to be discussed, and whose 

connection results in the conclusion (C4) in a self-evident way. The lecturer implicit presumption is 

that in order to prove that gcd( , )d a b  one needs to show two inequalities: 

( gcd( , )d a b and gcd( , )) gcd( , )d a b d a b   ; he believes that this presumption does not need to 

be made explicit and that he and the students share this presumption. As for the values reflected in 

this explanation and their hierarchy, since the lecturer chose to leave some of the proof (that d|b) to 

the students, in this case the pedagogical value of leaving some of the proof elements for students 

was placed above the value regrading proof completeness. In addition, we recognize another 

implicit value: for the lecturer the ‘tip of Ariadne’s thread’ here is to realize that d is a common 

divisor of a,b from which the rest of the proof just unfolds.   

However, the students had difficulties following this first explanation and asked the lecturer to 

repeat it. A possible reason for this difficulty is that the premises that the lecturer considered as facts 

were not considered as facts by the students and required further justification. For example, the 

students probably needed an explicit justification for the argument “if d is a common divisor of a,b 

C2: d cannot be smaller than gcd(a,b)   D2: ax+by=d x,y integers  

 D1: d|a and d|b   

 

W: We showed before that d is divisible by gcd(a,b) 

 

 

 C4: d = gcd(a,b) 

C1: d is a common divisor of a,b 



 

then gcd( , )d a b ”. Moreover, the lecturer’s implicit presumption regarding the natural proving 

technique (the two inequalities) is not necessarily clear and natural to the students. In PNR 

language, there was a lack of agreement about the status and choice of the lecturer’s premises, 

which caused a fallacy in establishing a shared basis of agreement. So, following the students’ 

request, the lecturer instantly explained again the argument in Year 1 lesson as follows: 

Lecturer: We said that d , as a minimal element of this set [{ 0 : , }ma nb m n Z   ], is 

of the form a  integer+b integer. Now the first thing I have shown today is that in 

such a situation, actually this is a result of theorem 1 that we have used before,… 

it follows that d must be divisible by gcd( , )a b , yes? Once I can write a number 

as a linear combination of two numbers ,a b , with integer multipliers ,m n , this 

d must be divisible by gcd( , )a b . On one hand it must be divisible bygcd( , )a b ; 

on the other hand…it is a divisor of ,a b . It can’t be smaller then gcd( , )a b  so it 

can only be equal to it. Because gcd( , )a b is the greatest common divisor, yes? 

And that finishes the proof… d  is a common divisor of ,a b  that also has to be 

divisible by gcd( , )a b  so we conclude that gcd( , )d a b …  

 

 

 

 

 

 

 

 

 

Figure 2: Toulmin’s scheme representation of 2nd explanation 

The argumentation in this excerpt is represented by Toulmin’s scheme in Figure 2. In the second 

explanation the lecturer added some justification (W1, B1, W3) to the conclusions C1, C2 and C3; 

we interpret they were not presented as facts but rather as truths, i.e. the lecturer changed the status 

of the premises to establish a stronger basis of agreement with the students. However, his 

presumption still remained implicit – a point which we will revisit shortly. 

Before the lesson in Year 2 the lecturer was informed by the researcher about some student 

difficulties that were found in the post lesson students’ questionnaires of Year 1; in particular, the 

questionnaires reflected that the last part of the proof, where combining the inequalities 

gcd( , )d a b and gcd( , )d a b leads to the equality gcd( , )d a b was not trivial to the students. For 

lack of space we will concentrate on demonstrating the change in the lecturer’s presumptions and 

his value hierarchy between Years 1 and 2. The lecturer took the reported students’ difficulty into 

account and during the lesson in Year 2, just before the last part of the proof he explained: 

Lecturer: Here we are doing something similar to what we already had in the past, when we 

wanted to prove that two numbers are equal… 

Student: We assume that they are unequal… 

 C3: d cannot be bigger than gcd(a,b) 

 

W1: Theorem 1 (previous lessons) 

 

 W3: gcd(a,b) is the greatest of all common divisors of a,b 

 

 C4:  

 d = gcd(a,b) 

C1: gcd(a,b)|d  

 

 C2: d cannot be smaller than gcd(a,b) 

 

B1: d=ma+nb, m,n integers 

 

D1: d is a linear 

combination of a,b 

 

D2: d|a and d|b  



 

Lecturer:  No, we should prove two inequalities, right? Or refute two inequalities, right? I 

remind you, we already used it: when we wanted to show that two numbers are 

equal then we need to show that it is impossible that a  is smaller than b … it is 

impossible that a  is bigger than b , or in other words … to show that a  is not 

smaller than b is actually showing that a b , and instead of showing that a  is not 

bigger than b we’ll show that a b . If I want to show that a b , I need to show 

that a b , i.e. not smaller than b , and that a b , meaning that a  is not bigger 

than b . Once I will show these two inequalities I am done, I’ve shown that a b .  

Here, the lecturer consciously makes his presumption explicit to the students, justifies the choice of 

this presumption and makes it relevant. By explicating his presumption the lecturer also caused a 

change of value hierarchies: he enhanced the clarity of the proof structure, making it more explicit 

before going into the details of the proof. Indeed, the lecturer also explicitly declared:   

Lecturer:  It remains to prove the other inequality: gcd( , )a b d . In fact, I will show you that 

this… minimum of the set, d, is a divisor of a,b… and this will end the story… 

So before formally proving that d is a divisor of a,b, the lecturer spread out his proving plan, 

identifying “the tip of Ariadne’s thread” and explained exactly why this “will end the story”.  

We conclude this short example by stressing that while Toulmin’s model enables the presentation 

and analysis of the argumentation structure, PNR complements it by relating to other argumentation 

qualities, such as the adaptability to the intended audience. The fallacies that have been mentioned 

in the example were related to the status and choice of premises.  

Concluding remarks 

Weber and Mejia-Ramos (2014) demonstrated that mathematics students and mathematicians have 

different perceptions regrading students’ responsibilities when reading a mathematical proof: the 

students believe that reading a good proof is quite a passive process, one in which they are not 

expected to construct justifications, diagrams or sub-proofs by themselves, and they may simply 

follow each and every step. Mathematicians believe the opposite. This tension between the students’ 

and their teachers’ beliefs supports our interpretation regarding the different value hierarchies that 

the lecturer and the students have. But beyond the identification of the difference, we argue that 

PNR has the potential to explain the consequences of that difference on the effectiveness of 

argumentation; in other words, PNR provides a suitable framework to identify ways to increase 

argumentation effectiveness, for instance by referring to the shared basis of agreement.  

Moreover, PNR relates to other rhetorical and dialectical aspects of argumentation. Some of these 

aspects (scope and organization and presence) have been studied in Gabel and Dreyfus (2017); 

others, namely argumentation techniques and the manner by which PNR complements the use of 

Toulmin’s scheme, need further study. One advantage of PNR is that because of its theoretical 

scope, all these aspects can be studied within a single unifying theoretical framework.  

Although Perelman perceived PNR as a complement of formal logic and focused on disputes in 

which values play a part (van Eemeren et al., 2014), we argue that PNR can be adapted to be a 

productive theoretical framework in the context of proof teaching, particularly the flow of a proof: 

firstly, Perelman was much inspired by formal logic (mainly the work of Frege), and secondly, the 



 

context of argumentation in the mathematics classroom resembles PNR’s context of persuading an 

audience. Thus PNR is a comprehensive argumentation theory that can broaden and enrich 

researchers’ perspectives regarding different aspects of mathematics classroom argumentation.  

References 

Aberdein, A. (2016). Commentary on Andrzej Kisielewicz’s:  A new approach to argumentation 

and reasoning based on mathematical practice. In D. Mohammed & M. Lewinski (Eds.), 

Proceedings of 1st European Conference on Argumentation (ECA 2015) (Vol. 1, pp. 287–292). 

Universidade Nova de Lisboa: College Publications.  

Davis, P., & Hersh, R. (1987). Rhetoric and mathematics. In J. Nelson, A. Megill & D. McCloskey 

(Eds.), The rhetoric of the human sciences: Language and argument in scholarship and public 

affairs (pp.  54 –68). Madison, WI: University of Wisconsin Press. 

Ernest, P. (1999). Forms of knowledge in mathematics and mathematics education: Philosophical 

and rhetorical perspectives. Educational Studies in Mathematics, 38, 67–83. 

Frank, D. A. (2004). Argumentation studies in the wake of the new rhetoric. Argumentation and 

Advocacy, 40(4), 267–283. 

Gabel, M., & Dreyfus, T. (2017). Affecting the flow of a proof by creating presence – a case study 

in number theory. Educational Studies in Mathematics. Online first. doi: 10.1007/s10649-016-

9746-z 

Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The 

importance of qualification. Educational Studies in Mathematics, 66(1), 3–21.  

Knipping, C., & Reid, D. (2013). Revealing structures of argumentations in classroom proving 

processes.  In A. Aberdein & I. J. Dove (Eds.), The argument of mathematics (pp. 119–146).  

Dordrecht, the Netherlands: Springer. 

Perelman, C., & Olbrechts-Tyteca, L. (1969). The new rhetoric: A treatise on argumentation (J. 

Wilkinson & P. Weaver, Trans.). Notre Dame: University of Notre Dame Press. 

Reyes, G. M. (2014). Stranger relations: The case for rebuilding commonplaces between rhetoric 

and mathematics. Rhetoric Society Quarterly, 44(5). 470–491. 

Russell, B. (1917). Mysticism and logic and other essays. London: George Allen & Unwin LTD.  

van Eemeren, F. H. van, Garssen, B., Krabbe, E. C. W., Snoeck Henkemans, A. F., Verheijc, B., & 

Wagemansa, J. H. M. (2014). The new rhetoric. In F.H. van Eemeren, B. Garssen, E.C.W. 

Krabbe, & A.F. Snoeck Henkemans (Eds.), Handbook of argumentation theory (pp.  257–299). 

Dordrecht: Springer Netherlands. 

Weber, K., & Mejia-Ramos, J. P. (2014). Mathematics majors' beliefs about proof reading. 

International Journal of Mathematical Education in Science and Technology, 45(1), 89–103. 

https://books.google.com/?id=zwMQAAAAYAAJ&pg=PA60&dq=Mathematics+rightly+viewed+possesses+not+only+truth+but+supreme+beauty+a+beauty+cold+and+austere+like+that+of+sculpture+without+appeal+to+any+part+of+our+weaker+nature+without+the+gorgeous+trappings+inauthor:Russell
https://en.wikipedia.org/wiki/Longman


 

 

Fostering and investigating students’ pathways to formal reasoning:  

A design research project on structural scaffolding for 9th graders 

Kerstin Hein and Susanne Prediger 

TU Dortmund University, Germany  

kerstin.hein@math.tu-dortmund.de, prediger@math.uni-dortmund.de 

Major obstacles for students learning formal reasoning are the lack of transparency of the logical 

structure of formal deductions, their theoretical status, and their verbal representation. For fostering 

students’ learning of formal reasoning, making explicit the logical structures and unpacking their 

verbal representations is therefore necessary. In the design research project presented, a teaching-

learning arrangement of angle theorems was designed in which given if-then-statements were to be 

connected with formal deductions based on the design principle of structural scaffolding. A case study 

of a pair of 9th graders investigated students’ pathways towards becoming aware of and using the 

logical structures and exemplifies the functioning of structural scaffolding.  

Keywords: Formal proof, logical structure, verbal representation, structural scaffolding.  

Introduction 

Formal reasoning, the logical deduction of new theorems from other theorems, has been shown to be 

a huge challenge for many students at both secondary and tertiary level. Empirical research studies 

have identified different reasons for these difficulties (Harel & Sowder, 1998). The design research 

project presented here focuses on one major obstacle, namely understanding the logical structure of 

deductions and deductive theory development, which is rarely explicit in mathematics classrooms 

(Durand-Guerrier, Boero, Douek, Epp, & Tanguay, 2011). For this obstacle to be overcome, 

researchers have suggested that it is important to make the logical structures of deductions and their 

verbal representations explicit (Durand-Guerrier et al., 2011).  

This design research study follows this general suggestion. It draws upon the design principle of 

structural scaffolding (following general ideas of scaffolding, cf. Lajoie, 2005). It pursues two main 

research questions: (1) How can a teaching and learning arrangement be developed to make logical 

structures of deductive reasoning explicit? (2) Which typical pathways towards formal reasoning can 

be initiated by such a teaching-learning arrangement, and which obstacles appear along the 

pathways? The first two sections present the theoretical background and the methodological 

framework. The design outcome (a teaching-learning arrangement based on structural scaffolding) 

and a case study of two students in 9th grade on their pathway is presented afterwards.  

Theoretical background: Approaching logical structures by structural scaffolding  

Formal reasoning is crucial in mathematics, not only for convincing one self and others of the truth 

of theorems or for explaining connections, but mainly for building (at least locally) deductive theories 

(de Villiers, 1990). Even if, for example, students immediately are convinced of the truth of angle 

theorems, deducing them from each other encourages students to organize them in a logical and 

deductive sequence and give insights in mathematical evidence instead of empirical (cf. Fig. 1).  

 

 



 

 

 

 

 

 

Figure 1: Locally deductive theory of angle theorems  

Missing learning opportunities for formal deductions. In school mathematics, in contrast, most 

reasoning activities do not refer to formal deductive reasoning but to semantical reasoning where the 

epistemic value is prioritized over the validity of a statement (Duval, 1991). Formal deductions are 

presented mostly in a ready-made form (Harel & Sowder, 1998). This does not allow students access 

to awareness of how to compose an argumentation using logical structure. Although composing the 

deductions is only the last step of proving (Boero, 1999), it is still necessary to offer learning 

opportunities for this last step, e.g. by linearly ordering all elements and formulating their logical 

relations in written forms (Russek, 1998). 

Logical structure of formal deduction and everyday argumentations. Everyday argumentations have 

often been described by the argumentative structure of data, warrant, and claim (Toulmin, 1958). 

While in everyday argumentation the warrant may be omitted and only made explicit when an 

opponent raises doubts (Rapanta, Garcia-Mila, & Gilabert, 2013), it is crucial in formal reasoning 

and has a theoretical rather than semantic status (Duval, 1991). That means that the existence of 

mathematical theorems and their statements, which are not characteristics of reality, are of relevance. 

Thus, the range of possible warrants must be made explicit in mathematics (Douek, 1999). Also, the 

status of preconditions in if-then-statements differ: in most everyday argumentations, if-then-

statements are only formulated when the conditions are satisfied (Nunes, Schliemann, & Carraher, 

1993, p. 130ff). In mathematics, in contrast, if-then-statements are hypothetical, so the validity of the 

preconditions always have to be checked before applying an if-then-statement as an argument.  

Making explicit logical structures for students. Due to these differences, many researchers have 

suggested explicating the logical structures of formal reasoning in the learning process (Durand-

Guerrier et al., 2011). Cho and Jonassen (2002) used Toulmin’s (1958) argumentation scheme for 

this purpose for college students in non-mathematical contexts, and we will extend this approach for 

9th graders in a geometrical context by including the check of preconditions. 

Structural scaffolding as a design principle. Explicating alone is not enough. For students to become 

acquainted with the logical structure, and to produce it in their own deductions, this study draws on 

the design principle of scaffolding. Scaffolding is characterized as enabling learners to realize 

supported activities before they can conduct them independently (Wood, Bruner, & Ross, 1976). 

Initially only applied to one-to-one interaction for language learning, the idea of scaffolding has 

increasingly been elaborated into a design principle for materials and computer tools, whole-class 

contexts, for open geometrical proofs (Miyazaki, Fujita, & Jones, 2017), and other learning contents 

(e.g. Lajoie, 2005).  

Methodology of the design research study 

Design research as methodological framework. Because the study has the dual aim of designing a 

teaching-learning arrangement (here: on the logical structure of formal reasoning with the design 

principle of scaffolding) and developing an empirically grounded local theory of students’ learning 



 

 

pathways, we chose the methodological framework of design research with a focus on learning 

processes (Gravemeijer & Cobb, 2006). The concrete model of Topic-Specific Didactical Design 

Research (cf. Prediger & Zwetzschler, 2013) relies on the iterative and intertwined interplay of four 

working areas: (a) specifying and structuring learning contents; (b) developing the design of the 

teaching-learning arrangement, (c) conducting and analyzing design experiments; and (d) (further) 

developing local theories on teaching and learning processes.  

Design experiments for data collection. Design experiments are the methodological core of design 

research studies (Gravemeijer & Cobb, 2006). For this project, 3 design experiment cycles were 

conducted with 20 ninth and tenth graders (age 14-16 years) in total. The case study reported here 

stems from Cycle 3 in which design experiments in laboratory settings were conducted and 

videotaped with 5 pairs of students, comprising two sessions of 60 minutes each (in total about 600 

minutes video material). The students were familiar with the geometrical topic of angle theorems. 

The empirical part of this paper focuses on the case study of two female students, Katja and Emilia, 

from grade 9 and the first author as design experiment leader (in the following called tutor).  

Methods for qualitative data analysis. The transcript of the video was analyzed with respect to 

students’ development of explicating elements of the logical structure (using the analytic scheme of 

data, warrant, claim, cf. Krummheuer, 1995) and to how students articulate relations between these 

elements (linguistic analysis, not presented here). This makes it possible to investigate the functioning 

of the scaffolding tool and typical pathways and obstacles.  

Design Outcome: Teaching-learning arrangement with structural scaffolding 

Mathematical topic. Within the iterative design experiment cycles, a teaching-learning arrangement 

was developed for the mathematical topic of angle sets. This topic was chosen because the if-then-

statements and the set of possible warrants are well 

limited in this field and locally organized (cf. Fig. 1).  

Structural scaffolding. For structural scaffolding, we use 

materialized argumentation structure forms on paper as 

depicted in Fig. 2. In addition to Toulmin’s (1958) argu-

mentation structure, the materialized structure also makes 

explicit why the preconditions of the if-then-statements 

(named arguments) are satisfied. Every theorem that is 

already proven is offered as warrant for the next step of 

formal reasoning. Working with this materialized 

structural scaffold in each step allows the students to 

make explicit their often implicit ideas. In the following, 

the boxes (from above to below) are named data box, 

condition check box, argument box, and conclusion box. 

Learning trajectory for introducing the structural 

scaffold. The intended learning trajectory starts by activating students’ previous knowledge on angle 

sets in cases of determining angles for concrete constellations (“Find  if °…”). When first 

asked to prove the general vertically opposite angle theorem, students’ initial argumentative resources 

often include the critical feature, but are limited mostly by their semantic nature (“because 

Figure 2: Materialized argumentation 

structure forms as structural scaffolds 

and have the same 

supplementary angle  

If two lines intersect, then the mea-
sures of the two resulting supple-
mentary angles add up to 180°. 

Task: Show that the two angles are equal if 
they are vertical like in the drawing 

Next step: Deducing algebraically that  =  



 

 

supplementary angle”). Starting from these initial reasoning resources, the tutor introduces the 

structural scaffold by explaining the new practice of formal reasoning as making explicit all aspects 

implicitly contained in the students’ brief argumentation. The condition check box for checking if the 

precondition of the if-then-statement is satisfied had to be introduced after the first design experiment 

cycle in order to clarify the theoretical and hypothetical status of if-then-statements in mathematics. 

The structural scaffold serves different roles along the learning trajectory, (I) as a visualizer for the 

extended structure; (II) as a working tool for the students to check the completeness of their explicit 

reasoning; and (III) as a framework for writing down the proof. In our design experiment, after 120 

minutes, the students write proofs with deductive chains of reasoning, even though they do not yet 

find deductive chains for more complex proofs on their own.  

Empirical insights into Katja’s and Emilia’s pathways to formal reasoning  

Katja and Emilia start their learning pathway in the way described above. Figure 2 shows the product 

of the phase of jointly introducing the structural scaffold ending with Sequence 1.  

Sequence 1: Reasoning determined by empiricism instead of validity of statements  

When asked to prove that α and β are equal, Emilia and Katja offer a typical 

initial, semantic three-word answer “vertically opposite angles” (unprinted 

Turn 339), assuming that classifying the type of relation between the two 

angles is enough. Becoming aware that they are supposed to prove the 

vertically opposite angle theorem by using arguments like the argument of 

supplementary angles (cf. Fig 2) and the calculating argument (“If there are 

angle measures, then it is possible to calculate with them like numbers.”), 

they start by naming the angles γ and δ (Figure 3). Then they discuss the 

necessary conditions and conclusions. 

362 Emilia:  […] And now we could say actually that α plus 𝛾 results in 180 degrees. 

363 Tutor: Mmm. 

364 Emilia: Also like here [points to conclusion box of the last task with α + 120° = 180°] 

365 Tutor: Yes. 

366 Katja: Yes. 

367 Emilia: And that, uh. 

368 Katja: γ plus β 

369 Emilia: Yes, so actually this can be – Yes, precisely – But we have no concrete numbers 

[points to the conclusion box previous task] – and then we can go on – so, I don’t 

know, whether we can do this in such small steps, because we have no numbers at 

all, but then we could say, α plus γ equals 120, umm, 180 degrees. And β plus δ 

equals 120, umm, 180 degree 

370 Tutor: Mmm. 

371 Katja: And…  

372 Emilia: And accordingly  

373 Katja: γ plus β – plus δ and then  

374 Emilia: yes, okay, but actually, actually we need only one, don’t we? Then it is just 

unnecessary, this angle. [points to the angle δ] – So I would say… 

Figure 3: Marking 

angles as first step 



 

 

375 Katja: … we have to – this with [6 sec break] yes, α plus γ 180 degree, then 180 degrees 

minus β 

376 Emilia: No, so I would easily write  

377 Katja:  [“unintelligible”] 

378 Emilia: α plus γ 180 degree and β plus γ 180 degree. 

379 Tutor: Yes. 

380 Emilia: And then, if, a system of equations could be created. 

When asked to explain in more detail, the students offer details of steps of their calculation (“α plus 

γ equals 120, umm, 180 degrees”, Turn 369), but do not explicate the warrants for these relations 

(here the argument of supplementary angles). In this way, they find out that they do not need the angle 

Interestingly, they formulate steps of action or calculation instead of general relations, and 

consequently, these steps are combined temporarily (“and then” in Turn 373) instead of logically.  

Sequence 2: Filling the argumentation structure form without verbalizing the connections 

When filling in the materialized argumentation structure form (Fig. 2), the students discuss whether 

they need δ and organize their process:  

403 Emilia: Well then – eh, I would say – I know, I think, that here [points to the argument 

box], we first write that the supplementary-argument is our argument. Then we 

think which has to be there [hints to the condition-check box] 

404 Katja: [writes “supplementary angle” in the argument box, 21 sec break] Yes, that here  

405 Emilia: Ah, I wanted to write that 

406 Katja: … that we γ here 

407 Emilia: Yes, that α and β have the same supplementary angle. 

408 Katja: [3 sec break] Where? 

409 Emilia: Here [hints a finger at the condition check box] 

410 Katja: [writes in the condition check box: α and β have the same supplementary angle γ] 

[…] [Discussion with the tutor, if the second angle δ is necessary] 

417 Emilia: Yes, okay. – Umm, then I would now write here, umm, - α plus γ equals 120 degrees 

and β plus γ equal 120, umm, 180 degrees. Why do I always say 120? Yes, 

418 Katja: [writes both equations in the conclusion box, cf. Fig .2] 

The students succeed in filling in the argumentation structure form mostly without help from the tutor. 

In particular, they correctly identify all elements of the logical structure, first choosing the argument 

and then checking whether its precondition is satisfied (Turn 403). After filling in the form, they 

condense the proven theorem as a new argument to be used for further proofs (in non-printed Turns 

452-471): “Argument of vertically opposite angles: If two lines cross each other, then the opposite 

angles are equal. (They are called vertically opposite angles.)”. This illustrates how the scaffold 

supports them to produce a complete argumentation and to understand the logical structure. However, 

it is remarkable that they still do not use any logical connectors to relate the different elements to each 

other. The language is rather deictic (“here”, “there” in Turns 403, 404, 409, 417), but the logical 

relation between the elements is not verbalized by the students. To give an expert model of how the 

connections could be expressed, the tutor finally intervenes as follows: 



 

 

474 Tutor:  […] Also this condition of point of intersection was considered, so that we have 

two times two supplementary angles. Here as condition, and because we have 

supplementary angles, we could use the supplementary-argument that says that a 

pair of supplementary angles add up to 180 degrees. Therefore, it can be used for 

our supplementary angles and umm, here two times two were regarded, this means 

we have two times this equation with, umm, our angles. […]  

Sequence 3: Mastering formal reasoning 

After determining a specific alternate interior angle, 

the next task for Emilia and Katja is to prove the gen-

eral alternate interior angle theorem (Fig. 4). For 

constructing their formal argumentation structure, 

the students are given the equality argument (If δ = μ 

and μ = π, then δ = π. (transitivity)) and the corres-

ponding angle argument (which can only be derived 

from the parallel axiom and is hence left unproved 

for the students, cf. Fig. 1). Again, the students 

successfully construct a complete argumentation 

structure supported by the structural scaffold of the 

form. Based on an enriched sketch, they deduce the 

theorem in three steps (cf. Fig. 5): In Step 1, the use 

the vertically opposite angle for deriving that  =  

In Step 2, they use the corresponding angle argument 

for deriving  = . For deriving that  = , they use 

the equality argument and produce the last chain of 

reasoning in Step 3. 

The written text produced by Katja for this last step 

shows what she has learned (cf. Fig 6). Katja’s text 

provides at least situational evidence that she has grasped the logical structure of formal reasoning 

and can express some of the logical connections. In contrast to the beginning of the students’ learning 

pathway, she makes explicit the warrant (“the equality argument says that”) and the conditions of its 

application (“Now, we know that  and β have the same measure and α and β.”). For expressing the 

logical connections, she adopts elements of a language offered by the tutor in Turn 747 (“the 

supplementary-argument that says”). She also expresses the deduction from the argument to the 

conclusion: “from this we can conclude”. However, the order of aspects is still the order of discovery, 

not yet the strict order of formal reasoning as the conditions are again guaranteed after using the 

argument.  

Figure 4: Alternate interior angle theorem 

 
Give reasons for the following theorem: If the 
lines g and h are parallel and line a crosses 
them, then the angles a and g have the same 
measure.  
 

Figure 5: Katja’s and Emilia’s three 

steps of formal proof for the 

alternate angle theorem 



 

 

 

Figure 6: Katja’s verbalization of the third step of reasoning 

Looking back to Sequence 1 – Sequence 3 

In total, these three sequences from the students’ learning process provide insights into the students’ 

pathway from their everyday argumentative resources towards formal reasoning, their induction into 

mathematical proof as a cultural practice. The structural scaffold strongly supports comprehending 

of the logical structure, the designated Function (I). The students also capture the norm that the 

practice of formal reasoning is characterized by making explicit every element in the logical structure 

(every box must be filled, Function II). However, the scaffold alone does not sufficiently support the 

process of talking about the logical structures, as visible in Sequence 2. Hence, the structural scaffold 

had to be complemented by language scaffolds (in this case oral expert modelling offered by the 

tutor). The written product from Sequence 3, finally, shows that the students can adopt the language 

scaffolds for communicating about the formal deductions.  

Discussion and outlook 

The case study of Katja and Emilia gives a first indication for the potential efficacy of the structural 

scaffolding. Other pairs of the 10 students in Design Experiment Cycle 3 also succeeded in mastering 

formal reasoning, supported by the scaffold. Filling the boxes serves as prompts for identifying every 

single aspect of the logical structure (data, warrant, and conclusion) and the satisfaction of 

preconditions of argumentations. The specific strength of the materialized structure form is that it not 

only makes the logical structure visible, but also permits students to complete the form in non-linear 

order. Based on this structural scaffold, the students’ written texts are mostly produced in linear, 

deductive order. As with any provided format, it can be done non-generatively, passively, locally 

filling each box but not attending to what role the boxes play in formatting the reasoning. However, 

not only Katja and Emilia but also other students we observed benefited from the scaffolding as they 

learnt to distinguish between preconditions, if-then-statements and conclusions. The scaffold suppor-

ted the students to express the relations between the elements of the logical structure verbally and to 

reflect amongst other things about the generality of the statements or which characteristics of the 

sketches are important. These features are crucial to increase awareness of formal reasoning.  

Of course, the study still has methodological limitations which have to be overcome in later cycles or 

future research. Limitations concern the sample size (2 students presented, 10 in total) which is not 

yet representative. So far, the teaching-learning arrangement is focused on one specific topic, the 

angle theorems, which need to be extended to other topics in future research in order to gain evidence 

of the overall claim of efficacy. The most important limitation in view for the next cycle of the 

presented project concerns the language: we intend to identify the phrases and syntactic structures 

which appear to be necessary for students to realize the need to articulate the logical connections 

“Now we know, that γ and β have the same measure 
and α and β. The equality-argument says, that if the 
first angle has the same measure as a second and 
this has the same measure as a third, that the first 
and the third have the same measure. Here the first 
is γ, the second β and the third α. From this we can 
conclude that γ has the same measure as α.” 



 

 

between the elements in the argumentation. This will provide support for the students on the linguistic 

level as well as on the logical-structural level. 
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The issue of students’ misconceptions in mathematics and how to prevent and deal with them in 

teaching has been a major concern of mathematics educators since at least four decades. At the 

same time our knowledge about the processes of developing understanding and skills in proof and 

argumentation from early school years has increased. We argue, that there are connections 

between these two areas of studies important to make explicit for teachers. In this paper, we first 

elaborate the relation between the research on students’ misconceptions and the ideas of 

developmental proof. Then we present the relevant results of an empirical study about how 

mathematics teachers in the field interpret this relation. Our conclusion is that there are important 

connections between these two research fields that are not always visible for teachers.  

Keywords: Misconceptions, developmental proof, teacher education, MKT. 

Background 

Teachers’ knowledge about students’ misconceptions in mathematics and how to deal with them has 

been pointed out as an important part of teachers’ mathematical knowledge for teaching (MKT) 

(e.g., Hill, Rowan & Ball, 2005). Knowledge about them has also been raised as an important part 

of educative curriculum materials and many of these provide information about common student 

misconceptions and suggestions on how to address them (Cengiz, Kline & Grant, 2011). At the 

same time a growing number of research articles have raised the importance of enhancing students’ 

skills and understanding of proof and proving and research has shown that it is possible and 

beneficial to start to develop students’ proof-related competences during early school grades (e.g. 

Hanna & De Villiers, 2009; Hemmi, Lepik & Viholainen, 2013). This knowledge can also be 

considered a part of MKT, and in line with knowledge of students’ misconceptions close to what 

Shulman calls pedagogical content knowledge. Research shows that teachers who have strong 

knowledge in different areas of MKT are more able to create opportunities for extending student 

thinking (e.g. Hill et al. 2008). This is especially important to consider in teacher education and 

teacher professional development. Yet, the relationship between specific aspects of MKT still 

remains unclear (cf. Cengiz et al., 2011). This study contributes to the field by investigating the 

relation between two particular research areas, namely the knowledge about students’ 

misconceptions on the one hand and the development of understanding of and skills connected to 

proof and proving. More specifically, we do not consider students’ misconceptions in a deficit (cf. 

Jaworski, 2001) manner but investigate how we could use them to enhance students’ understanding 

of proof and vice versa. The following questions are in the focus of this study: 

1) What kind of connections can be found between the research field concerning students’ 

misconceptions and the development of students’ knowledge and skills with respect of 

proof? 

2) How do teachers relate to students’ misconceptions, proof and the relation between them?   



 

 

First, we offer an analysis about the connections related to the first research question. Then, we 

briefly describe the methodology of the empirical study focusing on upper secondary school 

teachers’ conceptions about these areas. Finally, we report the results of the empirical study and 

discuss them in the light of the connections found in the theoretical section.  

Misconceptions in mathematics related to developmental proof 

Hanna and de Villiers (2008) introduced the idea of developmental proof as something that should 

grow in sophistication in action, perception and language as the learner matures towards more 

coherent conceptions. We have earlier concretized the idea of developmental proof by identifying in 

research literature and school curricula proof-related competences that could be developed through 

the school grades from 1 to 12 (Hemmi et al., 2013). These competences address besides the 

development of argumentation and proving, the meta-level knowledge about proof, such as the 

character of mathematical definitions, methods of proofs, logical and formal aspects that often 

remain invisible for students (cf. Hemmi, 2008) as well as investigations with validation of either 

students’ own or others’ reasoning and results. For a comprehensive description see Hemmi et al. 

(2013).  

Research on misconceptions and how to prevent and deal with them has roots in cognitive research 

and constructivism. For example, some researchers claim that students find it difficult to give up 

their misconceptions as they have actively constructed them (e.g. Egodawatte, 2011). Further, 

research on misconceptions is often concentrated within a certain topic in mathematics or science. 

One of the earlier ideas about reasons for misconceptions is that of Fischbein (1994). He defines 

three basic components in mathematical practice: the formal, the algorithmic and the intuitive. 

According to Fischbein, the intuitive knowledge is often experienced as self-evident and may not be 

problematized or deeply justified in school mathematics and therefore may conflict with the 

mathematical, logically proved “truths”. Scholars agree that the main function of proof in school is 

to offer explanations (e.g. Hanna & de Villiers, 2009). Yet, the explanations offered in early school 

years for operations of natural numbers do not always explain properties of operations when 

operating in other domains. For example, the concept of multiplication is often explained as 

repeated addition, in order to reveal connections between arithmetic operations. Yet, this 

explanation leads to an intuitive conception that multiplication always results to a bigger number 

than the one you multiply (cf. Fischbein, 1994). When students start to operate with rational 

numbers this intuitive belief could be made visible and be challenged by investigations, 

explanations and justifications developed by the classroom community. The transition from the 

domain of integers to the domain of rational numbers could offer a fruitful platform for 

developmental proof concerning some logical aspects of reasoning connected to universal 

statements’ truth-values in different domains (see e.g. Durand-Guerrier, 2003). Hence, we argue that 

besides prevention of future misconceptions in mathematics, this kind of testing and challenging of 

intuitive rules could also develop students’ understanding of proof in mathematics and the other 

way around. 

Another example about misconceptions that can be connected to intuitive rules is “over 

generalizing”, often involving improper use of analogical reasoning, for example in connection to 

ratio between area of a figure and volume of a figure (see, for example, Tirosh & Stavy, 1999; 



 

 

Chick & Baker, 2005). These kinds of misconceptions also offer excellent possibilities for students’ 

investigations and proofs where students could for example develop their understanding of 

differences between analogical and deductive reasoning. Indeed, new approaches to proof using 

students’ investigations have been developed and tested in order to enhance students’ skills and 

appreciation of proof as an important part of doing mathematics (e.g. Heinze & Reiss, 2004). These 

studies often advocate investigative approaches covering the whole process of proving, starting 

from the first experiments to generate an idea for a hypothesis up to the final step of writing down 

the complete proof. We think, that beside this, it is also beneficial to conduct continuously smaller 

investigations about truth-values of various statements, for example connected to algebraic laws. 

Scholars agree that several identified student misconceptions are due to students’ difficulties in 

algebra. The idea of developmental proof has parallels with ideas about children’s development 

from an understanding of arithmetic to algebra (cf. Hemmi et al., 2013). For example, the generality 

of reasoning is an important component in investigations and proving where the move from 

concrete and specific to general is needed when justifying the conjectures made on the basis of the 

observations of regularities.  

Application of rules to situation where the rule is not valid is still another type of misconceptions 

found in the literature (e.g. Fischbein, 1994; Egodawatte, 2011). As an example consider the 

following typical misconception in simplifications of expressions (Egodawatte, 2011): 

(1) (2 + x)/x = 2        (2) (12 ∙ 2x)/2 = 6x 

The rule applied in the first example is valid for rational expressions with only multiplication in the 

numerator, but not with addition, while the rule applied in the second example is valid for rational 

expressions with addition in the numerator. Typical misconceptions also concern the use of the 

distributive law in situations where it is not valid (e.g. Fischbein, 1994). These kinds of 

misconception could be regularly used as an object for investigations in order to enhance students’ 

understanding of treatment of algebraic expressions and derivation of rules. Explanation in 

mathematics often refers to making mathematical connections explicit. Kuchemann and Hoyles 

(2009) emphasize the importance of the mathematics instruction to move from a computational 

view of mathematics to a view that conceives mathematics as a field of intricately related structures 

in order to develop students’ proving competences. Seeing connections and mathematical structures 

is also an important proof-related competence connected to developmental proof (Hemmi et al., 

2013).  Still another kind of misconception identified in the literature is connected to mathematical 

definitions. For example, several researchers present similar ideas about students who often operate 

as if all functions were linear (Tirosh & Stavy 1999). This is connected to development of 

understanding the role and character of definition in mathematics, also identified as an important 

aspect of developmental proof (Hemmi et al., 2013). 

Scholars have also attempted to explain why some misconceptions are developed and how to deal 

with them to change them (e.g. Tirosh & Stavy, 1999). There are significant connections between 

the suggestions offered to deal with students’ misconceptions and the developmental proof, for 

example, the understanding of counter example, critical thinking, and argumentation with peers. 

Several studies show that erroneous conceptions are so stable because they might be correct in some 

instances. Scholars state that teachers should encourage students to critically evaluate their solutions 

and develop a skeptical approach to their intuitive rules. Balacheff (2010) points out that proving is 



 

 

the most visible part of validation and something that cannot be separated from the ongoing 

controlling activity involved in solving problems or achieving tasks. Scholars also advocate the use 

of common misunderstandings for planning of effective sequences of instruction by both using 

situations where the intuitive rule is valid and where it is not valid in order to create cognitive 

conflict. Creating cognitive conflict by using a counter example is not always fruitful if students do 

not understand the role and the logic of counter example in mathematics. Here the development of 

students’ understanding of the role of counter example in mathematics is important and connected 

to developmental proof. Interestingly, the idea of creating cognitive conflict has also been used to 

change students’ misconception concerning the use of specific examples in validation of 

mathematical statements and the promotion of students’ feeling for the need of proof (Stylianides & 

Stylianides, 2009).  

The empirical study 

In Finland, proof was an important part of upper secondary school mathematics in the 1970s during 

a period of ‘New Math’ reforms but since then its importance has decreased significantly. Yet, the 

Finnish steering document for the compulsory school curriculum (2004) addresses a number of 

proof-related topics (Hemmi et al., 2013) and although the word proof is not mentioned in upper 

secondary curriculum, in textbooks for the advanced course, proof and deductive reasoning is an 

important part of the contents (Bergwall & Hemmi, 2017). There are two programs in upper 

secondary school mathematics in Finland. The basic course is for students who study humanities 

and social sciences while the advanced course is for those students who want to study mathematics, 

science and computer sciences at the university. 

The empirical study was conducted with Swedish speaking1 upper secondary school (about the age 

of 16-19) mathematics teachers in Finland (Julin, 2016). The aim of the entire study was to 

investigate teachers’ knowledge, experiences and views of students’ misconceptions and the role of 

proof in mathematics and in teaching. A questionnaire comprised mostly closed statements and 

questions that were developed from items in literature. For example were teachers asked to judge 

how often they had experienced seven common misconceptions and how they usually reacted to 

them when encountered them in their teaching (see Figure 1). Concerning their reactions teachers 

could choose from five methods applied from Chick and Baker’s (2005) study: counter example, re-

explain the procedure, re-explain the concept, cognitive conflict, and probe student thinking. These 

methods were shortly described in the questionnaire. The items in the questionnaire also addressed 

proof in mathematics and in teaching and finally the relation between misconceptions and proof. As 

a complement to the quantitative part we also posed an open question: “Explain shortly why you 

use/do not use proof in your teaching”, and finally there was a possibility for the teachers to freely 

write their own thoughts about these issues.  

The electronic questionnaire was sent to all mathematics teachers working in the Swedish speaking 

upper secondary schools in Finland, in all 90, and of them 36 teachers responded to the 

questionnaire. Both the gender and age distribution were representative for the whole group and the 

responding teachers’ teaching experience varied from 1 to 40 years. All teachers responding to the 

                                                 

1 About 5 % of the Finnish population has Swedish as a mother tongue.  



 

 

questionnaire were certificated mathematics teachers. The responses to the quantitative part of the 

study were analyzed using descriptive statistics and the open questions were analyzed inductively.  

Teachers’ relation to misconceptions and proof 

Most teachers (97 %) state they recognize the common misconceptions in their own teaching and all 

of them consider the knowledge about misconceptions relevant for their work. Almost 70 % of the 

teachers state that they know how to deal with these misconceptions.  

 

Figure 1: Methods used by teachers when encountering misconceptions 

Further, over one half of the teachers who state that they do not know how to deal with students’ 

misconceptions had less than 10 years of teaching experience and 36 % of them wanted to learn 

more. The methods teachers would choose to deal with students’ misconceptions varied depending 

on the character of them. The use of a counter example and cognitive conflict are related and were 

dominating among the methods that the teachers preferred (Figure 1). The least popular method was 

the probing students thinking. Yet, it seems to be usual for the teachers to use the analysis of the 

steps in the reasoning when sorting out the situation and then utilize the other methods. Some 

teachers suggested that a teacher should focus on common misconceptions already when presenting 

the theory of a new topic and explain why that is not true in order to create a cognitive conflict from 

the beginning.  

One can let students work pairwise and judge the correctness of different solutions and ask them 

to justify their judgments. Surprisingly, students are insecure and experience these tasks as 



 

 

difficult. I have tested this with both students taking the advanced course and students studying 

the basic course in mathematics. This is really instructive for both a teacher and students.  (All of 

my examples were authentic student solutions.) 

Most of the teachers stated that they used their knowledge about the common misconceptions when 

they designed their teaching and chose tasks. Yet, peer instructions (students discuss and argue 

about the correctness of different solutions) was utilized (sometimes /more often) only by 25 % of 

the teachers (Figure 2).  

 

Figure 2: Teachers’ use of misconceptions 

Mathematics is a cumulative subject. Elementary school has a great responsibility. Unfortunately 

the textbooks I have seen are quite bad. Students cannot see the structure because of all details. 

Mathematics is not only using of Pythagorean theorem or calculation of percent that students do 

without understanding. It is a logical structure. 

All the teachers consider proof as more or less important for mathematics as science and they 

present (sometimes or more often) proofs for students studying the advanced program in 

mathematics. They also agree that proof somehow contributes to the teaching of mathematics. Yet, 

only 2 teachers present proofs for students studying the basic program, one of them states that 

“proof gives often a greater broadness than ‘learning by heart’” and if students learn to prove the 

formulas then they also can modify them so that they can solve a broader spectrum of tasks. Another 

view of the role of proof in school mathematics is shown by a teacher who states: “Proofs are good 

and beautiful but in the upper secondary school reality teaching is far away from building teaching 

around proving”. About 30% of the teachers seldom let their students work with proof and proving 

by themselves. Concerning the teachers’ views of the connections between students’ 



 

 

misconceptions and proof, most of them are not convinced that proof and proving would have a 

positive effect on students’ misconceptions. Only 9 teachers agree with the statement “Proof and 

proving can help to change students’ misconceptions” and 8 teachers agree with the statement “If 

students learned proving, their incorrect steps of reasoning would diminish.” 

Concluding remarks 

The paper focuses on the relation between research on students’ misconceptions and developmental 

proof. The elaboration of the research literature on students’ misconception from the perspective of 

proof reveals several important connections between the ideas and results of the two research fields. 

However, the empirical study shows that these connections are not clear for teachers. For example, 

we find it significant that the teachers in our study most often use counter examples or cognitive 

conflict that are closely related to developmental proof as a method for changing students’ 

misconceptions but at the same time only about 25 % of them consider proof and proving as 

beneficial to prevent and change students’ misconceptions. We also recognize different views of 

proof in school mathematics among the teachers that may have crucial consequences for students’ 

possibilities to develop their understanding and skills in proof and proving and therefore also using 

students’ misconceptions as a starting point for this and vice versa. The idea of developmental proof 

is probably not in focus in mathematics teacher education. Furthermore, it is possible that teacher 

educators focus on both students’ misconception and proof but because of the different research 

traditions the connections and the possibilities of these connections between these areas may not 

become clear for student teachers. More studies are needed to investigate teachers’ views of proof in 

relation to their views of these connections in the teaching of mathematics. 
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There is a significant corpus of studies indicating that children even from the age of primary school 

are capable of providing convenient arguments and that the cultivation of this ability fosters 

learning significantly. Based on these assumptions, the present paper examines the forms of the 

arguments that students of primary and middle school use to support their answers. In particular, 

this study was divided in seven independent activities, where students of a fifth and an eighth grade 

class had to complete mathematical tasks and support with arguments how they concluded to their 

answers. We used the simplified Toulmin’s argumentation scheme and subsequently, enriched our 

findings with the argumentation scheme perspective, in order to gain a better understanding of 

student’s reasoning characteristics.  

Keywords: Toulmin, argumentation, scheme.  

Introduction 

Basic aim of the new teaching methods, starting from the new curriculum in mathematics, which 

was published by the National Council of Teachers of Mathematics in 1989, is to reinforce 

reflective thinking and shift from ‘learn mathematics’ to ‘do mathematics’. According to Dewey 

(1903), children learn effectively through inquiry-based processes, which require from students not 

only to solve mathematical activities, but also to express their thinking, state their opinion and 

finally, compare their statements with their classmates’. Thereupon, it can be stated that reasoning 

organises students’ ideas, builds strong conceptual connections and fosters mathematical thinking 

(Dewey, 1903). Following these assumptions, the cultivation of proper language skills plays a 

significant role in this thinking process, as it allows students to express accurately their thoughts by 

forming arguments. Halliday (1993) uses the phrase ‘interpersonal gateway’ to refer to the power of 

language as interactive tool in the communication between students and teachers. Regarding our 

study, we adopted Toulmin’s argumentation model in order to explore the reasoning ability of 

primary and secondary students. Toulmin’s model was first used by Krummheuer (1995) in the field 

of teaching mathematics. According to the latter, claims, data and warrants are not predetermined, 

but are constructed through the process of classroom discourse and interaction. Toulmin’s model 

can describe the structure of an argument by specifying its components, but it cannot characterize 

the quality of the particular argument. Therefore, at a second analytical level, we enhanced our 

analysis by using argumentation scheme theory, used as in Metaxas, Potari, & Zachariades, (2009). 

Theoretical background 

According to Schwarz et al. (2003) constructing knowledge is the process of composing evidence in 

such a way, that the selected claim is supported by provided evidence and further supported related 

to other co-existing beliefs. Moreover, a plethora of studies have established that argumentation 



plays a crucial role in the development of knowledge and scientific reasoning. The same holds in the 

field of education, either as a means to learn (argue to learn) or as a goal of instruction (learn to 

argue). Schwarz (2009) describes “learning to argue” as the acquisition of general skills such as 

justifying, challenging, counterchallenging, or conceding, whereas “arguing to learn” refers to the 

fulfillment of a certain goal through argumentation in a specific educational framework. In other 

words, the first path uses argumentation as a goal, while the second one as a tool that contributes to 

the learning process. In order to analyse students’ argumentation we employed the classical 

Toulmin’s model and subsequently, the recently developed, argumentation scheme approach. 

Toulmin’s theory 

Argument structure has been used several times as a tool of analysing public discourse regarding 

mathematics and their teaching. A significant number of these analysis have been conducted by 

using Toulmin’s theory. Toulmin (1958) has claimed that the traditional formal logical analysis of 

arguments is not rich enough to include parts of common arguments such as qualified conclusions, 

response to other arguments and inferences.  He proposed a model for the layout of arguments that 

consists of six basic parts, each of which plays a different role in an argument (Metaxas, Potari and 

Zachariades, 2016). The first one to apply Toulmin’s model in mathematics education was 

Krummheuer (1995). Since then, some researchers have focused on the analysis of mathematical 

arguments of students, including usage of proof in general (Yackel 2002), number skills (Evens & 

Houssart 2004), geometry (Pedemonte, 2007) and algebra (Pedemonte 2008). By studying the 

argument components a student is using when talking about a solution in mathematics, we could 

have some indication about his/her understanding and generally, his/her perception about 

mathematics.  

Argumentation schemes 

Toulmin’s model describes the structure of an argument giving its components, but it does not 

reveal much about the quality of the particular argument.  However, the content of the Warrant and 

the Backing in an argument should be considered in the evaluation process of an argument. For this 

reason, we combined Toulmin’s model with the tool of argumentation schemes to analyse the 

quality of the Warrant and the Backing. For example, a Warrant that is based on the authority of a 

source (teacher has said so...) is fundamentally different to a Warrant that is based on a 

mathematical relation or to an intuitive remark. Standard accounts of argumentation schemes 

describe them as the representation of different types of plausible arguments that, when successfully 

deployed, create presumptions in favor of their conclusions (Metaxas, Potari and Zachariades, 

2016). Argumentation schemes have been assigned a role in the analytical reconstruction of an 

argument, as well as its evaluation. In reconstruction, these schemes can be used to identify and 

categorise certain patterns of reasoning, contributing to the identification of implicit claims of the 

arguer. Moreover, a set of critical questions are associated with each argumentation scheme to be 

used in the evaluation of arguments and their correspondence with each category (Walton, Reed & 

Macagno 2008). Another significant aspect of argumentation schemes is that the evaluation of the 

argument is directly associated to the dialogue as a whole, rather than evaluating it independently 

and isolated from the context that is being constructed. Consequently, every argument will be 

evaluated via the critical questions, in the context of the dialogue of which it is a part of. Thus, 

critical questions are a kind of evaluative points, providing a list of individually necessary 



conditions for the success of particular schematic arguments. For instance, an argument can be 

characterized as weak if it fails to answer appropriate critical questions that have been or might be 

asked in a dialogue (Walton, 2006). In addition, an argumentation scheme could inform us about the 

quality of a warrant or a backing as a form of an argument (Metaxas, Potari and Zachariades, 2016).  

The structure of the course  

The theoretical underpinnings for looking at the classroom discourse was the theory of symbolic 

interactionism. Individuals are seen to develop personal meanings as they participate in the ongoing 

negotiation of classroom norms (Cobb, 1999). The centrality given to the process of interpretation 

in interaction is one of its main principles (Blumer 1969). While individuals are interacting with 

each other, they have to interpret what the other one is doing or is about to do. Each person’s actions 

are formed, in part, as he/she changes, abandons, retains, or revises his/her plans based on the others 

actions (Cobb, 1999). Moreover, the group discussions can provide participants with learning 

opportunities by turning their implicit supporting arguments into explicit. In addition, the objects of 

debate can result in a change of their status and engage them at a higher level of mathematical 

reasoning. The very act of argumentation could produce learning on the part of the arguer (Jermann 

and Dillenbourg, 2003). In our study, the materials used to trigger the discussion were tasks, which 

were based on topics that research and experience have highlighted as important.  

Data analysis  

In order to study the ability of elementary students to reason in mathematics, we implemented a 

series of activities, where the students of a fifth and an eighth grade classroom in Greece were asked 

to solve mathematical exercises and in addition, to provide with written arguments why they believe 

their answers were correct. Having analyzed all the written answers following the methodology of 

previous studies (McNeill, 2011), we drew the conclusion that students of that age have the ability 

to form arguments in order to support their solutions. More specifically, 66% of the students who 

provided some kind of argumentation, used to some extend the simplified Toulmin’s argumentation 

scheme, which is consisted of three parts; claim, data and warrant. Although not all answers had all 

three essential parts, they could be adjusted to Toulmin’s pattern arguments. Toulmin’s model 

allows students to reason in a completed way, which presents the hypothesis, the explanation and 

the solving process. Subsequently, the arguments that followed Toulmin’s model were analyzed 

according to their structure following the analysis of other relevant studies (Evagorou and Osborne, 

2013) that have taken place in the past and adopted the modified version of Toulmin’s 

Argumentation Pattern (Erduran et al., 2004). Out of the 66% that is mentioned above, nearly half 

of the students (Table 1) included all three essential parts, that is they were able to state their 

opinion (claim), provide all the necessary support (data) and finally, connect them in a sufficient 

way (warrant). This completed structure is followed by the students who managed to include the 

claim and the data to their answers, but weren’t able to provide effective warrant (33.4%). Finally, a 

little less than 20% wrote only their opinion, without justifying or explaining how the concluded to 

this claim. There is a similar pattern in secondary school students, where there is only a slight 

differentiation around 2-3% in the first two columns. 

 



Reasoning forms of Toulmin’s Model 

 Claim – Data - Warrant Claim – Data  Claim    

Primary school 47.6% 33.4% 19%  

Secondary school 45.2% 36.2% 18.6%  

Table 1: Reasoning structure of Toulmin’s Model 

The following table presents an example of each category, taken from an activity that students had 

to form the biggest decimal number by throwing a dice and placing the digit in a suitable place. 

Claim only I have to place the numbers with greater 

value in tenths etc. 

Claim-Data If I get 6, I’ll place it in tenths because 6 

is the biggest number I can get. If I get 

1, I’ll place it in thousands because is 

the smallest number I can get. 

Claim-Data-Warrant In order to win the game I have to make 

the biggest number. I need to place the 

bigger numbers in the integer part and 

the smaller ones in the decimal part. So, 

the best thing I can do is to place the 

numbers from the biggest to the 

smallest. 

Table 2: Excerpts from each category 

Having completed the primary data analysis, we studied the produced arguments using the 

argumentation scheme theory, which helped us gain insight regarding the quality of the 

argumentation used. 

Discussion 

Having analyzed the data and in correlation with previous related studies, it can be clearly said that 

elementary students can form arguments in order to justify their mathematical thinking and that the 

most common way to state their reasoning is by using Toulmin’s Argumentation Pattern (TAP). 

However, students of that age do not recognize the significant role of proof and therefore, they don’t 

understand that justification of their thinking is essential. Even though they solved the exercises 

correctly and they presented the important data, they don’t define clearly the connection between 

data and claim, which according to TAP is known as warrant. This deficiency must not be 

understood as lack of students’ ability, as in many of their answers and especially when is asked by 

the teacher they expand their reasoning and include the semantic warrant. The obvious implication 

that follows the existence of a correct claim and a written data could be the reason the students don’t 

regard as necessary to include a warrant in their answers. Consequently, this identification and 

evaluation of the missing premises or conclusions could be greatly enhanced by the employment of 



the argumentation scheme theory (Walton, Reed & Macagno, 2008), where most of the arguments 

are considered forms of plausible reasoning that do not fit into the traditional deductive and 

inductive argument forms. In this case, a further analysis is needed in order to evaluate the content 

of the argument accurately. For example, the absence of the warrant or backing is due to people’s 

belief that these are automatically entailed from the data given and there is no need for further 

justification. This deficient form of argumentation can be enriched and expanded in order for an 

argument to acquire the desirable structure. Likewise, short answers that were given by the students 

and were characterized by lack of structure, were in fact complete, if the essential parts that were 

considered obvious and were implied, are included so as to form a complete argument. Below there 

are given two examples of arguments that were at first deficient, but after expanding them, they 

transformed in complete arguments according to TAP. The first example is taken from an activity, 

where students had to form the biggest possible decimal number, using the digits that were given 

after rolling a dice six times. 

Student: I will win by putting the number to the correct places. For example, if I get number 1 I 

will place it in the thousandths. 

The above argument is considered short and deficient. However, it is clear that the student has 

understood the procedure in order to form the biggest number, but still prefers not to include all the 

essential information to his answer, as he believes that it is obvious. He argues by employing an 

argumentation scheme of illustration, which nevertheless remains without support. Nonetheless, 

after the teacher’s claim, the student added the hidden parts in order to transform his deficient 

answer to a complete argument. We give a reconstruction of the argument: 

Student: I will win by putting the number to the correct places [claim]. I have to place the      

small numbers in the decimals’ places (tenths, hundredths, thousandths) and the bigger ones in 

the integer part of the number (tens, hundreds, thousands), because decimals have smaller 

value than integers [warrant]. For example, if I get number 1 I will place it in the thousandths 

[claim], because number 1 is the smallest I can get and thousandths have the lower possible 

value compared to the other places [warrant]. 

In analyzing student’s elaboration of his argument, we can either consider the second argument as a 

continuation of the first one, in the sense of using the previous claim as the data of the second 

argument, or we could interpret the whole second syllogism as a backing of the first one. In any 

case, the scheme employed in the second argument is, again, a scheme from illustration but now 

connected to the previous scheme from established rule (I have to place …integers). As a result, 

regarding the quality of the schemes employed, the student actually elaborates his reasoning by 

using an established rule, which again is supported by a scheme from illustration. 

The second example is taken from an activity, where students were asked to estimate the product of 

a decimals’ multiplication without making the transaction, by simply observing the factors. 

Student: I have to consider what the multiplication does; if it makes the number bigger or 

smaller. 

The above claim contains the perception that multiplication can either grow or reduce the value of 

its factors. Even though he misses many essential parts, if the claim is expanded, we can take an 

efficient answer. A reconstruction of the above statement could be the following: 



Student: Multiplication can either increase or decrease the value of its factors [claim], so I have 

to consider what this transaction will do. If one of the factors is smaller than zero, then the 

product will decrease. If the factors are integers, then it depends on their value [data]. So, when 

comparing two products, the bigger will be the one that contains the bigger factors [warrant].  

 

Table 3 - Analysis of student's extended argument 

Again, taking into consideration the schemes employed, we could note the presence of a scheme 

from (positive) consequences (Walton, Reed & Macagno, 2008). The (implied) fact that in order to 

answer the posed question, we should consider the effect of the multiplication on the magnitude of 

the numbers, is a scheme from consequences. The explanation that follows is the elaboration of the 

scheme; the consequences in each case. The student explains in a more abstract (mathematical) way 

his reasoning, which is in a clear contrast to the previous excerpt (where the invocation of an 

illustration was employed).    

Our thesis is that elementary students are capable of forming arguments and reasoning in 

mathematics, but one of the main characteristics of that age is the short way they express their 

arguments and therefore the absence of basic parts. The deficient character that defines most of the 

arguments can lead to the conclusion that all students reason according to TAP, but the structure is 

incomplete, as some parts are considered obvious and children believe are excessive. Additionally, 

another interesting point is the insignificant difference between the two grades, especially if 

considered that students from the seventh grade start using and structuring their first proofs. 

Nevertheless, by taking into account the types of the syllogisms employed, in the sense of 

argumentation schemes, we could shed a bit more light into the quality of arguments used. In the 

primary school case, students used mainly schemes from illustration and from consequences, which 

probably is due to the students’ inadequate exposure to mathematical thinking or argumentation 

structuring in general. On the other hand, the eighth grade students employed more schemes from 

rules to cases, which accounts to their better understanding of the structure and function of a proof. 

As a result, although the Toulmin model is indicative of the structure of the arguments students use, 

it is not enough to discern the difference of the quality of their arguments. This could be easily 

overruled by using argumentation schemes. Finally, it should be noted that justification and 

correctness should be distinguished in the analysis of an argument. For example, a premise that is 



based on an authoritative opinion or is justified by intuition or a meme could be turn out to be false. 

Consequently, representational tools as the argumentation schemes that could exhibit the implicit 

structures of arguments can enhance the reconstruction and comprehension of the syllogism. In 

further studies it would be interesting to examine ways that will cultivate the argumentative way of 

thinking and grow the ability to express completed arguments that contain all essential parts. 
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Although the mathematical activity of proofs and refutations is widely recognised as significant in 

school mathematics, much remains under-explored about ways of facilitating such activity in the 

classroom. In this paper, we address this issue by focusing on task design in dynamic geometry 

environments. In particular, we formulate three principles for the task design and use these to develop 

classroom tasks. We analyse a task-based interview with a triad of upper secondary school students 

to show how the designed tasks stimulated their activity of proofs and refutations. 

Keywords: Proof, refutation, counterexample, task design, dynamic geometry environment. 

Introduction 

The mathematical activity of proofs and refutations described by Lakatos (1976) is significant in 

school mathematics because it enables students to experience authentic mathematical practice 

(Lampert, 1992). Although several researchers have described student behaviour with Lakatos’ 

terminology (Komatsu, 2016; Larsen & Zandieh, 2008), few studies have examined ways of 

purposefully introducing such activity into classrooms (Komatsu, Tsujiyama, Sakamaki, & Koike, 

2014; Komatsu, 2017; Larsen & Zandieh, 2008). Given the importance of mathematical tasks for 

student learning (Kieran, Doorman, & Ohtani, 2015), this study aims at developing task design 

principles and actual tasks for realising proofs and refutations. 

To achieve this purpose, we specifically focus on dynamic geometry environments (DGEs). Research 

has shown the capability of dynamic geometry software (DGS) for enhancing proof-related activities 

such as making conjectures and subsequently constructing proofs. In particular, some studies have 

shown how using DGS enabled students to discover the refutations of their conjectures and proofs 

and cope with these refutations (Healy & Hoyles, 2001; Olivero & Robutti, 2007). The successful 

use of DGS in previous research was accompanied by carefully-designed tasks (Hanna, 2000). 

Nevertheless, how the tasks were designed was often not clarified explicitly, and task design in DGEs 

remains understudied (Sinclair et al., 2016). 

To address these issues, the study reported in this paper focuses on the following research question: 

What principles can underpin the design of DGE tasks that facilitate student activity of proofs and 

refutations? 

The meaning of proofs and refutations 

Based on Lakatos (1976), we conceptualise the meaning of proofs and refutations as depicted in 

Figure 1. Students make conjectures (or are provided with statements), and then attempt to prove 

them. In this, they are confronted with refutations of the conjectures/statements or proofs, and refine 

them by addressing the refutations (Komatsu, 2016). 
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Figure 1: The conceptualisation of proofs and refutations 

As there is insufficient space to explain Figure 1 fully, here we clarify only two points. First, we take 

the meaning of proof in a broad sense such that a deductive proof may be valid only for a subset of 

all cases considered in a conjecture and statement. Second, although the word refutation is sometimes 

used only for conjectures and statements, not for proofs, this study utilises refutation for 

conjectures/statements and for proofs. These two points are epistemologically consistent with 

Lakatos’ view of mathematics. In Proofs and Refutations (Lakatos, 1976), he dealt with deductive 

proofs that were only partially valid. He also argued that proof was inextricably linked to refutations 

(Reid, Knipping, & Crosby, 2008) and coined the term local counterexamples to denote the 

refutations of proofs.  

Task design principles 

To design tasks for fostering the student activity of proofs and refutations, we develop principles for 

the task design from three aspects. First, Hanna (1995) pointed out that Lakatos’ (1976) story rested 

on the topic of polyhedra, where it was relatively easy to suggest counterexamples. This confirms 

that it is necessary to create tasks intentionally where counterexamples can be produced. Because it 

is the ambiguous meaning of polyhedra that made counterexamples possible in Lakatos’ research, it 

is essential to develop tasks whose conditions are purposefully ambiguous so that counterexamples 

can be proposed. In fact, we previously demonstrated that specific tasks that include hidden 

conditions, namely proof problems with diagrams, are useful for introducing proofs and refutations 

into secondary school geometry (Komatsu, et al., 2014; Komatsu, 2017). 

Second, research indicates that students encounter difficulties in producing proper counterexamples 

(Hoyles & Küchemann, 2002). Thus, it is important to prepare tools that foster student production of 

counterexamples. DGS could play the role of such tools in geometry education because the main 

advantage of DGS is that students can easily transform diagrams by dragging (Arzarello, Olivero, 

Paola, & Robutti, 2002) and thus the students have access to various diagrams. From research on 

dragging modalities and measuring modalities in DGEs (Arzarello et al., 2002; Olivero & Robutti, 

2007), the following are relevant to refutations of conjectures and proofs: dragging test, validation 

measuring, and proof measuring. 

Third, several studies have reported that when students encounter counterexamples, some of them 

refuse to accept the counterexamples and do not try to revise their conjectures (e.g. Balacheff, 1991). 

For resolving this problem, we capitalise on the potential of contradictions, because if contradictions 

are appropriately induced, confusion generated by the contradictions can be beneficial for learning 

(D’Mello, Lehman, Pekrun, & Graesser, 2014). To trigger contradictions, it is likely helpful to 

combine tasks intentionally (rather than use a single task) where students can recognise contradictions 



between their solutions to tasks and their thinking in subsequent tasks (Hadas, Hershkowitz, & 

Schwarz, 2000; Prusak, Hershkowitz, & Schwarz, 2012). 

In summary, we formulate the following principles of task design for fostering the student activity of 

proofs and refutations: 1) Using tasks whose conditions are purposefully ambiguous and thus allow 

the occurrence of counterexamples; 2) Providing tools that enhance the production of 

counterexamples; and 3) Increasing students’ recognition of contradictions that facilitates them to 

revise conjectures/statements and/or proofs. 

Methods 

Participants 

This paper analyses a task-based interview in which a triad of students, Kakeru, Sakura, and Yuka 

(pseudonyms), voluntarily participated. They were 11th graders (aged 16–17 years old) in an upper 

secondary school in Japan. According to their mathematics teacher, their mathematical capabilities 

were above average. The first author conducted the interview. The DGE was GeoGebra. Because the 

students had no experience with DGS, four hours was devoted, prior to the interview, to teaching the 

students the basic functions (e.g. basic construction, dragging, and measuring) of the DGE. The 

students had learnt geometric proofs using the conditions for congruent triangles and those for similar 

triangles. They were familiar with the inscribed angle theorem, the inscribed quadrilateral theorem, 

and the alternate segment theorem, all of which are related to tasks used in the interview.  

Tasks 

Q1. (1) As shown in the diagram given, there are four points A, B, C, and D 

on circle O. Draw lines AC and BD, and let point P be the intersection point 

of the lines. What relationship holds between ∆PAB and ∆PDC? Write your 

conjecture. (2) Prove your conjecture. 

Q2. Construct the diagram shown in Q1 with DGS. Move points A, B, C, and 

D on circle O to examine the following questions. (1) Is your conjecture in 

Q1 always true? (2) Is your proof in Q1 always valid? 

 

Figure 2: Tasks used in the interview 

The tasks used in the interview are shown in Figure 2. We developed them according to the 

aforementioned design principles. Q1 is relevant to the first principle that involves ambiguous 

conditions. The condition of Q1 is vague because there is no reference to the locations of points A, 

B, C, and D in the problem sentences. If the locations are changed, refutations of the proof constructed 

in Q1 can be discovered, as shown below. The second principle corresponds to Q2, where students 

are invited to construct the given diagram with DGS and produce various diagrams by dragging. The 

third principle is related to the combination of Q1 and Q2. It is, of course, possible for Q1 to stipulate 

the use of DGS to produce various diagrams for making a conjecture before proving. However, we 

designed Q1 and Q2 in the way set out in Figure 2 because we expected that proof construction in Q1 

could increase students’ conviction in their conjecture and proof. This design could lead to students’ 

recognition of a contradiction between their conviction and the subsequent refutations in Q2. 



Data collection and analysis 

The three students were asked to solve task Q1 collaboratively with paper and pencil and task Q2 

with DGS on a desktop computer. The task-based interview lasted for approximately 35 minutes in 

total. It was video-recorded and the audio transcribed. We used two cameras for the recording, one 

placed to video the students and the other placed to record the screen of the computer. The worksheets 

the students completed, and the DGS file the students made, were collected. We analysed these data 

by focusing on what type of diagram the students produced and how they dealt with the diagrams. 

Results 

Conjecture, proof, and types of diagrams the students produced 

Immediately after student Kakeru read the problem sentences in Q1, Sakura conjectured “similar?”. 

The students then wrote the following proof on their worksheet: 

In ∆PAB and ∆PDC, 

From the vertical angles, ∠APB = ∠DPC … (1) 

From arc BC, since inscribed angles are equal, ∠PAB = ∠PDC … (2) 

From (1) and (2), since two pairs of angles are equal, ∆PAB ~ ∆PDC 

After that, the students worked on Q2. As they worked, they produced and examined the six types of 

diagrams shown in Figure 3. In Figure 3a, triangle PAB (or likewise triangle PDC) is not constructed, 

while both triangles are not constructed in Figures 3b and 3c. Point P is located outside circle O in 

Figures 3d and 3e. In the type of diagram shown in Figure 3f, the students regarded points A and C 

(or likewise with points B and D) to be coincident and considered line AC (or likewise BD) to be a 

tangent to circle O. 

 

Figure 3: Types of diagrams the students produced 

In the following, we report the cases regarding Figures 3e and 3f because the students devoted more 

efforts to these types than to the other types. 

Case where point P is outside the circle 

At the beginning of Q2, the students produced the type shown in Figure 3e: 

116 Kakeru: Is the conjecture in Q1, similarity, always true? [Reading the problem 

sentence.] 

117 Sakura: Not similar. 

118 Yuka: In this case, … impossible. 

119 Kakeru: The intersection point is outside the circle. 



Here, Sakura and Yuna recognised a contradiction because although they proved their conjecture in 

Q1, they considered the type of Figure 3e to be a counterexample to their conjecture (lines 117 and 

118). Kakeru then responded to their judgement: 

132 Kakeru: We can say that they are similar. 

133 Sakura: Why? We can’t say that. 

134 Kakeru: Because. 

135 Sakura: Wait. Because. 

138 Kakeru: PAB and PDC. These are similar. This and this [angle P] are common and 

equal. Then, because [quadrilateral ABDC is] a quadrilateral that is inscribed 

to the circle. 

139 Sakura: That one. 

140 Kakeru: This [angle PAB] and this [angle PDC] are equal. 

A dispute between the students can be seen in this dialogue, where Kakeru argued that their conjecture 

was still true (line 132), whereas Sakura objected to his argument (lines 133 and 135). To respond to 

Sakura’s objection, particularly for showing the congruence of angles PAB and PDC, Kakeru 

proposed using the inscribed quadrilateral theorem (lines 138 and 140): an interior angle is equivalent 

to the exterior angle of the opposite angle. Sakura agreed with his thinking (line 139), and, thus, they 

were able to resolve the dispute by proving the similarity of the triangles in the type of Figure 3e. 

Case where a line is a tangent to the circle 

After producing the diagram type shown in Figure 3e, the students examined the type shown in Figure 

3f (note that, strictly speaking, this type is different from the original problem where line AC cannot 

be drawn if points A and C coincide.) When encountering this type, Kakeru was convinced that their 

conjecture would be still true, and proposed using the alternate segment theorem to prove the 

conjecture. Nevertheless, when he started explaining his idea to Sakura and Yuka, he had a doubt as 

to why line AP can be considered as a tangent. The students struggled to resolve this doubt. During 

their struggle, as the students mentioned only once that the type of Figure 3f might be a 

counterexample to their conjecture, they consistently anticipated that their conjecture would be true 

in this type. Eventually, they judged that line AP was the tangent by measuring the degree of angle 

PAO and finding that it was almost 90 degrees. The subsequent student interaction was as follows: 

357 Kakeru: If we consider this as a tangent, we can use the theorem about the angle 

formed by a tangent and a chord. 

358 Sakura: I see. 

359 Kakeru: We can show the similarity. 

360 Sakura: This (angle DCP) and this (angle PBA) and P. 

This dialogue shows that the students were able to prove their conjecture in the type of Figure 3f with 

the alternate segment theorem. 

Examination of the initial proof 

The students concluded their activity without considering Q2(2), so the interviewer questioned them 

as follows: “Please read again the sentences in Q2 carefully. When you say it does not hold, do you 

mean your conjecture is false, or your proof is invalid?” When addressing this question, the students 

noticed that the reasons in their initial proof were not applicable to the diagrams that they produced. 



In other words, they regarded these diagrams as local counterexamples to their proof in the sense of 

Lakatos’ (1976) terminology. For example, the following is their discussion about Figure 3e: 

456 Sakura: We wrote, “From arc BC, since inscribed angles are equal, ∠PAB = ∠PDC”. 

457 Kakeru: PAB and PDC. This [the initial proof] is for this case [shown in Figure 2]. 

458 Sakura: This [the last line in the proof] is valid, but the sentences [the second and third 

lines in the proof] are not valid, right? 

461 Kakeru: This [the initial proof] is only for this [Figure 2]. 

462 Yuka: If so, this proof … 

463 Sakura: Is not always valid, right? 

After that, the students pointed out that it was sufficient to revise the reasons in their initial proof by 

replacing the equality of vertical angles and the inscribed angle theorem with the identity of the angles 

and the inscribed quadrilateral theorem, respectively. They also examined and revised the initial proof 

in the type of Figure 3f in a similar way, with the alternate segment theorem. 

Discussion and conclusion 

The students in the interview were able to engage in mathematical activity of proofs and refutations 

depicted in Figure 1. After making and proving a conjecture, they produced diagrams to scrutinise 

whether their conjecture was always true. Although they initially judged the type of diagram in Figure 

3e to be a counterexample to their conjecture, they modified their judgement by proving that their 

conjecture was still true in this type. This proof was constructed without looking back at their initial 

proof and revising it. However, after the interviewer’s intervention asking them to consider Q2(2), 

the students recognised that their initial proof was not applicable to the types of diagrams in Figures 

3e and 3f, and revised the proof for these types. 

The three design principles and the tasks developed based on the principles were generally helpful 

for fostering the students’ activity. Based on the first principle, we used the proof problem whose 

condition regarding the locations of points A, B, C, and D is ambiguous (Figure 2). This task enabled 

the students to produce the six types of diagrams that had the potential to refute their conjecture and 

proof (Figure 3). 

With regard to the second principle, DGS in general and its dragging function in particular (Arzarello 

et al., 2002), were highly useful for producing such a variety of diagrams. In our earlier research, 

many students in a lower secondary school encountered difficulties in drawing diagrams that refuted 

their proofs in paper-and-pencil environments (Komatsu, Ishikawa, & Narazaki, 2016). Although the 

tasks used in that study were more difficult than those in this study, without DGS it would likely be 

challenging for the three students in this study to produce various diagrams different from Figure 2. 

The combination of Q1 and Q2 based on the third principle played a role in stimulating the subsequent 

students’ activity. In the case where point P was outside circle O, Sakura and Yuka felt a contradiction 

between the truth of their conjecture that was proved in Q1 and the refutation in Q2 where they judged 

the type of Figure 3e to be a counterexample to their conjecture. This contradiction triggered the 

dispute with Kakeru, where Sakura and Yuka’s judgement was revised through Kakeru’s proof 

showing that their conjecture was still true. In the subsequent case where a line was a tangent to circle 

O (Figure 3f), the students did not seem to perceive such a contradiction. This was likely related to 

the students’ earlier experience, where they could show that the type of Figure 3e, which was initially 



regarded as a counterexample, did not refute their conjecture. This experience would constitute a 

source of their conviction in the truth of their conjecture as regards the type of Figure 3f. If the 

students encountered this type prior to the type of Figure 3e, they would think that it might refute 

their conjecture, and would perceive a contradiction between their conjecture and the refutation. 

This study has limitations as it is based on a case with one set of tasks. It is necessary to develop other 

tasks based on the design principles of this study and conduct further empirical studies, including 

studies in real classroom settings, to inspect the values of the principles and tasks. Another interesting 

future issue is to examine whether the design principles of this study are applicable to content areas 

other than geometry (for example, number theory). The design principles are not conceptually 

restricted to geometry education; the ‘tools’ mentioned in the second design principle are not only 

DGS tools. This issue is worth addressing in order to extend the opportunity to introduce proofs and 

refutations from geometry into other topics in the mathematics curriculum. 
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The Hungarian curriculum for mathematics teachers’ training specializes in a problem-solving 

Seminar aimed at teaching heuristic strategies. This fact motivated our research focusing on 

problem-solving competency of teacher trainees. In this study we deal with some aspects of inductive 

reasoning. We summarize the results of a diagnostic survey. We chose a closed problem which could 

be solved through inductive reasoning, and analyzed problem solving process of 94 students. Our 

primary interest was how students apply general phases of inductive reasoning, if they use it at all; 

that is, how they conclude general statements after pattern recognition, and whether they close it 

deductively or not. 

Keywords: Problem solving, inductive reasoning, proof and proving, rational errors. 

Introduction 

In the midst of a long-term discussion on the role of metacognition and teaching heuristic strategies 

in order to enhance mathematical problem solving skills (Schoenfeld, 1985; Cai, 2010), the new 

Hungarian curriculum for mathematics teachers’ training1 explicitly specializes such a course. We 

think that there is no final rule concerning this polemics; moreover there is no comprehensive research 

focused on this student group in Hungary in this respect. One of the antecedent studies, the PhD 

dissertation (Pintér, 2012) focused solely on primary teacher trainees. Motivated by these facts we 

have begun a research to map the status quo in Hungary, with the aim to give didactical consequences 

and finding ways of teaching heuristic strategies, general problem solving skills effectively. 

According to Polya (1954), heuristic reasoning is based on induction or analogy. In this study we 

focus on inductive reasoning process only. Csapo (1997) supports the proposition that inductive 

reasoning and skills of proof develop during broad age range (Grade 1-11). We therefore assume that 

problem solving skills, especially proper utilization of inductive reasoning strategy develop after 

entering higher education, and should be subject to development. 

Inductive reasoning and inductive problem-solving strategy 

The word “induction” means a scientific procedure starting from experience. In inductive reasoning, 

one makes a series of observations and infers a new claim based on them. The mathematics education 

offers the possibility of learning the way of inductive reasoning beside the deductive one. Within the 

process of inductive reasoning Polya (1954) distinguishes stages such as observation of particular 

cases, formulating a conjecture (generalization), testing the conjecture with other particular cases. 

Haverty, Koedinger, Klahr, & Alibali (2000) identify the “function finding task” as the 

“representative of inductive reasoning” and use this term in a narrower sense as we use it, thinking 

                                                 

1 This curriculum was introduced in 2013. 
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only on open problems and determine three basic inductive activity such as data gathering, pattern 

finding and hypothesis generation. Yeo and Yeap (2009) make the difference between inductive 

observation and inductive reasoning clearer. If students observe a pattern when specialising, the 

pattern is only a conjecture and they call it ‘inductive observation’. But if students use the underlying 

mathematical structure to argue that the observed pattern will always continue, this can be called 

‘inductive reasoning’. Motivated by these approaches we describe inductive reasoning with five 

phases. (1) Observation of particular cases including looking for possible pattern as well. (2) 

Following the observed pattern, i.e. applying it for other cases. It often happens without formulation 

of a general statement. (3) Formulating a general conjecture. (4) Testing it by other particular cases. 

The result of the inductive reasoning is a general statement, but the mathematical problem solving 

process requires its deductive closure (5). The form of deductive closure could be either a rigorous 

proof or justification using the underlying mathematical structure (Mason, Burton, & Stacey, 2010). 

Moreover, Rivera (2013) uses the term of empirical structural argument, as a type of justification. 

Empirical structural argument means that one uses the steps of a logical deductive proof with concrete 

numbers or objects instead of variables. This process is closely related to the phenomenon of generic 

example (Stylianides, 2009) and transformational proof-scheme (Harel & Sowder, 2007). Thus, we 

look not only for the clues of the formal proof but the clues of empirical structural argument too while 

investigating Phase 5. 

Haverty et al. (2000) argue, in accordance with other studies, that the detection of patterns is crucial 

to inductive reasoning. In patterning activity there is a difference between near generalization, a 

description of a pattern allowing one to determine the next term in a sequence, and far generalization, 

the construction of a general rule or a far stage in the pattern (Rivera, 2013). Solving the problem we 

investigated in this research requires mainly the near generalization activity; the formulation of a 

general rule could be useful, but is not necessary. 

We identified in many cases that a mental manipulation process led to the inductive observations. 

The same phenomenon was detected by Simon (1996) who defined the concept of transformational 

reasoning, which is rather a dynamic process. Transformational reasoning visualizes the 

transformation of a mathematical situation and the results of that transformation. The conjecture is 

drawn from the result of the mental manipulation. 

Besides inductive strategy, some other strategies may work for many closed mathematical problems. 

As Ben-Zeev (1996) pointed out, the schema-based thinking could be a useful way for organizing 

mathematical experiences. Using a schema – the knowledge structure for a particular class of concepts 

– in a proper way can predict the solution of the problem. However, schematic reasoning often lead 

to rational errors when applied rigidly or without understanding the context. The term rational error 

“refers to process where student first induces an incorrect rule and then proceeds to follow it 

“correctly” in a logical consistent manner” (Ben-Zeev, 1996, p. 65). 

In this current study our main focus is on the way of problem solving of our teacher trainees with 

special interest in inductive reasoning. Thus, we have formulated the following research questions. 

Q1 Whether they use inductive arguments during the problem solving process or not? 

Q2 If not, what are the frequent types of their reasoning? 

Q3 What are the characteristics and the typical errors of their inductive reasoning process? 



  

In order to answer these questions we constructed a problem which may be solved in different ways, 

among others using inductive strategy. 

The problem 

In Figure 1 𝐴𝐶1 = 𝐶1𝐵1 = 𝐵1𝐶2 = 𝐶2𝐵2 = 𝐵2𝐶3 = 𝐶3𝐵3. 

1. If 𝛼 = 15°, find 𝛽. 

2. How many isosceles triangles can be drawn following the algorithm presented in the figure? 

3. For some 𝛼, we can draw exactly 9 isosceles triangles. Find 𝛼. 

 

Figure 1: The initial problem 

The first question requires only minimal geometrical knowledge; moreover, the completion is the 

only cognitive operation needed, where by completion we mean finishing arithmetic operations in 

this context. The second question tests whether the student could follow the algorithm given by the 

figure. Our hypothesis was that the third question should be a mathematical problem for our students. 

Since the solution is completely determined by the underlying geometrical structure, this problem is 

suitable for examination Phases 1-5 of inductive reasoning.  

A possible strategy is based on two steps. (1) The 𝑛th isosceles triangle has angles with measure 𝑛𝛼 

on its base. (2) If we can draw the 9th triangle, then 9𝛼 < 90°; moreover, we cannot draw the 10th 

triangle, thus 10𝛼 ≥ 90°. It means 9° ≤ 𝛼 < 10°. 

Our primary interest was in Step (1). If the student uses this general statement, how he or she 

concludes it. This “general approach”, i.e. when we use a general 𝑛 in the solution instead of a 

concrete number of triangles, may appear in all parts of the solution; however it is not necessary for 

this particular problem. The reason is that only near generalization is involved here, i.e. direct 

methods (drawing, counting, and determining all the angles) could be effective (Rivera, 2013). 

We highlight here only one more question: how students deal with the last possible triangle? We 

briefly refer to this question as “condition for halt”. 

Dimensions and methodology of the research 

In academic year 2015/16 we investigated the solution of the problem described above with 

involvement of 94 students, including 49 prospective primary school teachers and 45 prospective 

secondary and upper secondary school Mathematics teachers. Solving of the problem does not require 

advanced mathematical knowledge and skills. Thus, we do not distinguish between these two groups 

in our research. The base group consists of 83 students (S01-S83 in the transcripts). In this group we 

investigated students’ written elaborations. The interview with 11 other students completed the frame 

of this research (S84-S94). During the interviews we followed students’ activities and made sound 

records. Students were asked to say out loud what they are thinking of when solving the problem. We 

corrected numerical errors immediately; otherwise we did not put guiding questions. 



  

Results: Students’ activity during problem solving 

Overview 

Analysis of students’ performance handling the third question represents the overall problem solving 

process well. We identified two classes of solutions (Figure 2). Concrete solution class means that 

student deals with 9 triangles only and sticks to the text verbatim. Because the third question is a near 

generalization of the previous one, this plan is acceptable. By general solution class we mean, that 

solution works for arbitrary number of triangles. Some students used more than one strategy. 18 

students didn’t show up any strategy, 5 of them ignored the problem, and 13 students could only 

compute the angle of the 5th triangle.  

 

Figure 2: Strategies and activities with number of students following the particular strategy 

Reverse strategy 

By reverse strategy we mean here that student’s starting point is the final configuration with 9 

triangles. This is a successful approach, where the student investigates the figure with 9 and 10 

isosceles triangles and computes all the necessary angles directly, with or without showing signs of 

pattern recognition. We encounter this approach in 2 interviews, but nobody completed the third 

question using this strategy in the base group.  

Trial and error approach 

Trial and error strategy is characterized by repeated, varied attempts which can be continued until 

success. Although this approach appeared 33 times, in most cases it played certain role in the 

inductive reasoning. 10 students applying this strategy did not show inductive or any other strategies; 

however, in 4 cases the activity was controlled with the (unproven) hypothesis that 𝑛(𝛼) is a 

decreasing function, where 𝑛 is the number of isosceles triangles. One student in the interviewed 

group followed this pattern. Her view demonstrates that trial and error could be a rational activity 

even for this problem. After reading the text, her first and immediate reaction was applying trial and 

error method. After two trials with angle measure 10 and 5 the interviewer interrupted her: 

Interviewer: Do you think that the solution is an integer? 

S86: Certainly. 

Interviewer: Why? 

S86: I don’t know… It is a nice problem and the solution should be a ‘nice’ integer. 

Interviewer: [He gave a hint that 𝛼 ∈ ℝ.] In what cases is trial and error effective? 



  

S86: When we have small number of cases to check. [She gave up.] 

The transcript points out the role of student’s belief in the problem solving process (Schoenfeld, 

1985). Theoretically she knows that her effort is hopeless, but her belief in ‘nice’ solution overwrites 

this knowledge. In this context the false trial and error strategy is a rational error here in the sense of 

Ben-Zeev (1996), because if 𝛼 is an integer then we have finite number of integers to check. We 

detected 24 students with belief that the solution is an integer but in some cases with sign of 

uncertainty, e.g.  “If we reject the condition that 𝛼 is an integer, then we have infinite possibilities” 

(S37). 

Schematic reasoning, false scheme 

Schematic reasoning is the process of reasoning by which new information is interpreted according 

to a particular schema. In our problem the number of isosceles triangles is 𝑛(𝛼) = ⌈
90

𝛼
⌉ − 1, where 𝛼 

is the given angle. This function, to be more precise, some approximate idea of 𝑛(𝛼) appeared in 

students’ responses. First of all, 𝑛(𝛼) is a decreasing function, and 15 students referred to this 

property properly or erroneously (i.e. in strict form) without proof or explanation. The following 

transcript demonstrates the typical usage of this observation. Previously this student settled that for 

𝛼 = 9° there are 9 triangles. “If 𝛼 < 9°, then the number of isosceles triangles is more than 9” (S10). 

We presume that the transformation reasoning (Simon, 1996) is behind this recognition. Some 

students showed explicit evidence of transformational reasoning. We encountered sentences like the 

following transcript 5 times in the base group. “If we decrease the angle, then we get more triangles” 

(S03). Students’ observations are the result of the mental transformation of the angle. 

In some cases it invoked the scheme of inverse proportionality or the misconception of strictly 

decreasing 𝑛(𝛼) function. Two false solutions with inverse proportionality scheme appeared in our 

experiment and caused a rational error. Two other students referred to inverse proportionality, but 

later revised the idea. 

Other false scheme was the direct proportionality scheme. Perhaps the following interpretation of the 

problem invokes it. “In case of 15° we have 5 triangles, how much is the angle if we have 9 triangles?” 

This is a common pattern in elementary word problems. Transcriptions of data demonstrated in Figure 

3 strengthen this presumption. Data from the second question is not necessary to answer the third 

question, but students who applied the direct proportionality scheme connected data in this way. S13 

misprinted the angle and used 30 instead of 15. S36 revised her outcome. S08 finds 𝑥 by the ‘proper’ 

way: 5𝑥 = 9 ∙ 15. He just began the division (the tick between digits 3 and 5 indicates this), but 

presumably rejects the result which he found too big and finishes the calculation “forcing” a more 

reasonable result. Direct proportionality appeared 5 times, but 1 student revised this solution.  

 

Figure 3: Direct proportionality (left: S13, center: S36, right: S08) 



  

Looking for a general solution using inductive strategy 

We consider that the inductive strategy appears if a student reaches at least the first phase of the 

inductive reasoning process i.e. at least observes particular cases and looks for a possible pattern. 

Half of the students in this research (47 people from 94) used or tried to use this problem solving 

strategy. (Some of them used other strategies too.) Eight students stopped at the first stage because 

of the possible lack of near generalization ability. In the second phase (near generalization) the others 

determined the 9th and the 10th angle in the sequence in a way that they skipped some members and 

tried to transfer the “condition for halt” observed before. In our problem we didn’t ask to formulate a 

general statement; however 11 students made it (far generalization, Phase 3). The statements were 

expressed either by symbols or by words, like S85 told “Thus the length of one step is equal to the 

opener.” [The difference between the base angles in two consecutive triangles is equal to the given 

angle.]2 

We wondered whether the students feel the need of testing their conjecture by other particular cases 

or not (Phase 4). The following transcript represents this phenomenon well. After calculating 𝛼, 2𝛼, 

and 3𝛼 S88 said: “I’m sure the result will be something similar. 𝛽 equals probably 5𝛼, but I will 

compute it.” 13 solutions contained test of the near/far generalized conjecture. 

Concerning Phase 5 (deductive closure) we confronted with the dilemma of “proving or not”. The 

near generalization feature of the problem probably caused the fact that no one has felt the necessity 

of proving of the observed and applied conjecture. The following transcript represents a typical 

attitude during the interviews: 

Interviewer: Why are you sure that the 9th angle equals 9𝛼?” 

S93: Because it was clearly visible, and I felt that it will work always in the same way. 

The clue of empirical structural argument (Figure 4) appeared only in 5 works. Previously S88 

determined the 5th angle without any skipping, after that she skipped to the 9th angle directly. 

Here the recursive counting procedure confirms that the measure of the angle increases by α. 

 

Figure 4: Empirical structural argument of S88 

Four students were able to make a correct deductive closure of the inductive reasoning by 

mathematical induction proof after the interviewer asked them to prove their conjecture. One of them 

said “I can prove if you wish.” (S93) 

                                                 

2 Rephrased by the authors 



  

Typical error during inductive reasoning: spurious abstraction from irrelevant feature 

Solving the first and second problem, students have some previous experience in the third problem. 

In 18 solutions we found that they abstracted a false rule from a previous experience, what is more, 

from one particular case. We highlighted only a few examples here. In the third part of the problem 

2 students used the same difference (i.e. 15) for the arithmetic sequence of base angles as in the first 

part of the problem. In 2 cases the starting point was that the measure of base angles of the last 

possible triangle always equals 75. The most frequent spurious abstraction concerns the “condition 

for halt” (12 students). In Figure 1 ∡𝐴𝐶3𝐵3 = 90° causes the halt. Generally this condition is 

∡𝐴𝐶𝑛𝐵𝑛 ≤ 90° (for the smallest 𝑛), but these students kept the equality instead of inequality. The 

following transcript is a typical answer to the third question: “90/10 = 9, because in this way the 

tenth triangle would have two right angles” (S16). 

Findings and interpretation of results 

The students involved in this research dealt with the presented problem in many different ways, and 

we detected many different solution strategies. Thus, we conclude that the chosen problem was an 

appropriate instrument to answer our research question in particular and to make some conclusions 

in general. We have summarized our findings for research questions as follows. 

Q1 50% of the students used inductive arguments during their problem solving process. 

Q2 In the other cases the most frequent type of their reasoning was trial and error strategy. Other 

strategies appeared, namely schematic, and reverse as well. Furthermore, we found that lot of 

students (19% in this research) did not go beyond the computational activity; they did not have 

any other idea. Yeo and Yeap (2009) describe the same phenomenon for weaker students. 

Q3 We found an uncertainty in inductive reasoning: students formulated conjecture from a few 

particular cases; moreover, they did not confirm it and 95% of students did not make any form 

of deductive justification. They often abstracted a false rule from a previous experience, what is 

more, from one particular case. Students relied on their intuitions without doubt; and this 

behavior calls for rigid schemes. They often mixed or changed these strategies without any result. 

Possible explanations of these findings are complex. First of all, our students are not familiar with 

heuristic strategies, especially with strategy for determining patterns. The recognized pattern which 

described the relation between the angles and the number of triangles was a plausible one in their 

mind instead of a definite pattern in situation with well-defined mathematical structure. Moreover, 

the common misconception appears in the interviews that particular examples prove a general 

statement. With respect to the function concept we conclude that it is not deep enough, students have 

difficulty with step function. In many cases our students had in mind natural numbers instead of real 

numbers, as possible values of an angle, which suggests that their number concept is very simple 

and/or their belief in “nice whole number” solution is very strong. 
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The aim of this paper is to understand how a proposed set of design principles regarding tasks and 

teacher actions provide students with opportunities to justify. We see justification as a reasoning 

process that relies on mathematical concepts, properties, procedures, ideas, and, in some 

situations, particular cases. The teaching intervention, part of a design-based research, is carried 

out in a grade 7 class of an experienced teacher in nine lessons about linear equations. Data is 

gathered by classroom observations (video and audio recorded) and a researcher logbook. Data 

analysis takes into account a set of design principles and a framework regarding students’ 

justifications. The results show that paths of teacher’s actions that rely on the design principles 

enable students to present rather complete justifications based on logical coherence and on 

mathematical aspects of the situation. 

Keywords: Reasoning skills, teaching practices, teacher-student interaction. 

Introduction 

Developing students’ mathematical reasoning is an important aim of teaching and learning 

mathematics. Students’ engagement in reasoning processes allows them to move from using 

procedures with little or no understanding towards envisioning mathematics as a logical, 

interrelated, and coherent subject. We consider reasoning as making justified inferences (Brousseau 

& Gibel, 2005), using processes as formulating questions and solving strategies, formulating and 

testing generalizations and other conjectures, and justifying them. In this paper, we focus on 

justification as a central reasoning process. Enhancing students’ mathematical reasoning in the 

classroom requires the set-up of challenging learning environments that go much beyond proposing 

students to solve exercises using well-known procedures. In order to better understand how teachers 

may foster students’ mathematical reasoning, we conduct a design-based research (Cobb, Jackson, 

& Dunlap, 2016) that relies on whole class mathematical discussions triggered by exploratory tasks 

as privileged moments to promote students’ mathematical reasoning. In this paper, we aim to 

understand how a set of design principles regarding tasks and teacher actions that focus on 

justification might promote students’ justifications during whole class discussions. 

Students’ justifications 

In the classroom, justifying, particularly justifying conjectures and generalizations, is a reasoning 

process that rarely emerges spontaneously. Often, students accept conclusions such as conjectures 

and generalizations without feeling the need to test or justify those (Henriques, 2010). In many 

situations, students focus mostly on what is familiar or on ideas that they superficially recall, paying 

little or no attention to the mathematical properties or concepts implicated (Lithner, 2000, 2008). 

However, justifying is a reasoning process central to mathematics learning, as it allows students to 

connect mathematical ideas, concepts, and objects, to present arguments to support statements and 

conjectures, to solve problems and to develop new mathematical ideas (Brodie, 2010). We consider 



justifying as a reasoning process and as the way to prove statements by relying on concepts, 

properties, procedures, and mathematical ideas and, in some situations, on particular examples. 

Justifications in the classroom can occur at different levels regarding formality and complexity. 

Brousseau and Gibel (2005) propose three different levels regarding the formality of a justification: 

Level A – Justification that is not formally presented, but that might be associated with the student’s 

actions as a model of his/her action; Level B – A formal but incomplete justification with inferences 

based only implicitly in elements of the situation or on what is considered to be shared knowledge; 

Level C – A formal justification based on a sequence of related inferences, with explicit reference to 

the situation or to what is considered to be shared knowledge. The concept of formal justification 

referred in these three levels is not necessarily the same as a formal justification in mathematics 

related to a mathematical proof, but rather to what is considered to be formal in a specific situation, 

namely accordingly to the grade level and the knowledge of students. However, as students advance 

through their schooling, formal justifications should be increasingly more formal from a 

mathematical standpoint, being sometimes equivalent to proofs or to significant parts of proofs. 

Drawing upon the classifications of Lannin (2005) and Carraher, Martinez and Schliemann (2008), 

it is possible to consider six levels of complexity: Level 0 – no justification, when the answers do 

not include a justification; Level 1 – Appeal to external authority, when the justification refers to 

other individual or reference material; Level 2 – Empirical evidence, when the justification is based 

in particular examples; Level 3 – Logical coherence, when justification is based on logic; Level 4 – 

Generic example, when the justification is deductive, but stated in relation to a particular situation; 

Level 5 – Deductive justification, when the validity of the justification is based on a deductive 

argument that is independent from the particular cases or examples. At all these levels, a 

justification presented by a student may be correct, partially correct, or incorrect. Thus, it is 

important that the students understand what validates a justification and reject justifications based 

on authority, perception and common sense (Lannin, Ellis, & Elliot, 2011).  

Tasks and teacher actions to enhance justification 

Students learn to reason by “reasoning and by analyzing the achieved reasoning processes” (Ponte & 

Sousa, 2010, p. 32). Therefore, to enhance justification processes it is necessary to provide 

situations in which students have the possibility to justify their answers. As such, in mathematics 

teaching and learning, and particularly to enhance students’ mathematical reasoning, a central aspect 

is the design of suitable tasks. It is important to understand the nature of those tasks, the ways 

students engage in them, and the interactions that may emerge (Brodie, 2010). 

Several studies refer that problem solving and exploratory tasks have potential to develop students’ 

mathematical reasoning (e.g., Francisco & Maher, 2011; Henriques, 2010). However, it is not 

necessary or even appropriate that all tasks involve questions at a high challenging level (Brodie, 

2010). Such challenge may be infeasible due to time constraints and may lead to students’ 

demotivation and loss of interest. Moreover, while designing a task, its structure and level of 

challenge should be considered according to the students to whom it is going to be proposed. In 

addition, we note that, just by themselves, exploratory tasks and problems, are not sufficient to 

foster students’ mathematical reasoning. Teacher actions emerge as equally central to provide 

situations that promote students’ mathematical reasoning. Regarding teacher actions to enhance 



justifications, Bell (2011) highlights that the teacher should help students to make sense of 

justifications, ask for alternative justifications, emphasize what validates a justification, and focus 

on the explanation of “why”. Also, it is important that the teacher encourages the students to share 

their ideas and various versions of their reasoning, seeking to consider students’ incorrect or partial 

contributions and to broaden their valid contributions (Brodie, 2010). 

Methodology: Design, participants, data analysis 

This paper originates from a broader research study that aims to develop a local theory about 

enhancing students’ mathematical reasoning in the classroom, following a design-based research 

(Cobb et al., 2016). In order to do so, we established several design principles (Cobb et al., 2016), 

i.e., heuristics that structure the intervention, based on the research literature and on a previous cycle 

of experimentation focusing on tasks and teacher actions to enhance students’ mathematical 

reasoning. Four of these principles specifically focus on justification. One principle refers to task 

design and states that tasks must include questions that ask for a justification of answers or of 

solving processes. The other three principles concern teacher actions and indicate that the teacher 

must promote situations that prompt students to (a) justify and present alternative justifications; (b) 

identify valid and invalid justifications, indicating why; and (c) share ideas, namely by accepting 

and valuing incorrect or partial contributions, deconstructing, supplementing, or clarifying them. 

This is the third cycle of design, after a first cycle that took place in lessons about sequences and a 

second cycle in lessons about linear equations. This third cycle took place in a public school in a 

grade 7 class with 27 students (12-13 years old), throughout nine lessons about linear equations. A 

detailed plan of each lesson was prepared considering tasks specifically designed to promote 

students’ mathematical reasoning and considering possible teacher actions. Each lesson plan was 

proposed by the first author and discussed in detail with the teacher, who made all the amendments 

and adjustments that she felt necessary considering the class characteristics and the available 

resources. The participating teacher was selected because of her experience and her availability to 

consider changes on her practice. All participants in this study are volunteers, provided an informed 

consent, and their names are fictitious. 

Data analysis is centered on the design principles regarding tasks and teacher’s actions and also on 

students’ justifications. The episode that we present is from lesson eight that aimed to lead students 

to be able to relate equations and functions. This lesson was directly observed and video and audio 

recorded and notes were made in a researcher’s logbook. 

An episode about equations 

Task and context 

The episode presented in this paper focuses on the first part of the task proposed in lesson eight of 

the nine lessons that constitute the linear equations unit. This segment of the task (Figure 1) aims to 

lead students to establish a procedure to figure out the intersection point of two functions. Earlier in 

the school year, the students learned about algebraic and geometric representations of linear 

functions, with no participation from the researchers. 

 



Frances received a plant as a gift and she registered its growth. Simon thought it was a really nice idea 

and, on the same day, bought a plant and also registered its growth. The functions that follow 

represent the height of both plants on their first days with the students: 

  Frances’ plant: f(x)=0.4x  Simon’s plant: s(x)=0.2x+2.2 

1. Represent graphically the functions f and s. 

2. Based on the previous representations, indicate on which day the plants have the same height. 

3. Consider the comment: “Graphs are not necessary to know on which day the plants have the same height. 

Knowing the functions that represent the height of each plant is enough to find out when they are equal”. What 

would be the other approach to figure out the day when the plants have the same height? Justify your answer. 

Figure 1: Proposed task about functions and equations 

In the first two questions of this task, the students can support their answers by using GeoGebra app, 

as this particular school has iPads available by request. This was not the first time that the students 

used either the tablets or GeoGebra. Taking into account the design principle regarding task design, 

question 3 asks for a justification. 

Justifying based on knowledge about functions 

At the beginning of the lesson, the teacher asks a student to read the questions to the class and 

clarifies the aims of the task and the tools to use. Then, students work autonomously, in pairs, for a 

couple of minutes. After inserting the algebraic expressions of the functions in GeoGebra, some of 

them state that the plants have the same height on the 11th day. The teacher begins the whole class 

discussion by asking for a justification to that answer: 

Teacher:  How do you know that it is on the 11th day? (Several students raise their hands in 

order to answer.) Isa. 

Isa:  Because, if we check, both straight lines intersect in 11. 

The teacher’s invitation to justify (principle (a)) led Isa to justify her answer to question 2 based on 

her previous knowledge about functions. This justification is incomplete regarding referencing “in 

11”, however, it refers to elements of the situation, namely, the graph representations of both 

functions and the intersection point. Thus, Isa presents a generic justification regarding the available 

data (level 4 justification). 

Aiming to complete Isa’s answer (principle (c)), the teacher revoices this student’s answer leading 

to a more accurate justification:  

Teacher:  In 11... 

Isa:  In point 11. 

Teacher:  In point 11? 

Gabriel:  Abscissa. 

Teacher:  In the point with abscissa 11.  

By referring to parts of students’ answers, the teacher implicitly identifies what is invalidating the 

justification (principle (b)), and based on the students’ answers, the teacher highlights what 

completes the justification (principles (b) and (c)). 



After validating Isa’s answer, the teacher decides to go further on justifying, asking for another 

justification (principle (a)): 

Teacher:  Why am I looking at the intersection in x-axis . . . For the value in x-axis? 

Isa:  Because x[-axis] is the axis of objects... 

Teacher:  Yes… And how do I know if I am looking for an object or looking for an image? 

Isa’s justification relies on mathematical concepts (level 3 justification), however, her statement is 

not sufficient to provide a justification in this specific situation as it does not relate to the context of 

the problem. Once again, the teacher validates a partial contribution from Isa and encourages the 

students to complete that contribution (principles (b) and (c)). Another student tries to justify, but he 

does not add any information to what Isa has already said. Then, Gabriel participates in the 

discussion:  

Gabriel:  I think it is because the height is in… In... I just forgot the name. 

Teacher:  The axis… 

Gabriel:  The ordinate, the ordinate axis, and the days are in the abscissa [axis]. 

At this point of the discussion, Gabriel adds some relevant information to the justification, by 

relating objects and images of these functions to the context of the situation (level 4 justification). 

Despite this relevant relation, the required justification is still incomplete, and so the teacher 

continues on encouraging students to justify (principle (c)): 

Teacher: And how do I know that days, in this particular case, are objects and heights are 

images? 

Gabriel: Because there is… I forgot it… 

Leonardo: Why it is that way, isn’t it? Let me reason the other way around… If the height 

would be there [in x-axis]… 

As the students struggle to address the teacher’s question without being able to justify (level 0 

justification), the teacher gives some more information in order to complete the justification 

(principle (c)): 

Teacher: What do the functions s and f represent? 

Several students: Height. 

Teacher:  Plant’s height, right? Depending on what? 

Several students: Time. 

Teacher: The time that elapses, in days. OK, very well. 

This information provided by the teacher leads the students to easily identify dependent and 

independent variables, thus completing the required justification (level 4 justification). 

Both this and the previous justifications in this segment rely on students’ prior knowledge about 

functions and emerge during the whole class discussion supported by the teacher’s actions based on 

the defined design principles. 



Justifying based on knowledge about equations 

Right after discussing question 2, the teacher introduces question 3. At this point, a student 

immediately proposes a strategy to solve this question. This leads the students to engage in a new 

segment of whole class discussion, without having time to work autonomously on this question: 

Teacher:  Now, pay attention to question 3, because… (Santiago raises his hand). Tell me. 

Santiago: So teacher, we have that thing that was G.C.D. (M.D.C. in Portuguese), I believe 

it was… Multiple (regarding the M in M.D.C)… 

As the teacher allows Santiago to intervene, he brings to the discussion a strategy based on a 

mathematical concept that was not expected in this situation. Despite seeming a senseless idea, the 

teacher lets him go on with his explanation (principle (c)): 

Teacher:  Greatest common divisor? 

Santiago: Yes, something like that. Can’t we use it to answer to when do they intersect? . . . 

I can’t recall it, but wasn’t there something in common? Doing each number and 

then… 

By allowing Santiago to justify it is possible to understand that, despite incorrect, the student’s 

justification relies on an idea with some logical coherence (level 3 justification). Thus, both in 

G.C.D. and in intersecting functions one is trying to find “something in common”, as he refers. At 

this point, the teacher poses more questions in order to deconstruct the misconceptions about 

G.C.D. which leads the other students to identify Santiago’s strategy as not fitting to this situation. 

After clarifying that, Clara presents her strategy: 

Clara: We can use an equation (referring to 0.4x=0.2x+2.2), and the number that we get 

is the day they have [the same height]. 

. . . 

Teacher: What are you expecting as a solution of this equation? 

Several students: 11. 

Teacher: 11. So, confirm that. 

Evoking the information obtained in the previous questions, the teacher supports Clara’s strategy to 

solve this equation and, by asking to confirm the result, she prompts the students to justify 

(principle (a)) that 11 is the solution of the mentioned equation. Students do this in autonomous 

work, and then Daniel intervenes: 

Daniel:  Teacher, it isn’t. 

Teacher:  It isn’t? So, solve the equation over there (on the board). 

As Daniel solves the equation on the board, the teacher realizes that he has just missed an x in one 

of the steps and, by following his solving process (principles (b) and (c)), the justification based on 

procedures is properly achieved (level 4 justification). 

In this segment of the discussion, justifications, either valid or invalid, are based on knowledge 

about mathematical concepts. These justifications emerge when teacher’s actions rely mostly on 



encouraging students to share ideas and completing those ideas. 

Conclusion 

All the situations in the episode that we analyze were prompted by the proposed task. This task, 

focused on making sense of the relationships between equations and functions, provides an 

opportunity for students to develop a procedure to find where two functions intersect. This 

underscores the idea that collective activity in whole class discussions enable students to share, 

debate and clarify their reasoning and, in particular, their justifications (Galbrait, 1995). 

This study shows that, if particular teacher action paths that rely on the design principles are 

followed, justifications are likely to emerge in whole class discussions. In this episode, when the 

principle regarding asking for a justification is enacted, the students present justifications. These 

justifications are based on previous knowledge about mathematical concepts or ideas or on known 

mathematical procedures. Thus, those are justifications based on logic or deductive justifications 

stated in relation to a particular situation. However, these justifications are often incomplete and 

sometimes incorrect, and, as it has been seen in previous research (Galbrait, 1995), the use of 

available information about a certain mathematical concept or idea is not always adequate given the 

definitions or assumptions of the task. When the justification is incomplete, the teacher tends to 

encourage the students to complete the justification, validating or invalidating their statements only 

implicitly. Depending on her appraisal of the support that the students need to mobilize their 

knowledge, the teacher provides them with more or less information. By relying on these principles, 

the complete justification emerges from the whole class discussion. When an invalid justification is 

at stake, and according to the defined principles, the teacher values students’ contributions and 

keeps on encouraging them to present their ideas, leading them to present justifications based on 

logical coherence or on mathematical procedures. In these situations, where a student’s justification 

is incorrect, teacher’s actions strive either to abandon that justification and to focus on an alternative 

justification or, if possible, to adjust it to its correctness. 

In this particular episode, students’ justifications, despite sometimes incomplete or invalid, tend to 

be reasonably formal as they are based on mathematical aspects of the situation. Also, in the context 

of a whole class mathematical discussion based on the design principles, those justifications emerge 

often as justifications in a logical coherence level and, as students continue to add information, 

those justifications became generic example justifications. As this episode illustrates, in order to 

provide students with opportunities to move in-between levels of justification, it is not enough to 

ask students to justify and validate their justifications, but also to accept and value partial and 

incorrect justifications. Thus, the presented paths are likely to provide promising environments to 

develop students’ justifying abilities, hence to be better prepared to deal with mathematical proof 

later in their schooling. 
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This paper presents a work developed in my thesis on the teaching of logic in high school in France. 

The current official instructions specify that teachers don’t have to make a mathematical logic course, 

but have to help their students develop a relevant use of some notions of logic as tools. Therefore, I 

point out in this paper that in order to take this constraint into account in the study of didactic 

transposition process, it is relevant to describe it from a reference knowledge for logic, but that such 

knowledge has never been established by the mathematics community. In order to offer such a 

reference, I base myself on a double epistemological and didactical study in which I favor the links 

between logic and language. I will also explain the choices made for this reference and its use as a 

methodological tool through the example of quantifiers. 

Keywords: Logic, teaching, didactic transposition, quantifiers. 

Introduction 

In France, mathematics syllabuses for high school (students between 15 and 18) mention explicit 

goals concerning certain notions of logic. For example, they recommend that “students [be] trained 

on examples to wisely use the universal and existential quantifiers (the symbols ∀ , ∃  are not required) 

and to identify the implicit quantifications in some propositions, particularly in conditional 

propositions”. These current recommendations come after twenty years during which the logic was 

excluded from syllabuses. This exclusion itself is a reaction to the too abstract and formal aspect of 

modern mathematics (taught in France between 1969 and 1981) for which mathematical logic and set 

theory were basic elements. They strongly highlight the logical notions as tools and even show 

distrust against their feature as objects. This distrust can be interpreted as a resistant mark of turning 

down modern mathematics. The syllabuses specify that “the concepts and methods of the 

mathematical logic should not be subject of specific courses but must naturally take place in all 

chapters of the syllabus”. I described more precisely the characteristics of the conditions and 

constraints due to these official instructions in a contribution to CERME 8 (Mesnil, 2013): teaching 

goals are ill-defined and subjected to strong constraints. Moreover, mathematics teachers do not share 

a common reference for interpreting these syllabuses. Indeed, mathematical logic is not part of the 

domains necessarily studied by a mathematics student, bringing a diversity of teachers’ knowledge, 

that is usually not filled during their training in which teaching of logic is often only superficially and 

quickly addressed. 

In this contribution, I would like to pursue this issue of a reference for the teaching of logic. In my 

thesis, I studied the teaching of logic in high school as the result of a didactic transposition process, 

and I'll explain first why the nature of mathematicians’ logical knowledge requires thinking this 

transposition not from a mathematical knowledge like mathematical logic, but from a reference 

knowledge, nonexistent for the moment in the mathematical community (Mesnil, 2014). Secondly, I 

will justify the choice I made then to construct a methodological tool to conduct the analysis of 

syllabuses and textbooks. This tool is a reference in which the notions of logic are presented from 

three points of view that root them deeply in mathematics, in mathematical activity, and in the 



classroom. I will conclude by illustrating the choices I made for this reference, and its use through 

the example of quantifiers. 

The need for a reference 

During the didactic transposition process (Chevallard, 1985), a mathematical object is identified in a 

body of knowledge (in French, savoir savant), and a first succession of adaptations will make it able 

to become an object of teaching in a particular institution. It is then identified by mathematics teachers 

in the knowledge to be taught (in French, savoir à enseigner) and is subjected to a second succession 

of adaptations to become a taught object. 

But except in some university courses, teaching logic does not mean teaching mathematical logic, but 

the logic at work in mathematical activity, which supports mathematicians’ expression and reasoning. 

We can consider that mathematicians have a logical knowledge, which may be the subject of a 

didactic transposition process, but this knowledge is more visible in practices than in treaties. 

Mathematical logic can be perceived as a description of the principles of this logic. It was then 

explicitly taught during the time of modern mathematics, in France and elsewhere, but these 

experiments showed that this teaching, conducted formally and isolated, did not help pupils to express 

themselves and to reason (Adda, 1988). Several researchers in mathematics education now agree that 

such teaching should be explicitly linked together with mathematical activity in which the logic is 

omnipresent (see for example Epp, 2003; Durand-Guerrier, 2005). However, there are few research 

studies on the effect of teaching logic on reasoning and expression capacities, which is still an open 

issue. 

 Thus, to take into account this particular nature of the logical knowledge and its connection to 

mathematics, and to appropriately study the didactic transposition process of this knowledge, I 

propose to describe this transposition not from a mathematical knowledge, but from a reference 

knowledge. I take this notion from Rogalski and Samurçay (1994) who thus characterize a knowledge 

produced by practices, but decontextualized from situations where knowledge is apparent into action. 

These authors state that it is necessary that this reference knowledge can “be expressed with its 

concepts, its methods, its systems of representation and its language” (ibid, p. 46). However, 

concerning notions of logic, such a reference knowledge does not appear in that there is no corpus 

collecting the logical knowledge necessary to mathematical activity and about which everyone agree 

the choices of concepts which are featured and of their representation. 

I then conducted a study to answer the following research question: what kind of reference knowledge 

would be epistemologically and didactically relevant to the logic teaching? This study allowed me to 

construct a reference, which I then used to analyze the knowledge to be taught in high school in 

France. I call this analysis tool the reference, and not reference knowledge, because the production 

of a knowledge falls under a long and collective process. 

The importance of language for reasoning, and its links with logic 

The study of various logical systems across the ages allowed me to identify invariants and differences 

in the role assigned to logic and in the ways that are given to it to fulfil it. The study of didactic studies 

shows how issues relating to the teaching of logic meet the concerns and choices of these logicians. 



All these logical systems are built from a work on language. The concept of proposition is primordial 

in them all. Aristotle describes it in terms of subject-copula-predicate, and it was not until Frege at 

the end of the XIX
e century that this analysis was to be replaced by an analysis in terms of function 

and argument allowing two things essential for mathematical language: on one hand to consider 

predicates with several arguments, on the other hand to pull out the act of quantification from the 

proposition by making it expressed by quantifiers which act on variables. Predicate logic that is then 

born is able to model mathematical propositions. From a didactic perspective, several research studies 

have shown many examples of situations in which the predicate logic is a relevant reference for 

didactic analysis which allows to highlight the importance of issues on quantification (Durand-

Guerrier, 2005). 

The current language of mathematicians is inspired by Frege's formalism, but it isn’t a strict use of a 

formal language. Focusing particularly on problems of language in mathematics teaching, Laborde 

(1982) showed that there is a particular use of language in mathematics, due to the interaction of the 

two codes of symbolic writing and natural language. This interaction allows mathematicians to use 

reformulations useful for conceptualization. Teachers are familiar with the particular features of 

mathematicians’ language, but they can cause difficulties for students who “discover together the 

concepts and the way we talk about them” (Hache, 2015, p.28). 

The common goal of the studied logical systems is to ensure the validity of reasoning, with a 

preliminary work on language. But for the authors of The Logic of Port Royal1, logic above all needs 

to be trained and the formalization of reasoning is seen as an obstacle to the use of intuition, whereas 

for Leibniz and Frege on the contrary, logic must provide a system of signs in which reasoning can 

be expressed, and this formal expression guaranteeing its infallibility. Gandit (2004) denounces the 

excessive place taken by the formal aspect in the beginning of proof learning. But being careful about 

formalization at the time of the discovery of deductive reasoning does not mean that it cannot 

subsequently help those who begins to have a good practice of it. Thus, in higher education, Selden 

and Selden (1995) suggest presenting theorems and definitions in an informal formulation, which 

allows intuitive understanding, and in a formal language, which allows linking structure of the 

statements and structure of its proof. 

Organization of the reference 

In the reference I proposed, I decided to give a broad place to language. Entering into logic by the 

language is consistent with the epistemological study, granting it an important place is consistent with 

didactic studies. Of course, in the same way as it is done in the studied logic systems, especially in a 

didactic perspective, the study of notions of logic as components of mathematical language has to be 

articulated with their use in reasoning. 

Finally, these epistemological and didactic studies led me to propose a reference in which the 

presentation of logical concepts combines three approaches: 

                                                 

1 Name of a famous french treatise, which original title is « La logique ou l’art de penser », written in 1662 by A. Arnauld 

and P. Nicole, who were very influenced by Descarte’s method. 



 The mathematical logic. It is a recent branch of mathematics that can be considered as a result 

of what has been sought by different logical systems creators since Greek antiquity. 

Mathematical logic seems so particularly suitable as a formal reference to describe the logic 

at work in mathematics. 

 The study of the language practices of mathematicians. In this way, the presentation of the 

logical concepts is rooted in mathematical activity taking into account how they are expressed 

in mathematical discourse, using predicate logic to uncover some complex and sometimes 

ambiguous formulations that are yet a part of the language practices of mathematicians, 

widely imported in the mathematics classroom. 

 The research in mathematics education. In this way, the presentation of the logical concepts 

is rooted in mathematics classroom, taking into account the difficulties that the complexity of 

these notions can bring for students. 

In this reference, the components of mathematical language are shown, beginning with the primordial 

notions of proposition and variable. Then for the connectives AND and OR, implication, negation, 

quantifiers, I have consistently adopted the three approaches mentioned2. Although the focus is on 

the language, reasoning is of course not absent from the reference. A difficulty for pupils and students 

is to distinguish, in a text of a proof, mathematical propositions concerning mathematical objects, and 

parts of the text which allow to follow the progression of reasoning, such as variable introductions, 

or justification of an inference. The confusion between implication and deduction falls under this type 

of difficulty. 

The example of quantifiers in the reference 

As announced, the reference contains first a presentation of logical concepts from mathematical logic. 

Predicate logic uses two quantifiers: applied to a variable x, and from a proposition P, the universal 

quantifier allows to obtain the proposition ∀x P, and the existential quantifier allows to obtain the 

proposition ∃x P (description of the syntactic aspect of the quantifiers: they operate on a variable 

and a proposition to build a new proposition). 

Let E be a set in which the variable x can take values. The proposition ∀x P[x] is true3 when for any 

element a of E, the proposition P[a] is true. The proposition ∃x P[x] is true when there is at least one 

element a of E such that P[a] is true (description of the semantic aspect of quantifiers: truth conditions 

of a quantified proposition). Quantifiers have an important effect on the variables: a variable that is 

in the scope of a quantifier is a dummy variable in the quantified proposition, and this proposition 

does not give information on the object designated by the variable, but on the set in which it can take 

its values. 

Some important results on quantified propositions may be established by a semantic way, using the 

sense, as well known equivalence between NOT(∀x P[x]) and ∃x NOT(P[x]), or the fact that if ∃y 

                                                 

2 For each of these themes I have summarized the mathematical content, the language related issues, and research findings 

on student difficulties. 

3 This semantic characterization can be described as “naive” because I do not strictly define what “being true” means. 

But of course, this characterization may be more rigorous with the notion of satisfaction of a formula in a model introduced 

by A. Tarski. 



∀x P[x,y]  is true, then ∀x ∃y P[x,y] is true. These results are then used in syntactic manipulations, 

independent of the sense, in the same way we manipulate algebraic equalities. 

In mathematical language, the quantifiers are a way to express the quantification, but there are many 

others. We can see this through some examples of mathematical propositions4: 

1) Le carré d’un nombre réel est positif (The square of a real number is positive) 

2) Le carré d’un nombre réel est toujours positif (The square of a real number is always positive) 

3) Tous les réels ont un carré positif (The square of any real number is positive 

4) Tout réel x est tel que x2 est positif (Any real number x is so that x2 is positive) 

5) Pour tout réel x, x2 est un réel positif (For all real number x, x2 is a positive real number) 

6) ∀x∈ℝ, x2≥0 

They are several formulations of the same property, but universal quantification is expressed very 

differently. In proposition (1), quantification is implicit, implied by the word un (translated with a). 

We frequently use the indefinite article un to mark a universal quantification, in everyday language 

as in mathematics. But un is also sometimes used to mark an existential quantification, which is 

obviously confusing! Sometimes, the two usages coexist in the same proposition, such as in “un réel 

positif possède une racine carrée” (“any positive real number has a square root”, in English, the first 

un is rather translated with any and the second une is rather translated with a, and there is no 

confusion). In proposition (2), the adverb toujours (always) is used to explicitly mark this universal 

quantification, as the word tous (any) in proposition (3). Propositions (4) to (6) are distinct from the 

first by the use of a variable. Furthermore, one can identify in each of these propositions an expression 

which express the quantification (here universal quantification) and which has the property that it can 

be separated from the proposition “x2 is positive” (or equivalent formulation). Such expression works 

as quantifiers of mathematical logic, and I therefore also calls them quantifier. 

Finally, we saw that in the language practices of mathematicians, quantification can be implicit or 

explicit, and in the second case, possibly marked by a quantifier which is an expression observing 

syntactic rules of use. Propositions (4) and (5) may seem closer to propositions (1) to (3) as they are 

formulated “with words” contrary to the proposition (6) which only uses mathematical symbols, and 

that may seems much more formal. I would like to stress that such a vision hide formalization still 

existing in these propositions, in the sense of a shaping according to certain rules, even if that 

formalization is not accompanied by a symbolization. 

I will conclude by mentioning some of the difficulties of high school students or senior students in 

related to the use of quantifiers. First, the implicit quantifications are not always perceived by 

students. The case of the universal quantification associated with the implications and the formulation 

if ... then ... is highlighted for a long time (Durand-Guerrier, 1999). Quantification is often 

encapsulated in stiffened structures (for example, “un is as big as we want by taking n big enough”) 

that the expert mathematician knows how to reformulate by explaining the quantifications, but these 

reformulations in more formal language tend to disappear from the language used in high school, and 

                                                 

4 I give the examples in French first because I will explain some difficulties linked to the word un which is used in this 

language in different meanings, and which is translated in English with one, with a, with the… Commentaries following 

the examples refer to the French expression. 



are a source of difficulty when students meet them in higher education. Another difficulty concerns 

the failure to take the order of quantifiers into account when there is an alternation. We know that 

students have rather an interpretation for all... there exists... even though they are facing a proposition 

there exists... for all... (Dubinsky & Yiparaki, 2000). Furthermore, Chellougui (2004) showed student 

difficulties with the use of an existential proposition. In a proof text, there is generally a confusion 

between the affirmation of the existence of an element checking a property, and the act which consist 

to consider it and give it a name. Likewise, mathematicians do not get trapped by the “dependence 

rule” in the statements for all... there exists...  and identify easily this error in a student production. 

However, they do not necessarily explain this error to the students by linking it to formal rules of 

manipulation of variables and quantifiers (Durand-Guerrier & Arsac, 2005). 

Examples of the treatment of quantifiers in school textbooks 

The reference I have developed allows an analysis of resources available to teachers highlighting 

sensitive issues that need to be paid attention to. I will then conclude with an analysis of two extracts 

from school textbooks. 

The reintroduction of logical concepts in the syllabuses had an effect on the textbooks: those 

published in 2010 for the first class of high-school (15 years old students) all contained passages 

identified as speaking of these concepts. Nine textbooks out of ten have chosen to dedicate a few 

pages (between one page and nine pages) to notions of logic, usually located at the beginning or at 

the end of the textbook (only one textbook does it in a disseminated way). Moreover, they all contain 

exercises with a stamp “logic” (from ten to fifty-four exercises in the studied textbooks). 

In the eight textbooks that deal with quantifiers, the letters are introduced by examples. Seven of the 

eight textbooks give only examples of true quantified proposition, and this choice eliminate the 

syntactic aspect of quantifiers: quantifiers are used only to affirm something, there isn’t the idea of a 

proposition built with a quantifier that one could wonder whether it is true or false. 

The textbook Indice gives the example of the proposition “le carré d’un réel est positif” (“the square 

of a real number is positive”) and states that “cette proposition est vraie quel que soit le nombre réel” 

(“this statement is true for all real numbers”). The authors of this textbook probably want to 

emphasize on the various possible meanings of the word un, but do not offer at the same time an 

example of the meaning as existential quantification. Moreover, to know that the meaning of un in 

this proposition is a universal quantification, it is necessary… to know that the universal proposition 

is true! Mathematical knowledge is therefore needed to decide between the two possible meanings of 

the word un, which calls for caution when using this word in a context where student knowledge is 

potentially fragile. Let’s go back now on the comment “this statement is true for all real numbers”. It 

makes no sense to say that the proposition “the square of a real number is positive”, which is 

equivalent to “for all real x, the square of x is positive” is true for all real numbers, since the variable 

x is dummy in this proposition. The proposition referred to in this commentary is not the quantified 

one, but the not quantified proposition “the square of x is positive”. Finally, there is a confusion 

between the use of “quel que soit” (“for all”) to simply mark the universal quantification, and its use 

to assure that this universal proposition is true. 

Now let’s look at an example of exercise, taken from the textbook Repères, but it is an exercise that 

is found in many textbooks. Students must “complete the sentences (for example “… real number 



x… f(x)>0”) using either for all… we have… or there exists… such that…” from the graphical 

representation of the function f. Note first that the application is not explicitly to complete so that 

sentences are true! Furthermore, the instruction "complete using either… or…” suggests that each 

time only one of the both quantifiers is correct. Yet, when the proposition “for all x P[x]” is true, the 

proposition “there exists x such that P[x]” is also true, so when it is possible to complete with the 

universal quantifier, it is also possible to complete with the existential quantifier. In everyday 

language, we respect the principle of maximum information, according to which we give to our 

interlocutor all information in our possession. So, if I say “on my holidays, it rained some days”, I 

say in the same time that it did not rain every day. The practice of this principle leads us in this 

exercise to complete naturally with the universal quantifier when possible. However, the notion of 

truth of a proposition will be contradicted by saying that using the existential quantifier is a mistake, 

because in mathematics, when the proposition “for all x P[x]” is true, it is not “more true” than the 

proposition “there exists x such that P[x]”. Some students, however, adopt this position, and we can 

doubt position of the authors of the teacher's textbook who offers as a correction only the universal 

quantifier when it is possible. 

Conclusion 

I presented in this paper a methodological tool, a reference to study the teaching of logic. It is of 

course to be completed, to be improved, both from an epistemological and from a didactic point of 

view. Important work remains in particular on the concept of proposition, generally not made explicit 

in teaching, and on the notion of variable (didactic of algebra is very concerned about the status of 

the letters, but it seems to me that a logical point of view on the concept of variable, such as taking 

in Epp, 2011, or as I suggested in Mesnil, 2014, is more unusual), especially to identify students 

difficulties with these concepts that can be related to their epistemological complexity, or their use in 

the classroom. 

Moreover, I have used for the moment this reference to analyze the syllabuses and textbooks, and a 

training for teachers who offers a similar approach of notions of logic. But it could also be used to 

study the practices of teachers, students’ activity and conceptions. It would be particularly interesting 

to compare the effect of knowledge in mathematical logic that teachers have or have not. 
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In this paper, we investigate the cognitive and affective task-specific experiences of Odysseus, a 

mathematics undergraduate, as he attempts to answer to an exam-type proving question: the 

convergent-bounded question. The concurrent investigation of Odysseus proving strategies and his 

basic emotions appears to help in gaining deeper understanding about his proving experience. 

Keywords: Proof, proving strategies, emotions, examinations, thinking styles. 

Cognitive and affective aspects of proving 

The notion of proof lies at the heart of modern mathematics (Thurston, 1994) and of mathematics 

education research (Furinghetti & Morselli, 2009; Reid & Knipping, 2010). In this paper, we focus 

on the cognitive and affective task-specific proving experiences (drawing upon Moutsios-Rentzos, 

2015). Researchers have identified different proving strategies that the students employ when facing 

with a proving task (Weber, 2005), while others have investigated the type of the argument utilised 

in a proof (Inglis & Mejia-Ramos, 2008). Considering the affective aspects of proving, famous 

mathematicians stress the pleasure that a proof brings (for example, G. H. Hardy; Hoffman, 1998), 

which is in contrast with the reality as pictured by mathematics undergraduates (Rodd, 2002) and 

with the gloomy in-class mathematics experience, with 16-year old students reporting that “I hate 

mathematics and I would rather die” (Brown, Brown & Bibby, 2008, p. 10). 

Emotions “give information about progress, or ability to progress, relative to goal states and anti-

goal states” (Skemp, 1979, p. 18) set by an individual. The pleasure that derives from our dealing 

with a task is linked with our concentrating our cognitive efforts to solve it (Changeux & Connes, 

1998). It is argued that research should attempt to co-consider cognitive and affective aspects of a 

proving experience (Furinghetti & Morselli, 2009). Moreover, we draw upon the idea that a theory 

may act as a meaningful attractor (Moutsios-Rentzos, 2015) of the different methodological-

theoretical perspectives investigating a phenomenon. Furthermore, since the assessment process is 

strongly linked with the learning outcome of any educational system (Boud & Falchikov, 2007), we 

focused on the exam-type proving questions that all mathematics undergraduates undertake. 

Considering that being successful in exams is a highly goal-oriented activity, we adopt a theory 

developed for such experiences which also addresses both cognitive and affective aspects: Skemp’s 

(1979) theory of social survival and internal consistency. Consequently, we address the question: 

What are the affective and cognitive task-specific experiences of a mathematics undergraduate as 

he attempts to produce an exam-acceptable answers in an exam-type proving question? 

Theoretical – methodological approach 

Skemp (1979) theorised that the learners survive both socially and internally. They survive socially 

by meeting the socially accepted, (usually externally) set criteria of a task (for example, exams), 

whilst they survive internally in the sense of achieving consistency within their internal reality (for 



example, by satisfying their inner need for being creative or for identifying and following the rules), 

which crucially includes both cognitive and affective aspects. Hence, considering that producing 

exam-acceptable answers is essentially a goal-oriented activity, Skemp’s theory is employed to give 

meaning to both aspects of the investigated phenomenon: proving strategies and basic emotions.  

The students’ proving strategies refer to the students’ answering a proving question, rather than 

reflecting upon an answer. The A-B-Δ proving strategy classification scheme (Moutsios-Rentzos, 

2009) was utilised to identify the students’ qualitatively different proving strategies when they deal 

with exam-type questions. At the crux of the scheme lies the potential tension between proving to 

oneself and proving to others (respectively, ascertaining and persuading; Harel & Sowder, 1998). 

The scheme has been developed explicitly for exam-type proving questions (see Moutsios-Rentzos 

& Simpson, 2011), corresponding to well-known classifications, such as Weber’s (2005) syntactic–

semantic–procedural proof constructions, or the deep–surface–achieving/strategic approaches 

(Zhang, Sternberg & Rayner, 2012). Five strategies are identified organised in three types. In the α-

type strategies (A & ΔΑ), the students demonstrate a need to first investigate whether the given 

statement makes sense. Once an ascertaining argument has been chosen, a persuading argument is 

employed, thus potentially separating ascertaining from persuading. In an A (alpha) strategy, the 

ascertaining argument is appropriately ‘mathematised’ to serve as a persuading argument, whereas 

in a ΔΑ (delta-alpha) strategy persuading appears to constitute a completely new process. In the β-

type (B & ΔB), the students immediately commence the persuading process, without pondering 

whether the given statement is meaningful to them or not. In a B (beta) strategy, the students 

attempt to recall either the proof of the statement or a proof that may serve as a template for proving 

the given statement, whilst in a ΔB (delta-beta) strategy, the students concentrate their efforts on 

producing symbolic mathematical expressions to construct an exam acceptable proof. Finally, in a 

δ-type (ΔΔ; delta-delta), the focus is on producing a proof that would get the maximum grade in 

exams, through symbolic mathematical expressions based on a variety of means (including, 

theorems, images and examples). The students may investigate whether the given statement makes 

sense, but only for their facilitating their mathematical expressions producing pursuit. 

In this study, emotions refer to a state of alertness that mobilises the human body with respect to a 

stimulus, including psychological and neurophysiological effects (Oatley & Jenkins, 1996). These 

emotions are clearly differentiated from the mentally processed, socially situated, affective reactions 

towards a proving situation (Hannula, 2012). Ekman identifies seven evolutionally derived basic 

emotions that are universally manifested in the humans’ facial expressions (Ekman & Friesen, 

1978): sadness, anger, contempt, fear, happiness, disgust, surprise. Thus, we attempt to map the 

reflexive affective exam-type proving experiences. Certain combinations of micro-movements of 

the facial muscles are linked with specific basic emotions as described in the ‘Emotional Facial 

Action Coding System’ (EMFACS; Ekman, Irwin & Rosenberg, 1994). Considering emotions and 

conviction, a positive affective state is linked with more superficial and/or authority-based 

judgements, whilst a negative/neutral affective state is linked with more thorough judgements, 

reducing the effect of authority (Oatley & Jenkins, 1996). Nevertheless, these studies mainly refer to 

judgements, rather than to multifaceted mental productions such as proof. 

Overall, in this study, we discuss the proving cognitive and affective experiences of a mathematics 

undergraduate, Odysseus, as he deals with the exam-type proving question “Let a sequence (an)ℝ, 



nℕ. Prove that if (an) is convergent, then (an) is bounded” (‘convergent-bounded’). In Moutsios-

Rentzos (2009), it was posited that the students’ general thinking preferences reveal aspects of their 

inner realities, thus affecting their initial strategy choices. Their back-up strategy choices indicate 

that the ineffectiveness of the initial attack lead them to re-evaluate the given situation and to 

choose a strategy that more appropriately fits with this new experience of the situation. In Moutsios-

Rentzos and Kalozoumi-Paizi (2014), a small part of those data (of Odysseus) was subjected to 

additional analyses to illustrate the advantages of the synchronous mapping of cognitive and 

affective experiences as he dealt with six proving questions. In this study, we concentrate on only 

one task that Odysseus dealt with to elaborate on his affective-cognitive task-specific experiences. 

Odysseus proving experience of the ‘convergent-bounded’ question 

Odysseus’ proving strategies were identified through video-recorded clinical interviews (in the 

sense of Ginsburg, 1981), in which he was asked to produce an exam-appropriate proof and to think 

aloud during that process. Since the focus was on the choice of means, Odysseus would be provided 

with any mathematical information (including definitions, figures) he would need (in line with 

Weber, 2001). During the think aloud process, his emotions were identified through the video-taped 

proof productions by an EMFACS trained and certified researcher. Following Ekman, all the 

emotions and emotional blends (more than one emotion in a single instance) were interpreted within 

the context they occurred. Finally, the Odysseus’ perceived internal and external reality is reported 

(by identifying his mathematics attainment, thinking dispositions and understanding of exam-

acceptable answer) to gain deeper understanding of the findings. 

Odysseus’ experienced realities: thinking styles and exam views 

Odysseus was an above average attaining, 2nd-year student, attending a 4-year BSc-equivalent 

degree in Mathematics in a Greek University. Considering Odysseus’ broader experienced internal 

or social realities, his thinking styles profile (i.e. his broad thinking dispositions; Sternberg, 1999) 

was identified as ‘ground breaking’ (expected to prefer creative, original and non-prioritised 

thinking; Moutsios-Rentzos, 2015). Considering his views about exams and exam-acceptable 

answers, Odysseus concentrated mainly on the peripheral aspects of their answer: the amount of 

information, the language used, the structure of the solution, and the aesthetics of the presented 

proof. Considering ‘amount of information’, he wondered: “Hmm ... this is one of my greatest 

problems when I write down a solution ... should I ... Do I have to prove this? […] and when I know 

something and it doesn’t have a name whether I should describe it ...”. Considering ‘language’ and 

‘structure’, Odysseus noted that an exam-type proof should be axiomatically based, written 

symbolically in a linear form, since a proof presented this way was considered to affect positively 

his grade. Furthermore, he was particularly concerned about the ‘aesthetics’ of the presented proof, 

stressing: “Presentation is very important ... that is why I use draft first [...] If I had more time, I 

would spend 10 or 15 minutes on figuring out how exactly I would present it ”. 

Odysseus’ Alpha (A) proving strategy to the convergent-bounded question 

In the following excerpt, Odysseus employs an Alpha strategy to deal with the ‘convergent-

bounded’ question. He reads the question and then he tries to produce a ‘draft’ solution. Odysseus 

tries to ‘reconstruct’ the definition, ‘giving meaning’ (Pinto, 1998) to his concept image.  



Odysseus: I’ll ‘create’ it ... I usually don’t remember the formulas ... I ‘create’ them ... but ...  

Researcher: Do you want me to tell you the definition? 

Odysseus: Err ... in exams, if this [the interview] is a simulation [of exams] ... I would not 

remember it [the definition] ... I would try to ‘create’ it ... 

Moreover, Odysseus draws upon his concept image to generate hypotheses and to validate these 

hypotheses. He conceptualises convergence as something ‘constraining’, evident both in his verbal 

and non-verbal communication, which suggests the meaningful interplay between concept image 

and concept definition (typical of an Alpha strategy).  

Odysseus: ... well these ε and n0 must have a relationship ... for every ε I should be able to 

find a n0 ... not the way I have put it ... [many gestures].  

Researcher: Do you say that based on your memory? Or ...? 

Odysseus: No! I don’t say that based on my memory, I say it ‘logically’ ... I mean ... I say for 

every n>n0 there exists ε>0 so that |an-an0|<ε … this is what I have written ... [He 

makes gestures as he talks that ‘show’ what he talks about.] … But this should be 

true for everything ... the ε ... there is a an infinite number of ε that are suitable 

...this is true ... therefore I need something more ‘constraining’ ... therefore this 

[the writings] does not describe convergence, because convergence is something 

that is constraining ... it converges [gestures] to a specific number... 

Furthermore, Odysseus’ images are not pictorial, but ‘fuzzy’ and he likes to call them ‘thoughts’. 

Researcher: Do you have a specific ‘image’ in your mind? 

Odysseus: No, I don’t have it as a picture. I have it as ... I would call it ‘thought’... 

Once Odysseus is satisfied with the definitions of the mathematical notions included in the 

statement he is asked to prove, he focuses on proving it (see Figure 1, definition). For Odysseus, it 

is crucial that the statement that he wants to prove is what he terms as ‘logical’; that it makes sense. 

He needs to be convinced that the statement makes sense, before he tries “to solve it”.  

Odysseus: Convergent ... belongs to ℝ ... ok ... it begins from an a0 and it goes to something 

else [Gestures] ... therefore ... logically ... if it is let’s say in a straight line ... it 

would be from here ... here there would be something that ‘blocks’ it ... unless it 

goes up and down ... but since it converges somewhere it will reach somewhere 

that ... it might follow a different route that might go like this or like that ... I don’t 

mind ... it will reach here ... the route has an end ... and therefore ... it is ‘logical’ 

that it is bounded ... and so we will try to solve it. 

In this process, Odysseus draws upon his concept image, which is evident from his gestures and 

figures: the straight line (‘a’, Figure 1) that denotes the real numbers and the boundaries he draws 

(on the left and right of this line; ‘b’, Figure 1); the curved lines (‘c’, Figure 1) denote the potential 

‘routes’ the sequence might follow from ‘ao’ (the first term of an) to ‘a’ (the limit of an). 
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Figure 1: Odysseus’ ‘draft’ definition (I) and answer (II) 

Odysseus builds on the above to ‘solve’ the question. He looks at the definition of the convergent 

sequence, expands the inequality using the property of the absolute value, reaches a double 

inequality and stops to explain his rationale: 

Odysseus: […] Until n0 it is a finite set ... so it would have to be a finite segment [He shows 

it on the curved lines] ... from λ to κ [gestures] ... and after that [n0] we have 

shown that they are all under a+ε for every ε I have chosen, right? ... so we have a 

big boundary that reaches to n0 and after that all will be bounded somewhere else 

... they could be here [he shows segments with his hands] ... or there ... or inside 

.... so let this be η and this be ζ [Figure 1] and we will have that the minimum ... 

it’s not still a proof... we will have that the minimum of μ and ζ … no value will 

be below this [minimum] ... where μ is the minimum of ai, i from 1 to n0 ... and M 

is the maximum of ai ... from these two [μ and ζ] it will be the minimum value ... 

it cannot be less than this... similarly for the maximum ... now what I have to do is 

to write this mathematically, but for me it is already finished... 

Odysseus’ argument convinced him of the ‘truth’ of the statement he is asked to prove. As he 

presents his argument, Odysseus draws upon his concept image using gestures to generate and 

validate his argument. For example, for validation, Odysseus is certain of the validity of this ‘proof’: 

for him “it’s already finished”. His certainty appears to derive from his image manipulation and his 

gestures: at first, he notes that his argument “is not still a proof”, but subsequently he claims that “it 

cannot be less than this”. At the same time, he acknowledges that this argument cannot be presented 

as a proof and that he needs “to write this mathematically”. His mathematised argument is close to 

the original argument and though the ascertaining argument draws upon his concept image, his 

mathematised argument is a ‘translation’ to a mathematically ‘acceptable’ language. 

Finally, it is noted that, Odysseus’ ‘formal’ proof was carefully structured like a textbook proof 

based in axioms and definitions (unlike the less linear, based on image manipulation ‘draft’ proof). 



Emotions in proving according to EMFACS 

Time Emotions 

(EMFACS; Ekman et al, 1994) 

Excerpt Answering 

phase 

‘Draft’ answer 

12:59:84 Sadness Researcher: So would you like to give it a couple of tries first 

and then ... 

Odysseus: Yes 

Definition 

construction 

14:27:00 Sadness-Anger Odysseus: But this should be true for everything ... the ε ... 

14:27:60 Sadness-Contempt 

14:56:64 Fear Researcher: Do you have a specific ‘image’ in your mind? 

Odysseus: No, I don’t have it as a picture. I have it as ... I 

would call it ‘thought’... 
14:56:80 Happy -Fear 

14:57:16 Happy  

17:11:03 Happy  Odysseus: and therefore ... it is ‘logical’ that it is bounded 

... and so we will try to solve it 

‘Truth’ 

investigation 

21:54:24 Sadness-Anger Odysseus: more or less I am done […] How much time do I 

have left? 

‘Formal’ answer 

36:50:80 Sadness-Anger  Odysseus: How much time do I have left? Beginning 

37:04:88 Contempt Odysseus: …and in exams there are many similar problems 

[such as time constraints] 

39:22:72 Contempt-Anger  Odysseus: I’ll write it in a different way … it is not 

essentially different 

Writing-up 

44:03:24 Contempt-Anger Odysseus: I’ll write it down differently [instead of writing 

down two more lemmas] 

44:29:20 Happy-Contempt  Odysseus: In mathematics if you can avoid too many 

variables it is better, because … in the end you 

get lost… 

45:09:96 Contempt-Sadness  Odysseus: Because I consider it [a theorem] as given… it 

might be silly of me, but .. 

Figure 2: Odysseus, emotional journey to proving the ‘convergent-bounded’ task 

The results of the EMFACS analysis are outlined in Figure 2 along with the corresponding excerpt 

and answering phase. Odysseus’ positive emotions are few, mainly linked with his mathematical 

ideas: when he describes them as ‘thoughts’ or when they make sense. His negative emotions or 

emotional blends are predominantly linked with his attempting to meet the requirements of an exam 

situation: time constraints, appearance, amount of information included in the formal answer. In line 

with the rationale of differentiating amongst different proving strategies, Odysseus’ emotions can be 

differentiated between internally referenced (linked with his inner reality; Skemp, 1979) or 

externally referenced (linked with the perceived by Odysseus social reality of the given situation, 

including the exam-status of the given questions). For example, Odysseus in his ‘draft answer’ 

manifested an internally referenced ‘happiness’ emotion (17 min) when convinced of the truth of the 

statement (ascertaining): “It makes sense to me that it is bounded and so I’ll try [to prove] it”. In 

contrast, in the end of his ‘draft answer’, when he completed the persuading process, he expressed 

an externally referenced sadness-anger blend (21 min), because the moment he realised that “more 

or less I am done”, he almost immediately wondered “How much time do I have left?”. His 

emotional clash is in line with his cognitive clash due to his tendency for choosing more α-type 

strategies (potentially differentiating ascertaining from persuading), linked with his ground breaking 

thinking styles profile (Moutsios-Rentzos, 2009). 



Concluding remarks 

In this study, we investigated the proving strategy and the emotions of a mathematics undergraduate, 

Odysseus, as he dealt with an exam-type question. Skemp’s theory of internal consistency and social 

survival helped in gaining deeper understanding of the concurrent phenomena. A complex proving 

reality was revealed, diversely affecting Odysseus’ experiencing a need for constructing a proof 

(Zaslavsky, Nickerson, Stylianides, Kidron & Winicki-Landman, 2012). His negative emotions 

were linked with the externally experienced communication of the answer, whereas his positive 

emotions were linked with the internally referenced success in finding a proving argument. 

Emotions are non-verbal, facially expressed reflexes, indicating Odysseus’ emotionally interiorising 

of his previous proving experiences. The presented approach complements existing studies based on 

language and/or introspection (Furinghetti & Morselli, 2009), by revealing the students’ real-time 

emotional states. It is stressed that the identified emotions are affected by the thinking aloud 

protocol and, thus, a current project is focussed on identifying the students’ emotions as they prove 

without thinking aloud and on their evaluating written proofs. Overall, the proposed line of research 

may help in designing pedagogies reinforcing the positive affective aspects of proving, thus 

promoting the students’ deeper engagement with proving, which is expected to facilitate their 

developing a fully-fledged internal need for proof. 
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Play and pre-proving in the primary classroom 
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This report focuses on a research study the aim of which is to investigate the activity of proving as 

constituted in a Cypriot classroom for 12-year-old students. By drawing on Cultural Historical 

Activity Theory, this study explores the way the teacher is working with the students to foreground 

mathematical argumentation. Analyses of video-recorded whole class discussions show how 

explaining and exploring provide a key pathway for the development of proving. We refer to these 

developments as pre-proving. However, inherent contradictions within explaining and exploring 

hinder the constitution of proving in the classroom.  

Keywords: Proof, exploration, explanation, play, CHAT  

Introduction 

It is now acknowledged that proof and proving should become part of students’ experiences 

throughout their schooling (Hanna, 2000, Yackel and Hanna, 2003, Stylianides, 2007). However, 

secondary school students as well as undergraduate students face difficulties when giving formal 

mathematical arguments. At the same time, research that shows how upper primary school students 

approach and construct proofs is still limited (Stylianou et al, 2009). It is also argued that 

argumentation, explanation and justification provide a foundation for further work on developing 

deductive reasoning and the transition to a more formal mathematical study in which proof and 

proving are central (Yackel and Hanna, 2003). But what is meant by proof and proving? 

Mathematical argumentation is a discursive activity based on reasoning that supports or disproves 

an assertion and includes the exploration process, the formulation of hypotheses and conjectures, 

explaining and justifying the steps towards the outcome and the proof of the statement. Thus, proof 

is at the core of mathematical argumentation, as a justification, an explanation and a valid argument.  

Research has responded to the need to conceptualize proof and proving in such a way that it can be 

applied not only to older students but also to those in elementary school (Stylianides, 2007). The 

challenge remains however to understand how proof and proving is shaped by the practices in the 

mathematics classroom. This is in accordance with Herbst and Balacheff (2009), who argue that the 

focus should not only be on proof as the culminating stage of mathematical activity, but also on the 

proving process and how this is shaped by the classroom environment. Thus, in understanding how 

proving is constituted in the classroom, a wider network of ideas is required as these ideas no doubt 

have an impact on how proof in the narrow sense is constituted.   

To address this issue, we refer to pre-proving, that aspect of mathematical reasoning that might 

nurture proving. What are the roots of proving? Given that proof is both a justification and an 

explanation, it can be argued that emphasis should be placed in these two aspects of mathematical 

reasoning. In considering those functions of proof that are considered important for school 

mathematics (Hanna, 2000), evidence has been reported that the establishment of 

sociomathematical norms (Yackel and Cobb, 1996) for explanation and justification (Yackel and 

Hanna, 2003) might foster deductive reasoning in the classroom. That is, describing, conveying and 

exchanging ideas through the act of communication, explaining and justifying statements influences 



the appearance of proof and the transition from unsophisticated empirical arguments to the level of 

sophistication that might be expected at the tertiary level. It is through exploration and investigation 

that all these elements surface and develop in the process of proving. Thus, when discussing the 

roots of proving, exploration, which activates intuition and encourages thinking, constitutes another 

notion that should be taken into consideration. Thus, pre-proving refers to those elements that direct 

mathematical reasoning towards the ultimate goal of formal proving; that is exploration, 

explanation, justification and communication. In the social environment of the classroom, where 

hypothesizing, explaining and justifying conjectures is encouraged, the tools and tasks used, the 

rules of the classroom, the way the students work together, the way the teacher negotiates meanings 

and other external factors all interact, interrelate and influence each other in forming classroom 

activity. The purpose of this study is to explore pre-proving and proving in the elementary 

mathematics classroom and the way the structuring resources of the classroom’s setting shape this 

process. 

CHAT based theoretical constructs   

As this study is exploring the various forces that impact on the activity of proving, Cultural 

Historical Activity Theory (CHAT) is being employed as a descriptive and analytical tool alongside 

collaborative task design (a means of gaining access to the teacher’s objectives), to capture the 

interaction of different levels, such as the actions of teachers, students and the wider field as 

evidenced in curricula and research documentation. The analysis and discussion in this paper draws 

upon the following CHAT perspectives: (i) the object of the activity and (ii) the notion of 

contradictions. Initially, the unit of analysis in CHAT is an activity, a “coherent, stable, relatively 

long term endeavor directed to an articulated or identifiable goal or object” (Rochelle, 1998, pp.84). 

The object of a collective activity is something that is constantly in transition and under 

construction, has both a material entity and is socially constructed and its formation and 

transformation depends on the motivation and actions of the subject indicating that it proves 

challenging to define it. Among the basic principles of CHAT is the notion of contradictions. 

Contradictions are imbalances, ruptures and problems that occur within and between components of 

the activity system, between different developmental phases of a single activity, or between 

different activities. These systemic tensions lead to four levels of contradictions (Engeström, 1987). 

This conceptualization, should be differentiated from mere problems or disorienting dilemmas from 

the subject-only perspective as they are more deeply rooted in a sociohistorical context (Engeström, 

2001). Contradictions are important because they may lead to transformations and expansions of the 

system and thus become tools for supporting motivation and learning. This paper focuses on a 

primary contradiction on the teacher’s object. The primary contradiction can be identified by 

focusing on any of the elements of the activity system (subject, tools, object, rules, community, 

division of labor). For instance, within the mathematics classroom, the clash between the teacher’s 

goal of teaching a specific content of the mathematics curriculum and her need to continually 

manage student behavior and maintain focus, leads to a primary contradiction within the system’s 

subject (the teacher). 



Data collection and analysis  

This study was conducted in a year 6 classroom in a primary school in Cyprus. Apart from the 

researcher, the participants were the teacher, a Deputy Principal at the school who endorses the 

integration of technology in teaching mathematics, and 22 students (11-12 years old) of mixed 

abilities. Even though using computers was part of the classroom’s routine, the students were not 

familiar with dynamic geometry environments, DGEs. The data collection process as relevant to this 

paper included video data from the classroom observations and field notes. The content of the 

curriculum covered during the classroom observations was the area of triangles, and the 

circumference and the area of circle. The overall process of analysis of the collected data was one of 

progressive focusing. According to Stake (1981, pp.1), progressive focusing is “accomplished in 

multiple stages: first observation of the site, then further inquiry, beginning to focus on relevant 

issues, and then seeking to explain”.  The systematization of the data led to the evolution of two 

broad activities: (i) the activity of exploration including the exploration of mathematical situations, 

exploration for supporting mathematical connections and exploration of the DGE and (ii) the 

activity of explanation which focuses on clarifying aspects of one’s mathematical thinking to others, 

and sometimes justifying for them the validity of a statement. These activities were then interpreted 

through the lens of CHAT, by generating the activity systems of both exploration and explanation. 

Achieving this also made possible the identification of tensions.  

There is insufficient scope in this short paper to consider in detail these various levels and so this 

specific study focuses on illustrative episodes, which were generated during classroom discussion, 

to show one aspect of how the teacher was working with the students to foreground mathematical 

argumentation. To elaborate more, while the teacher was endeavoring to provide opportunities for 

exploration and investigation, it was observed that the teacher would sometimes interrupt this 

exploration. This interruption was often followed by the teacher either translating students’ 

exploration as playing and/or was providing the step that needed to be followed. This paper focuses 

on the teacher using the word ‘play’ as part of the activity of exploration. The relevance of this 

emphasis of the paper lies in the connection that exists between exploration and play. That is, 

analyzing ‘play’ provides important information in portraying the activity of exploration and 

identifying the way this might influence the activity of explanation, and thus, shed light on how 

proving is constituted in the classroom.   

Results  

This section provides a chronological overview of the protocols that illustrate the teacher 

intervening in the classroom by using the word ‘play’. 

Protocol 1  

On the first lesson related with the area of triangles, the students are expected to say the area of 

rectangles presented on the interactive whiteboard and make explicit the way they worked towards 

the answer. 

Teacher: 12 again … but why are your playing? We are not doing something on the 

computers now. Stop. 



In this protocol, the teacher is relating exploration of DGE with ‘play’. That is, exploration was 

interpreted by the teacher as ‘playing’ instead of learning.  

Protocol 2 

After demonstrating on the interactive whiteboard how to construct a rectangle in which the triangle 

is inscribed, the students worked in pairs and constructed rectangles on a DGE. When they finished, 

the teacher asked: 

Teacher: Now that you constructed the rectangles, can they help you to find the area of the 

triangles? 

Students: Yes. 

Teacher: What is the area of triangle PRS? 

Student1: 3. 

At this point, the teacher interrupted the classroom discussion as she was concerned with a student 

‘playing’ with the computers. 

Teacher: Student2 you are still talking. You are playing all the time and I will move you 

from the computers.  

In this protocol, the teacher is relating exploration of DGE with ‘play’. That is, exploration was 

interpreted by the teacher as ‘playing’ instead of learning. 

Protocol 3 

On the third lesson, after revising the mathematical formula for the area of triangles, the students 

would construct triangles with specific areas on the DGE. Before the teacher demonstrated to the 

class the steps followed so as to construct a triangle on the DGE, she said: 

Teacher: Now we will go back to the DGE to play with its features. I will give you 

instructions and you will construct … to see how it operates and then we will 

move on to a game where you will play in pairs on the computers online.  

In this protocol, the teacher relates both exploration of the DGE, and playing a game on the 

computer with ‘play’, something encouraging and constructive. 

Protocol 4 

On the first lesson related with circle, after defining circle, the class moved to the computers. Before 

engaging in tasks so as to explore mathematical relationships related with circle, the teacher 

introduced the class to a new DGE. Eventually, the teacher, referring to a circle presented on the 

DGE made the following comment: 

Teacher: I can make it bigger or smaller. Look what we will do next. We will play later. 

Construct a circle and move it. Click on the center. Did you all do it? Nice. Stop.  

This protocol focuses on the teacher relating exploration of DGE to ‘play’, something that has a 

positive value. 



Protocol 5 

On the second lesson, after revising the definition of a circle, the teacher asked the students to tell 

her the mathematical relationships explored the day before. At this point, several students could not 

give an answer. The following comment comprises the teacher’s interpretation of the hesitation 

these students had in participating in the classroom discussion:  

Teacher: You shouldn’t only play but concentrate and listen in the classroom.  

In this protocol, the teacher is relating exploration of DGE with ‘play’. That is, exploration was 

interpreted by the teacher as ‘playing’ instead of learning.  

Protocol 6 

In the following part of the lesson, the class engaged in discussing ways in calculating the area of 

circle. Among the students’ ideas was to count the squares inside a circle. However, it was 

concluded that this could prove difficult to achieve. Other students hypothesized that the area might 

be equal to circumference times radius. Others said that the area could be equal to circumference 

times diameter. The teacher encouraged them to investigate and test these hypotheses while 

exploring a task on a DGE, by making the following comment: 

Teacher: I will leave you for a while to play.  

In this protocol, the teacher is relating exploration of DGE with ‘play’. That is, exploration is 

translated as something encouraging and constructive. 

Protocol 7 

During the third lesson that followed the exploration of the mathematical formulas of the 

circumference and area of circle, the teacher asked the students to find the radius and area of a circle 

with a given circumference.    

Student1: But how? 

Student2: I do not understand. 

At this point, the teacher interpreted the queries the students had as a result of ‘playing’ with the 

computers. 

Teacher: We came up to some conclusions. We have been working on the computers for 

two days now. We should not only play but also find … 

Through classroom discussion, the students were able to use the mathematical formula, separate the 

variables, use division and find the radius and area of a circle with a given circumference. 

In this protocol, the teacher is relating exploration of DGE with ‘play’. That is, exploration was 

interpreted by the teacher as ‘playing’ instead of learning.   

Discussion 

Analysis of the above protocols indicates that the word ‘play’ as used by the teacher has differing 

connotations. This leads to the emergence of two contrasting values, play/learn.  



Initially, one value the word ‘play’ entailed was related with the teacher interpreting exploration as 

‘playing’ instead of learning. That is, while the teacher would encourage the students to explore an 

activity in order to reach some conclusions, she would also make a negative comment about this 

exploration as something that had no didactical value. In protocols 1 and 2, the teacher is relating 

exploration of DGE that preceded the classroom discussion with ‘play’. That is, exploration was 

interpreted by the teacher as ‘playing’ instead of learning, though, in protocol 2, the student was still 

exploring the DGE, so as to construct the triangle. In protocol 5, the teacher translated the fact that 

some students could not really summarize the work which was done previously as ‘play’ instead of 

learning. Furthermore, in protocol 7, the teacher is relating the exploration of DGE (as in protocol 6 

which is described subsequently) with ‘play’, something that has no didactical value. What is 

striking is the fact that the teacher is referring to the DGE tasks that were designed in collaboration 

with the researcher in such a way that could initiate the formation of hypotheses and mathematical 

argumentation. This intervention was followed by the teacher guiding the classroom discussion.  

The word ‘play’ had an opposite value when used by the teacher to refer in a general way to the 

exploration of the activity. In protocols 3 and 4, exploring the features of the DGE and working in 

pairs for the construction of triangles, and investigation of mathematical relationships accordingly, 

is translated as something encouraging and constructive. What should be noted though for protocol 

4, is that it appears that exploring the environment by following the teacher’s instructions has more 

value than the students exploring the environment themselves, which is called ‘play’. In protocol 3, 

the teacher announces that the students will have the opportunity to play a game on the computer. In 

this protocol, the word play is used with its authentic meaning, even though, from an educational 

and didactical perspective, it can be considered as a form of reflection, evaluation and further 

understanding. In protocol 6, the teacher is encouraging investigation and exploration of a 

mathematical situation that would lead to explanation and justification.   

The ‘play’ dichotomy relates to the notion of the play paradox (Hoyles and Noss, 1992) and the 

notion of the planning paradox (Ainley et al, 2006). Hoyles and Noss (1992) introduce the notion of 

the play paradox to describe the multiplicity of paths that are available to students when using a tool 

in an exploration related with a mathematical task. That is, the students, through their exploration, 

might not encounter the mathematical ideas that were perceived as the objectives set by the teacher 

or the curriculum materials. Thus, the teacher may decide to close down an exploration opportunity 

as she may interpret students’ exploration as shifting away from her own objectives. In a similar 

way, Ainley et al. (2006) call the conflict that may occur in the daily mathematical classrooms, due 

to contextualize tasks as the planning paradox. This tension may also be related to the notion of 

ownership as perceived by Papert (1993) in his formulation of Constructionism. That is, while the 

students are provided with the necessary tools to participate and to take ownership of the learning 

process, the teacher is at the same time attempting to avoid facing these paradoxes. 

Considering the dichotomy related with the word ‘play’ through the CHAT constructs, this tension 

is a manifestation of a primary contradiction. The primary contradiction that emerges is inherent in 

the component related with the object of the activity system. In the activity of exploring as part of 

pre-proving, the object for the teacher is related with exploring triangles and circles. At a first 

glance, this object seems to be clear and distinct. However, this object is multifaceted. To be more 

precise, the object for the teacher is related with the investigation of situations that lead to 



conclusions related with the aforementioned parts of the mathematics curriculum. The teacher on 

one hand understands the importance of providing enjoyable exploring opportunities that keep 

students’ motivation and interest to engage with the problem. As a result, the teacher provides 

opportunities that can be approached by the students in their own way. On the other hand, students, 

through the exploration of these opportunities are expected to reach those conclusions regarding 

triangles and circles as pre-determined by the teacher. The two poles of the object lead to a constant 

struggle in the teacher’s everyday practice. The teacher, due to this multifaceted object, is faced with 

the play/learn dichotomy and thus the play and the planning paradoxes. That is, students’ free 

exploration may lead to paths other than those expected by the teacher. This initially shows that the 

students share the teacher’s object. Thus, the object related with exploring is being reached. 

However, if the exploration moves away from the teacher’s motive, the teacher will inevitably close 

down the exploration opportunity and guide the students towards the exploration that leads to the 

conclusions that satisfy her. Time management and the pressure of the coverage of the curriculum 

further highlight this tension.  Inevitably, even though closing down the exploration is necessary, the 

object will not be met because of this contradiction. 

Manifestation of this contradiction leads to a clash between the activity of exploration and 

explanation and, subsequently, with the way pre-proving activity occurs in the classroom. It has 

been illustrated that pre-proving activity is closely connected with exploration and explanation. That 

is, those aspects of reasoning that appear to have the qualities of proving, even though they may not 

be proving in themselves, entail exploration and explanation that provide a point of reference for 

proof production. Correspondingly, the object of developing proving in the classroom is related with 

these notions. The object of the central system of pre-proving activity is related with exploration 

that leads to explaining and justifying for a specific part of the mathematics curriculum. However, 

closing down the exploration has an impact on how explanation and justification are established in 

the classroom. Furthermore, closing down an exploration opportunity may have a negative impact 

on the students’ ability to approach the construction of a proof. Referring to exploration as ‘play’ 

may also have a negative impact on students’ confidence in relying on their intuitions when 

exploring a situation. 

Concluding remarks 

The aim of this paper was to shed some light on the area related with the activity of proving as 

constituted in the naturalistic setting of the mathematics primary school classroom. The elements 

that drive pre-proving activity and influence the way proving may be established in the classroom 

have been identified. That is, in mathematical argumentation, pre-proving is coming out of 

reasoning through exploring, explaining and justifying and can lead to proving. This paper reports 

on a teacher whose object is related with exploration that leads to explaining and justifying. 

However, this object is being conflicted as while a play-like exploration can facilitate learning, this 

can prove quite challenging for the teacher, as she wishes to maintain focus and is worried that 

exploring detracts from that focus. The contradiction between emphasizing exploring and 

maintaining focus is one of the tensions which make the constitution of pre-proving in the 

classroom inherently complex. However, this does not tell the whole story. Exploring opportunities 

that were closed down were exploited so as to negotiate and establish socio-mathematical norms in 

the classroom. As these norms are related with the very nature, functions and characteristics of 



proof and proving, they can lead to explaining and justifying. Consequently, their establishment 

strengthens the activity of explanation and thus, the activity of proving.  
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Proof-based teaching as a basis for understanding why  
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The importance of proofs as a way to gain understanding has been observed many times. In this 

paper we show the result of two different experiences with division of natural numbers. The first 

comes from children in grade 3 who have learned about division and divisibility through what we 

call proof-based teaching (PBT), and the second comes from students who just finished their school 

studies and intend to become preservice primary teachers. Our main aim is to point out how 

different school experiences might lead to different (divergent) ways of gaining insight into the 

relationship between the divisor and the remainder. We particularly focus on describing some 

elements we identified in the third graders’ instruction that might have allowed them to articulate 

their own understandings.  

Keywords: Arithmetic, elementary school mathematics, number concepts, proof.  

Proofs as a way to gain understanding 

The goal of proof-based teaching is that students gain understanding through proving. Hence, it is 

based on past work on the role of proof as a means to understand or explain.  

In mathematics education, explanation and understanding go together. The goal is understanding, 

so any explanation offered is aimed at having someone understand why a mathematical claim is 

true. This implies that a proof, to be useful in the classroom, should embody explanation. It 

should show not only that a result is true, but also why it is true. It should be concerned not only 

with its conclusion, but also with its main ideas, its overall structure, and its relationship to other 

mathematical fields and concepts (De Villiers, 2004; Hanna, 1990, 2000) (Hanna, 2016, p. 2).  

Hanna (2016) discusses a number of different views of what makes a proof explanatory, but for our 

purposes, one aspect of these views is important. Explanatory proofs make reference to what we call 

a key notion, but which is also called a “characterizing property” or “salient feature”. “An 

explanatory proof makes reference to a characterizing property of an entity or structure mentioned” 

(Steiner, 1978, p. 143). “A proof can be explanatory only if ‘some feature of the result is salient’ 

and the proof builds upon that salient feature (Lange, 2014, p. 489, cited in Hanna, 2016, p. 4).  

Elsewhere (Vallejo & Ordoñez, 2015; Reid, 2011) we have suggested that proof-based teaching  

(PBT), in which students learn mathematics through explanatory proving that builds on a shared 

body of knowledge, offers an opportunity for the development of relational understanding.  

In the following we first elaborate on the elements of proof-based teaching based on our experience 

of a 3-year design research with third graders. We then show examples of the understandings of 

division of the third graders after a short unit of proof-based teaching instruction. Finally, we 

contrast these understandings with those of students who have completed secondary school and are 

about to begin university studies and draw some conclusions for teacher education.  
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Proof-based teaching  

Reid (2011) proposed proof-based teaching as “a way to develop understanding of mathematical 

concepts” (p. 28), and Vallejo has elaborated this idea in a 3-year design research intervention with 

third graders, the main goal of which was constructing division and divisibility knowledge.  

The first intervention took place in 2013 in a Peruvian public school. This intervention was framed 

in the context of a master thesis (Ordoñez 2014) for which Vallejo was the supervisor. The second 

intervention took place in 2014 with a different group of third graders in the same public school. It 

addressed weaknesses identified in the first intervention through observing the difficulties students 

encountered in the lessons. We will report on the third intervention in the next section.  

In the three interventions Vallejo taught all the sessions as a guest teacher in the classroom of 

another teacher. Written classwork assignments and quizzes were collected which helped the 

researchers to assess the students’ progress in their knowledge construction. All the sessions were 

videotaped, and significant parts of the first and third interventions were transcribed. In all three 

cases, the students had no prior knowledge of these topics at the time the interventions began as the 

goal was to see knowledge being constructed. 

Elements of proof based teaching 

Through this research several elements of proof-based teaching have been identified as important: a 

‘toolbox’ of shared knowledge, an expectation for explanation, and deductive explaining.   

The toolbox  

In order to prove students must share a common set of accepted principles. A ‘toolbox’ of such 

principles is an essential feature of PBT and this also reflects the practice of professional 

mathematicians. We adopt the term “toolbox” from Netz (1999) who uses the term to describe the 

set of theorems and assumptions that are used in classical Greek proofs without explicitly referring 

to them. Thurston, (1995) describes the same phenomenon in contemporary mathematical practice:  

Within any field, there are certain theorems and certain techniques that are generally known and 

generally accepted. When you write a paper, you refer to these without proof. … Many of the 

things that are generally known are things for which there may be no known written source. As 

long as people in the field are comfortable that the idea works, it doesn’t need to have a formal 

written source. (p. 33)  

In the interventions, Vallejo assessed prior knowledge through an individual diagnostic test, but 

more importantly, she established through a class discussion three “key notions” related to division 

and divisibility. These provided “a framework of established knowledge from which to prove” 

(Vallejo & Ordoñez, 2015, p. 231). The three key notions are: 

Fair distribution: Distributions must give the same number of objects to each person.  

Maximum distribution:  The maximum number of objects possible must be distributed. 

Whole distribution: Each person must receive a whole number of objects.    

These key notions were the basis for the proof-based teaching of division and divisibility employing 

a mixture of written (individual and groups) tasks and class discussion.  



An expectation for explanation 

From the very beginning, Vallejo’s students were accustomed to being asked ‘why?’ for every 

conclusion they made or in general for every answer they gave based on the “key notions”. “In the 

course of the sessions students also gave incorrect answers. Occasions of this type were exploited to 

promote discussion and justification by students since they were the ones who corrected the 

answers” (Ordoñez 2014, p. 334). She established in this way “an expectation that answers should 

be justified within this framework” (Vallejo & Ordoñez 2015, p. 231). It became part of the didactic 

contract (Brousseau, 1997) established in the classroom. In the context of proof-based teaching this 

is what we call an expectation for explanation.  

Deductive explanations 

As part of the common ‘toolbox’ the whole class also shared an understanding of conjecture and 

justification, explained and modelled by the teacher, which was in tune with the meaning of proof 

given in A. Stylianides (2007). As part of the didactic contract the students knew that they could 

make as many conjectures as they wanted. The teacher wrote the students’ conjectures at the 

blackboard to be analyzed by the whole class. But they were constantly reminded that in order for 

their conjectures to be upgraded to ‘mathematical truths’, they should provide strong support in the 

form of deductive arguments that were evaluated by the teacher.  

Third graders’ understandings of division 

We report here some results from the third cycle of the research design we discussed above. This 

intervention took place in a public school in Peru, in 2015, with a group of 21 third graders (7-8 

years old). The intervention consisted of 23 sessions, each of them made of around 90 minutes. It 

was session 3 when these third graders discovered the relation between remainders and divisors and 

explained the relation using the key notions through a whole class discussion.    

At the end of the intervention (session 23), the third graders were given a final test, including two 

items related to remainders: 

Is it true that in a division by 𝟒 we can have a remainder of 𝟔? ⬜ Yes ⬜ No  Justify your answer. 

In a whole, fair and maximum distribution among 5 people, how many objects may be left over 

at most? Why can no more objects be left over? Justify your answer. 

These two items were number 8 and 9 on a test with 11 items. We report here on the children’s 

responses to these two items, which are summarized in Table 1. 

 First Item Second Item  

Correct answer with explanation  9 (43%) 12 (57%) 

Correct answer with unclear explanation  2 (10%) 2 (10%) 

Correct answer with no explanation  1 (5%) 1 (5%) 

Incorrect answer  1 (5%) 3 (14%) 

No response or question misunderstood.  8 (38%) 3 (14%) 

Table 1: Summary of results from the third graders’ test 



Of the 21 children, 12 (57%) answered the first question correctly and 15 (71%) answered the 

second question correctly. Most of those who answered the second question correctly were also able 

to give an explanation. Their answers are based on a relational understanding of division, bringing 

together knowledge of the key notions they learned and experience with explanatory proving in this 

context.    

For example, Bruno answered the first question “No. Because if we divide by 4 the remainder is at 

most 3, and 6 is more than 3”. This shows that he understands why the answer is no, and can 

explain by making reference to specific knowledge about division by 4, and implicitly to a general 

rule concerning the maximum remainder possible. Some children who answered the first item 

correctly (2 of the 12) provided a similar explanation, although their knowledge of the possible 

remainders when dividing by 4 was faulty. For example, Eduardo wrote “No, because in a division 

by 4 the only remainders are 1, 2, 3”. Eduardo omits one possible remainder, but his explanation is 

still appropriate, as he points out that 6 is not among the possible remainders in a division by 4.  

On the second item, Max answered “Question 1: 4 can be left; Question 2: because I can keep 

distributing (objects)”. His answer shows his understanding of why the remainder cannot be more 

than 4 when distributing objects among 5 people. Although he does not refer to the condition by 

name (maximum distribution), he uses a condition that makes reference to it (“because I can keep 

distributing objects”) as the question makes reference to cases in which the maximum number of 

objects has not yet been distributed. Max’s answer is an example of the kinds of arguments they 

were able to produce. 

Similarly, Renato’s answer “There can be at most 1, 2, 3 and 4 left over. More objects can’t be left 

over because it wouldn’t be (a) maximum (distribution)”, shows he understands why the maximum 

value for the remainder in a division by 5 is 4. He is actually the only student who makes explicit 

reference to this condition by its name in his written work. Even though Renato’s answer is 

incomplete (he doesn’t consider the remainder zero) his explanation is correct. The use of this 

common toolbox was consistent in this intervention. 

From the very beginning Vallejo invited the students to share their ideas orally, and they seemed to 

feel comfortable to communicate in this way. However, some students had troubles with their 

writing skills while communicating their ideas individually, though they could still share well-

thought ideas orally. Hence, after the final test Vallejo decided to interview some of the students 

who had performed well in whole class discussions, but not so well on the written tasks. These 

semi-structured interviews revealed that some students who had not given explanations had not 

understood the questions being asked. For example, Piero had answered the first test item by giving 

an example of a division by 4 that does not result in a remainder of 6. He did not understand that the 

question refers to dividing by 4 in general. When Vallejo asked the same question in the interview, 

he answered “No, because if there would be 6 left over, it would be 6 divided by 4, and I must 

continue distributing (objects)”. Like Piero, most of the students who gave an answer classified as 

“Question misunderstood” showed in the interview that they had not understood the question in the 

first item. However, when the question was clarified and they were given time to reflect, most were 

able to provide reasons.  



We feel that the explanations given by the third graders demonstrate a relational understanding of 

divisibility, which arose through the proof-based teaching they experienced. We have not (for 

practical and ethical reasons) attempted to make a comparison with a matched group of third graders 

taught about divisibility in another way. Instead, in the next section we compare their 

understandings with those of students at the end of secondary schooling, who have had many other 

opportunities to develop their understandings of division.   

University students’ understandings of division 

We analyze here the answers given on a diagnostic test given at the beginning of university studies 

to 148 students enrolled in primary level teacher education. These students were enrolled at a 

private university and had received a government scholarship to support their teacher education. 

Hence, they can be assumed to be among the best students enrolling in primary level teacher 

education. Around 65% of these students came from the capital city, Lima, where the university is 

located, and the other 35% came from the other parts of Peru.  The test was given prior to any 

instruction at the university, which means that it assessed only the understanding the students 

retained from their school experience. 

The students were asked the following question: “In a division of natural numbers with the divisor 

equal to 3, what are all the possible values the remainder can take? Why?” To ensure that the 

terminology used in the question was understood, the question was accompanied by the diagram 

shown (which is a translation of the real one) in Figure 1.    

Remember that in every division:   
 

Dividend  Divisor 

(Remainder) Quotient 

Figure 1: Reminder included with the question 

The task presented to these students is not exactly the same as presented to the third graders. This 

reflects the background knowledge of these two different groups. In the case of the prospective 

teachers, they were not familiar with the language fair, whole and maximum distributions and the 

third graders were not introduced to the terms dividend, divisor, or quotient. Despite that, one can 

see that both tasks ask for the same knowledge about the divisor and remainder relationship.  

Table 2 summarizes the results from the pre-service teachers.  

 Correct answer Partially correct Incorrect answer No response 

With explanation 9 (6%) 

25 (17%) 

1 (1%) 

11 (7%) 

  

Reference to a general rule 

Without explanation 21 (14%) 13 (9%) 38 (26%) 30 (20%) 

Table 2: Summary of results from the pre-service teachers’ diagnostic test 

A correct answer was given by 55 (37%) of the pre-service teachers. But of these only 9 gave 

explanations that show they understood the reason why the remainder must be 0, 1 or 2. For 



example, Elizabeth wrote “It can only take values less than 3, in this case they would be (0, 1, 2) 

x<3, because a number multiplied by 3 cannot be less than this. (x: Remainder)]”. 

Among those giving a correct answer the most common way to answer the question “Why?” was by 

reference to a rule such as “the maximum remainder is one less than the divisor’s value” or “the 

remainder is always less than the divisor”. These answers may reflect understanding, but the rule 

may have been memorized without understanding. The remaining 21 responses include no 

explanation, an unclear response, or empirical evidence as “explanation”. Figure 2 shows a response 

of this last kind. Note that the divisions are of small numbers, but were done using a standard 

algorithm. In the first two cases, the dividends 1 and 2 were treated as if they were 10 and 20 for the 

purpose of determining the remainder, although the first decimal place of the quotient is worked out 

as if 1 and 2 are being divided. The pre-service teacher writes “Por lo tanto:” [Therefore] suggesting 

she feels that her six examples are sufficient to explain her answer. She also wrote “¿Por qué?” 

[Why?] with an arrow pointed to her examples, which is consistent if she believes these examples 

answer the question. It seems she was not able to provide a mathematical explanation.  

 

    Figure 2: A pre-service teacher’s response, showing a correct answer without an explanation 

Another 25 (17%) pre-service teachers gave partially correct answers (listing two of the three 

remainders, or listing 0 and 3 as distinct possibilities resulting in four remainders), 38 (26%) gave 

incorrect answers and 30 (20%) gave no answer. Overall, the responses of the pre-service teachers 

show an instrumental understanding (in the sense of Skemp, 1987) of division and limited number 

sense. Only 46 could give an explanation or cite a general rule and most used procedural approaches 

to determine the possible remainders in spite of the small numbers involved. 

Conclusions 

We do not claim that this comparison replaces an experimental design with a control group, but this 

was not a goal of our design based research in any case. Nevertheless, it does offer some food for 

thought. One might expect that adults at the conclusion of more than a decade of schooling would 

have had many opportunities to develop concepts related to division, a basic operation in arithmetic 

and one that is basic to understanding of rational numbers and algebra. Why compare them with 

children who have had only twenty-three lessons on the topic? What we wish to compare are the 



two different school experiences with division of natural numbers these two groups have had. Most 

of the preservice teachers can be assumed to have had a typical school experience in mathematics. 

That the third graders have a better understanding of division we feel reflects the non-traditional 

learning context they experienced, that allowed them to make sense of division. We strongly believe 

that proof-based teaching was important in their achievement of this understanding, but further 

research is needed to confirm this.  

However, this comparison also raises an important question for teacher education. If, at the 

conclusion of secondary school, future primary school teachers do not understand basic concepts 

related to division, will they be able to guide children in the development of these concepts? If they 

are to develop these concepts as part of their teacher education, how can this best be done? Clearly 

the approaches taken in their schooling were unsuccessful. Our current research focusses on such 

pre-service teachers, and explore whether a proof-based teaching intervention at the university level 

can allow adults with instrumental understandings to develop relational understandings.   
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In Germany, there is increasing interest in language competences in mathematics lessons. Based on 

national curriculum standards, argumentation should also be strengthened in primary school 

mathematics classes (KMK, 2005). The reported interdisciplinary (linguistics and mathematics 

education) study on reasoning presents a model to rate arithmetic reasoning competences at 

primary level, in which mathematical reasoning and its linguistic realization are separately coded. 

In a pilot study, 243 third, fourth, and sixth grade students solved a number of arithmetic reasoning 

tasks. The results support a one-dimensional scale for the model of reasoning; its components 

identify differentiated requirements, which are formulated concretely in the coding guidelines and 

may point to didactical potential for language support in mathematical reasoning itself, as well as 

in mathematics lessons at primary level. 

Keywords: Reasoning, written argumentation, primary school. 

Reasoning in early mathematics learning 

Early mathematical argumentation can be divided into four steps: detecting mathematical 

regularities, describing them, asking questions about them and giving reasons for their validity 

(Bezold & Ladel, 2014; Meyer, 2010; Bezold, 2009; Wittmann & Müller, 1990). The content base 

for argumentation is achieved by description of the detected structures or by reference to common 

knowledge (Krummheuer, 2000); reasoning is then needed to verify the described regularities as 

true (Toulmin, 2003/1958; Schwarzkopf, 1999).  

The didactical value of reasoning in mathematics learning lies in gaining deeper insights into 

mathematical structures, so developing one’s mathematical knowledge. In this sense, reasoning 

leads to questions about mathematical statements to ensure their correctness and to develop new 

mathematical connections (Steinbring, 2005). Two intertwined processes can be distinguished: 

one’s own understanding and the process of sharing this understanding with others. In most cases, 

these processes don’t occur separately, but are the response to cognitive-social needs (Harel & 

Sowder, 2007; Hersh, 1993). It follows that, in its epistemic function, mathematical reasoning may 

be monologic in leading to deeper individual understanding; in its communicative function, where 

mathematical structures are explained and justified, it is dialogic and dependent on other people 

(Neumann, Beier & Ruwisch, 2014; Ruwisch & Neumann, 2014). 

In primary classrooms, mathematical reasoning usually occurs in the form of oral communication 

between pupils and in interactions with the teacher. These communicative processes have been 

widely studied. From an epistemological perspective, the emergence of shared knowledge and its 

structures has been described (e.g. Steinbring, 2005) while a more interactionist perspective traces 

the type and structure of argumentation in classroom interactions (e.g. Krummheuer, 2015).  



Mathematical reasoning in this sense must be distinguished from reasoning in language classes, 

especially at primary level. While both are seen as concepts that develop out of situated everyday 

(“vernacular”) speech (Elbow, 2012), reasoning in language learning focuses much more on self-

evident facts and personal meanings than on provable structures in special content areas. It follows 

that argumentation in language learning leads to more addressee-oriented cognitivization (Krelle, 

2007), as reasoning of this kind is much more about persuasion than proving. Nevertheless, typical 

linguistic forms of reasoning are learned in these everyday situations, and students must learn how 

to use these in different content areas (e.g. Wellington & Osborne, 2001; Lemke, 1990). So, in 

combining mathematical and linguistic views of early reasoning, we can hope to gain a broader and 

deeper understanding of early reasoning.  

While most age-related studies of primary students focus on oral communication, experts in 

language learning emphasise writing as an important instrument for deepening individual 

understanding (Becker-Mrotzek & Schindler, 2007; Pugalee, 2005; Galbraith, 1999; see also 

Wellington & Osborne, 2001; Morgan, 1998; Miller, 1991). Although primary school children are 

not yet expert in writing, fourth-graders are capable of constructing expository texts with a relevant 

number of causes in elaborating a topic (Hayes, 2012; Krelle, 2007). It may therefore be fruitful to 

look at their written argumentations, and especially at how they offer reasons for mathematical 

regularities (Ruwisch & Neumann, 2014; Fetzer, 2007). 

Modelling written mathematical reasoning 

To investigate children’s written reasoning, we developed a theoretical model that combines 

mathematical and linguistic aspects of reasoning (Ruwisch & Neumann, 2014; Neumann, Beier & 

Ruwisch, 2014). 

Arithmetic reasoning tasks 

Following the four steps of argumentation in primary mathematics (see above), we decided to give 

the children an already structured situation (see Figure 1), which explicitly requires detection, 

transfer and description before offering reasons for the validity of their suggestion.  

Figure 1: Complex addition task (CA) as a sample item  

(left: original version; right: English translation)  

For the purposes of this study, four different arithmetic tasks were designed. Although differing in 

complexity of regularities, all of these tasks focused on detection and reasoning and were easy to 

compute. Format ZF involved three number sequences to be continued: +9, +7, and +2n. Format EA 

asked the children to continue a given additive structure by increasing all three summands by one so 

that the sum increases by three. In solving formats CA and CM, the children had to identify two 



structures at the same time. To answer the complex addition task in Figure 1, the children had to 

find two tasks with the same sum. At the same time, they had to take into account that the 

summands must be changed by 10 in opposite directions. The multiplication tasks (CM) showed a 

constant difference in the product caused by the difference between the multipliers while the 

multiplicands remained constant. 

Sample 

The data include 477 justifications written by 243 students. In total, 41 third-graders (♀21; ♂20), 96 

fourth-graders (♀43; ♂53) and 106 sixth-graders (♀52; ♂54) worked out two of the four arithmetic 

reasoning tasks. 

Data analysis: Theoretical model of rating scales 

The separate evaluation of mathematical and linguistic aspects of reasoning is fundamental to our 

model, which we assume allows differentiated exploration of the sub-skills of reasoning. We also 

wish to check whether experts in either domain (mathematics teachers and German language 

teachers) differ in their evaluations. As our tasks demanded both computing and continuation of a 

given structure (see Figure 1), competencies involving detection of a mathematical structure are 

distinguished from ability to offer reasons for its validity. Students’ writings are rated by one 

detection scale and two reasoning scales (see Table 1).  

Mathematical detections: Children were required to compute the arithmetic tasks on the sheet to 

identify the underlying structure and transfer it to two further packages of tasks. This process might 

be realised fully or only partly; sometimes, only irrelevant aspects were used to create new tasks. If 

the structure is transferred fully, the results of the given tasks are also correct, and three levels of 

this rating scale therefore seemed sufficient. This scale will not be discussed in the following 

application of the model, as it provides little information about reasoning skills.  

Mathematical  

detections 

Mathematical  

aspects of reasoning 

Linguistic  

aspects of reasoning 

 

irrelevant aspects  

as regularities 

   

regularities  

partly transferred 

   

regularities  

totally transferred 

 
regularities  

(partially) described 
  

indicators without reason-

effect structure 
 

 
rudimentary  

reasoning 
  

reason-effect 

structure 
 

 
reasoning  

through examples 
  

explicit linguistic  

reference to the task 
 

 
partially generalized 

reasoning 
  

completeness and  

consistency 
 

 
generalization/ 

formal reasoning 
  

use of math. terminology/ 

decontextualization 
 

Table 1: Rating-scales to evaluate written mathematical reasoning 

Mathematical aspects of reasoning: Mathematical reasoning must be based on a description of 

mathematical elements. If only some regularities are described without giving reasons, this is coded 

as level 1. If rudimentary reasoning is given in addition to a description, the work is coded as level 

2. To be rated as level 3 to 5, all relevant aspects must feature in the argumentation. If this is done 



by use of examples, the work is rated as level 3; if already partly generalized, it is rated as level 4; 

and if it is totally general or constitutes a formal proof, it is rated as level 5.  

Linguistic aspects of reasoning: Realisation of a mathematical argument by written language is also 

rated in terms of five levels, defined in terms of use of connectors and identifiable coherence of the 

text. If explicit linguistic indicators are used without any structured reasoning, the text is classified 

as level 1. If the text shows a reason-effect structure, it is coded as at least level 2. If explicit 

linguistic reference to the tasks is also included, the text is classified as level 3. A level 4 text shows 

consistent and complete argumentation. To achieve level 5, there must also be use of mathematical 

terminology for identifiable decontextualization. 

Process of coding 

Each written argumentation was assessed by at least four raters; while preservice mathematics 

teachers concentrated on the mathematical scales, German language teachers rated the linguistic 

aspects. There was 62% absolute agreement in the judgments across all tasks and scales. Deviations 

of more than one stage occurred in 8% of cases—mainly for linguistic ratings, which were reported 

as more difficult. Coding quality could be seen to increase during the course of the project. 

Although there were acceptable internal consistencies across all tasks (Cronbach’s α = .80), these 

values increase if only ZF (α = .82) and EA (α = .84) (which were used later in the project) are 

considered.  

By excluding the multiplication task for the following overall scaling, an acceptable average internal 

consistency of individual scales was achieved for the remaining tasks (α = .86 for mathematical 

detections, α = .81 for mathematical aspects of reasoning and α = .71 for the linguistic aspects of 

reasoning). 

First results 

Given the number of raters and in the interests of acceptable inter-rater-consistency (α > .70), the 

following results are based on the means of ratings. 

Overall scale 

The IRT scale for the three tasks and all texts shows a common scale across all components (see 

Table 2). As items also conform to the model (WMNSQ .85-1.09), early mathematical reasoning in 

arithmetic as measured by the three tasks and ratings on our scales can probably be described as a 

one-dimensional construct. Looking at the three scales, it becomes clear that, as expected, it is easier 

to detect and transfer mathematical structures than to give reasons for their validity (negative 

deviation from zero). Comparing the two reasoning scales, it seems easier to realise mathematical 

aspects of reasoning than to find an appropriate linguistic structure. At the same time, the most 

stable dimension is mathematical detections, with a maximum difference of .783 as compared to 

1.446 for the linguistic aspects of reasoning and 1.516 for the mathematical aspects of reasoning. 

Comparing the three tasks, it seems that complex addition is the most difficult to transfer; simple 

addition and number sequences show almost no difference. The justifications show that it was 

easiest to realise both mathematical and linguistic aspects of reasoning in the number sequence 

tasks, followed by complex addition and then simple addition. Granted these differences, all tasks 

can be characterised as suitable for capturing mathematical reasoning in arithmetic. 



 

Mathematical  

detections 

Mathematical  

aspects of reasoning 

Linguistic 

aspects of reasoning 

Item Estimate WMNSQ Estimate WMNSQ Estimate WMNSQ 

(ZF) number   

        sequences  
-1.556 1.02 -0.459 1.06 0.124 0.85 

(EA) simple  

        addition  
-1.628 1.09 1.057 1.09 1.570 0.93 

(CA) complex 

        addition  
-0.845 0.98 0.506 0.92 1.230 0.97 

Table 2: Item parameters (estimated) for IRT scaling 

 

Student performance 

Performance of the total sample is distributed normally to slightly right-shifted. On the raw scores 

level, 21.2% are one standard deviation above the mean; 9.6% are one standard deviation below; 

6.2% are two standard deviations above; and 4.2% are two standard deviations below.  

To facilitate comparison of the three groups of 

students, all scores were transposed to a scale 

with mean 100 and standard deviation 20. Figure 

2 shows almost the same mean performance 

across third-graders (M = 102, SD = 29), fourth-

graders (M = 98, SD = 19) and sixth-graders (M 

= 101, SD = 17).  

Unexpectedly, reasoning competences seem not 

to increase over time. Interpreting the differences 

in standard deviations across the three groups, it 

seems that third-graders differ more within their 

group than fourth-graders, and both differ more 

than sixth-graders, suggesting homogenization 

during schooling. However, the relatively limited 

data and lack of comparative data means that any 

general conclusions remain speculative.  

Discussion of the model by application to examples 

Five examples are presented here for deeper discussion of the model’s adequacy (see Table 2). As it 

might prove difficult to discuss the argumentations only in the translated version, the original 

sentences are included on the left. 

Mathematical aspects of reasoning: The child in example 1 has recognized that “something” is the 

same and “something” has changed. However, as he/she does not refer to any connection between 

the tasks or mention that the results are the same, this answer was coded as level 1. Examples 2 and 

4 were coded as level 2; in example 2, it is clear that the child focused on only one of the two 

Figure 2: Student performance by grade 

 



relevant aspects. It is arguable whether child 4’s argumentation is complete; as it is confined to one 

example in the task, it might be evaluated as level 3. In our opinion, the change of the summands in 

opposite directions is only implicit in “that’s always 10 less”. Answer 5 shows both connections 

clearly. Furthermore, the child is able to conclude (using an example) that the results must be the 

same, and so it is clearly to be coded as level 3. As child 3 is doing almost the same but also 

exhibits some generalization in using “always”, we coded this as level 4. 

1) es sind immer die gleichen Aufgaben nur 

umgedreht weil wenn man es rechnet merkt 

man das. 

The tasks are all the same but vice versa 

because if you calculate, you’ll realize it. 

2) Es sind immer 10 mehr und 10 weniger. It’s always 10 more and 10 less. 

3) Dass es die gleichen Ergebnisse sind, kommt 

davon, weil bei der einen Aufgabe immer 10 

weniger sind als bei der anderen. Aber bei 

der Aufgabe wo 10 weniger sind, ist die 

Zahl die noch dazu gerechnet wird 

wiederum 10 größer als die über ihr. 

The results are the same because in one task 

it’s always 10 less than in the other one. But 

in the task that has 10 less, the number to be 

added is 10 bigger than the one above. 

4) Das es immer 10 weniger sind. Zum beispiel 

18+10=28 aber wenn man 10 weg nimmt 

und in der mitte 10 dazu nimmt z.b. 

8+20=28 und dann kommt das gleiche 

ergebnis wie bei der 1. Aufgabe 

That’s always 10 less. For example, 18+10 = 

28. But if you take away 10 and put 10 in the 

middle—for example, 8+20 = 28—then 

you’ll get the same result as in the first task. 

5) mir fällt auf das immer die Ersten 2 

Ergebnisse gleich sind. Die Ersten zwei 

Ergebnisse sind gleich weil die bei zum 

beispiel a) 18+10=28 und dann haben die 

bei 8+20 einfach 18, 10 weniger 8, und bei 

10 zehn mehr, 10-10 ist 0, also bleibt das so 

I notice that the first two results are always 

the same. The first two results are the same, 

because, for example a) 18+10 = 28, and 

then at 8+20 it’s simply 18, 10 less 8, and at 

10 ten more, 10-10 is zero, so it remains the 

same. 

Table 3: Examples of written argumentation for the arithmetic sample item  

      (left: original version; right: English translation) 

Linguistic aspects of reasoning: Example 1 is coded as level 2 because as well as the comparative 

connector “because”, a link between the sentences is also given. As example 2 includes only the 

indicator “always”, without any link, it is coded as level 1. Examples 3 and 4 are coded as level 4 

because there is a clear reasoning structure as well as a link to the tasks. As the argumentation in 

example 5 is ambiguous, and the language used is imprecise, it is coded as level 3.   



Conclusion 

The model was again presented for discussion here to improve its didactical value in evaluating the 

written reasoning of fourth-graders. Although our descriptions in the coding book have continued to 

improve over time, there are still deviations of more than one level between raters. While we wish 

of course to develop the model for its psychometric interest, the levels should also help teachers to 

evaluate written reasoning.  

Although these tasks provide a good deal of information about children’s written reasoning, we 

have to be aware that because they focus on products collected in a test situation, the argumentation 

was necessarily ad hoc. As requests of this type are not part of students’ normal mathematics 

lessons, and they do not have time to restructure their texts, neither the requisite procedural 

knowledge for writing nor situated mathematical argumentation can be grasped in this way. It 

follows that competence in mathematical reasoning—even in written form—may be higher than is 

indicated by the results to date. 
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 This paper presents a theoretical perspective for understanding and teaching university students’ proof 

construction. It includes features of proof texts with which students may be unfamiliar. It considers 

psychological aspects of proving such as behavioral schemas, automaticity, working memory, 

consciousness, cognitive feelings, and local memory. We discuss proving actions, such as the 

construction of proof frameworks that could be automated, thereby reducing the burden on working 

memory and enabling university students to devote more resources to the truly hard parts of proofs.  

Keywords: Proof construction, behavioral schemas, automaticity, consciousness, feelings. 

Introduction  

We report an expanded theoretical perspective to better notice, understand, and alleviate difficulties 

of university students’ proof construction including: features of proof texts, types of proofs, 

situation-action links, behavioral schemas, automaticity, non-emotional cognitive feelings, and local 

memory. Most difficulties were observed and documented during a 10-year teaching experiment—a 

proof construction course. Our explanations call on the psychological as well as the education 

literatures. Local memory (Section 4.10) arose from observing our own proving experiences. 

Features of proof texts 

The proving process involves many more actions (both physical and mental) than appear in the final 

proof text (e.g., Mamona-Downs & Downs, 2009; Selden & Selden, 2016). Indeed, researchers have 

distinguished argumentation from proof, noting that an informal line of reasoning may “justify” a 

theorem to the prover’s satisfaction, but this often differs from the corresponding final proof text 

written to the standards of the mathematical community (e.g., Pedemonte, 2007).  

The genre of proofs 

Students sometimes find the manner in which proofs are written perplexing, as it is often at variance 

with other genres of writing. We have identified some significant features that generally occur in 

proof texts: (1) Proofs are not reports of the proving process. (2) Proofs contain little redundancy. 

(3) Symbols are (generally) introduced in one-to-one correspondence with mathematical objects. (4) 

Proofs contain only minimal explanations of inferences, that is, warrants are often left implicit. (5) 

Proofs contain only very short overviews or advance organizers. (6) Entire definitions, available 

outside the proof, are not quoted in proofs. (7) Proofs are "logically concrete" in the sense that 

quantifiers, especially universal quantifiers, are avoided where possible. (Selden & Selden, 2013a). 

Structures of proofs 

A proof can be divided into a formal-rhetorical part and a problem-centered part. The formal-

rhetorical part is the part that depends only on unpacking the logical structure of the statement of 



the theorem, associated definitions, and earlier results. In general, this part does not depend on a 

deep understanding of the concepts or genuine problem solving in the sense of Schoenfeld (1985, p. 

74). We call the remaining part of a proof the problem-centered part. It does depend on problem 

solving, intuition, heuristics, and understanding the concepts involved (Selden & Selden, 2011). 

Proof frameworks 

A feature that can help write the formal-rhetorical part of a proof is what we call a proof framework, 

of which there are several kinds, and in most cases, both a first- and a second-level framework. For 

example, given a theorem of the form “For all real numbers x, if P(x) then Q(x)”, a first-level proof 

framework would be “Let x be a real number. Suppose P(x). … Therefore, Q(x),” with the 

remainder of the proof ultimately replacing the ellipsis. A second-level framework can often be 

obtained by “unpacking” the meaning of Q(x) and putting the second-level framework between the 

lines already written for the first-level framework. Thus, the proof would “grow” from both ends 

toward the middle, instead of being written from the top down.  

Operable interpretations 

Another feature that can help write the formal-rhetorical part of a proof is converting definitions and 

previously proved results into operable interpretations. These interpretations are similar to Bills and 

Tall’s (1998) idea of operable definitions. For example, given a function f: X →Y and A ⊆ Y, one 

defines f -1(A) = {x ∊ X | f(x) ∊ A}. An operable interpretation would say, “If you have b ∊ f -1(A), 

then you can write f(b) ∊ A and vice versa.” One might think translation into an operable form 

would be unnecessary or easy especially because the symbols in {x ∊ X | f(x) ∊A} can be translated 

into words in a one-to-one way. But for some students this requires practice.  

Dimensions of potential proof construction difficulty 

The need for previous results—proof types: 0, 1, 2, 3 

We have classified theorems of increasing difficulty to refine our inquiry-based “proof course” 

notes (Selden & Selden, 2013b). Type 0 often follows immediately from definitions. Type 1 may 

need a result in the notes. Type 2 needs a lemma, not in the notes, but relatively easily to discern, 

formulate, and prove. For Type 3, at least one of discern, formulate and prove should be difficult. A 

sample Type 3 theorem is: A commutative semigroup S with no proper ideals is a group, when 

provided only the definitions of semigroup and ideal. One needs to observe that, for a∊S, aS is an 

ideal, so aS=S. This implies equations of the form ax=b are solvable for any b∊S. Using some clever 

instantiations of this equation, one can obtain an identity and inverses, and conclude S is a group.  

The need for unguided exploration 

In constructing some proofs, one may reach a point where there is no “natural” way forward. In 

what we call unguided exploration, one may need to find, or define, an object and prove something 

about it, with no idea of its usefulness, that is, one may need to “explore” the situation. For 

example, in proving the above semigroup theorem, this can happen three times. First, one notes aS 

is an ideal and thus aS=S. Then one sees equations of the form ax=b are solvable for any b∊S. Such 

exploration may require self-efficacy (Bandura, 1994), which can be encouraged by arranging early 

student successes.  



The need to unpack the logical structure of a theorem statement 

An informal statement is one that departs from the usual use of predicate and propositional calculus 

or fails to specify variables. For example, Differentiable functions are continuous, is informal 

because a universal quantifier and a variable are omitted, and because it departs from the usual “if-

then” form of the conditional. Such statements are commonplace in everyday mathematics. They are 

not ambiguous or ill-formed because widely understood, but rarely articulated, conventions permit 

their precise interpretation by mathematicians and less reliably by students. An informally stated 

theorem can be memorable and easily brought to mind, but it may be difficult to unpack and prove 

(Selden & Selden, 1995).  

Psychological aspects of the proving process 

We view proof construction as a sequence of actions that can be physical (e.g., writing a line of the 

proof or drawing a sketch) or mental (e.g., changing one’s focus from the hypothesis to the 

conclusion or trying to recall a theorem). The sequence of actions that eventually leads to a proof is 

usually considerably longer than the final proof text and is often not constructed from the top down.  

Situations and actions 

When considering proving, we use the term, action, broadly as a response to a situation in a partly 

completed proof. We include not only physical actions, but also mental actions. The latter can 

include trying to recall something or bringing up a feeling, such as a feeling of caution or of self-

efficacy (Selden & Selden, 2014). In addition, we include “meta-actions” meant to alter one’s own 

thinking, such as changing focus to another part of a developing proof construction. 

Situation-action links, automaticity, and behavioral schemas 

If, during several proof constructions in the past, similar situations have corresponded to similar 

reasoning leading to similar actions, then, just as in classical associative learning (Machamer, 2009), 

a link may be learned between them, so that another similar situation evokes the corresponding 

action in future proof constructions without the need for the earlier intermediate reasoning. Using 

such situation-action links strengthens them, and after sufficient experience/practice, they can 

become overlearned and automated. We call automated situation-action links behavioral schemas. 

Features of automaticity 

In general, it is known that a person executing an automated action tends to: (1) be unaware of any 

needed mental process; (2) be unaware of intentionally initiating the action; (3) execute the action 

while putting little load on working memory; and (4) find it difficult to stop or alter the action 

(Bargh, 1994). However, not necessarily all four of these tendencies occur in every situation. 

Forming behavioral schemas converts S2 cognition, which is slow, conscious, effortful, 

evolutionarily recent, and calls on considerable working memory, into S1 cognition, which is fast, 

unconscious, automatic, effortless, evolutionarily ancient, and places little burden on working memory 

(Stanovich & West, 2000). This conversion into S1 cognition conserves working memory resources. 



Behavioral schemas as a kind of knowledge 

We view behavioral schemas as belonging to a person’s knowledge base. They can be considered as 

partly conceptual knowledge (recognizing and interpreting the situation) and partly procedural 

knowledge (doing the action), and as related to Mason and Spence’s (1999) idea of “knowing-to-act 

in the moment”. We suggest that, in using a situation-action link, or a behavioral schema, almost 

always both the situation and the action (or its result) will be at least partly conscious. 

Here is an example of a behavioral schema that can conserve resources. One might be starting to 

prove a statement having a conclusion of the form p or q. This would be the situation. If one had 

encountered this situation a number of times before, one might readily write into the proof “Assume 

not p” and prove q or vice versa. While this action can be warranted by logic (if not p then q, is 

logically to, p or q), there would no longer be a need to bring the warrant to mind. 

The genesis and enactment of behavioral schemas 

The action produced by the enactment of a behavioral schema might be simple. It might also be 

compound, such as a procedure consisting of several smaller actions, each produced by the 

enactment of its own behavioral schema that was “triggered” by the action of the preceding schema 

in the procedure. We have developed a six-point theoretical sketch of the genesis and enactment of 

behavioral schemas (Selden, McKee, & Selden, 2010, pp. 205-206). Very briefly, here are the six 

points: 1) Within very broad contextual considerations, behavioral schemas are immediately 

available. 2) Simple behavioral schemas operate outside of consciousness. One is not aware of 

doing anything immediately prior to the resulting action – one just does it. 3) Behavioral schemas 

tend to produce immediate action, which may lead to subsequent action. One becomes conscious of 

the action resulting from a behavioral schema as it occurs or immediately after it occurs. 4) 

Behavioral schemas were once actions arising from situations through warrants that no longer need 

to be brought to mind. Behavioral schemas cannot be “chained together” and act outside of 

consciousness, as if they were one schema. 5) An action due to a behavioral schema depends on 

conscious input, at least in large part. In general, a stimulus need not become conscious to influence 

a person’s actions, but such influence is normally not precise enough for doing mathematics. 6) 

Behavioral schemas are acquired (learned) through (possibly tacit) practice. That is, to acquire a 

beneficial schema a person should actually carry out the appropriate action correctly a number of 

times – not just understand its appropriateness. Changing a detrimental behavioral schema requires 

similar, perhaps longer, practice. 

Implicit learning of behavioral schemas 

It appears that the process of learning a behavioral schema can be implicit, although the situation 

and the action are in part conscious. That is, a person can acquire a behavioral schema without being 

aware that it is happening. Indeed, such unintentional, or implicit, learning happens frequently and 

has been studied by psychologists and neuroscientists (e.g., Cleeremans, 1993). In the case of proof 

construction, we suggest that with the experience of proving a considerable number of theorems in 

which similar situations occur, an individual might implicitly acquire a number of relevant 

beneficial behavioral schemas. As a result, he or she might simply not have to think quite so deeply 

as before about certain portions of the proving process, and might, as a consequence of having more 

working memory available, take fewer “wrong turns”. 



Detrimental behavioral schema 

Many teachers can recall having a student write √(a2 + b2) = a + b, giving a counterexample, and 

then having the student make the same error somewhat later, perhaps in a different context. Rather 

than being a misconception (i.e., believing something that is false), this may well be the result of an 

implicitly learned detrimental behavioral schema. If so, the student would not have been thinking 

very deeply about this calculation when writing it. Furthermore, having previously understood the 

counterexample would also have little effect in the moment. It seems that to weaken/remove this 

particular detrimental schema, the triggering situation of the form √(a2 + b2) should occur a number 

of times when the student can be prevented from automatically writing “=  a + b” in response.  

Feelings and proof construction 

The word “feeling” is used in a variety of ways in the literature so we first indicate how we use it. 

Often feelings and emotions are used more or less interchangeably, perhaps because both appear to 

be conscious reports of unconscious mental states, and each can, but need not, engender the other. 

We will follow Damasio (2003) in separating feelings from emotions because emotions are 

expressed by observable physical characteristics, such as temperature, facial expression, blood 

pressure, pulse rate, perspiration, and so forth, while feelings are not. 

Feelings, such as a feeling of knowing, can play a considerable role in proof construction (Selden, 

McKee, & Selden, 2010). For example, one might experience a feeling of knowing that one has 

seen a theorem useful for constructing a proof, but not be able to bring it to mind at the moment. 

Such feelings of knowing can guide cognitive actions because they can influence whether one 

continues a search or aborts it (Clore, 1992, p. 151). We call such feelings non-emotional cognitive 

feelings. 

For the nature of feelings, we will follow Mangan (2001), who has drawn somewhat on William 

James (1890). Feelings seem to be summative in nature and to pervade one’s whole field of 

consciousness at any particular moment. Non-emotional cognitive feelings, different from a feeling 

of knowing, are: a feeling of familiarity and a feeling of rightness. Rightness is “the core feeling of 

positive evaluation, of coherence, of meaningfulness, of knowledge”. (Mangan, 2001). About such 

feelings, Mangan (2001) has written that “people are often unable to identify the precise 

phenomenological basis for their judgments, even though they can make these judgments with 

consistency and, often, with conviction.” Finally, we conjecture that feelings may eventually be 

found to play a larger role in proof construction than indicated above, because they provide a direct 

link between the conscious mind and the structures and possible actions of the unconscious mind. 

 The roles of affect and self-efficacy 

In order to prove harder theorems--ones with a substantial problem-centered part--students need to 

persist in their efforts, and such persistence is facilitated by a sense of self-efficacy. According to 

Bandura (1995), self-efficacy is “a person’s belief in his or her ability to succeed in a particular 

situation”. Of developing a sense of self-efficacy, Bandura (1994) stated that “The most effective 

way of developing a strong sense of self-efficacy is through mastery experiences,” that performing a 

task successfully strengthens one’s sense of self-efficacy. Also, according to Bandura, “Seeing 

people similar to oneself succeed by sustained effort raises observers’ beliefs that they too possess 

the capabilities to master comparable activities to succeed.” 



Bandura’s ideas “ring true” with our past experiences as mathematicians teaching courses by the 

Moore Method (Mahavier, 1999). Such courses are taught from a brief set of notes consisting of 

definitions, requests for examples, and statements of major results, together with lesser results 

needed to prove them, but no proofs. The students provide the proofs and present them in class. 

The development and uses of local memory 

Some may think that proof construction consists mainly of conscious thought (i.e., as 

communication with oneself or others using speech, vision, etc., or their inner versions, as 

suggested by Sfard, 2010). However, we take a somewhat different view. In constructing a proof of 

some complexity, often much more relevant information can be activated than can be held in one’s 

short-term working memory (ST-WM). When such information is lost from consciousness, it may 

not return to its original state, but rather to a state of partial activation. Nonetheless, conscious 

thought can sometimes influence the activation of related information in long-term memory (LTM), 

that is, help bring something to mind. Ericsson and Kintsch (1995) stated that “reliance on acquired 

memory skills will enable individuals [experts] to use LTM as an efficient extension of ST-WM in 

particular domains and activities after sufficient practice and training.” We speculate that 

mathematicians can do this when conducting their own research. We have observed of ourselves, 

when attempting an intricate complex proof, that a considerable amount of information is generated, 

but cannot all be kept in mind; however, it is easily recalled. We refer to such partially activated 

information as local memory -- it is available as long as we are seriously engaged with the proof. It 

seems analogous to Ericsson and Kintsch’s (1995) idea of long term working memory (LT-WM). 

Teaching and future research considerations 

We believe this perspective on proving, using situation-action links and behavioral schemas, 

together with information from psychology, is mostly new to the field. Thus, it is likely to lead to 

additional insights and teaching interventions, which brings up the question of priorities. Which 

proving actions of the kinds discussed above are most useful for mid-level university mathematics 

students to automate when they are learning how to construct proofs? Since such students are often 

asked to prove relatively easy theorems—ones that follow directly from definitions and recently 

proved theorems—it would seem that noting the kinds of structures that occur most often might be a 

place to start. Indeed, since every proof can be constructed using a proof framework, we consider 

constructing proof frameworks as a reasonable place to start. Furthermore, we have observed that 

some students do not write a second-level proof framework, perhaps because they have difficulty 

unpacking the meaning of the conclusion. This may be because a relevant definition needs to be 

converted into an operable interpretation in order to construct the second-level proof framework. 

Thus, helping students interpret formal mathematical definitions so that these become operable 

might be another place to start, even though students should eventually learn to make such operable 

interpretations themselves. 

Finally, this theoretical perspective is likely to allow one to see parts of the teaching of proof 

construction in unusual ways and lead to new questions. For example, unguided exploration can be 

helpful for some proofs, but a student could easily feel the time required for exploration might 

reduce (timed) test grades. A feeling of self-efficacy might overcome that, but how are feelings 

“taught”? Early successes with proofs can help, but arranging for these might require detailed 



planning of the course before it starts. Such planning could perhaps be aided by following a 

textbook, but most advanced mathematics textbooks prove the most important and useful theorems 

themselves, thereby taking away from students the opportunity to experience the proving of even 

parts of such theorems. 
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The study presented in this report is part of a research project concerning the mediation of artifacts 

in teaching and learning geometry. In this paper we analyze the first step of our research which 

concerns the student-pantograph interaction and the identification of the math laws incorporated in 

the machine. During this interaction we are specifically interested in arguments that students produce 

for supporting their claims. Tools, especially mathematical machines, may support argumentation 

processes focusing either on the structure of the machine, or to the embodied math concepts that 

emerge from the machine’s movement. Our research has shown that these arguments hold mainly on 

the topological conception of geometric figures.  

Keywords: Argumentation, instrumentation, figural concept, topology, pantograph. 

Introduction 

Mathematics is in close relation with material and non- material artifacts. Artigue (2002, p. 245) 

points out that “the development of mathematics has always been dependent upon the material and 

symbolic tools available for mathematics computations”. Teaching and learning geometry may be 

mediated by visual or design artifacts. Research on the use of artifacts in Geometry teaching as means 

to facilitate understanding and learning, has tended to focus mainly on technology integration into 

curriculum- such as computer software packages focusing on how learning takes place when students 

use such artifacts. In addition to the use of information technology in schools, the MMLab researchers 

(e.g., Bartolini Bussi, 2010; Mariotti et al., 1997) have recommended and investigated from an 

epistemological and pedagogical aspect the use of mechanical artifacts -mathematical machines- as a 

way to generate mathematical ideas or concepts in the classroom. The geometrical machine “is a tool 

that forces a point to follow a trajectory or to be transformed according to a given law” (Bartolini 

Bussi & Maschietto, 2008). These machines (for example pantographs) are linkages that allow the 

implementation of geometrical transformations, such as symmetry, reflection, translation, and 

homothety.  

The study presented in this report is part of a research project concerning the teaching of geometry at 

an upper secondary school in Greece (early 2016). Our research project was conducted in the 

framework of an attempt to incorporate artifacts that bear geometrical machine characteristics, in the 

instruction of Euclidean geometry.  

Theoretical framework  

The theoretical framework of the instrumental approach was used for analyzing our observations 

(Verillon & Rabardel, 1995). According to this approach, the artifact is the material or symbolic 

object, while the instrument is defined as a mixed entity made up of both artifact and utilization 

schemes. In order for an artifact to lead to the development of an instrument, “the user has to develop 

mental schemes, which involve skills to use the artifact […] the birth of an instrument requires a 

process of appropriation, which allows the artifact to mediate the activity. This complex process is 



called the instrumental genesis” (Drijvers & Trouche, 2008, p. 370). “The instrumental genesis, is a 

two sided process. On the one side, the construction of schemes is oriented toward the use of the 

artefact: the instrumentalisation. On the other side, the construction of schemes is oriented toward the 

task to be achieved: the instrumentation.” (Goos et al., 2009, p.313). In our study we investigate the 

instrumentalisation process, i.e. the discovery of the elements and qualities of the artifact by the user. 

For our purpose, teaching homothety, the pantograph was the most convenient tool. Following 

Drijvers and Trouche (2008, p.369) we consider that the utilization schemes students construct during 

the instrumentalisation process, contain operational invariants that consist of – explicit or implicit – 

knowledge in the form of concepts-in-action or theorems-in-action.  

Martignone and Antonini (2009) analyze more specifically the pantograph utilization schemes. They 

identified the “utilization schemes linked to the components of the articulated system (as the 

constraints, the measure of rods, the geometric figures representing a configuration of rods, ect.) and 

the utilization schemes linked to the machine movements” (p. 1253). In the second case, they 

distinguished two main sub-families: (1) the utilization schemes aimed at finding particular 

configurations obtained stopping the action in specific moments (limit zones; generic or particular or 

limit configurations) and (2) the utilization schemes aimed at analysing invariants or changes during 

continuous movements (wandering, bounded, guided; of particular configuration; between limit 

configuration; of dependence or in the action zones) (p. 1254). They have also conducted research on 

the argumentations produced in activities employing the pantograph (Antonini & Martignone, 2011). 

They distinguish between arguments about a) the drawings traced by the machine, b) the movement 

of the machine (as some dynamic properties of the articulated system), and c) the structure of the 

machine. Arguments about the structure are distinguished between referring to the figural aspect of 

the machine and the conceptual component of the geometric figure, which they discern in the 

structure.  

In this paper we analyze the kind of argumentation produced by 16-17 year old students during the 

phase of investigating (a) the structure of a pantograph and (b) the configurations and (con) 

formations produced by the movements of its structural components.  

Our research hypothesis was that the argumentation produced by the students, is in close relation with 

the machine’s characteristics: students’ explanations in the form of concepts or theorems in action 

are the exteriorization of precise utilization schemes developed by investigating the structure and the 

movement of the pantograph. 

Methodology 

The first step of our research, that is the subject of this paper, concerns the student-pantograph 

interaction. 26 students of an 11th grade class (16-17 years old), of different learning abilities and 

interests, took part voluntarily in the experiment. Participating students worked in 6 groups (4 groups 

of 4 people, and 2 groups of 5 people). All the participating students had no prior experience with 

any artifact, except for compasses and rulers. Two meetings were carried out with the groups, of four 

hours in totals, and members of two groups (A and B) were interviewed. The working sessions and 

interviews were audio recorded, and afterwards transcribed. The transcripts, visual material 

(photographs), and written reports of the groups constitute the data for the analysis. 



The artifact, with which the students were asked to work, is a geometrical machine (linkage) with the 

characteristics of a pantograph, specifically a version of Scheiner’s pantograph (Figures 1, 2). The 

building blocks of the pantograph model were two equally-sized wooden rods 30 cm long 

[OD=AE=AC=BD], held together by the links/pivots [A, L, D, and K] in the middle, thus forming a 

parallelogram [ALDK]. The rods had notches allowing reassembly of the linkage while maintaining 

its properties, provided that the links were placed in such a way that the ratios of the lengths of rod’s 

parts were equal in each rod. The pantograph’s linkage was mounted on a wooden platform 

(60cmx60cm).  

  

Figure 1: The linkage Figure 2: Schematic representation of the linkage 

The tasks given to be treated by students concerned exploring the pantograph’s structure and the 

investigation of special configurations and formations produced by the movements of the structural 

components of the linkage. The choice of the tasks was made following the distinction by Martignone 

and Antonini (2009) of the utilization schemes during pantograph exploration: the utilization schemes 

linked to the components of the articulated systems and the machine movements. The students invited 

to observe carefully the articulated system and to describe elements and characteristics of its structure 

such as length relationships and the mode of the rods' connection; to try to detect schematic shapes, 

properties and relationships that comprise its form and to create schematic representations of the 

articulated system (forms of system).  

The analysis of the transcript was done following the classification of Martignone and Antonini 

(2009) about mathematical machine utilisation schemes and the kinds of arguments students use 

during the exploration of a geometrical machine, as a pantograph (Antonini & Martignone, 2011). In 

our research we examine utilization schemes linked to the structure of the machine in a static and in 

a dynamic status (: movement of the machine). For the first case (: static structure), hereafter, we use 

the symbols SF and SC, for the figural aspect of the machine and the conceptual component of the 

geometric figure which students discern in the structure, respectively. For the second case (: dynamic 

structure) we use the symbols MF and MC. In fact, in this second case we investigate the way students 

justify the embodied mathematics in the structure of the machine.  

In this paper, we present and analyze the arguments produced by Group A -four girls hereby referred 

to as S1, S2, S3 and S4- as they investigate the configurations produced by the movements of the 

pantograph’s structural components. Apart from space constraints, the omitted group (B) was already 

familiar with the abstract math concepts involved, as opposed to group A whose gradual discovery 

of the tool yielded high resolution into the thought process addressed by our research hypotheses. 

Analysis of a transcript 

The students of Group A took advantage of the capability of the linkage pivots to alter its form by 

opening and closing its parts, identified the property of the midpoint for the position of the pivots (as 

K, L in Figure 2) and inferred the equality of their lengths (equal rods).  



S1: We identify a rhombus configuration (Figure 4), because the sides are equal as half 

of equal segments (SF, MC).  

The student S1 perceives the components of the machine’s structure as geometric objects and 

identifies in them geometrical relations. The equality of segments arose as an ascertainment while 

opening and closing the linkage. She uses the definition of rhombus (: because the sides are equal) 

and together with the figural aspect of the linkage’s structure (: half of equal segments) to argue that 

the quadrilateral ALDK is a rhombus (Figure 2).  

S2: Can we mention implied properties too?  

Interviewer: Describe what you consider important. 

This encouragement led the students to operate the artifact more dynamically, not only by opening 

and closing the rods, but also exploring characteristics and properties of specific conformations and 

support their claims, taking advantage of the capabilities provided by the pivots.  

S2: Isosceles triangles are formed (with her finger traces on the artifact the triangles 

OKA and ALB in Figure 2) … if we assume that the articulated system can close its 

ends (she points at the end of the rods and moves them until the linkage is closed, 

Figure 3) and if we assume that it has a base because those (she points at the pivots 

K and L, Figure 2) are midpoints of equal sides (MF, MC). 

The student executes the motion mentally (“if we assume … that it closes … and if it possesses a 

base”). They envision triangles in the linkage structure, though triangles do not exist. For these 

students the triangles they refer to are figural concepts (Fischbein, 1993). The students imagined the 

triangle and the reason that it is isosceles by moving the rods so that one rod meets the other (MF), 

while they deduce the equality of sides as halves of equal segments (MC). 

S3: Maybe they're not triangles because they don't close? 

The dimensions (thickness) of the rods don't allow them to coincide. The limitations of the artifact 

create a conflict between the figural aspects of the structure and the conceptual aspects of the 

geometrical figures of the articulated system. The students doubt whether they can actually consider 

it as a triangle. 

S1: If we move the linkage, in a special position, we have a square (MC).  

   

Figure 3: Closed linkage Figure 4: The rhombus Figure 5: The square 

The student mentions the word “square” without justification. They have been taught that square is a 

special case of the rhombus. By moving the artifact, they predict that for a specific position of the 

rods, a square will be formed (Figure 5). Their square is of a conceptual nature. At the same time, it 

has an intrinsic figural nature: only while referring to the artifact one may consider operations like “if 

we move….we have a square”. As a matter of fact, the square to which they refer cannot be considered 

as either a pure concept or a mere concrete representation. 

Interviewer: How do you know it's a square?  



S1: We have a right angle. 

Interviewer: How do you know the angle is right? 

S1: Since we have the capability of opening and closing an angle, then it can take all 

values between 0 and 180 … then definitely one of these values will be 90 … so 

one (angle) will be 90 degrees (MC). 

The students imagine through the rod motion a continuous creation of angles between 0°-180° and 

that obviously 90° will exist as mean of the interval, and consequently will correspond to an angle.  

S3: It is not just one particular (right) angle … but anyone… for a specific position of 

the rods (MC).  

Here is shown clearly the conceptual aspect of the argument. To the students the angle is not a 

characteristic of a static position of the artifact, but is dynamically created independently of the nature 

and position of the artifact on the planar surface (generalization). The right angle has been 

disconnected from the particular tool and is being described dynamically through its measure as a 

specific value in the interval 0°-180°. 

S4: (She opens and closes the rods and observes where the ends move and where the 

joint) … the ends of the rods (the points O, A and B in Figure 2) … remain always 

on the same line as Ο (MF). 

Interviewer: How do you know that those are on the same line?  

S2: From the triangles […] 

Interviewer: You assume that the base of one isosceles is an extension of the other, how do you 

know?  

The student assumes that the bases of two isosceles triangles are on the same line. The researcher’s 

intervention is critical. She is suspecting that parallelism will allow her to transfer angles so as to 

justify the conjecture of the points' co-linearity.  

S1: Those (points at pairs of opposite rods) … are parallel … they are always parallel 

(MF)… from construction … because their distance remains always equal. 

Parallelism is suggested to the students by the artifact’s structure, and is reinforced during the 

artifact’s movement. Substantiation of equal distance bears is theoretically unfounded.  

The fact that the distance between the rods is always the same does not arise from a mathematical 

justification, but from analysis of the tool's structure. The student considers the tool as embodiment 

of some geometrical properties. From the moment they regarded the square as a special case of 

rhombus, they pointed out the constant distance (: opposite sides of the square) between the lines 

containing opposite rods, a fact that leads them to parallelism. In fact the student overgeneralizes 

(Gärdenfors, 2004, p.151) the equal distances in the case of the square, to any other position of the 

rods. She implies that in any configuration (even in the case of rhombus) the distances are equal.  

Interviewer: How do you know this distance is always equal?  

S1: The distance from here (the student opening two fingers represents the supposed 

distance between two opposite rods) is always equal to this one (DH=DZ, in Figure 



6) and are equal in all positions (Figure 7) … same with this one (Figure 8-a 

square) … they can also be unequal, of course they're not always the same but 

they're equal in every position (MF) and the maximum distance is when it (the tool) 

forms a square (MC).  

   

Figure 6 Figure 7 Figure 8 

Figures 6,7,8: Schematically represent the conformations of the artifact that the student trace on the 

drawing paper. 

The student’s spatial conception is topological in nature. This conception appears first as an 

overgeneralization, and following the interviewer’s persistence, it is expressed clearly through the 

movement of the artifact. For S1 rhombus and square are topologically equivalent (homeomorphic), 

leading to the conservation of equal distances (Figures 6, 7, 8). Piaget and Inhelder (1967) consider 

the structures of topology, to be the origin of the ontogenesis of spatial thinking.  

Interviewer: Why is it the maximum distance? 

S1: Because if I go over here (she refers to her equivalent to Figure 6 drawing on the 

board) from a right triangle (shows on the drawing the triangle DZL to which she's 

referring) I have a smaller distance, because this distance (DZ) is the smallest, as 

it's a leg … so these form this angle equal to this angle (referring to the right angles 

of the right triangles DHK and DZL in her drawing). 

The argument the student formulates in her attempt to justify why the distance of opposite rods 

becomes maximum, in the case of a square, has two components. One concerns a geometrical 

property (: the perpendicular segment is shorter than any oblique) (MC), while the second component 

is based on figural characteristics related to the conformations of the tool (rhombus –square) (MF). 

In line with Radford (2003), we could consider the student’s argument as a factual generalization: “A 

factual generalization is a generalization of actions in the form of an operational scheme that remains 

bound to the concrete level.” (Radford, 2003, p.65). 

Interviewer: But why are they parallel? 

S3: Since the general shape is a rhombus (MC) and the distances between them 

(meaning the opposite sides) are always equal (MC). 

The students identify the characteristics of a geometrical problem they have tackled in the past 

(distances of opposite sides in a rhombus are equal), but being unable to give a geometric proof, 

remain on a topological approach. 

Discussion and conclusions  

Our research hypothesis was that the argumentation produced by the students, is in close relation with 

the machine’s characteristics. In fact, in agreement with the findings of Antonini and Martignone 



(2011) students produce arguments both on a figural and a conceptual level even for the same 

investigation. The arguments used by the students are supported by the linkage’s continuous 

movements in the action zones or between limit configurations.  

Students produce arguments based on the figural characteristics of the tool mainly in two cases: when 

the structure of the tool renders their observation probable (3 collinear points), or when the tool 

produces the “proof” mainly through the linkage’s continuous movements (: the triangle is isosceles, 

because the rods overlap). The figural characteristics make some facts “obvious” for the students to 

the point to give to the observer the impression of lack of substantial comprehension of geometrical 

definitions. For example, the students, in spite of recognizing the rhombus, do not readily deduce the 

parallelism of its side, and seek more complex proof, mainly via the artifact's attributes.  

The instrument’s structure may favor the theorems-in-action formulation (Fischbein, 1993), 

providing convincing argumentation: an angle is right, as it can be constructed by the artifact on a 

specific moment of its movement. Although the students were familiar with elementary proof in the 

framework of Euclidean geometry, their way of thinking was mainly topological. It seems that the 

mathematical tool, through its capacity for motion, favors such approaches. This was demonstrated 

not only in the justification that an angle is right, but also in the justification of two lines’ parallelism. 

This fact implies the benefit of artifact use in Geometry teaching, before a formal introduction to the 

concept of proof.  

Nevertheless, the tool’s restrictions (e.g. rods not fully overlapping), create a conflict between the 

figural aspects of the structure and the conceptual aspects of the geometrical figures of the articulated 

system. For example, when trying to superimpose the wooden sides of the triangle in order to check 

if they are equal, students face the tool's restriction. Nevertheless, they can imagine it as an isosceles 

triangle. Those restrictions have two outcomes: a positive one being that students are forced to think 

in a more abstract manner and the negative one that the restrictions may lead them to false 

conclusions, giving the occasion of fruitful discussions.  
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The paper describes a game-activity proposed to 7th grade students with the goal to make them 

discover the geometric property concerning the mutual relationship between two circles. The activity, 

called “the game of the two circles”, is composed of a strategic game that students play in GeoGebra 

and an investigative task which requires conjecturing and generalization. The aim of the activity is 

to trigger an approach to mathematics based on the logic of inquiry. We analyse students’ dialogues 

and actions paying particular attention to the additional values the game confers to the more 

traditional exploratory activities with dynamic geometry software. 

Keyword: DGE game-activity, played-game, reflected-game, inquiring and justifying processes. 

Introduction 

Many studies in mathematics education have documented the importance of making students explore 

mathematical situations before asking them to construct proofs (Boero et al. 1996, Pedemonte 2007). 

The exploration triggers the formulation and the checking of conjectures, introducing students into 

logical ways of reasoning. As pointed out by Dewey, all forms of logics, included the deductive logic, 

are consequence of inquiry processes: 

 all logical forms (with their characteristic properties) arise within the operation of inquiry 

and are concerned with control of inquiry so that it may yield warranted assertions. This 

conception implies much more than that logical forms are disclosed or come to light when 

we reflect upon processes of inquiry that are in use. Of course it means that; but it also 

means that the forms originate in operations of inquiry. (Dewey, 1938, p.3,4) 

 Boero et al. (1996) have observed the possibility of a cognitive continuity between the processes of 

discovering and justifying. It occurs when the students, in the construction of the proof, exploit the 

argumentations employed for producing the conjecture. Pedemonte (2007) has distinguished between 

a cognitive unity in the referencial system and in its structure. The first occurs if some expressions, 

drawings, or theorems used in the proof have already been used in the argumentation for supporting 

the conjecture. The second occurs if the inferences produced in the argumentation and in the proof 

are connected through the same structure (abduction, induction, deduction). Hintikka (1999), an 

eminent Finnish logician, analyzing Sherlock Holmes way of reasoning in inquiry processes, showed 

that the clever deductions he made are obtained by reversing the abductions (Peirce, 1960) produced 

while investigating. His works demonstrates the existence of an epistemic unity between inquiring 

and justifying processes.  

In this study, we favor and emphasize the possibility of connections between the discovery and 

justifying processes by introducing strategic games within Dynamic Geometry Environments 

(DGEs): these are games in which players have to make strategic choices meant for setting up and 

coordinating actions aimed at the achievement of a goal. As it is known from the literature (Arzarello 



et al. 2002, Baccaglini-Frank & Mariotti, 2010), DGEs are particularly apt for triggering inquiring 

processes. Our conjecture is that in virtue of the game, the conjectures and abductions produced inside 

the DGE are not left isolated but can be connected together and reorganized in logical chains. In fact, 

for making a strategic choice within a game situation, players reflect backward on the moves made 

and forward on the possible moves to make. These reflections can support the construction of logical 

links through which reorganize the geometrical invariants observed during the players’ moves. In 

fact, since the moves are made on dynamic figures and involve geometric elements, we wish that the 

strategic reflections made on the moves could affect also the geometric elements involved in the 

moves. For this reason, DGE game-activities can promote a kind of thinking which is different from 

the one triggered by more traditional explorative activities with DGS. 

Theoretical framework 

The interrogative logic or logic of inquiry, introduced by Jaako Hintikka (1999), proposes a back to 

the origin consideration of the discipline. According to Hintikka, the modern logic switched from the 

study of excellence in reasoning to the study of infallibility in reasoning: “preserving one’s logical 

virtue becomes a more important concern than developing virtuosity in drawing logical inferences” 

(Hintikka, 1999, p.28). The rules of inference are definitory rules, which inform us about the possible 

inferences, but do not say anything about which inferences are appropriate in the current moment, 

which are not so and which ones are better than others. These types of considerations are the concern 

of strategic principles.  

Hintikka conceives the process of seeking new knowledge as an interrogative game, which is a two-

player game between an inquirer, who asks the questions and an oracle, who answers him. 

Observations can be thought of as answers put to an environment, a controlled experiments, a 

database stored in the memory of a computer, a diagnostic handbook, a witness in a court of law, or 

one's own tacit knowledge partly based on one's memory can be considered as questions asked to 

nature. “Strategies of questioning play a central role in interrogative games, these include strategies 

of information seeking by means of different choices of questions to be asked and of the order in 

which they are asked.” (Hintikka, 1999, p.34).  

Hintikka models the processes of verification and falsifications through a semantical game (Hintikka, 

1998), which is a two-player game between a verifier, whose goal is to show the truth of a 

mathematical formula or statement and a falsifier, whose goal is to confute it. In order to establish 

the truth of the mathematical formula ∀𝑥 ∃𝑦 | 𝑆[𝑥, 𝑦] it is possible to imagine a game in which the 

falsifier choses a value x0 “in the most unfavorable way as far as the interests of the verifier are 

concerned” and the verifier should find a value y0 for y such that 𝑆[𝑥0, 𝑦0] is true. The formula is true 

if there exists a winning strategy for the verifier of the game, while it is false if there exists a winning 

strategy for the falsifier of the game. 

In our study, taking inspiration from Hintikka’s semantical game, we designed DGE game-activities 

in order to aid students in their discovery of geometric properties, through the game-play and the 

guiding questions. Analysing students’ actions, we distinguish between two ways of using the game: 

the played-game and the reflected-game (Soldano & Arzarello, 2016). In the played-game, the 

students’ aim is to win against their opponent. To reach this goal they activate strategic principles 

which help them to select the best move to make in a given situation. In the reflected-game students 



play the game in order to answer the questionnaire and to communicate with each other. They play 

the game in a fictitious way: the game helps students to formulate the correct answer. In the reflected 

game we distinguish between the two main cognitive processes that characterizes dragging practices 

(Saada-Robert, 1989; Arzarello, 2002; Olivero, 1999): ascending and descending processes. We 

recognize ascending processes when students use the game in order to explore the situation and 

formulate a conjecture and descending processes when they use the game to check it. We have 

integrated this analytical tool with a new cognitive modality: the detached modality, in which students 

refer with words to the dynamic observed in the game, but they do not use it concretely.  

The game of the two circles 

The game-activity presented in this paper is based on the relationship between the distance between 

the centres of tangent circles and the sum/difference between their radii. Students play the game on 

the GeoGebra file shown in Figure 1. The GeoGebra window is divided in two parts: on the right 

there is the numerical window with sliders and variables, in the left the graphic window here is a 

graphic representation of the geometric objects. 

Sliders a, b, and c control respectively the distance between the centres, the radius of the circle with 

centre O and the radius of the circle with centre O’. The variables d, e, f are respectively the absolute 

value of the difference between the radii (d=|b-c|), the distance between the centres and the sum of 

the radii (f=b+c). When students drag sliders b or c, they can observe the synchronic variation of the 

values of d and f and of the length of one circumference.  

The game develops as follows: player B, the verifier, controls slider b, player C, the falsifier, controls 

slider c while player A, the referee, controls slider a and the hourglass. The goal of player B is to 

make e=d or e=f, the goal of player C is to make e≠d and e≠f. At the beginning of each match, the 

referee chooses the value of a and turns the hourglass over. Each time a player reaches his goal, the 

referee turns the hourglass over and the turn moves to the opponent. If the player cannot reach the 

aim within the time on his/her hands, he/she loses. The dynamic described is that of a semantical 

game played on the following statement: for every value of c there exists a value of b such that the 

circles are internally or externally tangent. 

Each time that player B reaches his goal he produces an example of internally or externally tangent 

circles (look at Figure 2 a, b). Contrastingly, each time player C reaches his goal he produces an 

example of non-tangent circles (look at Figure 2 c, d, e). Since the interval of the sliders can take 

values from 0 to 10, players can produce also degenerate configurations (look at Figure 2 f, g). Player 

B can win also in this situation (look at Figure 2 h).  

Figure 1: Game-activity 



a) b) c) d) 

Externally tangent circles 

e=f 

Internally tangent circles 

e=d 

Non-tangent circles 

e≠d ∧ e≠f 

Non-tangent circles 

e≠d ∧ e≠f 

e) f) g) h) 

Non-tangent circles 

e≠d ∧ e≠f 

Degenerate non-tangent circles 

e≠d ∧ e≠f ∧c=0 

Degenerate non-tangent circles 

e≠d ∧ e≠f ∧c=0 

Degenerate tangent circles 

d=e=f ∧c=0 

Figure 2: Example space associate with “the game of the two circles” 

Theoretically it is always possible for players to reach their goals. Therefor the outcome of the game 

is determined by the time limit.  

After playing the game, students are required to answer to the following questions: 

1. Which are the mutual positions between the two circles each time player B reaches his aim? 

2. Which are the mutual positions between the two circles each time player C reaches his aim? 

3. What do the sliders a, b and c represent?  

4. What do the value of d, e and f represent? 

The questionnaire is intended to help students shift their frame of reference from the game to the 

geometric theory. In particular, the first two questions are intended to change the focus of attention 

from the numerical values of variables d, e and f to the mutual positions between circles. In this way 

students discover the geometric invariants which characterizes player B’s moves: each time the 

verifier reaches the goal the circles are tangent. Question number three is intended to link the values 

of the sliders to the length of the radii and the distance between the centres. Finally, question number 

four is intended to link the values of the parameters to the sum and difference of the radii. In this way 

students can discover another invariant which characterized player B’s moves: each time the verifier 

reaches the goal the distance between the centres is equal to the sum or difference between the radii 

Methodology and data collection 

The study reported in this paper involves one classroom of 7th grade Italian students. The game of the 

two circles is the first of a group of four game-activities related to the geometry topic of circles. Note 

that the properties on which the game are designed are not part of the classroom knowledge: the goal 

of the activity is to guide students in their discovery. Each activity lasts almost two hours: in the first 

hour and half students are divided into groups of three students and they play the game and answer a 

questionnaire using a computer or a tablet. In the last half an hour the teacher revisits students 

discoveries and systematizes the mathematical knowledge. The data for the analysis includes the 

transcript of students’ dialogue and the GeoGebra diagrams explored during the game and the 



questionnaire. We videotaped two groups and the final class discussion but, for space reason, we will 

represent only one group’s work. 

Analysis 

The videotaped group is composed by three students: Gu and Al are males, Bia is a female. They play 

the game on the computer. In the first match Bia is the referee, she chooses the value of a and she 

turns the hourglass. Gu is player C, the falsifier. He has to move slider c so that e≠d and  e≠f. Al is 

player B, the verifier. He has to move slider b so that e=d or  e=f. Figure 3 contains, in the first row, 

the diagrams produced during the first match. Below each diagram are the reported values of sliders 

and variables which appear in the numerical window. Finally the last row contains students’ role 

(Falsifier (F), Verifier (V)) who produces the diagram, the type of example created and the time spent 

producing it. Remember that slider a controls the distance between the centres, slider b the radius of 

the circle with centre O and the slider c the radius of the circle with centre O’. The values of d, e and 

f are, instead, the respective absolute values of the difference between the radii, the distance between 

the centres and the sum of the radii.   

a) b) c) d) 

𝑎 = 8   𝑏 = 5.1   𝑐 = 3 𝑎 = 8   𝑏 = 5   𝑐 = 3 𝑎 = 8   𝑏 = 5   𝑐 = 10 𝑎 = 8   𝑏 = 3.3   𝑐 = 10 

𝑑 = 2.1  𝑒 = 8   𝑓 = 8.1 𝑑 = 2  𝑒 = 8  𝑓 = 8 𝑑 = 5  𝑒 = 8  𝑓 = 15 𝑑 = 7.7  𝑒 = 8  𝑓 = 13.3 

F, secant circle,7 sec V, externally tangent, 6 sec F, secant circle, 4 sec V, secant circle, Time’s up 

Figure 3: First match 

The match lasts short length time and it ends with the winning of the falsifier (Figure 3). In the last 

move the time ends before Al reaches his goal, hence Al loses even if, theoretically, he could have 

won. Al knows that he could have won if he had had more time, in fact he says “it should have been 

like this”, making internally tangent circles. After Al demonstrates the winning configuration, Bia 

says “So B should always win”. This sentence reveals the activation of the anticipatory thinking 

(Harel, 2001). After playing another match, students move to the first question. 

Gu: In order to reach the goal they have to touch each other in only one point. 

Al: On the other hand the answer to the question: ‘In which mutual positions are the 

two circles when C reaches his/her goal?’ is any position. They can touch each other 

in two points or nowhere. 

Bia: No, they always touch each other in exactly two points. (looking at an example of 

secant circles). 

Gu: They can touch each other in two points, but they can also not touch each other. 

Bia: Ah… (moving c so that the circles do not intersect each other. Then she moves c 

back and forth for 30 seconds) Yes, that’s right! 

Al and Gu approach the question in a different way from Bia. They are in detached modality, they 

rethink what has happened in the played-game and then they answer the question. Bia, instead, uses 



the game in order to investigate the situation, she is in descending modality: she is using the reflected-

game in order to check her schoolmates’ claims. The group repeats this approach (detached versus 

descending) in answering the subsequent questions. When they get to the last one, the students do not 

agree with each other: according to Al and Bia, d and f are the radii of the circles, while Gu does not 

agree with them. The disagreement invokes the need of a justification.  

Al: Let me prove that it’s the radius (taking the mouse)! They have to coincide 

perfectly… (moving the centre O’ on the other circumference, see Figure 4e) 

Gu: It’s not the radius… Because if you change the radius of a circle, you don’t 

automatically change the radius of the other one! Both values [d and f] change! You 

should change just one [d or f] by moving it [b] by changing the length of one 

radius… you are not changing the other one! 

Al: Don’t you notice? Don’t you see? (he moved c to 0, obtaining that e is equal to d 

and f, see Figure 4f). Point T just appeared and, putting this on zero. Do you notice? 

It’s 2.9 2.9 2.9. 

In order to refute Al’s conjecture, Gu tries to explain the contradiction he noticed between the graphic 

and the numerical window. In detached modality, Gu explains why Al’s claims creates a dynamic 

contradiction in the conversion (Duval, 2006) from the numerical to the graphic register. Al, instead, 

tries to provide evidence for explaining that what he claims is true. In this attempt, he uses the value 

of the parameter e (distance between the centres) in order to measure the length of the radius of one 

circle. His goal is to show that this value is equal to the value of d or f. If this process were to be 

applied on a generic example, it would have led to a contradiction, but since Al moves the value of 

the radius of the circle O’ to 0, he produces a supporting example.  

e) f) g) h) 

Figure 4: Reflected-game 

After exploring silently the situation, Bia who at first supports Al’s claim, changes her mind. 

Bia: Anyway he’s right… If you put them like this (each centre belongs to the other 

circle, see Figure 4g), the radius is the same thing, isn’t it? I mean, it’s the same 

here and here (pointing at the two circles), but here they are different (pointing at 

the values of sliders d, f)… Then it must be another thing, do you get it? 

Adopting Al’s strategy, she uses the distance between the centres to create two circles with the same 

radii in the graphic window. She notices that the two parameters which are supposed to be the radii 

are not equal in the numerical window. In contrast to Gu, who creates a dynamic counterexample, 

Bia exhibits a static counterexample, but this one also fails to convince Al that he is mistaken. The 

discussion continues with Gu who repeats his dynamic example, Bia who produces other static 

counterexample and Al who moves back to his supporting special example and cannot understand 

why he is wrong. Finally, observing the value d=0 when circles are externally tangent (Figure 4h) 



and with the same radii, Al formulate a new conjecture: d is the difference between the radii of the 

circles. This discovery allows him to unlock the situation and to explain his special example. 

Discussion and conclusion 

Game-activities can operationalize a functional approach to geometry. Within these activities, 

students deal with soft tangent circles, namely dynamic circles in which some constructive steps that 

make the circles robustly tangent (the tangency is preserved by dragging) are voluntarily not 

performed (Healy, 2000). A constructive step creates a functional dependence between the geometric 

elements, which is hidden in the robust construction of the figure. In DGE game-activities, this 

functional dependence is made explicit through the verifier/falsifier’s dialectic. More precisely, when 

the verifier has observed the invariant tangent configuration produced by his/her moves, he/she can 

create a cause-effect link between his/her goal and the invariant produced.  

We describe the verifier’s dragging as follows: 𝑏
𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑙𝑖𝑑𝑒𝑟𝑠
→                𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑐𝑖𝑟𝑐𝑙𝑒𝑠 which 

indicates that the verifier, by moving the slider b, can observe the invariant tangent configuration as 

the effect of making sliders values coincide. Once discovered the invariant, the verifier can 

accomplish the move with the goal of building tangent circles. In this case, he observes the 

coincidence of the values of the slider as the effect of making tangent circles. This time the verifier’s 

dragging is described in this way: 𝑏
𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑐𝑖𝑟𝑐𝑙𝑒𝑠
→            𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑙𝑖𝑑𝑒𝑟. By switching the focus of 

attention of the move, the DGE game-activities, create a sort of frame, which helps students to 

appreciate the “if and only if” relationship between tangent circles and the fact that the distance 

between the centres is equal to the sum or absolute values of the difference of the radii. 

DGE game-activities enrich the exploration supporting the in-depth investigation of situations: the 

presence of the falsifier, who tries to create trouble to the verifier, exposes the verifier to different 

initial situations triggering the exploration of both standard and non-prototypical examples of tangent 

circles.  In this way, the game-activities enlarge students’ accessible example space (Goldenberg & 

Mason, 2008) associated with tangent circle configuration. This is a very important aspect for the 

construction of mathematical concepts: proposing students only standard configurations can be 

source of mathematical misconceptions. 

Finally, the game tool enriches and supports students’ arguing abilities and the coordination of 

numerical and graphic information. In order to communicate their claim, students activate a versatile 

use of the game: not only for formulating and checking conjectures but also for supporting their claim, 

confuting different opinions and explaining ones’ point of view. The game assumes a fundamental 

role in promoting mathematical ways of reasoning. Al, for example, uses the game to show evidences 

of the truth of his claim, hence uses the game for constructing a supporting example, while Bia and 

Gu use it to show that he is wrong, hence for constructing counterexamples to what has been claimed 

by Al. In producing these arguments, students make conversion between numerical and graphic 

registers. Concluding, the game instruments help students not to assume the absolute truth of external 

opinions, but to establish a dialectic approach to them.  
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To promote learning mathematics with understanding, mathematics educators in many countries 

recommend that proof play a central role in school mathematics. In response to this recommendation, 

this study examines the opportunities for students to learn reasoning-and-proving from the geometry 

strand of a popular school mathematics textbook in Hong Kong. The study adopts the methodology of 

Stylianides (2009). Results show that Hong Kong takes the traditional but problematic approach in 

which proof is taught mainly in geometry and in which two-column proof is emphasized. Overall, 

results suggest that proof plays a marginal role in school mathematics in Hong Kong. 

Keywords: Reasoning-and-proving, school mathematics textbooks, geometry, Hong Kong. 

Introduction  

In addition to verifying the truth of a mathematical statement, proof can have many other important 

functions in mathematics, including explanation, which can promote sense making and understanding 

in mathematics (de Villiers, 1990). As a consequence, many mathematics educators around the world, 

especially those in the US, recommend that proof (and proof-related reasoning) permeate school 

mathematics at all levels and in all content areas (e.g. Ball et al., 2002; NCTM, 2000). Furthermore, 

since textbooks can have an influence on what students learn, many studies have been conducted in 

different national curricula (e.g. US, Israel, Australia) to examine the opportunities for students to 

learn reasoning and proof from school mathematics textbooks. These studies were conducted at 

various grade levels (e.g. middle school, high school) and content areas (e.g. algebra, geometry); for 

example, see Stylianides (2009) and the articles devoted to this topic in Stylianides (2014). However, 

almost all of these studies were conducted in Western countries whereas only few studies have been 

conducted in East Asian countries (e.g. Singapore, South Korea, Hong Kong) where students have 

consistently performed very well in international studies of mathematics achievement such as TIMSS 

(e.g. Mullis et al., 2012). The present study is part of an on-going project aimed to complement the 

international research knowledge by examining the opportunities for students to learn reasoning and 

proof when they are using a popular secondary school mathematics textbook from Hong Kong. It is 

expected that the results obtained will shed light on how proof is being treated in school mathematics 

in one of those high-achieving countries (or regions) and provide insights into the influences that 

Chinese culture may have on issues concerning understanding in school mathematics. This paper 

reports our findings in geometry; for our findings in algebra, see Wong & Sutherland (2016).  

The context: Hong Kong SAR 

Being a special administrative region (SAR) of China, Hong Kong enjoys curriculum independence, 

in the sense that Hong Kong designs her own school curriculum, which is different from that in China. 

In 2009, Hong Kong launched her new academic structure, under which the number of years for 

senior secondary school changed from four years to just three years (Secondary 4, 5 and 6). 

Accordingly, at the same time Hong Kong initiated her New Senior Secondary Mathematics 



Curriculum (Education Bureau HKSARG, 2007). This new curriculum consists of two parts: the 

Compulsory Part and the Elective Part (also called the Extended Part). It should be pointed out that 

teaching proof is not one of the stated goals (or processes) of the curriculum, which mentions proof 

only locally in the learning targets of geometry, namely, to “formulate and write geometric proofs 

involving 2-dimensional shapes with appropriate symbols, terminology and reasons” (ibid, p.15). The 

textbook series chosen for this study is the popular New Century Mathematics (2nd edition, Leung, 

Frederick K. S. et al., 2014–16). There were three reasons for choosing this textbook series: (a) this 

textbook series was one of the most popular ones in Hong Kong (if not the most popular one), (b) it 

was on the recommended booklist by the Educational Bureau, which means that it was guaranteed to 

be fully aligned with the new mathematics curriculum, and (c) it was coauthored by a prominent 

mathematics educator. Within this textbook series, there were two books (Books 4A and 4B) for 

Secondary 4, two books (Books 5A and 5B) for Secondary 5 and one book (Book 6) for Secondary 6. 

All topics in these five books were categorized into three strands: Number and Algebra, Data 

Handling, and Geometry (in the curriculum document (ibid.) the name “Measures, Shape and Space” 

was used instead). 

Analytic framework and method 

We followed the methodology of Stylianides (2009) in his investigation into reasoning and proof in 

school mathematics textbooks in the US. The framework he used was based on his conceptualization 

of reasoning-and-proving (RP), a term describing the overarching activity encompassing all of the 

four major proof-related mathematical activities: (a) identifying patterns, (b) making conjectures, (c) 

providing proofs, and (d) providing non-proof arguments. As shown in Table 1 below, the first two 

activities were grouped into the category of making mathematical generalizations and the latter two 

into the category of providing support to mathematical claims. The idea behind this conceptualization 

was that making mathematical generalizations (identifying a pattern and conjecturing) and providing 

support to mathematical claims (proving) are two fundamental and interrelated aspects of doing 

mathematics (Boero et al., 2007). Further, there were two kinds of pattern: plausible and definite; two 

kinds of proof: generic example and demonstration; and two kinds of non-proof argument: empirical 

argument and rationale. For the exact definitions of these terms, see Stylianides (2009).  

Reasoning-and-Proving  

I. Making Mathematical Generalizations II. Providing Support to Mathematical Claims 

(a) Identifying a Pattern 

  

(b) Making a 

Conjecture 

(c) Providing a Proof 

  

(d) Providing a Non-  

proof Argument 

1. Plausible Pattern 

2. Definite Pattern  

3. Conjecture  4. Generic Example 

5. Demonstration 

6. Empirical Argument 

7. Rationale 

Table 1: The analytic framework (Stylianides, 2009, p. 262) 

In this study, we focused on the Compulsory Part of the curriculum. We examined all of the eight 

chapters comprising the Geometry strand (see Table 4 below for the names of these chapters). 

Following Stylianides (2009), we focused on the exercises in these chapters and examined all of them. 

In each of these chapters, exercises were categorized under various headings: Q&A, Review Exercise, 

Instant Drill, Instant Drill Corner, Exercise, Supplementary Exercise, Class Activity, Inquiry & 

Investigation, and Unit Test. Within each category of these exercises, there were many tasks. A task 



here means any problem in the exercies or parts thereof that have a separate marker (Stylianides, 2009, 

p. 270). Task served as unit of analysis in this study and there were totally 2,929 tasks to be analyzed 

and categorized into the seven subcategories of the constituent activities of reasoning-and-proving set 

out in Table 1 above. Additionally, we extended Stylianides’ framework by further dividing the 

subcategory “Demonstration” into seven (sub)subcategories that correspond specifically to the 

different proof methods that were used in the exercises of the Geometry strand of our chosen textbook 

series; these included (i) Proof by Definition, (ii) Proof by Calculation, (iii) Proof by Calculation and 

Definition, (iv) Paragraph Proof, (v) 2-Column Proof, (vi) Proof by Contradiction, and (vii) Existence 

Proof (see Table 3 below). To decide if a task was an RP task, we considered how it appeared in the 

textbook (e.g. key phrases "Prove that", "Explain your answer"). In cases where the requirements 

were not clear, we consulted the Teacher’s Manual (which contained suggested solutions, but only 

suggested solutions) in order to infer what types of response was expected for students.  

Examples of analysis 

Although there was a considerable amount of tasks, the forms of expression of tasks providing RP 

opportunities were very limited. Tasks phrased with the obvious "Prove that" or "Show that" were 

treated as RP activities (see Examples 2, 4 and 5 below). Those tasks ending in "Explain your 

answer." were also treated as RP activities, because they were asking for some kind of justification 

(see Examples 1 and 3 below). However, in some cases there was no explicit request to explain the 

answer, but judging from the solutions in the Teacher's Manuals, justifications were actually expected 

and hence these tasks were also treated as RP activities (see Task 3 of Example 5 below). Some tasks, 

usually in Class Activity or Inquiry & Investigation, were special in that they were part of a template 

for illustrating reasoning-and-proving. Such tasks were dually coded: on the one hand as a unit of 

analysis on its own, and on the other hand as part of the constituent activity (or activities) of 

reasoning-and-proving being illustrated (see Example 5 below).  

Example 1 

4. Q( 1, 3) is rotated anticlockwise about the origin O through to Q1. 

   (a) Write down the coordinates of Q1.  

   (b) If Q1 is reflected in the x-axis to Q2, are Q and Q2 the same point? Explain your answer.  

Solution (from Teacher's Manual 4B, p.228): 

   (a) Coordinates of Q1 = ( 3, 1) 

   (b) Coordinates of Q2 = ( 3, 1) 

        Coordinates of Q  Coordinates of Q2 

          Q and Q2 are not the same point.  

Figure 1: Task 4(b) of Supplementary Exercise of Ch. 12 of Book 4B 

 

Here Task 4(a) was not coded as any RP activity. Task 4(b) was coded as “Demonstration – Proof by 

Definition,” by which we mean one-step deductive reasoning which can be derived directly from 

some definition (or property or theorem). This type of tasks does not involve substantive reasoning – 

its aim is simply to check students’ understanding of the definition (or property or theorem).  



Example 2 

58.  A(0, ), B( , 0) and C( , 0) are the three vertices of  ABC.  

      (a) Show that AC = . 

Solution (from Teacher's Manual 5B, p.96): 

      (a)          

                                 

                       AC =  

Figure 2: Task 58(a) of Supplementary Exercise of Ch. 7 of Book 5B 
 

As shown, the solution involved substitution of values into the distance formula and algebraic 

manipulations to calculate AC. This task was coded as "Demonstration – Proof by Calculation". This 

proof method is also called "Mechanical Deduction" in the literature (e.g. Reid & Knipping, 2010, p. 

124). Though involving mechanical algebraic manipulations and little reasoning, logically it should 

be regarded as a proof (for more on this point, see Slomson, 1996, p.11, "Proofs as Calculations"). 
 

Example 3 

5. In the figure, BM = CM = 6 cm, AM = 8 cm and AB = 10 cm. AMD is a straight line. Is AD a    

    diameter of the circle?  Explain your answer.  

Solution (from Teacher's Manual 4B, p.135): 

 AM2 + BM2 = (82 + 62) cm2 = 100 cm2 

 AB2 = 102 = 100 cm2  

 ∵   AM2 + BM2 = AB2 

    AMB =  

    AM  CB 

 ∵  AD is the perpendicular bisector of BC. 

   AD passes through the centre of the circle. 

   AD is a diameter of the circle. 

Figure 3: Task 5 of Supplementary Exercise of Ch. 10 of Book 4B 

 

This task was coded as "Demonstration – Paragraph Proof", because it involved not just algebraic 

manipulations, and was written in the paragraph (or narrative) form – a less formal form in which it is 

not required to provide justification for every step. Paragraph proofs in geometry correspond to level 

2 (informal deduction) of van Hiele Levels (Usiskin, 1982). 
 

Example 4 

11. In the figure, PCQ is a straight line. Chord AB is parallel to PQ. If  prove that PQ     

      touches the circle at C. 

Solution (from Teacher's Manual 4B, p.182):  

∵                                given 

  ABC =BAC                       equal arcs, equal angles                

     BCQ =ABC                        alt. s, AB // PQ 

  BAC =BCQ 

  PQ touches the circle at C.      converse of  in alt. segment 

Figure 4: Task 11 of Exercise 11F of Ch. 11 of Book 4B 



This task was coded as "Demonstration – 2-Column Proof", because it involved not just algebraic 

manipulations, and was written in the traditional two-column form – a more formal form in which 

every step is required to be justified with a reason and to be presented in the rigid two-column format 

as shown in Figure 4 above. Two-column proofs in geometry correspond to level 3 (formal deduction) 

of van Hiele Levels (Usiskin, 1982).   

 

Example 5  

Inquiry & Investigation 9.1:  Alternative proof for the sine formula 

Inquiry  

In  ABC, what is the relationship among the radius r of the circumcircle, , and  ?  

Investigation Steps 

In the figure, O is the centre of the circumcircle of  ABC. The radius of the circumcircle is r. Produce 

AO to meet the circle at X. Join BX. 

1. Find ABX. 

2. Consider  ABX. Express  in terms of c and r. 

3. What is the relationship between angles C and X? 

4. (a) Use the results of Questions 2-3 to express  in terms of r. 

    (b) Use similar method to express and in terms of r. 

Conclusion 

 =  =   =  ____________ 

 

Figure 5: Task of Inquiry & Investigation 9.1 of Ch. 9 of Book 5B  

 

This exercise consisted of six tasks (1, 2, 3, 4(a), 4(b) and Conclusion). It was a template for 

illustrating a direct proof. So these tasks were dually coded. First, each task was coded as a unit of 

analysis on its own. In this example, Task 3, and only Task 3, could be interpreted as an RP activity 

(Demonstration – Paragraph Proof or 2-Column Proof) in case the solution given in the Teacher's 

Manual would include a justification (e.g. "Angles in the same segment"). However, the solution 

given was just "C = X", so it was not regarded as a reasoning-and-proving task. Neither were the tasks 

1, 2, 4(a), 4(b) and Conclusion.  Then, each task was coded as part of the template illustrating RP 

activities. In this case, all of them were coded as “Demonstration – Paragraph Proof”.  For more 

examples, see the full version of this paper. 

Results and Discussion   

We have three major findings. Firstly, as shown in Table 2 below there were relatively limited 

opportunities (444 out of 2,929 tasks, i.e., 15.2%) for students to learn RP from the exercises of the 

Geometry strand of the chosen textbook series (Secondary 4 – 6). The majority of these exercises 

were to drill procedural skills. Secondly, there was a large difference between Making Mathematical 

Generalizations (24 tasks) and Providing Support to Mathematical Claims (420 tasks). This suggests 

that these two categories of activities were treated, in large part, in isolation from each other. This is 

problematic as they are two fundamental and interrelated aspects of doing mathematics (Boero et al., 

2007; Cañadas et al., 2007; Hsieh et al., 2012). Thirdly, the majority of the RP opportunities were 

Demonstration (364 out of 444, i.e., 82%). However, as shown in Table 3 below, out of these 364 

demonstrations, 32.1% were Proof by Definition or Proof by Calculation or Proof by Calculation and 



Definition, all of which involve little reasoning. If we excluded them from Demonstration, the total 

RP opportunities would reduce to 11.2% (= 444  83  26  8 out of 2,929 tasks). A consequence that 

might be attributed to this lack of sufficient emphasis on proof even in geometry is that, as informed 

by TIMSS 2011 (Mullis et al., 2012, p.148 & p.150), “Hong Kong students in general do well in 

Knowing items, and relatively badly in Reasoning items” (Leung, 2015, p. 3).   

 Reasoning-and-proving subcategory            Frequency    (Percent)    

I. Making Mathematical Generalizations:                                                       24            (5.4%) 

(a) Identifying a Pattern:                            

1. Plausible Pattern                                        0            (0.0%) 

2. Definite Pattern                                      12            (2.7%) 

(b) Making a Conjecture:                             

3. Conjecture                                      12            (2.7%) 

II. Providing Support to Mathematical Claims:                                             420           (94.6%) 

(c) Providing a Proof:                     

4. Generic Example                                      18            (4.1%)   

5. Demonstration                                    364            (82.0%)  

(d) Providing a Non-proof Argument:  

6. Empirical Argument                                      38            (8.6%) 

7. Rationale                                        0            (0.0%) 

                                                                                                 Total:             444           (100%) 

Table 2: Frequency and Distribution of RP Tasks across RP Subcategories 

 

On the other hand, as shown in Table 4, 36% of the total RP tasks were concentrated in one chapter, 

namely, Book 4B Ch. 11 More about Basic Properties of Circles – more specifically, in Section 11.5 

Geometric Proofs on Circles, which began with "We learnt many theorems relating to properties of 

circles in Book 4B Chapter 10 and this chapter. In this section we will learn how to use these 

theorems to prove more geometric properties." In the exercises of this section, almost every task 

asked for a 2-column proof, suggesting that the curriculum took a traditional approach in which proof 

is taught mainly in geometry and in which 2-column proof is emphasized. However, this approach to 

proof is problematic as it gives a misrepresentation of the nature of proof in mathematics (Wu, 1996) 

and its emphasis on form over meaning can lead to a shallow, syntactic kind of knowledge, rather 

than a connected understanding of the mathematics involved (Schoenfeld, 1988).  

Given that Hong Kong teachers rely heavily on textbooks in their teaching (Tam et al., 2014), the 

above results not only confirm that in secondary school classrooms in Hong Kong students’ activities 

mainly focus on practicing and memorizing mathematical concepts and procedures (Leung, 2001), 

but also suggest that proof plays a marginal role in school mathematics in Hong Kong. The fact that 

school mathematics textbooks in Hong Kong stress drilling on procedural (or calculation) skills far 

more than reasoning and proof may be due to influences from Chinese culture (or, more specifically, 

the Confucian heritage culture or CHC). According to Leung (2006, p. 43), CHC believes that “the 



process of learning often starts with gaining competence in the procedure, and then through repeated 

practice, students gain understanding.” Additionally, CHC is an examination-oriented culture. In fact, 

the curriculum in Hong Kong is highly examination-driven. The fact that Hong Kong school 

mathematics textbooks stress practicing procedural (or calculation) skills far more than reasoning and 

proof may be a reflection of the strong influence of public examinations on textbook design. For more 

on how Chinese learn mathematics, see for example Fan et al. (2004).  

    Proof method                                          Frequency   (Percent)     

   Paragraph Proof                                174       (47.8%) 

   Proof by Calculation and Definition                                 83       (22.8%)                              

   2-Column Proof                                 71       (19.5%)   

   Proof by Definition                               26       (7.1%) 

   Proof by Calculation                                  8       (2.2%) 

   Proof by Contradiction                                 1       (0.3%) 

   Existence Proof                                 1       (0.3%) 

Table 3: Frequency and Distribution of Proof Methods used in Demonstration 

   Topic       Frequency   (Percent) 

  Book 4A Ch. 2 Equations of Straight Lines                 56       (12.6%) 

  Book 4B Ch. 10 Basic Properties of Circles                 46       (10.4%) 

  Book 4B Ch. 11 More about Basic Properties of Circles              160       (36.0%) 

  Book 4B Ch. 12 Basic Trigonometry                47       (10.6%) 

  Book 5B Ch. 7 Equations of Circles                67       (15.1%) 

  Book 5B Ch. 8 Locus                26       (5.9%) 

  Book 5B Ch. 9 Solving Triangles                21       (4.7%) 

  Book 5B Ch. 10 Applications in Trigonometry                21       (4.7%) 

Table 4:  Frequency and Distribution of RP Tasks across Topics 
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Our overall concern is with helping students learn to construct and re-construct proofs. Here we 

investigate an exploratory style which invites learners to think for themselves, with the instructor 

circulating among them while listening, probing, and suggesting. The objectives of this investigation 

are, to understand how the actions of teachers can contribute to the development of their students' 

thinking, and to provide explicit pedagogic strategies that teachers can use to promote their students’ 

appreciation and understanding of mathematical proof. 

Keywords: Explanation, exploration, proof, proof construction. 

Theoretical underpinnings 

Our paper adopts the notion of acts of teaching (Mason, 2009; 2004): something that initiates and 

directs; something which is acted upon; and something which mediates between these, enabling the 

action to take place. We proceed from this stance to analyse an exploratory style as it was observed 

in an advanced undergraduate geometry class, with the aim of identifying what specific contributions 

this style brings to the learning process.  

When teachers introduce a proof task, they are likely to have a complex set of expectations of what 

learners will get from engaging with the task. They are (we hope) aware of, or have access to 

connections with pervasive mathematical themes, with other contexts in which similar ideas arise, 

and with the specific powers that learners have. Teachers will have views on how these powers might 

be developed through working on the task, and on opportunities to interact with learners during which 

both mathematical thinking and appreciation and comprehension of some particular mathematical 

topic will be deepened and enriched. Tasks can vary from following an exposition, through exploring 

relationships, exercising new-found procedures, and making use of newly encountered technical 

terms as part of their personal and collective developing narrative.  

Following the Systematics of Bennett (1956-1966; 1993), we distinguish six modes of interaction 

which arise from the teacher, the learner and the content playing the roles of the three impulses 

comprising any action: initiating, responding and mediating, and conveniently labelled by six ‘exs’: 

expounding, explaining, exploring, examining, expressing and exercising (Mason, 2004). In 

expounding, the initiative is with the teacher who uses the presence of learners (actual or virtual) as 

the mediator to make contact with the mathematical content in a significant way. The teacher draws 

the learners into the teacher’s world and ways of perceiving and acting. By contrast to expounding, 

and also in contrast to its every-day sense, explaining in this framework involves the teacher using 

the content as a mediator in order to make contact with the student, through listening, watching and 

probing. The teacher tries to enter the world of the learner. As soon as the teacher thinks they ‘know’ 

where the learner’s difficulty lies, the action usually reverts to exposition. Exploring involves students 

taking initiative, mediated by the teacher who may suggest a starting point for exploration, and may 



make suggestions based on what students are saying and doing. Examining in this framework involves 

the student seeking to validate their own criteria against those of the teacher’. Expressing is what the 

student does when they feel the urge to articulate insights or make conjectures. This can occur for 

example in response to a teacher asking probing questions. Exercising is what a student does when 

they feel the desire to practice in order to gain fluency. Our interest here is on the interactions labelled 

as exploring, expressing, and explaining in the technical sense used in this framework. 

Our investigation builds upon previous research. Grenier (2013) has shown that an experimental 

teaching approach focusing on various “research situations” can succeed in helping students master 

mathematical reasoning and proving. Selden and Selden (2013) considered a division of proofs into 

a formal-rhetorical part and a problem-centered part. In their view, the formal-rhetorical part of a 

proof depends only on unpacking and using the logical structure of a theorem, while the problem-

centered part depends on exploration and understanding, which is essential to the learning of proof.  

Several researchers have investigated the use of explorations in various learning contexts. In the use 

of dynamic geometry, for example, Mariotti (2000), and others have shown the value of teaching 

proof through exploration. In the context of argumentation and proof and of the axiomatic 

organization of mathematics, several other researchers have examined students’ use of empirical 

explorations (Durand-Guerrier et al., 2012; Hanna, 2010; Hemmi, 2010; Jahnke & Wambach, 2013; 

Reid & Knipping, 2010; Stylianides & Stylianides, 2009). Additionally, Garuti et al. (1998) and 

Pedemonte (2007) highlighted what they termed cognitive unity, the continuity between the process 

of conjecturing achieved through exploration and the production of an acceptable proof.  

The exploratory style in this study  

We investigate a particular exploratory style in which university students already familiar with linear 

algebra are taking an advanced geometry course in which they are exposed to proofs by means of 

explorations that invite them to think for themselves, with the instructor circulating among the 

students, listening to their discussions, asking probing questions intended to help the students think 

more deeply about the issue at hand, and at times offering suggestions.  

Participants and classroom setting 

The 24 participants were undergraduate mathematics students in a mixed-year class (2nd to 4th year) 

at a large urban university in central Canada. The advanced geometry course covered plane geometry, 

spherical geometry, and briefly, some hyperbolic geometry. It addressed the critical role of 

transformations (symmetries and isometries) in all of these geometries, the use of dynamic geometry 

software (The Geometer’s Sketchpad), and proof. The instructor of the course was a geometer. The 

class met once a week for 3-hour sessions, 20 classroom meetings in total. The course was intended 

to keep equal proportion of instruction time and exploration time to facilitate the exploratory style of 

teaching and learning. Three classroom sequences were assigned to the investigations on conic 

sections. This paper focuses on one of the sessions – the exploration of ellipse.  

To facilitate investigations and communication, the classroom setting of the geometry course was 

unconventional: 7 large round tables with chairs around each filled up the classroom, with 5 large 

blackboards mounted on three walls. In addition, manipulatives and visual aids associated with 

geometry were kept in the closet at the back of the classroom with free access for the students. 



Data collection and analysis  

The exploratory style of learning proofs was documented through (1) classroom observations in the 

form of audio recordings and field notes; (2) follow-up questions for students; (3) students’ course 

reflections on the explorations; and (4) the researcher’s research journal. In particular, the follow-up 

questions consist of 4 open-ended questions about students’ explorations in geometry throughout the 

course. 17 out of 24 students completed the follow-up question sheets. All students submitted the 

course reflections.  

The data drawn through classroom observations was organized and analyzed by the framework of 6 

‘exs’. The data from students’ written reflections was analyzed using NVivo 10 software to explore 

themes and patterns of responses. The unit of analysis was a statement. Each participant’s work was 

divided into statements and grouped in categories.  

Investigations of conic sections: Findings and analysis  

This paper focuses on how proving was promoted through the initiative taken by the instructor and 

the students, while the content connects the instructor and the students. It does not measure the 

students’ achievement because it is concerned with perceptions of their own understanding of proof.  

Initiatives of the instructor – Expounding and Explaining  

The class made use of a hands-on investigation involving flashlights to explore conic sections. The 

instructor held a flashlight aimed at a wall at different angles. “The flashlight bulb and reflector make 

a “cone” of light. The wall cuts the cone with a plane, making a conic section. So moving the light 

changes which section we have,” the instructor explained. As the beam was forming a circle, ellipse 

or parabola, he asked students to identify the particular shape made on the wall and to pay attention 

to the critical points where there was a change from one conic section to another, as the angle changed. 

Then the instructor raised a question about hyperbolae with a suggestion, “Now, what features will 

confirm the shadow is a hyperbola? You may look for asymptotes - lines which the light approaches 

as it goes up the wall.” 

Initiatives of the students - Exploring and Examining  

After the demonstration, students worked in groups to create all four conic sections by using the light 

source of their smartphones or the flashlights provided. Students quickly discovered that when the 

beam was perpendicular to the wall, it gave a circle; when it was tilted a bit, it gave an ellipse; when 

it was tilted more, with the ellipse vanishing, a parabola emerged. Group discussions mainly focused 

on the creation of a hyperbola and the difference between hyperbolae and parabolae. 

S8:  How do you know it is a parabola or hyperbola?  

S22:  It depends on the angle you hold it at.  

S8:  Right, but how does an angle tell us whether it is a parabola or hyperbola?  

S12:  Well… if you look at this graph I found online, the parabola’s axis is parallel to the 

cone’s side. If it were not parallel, it would become a hyperbola.  

S8:  I see. So how is this related to what we are doing? The wall is the cutting plane and 

the light source is the cone. When the wall is not parallel to the borderline of the 

beam, it is a hyperbola. I cannot make them parallel precisely, but I get it.     



This group discussion shows that in the course of their exploration, students did not limit their 

exploration to the flashlight demonstration but went on to research the problem by retrieving 

information online so as to better understand the features that confirm that the shadow was a 

hyperbola, the difference between hyperbolae and parabolae, and also to explain it to their peers.  

Following the flashlight investigation, a series of paper folding activities was carried out. Taking the 

ellipse as an example, each student was given a clean sheet of paper with a circle and a point P inside 

the circle but away from the center (Figure 1a). Students were first asked to pick a point on the circle, 

say G, and fold the paper until P was lying directly on top of G (Figure 1b), and then to make a neat 

crease. Then students were asked to repeat the fold and crease action for a few dozen relatively evenly 

spaced points on the circle and to observe what shape emerged (Figure 1c).  

        

                                            a                                        b                                       c            

Figure 1: The sheet of paper for folding to create an ellipse 

Some students struggled to work out which point was being folded and to where – mistakenly folding 

a chosen point onto some other point on the circle, while others struggled to create a precise fold, due 

to the nontransparent nature of paper sheets. Although students worked on the folding at their own 

pace, within groups, they were talking to and helping each other as they proceeded, which allowed 

the ones who were struggling to listen, watch and move forward. With a number of creases created, 

conjectures were emerging in groups. For instance: 

S6:  I know that it is not going to be a circle. It is not circular. It would only be a circle 

if you can fold it onto the middle point. If you can fold it onto other point, it will be 

off-site the shape.  

S17:  I think it is going to be a parabola and P is going to be the focal point of the parabola. 

It makes sense.  

Instructor:  You need more folds. You can select a few more points on this side of circle 

(pointing at the sheet that S7 was holding).   

S7:  Oh, wait. It is an ellipse! I have a lot of lines. You can envision other points are 

going to be there. It is very clear it is an ellipse. You can really see it!  

S17:  (looking at S7’s paper) Yeah, it is an ellipse… P looks like one of the focal point.  

S6:  Where is the other focal point?  

Here we see that the students did not always do more than offer a conjecture about the shape of the 

conic created by the creases. The instructor felt it necessary to intervene and re-direct the students’ 

attention to the core idea (the content) of the session.  

Initiatives of the content - Exercising and Expressing  

With more questions raised, the instructor asked each group to focus on the following questions: 



(1) Now you have this ellipse, you know how to paper fold it. How do you prove it is an ellipse? 

(2) If you pick one of the folds, how does this fold help us prove it is an ellipse?  

(3) What can you say about this ellipse and the circle? How and why are they related?  

S17:  If you have this fold, and you have this distance from point P, then this distance 

(PE+EC) is going to equal to that distance (GC) because this is a reflection.  

S6:  Yes, but what does that have to do with the ellipse?  

Instructor:  Note: GC is the radius. These two distances (PE and EC)… 

S6:  No, I didn’t get it.  

Though the students had all the information they needed, they still had difficulty reaching the final 

step of the proof. By posing a prompt and question, the instructor tried to direct students’ attention to 

the sum of the two distances (PE+EC) and the fact that it is equal to the radius. Then, a GSP graph, 

similar to the folding sheet in Figure 1 above, was shown to have students focus on the relationship 

between the two (see Figure 2a). 

S17: OK. We are looking at P to E and E to C. The distance is equal to GC, which is the 

radius of the circle. Oh… That makes an ellipse because this distance (PE) plus this 

distance (EC) is fixed, the radius of the circle.  

S6:  And the ellipse must have something to do with the center as a focal point. If P is 

moving around according to the center point, the ellipse will just move as you move 

the P. So the center is another focal point. You can take any circle and a point off 

the center of the circle, and it will always be the case.  

 

 

                                              a                                     b                                       c  

Figure 2: A GSP graph (a) and animation of the formation of an ellipse (b and c) 

A Geometer’s Sketchpad (GSP) animation was shown at the very end of the class. Figures 2(b) and 

2(c) were two snapshots of the GSP animation indicating how an ellipse was constructed. This process 

taught them that, “A hypothesis is evaluated by deductively drawing consequences and by 

investigating whether these consequences agree with experience or should be accepted for other 

reasons” (Jahnke & Wambach, 2013, p. 469).  

In a subsequent class, students were shown a demonstration in which sand was poured onto a circular 

disk with an off-center hole in it corresponding to the point in Figure 1a. A number of the students 

voluntarily poured the sand through a plastic strainer. As more sand poured onto the board, more a 

“ridge” clearly emerged. Looking down on it from above, it appeared to be an ellipse.  



Students’ reflections  

Paper folding and sand pouring  

More than half of the students admitted that they found paper folding complicated. While struggling 

with the first step, they missed the instructions for the second step. Following what was being said 

and doing folds correctly was an obvious challenge. Despite the confusion and the errors they made 

in folding, students appreciated the geometry embedded in the experiments. As S3 put it: “The reason 

for why the specific folds result in the shape never bothered me until I had this experience. I felt that 

I had a teacher explained the mathematical relevance.” S4 observed that seeing the ellipse emerge 

during the sand pouring, was completely unexpected: “You can actually see an ellipse due to gravity 

pulling the excess parts down, forming a ‘hill’.” When asked about the definitions of conic sections, 

S14 stated that, “it is much easier, at least for me, to recall a process or property that I have physically 

manipulated or seen carried out visually than to recall a written definition.” 

The GSP demonstrations  

The students were asked whether the GSP graph and demonstration directly or indirectly helped them 

with the proof of ellipse. The majority of the students claimed that the animation directly helped with 

the proof. The responses that support this claim can be categorized as follows: 

 Have attention focused. “We had all the information but we couldn’t prove it until we saw 

this picture (Figure 2a) which has all the lines with the colors” (S6). 

 Accuracy. “The animation is more visual and accurate than the paper folding” (S7); “The 

animation showed an infinite number of straight lines without making mistakes” (S12). 

 Legitimate process. “The animation presented a 3D visual to experiment with” (S6); and 

“It provided an extended version of the folds we did in class and allowed me to continue 

my experience in a less time consuming and more efficient way (S17). 

 Exposure of the final product. “It showed the final product of paper folds when you fold 

100 or 1000 times” (S4). 

However, 2 students claimed that the GSP indirectly helped with the proof. One student explained 

that the animation “helped more with my understanding as opposed to helping me write down the 

formal proof” (S16), whereas the other student believed that the role of the GSP was to show how the 

ellipse was constructed and to show how the proof connects to the demonstration (S5). Compared to 

the hands-on investigations, S7 and S20 claimed that the GSP animation presented in class did help 

with their understanding, but they had difficulty interacting with it. This is so because they did not 

know how to use the geometry software. As S11 said, “If I knew how to use the software, I would 

definitely use it more”.  

Discussion 

Adopting an exploratory style of teaching is metaphorically a bit like heading off into unknown 

territory; perhaps a city or forest not previously visited, and coming across blaze marks. On the 

surface, the ‘exploratory style’ of teaching involved initial stimuli provided by the instructor, then the 

instructor circulating listening, probing and suggesting. Questions raised by group members were 

fundamental and critical for the trajectory of the sessions. Beneath the surface lie the subtleties in 

how much time students were given to think for themselves, to discuss with each other, to try to 



resolve questions that arose, and to seek assistance from the instructor. Three different contexts in 

which the same shapes emerge can be seen as a form of variation (Marton, 2015) with both conceptual 

and procedural aspects. The instructor’s commitment to experiential style of engaging students with 

the mathematical content provided opportunity for different forms of interaction: students were 

stimulated to explore, to express, to seek explanation when they felt they needed it, and even to 

exercise their developing ideas. This prepared them to be able to make sense of what little exposition 

was provided during the sessions. Being fully engaged, with their hands, their own thoughts, and 

discussing with their peers, enabled them to produce a proof in which they had a high degree of 

confidence. Because the conjectures came mostly from them, they had an interest in proving, and a 

desire to find a proof. The physical and virtual phenomena directed student attention to the dynamic 

changes and alterations of the objects that they were creating, particularly when the instructor noticed 

students’ struggles during the exploration. Student attention was directed by their peers through 

formulating conjectures, raising questions, and communicating their thoughts. These allowed learners 

to be immersed in an environment which engaged them to make conjectures, to try to express their 

vague thoughts, to modify their own conjectures and to challenge the conjectures of their peers, which 

is in line with the observations of Grenier (2013) and Hemmi (2010). 

Pedagogical implications  

One of the features that distinguish mathematics from other disciplines is that mathematical 

conjectures ultimately require proof. One importance of exposure to mathematical reasoning and 

proof is that it provides learners with an opportunity to “know that they know”, not because someone 

has asserted something but because they can justify it on the basis of previously agreed properties. In 

the case of the paper folding and sand pouring, it is a means to provoke students’ curiosity of why it 

works and invite them to discover a geometric proof of ellipse on their own. The exposure to the 

necessity of ‘why’ could have great impact on promoting students’ learning of proof when the activity 

is carefully designed and chosen.  

The Geometer’s Sketchpad was used in the classroom throughout the course. Introducing and using 

geometry software in the classroom at a regular basis can gradually change the way that students 

approach geometry. However, as a teacher, exploiting manipulatives and geometry software 

effectively requires familiarity with the materials. Each context has its own trajectory, in terms of 

time required to make sense of the actions and to interpret the effects. Perhaps the most important 

pedagogic implication is the need to stimulate students to make connections, to develop their own 

personal narrative concerning the connections between different manifestations of the same 

mathematical object.  

For the student teachers in the class, we believe that the exploratory teaching style allowed them to 

grow as a student and as a teacher. At first they looked to be told what they must do and how they 

will be assessed. By engaging them in mathematical activity, they had a chance to experience 

themselves as mathematician-learners, and to exercise and develop their own powers to imagine and 

express, specialize and generalize, conjecture and convince (Mason, 2004). As S3 put it, “My focus 

throughout the course remained on learning rather than passing, as it should be.” 



Thinking in terms of modes of interaction has enabled us to add a little bit of detail to the notion of 

an ‘exploratory style’ of teaching. However, in order to provide specific advice for teachers, it will 

be necessary to discern even finer details, which deserves further studies.   
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Looking for the roots of an argument: Textbook, teacher, and student 

influence on arguments in a traditional Czech classroom 
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As part of a larger investigation aimed at getting a deeper insight into how particular teacher beliefs 

influence the role of the teacher, the students, and textbook materials in arguments that take place in 

one classroom, this study shows specific teacher beliefs that determine the role of each of the two 

other factors: the students' contributions and the textbook influence. This paper presents findings 

observed in a case study of a teacher who holds more traditional beliefs about teaching and learning 

of mathematics, in a 7th grade classroom. Namely, I present cases of conflict in preferences for 

particular warrant forms between: a) the teacher and the textbook authors b) the teacher's own 

beliefs, and c) the teacher and the students. I then interpret these in terms of the teacher's particular 

beliefs and show how they affect the theoretical model.  

Keywords: Mathematical argument, teacher mathematical beliefs, textbook curriculum. 

Introduction 

Whether providing a mathematical proof of a theorem, explaining a formula, or a solution to a word 

problem, arguments are an inseparable part of mathematics teaching and learning. A lot has been said 

about argumentation practices and norms that guide those practices in various contexts. Literature has 

focused on the role of argumentation in textbooks, uncovering differences among textbooks in terms 

of arguments presented (Stacey & Vincent, 2009; Thompson, Sharon, & Johnson, 2012; Zalska, 

2012), opportunities for arguments (Stylianides, 2009), and in providing teachers with support in 

argument-based tasks (Stylianides, 2008). The differences become even more complex when 

researchers describe mathematics teachers' beliefs concerning argumentation in their classrooms 

(e.g., Staples & Bartlo, 2012), the acceptability of certain types of arguments (Biza, Nardi, & 

Zachariades, 2009), and students' perceptions and preferences of arguments (e.g.,  Levenson, 2013; 

Levenson et al., 2006).  

But what specific arguments actually take place when the teacher's beliefs meet the textbook authors' 

and the students' in a classroom? What is the role of the textbook and what role do students' 

contributions play in the class conducted by a teacher with a specific set of beliefs?  

Theoretical framework 

According to Remillard's (2005) review, the textbook curriculum's role is important but the levels of 

participation in the intended curriculum vary greatly. The general model holds that a teacher selects 

tasks from the text, designs their implementation, supplements it with other tasks, and, finally, 

improvises based on the student contributions (Remillard, 2005). Sherin and Drake (2006) further 

find that teachers approach these activities in different ways and link these to teachers' experiences 

as mathematical learners. Schoenfeld (2010) argues that the actions an individual takes can be 

explained by their enacted beliefs, goals, and resources (including knowledge).   

The individual students' mathematical knowledge and their perceptions of the expectations put on 

arguments they produce, as well as their own preferences and beliefs, can differ from their teacher's 



expectations (Planas & Gorgorió, 2004; Levenson et al., 2006). The students' contributions, requests 

or choices of arguments are the result of their own knowledge, beliefs, and goals; they have their 

weight in the negotiation of socio-mathematical norms regarding mathematical arguments and 

explanations. 

Based on the above literature, I adapt Remillard's (2005) model to propose a framework for studying 

the potential influence of the three main participants on the arguments, or the "enacted" arguments. 

Namely, the model theorizes that: 1) the curriculum may: provide examples of, requests and 

opportunities for arguments (tasks) to be enacted; it may also provide guidance for the teacher, based 

on the textbook authors set of beliefs, resources and goals; 2) the teacher may, based on their own set 

of beliefs, resources and goals: evaluate (select), design and provide the examples, requests and 

opportunities for particular arguments and may need to make immediate decisions about arguments 

prompted by students, and 3) the students' actual requests for arguments, for clarifications of 

arguments, as well as their own arguments or claims, which in turn are given by their own beliefs, 

goals and resources.  

In my research, I focus on the similarities and differences between the interactions of the three 

participants in this model, in classrooms with teachers with different general beliefs about 

mathematics and its teaching and learning. Further, I investigate what specific teacher beliefs underlie 

the particular interactions when it comes to specific types of arguments or warrants. In this paper, I 

present some findings in the case of a teacher who holds a set of beliefs that tend to be associated 

with traditional views.  

Participants and data 

Karen is an experienced mathematics teacher who was identified, within a broader investigation (see 

Zalska & Tumova, 2012), as a teacher with strong utilitarian beliefs about mathematics education. 

Two extensive interviews as well as short post-lesson interviews were conducted with Karen to infer 

her professional beliefs as well as her own intentions and interpretations of events in the lesson. She 

had been working with her class for almost two years prior to the data collection, to ensure that social 

norms in the classroom have been established. The number of students ranged from 15 to 18, with 

about an equal distribution of male and female students. The class use a main-stream textbook series, 

one of the most popular ones in the country. Karen was among the teachers who approved the choice 

of the textbook in her school, and her students each have a copy of it.  

The data consists of interview and lesson audio-recordings, fully transcribed, and photographs from 

series of five lessons that Karen taught on the topic of percent. The analyzed textbook text included 

the unit on percent and the corresponding text in the teacher's book where authors provide teachers 

with commentaries for particular parts of the text and the tasks. 

Data analysis  

In order to be able to establish differences between mathematical arguments, I will adopt the 

following terms from the widely used Toulmin's model in the following way: a (mathematical) 

argument denotes a sequence of statements (including visual statements) that is provided with the 

intention to show that a mathematical claim (specific or general) is true (or not). In this study, 

arguments include explaining of an answer to a problem, as well as the working out of the answer to 

a problem. A warrant is one such statement that directly supports the claim. In the context of a 



classroom, it is a statement that does not require further explanation, i.e. is accepted as true. I will 

consider two arguments to be different if they contain different forms of warrants (e.g. 

representations) or a different sequence of warrants.  

The textbook data was analyzed in accordance with the theoretical framework: the arguments that 

were provided were analyzed in terms of warrant forms and sequences. The tasks were analyzed as 

requests and opportunities for arguments (towards a claim that contains a problem's solution). There 

were no specific requests for arguments.  

The transcript of the lessons and the text was first analyzed for episodes of argumentation to establish 

specific context for argumentation and social norms in the classroom. Next, the identified episodes 

of argumentation were broken down to individual arguments and warrants and warrant forms were 

identified in order to investigate where differences between arguments were present. The kind of 

student and teacher participation on the argument was also taken into account, in order to separate 

the cases of arguments provided by the teacher (i.e. when Karen elicited an argument step by step and 

students only provided the final part of a requested warrant) from those suggested by students 

themselves.  

The arguments observed were then compared to the examples of arguments in the textbook, 

comparing warrants and warrant forms. Further, the relevant part of teacher's manual was analyzed 

for commentaries and any additional rationale given a particular argument in order to get insight into 

the text author's beliefs. Karen's own comments about particular arguments and warrant forms, in 

class and during interviews, were also analyzed to gain insight into the beliefs behind her decisions.   

In this paper, I present the instances when an argument chosen by Karen did not correspond with a) 

the textbook, b) her own belief about mathematics, and c) her students' contributions. I selected them 

to illustrate the choices made by Karen, to pinpoint her specific beliefs, linking them with the students' 

and textbook influence.  

Efficiency and insight: Karen and the textbook 

The arguments that Karen exemplifies in her classes when she teaches her students to solve problems 

involving percent differ from those in the textbook in two aspects. The textbook introduces the 

rectangular representation (see Figure 1) as part of problem-solving, a form of warrant(s); the authors 

sketch out the known and unknown quantities.  

 

Figure 1: A rectangular representation of a 15% percent discount 

Similarly, the textbook introduces one method for solving word problems with percent. The authors 

base the arguments on the concept of direct proportion, in particular, on the fact that the percent part 

changes in the same ratio as the percent. This idea is then used as a warrant in the method of the ratio-

based rule of three (see Figure 2), which is explained and practiced in an earlier chapter in the book, 

the unit on ratios.  



 

Figure 2: The rule-of-three method 

In contrast, Karen does not use the rectangular representation at any moment in her classes. The 

arguments that she does show students are given names ("one percent", "with a decimal", and "ratio") 

and referred to as "methods". The majority of warrants for methods are based on the multiplicative 

relationship of percent part and the base, and on the definition of one percent, as corresponding to 

one hundredth, either as a fraction or decimal.  

In the authors view, in the teacher's book, the geometrical representation helps students to get a better 

insight into the problem. Similarly, the authors assign the use of the ratio warrant the prominent role 

of helping students to get an insight into the problem.  

This belief about a need to understand the problem through the use of a particular method or warrant 

seems to collide with Karen's beliefs about what is important for her students. Rather, she values 

efficiency and straightforwardness in problem-solving. Hence, she introduces neither the rectangular 

representation nor the rule-of-three arguments when solving word problems in her teaching. In fact, 

she discourages her students from using it (albeit acknowledging its existence and its effectiveness):  

Teacher:  Someone mentioned a third method, in case you study from your textbook, [I don't 

recommend it, only if someone gets] really lost and needs a crutch […] but in the 

time you write it all out (referring to the method), you might as well have finished 

other three problems [using the other methods].  

Choosing not to justify – Karen's beliefs in conflict 

The below example of a dialogue gives us a sense of how Karen's beliefs about the need to provide 

mathematical arguments for methods and general mathematical statements manifest themselves when 

the class discuss the percent – decimal relationship.  

Teacher:  So, if we have 18% (writing on the board), how do we get a decimal?  

Students: Eighteen divided by 100. 

Teacher: We divide by 100. Why? Because 18% is 18 hundredths (writing 18% = 18/100 = 

0.18 on the board), to divide by a 100 means 18 hundredths.  



Karen expressed her belief in having the responsibility to provide students with justification of 

mathematical statements. This responsibility is felt even in the one moment in the observed lessons 

when Karen acknowledges that she doesn't know how to provide a mathematical argument for the 

procedure, and states that students just "have to remember". The problem Karen posed to class is: 

"From a class of 22 students, six participated in a math competition. What percent of the class was 

that?" Karen goes on to exemplify two methods for solving the argument.  

Teacher:  The first one is the 1% method. Again, I think that this method is more convenient 

and easier… ok, what's the base in this problem? 

Students:  [suggest ideas] 

Teacher:  Yes, base or 100% is 22 pupils. There are 22 pupils [She writes a record of the 

solution on the board, writes "1% =".]. Now, we'll calculate, Ada?   

Ada:   1% will be 0.22. [Karen writes this on the board.] 

Teacher:  Now you just have to remember that the percent, […] I don't know how to help you 

remember … you need to remember. You can calculate the percent this way […] 

we divide the percent part we want to express in percent by one percent.   

The argument that she is reluctant to share with her students is in fact the ratio argument used in the 

rule-of-three method: firstly, that the percent part : percent ratio is a constant, and for all non-zero 

real numbers a, b, c, and d, if a : b = c : d then a = c · b / d. Clearly, this presents a conflict of beliefs 

for her, and she chooses not to present the argument, because this, in her mind, is too complicated 

and not possible to grasp with their current knowledge, especially for some students.    

In the textbook, authors let the reader observe the first warrant through a series of examples, and then 

simply refer to the rule-of-three as practice established in the previous unit (on proportion). However, 

in the teacher's book they also admit that the equivalence of the two equations is, as yet in the 

curriculum, inaccessible to students and has not been established with students at this particular stage.  

The stronger and the weaker: students' and Karen's preferences 

The following passages will show examples when different arguments are provided by students. The 

exchanges take place at the beginning of the second lesson, students were converting a series of 

fractions into percent. They had just converted 4/5 by expanding to tenths and then hundredths. Now 

Sam tries to convert 3/8 in the same way:  

Sam: I'll multiply the fraction by twelve and a half. 

Teacher: Why twelve and a half?  

Sam:  Because if I multiplied 8 times 125 [unintelligible] 

Teacher:  So by 125, right?  

Sam: But that will be a thousand, so …  

Teacher: Doesn't matter. But (writing on the board) 8 times 125 is 1000. What is 3 times 

125? 

Student:  375. 



Sam is trying to expand the fraction to hundredths (realizing that expanding by 125 and simplifying 

to hundredths is the same as expanding by 12.5) but the teacher feels that this is not straightforward 

and accessible to all pupils, so she takes over and breaks the argument down.  After a few more simple 

problems, where students don't need to calculate, they are asked to convert the fraction 9/40. At first, 

a student (Will) suggests to reduce by two and expand by five. Then he adds:  

Will: Or multiply (sic) by two and a half. 

Teacher: Excellent, two and a half. Do you [all] agree? 

Kim:  And couldn't you expand to thousands? 

Teacher:  Also. And if you were to do that, by what number would you expand? 

Kim:  So, that would be times … (thinking) … two hundr …  

Teacher:  Twenty five. Either, as Will said, we expand by two and a half, which is not very 

common, (she turns to the board and writes) if we want hundredths in the 

denominator we expand by two and a half (she writes this on the board), do you 

agree? Forty times two and a half is one hundred, right? And the numerator … 18 

and 4 and a half […] 22 and a half. So what percent is 9/40?  

Students:  Twenty two and a half.  

Teacher:  Or, as Kim said, expand by 25 (she writes on the board), the numerator (sic) is 1000, 

do you agree? And the denominator (sic) is …  

Students:  225. 

Teacher:  And we got the same thing, 22.5 %.  

At this point, Karen allows a student (Will) to carry out an argument that is (like Sam's) based on 

expanding by decimals, but this time the student breaks it down into two warrants first, and Karen 

praises it. Will feels encouraged to suggest expanding by a decimal. Finally, another student supplies 

an argument based on the expansion to thousands (which had been shown by Karen before, see the 

transcript above). Both methods are now endorsed by the teacher, publicly, as valid arguments, and 

demonstrated on the board. When Karen summarizes these approaches, however, she qualifies Will's 

solution as "not very common".  

Conclusions 

The above examples illustrate how the enacted arguments were influenced by the three participants, 

the teacher, the textbook, and the students. Even though Karen was the most influential provider of 

mathematical arguments, arguments that were made in the classroom included students' own 

warrants, and became accepted as correct and valid by the teacher. At the same time, even as Karen 

acted as the decision-maker when it comes to choosing what representations are useful in warrants, 

i.e. efficient, for her class, what was her choice not to include the textbook's geometrical 

representation warrants based on? Clearly, the textbook does not give it a utilitarian value, i.e. it does 

not provide opportunities for its direct use, and makes the representation void of value, outside the 

possible provision of better insight, as the authors claim, but Karen did not find the claim convincing 

enough. In that sense, her decision was very much determined by two factors: a) by her pedagogical 



content belief about the efficiency of a certain type of arguments and b) by the problems 

(opportunities for arguments rather than argument forms themselves) presented by the textbook 

authors in the unit. The second factor, in turn, is given weight by Karen's utilitarian view of the goals 

of mathematics education, i.e. being able to correctly solve problems provided by the curriculum.   

The case of the rule-of-three method is perhaps even more interesting, especially as the ratio warrant 

that underlies it is also at the heart of a method Karen presents when she shows the procedure for 

finding the percent in a word problem, but decides that the justification is not straightforward enough 

for her class, and backs the procedure up with her own authority. What made her do that? When asked 

about the need to mathematically justify mathematical statements, Karen conceded that not all 

arguments are accessible to students (or not all of them). As I showed above, the textbook authors 

also use a warrant that they acknowledge is out of the students' immediate reach. Again, we observe 

similar tendencies, and at the same time it appears that in this case Karen's perception of her students' 

abilities accounted for her decision not to justify.   

In her classes, Karen also allowed students to provide arguments that she had not intended to take 

place, and accepted them as long as they were mathematically correct. At the same time, she 

manipulated such publicly expressed arguments according to her perception of accessibility to all 

students and made frequent evaluative comments about the methods and arguments, labeling them as 

efficient, common practice, convenient, easier, or universal. This qualitative evaluation springs from 

her beliefs about her students' mathematical ability and what it means to be good in mathematics: in 

her view, some students are better at understanding the problem, and innately capable of finding and 

choosing the most efficient, original, or convenient method, an attribute she also gives 

mathematicians in general. For the others, she needs to show simply which method to use, and they 

need to learn it by solving many similar problems, i.e. for some students drilling is the only way to 

succeeding in mathematics. The episodes seemed to confirm that this belief corresponds with the 

students' contributions: the weaker students would rely on arguments promoted by Karen, while 

students who feel confident in their own warrants, could keep using their own. 

In terms of the teacher's influence, it appears that the teacher is independently imposing her own 

beliefs that are very local, e.g. the choice of method, but the choice of representation is also clearly 

determined by the curriculum (and its tasks) and beliefs that are much more global. Further, the 

teacher's choice of not justifying mathematically can be caused by her own belief but also reinforced 

by similar examples in the textbook. Finally, the students' arguments are evaluated by the teacher in 

terms of their mathematical correctness, their efficiency, and their accessibility to all other students 

(as perceived by the teacher). They are then often re-formulated by the teacher, which potentially 

reinforces the dependency of the weaker students on the teacher's choice of argument.      
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It is well known that undergraduates commonly have to deal with great difficulties in constructing 

proofs, especially at the beginning of their mathematical studies (e.g. Weber, 2001). In the presented 

study, students’ approaches to proving are analysed from a process-oriented perspective. The primary 

aim is to empirically confirm a process-oriented model for the proving competence of undergraduates. 

This model may be used to analyse proving processes at an individual level and, therefore, to gain 

more detailed information about proving process and its phases in general.   

Theoretical framework 

The study is based on a theoretical model of the proving process that describes different phases and 

activities in proof construction and which is mainly following the considerations of Boero (1999). 

Boero (1999) describes a proving process that starts with conjecturing and exploration activities and 

ends up in selecting arguments and linking them to a deductive chain. However, proving tasks at 

university level often consist of a statement estimated to be true, especially during the first year of 

studies. The construction of a proof is in this case rather aimed at justification instead of conjecturing 

and problem exploration. According to this, we suggest the following variation of Boero’s model. 

Figure 1: Proving cycle 

This model differs from the existing model in three ways: 

1. The model focuses on proving activities concerned with the justification of a given statement. In

particular conjecturing activities are excluded. However, reducing the process described above

does not mean to exclude all exploration activities, but locating them at the beginning of the

proof construction. Leaning on Reusser’s (1997) approach of a situation model, a mental

representation of the given statement is estimated to be developed by exploring the proving task.

This representation could affect the proving process in a meaningful way.

2. The model includes validating activities at the end of the process. In this phase, which is already

implicitly considered by Boero (1999), the final proof is reviewed regarding content, structure

and linguistics. Besides, further (shorter or more elegant) proofs can be considered.



3. The underlying structure of the model is a cycle. This kind of structure provides the assumption

that proving processes are not supposed to be linear. In fact, the proving process is shaped by

interruptions, revisions and turns.

Research question and method 

The modifications lead to the following research question: Is the proving cycle an appropriate tool 

for analysing proving processes? That means, is it possible to reconstruct the different phases and 

activities stated in the proving cycle empirically? Is there in particular evidence for the existence of 

an exploration phase? In accordance with the research question, a qualitative study has been designed 

with the purpose to provide evidence of the proving cycle and to gain more detailed information about 

the different phases. Therefore, first year undergraduates and first year pre-service mathematics 

teachers (grammar school) are asked to work on proving tasks in the field of real analysis. To 

encourage the participants to talk about their ideas and approaches, the working processes are 

organized in pairs. The proving process of each pair is videotaped, transcribed and finally encoded 

according to Mayring’s (2007) structuring content analysis. The coding is based on a system of 

categories, which consists of the five theoretical stated phases in the proving cycle. 

Results 

The analysis of data from six cases shows that the system of categories seems to be well suited to 

describe proving approaches of undergraduates. Each of the suggested phases could be empirically 

confirmed in nearly all cases. However, formulating a precise and clear proof is an activity, which is 

sometimes omitted. An exploration phase could be reconstructed in all cases, although it varies in 

quality and quantity. The structure of the analysed proving processes is linear insofar as many phases 

could be reconstructed in the suggested order and turns mainly concern consecutive phases. Only in 

those cases, where the identified key ideas turn out to be inadequate, the proving process starts with 

repeated exploration cyclically. As there is no need for further categories the proving cycle can be 

used as a tool for analysing proving processes. Additionally, this tool can serve as a basis for deeper 

inductive investigations of the proving competence from a process-oriented perspective.  
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Introduction 

Working Group 2 was formed in 2011 in Rzeszów, Poland (CERME 7) as a forum for presenting 

and discussing theoretical and empirical research on the teaching and learning of arithmetic and 

number systems. The scope of the working group comprises grades 1-12 and emphasizes research-

based specifications of domain-specific goals, analysis of learning processes and learning outcomes 

in domain-specific learning environments and classroom cultures, new approaches to the design of 

meaningful and rich learning environments and assessments as well as research on teachers’ 

professional development.  

According to the great variety in the field of learning arithmetic and number systems, the group 

intensively discussed fifteen papers and one poster addressing research for different ages and 

different approaches1. The key themes were number sense and structure sense, estimation and 

estimation tasks, flexibility in mental calculation, derived fact based strategies of multiplication in 

low-achieving students, understanding of rational numbers and ratio, didactical models as scaffolds 

for the evolution of mathematical knowledge as well as teachers’ knowledge about rational 

numbers, ratio and place value according to big numbers. 

In comparison to former working groups, we had an even greater variety of themes, and therefore 

the challenges and opportunities to identify common ideas and approaches in the papers presented. 

Two papers put the emphasis on teaching arithmetic, five on learning arithmetic, five followed a 

design based research approach with combining teaching and learning, and two papers focused on 

teachers’ professional development.   

Teaching arithmetic and number systems 

The topics of the two papers focusing teaching were diverse. One paper reflected the role and 

function of didactical models, the other analyzed and compared textbooks.  

Marita Barabash and Raisa Guberman presented a theoretical study on didactical models (DMs) to 

support students’ development of mathematical concepts and ideas. The authors discuss didactical 

models as a mathematical model (supporting the development of appropriate and consistent 

1 Fourteen papers were resubmitted after the conference and are published in the proceedings. 



 

 

concepts) as well as a learning tool (providing an experience of using models). In this sense, DMs 

may help to cope some discontinuity in mathematics teaching across different levels.   

With the focus on a foundational number sense, Anna Löwenhielm Gosia Marschall, Judy Sayers 

and Paul Andrews analyzed and compared how English and Swedish textbook tasks facilitate 

children’s learning of those number-related competences that require instruction. Analyses 

identified both similarities and differences. Swedish pre-school curriculum seems to have prompted 

a conceptually focused textbook, while the strongly framed English pre-school curriculum seems to 

have precipitated a procedurally focused textbook. 

Learning arithmetic and number systems 

The subject area “learning arithmetic and number systems” includes papers on number sense, 

structure sense, and understanding of rational numbers and ratio.   

Students’ development of structure sense in arithmetic is the focus of Andrea Maffia and Maria 

Alessandra Mariotti. Structure sense can be mobilized by students to compare and to transform 

arithmetical expressions, however sometimes it can lead to mathematical inconsistency that pupils 

might not be aware of. Their paper provides evidence of this type of phenomenon through 

syntactical transformations.  

The assessment of students’ ability in number estimation is the topic of a study conducted with 

Brazilian second and third graders. Beatriz Vargas Dorneles, Mariana Lima Duro, Nohemy 

Marcela Bedoya Rios, Camila Peres Nogues and Clarissa dos Santos Pereira compare a Number 

Line Estimation Task and a Numeroisty Task. Results show that the Number Line Estimation Task 

is more accurate in assessing students’ performance in estimation.  

Luciana Corso and Beatriz Vargaz Dorneles put the emphasis on number sense and investigate the 

relation between three domains: working memory (especially the central executive and the 

phonological component), number sense and arithmetical performance. Based on different valid 

instruments, data was collected regarding each single component. The analyses reveal a significant 

correlation between the central executive component of working memory and number sense.   

Ayşenur Yılmaz and Mine Işıksal-Bostan examine to what extent middle-grade students agree on 

statements about the ordering of two negative integers given within a real-life context, and what 

kind of procedural and conceptual strategies do middle-grade students generate to order those 

numbers. The results reveal that students did not explain the concept of ordering in daily life 

considering their conceptual meanings, and have problems in their procedural knowledge repertoire.  

Ozur Soyak examines students’ difficulties in proportional reasoning in rate and ratio problems. 

Students’ difficulties are caused by the confusion of unit rate identification and by algorithmically 

based mistakes. A lack of understanding in the unit of measurement, the difference between additive 

and multiplicative reasoning, and some errors in the computation process seems to underlie such 

difficulties.  The study suggests emphasizing proportional reasoning in the learning process.   



 

 

Teaching and learning arithmetic and number systems   

This time we had a considerable amount of papers following a design based research approach. All 

studies were characterized by designing a teaching and learning arrangement and investigating 

students learning and understanding according to this specific context.  

With the focus on students’ development, Laura Korton explores a teaching-learning arrangement 

for the inclusive mathematics classroom to foster flexible mental calculation. The approach 

considered both the level of design (consideration for use) and the level of research (quest for 

fundamental understanding). Initial findings appear to suggest positive outcomes when Mutual 

Learning processes are integrated. 

Michael Gaidoschik, Kora Maria Deweis and Silvia Guggenbichler exhibit results of an ongoing 

design research project. Based on a specific instructional design that emphasizes conceptual 

understanding and derived fact strategies, the study investigates the exhibited strategies in basic 

multiplication of lower- achieving students. Within the analyses three different strategy types could 

be developed. Results also show the influence of the instructional context.  

Cristina Morais and Lurdes Serrazinha describe an approach to develop conceptual understanding 

of decimal numbers by using and adapting the hundred square model.  Within a teaching experiment 

3rd and 4th grade students worked with three different models focusing on part-whole meaning. 

Results indicate that models promote students understanding of rational numbers, and suggest the 

decimat as an important part-whole model.  

Helena Gil Guerreiro and Lurdes Serrazina discuss an approach to focus students’ conceptual 

understanding of rational numbers based on teaching percentages in elementary school.  Within a 

teaching experiment, the authors collected data by logbook, audio and video-recording, and 

analyzed qualitatively. Results suggest that this specific approach supports to understand 

multiplicative relations and rational numbers.  

The pilot study of Carlos Valenzuela García, Olimpia Figueras, David Arnau and Juan Gutierrez-

Soto contributes to the development of better mental objects for fractions. Using a Theoretical 

Model for fractions, they designed and developed a seven stage teaching sequence based on the use 

of applets created with GeoGebra and the number line as a conceptual and didactical resource. 

Results of the first two stages suggest students’ preferences to represent fractions as proper fractions 

(unit segment). The majority of the participants paid more attention to the graphical aspects of the 

applet. 

Teachers’ professional development 

The two papers in this field focused on teachers’ knowledge and its impact on students’ learning.  

Frédérick Tempier and Christine Chambris paper aims to reveal teachers understanding of place 

value related to larger numbers, and its impact on teaching and students understanding. Based on the 

“Theory of Didactic Transposition” the authors investigate the relations between all three aspects. 

The qualitative analyses of a teachers’ lesson compared with the results of a questionnaire of 

students’ knowledge provide interesting insights in teaching large numbers. 



 

 

Gulseren Karagoz Akar conducted a single case study on teachers reasoning about ratio. Using a 

theoretical framework based on the concepts within (state) ratios and between (state) ratios, the 

teachers’ conceptions of ratio are discussed. The results suggest different levels of reasoning in 

between-state ratios (as an operator and a combination of two extensive quantities), but some lack 

understanding about in between-state ratios as a single intensive quantity.  

Summary and outcomes 

The great variety of papers provided a fruitful base for interesting and often animated discussions in 

a supportive quizzical environment. We agreed that we were able to broaden our own perspectives 

in terms of new perspectives on different mathematics educational research domains, and different 

uses of terms, concepts and theoretical frameworks. In our discussions, we went far beyond the 

specific themes of the single papers and covered general aspects that influence our work as 

international and interdisciplinary group of researchers. Those were 

 the synergy of cognitive science and mathematics education, 

 the similarity and differences in research paradigms and approaches, 

 the intercultural differences, 

 the different terminologies and the relevance of creating common terminologies and 

 the necessity to clarify concepts and theoretical frameworks. 

This spectrum of research focus in the papers reflect the number of open questions that still persist 

in the teaching and learning of arithmetic and number systems, and in need of further research. The 

intense group discussions raised further awareness amongst the group and questioned some 

positions that were taken for granted in both the field and in specific contexts. With the commonly 

perused aim improving mathematics education in the field of arithmetic and number systems in all 

academic levels, we perceived common ideas as a base for further research and discussion: (1) The 

importance of number sense regarding different age levels, number systems and perspectives form 

different domains. (2) The necessity to develop models for fostering flexible relational thinking 

about numbers. (3) The requirement to enhance our notion of number literacy as interaction of 

various components.  

For our further work, the group agreed on enhancing the exchange of research on arithmetic and 

number systems from cognitive psychologists and mathematics education researchers, and work on 

specifying terms for both fields to agree on.  
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This study investigated one prospective secondary mathematics teacher’s (Jana’s) reasoning on 

between-state ratios in missing value problems and comparison problems.  In two one-and-one-half 

hour written problem solving sessions followed by one hour-long clinical interview, Jana’s use of 

informal and formal strategies and justifications behind those strategies in the context of ratio were 

examined. Extending previous research, results of this study showed that someone could quantify 

between-state ratios acting as an operator in fraction form once she has understood ratio as an 

association of amounts of quantities in within-state ratios. Results indicated a dichotomy within the 

boundaries of identical groups conception in terms of within-state ratios and between-state ratios 

prior to an understanding of between-state ratios as a single intensive quantity.  

Keywords: Between-state ratio, within-state ratio, division, multiplication, extensive and intensive 

quantity. 

Theoretical framework 

Students might approach to a proportion such as a/b=c/d by comparing the first set of ratios a/b or c/d or 

the second set of ratios a/c or b/d (Noelting, 1980). In the first case, the ratios a/b or c/d are called within 

(state) ratios, where the ratio represents the original quantities within one state.  In the second case, the 

ratios a/c or b/d are called between (state) ratios, where the ratio represents quantities between two 

situations (Noelting, 1980).  For instance, envision the Recipe 1 Problem in this study. The original 

quantities of 9 tablespoons of oil and 4 tablespoons of vinegar could be represented by the within-state 

ratio, 9/4; and, the 4 tablespoons of vinegar and the 7 tablespoons of vinegar from two situations could be 

represented by the between-state ratio, 7/4. 

Researchers investigating prospective teachers’ conceptions of ratio have revealed how teachers 

interpreted the relationships between quantities in ratio situations to quantify some attribute of interest such 

as lemon-lime flavor (Heinz, 2000; Karagoz Akar, 2007; Simon & Blume, 1994; Simon & Placa, 2012; 

Thompson, 1994). For instance, envision the Mixture Problem in this study. For this problem, research has 

shown that one might interpret the relationship between the quantities of 36 grams of pure lemon juice and 

32 grams of pure lime juice in the following three different ways: First, someone having a robust conception 

of ratio conceptualizes that ratio is a single intensive quantity that expresses the size of one quantity (i.e., 

amount of lemon) relative to the size of the other quantity (i.e., amount of lime) represented by within-state 

ratios (Simon & Placa, 2012). In this conception one can utilize both partitive and quotitive division of the 

quantities in within-state ratios to quantify the attribute (i.e., lemon-lime flavor) in the situation. That is, 

either engaging in partitive or quotitive division, one might interpret the quotient (i.e., 1.125) of the original 

quantities represented in the within-state ratios, 36/32 , as a single intensive quantity representing the 

invariant multiplicative relationship between the quantities (Simon & Placa, 2012). This concept of ratio is 

also called as ratio as measure conception (Simon & Blume, 1994).  

Secondly, in order to quantify the lemon-lime flavor, one might think of the within-state ratio, 36/32, as 

representing an association of amounts of two quantities (Johnson, 2015). In this regard, s/he thinks of the 

quantities making up a particular combination that quantifies the taste of the mixture. This understanding 



aligns with the identical groups conception (Heinz, 2000) and ratio as a composed unit (e.g., Lobato & 

Ellis, 2010). Within the boundaries of such conception, one might find equivalent ratios by dividing for 

instance, 36 and 32, simultaneously with 4 and come up with 9/8 ratio (i.e., as a composed unit, Lobato & 

Ellis, 2010), representing the same lemon-lime flavor (Beckmann, 2011). Third, to quantify the attribute, 

one might engage in partitive division of quantities in within-state ratios, 36/32 (Heinz, 2000; Karagoz 

Akar, 2007; Johnson, 2015). The quotient 1.125 then represents an association between the quantities of 

1.125 grams of pure lemon juice per one gram of pure lime juice. Therefore, ratio as identical groups 

conception (Heinz, 2000) and ratio as per-one conception (Simon & Placa, 2012) involves one’s 

interpreting within-state ratios as an extensive quantity rather than a single intensive quantity (Heinz, 2000; 

Karagoz Akar, 2007; Johnson, 2015). The study reported in this paper attempted at extending the 

previous research results in the following way: As the previous research has shown, students interpreting 

within-state ratios as representing an association between quantities (i.e., identical groups conception) 

could utilize equivalent fractions to handle missing value problems and /or comparison problems (Heinz, 

2000; Lobato & Ellis, 2010). However, they cannot reason in missing value and/or comparison problems 

with quantities non-integer multiples of each other (Heinz, 2000). In this study, data from one prospective 

teacher documented that given that she interpreted within-state ratios as representing an association of 

quantities, she could reason with between-state ratios for situations involving quantities non-integer 

multiples of each other. In particular, Jana quantified the relationship between the quantities in between-

state ratios as representing a particular combination and acted it on the within-state ratios as an operator. 

This is important because earlier research focused only on students’ reasoning on the relationship between 

the quantities in within-state ratios. However, there is also need to focus on how someone reasons with 

between-state ratios; because, the conceptions of between-state ratios and within-state ratios have 

cognitively different underpinnings and that the understanding of proportion integrates both of these 

conceptions (Noelting, 1980). Also, the results from Karagoz Akar (2007) study showed that an 

understanding of between-state ratios as an intensive quantity (as percent-increase/ decrease) does not 

necessarily depend on an understanding of within-state ratios as per-one. Together with the results of 

Karagoz Akar (2007) study, the results of this study indicated a dichotomy within the boundaries of 

identical groups conception without having within-state ratios as per-one. Also, knowing about different 

levels of sophistication in the conception of ratio might shed light on determining and detecting students’ 

reasoning along the way to advanced understandings of ratio, such as ratio as measure. In this regard, this 

study scrutinized the following research question: How might a prospective secondary mathematics teacher 

quantify the relationship between the quantities in between-state ratios and within-state ratios in missing 

value and comparison problems?  

 

 

Methodology  

The voluntary participant was a prospective secondary mathematics teacher, Jana, at one of the universities 

in the United States. In this study data was collected through the structured task-based clinical interviewing 

method (Clement, 2000) following two one-and-one-half-hour long written problem solving sessions. 

During the written sessions, Jana, was asked to provide solutions with explanations and justifications to the 

tasks. The reason for doing written sessions was to determine Jana’s solution processes prior to the clinical 

interviewing so that her reasoning,  justifications of her solution processes, and the connections she made 



among her interpretations of multiplication, division and part-part-whole relationships in missing value 

problems and comparison problems could be further elucidated. The interview was videotaped. The 

transcript of the interview and artifacts from written problem solving sessions and the interview were all 

used as data sources in the analysis.  

In analyzing clinical interviews, the researcher “…is constructing a model of hidden mental structures and 

processes that are grounded in detailed observations from protocols” (Clement, 2000, p. 549). In this 

regard, the unit of analysis was Jana’s strategies, solution processes and justifications she provided in 

externally written or uttered arguments (the observations from the point of view of the researcher). The goal 

was to determine what underlying conceptions of ratio Jana might be revealing. Thus, the analysis was 

interpretive (Clement, 2000). In this respect, reading the whole transcript line-by-line having in mind 

previous research, I determined chunks of relevant data that would allow generate the descriptions of 

Jana’s mental structures such as her thinking of ratio as extensive or intensive quantities. Then, to further 

validate interpretations I went back to how she reasoned during the written sessions and how she reasoned 

on different tasks. Then I wrote a narrative. Following, another researcher was consulted to challenge the 

conjectures and/or to affirm their reasonableness to further validate the plausibleness of the interpretations.  

Tasks (used in the study) 

For the study, I wrote the Hair Color 1 and 2 problems and adopted the others from the existing literature 

(see Table-1). The rationale for the choice of problems was the following: Heinz (2000) study showed that 

prospective teachers had quantified ratio at different levels. For instance, within the identical groups 

conception, some teachers engaged in partitive division of the quantities in within-state ratios and quantified 

within-state ratios as an association of amount of one quantity per one unit of another quantity.  To the 

contrary, some teachers engaged in quotitive division to quantify the within-state ratios as a single intensive 

quantity. Thus, I wrote The Mixture Problem in reference to the distinctions in partitioning and measuring. 

Also, Heinz (2000) stated that within the identical groups conception someone might have used either their 

part-whole understanding to make sense of the problems, or have gone back to additive thinking. Thus, I 

wrote The Hair Color-1 Problem. Further, within the identical groups conception teachers were not able to 

deal with the quantities non integer multiples of each other (in between-state ratios). So I hypothesized that 

there might have been teachers who could do so by using adjustment strategies (e.g., Kaput & West, 

1994). Thus, I adopted and modified the Recipe-1 Problem from Kaput and West (1994) since also they 

ranked it among the highest levels of difficulty (13th out of 15th difficulty). I also wrote The Hair Color-2 

Problem based on the research results on rational number as operator (Marshall, 1993). 



 

Table-1: Tasks used in the study 

Results 

Jana’s understanding of between-state ratios 

Data from the “b” option of The Hair Color-2 Problem and the Recipe-1 Problem showed that Jana left 

the between-state ratio in the fraction form, contrary to the previous research results (e.g., Karagoz Akar, 

2007; Heinz, 2000). She did not think of finding the quotient in between-state ratios once the problem 

required her to think of it as quantifying percent decrease/increase. On the other hand, data from the 

interview showed that once her goal was to find out how many times the quantities were incremented, 

she was able to divide the quantities in between-state ratios. Jana had solved the Hair Color-2 Problem 

using the cross and multiply rule during the written sessions. So, during the interview, the first question I 

asked Jana was The Hair Color-2 Problem “a” and “b” options. 

R: All right, okay, without solving the problem. What does that 22 divided by 15 represent in the 

problem? 

J: It doesn't represent. Umm, 22 over 15, it kind of just says that she is adding 7 grams to the new 

amount over and it is over the old amount… well, 17, She put it in a fraction that new amount over the 

old amount, 22 over 15, she multiplied it by 17 because that was the old amount of brown, so that is 

what she was doing…she already know what she wants to change the red one to, so, she has to make 

one of the numbers and she has to make sure that the other color is the same ratio as before. 

It is interesting that, although I told her ”22 divided by 15” Jana thought that 22/15 represented the change 

in color, as in a fraction of the new amount of red to the old amount of red. She knew that the other color 

needed to be kept in the same ratio, and she knew that she could do it by multiplying the other quantity in 



the original ratio with the same number. Yet, whether she thought of the 22/15 as the “change factor” was 

not clear. In fact, further data clarified this. Jana’s reasoning about the between-state ratios, once given in 

the simplest, reduced form, was the same on The Recipe-1 Problem, too. During the written sessions, Jana 

had written the following (see Figure-1): 

 

 

 

 

 

 

Figure-1: Jana’s reasoning on the Recipe-1 Problem in problem solving sessions  

Two interesting points need to considered: Jana thought of adding 3 grams to both ingredients, which was a 

characteristic of the identical groups conception. Kaput & West (1994) also stated that students revert 

back to additive reasoning once the numbers used in the original ratio are very close to each other. Thus, 

first, if Jana had the conception of ratio as a single intensive quantity, she would not have thought of 

subtracting the quantities magnitudes of which are close to each other; rather, she would have thought of 

dividing (e.g., Heinz, 2000; Karagoz Akar, 2007). Secondly, Jana used equivalent fractions, after her 

addition strategy, to check her solution, leading her to the conclusion that her solution was not correct. Her 

use of equivalent fractions indicated that she did not have any other way of verifying whether the proportion 

held. This claim will be further supported by her reasoning on the Hair-Color-1 Problem. To figure out the 

extent of her knowledge, I asked Jana during the interview to account for a solution for The Recipe-1 

Problem provided by another student as 9x(7/4). Jana said, “Because you are trying to get the same 

combination, so this is like the new combination of the vinegar where it is changes from 4 to 7 so it is like a 

new ratio and you want the ratio of oil to be the same as it was before so you are allowed to multiply the 

old oil times its new ratio in order to get the new oil”. Her reasoning on this problem was similar to the 

Hair-Color-2 Problem option “b,” a between-state ratio represented a particular combination in fraction 

form. Taken together, data indicated a deviation from the identical groups conception: She did not solely go 

back to additive reasoning when the numbers in the original ratio were very close to each other. Also, she 

interpreted the fraction form of the between-state ratio as an extensive quantity, creating a particular 

combination, representing so many of the old quantity (from the first situation) for so many of new quantity 

(from the second situation).  

 

 

 

 

 

 

 



 

Figure-2: Jana’s reasoning on The Hair Color-1 Problem in problem solving  

Data above (see Figure-2) together with her statement in the interview below, once again indicated why 

Jana‟s stage of knowing was within the scope of the identical groups conception, albeit with deviations 

from it. During the interview, Jana stated “ this[referring to equivalent fractions] helps us to compare 

because you need to make one of them the same in order to compare actually compare ”. The excerpt and 

her solution above (see Figure-2) are important in two ways: first, it shows that Jana used the equivalence 

of fractions as a way to compare whether two different dyes are the same color. Second, it shows how 

she related the equivalence of fractions and the common denominator algorithm. Jana thought that the 

within-state ratio represented an association between two extensive quantities, representing so many for so 

many other parts. This was evident when she said she could change the order (brown to red) of the ratios. 

So she did not need the second quantity to compare the ratios once she equaled them out. Here, she again 

deviated from identical groups conception since she was able to deal with quantities non-integer multiples 

of each other. 

Limitations of Jana’s understanding in within-state ratio context 

Jana’s understanding in the within-state ratio context showed some limitations and deviations from the 

identical groups conception. During the interview, for the “c” option of The Mixture Problem, Jana claimed 

the following: 

[First Part] J: Yeah, fractions even though when you actually these fractions, when you divide the 

fractions you get this number 1.125 but you when you look at that number you don't know how much 

lemon juice there is and how much actual lime juice. 

[Second Part] R: Does this tell like tell you anything like the lemon and lime about the juice or does this 

represent anything [referring to 1.125] 

J: Well, if you have different number which I don't, I can't calculate numbers, where you have a different 

amount of like I don't know if you have like x and y this is lemon over lime and when you divide it you 

get 1.125 then you know this combination [referring to b option] equals this one [referring to the ratio of 

x to y], that they will taste the same… because they are in the same ratio, so that kind of. 

[Third Part] R: other than that this is going to help you? 

J: No, actually, you can't, you can't, it is not going to help because you can't create more juice like this 

from just this number, you have to, because you don't know how much lemon juice is in there compared 

to actually how much lime. 

The first part shows that Jana understood that, given the fractions of 36/32 and 20/16, when she divided 

those numbers she got 1.125 and 1.25 respectively. However, although she realized that when she divided 

36 by 32 she would get 1.125, she had not abstracted the fact that the quotient was the invariant 

multiplicative relationship that quantifies the taste. In the Second Part, data also suggested that Jana could 

tell that two fractions are equal if they equal the same decimal, but she did not think of the quotient as 

indicating something about the situation modeled by the ratios (Simon & Blume, 1994). Data from the 

Third Part suggest that Jana did not realize 1.125 lemons per lime as at least the representation of a 

particular mixture: for 1.125 grams of lemon there is 1 gram of lime. This indicates that Jana did not 

anticipate the quotient as per-one. If she had, she would have been able to add the quantities of 1.125 



lemons and 1 lime until she reached the targeted quantities. To the contrary, she claimed “you can't create 

more juice like this from just this number [referring to 1.125]”, deviating from the identical groups 

conception. 

Discussion 

Results showed that, regardless of the type of tasks, Jana interpreted the relationship between quantities in 

within-state ratios as association of amounts of quantities. This is similar to the previous research results 

(Heinz, 2000; Johnson, 2015). Yet, she deviated from such level of reasoning by interpreting the between-

state ratios as an operator acting on the quantities in the original ratio situation (i.e., within-state ratios) since 

she was able to deal with the non-integer multiples of quantities. Also data from the Hair-Color 1 and 2 

and the Recipe-1 Problems indicated that Jana understood between-states ratios as a particular 

combination of two extensive quantities. For instance, for her, the 7/4 ratio from one situation to the other 

in the Recipe-1 Problem was a new combination of vinegar, a new ratio, acting as an operator (Noelting, 

1980). Also, deviating from the identical groups conception, when the numbers in the original ratio were 

very close to each other, she did not go back to additive reasoning, though attempting at it. Such attempt 

indicated that she did not have an understanding of between-state ratios as an intensive quantity, quantifying 

the change from one situation to the other in percent-increase decrease Karagoz Akar (2007). She also 

deviated from the identical groups conception (Heinz, 2000) and ratio as per-one (Johnson, 2015; Simon 

& Placa, 2012), such that she was not able to anticipate the quotient in The Mixture Problem as how much 

of one quantity associates with one unit of another quantity even when she divided it. These results 

suggested a different level of reasoning in between-state ratios and also a dichotomy within the continuum 

of identical groups conception in term of the conceptions of within-state and between state ratios prior to 

interpreting between-state ratios as a single intensive quantity. These results also have some implications for 

teaching ratio to both students and prospective teachers: The tasks in the study might be used to introduce 

prospective teachers with different strategies students might engage in while solving missing value and 

comparison problems. Secondly, Jana’s reasoning seem to be at a higher stage than an understanding of 

ratio as an association of quantities, as reported in the field (e.g., Johnson, 2015). Teachers and teacher 

educators might expect to observe these different kinds of reasoning while developing an understanding of 

ratio on the part of their students. Also, they might refer to these kinds of reasoning while assessing their 

students’ understanding of ratio at different levels.  
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This paper is a small part of an on-going theoretical study on didactic models as a form of didactic 

transformations of mathematical notions, concepts and ideas, i.e. of adjusting mathematics for 

teaching. In what we propose here we argue that regarding this adjustment as mathematical modeling 

should be inherent to the mathematics teaching: they may enhance the concept development as the 

on-going result of students’ learning; foster embedding the “big ideas” approach to mathematics 

learning, and lead to more self-consistently evolving mathematical knowledge. The “big idea” is that 

numbers are to be studied in the context of number structures, i.e. together with operations defined 

on them and properties of these operations, and that a familiar number system may serve a model for 

studying a new one. We illustrate the didactical model’s approach at the initial stage of learning 

fractions. 

Keywords: Didactic models, acquiring notion of number systems, evolution of mathematical 

knowledge, arithmetic at elementary school. 

Introduction 

This paper is a small part of an on-going theoretical study on didactic models as a form of didactic 

transformations of mathematical notions, concepts and ideas, i.e. of adjusting mathematics for 

teaching in a way that would preserve to a maximal possible extent its structure and spirit. “We want 

the students to be exposed as early as possible to the idea that beyond the nuts and bolts of 

mathematics, there are unifying undercurrents that connect disparate pieces” (Wu, 2009). The 

theoretical framework for the research is inspired by ideas such as Wu’s idea cited above, and sprouts 

from the works by Freudenthal (in particular, Freudenthal, 1975), Kirsch (2000) and from the 

discussion on applied-mathematic nature of didactic transformations (Borovik, 2012). These and 

other sources reflect the need for the merged input of deep mathematical, psychological and didactic 

considerations in constructing the mathematics feasible and meaningful for students of various ages 

and levels of mathematics learning. 

Any form of teaching mathematics involves adjusting it for the students. In what we propose here we 

argue that regarding this adjustment as mathematical modeling should be inherent to the mathematics 

teaching. The philosophy behind mathematic models is applying a user-attainable mathematica l 

apparatus to study an unknown subject or phenomenon. No mathematical model fully represents the 

subject being studied. One should always be aware of limitations of a model being used along with 

its purpose and benefits, and also of what Freudenthal (1975) presents as the dual character of 

mathematical models: “Models of something are after-images of a piece of given reality; models for 

something are pre-images for a piece of to be created reality” (p. 6). 

An educated usage of models is supposed to shed light on phenomena and subjects being studied and 

seems to be indispensable as a tool at any level of mathematic studies. This implies that the 

mathematical models usage should become an integral part of the teaching/learning procedure in 



mathematics lessons. In particular, concerning the models for something – the “to be created reality” 

in school mathematics is first and foremost the new mathematical knowledge hopefully to become in 

due time reality for the pupils. Thus, when the unknown subject to be studied belongs to mathematics, 

the model illustrating it serves didactic purposes; in this case, we are referring to didactic models 

(DMs) (see Figure 1):  

 

Figure 1. Didactic models as mathematical models and as a learning tool 

Examples of well-known and widely used DMs are the Dienes model demonstrating the princip les of 

the decimal system, and the rectangle-area model used to impart some properties of multiplicat ion 

and division. In this paper, we would like to look closer at didactic models as mathematical models 

of the to be created reality, in order to appreciate their educational value provided they are used 

knowingly and systematically. We suggest that mindfully and systematically applied to teaching, they 

may enhance the concept development as the on-going result of students’ learning; foster embedding 

the “big ideas” approach to mathematics learning, and lead to more self-consistently evolving 

mathematical knowledge. 

A more-or less usual applied-mathematics scheme for the mathematical model usage is (Figure 2):  

 

Figure 2. Applied- mathematics scheme for the mathematical model 

An initial model is the result of a simplification rendering the phenomenon being studied 

mathematically feasible, solvable, analyzable. The mathematical model is applied to obtain results, 

which are supposed to reflect at least to a certain extent the “real thing” – the phenomenon or object 

being studied. The analysis of the results of the model application usually indicates situations at which 

the model fails to reflect adequately and fully the “real thing”, and should therefore be improved to 

better reflect it. The improved model leads to more understandings concerning the object, provided it 

is mathematically feasible for the user. This looks like a never-ending story, and in mathematics it 

usually is.  

Applying this concept of mathematical model as is in the didactic context, i.e., as a didactic model, 

does not differ conceptually from application of mathematical models to any other field. It is just that 

the “real thing” being studied is of mathematical nature. In what follows, we illustrate the approach, 

emphasizing the need for the expertise in using it, which means knowledgeably following the main 

steps represented in the scheme above, accounting for the students’ level, so that the model being 

used is feasible to them; otherwise it cannot serve a basis for the further learning.  

The object to 

be studied 
A model The analysis 

of the results;  

An improved model Limitations of the 

model 



Didactic models  

Didactic models are the result of didactic transformation, being a form of applied mathematica l  

activity aimed at teaching: „We have to accept that, in mathematics, didactic transformation is indeed 

a form of mathematical practice. Moreover, it is in a sense applied research since it is aimed at a 

specific application of mathematics teaching.” (Borovik, 2012, p.99). Didactically transforming a 

mathematical concept is no trivial matter, since it is supposed to cater to both the mathematical and 

the didactic aspects of the concept: to simplify without distorting the mathematical concept and to 

present it to pupils in an accessible form.  

Shternberg & Yerushalmy consider didactic models to be a means for learning mathematics on the 

basis of mathematics already familiar to the students and rigorous mapping of learned operations onto 

the formal mathematical operations (2004). In line with this, we argue that a properly and consistent ly 

applied DM approach is a way to enhance the concept-development aspect of mathematical learning.   

Prior to presenting the examples illustrating this assertion, we will sum up the main principles on 

which we propose to base the DMs approach in school. First of all, following Kirsch who claims that 

activating the existing knowledge is the way to attain accessibility of the new knowledge; DMs should 

be based on the existing mathematical knowledge, skills and understandings of a student (Kirsch, 

2000). Second, the mathematical idea in the basis of the notion should not be distorted as a result of 

simplifications leading to a didactic model. The definition, operations and properties of a 

mathematical object should be lucid to those who construct a DM for its learning and to those who 

use it in its teaching (teachers, textbook writers, curriculum designers etc.)1 Kirsch (2000) asserts that 

simplification is a way of making mathematics accessible, but explicitly refers to the “dividing line 

between legitimate simplification and falsification that does not get past critical pupils” (p. 267). “Not 

getting past critical pupils” does not ensure that less critical and mathematically aware students do 

not acquire the falsification as a true image of the mathematical concept. Third, properly used DM 

approach is a link between the student’s existing mathematical knowledge, the knowledge being 

currently acquired and the future study of the subject, exactly as the mathematical model is the main 

tool of the on-going upgrading of the mathematics-based understanding of a phenomenon or an 

object. Thus, properly used DM approach is a tool for inherently mathematical way of studying it.  

 In addition, no DM is unique in presentation of a mathematical object (as any mathematical model 

is not the unique mathematical presentation of any object, for that matter). No contradiction should 

exist between various DMs; they are supposed to complete each other in the representation of the 

mathematical object. A student may be exposed only to some DMs representing the concept, 

appropriate to the didactic circumstances (such as the stage of acquaintance with the subject; level of 

mathematical development of the students; aims of the specific lesson etc.); the properties represented 

by a DM must be coherent with mathematics, even if it is not explicitly presented to a student.   

The efficient usage of DMs involves two equally important components of the DM-based approach: 

regarding DM as a mathematical model and as a learning tool. As a mathematical model, the proposed 

approach enables gradual building-up of an appropriate and consistent concept using the 

mathematical phenomena, objects and skills familiar to a student. As a learning tool, it provides a 

                                                 

1 This is obviously the matter of Specialized Mathematics Knowledge for Teaching (see Hill et al., 2004). 



precious experience of utilizing models in the process of acquiring a new piece of mathematica l 

knowledge, which necessitates critical and mindful insight into the existing knowledge being used.  

In what follows, we consider two possible appearances of DMs at school. The outline of the first one 

appearance is presented in Examples 1-4. The reference to the second one we found appropriate to 

include as a part of the Discussion. 

The beginning of fractions  

To illustrate what we consider to be a consistent and educated mode of DMs usage in elementary 

school, we will apply it to the initial stage of fractions learning. This is an example that we believe to 

be especially valuable at the elementary school level, when the young pupils do not yet have 

experience in the process of developing a mathematical concept, while they gradually accumula t e 

some mathematical knowledge. Beliefs, skills and concepts they have acquired are supposed to serve 

them for the further study. The properly planned and applied model usage for learning may be one of 

the most important experiences in learning mathematics (Van Den Heuvel-Panhuizen, 2003).   

Much too often the term “fraction” is used as a synonym to “a number smaller than 1”, which is the 

more problematic since in the very beginning of fractions learning the pupils really meet mostly 

fractions smaller than 1. Moreover, dominating approaches to the beginning of the fractions teaching 

are based on the “part-of-the-whole” concept and on geometric-visual representations )Hurst & 

Hurrel, 2014). Important and intuitively supportive as they are, they are detached from the only 

arithmetic and the only number system the students have come to know to a certain extent at this 

stage, which is the system of natural numbers. Hurst & Hurrel (ibid.) suggest that it might be plausib le 

to present fractions already at the early stages of learning in a way that will not inhibit, but rather 

support the future acquiring of the fraction concept without having to significantly change it. Their 

approach is that of “big ideas”, which we interpret as constructing coherent DMs consistent with the 

future evolution of fractions into (final and infinite) decimal fractions, notion of ratio, algebraic 

fractions, the slope of a line and the derivative, and other advanced mathematical appearances of 

fractions. We suggest that the big idea behind the notion of fraction is the division operation (Mamede 

& Vasconcelos, 2016). In mathematics, a fraction is either the division operation itself or its result 

(quotient) (not necessarily a number). If the numerator and the denominator are both natural numbers, 

the fraction represents a rational number. Fraction is also an operator acting on other mathematica l 

objects, and this is also directly related to its being the division operation. Hence, “the big idea” we 

propose as the mathematical background, is fraction as division: operation or result. Needless to 

mention that the idea itself is not intended for elementary school pupils, but the teachers should be 

cognizant of it.  

We illustrate the DMs approach at the initial stage of learning fractions, the model being the 

arithmetic of natural numbers. We are fully aware of the risk of inhibition effect of this approach. 

Davis (1989) includes whole number schemes among inhibitors on the way to the rational numbers. 

Nevertheless, we assert that there is no other mathematical knowledge to build upon for the simple 

reason that the natural number arithmetic is more or less everything the pupils know before their first 

encounter with fractions, but for their possible acquaintance with ½ (also justly included by Davis 

among inhibitors), some primary geometric intuition and some idea of a number line.  



Following Shternberg & Yerushalmy (2004), we provide here examples of “mapping” ideas familiar 

to pupils from the natural numbers arithmetic onto the new mathematical object - fractions, applying 

the usual scheme for a mathematical model use presented above.  

We use it in the first example to impart a meaning of fractions needed for the understanding of 

addition of fractions; in the second example - to impart conventions of fractions presentations; in the 

third example – to adjust to fractions a handy geometric model used for integers. In all three examples 

we refer briefly both to advantages and to limitations of the chosen model, and propose an improved 

model. Last but not the least is the fourth example of a meaning of natural numbers inapplicable to 

fractions. 

Example 1:  Addition of fractions.  

The model: a natural number as a cardinal number of a finite set of objects. In a fraction whose 

numerator and denominator are natural numbers, the numerator serves as a cardinal number of a set 

of equal parts - unit fractions, into which the whole is divided. The denominator indicates the number 

of parts and their magnitude. Different unit fractions are different objects and cannot be added, unless 

they are united into one set, just as apples and pears are to be united into the set of fruit to be counted 

together. For unit fractions, this means representing them with a common denominator. Limitations: 

applicable only to rational numbers. Any other fraction, for example, 
√2

1+𝑎
, has to be understood 

otherwise, namely, as the division operation √2:(1+a) written in another form.  

Example 2: Conventions concerning representation of fractions. 

The model: the decimal representation of natural numbers. The decimal representation is an equally 

important appearance of two ideas: of a representation of numbers per se, and of conventions in 

mathematics. As a decimal representation, it is the model applied almost as is to decimal fractions, 

when the pupils are prepared to deal with them. As an example of a representation convention, it may 

pave the way to the understanding that in mathematics there may be different forms of presenting 

commonly used objects; these forms should be familiar to everybody; this is the part of the 

mathematical language. 
7

5
 is just another form of writing 7:5, meaning either the operation or the 

number resulting from it. Limitations: the final decimal representation is inapplicable for some 

numbers; it has to undergo adjustments to infinite (periodic or non-periodic) decimal representations, 

and provide meanings for their truncations of various kinds. 

Example 3: The area model 

To adjust the useful area model from a rectangle whose sides’ length are integers to the rectangle 

whose sides are rational numbers, it suffices to count “unit rectangles” whose sides are unit fractions 

corresponding to the factors’ denominators, instead of unit squares. Limitations: the area model “as 

is” is hardly applicable, for example, to infinite decimal fractions2, to fractions with irrationa l 

nominators or denominators, and would demand serious amendment to apply it to negative rational 

                                                 

2 Some ideas as presented e.g. in Nelsen (1993, pp.118-122) are based on this type of visual reasoning linking the 

area notion to numerical reasoning and convergence ideas. 

 



numbers. Nevertheless, speaking of irrational numbers - the segments division in an arbitrary ratio is 

defined for incommensurable segments as well, for example, by Thales similarity theorems in 

geometry, on the basis of segments measurement directly related to the number line. Having 

recognized that the segments ratios is attainable for irrational lengths as well, one can happily keep 

using the rectangle model for distribution properties of multiplication and division provided it is 

transfigured so that a subdivision neither into unit squares nor into small “unit” rectangles is needed 

anymore to apply it. Moreover, the basic fact that the whole segment of length a may be represented 

as the sum of the two parts, for example, 
𝑎

(1+√2)
 and 

𝑎√2

(1+√2)
, is consistent with a similar idea for rational 

ratio, which again is beneficial for the further goal of regarding the system of real numbers as a whole.  

Example 4: Addition of natural numbers as continued counting.  

Consider the addition of natural numbers as continued counting: m+n as n times the addition of 1 to 

m, or m times the addition of 1 to n. Here the limitations of the model render it inapplicable as a 

model for fractions. Obviously, these examples are not meant to be used simultaneously and 

immediately and not necessarily explicitly in the beginning of acquaintance with the notion of 

fraction. We do assert though that the ideas represented in these examples must be intertwined in 

appropriate detail in the course of primary school arithmetic as a general approach to mathematics 

teaching and learning (DM being a learning tool) and as a groundwork to further encounter with 

irrational numbers (DM being a mathematical model).    

Discussion 

The examples above include instances of appearance of new features when the object evolves from 

an existing one, of transforming the existing feature to adjust to the evolving object, and instances 

when some features disappear in the new object. Systematically focusing on such occurrences as a 

teaching norm may foster the concept development as an integral part of learning, provided the notion 

being taught is regarded as a concept to be permanently developed as a result of teaching and not 

merely as a topic in a curriculum. One important observation should be made here: should this 

approach be adopted for fractions or for real numbers, it has to be kept in mind already in the natural 

numbers teaching. More generally, it will hardly be useful if applied sporadically instead of being a 

systematic mindful approach. The more so in view of constraints of educational systems: in Israel, 

for example, and in many other countries, the primary schools are separated from the secondary and 

the mode of mathematics teaching at different levels is not always coordinated. This transit ion 

between the levels is therefore intrinsically discontinuous. We believe that systematic adoption in the 

primary school of DMs may help to cope with this discontinuity. We regard this to be an issue worth 

theoretical and empiric study.  

Speaking of the encounter with the real number system, we refer here again to the double-sided role 

of DMs. DMs as a mathematical model: similarly to the initial encounter with fractions which is 

based on natural numbers as a model, in the case of irrational and in general, real numbers, the initia l 

models to build upon are those originating from the system of rational numbers more or less familiar 

to the students. DMs as a learning tool: should the students have acquired appropriate mathematica l 

concepts and learning skills prior to the encounter with real numbers system, these will determine  

their ability to take-in this new, rather advanced concept, and the extent to which they may take it in. 

They should have experienced testing the properties of new numbers and operations on them vs. the 



familiar ones and the appearance of a new system that includes the previous one not only as a set of 

numbers, but also as a number system. 

Examples of the challenges anticipating the students in their encounter with irrational and in general 

with real numbers in which the DM approach seems to be promising and worth a close empiric study, 

are appearance of the root operation and sign; operations on roots (arithmetic and later - algebraic), 

on expressions of like 𝑎 + √𝑏, and rules of these operations; decimal representations, in particular, 

decimal approximations of irrational numbers and the necessity to decide when, whether and how to 

approximate; inclusion of rational and irrational numbers in the same number system, etc. One of the 

key problems with the notion of irrational numbers is based first and foremost on impossibility of 

writing an irrational number as a fraction of two integers. Thus, their mere existence seems to claim 

for a new model because of the impossibility of using the previous one. On the other hand, any number 

a may be written as a fraction at least in a trivial way as 
𝑎

1
 meaning nothing more than a:1. A 

representation of an irrational number by a fraction means just that at least one of the two parts of the 

fraction: its nominator or denominator or both, are not rational3. This does not prevent one from using 

operations on these fractions the way they were used on fractions as rational numbers; sometimes this 

representation calls for formulation of new rules. For example, to avoid fractions with irrationa l 

denominator, the students are sometimes taught to expand them following the rule familiar from 

rational fractions and based on division properties, for example, 
1

√2
=

1

√2

√2

√2
=

√2

2
. On the other hand, an 

equality like 
√3

√5
= √

3

5
 represents actually a new rule, to be both understood and adopted into the set 

of mathematical skills. Thus, the notion of fraction as division operation and its properties retains its 

usefulness. Comprehension of this can be the result of recurrent examination of the notion of fraction 

and operations defined on it and by it for “new” numbers, based on the DM approach. 

Not less important, we suggest that a process of learning that systematically involves DMs is intrins ic 

to mathematics. No DM adequately represents “the real thing”, in our case eventually the system of 

real numbers. Various facets of the same complicated mathematical object awaiting the students in 

their forthcoming studies based, at least to some extent, on the analytic abilities acquired with the 

help of DMs, is a didactic challenge not less that it was a mathematical challenge, and mathematica l 

and didactic tools should be combined in their teaching and learning.  We suggest that the didactic 

models should be seriously regarded as a tool for this type of learning and closely studied in various 

theoretical and empiric aspects. 
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National French assessment shows difficulties with writing large numbers at the beginning of the 

6th grade. But, what do students need to learn and teachers need to teach? What do they actually 

learn or teach? We investigate these questions at different levels of the didactical transposition: 

students’ knowledge, teaching practices and reference knowledge. We show a lack of mathematical 

understanding of large numbers and make a proposal for teaching knowledge which provides 

justifications for the use of large numbers which could foster a ‘number sense’ understanding of 

such numbers. 

Keywords: Large numbers, numeration, units, teaching, knowledge. 

Introduction 

The topic of place value related to whole numbers is a major one in the primary grades, especially because 

it is the fundament of basic arithmetic. There is an abundant research literature on the issue. Most often it 

focuses on “small numbers”: from two to four digits. Several authors (Wagner and Davis, 2010; Howe, 

2015) consider larger whole numbers, and specific issues on this topic. In this literature, order of magnitude 

– even more relative magnitudes - appears as a key one. For instance, it is needed for a thorough 

understanding of economic, political and scientific issues. National French assessment shows difficulties in 

writing large numbers at the beginning of the 6th grade. The latter can be seen as an anecdotal subject 

compared to number sense understanding of this kind of numbers. Yet, is there any link between both? 

How writing and reading large number tasks can be connected to quantity sense or number sense? What 

do students need to learn and teachers need to teach? What do they actually learn or teach?  

Theoretical framework, previous works, and methodology 

Theoretical framework 

The Theory of Didactic Transposition (TDT) (Chevallard, 1985) (figure 1) considers school mathematics 

as a reconstruction by the educational institutions from the mathematical knowledge produced by academic 

scholars. The TDT has been often used for secondary school, more rarely for primary school where 

scholarly knowledge as a reference is not always taken for granted. 

Scholarly knowledge 

Institutions producing 

and using the 

knowledge 

 Knowledge to be 

taught 

Educational system, 

“noosphere” 

 
Taught knowledge 

Classroom 

 Learned, available 

knowledge 

Community of study 

Figure 1: The didactic transposition process (Bosch and Gascon, 2006, p. 56) 

The Anthropological Theory of Didactics (ATD) (ibid.) extends the TDT. It postulates that practicing 

math, as any human practice, can be described with the model of praxeology. It is constituted by four 



pieces: a type of tasks -a set of similar problems-, a technique -a “way of doing” for all the tasks of the 

type-, a technology justifies the technique and is justified by a theory. 

Previous works  

Chambris (2008, 2015), Tempier (2016) have analyzed teaching and learning of decimal numeration in 

French context, notably in second and third grades. Classical mathematical theory in numeration which 

embeds units (tens, hundreds, etc.) and relations between them was the reference knowledge up to the 

New Math. Chambris (2008) proposed the wording “numeration unit” for the units used in numeration 

(ones, tens, hundreds, etc.). Beginning in the 1980s, classical “scholarly knowledge” has been replaced by 

transposition of academic theory (polynomial decomposition with the exponential notation) within which 

there is no unit. This might explain why relations between units (e.g. 10 tens = 1 hundred) are little mastered 

–sometimes not taught at all- in present French context. In turn, Houdement & Chambris (2013), Tempier 

(2016) designed interventions for reintroducing units for “small numbers” in teaching practices, especially 

the relations between units, as well as explicit properties of positional notation: 1) The position of each digit 

in a written number corresponds to a unit (for example hundreds stand in the third place) (“positional 

principle”); 2) Each unit is equal to ten units of the immediately lower order (e.g. one hundred = ten tens) 

(“decimal principle”). Ten digits are enough to write any whole number thanks to an iterative process. The 

names of small numbers present many irregularities: numeration units provide a way to bridge the gap 

between irregular number names and positional notation. In short: thirty three tens 3 tens  3 in the 

second place (Houdement & Chambris 2013). 

In a broader francophone context (France and Switzerland), there is a range of literature (e.g. Mercier 

1997, Ligozat & Leutenegger 2004) on another issue in numeration: students’ and teachers’ difficulties in 

the topic “how to write large numbers”. Here we present some of their findings. The teachers being 

observed seem to consider relations between number names and positional notation as a linguistic issue 

which does not require mathematical knowledge. This generally leads them to teach two rules for writing 

numbers: 1) replace the words thousand, million by a space1 (sometimes a dot), 2) put three digits between 

two spaces. These rules appear to be little powerful to solve the most complex problems with “mute 

zeros”. Mercier (1997) (related to French context) argues this reflects an institutional problem: the lack of 

mathematical knowledge on the topic, in the teaching system for several decades. Moreover, only one of 

the five teachers observed attempts to teach general base ten property of positional notation for large 

numbers. In all these contexts, it is finally social knowledge which leads to validate (or not) an answer! 

About “13180” “St.: One-hundred-thirty-one-hundreds and eighty. (…) T.: This would be one of the ways 

to name this number; but: will everybody understand immediately?” (Ligozat & Leutenegger 2004 p. 15). 

These scholars present mathematical knowledge to fill the vacuum: Mercier (1997) indicated the general 

rule for positional notation using exponential notation algebraically, as well as a brief history of number 

names. Ligozat and Leutenegger (2004) proposed to distinguish and link two pieces of knowledge: for 

positional notation (base ten), for number names (base 1000). They formulate this using “powers of ten 

written with figures” (Chambris 2015, p. 57) notation: 

                                                 

1 In France (among other countries), a space is used between the periods for writing large numbers: 34 020 (unlike 34,020 

in some other countries). This space is sometimes replaced by a dot (34.020) but never by a comma. The latter is 

dedicated to decimal numbers: 34,020 is thirty four ones and twenty thousandths. This paper uses “French” notation.  



  (1) 

 

(2) 

 

(3) 

Figure 2: Relations between positional notation and powers of ten (1), between number name and 

powers of thousand (2 & 3). (Ligozat & Leutenegger 2004, p. 3) 

They state: “the point is an institutional “foregone knowledge” phenomenon about how to name the 

numbers and how this (foregone) knowledge is linked with positional notation” (p. 17, our translation). 

They suggest tasks like 13180 = 131 hundreds 80 ones. Years before, Fuson (1990) already indicated this 

in term of knowledge, the systems of multiunits that are intertwined (named base-ten numeration units, and 

base-1000 numeration units in the present paper). For large numbers, ten “thousands” make a new unit, a 

“ten of thousands” which is written in the 5th place; ten “tens of thousands” make a “hundred of thousands” 

which is written in the 6th place, etc. This reveals that the issue of large number names is mathematically 

connected with relations between units: in base-ten and in base-1000. That is clearly a first step to 

“quantity sense”. 

Research questions: Finding praxeologies 

What are the relations between knowledge learned (by students), knowledge taught (by teachers) and 

scholarly knowledge? How do they contribute to give sense to large numbers? 

Method and data 

Within praxeological analysis, exercises to be performed generally indicate the tasks, explanations related 

to students’ mistakes as well as introduction of new type of tasks often bring the teacher to make explicit 

the aimed technique and/or technology in classroom episodes, and definitions show technologies. Data will 

be analyzed in term of praxeologies. A mathematical analysis about reference knowledge is deepened. The 

data were designed and collected by the second author as follows. A teacher (Soline) was trained on 3-to-

4-digit numbers teaching in a collaborative research project aiming at designing a resource for teachers 

paying specifically attention to the use of base-ten units in relation with written numbers (same vein as 

Tempier 2016). This grade-4 teacher was later observed during a lesson on another subject: numbers 

larger than 9999. The lesson was audio-recorded, transcribed, and notes were taken. During an interview 

(with note-taking by interviewer) just before the lesson, Soline was asked to explain her plan for this 

lesson. The different tasks of the lesson have been identified then three episodes corresponding to three 

tasks have been selected as follows. The two first ones are related to students’ mistakes (1- in relation with 

the introduction of the first 5-digit number, 2- in relation with the first mute zero in a 5-digit number). The 

third one is the introduction of one million. Finally, a written questionnaire was designed to better identify 

students’ knowledge and difficulties (n=159, end of grade 6). 

Results 

A teacher’s mathematical praxeology about large numbers  (taught praxeology) 

Planning the lesson 

Reading and writing numbers (in digits) is the only explicit task (“to be taught”) in the French syllabus. The 

preparation plan shows that Soline chose this writing task with increasingly large numbers from 4 to 8 

digits, with various places for “mute zeroes”. She was also planning to introduce the definition of the million 



as one thousand thousands, but no base-ten relation with the new units (despite the previous study). The 

teacher wonders whether it is enough to teach how to write large numbers, and that a million is one 

thousand groups of one thousand. 

Implementing the lesson 

The first number greater than 9999 to write in digits is "twelve thousand five hundred". A student, Anaïs, is 

not able to write it. Perhaps she refrains from writing a two digits number in the thousands place in 

accordance with the technique learned before. The teacher does not identify this cognitive conflict. She 

shows some confusion by calling out to the researcher; then she tries to help Anaïs. 

You see […] I already have Anaïs who has troubles. She is able to write three thousand but does not 

know how to write twelve thousand. Does it change something Anaïs? Think about it. Twelllllllve 

thousand. Twelllllllve thousand five hundred. Twelve thousand it is twelve groups of one thousand. 

While the students learn for the first time to write a five-digit number, the teacher seems to consider there is 

nothing new to know about the new 5th place in the written number and about the old word (thousand) in 

the number name. She tries to help the student by emphasizing “twelve”. The technique aimed is to write 

the number heard before “thousand” (here 12) and then the next number (here 500) with eventually a dot 

between them. 

Later, the teacher asks to write "thirty four thousand and twenty". It is the first time with a “mute zero”. 

Axel writes “34.20”: it is what he hears: 34 and 20 with a point instead of the word “thousand”. 

Soline (T):  Thirty four thousand. Twenty. It doesn’t look strange? After the word one thousand 

how many digits are there?  

Axel:  Three 

Soline (T):  And here you have only two digits. How could you make to have three?  

Soline writes on the black board “34.20” and underline 20. 

Axel:  To put a zero? 

Soline (T):  Where? (Axel’s answer is inaudible. But Soline writes “34.200” on the board).  

Soline (T):  Look Axel (and Soline writes on the board: “34.020”). 

Once again, the teacher seems powerless in front of a student’s mistake. She gives then the answer without 

any explanation. With this case the technique to write a number in digits incorporates a new element: after 

“thousand” there must be three digits. Thus, when there is a two digits number after the thousands it is 

necessary to write a zero.  

Later, after the writing of the number 999 000, Soline intends to introduce the millions. She asks the 

students how many groups of one thousand there are just after 999 000 and introduces the million thereby: 

Soline (T):  One thousand times one thousand is called otherwise. How it is called? 

A pupil:  One million. 

Soline (T):  One million, it is a new word. For the moment we said the word one thousand, now we 

say too one million.  

A pupil:  How we are going to write it? 



Soline (T):  This is what we are trying to discover together. It is necessary to make a kind of small 

chart (Soline draws then this place value chart on the black board). 

 

The million is defined as one thousand thousands, what confirms Soline's plan. She tries to give meaning to 

large numbers relying on relations between base-thousand units. According to this point of view, the million 

doesn’t appear as ten groups of hundred thousands. In the above table there are the names and places of 

periods but no reference to the name of base-ten places like the hundred thousands place for example. 

These technological elements rely only on a period viewpoint of the written number. The corresponding 

technique for writing numbers is: “write the number heard and points for the words millions and 

thousand”. This is confirmed during the rest of the lesson. For example for the writing of two million, the 

teacher tells: “I write my two with my little point which means million”. With this technique, teacher is not 

able to help students with mute zeros as a whole period or within a period. For example, at the end of the 

lesson, to write twelve million fifty some students write 12.50.000, 12.000.50 or 12.050.000 (with points 

or spaces). The teacher continues to explain the three digits in a period without a “base ten/place” 

viewpoint in addition to this “base 1000/period” viewpoint. 

A questionnaire to inform about 6th grade students’ knowledge (learned praxeologies) 

The first part of our questionnaire concerns the writing of large numbers in digits (table 1).  

Numbers to be written in digits 
Beginning of 

gr. 6 (2008) 

End of gr. 6 

(2016) 

Four hundred and seventy-five (475) 94%  

Three thousand and three (3 003) 96%  

Six hundred and twenty seven thousand (627 000) 76% 87 % 

One million six hundred thousand (1 600 000) 76% 89 % 

Three million fifty thousand three hundred and twenty (3 050 320)  79 % 

Seventeen million two thousand and fifty-eight (17 002 058)  69 % 

Five hundred and three million thirty-seven (503 000 037)  82 % 

Table 1: Results of national assessment (2008) and our assessment (2016) of 6 th grade students 

To complement the data we also proposed conversions in order to examine the relations between large 

units and determine which of the relations between base-ten units and base-thousand units are better 

known. Such tasks are inspired from our prior research, and Ligozat & Leutenegger (2004)’s analysis. 

Both tasks raise as much difficulties. Approximately half of the students succeed in converting 4 millions 

into hundreds of thousands (48%) and 3 millions into thousands (50%). Many students did not write any 

answer. This was not the case for the “writing number” tasks. Perhaps they never performed conversion 

tasks before. 

Complements for reference knowledge for teaching large numbers 

We have already recalled some considerations about the specificity of the written and spoken numeration 

systems and their imbrications in a double system. The above lesson analysis and our previous studies 

millions thousands ones 

_  _  _ _  _  _ _  _  _ 

   

 

millions thousands 



about “small” numbers show that there is a need for an intermediate system between these numeration 

systems in order to articulate this double system: the numeration units systems for bases ten and 1000. 

These systems of units enable various decompositions of numbers related to base 10 and base 1000. Up to 

9999, number names can be linked with base ten numeration units, whereas beginning of 1000 they are 

linked with base 1000 numeration units. The transformation from a base-ten decomposition into a base-

thousand decomposition is made by conversions.  

 

Figure 2: Links between numeration units, written numeration and spoken numeration 

The numeration units system supplies a way to justify the writing (in digits) of a number name. It enables to 

justify the mute zeros. See, for example, the task “writing eight millions thirty seven thousand fifty” (figure 2) 

in digits. The number can be written or spoken in numeration units "8 millions 37 thousands 50 units", which 

can be converted in this register “8 millions 3 tens of thousands 7 thousands 5 tens”. It relies on conversion 

of 37 thousands in 3 tens of thousands and 7 thousands. The digit of millions is written in the 7th place, that 

of hundreds of thousands in the 6th place, etc. It is necessary to write a 0 to mark the lack of missing units. 

The obtained number can then spell 8, 0, 3, 7, 0, 5 and 0 by the positional principle of the written 

numeration. This example shows how this designation is relevant for reference knowledge for teaching. It 

enables to make links between the written and spoken system and to explicit the knowledge at stake. 

Discussion 

The analysis of Soline’s lesson shows that her knowledge of the spoken numeration of large numbers, for 

one side, and her previous teaching of small numbers with an important concern about relations between 

base-ten units, on the other side, brought her to a beginning of a teaching of relations between base-

thousand units. The latter seems not to be the case in the observations reported by Mercier (1997) or 

Ligozat and Leutenegger (2004) where only one teacher focused on the relation between base-ten units, 

and none on those between base-thousand units. Yet it is not enough to provide explanations for writing 

large numbers. Indeed, the teacher seems sometimes deprived to help her students during this lesson. In 

addition, our observation at the end of the lesson shows that it is insufficient to enable the students to avoid 

some mistakes, particularly those which are related to the mute zeros. The teacher explanations and her 

place value chart let us think that she assigns a base-thousand system to the written system and ignored its 

base ten operating. The two first episodes are coherent with our literature review considering large number 

names as an “institutional foregone knowledge”, and a linguistic issue. 

By introducing numeration units in the reference knowledge to make links between base-ten and base-

thousand units, we aim to provide a more explicit knowledge for teachers and students. It enables to take 

into account the double system units for large numbers (base ten and base 1000). It can, on one side, 

enrich the understanding of the written system by realizing that the system always works in the same way 



according to the base ten and, on another side, learn the names of large numbers by putting them in 

connection with the written code. For example, to justify the writing of twelve thousand five hundred, the 

teacher has to clarify the link between ten thousands, the ten thousands unit and the corresponding places in 

the written number. In the writing of mute zeros, as in thirty four thousand twenty, the link between the 

values of 3 and 4 and the corresponding places in the written number can justify the writing of a zero in the 

hundreds place. Questionnaire results seem to confirm a more effective technique is needed for mute left-

hand zeros. 

This dual system of units can favor recognition of relative magnitudes of large numbers. For example, 

understanding the million involves the relation with smaller numbers. For example to understand the million 

involves the relation with smaller numbers: a million it is “ten times one hundred thousand” as well as “one 

thousand times one thousand”. Tasks of mental computation on numbers with only one non-zero digit can 

strengthen these relations. For example, “ten times two hundred thousand” could aim at leaning on the 

relation between one hundred thousand and one million, relation which does not explicitly appear in our 

way to speak these numbers. Other tasks aim at the extension of the written numeration. For example it is 

possible to recover and adapt small numbers tasks as the situations of collection counting and ordering 

(Tempier 2016). Counting a collection, with representations of large groups, can then be used to introduce 

new base-ten units. In addition, ordering a collection can be used to produce various decomposition of 

number under base ten and base 1000 with numeration units. Under this approach the spoken numeration 

could be secondly brought, in connection with these decompositions. 

Conclusion 

Obviously students can succeed in writing numbers without knowing relative order of magnitude of 

numeration units in base ten and in base 1000. Yet, relations between units can provide justification for 

even writing numbers. This knowledge can be expressed with numeration units. It is missing in French 

institutional system. It might also contribute to the understanding of quantity sense. In this context, the work 

on small numbers is not enough to train teachers (even it is only for one case); surely, it helps the teacher to 

question her usual practices on large numbers. However, it does not provide tools for justification, neither 

the specific stakes of large numbers. Further research is needed in order to provide powerful tasks for 

teaching and learning large numbers. 
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Studies correlating working memory, number sense and arithmetical performance show 

controversial results which create the need for further investigation. This research aims to verify 

the relationship between two working memory components (central executive and phonological 

loop) and numerical competence assessed through two different tasks: the Number Knowledge Test 

and the School Achievement Test.  It involved 79 Brazilian students from 4th to 7th year of 

elementary school. The results suggest a significant correlation between the central executive and 

number sense. The same relationship was observed for the arithmetical performance. The 

phonological component showed no significant correlation with number sense nor arithmetical 

performance. The educational implications of the study are pointed out.  

Keywords: Working memory, number sense, arithmetical performance.  

Background 

Both number sense and working memory are fundamental skills for arithmetical learning (Geary, 2011; 

Jordan et al, 2013). Studies investigating the relationship between working memory and arithmetical 

performance have been widely discussed in the literature (Anderson & Lyxell, 2007; Geary et al., 2007; 

Passolunghi & Siegel, 2004). However, the research that deals with the relationship between working 

memory and number sense is recent. Number sense is considered the basis of arithmetical learning and, 

consequently, it is assumed to be associated with working memory (Friso-Van Den Bos, Van Der Ven, 

Kroesbergen & Van Luit, 2013).  

Working memory is a cognitive system that supports the development of various learning processes. It is a 

limited capacity system which allows the temporary storage and manipulation of verbal or visual information 

required for dealing with complex tasks. During learning the student constantly uses the resources of 

working memory to perform a series of activities, from the simplest tasks, such as remembering 

instructions, to the more complex ones, such as solving problems, that require the storage and processing 

of information and the control of learning progress. In the case of arithmetic, for example, a multidigit 

calculation (23 + 48) requires several subprocesses (retrieval of arithmetic rules and arithmetic facts from 

long-term memory, calculation and storage of intermediate results, arithmetic procedures that involve 

carrying and borrowing operations) that must be coordinated and executed by the working memory 

system. Students  with deficits in this ability would face problems. Thus, a difficulty especially related to the 

coordination of simultaneous operations of processing and storage can interfere in the execution of 

arithmetic tasks, resulting in slower performance and more errors in computation (Andersson & Lyxell, 

2007).  

 Considering the tripartite model proposed by Baddeley and Hitch (1974), the working memory system is 

formed by three components: two storage systems (visuospatial component and the phonological loop) and 

the central executive, the nuclear component of working memory, responsible for the processing of 

cognitive tasks, coordinating the information stored within the other two components. It is generally agreed 



that arithmetical achievement is associated with working memory performance (Alloway & Alloway, 2010; 

Andersson & Lyxell, 2007; Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007). However, there is a 

lack of consensus regarding the relative importance of the central executive (Andersson, 2008; Geary et 

al., 2007; Passolunghi & Siegel, 2004), the phonological loop (Andersson & Lyxell, 2007; Passolunghi, 

Mammarella & Altoè, 2008) and the visuospatial component (Geary, Hamson & Hoard, 2000; Mclean & 

Hitch, 1999) in relation to arithmetical performance. 

 Some studies found that the central executive is the most affected working memory component (Corso & 

Dorneles, 2012; Geary, Hamson & Hoard, 2000; Geary, Hoard & Hamson, 1999). The central executive 

has three main functions: inhibition (prevent irrelevant information from entering or remaining in working 

memory), shifting (shifting between pieces of information and response sets) and updating (active 

processing and refreshing of information in working memory). There is no consensus regarding the role that 

each specific executive function plays in number sense. Some studies point out that inhibition is central to 

number sense development (Kroesbergen,Van Luit, Van Lieshout, Van Loosbroek & Van De Rijt, 2009), 

but such a result was not found by others (Lee et al., 2012; Navarro et al., 2011). Updating is usually seen 

as the most important predictor of number sense (Kroesbergen et al., 2009; Lee et al., 2012), but, it is 

important to emphasize that research focusing on the relation between number sense and executive function 

is still limited (Friso-Van Den Bos et al., 2013).  

Concerning number sense, the literature shows consensus related to the important role that this construct 

plays to mathematical development, but there is a lack of consensus regarding the best way to define, 

assess and intervene in number sense (Gersten, Jordan & Flojo, 2005). Considering studies in the areas of 

mathematical education and cognitive development, Berch (2005) compiled a list of 30 characteristics 

presumed to compose the number sense concept. According to the author, number sense means 

awareness, intuition, recognition, knowledge, ability, desire, feeling, expectation, process, conceptual 

structure or mental number line. When defining number sense, some authors point out the conceptual, 

abstract aspect of numerical processing

For example, Dehaene (2001) emphasizes that number sense refers to the ability to mentally represent and 

manipulate numbers and quantities. Gersten and Chard (1999) define number sense as the flexibility with 

numbers and the understanding of the meaning of numbers and ideas related to them. Other researchers use 

definitions emphasizing the performance that is facilitated by that conceptual understanding of number, such 

as counting ability, number identification, number awareness, estimation, measurement, mental operations 

with numbers (Jordan, Glutting & Ramineni, 2010). We believe that both definitions of number sense are 

complementary: In order to succeed in the comprehension and execution of tasks involving numbers, 

relations and quantity, an abstract understanding of numerical processing is necessary. Therefore, the 

conception of number sense that characterizes this paper is that it is a general construct, which 

encompasses a very broad set of concepts, which the student develops gradually from his interactions with 

the social environment. Number sense is a way of interacting with numbers with its various uses and 

interpretations, enabling the individual to deal with daily situations that include quantification and the 

development of efficient strategies (including mental calculation and estimation) to deal with numerical 

problems (Corso & Dorneles, 2010). 

 Recently, researchers are interested in the association between the different components of working 

memory system, especially the central executive and the number sense. Children are expected to employ 

working memory capacity while experiencing number sense tasks such as counting, understanding 

magnitude, doing basic arithmetic calculation, using mental number line (Gersten, Jordan & Flojo, 2005). 



However, there is a small body of literature targeting the association between working memory and number 

sense.  

The current study 

The literature presented above suggests that working memory plays an important role for the development 

of numerical competence. However, the importance of each working memory component is not well 

defined. In order to contribute to this discussion, the present study aims to verify the relationship between 

two working memory components (central executive and phonological loop) and numerical competence 

assessed through two different tasks: the Number Knowledge Test and the School Achievement Test.  

Method 

This is a cross-sectional study involving 79 (10- to 14- year-old) Brazilian students (36 girls and 43 boys) 

from the 4th to the 7th year of five public elementary schools. Mean age was 11.9 years. Students were 

indicated by their teachers considering the students’ performance (average and low average) in the math 

curriculum according to each school year.  

Instruments 

1) Working Memory 

1.1 The central executive component of working memory was measured using two different tasks: a non 

numerical - processing of verbal information (adapted from Hecht et al., 2001) and a numerical task 

- processing of numerical information (Yuill, Oakhill & Parkin, 1989). In the first task the students 

were required to answer yes or no to sets of two to four questions and then say the last word in 

each of the sentences, for example, in the two-question set, “Do tables walk?” and “Do lamps 

run?”, a correct response would be “no” to each question and then “walk” and “run”. For the 

numerical task, the students read aloud a growing sequence of three-digit sets and, at the end of 

each set, should remember, in order, the last digit of each set. For example, for the sets (2 5 7) and 

(1 8 6), the digits "7" and "8" must be remembered. 

1.2  The phonological component of working memory was assessed through the Memory of Digits, 

Sentences and Short Stories task (Golbert, 1998). It consists of a growing sequence of digits, 

sentences and short stories to be repeated by the student.  

2) Numerical Competence 

2.1 Number Knowledge Test (Okamoto & Case, 1996): This task is designed to assess the students’ 

knowledge and comprehension about counting, numerical concepts and basic arithmetic calculation. 

The instrument is divided into four levels of complexity, being presented from the simplest (level 1) to 

the most complex (level 4). Although this instrument was designed for assessing students up to 10 years 

of age, we decided to use it, even having few students in the sample older than this age group. The 

students who were 13 and 14 years old were repeating students who were facing difficulties in some 

foundational components of numerical proficiency. The sample of this study was formed by average 

and low average arithmetic learners, but no ceiling effect in this task was observed.  

2.2 School Achievement Test (Stein, 1994): This is a Brazilian standardized psychometric instrument 

designed to verify the students’ arithmetical achievement. It presents 38 items (3 word problems and 

35 written calculations). The word problems involve magnitude comparison and simple addition and 



subtraction calculation. The written computations involve basic operations, operations with decimals, 

fractions, operations with integers and potentiation.  

 

Data were analyzed using the correlation analysis between number sense and arithmetical achievement 

measures with the working memory tasks (central executive and phonological tasks), using the analysis of 

Pearson correlation at the significance level of p<.05. 

Results 

Considering the central executive component of working memory, a significant correlation was found 

between the two working memory tasks and the tests that measured both number sense (WM1 r = 0,449, 

p = 0,000; WM2 r = 0,316, p = 0,005) and arithmetical achievement (WM1 r = 0,303, p = 0,007; WM2 

r = 0,344, p = 0,002). The phonological component of working memory, though, did not reveal a 

significant correlation between the three tasks designed to assess the phonological loop neither with the 

number sense task nor with the arithmetical measure. Only a weak correlation was found between number 

sense and the task that assessed the recalling of short stories (r = 0,226, p = 0,045). Correlations among 

the measures are reported in Table 1.   

Table 1 - Pearson correlation coefficient (r) and the significance level (p) between the number sense test 

and the mathematical subtest of the TDE with the different components of working memory (central 

executive and phonological loop) 

                                WM 1                    WM2                      MD                   MS                     MSS 

                             r           p              r             p              r             p           r         p           r              p 

 

NKT                  0,44      0,000*    0,316     0,005*      0,153    0,177     0,169    0,137    0,226    0,45* 

SAT                  0,303     0,007*    0,344     0,002*      0,189    0,096     0,12      0,915    0,069    0,547 

NKT = Number Knowledge Test; SAT= School Achievement Test; WM1 = Working Memory 1 (non numerical 

task);WM2 = Working Memory 2 (numerical task); MD = Memory of Digits; MS = Memory of  Sentences; MSS = 

Memory of  Short Stories. 

* p-value < 0,05 

Discussion 

The results of the study presented a significant correlation between the two central executive tasks and the 

number sense test. This point emphasizes the fact that dealing with number sense activities requires working 

memory involvement, in this case, specially through the central executive system, since it was not found a 

positive relation  between the phonological component of working memory and the number sense measure. 

This outcome reinforces what research has shown in relation to the strong association between the central 

executive (updating function) and number sense in children (Lee et al., 2012). Results in the same line are 

presented by Friso-van den Bos et al. (2013) who found that updating has the highest correlation with 

number sense, when compared to the shifting and inhibition functions of the central executive. As pointed 

out earlier, a small number of investigation has targeted the association between number sense and the 

central executive component of working memory and, therefore, more investigation is needed considering 

that research of this kind will bring contributions to preventing and remediating arithmetical difficulties.  



The results of this research are in line with those that emphasize the positive association between working 

memory and arithmetical achievement (Geary, Hoard, Byrd-Craven & Desoto, 2004; Passolunghi, 

Mammarella & Altoè, 2008) reinforcing that the working memory is critically involved in a variety of 

numerical and arithmetical skills. In this study, this positive association refers to the executive component of 

working memory, but not to the phonological one. As mentioned before, there is a controversy in the 

literature regarding the role of each component of the working memory system in arithmetical achievement 

(Meyer, Salimpoor, Wu, Geary & Menon, 2010). Studies that include students with difficulties in 

mathematics in its sample indicate problems with the three components of the working memory system, but 

the central executive seems to be specially affected.  

The non-conclusive results related to the contribution of each working memory component to numerical 

competence can be related to the following aspects: the large variability in the tasks used to assess the 

different components of working memory, the different kind of arithmetical tests being used and the ages of 

the subjects being assessed. We know that different cognitive demands require distinct working memory 

resources and these resources, in turn, can vary according to the age of the subject (Andersson & Lyxell, 

2007). Therefore, although there have been advances in this area of study, more investigation is needed.   

Conclusion 

The study showed a significant correlation between the central executive component of working memory 

(updating) and number sense. It contributed with more investigation with regard to the association between 

working memory and number sense, as studies linking these two domains are still scarce and present 

controversial results. The next steps for future investigation will involve more detailed analysis aiming to 

identify how the different tasks that compose the Number Knowledge Test (counting, numerical magnitude, 

mental number line, estimation, arithmetic calculation) are associated with the central executive, including in 

this analysis not only the updating component of the central executive, but also shifting and inhibition. This 

sort of analysis can give us a better view of the intensity of the involvement of the central executive function 

in different number sense tasks.   

 The outcomes of this investigation are in agreement with previous studies highlighting the significant 

correlation between working memory and arithmetical skills. The educational implication of such a finding 

deserves our attention. It is crucial to know the cognitive abilities that are impaired in the learner since the 

way the teaching process is conducted, will directly influence the effect that the cognitive deficit has on 

learning. For instance, students who are very slow to calculate, need the teaching of more efficient counting 

strategies and procedures in order to avoid being based overmuch on their working memory (when the 

counting all procedure is being used, for example), overloading it and increasing the chance of error in the 

calculation. Problems in working memory end up affecting the set of everyday situations in which 

mathematical tasks are involved. Those difficulties lead the students to present some characteristics that 

make the learning of mathematics more difficult, for example: counting on the fingers for a longer time, not 

performing mental calculation, forgetting the result of calculation they just made, not remembering the 

sequence of steps of an operation (Geary et al., 2007). 

Studies are being designed focusing on the development of interventions to improve the working memory 

capacity by asking children to engage in tasks that require simultaneous processing and manipulation of 

information (Klingberg, 2010). However, the results of these studies are still controversial (Melby-Lervag 

& Hulme, 2013). Recent intervention research emphasizes the importance of combining working memory 

interventions with interventions that target the specific mathematical areas in which the student is showing 



delay (Sperafico, 2016). This type of work has brought promising results to help students with working 

memory difficulties to learn mathematics. 

Finally, this study contributed to the field of arithmetical learning by bringing some evidence of the positive 

associations between working memory and numerical competence (number sense and arithmetical 

achievement). Knowing the cognitive abilities underling arithmetical learning is fundamental to guide 

curriculum planning considering the working memory demands of the tasks, their level of difficulty and the 

characteristics of the learners. Further studies in this area will offer advances in the processes of preventing 

and remediating learning difficulties in mathematics. By identifying which components of working memory 

are weak, it is possible to avoid that at-risk students develop future problems. In the same way, research of 

this kind will support our understanding of  possible cognitive obstacles that interfere in learning 

mathematics, so that we can face them trough the selection of adequate teaching resources and content as 

well as good teaching strategies. Maybe this is the most important contribution that the constructs of 

working memory and number sense can make to mathematical education.     
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Number estimation is an important skill for both everyday and school situations that involve a 

group of cognitive abilities. The ability to estimate may provide a feedback tool to check 

performance in different mathematics learning contents. The most widely used task to assess 

number estimation is the Number Line Estimation Task (Siegler & Booth, 2004), and some 

researchers used a kind of Numerosity Task (Luwel, Verschaffel, Onghena & De Corte, 2003). This 

research compares the students’ accuracy in two tasks that assess the ability of Brazilian children 

(N = 60), attending the 2nd and 3rd grades of a public school, to estimate. The children’s success in 

the Number Line Estimation Task suggests it is more accurate than the Numerosity Estimation Task  

in assessing children’s performance in estimation maybe because of the different cognitive functions 

required by the two tasks. The study´s educational implications are discussed. 

Key words: Number line estimation, numerical development, spatial representation of number 

magnitude. 

Introduction 

The decimal number system is used to establish exact quantifications, in contrast to quantity estimation 

processes. In everyday situations, we often use either exact quantification or number estimation (Feigenson, 

Libertus, & Halberd, 2013), and sometimes estimation can be easier than exact quantification (Siegler & 

Booth, 2004). Number estimation is a cognitive process used for quick or approximate answers or, for 

example, to calculate the duration of a movie or the distance between two places. It can be used as a 

feedback tool to check performance in different areas of mathematics including those requiring exact 

quantification. From our point of view, two complementary ideas define number estimation: a non-counting 

based quantitative answer to represent a set of objects; and a translation (Siegler and Booth, 2004) 

between two different ways of representing a number. We know that mathematical competence involves a 

group of abilities and cognitive processes. Number estimation has been considered one such process 

(Levine, 1982) despite the fact it has been less studied than exact quantification (Piazza, Mechelli, Price & 

Butterworth, 2006) although its importance has been highlighted (Rousselle & Noel, 2008). This can be 

explained by the variability of the tasks used to assess estimation skills in children, adolescents and adults 

as well as the different situations in which we use estimation (Siegler & Booth, 2004). The recognition of 

small amounts may be related to the ability to represent quantities in a mental number line and this ability 

would assist in comparing the magnitude between two numbers (Schneider, Grabner, & Paetsch, 

2009).The estimation performance can be necessary in solving some mathematical tasks and the 

development of estimation is also considered a good predictor of later symbolic math skills (Park & 

Brannon, 2013). Despite the importance of its use, number estimation is not part of the school curriculum in 

many countries, including Brazil. Changes designed to improve mathematical achievement, including the 

introduction of number estimation in the curriculum, are currently being introduced in Brazil. For teachers, 

assessing the ability to estimate using different tasks might be a good starting point to analyze the 



importance of the ability as well as to highlight the topic´s importance in mathematics education. One of the 

most consistent conclusions reached by studies about the development of estimation is that children are not 

very able estimators, even when estimation is used in various daily applications. However, some 

researchers have hypothesized that children’s estimations reflect their internal representation of numbers 

(Siegler & Opfer, 2003).  

Moreover, there is some evidence to suggest estimation is related to mathematical competence in general 

and arithmetical performance in particular (Siegler & Booth, 2004; Booth & Siegler, 2006; Schneider et 

al., 2009; Mazzocco, Feigeson, & Halberda, 2011; Laski & Siegler, 2007) and can be improved (Park 

and Brannon, 2013). Recent research has highlighted the importance of estimation for mathematical 

development (Link, Nuerk, & Moeller, 2014; Laski & Yu, 2014). This research indicated that the better 

the students’ accuracy in mental number line is, the better their performance in other numerical and 

arithmetic tasks (Link, Nuerk, & Moeller, 2014). Hence, it is important to understand the estimation 

process, the abilities involved, how to assess them and its role in mathematical performance, especially 

regarding the proposed changes to the curriculum in Brazil. It can be said that even though the estimation 

processes have been studied for the past twenty years, there is no consensus regarding the assumption that 

the estimations assessed by different tasks reflect a pure mental representation of numbers as proposed by 

Siegler and Booth (2004) and some new data indicate that it is affected by the limited knowledge of 

numbers (Ebersbach, Luwel & Verschaffel, 2015), as well as by visuospatial abilities (Crollen & Noël, 

2014). 

In the current scientific debate, among the explanations for the development of number estimation in 

children, two stand out. The first, the multiple representations of numbers model (Siegler & Booth, 2004), 

assumes that children initially represent numbers in a less accurate algorithmic way and develop a more 

accurate linear representation with age and experience. That is, in children the mental number line is 

compressed and they tend to maximize the distance between the magnitudes of numbers at the low end of 

the range and minimize the distance between the magnitudes of numbers in the middle and upper ends of 

the range. This tendency was named logarithmic representation. Gradually, children develop a linear 

representation, which maintains the same distance between the numerical magnitudes. Empirical evidence to 

support this logarithmic-to-linear shift model has largely come from the Number Line Estimation Task 

(NLET) proposed by Siegler and Booth (2004) in which children or adults must estimate the magnitude of 

a number by marking its proper position on a number line. However, the logarithmic-to-linear-shift 

hypothesis has been questioned by researchers studying number-line estimation (Barth & Palladino, 2011; 

Ebersbach, Luwel & Verschaffel, 2015). Some of the issues raised led to the development of a second 

explanation, the proportion-judgement strategies model (Barth & Palladino, 2011), which suggests that in 

the NLET children estimate the size of a part, the numerical magnitude of a specific number, relative to the 

size of the whole, thus making a judgement about the proportion of the size of the former. Hence, 

according to the numerical range, the more reference points (landmarks) made available, the more accurate 

the estimation will be, especially close to the landmarks. In other words, estimation performance reflects 

the strategies chosen to solve the tasks. Recently, a third model, the Two-Linear Account has been 

proposed as a plausible alternative (Ebersbach, Luwel, Frick, Onghena, & Verschaffel, 2008) and explains 

the developmental changes in number estimation as a result of children’s familiarity with numbers. In this 

model, the mental numerical representation can be alternatively described as a combination of two linear 

patterns with different slopes, depending on number familiarity. In other words, this linear representation of 

numbers changes according to the age and numerical range known by children; the unknown numbers have 



a slower linear representation than the known numbers. A recent paper (Dackermann, Huber, 

Bahnmueller, Nuerk & Moeller, 2015) proposes the integration of these accounts, which is a line of 

reasoning that we support as they introduce the idea that aspects of all three accounts may complement 

each other and facilitate a more comprehensive understanding of children´s development of number line 

estimation.  

Among the tasks most widely used to assess the ability to estimate are the NLET, described above, and 

the Numerosity Estimation Task (NET), which requires the subject to estimate the quantity of objects in a 

set (Luwel, Verschaffel, Onghena & De Corte, 2003; Barth, Starr & Sulivan, 2009). To the best of our 

knowledge, there is no research that indicates which of these tasks best assesses students’ accuracy in 

estimation and therefore which would be best for application in research and in schools. Thus, the purpose 

of the study was to compare the accuracy in the numerical estimation of 60 children from the 2nd and 3rd 

grades of a public school in the city of Porto Alegre (Brazil) in order to determine which task (NLET or 

NET) best assesses the students’ accuracy in number estimation. As the children in both grades were used 

to manipulating objects and completing tasks similar to the NET and admittedly had no contact with the 

number line before, we assumed the students would perform better in the NET than in the NLET. We 

chose the two tasks because the NLET is the most frequently used in estimation research and is widely 

used to examine how the human mind represents numbers (Barth & Palladino, 2011; Ebersbach, Luwel & 

Verschaffel, 2015), while the NET is similar to another task often used by some research groups that have 

a slightly different theoretical viewpoint regarding estimation, for example, Barth, Starr & Sulivan (2009). 

Both tasks are assumed to assess the same numerical estimation ability. 

Method 

Using two different tasks, we compared performance in number estimation within a group of sixty children 

(mean age = 8.4, SD = .69, age range from 7.4 to 11.2 years) who were recruited from one public school, 

37 boys and 23 girls: 28 from 2nd grade, (M = 7.8, SD = .29) and 32 from 3rd grade (M = 8.9, SD =.50). 

Two tasks were used: the NLET (Siegler & Booth, 2004) and the NET, adapted from Luwel, Verschaffel, 

Onghena & De Corte (2003). We used only one criterion to determine the students’ accuracy in the 

presented tasks: the measure proposed by Siegler and Booth (2004), described below. The task was 

applied collectively in the classroom, the workplace and the school activities were affected as little as 

possible. The time to perform the activities in each class was about 40 minutes per task. The solution to 

both tasks involved the use of pen and paper. 

The NLET requires the subjects to mark points corresponding to specific numbers along a number line 

bounded by 0 and 100. Children were asked to mark the place they considered most suitable for the 

position of the number to be estimated. Before each item, the experimenter said, “This number line goes 

from 0 at this end to 100 at this end. If this is 0 and this is 100, where would you put n?” (n being the 

number specified in the trial). 29 number estimations were required, one at a time. Each number was 

presented twice. Each child received a booklet with a number line drawn on each sheet to mark their 

answers. The difference between the two estimations of the same number provided a measure of the 

variability of the estimations. The 29 numbers comprised the 24 proposed by Siegler and Booth (2004), 

plus another 5 numbers that were also used in the second task. The 29 numbers presented were 3, 4, 6, 7, 

8, 9, 12, 17, 21, 23, 25, 29, 33, 39, 43, 48, 49, 52, 57, 61, 64, 72, 78, 79, 81, 84, 90, 95, 96. They 

were presented in random order and then repeated in the same random order. Children had no pre-

determined time to finish the task, each one could complete the task in the time they wanted.  



The NET requires the children to estimate the amount of dots distributed in a checkered 10x10 grid. 

Before starting the task, the students were told the empty grid contained 0 dots and the full grid contained 

100 dots. To reduce the possibility of verbal counting, the stimuli were presented quickly (1 second for 

each group of ten dots presented) and immediately followed by a white screen. Students were asked to 

perform a numerical estimation of the amount observed, writing them down in a notebook. They could not 

use any additional tool to solve the task. In the task, eight numbers from 0 to100 were randomly matched 

(4, 7, 9, 17, 25, 49, 78, 95) in two different ways. In the first, the dots were presented in clusters and, in 

the second, they were presented dispersed. Both tasks were carried out collectively on different days. 

There was no feedback for correct or wrong answers. 

Results 

To calculate the accuracy of the estimations given, the calculation of absolute percentage error of each child 

was used, adapted from Siegler and Booth (2004), and represented by the formula: 

Mean Estimation – Estimated Quantity 

_______________________________ 

Scale of Estimations (100) 

 

To illustrate how this measure works, if a child was asked to estimate the location corresponding to the 

number 60 (or quantities of dots) in a number line from 0 to 100 (or 10X10 grid) and his/her answers were 

65 in the first estimation and 75 in the second, we calculated the mean between the estimated values in the 

two attempts (in this example, (65+75)/2=70). The absolute percentage error would be 10%, 

corresponding to the result of (70 - 60)/100, according to the above formula. We used this calculation 

because previous analysis showed that the difference between two answers for each number in both tasks 

was not significant (p=.24) for NLET or (p=.06) for NET.  

After that, a descriptive analysis of the accuracy of each child was conducted to identify the general 

standard of performance for each task. These analyzes show the students’ accuracy is higher in the NLET. 

The reported performance tends to be more cohesive in the NLET (Table 1).  

 

 Mean SD Significance 

Number Line Estimation Task .089 (.050) 
p =.018* 

Numerosity Estimation Task .158 (.250) 

*p<.05 

Table 1: Comparison of the Mean of Percentage Error in each task 

 



 

To determine the correlation between the two tasks, Pearson´s correlation coefficient was carried out (r 

=.67, p<.01), and indicated a positive correlation between both tasks, suggesting that either demand similar 

cognitive functions or both are related to other skills that were not measured.  

To test for differences in the children's estimation accuracy when required to estimate smaller and larger 

amounts, we considered the same numbers estimated in both tasks. A paired-samples t-test only indicated 

difference when estimating the same number in each task in larger quantities (Table 2). 

 Number Line Estimation Task Numerosity Estimation Task  

Number to be 

estimated 
Mean SD Mean SD Sig. 

4 .034 (.043) .086 (.333) ns 

7 .063 (.086) .084 (.397) ns 

9 .081 (.101) .083 (.229) ns 

17 .109 (.112) .188 (.495) ns 

25 .117 (.087) .151 (.184) ns 

49 .085 (.062) .204 (.145) .000* 

78 .118 (.064) .249 (.224) .000* 

95 .091 (.080) .219 (.441) .022* 

*p<0.5 

Table 2: Comparison of estimations between the same numbers  

This analysis showed that the students’ estimations were all more accurate in the NLET, however, these 

differences were only statistically significant with the numbers 49, 78 and 95 (Table 2), while there is 

greater variability in the children’s estimation in the NET. This may suggest important differences between 

the tasks performed. Maybe the three numbers (49, 78 and 95) are closer to “quarters” (50, 75 and 100), 

which would help children to identify the position of the numbers in the number line. Hypotheses to explain 

these variations will be discussed later. In the NLET, one of the most common strategies used by students 

was to fill the number line with marks that represent the numbers before or after the number proposed, as 

illustrated in Figure 1. In the NET, some students tried counting groups of dots and imagining how many 

similar groups could be in the whole. Progressions related to the speed with which the children performed 

the estimations were not tested in this analysis, considering that the time for execution was the same for all 

participants.  



 

Figure 1. Example of marking strategy in two numbers of NLET 

Discussion and conclusions 

As we described above, number line estimation is related to both basic and complex arithmetical abilities. 

Moreover, there is evidence to suggest number estimation is related to mathematical achievement. Despite 

this, number estimation is rarely taught in Brazil and other countries. In our research, we observed children 

more accurately estimate numbers on a number line than dots on a grid. Although the two tasks measure 

the ability to estimate, as indicated by the general correlation between the students’ accuracy in the two 

tasks, they may be linked to different cognitive functions, as suggested by the differential performance when 

the tasks involve numbers over 25. Although speculative in nature, some ideas help us to understand the 

results. The NLET requires transposition from numerical knowledge to a position on a line, whereas the 

NET requires transposition from a perceptual estimation (linked to quantities) to numerical knowledge. 

Both demand translation between different representations. However, unlike the NET, the NLET allows 

children to try a discrete quantity representation, sometimes marking the number line with lines or dots from 

the beginning to the point that could represent the required number. This marking strategy was the most 

widely used by the children and helped them identify an almost correct answer. Children used different 

strategies or representations when estimating. The linear distance of numbers along the number line seems 

to be an important support for the estimations, as Siegler and Booth (2004) have described. Additionally, 

children used decision-based strategies considering the proximity of the extremities, for example, to 

represent number 78, they made marks from 100 to 78 in descending order. Alternatively, some decided to 

begin from 50 and made marks from 50 to 78 in an ascending sequence. Another strategy was to mark the 

quarters (e.g. 25, 50, 75) as landmarks. All these strategies have been identified as means to improve the 

way children estimate (Siegler & Opfer, 2003; Siegler & Booth, 2004). The use of these strategies 

suggests the children did not estimate the numbers by chance, but instead coordinated mathematical 

knowledge and spatial skills to assess the place to mark. This tactic fits very well with the proportion-

judgement strategies model (Barth & Palladino, 2011). The central number (50) was understood by some 

students as a reference mark used to estimate the other numbers. 

The difference found in the tasks with the numbers 49, 78 and 95 can be explained by the fact the three 

numbers are close to “quarters”, which would help children to identify the position of the numbers on the 

number line. Also, we must remember that, generally, younger children tend to overestimate small numbers 

and compress large numbers toward the end of the scale, whereas older children, using the same number 

range, tend to estimate more accurately (Siegler & Booth, 2004). Moreover, in our research, it may be the 



case that due to lack of familiarity with the number line task, the older children continued to overestimate 

small numbers, as described in the logarithmic model. Another possible factor influencing the results was the 

time. In the NLET, children have time to think about the relation between the number and the place on the 

line, while in the NET they have only a few seconds to observe the quantities and more time to estimate the 

quantity represented. The NLET requires the ability to coordinate the knowledge of number systems with a 

kind of spatial graphic representation on a line. Maybe the effort made by children to coordinate these two 

cognitive demands helps them to estimate more accurately, despite having little experience with number line 

tasks. Moreover, the NET may not help students to access their knowledge of the number system, since it 

provides no clues that would allow students to adopt some proportion-judgement strategies coordinated 

with their number system knowledge. We suggest the NET requires more “guessing” than the NLET 

because there is no opportunity to mark “quarters” or anything like that to help them to estimate. One 

limitation of the research is that only eight numbers were repeated in both tasks. For future research, we 

suggest amplifying the analysis of the cognitive processes involved in both tasks. We did not control the 

number system knowledge of the subjects. We do not discuss whether or not the number line task reflects 

an internal mental number line, since this was not the subject of the paper. However, considering the results 

of our research, we can say that the NLET is a relevant measure even if it does not reflect an internal 

mental number line. We support this idea because, although the children were not familiar with the number 

line estimation task and were more used to NET-like activities, they performed better in the NLET. This 

surprising result provides the opportunity to introduce the discussion about estimation in the Brazilian 

curriculum. Furthermore, considering that the ability to estimate is correlated to many aspects of 

mathematics, for example, number comparison, addition, and subtraction, it is important to take in 

consideration the assessment of this ability in mathematics education as well as the ways to improve it. 
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We present findings made during the first cycle of an ongoing design research study on the working 

out of basic multiplication in 8 Austrian classes. Their teachers had tried to implement an 

instructional design that put conceptual understanding and derived facts strategies centre stage. 

Focusing on the degree of fact mastery reached at the end of grade 3, we present a typology of 

strategy use within a sample of 48 students. We take a closer look at lower-achieving students, in 

particular those 8 students who had little if any success in mastering basic multiplication. While 6 of 

them used derived facts strategies quite often, their deficiencies either in adding and subtracting or 

with regard to the conceptual basis of derived facts strategies seem to have hindered them from 

mastering more facts. We discuss implications for the planned second cycle of the study. 

Keywords: Basic multiplication, derived facts strategies, lower-achieving students, design research.  

Introduction 

Sherin and Fuson (2005), in an overview of prior work on teaching and learning basic multiplicat ion, 

refer to 4 different though interlinked threads of research. Like them, in this paper we focus on only 

one of these, namely the development of computational strategies. We agree with Sherin and Fuson’s 

assertion that strategy development must be examined with close reference to the ways multiplicat ion 

is taught. Hence, after looking over different ways learners solve multiplication tasks, we summarize 

contemporary approaches as to how to work out basic multiplication in primary grades. Against this 

backdrop, we focus on the multiplication learning of lower-achieving students. We contribute to that 

issue some findings of a design research study on 8 classes whose teachers had tried to base the 

learning of multiplication on the targeted working out and practicing of derived facts strategies.  

Empirical framework and research questions 

A taxonomy of strategies used for basic multiplication  

Sherin and Fuson propose that the “most important changes” in the development of strategies for 

basic multiplication are primarily “driven by relatively incremental changes to number-specific 

computational resources” (Sherin & Fuson, 2005, pp. 353–354). So a child might solve, e.g., 3x4 

initially by drawing 3 groups of 4 circles each and “counting all” of them; later by “rhythmic 

counting” (“one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve”); then by “repeated 

addition” of 4+4+4 or maybe by saying the “count-by sequence” (“four, eight, twelve”). Finally, the 

child may “retrieve from memory” that “3x4=12”. These strategies as well as “hybrids” such as 

applying a “derived facts strategy” (“2x3=6, then 4x3 must be twice as much”) form part of the 

taxonomy of strategies the authors devise drawing on prior research. But even if the strategies as 

listed follow a progression, this is not to be seen as the consequence of an increasingly sophistica ted 



understanding of multiplication, but mainly driven by a child’s growing abilities to, e.g., add, subtract, 

double and halve, and thereby compute products with increasing ease (Sherin & Fuson, 2005).  

This is why, for a long time during the learning process or even permanently, a single individual will 

presumably use a variety of strategies for solving different basic multiplication tasks, depending on 

the value of the operands and his or her computational resources. What is more, “because the learning 

of number-specific resources is very sensitive to instructional emphasis” (Sherin & Fuson, 2005, p. 

379), strategy development may differ significantly across classrooms. Such differences are 

sufficiently documented. For instance, Sherin and Fuson (2005) report that rhythmic counting, while 

being ascribed an important role by Anghileri (1989), was not observed at all during the interviews 

they carried out with students whose teachers had not promoted that strategy. Steel and Funnell found 

no evidence for the use of repeated addition within a sample of 241 children in grades 3 to 7, but a 

large amount of children using count-by sequences. Their teachers stated they had not encouraged 

repeated addition, whereas writing down sequences had been used as a method (Steel & Funnell, 

2001). This leads to the question of how basic multiplication should be taught at the beginning.  

The need of further design research on the teaching and learning of basic multiplication  

There seems to be an international consensus nowadays that students should both acquire a sound 

conceptual understanding of multiplication and eventually solve all basic tasks accurately and 

effortlessly (cf., e.g., Padberg & Benz, 2011; CCSSI, 2016). It is also widely agreed that fact mastery 

should not be pursued by rote learning of multiplication tables. As an alternative, children should first 

learn how to solve harder problems by deriving them from those that are fairly easy to remember, i.e. 

the problems with 2, 5 and 10 as the multiplier. Only later should they move on to retrieving more 

and more facts directly from memory (cf. Gasteiger & Paluka-Grahm, 2013; Van de Walle, 2007). 

However, when it comes to “details of instruction” that might be relevant for teaching success (Sherin 

& Fuson, 2005), there remain a lot of unresolved issues. One of them is whether or not to make 

children work within separate multiplication tables (e.g., the “table of 6” from 1x6 to 10x6). A specific 

answer quite commonly given in Austrian textbooks is “short tables”: Children are supposed to learn 

the whole body of basic facts by consecutively learning the facts of one table at a time before moving 

to the next table. Within each table, they are supposed first to automate 1 times, 2 times, 5 times, and 

10 times the respective number and to derive from these core tasks the other tasks of that table. In the 

second step, they should practice all the tasks of the table with the objective of automation.  

In contrast, Gaidoschik (2014) advocates what he calls a “consistent” approach to derived facts 

strategies. According to this, strategies should be worked out in a targeted manner without any 

consideration of separate tables. For example, as soon as children have learned that they can easily 

derive a 9-times fact from a 10-times fact, they should be encouraged to do so with any 9-times fact. 

The same applies to any other strategy like halving 10-times to derive 5-times facts or doubling 2-

times to solve 4-times facts. If the commutative property is emphasized from the very beginning, 

there is little need for strategies that demand computations that are more difficult. For instance, 7x9 

can be done more easily by thinking of 9x7, which is 10x7–7, than by adding 2x9+5x9. Therefore, to 

abandon activities that are restricted to single tables is supposed to reduce the overall workload.  

Secondly, it should help get a better understanding of any single strategy since it is applied to a wide 

range of numbers as soon as it has been established, and not just within a single table. Last but not 



least, this approach emphasizes the wide reaching power of these strategies, which is supposed to 

contribute to the children’s willingness to acquire them (Gaidoschik, 2014). 

Evidence as to whether and how such differing approaches to the teaching of basic multiplicat ion 

indeed have an impact on children’s learning is rather scarce and fragmentary. Cook and Dossey 

(1982), comparing teaching the tables with a derived facts strategy approach, find empirical support 

for the latter, but remain vague about the specifics of either approach. Woodward (2006) gives more 

details about an integrated approach combining explicit teaching of derived facts strategies with timed 

practice drill which yielded significantly better results than drill only. However, he reports not on 

regular classroom activities, but on a remedial programme applied when multiplication had already 

been worked out. So do most other studies in this field (e.g., Kroesbergen, Van Luit, & Maas, 2004).  

One of the few studies known to the authors that deal with the initial workout of basic multiplicat ion 

in a regular classroom and try to deliver a “rich description of the way the design works” (Swan, 

2014, p. 151) is Selter’s (1994) report on a teaching experiment with one grade-2 class in Germany. 

The teaching in this class favoured derived facts strategies throughout the second half of the school 

year, while it deliberately downsized drill. The study indicates that this concept was quite successful 

with regard to its conceptual targets. However, the account of whether it worked out equally well 

regarding the development of fact mastery is less satisfying. The study is rather sketchy in that respect. 

Selter (1994, p. 106) rates it as the “preliminary ending to a research project” to be followed by more 

detailed inquiries into single issues, such as “learning processes of underachieving pupils” (p. 281). 

Questions addressed in the study presented in this paper 

Teaching basic multiplication with a focus on derived facts strategies is still not at all common in 

Austria, where there is a long tradition of basically drilling tables with little, if any, consideration of 

derived facts strategies. Teachers particularly tend to be sceptical as to whether lower-achieving 

students would a) understand derived-facts strategies at all and b) reach fact mastery without rote-

learning of the tables (Gaidoschik, 2014).    

Against that backdrop and in consideration of the empirical framework outlined above, we started a 

design research project on the teaching and learning of multiplication in grades 2 to 3. In this paper, 

we present some findings collected during the first cycle of the project that lasted from September 

2014 to June 2016. Out of the numerous issues we address in that project, in this paper we have to 

restrict ourselves to the following: 

1) If multiplication is taught with a clear focus on derived facts strategies in the “consistent” way 

suggested by Gaidoschik (2014) and shortly outlined above, what types of strategy 

performance can be identified at the end of grade 3 with respect to the target of fact mastery? 

2) To what extent, when taught like this, do children who have been identified by their teachers 

as mathematically lower achieving actually use derived facts strategies and reach fact 

mastery? 

Method 

We report on 48 students from 8 classes in Carinthia, Austria. Their teachers had volunteered to 

participate in a design research study aiming at evaluating and refining the concept of teaching 

multiplication in grades 2 to 3 as formulated in Gaidoschik (2014), with the following main ideas: 



1) In the first half of the second school year, arithmetic lessons should have a clear focus on what 

children need to understand and be able to compute fluently in order to get comfortable with 

the strategies that are useful to derive multiplication facts. That is, they should be able to 

double and halve two-digit numbers effortlessly and to add and subtract fluently up to 100. 

2) Subsequently, instruction should concentrate on the conceptual understanding of 

multiplication and its properties, particularly commutativity and distributivity. At the end of 

this stage, children should be able to translate smoothly terms such as 3x4 into actions, visual 

representations (identical groups as well as arrays), word problems, and vice versa.   

3) In the next step, teachers should secure that all children know how to double and decuple any 

number at least up to 10 with ease, then learn how to derive the 5-times facts from the 10-

times facts by halving and do so more and more effortlessly.  

4) On that basis, a guided discovery-learning approach should be complemented with direct  

instruction when needed by single children to convey derived fact strategies as a convenient 

way to solve multiplication tasks. To this end, single lessons should be devoted to groups of 

facts as defined through the multiplier, for instance 9-times facts, 6-times facts, and so on. 

Children should be encouraged to find an easy way for themselves to solve tasks of such a 

group by deriving the solution from facts they already know, using representations such as 

arrays of dots or equal groups of interlocking cubes. Strategies found by the children should 

be discussed and compared in the classroom. Different strategies for the same task are 

welcome as long as they are mathematically correct. However, children who constantly fall 

into cumbersome ways to derive a task (such as, e.g., computing 6x9 as 10x9–9–9–9–9 instead 

of 10x6–6 or 5x9+9) or even resort to repeated addition or counting strategies should receive 

direct instruction to develop understanding for one derived facts strategy after the other , 

including the knowledge for which tasks that strategy fits well.  

5) Subsequent practice should comprise substantial tasks such as explorations of mathematica l 

patterns as well as timely restricted “strategy drill” (Van de Walle, 2007), e.g. using flash 

cards with the objective of performing a certain strategy with growing ease and speed. 

To convey and discuss this concept in detail, the researchers met the participating teachers for 8 

working sessions (3 hours each) once a month during the second and 4 follow-up sessions once every 

2 months during the third school year of their classes. During each session, the researchers would 

give theoretical inputs and make concrete proposals for daily classroom activities. Each teacher was 

visited in the classroom 3 times by one of the researchers to receive feedback on his or her teaching 

practices. The teachers were interviewed individually 4 times during the cycle to cover as 

comprehensively as possible if and how closely they had followed the researchers’ recommendations.  

To assess the children’s development, we selected 6 children out of each class to be interviewed a 

total of 7 times, from October 2014, at the beginning of their second school year, till the end of April 

2016, before the classes started to move on to multi-digit multiplication. Always 2 of the 6 children 

had been rated as being above average, average, and below average with respect to their arithmetica l 

performance as perceived by their teacher at the beginning of grade 2. The students were interviewed 

by the researchers during school time in some quiet extra rooms of the school. The first interviews 

were centred on addition and subtraction up to 20, which had been the main contents of arithmetic 

instruction till then. The semi-structured qualitative interviews to follow each reflected what had been 

the major classroom topics since the previous interview, from the base-10-system in January 2015 to 



a focus on multiplication in the later interviews. In accordance with the instructional design, the 

interviews were restricted to the conceptual understanding of multiplication in March 2015, but 

starting with May 2015 encompassed both understanding and computation of multiplication tasks.  

In the computation part of the interviews the children were presented always with the same 15 tasks, 

each of them written on a DIN A7 card, 7 being core tasks (10x7, 2x8, 4x10, 9x2, 5x7, 8x5, 5x5), and 

8 harder tasks (in the order of the interview: 9x4, 7x7, 6x4, 6x9, 7x8, 6x7, 8x8, 4x7). The children 

were requested to solve each task mentally the way they usually would, and to state the result verbally 

as soon as they knew it. Immediately thereafter they were invited to explain or show how they had 

arrived at the solution. Strategies were evaluated on the basis of video recordings. “Fact mastery” 

was assigned to any solution that was accurately produced within 3 seconds (cf. Van de Walle, 2007). 

Apart from computing, we invited the children inter alia to explain verbally to a fictitious first-grader 

the meaning of a task such as 3x5 and demonstrate that meaning with different materials (wooden 

cubes, arrays of dots). Moreover, we asked them to clarify whether and how an easier multiplicat ion 

task could be of help to solve the not so easy tasks 9x7 and 4x8, respectively.  

Findings 

Types of strategy use in solving basic multiplication tasks 

Based on the multiplication strategies exhibited by the children in April 2016, we performed an 

empirically grounded construction of types and distinguished 3 main-types of strategy performance 

at the end of grade 3: 

A) “Masters”: These students solved all tasks accurately either by retrieval or effortless derivation 

within about 3 seconds or, in most cases, instantly. Only in single cases, if at all, they would give 

a wrong answer or take slightly longer to produce a correct one. 19 out of the 48 children go 

smoothly with this type, and 5 children fall somewhere in between Type A and B (see below).  

B) “Experienced users of derived facts strategies with limited fact mastery”: These children, while 

exhibiting mastery of the core tasks, relied on derived facts for at least 3 of the 8 harder tasks. As 

a rule, these tasks were solved with rather little effort in 6 seconds or less. However, up to 2 of 

the 8 harder tasks still posed quite a challenge to these children, either taking more than 9 seconds 

or being answered incorrectly. 15 to 20 (see above) of the 48 children rank among this type. 

C) “Users of derived facts with limited mastery and some trouble in deriving”: These children 

typically solved core tasks by retrieval and harder ones by using derived facts strategies. At least 

3 tasks caused them perceivable trouble, with solution times in excess of 9 seconds and/or 

resulting in incorrect solutions. 6 of the 48 children quite clearly fulfil this description.  

These 3 types cover 45 of the sample’s 48 children fairly adequately. Note that fact retrieval and 

derived facts strategies were the only strategies to be found within these types at the end of grade 3, 

with no single child relying on strategies like counting all, counting by or repeated addition.  

3 children do not fit into this typology. One of them, whom we refer to by the fake name Leo, was 

the only child in the sample that relied on count-by sequences. He did so when solving 9x4, 6x4, and 

4x7, all of them within 3 or 4 seconds. All the other facts he solved by retrieval, except 6x7, which 



he derived from 6x6. Leo’s teacher reported that Leo had consistently been getting “a great deal of 

support” by his mother. The teacher had “not been able to convince her of not drilling the tables”.    

Whereas Leo had reached a high degree of fact mastery, this clearly is not true for 2 other children. 

One of them, we call her Mia, had only mastered 4x10, 10x7, 2x8, 5x7, and 5x5. Whereas she 

retrieved these facts accurately, all the other tasks she either refused to try at all, or admittedly guessed 

upon. Only 4x7 did she solve correctly by a rhythmic count-all supported by her fingers. In no case 

did she use a derived facts strategy. The other child, whom we name Lara, solved all the core tasks 

as well as 7x7 and 8x8 by retrieval. On 7x8, she used a hybrid strategy by counting down 8 and 

another 8 from 9x8=72, which she had retrieved from memory. She tried to derive 6x4 as well, this 

time incorrectly by computing 5x4+5. 9x4 she rated as her “battleground task”; she eventually solved 

it by drawing 4 rows of 9 circles each and counting them all, which took her about 90 seconds.  

Out of the 16 children who had initially been selected as below average, 3 were assigned to Type A 

at the end of their third year, 6 more to Type B, and one child between A and B. Out of the other 6 

students who started as below average, 4 finally belonged to Type C, whereas the remaining 2 of this 

group have been introduced as Mia and Lara. There were 2 other children who had been rated as 

average by their teachers at the beginning of the second year but were finally assigned to Type C. 

Interrelations with the performances on other tasks 

As set forth, 8 children within our sample demonstrated only very moderate, if any, success in having 

mastered basic fact multiplication by the end of their third school year. To help better understand this, 

we refer to some of the findings we made aside from the computation part of the interviews. First, the 

tasks that were conceived to test the conceptual understanding of multiplication unsurprisingly 

revealed considerable differences, in particular with regard to the verbal competences of the children. 

However, all 48 children, including the 8 lowest achieving, could without any exception give a 

comprehensible and adequate verbal explication of what meaning could be ascribed to a term like 

3x5, and support this by laying equal groups or arrays of wooden cubes.  

What is more, all these 8 children seemed to have at least some clue of how to derive facts from other 

facts. This even applies for Mia, albeit in a very restricted way. She was the only child of this subgroup 

who had not used one single derived facts strategy during the computation part of the interview. 

Subsequently, when questioned whether there was an easier task that could help her solve 9x7, she 

spontaneously answered: “No idea”. However, when directly asked whether 10x7 could be helpful, 

she said without any hesitation: “Yes, you just have to take away 7.” Significantly, though, when 

asked whether knowing 5x8 could help a child solve 4x8, she stated: “Yes, you have to take away 4.” 

The same mistake was made by Lara. Lara also erred in computing 6x4 as 5x4+5 in the computation 

part (see above), but she, too, stated that 9x7 could be derived as “10 times 7, then take away 7”.  

Only 2 other of the 8 lowest achieving children made such mistakes with regard to the logic of a 

derived facts strategy (as distinguished from calculation errors in executing a mathematically correct 

strategy; such errors were made by other children, too). For instance, one child said that to get 6x9 

you have to compute 60–9, and the other that 10x8–2x7 equals 7x8.  

The other 4 children of Type C not only used a variety of derived facts strategies in a mathematica lly 

correct way during the computation part, but also gave comprehensible explanations of how to derive 

9x7 and 4x8. It seems to be noteworthy that these 4 children as well as Mia and Lara and 2 children 



of Type B were the only ones in the whole sample who had considerable trouble with the addition 

and even more with the subtraction tasks they had to solve in a separate section of the interviews.  

Discussion and final remarks 

We are well aware of the limitations of our paper. As stated by Swan (2014, p. 151), “writing up 

design research is problematic”. Due to space restrictions, the design is presented rather sketchily, as 

is the account of its implementation and the ways different children performed. Having conceded this, 

we still hope that some of our findings are of use and interest for other researchers in this field.  

First, our results seem to corroborate the view of Sherin and Fuson (2005) that the development of 

strategies for solving multiplication tasks is to a high degree dependent on instruction. We recorded 

the tedious use of count-by sequences known to be rather typical of low-achievers in higher grades 

for only one out of 48 students at the end of grade 3. In that case, we have clear indications of parental 

drill. We may add that this strategy had been equally rare in the preceding interviews. On the other 

hand, all but one student used derived facts strategies autonomously for those facts that they had not 

yet automatized. Both occurrences correspond with the applied instructional approach that, as 

outlined, deliberately neglects working within single multiplication tables, thus aiming to prevent 

children from using count-by sequences as a solution strategy. As far as can be judged from teacher 

interviews, classroom visits and the examination of working sheets used in the classrooms, all 

teachers basically adhered to that concept. 

This leads to a second finding: Teaching multiplication with a clear focus on derived facts strategies 

yielded what might be seen as quite satisfying results even for lower-achieving students. Of course, 

the study was not conceived to prove the superiority of one design over another, but to examine 

qualitatively whether and how certain measures may contribute to children’s learning. With regard to 

lower-achieving students, it can be stated that the chosen combination of discovery-learning and 

direct instruction of single strategies followed by strategy drill seems to have helped almost all of 

them use these strategies correctly (as can be judged from the computation tasks) on the basis of a 

sufficient conceptual understanding (as can be judged from the additional tasks described above). 

Thirdly, 8 students in the sample show severe problems with basic multiplication at the end of grade 

3. 6 of them, constituting the Type C, still use derivations and do so quite frequently. But they do it 

in a way which indicates what may contribute to their struggling with multiplication: 4 of them, while 

apparently knowing how to use known facts as a basis for deriving unknown ones, are not able to add 

and subtract efficiently. That is why they often need considerable time to solve a task and sometimes 

miscalculate. We assume that out of the same reason their repeated use of derived facts strategies on 

harder tasks has not resulted in the mental linking of these tasks and the respective solutions (cf. Van 

de Walle, 2007) and therefore not contributed to the automating of basic facts to the same extent as 

it has done for their more successful peers. In this regard, their learning difficulties differ qualitatively 

from those of the other 2 children within Type C who are indeed quite proficient at adding and 

subtracting, but then again seem to have a limited conceptual basis of their strategy use.  

All in all, these 6 children and so much the more Lara and Mia, who were least successful within this 

sample, have severe problems not only in multiplication but also in areas of elementary arithmetic 

that form a prerequisite for learning multiplication on a conceptual basis (Gaidoschik, 2014). That is 

why in a second cycle of this design research project we will focus on how to better foster children 



who lag behind in adding and subtracting at the start of grade 2 before and while working on 

multiplication. From where we stand in our analysis, we assume such measures will have to include 

individual support for some children additional to what a single teacher can manage in the classroom.  
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This paper discusses an approach that fosters students’ conceptual understandings of rational 

numbers with an initial focus on percentage, in elementary school years. This approach enables 

students to work with multiple representations associated with percentage which are taken as 

models of contextualized situation and reconstructed as models for reasoning through an emergent 

modeling process. A classroom teaching experiment was developed following the methodological 

procedures of a Design Research. Data were collected through participant observation, supported 

in a logbook, audio- and video-recorded lessons and students’ productions in the classroom. The 

analysis of data reported in this paper seems to highlight that through this approach, percentage - if 

privileged in the introductory steps of its learning - strengthens the interpretation of multiplicative 

relations and fosters understanding of rational numbers through an emergent modeling process.  

Keywords: Elementary school mathematics, rational numbers, models, percentage. 

Introduction 

The development of rational number understanding is considered a very important, but also a complex 

mathematical topic (Behr, Lesh, Post & Silver, 1983). It involves conceptual understanding that is the 

entwined comprehension of concepts, operations, and relations (NCTM, 2014). Students are called to 

construct new knowledge supported by multiplicative relations, through active sense making and extending 

previous knowledge and experiences with whole numbers. This conceptual understanding is closely related 

to number sense, which is an essential competence that students should gradually develop from an early 

age. Percentage, with its changing nature and multiple interpretations, can be more than a representation of 

rational numbers (Parker & Leinhardt, 1995). Percentage is itself a useful topic to learn rational numbers 

with understanding (Moss & Case, 1999).  

The purpose of this paper is to provide useful insights into how percentage can be powerful, when 

privileged in elementary years, to foster rational numbers’ learning process with understanding. This should 

be addressed with an active involvement of students through an emergent modeling process supported by 

multiple representations.  

Percentage for a meaningful learning of rational numbers 

Percentage is part of student’s everyday contexts. Although, as a mathematical content, compared to other 

areas of arithmetic, there are few recent researches that discuss the issues surrounding its learning in the 

classroom (Pöhler, Prediger & Weinert, 2015). Since early years, students become familiarized with 

percentage in real life situations, for instance, on food labels, clothes tags, in discounts. Its practical use 

develops children’s intuitive sense in dealing with it before being at school (Moss & Case, 1999). This very 

common use of percentage points to its introduction in elementary education, within rational numbers 

domain (Hunter & Anthony, 2003; Moss & Case, 1999). Percentage is “a language of privileged 



proportion” (Parker & Leinhardt, 1995, pp. 472) that is based on multiplicative comparison to 100. 

Exploring percentage can be an opportunity to begin thinking relatively and to deal with multiplicative 

situations, enhanced on students’ early intuitive understandings of proportional relations (Lamon, 2007). 

Being a language, percentage has different interpretations as it assumes properties of number, part-whole, 

ratio, function or statistic (Parker & Leinhardt, 1995).  Grounded in real-world experience percentage can 

be a way to start the work of developing a solid understanding of those meanings as rational numbers 

subconstructs, which highlight essential characteristics of rational numbers (Lamon, 2007).  

Learning percentage should begin with understanding its relational language using elementary strategies, 

including benchmarks, proportional reasoning, and additive building-up strategies, rather than learning 

formal calculation procedures (Moss & Case, 1999; Parker & Leinhardt, 1995). This process might start 

in elementary grades, but the concept of percentage at its very rich sense will be reached later. Thus, 

understanding percentage requires the development of appropriate models to grasp its various meanings 

and its relational features in order to support students' attempts to make sense of the numbers and the 

relationships that connect them (Dole, Shelley, Cooper, Baturo, Conoplia, 1997; Parker & Leinhardt, 

1995). In problem solving, models can arise from the use of multiple representations – enactive, iconic, 

symbolic (Bruner, 1962) and oral and written language (Ponte & Serrazina, 2000), when associated with 

percentage can provide support to develop its conceptual understanding. Models should display the 

relationship between quantities and allow to describe comparisons in multiple ways, encouraging 

proportional reasoning (Parker & Leinhardt, 1995). Gravemeijer (2002) refers to emergent modeling 

process to explain both the “process by which models emerge” (p.3), as representations are used and 

progressively become models and the “process by which these models support the emergence of more 

formal mathematical knowledge” (p.3). Gradually models of contextualized situation are reconstructed and 

evolve to models for reasoning through this emergent modeling process.  

The above ideas are the key components of the conceptual framework that supports this research. They 

seek to associate conceptual understanding, number sense and emergent modeling process to support 

percentage as an entry point for developing students’ understanding of the rational numbers. 

The interrelationship between these components sets a developing framework for analysis, which will 

provide the lens to describe and analyze how rational numbers’ conceptual understanding takes place in a 

specific classroom learning ecology (Gravemeijer & Cobb, 2006).  

Methodology 

Data reported in this paper was collected as part of a classroom teaching experiment in a design research 

approach (Gravemeijer & Cobb, 2006), within a broader study that aims to deepen how students 

construct their understandings of rational numbers through a learning trajectory with an initial focus on 

percentage. The cyclic process of the design research involved a first phase where a conjectured local 

instruction theory was defined supported by design principles, used to guide the design and development of 

the classroom teaching experiment. In the second phase, the teaching experiment took place and, through 

micro-cycles of design and analysis, the process of the students’ participation and learning was analyzed. 

The last phase involved a retrospective analysis, which is still running. The conjectured local instruction 

theory, which is about a possible learning process together with theories about possible means of 



supporting that learning process, is refined and improved all along, supporting a revised local instruction 

theory (Gravemeijer & Cobb, 2006).  

The classroom teaching experiment was designed considering a mathematical content dimension and a 

pedagogical one. The first one is based on an hypothetical learning trajectory, inspired by Moss and Case 

(1999) experimental curriculum for teaching rational numbers. The first stage of this trajectory begins with 

the understanding of percentage in a linear-measurement context. Then two-place decimals are introduced.  

Finally, fractions are the focus concerning the use of different interchangeable representations.  The 

pedagogical dimension attempts to account for the means of supporting the co-participated learning 

process as it occurs in the social context of the classroom. The classroom experiment involved a total of 20 

lessons spread across two three-month periods (Grade 3 and Grade 4) in the same classroom, where the 

first author was also the teacher. It took place in a public elementary school in Lisboa with students aged 

between 8 and 10 years. In this paper, we analyze some episodes that took place in the first period when 

the students were in third grade.   

The dual role as teacher and researcher raised significant ethical challenges. To avoid potential conflicts and 

assure students’ and families’ protection, an informed and voluntary consent was taken. Anonymity and 

confidentiality were guaranteed to be maintained.  To establish credibility and allow convergence, multiple 

sources of evidence were chosen (Confrey & Lachance, 2000). For data collection, we used the transcript 

of video and audio recorded moments of all classroom sessions, students’ written work, and teacher´s 

research journal. 

A preliminary analysis was developed during the classroom teaching experiment, which supported the 

process of redesigning and testing instructional activities and other aspects of the design. (Gravemeijer & 

Cobb, 2006). This analysis involved an analytic induction strategy where we identified significant episodes 

from students’ activity while exploring tasks. Then, we scanned those episodes for evidence of students’ 

conceptual understandings related to rational numbers and for relationships among them. Thereafter, a 

retrospective analysis was made through content analysis. In this analysis, all data was revisited and divided 

into content categories generated from the interrelationship between the conceptual framework components 

through a typological analysis (Goetz & LeCompte, 1984). This analysis process creates a cross-coding 

system that evidence relationships among the various categories, emerged from data and anchored in the 

conceptual framework, which is still in progress. The analysis discussed in the next section of this paper 

focuses on students’ activity with meaningful representations during four lessons of the classroom teaching 

experiment. It was carried out using three interrelated categories as indicators of students’ conceptual 

understandings of rational numbers through percentage learning. Each of these categories involves working 

subcategories, handling percentage to: (1) support reasoning strategies (decomposition/composition; 

half/double; 10%; multiples of; unitizing/reuniting); (2) foster numerical relations (benchmarks; magnitude of 

numbers; orderliness and comparison; equivalence) (3) encourage a modeling process (mobilize familiar 

representations; interpret subconstruct situations; emerge of symbolic representations).  

Learning rational numbers by focusing on understanding percentage   

A mobile phone battery was one of the first iconic representations related to percentage chosen to be used 

in a problem-solving context. In this task, students were asked to estimate the percentage represented in 

batteries in Figure 1. 

http://www.linguee.pt/ingles-portugues/traducao/anonymity.html
http://www.linguee.pt/ingles-portugues/traducao/comparison.html


 

 

  

Figure 1: Ana’s group resolution using a battery representation 

Considering battery C, some students stated that the shaded part would represent 25% of charge, and 

others claimed that it would be 20%. During the discussion, students’ arguments were shared in order to 

justify their reasoning strategy. 

Simão: That is not 25 percent. 

Teacher: […] So, what do you think it is? 

Students: 20 percent.  

Teacher: Why? Marco. 

Marco: Because it fits 5 times. 

Students who claimed 20% reasoned that if the shaded part was iterated it would fit the unit five times, so, 

it should be 20% and not 25%. This idea expresses a reasoning strategy drawn on division and laid out on 

numerical relations. The measure subconstruct allowed students to see the unit represented by the full 

battery as a distance, and the percentage as a relative quantity of that distance. Familiar battery 

representations were used to encourage a modeling process. They are used as models to think about the 

task as a measurement situation, allowing percentage to be conceived as an iteration of a unit part, rather 

than representing a part out of a whole.  

Status bar (Figure 2) was another iconic representation regarding percentage that was privileged. Students 

interpreted status bar in an easy way by analyzing its fullness, as they are used to do it when downloading a 

file.   

 

 

 

Figure 2: A task that privileged status bar representation 

They perceived the comparison of quantities using proportional relationships. Percentage allowed students 

to see the multiplicative relation between the minutes taken to save the complete program and the amount 

of program saved shown by the status bar. “The whole program took forty minutes to save because if a 

half is twenty, the double is forty” as Mafalda’s group explained. This use of splitting/doubling procedure 

seemed to make sense to the others as it expressed the multiplicative relation between half and double, 

keeping the ratio constant.  

The students were able to see that saving half of the program would took as long as the remaining half, 

although not all students have yet clearly perceived it as a ratio. Status bar seems to encourage the 

modeling process during the teaching experiment while supporting intuitive ratio understanding, involving 

quantities of a standard unit.  



Thereafter, the proportional judgments established with the status bar were mobilized to work percentage 

using another representation – the ratio table (Figure 3).  

 

 

Figure 3: Clara’s  group resolution using a ratio table 

This representation was used to make comparisons between entities in multiplicative terms, applying to 

multiples of 10%, as reasoning strategies. Percentage benchmarks allowed to foster numerical relations 

highlighting the relationship between time and the amount of program saved. Students could realize multiple 

numerical strategies through collaborative engagement. 

Heitor:  The process was always four in four minutes. 

Simão:  10% are 4, is always times 4. 

Mafalda: The all process took ten times four minutes. 

Teacher: The whole process of saving the program took ten times four minutes… 

Hélio: We could also look at 36 minutes and see which would be the number that could give 

40.   

The ratio table seemed to be powerful in the modeling process as it supported different reasoning strategies 

suggested by percentage, such as halving, doubling, multiplying by 4, showing why the relationship between 

quantities is multiplicative.  

Some less stereotyped representations came up in classroom from other contexts. For example, during a 

specific group project work about dogs, the representation of a dog food bag was used to encourage the 

modeling process as it becomes a model of acting in a real meaningful situation. In this task, the 

representation of the dog food bag was tailored to consider its fullness (100%) that is 20kg as the top of 

the bag.  To this iconic representation, two vertical number lines were added to foster numerical relations 

allowing to relate weight with the percentage of the amount of food in the bag. In this way, the dual set of 

numbers involved in percentage comparisons become explicit and can be used for calculations. 

 

 

 

 

Figure 4: Carolina’s group resolution using the bag representation 

All groups found out immediately that 50% of the weight of the bag was 10 kilograms, as shown in the 

example on figure 4. When students had to compute other amounts of food, they consider percentage as a 

relative quantity according to the attained unit and applied to multiplicative reasoning strategies. Some 

divided using halving strategy, and reconstructed the unit, considering the unit the bag weight in each 

moment (Figure 5).  

  

http://www.linguee.pt/ingles-portugues/traducao/weight.html
http://www.linguee.pt/ingles-portugues/traducao/weight.html


 

 

 

Figure 5: Mafalda’s group resolution using the bag representation 

Students understood that the relationship between the quantities in both number lines kept constant and 

perceived that they vary together, even though they have different magnitudes, interpreting ratio 

subconstruct. In this modeling process, the food bag representation became a model that supported 

reasoning strategies and proportional relationships.  

Later on, this modeling process was extended to the double number line. Double number line fostered the 

emergence of numerical relations, as it allowed ordering and establishing equivalences, invoking benchmark 

percentage values in a measure context (Figure 6).  

 

 

 

 

Figure 6: Dina’s  group resolution using the double number line  

The double number line became a model of a measurement situation in which students supported their 

reasoning strategies (Figure 7). They established comparative relations between equivalent representations, 

as percentage and measure of an amount (e.g. 9% and 9/100). For this, a key aspect is the unit 

identification. Considering one as the unit, the decimal numbers representation emerged when a number 

was located. Together with percentage, this allowed students to invoke whole number’s knowledge, 

establishing numerical relations between each decimal number and 

its position. 

 

 

Figure 7: Whole-class resolution using the double number line  

Two-place decimals were used as a symbolic representation by students to express an equivalent 

percentage of “fullness” of the unit, when the unit is 1, applying to establish numerical relations. 

Simão – It’s not enough to make up one meter… 

Clara – …You have zero comma ninety-one meters. 

Teacher – Then, this is Clara’s suggestion [writes 0,91 at the number line] 

Clara – Because it’s not enough to make up one meter, so it´s zero meters and then we write ninety-one 

centimeters.   



In this situation, the decimal representation was convened to identify a quantity less than one in a 

measurement context, fostering a modeling process as the number line became a model for a more formal 

reasoning. 

Final remarks  

As data analysis highlight, percentage enables an approach to multiplicative situations, describing 

comparisons in multiple ways and exploring relationships, enhancing an introductory step to rational 

numbers conceptual understanding (Lamon, 2007; NCTM, 2014; Parker & Leinhardt, 1995). The context 

within percentage appears in these tasks and suggests it can be linked with ratio and measure subconstructs 

of rational numbers, which are important although less common in these years of elementary school (Parker 

& Leinhardt, 1995).  The meaning of percentage, supported by the use of number line in the dog food bag 

representation allowed to show the relation between the four numbers that make up the percent proportion, 

in an intuitive way. The focus on measurement revealed a growing flexibility of the reasoning strategies and 

provided opportunities for students to build a meaningful connection between percentage and decimal 

numbers notation. Ratio situations allow to recognize the importance of 100 as a privileged base and to 

develop sensitivity for the comparative uses of percentage, fostering numerical relations. Representations 

associated with percentage, drawn from students’ real-life experience, like the mobile phone battery or the 

status bar, revealed to be essential. Students used them to make sense of problem situations and to solve 

them. Gradually, those representations became models as they encouraged students’ reasoning strategies 

and promote rational numbers’ conceptual understanding. In this emergent modeling process, as called by 

Gravemeijer (2002), percentage had a key role. It contributed to disclosure the multiplicative nature of 

rational numbers, connecting prior whole numbers’ knowledge with intuitive understandings regarding 

relative proportion (Moss & Case, 1999).       
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The fostering of flexible mental calculation in an inclusive 

mathematics classroom during Mutual Learning 

Laura Korten 
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The topic of teaching mathematics in an inclusive classroom provides – by the increased 

heterogeneity range – a big challenge between individualizing and mutual learning. (How) Can we 

make sure that all children work and progress on their individual level but at the same time learn 

with and from each other? Based on this question the aims of this project are the development of, 

and the research on a teaching-learning arrangement for the inclusive mathematics classroom to 

foster flexible mental calculation. The approach is a Design Research approach to face research 

interests on the level of design (consideration for use) and on the level of research (quest for 

fundamental understanding). This contribution focuses on the research level: first insights about 

mutual learning processes of elementary students with and without cognitive learning disabilities 

concerning flexible mental calculation will be presented. 

Keywords: Inclusive education, heterogeneity, cooperative learning, flexible mental calculation. 

Theoretical framework 

Developing flexible mental calculation has been considered as a ‘central goal’ for more than a 

decade, not only for middle and high achievers, but also for less advanced children. However, 

empirical insights about teaching and learning processes of flexible mental calculation in inclusive 

classrooms do not exist. Although, inclusive education is a current international discussion, based 

on the UN-Convention on the ‘Rights of Persons with Disabilities’. Supporting everyone’s learning 

process and at the same time encourage cooperative learning with and from each other are the two 

central matters of inclusive education, which imply more than sharing a room. But, in school 

practice, teachers emphasize the difficulty of learning with and from each other in arithmetic (Korff, 

2015). Building on the two matters of inclusive education, this study focuses on the goal-

differentiated fostering of flexible mental calculation in an inclusive classroom during Mutual 

Learning takes place.  

The goal-differentiated fostering of flexible mental calculation in an inclusive classroom  

Developing flexible mental calculation is not only a central goal but also a ‘critical point’ in 

everyone’s learning process (Heinze, Star, & Verschaffel, 2009), especially for students with 

cognitive learning disabilities. In this process, error-prone counting strategies should be replaced 

with more beneficial calculating strategies. Current literature offers different definitions, which 

commonly include the two aspects of ‘flexibility’ and ‘adaptivity’. In most of the cases flexibility is 

understood as the ability to switch between different solution tools (Rathgeb-Schnierer & Green, 

2013), while adaptivity is more emphasizing on the selection of the most appropriate strategy. In 

this project ‘adaptivity’ is related to the recognision of problem characteristics, number patterns and 

numerical relations. Consequently, flexible mental calculating is a situation-dependent and 

individual response to specific number and task characteristics and the corresponding construction 

of a solution process using strategic tools (ibid.).  



The fostering of flexible mental calculation competences is influenced by the outlined general 

assumptions. If flexible calculation is related to number and task characteristics and relations, 

activities have to be chosen, which support children to focus on these. Thus, the crucial aim is to 

develop the competence to recognize problem characteristics, number patterns and numerical 

relations, and to use them for solving problems. Rechtsteiner-Merz and Rathgeb-Schnierer (2016) 

call this “Zahlenblick” and found out that it is a good vehicle for developing flexible calculation. 

Today it is proven that also less advanced students can develop flexible mental calculation 

(Verschaffel, Luwel, Torbeyns, & van Dooren, 2009) and that the focus on developing 

“Zahlenblick” especially supports less advanced students (Rechtsteiner-Merz & Rathgeb-Schnierer, 

2016). Schröder (2007) points out their problems in the usage of flexible strategies: Even if they 

know strategies, they very often cannot adapt and use those. Reflecting on characteristics and 

relations is especially essential for children with cognitive learning disabilities (ibid.) and at the 

same time supportive and preventive for everyone’s learning process, because generally all children 

show little task-adequate action (Selter, 2000). Further, the content provides opportunities for high-

performing students to establish mathematical structures and to generalize. Consequently, flexible 

mental calculating meets the requirements for a common content for an inclusive classroom to 

encounter the diversity of abilities and skills and to make goal-differentiated learning possible. 

Mutual Learning in an inclusive mathematics classroom 

The expression of Mutual Learning as it is used here combines the two central matters of inclusive 

education, which were mentioned above: individualizing as well as interacting and cooperating. 

Mutual Learning means to consciously induce learning situations as often as possible in which all 

children work and learn at a common content, in cooperation with each other, on their individual 

level, and by use of their current individual skills (Feuser, 1997). This definition is based on a wide 

sense of inclusion, acknowledging the diversity of all children and counteracting all forms of 

discrimination and special learning needs. Nonetheless this research project focuses on learning and 

interaction processes of children with and without cognitive learning disabilities. (This distinction 

is not used to label deficits, but rather with regard to make research and communication possible.) 

In consideration of the two central matters of individualized learning and at the same time learning 

with and from each other, first supportive principles for successful Mutual Learning can be derived: 

‘content variability’, ‘goal-differentiated learning process -‘, and ‘interaction orientation’. As 

already outlined, the content of flexible mental calculation meets the requirements of the first two. 

Having regard to the principle of ‘interaction orientation’, the construction of mathematical 

knowledge is understood as an active, social and explorative process; also for children with 

cognitive learning disabilities as today several studies show. Gaidoschik (2009) points out, children 

with problems need more time and more support to learn arithmetic but they don't need something 

different. The exploration, understanding and use of arithmetical patterns and particularly the 

communication about number and task characteristics and strategic tools is especially important for 

children with cognitive learning disabilities (ibid.; Schröder, 2007). In social-communicative 

processes, individual mathematical learning develops through ‘irritations’, ‘contradictions’ and ‘re-

interpretations’ on the basis of individual interpretation processes (e.g. Steinbring, 2005). Therefore, 

this very individual processes of learning flexible mental calculation in the context of interaction 

processes, needs to be fostered on different cognitive levels for successful Mutual Learning.  



Research question and methodological design 

For this purpose, it seems important to research when and how successful Mutual Learning occurs 

and which support means can be reconstructed. Therefore, it is necessary to reconstruct the 

individual learning processes concerning flexible mental calculation as well as the interaction 

processes to be able to evaluate weather Mutual Learning with its two central matters took place.  

To meet the aspiration of designing a teaching-learning-arrangement to foster flexible mental 

calculation on the one side, and to investigate learning and interaction processes on the other, a 

Design Research approach is used (Prediger & Zwetzschler, 2013). This requires research questions 

on the level of design and research. Nevertheless, this contribution focuses only on the level of 

research and the investigation of individual learning processes. The following question will be 

addressed: How do individual learning processes of elementary students with and without cognitive 

learning disabilities concerning flexible mental calculation develop during the cooperative-

interactive phase of Mutual Learning?  

Iterative design research cycles as an approach for answering the question 

To investigate this, a teaching-learning arrangement was designed, tested and refined by conducting 

design experiments in three iterative cycles. Within each cycle the individual learning processes as 

well as the interaction processes were reconstructed to be able to evaluate weather Mutual Learning 

took place. To, in a next step, reconstruct support means for successful Mutual Learning.  

Theoretical sample: The design experiments were conducted in classes two and three (7-9 years 

old), at three different German primary schools. Laboratory situations with couples of learners 

allowed to learn more about their thinking, their individual learning and interaction processes. Each 

design experiment consisted of three phases (Figure 1) and took place in a pair setting with one 

child tested and “termed” with and one child without learning disabilities. The participants were 

selected with the help of the class teacher and the special needs teacher in order to find pairs of 

children who like each other to have a positive basis of communication. In the design experiments, 

the learners processed the learning activities largely by themselves. The researcher, on the one 

hand, acts as a teacher, in order to give the learner a stimulus or help, and on the other hand as a 

researcher, who wishes to learn more about the thinking processes and the ways of proceeding by 

means of observation and targeted inquiry. 

 
Figure 1: The structure of a design experiment 

The teaching-learning arrangement - "We explore neighboring sums": After a mutual introduction 

(Figure 1), the children individually explore neighboring numbers on a 20frame (I-/individual-

phase). The focus on neighbors – which are next to, under or crosswise to each other – and their 

sums enables them to discover number and problem characteristics and relations, as well as to 

develop mental calculating strategies based on individual abilities, arithmetic-, and context-

characteristics. In the following, two children – one with and one without learning disabilities – 



work together (You-/cooperative-interactive-phase), which enables them to communicate, use, 

reflect, refine, and/or improve their discoveries and strategic tools. In this way, singular accesses 

and comprehensions can evolve, through communicative exchange, to new comprehension and 

understanding. Due to the focus on neighboring sums the arithmetical patterns stay the same even in 

higher number ranges. This makes communication possible, even though some children already 

transfer their discoveries to neighbors on the 100frame or generalize the mathematical structures.  

In order to reconstruct and categorize the development of goal-differentiate heterogeneous learning 

processes concerning flexible mental calculation, a model (Figure 2) has been drafted on the basis 

of previous research (Rathgeb-Schnierer & Green, 2013; Rechtsteiner-Merz, 2013). As mentioned 

before, a ‘process of solution’ is a situation-dependent and individual response to specific ‘cognitive 

elements’ (Rathgeb-Schnierer & Green, 354) (e.g. ‘characteristics and relations of numbers and 

problems’ or ‘automatized procedures’) and the corresponding construction of the actual solution 

process using ‘tools for solution’ (Rathgeb-Schnierer & Green, 2013, 355).  In this sense, ‘cognitive 

elements’ are individual experiences, which comprise background-knowledge and -expertise for the 

individual process of solution. Referring to the theoretical background, the grey fields in Figure 2 

are predictors of flexible calculation. Those will be fostered on different cognitive levels as an aim 

of the designed teaching- learning arrangement. 

 

Figure 2: A model to reconstruct children’s learning paths  (cf. section ‘Selected Results’) 

Each field of this model is described and defined by certain characteristics in order to group 

children’s learning paths (for more information see Korten, i.V.). 

Two analytical perspectives for answering the question and for developing local theories 

The process of generating local theories gets content-specific theoretically and empirically justified. 

The data was collected in form of transcribed videos and gets analysed from two perspectives: 1) 

An epistemological perspective, to learn about individual learning processes on different cognitive 

levels in terms of the common content. 2) An interactionist perspective, to learn about the 

interactive structures during the cooperative-interactive phase of student with and without learning 

disabilities, and how these interaction processes influence the learning processes.  

In order to address the two central matters of successful Mutual Learning, both perspectives are 

essential to evaluate if the children progress on their individual level and at the same time learn with 

and from each other. The interpretation of statements and actions, reconstructs interactive 

knowledge construction. Accordingly, an Interpretatively Epistemological Analysis Approach of 

Interactive Knowledge Construction (Krummheuer & Naujok, 1999; Steinbring, 2005) gets used. 



At the same time this reveals information for the analysis of the teaching-learning arrangement and 

gives answers weather Mutual Learning in the sense of inclusion is supported or not. Thus, the 

empirical findings allow elaborating and enhancing the teaching-learning arrangement, as well as 

local theory building about mutual learning processes. Here the focus will be on the latter. 

Selected results  

In this section, the described analysis approach is illustrated with a short exemplary cooperative-

interactive phase. Afterwards, selected general results concerning the research question addressed in 

this contribution will be presented. In the exemplary situation, a child with learning disabilities (S1) 

and a child with average mathematical skills (S2) work together. They explore crosswise 

neighboring numbers and their sums. Figure 3 shows an example. 

      

Figure 3: Crosswise neighboring numbers   

S1: We need [the sum] 24 in between… 23 (points on 7+16=23) #, 24 (points between 

7+16=23 and 7+18=25), 25 (points on 7+18=25)  

S2:  # No, this is… No... Here is the same. (points on 4+13=17) Also always one. 

(points on 3+12=15) See, there is 16 missing… here 14 is missing. (points 

between 2+11=13 and 2+13=15) Here 18. (points between 4+13=17 und 

4+15=19) Oh here even (points between 5+14=19 und 6+17=23) two … no, 3… 

 

 

 

 

 

 

 

 

S1:  What? Now I am confused. 

S2: Why? Ah! See, … 

Interactionist perspective: S1 assumes that the sum 24 is missing and questions the completeness of 

the sums. This ‘incorrect assumption’ (key impulse) leads S2 to exemplify relations between the 

sums. Her empirical argumentation leads to the hypothesis that the sum 24 does not exist. Both 

participants communicate with each other about the common content, according to individual 

assets. A ‘balanced cooperation’, in which both are involved and utterances are linked can be 

observed. Regarding to Naujok (2000) they are ‘collaborating’ with the focus on the same topic. 

Additionally, both develop on their individual level as the reconstruction of learning processes 

reveals: 

Epistemological perspective: The children respond to the same ‘incorrect assumption’ (Figure 4, 

sign/symbol) in different ways by referring to number relations on the basis of their individual 

cognitive abilities. Figure 4 and 5 show the progress of the scene from an epistemological 



perspective: S1 argues with counting and refers to the number word series (ordinal). S2 uses 

empirical arguments to prove that the sum of 24 does not exist by referring to arithmetical patterns 

(relational). Due to S1´s incorrect assumption, S2 discovers, exemplifies and later even generalizes 

number relations between the addition problems. S1, like this situation shows, is able to see and to 

question number patterns. This focus of attention on number characteristics and relations only 

started due to the interaction with S2. In the following, this situation leads S2 even to explore, 

explain and generalize the constancy of two sums (a+b)=(a-10)+(b+10) (Figure 5). From this point 

on, as a reaction on the interactive situation, she is not only referring to numbers characteristics and 

relations anymore but to problem relations, which she is using later to solve new problems. 

             
Figure 4 & 5: Analysis of interactive learning processes (Steinbring, 2005) 

The example shows how the individual learning processes developed during the cooperative-

interactive phase of Mutual Learning. Both progressed according to their individual levels, triggered 

by a key impulse in the interaction, in this case an ‘incorrect assumption’. These key impulses – 

here called ‘productive moments’ – seem to be opportunities for fruitful Mutual Learning (Korten, 

2017). Previously to the cooperative-interactive phase, S1 exclusively refers to ‘automatized 

procedures’ and used ‘counting’ as her ‘tool for solution’ with the help of counters as 

‘visualisations’ (cf. Figure 2, red dots). She only relied on the procedure of counting, which seems 

to be like a “dead-end road” for developing flexibility in calculating (Rechtsteiner-Merz & 

Rathgeb-Schnierer, 2016, p. 359). But due to the impulses resulting from the interactive-cooperative 

phase she starts to look at number characteristics and relations. She is able to sort the addition 

problems according to characteristics and puts them into relation (cf. Figure 2, red cross). This 

recognition of number patterns and numerical relations is after Rechtsteiner-Merz and Rathgeb-

Schnierer (2016) an important skill to overcome counting on the way to flexible calculation. S2 was 

also stimulated by the exchange with S1: She was a flexible calculator from the start on. She used 

‘basic facts’ and adequate ‘strategic means’ (e.g. decomposing and composing, using decade 

analogies, deriving solutions from similar problems such as 2 more and 20 more) by recognizing 

relations (cf.  Figure 2, blue dots). Due to the interaction with S1 she was forced to explain and 

argue, which led her to discover new relations (constancy of two sums), which she used to refine her 

‘strategic means’ later (cf. Figure 2, blue cross). It can be concluded that it was rewarding for both 

children to work in heterogeneous pairs in an arithmetic classroom. A study of Häsel-Weide (2016) 

about replacing persistent counting strategies with cooperative learning, supports this finding. 

These were typical learning and interaction processes, which took place in all design experiments. 

In regard to the research question, which is addressed here, five types of individual learning paths 



and their development during the cooperative-interactive phase of Mutual Learning could be 

reconstructed: 1) Children, who did not progress during the cooperative-interactive phase and used 

none or pre-existing individual insights into number/task characteristics and relations. 2) Children, 

who gained new insights into number/task characteristics and relations due to the task´s context. 3) 

Children, who gained new insights into number/task characteristics and relations due to impulses in 

the cooperative-interactive phase (e.g. S1). 4) Children, who refined their strategic means by taking 

advantage of new insights into number/task characteristics and relations due to the task´s context. 5) 

Children, who refined their strategic means by reflecting, inquiring and evolving insights into 

number/task characteristics and relations due to impulses in the cooperative-interactive phase (e.g. 

S2). In the cases 2)–5) changes could be identified because new insides were gained or strategic 

means were refined. Concluding, a development of learning process concerning flexible mental 

calculation was reconstructed for these situations. With respect to the title of this article and the 

definition given at the beginning, successful Mutual Learning took place and flexible mental 

calculation competencies were fostered on different cognitive levels in this inclusive situation. 

Outlook 

All research cycles demonstrated regularity in the appearance of the 'productive moments' in the 

interaction, which trigger individual learning as shown in the example. These moments mainly 

appeared during a ‘balanced cooperation’. Generally, a distinction can be made between ‘direct-

didactical, indirect-didactical and interactive productive moments’ (Korten, 2017). In the future, 

research questions on the level of design will be addressed in order to reconstruct support means for 

successful Mutual Learning. It will be investigated in more detail how the developed teaching-

learning-arrangement can specifically foster these ‘balanced cooperation’ and the 'productive 

moments'. First analyses show that beneficial and meaningful interaction must be specifically 

encouraged by an emotional benefit for all participants, which must be created from the outside. 

This, for example, can be a goal, which they can only reach together and functions as an ‘extrinsic 

positive dependence’ (Korten, i.V.). This idea takes up the principle of ‘positive dependency’ from 

the concept of ‘cooperative learning’ (e.g. Johnson, Johnson, & Holubec, 1994) and advances it for 

the conditions of an inclusive classroom. Without this ‘extrinsic positive dependence’ a ‘balanced 

cooperation’ with ‘productive moments’ seems to be impossible in an inclusive setting. With this 

Topic-specific Design Research Approach the two interests of the goal-differentiated fostering of 

flexible mental calculation in an inclusive classroom and the general understanding and supporting 

of Mutual Learning processes could be integrated and first local findings were presented.  
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In this paper, we present analyses of popular grade one textbooks, one from each of England and 

Sweden. Focused on Foundational Number Sense, we examine how each book’s tasks facilitate 

children’s learning of those number-related competences that require instruction and which underpin 

later mathematical learning. Analyses identified both similarities and differences. Similarities lay in 

books’ extensive opportunities for children to recognise and write numbers and undertake simple 

arithmetical operations. However, neither offered more than a few tasks related to estimation or 

simple number patterns. Differences lay in the Swedish book’s greater emphases on different 

representations of number, quantity discrimination and relating numbers to quantity, highlighting 

conceptual emphases on number. The English book offers substantially more opportunity for students 

to count systematically, highlighting procedural emphases. 

Keywords: Foundational number sense, mathematics textbooks, England, Sweden, grade one. 

Introduction 

In this paper we offer a comparative analysis of how commonly used textbooks, one from each of 

England and Sweden, enable year one pupils’ acquisition of foundational number sense (FoNS). 

FoNS, which has been discussed in earlier CERME papers (Back, Sayers & Andrews, 2013; 

Andrews, Sayers & Marschall, 2015; Sayers & Andrews, 2015), comprises those number-related 

competences that underpin later mathematical learning, both in the short and the long term, and 

require instruction. Derived from a systematic review of the literature (Andrews & Sayers, 2015), 

FoNS comprises the eight broad categories shown in Table 1. Focused on the FoNS-related 

opportunities initiated during whole class teaching, the framework has structured analyses of grade 

one lessons in various European countries (Back et al., 2013; Andrews et al., 2015; Sayers, Andrews 

& Björklund Boistrup, 2016) and identified didactical emphases commensurate with earlier research 

undertaken in the same countries.  

Until now, we have not examined the framework’s effectiveness with respect to identifying FoNS-

related opportunities in textbooks. This is a significant omission, particularly as both textbook 

production and deployment are unregulated in England and Sweden. This significance is heightened 

by uncertainty with respect to pre-school students’ likely FoNS-related experiences. On the one hand, 

the English pre-school curriculum specifies that children should “count reliably with numbers from 

1 to 20, place them in order and say which number is one more or one less than a given number. 

Using quantities and objects, they add and subtract two single-digit numbers and count on or back to 

find the answer” (Department for Education, 2014, p.11). On the other hand, the Swedish pre-school 

curriculum, which specifies no such detail, expects children to develop an understanding of the basic 

properties of quantity, number and number concepts (Skolverket, 2016). Thus, while there are no 

explicit FoNS-related expectations in the Swedish pre-school curriculum, a number, but not all, are 

addressed in the English. 
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FoNS Characteristic Learners are encouraged to 

Number recognition Identify, name and write particular number symbol  

Systematic counting Count systematically, forwards and backwards, from arbitrary starting points 

Number and quantity Understand the one-to-one correspondence between number and quantity 

Quantity discrimination Compare magnitudes and deploy language like ‘bigger than’ or ‘smaller than’ 

Different 

representations 
Recognise and make connections between different representations of number 

Estimation Estimate, whether it be the size of a set or an object 

Simple arithmetic Perform simple addition and subtraction operations 

Number patterns Recognise and extend number patterns, identify a missing number 

Table 1: Summaries of the eight FoNS categories 

Of particular interest to this paper is Bierhoff’s (1996) comparison of the number-related 

opportunities offered in commonly used English, German and Swiss textbooks. Focused on the 

transition from “working with numbers up to 20… to working with two-digit numbers” (p. 143), she 

found that English textbooks were the least coherently structured. Also, students were expected to 

calculate with large numbers before consolidating their understanding of the integers up to 20, a 

situation made problematic by the English overemphasis on place value. Turning more explicitly to 

studies focused solely on English textbooks, Newton and Newton (2007), in an evaluation of the 

professional support school textbooks might afford primary teachers, examined eighteen textbooks 

written for use with English 7-11 students. They found few tasks that would facilitate mathematical 

reasoning, being primarily focused on skills acquisition.  

With respect to Sweden, as in England, the production of textbooks has been unregulated since 1991 

(Ahl, 2016) and several recent studies have examined Swedish mathematics textbooks against various 

criteria. For example, at the university level, Lithner (2004) found tasks typically promoting low 

levels of imitative reasoning. At the upper secondary, or post-compulsory, level Nordström and 

Löfwall (2005) analysed the extent to which students were offered opportunities to engage with proof 

in two commonly used sets of textbooks. They found little evidence of proof in any of their examined 

topics, although there were many implicit opportunities in many of the tasks analysed. In similar vein, 

Lundberg (2011) compared three of the most commonly used textbooks from the perspective of 

proportional reasoning and found not only that direct proportion dominated but also that while both 

dynamic and static notions of proportion were present in all three textbooks, justifications were rare. 

With respect to the final years of compulsory school, Ahl (2016) examined the proportional reasoning 

in two popular textbooks. She found that “the impact of research findings on the representation of 

proportional reasoning is scant” in both (Ahl, 2016, p. 198) and that the books failed to encourage 

learners to understand the distinction between additive and multiplicative situations. In short, the 

limited available evidence indicates that textbooks written for older Swedish students present few 

opportunities for them to make mathematical connections or engage in mathematical reasoning. 



However, little is yet known about the ways in which textbooks written for young children present 

mathematical ideas. 

This study is a first attempt to evaluate the FoNS framework as a tool for analysing grade one 

textbooks. Thus, while it is not an explicit attempt to evaluate the content of the books themselves, it 

is an important first comparison of textbooks from the two countries. In making this comparison, we 

acknowledge Rezat’s (2006, p. 482) position that the mathematics textbook “can be regarded as an 

artefact in the broad sense of the term. It is historically developed, culturally formed, produced for 

certain ends and used with particular intentions”. In other words, comparative analyses of this nature 

highlight well cultural differences in expected learning outcomes. 

Methods 

Two popular textbooks, one from England and one from Sweden, were identified for analytical 

purposes. In focusing on popular textbooks, we believed we would gain insight into not only how a 

reasonably high proportion of children in both countries experiences FoNS but also what teachers 

and schools value in their choice of textbooks. Before formal analyses were undertaken, all four 

authors met for two days to discuss and evaluate a range of textbook tasks in order to operationalise 

the FoNS categories. Drawing on the studies of Li (2000) and others, only those tasks explicitly 

addressed to the student were analysed. For example, both of the examined textbooks included 

instructions or suggested activities that teachers might use. However, these were not analysed as they 

did not explicitly address the learner and typically included too little detail to show how they might 

have been used with children. For similar reasons, since tasks included in teacher guides were not 

focused directly on students, teacher guides were not included in the analyses. After this first pass, 

each of the first two authors took responsibility for analyses of the Swedish and English textbooks 

respectively. In these roles, each was supported by the third and fourth authors with respect to 

ambiguous or difficult to interpret tasks. In addition, random exercises from each textbook were also 

coded by both the third and fourth authors as part of a moderation process.  

Operationalising the codes 

 

Figure 1: Additive tasks from the Swedish and English textbooks respectively 

Figure 1 shows one example from each of the textbooks, Swedish on the left and English on the right. 

In one of several similar tasks in one exercise, Swedish students were asked to “compare the number 

of dots” and then “write either = or ≠” in the box. This particular task, which occurred before the 

introduction of addition, was thought to encourage completion by counting and coded for systematic 

counting. The expectation that students would address issues of equality or inequality led to its also 

being coded for quantity discrimination. In addition, the dot patterns not only offered different 



representations of number but allowed for subitising and an awareness of the relationship between 

number and quantity. The goal of the English task, based on a coat hanger with ten pegs of which 

some of which had been covered with a cloth, was to identify the number of hidden pegs. The way in 

which the task was presented explicitly involved number recognition, while its focus was on simple 

arithmetic. In addition, its allusion to cardinality led to its being coded for awareness of the 

relationship between number and quantity. In short, many tasks attracted multiple codes. 

 

Figure 2: Number patterns tasks from the Swedish and English textbooks respectively 

Some FoNS categories, as shown in Table 3, were rare in both textbooks. In this respect, Figure 2 

shows tasks, one from each textbook, with explicit foci on number patterns. The Swedish task on the 

left was based on a section of a hundred square, with students being expected to complete the missing 

values. In addition to being coded for number patterns, the explicit focus of the task, it was also coded 

for systematic counting, number recognition and, implicitly, simple arithmetical operations. These 

decisions drew on the facts that the task required students to count on, recognise numbers and, in 

moving from one row to another, add or subtract ten. The English task on the right was one of several 

based around a section of a multiplication table torn from a longer strip of paper that invited students 

to count on in fives and enter the missing numbers. In addition to being coded for number patterns, 

these tasks were also coded for number recognition, systematic counting and simple arithmetical 

operations.  

Results 

Below we present two analyses offering similar but importantly different perspectives on the data. 

The first is based on frequencies and the second on proportions. 

A frequency analysis 

The figures of Table 2 show the distribution of the eight FoNS categories across the two textbooks, 

one from England and one from Sweden. The first thing to notice, acknowledging that both books are 

intended to provide the complete learning experience for year one students, is that the Swedish book 

offered 444 tasks appropriate for FoNS coding, while the English only 257. That is, while both figures 

represented similar proportions of the totality of tasks within their respective books, the Swedish 

textbook comprised 187 (73%) more FoNS-related tasks than the English. Table 2 also shows that of 

the eight FoNS categories, number recognition was the most frequently observed, with 532 out of 

691 tasks providing opportunities for learners to recognise, write and say numbers. In similar vein, 

simple arithmetical operations were common occurrences throughout both books. Neither of these 

results, we suggest, is surprising as arithmetical competence is an unequivocal curricular goal, which 



relies extensively on number recognition. The least commonly observed FoNS category was 

estimation, with just 18 occurrences. 

  
Category present in task (444 Swedish tasks and 257 English tasks) 

 
  No Yes   No Yes   No Yes  
 Number recognition Systematic counting Number and quantity 

England 29 228   145 112   194 63  
Sweden 130 304   354 80   259 175  

  159 532   499 192   453 238  

  χ2 = 31.8 (A)   χ2 = 50.9 (A)   χ2 = 17.9 (A)  
 Quantity discrimination Different representations  Estimation  

England 237 20   202 55   250 7  
Sweden 370 64   181 253   423 11  

  607 84   383 308   672 18  

  χ2 = 7.33 (B)   χ2 = 88.9 (A)   χ2 = 0.03 (C)  
 Simple arithmetic Number patterns    

 
England 154 103   232 25     

 
Sweden 232 202   406 28     

 

  386 305   638 53     
 

  χ2 = 2.74 (C)   χ2 = 2.45 (C)     
 

Chi squares marked A yielded p<0.0005, B yielded p<0.01 and C were not significant 

Table 2: Frequencies and chi square tests for each category for each country.  

When data are compared, some interesting results emerge. On the one hand the English books 

comprised significantly higher proportions of tasks involving number recognition (χ2=31.8, 

p<0.0005) and systematic counting (χ2=50.9, p<0.0005) than the Swedish. On the other hand, the 

Swedish books offered significantly higher proportions of tasks involving opportunities for students 

to relate numbers to quantity (χ2=17.9, p<0.0005), engage in quantity discrimination (χ2=7.33, 

p=0.007) and experience different representations of number (χ2=88.9, p<0.0005). Proportionally, the 

figures of Table 2 show no significant differences with respect to estimation, simple arithmetical 

operations or number patterns. These results take us to the second step of the analysis. 

A proportional analysis 

A second perspective on the data can be seen in Table 3. Firstly, several FoNS categories were found 

in similar proportions in both textbooks. These included relatively high occurrences of simple 

arithmetical operations, implicated in just under half of all tasks in both textbooks. In smaller 

proportions, around a quarter of all tasks in both books, were opportunities for students to relate 

number to quantities. In very small proportions in both books, were found number patterns and 

estimation. Secondly, several categories distinguished the expectations found in one book from the 

other. On the one hand, the English textbook comprised a significantly higher percentage of number 

recognition tasks (89%) than the Swedish (70%) (t=6.31, p<0.0005). Also, almost half of all English 

tasks involved systematic counting in comparison with less than a fifth in the Swedish (t=6.95, 

p<0.0005). Alternatively, the Swedish textbook comprised nearly three times as many tasks involving 

different representations of number as the English (t=10.57, p<0.0005), twice as many tasks focused 



on quantity discrimination (t=2.92, p=0.004) and almost twice as many tasks relating numbers to 

quantity (t=4.42, p<0.0005). Finally, Table 3 shows that the percentage of tasks coded for estimation, 

simple arithmetical operations and number patterns were comparable in both books, confirming that 

the two analyses, one essentially parametric and the other non-parametric, yielded equivalent results. 

 E% S% t p 
Number recognition 89 70 6.31 0.000 
Systematic counting 44 18 6.95 0.000 

Relating number to quantity 25 40 -4.42 0.000 
Quantity discrimination 8 15 -2.92 0.004 

Different representations 21 58 -10.57 0.000 
Estimation 3 3 0.16 0.874 

Simple arithmetical operations 40 47 -1.66 0.097 
Number patterns 10 6 1.49 0.136 

Table 3: Percentage of all tasks coded for each FoNS category along with t-tests 

Discussion 

In this paper our objective was to examine the efficacy of the FoNS framework as tool for evaluating 

the learning opportunities embedded in commonly used textbooks and to undertake a comparative 

analysis to determine the framework’s sensitivity to different cultural expectations. In both cases, we 

believe the study to have been successful. For example, with respect to the identification of the 

different FoNS categories, very few tasks were identified with an emphasis on estimation, a finding 

resonating closely with earlier classroom observations showing no evidence of teachers in England, 

Hungary, Poland, Russia or Sweden emphasising it in their teaching (Back et al., 2013; Andrews et 

al., 2015; Sayers et al., 2016). This, it seems to us, is an issue of some concern and the basis of further 

systematic inquiry. Indeed, acknowledging that estimation skills are important indicators of later 

mathematical competence (Booth & Sigler, 2006), that both older students (Sowder & Wheeler, 1989) 

and many otherwise competent adults (Hanson & Hogan, 2000) are uncomfortable with estimation 

tasks, it seems sensible to ask; why does estimation play such a lowly role in the classroom practice 

and textbooks of these two countries? This, we argue, is particularly pertinent in light of evidence 

from other countries that teachers see little relevance in teaching estimation (Alajmi, 2009). 

Furthermore, the similar frequencies of other FoNS categories are unsurprising. For example, it is 

reasonable to assume that the relative lack, in both textbooks, of tasks focused on number patterns 

may be explained by the fact that most year one curricular goals emphasise learners’ number 

recognition, relating number to quantity and the beginnings of arithmetic. In other words, while 

number patterns are important in preparing students for later mathematical learning (Lembke & 

Foegen, 2009), they may be subordinated in children’s early number experiences to more pressing 

developmental needs. 

With respect to cultural sensitivity the data yielded several hitherto uncovered insights. For example, 

on the one hand, the higher proportions of Swedish tasks coded for different representations of 

number, relating number to quantity and quantity discrimination allude to a book focused on 

conceptual understanding. On the other hand, the apparent lack of a conceptual emphasis in the 

English book finds further support in the high proportions of tasks coded for systematic counting and 

extremely high proportions of tasks addressing number recognition, which tend to suggest a book 



focused on the development of procedural knowledge commensurate with the low levels of 

mathematical challenge found in earlier studies of English textbooks (Bierhoff, 1999; Haggarty & 

Pepin, 2002; Newton & Newton, 2007). However, the conceptual emphasis found in the Swedish 

textbooks seemed not to match the generally negative findings of earlier Swedish studies (Ahl, 2016; 

Lundberg, 2011; Nordström & Löfwall, 2005). In this respect, it is not improbable that these 

differences may be because these earlier studies addressed textbooks for students in grades 7 and 

upward rather than on those for young children. Finally, drawing on Bernstein’s (1990) notion of 

curricular framing, it is interesting to note that the weakly framed Swedish pre-school curriculum 

seems to have prompted a conceptually focused textbook, while the strongly framed English pre-

school curriculum seems to have precipitated a procedurally focused textbook. Such matters allude 

to research beyond the scope of this paper but which will form a key aspect of any further analyses 

we make. 
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Structure sense can be mobilized by pupils to compare and to transform arithmetical expressions, 

however sometimes it can lead to mathematical inconsistency that pupils might be not aware of.  This 

paper provides evidence of this type of phenomenon. Through the analysis of an interview with a third 

grader, it is shown that the development of structure sense can result in transformations as 

a×b+a×c→(a+a)×(b+c). It is concluded that a development of structure sense requires a dialectical 

control between the syntactic and semantic interpretations of symbolic sentences. 
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Learning distributivity 

Distributive property appears to be less accessible to young students if compared to other 

multiplication’s properties (Larsson, 2016). This phenomenon could depend on the fact that it is not 

a property of one operation but it states a relation between two operations. Lo and colleagues (2008) 

found that many prospective primary teachers show difficulties in applying the distributive property: 

a frequent erroneous transformation is 18×26=10×20+8×6 in which tens are multiplied just by tens 

and units are multiplied just by units (ibidem).  

According to Carpenter et al. (2005) “an implicit understanding of the distributive property can 

provide students a framework for learning multiplication number facts by relating unknown facts to 

known facts” (Carpenter et al., 2005, p.55). For this reason they sustain that it is important to foster 

the use of fundamental properties of operations to transform mathematical expressions rather than 

simply calculating. An awareness of the structure of arithmetical expressions appears as fundamenta l 

to recognize the equivalence of two arithmetical sentences without carrying out calculations. Mason 

et al. (2009) use the expression ‘structural thinking’ to refer to such awareness. 

We wonder which difficulties might students face when they are introduced to structural think ing, 

and specifically when they elaborate expressions through operations’ properties – distributive 

property in particular. 

Structure sense in arithmetic 

Apparently, before Mason et al. (2009) introduced the construct of structural thinking, different words 

have been used to express similar ideas. Linchevski and Livneh (1999) found that many of the typical 

difficulties faced by students while interpreting algebraic expressions can be found also in the 

arithmetical context. In particular, they notice students’ difficulties in determining the order in which 

additions and subtractions have to be performed both in the arithmetical and in the algebraic context. 

These authors conclude that “difficulties revealed in children’s understanding of structural properties 

of the algebraic system originate in their understanding of the number system” (Linchevski & Livneh, 

1999, p.192).  



Undoubtedly, students must be exposed to the structure of algebraic expressions. However, it must 

be done in a way that enables them to develop structure sense. This means that they will be able 

to use equivalent structures of an expression flexibly and creatively. (ibidem, p. 191) 

Similarly, Caspi and Sfard remarked how “structures of algebraic formulas are not unlike those of 

arithmetic expressions” (Caspi & Sfard, 2012, p. 64) and they interpreted such similarity as based on 

the fact that school algebra can be conceived as a gradual formalization of meta-arithmetic (ibidem); 

thus the development of an effective algebraic calculation competence has been referred to as the 

development of structure sense in arithmetic.  

Hoch and Dreyfus (2004) characterize structure sense in the context of high school algebra. They 

define it in terms of a collection of abilities. According to the cited literature, these abilities can be 

related to similar abilities in arithmetic. So we propose to modify Hoch and Dreyfus’ (ibidem) 

definition to adapt it to the context of primary arithmetic. Thus, structure sense in arithmetic can be 

described as a set of competences:  

1. recognising an arithmetical expression or sentence as an entity, for instance comparing two 

arithmetical sentences without calculating partial results. 

2. Recognising an arithmetical expression or sentence as a previously met structure, for example 

noticing that 3×4+5 is less than 10+3×4+5 because the second one is a sum which includes 

the first one. 

3. Recognising sub-expressions in which an arithmetical expression can be divided, as in the 

case of a student who can describe 5×7+8×7 as composed by two multiplications. 

4. Recognising mutual connections between sub-expressions, that means being able to identify 

which are the operations connecting the terms of an arithmetical sentence, even when such 

terms are not just single numbers but shorter expressions. 

5. Recognising which manipulations are possible to perform. For instance, on an arithmetica l 

sentence like 7+8×7+3+4, many transformations could be done (9×7+7 or 14+8×7) but there 

are also transformations that are not executable (as 15×7+3+4).  

6. Recognising which manipulations are useful to perform. According to the aim of 

transformations (comparing or calculating), some manipulations can be more useful. In the 

case mentioned above, the usage of associative property of sum (3+4=7) and distributive 

property (7+8×7+7=10×7) allows to notice that 7+8×7+3+4 is equivalent to 10×7. 

This definition is coherent with and specifies those given by Mason et al. (2009) and Linchevski and 

Livneh (1999). Some of the competences listed above can be activated by pupils to compare and to 

transform arithmetical expressions: thus, the presence of these abilities can witness the emergence of 

structure sense, however sometimes this same abilities can lead to mathematical inconsistency that 

pupils might be not aware of.   

This paper aims to provide evidence of this type of phenomenon, that can be considered as a an 

indication of an incomplete development of structure sense due to a lack of control on the numerica l 

interpretation of a specific structure.  



Data collection and analysis 

The results that we are going to present are part of broader research study (Maffia & Mariotti, 2016) 

aimed at investigating the teaching/learning of multiplication properties in the primary school. The 

empirical design included long-term teaching experiments involving, among others, a group of 

second graders. The results presented in this paper concern data coming from this specific group. 

Grade 2 was chosen to promote structural thinking in the case of multiplication since the very first 

introduction of this operation, that usually takes place at this school level in Italy. Among others, 

following Linchevski and Livneh’s suggestion to “promote the search for decomposition and 

recomposition of expressions” (1999, p. 191), we designed and implemented activities aimed at 

introducing the pupils to the distributive property as a transformation of numerical expressions 

(Maffia & Mariotti, 2015). The rectangular model of multiplication was introduced: activities of 

cutting and pasting rectangles with the same height (or width) were proposed to explore the 

relationship between different arithmetical expressions, eventually generalized and symbolica lly 

expressed in the distributive property. Examples of such cutting and pasting are given in Figure 1. 

      

Figure 1: Composition and decomposition of rectangles 

Starting from the activities with paper rectangles, the teacher realizes a mediation process to guide 

students till the usage of conventional arithmetical symbols to represent the relation between 

multiplication and sum according to the distributive property (ibidem). 

In this paper, we show data from semi-structured interviews conducted one year after the end of the 

teaching experiment. Thus, at the moment of the interviews the children are third graders (aged 8-9).  

The interviewer shows an image of two children who are writing the equalities 4×7=7×4 and 

6×8+6×3=6×11 on a blackboard (Figure 2) and he asks if what these children are writing can be 

considered correct. During the teaching experiment, children were asked to produce composit ions 

and decompositions of multiplications, using paper rectangles and then writing them with arithmetica l 

symbols. This is the first time that they have to validate or refute an already written equation. 

After the equalities shown in Figure 2, three other numerical sentences are shown and the interviewee 

is asked to comment about their correctness. These sentences are 5×6=5×2+5×4; 5×6=5×3+5×4; 

5×4+5×3=5×2+5×5. The structure of the first one is similar to the one shown in the image, but the 

position of expressions is inverted in respect to the equal symbol. The second one is like the first one, 

except for one number (so it is wrong), and the last one has a different structure but it relates two 

expressions with the same structure – a sum of products – and specifically, the structure of one of the 

members of the other equalities. So, the different sentences are designed to allow the child to compare 

or contrast the structures in the different equalities and, eventually, to apply arithmetical properties. 

During the interview, paper and pen are provided. 



 

Figure 2: Image showed to students at the beginning of the interview 

The interviews have been videotaped and then fully transcribed. Students’ transcribed utterances were 

analysed seeking for evidences of structure sense, through identifying instances of the characterizing 

abilities. In the following section we discuss some examples, showing specific aspects emerging from 

this analysis. In the analysis, the six competences of the list are indicated through the corresponding 

number in the list that is indicated between square brackets. 

Seeking symmetry in distributive property 

We begin with some excerpts, starting from the end of an interview: Francis comments about the 

equality 5×4+5×3=5×2+5×5. 

53 Interviewer: Now I will show you a very long one. What do you think about this one [he 

shows the equality 5×4+5×3=5×2+5×5]?  

54 Francis: [he writes the equality on his paper and then he answers quickly] It’s right! 

55 Interviewer: Did you already do it? 

56 Francis: Yes. 

57 Interviewer: Tell me how. I am not as fast as you are. 

58 Francis: Wait. I’ll write it. 5×4, is 20. [he writes 20 under the first multiplication. Then 

he writes the results of the other multiplications; second line in Figure 3] If I 
would put the 3 and I put 2 [he circles the 3 and he writes a 2 above it] and 

here I put a 5 [he circles the 4 and he writes a 5 above it] it would be the same 

operation.  

 

 

Figure 3: Francis’ inscriptions for the last equality 

In his explanation (line 58) Francis recognises the possibility of decreasing one of the factors of the 

second multiplication and increasing one of the factors of the first one, still maintaining the same 

result (he says “it would be the same operation”). We can recognize an occurrence of the first 

component of structure sense because Francis is jointly and consistently acting on each part of the 

arithmetical sentence to maintain its value: he is recognising that the transformation of one 

multiplication affects the other one, thus he is considering the arithmetical expression on the left side 

as a unique entity [1]. 

The expression 5×4+5×3 is transformed in 5×5+5×2 to show the equivalence with 5×2+5×5; so 

Francis recognises a useful transformation for his purpose [6]. However, in the obtained expression 

5×5+5×2, the order of the two multiplications is inverted in respect to 5×2+5×5. Stating that the two 



expressions are equivalent, Francis is considering the expression as a sum of two multiplications [4] 

and so – according to addition’s commutative property – the order of the addends 5×2 and 5×5 can 

be inverted [5]. The child is also recognising that the expression is composed of two multiplicat ions 

[3]; this interpretation is strengthened by the written operations in the second line of Figure 3.  

So far, we have instances of five of the competences that characterize the structure sense; we can say 

that Francis is showing some evidence of structure sense. As a matter of fact, Francis’ explanation 

not only shows his awareness of structure regularities, but it is completely consistent in terms of the 

mathematical meaning of the expressions.  

However, this has not always been the case. At the very beginning, when the image (Figure 2) was 

firstly showed, he recognized the equality 6×8+6×3=6×11 as incorrect and stated that the equivalence 

would have been true if 6×11 was replaced with 12×12. Here is his explication: 

11 Interviewer: Wait. Tell me how did you get twelve and twelve.  

12 Francis: Six times eight plus six times three [he writes it] I would do six plus six [he 

draws circles around the 6s, as shown in Figure 4a] that makes twelve. 

13 Interviewer: I understand. So you get the first twelve.   

14 Francis: And eight plus three [he circles 8 and 3, Figure 4a] that makes twelve.  

15 Interviewer: I don’t agree. How much is eight plus three? 

16 Francis: Eight plus three... eleven [he corrects the second 12 writing a 1 over the 2]. 

17 Interviewer: Eleven. Ok. 

18 Francis: So it wouldn’t be twelve times twelve but twelve times eleven. 

 

(a)  (b)  (c)   

Figure 4: Francis’ inscriptions for the first equality 

Francis seems to recognize the expression 6×8+6×3 as relating two parts [3], two multiplicat ions 

connected by an addition [4], and he elaborates this structure according to a syntactic rule clearly 

respecting some kind of “structure sense”, but unfortunately it is inconsistent from the mathematica l 

point of view. The transformations he operates (Figure 4a) are strictly at the syntactical level: he is 

transforming the expression as if the addition would operate in the same way on both the first and 

second factors of the two multiplications.  

The interviewer asks Francis to check the correctness of his conjecture. Francis proposes to calculate 

the operations’ results. 

27 Interviewer: How can we get the result of this thing?  

28 Francis: We calculate forty-eight plus six times three that is… eighteen. Forty-eight 
plus eighteen is… and six times eleven is… [he performs the written 

calculation in Figure 4b]. Forty-eight plus eighteen… is… [he performs the 

written calculation in Figure 4c] sixty-six. So it’s right! 



29 Interviewer: Is it? So, what was wrong here? [he points Francis inscription in Figure 4a] 

In your initial check. Because you said that it wasn’t right.   

30 Francis: I thought we had to do 12×11. 

31 Interviewer: And is 6×11 enough?  

32 Francis: […] Yes, because we have to calculate the results of the two multiplications, 
to calculate the result of the third one and see if the first two ones equal that… 

their result.  

In line 28, Francis is able to divide the expression into its parts: he recognizes that it is composed of 

two multiplications [3], then he recognizes that he has to sum the two products, so he is recognizing 

the connection between the two parts [4]. This interpretation is made explicit again in line 32. Francis 

is showing two of the competences that characterize structure sense: number 3 and 4 in the list. This 

time, though using his structure sense, the pupil is interpreting the equivalence between the two 

expressions in a different way. Previously he considered the expressions 6×8+6×3 and 12×11 to be 

equivalent because one could be transformed into the other according to a syntactical manipulat ion. 

In the following, he recognizes two expressions to be equivalent when they give the same result (lines 

28 and 32). We consider the first case an occurrence of a syntactical interpretation of the equivalence 

between numerical expressions, the second one as an occurrence of a semantic interpretation. Though 

not yet well harmonized, both types of interpretations seem to be available to Francis, at the same 

time, the semantic interpretation seems to maintain its primacy.  

When the other two equalities are shown, Francis resorts again to the semantic interpretation. He 

calculates the results of the expressions on the two sides of the equal sign and then he checks if the 

results equal each other: 

43 Interviewer: What if I show you this one? [he shows 5×6=5×3+5×4] 

44 Francis: Thirty [he writes 30]. Fifteen, [he writes 15] twenty [he writes 20 next to 15 

and then he puts a + sign between the last two numbers. Then he writes =35 

obtaining the inscription shown in Figure 5a]. It doesn’t work.  

45 Interviewer: Can we modify it to make it correct? [Francis doesn’t answer] If I would keep 

this as it is [he points the right side of the equality] what should I write on this 

side? [he points the left side of the equality]  

46 Francis: Ehm… [he puts the pen on the sheet of paper] 

47 Interviewer: Let’s write it on the paper [Francis writes the equality] Ok. Let’s say that I 

want this [he points the right side of the equality in Francis’ inscription] as it 
is, but I would change the other to make it correct.  

48 Francis: We should change the 6 [he circles it] into a 7 [he writes 7 above the 6, Figure 

5b]  

In this excerpt the interviewer tries to push Francis to go back to a syntactical interpretation. However, 

though Francis responds in a mathematically consistent way, it is impossible to determine if the 

proposed modification depends on a syntactical transformation (3+4=7) or on a comparison of the 

expressions’ results. His behaviour in lines 27-32 and 53-58 suggests that both the interpretations are 

plausible.  

 



 (a)    (b)  

Figure 5: Francis’ inscriptions for the third equality 

 

Discussion and conclusion 

As discussed in the introduction of this paper, the development of what we have called “structure 

sense” can be considered a main objective of the teaching and learning of algebra.  

Starting from adapting the definition given by Hoch and Dreyfus (2004) to the case of arithmetic 

expressions, we set up a list of competences characterizing structure sense and we used it to evaluate 

students’ behaviours as evidences of the presence of structure sense. The aim of this paper is not to 

discuss about the effectiveness of the classroom intervention; indeed, it presents a recurrent 

phenomenon that was possible to identify in the development of the structure sense: it is characterized 

by an unstable relationship between the syntactic and the semantic level in treating numerica l 

expressions. The case of Francis can be considered a paradigmatic example.  

The pupil shows all the competences we used to characterize structure sense but in order to check the 

correctness of an equality he adopts a syntactical manipulation of operations that is not 

mathematically consistent: an expression as a×b+a×c is transformed into (a+a)×(b+c). We interpret 

this behaviour as coherent with a structural sense, but also as a case of corrective action aimed at 

overcoming what can be seen as a structural flaw, a seeking for symmetry in the distributive property. 

The perceived lack of symmetry could be twofold. On the one hand there is no symmetry in the role 

of the terms: the common factor in the multiplications plays a different role than the others. On the 

other hand the structure of the equality a×b+a×c=a×(b+c) is asymmetrical because there is a sum of 

multiplications on one side of the equal sign and just one multiplication on the other side. This 

interpretative hypothesis is reinforced by the fact that the student does not show difficulties in treating 

an equality like 5×4+5×3=5×2+5×5, which has a symmetrical structure. This urgent demand of 

symmetry may be based also on the experience with other properties, such as the commutative and 

associative properties, and can be considered as a particular source of difficulty in dealing with 

distributive property.  

The wrong transformation (a+c)×(b+d)→a×b+c×d is well known in the context of school algebra and 

it is found also in the arithmetic context in equalities like 18×26=10×20+8×6 (Larsson, 2015; Lo et 

al., 2008). In this paper we have evidence of the application of the opposite transformation 

a×b+c×d→(a+c)×(b+d) in the arithmetic context. As far as we know, this particular transformation 

has not been documented in literature before. It has to be stressed that this transformation is shown 

by four students out of nineteen pupils who were involved in our research. So, we have a too small 

sample to state anything about its spreading.  

In any case, the emergence of this kind of erroneous transformation appears relevant from the didactic 

point of view: if we expect teachers to promote structural thinking they have to know the potential 

difficulties that students could meet. Literature shows that this is not always the case (Lo et al., 2008).  

One clear suggestion emerging from our study is that an approach privileging pure syntactica l 



transformations seems risky, whilst educating pupils on the danger of losing the semantic 

interpretation of an expression can help them to reach mathematical consistency.  

Fostering structural thinking requires the development of semantic control assuring that any syntactic 

transformation has a consistent arithmetical interpretation. Further investigation is needed in order to 

fully describe how such a semantic control can be efficiently developed.  
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In this paper, we report part of a study carried out within a design research methodology. An initial 

conjecture was made that included the importance of the hundred square model to facilitate the 

discussion about decimal number system features and connections among and within different 

rational numbers’ representations. We present how this model was used and why it led to changes 

into different models, 10x100 grid, and decimat, during the teaching experiment. Finally, we reflect 

on how these changes inform the initial conjecture. 

Keywords: Models, decimals, elementary education, design research. 

Introduction 

Currently, in the Portuguese official curriculum (Ministério da Educação, 2013), rational numbers 

are first approached in Grade 2 (7/8 years old students), in its fraction representation and measure 

meaning. This meaning has a central role and the use of line segments in the number line is 

recommended. Decimal numbers1 are first introduced in Grade 3 and operations with both 

representations are highly valued. Given the students’ age, we believe that these guidelines are too 

focused on procedures, and, instead, a learning path aiming at conceptual understanding should be 

privileged. 

We will focus part of a broader study in which we follow a design research methodology. In this 

paper, we discuss how the decimal number system features can be addressed and discussed in the 

hundred square model, and why this representation was changed into other representations, during 

the teaching experiment. In order to better frame this paper, we first present an overview of the 

characteristics of design research methodology, because the use of this approach allowed the 

constant analysis and adaptation of the model explored during the teaching experiment. We then 

organize the paper according to the different stages of design research: in the preparation phase 

section, we present how the literature informed the design principles and initial conjecture; in the 

experimentation phase, episodes regarding the use and adaptations of the hundred square model will 

be presented, and in the third phase a deeper analysis of the episodes will be made as well as its 

impact on the initial conjecture. 

Design research methodology 

Design research is a methodology that has gaining ground in Mathematics Education research. It 

can allow the construction, or “engineering”, as Cobb, Jackson, and Dunlap (2016) describe it, of 

                                                 

1  Term used in this paper to identify positive rational numbers written accordingly to the decimal system 

notation, using the decimal comma or point. 



instructional means to promote the learning of a particular topic, while constantly studying the 

development of that learning, considering all elements of the instructional means, not only the 

designed tasks but also the context in which they are carried on. Therefore, in design research 

theoretical and pragmatic components are highly dependent on each other. 

There are five crosscutting features of design research that, together, distinguish it from other 

methodologies: (i) the purpose is to develop theories about both the learning process and the means 

designed to support it; (ii) it has a highly interventionist nature, since it can be a powerful 

methodology to design an approach to promote the development of a particular content or form of 

practice, in a real classroom; (iii) it has two interrelated components, a conjecture is made regarding 

students’ learning (prospective component), that is constantly confronted to the actual learning 

(reflective component); which can lead to changes in the initial conjecture that is tested again, 

giving design research its (iv) iterative design; and finally there is an attempt to (v) develop humble 

theories that address the learning of a particular topic (Cobb et al., 2016). 

One of the main characteristics of this methodology is its cyclic nature. Each cycle develops in 

three phases: (i) teaching experiment preparation and design; (ii) teaching experiment; and (iii) 

retrospective analysis that can lead to revisions and a new cycle (Cobb et al., 2016). The conjecture 

can be refined during the teaching experiment, resulting in micro cycles, or in between experiments, 

in macro cycles, or both types of refinements can happen (Prediger, Gravemeijer, & Confrey, 

2015). The present study builds on micro cycles. 

Study’s rationale (preparation and design phase) 

Decimal numbers in the research field 

Studies related to decimal numbers reveal important evidence regarding difficulties that arise when 

dealing and operating with this number representation (e.g., Steinle & Stacey, 2003), whole 

numbers’ knowledge influence (e.g., Resnick, Nesher, Leonard, Magone, Omanson, & Peled, 1989) 

or about knowledge of the decimal number system, specific of this representation (e.g., Baturo, 

2000). Studies present evidence that those difficulties and whole number interference can remain in 

adulthood (e.g., Vamvakoussi, Van Dooren, & Verschaffel, 2012), which reveals the demanding 

conceptual understanding needed regarding this representation of rational numbers. 

According to Post, Cramer, Behr, Lesh, and Harel (1993), the development of rational number 

understanding is related to (i) flexibility with translations between rational number representations; 

(ii) flexibility with transformations within a representation; and (iii) progressive independence from 

concrete embodiments of rational numbers. In a broader perspective, representations can be a tool to 

or reflect students’ development of mathematical ideas of a particular concept. Therefore, 

representations that can become models assume an important role, establishing a link between 

knowledge connected to reality and the mathematical knowledge to be developed (Van den Heuvel-

Panhuizen, 2003). Initially, models named as models of (Gravemeijer, 1999), are closely connected 

with the task context and cannot be used in other situations. This type of model should evolve to a 

model for (Gravemeijer, 1999), that can be applied in various situations, focusing mathematical 

connections and not the situation described in the task. In order for this development to happen, the 

model should have certain characteristics that make it suitable to be used in diverse situations. As 



Van den Heuvel-Panhuizen (2003) highlights, to support learning, the model should allow students 

not only to progress into the mathematical ideas but also to go back to the reality context if needed. 

Research show evidence of decimal numbers’ learning fostered by the appropriation of different 

models. We will now focus two of the models considered in the teaching experiment: the hundred 

square and the decimat. The hundred square is a model often used when teaching decimal numbers, 

until hundredths, that allows connections between the iconic representation of the grid and symbolic 

representations, not only decimals but also fractions and percentages. The grid also facilitates 

students to understand the meaning of each digit and, consequently, its decimal number system 

notation. It is also an important model to compare and order decimal numbers and, later on, can be 

used to add and subtract decimal numbers (Cramer, Monson, Wyberg, Leavitt, & Whitney, 2009). 

Decimat is a similar model, however, by being rectangular and divided into two rows and five 

columns, allows a clear visualization of each part again divided by 10, emphasizing the 

multiplicative structure of the decimal place value in the decimal number system (Roche, 2010). 

Structuring the cycle 

Based on literature review, the following six design principles were elaborated to guide the 

conjecture and instructional means: (1) use of tasks which context appeals to the use of rational 

numbers in its decimal representation; (2) promote movements among decimal numbers and other 

rational number’s representations highlighting their relations; (3) promote the use of representations 

that support their transformations into models to think about rational numbers in its decimal 

representation; (4) encourage the use of prior knowledge; (5) promote the discussion of whole 

number interferences and common misconceptions; and (6) establish a learning environment where 

students are encouraged and feel confident to share and discuss their own mathematical ideas. 

Supported by these principles, an initial conjecture was made: A teaching experiment comprised by 

different types of sequenced tasks, explorations and exercises, focusing decimal numbers in 

measure and part-whole meanings and the use of number line and hundred square model, 

considering students’ whole number and informal knowledges and evoking the need for the use of 

decimal numbers, as well as its connections with other rational numbers representations, in a 

learning environment where students have an active role and small group work and whole-class 

discussions are privileged, will promote a meaningful understanding of decimal numbers. 

A set of tasks was planned (some new and others adapted from existing materials) and students’ 

understanding was anticipated. Tasks were open to adjustments or to be completely revised 

depending on the understanding students revealed along the way. The teaching experiment was 

intended to be carried out in Grade 3, from February to June 2014, however, the last tasks were 

conducted at Grade 4. The teaching experiment was, generally, carried out once per week, in one 90 

minutes lesson, involving a total of 16 weeks over the two school years. 

The participants were 25 students and their teacher. A diagnostic study was made with the same 

students, in Grade 2, that provided information about students’ ideas of different rational numbers’ 

representations, which supported the design of the initial tasks and also help to gather information 

concerning the teacher’s role. Consequently, the classroom teacher asked for a detailed plan for 

each task. The plan was made by the researcher (first author) and discussed previously with the 



teacher, and included suggestions to support teacher inquiry, possible students’ answers and 

solutions and potential students’ difficulties. 

In the data presented in the next section, students will be referred to with fictitious names. The tasks 

were solved in small group work or in pairs, and whole-class discussions were privileged. Records 

of all the students’ written work, along with participant observation by the researcher supported by 

audio/video recordings and field notes, constituted the main data sources. Meetings between the 

researcher and the teacher, prior and after each lesson, were also audio-recorded. 

One of the expected products of the broader study is a set of indicators of decimal number 

understanding that can be helpful both for teachers and researchers. We intend that these indicators 

address two different levels: (i) what is specific of this rational number representation, and, (ii) the 

intertwinement between this representation and other rational number representations. In this paper, 

we outlined some indicators of students’ understanding of decimal numbers to be supported by the 

appropriation of the models here presented. As an ongoing research, these indicators are 

preliminary and open to revision. Regarding the first level, we consider identifying the partitioning 

and grouping by powers of ten to create units of tenths, hundredths, and thousandths, and reveal an 

understanding of the decimal numeration properties (positional value, multiplication and addition 

properties, in addition to base ten property). In relation to the second level, we consider recognition 

of a decimal number in different representations; identifying the unit, and establish equivalences 

between numbers represented as decimals, percentages, and fractions. 

Classroom episodes (teaching experiment phase) 

We present three illustrative episodes of the use of three models throughout the teaching 

experiment, focusing on part-whole meaning. The examples presented concern the use of each 

model by students (representations as models of). The first two occurred in Grade 3 and the third in 

Grade 4. We focus our analysis on the indicators of decimal number understanding as mentioned 

above. 

The hundred square was presented to students as a towel, divided into tenths and hundredths. After 

some exploration of this model, a task was presented to promote the discussion of common 

misconceptions, such as the comparison of decimal numbers based on its number digits. The 

hundred square model was showed to help students explain their answers. One of the questions was 

“Do you think 0,67 is bigger than 0,9?”. In whole-class discussion, Jorge revealed how he used the 

hundred square model to compare both numbers: 

Jorge: Initially I thought that 0,67 was bigger than 0,9 because at first sight 67 seems 

bigger than 9. . . but then I realized that I could think in a different way. So, if we 

think that each column has ten-hundredths, we would have to paint six of these 

columns, without the seven (in 0,67) it would be only sixty. And the other one 

(0,9) would be 90, it was bigger, nine columns are 90 hundredths, so it was bigger 

than painting 67 hundredths. 

Due to the appropriation of the hundred square, Jorge could visualize and compare the quantities 

represented by both numbers (Figure 1). The hundred square has shown to have great potential, as 

its use helped Jorge to overcome the initial, and expected, interference of whole number knowledge.  



 

 

 

 

Figure 1: Jorge’s work record at a task with the hundred square model 

When preparing the teaching experiment, it was anticipated that students could visualize each small 

square in the model (one hundredth) divided into ten equal parts, each representing ten thousandths. 

However, it was important that students, in fact, saw the thousandths, instead of inferring that from 

this model. Given its shape, the hundred square doesn’t allow further divisions into thousandths, in 

the same manner, thus another model was thought. Later, in the classroom, this model started to be 

called as “thousandths bar”. With a rectangular shape, a bar represents the unit that is divided into 

ten large squares, representing tenths, and each one is then divided into ten columns, the 

hundredths, that are again divided into ten equal parts, the thousandths (Figure 2). 

 

 

Figure 2: Thousandths bar model 

At first, students were encouraged to find out how many “small squares” were in the whole bar. 

Many looked into one “big square” divided into quarters and calculated 4x25, which was 100, and 

then multiplied 100 by 10, reaching 1000. Initially, students thought that each “big square” was like 

the hundred square, representing a hundred hundredths, or one. This was probably due to the fact 

that each tenth in this model was similar to the hundred model. A unit change was implied: before, 

one big square represented one unit, now a similar but smaller square represents one tenth. 

Nonetheless, the model allowed students to relate tenths, hundredths, and thousandths. 

An example of these connections made by students is shown in Figure 3. Artur’s answer relates to a 

question where students were asked to paint in the thousandths bar 0,001 with green, 0,01 in red and 

0,1 in yellow. After, they were asked about what connections they could find among these parts. 

Figure 3: Artur’s work record at a task with the thousandths bar model, with translation 

“The relations we found were:  
green x 100 = yellow, green x 10 = red, 

red x 10 = yellow, red : 10 = green, 
yellow : 10 = red, yellow : 100 = green” 
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Artur, like other colleagues, could clearly state the partitioning and grouping by powers of 10 that 

create the units of tenths, hundredths, and thousandths. It is important to refer that it was the first 

time that these relations were clearly stated by the students. We believe that visualizing each 

painted unit in the same model promoted the establishment of these connections. On the other side, 

and even though some students correctly identified the tenth and the thousandth in the bar, they had 

painted one hundredth as one-quarter of one-tenth. Students said that 0,1 was the biggest square in 

the bar, then 0,01 was the “middle” square and 0,001 was the smallest square (Figure 4). 

 

 

Figure 4: Mafalda’s work record at a task with the thousandths bar model 

We weren’t expecting this response. It can be linked to two factors: due to the strategy used to 

count the total of “little squares” in the bar, or probably due to the bar layout that misleads students 

to think about the different decimal units in terms of squares. If a big square is 0,1 and a small 

square is 0,001, the middle square will be, incorrectly, 0,01. 

Thus, together with the classroom teacher, we felt the need to adapt the model again. We needed a 

model that, like the hundred square, clearly allowed to see the connections between different units, 

and like the thousandths bar, allowed the extension to the thousandths and students’ inference of 

further partitions by powers of 10, to develop the idea of density. After scratching a model with 

such features, followed by searching for a similar model in the research field, we came across the 

decimat model, as described by Roche (2010). Therefore, we included some tasks adapted from this 

author’s work in the teaching experiment. 

The model was presented with one tenth divided into hundredths, and one of which divided again 

into thousandths. When students first saw it, they called it “towel”, relating it to the hundred square. 

They immediately recognized the model shown tenths, one of which divided into hundredths and 

thousandths. It was said that the model could be further divided if they wanted or needed. 

One of those tasks was a game adapted from the one proposed by Roche (2010). In groups of about 

four students, two dices were given: one regular dice with dots and other with different symbolic 

representations, specifically 0,01; 0,001;   ,  , 1%, and 10%. The students had to roll both 

dices and multiply the numbers represented in them. Then, they had to color that part in the decimat 

and say which part of the decimat had already been painted, altogether. Figure 5 shows the record 

of the game played in Maria’s group.  

Figure 5: Maria’s group record of game plays using the decimat model, with translation 



Besides the flexibility in the movement within symbolic representations (decimal, percentage, and 

fraction) and the operations with decimal numbers as multiplication and addition, this example 

illustrates the potential of this model. Only one tenth is further divided, however, when needed, the 

students easily did the divisions on another tenth, revealing an at-ease use of the model.  

Looking back and adjusting (retrospective analysis phase) 

We addressed the use of part-whole models to promote students’ understanding of rational number 

in its decimal representation. Both the hundred square and the thousandths bar models can foster 

connections between the unit partitioning and grouping by powers of 10, and the decimal number 

system. However, the hundred square only extends to hundredths and the features of the 

thousandths bar can hinder the idea of partitioning the unit by powers of 10. 

We want to highlight that students had already worked with the hundred square and thousandths bar 

when the decimat was introduced, which influenced its successful use. We also need to refer that we 

weren’t seeking for a single and perfect model. In fact, students should explore different models. In 

the present study, the students continued to use all models. Nevertheless, a model should promote 

the visualization of specific mathematical connections to support student’s learning (Van den 

Heuvel-Panhuizen, 2003), thus, the model’s features should allow its evolving alongside the 

development of students’ understanding. The adjustment of the initial model, done to highlight the 

decimal number system properties, such as the partitioning and grouping of units and place value, 

led us to the revision of our initial conjecture, in which we will now emphasize the decimat as an 

important part-whole model. 

However, the use of a model by itself is not enough for students to establish mathematical 

connections, so the connections intended by the use of models should be focused (Prediger, 2013). 

The results help us to understand that the decimat can be the first model approached, initially 

divided into tenths, then fully divided into hundredths, in the same manner that the hundred square 

was also first approached, and, finally, divided into thousandths. We believe that such an approach 

can promote the understanding of partitioning by powers of ten connected with decimal place value. 

Besides that, it will allow to order and compare different representations, promote the development 

of a benchmark number system, unit conceptualization and support decimal numbers’ operations. 

All these connections are strong foundations for the development of decimal number understanding. 

Acknowledgment 

This work is supported by national funds through FCT – Fundação para a Ciência e Tecnologia by 

grant to the first author (SFRH/BD/108341/2015). 

References 

Baturo, A. (2000). Construction of a numeration model: A theoretical analysis. In J. Bana & A. 

Chapman (Eds.) Proceedings 23rd Annual Conference of the Mathematics Education Research 

Group of Australasia (pp. 95–103). Fremantle, WA. 

Cobb, P., Jackson, K., & Dunlap, C. (2016). Design research: An analysis and critique. In L. D. 

English & D. Kirshner (Eds.) Handbook of international research in mathematics education (3rd 

ed., pp. 481–503). New York, NY: Routledge. 



Cramer, K. A., Monson, D. S., Wyberg, T., Leavitt, S., & Whitney, S. B. (2009). Models for initial 

decimal ideas. Teaching Children Mathematics, 16(2), 106–117. 

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. 

Mathematical Thinking and Learning, 1(2), 155–177. 

Gravemeijer, K., Bowers, J., & Stephan, M. (2003). A hypothetical learning trajectory on 

measurement and flexible arithmetic. Journal for Research in Mathematics Education. 

Monograph, 12, 51–66. 

Ministério da Educação (2013). Programa de Matemática - Ensino Básico. Lisboa: ME. 

Post, T., Cramer, K., Behr, M., Lesh, R., & Harel, G. (1993). Curriculum implications of research 

on the learning, teaching, and assessing of rational number concepts. In T. Carpenter & E. 

Fennema (Eds.), Research on the learning, teaching, and assessing of rational number concepts 

(pp. 327–362). Hillsdale, NJ: Lawrence Erlbaum and Associates. 

Prediger, S. (2013). Focussing structural relations in the bar board – A design research study for 

fostering all students’ conceptual understanding of fractions. In B. Ubuz, C. Haser, & M. A. 

Mariotti (Eds.), Proceedings of the Eighth Congress of the European Society of Research in 

Mathematics Education (TWG2, CERME8) (pp. 343–352). Antalya, Turkey: Middle East 

Technical University in Ankara and ERME. 

Prediger, S., Gravemeijer, K., & Confrey, J. (2015). Design research with a focus on learning 

processes: an overview on achievements and challenges. ZDM Mathematics Education, 47(6), 

877–891. 

Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989). Conceptual 

bases of arithmetic errors: The case of decimal fractions. Journal for Research in Mathematics 

Education, 20(1), 8–27. 

Roche, A. (2010). Decimats: Helping students to make sense of decimal place value. Australian 

Primary Mathematics Classroom, 15(2), 4–10. 

Steinle, V. & Stacey, K. (2003). Grade-related trends in the prevalence and persistence of decimal 

misconceptions. In N. A. Pateman, B. J. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th 

Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 

259–266). Honolulu, Hawaii: PME. 

Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for 

reaction time evidence for a natural number bias in adults. The Journal of Mathematical 

Behavior, 31(3), 344–355. 

Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in Realistic Mathematics 

Education: An example from a longitudinal trajectory on percentage. Educational Studies in 

Mathematics, 54(1), 9–35. 



Middle school students’ difficulties in proportional reasoning 

Oznur Soyak1 and Mine Isiksal2 

1Middle East Technical University, Faculty of Education, Ankara, Turkey; oznrsoyak@gmail.com 

2Middle East Technical University, Faculty of Education, Ankara, Turkey; misiksal@metu.edu.tr 

The purpose of this study was to investigate 6th, 7th and 8th grade students’ common difficulties 

regarding rate and ratio problems. The data was collected from 149 sixth, seventh, and eighth grade 

students enrolled in public middle schools in Balikesir in response to three typical proportionality 

questions. Data analysis revealed that the confusion of unit rate identification and algorithmically 

based mistakes were identified as major difficulties in solving the missing-value proportion and 

comparison problems. To address the potential difficulties students have regarding rate and ratio 

problems, students should be exposed to different types of proportional problems. 

Keywords: Proportional reasoning, unit rate identification, algorithmically based mistakes. 

Introduction 

Proportional reasoning is considered to be a keystone of students’ mathematical development and is 

required to access more advanced high school mathematics like algebra, geometry, probability, and 

statistics (Lesh, Post, & Behr, 1988). Lesh and his colleagues identify the proportional reasoning 

involving multiple comparisons between quantities (Lesh et al., 1988).  

Previous studies have shown that children can manipulate part-whole relationships within sets of data, 

but they tend not to employ a systematic approach or to use categories (Inhelder & Piaget, 2013). 

Although children’s mathematical development contains preproportional reasoning knowledge, 

which has always been seen as the hallmark of the formal operations stage (Inhelder & Piaget, 2013), 

this knowledge is insufficient for an understanding of proportional reasoning and the solution of ratio 

and proportion problems (Lamon, 1993).  

In order to promote a conceptual understanding of ratio as the first step of proportional reasoning, it 

is necessary to create comparisons, beginning with additive and moving on to multiplicat ive 

comparisons. Additive comparisons compare two quantities to decide how much greater or less one 

quantity is than another by finding their difference, which is not the same thing as ratio. On the other 

hand, multiplicative comparisons provide a ratio by comparing two quantities to decide how many 

times larger one quantity is than another. Therefore, providing some key activities carefully designed 

to link these two concepts will be useful to help students to construct the aspect of ratio (Kaput, 1985).  

Difficulties in proportional reasoning 

Teachers have focused on teaching how to arrive at correct answers by applying rules instead of 

explaining the reasons behind those rules (Hart, 1988). While most of the students will be able to do 

computation properly, they are not encouraged to build links between concepts. Furthermore, some 

of the methods used by students lead to problems due to incorrect solution strategies or incorrect use 

of correct strategies (Hart, 1988).  

Regarding proportional difficulties, algorithmically based mistakes are usually the result of lack of 

attention during the learning process or weak conceptual understanding (Hart, 1988).  According to 



researchers, problems may also arise from the attempt to find a fast way to compute ratio problems. 

In other words, students may be rushing to solve the problem quickly without thinking about the 

relationship between the given quantities and tend to simply copy the procedures identically. In 

addition, even though they may be able to construct a correct algorithm for cross multiplication, some 

students may not correctly explain the reasoning behind the algorithm (Lobato, Ellis, & Zbiek, 2010). 

Routine problems may lead students to assume that they can mimic solution procedures, but when 

they come across different problem types or non-standard language, they may struggle. Literature 

review showed that a number of studies have dealt with the reasons for mathematical difficulties in 

the field of ratio (Ellis, 2013; Hart, 1988; Lamon, 1993; Misailidou & Williams, 2003; Sarwadi & 

Shahrill, 2014). However, few studies have examined common difficulties among 6th, 7th and 8th 

grades students connected with unit measures approach for the different types of proportionality 

problems. 

Statement of the problem 

This study was conducted to investigate 6th, 7th and 8th grade students’ difficulties regarding rate and 

ratio problems. To put it another way,  study aimed to answer the research question: “What are the 

common difficulties encountered by 6th, 7th and 8th grade students’ while the missing-value proportion 

and comparison problems involving rate and ratio concepts?” 

Method 

Sample 

The sample of this study, which included 66 males and 83 females, consisted of students from sixth 

to eighth grade at a public middle school in Balikesir, Turkey. The school addresses a wide variety 

of neighborhoods and income levels ranging from low income to upper middle class.  

Measuring tool  

Three proportional word problems in real world contexts were used to investigate students’ 

proportional reasoning difficulties by grade levels (see Table 1). When we reviewed the literature on 

proportional reasoning, these three questions were cited as the most widely known problems. The 

first and the second questions were chosen from Lamon’s (1993, 1999) studies. The last question was 

an adapted version of an orange-juice task identified by Noelting’s (1980). In terms of problem types 

in the domain of ratio, the first and third questions were comparative, and the second question was 

missing value problem. While comparison problems provide four values and the aim is to specify the 

order relation between the ratios, in a missing-value problem three of four values are given and the 

last value is asked (Karplus et. al, 1983b; Lamon, 2012).These adapted questions were applied to 

sixth, seventh and eighth grade students, and the students were given one class hour to complete the 

written test. The questions are given in Table 1 below. 

 

 

  



       

 
Ratio Achievement Test 

Please solve the problems by using appropriate strategies  

1. 
Ayse bought four bananas paid 3.6 liras from Market A. Berna bought three bananas paid 3.3 liras from 

Market B. Where would you buy your bananas to make profit? 

2. 
Derya, Ahmet and Kaan bought three helium-filled balloons and paid 1.5 liras for all three. They 

decided to go back to the store and buy enough balloons for everyone in the class, How much did 

they pay for 24 balloons? 

3. 
Zeynep and Sinan tested three juice mixes. Which juice will have the stronger lemon flavor?  

Mix A    Mix B                                        Mix C 

2 cups lemon concentrate  1 cup lemon concentrate           4 cups lemon concentrate 

3 cups cold water  4 cups cold water                       8 cups cold water  

Table 1: Questions about proportional reasoning    

Data analysis 

The solution strategies were analyzed along the strategies as unit rate, scale factor, ratio tables, and 

cross multiplication (e.g., Bart, 1994; Hart, 1988; Lesh, Post, & Behr, 1988).Then, incorrect solutions 

were separated from correct solutions, and then qualitative analysis was conducted to capture the 

difficulties behind the incorrect answers. The students’ solutions were categorized with regards to 

mistake (error) strategies that have been stated in the literature: misusing a correct strategy (e.g., Hart, 

1988; Karplus et al, 1983), using additive strategy (e.g., Hart, 1988; Inhelder & Piaget, 2013) and 

faulty application of a correct results that deviates from the unit rate (e.g., Tourniaire & Pulos, 1985). 

These mistake strategies were used to characterize students’ difficulties while solving the given 

proportional problems (see Table 1) involving rate and ratio concepts. Table 2 showed the types of 

difficulties. 

Types of difficulties                        Explanation Example 

Confusion of the unit 

rate identification 

 

Using an arbitrary unit value (it is the guessing 

method without adjustment/ 

the unit value is the number of objects the 

problem starts with. 

The student assumes that each  

banana is 3.6 liras  fin Market A 

(Q1) 

 

Algorithmically based 

mistakes 

Having computational mistakes  4 𝑐𝑢𝑝𝑠

8 𝑐𝑢𝑝𝑠
 =2 Mixture C (Q3) 

Table 2: Classification of Student’ difficulties  on Ratio Achievement Test 

Findings 

Students’ incorrect solutions in solving rate problems were analyzed through category building (see 

Table 2) to reveal their difficulties and grouped under two headings: “confusion of the unit rate  

identification” and “algorithmically based mistakes”. These two difficulties were identified as the  

major problems in three typical proportionality questions. Data analysis revealed that of 149 students, 

45 (27%) for the Q1, 25 (15%) for the Q2 and 94 (56%) students for the Q3 gave either no answer or 

an incorrect solution, as recorded in Table 3.  

 



Table 3: Number and percentages of students’ incorrect solutions  

Confusion of the unit rate identification 

Unitizing is identified as a cognitive process that occurs after identifying the unit.  This process allows 

subjective preference by composing two quantities to create a new unit called composed unit (Lobato 

et al., 2010). Students employed a number of different measurement units. However, some types of 

questions require the use of a standard measurement unit; the use of any other unit than this one was 

not allowed (Lamon, 1999). The main difficulty in answering these problems was the identificat ion 

of the unit/rate. To answer the Q1 (see Table1), it was necessary to measure the amount of stuff using 

the concept of unit. Students can also find a different number of measures with regards to their 

measuring unit. When solutions to the first problem were analyzed, confusion about the unit rate 

could be plainly seen, indicating that the student was not able to conceptualize the unit of 

measurement.  

  
(a)                                                                   (b) 

 

 

(c)                                                                    (d) 

Figure 1: Student’s original (a) and translated (c) solution on ignoring the number of objects , 

Student’s original (b) and translated (d) solution on finding the amount of balloons for one lira as 

original versions 

As can be clearly seen from Figure 1-a, although the unit was defined explicitly (single banana cost) 

the student thought that a banana cost 3.6 liras in Market A and 3.3 liras in Market B. In other words, 

the student ignored the number of objects. Then two prices 14.4 and 13.2 were compared and this 

solution did not contribute to the correct answer.  11 (16%) of 69 sixth grade students, 6 (15%) of 39 

seventh grade students and 7 (17%) of 42 eight grade students stated that the best place to buy a 

banana was Market B because they spend 13.2 for four bananas and they get profit. 

Another misunderstanding regarding the unit rate given in the question can be seen in Figure 1-b. 

This student could not decide the exact and correct numbers to find the unit rate in Q2. Therefore, 

 6 Grade (69) 7 Grade (39) 8 Grade (41) 

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 

Incorrect 

Solutions 

13(19%) 4(6%) 30(44%) 8(16%) 3(8%) 17(44%) 8(20%) 2(5%) 23(56%) 

Confusion of 

the unit rate 
identification 

Algorithmically 

based mistakes 

10 (77%) 

 

3 (23%) 

2(50%) 

 

2(50%) 

30(100%) 

 

0(0%) 

5(63%) 

 

3(37%) 

1(33%) 

 

2(67%) 

12(71%) 

 

5(19%) 

4(50%) 

 

4(50%) 

2(100%) 

 

0(0%) 

20(87%) 

 

3(13%) 

No answer 7(7%) 8(12%) 9(13%) 5(13%) 2(5%) 8(16%) 4(10%) 6(15%) 7(17%) 

I think the answer is B. We can compute [corresponding two 

prices] for 4 [bananas]. They [corresponding prices] are Market 
A=14.4 and Market B= 13.4. Therefore Market B is more 
economical. 

 

We need to find price for one balloon. Therefore we should 
divide 3 balloons by 1.5 liras. And then we should multiply the 
result by the number of balloons that they need to get how much 
money is required. 

 



instead of finding the price for one balloon, as can be seen here, he calculated the amount of balloons 

for one lira by dividing 3 by 1.5. Then this value was multiplied by 24 to find the price of whole 

balloons. Indeed, it makes sense to divide 3 by 1.5 to find the amount of balloons per unit lira. This 

student seems to follow the directions provided in terms of finding single units. Even though in her 

written explanation on the right hand side of Figure 2 she stressed finding the value of one balloon, 

she noted that three would be divided by 1.5. 

 

(a)         (b)  

Figure 2: Student’s original (a) and translated (b) solution on comparing the amount of lemon juice 

with the amount of water 

The Q3 provides more evidence for students’ difficulties regarding typical ratio comparison unit rate 

problems. Findings revealed that 56% of 149 students think about the unit rate with given quantit ies 

in a reasonable way. For instance, as can be seen in Figure 2 without thinking about fractiona l 

relativity, the student compares the amount of lemon juice used (2 glasses, 1 glass and 4 glasses) with 

the amount of water to find the stronger tasting lemonade. Even though this student came to the 

correct solution that Mix A has a stronger taste than the others, this solution contains misconceptions. 

He matched the glass of water with the lemon concentrate, and decided that there is one extra cup of 

water in Mix A. However, if this student was asked to sort the concentration of juice for each mix, 

the answer would likely be wrong, because, according to his solution, the order would be Mixture A 

and then Mixture B and then Mixture C. Thus, the less tasty mixture would have been Mix C.  

Algorithmically based mistakes 

The other difficulty which emerged from the data was algorithmically-based mistakes and emerged 

in the computation process. Ashlock (2001) identifies these errors as ‘buggy’ algorithms that involve 

more than one incorrect step in the procedure and do not attain the desired purpose. When the details 

of this difficulty were examined, it was revealed that 8% of the students made basic fact errors and 

conducted incorrect operations while dividing the decimals. 

  

I divided [corresponding to price) 3.6 
by [corresponding to amount] 4 to get 
the price of one banana for Market A. 
And I did the same computation for 
Market B. I made a comparison 
[between Market A and Market B]. 
Market B is more economical with 79 
cent (kuruş).  

(a) (b) (c) 

Figure 3: Students’ original (a) solution on an algorithmically based mistake, Student’s original (b) 

and (c) translated solutions on a difficulty with division 
 

 
A=2 glasses of lemon concentrate 
3 glass of water 

B=1 glass of lemon concentrate 
4 glasses of water 
C=4 glasses of lemon concentrate 
8 glasses of water 

Answer: A 

 
Mixture A has one more glass of 

water, 

Mixture B has three more glasses 
of water 
Mixture C has 4 more glasses of 
water 



Figure 3-a illustrates these algorithmically based difficulties for Q2. First, by dividing 24 by 3, this 

student got 8 groups. As shown above, this student attempted to add 1.5 eight times. She wrote 3 and 

left a space and then wrote 1.5. It can be seen in the calculation that the student first multiplied the 

whole part by 8 and then the decimal part by 8. However, she did not recognize the multiplicat ive 

structure even in a familiar computation and she started with an incorrect computation. Then it seems 

she apparently lost track and then made algorithmic error by adding .50 to 12. Another example for 

algorithmically based mistakes can be seen in Figure 3-b. This student divided 3.3 by 3 and found 

0.11 as a cost of one banana. However, the correct answer was 1.1 and this mistake led the student to 

make the wrong comparison between the profits of two markets. According to this solution 0.9 is 

bigger than 0.11, so Market B is the best place to buy a banana. 

Discussion and conclusion 

The aim of this study was to investigate the common difficulties faced by 6th, 7th and 8th grade 

students while solving typical proportionality problems involving rate and ratio concepts. The first 

common difficulty resulted from confusion of unit rate identification. The second major finding that 

algorithmically based mistakes were another common difficulty in computation process. These 

findings show that current difficulties are consistent with the Turkish context beginning from 6th 

grades (Kaplan, Isleyen, & Ozturk, 2011).Unitizing is a different process from determining the unit, 

because different systems of units are based on different choices of base units. The most obvious 

finding to emerge from this study is that students mostly preferred the unit rate method as a solution 

strategy. The reason might be related to their tendency to retreat to more familiar strategies in their 

solutions.  

The cognitive process emerges after making a decision about the unit and misunderstanding arises 

when students think about the unit, from their computations especially while explaining unitizing 

(Lamon, 1999). The results of this study showed that sixth, seven and eight graders had problems 

about conceptualization of the unit of measurement. More specifically, the lemonade juice problem 

showed that students from all grades used unit rate strategy as a part of faulty application of a correct 

result by comparing the numerical differences additively rather than the multiplicatively. As Noelting 

(1980) states, they focused on the basis of the number of glasses of orange juice instead of 

proportional relations between given quantities. Especially sixth graders who offered a rich repertoire 

of unit rate mistakes tended to apply unit rate for the lemonade problem, and their incorrect results 

seems to be deviated from unit rate method (see Table 3). Based on this point, lemonade problem 

juice experiments might be beneficial for students in terms of experiencing their own strategies in 

real contexts instead of just explaining them verbally. Findings suggest that they might be performing 

this operation without realizing the difference between additive and multiplicative reasoning (Lamon, 

2012; Lobato et al., 2010). This situation can make a noteworthy contribution in terms of providing 

some indications of the complexity of these mixture problems not only for sixth but also for seventh 

and eighth graders. This suggests the need for more in-depth investigation into student thought-

processes when making these specific mistakes (Ashlock, 2001; Son, 2013). These results are 

consistent with other studies regarding emergent difficulties within Turkish context and suggest that 

proportional reasoning should involve more than just applying rules, and that there is a need for more 

information about what students perceive the unit to be (Sarwadi & Shahrill, 2014). Teachers should 

be more aware of student conceptions about unit rate while teaching proportional reasoning. This 

https://en.wikipedia.org/wiki/Base_unit_(measurement)


corroborates with Lamon (1993) and Singh (2000) who state that teachers must encourage the spend 

time to connect composed units with multiplicative comparisons by setting different types of 

problems for students as much as possible to enable them to build flexible and complex unit structures 

develop thinking strategies.  

Findings of the present study showed that algorithmically based mistakes are commonly seen in the 

student computation process. Son (2013) identifies three categories of error in the responses received 

in her study: concept-based errors, procedure-based errors and diagnosis errors. As Ashlock (2001) 

states, one of erroneous steps lead to emerge these kind of mistakes and then as a result the intended 

purpose is not systemically accomplished. On the other hand, the lack of clinic interviews with 

students in this study suggests caution in identifying the exact causes of these fundamental mistakes. 

In another words, it is difficult to decide whether students’ algorithmically based mistakes stem from 

limited conceptualization of the problems or whether there was a mistake in their algorithmic 

procedures. It is possible that some of the difficulties revealed in this study may result from 

concentration on algorithmic computation. This suggests the need for further investigation into the 

exact reasons for algorithmically-based mistakes through clinical interviews.  

The findings of the present study and previous research suggest several implications. As Lamon 

(1999) states, textbooks don’t provide the flexibility of using unit rates, and under these limited 

conditions students will not be able to compose units. Turkish mathematics textbooks do not provide 

sufficient examples of these types of problems which might promote the development of an 

understanding of unit rate. Besides, exposing students to a variety of proportionality problems can 

help them to develop multiplicative reasoning skills, and to promote flexibility in unitizing. 

Even though the scope of this study includes only determining the potential difficulties students have 

regarding rate and ratio problems, we might make some implications and suggestions to overcome 

those difficulties. Future research might continue to investigate students’ verbal reasoning process 

and provide more detailed insight into the reasons for incorrect solutions. Such exploration might 

yield more informative insights into the reasons for student identification of unit-rate confusion and 

algorithmically-based errors, and provide valuable implication for the development of students’ 

multiplicative reasoning ability.   
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Results of secondary school students' performance who participated in a pilot study of a general 

research project whose purpose is to contribute to building better mental objects for fractions are 

described. A Local Theoretical Model for fractions is used as a theoretical and methodological 

framework to design and develop a seven stages teaching sequence based on the use of applets 

created with GeoGebra and the number line as a conceptual and didactical resource. In this paper 

details of the design, development, and results of the first two stages are given. Results show 

children’s preferences to represent fractions on the unit  segment, that is, they think of proper 

fractions. A majority of the participants paid more attention to the graphical aspects of the applet. 

Keywords: Fractions, local theoretical models, applets for teaching, number line, improper fractions. 

Introduction 

The teaching and learning of fractions and rational numbers have been studied during several decades 

by researchers such as Freudenthal (1983), Behr, Lesh, Post and Silver (1983), Kieren (1988) and 

Figueras (1988). In the last decade, fractions have been considered as one of the most complex 

concepts studied in basic education (see for example López-Bustamante (2009) in Mexico, Contreras 

(2012) in Spain and Petit, Laird & Marsden (2010) in the United States of America).  

The construction of better mental objects of fractions during elementary school is considered 

important because that concept is widely accepted as an integral part of mathematics curriculum. 

Moreover, Siegler, Duncan, Davis-Kean, et al (2012) characterized the knowledge of fractions and 

division as unique predictors of students’ mathematics performance from elementary to high school. 

On the other hand, the technological tools as a resource for teaching mathematics have been 

incorporated into the curriculum because there is evidence that those are cognitive resources (e.g., 

Kieran & Yerushalmy, 2004). In this sense, an attempt is made to design a teaching model that 

includes these tools to promote the building up of students’ better mental objects of fractions.  

Research objectives  

The principle aim of the general study is to construct a Local Theoretical Model for fractions in order 

to enrich the actual teaching model (in Figueras' sense, 1988, pp. 21- 22) for Mexican elementary 

school. To achieve this aim a seven stage teaching sequence based on the use of applets was designed. 

The focus of this paper is the design and results of the first two stages of a pilot study. The purposes 

of those stages are: 1) to characterize the type of fractions students keep in mind to represent them on 

the number line displayed on the screen, 2) to make an exploration inquiry about students' ideas 



related to density and order of fractions, and 3) to identify if the students relate numerical aspects of 

fractions with their graphical representation. 

Theoretical framework and related literature  

The idea of Local Theoretical Model (LTM) developed by Filloy (see Filloy, Rojano & Puig, 2008) 

is used as a theoretical and methodological framework. From the theoretical point of view, the LTM 

serves to focus on the object of study through four interrelated components: (1) formal competence, 

(2) teaching models, (3) models for cognitive processes, and (4) models of communication. The 

construction of these components allows having an interpretative framework to identify the different 

aspects of fractions, which according to Freudenthal (1983) appear as fracturer, comparer, measurer, 

fraction operator and numbers.  

The building up of the teaching models component enabled the detection in Mexican and Spanish 

curricula, that the study of properties of order, density, the equivalence of fractions, and proper and 

improper fractions were considered in the last years of primary school. Bright, Behr, Post, and 

Wachsmuth (1988) and Saxe, Taylor, McIntosh, and Gearhart (2005) support the idea that working 

with the number line gives students an approach to the notion of above concepts. However, in some 

sixth-grade’ textbooks used in Spain (e.g., González et al, 2015) continuous and discrete models are more 

often than not used for teaching fractions, and activities that include the number line are lacking. 

These are some reasons for using the number line in this research as a didactical resource. 

A revisiting of specialized literature was carried out to construct the cognitive processes’ models 

component. Some of the papers analysed report students' difficulties faced when they learn with the 

number line. Michel and Horne (2008) mentioned three principal misconceptions: (1) Instrumental 

part-whole knowledge -difficulties with unit-forming, that is, children consider any line segment as a 

unit-. (2) Counting lines, not spaces -to represent a fraction on the number line some students count 

the lines or points (considering the zero point) instead of counting intervals-. (3) Decimalising the 

count -to represent any fraction, some children always divide the unit segment in ten parts-. 

Finally, the communication component is formed by the observation of communication processes 

between student-applet interactions. The building up of the four components grounds the design of 

the teaching sequence and its trial. The latter is detailed in the following sections. 

Methodology and methods 

From the methodological point of view the LTM serves to organize the research project in two main 

parts: (1) the building up of the four components of an initial LTM for fractions as a reference 

framework of the general research project and (2) an experimentation with students.  

Three phases comprise the experimental part. The first one relates to the design of a pre-test, a post-

test and a seven-stage teaching sequence. The second phase is the application of the teaching sequence  

and is structured as shown in Figure 1. Each stage is composed of two parts, one is a GeoGebra applet 

and the other a series of questions posed with the purpose that students show the ideas they bring into 

play about fractions when interacting with the applets. Applets and questions are set up on a Webpage 

that is associated with a database to record students' responses and interactions with the applets. The 

third phase corresponds to data analysis and characterization of students’ performance. 



 
Figure 1: Structure of the teaching sequence design and its trial 

The first two stages of the teaching sequence were done in one 45-minute session. Student individua l 

interactions with applets were collected in a non-invasive manner. Answers given were stored in a 

database and collected with computers provided by researchers. At the end of the experimental phase, 

stored information was joined and organized to proceed with its analysis. The applets are used as a 

resource to teach fractions and to collect data.  

Setting and participants 

The pilot study was carried out with 45 students from 12 to 14 years old in a secondary school located 

in a troubled urban area of Valencia in Spain. According to their mathematics teacher, participants 

have a large history of difficulties in mathematics. The students have serious problems of truancy, for 

this reason, not all of them completed the trial of the teaching sequence. Due to this fact, only data 

from students that completed sequential steps were considered, that is, 28 students made the first stage 

and 25 completed the second stage and so on (see Figure 1). The students worked alone during the 

teaching sequence trial. In this study, the teacher applied the pre-test and post-test.  

Applets’ design and results 

The applets were constructed in a learning environment for fostering the development of conceptual 

understanding of fractions, taking into account the didactical functions of technology in mathematics 

education adapted by Drijvers (2013, p. 3). As aforementioned, each stage of the teaching sequence 

has an applet with an exploration/interaction component (Figure 2 and 4) and a list of questions for 

students to reflect on what they observe during the interaction. To respond, students can turn to applets 

and observe the animation or representations of fractions. 

To characterize the answers given by students, schemes that enable a codification have been 

constructed (Figure 3 and 5). Answers given by pupils were grouped in different types determined by 

the form in which questions are posed. Type i are answers to questions that are general statements 

with diverse interpretations. Type ii collects answers that can be classified solely as correct or 

incorrect. Type iii groups answers to questions where a justification is required and Type iv are 

answers to questions that requires information students must write on the applets' windows.  

Applet design for the first stage . The applet's tasks for the first stage were developed considering 

two parallel lines of action. One directed towards the student's familiarity with the interact ive 

environment. The other leads the student to represent different aspects of fractions on the number line 

and to introduce them to a proper use of the fractions' mathematical sign system (Figure 2). Three 

indications appear on the screen in Figure 2. The first one -‘Move the sliders and watch what happens 

on the number line'-, has the purpose to focus students on the effects of the numerator and 



denominator sliders that appear at the upper left corner of the screen and to relate those to the 

graphical and symbolic representations of fractions also shown on the screen. 

 

Figure 2: Screenshot of the applet for the first stage  

With the second indication –“Represent fractions 1/2, 3/2 and 7/2 by moving the sliders”-, students 

are asked to represent the first two fractions to see them in the line segment on the screen. The main 

idea for asking students to represent 7/2 is to promote reflection regarding characteristics of fractions 

that can be visualized on the screen and of those that cannot. 

The third indication -‘Represent the fractions 1/3 and 4/3 and observe the blue segment that is drawn 

on the number line’- is provided in order to identify the point representing the fraction or the fraction 

as number, but also to focus students' attention on the magnitude representing the fraction, that is the 

length of the segment that represents the fraction. Thus, fraction as a measurer emerges, taking into 

account the part-whole relationship. 

In addition to the above information, seven questions (Figure 3) are posed to make students write 

their ideas about the observations made during exploration/interaction period. Students can read 

questions and explore the applet as many times as necessary to answer them. 

Data analysis and results of the first stage. For applet 1 there are only questions of types i and ii. 

The codification of students’ answers is done using the scheme shown in Figure 3. 

Questions (1, 2, 4, 5 y 6)  Type i 

Q1. Represent the fraction 1/4. What happens to the fraction 
if you move the numerator slider and the denominator slider 

is fixed? 

Q2. Represent the fraction 7/8. What happens with the 

fraction if you move the denominator slider and the 

numerator slider is fixed? 
Q4. What will happen if the number 25 in shown in the 

denominator slider? 

Q5. What happens when the numerator and the denominator 

are equal? 

Q6. Why the fraction 7/2 cannot be seen on the screen? 

 Students answers are referred to:  The interpretation is 
considered: 

1. Numerical aspects 

2. Graphical aspects 

3. Numerical and graphical 

aspects. 
4. Could not be interpreted 

 

a. Complete 

b. Incomplete 

c. Incorrect or 
ambiguous 

Questions (3 y 7)  Type ii 

 

Q3. Represent the fraction 6/7. In how many parts does the 

line segment that starts at 0 and ends at 1 is divided? How 
many of those parts are coloured? 

Q7. Write two fractions that cannot be represented on the 

line segment shown on the screen. 

 The purpose of these questions is that the students observe the 

graphical representation (line segment). The answers can be: 

 

a. Complete 

b. Incomplete 

c. Incorrect or ambiguous 

Figure 3: Scheme to characterize the answers to questions posed in the first stage  

One of the most common mistakes to respond Q3 was that students focused on counting the lines or 

points considering the zero point instead of counting spaces. 22 students identified at least one 

fraction greater than three to respond Q7. In the answers to questions type i (for example, Q1, Q2, 



Q4, Q5 and Q6), pupils orient their attention on what happens in the line segment that appears on the 

screen (Table 1). Of the 140 responses (28 students x 5 questions), 63 (45%) were classified in this 

group (code 2, in grey). Eight of these answers are considered complete (code 2a), since a consis tent 

explanation is offered, 25 incomplete (code 2b) and 30 incorrect or ambiguous (code 2c). Two 

answers related to these results are included to exemplify the way the coding is done. 

(1) The answer given by student S1 to question Q1 is: "the bar is moving to the right". This response 

is coded as 2b (see Table 1) because the focus is posed on what happens on the line segment. 

Specifically, it refers to the movement that occurs in the blue segment ("the bar" named by the 

student) representing the fraction when the slider moves to the right, that is when the value of the 

fraction is increased. The response is not considered complete because the student centres his 

attention on the movement to the right and presumably does not move the slider to the left. (2) The 

answer given by S3 to question Q1 is: "there are more points between numbers (denominators), in 

particular, four points between numbers". In this case, the answer also reveals a focus on the number 

line; the student observed the partition of the line segment, but the interpretation is incorrect or 

ambiguous because the student did not explore using the sliders (code 2c). 

The focus on numerical aspects of the fraction (code 1, in green) was observed in 38 of the 140 

responses to the questions of type i (27.15%); two answers were classified as complete (1a), 14 as 

incomplete (1b) and 22 as incorrect or ambiguous (1c). The answer given by student S17 to question 

Q6 is: "because the denominator is 2, and this is smaller than 7, so the numerator is bigger, so it is 

not possible". The student observed the values of the numerator and denominator, makes a 

comparison between the numerical values and justifies his answer; it was coded as 1c (see Table 1).  

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

Q1 1b 2c 2c 3b 2b 3b 2c 1c 1c 1c 2c 2b 2b 2b 3b 2c 1c 2b 1b 2c 4c 3b 2c 1c 2b 2b 2c 4c 

Q2 1b 1c 2c 2b 2b 3b 3b 1c 1c 1c 2c 2b 2c 1c 3b 1b 3a 2c 3b 2b 1b 3b 2c 2c 3a 2b 2c 2c 

Q4 2b 2c 2c 2b 2b 2c 2c 4c 4c 4c 4c 2c 4c 4c 2b 2b 1b 2b 2a 1c 1c 4c 4c 2c 1c 4c 4c 4c 

Q5 2a 3a 2a 2c 4c 2b 1b  1c 1c 1b  4c 1a 1b  4c 2a 2a 1b  2a 3a 1b  4c 1b  1a 2b 2b 2a 4c 2a 

Q6 3b 1c 2c 1c 1b 1c 3b 4c 2c 1c 2c 1c 1c 2b 2b 2b 1c 3b 3a 4c 2c 4c 2c 2c 4c 2b 2c 1b 

Q3 c a b a b a c b b b a b b b a c c c a c b b c c c b a a 

Q7 b c a a c c c b b a b b a b b b a a a b a b b b c c b b 

Table 1: Characterizations of students’ answers in the first stage   

Only in 17 of the 140 (12.14%) answers to the questions of type i (in purple) the focus on numerica l 

and graphical aspects is made evident. Five of them were classified as complete (3a) and twelve as 

incomplete (3b). The answer given by student S19 to Q6 is: "because in the line, one can only 

represent numbers between 0 and 3, and 7/2 is greater than 3". The student observed the structure of 

the line segment; his focus is posed on the graphical representation but also refers to the fraction as a 

number. For this reason, the answer was coded as 3a.   

Applet design for the second stage. A new form of symbolic representation is introduced in this 

applet (see Figure 4). In this case, students are asked to write five fractions in a pop-up window when 

they click the start button (INICIO in Spanish). This button is associated to a JavaScript subroutine 

that offers feedback and stores the student actions.   



 
Figure 4: Screenshot of the applet for the second stage  

 

Fractions are limited to those with denominator between 2 and 10 and numerator between 0 and 40. 

If a pupil writes a fraction that does not meet these conditions, a pop-up window appears with a 

message advising to take into account the characteristics of the numbers involved. When introduc ing 

a fraction greater than three, another alert window appears to indicate that the fraction cannot be seen 

on the number line. Fractions that are written by the user leave a trace in the form of red dots and the 

value of the fraction on the number line (see Figure 4). The visible trace on the screen helps the 

students answer questions posed in the Webpage in which the applet is embedded. 

Data analysis and results of the second stage . In the applet that corresponds to the second stage, 

there are questions of type i, ii and iv. The codification is done using the scheme in Figure 5. 

Questions (1, 3 and 4)   Type i 

  Students answers are referred to:  The answer could be: 

Q1. The 5 fractions you wrote appear on the 

number line on the screen? Why? 1. Numerical aspects 
2. Graphical aspects 

3. Numerical and graphical 

aspects. 

4. Could not be interpreted  

 a. Yes 

b. No 

Q3. Of the 5 fractions written, which one is the 

smallest? Why? 
Q4. Of the 5 fractions written, which one is the 

greatest? Why? 

 

a. Correct 
b. Incorrect 

Questions (2, 5 and 6)  Type ii 

Q2. Write the fractions you wrote from greatest 

to smallest. 

 The answers can be: 

a. Correct;             b. Incorrect;                c. Incomplete 

Q5. How many fractions could you write between 

0 and 1? 

Q6. How many fractions could you write between 

1 and 4? 

  

a. Finite     

b. Infinite, many, a lot of…  

c. No answer (blank)     
Write 5 fractions  Type iv 

The student must write five fractions 
 Written fractions can be classified as: 

 1. Proper;                2. Improper;               3. Unit   

Figure 5: Scheme to characterize the questions of the second stage  

Only 12 of 25 students were able to answer correctly Q2 (code 1). This result has an effect on the 

answers to questions Q3 and Q4, as shown in Table 2. The students who order fractions correctly 

chose correctly the greater or smallest fraction for questions Q3 and Q4 respectively. To justify the 

order of those fractions S1 considered the length of the blue segment that represents the fraction on 

the number line (2a). S2 considered the position of the point representing the fraction on the number 

line (2a), i.e. graphical aspects of fractions. Students S5 and S18 considered the characteristics of the 

numerator and denominator of the fraction, that is, numerical aspects of fractions (code 1a). 

The justification for most students who do not respond correctly to questions Q3 and Q4 is based on 

comparing the numerators and denominators of the fractions. Two of these cases are the following: 

(1) Student S8 choose 8/3 as the smaller fraction, "because the denominator is the smallest." The 



comparison made with fractions 4/10, 3/9 and 12/5. He also chose 4/10 as the greater fraction 

"because the denominator is the largest." (2) Student S7 chose 2/3 as the smaller fraction between 

5/4, 3/7, 3/4, "Because that [fraction] has the smaller numbers." 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 

 

Q 1 2a 1a 2b 1b 4a 4b 2b 4b 4b 4b 4a 4a 4b 4b 4a 2a 4b 2b 1a 1b 4b 4a 4b 2a 4b 

Q 2 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 

Q 3 2a 2a 4b 1b 1a 4a 1b 1b 2b 4b 1a 1a 2a 4b 4b 2b 2b 1a 1a 1b 1a 4b 2b 2b 2a 

Q 4 2a 1a 4b 1b 1a 4a 4b 1b 2b 4b 4a 2b 4a 4b 4b 4b 2b 1a 2a 1b 1a 4b 2b 2b 2a 

Q 5 b a a a a b a a a a a a a a a a a a b a c a c a b 

Q 6 b a a a a b a c a c a a b a a a a a b a c a c a b 

P 3 5 3 3 1 2 3 3 1 3 0 1 2 3 1 3 3 0 2 3 1 3 1 4 2 56 

Im 0 0 0 2 1 3 1 2 2 1 4 2 2 1 4 1 1 2 1 0 3 0 3 1 1 38 

U 0 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 5 

Table 2: Characterizations of students’ answers in the second stage  

Of the 50 answers (25 students x 2 questions) related to the density of fractions (questions Q5 and 

Q6), 35 were classified with code a, because the answer refers to a finite number of fractions, 6 were 

blank (code c), and only in 9 answers the density property was mentioned in some sense (code b), 

because some of the responses were "infinite fractions" or "as much as one wants". Finally, Table 2 

shows that students wrote more often proper (56) than improper fractions (38). 

Conclusions    

Results of the first two stages described before allow to highlight the fact that few students were able 

to relate the numerical and graphical representation of fractions. However, students who are able to 

relate these two representations can give complete and correct answers. To justify questions related 

to fractions' order, some students relied solely on the numerical aspect, for example, comparing the 

numerator and the denominator, which led to incorrect or ambiguous answers. Whereas answers in 

which graphical aspects are used, for example, the position of the point on the number line or the 

length of the blue segment, led to correct answers. Although most students focused on the latter 

aspect, they encountered difficulties in representing a fraction on the number line. The most common 

mistakes are instrumental part-whole knowledge and counting lines, not spaces, also reported by 

Michel and Horne (2008). 

On the other hand, the idea of density that students had seems to be strongly related to the number of 

fractions they represented during their interactions with the applet, these results are a warning to 

continue investigating these ideas in later stages and reflect the influence of applets. The students 

wrote more proper fractions even though the number of proper fractions with small denominators as 

2 or 3 are few compared with the number of improper fractions. These results can be related to fact 

that teaching models favouring the recognition of proper fractions are widely used. 
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How middle-grade students explain ordering statements within real 

life situation? An example of temperature context 
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The purpose of the study is to examine the extent to which middle-grade students agree on statements 

about the ordering of two negative integers given within a real-life context, and what kind of 

procedural and conceptual strategies they generate to order those numbers. Data is collected through 

a questionnaire including two statements about ordering integers from fifty-seven middle-grade level 

students in a public school. The results show that even though students agreed with both of the 

statements, they did not explain the concept of ordering in daily life with regard to conceptual 

meanings and that they have problems in their procedural knowledge repertoire.  

Keywords: Integers, contextual problems, negativity. 

Introduction 

Integers is one of the main topics that students have to understand to be successful in later contents 

such as algebra, geometry, or data analysis. While integers are required to solve algebraic expressions, 

sometimes it is required to understand the number system (Levenson, 2012). In particular, negative 

integers are hard for students to understand because of difficulty in representing those numbers 

physically (Davidson, 1992), locating them on the number line, performing four operations (e.g.: 

Ojose, 2015), or ordering them (e.g. Schindler & Hußmann, 2013). Ball (1993) exemplifies the 

dilemma of the case of teaching negative numbers regarding the ordering of two integers. 

Furthermore, according to Ball (1993), the transition among direction and magnitude aspects of 

negative integers are the heart of understanding negative integers.  

Students’ solution strategies  

Linchevski and Williams’ (1999) study reports on a disco game supported by an abacus model that 

helps students make sense of net-change, zero situations, and develop strategies such as compensation 

and cancellation within the everyday life situations requiring operations of integers. In addition to 

this, students have solution strategies of four operations such as the tendency of using the first 

addend’s sign, ignorance of the second addend’s sign, or generalizing the statement by rote as ‘two 

negatives make a positive’ and so on (Ashlock, 2010). Considering the literature, it is seen that many 

studies focus on student solution strategies about operations on integers. However, in the availab le 

literature, there are limited studies that focus on students’ strategies about ordering integers (Schindler 

& Hußmann, 2013; Ojose, 2015). Furthermore, what kind of pieces of information students have 

regarding ordering integers, is rare. 

Conceptual and procedural knowledge 

According to Hiebert and Lefevre (1986), pieces of information might be separately located or are in 

closely related within the knowledge network in students’ minds. Once students start learning, they 

can make links among those pieces or students keep in mind the necessary steps to solve problems 

and they apply the steps to solve the problems without questioning. The pieces of knowledge can be 



constructed with appropriate links to make meaningful understanding and that can be accomplished 

by creating relationships among the separately existing pieces of knowledge. Hiebert and Lefevre 

(1986) define conceptual knowledge as ‘... knowledge that is rich in relationships. It can be thought 

of as a connected web of knowledge, a network in which the linking relationships are as prominent 

as the discrete pieces of information. Relationships pervade the individual facts and propositions so 

that all pieces of information are linked to some network’ (Hiebert & Lefevre, 1986, pp. 3-4). The 

other kind of knowledge which is used by students in learning mathematics while solving 

mathematical problems is procedural knowledge. Hiebert and Lefevre (1986) describe procedural 

knowledge through including parts as ‘one part is composed of the formal language, or symbol 

representation system of mathematics. The other part consists of the algorithms, or rules, for 

completing mathematical tasks’ (Hiebert & Lefevre, 1986, p.6). Both procedural and conceptual 

knowledge is necessary for students in order to finish the process with a correct answer and to 

understand the relationships among concepts. Students’ backgrounds include procedural and 

conceptual knowledge and both of them are required for mathematical proficiency (Kilpatrick, 

Swafford, & Findell, 2002). They are constantly interacting with each other and in light of instruct ions 

given to students, the kinds of knowledge can be revealed. In this regard, this study will examine 

students’ explaining strategies while ordering two negative integers through conceptual and 

procedural knowledge descriptions of Hiebert and Lefevre (1986). It gives information about how 

middle school students conceptualize ordering of integers, how they give meaning to integers in real 

life contexts, and what kind of procedural and conceptual strategies they have while ordering integers. 

With this study, possible explanations of the reasons behind middle-grade students’ difficulties and 

their understandings in integers, specifically about ordering integers are revealed. Thus, the aim of 

this study is to explore answer for the following questions: (1) To what extent do middle-grade 

students agree on statements about the ordering of two negative integers? (2) What kind of strategies 

do middle-grade students generate to order two negative integers given within a real-life context? 

Related with the second research question, this study examines how those strategies can be classified 

as procedural or conceptual.  

Context of the study 

The context of the study might be understood better via curricular guidelines of ordering integers in 

Turkish middle school mathematics curriculum. The topic starts at the beginning of middle-grade 

levels. Objectives related to this topic are about interpreting integers, the meaning of absolute value, 

operations of integers, the meanings of the operations, comparing and ordering integers, solving 

integer-related problems, and relate exponential numbers to integers. Specifically, in learning to order 

integers, the objective says that: "Students should be able to compare and order integers" (MoNE, 

2013, p.14). The curriculum advises teachers that the largest number is located to the right side in 

reference to the small number on the number line while ordering numbers. Therefore, it is seen that 

teachers are supported to use the link between number line location and integers’ ordering. In other 

words, the curriculum supports ‘direction’ aspects of negative integers while the magnitude aspect of 

negative integers within real life situations (e.g.: temperature, asset and debt, elevator and so on.) are 

an application of objective presented in the middle school curriculum (MoNE, 2013). In this sense, 

in their instruction, students are given real-life contexts to understand how integers are represented 

within real life contexts in a meaningful way (MoNE, 2013). For ordering integers, the location of 

numbers on a number line is the basis of teaching the content (MoNE, 2013). In this respect, ordering 



integers is not interpreted on the basis of real life examples. Rather than that, interpretation of the 

ordering integers mostly depends on the location of numbers on the number line.   

Method 

In this study, qualitative research method, specifically single case study approach, is used in order to 

reveal students’ strategies and investigate students’ understanding of contextual statements. The 

research method enables researchers analyzing data through creating a theme and codes (Creswell, 

2005).  

Sampling  

Fifty-seven middle-grade students participated in the study. These students are selected under the 

purposeful sampling and they are studying at the middle-grade level in a public school in Ankara, 

Turkey. The school could be regarded as successful on the basis that it accepts students with having 

higher grades in nationwide held examinations. Before conducting the main study, a pilot study was 

conducted in two classrooms together with another fifty-four middle-grade students at the same grade 

level as the school the main study was conducted. The purpose of the pilot study is to make the 

statements understandable to the participants and to minimize the misunderstandings derived from 

the format of the questionnaire. The objectives which are aimed to be evaluated in the study require 

middle school students interpret integers within real life situations and to compare and order integers. 

Within this context, the content validity of the questionnaire is validated with mathematics teachers 

and one mathematics education instructor in the university.  

Data collection tools  

In this study to collect data the questionnaire given in Figure 1 is used. In order to understand middle 

grade students’ general tendency of ideas about the different nature of ordering statements,  students 

were asked whether they agree with the two ordering statements given in real life context. In addition, 

they were required to give details about the reason of agreement status in order to understand their 

reasoning in ordering two negative integers of strategies for explanation. As it is seen, there are two 

ordering statements given in the context of temperature. In this regard, questions were generated 

based on the context which middle grade students are familiar with and use the knowledge of ordering 

two negative integers by relating the direction and magnitude (quantity) aspects. The questionna ire 

has two statements pointing out two kinds of relations about ordering two negative integers. The first 

statement says that "As -10 degrees are less hot than -5, -10 is smaller than -5." The statement allows 

middle grade students to order two negative integers considering temperature as a quantity and 

direction. In other words, they can order two negative integers considering the mentioned degrees as 

similar to ordering two positive quantities. In line with this, -5 is more hot (more quantity of hot) than 

-10. In addition, temperature context enables students ordering integers considering direction 

integers. The second statement says that "As -10 degrees is situated on thermometer, lower than -5, -

10 is smaller than -5. The statement allows students to interpret ordering of two negative integers 

based on their locations on the thermometer and their distance from zero. In this regard, whether they 

are using any conceptual or procedural strategies for using the nature of ‘direction’ and ‘magnitude’ 

meaning of two negative integers is examined.  

  



 

 

 

 

 

 

 

 

 
 

 

Figure 1: Questionnaire items of the study 

Data analysis 

Similar and different categories of answers are grouped through content analysis. Explanation 

strategies are revealed by examining words or group of words students use in their answers (manifes t 

content) and following this the underlying meaning of those wordings are revealed by investigat ing 

their explanation strategies deeply (latent content) (Fraenkel, Wallen, & Hyun, 2011, pp.483-484). 

Answers of the questions are analyzed for the agreement status, students’ explanation strategies of 

the agreement status regarding conceptual and procedural strategies while explaining their responses. 

Data of the study are analyzed within Hiebert and Lefevre (1986)’s conceptual and procedural 

knowledge framework. 

Findings 

Agreement status of students about the ordering statements 

Based on the analysis, it is seen in Table 1 that participants are agree with both of the statements.  

 

 

 

 

*A: Agree, NA: Not Agree, N: neutral, NM: No marking 

  Table 1: The percentage of agreements to the ordering statements  

The analysis of the results show that middle grade students agree with the idea that ordering two 

negative integers can be explained by using ‘hot’ concept together with the word ‘less’. In this regard, 

they agree on the idea that two negative integers can be ordered by using the words ‘more’ and ‘less’ 

which express the quantity of something and came to the conclusion that ‘hotter’ is bigger than ‘less 

hot’. Thus, for the first statement "As -10 degrees is less hot than -5 degree, -10 is smaller than -5", 

most of the students (75%) selected the choice agree. Parallel with this, for the second statement most 

of the students (67%) also agree on the idea that two negative integers can be ordered based on the 

location of the integers on the thermometer. In other words, the idea accepted by most of the 

participants is that the number which is below the other is much smaller.  

  

"As -10 degrees are less 
hot than -5, -10 is smaller 
than -5. " 

AGREE 

o  

NOT AGREE 

o  

NEUTRAL 
o  

 

Why do you think so? 

"As -10 degrees situated 
on thermometer lower 
than -5, -10 is smaller 
than -5.  

AGREE 

o  

NOT AGREE 

o  

NEUTRAL 

o  

 

Why do you think so? 

Temperature Context A NA N NM    Total 
1.statement 
2.statement 

75
66 

16
14 

7 
16 

2         
4         

100 
100 



The explanation strategies of middle grade students  

Table 2 shows that the most preferred explanation strategies for the given statements are related to 

the network of hot and cold (37%), and rule-based explanations in reference to zero or positive 

numbers (18%). The strategy of network of hot and cold represents a relationship between the 

concepts of temperature, coldness and integer in the minds of students. In line with this, students 

make transitions among those concepts. For example, students form a link between negative integers 

and coldness saying if negative numbers increase the weather gets cold. The strategy of rule-based 

explanation in reference to zero or positive numbers is about rules with which students are familiar 

and which are created using zero and positive numbers like negative numbers are [ordered as] 

opposite to positive numbers. This table also depicts that students do not tend to use rule-based 

explanations in both of the statements. Put differently, rule-based explanations are not a dominant 

strategy for explaining those two ordering statements. They are used in the second statement, which 

mentions the location of numbers on the thermometer, compared to the first statement which is about 

interpreting the coldness, hotness, and their relationship. Another unexpected result is that although 

not many, some students did not consider this sort of order and they agree with the idea that "the 

number -10 is more than -5". In other words, they reject the order and think that -10 is bigger than -5 

or -10 is hotter than -5. Similar to this, some students criticize the statements saying ‘they are illogica l’ 

or ‘they [both of the statements] are the same’ and so on. Besides, some students used the copy of the 

statement strategy which is related to writing the same statements given in the questionnaire. In this 

regard, a substantial portion of students (44% for the first statement; 62% for the second one) do not 

employ any kind of explanation strategies for ordering integers in a given context. Students who copy 

the statement, use no strategies (e.g.: I don’t know), use unclear statements (e.g.: I don’t know why I 

am saying that I agree with the statements), and left the answer blank did not give reasons in writing 

as if they could not interpret the situation.  

Conceptual and procedural strategies  

Examination of students’ written responses showed that students used conceptual and procedural 

strategies while explaining their agreement. Whether the strategy a student is used is related to 

procedures or concepts is determined considering how the concepts are interpreted in the statements, 

how transitions are made among the statements, and the content of the definition of Hiebert and 

Lefevre (1986). Students’ responses of conceptual strategy were analyzed based on conceptual 

knowledge definition of Hiebert and Lefevre (1986). In this regard, network of hot and cold category 

was created when students interpret hot and cold concepts and make transitions between them saying 

that ‘more hot’ means ‘less cold’ etc. In addition to this, as Hiebert and Lefevre’s definition for 

conceptual knowledge supports the relationship between pieces of information, the network of hot 

and cold was appropriate for this category. On the other hand, procedural strategy category was 

created based on Hiebert and Lefevre’s (1986) procedural knowledge definition which supports the 

repertoire of basic factual knowledge and symbolic representation without interpretation of those 

facts and representations. In line with this, rule-based explanation reference to zero or positive 

numbers was categorized as procedural knowledge. Rule-based explanation reference to zero or 

positive numbers was related to the facts which are presented as context independent relations 

including facts of ordering two negative integers regarding their magnitude and direction. 

  

 



 

*One student suggested more than two ways for explanation 

Table 2: Explanation strategies and conceptual and procedural strategies of students  

Table 2 indicates that for the first statement, students used more conceptual strategies than the second 

one, and students used more procedural strategies for explaining the second statement than the first 

one. This might be derived from the nature of the statements which allow students to focus on the 

conceptual nature of the word ‘less hot’ and of allocating numbers on a number line. However, it 

seems that a considerable number of students used the procedural and conceptual strategies (20% and 

16% for the first and second statement, respectively) regardless of the nature of the problem.  

Most of the students used the network of hot and cold strategy with the conceptual strategy of ordering 

two negative integers using coldness (e.g.: -10 is colder than -5). In other words, most of the students 

made a transition from the word less hot’ to the word ‘colder’. As opposed to the expected 

interpretation of students, they explained ordering two negative integers considering the quantity of 

hotness concept (e.g.: -5 have more hotness than -10). Students used connected knowledge of zero  

strategy, for instance, saying that ‘being closer to zero is connected to being hotter’. Similarly, in the 

first statement, the procedural strategy of ‘bigger number is closer to zero’ is used (e.g.: -5 is closer 

 
Explanation Strategies 

 
Example of students ‘ statements 

Statements (%) 

1. 2. 

C
o

n
c
e
p

tu
a
l 
st

ra
te

g
y
  

Connected knowledge of 
zero 

Closer to zero is connected to being hotter 2 6 

 
 
Network of hot and cold  

The big number (-10) is colder than the smaller 
number (-5) 

21 4 

As numbers increases hotness increases 5 2 

If negative numbers increase the weather gets 
cold 

4 - 

-5 has more quantity of hot than -10 7 2 

Quantity of quicksilver is smaller at -10 degree - 2 
Total 39 16 

P
ro

c
e
d

u
ra

l 
st

ra
te

g
y

  
 

Rule-based explanation 
reference to zero or 
positive numbers  

Bigger number is closer to zero (and the reverse 
of the statement) 

9 14 

Numbers get smaller if you move to the left side 
of zero 

4 4 

Negative numbers are ordered as opposite to 
positive numbers 

5 - 

Numbers above the number line are bigger than 
the numbers below the number line 

- 2 

Total  18 20 

O
th

e
r 

st
a
te

m
e
n
ts

 

Criticism of the content of 
the statement 

No relationship between the given statements, 
they are contradictory to each other 

5 9 

Rejecting the order -10 is not less than -5 8 9 

Copying the statement Student write the same statements given to them 7 14 

Unclear statements   For the reason that this is appropriate 7 1 

Drawings help ordering two negative integers 2 9 
Blank - 5 4 

No strategy I don’t know 12 18 

Total  46* 64 

Total answers* 100* 100 



to zero and so it is bigger and vice versa). Parallel with this, for the second statement, the same 

procedural strategy was mostly used by the participants.  

Most of the participants supported the idea that two negative integers can be ordered by using rule-

based explanation in reference to zero or positive numbers. In this regard, it might be said that 

students have pieces of knowledge about the nature of magnitude and direction of integers. 

Participants agreed that 1) the number which is located below the other on the thermometer   is the 

smaller (direction) or (2) the number which is closer to zero is bigger than the other negative integer, 

which is less close to zero (magnitude).  

Discussion and conclusion  

In this study, the two statements about ordering allow students to see how they interpret those 

statements and what kind of strategies they use. Moreover, this study helps reveal the difficult ies 

students encounter in their learning process. As seen in Table 1, students agreed with the given 

statements; however, Table 2 showed that middle grade students have variety of conceptual and 

procedural strategies that might not support their agreement. The results of the study show that their 

dominant strategies are spread over the sample of the students and are rarely used. Table 1 shows that 

most of the participants supported the idea that negative integers can be ordered by the nature of the 

amount of hotness that each integer is assigned. In other words, each negative integer is assigned to 

the concept of being hotter or being less hot. A possible explanation might be that students 

conceptualize ordering with the help of quantity or cardinal conception of numbers (Davidson, 1992). 

It means that students agree that ordering negative integers can be thought as similar to ordering 

positive integers when giving meaning to hotness concept. In this regard, for the first statement, 

students changed the word hotness to the word coldness and explained the statement based on 

coldness. Most of the students interpreted the situation by transferring hotness to the cold. While 

comparing two negative integers, they used the ‘the hotter is less cold’ or ‘less hot is colder’ 

relationships. Thus, these kinds of explanations indicate students’ lack of interpretation of ordering 

as an amount of hotness because they might have a potential for interpreting the smaller number (-

10) as a bigger number while ordering the concept of coldness a quantity. However, the relationship 

which indicates what being less cold or being colder means needs to be established within ordering 

context. Otherwise, it causes misconceptions or errors about misinterpreting what the integer 

statements or symbols mean (Ashlock, 2010). Moreover, this finding supports the idea that it is not 

easy to infer order relations from context-related statements, but teachers can integrate those 

strategies to classroom activities to establish a relationship between real life situations and negative 

numbers (Schindler & Hußmann, 2013). It is worth emphasizing that the procedural strategies 

illustrated in Table 2 might create faulty decision while comparing two negative integers. Students’ 

understanding of negative numbers might be achieved by using the procedural strategies carefully 

being aware of the overgeneralization. For instance, the procedural strategy of ‘bigger number is 

closer to zero’ might be problematic when the number is a whole number.  

Taken together, students have a variety of conceptual or procedural strategies that can be used for  

interpreting ordering in real life situations. Those strategies are important to make instruction better 

and to facilitate student understanding. In future studies, the meaning of ordering negative integers 

within real life contexts and in mathematics can be examined to explain some students’ lack of 

interpretations of the given statements.  
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In CERME-10, the Thematic Working Group 3 “Algebraic thinking” continued the work carried out 

in previous CERME conferences. There were a total of 16 papers and 5 posters with a total of 29 

group participants representing countries from Europe and other continents: Canada, Finland, 

Germany, Greece, Ireland, Norway, Portugal, Spain, Sweden, Tunisia, Turkey, UK, and USA. 

Recurring issues 

While the importance of algebra education is universally acknowledged, the problem of teaching it 

successfully to most students is not yet solved. Thus, there is a need to go back to basics over and 

over again and a lot of issues occur repeatedly in the history of CERME working groups on algebra. 

A broader overview is given in Hodgen, Oldenburg and Strømskag (2017). The discussion during 

CERME 10 brought up the following fundamental issues: 

 What is algebra? There is still no uniform definition of what is the particularity of this field 

and what are the relations to other mathematical fields like combinatorics or geometry (that 

use letters as well). Moreover, many notions are not fully defined.  

 How can it be empirically determined what works? We still have no universal measures of 

algebraic competence. Hence, many ad hoc tests are used.  

 What should be taught? Too little is known about how knowledge builds up in the long 

term. For instance, it may be that certain concepts and metaphors that work well in some 

grades will give raise to obstacles later on.  

Regarding the first point in this list, the group discussed the question of whether it would be sensible 

to rename the group’s title just to “Algebra”, because the word “thinking” gives the cognitive a higher 

weight than it might deserve. But this was resolved by the shared understanding that “algebraic 

thinking” is interpreted to include language, affect and possibly further factors. 

The second point was taken up in a series of discussions about the quality of research and 

communication. Conceptual validity is seen often to be a problem. To rely just on Cronbach’s alpha 

to ensure internal consistency seems not adequate. Perhaps the community should ensure that whole 

tests, measurement instruments and data are made accessible for other participants? Still, it will be 

difficult to ensure a common understanding of notions, given the plurality of theories and terminology 

used. 

Despite these questions, there are substantial areas where a consensus has been reached: It is accepted 

that early algebra “works”, in the sense that it is possible to develop algebraic thinking using, or just 

beginning to use, formal symbolic notation. Furthermore, most researchers see structure as a guiding 

principle in algebra and especially the structure of equations and the role of the equal sign is identified 

as central. The context/environment of each research event is relevant and especially the tasks and its 

implementation by the teacher are crucial together with the role of the researcher. Regarding ideas 



for the curriculum, we agreed that equation solving should not start with too simple equations. Filloy 

and Rojano’s (1989) distinction between arithmetical and algebraic equations is important to 

exemplify the domain in which algebraic methods can show there power to students. 

Some comments on issues dealt with in the papers 

Functions have been identified my many colleagues as central issue in algebraic thinking and hence 

we have seen several papers (Isler et al., Pinto & Cañadas, Postelnicu, and Weber) that deepen the 

understanding of functions. 

Isler et al. report results from a quantitative study in the US of Grade 6 students’ written work on a 

functional thinking assessment item. The results show that students who experienced an early algebra 

intervention during Grades 3-5 were more likely to successfully represent a function rule in words 

and variables than students who did not. Also, both comparison and intervention groups of students 

were found to be more successful representing a function rule in variables than in words. The results 

underscore the impact of early algebra on students’ later success in algebra, and challenge the view 

that the concept of variable should not be introduced until secondary school. 

Pinto and Cañadas report from a study of 24 Spanish Grade 3 students’ functional thinking during 

engagement with a contextualised linear problem (placing tiles). Two types of functional relationships 

were identified—correspondence and covariation—and the ability to generalise was observed in 

some of the students. The study was part of a broader teaching experiment, and the data were collected 

through a task-based questionnaire.  

Postelnicu conducted a study of 58 US high school students’ difficulties with writing equations of 

parallel and perpendicular lines (in the context of Algebra 1). Chevallard’s theory of didactic 

transposition was employed to account for the relativity of the mathematical knowledge with respect 

to the institutions where the knowledge was created. The analysis shows that the mathe-matical 

knowledge (through the didactic transposition) lost its essential feature—the proof—with serious 

consequences for the curriculum. What remained to be learned was how to execute tasks.  

Weber presents a theoretical paper, where vom Hofe’s construct of ‘Grundvorstellungen’ and Sfard’s 

distinction between operational and structural conceptions are used to analyse structural and 

operational models of logarithmic functions. Weber claims that logarithmic functions should not be 

introduced structurally, as inverse exponential functions. Instead, several operational models of the 

logarithmic concept are proposed, and their explanatory power for graphing is expounded.  

Zindel presents a model for conceptualizing the core of the function concept, which is made up of 

those facets that are equally important for all types of functions and common to all representations. 

The so-called facet model enables the identification of potential obstacles and a detailed description 

of students’ learning processes when connecting representations (e.g., verbal and symbolic 

representations when solving word problems). In total, 19 design experiments with overall 96 learners 

(mainly Grades 9-10) were conducted and qualitatively analyzed. 

A focus on the thinking in algebraic thinking has been laid by four papers: Palatnik and Koichu; 

Twohill; Soneira, González-Calero and Arnau; and, Proulx.  

Palatnik and Koichu took a detailed view on how students make sense of formula they found on 

various ways. The authors found that the process of sense making is consists of formulating and 

https://www.linkedin.com/comm/profile/view?id=AAsAAAz9riIBL5buyIl3AhO-j04r4CBghqP_-yU&midToken=AQEAiv0tl0Gmvw&trk=eml-email_accept_invite_single_01-hero-4-prof~name&trkEmail=eml-email_accept_invite_single_01-hero-4-prof~name-null-3vr4rk~iz4a0cbf~35&lipi=urn%3Ali%3Apage%3Aemail_email_accept_invite_single_01%3BskqCnrRvRquKYKHfkJI0Pg%3D%3D


justifying claims, making generalizations, finding mechanisms and established coherence among the 

explored objects.  

Twohill investigated number sequences from geometric patterns and the path of students to general 

terms. It turned out that between figural and numerical aspects of the patterns there is a whole 

continuum of ways that students think about these sequences. It is not easily said what aspects 

students should look at to be successful in finding a proper generalization. 

Soneira et al. investigated in details the well-known error that students might produce expressions in 

which different occurrings of the same variable have different (but often related) reference. They 

explain this by idiosyncratic semiotic systems used by the students. The process of translation 

between algebra and natural language is highly complex. 

Proulx investigated how teachers and students solve algebraic problems mentally. Forcing them not 

to use paper and pencil or other techniques allows to get close to their thinking. This revealed a wide 

variety of approaches and students and teachers differed in these. In the end, a sense for the diversity 

should be developed especially by the teachers.  

Röj-Lindburg et al. considered the transition from informal to formal methods of equations solving 

in Grade 6 (12 years old) in Finland. The approaches taken by three teachers were analysed. One 

teacher used the image of a balance scale; another used uncomplicated ‘real-world’ situations; and 

the third had an emphasis on formal methods, in particular the need to ‘do the same thing on both 

sides’. The third teacher’s lesson was analysed and concluded that the discussion focused strongly on 

memorizing the procedure and did not develop an algebraic understanding of equality. In fact, it was 

concluded that in none of the teachers’ lessons was there a need for students to adopt an algebraic 

way of thinking about equality. 

Steinweg brought out the fact that the mathematics teaching units in Germany primary education lack 

explicit algebra learning environments. She offered ways in which key algebraic ideas can be used as 

guiding principles to rethink ‘arithmetic’ topics in six German primary school classes so that they can 

be used as learning environments for algebraic thinking. She focused on work from a pupil who was 

working on a task to decompose the area of a given rectangle and who appeared to show an awareness 

of the inherent distributive structures. Pre- and post-tests showed an increase in the percentage of 

children giving answers deemed to be algebraic in nature. 

Papadopoulos and Patsiala studied the use of a particular learning environment called “Father 

Woodland” with seventy Grade 3 students (8-9 year olds) from two different primary schools in 

Greece. The approaches taken by the students were categorized into four types and it was noted that 

over the course of eight tasks, there was increased use of approaches which were classified as either 

‘combining words and symbolic language’ or ‘using symbolic language to express relationships”. An 

argument was made that the environment helped develop the students’ algebraic thinking. 

As mentioned above, several researchers were concerned with the issues of “what should be taught” 

and what constitutes proficiency from the learners’ points of view. Pinkernell, Düsi and Vogel 

proposed a way to construct validity for the concept of proficiency in elementary algebra, and 

presented the methodology of constructing a “model” of proficiency, together with the resulting 



product – the “revised model.” Wladis and colleagues described an instructor-generated “concept 

framework” for elementary algebra in the tertiary context. 

Chimoni and Pitta-Pantazi addressed the issue of determining empirically “what works” for teaching 

algebra. They conducted a study with 96 early algebra students and compared two intervention 

courses. The first intervention course included real life scenarios and semi-structured tasks, while the 

second intervention course involved mathematical investigations and structured tasks. The results 

showed that the first course had better learning outcomes. 

Two papers reported on structural aspects of algebra, at the elementary and university level, 

respectively. Strømskag and Valenta addressed the issue of justifying the commutative property of 

multiplication of natural numbers for Grade 6 students.  At the heart of the study were the limitations 

of the visual representation used by the observed student teacher to help her students justify the 

property of commutativity of multiplication. Mutambara and Bansilal investigated the understanding 

of the concept of vector subspace. Participating students were 84 in-service teachers enrolled in a 

mathematics course at a Zimbabwean university. The action, process, object schema (APOS) theory, 

based on Piaget’s genetic epistemology, was proposed for the analysis of two tasks. The results 

highlighted the teachers’ difficulties with the concepts of sets, matrices, and vector subspace. 

Outlook 

The synopsis of papers given above shows the wide variety of theories, topics and methods used in 

this group. Such a pluralistic situation is highly welcomed as it allows to test the validity of research 

results from multiple perspectives. Thus, the consensus described above, can be viewed as solidly 

grounded and form the base for further research that can and should address questions that are not yet 

understood well enough. One such area is the domain of high school algebra. Weber’s paper has 

shown the potential of better understanding such concepts. Another point to be developed further is 

the perspective of teachers and teacher education.  
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The effect of two intervention courses on students’ early algebraic 

thinking  
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The aim of this study is to investigate the nature and content of instruction that may facilitate the 

development of students’ early algebraic thinking. 96 fifth-graders attended two different intervention 

courses. Both courses approached three basic content strands of algebra: generalized arithmetic, 

functional thinking, and modeling languages. The courses differed in respect to the characteristics of 

the tasks that were used. The first intervention included real life scenarios, and semi-structured tasks, 

with questions which were more exploratory in nature. The second intervention course involved 

mathematical investigations, and more structured tasks which were guided through supportive 

questions and scaffolding steps. The findings, yielded from the analysis of pre-test and post-test data, 

showed that the first course had better learning outcomes compared to the second, while controlling 

for preliminary differences regarding students’ early algebraic thinking.  

Keywords: Early algebraic thinking, teaching intervention, tasks.  

Introduction  

In response to calls for spreading the teaching and learning of algebra throughout K-12 grades (e.g. 

NCTM, 2000), a wealth of studies focused on the design and implementation of instructional 

interventions that facilitate the development of early algebraic thinking (e.g. Blanton & Kaput, 2005; 

Irwin & Britt, 2005; Warren & Cooper, 2008). These studies offered strong evidences that students 

are able to develop algebraic thinking as early as the primary grades. Moreover, these studies 

highlighted the key role of teachers in providing their students with rich opportunities to investigate 

and understand algebraic ideas from elementary school. 

As Kieran, Pang, Schifter and Ng (2016) highlighted, a large number of past studies identified pattern 

generalization and functional thinking as important routes that foster the development of early 

algebraic thinking; however, little research has involved other aspects of algebra, such as properties 

of numbers and operations. This bring us to the question of the effectiveness of intervention courses 

that might involve a range of algebra content strands, such as functional thinking and generalized 

arithmetic. There is, therefore, still a need to extend our understanding of supportive instruction that 

aims to improve students’ early algebraic thinking and further clarify the content of a corpus of 

lessons that capture the core content strands of algebra. 

The current study addresses this issue. Furthermore, considering the suggestions of recent literature 

regarding the impact of different types of tasks on students’ learning (e.g. Swan, 2011), this study 

raises the question of whether the nature and content of the tasks used in instructional interventions, 

regarding their structured or semi-structured nature, and the association of their context to real life 

scenarios or not, might affect students’ early algebraic thinking.  
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Theoretical framework  

The notion of early algebraic thinking  

Several research studies addressed the multidimensional nature of early algebraic thinking. Kaput 

(2008) claimed that there are three fundamental content strands of algebra: (i) generalized arithmetic, 

(ii) functional thinking, and (iii) the application of modeling languages. Generalized arithmetic, 

involves generalizing rules about relationships between numbers, manipulating operations and 

exploring their properties, transforming and solving equations, and understanding the equal sign in 

number relations. Functional thinking, refers to the identification and description of functional 

relationships between independent and dependent variables. Modeling, refers to the generalization of 

regularities from mathematized situations or phenomena inside or outside mathematics.  

The notion of early algebraic thinking has also been associated through literature with several 

mathematical processes. For example, Kieran (2004) suggested that early algebraic thinking is linked 

to problem solving, modeling, working with generalizable patterns, justifying and proving, making 

predictions and conjectures, analyzing relationships, and identifying structure.  

Early algebraic thinking, therefore, is expected to emerge through intervention courses that capture a 

variety of areas and contexts related to algebra and assist students to use a range of mathematical 

processes.  

Sources of meaning in algebraic problems and the importance of the nature of tasks 

Radford (2004) specified that there are three main sources of meaning within algebraic problems that 

trigger the development of early algebraic thinking: (a) the algebraic structure itself (e.g. the letter-

symbolic representations, graphical representations), (b) the problem context (e.g. word problems, 

modeling activities) and (c) the exterior of the problem context (e.g. social and cultural features, such 

as language, body movements, and experience). Hence, the specific characteristics of these sources 

might facilitate or not the construction of meaning when students participate in algebra lessons. 

Additionally, existing literature on the importance of tasks that students are engaged with, has shown 

that the nature and features of mathematical tasks influence learning, since they direct students’ 

attention to specific content and specific ways of processing information (Jones & Pepin, 2016). For 

example, Sullivan, Clarke and Clarke (2012) suggested that problem-like tasks have a positive effect 

on students’ mathematical thinking rather than step-by-step procedures. In this perspective, the extend 

to which a task involves problems that are more or less structured, is associated with an open question 

or a series of scaffolding questions, and represents situations related to students’ experiences within 

real life contexts or not, may influence students’ development of early algebraic thinking. 

Aim of the study  

The aim of this study is the investigation of the effect of two different intervention courses in 

improving students’ early algebraic thinking. Both courses involved the three content strands of 

algebra suggested by Kaput (2008), had the same duration, and were based on the inquiry-based 

learning approach. Nevertheless, they were implemented through different types of tasks. The first 

course, which we named “Semi-structured problem situations”, used semi-structured tasks connected 

to real life scenarios and required students to identify the mathematics involved in order to answer to 

their main question. The second course, which we named “Structured mathematical investigations”, 



used more mathematical tasks that were supported by scaffolding questions. Hence, the two teaching 

interventions were compared in relation to the types of the tasks through which algebraic thinking 

was expected to emerge.  

Methodology  

Participants  

The participants were 96 fifth-graders from 4 classes in 2 urban schools. The classes were selected 

by convenience. Two of the classes (one class from each school) formed the group that participated 

in the first course and the other two classes formed the group that participated in the second course.  

Test on early algebraic thinking 

The same test was administered to the students before and after the conduction of the courses in order 

to measure their early algebraic thinking. The test consisted of 22 tasks that were accordingly 

categorized into three groups which reflected Kaput’s (2008) three content strands of algebra. Table 

1 presents examples of the tasks in each category. The first group (generalized arithmetic) involved 

tasks, such as determining whether the sum of two numbers will be odd or even, using the properties 

of operations, describing movements in the hundredths’ table, and solving equations and inequalities. 

The second group of tasks involved finding the nth term in geometrical and numerical patterns, 

interpreting graphs, and describing co-variational and correspondence relationships among quantities. 

The third group of tasks (modeling) required the generalization of regularities by observing the 

relationships involved in realistic situations. The internal consistency of scores measured by 

Cronbach’s alpha was satisfactory for the test (a=0.87).  

 

Table 1: Examples of tasks included in the early algebraic thinking test 

Teaching experiments 

Both intervention courses addressed the same concepts and objectives, and were developed through 

ten lessons of 80-minutes duration each. The first researcher taught all the lessons. Table 2 presents 

the objectives of the lessons in each strand. 

 
 
  

Algebraic Thinking as Generalized 

Arithmetic 

Is the sum 245676 + 535731 an odd or even number? Explain 

your answer. 

Algebraic thinking as functional 

thinking 

 

 
   Figure 1                Figure 2                    Figure 3 

Bill is arranging squares. How many squares there will be in 

the 16th figure? Show your work. 

Modeling as a domain for expressing 

and formalizing generalizations 

Joanna will take computers lesson twice a week. Which is the 

best offer? Justify your answer. 

OFFER Α: €8 

for each lesson 

 

OFFER B: €50 for the first 5 lessons of the 

month and then €4 for every additional lesson 

 

 



 

Table 2: Structure of Instructional Interventions and Objectives for each Lesson 

The “Semi-structured problem situations” course used semi-structured problems arising from real life 

situations. Students were confronted with a general question and were given time to explore the 

problem situation, analyze and combine information and apply their own strategies to solve the task. 

These tasks employed some features of modeling-like tasks. Specifically, modeling-like tasks were 

considered as appropriate for enhancing the development of algebraic thinking because they involve 

the description and interpretation of complex systems of information through the application of 

processes such as, constructing, explaining, justifying, predicting, generalizing, conjecturing, and 

representing (English, 2011).  

The “Structured mathematical investigations” course reflected mathematical contexts that aimed to 

direct students to identify structure and relationships in mathematical concepts. Specifically, these 

tasks were more mathematical in nature, involved scaffolding steps and pathways which guided 

students to the extraction of an explicit conclusion. This kind of activities were considered as relevant 

and important for enhancing algebraic thinking since they apply fundamental processes, such as 

formulation and expression of relationships and generalizations, and progressive symbolization.  

In order to ensure the content validity of the tasks we used for both interventions tasks of previous 

studies (e.g. Blanton & Kaput, 2005) or online resources (e.g. https://illuminations.nctm.org/) which 

seem to be well accepted by researchers and mathematics educators. Moreover, the authors consulted 

two other mathematics education experts about their judgment regarding the content validity of the 

tasks until consensus was reached. Figure 1 presents examples of tasks from each intervention course. 

The task on the left was adapted from a lesson presented in the website https://illuminations.nctm.org. 

Using a context of arranging chairs around tables, students were exposed to two different linear 

patterns. As specified in the website, this activity leads to an intuitive understanding of how to extend 

and describe a pattern using words or symbols. The task on the right was adapted from a lesson 

presented in the website www.explorelearning.com. Students studied different patterns of squares in 

a grid. Each new pattern was more complex compared to the previous pattern (The pattern presented 

in Figure 1 was the third pattern). As stated in the website, this activity aims to the extension of figural 

patterns and the extraction of a general rule. In this sense, both tasks targeted on the description and 

generalization of figural and numeric patterns. However, the first task introduced from the beginning 

a complex pattern; the second started from a simple pattern and moved to more complex patterns. 

Lessons Content strand Objectives 

3,4 Generalized 

arithmetic 

Apply properties and relationships of whole numbers, apply 

properties of operations on whole numbers, treat numbers by 

attending structure rather than computations 

1,2,6,7 Functional 

thinking 

Encode information graphically for analyzing a functional 

relationship, identify correspondence or co-variation 

relationships, identify numerical and geometrical patterns 

5,8,9,10 Modeling 

languages 

Generalize regularities from mathematized situations inside or 

outside mathematics 

https://illuminations.nctm.org/
https://illuminations.nctm.org/
http://www.explorelearning.com/


                 

Figure 1: Semi-structured problem situation (left) and Structured mathematical investigation (right)  

Analysis  

The SPSS statistical package was used to analyze the results. Since the tasks in the pre-test and post-

test were the same, gain scores were used (the difference between post-test and pre-test scores) as the 

dependent variable. The Kolmogorov-Smirnov and Shapiro-Wilk tests showed that the gain scores 

were normally distributed (p>.01). The P-P and Q-Q plots did not show crucial variations. In order 

to compare the early algebraic thinking abilities of the two groups prior to the intervention, a 

multivariate analysis of variance (MANOVA) was conducted. MANCOVA was used to examine the 

impact of the intervention courses on participants’ early algebraic thinking. The type of intervention 

was the independent variable, students’ performance in early algebraic thinking pre-test was 

considered as the covariate, and the performance differences between the pre- and post- tests as the 

dependent variables. Moreover, paired-sample t-test was performed in order to measure the 

differences in the performance of students of the same group in the pre- and post-tests.  

Results  

The results of the MANOVA analysis suggested that the two groups did not have any statistically 

significant differences in their early algebraic thinking abilities prior to the intervention (F=.576, 

p>.05). Table 3 presents the results of the MANCOVA analysis, regarding the comparison of the 

impact of the two teaching experiments on the groups’ performance in the early algebraic thinking 

post-test, controlling for their pre-test scores. 

The analysis indicated significant overall intervention effects, controlling for pre-test scores in the 

early algebraic thinking test (Pillai’s F=9.586, p<.05). The students in the “Semi-structured problem 

situations” group had a significantly higher overall performance in early algebraic thinking to students 

in the “Structured mathematical investigations” group. The effect size indices for the overall algebraic 

thinking ability (partial n2=.088) suggested that the effect of the “Semi-structured problem situations” 

course over the “Structured mathematical investigations” course was moderate. The performance of 

the “Semi-structured problem situations” group in the generalized arithmetic tasks did not have any 

significant difference in relation to the performance of the “Structured mathematical investigations” 



group (Pillai’s F=.081, p>.05). The “Semi-structured problem situations” group had significantly 

higher performance in the functional thinking tasks (Pillai’s F=26.845, p<.01) and the modeling tasks 

(Pillai’s F=9.804, p<.05) in comparison to the “Structured mathematical investigations” group. The 

effect size indices for the functional thinking tasks (partial n2=.286) and the modeling tasks (partial 

n2=.128) suggested that the effect of the “Semi-structured problem situations” course over the 

“Structured mathematical investigations” course was moderate. 

 

 Structured  Semi-structured   

Ability Mean1 SE Mean1 SE df F p np
2 

Overall 

Performance 

.452 .206 .570 .179 1 6.452 .013* .088 

Generalized 

Arithmetic 

.663 .213 .647 .246 1 .081 .777 .001 

Functional 

Thinking 

.369 .225 .547 .270 1 26.845 .000** .286 

Modeling .291 .291 .509 .319 1 9.804 .003* .128 

1 Estimated Marginal Means, *p<.05, **p<.01 

Table 3: Results of the Multiple Covariance Analysis between the Two Intervention Groups Post-test 

Performance in Early Algebraic Thinking 

Table 4 presents the results of the paired-samples t-test regarding the differences in the pre- and post-

test scores within the same group. 

                                                                                                                                                 

Ability  Pre-test Post-test  

M SD M SD T(df) p 

Overall 

Performance  

Structured  

Semi-structured  

.337 

.368 

.195 

.151 

.452 

.570 

.206 

.179 

-5.519(33) 

-10.147(34) 

.000** 

.000** 

Generalized 

Arithmetic 

Structured  

Semi-structured  

.467 

.473 

.326 

.235 

.663 

.647 

.213 

.246 

-4.112(33) 

-4.818(34 

.000** 

.000** 

Functional 

Thinking 

Structured  

Semi-structured  

.302 

.404 

.263 

.228 

.369 

.547 

.225 

.270 

-2.774(33) 

-5.663(34) 

.09 

.000** 

Modeling Structured  

Semi-structured  

.223 

.183 

.241 

.202 

.291 

.509 

.291 

.319 

-1.231(33) 

-9.926(34) 

.227 

.000** 

**p<.01        

Table 4: T-test Comparisons between Pre-test and Post-test Performance of the two groups 

The results showed statistically significant differences between the pre- and post-tests performance 

means of the “Structured mathematical investigations” group. Students in this group had a significant 

increase in their overall early algebraic thinking ability and in the generalized arithmetic tasks. The 

results also showed that no statistically significant differences existed between pre- and post-tests 



performance means in the functional thinking and modeling tasks. Regarding the “Semi-structured 

problem situations” group, the results showed statistically significant differences in the mean 

difference between the pre- and post-tests means of performance. These students had a significant 

increase in their overall ability and in all types of tasks. 

Discussion and conclusion  

This study compared the effect of two intervention courses on students’ early algebraic thinking. The 

results showed that instruction with “Semi-structured problem situations” had better learning 

outcomes compared to instruction with “Structured mathematical investigations”, while controlling 

for preliminary differences regarding students’ early algebraic thinking. Specifically, students who 

received instruction through the “Semi-structured problem situations” outperformed students who 

received instruction through the “Structured mathematical investigations” in the early algebraic 

thinking post-test. Nevertheless, more detailed results regarding the effect of the two types of courses 

have shown that both of them had positive impact in the generalized arithmetic strand. What seems 

to have influenced the overall outcome of the comparison between the two courses is the fact that 

students involved in the “Semi-structured problem situations” course had significantly higher 

performance in the functional thinking and modeling strands. 

A possible explanation for this result seems to be the fact that the two intervention courses involved 

different types of tasks in respect to the way algebraic thinking was expected to emerge. While both 

interventions had high cognitive demands and were developed through activities that entailed 

cooperative learning, use of manipulatives, and technological tools, it appears that the nature and type 

of the tasks used had a significant role regarding the learning outcomes. As suggested by Stein and 

Lane (1996), the tasks determine not only the concepts and knowledge that students acquire but also 

the way students will come to process, use and make sense of those concepts and knowledge.    

On the one hand, the tasks that were included in the “Semi-structured problem situations” course 

shared common features with modeling approaches to mathematical problem solving. As English 

(2011) described, modeling-like tasks offer enriched learning experiences that require students to 

extract meaning from open situations by mathematizing the situations in ways that are meaningful to 

them. This kind of processes are linked to early algebraic thinking. As Kieran (2004) supported, early 

algebraic thinking is related to several processes, including problem solving, modeling, justifying, 

proving, and predicting. Hence, modeling-like tasks seem to involve the majority of the processes 

that are related to early algebraic thinking. On the other, “Structured mathematical investigations” 

tasks appeared to be effective in helping students to notice the structure in arithmetical contexts and 

engage students to learning experiences that are mostly focused on the generalized arithmetic strand.  

As Radford (2004) argued, the algebraic structure of a problem (e.g. the letter-symbolic 

representations), the problem context (e.g. word problems, modeling activities) and the exterior of 

the problem context (e.g. social and cultural features, such as language, body movements, and 

experience) constitute basic sources that students utilize in order to extract meaning. The results of 

the current study indicated that the “Semi-structured problem situations” tasks encompassed all of 

these sources in an effective way and enabled students to construct their own meaning and develop 

understanding of various algebra aspects. Thus we may say that the positive effect of an intervention 

course is in a great extend related to the design and implementation features of the tasks involved.  



Future research might further investigate whether the effect of “semi-structured” or “structured” tasks 

is different with younger or older students. The effect of an intervention course that makes use of 

both “semi-structure” and “structured” tasks might also be addressed. Moreover, the qualitative 

characteristics of students’ behavior while participating in this kind of intervention courses needs to 

be investigated in detail, in order to better understand the nature of thinking they develop. 
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This paper reports results from Grade 6 students’ written work on a functional thinking assessment 

item. The results show that students who experienced an early algebra intervention during Grades 

3-5 were more likely to successfully represent a function rule in words and variables than students 

who did not. Also, both comparison and intervention groups of students were found to be more 

successful representing a function rule in variables than in words. The results underscore the 

impact of early algebra on students’ later success in algebra, specifically with functional thinking, 

and challenge the notion that variable as a varying quantity should not be introduced until 

secondary school. 

Keywords: Early algebra, algebraic thinking, secondary school. 

Background of the study  

Algebra in the  U.S. has long served as a gatekeeper to future academic and employment 

opportunities (Ingels, Curtin, Kaufman, Alt, & Chen, 2002). Thus, recent reform efforts have sought 

to integrate aspects of algebra into the elementary curriculum (National Council of Teachers of 

Mathematics [NCTM], 2000; National Governors Association Center for Best Practices and 

Council of Chief State School Officers [NGA Center & CCSSO], 2010). By algebra in the 

elementary grades (hereinafter, early algebra), we do not mean an add-on to the existing curriculum 

or a pre-algebra course that is typically taught at the secondary level. We follow instead the 

definition put forward by Blanton el al. (2007): 

[Early algebra is] a way of thinking that brings meaning, depth and coherence to children’s 

mathematical understanding by delving more deeply into concepts already being taught so 

that there is opportunity to generalize relationships and properties in mathematics. (p. 7)  

Through a series of interrelated projects, Project LEAP [Learning through an Early Algebra 

Progression], has developed and investigated the efficacy of a learning progression for early algebra 

in Grades 3-5 (Grade 3 is the fourth year of elementary/primary school in the U.S. Students in this 

grade are typically 8-9 years old; Grade 5 students are typically 10-11 years old). 

In the first project, we focused on developing the learning progression and its components: a 

curricular framework and progression, instructional sequence, written assessments, and levels of 

sophistication describing students’ strategy use (see Fonger, Stephens, Blanton, & Knuth, 2015 for 

mailto:iisler@metu.edu.tr
mailto:sstrachota@wisc.edu
mailto:acstephens@wisc.edu
mailto:nfonger@wisc.edu
mailto:maria_blanton@terc.edu
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more information about the development of the learning progression). This project also examined 

the effectiveness of the early algebra intervention (see Blanton et al., 2015 for the results of this 

study).  

In the second project, from which the data for this paper came, we used a quasi-experimental design 

to follow two groups of students—one designated comparison and one designated intervention—

across Grades 3-5. The intervention students were taught about 18 one-hour weekly early algebra 

lessons each year. These lessons replaced their mathematics instruction thus the total time spent on 

mathematics instruction remained unchanged. The lessons were taught by a member of the project 

team, a former Grade 3 teacher. Each lesson started with a “jumpstart” at the beginning of the class 

that included a review of previously-discussed topics. The lessons continued with group work and 

whole-class discussions centered on research-based tasks. The algebraic concepts were often 

revisited in the “jumpstarts” so that the intervention students were provided opportunities to revisit 

several concepts throughout the intervention. The comparison students did not receive any 

intervention and were exposed only to their traditional mathematics curriculum throughout the three 

years. Written assessments were administered to measure students’ early algebra understandings and 

skills at four time points: at the beginning of Grade 3 and at the end of Grades 3, 4 and 5 (see 

Blanton, Isler, Stephens, Gardiner, et al., 2016 for the preliminary results of this study). A year after 

this longitudinal study ended, both the intervention and the comparison students were administered 

a written assessment in Grade 6 (when students were about 11-12 years old). This paper reports 

results from a functional thinking item that was common across Grade 5 and 6 written assessments. 

Theoretical framework 

Kaput (2008) conceptualized algebra as: (1) the study of structures and systems abstracted from 

computations and relations, including those arising in arithmetic (algebra as generalized arithmetic) 

and quantitative reasoning, (2) the study of functions, relations, and joint variation, and (3) the 

application of a cluster of modeling languages both inside and outside of mathematics. Building on 

Kaput’s content strands, we identified three “big ideas” (Shin, Stevens, Short, & Krajcik, 2009) of 

early algebra: generalized arithmetic; functional thinking; and equivalence, expressions, equations, 

and inequalities. In addition to the content strands for algebra, Kaput (2008) also identified 

algebraic thinking practices. We organized the content strands around four algebraic thinking 

practices: (1) generalizing, (2) representing, (3) justifying, and (4) reasoning with mathematical 

structure and relationships. 

The focus of this paper is on students’ abilities to engage in the algebraic thinking practices of 

generalizing and representing in the context of the “big idea” functional thinking. Blanton, Levi, 

Crites and Dougherty (2011) described functional thinking as “generalizing relationships between 

covarying quantities, expressing those relationships in words, symbols, tables, or graphs, and 

reasoning with these various representations to analyze function behavior” (p. 47). In this paper, we 

explore students’ abilities to represent functional relationships in words and variables.  



Methods 

Participants 

The participants were 80 Grade 6 students, 46 of whom were part of the intervention that took place 

during Grades 3-5 and 34 of whom were part of the comparison group in those grade levels. All of 

the students were from the same middle school. The teachers of these students reported using the 

Connected Mathematics Project (CMP3) curriculum for their mathematics instruction. The 

demographics for the district are 8% non-white, 5% English Language Learners, and 20% low 

socioeconomic status students.  

Data collection and analysis 

An early algebra assessment was administered to students at the end of Grade 6. The assessment 

items were developed and validated in a prior project. The assessment consisted of 11 items, most 

including multiple parts that addressed the aforementioned big ideas, and took students 

approximately one hour to complete. 

We focus on one item, the Brady task (parts c1, c2, e1, and e2) (see Figure 1), which was designed 

to assess student’s functional thinking, one of the big ideas, fundamental to our learning 

progression. The student responses were coded for both correctness and strategy use (correct or 

incorrect). The strategies that are the focus in this paper are listed in Figure 2. For more information 

about the coding scheme for strategy use for this item and the levels of sophistication observed in 

students’ written work, see Blanton et al. (2015), Stephens et al. (in press), and Strachota et al. 

(2016). 

A second coder conducted reliability coding for all items and any disagreements were discussed and 

resolved until 80% inter-rater agreement score was reached for all items. 

Figure 1: The Brady task 



 

Strategy Code Description Example 

Parts c1 and e1 

Functional-

Condensed in 

Words  

Student identifies a function rule in words that describes a 

generalized relationship between the two variables, 

including the transformation of one that would produce 

the second. 

Part c1: The number of 

people is 2 times the 

number of desks. 

Part e1: The number of 

people is 2 times the 

number of desks plus 2. 

Parts c2 and e2 

Functional-

Condensed in 

Variables  

Student identifies a function rule using variables in an 

equation that describes a generalized relationship between 

the two variables, including the transformation of one that 

would produce the second. 

Part c2: 2  d = p 

 

Part e2: 2  d +2 = p 

Figure 2: Functional-Condensed in Words and Functional-Condensed in Variables strategies for the 

Brady task 

Next, we focus on the results regarding the Grade 6 students’ abilities to represent the function rules 

in words and variables (parts c1, c2, e1, and e2 of the Brady task) by comparing the performance of 

students who were exposed to the early algebra intervention during Grades 3-5 (n = 46) to the 

performance of students who were not part of any early algebra intervention (n = 34). We also 

compare Grade 6 results to the results we obtained at the end of the three-year intervention in Grade 

5 (n = 90 for the intervention group and n = 61 for the comparison group). 

Results 

Results for parts c1 and c2 showed that by the end of Grade 6, the intervention students used the 

functional-condensed in words strategy in part c1 and the functional-condensed in variables strategy 

in part c2 more frequently than the comparison students (48% vs. 26% for part c1 and 65% vs. 41% 

for part c2) (see Figure 3). Moreover, both the intervention and the comparison students were found 

to be more successful representing the function rule in variables than in words (65% vs. 48% for the 

intervention group and 41% vs. 26% for the comparison group, respectively stating the rule in 

variables vs. words). 



 

Figure 3. Percentage of Grade 6 students using the Functional-Condensed in Words strategy in part 

c1 and Functional-Condensed in Variables strategy in part c2 

 

Figure 4. Percentage of Grade 6 students using the Functional-Condensed in Words strategy in part 

e1 and Functional-Condensed in Variables strategy in part e2 

Results for parts e1 and e2, which asked students to extend the rule, showed patterns similar to the 

results for parts c1 and c2, which asked students to write the rule. The intervention students used the 

functional-condensed in words strategy more frequently than the comparison students in part e1 

(24% vs. 12%) and functional-condensed in variables strategy more frequently than the comparison 

students in part e2 (43% vs. 26%) (see Figure 4). Similarly, both groups of students were found to 

be more successful representing the rule in variables than in words (43% vs. 24% for the 

intervention group and 26% vs. 12% for the comparison group, respectively stating the rule in 

variables vs. words). 



When we compared the Grade 6 results to the results we obtained at the end of the three-year 

intervention in Grade 5 (n = 90 for the intervention group and n = 61 for the comparison group) on 

the same item parts, we found out that the percentages of responses in which the intervention 

students represented the functional relationship in words and in variables stayed about the same 

from Grade 5 to Grade 6. The percentages of responses in which the comparison students 

represented the functional relationship in words and in variables increased from Grade 5 to Grade 6 

(see Table 1 for students’ percentages in Grade 5 and 6). However, the intervention students still 

outperformed the comparison students in Grade 6. 

 Representing the 

function rule in 

words (part c1) 

Representing the 

function rule in 

variables (part c2) 

Extending the 

function rule in 

words (part e1) 

Extending the 

function rule in 

variables (part e2) 

 Grade 5 Grade 6 Grade 5 Grade 6 Grade 5 Grade 6 Grade 5 Grade 6 

Comparison 16% 26% 21% 41% 3% 12% 8% 26% 

Intervention 50% 48% 67% 65% 27% 24% 40% 43% 

Table 1. Percentage of students using the Functional-Condensed in Words strategy in parts c1 and e1 

and Functional-Condensed in Variables strategy in parts c2 and e2 in Grades 5 and 6 

Fisher’s exact tests revealed that the students’ performances significantly differed by group 

(intervention and comparison) in all parts in Grade 5 and in part c2 in Grade 6 (p < .05). Although 

the intervention students outperformed the comparison students in all other parts in Grade 6, there 

was no significant association between performance and group. We discuss the results next. 

Discussion and conclusion 

Results across items showed that a year after the conclusion of the early algebra intervention, the 

intervention students remained more successful in generalizing functional relationships and 

representing them in words and variables the comparison students. These results emphasize the 

impact of our Grades 3-5 early algebra intervention on students’ success in algebra in the secondary 

school, and the importance of early algebra in helping students develop algebraic thinking practices, 

specifically, representing and generalizing (Kaput, 2008), as early as elementary school.  

The results also showed that the comparison students’ performance in representing functional 

relationships increased from Grade 5 to Grade 6 while the intervention students’ performances 

stayed about the same. Based on our Grade 6 curriculum analysis (Connected Mathematics Project 3 

[CMP3]), we suspect that the increase in comparison students’ performance might be due to the 

focus on patterns and functions in the curriculum, which is covered in a unit called “Variables and 

Patterns” in CMP3 in Grade 6. In our analysis of CMP3, we found that the “Variables and Patterns” 

unit covers some of the same content that was addressed in the early algebra intervention during 

Grades 3-5 (e.g., analyzing relationships among variables, filling in tables, making graphs, 

investigating expressions, equations, and inequalities). Thus, while the CMP3 curriculum may have 

contributed to the intervention students’ ability to retain knowledge and skills learned in the Grades 

3-5 intervention, it might have helped the comparison students to “catch up” a bit with the 

intervention students in Grade 6.  



Another important finding is that both groups of students were more successful in representing the 

function rule in variables than in words. This finding challenges the notion that variable as a varying 

quantity should not be introduced until Grade 6 (see the Common Core Grade 6 Expressions and 

Equations Standard #9, NGA Center & CCSSO, 2010), and suggests that an earlier introduction 

may support students in developing functional thinking. During the LEAP intervention, we 

observed that elementary students were successful using variables to represent generalizations in 

multiple contexts including representing unknown, varying quantities in algebraic expressions, 

representing equations with a fixed unknown, and using variables to represent and generalize a 

functional relationship (see Blanton, Isler, Stephens, Knuth, et al., 2016 for further details). Blanton 

et al. (2011) stated:  

learning to express functional relationships in symbolic form not only strengthens 

understanding and facility in the use of a symbolic language—a skill that is so essential to 

algebra—but as the study of functions deepens, flexibility with symbolic rules also supports 

analysis of changes in the behavior of complex functions through more sophisticated 

techniques. (p. 63) 

We therefore underline the importance of introducing functional thinking in the elementary school 

and using variables as varying quantities in functions to help students represent and generalize 

functional relationships. This study is also a first step towards measuring the impact of the early 

algebra instructional intervention on students’ success in algebra in the secondary school. 
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An APOS perspective of the understanding of the concept of vector 
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Lillias H.N Mutambara and Sarah Bansilal 

University of KwaZulu-Natal, School of Education, South Africa; tendaimutambara@gmail.com 

The content of Linear algebra is often considered to be difficult because of the formal logic 

required as well as the lack of connections to previous courses such as calculus. The purpose of this 

study was to explore the conceptions of vector subspace concepts, of 73 in-service mathematics 

teachers as revealed in their written responses to two tasks. The action, process, object, schema 

(APOS) theory was used to structure the analysis of the responses. The findings revealed that the 

teachers struggled with the vector sub-space concepts mainly because of poorly developed 

conceptions of prerequisite concepts of sets and binary operations.  

Keywords: APOS, vector subspace, binary operations, vector space. 

Introduction 

Linear algebra is considered to be one of the most widely applicable subjects for students in the 

field of mathematics in that it can be applied to many different content areas, such as engineering 

and statistics and can be studied for mathematical abstraction. However, we noted that when the 

students take their first linear algebra course, they seem to encounter cognitive barriers. Dorier, 

Robert, Robinet and Rogalski (2000) noted that the teaching of vector spaces have completely 

disappeared in the secondary schools and the teaching has become less formal as there are no 

studies on algebraic structures.  Some criticisms given by students about linear algebra concern the 

use of formalism and the lack of connections with what they already know since this is not done at 

secondary level. Dorier et al., (2000) elaborated that the formalism is experienced when students 

need to learn new definitions, symbols, words and theorems. Stewart and Thomas (2010) noted that 

many students in the first years cope well with the procedural aspects of solving systems of linear 

equations but struggle to understand the crucial concepts underpinning the material involving the 

study of vector space concepts such as subspace, linear independence and spanning.  The teachers 

complain that the students have no skills in elementary cartesian geometry, and display an 

inconsistent use of the basic tools of logic or set theory (Dorier et al.,2000).   

An APOS study set up to explore pre-service teachers’ mental constructions of matrix algebra 

concepts, found that most of the participants were operating at the action and process level, with a 

few operating at the object level (Ndlovu & Brijlall, 2015). The authors argued that the lack of 

background knowledge of basic algebra schema hampered the teachers efforts to develop adequate 

schemas at the object level. Many preservice teachers could not manipulate numbers correctly when 

multiplying matrices and some of them failed to use notations correctly. They confused the 

notations AT and A-1.  The goal of mathematics teaching is that students understand mathematical 

concepts presented to them or information that they discover for themselves. This is also supported 

by Hiebert and Carpenter (1992) who asserted that one of the most widely accepted ideas in 

mathematics education is that students should understand mathematics. The research described in 

this paper is concerned with students’ difficulties with conceptual understanding of vector subspace.  



Britton and Henderson (2009) in studying student’s conceptual understanding of a subspace argued 

that the abstract “obstacle of formalism” and the theoretical nature of linear of linear algebra are the 

root cause of the difficulties experienced. They believed that lecturers teach students for procedural 

rather than conceptual understanding and students have poor backgrounds of the concepts on proofs, 

logic and set theory. One of the questions asked the students to show that the set scalar multiples of 

a vector formed a subspace of R3. Most of the students could show that the set, V, is non empty but 

failed to prove the aspect on the closure property. Students chose particular vectors instead of 

arbitrary vectors, and some student worked out the sum of two vectors and assumed that the sum 

belonged to the set V. Some students had misconceptions about the definition of a subspace, while 

others mixed up concepts and showed rote learning of the concepts on vector subspace. The 

researchers also noted that students had problems with logic and set theory, moving from abstract to 

algebraic mode algebraic mode and failing to write a convincing proof.  

Theoretical framework: APOS theory 

We use the action–process–object–schema (APOS) theory as a framework to make sense of the 

data. According to Arnon, Cottrill, Dubinsky, Oktaç, Fuentes, Trigueros and Weller (2014) APOS 

theory is based on the extension of Piaget’s principle that an individual learns mathematics by 

applying certain mental mechanisms to build specific mental structures. The main mental 

mechanisms for building the mental structures include interiorisation, coordination and 

encapsulation. The mental structures refer to the action, process, object and schema. As actions are 

repeated and reflected on, the student moves from relying on external cues to having internal control 

over them. This is characterized by an ability to imagine carrying out the steps without necessarily 

having to perform each one explicitly. Interiorisation is the mechanism that makes this mental shift 

possible. Encapsulation occurs when an individual becomes aware of a process as a totality upon 

which transformations can act. At this stage the student can analyse properties of the object and 

compare objects arising from the same process. (Arnon et al., 2014) 

Many actions, objects and processes are interconnected in the individual’s mind and these will be 

organised to form a coherent framework called a schema. An object can be assimilated by an 

existing schema, thus extending the span of the schema. According to Piaget, schema development 

also passes through stages of development. The Intra level is the preliminary level and is 

characterised by analysing particular events or objects in an isolated manner in terms of their 

properties, where explanations are local and not global and relationships between objects may not 

be perceived. At the Inter level, comparison and reflection upon properties of objects lead to the 

establishment of relationships. The individual can coordinate two different interpretations of the 

concept to mean the same thing.  During the Trans stage, the student reflects upon and coordinates 

the relations and is aware of the complete structure. Using these definitions, we now present a 

genetic decomposition of the vector space concept. 

Genetic decomposition of the Vector Space concept 

We draw upon the work of Parraguez and Oktac (2010) and Arnon et al., (2014) to present a 

summarised description of the genetic decomposition of the vector space concept. The construction 

of the vector space concept is developed as the coordination of the prerequisite concepts of set and 



binary operations. Hence, we refer to the set and binary operations Schema as abstraction layers of 

the vector space concept. 

Set Schema. At an Action level, an individual conceives of a set when given a specific listing if a 

particular condition of set membership. The Action of gathering and putting objects together in a 

collection according to some condition is interiorised into a Process. This is encapsulated into an 

Object when an individual can apply actions or processes to the Process such as compare two sets, 

consider a set to be an element of another and analyse properties of the set. (Arnon et al., 2014) 

Binary operation Schema. A binary operation is a function of two variables defined on a single set 

or on a Cartesian product of two sets. At an Action level, given a binary operation, an individual can 

take two specific elements of the sets and apply the formula. The individual interiorises the action 

into a Process that takes two objects (elements) and acts on these to produce a new Object (element) 

that is the result of the binary operation. At the Object level, an individual can distinguish between 

two binary operations, check whether a binary operation satisfies an axiom and compare Objects 

arising from two different binary operations. (Arnon et al., 2014) 

Parraguez and Oktac (2010) describe how these two schema are drawn together  to form the concept 

of vector space:  

The Objects that are sets with two kinds of operations (addition and multiplication by a scalar) can 

be coordinated through the related processes and the vector space axioms that involve both 

operations, to give rise to a new Object that can be called a vector space. At the Intra level the object 

of vector space stays isolated from other actions, processes, objects and schemas. For example the 

student can verify different sets as being vector spaces or not, but does not see the vector space 

structure inherent in all of them. At the Inter level the object of vector space starts having 

relationships with other concepts such as subspace, linear transformations, basis, etc. When the 

student reflects upon these relations, through synthesis they can be recognized as part of a whole 

structure that makes up a vector space schema. This implies that the Trans level is reached and the 

student can recognize and work with non-standard examples of vector spaces and can invoke her/his 

schema when needed. (Parraguez & Oktac, 2010, p. 2116) 

This description emphasises the complexity of the construction of the vector space concept which is 

built upon layers of abstraction. Firstly, the binary operation and set concepts are developed through 

to higher levels of abstraction via the Action-Process-Object path. The vector space concept is then 

constructed on these layers, forming an even higher layer of abstraction and as the vector space 

schema develops, at each stage the previous layer is re-organised as increasing coordination and 

coherence across the objects and relationships develops. The vector subspace concept is built upon 

this schema – students will not be able to see the connections between a vector space and vector 

subspace if they have not developed the vector space schema up to at least an Inter level.  

Methodology 

This study was conducted with 73 underqualified mathematics teachers who were enrolled in a part-

time in-service course at a Zimbabwean university that was designed to upgrade them. The design 

of the program was such that the teachers would complete the equivalent of an undergraduate three-

year degree program. However, the lectures were offered in two intensive block sessions for each 



semester and held from 8 Am to 6 Pm every day. The participant teachers have already taken a first 

course in matrix algebra, a course in mathematical discourse and structures together with two 

courses in calculus. The second course in linear algebra (during which they participated in the 

study) includes the concepts of vector spaces, linear independence, linear transformation and 

diagonalization, eigenvalues and eigenvectors. The research question that underpins this study is: 

What does an APOS perspective suggest about the conceptions of vector subspace concepts held by 

73 in-service mathematics teachers as revealed in their written responses to two tasks?. 

The data was collected from the teachers’ written responses to an activity sheet consisting of nine 

items which were intended to probe their understanding of vector spaces and vector sub-spaces. In 

this short paper, we focus on two tasks which were set within the vector space of 2×2 matrices. 

These appear below. 

Item Comments 

1. Let V be the vector space over of all 

2×2 matrices over the real field . 

Show that W is not a subspace of V, 

where W is the set of 2×2 matrices 

which have a zero determinant. 

For this, teachers were expected to find a counter-

example to show that the set W is not closed 

under vector addition. 

2. Show that the set of all   

matrices of the form      is a 

vector space. 

For this, teachers could argue that since  is 

already a vector space, then it was only required to 

show that the given subset formed a vector 

subspace of  or, they could show that the 

eight axioms for a vector space were satisfied.  

Table 1: Research Tasks 

Results and discussion 

The teachers’ responses were numbered from one to 73, where the order held no significance, for 

example, R11 is the response of Teacher number 11 on the list. We found that the teachers 

displayed different levels of engagement with the vector space concept. On the one hand some 

teachers held extremely limited conceptions of binary operations and of set that were not even at 

Action levels, while on the other hand some teachers had developed strong enough conceptions of 

vector space schema at an Inter level. The details of some of these levels of engagement are 

described now. 

Binary Operation Layer 

The teachers’ responses to the two tasks, suggested that the teachers were reasoning at various 

levels about binary operations, ranging from those who did not show evidence of even Action- level 

conceptions, while some displayed Object-level conceptions. Responses which illustrate different 

levels of reasoning are discussed below. 

 



Not yet at Action levels 

It was clear that some teachers had not developed an Action conception of binary operations, as 

illustrated by the responses of R13 to Task 1 and that of R1 in Task 2. The response by R13 below 

shows that the teacher has not been able to carry out the Action of scalar multiplication because he 

has been sidetracked by thinking about the sign of the scalar.  

 

 

Response R13 to Task 1 

 

Response R1 to Task 2 

Figure 1: Responses suggesting action level conceptions of the binary operation have not developed 

The response R1showed that the teacher was not clear about what “1” in the axiom referred to in the 

scalar multiplication 1.u and took it as the “identity” matrix, consisting of 1’s in all the entries. The 

teacher then proceeded to carry out a pairwise multiplication of the corresponding elements in the 

two matrices. This is shown in the response of R1 in Figure 3.  

Process- level engagement with the binary operations  

Some teachers’ responses suggested that they were able to engage in  Process- level reasoning with 

the binary operations. However, for Task 2, if they had not developed an Object-level conception 

they were unable to apply the axioms correctly to the binary operations, as illustrated in Figure 2 

below. 

 

 

 

Figure 2: Response R11 working with scalar multiplication  and R12 showing confusion about closure  

In Figure 2, R11 is trying to show the associativity property of the operation of scalar multiplication 

(λ ) = λ ). The teacher is able to multiply the scalar into the vector (2×2 matrix) without any 

problems, suggesting that she has developed a Process conception of the binary operation of scalar 

multiplication. However, her expression on the left hand side of the first line does not have any 

brackets. This indicates that the teacher has problems with distinguishing between Objects arising 

from the different binary operations ((λ  as opposed to λ ). This suggests that the teacher has 



not yet developed the necessary Object- level conception of the binary operation of scalar 

multiplication.  

Similarly some teachers showed evidence of Process-level reasoning about the binary operation of 

addition but this was not sufficient to enable them to respond correctly to Task 1, which required 

them to show that the closure condition was not satisfied as in the case of R12 which also appears in 

Figure 2. 

The response R12, shows firstly that the teacher has considered a particular type of 2×2 matrices, 

that has identical entries. These matrices belong to the given set, because their determinants are 

zero. The teacher has done the vector addition of the two matrix elements, but was unable to show 

that the set was not closed under the binary operation.  The sum of the matrices does satisfy the 

condition of having a zero determinant. Although he is able to reason at a Process-level about the 

binary operation of vector addition of 2×2 matrices, the teacher was confused about what he needed 

to do, with the result of the addition (sum). He seemed to be trying to show that the sum should be 

equal to the identity matrix. This shows that he is unable to work with the sum of the vectors as an 

Object. 

Set Layer 

Similar to the binary operations layer, teachers’ responses to the two tasks, showed reasoning at 

various levels in the Set layer. Examples of responses which illustrate this are discussed below. 

Not yet at Action levels 

Many teachers were not clear about what the elements of the subset of Task 1 was. One teacher 

(R17) used a general  matrix, U, with variable entries and the zero matrix and  tried to show 

that the closure  condition was not satisfied as shown in Figure 3. The teacher has assumed that the 

matrix U belonged to the set W. This suggests that the teacher has not developed an Action 

conception of the subset W, of all 2×2 matrices which have a zero determinant. 

 

Figure 3: Response R17, unable to identify non-zero elements of the given Set 

 

Process- level reasoning 

Some teachers showed that they were able to recognize whether elements belonged to the set of 2×2 

matrices with zero determinants by considering the condition which characterized the set One 

teacher (R6) considered a matrix with elements 1, 2, 3 and 4 and showed that the determinant of the 

matrix is not equal to zero as shown in Figure 4. That is, he identified a 2×2 matrix which did not 

belong to the given set. This shows that he can work out that the element does not belong to W 



suggesting that he has developed a Process conception of the Set of all 2×2 matrices which have a 

zero determinant, however he could not prove  that the set W was not a subspace. 

 

Figure 4: Response R6 considering an example of a  matrix which did not belong to the given set. 

Indications of Inter level conceptions of vector space schema   

There were six teachers whose responses suggest that they have may developed an Inter level 

conception of the vector space schema. R3, for example, considered two 2×2 matrices x, and y  

where x had 0’s in the first column and 1 in the first row of the second column, while  y had had 1’s 

in the first column and 0’s in the second column. The sum (x + y) was therefore a 2×2 matrix with 

three entries being 1. So the determinant was 1 and hence did not satisfy the zero- determinant 

condition. The proof involved generating a counter-example of two elements and then showing that 

the sum did not belong to W, hence implying that W was not closed under the binary operation of 

vector addition. This argument suggests that the student has developed Object-level conception of   

both binary operation as well as Object-level conception of the set of 2×2 matrices with zero 

determinants set and the relations between these are perceived.  Being able to show that the set W 

did not satisfy the conditions for being a subspace of the vector space V , suggests that these 

teachers have developed Inter level conceptions of the vector space concepts. These teachers also 

presented appropriate responses to Task 2. 

Conclusion  

The use of APOS theory suggests that most of the teachers have not developed the necessary mental 

constructions that would enable them to reason about the properties of vector subspaces, which 

requires an Inter level conception of vector space schema.  The study showed that for many 

teachers, their conceptions of the prerequisite schemas of set and binary operations hampered them 

from developing the vector space schema at an Inter level. Most teachers showed that they were able 

to generate the vector addition of two matrices, in their responses to Task 1. This suggests that they 

had developed a Process conception of the binary operation of vector addition using 2×2 matrices. 

However, to show that the set was not closed under the binary operation, the teachers needed to 

have encapsulated the process of vector addition into an Object  

 whose properties they could analyse further. Some teachers had not developed even Action level 

conceptions of the binary operations. Many teachers struggled with the basics such as trying to 

identify the elements of the subset and were unable to reason about the kind of elements that 

produced a zero determinant. These teachers had basic problems with working with the set itself of 

matrices. These struggles indicate that their conceptions of the set of 2×2 matrices with zero 

determinants had not progressed past an Action level so they did not have access to the 

sophisticated Object–level reasoning about properties of 2×2 matrix with zero determinants. It is 

however important to note that the classification is based on written responses and if interviews 



were used, the inferences about their levels of reasoning may differ somewhat depending on how 

the teachers’ responded to questions about their reasoning. 

Unlike simpler concepts which require coordination between few Objects and Schema, developing a 

robust understanding of vector subspace is dependent on a sufficiently strong conception of the 

various layers underlying the concept. Each of these layers is built upon previous ones and becomes 

increasingly abstract, requiring the coordination and connection between the various objects and 

relations. Hence very few teachers were able to cope with both tasks. For the teachers to develop the 

insight that was necessary, they needed to have access to Object-level conceptions of the set (of 2×2 

matrices with zero determinants as well as Object-level conceptions of both binary operations. It is 

therefore no surprise that only six teachers seemed to be able to cope with the abstraction required 

to present proofs about why a subset did not form a vector subspace of the vector space. 
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This article presents a case in which a pair of middle-school students attempts to make sense of a 

previously obtained by them position formula for a particular numerical sequence. The exploration 

of the sequence occurred in the context of two-month-long student research project. The data were 

collected from the students' drafts, audiotaped meetings of the students with the teacher and a 

follow-up interview. The data analysis was aimed at identification and characterization of events 

and algebraic activities in which the students were engaged while making sense of the formula. We 

found that the students' conviction, by the end of the project, that the formula "makes sense" 

emerged when they justified the formula, checked its generality, discovered a geometry mechanism 

behind it, and found that it came to cohere with additional formulas. The findings are summarized 

as a suggestion for a four-component decomposition of algebraic sense making. 

Keywords: Algebraic sense-making, problem-solving, project-based learning, integer sequences. 

Introduction 

Sense making has long been a focal concern of the mathematics education research community 

(e.g., Kieran, 2007; NCTM, 2009). NCTM (2009) recognised sense making as a means to know 

mathematics as well as an important outcome of mathematics instruction. To review, NCTM (2009) 

refers to sense making in mathematics “as developing understanding of a situation, context, or 

concept by connecting it with existing knowledge” (p. 4). Nevertheless, NCTM (2009), as well as 

many additional mathematics education publications, is rather inexplicit as to what sense making 

comprises of and how it occurs. Moreover, it has been broadly acknowledged (e.g., Schoenfeld, 

2013) that empirically-based knowledge about the processes involved in sense making, as well as 

knowledge about the processes involved in learning through mathematical problem solving, is 

insufficient.  

The case presented in this article occurred with two 9th graders, Ron and Arik (pseudonyms) who 

participated in the Open-Ended Mathematical Problems project, which was conducted by the 

authors (an abridged version of Palatnik and Koichu, 2017).  The initial part of Ron and Arik’s 

project lasted for three weeks and resulted in an insight solution to the problem of finding a position 

formula for a particular sequence. This part is analysed elsewhere (Palatnik & Koichu, 2015). The 

insight gained was celebrated as an important highlight of the project. The students told us, 

however, that they found the formula “by chance” and that it did not make sense for them. As a 

result, making sense of the obtained formula became an explicitly chosen goal and the main theme 

of the second part of the students’ project. This part had lasted for four weeks and ended when the 

students succeeded, in quite an idiosyncratic way, to make sense of the formula. 

The goal of our study was to discern the activities and processes involved in the sense making 

effort. Specifically, we pursued the following research questions: 

In which events and algebraic activities were the students engaged while attempting to make sense 

of a formula? 



What were some of the processes involved in the students’ explicitly expressed conviction, by the 

end of the exploration, that the formula “makes sense”? 

Theoretical background 

In empirical studies, the notion of sense making frequently denotes ways by which learners of 

mathematics act upon a particular entity in the context of particular mathematical activity. The 

expression “to make sense of…” is attributed in different studies to such entities as proofs, 

instructional devices, concepts, solution methods and problem situations (e.g., Smith, 2006; Rojano, 

Filloy, & Puig, 2014). 

The idea of algebra as an activity was elaborated by Kieran (1996, 2007). Kieran identifies three 

types of activities in school algebra: generational, transformational, and global/meta-level 

activities, and argues that each type has special affordances to meaning construction. The 

generational activity involves the forming of the objects of algebra (e.g., algebraic expressions or 

formulas) including objects expressing generality arising from geometric patterns or numerical 

sequences. The transformational activity includes various types of algebraic manipulations. 

Transformational activity can involve meaning construction for properties and axioms on which the 

manipulations rely. A related point is highlighted by Hoch and Dreyfus (2006), who proposed the 

notion of structure sense, which is related to algebraic manipulations and aspects of symbol sense 

(Arcavi, 2005) in relation to friendliness with symbols as tools, an ability to switch between 

attachment and detachment of meaning, and an examination of the meaning of symbols. Finally, 

Kieran (2007) argues that meaning construction is associated with global/meta-level mathematical 

activities (e.g., problem solving, working with generalizable patterns) in a sense that “these 

activities provide the context, sense of purpose, and motivation for engaging in the previously 

described generational and transformation activities” (p. 714). It is essential for the forthcoming 

analysis that when the learners are engaged in a global/meta-level activity, they can carry it out in a 

variety of ways, and the decision to use the algebraic apparatus arises as learners’ choice.  

Treatment of sense making as an inseparable part of mathematical thinking makes the MGA model 

of creating mathematical abstractions (Mason, 1989) particularly important for our study.  The main 

operational categories of the model are Manipulating, Getting-a-sense-of, Articulating (hence 

MGA). The MGA model elaborates on the processes of creating abstraction as a helix, in which 

each cycle includes its own, local, sense-making act. Briefly, the model presumes that manipulating 

familiar mathematical objects (M) leads to the formation of a sense of generality or regularity based 

on properties of these objects (G), and then to the articulation of that general property or regularity 

(A), which in turn forms new objects for further manipulations. Mason (1989) suggested that the 

driving force behind the process of creating abstractions is the gap between expected and actual 

results of manipulations. 

To summarize, in our study we adapt NCTM’s (2009) perspective on sense making, and elaborate 

on it in an algebraic context. Our theoretical framework is built upon the idea of algebra as an 

activity (Kieran, 1996, 2007) and on analytical apparatus of Mason’s (1989) model of mathematical 

thinking known as Manipulating – Getting-a-sense-of –Articulating (MGA). 



Method  

Learning environment, participants and the mathematical context 

The Open-ended Mathematical Problems project, in the context of which the case of Ron and Arik 

took place, is being conducted, since 2010, in 9th grade classes for mathematically promising 

students. The learning goal of the project is to create for students a long-term opportunity for 

developing algebraic reasoning in the context of numerical sequences. It is of note that 9th graders in 

Israel, as a rule, do not possess any systematic knowledge of sequences; this topic is taught in the 

10th grade.  

The project is designed in accordance with the principles of the Project-Based Learning (PBL) 

instructional approach (e.g., Blumenfeld et al.,1991). Specifically, the organizational framework of 

the project is as follows. At the beginning of a yearly cycle of the project, a class is exposed to 8-10 

challenging problems. The students choose one problem and work on it in teams of two or three. 

They work on the problem at home and during their enrichment classes. Weekly 20-minute 

meetings of each team with the instructor (the first author) take place during the enrichment classes. 

When the initial problem is solved, students are encouraged to pose and solve follow-up problems. 

At the end of the project, all teams present their results to their peers. Then 4-6 teams, chosen by 

their classmates, present their work at a workshop at the Technion – Israel Institute of Technology, 

attended by academic audience (for more details see Palatnik, 2016). 

Ron and Arik chose to pursue the Pizza Problem (Figure 1) which is a variation of the problem of 

partitioning the plane by n lines (e.g., Pólya, 1954). 

 

Figure 1: The Pizza Problem 

Using Kieran’s (2007) terminology, we expected the PBL environment and the Pizza Problem in 

particular to afford students to be engaged with generational and transformational activities in the 

context of a global/meta-level activity. In this way, the students were provided with opportunities 

for developing algebraic sense-making and we – with an opportunity to study their sense-making 

effort.  

Data sources and analysis  

We audiotaped and transcribed protocols of the weekly meetings with Ron and Arik (eight 20-

minute meetings), collected written reports and authentic drafts that the students prepared for and 

updated during the meetings (more than 40 pages) and interviewed the students by the end of the 

project. These data were used to create a description of the students’ exploration and for dividing it 

into events.   

In accordance with the presented above methodological principles for exploring sense making, we 

discerned the activities the students chose to be engaged in: proving, generalizing, pattern-seeking, 

Every straight cut divides a pizza into two separate pieces. What is the 

largest number of pieces that can be obtained by n straight cuts? 

A. Solve for n = 1, 2, 3, 4, 5, 6. 

B. Find a recursive formula for the nth term of the sequence. 

C. Find a position formula for the nth  term of the sequence. 



and question-generating. We also applied the MGA model to trace mathematical objects 

manipulated by the students in a sequence of activities potentially contributing to sense-making. 

Findings: Ron and Arik make sense of the obtained formula 

We present here four main events that occurred during students’ sense-making pursuit. 

Event 1: Choosing new goals 

The following conversation took place just after the students presented their solution of the Pizza 

Problem to the instructor:  

Instructor:   Now you have a lot of work to do, and this is great. First of all, you see that 

the formula works. Now we have to think why it works, and try proving that it works. 

Ron (to Arik):  Write it down. “Why it works, and prove that it works” (laughs), it is 

interesting! 

Ron accepted instructor’s suggestion. In his words: “When we have a formula, but don’t know its 

meaning, it is not interesting. If we knew how the formula is constructed, we would know it 100%. 

We got it by chance. So we do not know what it means.” In addition, both students proposed to 

explore a more general problem, that of plane partitioning (see Figure 2). 

 

Figure 2: Division of the plane: there are three closed (hatched) and eight open pieces 

The students also suggested additional objects to explore: the points of intersection of the cutting 

lines with and within a circle representing a pizza and the number of segments on the cutting lines.  

Event 2: Simultaneous exploration of several sequences and first manipulation with a formula 

Having chosen the above goals, the students started making sketches and counting: segments within 

the circle, closed and open parts of the plane and points of intersection of the cutting lines, for 

different numbers of lines (see Figure 3a-c). As a by-product, the students noticed that the sum of 

the first n odd numbers also equals n2. They also began exploring the connections between different 

sequences (see Figure 3d-3e). In particular, Ron noticed that the differences between the 

corresponding terms of the sequences form a sequence 0, 1, 2, 3... (see columns X,Y at Figure 3d). 



 

Figure 3: The strategy employed in Events 1 and 2 

To obtain an explicit formula for the sequence 2, 5, 9, 14 … (the numbers of intersections of the 

cutting lines with and within the circle), Ron adjusted the formula 1
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 into the formula 
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 (Figure 3c) in the following way: “I thought it would be like the previous formula, 

but it did not fit. So I got rid of 1 and added n [to the right side of the formula], and it was right.” 

Event 3: Producing an explanation of why the target formulas worked 

The wish to understand why the formula returns the maximum number of pieces was a repeated 

theme in weekly meetings with the instructor. The students eventually answered this query in the 

following way. After exploring of new drawings Ron and Arik realized that the maximal number of 

pieces is obtained when a new cutting line crosses all the previous lines in new points. As a result, 

the students concluded that a new cutting line added n new intersection points to the existing 

configuration of lines. For the students, it was an explanation of why the formula n
nn

X= 


2

2

 

returned the maximum number of the intersection points. They further asserted that this idea also 

explained, for them, why the target formula 1
2

2

+
nn

=Pn


 returns the maximum number of pieces. 

Event 4: “Proving” the target formula  

As mentioned, the need to prove the correctness of the formula for the Pizza Problem was an 

additional driving force for the students. First, Ron suggested: “We thought of a way to prove it [the 

position formula]…[in order to do so, we wanted] to connect all the formulas we had, every table 

we’ve made… may be it will give us the formula, then we will know that it is a true formula indeed. 

Then we'd have a proof”. Ron and Arik built upon the following inference: for any number of cuts, 

the sum of the number of open and closed pieces (see Figure 2) equals the overall number of pieces 

into which a plane is divided. They explored the sequences for open and closed pieces. The number 

of open pieces for n cuts, 2n, was easy for them to find and explain: adding a new cutting line adds 

exactly two open pieces to the drawing. For the closed pieces the students empirically (i.e., by 

counting on the drawings) obtained a sequence 0, 0, 1, 3, 6 for 1, 2, 3, 4 and 5 cuts, respectively. 

They perceived it as “quite close” to the target sequence (2, 4, 7, 11, 16…) and began manipulating 



the target formula ( 1
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) in a way similar to adjustment in Event 2. Eventually Ron and Arik 

obtained the correct expression
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. The last piece of the puzzle came when Ron and Arik 

and their classmate with whom they consulted devised and realized the following plan.  Since the 

formula 1
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 represents the total numbers of pieces and since Ron and Arik have obtained 

the formulas for the numbers of closed and open pieces, the three formulas should match. After 

several unsuccessful attempts, Ron and Arik implemented this idea and algebraically connected the 

three formulas. In their final presentation, they showed a slide with the following transformations: 
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validation of all three formulas by means of Excel tables were presented as “the proof” of the target 

formula, and the formula itself was treated as “making sense” by the students.  

Discussion  

The four-weeks-long exploration of two 9th grade students working on a particular project has been 

presented. The answer to the first research question (about events and algebraic activities in which 

the students were engaged while attempting to make sense of the previously obtained position 

formula) straightforwardly follows from the above exposition. Briefly, the students were engaged in 

generational and transformational activities in the context of the global/meta-level activities of 

explaining to themselves why the formula worked and of proving the formula. It is of note that Ron 

and Arik’s persistence to make sense of their formula is unusual. We suggest two circumstances 
contributing to the emergence of the students’ self-imposed sense-making goal. First, the 
students’ activities were organized and driven by their interest to a particular mathematical 
phenomenon and not merely to generation of some patterns (cf. Hewitt, 1992, for train spotters 
metaphor). Second circumstance is the organizational setting of the project, which was in 
accordance with project-based learning instructional approach (Blumenfeld et al., 1991). In such 
an environment the students had a chance to get used to the long-term, open-ended explorations, 
to the high level of expectations and to having room and time to spend with a problem. 

Our second research question concerned the processes involved in student sense making. To answer 

the query “why the formula works” the students examined the geometric mechanism behind the 

formula. In the course of generational activity the students experimented with concrete drawings 

(i.e., drawings with 4-6 cutting lines), which apparently served as a visual tool to reveal a generic 

process that occurs when a line is added to a system of n existing lines. Accordingly, the multi-stage 

process of abstracting, at each stage of which an MGA cycle occurred, seems to be the central 

process underlying the why-part of the students’ sense-making effort. 

The query “how to prove the formula” turned to be the thorniest part of the project. The students 

addressed this query when they succeeded to show how the target formula came to cohere with two 

geometrically related formulas. These formulas were obtained by means of exploration of the 

connections between the sequences chosen by students. The connections were found in the process 

that featured counting on the drawings, pattern-sniffing in the tables and manipulating the 

previously obtained formulas by adjusting them. Eventually, the target formula was inserted in a 

cloud of related formulas, which did not exist when the students began the sense-making pursuit. 



Thus, the process of generating a cloud of formulas and checking it for coherence seems to be an 

important process in the proving part of the students’ sense-making effort (cf. Rohano, Filloy & 

Puig, 2014, for sense making by connection of a new mathematical text to a system of texts). It is of 

note that the coherence was achieved not only among various objects, but also by means of a 

coherent exploration strategy. 

As argued, Ron and Arik constructed meaning of the target formula in a sense-making process 

consisting of sequence of generational and transformational algebraic activities in the overarching 

context of global, meta-level activity, long-term problem solving. In this sense-making process, the 

students: (1) formulated and justified claims; (2) made generalizations, (3) found the mechanisms 

behind the algebraic objects (i.e., answered why-questions); and (4) established coherence among 

the explored objects. We now take the liberty of formulating this summary as a proposal for a four-

component decomposition of sense making (see Figure 4). 

 

Figure 4: Four aspects of an algebraic sense making through algebraic activities 

The aspects of generalizing, justifying and search for mechanism in sense making are in line with 

the main attributes of symbol sense (Arcavi, 2005) as well as findings about the role of generalizing 

and justifying in meaning construction (e.g., Lannin, 2005; Radford, 2010). However, establishing 

coherence has not yet been considered as part of sense making.  

The four-component decomposition elaborates NCTM’s (2009) definition of sense making in the 

following way. First, it presents sense making as a conjunction of processes. Second, it highlights 

the potential of algebraic activities to provide students with means to make sense of algebraic 

objects. 
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In this paper, the contribution of the use of the “Father Woodland” learning environment in Grade-

3 students’ algebraic thinking is examined. Four types of thinking were identified indicating a 

progressive movement towards the use of symbolic language that seems to have a rather 

developmental character. In their solutions the students induced rules for solving equations that will 

later be introduced formally to them.  

Keywords: Early algebraic thinking, puzzle-like environments.  

Introduction  

Given the central position of algebra in the secondary curriculum which led to a separation between 

arithmetic and algebra with the first being the main focus of elementary mathematics curriculum, 

mathematics educators try to cope with the challenge of managing the transition from arithmetic to 

symbolic algebra. Numerous researchers admit that this separation deprives children of powerful 

schemes of thinking in the early grades and makes it more difficult to learn algebra in the later years 

(e.g., Kieran, 2007). One way to address this issue might be to study the impact of certain learning 

environments in the students’ development of algebraic thinking. Papadopoulos, Kindini and 

Tsakalaki (2016) working with a mobile puzzle environment found that sixth graders exhibit a 

progressive movement towards algebraic thinking. In this context, we try to explore the potential 

contribution of another specific learning environment called ‘Father Woodland’ in young students’ 

algebraic thinking that would allow us to identify certain steps in this movement from arithmetic to 

algebra. This is based on two of the algebra goals specified by NCTM (2000) standards, i.e., (i) 

represent and analyze mathematical situations and structures using algebraic symbols, and (ii) use 

mathematical models to represent and understand quantitative relationships. Therefore, we try to 

examine whether this environment facilitates the achievement of these goals through the 

identification of the types of thinking that the students followed in order to cope with the given tasks. 

Early algebraic thinking and ‘Father Woodland’ environment. 

Cai and Knuth (2011) do not limit algebraic thinking in earlier grades to simply mastering arithmetic 

and computational fluency but it goes deeper in identifying the underlying structure of mathematics 

which includes the development of particular ways of thinking, analysis of relationships between 

quantities, noticing structure, generalization, problem solving, justifying, proving and predicting. Cai 

et al. (2005), in a cross-cultural comparative study talk about multiple representations (pictures, 

diagrams, tables, graphs, and equations) that are used to represent functional relationships between 

two quantities and more specifically about ‘pictorial equations’ used to represent quantitative 

relationships providing thus a means for developing students’ algebraic ideas. This raises the 

necessity to make the distinction between the external and internal representations in the sense of 

considering at a minimum configurations of symbols or objects external to the individual learner or 
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problem solver (i.e., concrete materials, pictures/diagrams, spoken words, written symbols) that can 

be described mathematically and configurations internal to the individual (i.e., mental models and 

cognitive representations of the mathematical ideas underlying the external representations) 

respectively (Goldin, 2002). Such internal representations are inferred from the way the students 

express their aspects of the process of mathematical thinking in their written responses.  It seems that 

certain learning environments can be in favor of introducing young learners to these aspects of 

algebraic thinking (Papadopoulos et al., 2016). In the current study a specific learning environment 

has been chosen. It is called ‘Father Woodland’ and is about a Czech fairy-tale figure owning a farm 

who organizes tug-of-war games among the animals living in the farm (Hejný, Jirotková, & 

Kratochvílová, 2006). The weakest animal is the mouse. Two mice are as strong as a cat, a cat and a 

mouse equal a goose and a goose and a mouse equal a dog (Fig. 1). The strength of each animal is 

represented by a picture and an icon (symbol) and the students are asked mainly to decide between 

two groups the stronger one or to add some animals to the weaker group in order to create two 

equivalent groups, or to reveal the identity of hidden animals so as to obtain equity. 

     

Figure 1: Equivalences in the Father Woodland environment 

It is a rich environment. Hejny and his colleagues use it in a series of textbooks they produced. The 

relevant tasks within these textbooks are connected with the development -among others- of an early 

number sense, pre-concept of divisibility, the lowest common multiple and greatest common divisor 

as well as the solving of equations. Hejný, et al. (2006) used this environment with Grade 1-3 students 

focusing on how the environment facilitated the identification and acceptance of the association 

between animals and quantities. Marchini and Back (2010), used also a modified version of the 

environment to fit in the Italian schools and worked with Grade-1 students focusing on how the 

variety of “ways for representing the same mathematical concept together with treatment inside a 

register and conversion between registers facilitate pupils’ understanding and the construction of 

concepts” (p. 55). In this study we focus on the use of this environment as a way to smooth the 

transition from arithmetic to algebra (in the sense of using pictorial equations as a means or 

developing algebraic ideas, see Cai et al., 2005) by considering the various types of students’ thinking 

that would show a progressive movement towards algebraic thinking.   

Design of the study 

Seventy 3rd graders (8-9 years old) participated in the study. They were the total population of three 

classes from two primary schools and they represent a sample of an ordinary Greek primary school. 

They had no previous experience working with this kind of environments and they had not been 

taught any of the basic concepts of algebra such as equations or variables. When the students were 

introduced to the ‘Father Woodland’ environment, each tug-of-war game was presented using both 

the pictorial and symbolic representations of the animals. The whole study (part of a broader one) 

lasted five weeks. The students were initially introduced to ‘Father Woodland’ and then on a regular 

basis they were given tasks to solve individually. The whole project took part in parallel to the normal 



teaching and was not integrated in the content of their math lessons. This paper focuses on the first 

10 tasks due to the limited number of pages. There are 3 collections of tasks. In the first, there were 

two groups of animals in each task and the students were asked to add a mouse to the weaker group 

in order to make both groups equivalent (Fig. 2). This demands comparison and relational thinking 

connected to the notion of equality as an equivalence. In the second, the tug-of-war game took place 

but one (or some) of the animals wore a mask. The students were invited to find the animal(s) behind 

the mask (Fig. 3, left and middle). The aim was to exploit relational thinking in the form of using 

alternative ways for representing the unknown quantity. Finally, in the third, the students were asked 

to create two equally strong teams using any combination of the farm animals (Fig. 3, right). The aim 

was to see whether the students exploit the experience gained before and how intuitive mathematical 

ideas are embedded in their creations. For each task, the students were asked to explain their answer 

in a separate textbox. During the study, no feedback was given to the students about their answers. 

The students’ worksheets constituted the data for this study. These data were examined in order to 

identify evidence of early algebraic thinking and possible formal mathematical concepts, which are 

informally used in the students’ answers. In the context of qualitative content analysis, inductive 

category development was used to organize the categories. 

 

Figure 2: The first group of activities 

 

Figure 3: The second (left, middle) and the third (right) group of activities 

 

Results and discussion 

After the data examination, the answers were categorized in four types. The criteria for this 

categorization were the ways students chose to express the underlying structure in each task (i.e., 

using pictures, words or symbols), the relationships among the given quantities (i.e., using the given 

or new (invented) relationships), and the mathematical information contained within the pictorial 

representation (i.e., identifying a basic unit, substituting animals with their equivalents, 

adding/subtracting the same quantity in both sides, etc.). The four types are: (i) using pictorial 

language, (ii) using words to express relationships, (iii) combining words and symbolic 

representations and (iv) using ‘symbolic’ language to express relationships. Obviously not all the 



students applied all the types. This is why it was decided to choose a proper sample of students to 

show the diversity of the approaches taken.  

Type 1 – Using pictorial language 

This type refers to the students who preferred drawing pictures in detail rather than using a symbolic 

representation (Task-E, Fig. 4). The answer is correct. The missing mouse must join the group on the 

left to get two equal teams but the reasoning is weak since it is limited to merely transfer the ‘abstract’ 

information into a more ‘realistic’ version and it lacks an explicit explanation of the ‘underlying’ 

thought. It seems that the student fails to shift the focus to the existing relationships between the 

values of the participating animals. 

 
Figure 4: Use of drawings  

Type 2 – Using words to express relationships 

This type was used by the majority of the students and it proved more convenient for most of them 

to express their solution of the problem. Actually, in this type, the students made a step forward by 

trying to use words for expressing relationships among the quantities as it can be seen in the next two 

examples. This choice in many of the cases was described by the students in detail revealing thus 

their line of thought. In Task-J, one student created two equivalent groups by placing 5 dogs on the 

left and 20 mice on the right (Fig. 5). His explanation was: “I thought that 5 dogs are as strong as 5 

geese and 5 mice. But, 5 geese = 5 mice and 5 cats and 5 cats are as strong as 10 mice. So 20 mice”. 

       
Figure 5: Use of mouse as the basic unit 

The student exploited all the default information given by the pictures in Figure 1, e.g., 1 

d(og)=1g(oose)+1m(ouse), 1g(oose)=1c(at)+1m(ouse), and 1c(at)=2m(ice). Then, the whole process 

can be presented on a more formal way as 1d=1g+1m ⟹ 5d=5(g+m)[multiply both parts by the same 

number] ⟹ 5d=5g+5m [distributive property]⟹ 5d=5(c+m)+5m [substitute with equivalent] ⟹ 

5d=5c+5m+5m ⟹ 5d=5x2m[substitute with equivalent] +10m ⟹ 5d=10m+10m ⟹ 5d=20m. It 

must be said that this is not explicitly outlined by the child. But this enables us to identify in the 

student’s explanation the seeds of the mathematical reasoning described above. In the same way we 

will try to see the possible formal way of expressing the students’ answers in the remaining part of 

the paper. Actually, we make inferences about students’ internal representations on the basis of their 

production of external representations (Goldin & Shteingold, 2001).   



The second example concerns Task-H which asked the students to identify the animal hidden behind 

the mask. The student’s answer was (Fig. 6, left): “There is a cat hiding behind the mask. Because, a 

mouse and a dog are as strong as a cat and two mice. I figured it out because a mouse and a dog are 

as strong as 5 mice so behind the mask is a cat since 2 cats and 1 mouse are as strong as 5 mice too”. 

The student’s starting point was the right part of the equation and she chose the mouse as the building 

block to replace all the involved animals. It is necessary to mention here that the students did not 

restrict themselves on the given relationships that were given during the first session (Fig. 1). They 

were able, during the next sessions, to identify new relationships based on the given ones. This student 

made use of one of these invented relationships by claiming implicitly that a dog has the same strength 

with 4 mice. This claim results to the total amount of 5 mice in the right part. Given that a cat has the 

same strength with 2 mice, it means that there are 3 mice in the left part of the equation plus the 

hidden animal. Two mice are needed to obtain equality; therefore, a cat must be placed behind the 

mask.    

    

Figure 6: Use of words (left) and combination of symbols and words (right) to explain relationships 

If we translate the reasoning of the student into its formal version, considering x the unknown, we 

obtain the following series of equations. 𝑥 + 𝑐 + 𝑚 = 𝑚 + 𝑑
𝑑=4𝑚
⇒   𝑥 + 𝑐 +𝑚 =

5𝑚 [𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡]
𝑐=2𝑚
⇒   𝑥 + 3𝑚 = 5𝑚[𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡] ⟹ 𝑥 =

2𝑚 [𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑓𝑟𝑜𝑚 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠]
𝑐=2𝑚
⇒   𝑥 = 𝑐 [𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡]  

The strategy that led to successful solution here was: (i) choose the basic unit (e.g., the mouse), (ii) 

translate the picture to equation, (iii) substitute the dog by its equivalent number of mice and execute 

the operation, (iv) substitute the cat by its equivalent number of mice and execute the operation, (iv) 

find the unknown (x). 

Type 3 – Combining words and symbolic language 

This type starts -as a first step towards symbolic language- to combine words and symbols to show 

relationships between the participating animals. This is one answer for Task-I: “I figured it out 

because  becomes (equals)  plus . So there is hiding behind the mask”.  

The student in the first half of her answer used the word ‘becomes’ to denote the equality between 

cat and mice (Fig. 6, right). But, in the second half she used the sign of ‘=’ to denote again the 

relationship between mice and geese (left part) and dogs (right part). Firstly, she substituted the cat 

(c) with 2 mice (m). Now, the left part consists of two identical sub-groups (a goose and a mouse per 

subgroup) which if substituted by their equivalence in terms of dogs reveal the identity of the 

unknown. So, starting from the left part: 2𝑔 + 𝑐 = 𝑥 + 𝑑
𝑐=2𝑚
⇒   2𝑔 + 2𝑚 = 𝑥 +

𝑑 [𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡] ⇒ 2(𝑔 +𝑚) = 𝑥 + 𝑑 [𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦]
𝑔+𝑚=𝑑
⇒     2𝑑 =



𝑥 + 𝑑[𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡] ⇒ 𝑥 = 𝑑 [𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦]. The knowledge 

that 2 mice plus 2 geese is the same as 2 dogs -which is based on the given relationship that a mouse 

plus a goose is the same as a dog- reveals an implicit understanding of the above mentioned 

distributive property. 

Type 4 – Using symbolic language to express relationships 

The last type used by the students abandons the use of words and the reasoning is mainly symbolic. 

The first example is an answer from Task-F dealing with the animal behind the mask. The student 

started with the left group, using a symbolic expression to show its substitution by a dog (

). Then, based on this expression she wrote another one to show the solution (

, see Fig.7 left). The first claim of the student seems arbitrary but if seen carefully it 

makes use of known relationships in order to obtain new ones. The left group represents the sentence 

m+m+c. Given that m+c=g(oose) the sentence becomes m+g which, according to the given 

relationships, equals with a dog. Then, it is obvious that what is needed in the right part of the equation 

is a mouse.   

 

Figure 7: Usage of symbolic representations (left and right) 

The second example shows a solution for Task-C. This solution is considered more elaborated since 

the student made use of the sign of the required operation to show the equivalence. This is indicative 

of understanding both the operation that takes place and the correct use of the sign of this operation. 

The missing animal is the mouse that must join the left group to get equality (Fig. 7, right). The sum 

of the strength of the three mice equals the strength of the goose. Again, this is a relation different 

than the given ones and it is important that so young students exhibit this ability, to use and combine 

given situations in order to get new ones. So, it is interesting to follow the thought of the student. 

Two mice equal with a cat. Then, a cat and a mouse have the same strength with a goose. 

Consequently (transitivity) three mice are equivalent with a goose. Expressing relationships using 

this symbolic language to solve a problem constitutes an important step towards the development of 

algebraic thinking. Besides, all the answers show an explicit focus of the students to the underlying 

structure of each equivalence in order to reach a solution. 

It is intersting to examine now the findings of this study in the light of a previous one. Papadopoulos 

et al. (2016) in their study based on the use of mobile puzzles with 6th graders, distinguished mainly 

four types of students’ thinking (translating the picture to equality expressions, using words to show 

the relationship, using  symbolic  language to show the relationship, and combination of more than 

one of the previous types). This means that there is a match between the types of thinking in these 

two studies and this stregnthens the possible positive contribution of puzzle-like learning 



environments to the development of young students’ algebraic thinking. The feeling from the first 

study (no numerical data available) was that the order of these types is rather developmental in the 

sense that types 3 and 4 are more advanced (and thus less frequent), and are met at the end of the 

project (an indication that they are connected with the accumulated experience). One could attribute 

this finding to the teachers’ appreciation  of the symbolic answers instead of textual ones. However,  

this is not the case, since the teachers were not involved in the project and in the meanwhile the 

students did not receive any feedback about their answers.  

 Type-1 Type-2  Type-3 Type-4  

Tasks A-E 5 (1.6%) 253 (83%) 14 (4.6%) 33 (10.8%) 

Tasks F-I 8 (3.74%) 157 (73.36%) 24 (11.22%) 25 (11.68%) 

Task J 2 (2.94%) 56 (82.35%) 8 (11.77%) 2 (2.94%) 

Table 1: Frequency of Types 1-4 

In this study an effort was made to get arithmetical evidence that would shed light on this issue. Table-

1 confirms that Types 3 and 4 are indeed the less frequent ones. The low frequency of Type-1 was 

expected since the pictorial language was already included in the statement of the tasks.  

Table-2 presents the distribution of the last two types across the range of the tasks. As it can be seen 

to a great extent the number of instance for each Type is increased as we move towards the last tasks 

indicating that these types are connected with the accumulated experience. 

 Task-A Task-B Task-C Task-D Task-E Task-F Task-G Task-H 

Type-3 3 2 4 3 3 7 7 7 

Type-4 5 6 3 8 10 8 8 8 

Table 2: Distribution of Types 3-4 across tasks 

Conclusions 

The findings of our research indicate that the ‘Father Woodland’ environment might contribute to the 

development of students’ algebraic thinking. The four types of thinking mirror the rules induced by 

the students in order to solve the posed problems. Starting from certain external representations of 

equality sentences the students made an attempt to express their internal representations through the 

shift from pictorial to symbolic language. Obviously, this is not all that matters with the development 

of algebraic thinking with young children. However, it cannot be considered trivial. The students had 

to add or remove the same animal (quantity) from both sides, to substitute certain animals with their 

equivalence, isolate the unknown animal (variable) trying to maintain the same strength between both 

groups of animals applying at the same time the distributive law or transitivity. Despite that lack of 

explicit knowledge about operations and relations hinders a good approach to algebra (Gerhard, 

2013), it seemed that there were instances of an implicit knowledge of certain rules for solving 

equations which will be later introduced formally to the students. However, it still remains to answer 

questions like: In what way the transition from the animal symbols back to the arithmetical or 

algebraic equations will be possible? Additionally, the findings support the developmental character 

of these types of thinking when the students use puzzle-like learning environments aiming to support 



algebraic thinking. However, this does not mean that some students did not occasionally move 

backwards to previous types of thinking. This is in itself a significant finding we aim to explore 

further since the relatively small number of participants does not allow to generalize our findings.    
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This paper provides insight in the process of developing a comprehensive and concise summary of 

the most prominent aspects of proficiency in elementary algebra at the end of secondary grade. It 

will serve as a theoretical frame of reference for devising or validating instruments for diagnosing 

the mastery of elementary algebra at the transit from school to university. A first draft had been 

based on literature, which then was presented to experts for further evaluation. The model now 

comprises ten aspects of proficiency which are allocated into a table of two dimensions, one 

referring to elements of algebraic language, the other referring to the cognitive actions performed 

on them.  
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Introduction 

For being successful in subjects from science, technology, engineering or mathematics at high 

school or university (STEM), a good mastery of formal algebra is indispensable. But what is a good 

mastery of algebra, and how does it show? To provide a theoretical base for devising an instrument 

for diagnosis, we have been working on a comprehensive yet concise overview of the important 

aspects of proficiency in elementary algebra as it has been covered by relevant research. For this, the 

model is meant to be summative, i.e. it contains aspects of proficiency that are expected by the end 

of secondary school. And, when referring to elementary algebra we mean symbolic algebra as it 

appears at the end of secondary school. A first draft of the overview was based on relevant literature 

from national and international publications, which was then presented to experts for validation. In 

the following we will first give a short report on the main outcomes of the literature review of the 

first stage, after that we will present the main outcomes of the expert survey. This paper’s main part 

then contains a detailed description of the present state of our model. 

Model development 

First draft based on literature 

The aim of this first stage of model development was to give a structured compilation of the 

important aspects of proficiency in elementary formal algebra as it is present in research 

publications of nearly 40 years, starting with Küchemann’s paper on children’s understanding of 

variables (1978). A loose series of unconnected aspects would not be of much help where a concise 

summary is needed. So we decided to build categories from the various aspects found in literature, 

based on two a-priori dimensions that served as a first theoretical frame for categorization: It starts 

with listing all relevant mathematical objects of the domain in question, which here are variables 

and expressions as elements of the algebraic language. The second dimension focusses on the 

mental and real activities associated with these objects that all represent some stage of “making 



sense of algebra” (Arcavi, 1994). Arcavi’s approach to describing what is meant by understanding 

algebra seemed a suitable frame, or better: attitude for collecting and arranging research findings 

from the past years. “Symbol sense” is, in his own words, “a complex and multifaceted 'feel' for 

symbols” (Arcavi, 1994, p.31) which invites to searching for aspects of quickly grasping a situation 

where symbolic algebra is involved. Hence the second of the two dimensions of our model 

comprises a range of various activities that in some way “make sense” of variables and expressions, 

ranging from stating correct manipulation rules and identifying expression to which these rules can 

be applied to modeling realistic situations by means of algebra. 

 

Table 1: Literature based draft of important aspects of proficiency in elementary algebra 

This first draft resulted in formulating ten aspects of proficiency, arranged in a tableau along the two 

dimensions (table 1) introduced above. Here, these ten aspects were defined as single elementary 

“blocks” of which more complex activities could be constructed by combination. For example, 

combining three abilities which we then called “(1) formulate rules for manipulating expressions”, 

“(2) identify expression type” and “(3) manipulate expression by applying rules” would sum up to 

what is generally meant by the ability to manipulate algebraic expressions correctly. While this 

approach seemed sensible for a detailed diagnosis, it proved to be unhandy in discussions even 

between experts as the following sections shows. 

Expert survey 

For validating the results of the literature review an expert survey was conducted. By choosing the 

experts we focused on professors and seminar teachers of mathematics education in German 

speaking areas who published primarily about teaching and learning elementary algebra within 

recent years. Twenty-four colleagues were contacted via e-mail, one of them declined but 

recommended a colleague as a substitute who, after checking our requirements, was contacted too. 

All experts were asked to complete an online-questionnaire which was implemented in the free 

online-tool SoSci Survey (www.soscisurvey.de). The experts were expected to comment on two 

fields: firstly, on the contents and the structure of the model, while each of the ten aspects was 

illustrated by one exemplary task, and, secondly, on a battery of additional 48 items that was 

devised to operationalize the ten aspects. Because giving feedback on all 48 items would have taken 

too much time we created 6 different versions of the online-questionnaire and reduced the extent of 

each version by an overlapping multi-matrix-design (cf. Zendler, Vogel & Spannagel, 2013). All in 



all, an expert had to view 22 or 23 tasks. Since the response rate was 50%, each task was processed 

and judged by an average of about 6 randomly assigned experts. 

In the first section of the survey the experts were presented an interactive version of Table 1 where 

explanations of the entries were shown together with exemplary tasks in a pop-up window. Here, 

they were asked to familiarize themselves with the table entries and explanations while making 

notes on which aspects they thought needed to be reworked or were unessential for basic mastery of 

algebra, or which aspects were missing in their view. There also was place for free comments on the 

model as a whole. In the second section of the survey the experts were asked to assign each of the 

22 or 23 task assigned to them to three of the ten aspects of the model and comment on their 

decision. Here, a smaller version of the interactive table was present with each assignment question. 

By combining assignment questions and open question types the question format can be considered 

as being half-open. This type of questions is suitable for experts who are considered to have a 

differentiated self-awareness, expressiveness, motivation and fidelity (cf. Gerl & Pehl, 1983). The 

open question format is to be seen as the qualitative part of the online-questionnaire which complies 

with a written survey in sense of an expert interview (Bogner, Littig, & Menz, 2002). Qualitative 

methods are especially suitable for purposes of theory-based exploration (cf. Bortz & Döring, 2006). 

In the following we focus on the results of this qualitative part of the survey.  

Data analysis and results of the expert survey 

The aim of the expert survey was to validate the first, literature based draft of the model. For data-

reduction by clustering analogous comments we followed an open-ended approach to qualitative 

evaluation as provided by Grounded Theory (Corbin & Strauss, 1990) along these four steps: (1st) 

All comments from the open question parts of the survey were rephrased by the authors into single 

conclusive statements about the model or a task. (2nd) All these statements were pasted into the free 

digital mindmap programm xmind (www.xmind.com) where, for each expert, they were arranged in 

the order as they appeared in the survey. (3rd) Categorisation took place first with the aim of 

clustering comments of analogous content – now renamed as “contributions to model revision” and 

then, (4th), with the aim of categorizing these contributions according to how each of them would 

contribute to modifying the model or the test battery. 

Since many of the statements – though sometimes commenting on single items of the battery – were 

of a general kind, the process of categorizing eventually detached from the original structure of the 

questionnaire, so that the following four categories emerged: (a) contributions to clarifying the 

theoretical frame of the model, (b) contributions to restructuring the model, (c) contributions to 

reformulating definitions or exemplary tasks of single aspects of the model, (d) contributions to 

reformulating or deleting a task from the test battery. Among the contributions assigned to category 

(a), some experts asked how the various aspects of “making sense of algebra” relate to existing 

models of mathematical understanding. Other experts expressed their uncertainty of how our model 

relates functions. And other experts were missing activities of preformal algebra. Among the 

contributions assigned to category (b), one expert pointed out that the activities of transforming or 

interpreting algebraic expression would imply the activity to identify the structure of an expression 

so that “structuring” needs to be given a more prominent role in our model’s layout. Some experts 

mentioned “substituting” as one of the central activities in doing algebra. Additionally, from their 

task assignments it became apparent, that many experts were misinterpreting the elementary activity 



“to transform with given rules” from our first draft as meaning “being able to manipulate 

expressions correctly” regardless whether a rule is given or not. This contribution also was assigned 

to category (c), as it would not only lead to introducing a new aspect but to reformulating existing 

elementary activities too. There were also further contributions to reformulating definitions or 

exemplary tasks, and to reformulating or deleting tasks from the test battery. 

The revised model 

For model revision, the authors discussed each contribution as to whether to incorporate it and how. 

Among contributions that were accepted was that the activity of structuring needed a more 

prominent position within the model. Here we followed recent findings of Rüede (2015) as to which 

structuring can be understood as an activity of making sense of an expression by identifying 

relations between parts. Relations are identified by substitution, i.e. parts of an expression are seen 

as entities that can be related to each other. Thus the activity of “substituting” was accepted as part 

of the central activity of structuring. Together with Musgrave's et al. (2015) definition of 

substitution and Kieran’s (1989) distinction between systemic and surface structure it helps to refine 

activities of recognising the applicability of transformation rules or the operational ordering of an 

expression. Now, these two activities cover the activity of substituting which, from a cognitive 

perspective, means to construe parts of an expression as meaningful entities, esp. to replace 

variables and terms by other variables or terms in writing or in thought. 

 

Table 2: A concise summary of the important aspects of proficiency in elementary algebra 

Further amendments were applied to the model so that Table 2 now shows its present state. In the 

following each table entry is explained in detail. 

Elements of algebra 

 Variables including parameters: Variables are signs that represent numbers or quantities. 

Parameters are variables that vary over sets of values of other variables (Veränderliche vs. 

Einzelzahl: Malle, 1993, variable vs. metavariable: Drijvers, 2001, values taken by a variable: 

Bardini et al., 2005). This discrimination arises from the context of the task. 



 Expressions and equations: Algebraic expressions are compositions of variables and arithmetic 

operation signs. When a variable is viewed as representing a range of number values or 

quantities (variable object: Schoenfeld & Arcavi, 1988; Bereichsaspekt: Malle, 1993) the value 

of the expression is interpreted as a function of this variable (Malle, 1993; Heid, 1996). 

Equations are expressions where two terms are compared with regard to their values, 

symbolized by an equation sign. An equation differs from a computation or transformation of a 

term in that it is used in a relational sense (notion of equivalence: Kieran, 1981; operational vs. 

relational view: Baroody & Ginsburg, 1983; Zuweisungs- vs. Vergleichszeichen: Malle, 1993).  

Making sense of elements of algebra 

 Knowing and acting: a first level of differentiation that differs between declarative knowledge 

about rules and various forms of “making sense” of algebraic objects. The latter is further 

differentiated into transformational and generational types of activities following Kieran (2004). 

Kieran’s third class of “meta-level” type of activities has been omitted as it describes a higher 

level of mastery that is not considered being a part of basic mastery. 

 It seemed appropriate to formulate within the range of Kieran’s (2004) transformational and 

generational types of activities three central activities: Transforming (to transform an algebraic 

expression into an equivalent expression of different structure (transformational equivalence: 

Musgrave et al., 2015; treatment: Duval, 2006)), structuring (to transform or interpret an 

algebraic expression while maintaining its structure (substitutional equivalence: Musgrave et al., 

2015, Rüede 2015)) and interpreting (to describe a non-algebraic situation by formal algebra and 

vice versa (conversion: Duval, 2006)). Among these, structuring takes on a fundamental role. It 

describes an activity of recognizing the structure of a present expression or formulating an 

expression that is structurally equivalent to relations between quantities in a given situation. 

Ten aspects of proficiency in elementary algebra 

(1) “To specify transformation rules or terminology” – Important technical terms for expressions 

and rules for manipulating expressions or equations are identified or specified, e.g. names for 

classes of terms or equations, or rules for simplifying expressions, binomial rules, rules for 

solving quadratic equations, etc. 

(2) “To transform by following given rules” – Expressions and equations are transformed into 

equivalent expressions or equations by applying given rules (manipulation skills: Hoch & 

Dreyfus, 2006). 

(3) “To recognize applicability of transformation rules” – An expression is identified as a 

representative of a class of structurally equivalent expressions and transformation rules that are 

associated with this class. This is done by, mentally or explicitly, substituting variables or terms 

by terms or variables (systemic structure: Kieran, 1989; structure sense: Hoch & Dreyfus, 2006) 

(4) “To recognize the operational ordering” – The logical ordering of the operations within an 

expression is recognized. This is done by, mentally or explicitly, substituting terms by variables 

(surface structure, Kieran, 1989; Rechenschema: Vollrath & Weigand, 2006; Rechenhandlung: 

Malle, 1993) 



(5) “To compute or to compare” – An expression with an equation sign is interpreted in an 

operational or a relational sense, as it is appropriate in the context (Malle, 1993; operational vs. 

relational view: Baroody & Ginsburg, 1983; Knuth et al., 2006). 

(6) “To transform (efficiently)” – Expressions and equations are being transformed into equivalent 

expressions or equations (2,4), by activating existing knowledge about transformation rules (1) 

which are identified as applicable to the present problem (3). Also, two expressions or equations 

are identified as being equivalent „on the spot“ without applying rules explicitly (algebraic 

expectation, Pierce & Stacey, 2001). A transformation is „efficient“ if, among various rules of 

transformation that are applicable, one is chosen that allows relatively few steps and few 

computations (strategic flexibility: Rittle-Johnson & Star, 2009; structural relations of second 

order: Rüede 2015, cp. Malle 1993). 

(7) “To interpret variables and parameters” – Variable signs are interpreted or used as 

representations of numbers (Einsetzungs-, Gegenstandsaspekt: Malle, 1993; Küchemann, 1978). 

Within given contexts, appropriate variables are identified or used as parameters. 

(8) “To switch between expressions and innermathematical situations” – A non-algebraic but 

innermathematical situation (e.g. dot patterns or geometric configurations) is described by a 

term or an equation, and vice versa (Bauplan: Vollrath & Weigand, 2006). 

(9) “To switch between expressions and tables or graphs” – An expression or equation is translated 

to a value table or a graph, and vice versa (McGregor & Stacey, 1995), e.g. when viewed as a 

function (Duval, 2006; Nitsch, 2015), or for solving an equation (Arcavi, 1994). 

(10)“To switch between expressions and real situations” – An expression or equation is translated to 

a realistic situation, and vice versa (McGregor & Stacey, 1995; Heid, 1996), e.g. when viewed 

as a function (Nitsch, 2015). This activity involves a higher gradient of abstraction than 

activities (7,8,9) that results from the need to replace the concrete mental model of the given 

real situation by an abstract mental model before formulating an expression (Malle, 1993). 

Summary and outlook 

In its present state, the model intends to be a concise summary of aspects of proficiency in 

elementary algebra, based on relevant literature and a survey of maths educators from the German 

speaking community. It represents a normative view on what ideal schooling can provide at the end 

of secondary grade, thus serving as a theoretical base for devising instruments for a summative and 

differentiated diagnosis of proficiency in elementary algebra at the transition from school to 

university. The model does not cover all aspects of school needs to consider, but it is restricted to 

 symbolic algebra, not generic: at the end of secondary school maths, an individual's proficiency 

in algebra must have reached a stage of being competent with symbolic representations of 

indeterminate number values and quantities and relations between them, 

 a summative view, not formative: the model is meant to comprise all aspects of proficiency at 

the end of secondary school maths, not while they are being taught, 



 algebra, but not functions: a model about algebraic proficiency cannot cover all aspects of the 

concept of function, but does cover some which are only present in the form of a functional 

interpretation of an algebraic expression. 

Additionally, based on this frame of reference, a test battery is presently being prepared for large 

scale application. While the model helps to devise tasks that cover most important aspects of 

proficiency in elementary algebra, the data raised from applying the battery will be used to generate 

an empirical cognitive model that adds to the theoretical normative view of the present one.  
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This paper focuses on functional thinking as an approximation to algebraic thinking in third-year 

primary-school students. It describes a study with a class group of 24 Spanish pupils displaying 

functional thinking to solve a contextualised problem, identifying the type of functional 

relationships distinguished by these students and the ability to generalise observed in some of them. 

It contains an analysis of the information collected in one questionnaire, which is part of a teaching 

experiment. The students distinguished two types of functional relationships, correspondence and 

covariation, predominantly the former. Three students generalised as well. 

Keywords: Algebraic thinking, generalisation, functional relationship, functional thinking.  

Introduction 

The idea of introducing algebraic notions in the elementary and even in the pre-school curriculum 

began to gain acceptance in the early nineteen nineties, when the emphasis was on what students 

were able to learn (Kaput, 2008). That led to the early algebra proposal, which seeks to further and 

enhance algebraic thinking among the younger pupils through approximations by working on 

classroom algebra-associated elements intended to help secondary school students perform the tasks 

expected of them. Generalisation lies at the heart of algebraic thinking: arithmetic operations can be 

viewed as functions and algebraic symbolism supports such thinking (Blanton, Levi, Crites, & 

Dougherty, 2011). 

Functional thinking is a type of algebraic thinking, which is focussed on functions, regarded as the 

relationship between two co-varying quantities. The growing research interest in this type of 

thinking is attributable to its many advantages as an introduction to algebra (Blanton & Kaput, 

2011).  

Studies on functional thinking address different aspects. Some of the foremost include: (a) 

functional relationships drawn by students (Cañadas & Morales, 2016), (b) patterns and 

generalisation (Brizuela & Lara-Roth, 2002), and (c) representational strategies and systems 

(Carraher & Schliemann, 2007).  

This paper addresses a topic not covered by previous studies concerning the different types of 

functional relationships identified by third year primary school students (hereafter, P3). The 

objectives pursued are: (a) to identify P3 pupils exhibiting functional thinking, (b) to describe the 

generalisation observed, and (c) to describe the functional relationships identified by students who 

generalise. 

Functional thinking and functional relationships 

Consensus has yet to be reached around the definition of algebraic thinking (Cañadas, Dooley, 

Hodgen, & Oldenburg, 2012). Algebraic thinking is regarded as an educational objective that 

affords, for instance, opportunities: (a) to generalise; and (b) to enable students to use symbols to 



represent ideas, which helps them solve problems, communicate and justify their ideas (Kaput, 

2008).  

Functional thinking is regarded as a cognitive activity “that focuses on the relationship between two 

(or more) varying quantities, specifically the kinds of thinking that lead from specific relationship 

(individual incidences) to generalisations of that relationship across instances” (Smith, 2008, p. 

143). Such thinking involves the construction, description and reasoning with and about functions 

and includes generalizing about inter-related variables (Blanton, 2008).  

Based on the functional relationships established from a mathematical perspective, Smith (2008) 

proposed three types of approximation for working with functions: (a) recurrence, which entail 

finding the variation or pattern of variation in a series of values for a variable in a way such that a 

specific value can be obtained based on the preceding value or values; (b) correspondence, and (c) 

covariation. We particularly focus on the correspondence and covariation relationships because the 

recurrence does not involve values of more than one variable. Correspondence, stresses the 

relationship between the pairs (a, f(a)) for the variable; and covariation focuses on how a change in 

the values of one variable entails a change in the values of another. We show an example of these 

two functional relationships in Figure 1. 

Variation between two quantities 

x y 

1 8 

2 10 

3 12 

… … 

Figure 1. Example of functional relationship (Smith, 2008, p. 146-147) 

These relationships not only concern the generalization as the representations of the general 

relationship, they can also refer to the pattern observed in particular cases of the two variables. In 

recent studies, Blanton, Brizuela, Murphy, Sawrey, and Newman-Owens (2015), and Stephens, 

Fonger, Knuth, Strachota, and Isler (2016) described the types of functional relationships and the 

levels of sophistication with which subjects think about such relationships. One indicator for 

establishing such levels is the kind of functional relationship. Some findings showed that students in 

the early years evolve from the ability to establish recurrent relationships, the most basic area 

worked with, primarily in pre-school and early primary education, to the understanding of 

correspondence and covariation. Cañadas & Morales (2016) observed correspondence and 

covariation relationships in P1 pupils. These pupils’ replies showed no evidence of the recurrence 

relationship. Moreover, as pupils generalise, correspondence and covariation relationship were 

observed more frequently, particularly the former. 

Covariation. “The focus is 

on corresponding changes in 

the individual variable”. 

Example, in the table 1, 

when x increases by 1, y 

increases by 2. 

Correspondence. “The 

focus would be on the 

relation between x and y, 

which might be 

described as twice x plus 

six, or algebraically as: 

2x +6”. 



Generalisation 

Generalisation is one of the core processes in algebra (Kaput, 2008). All pupils can generalise and 

abstract from specifics, for this activity is “entirely natural, pleasurable, and part of human sense-

making” (Mason, Graham, & Johnston-Wilder, 2005, p. 2). Generalisation is said to have been 

attained when a statement is made that applies to all the instances in a given class.  

Although algebraic symbolism is the characteristic representation for algebra, there are other ways 

of representing the generalization, specially when concerns elementary students. Carraher, 

Martinez, & Schliemann (2008) focused on third year primary school students’ generalization and 

how they express it. These students generalise functional relationships (correspondence and 

covariation). The authors highlight that students should learn to generalise solving mathematical 

problems that allow them to look for and observe patterns, relationships, and structures. In this way, 

students have the possibility to get new informations and reflect about the generalisations produces 

by themselves and their partners. 

Method 

This study forms part of a broader teaching experiment focusing on Spanish P3 students’ functional 

thinking. The contextualised problem posed in each session involved a linear function. The fourth 

and last session is discussed hereunder. 

Subjects and data collection 

The subjects were 24 P3 pupils (8-9 years old), intentionally selected on the grounds of school and 

teacher availability. These students had not worked with problems involving functional 

relationships prior to the study, except in the first three sessions of the same project in which they 

were introduced to problems involving two linear functions: f(x)=x+5 and f(x)=x+3. All the 

sessions were guided by a teacher-researcher.  

In the first part of the session, we introduced the tiles problem1 to the students, asking them 

questions concerning particular cases, in order to assure that they understand the situation and the 

questions. In this problem, the function involved is f(x)=2x+6. This paper focuses on the results 

from a written questionnaire that had to be answered individually in connection with the problem 

posed. The way in which the problem was posed and questions used are presented in Figure 2. In 

questions Q1, Q2, Q3, Q4.A and Q4.B pupils were asked about specific non-consecutive cases, 

whilst the fifth (Q5) asked the pupils to generalise the relationship between the dependent and 

independent variables (white and grey tiles, respectively). The students were furnished with 

manipulative material: white and grey paper tiles. 

                                                 

1 The well-known tiles problem used here has been applied by a number of researchers in the context of classroom 

algebra (e.g., Küchemann, 1981). 



 

A school wants to renovate the ground of all its corridors because it is already very damaged. The 

management team decides to pave the corridor with white tiles and grey tiles. All tiles are squares 

and have the same size. The tiles are being placed in each corridor so that you can see in the 

picture below. 

 

 

The school ask a company for renovating the different corridors of the school. We ask you to help 

the workers to answer some questions that they need to answer for their work.  

Q1. How many grey tiles are needed for the floor of a corridor in which 5 white tiles are placed? 

How do you know that? 

Q2. Some corridors are longer than others. Therefore, the workers need different number of tiles 

for each corridor. How many grey tiles are needed for a floor corridor in which 8 white tiles are 

placed? How do you know that? 

Q3. How many grey tiles are needed for a floor corridor in which 10 white tiles are placed? How 

do you know that? 

Q4A. How many grey tiles are needed for a corridor floor in which 100 white tiles are placed? 

How do you know that? 

Q4B. Now, do it in a different way and explain it below. 

Q5. The workers always place the white tiles and then the grey tiles first. How do you know how 

many grey tiles you need if you have already placed the white tiles? 

Figure 2. Tiles problem 

Analytical categories and data analysis 

Following our research objectives, we used information from the theoretical framework and 

previous studies to design the categories used in data analysis. Moreover, we were aware of 

possible modifications needed as long as we performed a preliminary data analysis in order to adapt 

them to our specific data. Two categories were established: (a) functional relationships, and (b) 

generalisation. Finally both categories were related because the generalisation involved at least one 

of the functional relationships.  

The category of functional relationship covered the type of functional relationships identified by the 

pupils: (a) correspondence, and (b) covariation. Functional thinking was deemed to be present in 

pupils’ replies when at least one functional relationship was drawn in at least two of the questions 

posed. This criterion pursued to avoid those students who used a computation strategy but not 

neccesarily a relationship between variables. 

The second category dealt with the presence or absence of generalisation and how it was reached 

and expressed in any of the five questions posed. More specifically, it focused on the students’ 

replies to Q5 (regarding generalisation), because is the only question in which students generalised.  

Results and discussion 

The 24 pupils’ written responses to the questionnaires were analysed. All the students answered the 

first three questions, 23 the fourth one, and 16 the fifth one (generalisation). Those findings were 



interpreted to mean that more students answered the first four questions because they involved 

specific, non-consecutive instances and small numbers. Similarly, the high rate of blank answers to 

Q5 was conjectured to be due to the complexity involved in generalizing the functional relationship. 

The findings set out below are organised in keeping with the objectives pursued. The students are 

referred to with the letter S followed by a number, from 1 to 24.  

Functional relationships 

Eleven students exhibited functional thinking, identifying a functional relationship in at least two of 

the questions asked. The other 13 students, in contrast, did not.  

Among the students exhibiting functional thinking, seven students distinguished only 

correspondence relationships in their replies, and four identified both functional relationships 

(correspondence and covariation).  

A representative example of students who used only the correspondence relationship is S22. We 

show this student’s responses to the first four questions in Figure 3. 

Q1 

 
Q2 

 
Q3 

 

Q4.A 

 

Figure 3. S22’s responses 

For instance, in Q4.A, he took the number of white tiles (100) and added 2 (100+2). Then he found 

the number of grey tiles needed for the bottom and top rows by adding 102 twice (102 + 102). 

Lastly, he added 2, the ones on the right and left of the white tiles (102 + 102 + 2). He used that 

same functional relationship for 5, 8 and 10 white tiles in Q1, Q2, and Q3, respectively. In all three 

cases, this student related pairs of values (a, f(a)) to the a values in each specific case and 

established a relationship with the number of grey tiles: 16, 22 and 26, respectively. 

Four pupils identified two functional relationships in their answers to the questions on the 

questionnaire: correspondence and covariation. None of the students recognised more than one 

functional relationship in their answers to a given question.  

S3 is a student who identified correspondence and covariation relationships. In Q2, she answered 

that 22 grey tiles are necessary for 8 white tiles, using a counting strategy. In Q3, S3 answered, “if 8 

[white tiles] need 20 [grey tiles], there are 20 + 2 = 22”. Although this answer is wrong, she used 

the previous response to work on (adding two to the previous response). We observe that the 

student focused on the variation between the number of white tiles (between 8 and 10, there is an 

increase of 2 white tiles) in order to calculate the number of grey tiles, considering that such 

increase is also 2. Therefore, she focused on how variation in values of the number of white tiles 

influence in a variation in values of grey tiles, which is the notion of covariation relationship.  



Generalisation 

We find generalization evidence in Q5. In previous questions, students referred to the relationship 

between variables through particular cases involved.  

Three of the 11 pupils who exhibited functional thinking showed the generalisation in their replies 

to Q5. One of them, S9, generalised appropriately to the problem posed. In contrast, the other two 

students —S11 and S22— generalised incorrectly. In what follows, we present examples of the 

students who generalized, describing when they got it and what kind of relationship generalised.  

S9 used a numerical representation to calculate the number of grey tiles in the first four questions. 

In Q5, he stated “you double the number white tiles and then you add 6”. He used different 

representation to the verbal one in other questions. This fact evidences the importance of the verbal 

representation in the development of functional thinking in the same way as Kieran, Pang, Schifter, 

and Fong Ng (2016) noted. Student S9 generalised the correspondence relationship that he also 

identified in questions concerning particular cases. 

S11 found a correspondence relationship in the questions concerning particular cases. In his reply to 

Q5 he noted: “if there are 50 tiles, then I add 50+50 and then the ones on the sides, 3+3, 106 in all”. 

The student used a particular case to answer the question but he evidenced that he recognised the 

fixed number of grey tiles (3+3). This fact shows generalization at an initial stage: although his 

answer is not complete, he is approaching to the generalization of the relationship because he 

identified the function constant (6). S11 used different relationships to determine the number of 

grey tiles in Q2, Q3, and Q4, focussing on a correspondence relationship between the variables 

involved. He “generalise” the correspondence relationship in Q5. 

S22’s reply illustrates another way to generalise in Q5: “add 6”. This generalisation was 

incomplete, for she recognised the number of grey tiles that remains constant (left and right sides), 

but not the number on the top and bottom rows, even though in the preceding questions she 

distinguished the pattern for determining the number of grey tiles given a certain number of white 

tiles (see Figure 1). Moreover, S22 used the correspondence relationships to answer the first four 

questions (see Figure 3). On the contrary, this student used a co-variation relationship in Q5 

because he identified the neccessity of adding 6 to calculate the number of grey tiles given any 

number of white tiles. 

Conclusion 

The students exhibiting functional thinking (those recognizing at least one functional relationship in 

at least two questions) could be detected on the grounds of the relationships they identified. 

The correspondence was the functional relationship predominantly observed in the students’ 

answers, followed by covariation. This holds particular significance, specifically by: the pupils’ age, 

the specific demands of the tiles problem and the functional relationships distinguished. The 

prevalence of the correspondence relationship in the first four questions, which involved familiar 

specific cases, seemed to be connected with the pupils’ broader experience with areas such as 

numerical patterns. Additionally, we conjecture that this functional relationship could be induced by 

the problem context because each particular case involved in one question is not connected with 

other particular cases.  



Covariation was observed in Q5, which sought to induce the pupils to express the general 

relationship between the variables involved; the preceding questions could be answered with no 

need to generalise. 

According to Blanton, Brizuela, Gardiner, Sawrey, and Newman-Owens (2015), functional thinking 

involves (among others) drawing general patterns from relationships between quantities that co-

vary and representing and justifying such relationships in different ways with a number of 

representational systems. The results of their study are supplemented by the present findings, 

further to which P3 pupils naturally (for they had not worked on this area in the classroom) 

identified more than mere recurrence, establishing relationships (correspondence and covariance) 

involving the values of both variables. Whilst influenced by the type of problem, these P3 students 

were found to be able to distinguish correspondence and covariation relationships, even though they 

were not always able recognise a general pattern. 

In a future line of research the way generalisation is expressed will be studied in greater depth, 

along with pupils’ arguments and explanations. Student interviews are regarded as a suitable tool 

for obtaining a fuller description of how inter-variable relationships are expressed. 
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Didactic transposition in school algebra: The case of writing equations 

of parallel and perpendicular lines  

Valentina Postelnicu 
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A study was conducted with a high school teacher and her 58 Algebra 1 students, with the purpose 

of gaining insight into students’ difficulties with writing equations of parallel and perpendicular 

lines. Chevallard’s theory of didactic transposition was employed in order to account for the 

relativity of the mathematical knowledge with respect to the institutions where the knowledge was 

created. During the process of didactic transposition, the mathematical knowledge lost its essential 

feature, the proof, with dramatic consequences for the school algebra curriculum. What remained 

to be taught and learned was how to execute tasks. As predicted by mathematicians, this utilitarian 

view of the curriculum affected the actual process of teaching and learning by focusing on 

executing basic tasks, and resulted in teachers and students having difficulty executing those tasks.  

Keywords: Didactic transposition, school algebra, writing equations of lines.  

Introduction   

Students’ difficulties with aspects of linear functions, like the rate of change, slope, y-intercept, or 

writing equations of parallel lines have been studied in the United States by many researchers, 

among them the group from Berkeley led by Schoenfeld (Schoenfeld, Smith, & Arcavi, 1993). In 

spite of a wealth of research, the issue of students’ difficulties with linear functions has remained 

relevant (Postelnicu, 2013). The study reported here has the purpose to account for the students’ 

difficulties with writing equations of parallel and perpendicular lines, and to advance a plausible 

explanation on the persistence of students’ difficulties. We propose another way to look at this 

issue, by paying attention to the difference between the mathematics as a body of knowledge 

(scholarly mathematics created by mathematicians) and mathematics as a subject matter to be 

taught and learned (school mathematics created by textbook authors or taught by teachers) (Bosch 

& Gascón, 2006).  

About the theory of didactic transposition  

For this study we employ Chevallard’s theory of didactic transposition because it takes into account 

both the mathematics as a scholarly body of knowledge and as a subject to be taught and learned. 

By didactic transposition of knowledge, we mean “the transition from knowledge regarded as a tool 

to be put to use to knowledge as something to be taught and learnt” (Chevallard, 1988). As pointed 

out by Bosch and Gascón (2006), when studying any didactic problem, like the teaching and 

learning of writing equations of parallel and perpendicular lines, we must account for all the steps 

of the process of didactic transposition:  

i) from scholarly knowledge created by mathematicians (e.g., analytic geometry) to school 

mathematics written by textbook authors (e.g., high school textbooks); ii) from textbook knowledge 

(e.g., Algebra I textbook written by Larson et al., 2007) to school mathematics taught by teachers in 

classrooms (e.g., the mathematics taught by the teacher in the study reported here); and iii) from 

school mathematics taught by the teacher in this study to mathematics learned by her students.  

mailto:Valentina.Postelnicu@tamucc.edu


Each society and institution has a certain way of creating mathematical knowledge and using it, thus 

bringing to life a praxeology, “an organized way of doing and thinking contrived within a given 

society” (Chevallard, 2006). A praxeology is composed of praxis and logos, each with two 

components (Bosch & Gascón, 2014): 

i) praxis - tasks/problems that can be solved employing a certain technique (“ways of 

doing”/executing the tasks/solving the problems), and  

ii) logos- technology (the discourse of the technique, justifies the technique), and theory 

(general discourse or abstract set of constructs and arguments, justifies the technology).  

A praxeology can be “point praxeology” with only one type of task, “local praxeology” with a set 

of tasks sharing a technological discourse, and “regional praxelogy” with all the point and local 

praxeologies sharing a theory (Bosch & Gascón, 2014). For example, a point praxeology may 

contain only the task of sketching a “quick” graph of a line with an equation written in slope-

intercept form. A local praxelogy may contain all the tasks requiring writing equations of lines 

given certain conditions, including tasks like Tasks 1 and 2 given to students by the teacher from 

our study: 

Task 1: Sketch the graph of the line that is parallel to 3
2

1
 xy and goes through )1,2(  .  

Task 2: Sketch the graph of the line that is perpendicular to 2
4

3
 xy  and goes through the 

point )6,2(  . What is the equation of the new line you created? 

Tasks 1 and 2 have the same target knowledge, an algorithm for solving the class of problems that 

require the writing of the equation of a line passing through a given point and parallel or 

perpendicular to a given line. Such tasks are similar to those proposed in the textbook used by the 

participants in this study. The technique used to execute Task 1 may employ algorithms like the one 

used by the teacher in this study:  

1. Draw a Cartesian systems of coordinates and plot the given point )1,2(  . 

2. Identify the slope of the line parallel with the given line, 
2

1
m . 

3. Use a “quick graph” to obtain a second point on the line (from the point )1,2(  move 1 unit up  

    and 2 units to the right, and obtain and plot the point )0,4( ). 

4. Draw the line passing through the given point )1,2(   and the newly found point )0,4( .  

Part of the technological discourse for this local praxeology may include the justification for the 

fact that the second point )0,4(  obtained in the way described above is indeed situated on the line 

with the slope 
2

1
m  and passing through )1,2(  , or the justification that the line parallel to the 

line 3
2

1
 xy  has the same slope, 

2

1
m . A theoretical justification of the fact that parallel lines 

have the same slope and, conversely (i.e., a theorem and its proof in analytic geometry, based on 

similarity of triangles) may belong to a regional praxeology.  



Method 

Participants in this study were an Algebra 1 teacher from a public high school in the United States 

and her 58 students who agreed to participate in this study. The teacher had a Bachelor degree in 

Mathematics and five years of teaching experience. Classroom observations (Erickson, 1985) were 

conducted by the researcher/author of this paper for all six Algebra 1 classes of 50 minutes each, 

taught by the participating teacher, during the same day of school. The researcher took notes 

referring to the way the teacher and her students interacted with the mathematical content of the 

tasks. The teacher taught the same lesson, about writing equations of parallel and perpendicular 

lines, to each of her classes. Prior to the day of observation, the teacher introduced to her students 

the equation of a line in slope-intercept form and point-slope form, and the notions of parallel and 

perpendicular lines. The teacher started each lesson with Task 1 (described above), discussed it with 

her students, and then administered Task 2 (described above). Two raters scored students’ answers 

to Task 2 (“1” for correct answer, and “0” for incorrect or incomplete answer). Using techniques 

from grounded theory (Strauss & Corbin, 1998), students’ algorithms were split into two categories, 

algorithms with a graphical approach (teacher’s approach, described in the section referring to the 

theory of didactic transposition, and in the section referring to teacher knowledge), or algorithms 

with an algebraic approach (textbook approach, described in the section referring to textbook 

knowledge). The inter-rater agreement (Cohen, 1960) was very high, k = .92 (p < .001), 95 % CI 

[.83, .98].  

Analysis and results  

Figure 1, below, is adapted from Bosch & Gascón (2006) and illustrates the steps of the process of 

didactic transposition specific to the study presented in this paper. 

 

Figure 1. The process of didactic transposition 

We will describe each of the types of knowledge/praxeologies in Figure 1, starting from the 

scholarly knowledge, in the direction of the arrows. Worth mentioning, in determining the regional, 

local or point praxeologies, one starts from the task and what the task entails, in our case writing 

linear equations of parallel or perpendicular lines to a given line, and passing through a given point.  

Scholarly knowledge/Regional praxeology  

As can be seen in Figure 1, we chose analytic geometry as our regional praxeology. Given the space 

constraints, we refer here only to perpendicular lines. When writing equations of perpendicular 

lines, we use the following theorem: 

Two nonvertical, nonhorizontal lines 
21 , ll   with slopes 

1m  and 
2m  are perpendicular if and only 

if 121 mm  (Kay, 2001, p. 303). 



Worth mentioning, the proof chosen for the above theorem is specific to the participants’ 

institutionalized knowledge. Our regional praxeology/theory contains all the axioms, definitions, 

theorems and their proofs needed to prove the above theorem. An example of a path through the 

theory is given by Kay (2001) in his textbook, College Geometry, where he starts constructing the 

geometry with the foundations of absolute geometry (points, lines, segments, angles, triangles, 

quadrialterals, circles), and continues with the Euclidean geometry (trigonometry, coordinates, 

vectors). This path of knowledge includes the definition of a right angle, the definition of 

perpendicular lines, the Pythagorean theorem and its converse together with its proof based on 

similarity of triangles, and the distance formula between two points, given their coordinates. Within 

this regional praxeology, “a right angle is any angle having measure 90” and “two (distinct) lines 

21 , ll   are perpendicular if and only if 
21 , ll   contain the sides of a right angle” (Kay, 2001, p. 97). A 

proof of the theorem stated above is simple (see Figure 2).  

 

Figure 2.  Perpendicular lines and their slopes 

As can be seen in Figure 2, the system of coordinates has been specially chosen, without loss of 

generality, so that its origin, O, coincides with the point of intersection of the two lines, 
1l (with 

slope 
1m , containing the segment OA, with A chosen such that its x-coordinate, 1Ax ) and 

2l  

(with slope 
2m , containing the segment OB with B chosen such that its x-coordinate, 1Bx ). The 

line 
1l  passes through )0,0(O  and has the slope 

1m , hence all its points ),( yx  satisfy the equation 

xmy 1 . Similarly, all the points ),( yx  situated on 
2l  satisfy the equation xmy 2 . As such, the 

points A and B have the coordinates: ),1( 1mA  and ),1( 2mB , respectively. To prove the direct 

implication of the theorem, we assume that the lines are perpendicular therefore they contain the 

sides of a right angle, hence the triangle AOB  is right, and according to the Pythagorean theorem 

we have 222 ABOBOA  . Using the distance formula to calculate OA, OB, and AB function of 

their coordinates, we obtain 2

12

2

2

2

1 )(11 mmmm   and after we simplify, we have 

121 mm . Conversely, if 121 mm , then 2

12

2

2

2

1 )(11 mmmm  , therefore 
222 ABOBOA  . Using the converse of the Pythagorean theorem, it follows that the triangle 

AOB  is right, hence the lines 
1l  and 

2l  containing its legs, OA and OB, respectively, are 

perpendicular.  

The observation that any vertical line with the equation ax   is perpendicular to any horizontal 

line with the equation by   takes care of the exception stated in the theorem (“nonvertical, 

nonhorizontal lines”). 

 

 



Textbook knowledge/ Local praxeology 

In the United States, the Algebra 1 course, usually taught in the first year of high school, contains 

topics like linear equations with one and two variables, linear functions, linear inequalities, systems 

of linear equations, quadratic equations and functions, and introductions to polynomials, 

exponential equations and functions. For historical reasons (Kilpatrick & Izsák, 2008), the 

American students take the Algebra 1 course before Geometry, thus they learn about the slope of a 

line, or slopes of parallel and perpendicular lines before learning about similarity or how to prove 

the Pythagorean theorem. As such, there is no expectation for justifications or proofs for the “key 

facts” stated in Algebra 1 textbooks. The textbook knowledge for this study comes from the 

Algebra 1 textbook used by the participants’ school district (Larson et al., 2007). The lesson 

referring to the writing of parallel and perpendicular lines offers some techniques and the 

technological discourse to justify the techniques (e.g., definition of perpendicular lines and a "key 

concept" without proof - the theorem referring to the slopes of perpendicular lines): 

PERPENDICULAR LINES. Two lines in the same plane are perpendicular if they intersect to 

form a right angle. Horizontal and vertical lines are perpendicular to each other.  

KEY CONCEPT. If two nonvertical lines in the same plane have slopes that are negative 

reciprocals, then the lines are perpendicular. If two nonvertical lines in the same plane are 

perpendicular, then the slopes are negative reciprocals (Larson et al., 2007, p. 320). 

A similar definition and a similar theorem about parallel lines precede the definition and theorem 

about perpendicular lines. The technique/algorithm described in the textbook (Larson et al., 2007, 

pp. 319-321) for executing tasks similar to Task 1 and 2 has an algebraic approach (Knuth, 2000):  

1. Identify the slope m of the new line based on the “key concepts” referring to the slopes of 

parallel or perpendicular lines (parallel lines have the same slope, perpendicular lines have 

slopes negative reciprocals). 

2. Use the slope-intercept form of an equation bmxy  , the newly found slope m, and the 

given point ),( 11 yx  to find b (the y-intercept). 

3. Write the equation of the newly found line bmxy  . 

Teacher knowledge/Local praxeology 

We continue describing Figure 1 with teacher knowledge, as observed. After discussions with her 

students, the teacher executed Task 1 using the algorithm with the graphical approach described 

above, in the section about the theory of didactic transposition. She drew a system of coordinates, 

plotted the point )1,2(  , identified the slope of the parallel line 
2

1
m  and used it to obtain the 

second point )0,4(  (from )1,2(   moved 1 unit up and 2 units to the right), and drew the line 

connecting the points )1,2(   and )0,4( . To check the execution of Task 1, the teacher proposed to 

her students to graph the first line 3
2

1
 xy  as well, on the same system of coordinates like the 

newly obtained line, and make a judgment regarding their parallelism, based on visual inspection. 

When one of the students proposed a technique with an algebraic approach for Task 1, the teacher 

allowed the student to carry it out, but then she asked the class for another way to execute Task 1, 

and led the students to use her graphical approach technique. Part of the observed technological 



discourse for the teacher’s local praxeology also included the definitions of parallel lines (“lines that 

do not meet”) and perpendicular lines (“two lines in a plane that intersect at a 90  angle”), and the 

“key concepts” that parallel lines have the same slope and perpendicular lines have the slopes 

opposite reciprocals. In short, the teacher’s local praxeology, as observed, consisted of some basic 

tasks, a technique with a graphical approach, and some of the technological discourse necessary to 

justify the technique. In the teacher’s view, as expressed during the class discussions, Tasks 1 and 2 

were part of the same class of problems, requiring the same technique, and Task 2 could be 

approached in the same way as she approached Task 1, i.e., graphically. 

Student knowledge/Point praxeologies   

Executing Task 2 with the algorithm from the textbook implies: i) identify the slope of the 

perpendicular line, 
3

4
m ; ii) substitute )6,2(   and 

3

4
m  in bmxy  , and determine b 

from b )2(
3

4
6 ; iii) write the equation of the newly found line 

3

10

3

4
 xy . Only two 

students (3.4 %) of those 58 participating in the study executed Task 2 successfully, and both 

employed the technique with an algebraic approach described in their textbook. About one out of 

five students (20.6 %) tried to solve the problem employing the technique with the graphical 

approach used by the teacher – they determined the slope of the perpendicular line, 
3

4
m , started 

from the given point )6,2(   and used the “quick graph” technique to obtain the second point on the 

line, then drew the line connecting those two points and determined incorrectly, by visual 

inspection, the value of the y-intercept of the newly created line, and finally wrote the equation of 

the line (see Figure 3).  

 

Figure 3. Example of student work – Task 2 

It can be seen in Figure 3 that the student incorrectly determined the y-intercept of the newly 

created line as 2 , while the correct value is 
3

10
 , a value hard to determine with the graphical 

approach. Moreover, the student tried to check/evaluate her work, and graphed the original line 

together with the newly created line and it seems that she was satisfied with her visual inspection of 

the perpendicularity of those two lines she graphed. The rest of the students (76 %) tried to use a 

graphical approach (strongly suggested by the teacher’s approach and the presence of the grid), but 

could not identify the slope of the perpendicular line, or determine the y-intercept. When writing the 

equation of the perpendicular line, students tried to substitute the point )6,2(   or its coordinates in 



the slope-intercept form equation of a line ,bmxy   irrespective of their graphical representations 

or the meanings of the coordinates of the point, slope of the line, and y-intercept of the line. They 

obtained equations, like “ )6,2(
3

4
 xy ”, “ ,2

2

6
 xy ” or “ ,62  xy ” showing a great 

disconnect with the technique required to execute Task 2. As observed from their written 

assignments, the students’ praxeologies were point praxeologies with only one task and technique 

(successful or not), without any justification of the technique. 

Discussion  

The scholarly knowledge constructed from axioms, definitions, and rigorously proven theorems has 

been replaced by other definitions and axiom-like “key concepts” considered true without proof. In 

our case, the theorem regarding the slopes of perpendicular lines and its proof has been replaced by 

a “key concept” without proof, and several “solved examples” presenting the technique for 

executing basic tasks. What remained to be taught and learned was how to execute basic tasks. The 

change was dramatic from scholarly mathematics to textbook knowledge, since mathematics was 

stripped of its essential feature – the proof. The mathematicians warned that this dramatic change in 

our curriculum would lead to generations of teachers and students with increasing difficulty 

executing tasks requiring more than one step (Wu, 1997). The textbook knowledge shrank to 

teacher knowledge, but remained the same in nature, i.e., a set of tasks, techniques, and 

justifications for techniques. As observed, the teacher from this study used only basic tasks that 

were similar with the examples solved in the textbook, employed only the graphical approach, and 

supported her technique with some justifications. The teacher may have favored those tasks and 

techniques for various reasons like, the end-of-course exams contained mainly basic tasks for which 

the techniques were appropriate, her students’ weak competency with symbolic manipulations, and 

time constraints. The technique with a graphical approach imposed by the teacher in this study was 

inadequate for Task 2. Almost all the students (96.6 %) relied on the teacher’s knowledge – a subset 

of the textbook knowledge. The students failed to connect the graphical and symbolic 

representations of points and lines, and the techniques necessary to carry out Task 2. As predicted 

by mathematicians (Wu, 1997), the students had difficulty executing tasks with more than one step. 

The observed logos from the local praxeologies (textbook and teacher knowledge) contained only 

the technological discourse. There was no observed logos in the case of point praxeologies (student 

knowledge). Without theory based on proof, the knowledge advancement can only be obtained by 

learning to execute new tasks with new techniques that are not necessarily connected to old ones. 

As seen in our study, this type of knowledge advancement did not lead to teacher’s or students’ 

success. 
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Students’ and teachers’ mental solving of algebraic equations: From 

differences to challenges 
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This paper presents students’ and teachers’ strategies for mentally solving algebraic equations. The 

enactivist notions of problem-posing offer conceptual grounds to engage in analysis of students’ 

and teachers’ strategies, and in their comparisons, leading to the exploration of differences in the 

nature and origin between the solving processes of students and those of teachers. Final remarks 

reflect on the potential of being sensitized to the nature of these differences in solving processes. 

Keywords: Algebraic equations, mental mathematics, problem-solving. 

Introduction 

This paper is in continuity with the one presented at CERME-8 in WG3 about the mental solving of 

algebraic equations (Proulx, 2013a). Work has been conducted with secondary-level students and 

with teachers on mentally solving algebraic equations of the form Ax+B=C, Ax+B=Cx+D, 

Ax/B=C/D without paper and pencil or any other material aid. The main research objective is to 

gain better understandings of the nature of the strategies developed when solving these algebraic 

equations mentally. From our analysis, students’ and teachers’ ways of solving highlight significant 

differences to which it is worth paying attention in terms of their meaning and nature as well as the 

issues that they raise about the teaching and learning of algebraic equation-solving. This paper 

reports on analyses of the strategies developed by students and teachers for similar if not identical 

algebraic equations, and grounds it in a discussion of the nature of solving processes. 

Solving processes in mental mathematics: Emergence and problem-posing 

As mentioned in Proulx (2013a), recent work in mental mathematics points to a continued need for 

investigating and conceptualizing how students develop mental mathematics strategies. Researchers 

have begun criticizing the notion that students “choose” from a toolbox of predetermined strategies 

to solve problems in mental mathematics. Threlfall (2002), for example, insists rather on the organic 

emergence and contingency of strategies in relation to the tasks and the solver (e.g., what s/he 

understands, prefers, knows, experienced, is confident with; see Butlen & Peizard, 1992). This view 

is aligned with Lave’s (1988) situated cognition perspective that conceives of mental strategies as 

flexible emergent responses, adapted and linked to specific contexts and situations. 

In mathematics education, the enactivist theory of cognition has been concerned with issues of 

emergence, adaptation and contingency of learners’ mathematical activity (e.g., Maturana & Varela, 

1992; Varela, Thompson, & Rosch, 1991). In particular, Varela’s (1996) distinction between 

problem-posing and problem-solving offers insights for conceptualizing the generation of strategies. 

For Varela, problem-solving implies an understanding that problems are already in the world, lying 

“out there” waiting to be solved independent of us. He explains, in contrast, that we specify – we 

pose moment by moment – the problems that we encounter through the meanings we make of the 

world. We do not “choose” or “take” problems as if they were lying out there objectively and 

independent of our actions: we bring them forth. In short, for Varela, we pose our problems. 



This perspective underlines Simmt’s (2000) argument that it is not tasks that are given to solvers, 

but rather prompts that are taken up by solvers, who by posing them in a specific mathematical 

context create tasks with them. Prompts become tasks when solvers engage with them, when they 

pose them as tasks. Hence solvers make the prompt a multiplication task, a ratio task, a function 

task, an algebra task, and so forth, and solve it in relation to this posing. And, this posed task is not 

static or fixed once and for all, because the posing triggers a solving process that in turn transforms 

the posed task in an ongoing and dynamic process. It is with/in this process that the task emerges, 

organically, constantly becoming, being re-solved and re-posed (see Proulx, 2013b). By way of an 

example of this interaction between the posing and the solving, here is a strategy taken from a study 

on mental calculations (Proulx et al., 2014). To solve 741–75, one solver explained: 

(a) 741 – 75 is like 700 – 75 + 41. 

(b) 700 – 75 is like having 7 dollars and subtracting 3 quarters. I am left with $6.25.  

(c) 6.25 is six-twenty-five, so I add 41 to 625. I do 5+1 is 6, 4+2 is 6, and I have 600, so 666. 

When 741–75 was given, the first step was to find a way of solving, of entering, of posing it as a 

task. This prompt was then posed as a decomposition task, leading the solver to decompose 741 in 

700 and 41, in order to subtract 75 from 700. This decomposition produced in return a new prompt 

for the solver, that is, to solve 700–75, which was posed as a monetary task (7 dollars minus 75 

cents). This other solving step led to another prompt, 625+41, which the solver posed anew as a 

decomposition task of each digit in each number in relation to their position (hundreds, tens, units) 

and its successive addition. Hence each solving step led to the posing of a task to solve, 

necessitating a way of entering into it, continuing to solve it, etc., producing an entire solution path. 

A posteriori, in light of this entire solution path, one can assert the presence of a strategy, but this is 

an assertion after the fact because all this unfolds one step at a time when advancing in the solving 

of the posed task. Interacting with the prompt, engaging in the task, is to take a step and another, 

and these steps emerge in the solution path. All this happens in continuity, step by step, with each 

step leading to another posing of the task, to another solving process contingent on and emerging 

from previous steps, leading in return to another posed task, leading to another step, etc. 

[E]ach solution ‘method’ is in a sense unique to that case, and is invented in the context of the 

particular calculation – although clearly influenced by experience. It is not learned as a general 

approach and then applied to particular cases. […] The ‘strategy’ (in the holistic sense of the 

entire solution path) is not decided, it emerges. (Threlfall, 2002, p. 42) 

The entire solution path, or strategy in Threlfall’s sense1, is not predetermined, but generated for 

solving, emerging from the interaction with the prompt. Thus the solver transforms the prompt as a 

mathematical task generating a strategy for the posed task for solving it. It is this dynamic entry on 

strategies, on solution paths, that characterizes the conception that grounds the analysis of solving 

processes in this study, that is, of students’ and teachers’ strategies for solving algebraic equations. 

                                                 

1 It is in Threlfall’s sense that the expression strategy is used in this paper, that is, not as a fixed and reified entity, but as 

the entire solution path, in its totality and dynamic nature as it unfolds through the diverse solving steps. 



Solving algebraic equations without paper and pencil 

The context in which the mental mathematics sessions are conducted is simple. A group of solvers, 

students or teachers, sit at their table without any paper or pencil and attempt to solve the prompts 

given. The organization takes the following structure: (1) an equation is offered in writing on the 

board; (2) solvers have 15-20 seconds to solve the equation mentally (without paper-and-pencil or 

material aid); (3) at the signal, strategies are shared orally and explained to the group. 

The data collected come from the strategies explained orally by solvers, taken in note form by at 

least two research assistants (RAs). These notes are refined with on-the-spot discussions between 

the research team members (PI and RAs) following data-collection sessions, to produce a report on 

the various solution paths developed by participants. In this report, each strategy is given a name 

that describes it for matters of classification (descriptive level of analysis). With these descriptions, 

various analyses are conducted, depending on the purpose aimed for (meaning making engaged 

with, nature of strategies produced, difference with paper and pencil, etc.). In this case, as explained 

in the introduction, the analysis of strategies is conducted with the precise intention of establishing 

comparisons between students’ and teachers’ solving processes. Thus the analysis in this paper is 

not conducted for/on the strategies themselves, but mostly to establish this comparison ground 

between the solution paths being laid down by students and by teachers. 

Students’ posed tasks and solution paths 

Work was conducted in two Grade-8 classrooms with about 30 students for 75-minute periods. In 

each classroom, the same five equations were given. The two used in the analysis are “Solve for x 

the equation 2x+3=5” and “Solve for x the equation 2

5
x =

1

2

”; the solution paths emerging for these 

are illustrative of the solving processes developed by students. As such, the analysis is not focused 

on the occurences of strategies, but on the nature of the solving processes and the functionality and 

meaning of the strategies developed. For this, strategies in both classrooms are grouped to offer and 

set up comparative grounds with teachers’ solving processes. 

For “Solve for x the equation 2x+3=5”, students produced the following: 

Inversing operations. One student explained that he did “minus 3” on the right side of the 

equality to obtain 2x=2, which directly gave x=1 (without needing to divide by 2). 

Balancing. One student explained having done the same actions on both sides of the equality, 

thus subtracting 3 on both sides to obtain 2x=2 and then dividing by 2 on both sides to get x=1. 

Direct reading. Some students explained that with 2x+3=5 he knew right away that x must equal 

1, because 2+3=5. Another explained having first taken the x out of the equation, leaving 2+3=5. 

So, when 2 was multiplied by x, it has to remain a value of 2 to fit in the equation, so x needed to 

be 1. Another student explained that this meant that x=0, because in 2+3=5 the x is uneccessary. 

For “Solve for x the equation 2

5
x =

1

2
”, students produced the following: 

Transforming in equivalent fractions and decimals. One student explained having transformed ½ 

in 10/20 to make the ½ divided by 2/5 simpler, then repeating the same thing for 2/5 to obtain 
20

50
x =

10

20
. He explained that this is equivalent to 0.4x=0.5 and thus the response is x=0.5/0.4. 



Inversing and transforming in decimals. One student explained inversing the equation to 5

2
x = 2 . 

He then transformed in decimals to obtain 2.5x=2, and dividing by 2 got 1.25x=1 so that x=1.25.  

Cross multiplying. After making the equation 2x

5
=

1

2

, the student explained having cross 

multiplied, where 5 times ½ gave 2x= 2.5 and thus x=1.25. 

Halving. One student explained that half of 5 is 2.5, and because one looks for ½, so x is 1.25. 

Finding a scalar. One student explained looking for the value of x that made 2/5 equal ½. 

Placing fractions over 10, he explained that x is 1.25 because 4 times 1.25 is 5 and 5/10=½.  

Finding common denominator and adding. The student explained having placed fractions over 

10, obtaining 4

10
x =

5

10

. Subtracting 4/10 and 5/10 gave –1/10, so then x is worth 1/10.  

All these solution paths, and their underlying solving steps, are not necessarily “adequate” or 

“standard”, but illustrate an emergent solving process geared toward finding a value for x that 

satisfies the equality. Through these examples of solution paths emerges a diversity of solving steps, 

of entries for solving. As explained in Proulx (2013c), the “mental” dimension provokes the search 

for an entry point, a way of posing the prompt, of getting in, of making a step. The solving context 

is thus created by the solver, producing an adapted way of entering into the problem. This diversity, 

which is translated in a variery of solution paths for solving the “same” equation, transforms that 

“same” equation, which is differently contextualized or posed differently from one solver to the next 

as each develops his/her own ways of posing and solving. The diversity of solution paths illustrates 

well how the various ways of posing the task led to varied ways of solving by solvers, hence diverse 

strategies or solution paths. In other words, the “same” equation gives rise to the emergence of a 

variery of posing, which leads to the development of a variety of strategies. 

Teachers’ posed tasks and solution paths 

The work with the group of 20 secondary-level teachers was conducted during a day-long session, 

where the solving of algebraic equations was carried out in the first half of the day. Similar 

equations given to students, even identical ones, were given to teachers to solve (about 10). 

In general, most if not all teachers’ strategies can be described as efficient and errorless for solving 

the algebraic equations, e.g., through balancing strategies and isolating x. However, at specific 

moments during the sessions, some strategies of a more arithmetical nature were proposed. For 

example, some teachers explained having done what they described as “recovering”, where, e.g., for 

“Solve for x the equation x2 - 4 = -3”, one teacher explained: 

[Hiding x2 with his hand] I look for the number which, when subtracted 4, gives –3. I know it is 

1. So then, what number squared gives 1? It is +/–1.  

This solution path is similar to “inversing” methods discussed in Filloy and Rojano (1989), or 

Nathan and Koedinger’s (2000) unwinding, where operations are undone to obtain a value for x. As 

Filloy and Rojano explain, in order to solve an algebraic equation this way “[i]t is not necessary to 

operate on or with the unknown” (p. 20), because it comes back to an arithmetical context of 

operating on numbers. However, these arithmetic strategies were occasional for teachers. For 

example, for “Solve for x the equation 2

5
x =

1

2
”, teachers produced the following: 



Equating middle and extreme products. One teacher explained having acted like with ratios, 

multiplying middle and extreme terms together, obtaining 4x=5, hence x=5/4. 

Multiplying by the inverse. One teacher explained having divided by 2/5 on each side of the 

equality, leading to multiply by 5/2 to get the same answer, giving x=5/4.  

Isolating x in two steps. One teacher explained having multiplied by 5 on each side of the 

equality, obtaining 2x=5/2, and then dividing all by 2 to obtain x=5/4. 

Following these solution paths, one teacher offered another entry: 

Simplifying the equation. The teacher explained having aimed to get rid of ½ by multiplying the 

entire equation by 2, giving “4 fifths of x equals 1”. He then multiplied by 5/4 to find x. 

Here the teacher simplifies the equation, eliminating the ½, in order to find the value of x through 

multiplying by the inverse coefficient. Numerous teachers were intrigued by this solution path and 

questioned the teacher about it. He explained that his intention was to get rid of ½ to obtain “1 on 

one side” of the equation and because “multiplying by 2 is easy here”. Asked about the numbers 

present in the equation, he also explained that it was not clear for him if other numbers like 3/2 or 

1/6 would have led him toward similar solving steps and that it was the presence of ½ that triggered 

his activity. This is thus an example of a local strategy, affected by the concrete “data” in the 

equation: the solving steps are produced on the spot for this equation and not as a general strategy 

applicable to all cases (as well as not being a strategy for isolating x, but about simplifying ½). The 

entry in the solving is done locally with the ½, the task is posed as one implying a ½, and not by the 

equation taken in its totality independent of its concrete values as could be the case in a cross-

multiplying product. Although local, this strategy underlines an entry directly grounded in the data 

of the equation. The teacher simplifies this equation by doubling ½, because it was “simple” to do 

so, and then solves it. However, this kind of solution path diverges from most of the strategies that 

teachers have produced. 

Whereas in students one sees more local solving steps of this sort, directly sensitive to the data in 

the equation to solve, the strategies developed by teachers appear more decontextualized and 

general, less centered on the direct data of the equation. In short, faced with the same prompts, 

teachers posed problems different from those posed by students. This difference between teachers 

and students is well reflected in a comment made, after sharing the “doubling the ½” strategy, by 

one of the teachers about what he perceived as the optimal strategy to solve this equation: 

In Grade-8 the winning strategy is really the ratio one [multiplying extreme and middle values]. 

We work at it so much with them and I encourage them to use it in front of these sorts of 

equations. […] I am not against the other strategies, but with my students [waiving his hand in 

discouragement], I am not sure that it would come out much, especially if we ask them to solve 

without paper calculations. In mental mathematics it is not obvious, whereas with ratios I think 

that 2 times 2x gives 4x, and 1 times 5 gives 5, and 4x over 5 they know afterwards that they have 

to divide by 4, these are rules of transformation of the equations. 

This comment on the winning strategy and students’ (un)ease, supported by the other teachers, 

contrasts with the students’ solution paths displayed above. Shortly afterwards, this prompt was 

given to teachers: “Find the value of 2t in 3(2t)+6=18”, for which they produced three strategies: 



Balancing. One teacher subtracted 6 on each side of the equation, obtaining 3(2t)=12, and then 

dividing by 3 on each side to obtain 2t=4. 

Undoing of operations. One teacher explained having done the opposite operation, by subtracting 

6 from 18 and then dividing it by 3. 

Recovering. One teacher explained hiding 2t to find the number which when added 6 is worth 18. 

This number is 12. Then he asks which number multiplied by 3 gives 12. This number is 4. 

Here again, this recovering strategy provoked questions from teachers, not stemming from 

misunderstanding but mostly from curiosity about having used this kind of strategy to solve the 

equation. One teacher explained that even if he himself solves algebraic equations in a variety of 

ways, he does not teach this variety to his students because he considers it important to proceed step 

by step in a structured and linear fashion for each side of the equality: something with which other 

teachers strongly agreed. However, after this comment, another teacher raised the following: 

I have a question. I would show it like that to my students [step by step, operating on each side of 

the equation in the same manner]. However, as a secondary student I was never shown this 

“balancing” way. It is one of my colleagues who told me “Listen, I teach it like that”. Then, when 

I taught Grade-7, I started doing this “you do the inverse operation, bing, bang”. And I wonder if 

it has not become an automatism. Is it because we always do it like that, that students themselves 

begin doing it also rapidly? Is it OK if they do so, or do they need to continue with their personal 

strategies? […] Should we encourage varieties of strategies in students? 

This comment is reminiscent of Freudenthal’s (1983) one about automatism in teaching: 

I have observed, not only with other people but also with myself […] that sources of insight can 

be clogged by automatisms. One finally masters an activity so perfectly that the question of how 

and why [students don’t understand them] is not asked anymore, cannot be asked anymore and is 

not even understood anymore as a meaningful and relevant question. (p. 469) 

What Freudenthal underlines as much as the teacher is not about misunderstandings of non-usual 

solution paths, but about well-ingrained habits of solving that (1) prevent one from stepping outside 

them, and (2) question the relevance of alternate solution paths for solving equations. The teacher’s 

question is about this, that is, the relevance or legitimacy of alternate solution paths: Should they be 

taught? Should they be accepted? These questions sensitize one to the variations in ways of solving, 

but also to the challenges that this raises for teaching-learning situations. 

Discussion and reflections on algebraic equation solving processes 

In what ways do these differences in solution paths raise challenges? The discontinuity, the 

distances between the various strategies developed by students and teachers are without any doubt 

important sources of challenges for the teaching-learning of algebraic equation solving. One way of 

addressing these questions is to probe the solving processes as much in students as in teachers. How 

can this variety be explained, as well as the differences in solution paths of teachers and students? 

If we take into account Threlfall’s (2002) views, we can consider that the nature of what emerges 

for the student is quite different from what emerges for a teacher. A student’s experience is quite 

different from that of a teacher. For the teacher, one has the impression that some earlier 



experiences intensely orient future ways of solving. The teacher’s comments above, as well as 

Freudenthal’s, insist on the challenge of stepping out of the frame pretraced by earlier repetitive 

experiences of teaching the solving of algebraic equations along specific solution paths. Faced with 

having to teach students and make them learn, teachers make choices that in turn orient the nature of 

their own mathematical experiences of this specific mathematics thematic. By insisting on some 

solution paths seen as fruitful for students to solve equations, these solution paths in turn orient 

teachers’ solving processes; a phenomenon that the above expression automatism describes well. 

It is this experience that plays a major role for teachers. When facing the “same” equations, teachers 

and students pose quite different tasks. Although all solving steps leading to what are seen as 

different strategies arise from the posing of different problems by different persons when interacting 

with the prompt, the solving steps do not share the same origins. Teachers are expert solvers in the 

sense of what could be called an “overspecialization”. They can perceive these equations through 

the same algebraic lens, steering almost all equations to the same kind of task, posing them as the 

same tasks. Students are not non-experts, but have, however, not yet lived the same repetitive 

experiences that cause this overspecialisation. Think of the riverbed metaphor: teachers’ riverbed is 

well dug, quite specialized, and the river runs through it comfortably. That of students looks much 

more like a stream that deviates at the least change in scenery, but this does not prevent it from 

unfolding (sometimes in the same place, sometimes elsewhere, unpredicted but adequate, or not).  

Final remarks: On differences and challenges 

Despite its efficiency in solving, teachers’ overspecialisation limits the variety of problems that they 

pose, being less sensitive to variations (in numbers, unknowns, operations, etc.). This makes it 

difficult for them to act differently, as one of the teacher expressed, but also to appreciate the variety 

of students’ solution paths; a variety that teachers themselves no longer experience much in their 

day-to-day mathematics teaching (a situation that also leads to question the validity of these solution 

paths). These different poses provoke a distance between solution paths in students and in teachers. 

The challenge for the teaching and learning of algebraic equation-solving can then be seen in 

teachers’ overspecialization – which implicitly imposes a particular pose of the task and thus the 

strategy – which brings about a distance with students’ solution paths. Also, this overspecialisation 

seems to be generated by the belief that a specifically guided and structured experience of solving 

will be helpful to students: teachers believe, as expressed above, that students need these structured 

and specific experiences. This belief may be an important source of reflection, because the 

challenge of this overspecialisation points to the necessity of not discarding the less common or 

local solution paths, but of developing a sensitivity toward them and toward the role played by this 

overspecialisation or these automatisms. 

This resonates with Anghileri’s (2001) literature review on mental calculations, pointing to students 

locally tailored strategies, linked to their understanding of problems. However, she explains that 

these strategies do not last because they are often substituted by standard algorithms taught in 

classrooms, where students attempt to conform to what happens in everyday mathematics lessons. 

Anghileri adds that this situation is complex, because without negating the power of standard 

algorithms for solving, they conflict, provoke a “distance”, in the development of students’ aptitutes 

in problem-solving. For her, this amounts to a matter of intentions: 



The emphasis in teaching arithmetic has changed from preparation of disciplined human 

calculators to developing children’s abilities as flexible problem solvers. This change in 

emphasis requires new approaches in teaching that will develop children confidence in their own 

methods rather than replicating taught procedures, and that will enable them to understand the 

methods used by others (Anghileri, 2001, p. 79). 

The transition toward flexible problem-solvers represents an invitation to think about algebraic 

teaching and learning, an invitation directly aligned with the above argument on the importance of 

developing sensitivities about distances between teachers and students’ algebraic solving processes. 
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Understanding of equality and solving equations are some of the big ideas in algebra. They have 

been in focus in early algebra research for some decades and in many countries it is now usual to 

work with equalities and solving equations using informal methods from early school years. 

However, it is not clear how the transition to formal methods of equation solving could be 

conducted in order to maintain students’ interest and enhance their algebraic understanding. We 

shed light on the issue by reporting on what happens when three teachers introduce equation 

solving with formal methods in Grade 6 (age of 12) in Finland. We especially consider how the 

introduction could support students’ development of an algebraic understanding of equality and 

their engagement in more formal mathematics. 

Keywords: Equations, primary school mathematics, equality, algebra.  

Introduction 

Learning to solve linear equations in a more formal manner may be a critical moment in a student’s 

school mathematical experiences.  The student is perhaps able to figure out the missing value in an 

equation with one unknown written as an open number sentence, for instance solving x – 10 = 15 by 

arguing ‘for x minus 10 to become 15, then x has to be 25 because when 10 is taken away from 25 

the answer is 15’. But the student does not understand how and why the standard algorithm works 

for solving the very same equation, that is, looking at the equation x – 10 = 15 as equivalent to the 

equation x – 10 + 10 = 15 + 10 and equivalent to the equation x = 25. This particular situation is 

shown to be associated with how the student understands equality (Kieran, 1981; Knuth, et. al., 

2006, 2011; Vieira, Gimenez & Palhares, 2013). In arithmetic it is often enough to understand the 

equal sign as an operator, as a do something -signal (Kieran, 1981).  In algebra, however, the 

student should understand equality between two expressions as an equivalence relation that does not 

change. Such algebraic understanding may not be supported if the student is taught to solve 

equations by memorized procedures as ‘move terms from one side to the other side of the equal sign 

and change the corresponding signs’ or ‘do the same thing on both sides’. Successful equation 

solving is connected to a relational meaning of the equal sign, and understanding the notion of 

equation as a statement about an equivalence structure (Knuth, et. al., 2006, 2011; Stacey & 

MacGregor, 2000).  

Scholars have only recently started to theorize about possible learning progressions with respect to 

algebra in different school years (Cai & Knuth, 2011). Although students may be taught to consider 

the equal sign as a relation by working with equivalent expressions and by solving simple equations 

with informal methods already in early school years, it is not sure that they can operationalize the 



meaning of their experiences when moving to more formal methods of equation solving in later 

school years. In Finland, Grade 6 teachers are expected to focus on a progression from equation 

solving by informal methods to equation solving by more formal methods. The general aim of this 

paper is to shed light on this progression by analyzing how students in three Grade 6 classrooms in 

Finland are introduced to solving linear equations with one unknown.  

Learning to solve linear equations 

A distinction can be made between an arithmetical and an algebraic notion of equality and a 

corresponding difference in arithmetical and algebraic understanding.  Following Filloy and Rojano 

(1986) and Vlassis (2002), if the unknown in a linear equation appears only on one side of the equal 

sign, e.g. x + 5 = 8, 13x = 39, 6(x + 3) = 48, the student has less need to operate on or with the 

unknown, or to deal with the equivalence structure of the expressions on both sides of the equal 

sign. For equations of this arithmetical type the student probably manages to find the value of the 

unknown by applying known number facts or inverse operations. When the unknown appears on 

both sides of the equal sign arithmetical understanding is however no longer enough.  Neither is 

arithmetical understanding enough in the abstract type of arithmetical equations where certain 

algebraic manipulations are needed, for example, because of the presence of negative integers (e.g. 

2 - x = 7) or several occurrences of the unknown (e.g. 6x + 5 - 7x = 27) (see Vlassis, 2002, p. 351).  

When solving such more abstract equations the student who has an algebraic understanding of 

equality first of all acknowledges that the expressions on both sides of the equal sign are 

representing equal values, next that the solving process involves mathematical actions, which 

preserve this balance and produce equivalent equations. Vlassis (2002) noted that concrete 

representations of equalities, like the two pan balance model, might act as good tools for developing 

students understanding of equality, but Vlassis also pointed at their limitations. For example, the 

balance model cannot represent the negatives in an equation. More generally, a true algebraic 

understanding of equation solving implies that the student considers the equation as representing a 

problem situation, and starts to understand the equation as an equivalence structure maintained by 

the operations one has to apply on both sides to solve for the unknown.  

If a real-life problem is used as a tool to introduce students to solving equations and the unknown is 

solved for through the syntax of algebra, the student needs to refrain from an arithmetical 

understanding of the solution to the problem. This situation may be at odds with the student’s 

knowledge and intuitions about arithmetic because the meaning of the equal sign changes from 

announcing a result to stating an equivalence relation (e.g. Carraher, Schliemann, Brizuela & 

Earnest 2006). Furthermore, an algebraic interpretation of the solution to the real-life problem 

implies that the student should be able to refrain from immediately attributing a concrete meaning to 

the letter appearing in the corresponding equation. Instead the student should understand the letter 

as an unknown number, the value of which is not significant at the moment the equivalence relation 

is set up and manipulated (Vlassis, 2002).  

Although the equal sign (=) is focused together with minor than (<) and major than (>) signs already 

from Grade 1 in order to enhance students’ understanding of equality, primary school students in 

Finland most often use the equal sign in their mathematical practices in order to show the result of 

an arithmetic problem. It is also usual to concretize the simple equations appearing in primary 



school with a balance model and encourage students to solve equations with testing, using inverse 

operations and other informal methods. 

Methodology 

The material was gathered in the spring 2012 from three Grade 6 classrooms in the Swedish-

speaking community of Finland as part of the international VIDEOMAT-study (see Kilhamn & Röj-

Lindberg, 2013).  Four consecutive lessons on equation solving, and a fifth lesson on problem 

solving were video-taped and imported into Transana, an open source transcription and analysis 

software for audio and video data (www.transana.org). The teachers answered a few clarifying 

questions immediately after each lesson and participated in formal interviews after the last (fifth) 

videotaped lesson. The teachers Anna, Bror and Cecilia have a similar educational background as 

certified generalist teachers and Masters of Pedagogy. At the time of the study their teaching 

experience varied from Bror’s five years to Cecilia’s seven and Anna’s 15 years of experience. They 

used the same textbook and teacher guide. In this paper we report on a close attention to what 

happened during the first videotaped lesson when the three teachers introduced solving linear 

equations in one unknown with formal methods. We especially considered how the introduction 

might have supported students’ development of an algebraic understanding of equality. First we 

briefly present the characteristics of all three teachers’ introductions to solving equations and 

continue by presenting the case of Anna. 

Three entries to equation solving 

In line with the Grade 6 textbook all three teachers introduced equation solving with one-step 

equations were the unknown appeared once on the left side and with an integer on the right side.  

Cecilia started from a strong emphasis on the equal sign as stating an equivalence relation. Her aim 

was to help students unlearn their earlier use of the equal sign to represent a string of calculations. 

She focused on the equal sign as representing equivalence in several ways: by discussing its 

meaning explicitly with her students, by referring to a solution a student had made in the test, and by 

representing both inequality and equality with a balance scale. These situations were familiar to the 

students, who also participated in the corresponding discussions in seemingly relevant ways. 

However she did not utilize the balance scale analogy to support the emergence of algebraic 

understanding of equation solving.  The first lesson her students solved only equations of the 

addition type, e.g. x + 8 = 15, by subtracting, in this case x = 15 – 8, without any further discussion 

related to a structural meaning of the equal sign.  

Bror started from four uncomplicated real-world situations that the students solved mentally by 

stating the answer. The first one was “There are seven fruits in a basket altogether. And four of the 

fruits are apples, the rest are pears, followed by the question: How many pears are there in the 

basket?” Each situation was then represented with an equation, e.g. 7 + x = 12, solved and checked 

with arithmetical means like in Cecilia’s classroom. Next Bror did a rapid switch in his teaching to 

an algebraic interpretation of why the subtraction 12 – 7 in the solution can be thought of as ‘the 

number 7 is moved to the right side of the equal sign and the corresponding sign is changed’. 

However, the students’ activity showed no explicit signs of an emerging algebraic understanding of 

equality. In their verbal answers students continued to refer to the equal sign as a do something –



signal, and in their notebooks they applied inverse operations to find the value of the unknown for 

all equations. 

The third teacher, Anna, started in a similar way as Cecilia and focused on the equal sign as stating 

an equivalence relation, however in a more formal manner. Anna started from defining an equation 

as equal expressions. She then did a quick transition to the algebraic approach of ‘doing the same 

thing on both sides’ to maintain equality and find the value of the unknown. Her message to the 

students was clear: you must isolate the unknown number step by step by operating on both sides of 

the equation.  

Here we present episodes from the first lesson in Anna’s classroom. The episodes show how the 

pattern of communication funneled the students (Wood, 1998) into memorizing ‘do the same thing 

on both sides’ rather than focusing on why this strategy works. 

We have to do the same thing on both sides 

Anna opens her lesson by writing an open number sentence, 4 + _ = 9, on the white board. The 

students give the value of the open number, and they name the object an equation. Anna reads the 

following aloud from the white board and then fills the placeholder in 4 + _ = 9 with the letter x. 

Anna: An equation is an equality relation between two mathematical expressions, which 

are called left side and right side. It includes one or more unknown numbers. If 

there is one unknown number, you normally use the letter x. 

Next, Anna continues to read aloud: “An equation is an equality relation between two sides. The 

two sides are separated by an equal sign”. She illustrates the statement with an arithmetical equality, 

4 + 2 = 7 - 1, 6 = 6, and with the equation 4 + x = 9 where she emphasizes that both sides of the 

equation must be equal. The students are asked to solve for two open number sentences and she 

stresses that the placeholder for an unknown can be replaced by the letters x, y or z. All the 

equations she has shown to her students so far include only one number on the right side, except for 

the arithmetical equality she used to indicate a new understanding of equality: the equal sign as a 

signal of an equivalence structure. 

Before the start of the following episode Anna refers to solving equations as a stepwise 

mathematical strategy.  She writes x + 12 = 18 on the white board. By stating, “we know that x 

should be six” she then indicates that the students’ attention should not be on finding the value of 

the unknown. She then starts funneling her students to discover “how to do it”: how to preserve the 

equality while simultaneously finding the value of the unknown. 

Anna: If I have an equal sign in the middle, then I aim at having x alone on the left side 

(…) But now I have plus twelve there, what do you think, the way of thinking, 

how can I get this plus twelve away from there? I want to have x alone on the left 

side of the equal sign. How can I get it away? Janne.  

Janne’s answer “eighteen minus twelve” shows that he attends to finding the value of the unknown. 

Anna’s attention is however on the mathematical actions to preserve the equality and she does not 

develop his answer any further. She repeats the question “How can I make plus twelve to zero?” 

several times, but does not get the answer she wants. She then gives the students a hint by drawing a 



minus sign after 12 on the left side of the equation. When she starts getting answers she accepts, the 

funneling accelerates and ends by her statement “I have shown how it actually goes step by step”. 

Anna: How shall I get plus twelve to zero? I helped you a little bit on the way. Nelli. 

Nelli: Minus twelve. 

Anna: Minus twelve. But twelve minus twelve is zero, isn’t it. But now the matter here, 

when I do something on the left side so what do you think I should do on the right 

side? Tor. 

Tor: Take away from there, that twelve. 

Anna: Exactly. I have to do the same thing here, now I have got eighteen, what should I 

also do then, here, on the right side? Well, now, Mimmi. 

Mimmi: Minus eighteen. 

Anna: No, not minus eighteen, the same thing as on the left side. Mimmi. 

Mimmi: Minus twelve. 

Anna: Minus twelve. Well let’s check, x, twelve minus twelve is zero, so then, now I’ve 

got x on the left side, eighteen minus twelve is (…) Quickly Mimmi. 

Mimmi: Six. 

Anna: Six. Now I have, stepwise, through mathematical steps, done this equation. You 

could quickly see that it must be six. You could do it just like that. But now I have 

shown how it actually goes step by step. I want to have x alone on the left side, so 

that I get what x equals to. And then, I just have to look what I have on that side, 

what I need to do. In this case, I had plus twelve, then I have to take minus twelve 

so that it becomes zero. But when I do something on the left side, I also have to do 

the same thing on the right side. Do you understand? Did you follow? 

Immediately after the previous episode, Anna and her students started solving the equation y – 6 = 

11. The “mathematical steps” are repeated and it becomes clear that some students, as Janne, now 

know that “to do the same on both sides” is the name of the game the teacher wants to hear. 

Anna: Quickly, I know you know the answer. But we shall think about the mathematical 

steps. What do I want, I’ll put the equal sign here, what do I want to have alone on 

this side of the equation? What am I aiming at? (Suggestions from students: x and 

y) Y, okay, I’ve got y there. But it is not ready yet. I’ve got the minus six, what 

shall I do then, what do I want to do then? Now I’ve got minus six. Karin 

 

Karin: You want to make it zero. 

As Anna then continues by asking how she can get a zero out of y – 6 she gets the answer “plus six” 

from both Karin and Janne. But she is not yet satisfied. 

Anna: Plus six. Okay. And then on the right side I have eleven. Are we ready with it or 

shall I still do something? /…/ Why Janne, plus six there too? 



Janne: We have to do the same thing on both sides. 

Anna: The same thing on the left and right sides. What I do on the left side, the same 

thing on the right side, or on the right and left sides. It’s plus six, now, because I 

had minus six. Okay. Then I have got y. Those two cancel each other out. Then 

I’ve got y there. And what will be on the right side? Vanja. 

Vanja: Seventeen 

Anna: Seventeen. And I know that you could have been able, you could find it already in 

a few seconds, but now we did the mathematical steps, again. Are you following? 

[SS: Yeah, yeah.] Beginning to understand this, although these are easy numbers 

/…/ Now you have solved equations, easy equations. Later, there will be a little bit 

harder ones, but now we’ll begin with these. 

When Anna starts teaching the steps of solving the equation x + 12 = 18 in the first episode, the 

students do not contribute with the answers she seems to expect. After receiving a hint from Anna in 

the form a minus sign, x + 12 –, Nelli gives the expected answer, “minus twelve”. In the second 

episode we can notice how the students and Anna use the same wordings as when solving the 

equation x + 12 = 18 in the first episode. Earlier Anna stated her expectation very clearly when she 

said “I want to have x alone on the left side of the equal sign” and she repeats the question “How 

shall I get plus twelve to zero?” many times. Now her expectation is reformulated as questions, 

“What do I want to have alone on this side of the equation?” followed by “What do I want to do 

then? Now I’ve got minus six”, and the student Karin finally gives Anna the expected answer “You 

want to make it zero”.  

In her summary in the first episode Anna reminded the students “when I do something on the left 

side, I also have to do the same thing on the right side”. In the second episode the student Janne 

repeats her words in his answer “We have to do the same thing on both sides” and Anna confirms 

that he remembers correctly by saying “The same thing on the left and right sides. What I do on the 

left side, the same thing on the right side, or on the right and left sides”. Anna’s discussion with her 

students focused strongly on memorizing the procedure she called the “mathematical steps” and, 

hence, did not serve well in supporting their development of an algebraic understanding of equality. 

Moreover, solving the equation by algebraic means, and with an algebraic interpretation of equality, 

was of no use to the students who already knew the value of the unknown x. Nevertheless they tried 

to fulfill Anna’s expectations and answer her questions.  

Discussion 

The three teachers in this study took some initiative in leading their students forward, from an 

arithmetical to an algebraic understanding of equality, but none of the teachers confronted the 

students with situations where mathematically more powerful approaches were needed than those 

students were already familiar with. Cecilia emphasized the need of understanding the structural 

meaning of the equal sign. Bror and Anna focused the strategy of doing the same thing to both sides 

of the equation. It seems, however, that neither the teachers nor the authors of the Grade 6 textbook 

were aware of the underlying conceptual differences between solving equations within an 

arithmetical understanding of equality and, on the other hand, within an algebraic understanding. 



The students had encountered missing value problems in the textbooks every now and then from 

Grade 1 onwards. They were familiar with the logic of that type of tasks. However, in the 

videotaped lessons the students did not have any real need to adopt algebraic ways of thinking about 

equality. For instance, one can wonder whether the students in Bror’s classroom were motivated at 

all to make sense of the uncomplicated real-life situations with a new complicated way of thinking 

as the solutions to the problems were obtained more economically by arithmetical means. At best, 

solving equations by adding or subtracting the same term from both sides of an equation was used 

by students as a memorized procedure and applied for one particular type of equation, only. The 

students did not need an algebraic understanding of the equal sign to solve neither the real-life 

problems nor the equations, and the book did not explicitly expect students to expand their 

mathematical knowing into operating with or on the unknown (cf. Filloy & Rojano, 1986). 

Balacheff (2001) recommends that students should experience a clear rupture between arithmetic 

and algebra. The rupture might be a strong emphasis of the newness of a situation, for instance to 

give more complex equations to students to be solved by including numbers beyond students’ 

arithmetic capacity and hereby support a need for an algebraic approach. Another way forward 

could be an algebraic use of numbers (Blanton & Kaput, 2003), for instance to investigate series of 

arithmetic tasks with a pattern, and support the students to express and justify the pattern. In many 

cases an algebraic sense of equality can be developed from just small changes and extensions in the 

types of tasks and questions textbooks or teachers present to students, and by encouraging 

discussions. The students’ arithmetical understanding of the equal sign can be confronted in 

versatile problem situations where a structural meaning of the equal sign is in focus whilst the 

situations are represented and made sense of within an algebraic syntax. In Anna’s classroom, for 

instance, the students general thinking about numbers, and hereby their emerging algebraic sense of 

equality, could have been supported in several ways (cf. Blanton & Kaput, 2003; Carraher et al., 

2006). A focus on transforming the arithmetical equality 4 + 2 = 7 – 1 into equivalent expressions 

like 4 + 1 = 7 – 2 or 14 + 2 = 10 + 7 – 1 at the start of the lesson, as well as on the simple questions 

“How do you know that the procedure ‘doing the same on both sides’ is true and does the procedure 

always work?” could probably have promoted an algebraic understanding of equality by means of 

students’ own justifications of the transformations and the procedure. Moreover, the funneling 

effect we saw in Anna’s classroom could have been avoided (cf. Wood, 1998).  
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The term “multiple referents” (MR) is used to describe the error of using the same letter to refer to 

two different quantities when translating word problems to equations. MR can be related to the 

presence in the statement of what are termed indexical expressions so that the presence of indexical 

expressions in statements may be associated with a greater number of MRs. In this paper we 

analyse students’ performances when solving word problems algebraically with the aim of 

determining the causes of this kind of error. Results from this research indicate that there is not an 

unique factor that accounts for the commission of MRs. At least the error may be associated either 

with the tendency for students to use personal idiosyncratic sign systems when translating from the 

natural language to the algebraic language or with the construction of a wrong problem model. 

Keywords: Algebraic language, word problems, secondary school, indexical expressions, multiple 

referents. 

Introduction 

The relevance and utility of solving word problems is widely accepted by the educative community 

as an issue interesting by itself and as medium to develop general skills applicable to everyday life 

and other academic subjects. Actually, its relevance is reflected in many research agendas on 

educational mathematics (e.g., Kieran (2006) or Mason, Graham & Johnston-Wilder (2005)). 

In the mathematical activity in general and in problem solving in particular, it becomes essential the 

internal and external representation of the mathematical ideas, in such a way that different registers 

are simultaneously combined. As word problems are enounced in natural language, the role of this 

register is a determinant factor in the task difficulty and, indeed, a correlation between reading 

comprehension and mathematical ability exists (e.g., Capraro, Capraro, & Rupley, 2012). In this 

regard, the influence of syntactic (e.g., Abedi & Lord, 2001) and semantic (e.g., Riley, Greeno, & 

Heller, 1983) variables has been studied. In the algebraic solving, another register that necessarily 

arises is the symbolic one, which works differently than the natural language. For instance, in the 

algebraic language there is a univocal correspondence between expressions and symbolised 

quantities, whereas it does not happen in the natural language, where the same name can be given to 

different objects (Filloy, Rojano, & Puig, 2008). This fact may cause errors when solving word 

problems algebraically. Without prejudice of the usefulness of other methods, the algebraic 

resolution constitutes a useful tool that can expand the potential of the subjects as problem solvers. 

 



Theoretical framework 

The Cartesian Method describes the process of obtaining and solving the equation (or equations) 

that represents the situation depicted in a problem statement (Filloy et al., 2008; Polya, 1981). This 

process implies a cyclical process of sense production. In order to explain it, we use the notions of 

Textual Space and Text (Filloy et al., 2008). The Textual Space encompasses the semantic content 

communicated by the linguistic structure of the text in the explicit context to which it refers. The 

Text is the result of a personal re-elaboration of the Textual Space carried out by the subject, by 

means of which he/she gives sense to these semantic content. The resulting Text becomes the 

Textual Space of a new reading and so on. In a global way, the Cartesian Method requires a 

transformation from the original Textual Space expressed in natural language to a Text expressed 

with one equation (or a system of equations). The first step is an analytical reading of the statement 

(Filloy et al., 2008), which involves a reading/transformation process where the solver extracts the 

set of quantities and arithmetical relationships among them from the original Textual Space. Hence, 

its result may be interpreted as the identification of the problem model in the terminology of 

Nathan, Kintsch and Young (1992). By way of example, let us consider the problem P2 of Table 1. 

If we use the letter x, to represent the son’s age at present, and y for the father’s age at present, then 

the problem model can be expressed, for example, by means of the system y = 2x; y – 17 = 3(x – 

17). The resolution of the system provides the solution x = 34, y = 68. 

However, a solver can eventually perform this process in successive cycles of transformation from 

Text to Textual Space, and use several registers in order to externally represent it. Since many non-

linguistic signs are commonly used, we adopt a semiotic perspective and consider the notion of 

Mathematical Sign System (MSS) in the sense of Radford (2000). In this way, we account for the 

construction and use of idiosyncratic MSS (MSSIdi), specific for each individual, with its own 

syntactic features and ways of assigning meaning to symbols. Such MSSIdi are used as intermediate 

registers when the student attempts to translate a Textual Space stated entirely in natural language 

(MSSNat), and to produce a Text expressed in algebraic language (MSSAlg).  

Regarding the change of MSS, we follow the approach of Duval (2006) and use the term conversion 

to name the change of semiotic representation register where the signifier is located, but without 

modifying the represented meaning. Such conversion can be congruent or non-congruent, 

depending on whether the syntactic structure and/or semantic segmentation are the same or not in 

the source and in the image representations. In this paper, we focus our attention to one kind of 

linguistic expressions called indexical expressions. These are expression whose meaning may shift 

depending on the context. They are common in MSSNat (e.g., “here”,  “today”, or “somebody’s age” 

at different temporal moments). However, in MSSAlg the designation of quantities is functional and 

indexical expressions do not exist. Hence, if the statement of a word problem contains an indexical 

expression, then the conversion to equations is necessarily non-congruent. In this paper we study 

the phenomenon consisting on the violation of such functional designation. We will refer to it as use 

of multiple or shifting referents for the unknown (MR), following the terminology of Stacey and 

MacGregor (1997, 2000). Although MR is valid in MSSNat or certain MSSIdi, it represents an error 

in the context of MSSAlg. In the present work we use a family of word problems known as age 

problems, and where indexical expression s arise naturally. Specifically, they are used to express 

that the age of the characters evolve over time (Table 1). As Stacey and MacGregor (2000) 



reported, the MR may appear due to distinct causes: “i”) the letter refers to different quantities in 

one equation or within a system of equations; ii) the letter refers to different quantities at different 

stages (ages); and, iii) the letter is a general label for any unknown quantity or a combination of 

quantities” (p. 10). It should be noted, however, that we follow the Radford (2000) semiotic 

approach, where signs are seen as tools of the mind to perform actions in a particular context, so 

they must be studied in terms of the practice they mediate. In this sense, the tasks we propose in this 

work are essentially different from that of Stacey and MacGregor (1997, 2000), because we require 

the students to pose an equation (or equations) but not to solve it. The latter is relevant because, as 

Stacey and MacGregor (1997, 2000), or Radford (2000) have pointed out, it is usual that, when a 

solution is required, the meaning students give to letters has an arithmetic resemblance. The task we 

propose focuses on the conversion from the natural language to the algebraic language. As a 

consequence, in concordance with Radford’s (2000) approach, the idiosyncratic semiotic registers 

that might potentially emerge would be different from those of Stacey and MacGregor (1997, 

2000).  

Another key aspect that must be taken into consideration is the moment, specific mathematical 

activity or step of the Cartesian Method where the MR has its origin. In particular, if a solver did 

not build a problem model correctly and two different quantities are erroneously considered as 

equals, then an MR would be committed although the subsequent steps were done correctly. On the 

other hand, even though a correct problem model was identified during the analytical reading, an 

MR can happen due to conversion errors when posing equations. A lack of command of MSSAlg or 

coordination between distinct MSS (especially between MSSNat or MSSIdi and MSSAlg.) may cause 

MRs. The ideas exposed above seem to point out the existence of various sources of MRs and that 

MRs may be due to different causes for each person, this being relevant in order to design a didactic 

intervention. Note also that the error by MR during the application of the Cartesian Method has a 

conceptual nature, because it relies on the unawareness about the way meaning is given in the 

MSSAlg and the MSSIdi. This may reduce the potentiality of the MSSIdi as a tool, and obstruct the 

progress in the use of the algebraic method. 

Research aims and research methodology 

The aim of this work is to search for and to document possible sources of MR when solving word 

problems using the Cartesian Method. Subsequently, we pay special attention to determine in each 

case whether the MR arises due to the inability to build a correct problem model or due to a lack of 

command to perform conversions between different MSSs. Regarding to the last possibility, we also 

study the emergence of MMSIdis during the conversion process from MSSNat to MSSAlg.  

Participants 

The sample consists of 54 students (15-16 years) in their fourth grade of secondary school (in a 

modality oriented to a subsequent BSs) in three Spanish Public High Schools. According to the 

Spanish curriculum, they were familiar with the Cartesian Method, having used it over the two 

previous years. 

Materials and procedures 

This work consists of two phases: a written phase and a case study, although in this paper we will 

exclusively focus on a qualitative study of students’ written productions from the written phase. 



Prior to that, we carried a pilot study with 36 participants, aimed to calibrate the difficulty of the 

problems and the time required to complete them. In addition, based on the pilot study, we 

stipulated a series of criteria to code the students’ productions. 

In the written phase we used a questionnaire consisting of six age problems but in this manuscript 

we only employ students’ resolution of three problems from the whole collection (Table 1). All the 

problems were versions from others in textbooks corresponding to two previous grades (13-14 years 

old). The statements were entirely expressed in MSSNat and they all contained indexical 

expressions. The written test was conducted in the students’ usual classroom. Each statement was 

shown on a screen at the front of the classroom for three minutes. The participants were given 

explicit instructions prior to beginning the test. They must try to pose the equation (or equation) that 

leads to the solution of each problem but solving it was, however, not mandatory. We focus on the 

raising conflict due to the structural differences in MSSs.  In order to stress these differences and 

also to delimit the study, we turn to the indexical expressions.   

Students’ productions were analyzed on the basis of the above developed theoretical framework, 

taking into especial consideration the ideas contained in Duval (2006), Filloy et al. (2008), Radford 

(2000) and Stacey and MacGregor (2000). 

P1 One sister is 3 years older than the other sister, and their father is 43. In 7 

years time the father’s age will be twice the sum of the sisters’ ages. How 

old is each sister? 

P2 A father is twice the age of his son. Seventeen years ago, the father was 

three times the age of his son. How old is each one? 

P3 Eight years ago Ana’s age was four times Maria’s age. In 12 years time 

Ana’s age will be only twice Maria’s age. Find the age of each one. 

Table 1: Problems from the written test 

Results 

In the example shown in Figure 1 the student performs some cycles from Textual Space to Text and 

represents a Text in a MSSIdi, which is less abstract than the MSSAlg. It consists of a table with two 

columns separated by a straight line, and also a system with two equations. In each column of the 

table the relations between the ages of the characters at a particular temporal moment are correctly 

represented. The letter x stands for Maria’s age in both temporal moments, and its value evolves 

automatically when switching between columns. This means that indexical expressions are valid in 

this MSSIdi, so it shares some features with the MSSNat. A spatial reorganization takes place, but, at 

a deeper structural level, there is not a discontinuity between the rules of both systems regarding the 

acceptance of indexical expressions. Here we interpret that the subject’s analytical reading produces 

a correct problem model, and that it is correctly represented within the frame of her/his MSSIdi. The 

subject properly coordinates both MSSs, performing a correct conversion from MSSNat to MSSIdi. 

However, when posing the system of equations the student produces an MR because the letter x 

stands for the age of both problem characters. In this case we interpret that the MR takes place in 

subsequent cycles due to a lack of command of the MSSAlg and/or a deficient coordination 

between her/his MSSIdi and the MSSAlg. Indeed, the error may be a consequence of the student’s 



lack of awareness of the structural differences between her/his MSSIdi and the MSSAlg regarding the 

validity of indexical expressions.  

 

Figure 1: Student’s resolution of the problem P3 (“años” means “years”) 

 

Figure 2: Student’s resolution of the problem P2                                                                                 

(“Hijo” and “Padre” mean “Son” and “Father”, respectively) 

Figure 2 shows another student’s performance in which we interpret that a correct problem model 

has been built and again the MR seems to be caused by a lack of ability to use the MSSAlg in 

subsequent steps of the Cartesian Method. The first equation seems to indicate an overlapping 

between MSSAlg and the student’s MSSIdi. Indeed, the letter x does not stand for the actual age of 

one character, but as a general label that refers to any unknown quantity. Actually, one of the 

possible causes of MR suggested by Stacey and MacGregor (2000). In addition to that, in light of 

the first equation, we interpret that the meaning and interpretation of the equals sign in this MSSIdi 

differs from those in the MSSAlg. The subject uses symbols from the MSSAlg, but the way of giving 

meaning to them is completely wrong in the frame of the MSSAlg. Finally, the second equation 

seems to reveal that the student has difficulties related to the syntactic rules of MSSAlg because 

he/she does not perceive the necessity of using brackets. 

 

Figure 3: Student’s resolution of the problem P1                                                                       

(“hermanas” and “padre” mean “sisters” and “father”, respectively) 



Unlike in previous examples, in the case shown in Figure 3 the student does not to identify a correct 

problem model since the passage of time is not considered for any character. In addition to that, the 

additive relation between the siblings’ ages is wrongly symbolised because a multiplicative relation 

is used. Regarding the multiplicative relation that should link the future ages of the three characters, 

the student seems to use the actual ages instead of the futures ages. From a conservative view it may 

be argued that the letter x could refer to one quantity at different times (e.g., the current and the 

future ages of one sister). However, the use of the known quantity father’s current age in the 

equation reveals the existence of an incorrect problem model. Here, the MR already arises during 

the analytical reading, because it seems that the student do not perceive the necessity to involve in 

its model two different quantities for each character (one referring to the current time and another to 

the future).  

Conclusions 

Personal idiosyncratic representations are usually thought to be helpful to students in order to 

understand and solve problems. It is commonly accepted that these representations can work as a 

bridge to more formal systems, as is the algebraic language. However, as Weinberg, Dresen and 

Slater (2016) suggest, the differences between such idiosyncratic systems and institutional semiotic 

systems can be also a source of conflict. In particular, these authors claim that the way in which 

such systems differ may greatly influence the students’ mathematical activity. In this paper we 

report and analyse an example (Figure 1) where the student firstly represents a problem model in an 

idiosyncratic system that contains algebraic symbols but structurally different to the algebraic 

language, and only following this, a system of equations is posed. 

This and other examples of students’ outputs reported in this work provide evidences of the 

tendency to manage algebraic symbols according to a set of personal rules that are not coherent with 

those of the algebraic language. Indeed, the analysis of such outputs allow us to affirm that some of 

the characteristics of these idiosyncratic semiotic systems are more close to the natural language 

rather than the algebraic register. This fact is not trivial and can lead to the commission of errors 

when mathematical relationships are translated between different mathematical sign systems. But 

such translation has to be unavoidably performed during the algebraic solving of word problems. 

Thus, a semiotic perspective on the students’ performances makes possible to locate possible 

sources of the error consisting on using multiple referents for the unknown (MR). Specifically, the 

examples presented in this paper strongly support the fact that the commission of MR may be due to 

quite some different factors. On the one hand, an erroneous understanding of the problem may lead 

to the construction of a wrong problem model, what in turn would lead to commit a MR. In this 

case, however, the error is not necessarily related to the students’ ability to use the algebraic 

language. Instead, difficulties seem to emerge when conceptualising the arithmetical relations 

expressed in the statement in natural language.  

On the other hand, we provide examples that show how the appearance of MR can be a 

consequence of students’ misunderstandings and overlapping between the structural semantic and 

syntactic rules of natural language, idiosyncratic systems, and algebraic language. In some cases, 

the student build a correct problem model but represent it using an idiosyncratic sign system that 

shares important features with natural language (e.g., indexical expressions are valid in both 

systems). Since these idiosyncratic sign systems employ algebraic symbols but do not obey the 



same rules than this language, the MR may appear due to the incongruity between both 

mathematical sign systems. In other examples, similar causes prompt errors when the student 

directly translates from natural language to algebraic language. From a didactic point of view the 

different nature of MRs is transcendent because teachers need to know the sources of the MR for a 

particular student in order to design an appropriate remedial instruction.  
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German mathematics teaching-units in primary school lack explicit algebra learning environments; 

however, the topics which are taught address algebraic thinking if seen from a new perspective. 

Teachers and children are mostly unaware of the algebraic potentials of tasks –especially in the 

scope of the content area patterns and structures. The project presented here submits a suggestion 

of algebraic key ideas as guiding principles to rethink ‘arithmetical’ topics and to design learning 

environments on algebraic thinking. Additionally, effects of implementing and evaluating such tasks 

are illustrated by one example. 
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Introduction  

The approach presented here is worked out for the particular situation in German primary schools 

and accordingly addresses one of the borderlines in the scope of algebraic thinking pointed out by 

Hodgen, Oldenburg, Postelnicu, & Strømskag (2015), i.e. “differences between teaching cultures in 

different countries (and within countries) are enormous and restrict generality of results very much” 

(p. 386). In German primary school algebraic topics have no tradition and still no explicit place in 

curricula, textbooks, and teaching-units on the one hand (KMK, 2004). On the other hand, recent 

research on early algebra or algebraic thinking is emerging (e.g. Akinwunmi, 2012; Gerhard, 2013). 

Furthermore, the daily classroom interaction and common teachers’ beliefs reveal bright 

opportunities for early algebra (e.g. Krauthausen & Scherer, 2007). Yet, implementing promising 

approaches and algebraic tasks in daily school life still is a great issue. 

The main aim of the project is making algebraic learning chances possible for children. 

Opportunities to get to know algebraic ideas and ways of algebraic thinking depend on tasks 

presented in the classroom. These tasks are offered by teachers. Hence, the focus has to be on tasks 

and on teachers’ awareness of the potential of these tasks. In so doing early algebra can be supported 

via a detour that influences classroom interaction and therefore children’s awareness and abilities.  

Theoretical framework 

Algebraic thinking and core areas 

Algebraic thinking is assigned to special thinking habits. Current research identifies mainly four 

algebraic thinking practices, which lay in generalising, representing (incl. symbol use), justifying, 

and, reasoning with generalisations or relations (e.g. Kaput, 2008; Kieran, Pang, Schifter, & Ng, 

2016; Blanton, Stephens, Knuth, Gardiner, Isler, & Kim, 2015). The focus of attention needs to shift 

from numerical solutions to mathematical structures behind the given patterns or equations. This 

shift allows seeing the generality as reification (Sfard, 1991) and therefore creating new objects 

(Mason, 1989). “By attending to relations and fundamental properties of arithmetic operations (what 

we call relational thinking) rather than focusing exclusively on procedures for calculating answers” 

(Carpenter, Levi, Franke, & Zeringue, 2005, p. 53) procedural thinking is not erased but expanded. 



Algebraic thinking as conceptual (Tall & Gray, 2001), relational or structural thinking can be 

applied to various topics or as Sfard puts it, “any mathematical activity may be seen as an intricate 

interplay between the operational and the structural versions of the same mathematical ideas” 

(Sfard, 1991, p. 27). Although in most of the research studies certain topics are outlined to be 

particularly relevant for algebraic thinking, different content-orientated registers identifying the 

strands or core areas of algebra can be found in many of them (Table 1).  
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2016 

Table 1: Algebraic strands and core areas 

These lists overlap in various topics as shown in the re-assigned order in Table 1. The core areas 

therefore are more or less universally acknowledged and differences can be identified in details 

only. For instance, some authors differentiate between generalised arithmetic and equations whilst 

others exclude patterns or list symbolic language (variables) within its own section. My suggestion 

(Table 1 rightmost column) and basis of this paper takes into account the current situation in 

Germany, because it “is important to indicate that any curriculum has a complex relationship to 

what actually occurs in classrooms” (Cai et al., 2005, p. 14). The German primary curriculum 

includes no algebra area, even though a single door for the implementation of algebraic thinking 

opens up. This possible link is the content area ‘patterns and structures’, which is given in the 

national standards (KMK, 2004). Moreover, patterns and structure can be regarded as generic field 

for the different algebraic topic strands (Drijvers et al., 2011). 

Owing to these two reasons my own suggestion stresses the terms patterns and structures. In the 

following paragraph these terms are theoretically analysed in more depth. 

Patterns and structures 

Often mathematics itself is described as the science of patterns (Devlin, 1997). In this view, all 

mathematical theories arise from patterns spotted. Even axioms characterise patterns to build on. 

Not surprisingly, teaching and learning about patterns and structures is not a special topic but is 

fundamental for all mathematics lessons: 

Pattern is less a topic of mathematics than a defining quality of mathematics itself. Mathematics 

‘makes sense’ because its patterns allow us to generalize our understanding from one situation to 

another. Children who expect mathematics to ‘makes sense’ look for patterns. (Brownell, Chen, 

& Ginet, 2014, p. 84)  



Becoming aware of patterns allows us to see sense in mathematics and to appreciate its beauty. This 

awareness is at least twofold. On the one hand, seeking patterns can be classified as meta-cognitive, 

on the other hand, there is a cognitive component of awareness which is characterised by 

“knowledge of structure” (Mulligan & Mitchelmore, 2009, p. 38). 

Patterns can be described as “any predictable regularity, usually involving numerical, spatial or 

logical relationships” (Mulligan & Mitchelmore, 2009, p. 34). Constructing a pattern of numbers or 

shapes by making up a rule or a certain operative variation (Wittmann, 1985) of a given number or 

task is an individual creative process. If, for instance, the pattern of a number sequences is creatively 

made up, the regularity then is fixed and can be used, continued, and described (Steinweg, 2001). 

In the approach presented here structure is understood as mathematical structure and not as a 

category system to describe the individual pattern awareness of children (Rivera, 2013). Mason, 

Stephens & Watson (2009) recommend “to think of structure in terms of an agreed list of properties 

which are taken as axioms and from which other properties can be deduced” (p. 10). They point out 

the difference between the spotting of (singular) relations and the use of the given example as 

paradigmatic for certain properties of a general structure (Mason et al., 2009). Thus, detecting 

structures, in contrast to patterns, requires mathematical knowledge about objects and operations. 

The relation between mathematical objects is essentially determined by mathematical structures 

(Wittmann & Müller, 2007). Awareness of structures often suffers from the fact that structures are 

mentioned only briefly and only formulated in rules, like a+b=b+a, in mathematics lessons. 

Unfortunately, these condensed statements are not an appropriate tool to become aware of the 

logical structures and properties of mathematical objects and relations which are fundamental for 

mathematics. In summary structure is the crucial term in the twosome patterns and structures. The 

approach described in this paper therefore puts emphasise on structure, and mentions structure 

purposefully in each key idea in order to call attention to it.  

Algebraic key ideas – a suggestion 

The key ideas outlined in the approach presented here focus on (1) patterns (& structures), 

(2) property structures, (3) equivalence structures, and (4) functional structures (Steinweg, 2016). 

The first idea differentiates between patterns and structures. Patterns are not a priori structures but 

may eventually generate products following mathematical properties and relations. Hence, the 

expression ‘structures’ is given in brackets to indicate this substantial difference. The second key 

idea lies in the properties of numbers and operations: Numbers can be divided into odd and even, 

divisibility can be explored, etc. Daily used –supposedly arithmetical– operations follow structures 

because of their properties (commutativity, associativity, distributivity). One example of this key 

idea is presented below. The third key idea holds learning opportunities in evaluating, preserving or 

construing equivalence in given correct or incorrect equations by sorting terms, etc. The main issue 

here is to overcome the urge to calculate the given terms and to solely compare the results but to 

focus on the relation of given numbers, sums, differences, products, or quotients (Kieran, 1981; 

Steinweg, 2006). This key idea goes hand in hand with the currently commonly used and fostered 

individual strategies in arithmetic, which can be found in Germany (also cf. Mason et al., 2009). 

The last key idea sums up learning environments on functional structures, (i.e. mainly proportional), 

relations, and co-variation aspects. One example is a task called ‘number & partner number’ 



(Akinwunmi, 2012). The structural relationship can be described by a rule (functional term) which 

assigns a partner number to each given number.  

As mentioned above, the key ideas presented here are ordered by mathematical core areas and put 

emphasis on structures as one of many feasible approaches. Sufficient knowledge of mathematical 

structures is crucial for both teachers and children. Only well trained teachers are able to understand 

the mathematical structures and to make them accessible for children. One possible strategy to get 

access to mathematical structures lies in implementing especially designed tasks which enable 

children to explore, use, describe, and even prove mathematical structures (Steinweg, 2001). 

Methodology  

In the research project learning environments suitable for the four key ideas outlined above are 

designed (Wittmann, 1995) and evaluated in order to uncover the algebraic potential of common 

tasks and to give tangible examples in the algebraic core areas within the field patterns and 

structures. Each learning environment includes various tasks in a booklet to be handed out to the 

children and information for teachers in a teacher’s guide (Steinweg, 2013). The teachers 

participated in an introductory meeting in which the tasks and possible teaching arrangements –

given in the guidelines– were discussed. They committed themselves to implement all of the tasks 

in daily classroom work with the intensity and depth of the use of the learning environments being 

in their hands. This means that there was no specific focus on the child-teacher-interaction while 

working on the tasks –with the exception of some mathematics lessons randomly visited by the 

author. The research therefore focusses on the question: Does the implementation of the designed 

tasks show any effects on children’s algebraic competencies? Six German primary school classes 

with 144 children from 2nd to 4th grade (on average 7- to 9-year-olds) participated in the project.  

Research results on the example of distributivity 

This paper exemplarily illustrates the research idea on distributivity as one element of the key idea 

‘property structures’. The main challenge is to see the structure of equations and terms in a meta-

perspective way. For instance in the term 2  8 + 5  8 children have to spot the specific ‘internal 

semantic’ (Kieran, 2006, p. 32). Only if the equal factor is identified as an important component in 

the products can the ‘variable’ factors be summed up. The two products have to be identified as 

objects in a sum and then the two different factors can be added to create a new product (7  8). The 

additive combination of products and the decomposing of products into a sum of two products with 

one equal factor in each case seems a tough challenge for the children. The shift of attention to 

elements of the equation as objects and to identify the mathematical structure is essential for 

algebraic thinking. Most likely, the children participating in the project had already experienced 

derive-and-combine-strategies solving multiplication tasks in class. The actual approach to the 

multiplication tables in German mathematics in primary school is peculiar. There is no longer 

‘doing tables’ but working on core tasks (e.g. doubles, times 5, times 10) and derive-and-combine-

strategies to solve other multiplications. Only core tasks should be known by heart as facts 

(sometimes known as ‘helping facts’ in Anglo-Saxon literature). Unfortunately, an arithmetical 

perspective –calculate terms to determine the specific result– is normally supported by teachers in 

primary mathematics. The out of the common change of perception of the structure of equations is 



therefore challenging. Only by a shift of attention can the structure of the maths behind the equation, 

i.e. distributivity, be recognised. 

The tasks implemented in the project try to support the identification of structure. For instance 

columns of variations of one equation are given to allow focussing on both the constant and the 

changing elements, like 32+62=…2, 33+63=…3, 34+64=…4, etc. Alongside tasks in 

symbolic representations, rectangle areas as representation for multiplications (length by width) can 

be used as well. If rectangles are accepted as multiplication representation, manipulating these 

rectangles by cutting and re-interpreting the two part-rectangles as multiplications can be the next 

step to explore and understand distributivity. The children were given one example and then asked 

to find three more possibilities to decompose the product 75 (Figure 1). Such rectangles can be 

provided by the teachers as representations on worksheets or ‘actively’ made up by the children by 

cutting out sections of grid paper. As an instance of possible developments in algebraic thinking by 

simply working on the tasks Philipp’s solution of one exemplary task of one worksheet given in the 

booklet is interpreted in Figure 1. 

 

 

Figure 1: Philipp explores distributive structures by interpreting rectangles as multiplications 

Philipp’s solution is stunning in some ways. The task asks him to find three further decompositions 

of the given product. He marks his ideas in the given three rectangle areas and writes down 

matching symbolic representations of the product-sums. The little dots in the first rectangle grid 

point at the fact that Philipp might have counted the number of squares. The other solutions do not 

show these presumed counting dots. Philipp apparently becomes aware of the structure and the main 

idea. The relation between the terms is understood individually. Philipp connects the different 

solution by using the verbally form of ‘oder’, which means ‘or’. This habit indicates that he is aware 

of the possibility of different compositions of the product but not yet sure about the equality-relation 

between these terms. The worksheet invites the children to find three products by giving three blank 

rectangles. Philipp extended the task spontaneously by drawing a fourth rectangle. This add-on 

again is remarkable. Philipp sketches a rectangle without drawing the grid. The countable squares 

obviously are no longer necessary for him. The fourth solution is the only one which decomposes 

the factor 5 instead of the factor 7. Philipp applies the main structure of splitting up the factor 

flexible for either factor now. The example of Philipp shows the multi-facetted possibilities to gain 

access to mathematical structures by working on challenging tasks. 

As the main research question aims at evaluating effects of the implementation of the learning 

environments, results of a pre- and post-test are of interest. In this paper the results of the test item 

10  5 – 4  5 = ___  ___ (corresponding to distributivity) are documented exemplarily (Table 2).  

 



Category pre-test (n = 135) post-test (n = 133) 

Algebraic 1.5 % 32 % 

Procedural 32.5 % 35 % 

no answer given 66 % 33 % 

Table 2: Results solving 105 – 45 = ___  ___  

The task is quite hard to handle for the participating children in the pre-test even so the curriculum 

expects teachers to work on derive-and-combine-strategies in multiplication. Two thirds have no 

idea what to fill in the blanks. Only in very few cases are children able to combine the two 

multiplications into 6 x 5 and thereby make use of the structure (algebraic perspective). After 

participating in the project one third is now able to give this answer. Another third places a 

multiplication like 3 x 10, which is fitting because of an equivalent result (procedural, arithmetical 

perspective). The figures suggest a developmental step of the procedural thinkers to the algebraic 

thinkers apparently. This assumption actually cannot be confirmed by the data. The developments 

are very much individual. For instance, some children who gave no answer prior to the project are 

now able to see the structural relation or calculate to find matching terms and others still have no 

answer at all. Despite the fact that these results are still far from being satisfactory, the increase in 

numbers of children using an algebraic perspective is considerable. 

Discussion 

The project gives an initial indication that it is possible to foster algebraic thinking by providing 

sound learning environments without explicit variable use in the scope of the content field of 

patterns and structures. The challenges offered support effects on understanding and on performance 

in algebraic tasks. Yet, the impact of learning environments alone is not enough to support all 

children. As mentioned above, the project provides no binding specifications to teachers of how, for 

example, to focus on distributivity, but offers different opportunities to explore this mathematical 

structure via the designed tasks. As a “good balance between skill and insight, between acting and 

thinking, is … crucial” (Drijvers et al., 2011, p. 22), further effort should focus on exploring the 

differences between procedural and structural work on tasks. Teachers’ instructions and interaction 

in classroom discussions as well as the specific role of representations have to be focused on in 

further studies. 

The hope is that the developed key ideas function as bridges between arithmetical topics and 

algebraic ones and also as guiding principles for classroom interaction. If common arithmetical 

strategies –like derive-and-combine– are seen from a different angle, they actually are algebraic 

ones. From a meta-perspective view the procedures performed are determined by mathematical 

structure and the properties of operations. The shift of attention towards structures has to be made 

explicit to both teachers and children. Only if teachers appreciate algebraic structures can they offer 

effective support and take up children’s algebraic ideas. In the particular situation in Germany 

awareness of the multi-facetted potential of the usually underestimated core area patterns and 

structures is crucial. Last but not least, the sensibility implies a win-win-situation: “Awareness of 

structure of expressions helps students understand these better, thus leading to a better 

understanding of rules and procedures” (Banerjee & Subramaniam, 2012, p. 364). 
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In this paper we investigate a pre-service teacher’s whole-class discussion at Grade 6, where she 

attempts to justify the general claim that multiplication is commutative in ℕ. Our analysis points at 

two conditions that constrain the discussion in class: The first is that the diagram used to represent 

a multiplicative situation—and the way the diagram is used—is inadequate because it does not 

illustrate the meaning of multiplication. The second is that the diagram enables the students to 

respond “adequately”, even if they may not have understood why multiplication is commutative. The 

latter is a constraint because it deprives the pre-service teacher of the opportunity to get feedback 

that might have let her understand that she would need to revise her intervention.  

Keywords: Multiplicative situation, commutativity, representation, justification, teacher education. 

Introduction 

Addition and multiplication in ℕ (or, more generally, in ℝ) are commutative and associative. 

Moreover, multiplication is distributive over addition. These basic properties of addition and 

multiplication play a crucial role in abstract algebra, but also in arithmetic and algebra in elementary 

school. The work on fluency of the multiplication table gets considerably easier if the students make 

use of the basic properties. In fact, all arithmetic strategies can be shown to have origin in the basic 

properties of commutativity, associativity and distributivity. Promoting these properties in elementary 

school is important for integrating arithmetic and algebra (Carpenter, Franke, & Levi, 2003). Involved 

in this is the activity of generalising and formalising relationships and constraints, which is one of 

three strands of algebra identified by Kaput (2008). Furthermore, the basic properties of addition and 

multiplication are also important in “transformational activities” (Kieran, 2004), which involve 

syntactically guided manipulation of symbols (e.g., simplifying expressions, exponentiation with 

polynomials, and solving equations).   

At the background on the above, the question raises as to how it can be discussed with students that 

addition and multiplication are both commutative and associative, and that multiplication is 

distributive over addition? If we want these properties to emerge from students’ mathematical 

reasoning in the classroom—and not from the teacher’s just presenting them as rules—how could it 

be done, and what challenges may arise? In this paper we discuss this question with data from teacher 

education, where a pre-service teacher has designed and implemented a lesson, aimed at whole-class 

discussion with 12 year-old students on basic properties of multiplication. The research question set 

out to answer is: What conditions constrain a pre-service teacher’s whole-class discussion with 

Grade 6 students about commutativity of multiplication in ℕ?  

Theoretical framework 

Multiplicative structures—modelling situations involving equal-sized groups 

From a mathematical point of view, multiplication and division by natural and rational numbers may 

appear easy. However, from a psychological point of view, it is more complex. In a teaching situation, 



these operations are dealt with not only as abstract binary operations, but also in terms of how they 

model different situations. Vergnaud (1988) claims that “[m]athematical concepts are rooted in 

situations and problems” (p. 142). Because a single concept does not refer to only one type of 

situation, and a single situation cannot be studied with only one concept, Vergnaud proposes that 

researchers study “conceptual fields”. This is defined as a set of situations, the mastery of which 

depends on mastery of a conceptual structure. For instance, the conceptual field of multiplicative 

structures consists of all situations that can be analysed as simple and multiple proportion problems, 

where the necessary operation is multiplication or division (Vergnaud, 1988).  

According to Greer (1992), the most important types of situations where multiplication of integers is 

involved are:  

- equivalent groups (e.g., 6 tables, each with 4 children) 

- multiplicative comparison (e.g., 3 times as many girls as boys) 

- rectangular arrays/areas (e.g., 4 rows of 7 students, or area of a rectangle) 

- Cartesian product (e.g., the number of possible trousers-sweater pairs)  

Fishbein, Deri, Nello and Marino (1985) investigated how 623 pupils enrolled in 13 Italian schools 

(Grades 5, 7 and 9) responded on 26 multiplication and division word problems. Their findings 

confirmed the impact of repeated addition as an intuitive model on multiplication, in which a number 

of groups of the same size are put together—that is, equivalent-groups situations. 

In Norwegian schools, multiplication is usually introduced through situations with equivalent groups, 

where 4 ∙ 7 means 7 + 7 + 7 + 7, while 7 ∙ 4 means 4 + 4 + 4 + 4 + 4 + 4 + 4. Here, it is not 

obvious that multiplication is commutative. The first of the factors—the number of equivalent 

groups—is taken as the operator (termed multiplicator); the other factor—the size of each group—is 

taken as the operand (termed multiplicand). In this model, the multiplicand can be any positive 

quantity, but the multiplicator must be an integer (Fishbein et al., 1985).  

Justification in the elementary classroom 

Algebraic thinking is a term used to describe particular ways of thinking applied when we are looking 

beyond quantities and operations on quantities. It includes analysing relationships between quantities, 

noticing structure, studying invariance and change, generalising, problem solving, modelling, 

conjecturing, justifying and proving (Cai et al., 2005). In this section we concentrate on justification. 

There are several ways of approaching justification and proof in school mathematics. Balacheff 

(1988) has identified four types of reasoning in 14-15 year-old students’ practice of proving a 

conjecture that applies on infinitely many examples:  

- Naïve empiricism is where students think that some examples (even one or two) are 

sufficient to justify a conjecture.  

- The crucial experiment is where students think that the validity of a conjecture is 

accomplished by testing it on an instance that has some complexity—the reasoning being “if 

it works here, it will always work”. The crucial experiment is different from naïve empiricism 

in that the generality at stake is explicitly articulated.  

- The generic example involves making explicit the reasons for the truth of an assertion by 

means of operations on an object that is a representative of the class of elements considered. 

A generic example is an example of something—the validity of a hypothesis is argued for by 

the characteristic properties of this example.  

- The thought experiment requires that the one who produces the proof distances him from the 

actions of solving the problem—he must give up the actual object for the class of objects on 



which relations and operations are to be represented in formalised symbolic expressions. Proof 

by induction is an example of a thought experiment. 

Proofs by naïve empiricism, the crucial experiment, and the generic example are based on actual 

actions and references to examples—these proofs are referred to as pragmatic proofs (Balacheff, 

1988). The thought experiment is based on abstract formulations of properties and of relationships 

among properties—this proof is referred to as a conceptual proof. Balacheff emphasises that a proof 

by naïve empiricism or by a crucial experiment does not establish the truth of an assertion, and the 

reason why he refers to them as “proofs” is because they are recognised as such by the students who 

produce them. He asserts, further, that the generic example and the thought experiment are 

mathematically valid proofs. They involve a fundamental shift in the students’ reasoning because the 

nature of the truth of a claim is established by giving reasons. When using a visual representation to 

justify a claim of generality, the representation needs to have some properties. Schifter (2009) has 

identified three criteria for a representation in elementary grades to be adequate: (1) the meaning of 

the operation(s) involved is represented in diagrams, manipulatives, possibly complemented by story 

contexts; (2) the representation is accessible for a class of instances; and, (3) the conclusion of the 

claim follows from the structure of the representation (p. 76).  

Justification in the elementary classroom of the commutative property of multiplication can be done 

through a generic example based on a rectangular-area situation. In this situation, multiplication in 

ℚ+ is commutative because the area of a rectangle is the same regardless of the order in which its 

side lengths are multiplied. However, given the impact of the equivalent-groups situation, we consider 

it important also to be able to build on this intuitive interpretation in justifying that multiplication is 

commutative. Then of course, the asymmetry of this situation is a challenge. In the following we 

explain how a justification of commutativity of multiplication in ℕ can be constructed, taking the 

situation of equivalent groups as a starting point. We discuss a justification first by a generic example, 

then by a thought experiment.  

Let 4 ∙ 3 be interpreted as the total number of discs when we have 4 equivalent groups of 3 discs, as 

shown in the upper row of Figure 1. The discs can be regrouped into 3 equivalent groups of 4 discs, 

which corresponds to 3 ∙ 4 (illustrated in Figure 11).  

 

Figure 1. A generic example illustrating the symmetrisation of an asymmetric situation  

The total number of discs is not changed, and consequently we have that 4 ∙ 3 =  3 ∙ 4. This process 

of regrouping can be imagined with an arbitrary number of groups a, and an arbitrary number of discs 

b—that is, for any 𝑎 ∙ 𝑏 where a and b are natural numbers. The number of discs in the equivalent 

groups in the original grouping transforms into the number of groups in the new grouping. The 

                                                 

1 The discs are coloured to make the process clearer. The arrows signify the movement of the discs. 



example with the transformation of 4 ∙ 3 into 3 ∙ 4 is thus used as a generic example in the 

justification.  

Justification by a thought experiment can be rather similar to the generic example presented above, 

though the reasoning is done in general terms: Given natural numbers a and b, then 𝑎 ∙ 𝑏 can be 

interpreted as the total number of discs when we have a groups with b discs in each group. Regrouping 

of discs by taking one by one disc from each group to make a new group gives b groups with a discs 

in each group—that is, a situation in which the total number of discs can be represented by 𝑏 ∙ 𝑎. 

Since the number of discs is not changed in the process of regrouping, we can conclude that 𝑎 ∙ 𝑏 = 

𝑏 ∙ 𝑎 for all natural numbers a and b. 

Methodological approach 

The pre-service teacher (henceforth PST) participating in the research reported here was in her first 

year of a 4-year undergraduate teacher education programme for Grades 1-7 in Norway. The 

investigation has been done within a compulsory mathematics course in the programme, which 

involves an integration of mathematics and didactics. The data were collected at the end of the second 

semester. The main content of the mathematics course previous to data collection was multiplicative 

thinking, and the emphasis was on different strategies for, reasoning with, and properties of, 

multiplication and division. The second author, together with a colleague, taught the mathematics 

course and carried out the data collection.  

During the mathematics course, the PSTs in the class worked on several assignments that involved 

practice of teaching in school (Grades 4-7), all concerned with strategies for and properties of 

multiplication. In the fourth assignment, from which the data analysed in this paper emerged, the 

PSTs were asked to plan and carry out a discussion with students concerning a given strategy or 

property of multiplication or division. The PSTs video-recorded and transcribed their discussions 

with students. The transcript analysed here is from one of 25 classroom discussions that were carried 

out and analysed. 

Our research question concerns basic properties of multiplication, and we are interested in PSTs´ 

handling of general justifications—that is, justifications for an infinite number of cases. In most 

episodes where the PSTs discussed properties of multiplication with the students, there was no 

attempt to generalise and justify. There were discussions of particular examples, usually succeeded 

by a conclusion along the lines of “this will apply for all numbers”. In this paper, we present an 

analysis of one of the discussions, the case of Janet (a PST). This case is chosen because Janet actually 

tried to discuss with students why a property of multiplication applies in general (in ℕ) and it 

demonstrates challenges thereof, which are also traced in some of the other transcripts (not analysed 

here). We will explain what conditions that prevent the case of Janet from being successful in the 

sense of including a valid argument for the claim of generality.  



Results 

Establishing a situation to interpret a multiplication problem 

Janet and the students have discussed the products 12 ∙ 10 and 10 ∙ 12, and the students have come 

to the recognition that the products are the same. David says it is because “the numbers have simply 

changed places” (turn 10). Then Janet provides another example:2  

11. Janet: We will get the same answer, it’s just the calculation that is reversed… If we  

 take another arithmetic problem, will that be similar, too? 13 ∙ 17 and 17 ∙ 13 [writes on 

 the blackboard]. [Pause 7 sec.]. Will this be the same, or are they different? [Pause 11 

 sec.]. What do you think? Do you think it will be the same answer, or are they different? 

12. Brian: I think it will be the same, because you have just exchanged the numbers. 

13. Janet: You think it will be the same? Mary, do you think it will be like Brian said? 

14. Mary: Yes. 

15. Janet: I don’t know whether you have done this before, made a story or a drawing. Is there 

 anyone who would try to make a story for 13 ∙ 17, if we just concentrate on this 

 [product]? Can someone make a story or drawing that might explain 13 ∙ 17? Is there 

 anyone who dares to do that? [Pause 5 sec.]. 

16. Janet: What does it mean? Could it mean that we have 13 of something that we shall have 17 

 times? If we imagine having a baking tray with muffins for instance. If we imagine 

 having a baking tray [draws on the blackboard]. Can someone try to figure out how  

 the drawing will be, if we have a baking tray with 13 ∙ 17 muffins? [Pause 3 sec.]. 

17. Janet: Where should we place 13 for instance? Should we just draw them all over the place, or  

 should we place them across or down? Anyone who dares to try? Trying is  

 allowed. Remember, no answer is silly. [Pause 5 sec.]. 

18. Janet: Nobody dares to try? Well, OK. If we imagine that we have 13 muffins across here 

 [draws on the blackboard], and we have 17 down. We fill out the whole tray, but I don’t  

 bother to draw them all. You understand that we have 13 across and 17 down. If we were 

 to calculate this instead of counting all the muffins, how could we do that? You may want 

 to take 13 ∙ 17. Then we can think that we have 13 across and 17 down [points at the 

 blackboard]. However, if we had 17 ∙ 13 [points at the blackboard], can someone figure 

 out what the drawing would look like? Carl? 

19. Carl: It will be 17 across and 13 down. 

20. Janet: Uh-huh. Anne, can you repeat what Carl said? 

21. Anne:  It will be 17 across and 13 down. 

22. Janet: Yes, we would have had 17 here and 13 down [points at the blackboard and explains].  

 Have we changed how many muffins we have on the tray? [Tim shakes his head]. 

In turn 15, Janet invites the students to give an interpretation of the product 13 ∙ 17. Nobody responds, 

after which Janet (turn 16) introduces multiplication in terms of equivalent groups:  

13 ∙ 17 is explained as the number of objects we will get when “we have 13 of something that we 

shall have 17 times”. This is a non-commutative situation, where 17 is the multiplicator and 13 is the 

multiplicand.  

Then there is a shift to a rectangular-array situation, when Janet introduces a context of muffins on a 

baking tray to interpret the product 13 ∙ 17 (turns 16-17). In turn 18 she explains how the product can 

be placed on the tray: 13 muffins across and 17 down. She says that the whole tray should be filled 

out, but draws only the first row and first column. The resulting diagram is reproduced in Figure 2, 

and we will refer to it as a “degenerated” array. With a proper (13x17)-array, it would have been 

possible to interpret the multiplication problem as an equivalent-groups situation in correspondence 

                                                 

2 The transcript has been translated into English by the authors. Names are pseudonyms. 



with Janet’s initial explanation of multiplication: 13 muffins in a row could be interpreted as a group, 

and 17 rows could be interpreted as equivalent groups of 13 muffins. But the degenerated array and 

Janet’s use of spontaneous concept (“across” and “down”) instead of the scientific concepts “row” 

and “column”, makes it unclear how the presented situation should be interpreted as the product 13 ∙

17.  

 

 

Figure 2. The diagram used by Janet to illustrate the product 𝟏𝟑 ∙ 𝟏𝟕 

The operation aimed at is just declared by Janet (turn 18): “You may want to take 13 ∙ 17”. When she 

asks how it would be if they had 17 ∙ 13, Carl gives the desired answer (turn 19, repeated by Anne in 

turn 21). Nevertheless, this does not imply that Carl has understood what 17 ∙ 13 means—it indicates 

only that he is able to substitute the numbers used by Janet. The diagram in Figure 2 does in fact 

represent two numbers (one across and another down), but the diagram does not represent the 

operation of multiplying these numbers.  

Justifying that multiplication is commutative in ℕ 

After having indicated how the products 13 ∙ 17 and 17 ∙ 13 should be interpreted as (degenerated) 

array situations in terms of muffins on a tray (as presented above), Janet sets out to justify that 

multiplication is commutative for all numbers in ℕ: 

23. Janet: When we have 17 ∙ 13, the tray would look like this, and if we have 13 ∙ 17, we can just 

 imagine that we rotate the tray. Then the arithmetic problem will be different. We may  

 also think that we have a sheet of paper. If we imagine having 13 ∙ 17 like this, and

 17 ∙ 13 like this [demonstrates on the sheet]. Then we can see that these arithmetic 

 problems will be the same.  

Janet uses the products 13 ∙ 17 and 17 ∙ 13—represented as drawings of muffins on a tray—to 

exemplify that multiplication is commutative. In turn 23, she refers to these products as being 

different arithmetic problems. The imagined rotation of the tray (possibly 90 degrees) is used to show 

that the arithmetic problems have the same result, the reasoning being that the rotation of the tray 

does not change the total number of muffins—hence 13 ∙ 17 =  17 ∙ 13. We interpret the sheet 

mentioned in turn 23 as a representation enabling Janet to actually show the rotation and its effect on 

the arrangement of the muffins (a feature not afforded by the representation on the blackboard).  

Having established that 13 ∙ 17 = 17 ∙ 13, Janet then asks whether this property applies for all 

numbers: 

29. Janet: How do you think it will be? Does it apply only for these numbers, or does it apply for all  

 numbers? When we multiply two things… [Pause 5 sec.]. Mary? 

[Mary says that she thinks that it applies for all numbers, and exemplifies by 1 ∙ 2 and 2 ∙ 1] 



33. Janet: Uh-huh. Do you think it applies for all numbers, all whole numbers? [Pause 4 sec.]. Or  

 are there numbers for which it doesn’t apply? [Pause 5 sec.].  

Several students respond that they think it applies for all numbers, and Janet asks why they think so.  

37. Mary: I think it has to apply for all numbers. Because it’s about the same [pair of] numbers.  

38. Brian: It can be a little demanding when you have very large numbers, like 1 million times 2  

 millions. It will be challenging to draw. 

39. Janet: Uh-huh. Well, it will indeed be much to draw if we were to draw a million. But if we 

 imagine that we take away all the muffins. If we imagine that we have only one sheet of 

 paper [erases the muffins on the blackboard drawing]. We can imagine that we have 1 

 million times 2 millions, then we can place it like this [points at an array-model on the 

 blackboard]. So, does anyone dare to formulate a rule for multiplying two numbers.  

 When we use what we have just seen, which applies on those [points at the blackboard 

 drawing]. [Pause 10 sec.]  

40. Mary:  It will be the same if we swap the numbers.  

41. Brian:  It is possible also to check out with this tray in case one is insecure. 

42. Janet: Uh-huh. A rule can be that, when we do multiplication problems, the order does not 

 matter. Whether we take 13 ∙ 17 or 17 ∙ 13 does not matter. We can see this [property] if 

 we make such a drawing. If we rotate the drawing, the [total] number has not been 

 changed, we just rotate the drawing.  

The multiplication problem 13 ∙ 17 is used as a generic example in the dialogue to justify the 

commutative property of multiplication in ℕ. The property that the factors in a multiplication problem 

commute is based on the idea of rotating a tray (or sheet) with muffins arranged in a rectangular 

array—this is Janet’s intention, even if the diagram used is not a proper array. The generic properties 

of the example are, however, vaguely expressed: Janet suggests that the total number of muffins on 

the tray is not changed by a rotation (turns 23 and 42), but she does not express in clear text what the 

commutative property means in the actual situation (i.e., exchanging row and columns). When Brian 

(turn 38) provides an example that involves the product 1 million times 2 millions, it can be 

considered a crucial experiment (supplemented by Janet in turn 39): the validity of the conjecture of 

commutativity is accomplished by testing it on an instance that is quite complex (and impossible to 

draw). In turn 42, Janet utilizes the generic example of 13 ∙ 17 when she articulates the conclusion of 

the claim—an important, last step in a justification process. 

Discussion 

The decision not to draw all the muffins (possibly because it would take too long) prevents the 

diagram in Figure 2 from representing the meaning of the operation at stake (even if Janet says that 

the whole tray should be filled out). Hence, Schifter’s (2009) first criterion for a representation to be 

adequate is not met. It can be noticed that the other representation used, the sheet, does neither 

illustrate the meaning of multiplication, but it affords the rotation to be demonstrated physically. For 

the meaning of multiplication to be represented in a diagram, the total number of objects—the result 

of the operation—needs to be displayed. This entails that the numbers involved must be of 

manageable size, thus enabling them to be represented in diagrams or manipulatives. That Janet failed 

to draw the complete array indicates that the numbers she used in the generic example (13 and 17) 

were too big, as she possibly conceived of it.  

It is possible to represent any pair of natural numbers in the diagram used by Janet, and hence, it 

seems as if Schifter’s (2009) second criterion is met. Yet, this is irrelevant since the meaning of the 

operation is not represented in the diagram. Further, since the diagram does not represent 



multiplication at the outset, it is useless to check if Schifter’s third criterion is met (i.e., whether the 

conclusion of the claim follows from the structure of the diagram). 

The discussion in class (based on Figure 2) enables the students to evidence possession of some 

knowledge. This knowledge is, however, different from the knowledge aimed at by Janet: The 

students were able to say that the result—in the general case—would be the same even if the numbers 

in the multiplication problem were reversed. Yet, there is no indication that the result they refer to is 

the product of the two numbers. It is likely that the students imagine a diagram with objects in a 

formation similar to the one in Figure 2, and that they see that rotation does not change the total 

number of objects in the diagram. This is basically an aspect of the principle of number conservation, 

and it is doubtful whether the students have understood why multiplication is commutative for any 

pair of natural numbers, which was the aim of the lesson. 

In conclusion, there are two conditions that constrain Janet’s discussion with the students about 

commutativity of multiplication in ℕ: The first is that the diagram, as used by Janet, is inadequate 

because it does not illustrate the meaning of multiplication. The second is the matter of fact that the 

diagram (and the way it is used) enables the students to respond “adequately” (i.e., as expected by 

Janet), even if they may not have understood why the commutative property applies for 

multiplication. The latter is a constraint because it deprives Janet of the opportunity to get feedback 

that might have let her understand that she would need to change her approach. 

The case of Janet can be used in teacher education to discuss with pre-service teachers criteria for, 

and impact of, generic examples (or representation-based proofs) used to justify general claims about 

properties of arithmetic operations. It is relevant to extend the research reported here by analysing 

written material from students’ justification of properties of arithmetic operations.  
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Generalisation is a key element of algebraic thinking, and children’s developing thinking is 

supported by engagement with algebraic activities when they attend primary school (Kaput, 2008). 

Shape patterns provide a context within which children may identify structure, and construct 

general terms. Within my research I presented children with shape patterns and observed their 

interactions as they discussed the structure of the patterns and sought to construct general terms. In 

this paper, I discuss the elements of the patterns to which they attended, and how their focus 

supported some children in constructing general terms, while other children experienced more 

challenge in their engagement with the patterns. Specifically I focus on children who observed both 

numerical and figural aspects, and I examine the varying levels of success they experienced. 

Keywords: Algebraic thinking, generalisation, shape patterns, reasoning, task-based interview, 

group interaction. 

Introduction 

Kaput (2008) defined generalising, representing generalisations, and syntactically guided reasoning 

on generalisations as core aspects of algebraic thinking. Providing a context for functional thinking, 

shape patterning tasks may facilitate children in engaging with these core aspects. Strømskag (2015) 

defines a shape pattern as a sequence of terms, composed of ‘constituent parts’, where some or all 

elements of such parts may be increasing, or decreasing, in quantity in systematic ways. While a 

limited number of terms of a shape pattern may be presented for consideration, the pattern is 

perceivable as extending until infinity. In order to construct a general term for a shape pattern, 

children must “grasp a regularity” in the structure of the terms presented, and generalize this 

regularity to terms beyond their perceptual field (Radford, 2010, p. 6). In seeking to construct 

general terms for shape patterns, children’s opportunities for success improve when they attend to 

both the spatial and numerical aspects of the structure of the pattern (Radford, 2014). In seeking to 

extend a pattern, children identify the position of pattern elements by attending to the spatial 

structure, and in order to quantify such elements they must attend to the relevant quantities within 

the pattern terms presented.  

In the Irish context, the Primary School Mathematics Curriculum (hereafter PSMC) includes an 

‘algebra’ strand, and there are content objectives prescribed for teachers to address in their teaching, 

from when children commence primary school at four or five years of age (Government of Ireland, 

1999). The curriculum does not, however, include the construction of general terms in any context, 

and beyond the first two reception years the patterns prescribed are strictly numerical in nature. 

During task-based group interviews, I asked children to construct general terms for each of three 

shape patterns. In this paper I will explore the tendency of children participating in my research to 

attend to the spatial and numerical aspects of pattern structures, as they worked towards the 

construction of general terms. Of the children who attended to both numerical and spatial elements, 

some children experienced success in applying their observations in order to construct general 



terms, whereas some children seemed to experience a challenge in translating their observations into 

meaningful understanding of the structure of the pattern. 

The construction of general terms 

Building upon the core aspects of algebraic thinking outlined by Kaput (2008) and mentioned 

above, Blanton, Brizuela & Stephens (2016) identified four key practices of algebraic thinking as: a) 

generalising, b) representing, c) justifying, and d) reasoning with generalisations, emphasising that 

these practices must focus upon structures and relationships. Blanton et al. (2016) also presented the 

following three content domains within which children may apply the key practices of algebraic 

thinking: a) generalised arithmetic, b) equations, and c) functional thinking. 

In particular, Blanton et al. (2015) highlighted the relevance of functional thinking to the algebraic 

thinking of young children, stressing the connection between functional thinking and the four key 

practices of algebraic thinking highlighted above. Blanton et al. (2015) emphasised the role of 

functional thinking in young children’s algebraic thinking by stating that functional thinking 

includes generalisations of co-varying quantities and their relationship; representations of these 

relationships, and reasoning with the relationships in order to predict functional behaviour. As 

functional thinking, and specifically shape patterning, is absent from the PSMC, it is therefore 

highly improbable that most children attending Irish primary schools will have engaged with 

activities designed to develop functional thinking. 

Rivera and Becker (2011) identified two approaches utilised by children in seeking to construct 

general terms for geometric patterns. Some children in Rivera and Becker’s longitudinal study 

focused solely, or primarily, on numerical aspects of the terms provided, and sought to use the 

numerical patterns observed in order to identify a commonality, extend the pattern and construct a 

general term. Such children the authors described as adopting a ‘numerical’ mode of generalising. In 

comparison, Rivera and Becker considered a child to have adopted a ‘figural’ approach if he/she 

used figural aspects of the pattern such as the shape of terms, or the position of elements, both 

within the term and relative to each other. A figural approach may include attention to numerical 

elements, but not in a manner that supersedes the child’s perception of the spatial aspects of the 

pattern structure. 

Along with observations of the structure of terms, children may observe various relationships within 

patterns which support their understanding. A ‘recursive’ strategy involves an examination of the 

mathematical relationship between consecutive terms in a sequence, and if using an ‘explicit’ 

strategy, a child identifies a rule for the relationship between a term and its position in the pattern 

(Lannin, 2005). Such observations work in tandem with children’s numerical or figural approaches, 

and in this paper I will refer to children’s explicit, or recursive thinking when relevant. 

Radford asserted that children’s constructions of generalities may be factual, contextual or 

symbolic. Factual generalisations involve instantiating a general structure to specific terms, whereby 

children do not express a generalisation as applicable to all terms, but apply an “operational 

scheme” which allows them to calculate a value for particular terms (p. 82). Many of the children 

involved in this research project applied factual generalisations when they described the near and far 

terms for the patterns, as in the example of Emily for Pattern 3 when she said “You’d need a 

hundred and twelve horizontal and then fifty-seven vertical”. Emily applied her understanding of the 



2n horizontal poles, and n vertical poles in order to calculate the number of poles for this far term. 

Equally she could apply this thinking to any term of this pattern, and could therefore be said to have 

factually generalised, even though there is no abstraction evident in her expression, and she is 

describing a specific term. 

Contextual generalisations, by comparison, involved the consideration of non-specific terms (ibid.). 

While contextual generalisations are not completely abstract, or general to all terms, they indicate a 

distancing from the specific, whereby children may make reference to “the next term” or to a 

generic term. As an example, Grace could be said to have constructed a contextual generalisation 

for Pattern 1 when she said “whichever number it is at the top it will just be one more than it, and at 

the bottom”. Symbolic generalisations involve the abstract expression of disembodied mathematical 

objects, wherein children express the algebraic concepts with no reference to the method of their 

calculation, or to any specific term. Throughout this paper I make use of ‘n’ to refer to a general 

term number, but all such expressions were generated by me, as representations of children’s verbal 

utterances, constructions and gestures. The children were not prompted to construct symbolic 

generalisations. 

Methodology 

In seeking to explore children’s constructions, I facilitated their engagement with the patterns in 

groups of four in a ‘task-based interview’ setting. Goldin (2000) emphasised that task-based 

interviews, involving individuals or groups, have become an essential tool within mathematics 

education research, as the goal of mathematics education has moved from the transmission of 

disconnected facts, to the development of children’s rich understanding and “internal constructions 

of mathematical meaning” (p. 524). In order to explore children’s complex understandings, and to 

observe their approaches to the solution of problems, it is necessary to adopt a research approach 

designed specifically for this purpose. In this way, it may be possible for educators and policy 

makers to assess whether the application of progressive approaches within classrooms are working 

to develop children’s mathematical understanding and robust problem-solving skills. 

Sixteen children (with a mean age of 9.6 years) participated in the task-based interviews, when they 

were presented with three patterns (see Figure 1). When presented with the patterns, the children 

were asked to describe what they observed, to extend the pattern to subsequent or previous terms, 

and to construct near and far terms, as factual generalisations. The children were provided with 

concrete materials, and asked to construct pattern terms during their discussions. Having considered 

far terms, I asked the children to describe “any term” in the pattern to facilitate their articulation of a 

contextual generalisation. At the commencement of each interview, and at regular intervals 

throughout, the children were encouraged to work collaboratively, by constructing terms together, 

by sharing their ideas, whether they agreed or disagreed, and by asking questions of each other. The 

children did not receive any instruction before participating in the interviews. 



 

Pattern 1 

  

Term 1  Term 2  Term 3   Term 4 

Pattern 2 

 

Term 1  Term 2  Term 3   Term 4 

Pattern 3 

 

4-panel fence  5-panel fence   6-panel fence 

Figure 1: The three patterns presented to children. 

Seeking to explore the reasons for children’s strategy choice, as well as the strategy chosen, the 

research approach I considered most appropriate was phenomenological, as a phenomenological 

approach to research seeks to explore a phenomenon where it occurs, and acknowledges the many 

factors which influence how the phenomenon plays out within the given setting (Creswell, 2013). In 

exploring the children’s thinking, I not only analysed the children’s actions, but I also sought to 

analyse the contributing factors that impacted on the strategies children employed. 

Goldin (2000) advises that “by analysing verbal and nonverbal behaviour or interactions, the 

researcher hopes to make inferences about the mathematical thinking, learning or problem-solving 

of the subjects” (p. 518, my emphasis). In seeking to explore children’s mathematical constructions, 

I was conscious throughout that my inferences from children’s comments were approximations of 

their true meaning. As Van Manen (1990) attests “a good phenomenological description is an 

adequate elucidation of some aspect of the lifeworld” (p. 27, my emphasis) and while I sought to 

unpick as best I could how and why children thought about the mathematical tasks, I posit that it is 

not possible to feel a sense of completion, or closure, in relation to the children’s thinking, but 

rather that interpretation is ongoing (Postelnicu & Postelnicu, 2013).  

In exploring the children’s verbal utterances, I coded comments as referring to figural or strictly 

numerical aspects of a pattern. Rivera and Becker (2011) state that adopting a figural approach is to 

“figurally apprehend and capture invariance in an algebraically useful manner (p. 356). When 

coding children’s statements, I identified a statement as indicating a figural approach if it included 

reference to the position of an object within a term, by using words such as ‘top’, ‘bottom’ or the 

deictic ‘there’ along with an associated gesture (Radford, 2006). An object in this context referred to 

a square, a diamond, a tile, a line, or any item which formed a constituent part of a term. Comments 

were deemed to indicate a numerical approach if no reference was made to the position of objects 

within a term. The term ‘growing’ was used regularly by children, and required some thought with 

regards to whether it indicated a figural approach. Typically, when mentioning growth children were 

referring to a sense of the terms’ shape growing in size, that is “selectively attend[ing] to aspects of 

sameness and difference among figural stages”, but I could not assume that this was always the case 



(Rivera & Becker, 2011, p. 356). Rather, it was necessary to attend to some term, or deictic within a 

child’s comment, and to seek to determine the referent, which would indicate whether the child was 

referring to the shape as growing, or the quantity of constituent elements. 

Findings and Discussion 

In seeking to explore the strategies used by children, and the reasons underpinning their strategy 

choice, I firstly considered an overview of each child’s approach across all three patterns. As the 

length of this paper does not allow for a complete explication of the approach of each child, Figure 

2 presents an overview of my interpretation of the children’s thinking, as it pertained to the balance 

between numerical and figural observations. In collating and analysing this data, I referred to the 

comments children made in the context of the exchanges they participated in. I also referred to field-

notes made during the interviews, photographs of the children’s constructions, and the children’s 

drawings and jottings which I had retained as artefacts of their thinking during the interviews. I had 

video recordings for three of the four interview groups, and audio recording for the fourth, as not all 

participants of this group had assented to video recording. 

Wholly numerical: all comments referred to numerical 

aspects of patterns. 

 

 

Alex 

Largely numerical, some comments focused on figural 

aspects, or observed figural aspects but not in a manner 

which seemed to support an understanding of the 

structure of the pattern. 

 

Daniel, Luigi 

Largely figural, but experienced confusion, or remained 

quiet during large parts of the interview. In some cases 

confusion was due to ‘loyalty’ to numerical aspects. 

Cherry, Orla, 

Danny, Fiona, Jay 

Largely figural, and comments indicated the use of 

numerical aspects to gain a strong understanding of a 

pattern’s structure. 

Ciaran, Grace, 

Emily, Arina, Jane, 

Wyatt, Christopher 

Lily Rose 

Exclusively figural: all comments referred to figural 

aspects of patterns. 

 

Figure 2: An overview of my interpretation of the children’s thinking, as it pertained to their focus on 

numerical and figural aspects of patterns 

As can be seen from Figure 2, rather than demonstrating a dichotomy between children who 

approached all patterns figurally and children who approached all patterns numerically, this small 

group of children (n=16) span a continuum from children who made comments focusing largely on 

numerical aspects, through children who commented on both numerical and figural aspects in 

meaningful ways, to children who referred largely to figural aspects. In considering the aspects 

children were attending to, I sought to distinguish between children’s observations which supported 



their thinking, and observations which they made and didn’t build upon or apply in order to 

construct a general term. Later in this paper I will further explore how two of the children applied 

their observations of figural aspects. 

While attending to figural aspects may have supported some children in constructing general terms, 

figural observations did not lead inevitably to generalisation. In order to compare children’s 

tendency to observe figural aspects with their success in constructing factual or contextual 

generalisations, I generated a scoring rubric for children’s progress towards the construction of a 

general term. A score of 0 indicated no progress, a correct extension of the pattern scored 1, some 

description of general terms scored 2, factual generalisation scored 3 and a contextual generalisation 

scored 4. I generated a total score for each child and calculated the mean score for each cluster of 

children identified in Figure 2 above. I found that the cluster of children identified in Figure 2 as 

making “largely figural” observations while applying numerical observations succeeded well, 

achieving a mean score of 8.6, where a score of 9 would equate to, for example, factual 

generalisation of all three patterns. In contrast the group of children who also made many figural 

generalisations, but expressed some confusion fared considerably less well, achieving a mean score 

of 3.2, where a score of 3 would equate to extending each pattern correctly, but not making any 

progress in describing a general term.  

To explore what other factors may have impacted on children’s progress, I chose to contrast the 

thinking of two children, Cherry and Arina, who worked together, and who both articulated figural 

observations, but made strikingly dissimilar progress. Arina achieved a score of 9 overall, while 

Cherry achieved a total score of 2. In this section I will discuss the girls’ observations of Pattern 3, a 

‘fences’ pattern presented in Figure 1 above. Arina had demonstrated strong figural thinking on two 

previous patterns, and succeeded in describing factual generalisations for both. When the children 

began their deliberations about the pattern discussed here, Arina remained very quiet, making few 

comments, but succeeded in constructing the 56th term using an explicit approach. She didn’t 

verbally articulate her thinking enough to confirm whether this factual generalisation was based 

upon a numerical or figural mode of generalising, but she could be seen on the video footage 

counting up in twos to quantify the horizontal posts, and adding on a number equivalent to one more 

than the term number. Figure 3 presents an illustration of how Arina may have been quantifying the 

number of posts for terms in this pattern.   

 

5th Term in the Pattern: n=5. 2n horizontal Posts and n+1 Vertical Posts 

Total number of posts: 2n + (n+1) = 3n+1 

Figure 3: A representation of Arina’s perceived structure of the Fences pattern. 

By comparison, Cherry’s verbal articulations of her thinking indicated that she observed within each 

fence one panel containing 4 posts, and every other panel containing three posts. When finding the 

number of posts needed for the nine-panel fence, she used a recursive approach, counting on six 

posts from the seven-panel fence she had constructed with match-sticks. I interpreted Cherry’s 

perception of this pattern as including figural aspects, as she referred regularly to ‘posts’ and 



grouped the posts into groups of three or four, as appropriate. However, Cherry’s approach to this 

pattern was dominated by a counting strategy, an analysis of which is beyond the scope of this 

paper. This counting strategy did not support Cherry in constructing far generalisations, and in 

seeking to construct a far generalisation, Cherry drew 56 panels, and began to count the number of 

posts needed. 

Conclusion 

Rivera and Becker (2011) suggest that when children only attend to numerical aspects of a pattern, 

they are grasping the commonality within the structure of the pattern at a superficial level. In 

analysing the comments made by the children in this research study, it may be seen that one cluster 

of children attended to figural elements but did not succeed in generalising. I would suggest 

therefore that some children who attend to figural aspects of the pattern, may persist with a limited 

and superficial understanding of the structure of the pattern, and that a figural perspective may not 

lead inevitably to successful construction of a general, or generic term. Other perceptions of the 

pattern structure seemed to be required in tandem with observations of both figural and numerical 

aspects. In the examples given here, Arina’s explicit approach supported her thinking, and in 

marrying an explicit approach with observations of both numerical and figural aspects, Arina 

grasped the structure of the pattern and successfully constructed a factual generalisation. In contrast 

Cherry demonstrated a consistent tendency to use counting as a strategy in seeking to quantify the 

number of elements of components of far terms of this pattern. While she could describe the figural 

structure of the pattern, her thinking seems to have been hindered by difficulties she encountered in 

seeking to conceptualise an expression which would allow her to calculate the number of posts 

without counting them. Even though this was the third pattern, and other children in her group had 

described explicit approaches during the interview, Cherry might not have made sense of the 

explicit thinking articulated by others. Equally, limitations in her multiplicative thinking may have 

contributed to this, and restrained her from exploring the explicit relationship between each term 

and its position in the pattern. Further research is merited into the interplay between the many 

aspects of patterns to which children may attend in seeking to grasp the structure. 
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This argumentative paper focuses on graphing logarithmic functions and presents some mathemati-

cal knowledge for teaching, employing vom Hofe’s construct of basic models (or ‘Grundvorstel-

lungen’) and Sfard’s distinction between operational and structural conceptions. On the assumption 

that difficulties students have with graphing might be a consequence of the standard interpretation 

of logarithms as inverse exponents, it claims that logarithmic functions should not be introduced 

structurally, as inverse exponential functions. Instead, several operational models of the logarith-

mic concept are proposed, and their explanatory power for graphing logarithmic functions is ex-

pounded. These models are intended to serve students as a meaningful basis for argumentation. 

Keywords: Logarithmic functions, basic models, operational—structural, knowledge for teaching. 

Introduction 

Logarithms as functions differ from logarithms as numbers (e.g. determining log21024) or opera-

tors (e.g. using logarithms to manipulate expressions and solve equations), especially when it comes 

to teaching and learning (Smith & Confrey, 1994). To make logarithms as numbers and operators 

meaningful and thus more accessible to learners, some subject matter knowledge for teaching has 

been developed by Weber (2016). This was achieved by combining the theoretical construct of basic 

models (or ‘Grundvorstellungen’, vom Hofe & Blum, 2016) with the construct of operationality and 

structurality (Sfard, 1991; 2008). The present paper focuses on the functional side of logarithms and 

its teaching, namely on the sketching of logarithmic graphs. After recalling various conceptualisa-

tions of logarithms and analysing some students’ difficulties in graphing logarithmic functions, four 

basic models are discussed with regard to their explanatory power for graphing logarithmic func-

tions. Because of the mathematical analogy between logarithms and division (cf. Weber, 2016), 

some arguments used here are analogous to those familiar from the teaching of division (Ball, 

Thames, & Phelps, 2008; Greer, 1992; vom Hofe & Blum, 2016).  

Background 

Various conceptualisations of the logarithmic concept 

As we are interested in different ways of viewing logarithms, it is worth taking a quick look at the 

history of mathematics. Several properties of logarithms have been discovered since their invention 

in the early 17th century (for details, see Weber, 2016): 

(P1) Napier and Bürgi conceptualised logarithms as numbers that count divisions. For example, 

log2 8  equals 3 because 8 has to be divided by 2 three times (to yield 1). In analogy to the 

standard division algorithm, this interpretation can be extended to a logarithm algorithm for 

the manual calculation of logarithms proceeding by repeated division down to 1 instead of re-



peated subtraction down to 0: one divides instead of subtracting, exponentiates by 10 instead 

of dividing by 10, trying to yield 1 instead of 0 (ibid., pp. 79–80). 

(P2) The conception found in current collections of formulas only became possible after Descartes 

had invented the symbol for powers, an. This notation enabled logarithms to be seen as parti-

cular exponents, a property that Euler used in his 1765 definition loga b = x :Û ax = b. More-

over, the left-hand equation can be read not only arithmetically (focusing on the number x ), 

but also functionally, taking “ log” as a function of the argument b . 

(P3) Another conceptualisation was provided by Cauchy in the 19th century. He proved that loga-

rithmic functions are, apart from a factor, the only continuous solutions F  of the functional 

equation F(x × y) = F(x)+F(y) ( x > 0 , y > 0). Specifying the logarithmic function in implicit 

form, this conceptualisation is a purely functional one. 

Each of the properties (P1) to (P3) highlights a particular aspect of logarithms. Because, from a ma-

thematical perspective, they are all equivalent, each property could serve as a definition of the con-

cept. From an epistemological perspective, however, their qualities are distinct, as discussed below. 

Logarithmic functions, their graphing and some of the difficulties students face 

Logarithmic functions are essential in calculus and for modelling processes, which is why they are 

taught at secondary level and in undergraduate courses. As with other types of functions, there are 

several challenges for students, such as when it comes to interpreting graphs verbally, or deciding 

whether or not a given graph represents a certain function (e.g. Leinhardt, Zaslavsky, & Stein, 1990; 

Markovits, Eylon, & Bruckheimer, 1986; 1989). For instance, one well-known student misconcep-

tions says that any function should be linear (e.g. Sfard, 2008, p. 21). An issue specific to logarith-

mic functions is the confusion of the logarithmic graph with the “combined graph” (Kastberg, 2002, 

p. 129), i.e. with the exponential and the logarithmic graph merged into a single image. A similar 

misconception reported is students viewing the graphs of y = 2x  and y = log2 x  as being “exactly 

the same” (Williams, 2011, p. 54). Misconceptions like these might be caused by the standard intro-

duction of logarithmic functions as inverse exponential functions. 

As space precludes other aspects, this paper deals with the graphing of logarithmic functions only, 

i.e. with manually sketching the graph of a function in a Cartesian plane, based on its logarithmic 

equation y = f (x). To analyse some of the difficulties that can arise here, the following steps (S1) to 

(S4) involved in graphing logarithmic functions are identified:  

(S1) Determining and calculating an appropriate number of pairs (table of values): This step in-

volves selecting a finite series of x -values that lie within the domain of the function, which in 

the case of logarithmic functions is a proper subset of the real numbers. In particular, one has 

to determine a first x -value, a last x -value, and the pattern the series follows (e.g., if there is 

a pattern, whether the difference or the ratio of two consecutive x -values is constant).  

(S2) Drawing the axes and scales, and plotting the corresponding points (“local construction,” 

Leinhardt et al., 1990, p. 13): The plotted points form the supporting points of the graph to be 

drawn. 



(S3)  Connecting the supporting points with a line segment (“prediction,” ibid., p. 13): This step 

involves making a conjecture based on the visual characteristics of the plotted points. It will 

therefore be referred to here as “graphical interpolation”. It includes decisions regarding the 

curvature and the degree of smoothness of the line (e.g. differentiable at the points). 

(S4) Extending the graph to the right and left of the line segment: This is a second prediction to 

make, based on a part of the graph, referred to here as “graphical extrapolation”: Does the 

graph straighten out to a straight line? If not, in what way does its curvature change? Is it 

bounded, does it have vertical asymptotes, intercepts with the axes, etc.?  

In each of these steps, the lack of a meaningful basis for argumentation can result in difficulties: 

Firstly, determining the domain in (S1) is a known issue (e.g. Markovits et al., 1986, 1989). As an 

illustration, Figure 1 shows two students’ graphs of the function y = log2(x)-3. Student A’s graph 

extrapolated to the left intersects the x -axis and thus exceeds the domain. Moreover, his x -values 

form an arithmetic progression, which is not optimal in terms of the corresponding y -values.1 

 

 

  

 

Figure 1: Students’ documents showing their tables of values for  and , 

together with the corresponding graphs (left side: student A, male; right side: student B, female)  

Secondly, graphs are sometimes thought of as isolated points (Leinhardt et al., 1990), or the sup-

porting points may be interpolated with a straight line (Markovits et al., 1989). Figure 1 shows that 

in their third step (S3), both students chose the graphical interpolations to be a more or less straight 

line, at least piecewise. And thirdly, in (S4), the graph is sometimes not extended beyond the range 

of the supporting points at all, or only by a little; or there may be an extrapolation to one side which 

suggests a progressive growth of the logarithmic function (cf. student B in Figure 1). 

                                                 

1 The two first- and second-year undergraduate students (18 and 19 years old) had attended a precalculus course held at 

a public university on the east coast of the USA in spring 2016. Logarithmic functions had been introduced in the tradi-

tional way, i.e. as inverse exponential functions. The documents shown in Figure 1 are from their final examination. The 

exact wording of the task was: “Consider the two functions f (x) = 2x+3  and g(x) = log2(x)-3: a) For each function, 

create a table of values, choosing your x -values carefully. b) Graph both functions on the same set of axes.”  



Students’ difficulties like these give rise to the following question: What mathematical knowledge 

for teaching logarithmic functions could endow learners with a meaningful basis for argumentation 

in order to potentially reduce their difficulties? 

Understanding functions and logarithms 

There are many ways to conceptualise what it means to understand the concept of a function in gen-

eral (e.g. Lauritzen, 2012; Markovits et al., 1986; Sfard, 2008), or the concept of logarithmic func-

tions in particular (Berezovski & Zazkis, 2006; Kastberg, 2002). Interestingly enough, graphs are 

rarely included in conceptualisations of how functions are understood; when they are, they are used 

to gauge whether it is possible to derive the equation of a certain function (Markovits et al., 1986). 

Graphing as a vital aspect of understanding functions 

Focusing on the opposite — graphing equations — here, Lauritzen’s (2012) conceptualisation of 

procedural and conceptual knowledge of functions is useful, because he attaches importance to the 

construction of graphs. To measure the ability to perform “graphic procedures” (ibid., pp. 52–53), 

he asks students to sketch the graph of a function, thus subsuming graphical interpolation (S3, see 

above) and extrapolation (S4). On the other hand, he considers calculating values (S1) a type of “al-

gebraic procedure” (ibid., pp. 54–55). In Lauritzen’s theoretical framework, graphic and algebraic 

procedures together operationalise the procedural knowledge of functions. In other words, graphing 

can be seen as a vital part of understanding functions. 

Operational and structural conceptions of functions, and the discourse on functions 

Sfard’s analysis of how mathematical notions are formed shows that conceiving mathematical no-

tions (1991) and talking about them (2008) can happen in two fundamentally different ways: as pro-

cesses (operationally), or as objects (structurally). For instance, learners tend to read equations of 

functions and tables of values operationally, whether as prescriptions of how to calculate values of 

the function, or as a covariation between two quantities (Sfard, 1991, p. 15). By contrast, they tend 

to perceive graphs of functions structurally, as “[…] infinitely many components of the function 

[…] combined into a smooth line, […] as an integrated whole […]” (ibid., p. 6). According to Sfard 

(1991), firstly, operational approaches are more accessible to learners when forming new concepts. 

Secondly, concept formation, for instance of functions, means subsuming the discourses on equa-

tions and graphs in a new discourse. For example, the concept “logarithmic function” is reified as 

soon as the discourse on logarithms as numbers and operators is merged with the discourse on loga-

rithmic graphs, as soon as they “become mere representations” (Sfard, 2008, p. 122). 

As such, the history of the logarithmic concept reminds us of the reification of rational numbers 

(Sfard, 1991, 2008): On one hand, because the conceptualisation (P1) of logarithms as numbers that 

count divisions can be transferred to a set of computational rules that make it possible to calculate 

logarithmic values step by step, it expresses an operational view (similar to the division 1÷ 2). This 

is why Sfard’s findings on functions could apply to logarithmic functions as well, as her analysis of 

understanding functions relates to polynomials only, and their operational character. On the other 

hand, a historically more recent conceptualisation such as inverse exponents (P2) expresses a struc-

tural view (similar to the fraction 1 2).  



Basic models for logarithms as numbers and operators 

To help students access and understand a certain mathematical concept, it is sometimes embedded 

in a context that is realistic or, if this is not possible, in a context that is at least familiar to the stu-

dents (cf. the Dutch “realistic mathematics education”, van den Heuvel-Panhuizen, 2003). In the 

German-speaking countries, basic models is a theoretical construct to capture what is meant by 

making concepts accessible, or understanding them (referred to as “Grundvorstellungen”, vom Hofe 

& Blum, 2016). Put simply, a basic model for a concept must have two characteristics: Firstly, it is 

an interpretation of that concept in a context in which students are likely to have more experience, 

and secondly, it has a certain explanatory power, that is, it is flexible enough to be applicable to dif-

ferent mathematical situations. For instance, when division is seen within the everyday context of 

fair-sharing, an equation such as 30÷1 2 = 60  is difficult to follow or perform. However, within the 

context of splitting-up or measuring, it can be explained as “1 2  fits into 30 sixty times”. Both basic 

models of division, fair-sharing and splitting-up, are thus indispensable for understanding division 

(referred to as “partitive” and “quotative division”, Greer, 1992). For Ball and colleagues, they con-

stitute the specialized content knowledge for teaching division (Ball et al., 2008, p. 400). 

For the teaching of logarithmic functions, no basic models are known thus far. For logarithms as 

numbers and operators, however, I have previously identified four models (for details, see Weber, 

2016): 

(BM1) Logarithms as multiplicative measuring: The logarithm of a number b  (to base a ) indicates 

how often the base a  fits into the number b  as a factor. This interpretation derives from the 

algorithm mentioned above (P1), or from the relation b / alogab =1. Example: log21024  can 

be simplified to 10  because 2 as a factor fits into 1024 ten times. As it generates result, mul-

tiplicative measuring emphasises the operational side of logarithms most strongly. 

(BM2) Logarithms as counting the number of digits: The (common) logarithm of a number b  finds 

the number of digits of b  needed to represent b  in positional notation, minus one. This in-

terpretation derives from the fact that the number of digits of any natural number n  (in dec-

imal notation) is equal to log10nêë úû+1. Example: The number 22000  has 603 digits when 

written out in decimal notation because log1022000 ≈ 602.06. In describing the effect it has 

on numbers and thus dealing with a specific application, this interpretation could be used to 

support the operational explanation of logarithms in the case of numbers. 

(BM3) Logarithms as decreasing the hierarchy level: The logarithm of an expression reduces third-

level operations (powers, roots) to second-level operations (multiplications, divisions), and it 

reduces second-level operations to first-level operations (additions, subtractions). This inter-

pretation derives from property (P3). Example: The expression log cd  can be expanded to 

1
2

logc+ logd( ) because the taking of square roots, as a third-level operation, becomes di-

viding by two, and multiplication of the variables becomes addition of their logarithms. In 

describing the effect it has on expressions and thus dealing with another specific application, 

this interpretation could support the operational explanation of logarithms for expressions. 

(BM4)  Logarithms as inverse exponents: The logarithm of a number (or expression) to base a  is 

the exponent by which the base a  must be raised to yield the number (or expression). This 



derives from property (P2), and is useful for solving exponential equations. Example: 40  as 

a power of 2  is approximately 25.32 because log240 ≈ 5.32. Because this interpretation re-

lates logarithms to another object (exponents), it reflects the structural view of experts. 

In the next section, this collection of operational and structural basic models will be shown to have 

the potential to serve as a basis for argumentation for the graphing of logarithmic functions as well. 

Basic models for logarithmic functions and their explanatory power 

From a mathematical standpoint, every property of logarithmic graphs can be derived from expo-

nential graphs, using (BM4) as a basis for argumentation. From an epistemological viewpoint, how-

ever, conceiving logarithmic functions as inverse exponential functions reflects the structural view 

of experts who have reified their experiences, and not the view of learners. Perhaps, as Sfard (1991) 

and others suggest, operational conceptions should instead precede structural ones as consecutive 

steps to be passed through when teaching a new concept such as logarithmic functions? As basic 

models (BM1) to (BM3) do not replace logarithmic functions with another class of functions, they 

could be more appropriate for learners than model (BM4). Instead, they inform students about what 

logarithms “do” and what logarithms “are good for”, interpreting them within contexts in which 

learners are likely to have some experience (counting, long division, having an effect on …, etc.). 

In what respect, then, could the three basic models described offer students a meaningful basis for 

argumentation when they are introduced to graphing logarithmic functions? And in what way could 

they potentially reduce the difficulties described above? Here are some arguments: 

1. Operational conceptualisation: The logarithm algorithm, which stems from property (P1), “loga-

rithms are numbers that count divisions”, and is captured by basic model (BM1), can allow stu-

dents to conceive a logarithmic equation such as f (x) = log2(x)-3 operationally, much like a 

polynomial one: “First, calculate how often the base 2 fits into x  by repeated division, then sub-

tract 3.”  

2. Domain of the function: In order to graph a logarithmic function, it is essential to determine its 

domain (cf. (S1) and Figure 1). With reference to the model “logarithms as multiplicative meas-

uring” (BM1), values such as log(0)  and log2(-8) can be recognized as incalculable because 

there are no reasonable answers to the corresponding questions “How many times does 10 as a 

factor fit into 0?” and “How many times does 2 as a factor fit into –8?”; neither 0 nor –8 can be 

converted to 1 through repeated division. This is why logarithms of 0 and of negative values can-

not be defined. 

3. Pattern of the finite series of x -values: Another choice to be made for graphing a logarithmic 

function easily is the pattern that the series of x -values follows (S1). In view of the basic model 

“logarithms as decreasing the hierarchy level” (BM3), the x -values should follow a geometric 

series, with the ratio of two consecutive x -values equalling the base. The logarithm would then 

transform the geometric series into an arithmetic one, resulting in equidistant y -values. 

4. Growth of the graph: As we have seen above, both graphical interpolation and graphical extrapo-

lation can cause many problems (cf. (S3), (S4)). Referring to the basic model “logarithms as 

counting the number of digits” (BM2), the growth of logarithms can be recognized as non-

proportional: In general, doubling a number does not double its number of digits. Furthermore, it 



is strictly increasing and unbounded above because this is how the number of digits behaves. 

Thus neither the interpolated nor the extrapolated graph can be a straight line, but must increase 

monotonically, growing degressively. 

Discussion 

This work builds on my earlier paper about the basic models for logarithms as numbers and opera-

tors (Weber, 2016). There, the supposition was discussed that the standard textbook explanation 

loga b = x :Û ax = b could be too compact or “dense” for many learners to serve as a meaningful 

basis of argumentation, which may be why dealing with logarithms often turns into mere manipula-

tion of formal symbols, causing students’ difficulties (ibid., pp. 85–86). If this applies to logarithmic 

functions as well, an alternative, broader way of introducing and teaching logarithms is required. 

For this reason, this paper discusses some content knowledge for the teaching of logarithmic func-

tions. The guiding theoretical construct is that of basic models (vom Hofe & Blum, 2016), com-

bined with the construct of operationality and structurality (Sfard, 1991, 2008). The four basic mod-

els, developed previously for logarithms as numbers and operators (Weber, 2016), are shown here to 

have some explanatory power for logarithmic functions and their graphing, that is, that they could 

potentially help to make logarithms meaningful and reduce some common difficulties that students 

encounter. 

This paper lays some theoretical foundations for future research. To what extent an approach with 

multiple basic models can facilitate more meaningful teaching and understanding in the actual class-

room will have to be investigated carefully. There has been a first encouraging episode from my 

own teaching, where a student who in general struggles with mathematics realized why logarithmic 

functions cannot be proportional: Making use of basic model (BM2), not the standard interpretation 

(BM4), she argued precisely as in point 4 in the previous section. A teaching experiment is therefore 

planned in the near future to study the affordances and limitations of the basic models, exploring the 

discourse of students who are taught not just one but four interpretations of the logarithmic concept. 

In analogy to the teaching and learning of division with multiple models, a crucial point will be the 

students’ shift from the multiple basic models proposed here to the object of logarithmic functions. 

Or, to cite Freudenthal (1975, as quoted in van den Heuvel-Panhuizen, 2003, p. 15, italics in origi-

nal): “Models of something are after-images of a piece of given reality; models for something are 

pre-images for a piece of to-be-created reality”.  
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Introduction 

The problem of taking a data set and separating it into subgroups, where the members of each 

subgroup are more similar to each other than they are to members outside the subgroup, has been 

extensively studied in science and mathematics education research. Student responses to written 

questions and multiple-choice tests have been characterised and studied using several qualitative 

and/or quantitative analysis methods. However, there are inherent difficulties in the categorisation 

of student responses in the case of open-ended questionnaires. Very often, researcher bias means 

that the categories picked out tend to find the groups of students that the researcher is seeking out. 

In our contribution, we discuss an example of application of hierarchical and non-hierarchical 

analysis method, to interpret the answers given by 118 Tenth Grade students in Palermo (Italy), to 

six open-ended questions about algebraic thinking. We show that the parallel use of the two 

quantitative analyses allows us to interpret in deep way the reasoning of students solving different 

mathematical problems using Algebra. These clustering methods also allow us to highlight  

different students groups, that can be recognised and characterised by common traits in their 

answers, without any prior knowledge on the part of the researcher. 

Methodology 

In recent years, some papers have tried to develop detailed models of the reasoning competences of 

the student populations tested, or to subdivide a sample of students into intellectually similar 

subgroups, by using quantitative or qualitative analysis methods. (Everitt, Landau, Leese & Stahl, 

2011; Prediger, Bikner-Ahsbahs & Arzarello, 2008) It is worth noting that research papers using 

quantitative analysis methods to study student responses to open-ended questionnaire can be found 

in Science education; not many research work can be trace in Mathematics education (Di Paola, 

Bataglia & Fazio, 2016), especially on the application of clustering analysis. In this paper we focus 

on the application of hierarchical and non-hierarchical clustering methods referred to dendrograms 

representation and k-means algorithm (Everitt, Landau, Leese & Stahl, 2011), trying to make sense 

to answers given by 118 Tenth Grade Italian students to six open-ended questions on algebraic 

thinking. The questionnaire was administered to the students at the beginning of the school year, 

before any discussion about Algebra had taken place. They answered in 45 minutes. 



In particular we discuss the results on the study of typical students’ behaviour in tackling the 

algebraic resolution of word problems and, at the same time, at understanding how the student 

semantically and syntactically control questions containing symbolic algebraic expressions (Radford 

& Puig, 2007). Our decision to refer to word problems, according to the PISA test, can allow us to 

study student literacy in using algebra (Bohlmann, Straehler-Pohl & Gellert, 2014) and in the 

transition from arithmetic to the modelling of problems expressed in a not-symbolic language, 

called “natural language (NL)” (Prediger, Bikner-Ahsbahs & Arzarello, 2008). K-means and 

dendrograms approach allowed us to partition and characterize our student sample, without making 

any a-priori assumptions and giving interesting output about student’s behaviour.  

Clustering results 

The k-means method (showed in Figure 1) allowed us to simply group and 

characterize the common students traits related to their solution strategies of 

the open-ended questions about algebraic thinking (procedure choices, 

mistakes, failings etc.). This gives us the opportunity to safely partition 

students into three groups: these are characterized by centroids Ci (called Arithmo, Pre Al-gabr and 

l-gabr) that represent the answering strategies given with maximum frequency by the students who 

are part of the cluster. The Hierarchical clustering method (showed in 

Figure 2), obtained using the Weighted Average linkage, identified five 

groups of students (called Arithmo, Pre Al-gabr 1, Pre Al-gabr 2, Pre 

Al-gabr 3 and Al-gabr) allowing us to better highlight their difficulties 

in the answering strategies related to the transition between the NL 

(typical of word problem) and the symbolic one. The results we found 

are largely coherent with the ones already reported in the literature obtained by means of qualitative 

methods. For this reason, we can consider the use of both hierarchical and non-hierarchical 

clustering a valid tool to complement the use of qualitative analysis to study a large number of 

students with respect to the way they give answer to the questionnaire. 
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This paper presents a model for conceptualizing the core of the function concept, which is made up 
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Theoretical background 

Conceptualizing function understanding 

Functions are regarded as an important learning content in school. Consequently, many theoretical 

and empirical studies have investigated the teaching and learning of functions since the beginning 

of the 20th century, working with very different conceptualizations of “function understanding” 

(Niss, 2014). For examples, cf. Oehrtman, Carlson, & Thompson (2008); Leinhardt, Zaslavsky, & 

Stein (1990); Vinner & Dreyfus (1989); common in German didactics is the concept of basic mental 

models (GVs), cf. vom Hofe (2016). Niss (2014) emphasizes the complexity of the function concept 

and the necessity of “intentional and focused work on designing rich and multifaceted learning en-

vironments” (Niss, 2014, p. 240). Most studies share the overarching claim that students should 

really understand functions, even if this aim is interpreted in different ways, e.g. being able to iden-

tify a function (Vinner & Dreyfus, 1989), taking a process view of functions (Oehrtman et al., 

2008), and more. Thereby, some of the conceptualizations are more specific than others with regard 

to their incorporated aspects of single representations or types of function. One example is the role 

of slope, which is only important for linear functions. This paper now presents a conceptualization 

of the core of the function concept as a dependence relation that is independent of (1) specific as-

pects of representations, (2) types of functions, and (3) different perspectives which all still can and 

should be taken. The facets making up this core were reconstructed empirically and are summarized 

in Figure 1. 

The different function types (linear, square, exponential …) are introduced one after another within 

the German syllabus for example. Hence, when students deal with square functions it is not surpris-

ing that they tend to incongruously adopt specific attributes of linearity to square functions (e.g., 

Leinhardt et al., 1990). One reason might be that square functions are presented as “new” learning 

content without making explicit commonalities (especially the facets of the core of the function 

concept) and differences (e.g., the relevance and usability of constants for interpreting functional 

equations) to linear functions. This problem also occurs when connecting representations. The aim 

of this study is to develop teaching-learning material that makes these common core facets explicit. 



Connecting representations – learning medium and learning content 

An important activity when dealing with a functional relationship is connecting its representations. 

The notion “connecting representations” resonates with the activity Duval (2006) describes as the 

conversion of semiotic registers. Studies consider this activity in two different roles: On the one 

hand, connecting representations is regarded as useful medium for concept formation processes (cf. 

Duval, 2006). On the other hand, studies emphasize that connecting representations proves to be 

demanding for learners (Niss, 2014; Leinhardt et al., 1990). Therefore, connecting representations is 

not necessarily a resource one can build on when designing teaching-learning material, because it 

already requires some kind of conceptual understanding itself. Hence, before using it as a resource 

for higher concept formation processes the students’ understanding of the core facets needs to be 

supported. Many studies focus on the symbolic, numerical and graphic representations (e.g. Mos-

chkovich, 1998; Duval 2006). In this paper, the verbal representation will be used to explicate the 

common core facets. Dealing with functions means dealing with their representations (e.g. Duval, 

2006; Leinhardt et al, 1990; Swan, 1985). However, the representations can be considered under 

different lenses or perspectives. Some perspectives are more obvious in one representation than in 

the other. Niss explains this fact as follows: 

One important issue that arises in this context is the fact that functions can be given several dif-

ferent representations (…), each of which captures certain, but usually not all, aspects of the 

concept. This may obscure the underlying commonality – the core – of the concept across its dif-

ferent representations, especially as translating from one representation to another may imply 

loss of information. (Niss, 2014, p. 240) 

Considering the activity of connecting representations as a learning content raises the question of 

which detailed aspects form the core of the function concept that students have to understand. The 

core of the function concept shall include those aspects that are common in all representations and 

equal for all types of functions. This requires an adequate conceptualization to describe this core 

explicitly and in a differentiated way. 

Facet model 

Conceptualizing the core of the function concept 

This study approaches the question which 

facets form the core of the function con-

cept by using the construct of „comprehen-

sion elements“ (Drollinger-Vetter, 2011), 

which is based on cognitive psychological 

theory. Comprehension elements (further 

called: facets, indicated by ||…|| in the text 

and designated in the boxes of the model) 

of a concept are defined as central mental 

schemes, which are mirrored differently in 

different representations. This theory 

draws on Aebli’s (1981) conception of under-

standing as a network of facets that are com-

Figure 1: Facet model 



pacted into denser concepts: concept formation processes require the acquisition of single facets of 

the concept and then the relation between the facets. The most compact facets are in the top region 

of the model while the more unfolded ones are located in the bottom region. Processes of under-

standing are initiated through processes of unfolding and compacting (Drollinger-Vetter, 2011). 

Depending on the situation, the edges of the model can be interpreted either as a process of com-

pacting or as one of unfolding.  

This construct is now adopted for the function concept. The facets have been reconstructed in the 

first design experiment cycle. When considering the facets common to linear and square functions 

for example, one can identify that first it is important to know that there are two ||involved quanti-

ties||. General facets like this are shown in the middle column of the model, the concrete manifesta-

tions in the situation are shown in the outer paths. Having identified the concrete ||quantity I|| and 

||quantity II||, students have to realize that these ||quantities vary|| and that the ||direction of depend-

ency|| matters. These are the facets necessary to finally identify the two quantities as ||independent 

variable|| and ||dependent variable|| in the concrete situation. Considering the ||independent variable|| 

and ||dependent variable|| by describing the whole ||functional dependency|| is the most compact 

way to talk about the core of the function concept. But when dealing with word problems it is 

equally important to be able to unfold compacted facets. Other “facets” as the ||meaning of the 

slope|| for example, are only helpful when dealing with linear functions. When dealing with square 

functions, the constants can only be interpreted in the graphic representation. Accordingly, using the 

facet model allows the following conceptualization of understanding the core of the function con-

cept: 

 “Conceptual understanding of [the core of] functional relationships can be defined as the ability 

to adopt different perspectives in different [representations] and to coordinate them by flexibly 

and adequately addressing the facets from [here: Figure 1]. The adequate addressing comprises 

flexible compacting and unfolding of conceptual facets, thus moving upwards and downwards in 

the facet model.” (Prediger & Zindel, in press, p.9) 

This model has proven successful to identify and describe potential obstacles (for examples cf. Pre-

diger & Zindel, submitted). Of course, learners might address other additional facets than the nor-

matively expected ones. The model is sensitive for these individual facets which can also be noticed 

and combined with other facets.  

Research questions 

Connecting representations is not necessarily a resource that can be used to support conceptual un-

derstanding, because it already requires some kind of conceptual understanding itself, namely flexi-

bly unfolding and compacting the associated facets (Figure 1). This is a starting point to focus on 

the question of how to support conceptual understanding. In the overarching study teaching-

learning material has been developed and empirically tested. In this paper the focus is on the fol-

lowing research question: 

How can the facet model be used to describe and visualize learning processes (especially processes 

of connecting representations)? 



Design 

The methodology of this project is Topic-specific didactical Design Research (Prediger & Zwe-

tzschler, 2013), which relies on an iterative interaction between designing teaching-learning materi-

al, conducting design experiments and analyzing the processes. In the overarching project, three 

design experiment cycles in laboratory setting and a fourth design experiment cycle in classroom 

setting were conducted. In total 39 learners participated in 16 design experiments in laboratory set-

ting and further 57 learners participated in 3 design experiments in classroom setting (usually grade 

9-10). The overall 42 sessions were videotaped (1890 minutes), partly transcribed and qualitatively 

analyzed. 

Facet model as methodical framework to describe learning processes 

This facet model, which has just been introduced, can be used now as a starting point for supporting 

conceptual understanding by explicitly addressing its facets. The teaching-learning material intends 

to give the opportunity to get to know, address and combine facets from the facet model. The fol-

lowing part starts dealing with the design element of varying phrases and proceeds with a presenta-

tion of the empirical insights regarding its effects. 

Varying phrases – a design element 

Due to limitations in length of this paper Figure 2 shows only an excerpt of activities from the 

learning arrangement, realizing the design principle of connecting representations and including the 

systematic variation of phrases. 

 

Figure 2: Excerpt from the learning arrangement (Descriptions A-D literally translated from German) 

From a normative perspective, different facets should be addressed by dealing with varied phrases. 

To achieve this, all the phrases vary in at least one of the facets. No sequence of phrases to be con-

sidered is given to the students.  



Empirical insights: Describing learning processes by using the facet model 

In order to connect representations it is necessary to address the same facets in both representations 

adequately. Both representations (each visualized by one model) refer to the same functional rela-

tionship (here: verbal representations on the left, symbolic representation of the DreamStream offer 

on the right). Each model visualizes the facets that are addressed in the respective representation. 

Adequately addressed facets or connections are framed by green lines, inadequately addressed fac-

ets or connections by red dashed lines. Depending on the situation the lines can be interpreted as 

process of either unfolding or compacting.  

A brief insight into the case study of Tatjana (15) and Alexandra (14) illustrates how dealing with 

varied phrases makes students aware of the facets from the model. Tatjana starts with description D. 

100 Tatjana [3s] Well, the first one definitely fits [points to “With the equation, I can - 

in dependency of the number of bought films - calculate the price in one 

month”]. 

101 Alexandra Yes, I think so, too. [laughs] 

102 Tatjana [laughs] [3s] Because actually it doesn’t matter how many films one takes. 

One still pays the same per month anyway. 

First Tatjana (Figure 3) mis-

judges the matching of de-

scription D and explains it in 

102 with the argument that it 

does not matter how many 

films one buys. She does not 

consider the two quantities 

in the phrase as ||varying 

quantities|| that are connect-

ed by a dependence relation. 

Instead she focuses on the 

two ||involved quantities|| 

and creates a connection 

between them by herself. This connection corresponds neither to the phrase nor to the functional 

equation. She identifies ||quantity I|| and ||quantity II|| in the equation, but she does not realize that 

these quantities and the ones in the phrase are not the same. Following this thought, they pay atten-

tion to the next phrase. 

104 Alexandra [12s] I think the second one is right, too [points to “With the equation, I can 

- in dependency of the number of months - calculate the total price”]. Be-

cause with the number of months, this would be x indeed – hum – calculate 

the total price, how much (…) 

105 Teacher Mhm.  

106 Tatjana [11s] This is the same like this [points to “The equation indicates the total 

price in dependency of the number of months”], right? 

Figure 3 Tatjana (100 and 102) 



107 Alexandra Yes.  

Alexandra (Figure 4) cor-

rectly explains in 104 the 

matching of description B 

by identifying the same 

||independent variable|| in 

the phrase and in the func-

tional equation. Moreover, 

she addresses the 

||functional dependency|| by 

identifying that one can cal-

culate the total price 

(||dependent variable||) with the identified ||independent variable|| (number of months). Afterwards, 

Tatjana determines that the descriptions B and A mean the same and only vary linguistically (106). 

Finally in this scene the tutor asks Alexandra’s opinion to description D.  

141 Alexandra Yes. I think so, too, that this is right, because one – x is indeed – are indeed 

the films and thereby one can just – no these are the months! So I don’t 

think that this is right. I think this is wrong. 

In 141 Alexandra (Figure 5) 

reasserts her approval to 

Tatjana’s judgment in 100 

that the phrase fits to the 

DreamStream offer. She 

starts to explain this deci-

sion by reasoning about the 

meaning of the ||independent 

variable|| in the functional 

equation and falters. Begin-

ning with interpreting the 

phrase she identifies that the 

||independent variable|| would be the number of bought films. But then she correctly states that this 

fact does not apply to the functional equation because the ||independent variable|| is the number of 

months. She concludes that the phrase does not fit after all, which suffices for a non-match.  

145 Teacher [laughing] If you like to say something about this, here you are.  

146 Tatjana Yes, now I think, this is wrong. 

147 Teacher Why? 

148 Tatjana Well, because it is put on the number of bought films there. 

Then Tatjana revises her first judgement, too. In 148 she explains this fact by referring to the differ-

ent ||independent variables||. 

Summing up, contrasting the varied phrases initiated the addressing of different facets. The learning 

process is visible in the increased precision and explicitness in students’ utterances. In the begin-

Figure 4 Alexandra (104) 

Figure 5 Alexandra (141) and Tatjana (146 and 148) 



ning, Tatjana’s utterance was not precise enough to match the phrase to the equation adequately 

because she could not identify the differences in the functional relationships described. This fact 

becomes visible in the model through the non-adequately addressed facets (Figure 3). One reason 

may be that she could not interpret the verbal representation. In contrast, Alexandra is able to ad-

dress the facets of the core adequately and precisely. This fact becomes visible in the model due to 

the same adequately addressed facets in both representations (Figure 4). When Alexandra deals with 

the first phrase, she first approves Tatjana’s assessment. However, in her explanation she struggles 

and realizes that the ||involved quantities|| are not the same in the verbal and symbolic representa-

tion. She adequately concludes that these representations do not belong together. At the end of the 

scene, Tatjana revises her first judgement (Figure 5). Thereby, she focuses more on the meaning of 

the given phrase than on the situation itself.  

Of course, this excerpt is only an illustrating example of such a learning process. In other cases the 

developments look very different. One reason for this fact is that the sequence and number of con-

sidered phrases varied due to the fact it was not preset in the material, but adopted for each process 

by the teacher.  Overall, the empirical analysis of students’ learning processes indicates the analytic 

power of the facet model and that dealing with varied phrases can support the process of addressing 

facets as well as unfolding and compacting them. 

Conclusion 

This paper presented a conceptualization of function understanding focusing on the core of the 

function concept, which is based on cognitive psychological theories. It provides not only the iden-

tification of potential obstacles but also a normative framework for supporting function understand-

ing. These facets of the core of the function concept are not specific to single representations or 

function types. Nevertheless, it is of course important to learn specific knowledge about representa-

tions and different types of functions. However, the core facets should be emphasized whenever 

students get to know new aspects of functions and should be addressed consistently and repeatedly 

in order to make students aware of the commonalities of every functional relationship.  

Dealing with varied phrases stimulates addressing the core facets as well as unfolding and compact-

ing them. This has been illustrated in the empirical insights. The facet model enables both, visualiz-

ing and describing processes of connecting representations by contrasting the facets that are ad-

dressed in each representation. An adequate connection of representations requires adequately ad-

dressing the same (core) facets in both representations. However, using the model not only enables 

describing these normatively prescribed core facets but it is also sensitive for individually activated 

facets. 

Within these brief empirical insights, the model enabled the investigation of the connection of ver-

bal and symbolic representations of functional relationships when dealing with word problems. Pre-

sumably this is compatible to other connections of representations. Furthermore, the conceptualiza-

tion presented here focuses on the core facets of the function concept. To what extent this conceptu-

alization can be combined with others in order to form a broader understanding of the function con-

cept ought to be subject of further analysis. 
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Introduction 

In February 2016, the Otto-Kühne Schule in Bonn, Germany, established an International 

Preparation Class (IVK, Internationale Vorbereitungsklasse) for 20 foreign pupils from different 

conflict and war zones all over the world. In this class, they learn the German language as foreign 

language adequate to their skill level (12 hours per week) and other subjects such as mathematics (5 

hours per week). Their educational background is very heterogenous and therefore their mathematic 

class is usually split into at least three different groups covering topics from multiplication tables to 

quadratic functions. This project focuses on learning material developed for one group in their first 

lessons about algebraic expressions and their manipulation. The above-mentioned restrictions and 

conditions led to the necessity to develop a special approach1 with few lingual prerequisites and the 

potential to support the development of mathematical language. 

Theoretical background 

According to an analysis of German textbooks by Prediger & Krägeloh (2015, p. 91), variables are 

usually introduced by lingual means. In particular, for the generalising aspect (Arcavi et al., 2016), it 

is referred to the everyday language. Taking important literature on structure sense resp. structuring 

(Hoch & Dreyfus, 2004, 2006; Rüede, 2012) into account, the learning material was constructed 

with a twofold goal: on the one hand the material should be easy accessible (in a linguistic way) in 

which the students can broaden their notion of variable while on the other hand the material may 

foster the activity of structuring on a beginner level. For this, dot patterns (or: figurative numbers) 

were chosen. By a figurative number, we mean a sequence of pictures consisting of dots (Figure 1) 

and the related number sequence. 

 

Figure 1: The “filling glass” with the sequence 6, 10, 14, … 

                                                 

1 For more details on the current status of the project, we refer to: http://www.math.uni-bonn.de/people/sauerwei/ 



Actual setting 

The class started with a discussion of the dot pattern in Figure 2. The leading questions were: How 

many dots are in each picture? Can you continue the pattern? How many dots are in the 4th picture? 

How many dots are in the 100th picture? How many dots are in arbitrary picture? 

 

Figure 2: Adding three dots with the sequence 3, 6, 9, … 

This very basic introductory example could catch the attention of every pupil. Even pupils with a 

usually low motivation for mathematics participated actively. All the questions were answered 

promptly and correctly and the only reasonable formula was found (3x). At this point, we did not 

introduce the formula (x+x+x) for adding the rows since we did not want to lead the pupils in any 

direction. From there on, the class worked individually or in smaller groups with the same leading 

questions on other dot patterns. It was stressed by the teacher that there can be many correct 

expressions for each pattern, but that each expression requires its own justification. Moreover, it 

was agreed on that two expressions are only equal if they yield the same result for every number 

plugged in. Hence, the only chance to verify equality was via the dot patterns and their structure. 

Thus, the dot patterns became a tool for argumentation. 

This project is ongoing and more cycles of implementation in different regular and international 

classes are in preparation. 
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Elementary algebra and other developmental courses have consistently been shown to be barriers to 

student degree progress and completion in the United States.  Significant research has been done in 

the primary and secondary context, but little research has been conducted with students enrolled in 

elementary algebra courses in the tertiary context, despite the fact that there is significant evidence to 

suggest that mathematics learning is likely somewhat different in this context (Mesa, Wladis, & 

Watkins, 2014).   

Teacher beliefs and expertise 

There is significant research suggesting that teacher beliefs are often strongly related to the teaching 

practices that teachers implement in the classroom, and therefore are also related to student beliefs 

and learning experiences (see e.g. Fang, 1996; Maggioni & Parkinson, 2008).    In addition, teacher 

expertise also has the potential to benefit the research community by contributing important 

information about what teachers have learned while teaching.   

Theoretical framework 

This study uses Vygotsky’s (1986) theory of concept formation: learners begin to use algebraic 

symbols, graphs and other representations before they have “full” understanding of them, and through 

this experimentation and communication with “more knowledgeable” others, they internalize more 

formal and correct meanings for the objects that the representations symbolize.     

Methodology and results 

Five elementary algebra instructors collaborated on this action research project, some of whom 

are also educational researchers.  This included faculty with doctorates in both mathematics and 

mathematics education, with varied backgrounds and different teaching styles.  This study used the 

Action Research Spiral Framework (Kemmis & Wilkinson, 1998) to guide the process of 

collaborative exploration into student thinking about elementary algebra concepts.  This framework 

outlines a cyclical practice in which practitioners go through the following steps repeatedly: 1) plan; 

2) act and observe; 3) reflect; 4) revised plan, etc…  In a cyclical process of experimentation, 

instructors developed assignments and assessment questions intended to assess student 



understandings on the framework (see Table 1) that they had initially developed through discussion 

based on prior teaching experience.  An example of one type of assessment question is below: 

Assume that 𝑎 ≠ 0.  Dale simplifies the expression 𝑎3𝑎−2 and gets the correct expression 𝑎.  Which of the

following must be true?  There may be more than one correct answer—select ALL that are true. 

a. 𝑎3𝑎−2 = 𝑎
b. If Dale lets 𝑎 = 10 in both the expressions 𝑎3𝑎−2 and 𝑎, he will get two different answers.

c. Dale can substitute 𝑎 for 𝑎3𝑎−2 anywhere it appears in an algebraic expression.

d. If Dale lets 𝑎 = 20 in both expressions, he will get the same value for each expression.

e. Dale needs to know the value of 𝑎 before he can say whether 𝑎3𝑎−2 and 𝑎 are equal.

This question was designed to test the extent to which students understand 4.a. in the framework.  

Based on student responses, instructors probed students about their understanding of specific 

components of item 4.a. in order to better understand what those are and how they relate to one 

another.  Based on this process, the framework was revised: The first draft contained only item 

4.a.ii.1; after repeated cycles the other items under 4.a. were added and structured hierarchically.

1. Algebraic Symbolism

2. Algebraic Structure

3. Properties/Generalizing Arithmetic Operations

4. Equality/Equivalence: Understands equality/equivalence.   The student understands:

a. what it means for two expressions to be equal

i. that two expressions are equal iff they are equal for all possible variable values

ii. that if two expressions are equal, one may be substituted for the other in any context

1. that rewriting expressions is a process where an expression is replaced by an equivalent one

b. what it means for two equations to be equivalent

5. Equations as Relationships between Variables

6. Thinking Graphically

Note: Because of space constraints, not all details of the framework could be reported here

Table 1. Elementary Algebra Concept Framework, with details for one sample sub-concept 
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Introduction 

Around 25 researchers of various geographical origins (from across Europe and also from North 

America, the Middle East, East Asia) participated in Working Group 4 on Geometry Education. 

Some 20 contributions (15 papers and 5 posters) informed five discussion sessions and two further 

sessions dedicated to debates and the preparation of a final report that was presented at the end of 

the conference. Each discussion session was structured around a selection of contributions, each of 

which was briefly introduced and followed a reaction from a pre-arranged reactor to inform the 

collective discussion. 

The name of this group was previously Geometrical Thinking, and this was modified for this 

CERME to emphasize the focus on the teaching and learning of geometry. During the previous 

CERME, four competencies were used to describe geometrical thinking: reasoning, figural, 

operational and figural. The group took these dimensions as a background that was very helpful to 

understand each other and to compare our approaches to the issue of what is at stake in the teaching 

and learning of geometry. 

This choice was all the more crucial given that many approaches and issues were discussed during 

the group sessions. Three main issues were addressed during the working group: 

• The role of material activity in the construction of mathematical concepts, including using 

instruments, manipulation, investigation, modelling… 

• Visualization and spatial skills; 

• Language, proof and argumentation. 

In comparison to the previous CERME, this time psychological points of view, among others, were 

represented. This raised new questions, often with very different theoretical and methodological 

backgrounds. As rich as the discussions were, mutual understanding was a great issue. 

Consequently, we did not focus, during the discussions, especially on one single topic at a given 

school level. In each of the three issues aforementioned, we tried to identify the interest of various 

theoretical or methodological approaches, of different cultural or institutional contexts, and the 

ruptures or continuity during the education process. 

It is important to note that almost all the papers addressed ‘classical’ issues in this WG: this means 

teaching geometry to young children, the impact of specific contexts, geometrical activities in pre-

service teacher training, moving from practical to theoretical geometry, using Digital Geometry 

Environments, and so on. Nevertheless, the main part of the discussions were about confronting, 



sometimes in passionate ways, the theoretical and methodological approaches (for instance, 

didactical engineering was a 'classical' element for this WG) of the phenomena being studied. We 

try here to give an overview of these debates. 

Topics of rich debate in the group 

Role of manipulation and thoughtful experiment 

This very broad topic has been a great field of study and experiment during the previous CERMEs. 

The discussed papers concerned students at all level, from kindergarten to university and included 

the use of instruments for investigation, manipulation and modeling. As these subtopics were 

strongly linked in the papers, we decided not to split the topic. 

The use of two kinds of instruments was evident. One kind of instrument was in the form of 

‘material manipulatives’ used as ways to enhance the didactical potentialities of the manipulation by 

pupils: such manipulatives include the protractor, paper-pin, mathematical machine, 2D and 3D 

shapes, miniature, compasses, and so on. The other kind of instrument the participants studied 

comprised various technological tools, including DGEs, videos, IWB, tutorial system, touch-screen 

tablet. Some papers described the use of only one kind of instruments, while other ones proposed 

educational environments in which the two kinds of tools were used by students and teachers within 

complementary and synergistic approaches. 

Those papers had different approaches and theoretical backgrounds. For instance, there was 

discussions about papers that aimed at fostering the use of tools to mediate mathematical meanings 

(e.g. geometric reflection, Pythagorean theorem), with explicit reference to the theory of semiotic 

mediation. In papers that used DGEs or manipulation (of shapes, 3D models, geometric miniatures) 

to pass from the global spatial perception (iconic visualization) to an analytic visualization and to 

identify proprieties (non-iconic visualization), the main references were to the instrumental 

approach, the works of Duval and Van Hiele's levels. 

Some of the papers examined how the use of tools give opportunities for new experiments that can 

be useful in teaching. These tools included images used as a way to stimulate dialogic talk amongst 

student, or technological tools used to change the way of teaching. In this last case, the double 

approach (didactic and ergonomic) was used. 

Two papers focused on teacher education (pre-service and in-service) and reported on the use of 

DGE to improve generalization and geometrical construction (with their justifications within 

Euclidean geometry). Here it seems that DGEs are no longer ‘new’ and specific in the classes but 

nevertheless remain somewhat complicated within teachers’ education. 

The group noted, as detailed later, that there is a true need for improving the ‘networking’ between 

the didactical approach and the psychological approach concerning the use of tools. 

Visualization and spatial skills 

Some 8 contributions mentioned visualization or spatial skills as a keyword. This topic has been 

raised over the three previous CERMEs and continues to be an important and autonomous subject in 

our discussions. We chose to use the word skills rather than abilities, capacity or capability, as it can 

be that these latter terms induce pejorative interpretations, seeing it as something innate that cannot 



be changed or trained. The research questions were multiple and intertwined: What are the children 

spatial skills? How can we evaluate or train it? What is the role of spatial skills in the teaching and 

learning of mathematics? Visualization: what are we talking about? How to train visualization in 

geometry? What for? What are the links with language issues? We first had to clarify the relations 

between visualization and spatial skills: are these referring to the same thing? 

In terms of spatial skills, these are related to a psychological point of view. They are linked to the 

perception, representation, (mental) manipulation of objects, orientation (following a path...), spatial 

knowledge, location in space. Spatial skills have many facets, and from a psychological point of 

view visualization is one of these (but it is not very precisely defined in the literature). Spatial skills 

are very important in mathematics education and has various meanings: sometimes it is not specific 

to geometry (STEM education), and sometimes it is linked to spatial problems and spatial 

knowledge (Berthelot & Salin). We pointed some mutual understanding issues between the two 

fields: for instance, micro/macro space (Berthelot & Salin) are similar to small/large scale 

(Montello). 

What we called visualization is more specific to geometry, and involves combination of perception, 

interpretation and reasoning. It links perception to reasoning, and helps back and forth between 

practical and theoretical matters in geometry, so that it depends on spatial skills, mathematical 

constraints and language. Then, the precise meaning of visualization depends on the topics: 

visualization is not the same when drawing plane projections of 3D models or when trying to prove 

a result. From a didactical perspective it has a double nature – psychological and mathematical – 

and, in this case, spatial skills are a part of visualization. We will keep this acceptation in this text. 

Spatial skills are very important for early geometry, as most of the tasks are related to the perception 

of the space: role in the learning of geometric characteristics of the shapes (Douaire & Emprin), 

need for the coordination of small/large scale, micro/macro space, local/holistic perception 

(Vendeira, Papadaki, Klaren)… A psychological point of view is crucial to make more clear general 

cognitive difficulties of the tasks, and a didactical one links it to the teaching of mathematics.  

Visualization is more a mathematics education issue, so it is related both to spatial skills and to 

mathematical knowledge. In a general way, the question is “How to get enough information using a 

drawing to solve a given problem?”. It is declined, with very different aims, in every context: as an 

obstacle (prototypical shapes or too obvious results), using DGS, differences with Autistic Syndrom 

Disorder students, identification of geometrical properties or characteristics on a drawing… It is a 

great issue for early geometry, but it is often neglected when students get older, and we suggest this 

should be studied. 

Language, proof and argumentation 

The former topics are linked to proof and argumentation by langage. Argumentation and formal 

proof are linguistic activities about abstract objects, but they involve working on material objects 

(and then manipulation and visualization). Many works pointed this out. For instance Fujita’s 

dialogic process involves both visualization and social interaction, Klaren’s work on ASD students 

suggests that not seeing a square as a rectangle could be lined to the dutch word for rectangle, and 

we worked on Duval’s dimensional deconstruction which is a discursive process and visualization 

at the same time. 



Some five contributions addressed proof and argumentation, not necessarily about proof itself but 

about ways of motivating proofs or argumentation. One topic for discussion was the influence of 

prototypical images on the reasoning process. Another topic was how teachers can have different 

concept images of a geometric figure (such as a rhombus) and different conceptions of a valid 

geometric construction of the shape. A third topic for discussion was the design of tasks that can 

provoke surprise, uncertainty or cognitive conflict, and tasks that can provoke the reconsideration of 

conjectures or proofs. This last consideration was strongly linked to the visualization issues, as for 

instance using non-euclidean geometry was seen as a way to give less visual information and to 

provoke the use of mathematical proof. 

A particular focus for discussion was the digital environment QED Tutrix which is being designed 

to provide hints to the student user, while taking into account a judgment of the student’s cognitive 

state based on the way they are using the system. 

Perspectives and conclusion 

As might be discerned from the introduction, and as can be found in the papers that follow, there are 

a number of topics that continue to be of great interest to this topic working group. These include 

the role of instruments, manipulation, representations, proof and argumentation, and initial 

geometrical knowledge, in geometry education. We also note that the variety of the teaching and 

learning contexts increased: young children, secondary school, pre and in-service teachers training, 

but also university, specific education (ASD students), clinical studies… The synthesis of this 

numerous points of view required intense and rich debates. At this CERME, in the continuity to the 

former ones, a number of topics became more important. These include visualization and spatial 

skills which had already been discussed in the last CERMEs, and language in doing geometry, 

whose role has increased during this session. 

In conclusion, the working group continues to feature great diversity: in cultural backgrounds 

(curricula, school culture, teaching culture, research culture …), research questions, theoretical 

backgrounds and methodology. This continues to present some challenges in people understanding 

each other, sometimes linked to language and sometimes to what can be implicit meanings due to 

different research backgrounds. 

A very visible benefit of the great diversity is that it invariably leads to very fruitful discussions and 

to attempts (and success) to clarify participants’ points of view. In taking forward the work of the 

group, there is an increasingly important need for combining the frameworks, both theoretical and 

methodological. 
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In the present study, we compare the practice of one teacher in two 5th-grade classes for the same 

teaching concept (about angles) according to different working arrangements. In one of her classes, 

the teacher combines lecturing and interactive class: she talks and she exposes knowledge in front of 

her students. In the second class, she decides to try a new working arrangement: the flipped 

classroom. We compare the knowledge at stake by studying actions, gestures and language when 

video lectures are used on the one hand and when such devices are not used on the other hand. Thus, 

we compare the knowledge, which was shared and discussed in the classroom. 
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Introduction  

Our goal is to study the impact of the working arrangements’ modifications (use of the touch screen 

tablet or not) about knowledge exposure (Allard, 2016). More specifically, we study the geometric 

knowledge exposure when the students learn to use an instrument (the protractor). We think that the 

use of artifacts have a contribution at the cognitive level (Mariotti & Bartolini Bussi, 2008).Thus 

learning to use a protractor contributes to the construction of the angle’s concept.  

This paper focuses on the teaching and learning of the angle’s concept. It involves one teacher, Marie, 

and her grade 5 students in their use of the protractor. In France, at primary school level, students 

learn how to compare angles and how to reproduce a given angle using templates or tracing paper. In 

5th grade they are then trained to use a protractor to measure angles and to construct an angle with a 

given measurement. 

For several years, ministry of education recommends the use of new technologies and more recently 

emphasizes the need to individualize teaching: the flipped classroom may provide the means to meet 

these demands. This model of classroom instruction can be defined as an educational technique that 

consists of two parts: interactive group learning activities inside the classroom, and direct computer-

based individual instruction outside the classroom (Bishop & Verleger, 2013). 

Theoretical framework  

This qualitative study is built on prior work on the Double Approach by Robert & Rogalski (2005), 

current work on the concept of angle and on the study of actions with instruments Petitfour (2015).  

About practice 

To analyse and interpret teacher’s practices, we use the theory of the Double Approach defining five 

components: personal (teacher’s choices, beliefs), social (teachers’ working place, their colleagues 

and the social environment of their students, in both disadvantaged and advantaged areas), 

institutional (curriculum, relationship with supervisors), cognitive (choices about mathematical 

contents, tasks, organization and forecasts on how to manage the session) and mediative 

(improvisations, speeches, motivation of the students’ participation, devolution of instruction and 



knowledge exposures). The study of the students’ activities allows to give information on cognitive 

and mediative components (what students did, what they said about their activities and what they 

learnt). Consequently, we have to clarify the elements of knowledge at stake, misconceptions and 

difficulties in the learning of the concept of angle.  

About angle  

Angle appears to be a very complex and multifaceted concept, which can be defined in three different 

aspects: turn (an amount of turning between two lines meeting at a point), ray (a union of two rays 

with a common end point) and region (the intersection of two half-planes) (Mitchelmore & White, 

1998).  

Students encounter numerous difficulties in the learning of angles and misconceptions have been 

pointed out in several experimental studies (Berthelot & Salin, 1995; Mitchelmore & White, 1998; 

Devichi & Munier, 2013). Many students for instance consider that an angle's size depends on the 

length of its arms; or that one arm must be horizontal and the direction always counterclockwise; or 

that the angle is a sector in a circle (i.e. a “slice of pizza”). Tanguay and Venant (2016) hypothesize 

that this misconception is a possible effect of the systematic use of the protractor, when measures in 

degrees are at stake. Moreover, the confusion between the mathematical concept and the shape that 

represents it generate mistakes when students consider the spatial characteristics of the design 

representing the angle (Balacheff, 1988). 

Students face some difficulties in using a protractor, which have been stressed in the literature. For 

example, Close (1982) observed mistakes due to a lack of mental representation of the protractor’s 

angle to superimpose to the angle to be measured or due to the complexity of the dual scale. Tanguay 

(2012) summarizes some well-known difficulties encountered by students: they align the edge of the 

protractor body itself along one of the angle’s arm instead of the baseline; or they don’t place the 

protractor origin over the vertex of the angle to be measured. They can also read the measure on the 

wrong scale or on the right scale but in the wrong direction, for example by reading on 

counterclockwise graduation 39° left to 40° instead of 41°. 

About actions with instruments 

We consider four categories of knowledge according to a theoretical framework to study actions with 

instruments (Petitfour, 2015)1: 

- geometric knowledge about geometric objects, relations and properties 

- graphic knowledge about representation of geometric objects (symbolic signs, drawings) 

- technical knowledge about the instrument functionality, its use to obtain the graph and the 

theoretical relationship between the graphical trace and parts of the instrument 

- practical knowledge about a given artifact, connected to its concrete handling and to a 

concrete organization of the action with it 

Methodology 

We study the practice of one teacher, Marie, who wanted to experiment with a new style of 

instruction: the flipped classroom. Thus, her students should learn some mathematical content online, 

                                                 

1 This framework is based on an instrumental approach (Rabardel, 1995). 



by watching video lectures at home before the class session, whereas in the classroom, they should 

solve more exercises. Consequently, the teacher would be freer in the class session for discussing 

with the students: that should lead her to a more personalized guidance and to greater interactions 

with students than traditional teaching. 

In our study, three components are common to the two situations that we analyze here: institutional, 

personal and social. Marie’s components can be defined as follows: she is appreciated by her 

supervisors, colleagues and students. She thinks that in order to learn (and to teach) well it is necessary 

to handle and to solve a lot of exercises. She finds that she has never enough time. She is concerned 

about the learning of her students. She teaches in a rural school without social difficulties. In her two 

5th-grade classes, she volunteers to include gifted students. These three components are stable and the 

same in the two situations. Thus, we can compare the practice of the same teacher in two 5th-grade 

classes in the same area. Consequently, we can focus only on the mediative and cognitive 

components. In order to foster the comparison, we asked Marie to teach the same content and to 

propose the same tasks in her two different classes, one with video lectures and the other one without.  

Data  

In order to describe practices and inform mediative and cognitive components involved in the Double 

Approach, we focused on: 

- one video for the ‘flipped classroom’ and two for the ordinary class that we have transcribed 

- two short video lectures which we have transcribed 

- the notebook lessons, exercises book and topics of assessment 

- the teacher’s interviews conducted before and after the sessions 

We have split each session in episodes. We have identified different types of episodes in relation with 

the teacher’s specific goals and exposure of knowledge (Allard, 2016). For example, in the lecturing 

session, the teacher remembers specific words (how to call angles according to their openings 

measured in degrees) at the beginning of the class session. The teacher also recalls to the students the 

specific symbol to note an angle (𝐴𝐵�̂�). These moments are reminder episodes (type 1): the teacher 

recalls of previous knowledge. Regulation episodes (type 4) are moments when the teacher intervenes 

to explain and to anticipate difficulties. The main goal of the regulation episodes is to provide 

students’ progress. So we have identified six types of episodes.  

For lecturing sessions 

The two lecturing sessions last 45 minutes. The aim of the first session is to measure an angle with 

the protractor. The aim of the second session is to draw an angle of a given measurement. They follow 

the same organization in six types of episodes (table 1). 

  



 

1 
Reminder episodes: 

- categorizing angles according to their opening measured in degrees (1st and 2nd sessions) 

- noting and naming the angles (1st and 2nd sessions) 

- defining the center of the protractor, based on a description of the artifact (1st and 2nd sessions) 

- measuring angle with a protractor (2nd session) 

- estimating and controlling the measure (2nd session) 

2 Methodological episode: estimating and controlling the measure 

3 
Presentation of the new knowledge: presenting and discussing the methodological sheet about measuring (first 

session) and drawing angles (second session) with a protractor. 

4 
Regulation episode:  

- anticipating difficulties (in relation with the dual scale or extend ray) 

- reviewing any personal concerns or difficulties that are raised during the session 

5 Exercises episode: providing activities and handing out methodological and exercises sheets 

6 The correction of the exercises: exposing knowledge and the difficulties encountered 

Table 1: the six types of episodes for ordinary session class  

The teacher talks to the entire class during certain types of episodes: 1, 2, 3, 4 and 6. Students are 

then facing the blackboard. It is only during the episode of type 5, that students work individually to 

solve exercises and the teacher interacts with them about their errors or difficulties. 

For the classroom with tablet 

Some students did not have access to the learning platform at home (because of one technical 

problem), as a result they did not watch the video session before the session in the classroom. 

Therefore, the teacher improvised and gave time during classroom session to watch and to listen to 

the video-class on the touch screen tablet. So, it’s an opportunity for us to observe students 

discovering by themselves a mathematic lesson. This session lasts 45 minutes. We have then 

identified three types of episodes (table 2). 

3 Presentation of the new knowledge by the video sessions about measuring and drawing angles with a protractor 

4 Regulation episode: reviewing any personal concerns or difficulties that are raised during the session 

5 Exercises episode: providing activities and handing out methodological and exercises sheet 

Table 2: the three types of episodes for video session  

Students worked in groups (by pairs) and watched the video lessons (episode of type 3). After that, 

they completed some exercises (the same ones that in the ordinary session class). The teacher walked 

around and talked with students to regulate their work one by one. For example, once more she 

explained how to handle the protractor. 

Data analysis 

Comparison of the episodes 

Ordinary class requires two sessions instead of only one for the class with the touch screen tablet in 

order to learn the same content. For the teacher, it seems to be an efficient method. But our study 

shows that less knowledge is going around in the class in the case of touch screen classroom (episodes 

of type 1, 2, 6 are absent), there is no link between previous knowledge and the new one, no collective 

reminder by the teacher and a lack of formulation of the knowledge by the students.  



In the ordinary classroom, students listen to each other and listen to the teacher, they raise their hand 

in order to come to the blackboard, they do individual exercises and sometimes ask questions or 

answer question the teacher’s ones. They are facing the blackboard, which promotes discussions 

between themselves and the teacher. In the touch screen tablet session, students watch the first video 

session several times and they solve the exercises individually. While they work on the exercises, 

many students listen to the touch screen tablet: they look at the gestures in the screen and they try to 

do the same, they stop, observe and copy. After that, they watch the second video and do exercises. 

Meanwhile, the teacher walks around the pair groups, corrects mistakes, rectifies the bad handling of 

the protractor. 

In the ordinary classroom, the teacher leads her students to use an appropriate language during the 

presentation of the new knowledge episode: for example, “center” for the center of the protractor 

instead of “hole”. We can see that the students appropriated this formulation in the ordinary classroom 

whereas they did not in the other classroom even if they had listened to the session video several 

times. We can see in this comparison to what extent the working methods seems to change what is 

said and what is shared. 

Now we compare what changes at the level of the potential learning about angle and the use of the 

protractor. 

Knowledge at stake 

Actions with a protractor in order to measure an angle or to draw an angle with a given measurement 

involve different pieces of knowledge. We study the knowledge at stake in the types of episodes 

where this knowledge is exposed to all the students, that is to say where the whole class has the 

opportunity to hear or to see the same thing. It concerns episodes of types 1, 2, 3, 4, 6 in the sessions 

without a tablet and type 3 in the session with a tablet. 

Some geometric knowledge appears explicitly in the session without a tablet whereas it does not in 

the session with a tablet. On the one hand, the classification of angles based on the degree 

measurement is recalled: angles are categorized according to their openings measured in degrees: an 

angle can be right, acute, obtuse, straight, zero or reflex. On the other hand, “angle” is defined as 

formed by two rays (sides) that have the same endpoint (vertex), and “ray” is defined as a line 

extending indefinitely in one direction from a point. In the same way, graphic knowledge appears 

explicitly only in the session without a tablet: first, the symbol Λ enables to distinguish an angle and 

a triangle; second, an angle can be named with three letters, the second letter names the vertex, the 

first names a point on one side and the third a point on the other side. The fact that the line representing 

the ray can be extended in one side is mentioned in both sessions but only explained referring to some 

geometric knowledge in the session without a tablet. 

As far as the representations of an angle are concerned, drawings are more numerous in the session 

without a tablet. Indeed, in this latter session, five angles are drawn on the whiteboard, one is freehand 

traced and the others are traced with one of the edges of a set square. Besides, one is obtuse and four 

are acute with similar opening around 45° but which one with the vertex at right (it allows to use both 

protractor’s scales) (Figure 1). At last, the five drawings have a horizontal side and are named with 

three points. 

  



  

   
  

Figure 1: Drawings of angles in the session without tablet 

The drawing of the angle 𝐹𝑂�̂�, 52° had been presented by two students on the blackboard and each 

time, they have drawn an arc of a circle along the semi-circular edge of the protractor despite the fact 

that the teacher mentioned the uselessness of this curved line. This representation has led some other 

students to speak explicitly about “cake slice” which revels the misconception of the angle as a sector 

in a circle. 

Only two acute angles are drawn on a paper in the session with tablet. They are oriented in a non-

prototypical way and are named with the letter of the vertex (upper case) and the letters of the 

direction of each ray (lower case) (Figure 2). It is not this latter notation that is used in the application 

exercise but the notation with three points. 

  

Figure 2: Drawings of angles in the session with tablet 

In both sessions, drawn angles are named both spoken and written. In the session without a tablet, the 

teacher sometimes used gestures too (Figure 3) expressing either the “ray” aspect or the “region” 

aspect of an angle. 

 

 

 

Figure 3: Gestures about angles (Left, “ray” aspect and middle and right, “region” aspect) 

Moreover, in the case of the obtuse angle 𝐴𝑂�̂� (Figure 1), she used a symbolic sign – a small arc of 

a circle – in order to indicate what angle is to be considered. In the session with a tablet, there are 

only deictic gestures pointing the letters “x”, “O” and “y” when they are uttered in order to name the 

measured angle.  

Some technical knowledge is recalled only in the session without a tablet. This knowledge concerns 

the protractor’s functionality: a protractor is a measuring instrument, the measurement is expressed 

in degrees; and a description of the protractor parts to link with the graphical representation of an 

angle. Indeed, the localisation of the protractor’s centre is first given in a general way, by the use of 



language accompanied by gestures, then the graduation 0° and the dual scale (inner and outer) from 

0° to 180° are named and pointed on the protractor by the teacher. 

The steps to measure an angle and the steps to draw an angle using a protractor are formulated in the 

same way in the two sessions. What is said is exactly what is written on the summary sheet given to 

the students. For example, here are stated the three steps to measure an angle: first, place the protractor 

so that the centre is over the vertex of the angle to be measured; second, place the graduation zero 

degree over one side of the angle; third, follow the graduations of zero degree, ten degrees, twenty 

degrees, … until you reach the other side of the angle. It is also stated that perceptive evaluation of 

the opening of the angle – greater or smaller than the one of the right angle – enables to control 

possible measurement errors.  

In the session with a tablet, the students can hear and see the operating filmed sequence as many times 

as they wish, pause and go back whereas in the session without a tablet, the operating sequence is 

presented several times by different students on the blackboard (for example, three times to measure 

an angle before doing the application exercise). The teacher helps the students to formulate the 

method they implemented. 

Practical knowledge appears only in the session without a tablet. For example, some protractors have 

a hole to show the centre near the bottom of the protractor whereas the blackboard’s protractor has 

his centre on the bottom; the semi-circular edge of the protractor can be damaged so that it is better 

to avoid tracing along this edge; if the protractor goes beyond the lines represented sides of an angle 

to be measured, then the lines must be extended. Regarding organizational aspects, the teacher gave 

students the advice to store the protractor in a pocket in their workbook to avoid breaking it.  

Results and conclusion 

Our analysis of one teacher’s practice about the use of the protractor allowed us to point out the 

following results. Some of the students ’difficulties and mistakes are the same in both sessions, with 

and without tablet, when the students trace or measurement by themselves during the exercises 

episodes: wrong localization of the measure on the protractor, measurement without extending the 

line representing ray when it is necessary, clumsy handling of the protractor. Errors to note and to 

name points and rays appeared only in the session with tablet (students didn’t manage to adapt what 

was presented in the video lecture). Moreover, there are inaccurate wordings that show confusion 

between length and angle. The correction of the arising errors is private in the both sessions but also 

public and shared in the session without a tablet. Finally, whatever the case, there is no difference 

between the assessment results of the two classes, according to the teacher and the collected data 

cannot inform us about the arrangement that would better foster learning.  

This study confirms that the modifications tied to the mediative component, in particular in terms of 

working arrangements, have a very important impact on the knowledge exposure (Allard, 2015). 

Indeed, in the session with tablet, the only exposed knowledge is the knowledge of the tablet, without 

possible links with difficulties met by the students. In the lecturing session, there is more knowledge 

exposure thanks to the interactions between the students and their teacher. 
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This study is a research on teaching practice, developed in the context of an elective course on 

Dynamic Geometry for prospective kindergarten and elementary school teachers taught by the first 

author of this paper. We aim to analyse the role of GeoGeobra in the development of geometric 

reasoning, particularly the way individuals geometrically structure figures. The participants are a 

class of six future teachers. Data was gathered from the participants’ portfolios and classroom 

observation while working on an exploratory task, which focuses on constructing draggable figures. 

The results show that this type of activity promotes spatial and geometric structuring, beginning 

with the perception of elements and relationships that enable the dynamic construction, and moving 

on to the description of the construction using formal concepts associated to the tools of the DGE. 

Keywords: GeoGeobra, geometry, structuring, visualization, teacher education.  

Introduction  

Research has shown the interest in engaging students of different ages in activities using dynamic 

geometry environments (DGE), for the improvement of concept learning and the development of 

reasoning (Sinclair & Yerushalmy, 2016). In particular, Hanna and Sidoli (2007) indicate that the 

DGE are a promising way “in enhancing the students' ability to notice details, conjecture, reflect on 

and interpret relationships and to offer tentative explanations and proofs” (p. 77). Also, in education 

programs, relevant research confirms the effectiveness of the use of technological tools, including 

DGE, to improve the knowledge of teachers and future teachers (Jones & Tzekaki, 2016). In this 

study, we aim to analyse the role of GeoGeobra in the development of geometric reasoning, in a 

context of a geometry course for future kindergarten and elementary school teachers, based on 

exploratory tasks. In particular, we which to understand how the construction of draggable figures in 

the DGE contributes to geometric structuring (Battista, 2008)? 

Theoretical framework 

Prospective elementary teacher education in geometry 

The knowledge necessary for teaching includes mastery of mathematical reasoning, ways to solve 

problems and communicate mathematics effectively, understanding of concepts, procedures and the 

process of doing mathematics (Albuquerque et al., 2005; NCTM, 1991). Concerning geometry, 

kindergarten and elementary school teachers should understand how it is used to describe the world; 

analyse two and three dimensional figures; use synthetic geometry, coordinates and transformations; 

improve skills in producing arguments, justifications and in visualization.  

Some researchers have claimed that there are few studies about teachers and future teachers’ 

knowledge in geometry (Chapman, 2013; Clements & Sarama, 2011; Steele, 2013). However, the 



existing literature provides reasons to believe this is a problematic area. As Clements and Sarama 

(2011) state, in many countries teachers from every level are not always provided with adequate 

preparation in geometry and lack of knowledge and confidence in this area. Concerning 

kindergarten and elementary prospective teachers, many only recognise and categorize shapes by 

their overall similarity to prototypes, instead of charactering them by their properties (Clements & 

Sarama, 2011; Fujita & Jones, 2006) a problem we also identify in Portugal (Menezes, Serrazina & 

Fonseca, 2014). Overall, as Jones & Tzekaki (2016) recently stressed, studies on teachers’ 

geometric knowledge and teacher education programs indicate that we still need to give attention on 

how prospective teachers build their understanding of geometrical objects. Also, we should take 

into account the effectiveness of approaches such as the use DGE. 

Developing geometric reasoning and the use of DGE 

King e Shattschneider (2003) present eight reasons for a teacher to use a DGE: (i) to take advantage 

of the accuracy of geometric constructions and measurements, leading to confident results; (ii) to 

promote visualization; (iii) to encourage exploration, investigation and discovery leading to the 

formulation of questions, conjectures, and their test; (iv) to encourage demonstration because the 

experimental evidence offers the necessary conviction for such enterprise, and may provide clues; 

(v) to support the understanding of geometric transformations; (vi) to support the understanding of 

loci; (vii) to provide simulation opportunities for a wide variety of situations; and (viii) to allow the 

creation of microworlds, using new tools and allowing exploitation of non-Euclidean geometry. 

A major emphasis on using DGE concerns the constructing of figures. Laborde (2001) compares 

this type of activity when performed using a DGE versus using paper and pencil. In her view, when 

we draw a figure using paper and pencil, the activity is often controlled by perception rather than 

being driven by the properties of the figure. Instead, in a DGE is not possible to construct a square 

in a similar way (“led by eye”) and it requires more knowledge about the figure. But if the students 

are able to apply the properties correctly, we can ask ourselves, as does Battista (2007), what have 

they learned from the activity? For this researcher, “perhaps no new knowledge was acquired, but 

instead, the students’ knowledge and reasoning were deepened and enriched . . . Or perhaps 

connections between properties were newly constructed or extended” (p. 878).  

In order to analyse this reasoning we draw on the framework developed by Battista (2008). This 

researcher established a categorization of reasoning using three levels, corresponding to increasing 

degrees of sophistication: spatial structuring, geometric structuring and logical/axiomatic 

structuring. Spatial structuring is a special type of abstraction corresponding to the mental act of 

constructing an organization or form for an object or set of objects by identifying its components, 

combining them into spatial composites, and identifying the way they combine and relate. Spatial 

structuring enables a person to imagine manipulating an object, reflect, analyse and understand it. 

Geometric structuring describes spatial structuring using formal concepts such as congruence, 

parallelism, angle, transformations or coordinate systems. Geometric structuring is based on spatial 

structuring, that is, to be able to structure geometrically an object, it is necessary that one has 

interiorized the corresponding spatial structure. Logical/axiomatic structuring formally organizes 

geometric concepts in a system so that their relationship can be established through logical 

deduction. To operate at this level, it is necessary that verbal or symbolic statements can replace 

mental models. The research of Battista (2008) in a DGE (the Shape Makers microworld) with fifth 



graders showed that the manipulation of shapes and the reflection on that manipulation may enable 

the pupils to move from thinking holistically to thinking about the geometric properties of the 

figure, that is, to progress from spatial structuring to geometric structuring. However, he also points 

that there is a need for guidance, reflection and experimentation in order to construct formal 

geometric conceptualizations of the DGE constraints. 

Methodology 

The first author of this paper designed and taught an elective course on Dynamic Geometry in 

2015/26, as a new offer in the teacher education program for prospective elementary school teachers 

in her institution, in Portugal. The course was divided into two phases: (i) 10 lessons dedicated to 

solving geometry tasks organized into four topics – problem solving, constructing, investigating and 

creating; and (ii) 5 lessons dedicated to didactics of geometry, projecting the work of the DGE with 

children from kindergarten to 6th grade. In the classroom, there was one computer for each 

participant, but they were encouraged to discuss with their colleagues. Regarding the assessment, 

each participant built a portfolio containing a task from each topic, detailed solution and a reflection 

on the activity, and also constructed a GeoGeobraBook with the files used to solve the tasks.  

This study is a research on teaching practice based on the observation of the activity of the 

participants and their solutions of a task and aims contributing to their professional and 

organizational development, “as well as to generate important knowledge about educational 

processes, useful for other teachers, for academic educators and the community in general” (Ponte, 

2002, p. 13). Data was gathered mainly from the portfolios and GeoGeobraBooks of the 

participants, complemented by the field notes taken by the first author, while observing the 

participants and supporting their work. There were only six participants: five females who were in 

the 2nd year of the program (also attending a compulsory course of Geometry) and a male in the 3rd 

year, the only one who had some experience with DGE. Since the Dynamic Geometry course is 

elective, the choice the participants may be considered an indicator that they like geometry and do 

not feel strong difficulties in this area, which was confirmed in this group. The task (Figure 1) was 

proposed in the 5th lesson, within the topic Constructing. It was intended that the participants would 

reproduce draggable figures, or families of figures, in GeoGeobra from the properties visually 

identified, thus corresponding to one of the major emphases reported by Battista (2007).  

1. Construct both stars. Describe briefly the process.  

2. For each of the stars, find another building process 

and describe it.  

3. Construct other stars of this family with a larger 

number of points. Generalize one of the construction processes you used.  

4. Establish relationship between the number of star points and other elements. 

Figure 1 – Task Constructing stars (adapted from Johnston-Wilder and Mason, 2005) 

The data was analysed using a framework (Table 1) built by the first author of the paper (Brunheira, 

2016), based on the concepts of spatial and geometric structuring (Battista, 2008). The table does 

not include the logical/axiomatic level, since it means that one operates at a symbolic level, which is 

not the purpose in this task. We use the framework to analyse the solutions, looking for the evidence 



of the descriptors in order to characterize the level of structuring of the participants. However, we 

stress that despite the attribution of a level to a solution, this does not mean that we can characterize 

the level of structuring for an individual solely based on a solution of a task, so this must be seen as 

an indicator. Also, we cannot consider that solving a single task is enough to improve significantly, 

but this analysis may enable us to recognise it’s potential. 

Levels 
Geometric structuring 

Spatial structuring Knowledge of concepts 

N0 

Does not establish geometrical relationships 

between figures and their elements, or does 

not provide most of the times. 

Does not know most of the basic 

concepts and the language is very limited 

in terms of geometric vocabulary. 

N1 

Perceives geometric relationships involving 

visible elements of figures, but it may 

depend on the position of the figures, their 

elements or the context. 

Knows the concepts of side and angle, 

congruence, perpendicularity and 

parallelism in the plan; in space, knows 

the concept vertex, edge, and face. 

N2 

Perceives geometric relationships involving 

visible elements of figures in any positions 

or context. 

Perceives geometric relationships involving 

invisible elements of figures, but it may 

depend on the position of the figures, their 

elements or the context. 

 

Knows the concepts as axe of symmetry, 

diagonal, bisector, midpoint and the 

geometric transformations in the plan; in 

space, knows the concept of congruence, 

parallelism and perpendicularity.  

 
N3 

Perceives geometric relationships involving 

visible or invisible elements of figures in 

any positions or context. 

Produces generalizations of geometric 

relations for a family of figures. 

Table 1 – Descriptors of the levels of spatial and geometric structuring 

Results 

Next we present an analysis of task solutions from prospective teachers Maria, Carla and Louise 

taken from their portfolios, which we consider to be representative of all the solutions presented. 

Maria’s solution of the task 

In figure 2 we present an excerpt containing two processes presented by Maria. Process A was used 

to build the two initial stars and process B was used for the same purpose, as well as to generalize. 

Both constructions begin with the image of the star as a whole figure and a regular hexagon where 

the star is inscribed in two different ways. 



 

Process A                                             Process B 

             

Construct a polygon with a certain number of sides and then two polygons from the union of non-

consecutive vertices. The number of the star points corresponds to the number of the vertices of 

the polygon used for its construction. It is not possible to do this based on regular polygons with 

an odd number of sides, since there are not two sets of non-consecutive points to be connected. 

Figure 2 – Excerpt of Maria’s solution of the task  

Maria looks at the star as a whole figure inscribed in a regular hexagon in two different ways. She 

draws on invisible elements that were created to assist the construction. Regarding the 

generalization, Maria presents a process which can be applied to any star and establishes a 

relationship between the initial polygon and the number of points of the star. Finally, she identifies 

that this polygon cannot have an odd number of sides and justifies her finding. Thus, Maria’s 

solution shows a very good geometric structuring for this family of figures, corresponding to Level 

3 of the framework. 

Carla’s solution of the task 

Carla uses a procedure similar to Maria’ process B and another process, shown in Figure 3. 

   

1. Construct an initial figure in accordance with the number of points of the star (this polygon 

should be a regular polygon in which the number of vertices is half the number of points of the 

star). 2. Trace the perpendicular bisectors for each side of the polygon to find its center. 3. Draw a 

circle centered at the intersection point of the bisectors and a radius to reach a vertice of the figure. 

4. The intersection points between the bisectors and the circumference will be the vertices of the 

second figure that makes up the star. 

The number of points of the star is twice the number of sides of the inicial figure. 

Figure 3 – Excerpt of Carla’s solution of the task  

She looks at the star decomposing it into two congruent regular polygons, one of which constitutes 

the starting point for construction. The determination of the second polygon involves visualizing the 

star inscribed in a circumference, and the vertices of the second polygon on the perpendicular 

bisectors (a concept that she did not know). Thus, she identifies that the consecutive vertices of the 



star are equidistant from each other and also equidistant from the centre of the star. Regarding the 

relations established, Carla identifies that the number of vertices of the initial polygon is twice the 

number of points of the star, but does not justify this. Therefore, Carla identifies various 

relationships between their elements, using visible and invisible elements and adequate concepts, 

such as the circle and the perpendicular bisector, thus showing a very good geometric structuring of 

the family of figures, which also corresponds to level 3. 

Louise’s solution of the task 

Louise builds the stars initially as Carla (draws the first polygon, traces the bisectors and finds the 

point of intersection). However, while Carla seems to look at the star in a static point of view, 

Louise visualizes the “movement” of the first polygon to obtain the second. The participant had an 

intuitive idea that rotating the initial triangle in a certain way, it would be possible to obtain the 

second triangle and form the star, although she did not know the formal concept of rotation and that 

we should define the rotation by a centre and an angle. She asked for help to find out if the 

GeoGeobra could run this “movement” and the teacher explained how the “Rotation” tool worked. 

Next, Louise presented the following relationships: “For regular polygons with even number of 

sides, amplitude = 180°/(number of sides); For regular polygons with odd number of sides, 

amplitude = 180º”. Thus, we consider that her solution also reflects level 3. 

Discussion 

All participants were successful in the task. They presented different and valid constructions 

mobilizing a variety of elements of the figures (visible and non-visible), relations between them, 

transformations and properties, some of them were unknown to them. So, the main conclusion we 

want to emphasize is that the construction of figures using GeoGeobra significantly enhances the 

geometric structuring by promoting the identification of properties and relations between elements, 

as Battista (2008) reported in his study. This improvement stems from different features and 

strengths that we recognize in the DGE, some of them indicated by King e Shattschneider (2003). 

We start with two features – easiness of use and accuracy of the constructions – which we associate 

the two strengths – promoting intuition and exploration. In fact, sometimes participants started the 

construction from an insight of the properties and elements of the figure (or auxiliary figures) that 

could be useful, but they were not sure. The possibility to easily test the conjectures through a quick 

and accurate construction was a key aspect, as Maria explains: 

With GeoGeobra it was possible to explore different forms of construction of the stars using 

polygons, lines, midpoints, parallel lines, among others, easily, simply and accurately. If we 

didn’t have this software this would be a long and relatively difficult process, especially the 

construction of regular polygons used as a basis for the construction of stars. (Portfolio) 

Another potential of GeoGeobra that emerged was the promotion of justification, which we did not 

ask for in the task. In fact, the ability to test the construction validity, as in a trial and error process, 

does not mean that participants do not reflect on their actions, as we note in Louise's comment: 

I had to stop and think why the rotation angle depends on the number of sides, as well as to find a 

mathematical answer to for the correct value. (Portfolio) 



In this case, we see a need to reflect on the value of the angle, which led to the justification of the 

chosen value and the understanding the generalization. So, although the DGE played an important 

role in the user's belief that a relationship is valid, did not lead to underestimate justification, instead 

promoted the search for it (Hanna & Sidoli, 2007).  

Another feature of GeoGeobra is that it leads the user to work with the formal concepts associated 

with its tools. In this way, we may think that we can only take advantage of the DGE when 

operating at the level of geometric structuring. In fact, as Battista (2007) suggests, we cannot make 

geometric constructions without reaching some level of “conceptual and representational 

explicitness”. However, this investigation shows that GeoGeobra can facilitate the transition from 

spatial to geometric structuring. An example that supports this conclusion is the use of new 

concepts, like perpendicular bisector or rotation, that participants had just a vague memory from 

middle and high school, but were correctly applied as the DGE promoted their appropriation. 

Finally, in connection to the nature of the task which favours different solutions, GeoGeobra 

supports this diversity through a set of tools available, which also stimulates creativity. As Peter 

says:  

The choice of this task reflects on the freedom it gives us to construct the figures using different 

processes . . . [which] depend on our ability to imagine overlapping figures, guidelines for the 

construction and other key points of the figure . . . improves the ability to find relationships 

between figures and their elements and encourages creativity. (Portfolio) 

Conclusion 

This research was based on a construction task for which we recognize the potential mentioned by 

Laborde (2001). Besides, we corroborate the claims of King and Shattschneider (2003) regarding 

the reasons that support the use of the DGE, particularly the use of rigorous constructions and the 

promotion of visualization, exploration, investigation, discovery and demonstration, to which we 

would like to add creativity and intuition. However, the data also shows that constructing draggable 

figures in GeoGeobra contributes to spatial and geometric structuring. The main contribution of this 

study concerns the importance of this work in prospective teacher education. From a mathematical 

point of view, the data shows the relevance of the exploratory work involving geometric 

constructions using a DGE, promoting the evolution in the way they structure the geometrical 

figures by identifying relationships and properties. Apart from this perspective, the comments of 

participants also show the relevance of reflecting on mathematical activity itself. This reflection – 

here enhanced by the portfolio – enables prospective teachers to become aware of their own learning 

in relation to the task, which can be an important contribution to their didactical knowledge. 
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A unit on dynamic geometric construction was included in a professional development course for in-

service mathematics teachers. As a final task in that unit 28 teachers were required to construct a 

rhombus based on their own choice of given objects and tools, using the dynamic geometry software 

GeoGebra. Their responses were analysed according to: the choice of given objects; the choice of 

tools; the explanation and validity test; and the number of different rhombuses they claimed to have 

obtained. The teachers were found to have different concept images of a rhombus and different 

conceptions of what constitutes a valid geometric construction. While many claimed to have obtained 

an infinite number of different rhombuses, differences were observed in the "type of infinite". 

Recommendations are given for improving the task design to strengthen teachers' mathematical and 

pedagogical knowledge.  

Keywords: Geometric construction, dynamic geometry, GeoGebra, concept image, in-service 

teachers.  

Introduction 

From the use of a dynamic environment for geometric construction arise new frames of reference for 

the idea of construction. In this paper we present data accumulated during an in-service teachers' 

professional development course on dynamic geometric construction. We report on the data from two 

viewpoints: 

1. The practical viewpoint – we will describe teachers' construction methods in the final task in which 

they were required to construct a rhombus in different ways (each construction according to different 

given objects). We will discuss issues arising from the construction, both those concerning the nature 

and validity of the construction and those concerning the teachers' images of a rhombus. 

2. The pedagogical viewpoint – we will suggest possible ideas for improving the task design in order 

to hone and strengthen teachers' mathematical and pedagogical knowledge.  

Theoretical background 

Construction in geometry has a specific meaning: the drawing of geometric figures using only 

compass and straightedge without measuring angles or lengths (Hartshorne, 2000a). Geometric 

constructions have been a popular part of mathematics throughout history. Euclid documented them 

in his book entitled "Elements", which is still regarded as the authoritative geometry reference. In that 

work, he uses these constructions widely and extensively, and so they have become a part of the 



geometry field of study.  Geometric constructions also provide insight into geometric concepts and 

give us tools to draw figures when direct measurement is not appropriate (Hartshorne, 2000b). 

For about a decade, geometric constructions were removed from the Israeli curriculum. In 2014 

geometric constructions were again included in the geometry curriculum for middle school in Israel. 

Curriculum decision makers claim (INMMC, 2013) that geometric construction integrates geometric 

content knowledge with a deductive way of thinking that is essential for geometry proofs.  

The professional literature indicates that teaching mathematics using technological tools helps in the 

process of constructing an abstract knowledge of mathematics, and geometry in particular (Lagrange 

et al., 2003). GeoGebra is a powerful dynamic environment that allows testing of countless number 

of examples; provides effective and convenient tools for confirming or contradicting conjectures; and 

provides a wide selection of different tools for geometric constructions – from digital analogs of 

compass and straightedge, to shortcut tools, such as automatically drawing a line parallel to a given 

line (Fahlberg-Stojanovska & Stojanovski, 2010). GeoGebra is also a tool of assessment (Bu et al., 

2012); thinking processes can be observed by examining the construction protocol which can replay 

step-by-step onscreen.  

Vinner and Hershkowitz (1983) focused on the cognitive development of mathematical concepts, and 

proposed a model of two components: the concept definition – the verbal description of the 

mathematical concept, which characterizes the concept mathematically; and the concept image – the 

cognitive structure that includes all the examples and the processes related to the concept in the 

learner's mind. Geometric concepts have a special status: Fischbein (1993) coined the term "figural 

concepts" and argued (Fischbein & Nachlieli, 1998) that geometrical figures are characterized by 

both conceptual and sensorial properties. A geometrical figure is a mental abstract which is governed 

by a definition. At the same time, it is an image. In geometrical reasoning the two categories of 

properties should merge absolutely. 

In the context of this research, geometric constructions, which are carried out in a GeoGebra dynamic 

environment, can be seen as figural concepts. We used our personal, not formal definition (Vinner, 

1991) for geometric construction. To construct a geometric figure means to draw the figure on a 

computer screen using GeoGebra digital tools in such a way that essential properties of the figure 

remain invariant under dragging. 

The purpose of the study 

The aim of the present study is to: 

1. Characterise the in-service teachers' geometric constructions on the final task of the unit.  

2. Improve the design of the construction tasks in order to increase their contribution to the 

development of in-service teachers' mathematical and pedagogical knowledge.  

  



Methodology 

The research population  

This research was carried out in the framework of a 30-hour in-service professional development 

course whose aim was to acquaint middle-school and high-school teachers with a digital program for 

ninth-grade mathematics students.  A part of this course was the geometric construction unit. Since 

our assumption (which subsequently proved unfounded) was that the teachers were already 

acquainted with traditional geometric constructions using straightedge and compass, the unit dealt 

mainly with the use of the dynamic geometry software GeoGebra. When necessary, traditional 

methods were referred to. The focus of the research was on the responses of 28 teachers to the final 

task of the unit. 

About the final task  

Throughout the course the in-service teachers tried out different geometric construction activities 

using GeoGebra and thus learned to create a valid construction using dynamic tools. Instructions for 

the final task included the following reminder.  

Constructing with dynamic tools is not the same as drawing on a page since the objects (points, 

segments, etc.) are moveable: you can drag them and observe how other objects change 

accordingly. Each figure must be constructed so that it retains its characteristics even after other 

objects are dragged. For example, on constructing a rhombus according to its diagonals, check that 

after changing the lengths of the diagonals the figure remains a rhombus. This type of construction 

is called a valid construction. 

In the final task the teachers were required to: 

1. Construct a rhombus by three different methods, each construction according to different 

given objects (according to your choice), for example, according to its diagonals. 

2. Describe each construction process and prove that it results in a rhombus. 

3. State and explain how many different (non-congruent) rhombuses can be obtained by each 

method. 

Note that no instruction was given as to whether the given object is fixed or dynamic. A fixed side 

will yield an infinite number of rhombuses (same side length, different angles) while fixed diagonals 

will yield only one rhombus. Clearly if the objects are dynamic an infinite number of rhombuses are 

possible, but this is a feature of the software and not of the underlying mathematics. 

Data collecting and analyzing  

Each teacher sent a solution which comprised a picture of the final construction of the rhombus, the 

GeoGebra file, and explanations and justifications for the construction process. We used 

interpretative methods for analyzing these data. 

Findings: Characteristics of geometric constructions 

A qualitative analysis of the teachers' constructions yielded four main categories. 

1. The given objects on which the construction of the rhombus was based 

2. The construction process itself according to tools used 



3. The teacher's explanation and validity test 

4. The number of different rhombuses the teacher claimed to have obtained 

We present some examples of teachers' constructions, according to the above categories. The teachers' 

choices of given objects on which to base their construction were varied; for example, one side, two 

diagonals, one diagonal, an angle, a combination of the already mentioned objects, and other objects 

(such as area). We will present just two of these choices: one side and two diagonals. Here are 

examples from three different teachers who constructed a rhombus according to its side. 

Tzila's construction 

1. "The construction is according to 4 equal sides, each 

5 cm long." 

2. Used segments of fixed length, parallel line through 

a point, intersection point. 

3. "I created a rhombus from two adjacent sides each 5 

cm long, using parallel lines; that is a parallelogram 

with all 4 sides equal 5 cm." 

4. Infinite number. "Using a circling movement, with 

point A fixed, in a sort of circling round each time 

getting another rhombus whose diagonals are changing." 

Instead of just writing that the side of the rhombus was given, Tzila added a definition of rhombus, 

which, like every definition, provided a sufficient condition. Possibly she misunderstood the task, and 

thought that she had to state the conditions for creating a rhombus, or perhaps her concept image of 

rhombus is a parallelogram with four equal sides, or perhaps she misunderstood the components of 

deductive geometry. 

Anat's construction 

1. A quadrilateral of equal sides – each side of length 2 cm. 

2. Used segment of fixed length, circle with fixed radius. 

3. "According to the theorem: a rhombus is a quadrilateral with 

all sides equal."  

4. No answer. 

Anat's explanation shows that she, like many of the teachers, was 

confused about the components of deductive geometry (stating she was 

using a theorem when in fact she was using a definition).  

Yaron's first construction 

1. Rhombus with side of length a. 

2. Used circle with given radius, intersection point. 



3. "The length of the side of the rhombus is a since all the sides 

and the radius are length a. The construction is valid 

according to the dragging test. The construction relies on the 

principal of the length of the radius of a circle". 

4. "There can be an infinite number of rhombuses since 

although the sides remain equal lengths the diagonals and 

angles can be changed."  

Despite Yaron's claim that the diagonals and angles can be changed, 

he in fact built a rhombus in which the shorter diagonal was equal to the side and so the acute angle 

of the rhombus was 60o. He claimed that there are an infinite number of possible rhombuses given 

the length of a side, which is correct, but does not correspond to what he constructed. This error was 

repeated by many of the teachers. Interestingly, in another construction – described below – Yaron 

erroneously claimed an infinite number of possible rhombuses because of the dynamic nature of the 

given attributes.  

Here are examples of two teachers who constructed a rhombus according to its diagonals. 

Yaron's second construction 

1. Rhombus according to two diagonals. 

2. Used segment, perpendicular bisector, circle, and 

intersection point. 

3. "I based this on the fact that in a rhombus the 

diagonals are perpendicular and bisect each 

other, and on the principal of the length of the 

radius of a circle. The construction is valid 

according to the dragging test." 

4. "There can be an infinite number of rhombuses 

since the lengths of the diagonals are not fixed. We 

can lengthen or shorten them (or even only one of 

them). The rhombus can change – both its sides and 

its angles."  

Yaron constructed diagonals whose length changed dynamically. He did not relate to the fact that 

each pair of diagonals determines only one possible rhombus. 

Nora's construction  

1. According to two diagonals. 

2. Used segments of fixed length. By trial and error changing the 

angles between the segments. 

3. Did not check validity. 

4. No answer. 

If Nora had checked her construction she would have realised that it did 

not pass the validity test, as seen in figure 5.  

Discussion and conclusion 



In the discussion we will relate to the two viewpoints mentioned earlier: the practical and the 

pedagogical.  

The practical viewpoint  

In the context of the practical viewpoint we will characterise the findings in each of the construction 

categories. The first category is:  Given objects for constructing a rhombus. We have presented 

two of the teachers' choices of given objects: one side or two diagonals. All the teachers in the course 

chose the size of their given objects in one of two ways – either fixed size (a number) or dynamic (a 

parameter). This choice seems to be related to the teacher's conception of geometric construction – 

what is permitted in such a construction. It should be noted that these teachers had not previously 

learned constructions in a rigorous manner, and in particular, not dynamic constructions. Therefore 

we relate to their answers as based on intuitions about what is a construction and on geometric 

knowledge relevant to the specific topic. We suggest that teachers who chose fixed numerical givens 

have a concrete conception of construction that is related to particular sizes during the construction 

process, and did not refer to the characters of the figure which is constructed with dynamic tools. 

Teachers who chose dynamic givens have a broader conception of construction, not connected to size. 

This choice of dynamic givens corresponds more closely to the instructions – see above description 

of the final task. In addition, there were some teachers who were confused about defining the given 

objects, for example, Tzila, as described above.  

The second category is:  Choice of construction tools. We identified three types of construction 

process: measuring; using the extensive range of tools supplied by GeoGebra; and using a limited 

range of tools (cf. Fahlberg-Stojanovska & Stojanovski, 2010).   

Construction by measuring involves fixing the size of the required object (side, diagonal, or angle). 

For example, in Nora's construction she moved two rays to form a right angle. Another teacher created 

four equal segments using co-ordinate axes.  

An example of construction with the extensive range of tools is using the parallel line tool to ensure 

a parallelogram, as in Tzila's construction. Another example is using the perpendicular bisector tool, 

as in Yaron's construction.  

Construction with a limited range of tools imitates construction with straightedge and compass. For 

example, Yaron built a circle of variable radius. Anat used both measurement and the limited range 

of tools (using a circle of radius equal to the given segment of length 2 cm).  

The third category is: Explanation and validity check. None of the teachers gave formal proofs of 

their constructions. However their explanations provided us with an idea of their concept images 

(Vinner, 1991) of a rhombus. They explained their constructions according to their concept image 

and not according to the definition as given in the national school curriculum: a quadrilateral with all 

sides equal. A problematic concept image seems to create confusion between the different 

components of a deductive geometric argument, for example, between a theorem and a definition and 

between a theorem and a property. This confusion can be seen in the explanations of Tzila and Anat.  

We discerned two problematic areas in the teachers' explanations: an incoherent concept image 

related to mathematical knowledge; and an intuitive conception of construction in a dynamic 

environment, which seem to be related to the construction process in everyday life, for example 



Nora's construction which produced a rhombus. This construction did not fulfill the demand that the 

construction will remain a rhombus also after dragging. 

This conception resulted in most of the teachers producing an invalid construction. There is not 

enough information in the data to pinpoint the main causes of these problems – are they connected 

to missing technological knowledge, or to missing mathematical knowledge, or to a faulty 

conception of construction, or to a combination of all three? More research is required to clarify 

this. 

The fourth category is: Number of solutions. We identified three types of responses, each claiming 

an infinite number of solutions: relating to the dynamic nature of the given object, as seen in Yaron's 

second construction; relating to the mathematical properties of the given object, as seen in Tzila's 

construction; relating to the position of the given object in the plane. This latter type was seen in the 

response of a teacher who wrote: "In the plane it is possible to position the rhombus in any place you 

want".  

The pedagogical viewpoint  

In the light of these research findings we recommend investigating some aspects of task design in a 

dynamic environment. On one hand the task design can assist teachers to execute the task, and on the 

other hand it can persuade them to use this task in their classroom (Bu et al., 2012). We suggest that 

it would be worthwhile to design the task on three levels: mathematical-pedagogical, technological-

pedagogical, and reflective. 

The mathematical-pedagogical level requires the teacher to define the concept and to construct the 

figure accordingly. In line with Fischbein (1993) we relate to a geometrical concept as a figural 

concept and thus its construction has practical meaning. Subsequently the teacher is required to 

construct the figure based on different sufficient conditions. Such a construction task would enable 

identification of the teacher's mathematical knowledge and her concept image, and could help to bring 

that concept image closer to the concept definition.  

The technological-pedagogical level requires the teacher to construct the figure at first using the 

limited range of GeoGebra tools (imitating straightedge and compass) and subsequently using the 

extensive range (enabling short cuts). We would like to investigate the connection between these two 

types of construction and the connection between the teacher's image of the geometric concept and 

her conception of geometric construction.  

The reflective level requires the teacher to check the validity of her construction, while considering 

the meaning of validity. Giving a detailed account of the results of the validity test should be an 

inseparable part of the task. Such an execution of the task should strengthen the connection between 

the mathematical and technological aspects. For example, if the construction "collapses" – after 

dragging the dynamic objects the properties of the required figure are not preserved – it is important 

to understand whether the "collapse" is due to a mathematical failure or a technological failure, or a 

combination of both. Such an analysis should contribute to the development of mathematical 

knowledge, pedagogical knowledge, and technological knowledge. 

We believe that the above characterisation may provide a starting point for further research and may 

contribute to the technology, pedagogy, and content knowledge framework (Koehler & Mishra, 2009) 

–  to help teachers integrate technology into their teaching. 
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Geometry is the subject where U.S. students are weakest on international assessments, but college 

geometry is an area of proof that is understudied. Since geometry is secondary students’ only 

exposure to proof, it is vital our secondary teachers can prove effectively in this content area. 

However, one obstacle to developing deeper understanding of geometric concepts in college 

geometry courses is that students tend to try recalling prior geometry instruction instead of 

engaging in any new material within a Euclidean geometric context. A document analysis of student 

portfolios revealed that although pre-service teachers in this document study began the semester 

with limited abilities to work with formal definitions, by the end of the semester all were able to 

propose and justify conjectures on novel surfaces. 

Keywords: Geometry, inquiry-based learning, pre-service teachers. 

Theoretical background 

Geometry arises from a set of undefined terms and axioms through which all other theorems and 

definitions are constructed. Hence, a thorough understanding of geometry involves a deep 

understanding of proof; yet, teachers possess a narrow understanding of proof. Studies indicate that 

pre- and in-service teachers believe proof only helps explain ideas used in mathematical concepts, 

and they do not recognize the ability of proof to systemize results (Mingus and Grassl, 1999; Knuth, 

2002b). Teachers lack the geometry content knowledge required for geometry proofs, and they are 

convinced by empirical evidence as well (Jones, 1997; Knuth 2002a). Consequently, teachers with 

inadequate proof and geometry understanding cannot be expected to impart adequate proof and 

geometry knowledge to students. Furthermore, college geometry is the only undergraduate proofs 

course that has not been studied in any systematic manner (Speer and Kung, 2016). 

Pre-service teachers in undergraduate proof courses do not adequately understand what arguments 

qualify as proof (Weber, 2001). They lack comprehension of the mathematical language and 

concepts necessary to proof (Selden, 2012), and they possess an incomplete understanding of 

definitions and theorems (Weber, 2001; Selden and Selden, 2008). In typical direct-instruction, 

lecture proof courses, students are expected to develop proficient proof skills with little to no 

guidance. Without guidance, students will fail and likely cultivate ineffective strategies (Weber, 

2001). These ineffective strategies are typically proof schemes dependent upon external and 

empirical convictions, such as the authoritarian, ritual, and perceptual proof schemes (Harel and 

Sowder, 2007). In order to successfully write a proof, students need to employ effective strategies or 

proof schemes with arguments based on axioms and logical deductions, which in turn requires 

understanding of definitions and the idea of conditionally true statements.  

The typical instructor-centered learning environment, is the dominant paradigm, but may not induce 

the logic and proof techniques needed to construct a proof in all students (Fukawa-Connelly, 



Johnson, & Keller, 2016). Alternatively, a proof course should consist primarily of student-student 

and student-teacher interactions (Selden and Selden, 2008). Given the prevalence of lecture-based 

proof courses in the United States (Fukawa-Connelly, Johnson, & Keller, 2016) and preservice 

teachers’ continuing struggles with geometry, one potential approach to help improve pre-service 

teachers’ is an inquiry-based learning pedagogy where students are active learners, and the 

instructor is responsible for facilitating students’ exploration of the content, particularly definitions 

(Padraig and McLoughlin, 2009).   

However, one of the additional challenges of college geometry is that the material is familiar to 

students. Rather than investigating the ideas presented in the current assignment, many students rely 

on recollections from previous geometry courses, especially if the problems seem familiar. Hence, 

an inquiry-based college geometry course in non-Euclidean geometry seems more likely to help pre-

service teachers develop their proving skills and deepen their understanding of the geometric 

concepts they will eventually teach. This study was guided by the question: how, if at all, an inquiry 

based non-Euclidean geometry class helped deepen students’ understanding of definitions and 

Euclid’s postulates? We argue that the deep exploration of a limited number of non-Euclidean 

geometry problems helped students to move from primitive geometric knowledge to formalizing 

definitions and successfully posing and solving conjectures on novel surfaces.  

Methodology 

An adaptation of Pirie and Kieren’s (1994) model for student understanding was used to code 

students’ written assignments for their understanding of definition. Although this eight-level model 

was originally created to model students’ understanding of fractions, it adapts well to geometry, as 

the purpose was to describe the transition from concrete to abstract reasoning to justification to 

problem posting. One level, image having, was not used when coding, since students always had 

access to physical models of whatever non-Euclidean surface they were working with that week, so 

we could not determine students’ facilities for understanding similar exercises without physical 

models. We also did not include looping back within our standards of evidence because it was not 

something we observed in the data. 

This study took place at a midsized, rural, Hispanic-serving research university in the South, and the 

students who participated were those enrolled in a ten student college geometry course. The data 

collected was part of a larger study; this study presents a case study of five pre-service teachers 

Lindsey, Bradyn, Alexis, Mackenzie, and Chase. We also analyzed the work on one non-preservice 

teacher, Florencio, because Florencio’s papers were different from the other participants. While we 

wanted to maintain a purposeful sampling of pre-service teachers, Florencio was enough of a 

disconfirming case that we felt his inclusion was necessary (Patton, 2002). Florencio was an 

engineering major with one prior proofs class. Lindsey has no formal proof experience, Bradyn had 

completed discrete mathematics in one attempt with a B, Alexis had completed discrete 

mathematics and abstract algebra with A’s, and Chase, who has a learning disability, had completed 

discrete mathematics with a C after two attempts and failed another upper level proof class. 

Mackenzie was a non-traditional student in her final semester; she had completed all other upper 

level proof classes with a mixture of A, B, and C grades.  



Students in the course were provided with course notes (Miller, 2010) that presented open-ended 

problems related to a specific learning goal. There were fifteen assignments; five of which were 

focused on formal axiomatic proof, eight on definitions and axioms in various non-Euclidean 

situations, and two assignments (the midterm and final project) which combined both strands in the 

same assignment. Four of the assignments were formal (one revision allowed), and the other ten 

were informal (unlimited revisions). On the midterm (F3), students were given new but similar 

problems to their assignment and asked to work through them individually, and on the final project 

(F4), students were asked to discover as many things as they could about the geometry of the surface 

a cone. For each new assignment, students were assigned a specific problem from the provided 

course notes and a group. If a group appeared to be making little progress or moving in an 

unproductive direction, the teacher would use guided questioning to redirect students’ thoughts. If 

multiple groups stopped progressing, the teacher would initiate a whole class discussion.  

To determine students’ understanding of definitions and postulates, researchers examined the first 

submission students turned in for each assignment. Researchers also used observations to gain 

further understanding of students’ proof comprehension. As students discussed their ideas within 

their group, a researcher sat behind them listening and taking notes on their interactions for about 

ten minutes. The submissions were analyzed by assignment and all the drafts from an individual 

participant were analyzed at the same time. After this initial reading of blinded assignments, 

researchers would journal their impressions of the coding and the overall trajectory exhibited in the 

multiple submissions. These journals were used to operationalize concepts in the literature review, 

and then they were compared to the standards of evidence table (Table 1).  

Level of 

Understanding 

Identifiers 

 

Primitive 

Knowledge (1) 

Students are applying prior knowledge of Euclidean geometry, stating given 

definitions, or providing empirical proofs 

Image Making 

(2) 

Students make distinctions and reclassify prior knowledge or use prior 

knowledge in a new manner 

Property 

Noticing (3) 

Students can apply a definition on a previous surface to a novel surface or 

situation by recognizing commonalities in the learned and novel situation 

Formalizing (4) 
Students can abstract a method, formula, or common property from previous 

property noticing 

Observing (5) Students can propose conjectures and provide justification or counterexample 

Structuring (6) 

The argument is logical and made up of systematic application of axioms and 

theorems/If any portion of the argument could be clarified, the clarification is not 

necessary for the argument’s validity. 

Inventising (7) 
Students can pose new questions and solve them, creating new (to the student) 

knowledge 

 
Table 1: Standards of evidence (Modified from Pirie and Kieren, 1994) 

 



Findings 

With the exception of Mackenzie, all pre-service teachers struggled to complete the initial 

assignments with correct arguments; primitive knowledge from a previous high school geometry 

course was applied to the problem instead of an argued solution. However, by the fourth inquiry-

based task, all participants were able to formalize definitions, and all students were at least able to 

successfully use definitions and postulates in novel situations to construct proofs. All students 

followed a similar trajectory throughout the semester and improved, on average, four levels of 

understanding (Figure 1). 

 

Figure 1: Student levels of understanding throughout the semester 

The first definition centered-assignment of the semester was an inverse categorization problem. 

After finding all possible symmetries on the square, students were asked to use Geogebra to start 

with a subset of these symmetries, construct all possible quadrilaterals with that set of symmetries, 

and justify why they had found all cases. Mackenzie was able to categorize on first assignment, but 

the other preservice teachers either listed the symmetries of each quadrilateral or could not justify 

if/why they had found all cases (Figure 2). Both of these difficulties indicate students making partial 

reclassifications of their prior knowledge.  



 

 

 

Figure 2: Typical solutions on IF2 Chase (left, primitive knowledge); Florencio (right, image making) 

During the middle third of the semester, the two assignments that helped pre-service teachers move 

towards formalizing their understanding of definitions and counterexamples were IF3 and IF6. In 

both assignments, students were asked to justify which, if any of Euclid’s postulates held on a 

sphere (IF3) and the hyperbolic plane (IF6). Students were also asked to prove the existence of 

asymptotic geodesics on the hyperbolic plane. On IF3, the first exposure to the postulates, Alexis 

was not able to work in the spherical context and reasoned through the justification of the postulate 

in terms of the more familiar planar geometry (Figure 3). However, by IF6 Alexis was able to 

provide a counterexample for false postulates (Figure 4). 

 

Figure 3: Alexis’ IF3 (Image Making) Postulate 5 solution 

 

Figure 4: IF 6 (Formalizing) Postulate 5 solution 



In the final third of the semester, the goal of all assignments was to integrate pre-service teachers’ 

improved proof schemes with more formal uses of definitions. IF5 and F3 were major proofs 

assignments that took students most of the middle third of the semester. With their improved proof 

schemas, and understanding of the surfaces, were more easily able to construct proofs for parallel 

lines that were independent of the surface upon which the lines were drawn (IF8 and IF10). Most 

students were able to construct a generally correct proof, with some minor disordering of steps and 

missing justifications. This shows participants possessed a more structural understanding of 

symmetry than the understanding demonstrated in IF2. Bradyn, like Florencio, was image making 

on the first assignment related to symmetry, but by the time symmetry was used to construct proofs 

related to parallel transported lines, Bradyn was much more successful (Figure 5). Although 

Bradyn’s language is not quite standard and he had trouble typesetting his proof, his overall 

structure is systematic and he has a transformational understanding of symmetry not present in his 

initial write-ups. 

 

Figure 5: Bradyn’s second proof in IF8 (observing) 

The final formal assignment asked students to discover (and prove) as many things as they could 

about the geometry of an infinite cone. Groups were expected to prove 2-4 conjectures. Given the 

open nature of F4, one group chose to only investigate properties of a cone where group members 

had successfully revised an assignment on another surface. This limited their levels of 

understanding to observation. The other two groups each had at least one investigation of a 

conjecture about a novel concept with at least one new or newly-modified definition, which is 

summarized in Table 2.  



 

Participant Project Summary Code 

Alexis (+3 

others) 

Using a novel group-invented definition of straightness to 

investigate self-intersecting lines on cones (conjecture: no 

formula possible), angle sums of triangles with self-

intersecting sides 

Structuralizing, 

Inventising 

Mackenzie, 

Lindsey (+1 

other) 

Holonomy, internal angle sums of a triangle with no self-

intersecting sides, triangle congruence theorems, non-

intersecting lines that are not parallel transports 

Inventising 

Bradyn, 

Chase (+1 

other) 

Postulates (some cone angles), collected data for self-

intersecting lines 

Observing 

Table 2: Summary of final project 

Discussion 

Regardless of prior proof course grades or experience all pre-service teachers struggled to complete 

the initial assignments with correct arguments; primitive knowledge from a previous high school 

geometry course was applied to the problem instead of an argued solution. However, by the fourth 

inquiry-based task, all participants except for Chase were able to formalize definitions, and all 

students were at least able to successfully use definitions and postulates in novel situations to 

construct proofs by the end of the semester.  

By centering the college geometry course around understanding core geometric concepts on several 

different surfaces, participants were forced to engage in understanding each new situation rather 

than simply applying their prior Euclidean geometry knowledge to a more familiar problem. As a 

result, students developed more advanced understanding definitions and counterexamples. All 

participants got to at least formalizing definitions and seven of the ten students in the class ended 

the semester at either the structuring or Inventising level.  

The structure of the course maximized students’ opportunities to reify their understanding of 

definitions and postulates. The use of multiple non-Euclidean contexts was key to helping students 

develop better understanding of formal definitions. By switching surfaces, operationalizing 

definitions and determining if they were applicable stayed a problem and not an exercise. Further, 

the repetition of the postulates and determining geodesics in particular were important because these 

concepts were presented in enough slightly different concepts to allow students to develop deeper 

levels of understanding of the definition than a single context would allow. Students also reported 

that the chance to revise their written work was a valuable way to help them reflect on the current 

surface and how it compared to their prior work.  

There are two potential limitations for this study, which could be remedied by further inquiry. First, 

we did not collect students’ interview data; our analysis is a document study coupled with 

observations of students’ in-class discussions. Teaching experiments or task-based interviews of 

students’ understanding of definition in similar inquiry based classes, and comparative data to 



students in axiomatic Euclidean courses would also be of use. We also had non-native English 

speaking students in this class, and further research on their experience with proof and geometry is 

still needed. Finally, although most students followed the same trajectory, Chase was about two 

weeks behind everyone else. However, Chase has dyslexia; and there is a dearth of literature about 

undergraduates with learning disabilities; more work is needed to understand how to support such 

students’ learning. 
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Teaching geometry to students (from five to eight years old) 

“All that is curved and smooth is not a circle” 
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The ERMEL team (IFé, ENS-Lyon) in France, builds complete engineering to teach math in 

elementary school. For several years, we have been experimenting with teaching situations on space 

and geometric learning for 5-8 years old students. In this paper, we focus on the results about the 

relationship between actions on objects, graphs and first geometric properties about curved line. Our 

methodology involves an analysis of the student’s way of solving problems and thus their abilities, 

but it also allows us to make a hypothesis on what it is that teachers need in order to carry these 

learning situations out. 

Keywords: Geometry, teaching, learning, primary education, spatial ability.  

Issue of this paper 

Our research takes place in the French context of geometry teaching in primary school. Our goal is 

to build a proven, complete and reliable teaching engineering and thus to improve geometry teaching. 

In CERME 9, we reported our results about the knowledge of straight line for the same kind of 

students, not as an element of geometrical figure but as a usual or new component of the pupil’s 

practice. Several point of view in the WG4 showed the similar approach and questions were shared: 

 The relation between everyday and geometrical concept, perception, language and 

manipulation 

 How to start with low level, and long planning time 

 What kind of tools for the research and tools for teaching geometry are there? (How to help 

teacher to know what student are able to do) 

In this paper, we aim to make our contribution to the three first topics of the WG4 group: what is 

doing, learning and teaching geometry at school?  

Why working on geometry teaching? 

A starting point of our research is a finding of deficiencies in the geometry teaching practices in the 

early grades of elementary school. A short analysis of easily available French resources for teaching 

geometry to young pupils shows that two mains goals are pursued: learning geometric words and 

drawing abilities. Spatial activities also exist but without much problem solving, and also unrelated 

to the pupil’s initial knowledge or mathematical activity. This research is also based on the idea that 

students’ abilities are insufficiently taken into account in geometry teaching in primary school. Thus 

we have to identify the knowledge at stake in this learning and take the students’ already acquired 

knowledge into account. 

mailto:jacques.douaire@wanadoo.fr
mailto:fabien.emprin@univ-reims.fr


About our team 

ERMEL is the research team on mathematics education in primary school (in French “Équipe de 

Recherche en Mathématiques à l’École Élémentaire”) belonging to the French institute of education 

(IFé). ERMEL team is made up of primary school teachers, teachers’ trainers and researchers working 

in different regions of France. Results of these researches lead to comprehensive books publications 

including complete teaching engineering. Studies on teaching and learning conducted since 1999 are 

about geometry teaching more precisely on the analysis of spatial and geometric skills that students 

from primary school to GS (5-6 years old) CE1 (7-8 years old) can build. Key issues of these 

researches are knowledge creation and resources production for teachers and teachers’ trainers as well 

as the study of the appropriation of these resources. In CERME 9 we have clarified our theoretical 

framework and the steps of our methodology: a didactic engineering, based on an experiment 

conducted in many classrooms for several years (Douaire & Emprin, 2015). In this paper, we try to 

explain the transition between space and graphic knowledge which is often underestimate. 

Purpose of the study 

Our previous studies (Douaire & Emprin, 2015) showed that the knowledge developed by pupils in 

meso-space by solving problems does not necessarily build a geometric knowledge usable on paper. 

This lead us to ask many questions: in particular, what are the opportunities for pupils to understand 

the underlying patterns of drawings on a sheet of paper?  

We have to clarify the relationship between two types of knowledge, spatial and geometric, and 

especially the discovery of the meanings of lines on a sheet of paper, and how these plots can provide 

information about objects in space. If several works address the distinction between drawing or figure 

at the beginning of the “college” (Parzsyz, 1988) or the apprehension of the components of a figure 

at the end of primary school (Duval, 2005) (Perrin & al, 2013), our research concerns the emergence 

of graphic representations a few years earlier.  

In this working group we will identify the contributions of space experiments in the construction of 

geometrical knowledge. Our goal is that pupils overcome the overall perception of a figure and 

develop the analysis of its components.  

We analyze learning involved by a problem solving of closed curves figures construction, the 

characteristics of different implementations, as well as the needs of teachers. We present insights of 

learning situations for space experiments and we question the relevance of a resource based on the 

needs of teachers for its implementation identified in the context of ongoing Ermel research. 

Presentation of the experimentation 

Experimentation concern procedures (graphics, practices, discourse ...) that can be developed by 7-

year-olds pupils to distinguish circles from ellipses and other rounded shapes. We are not trying to 

develop early knowledge of the circle, but to promote the passage from a global perception of 

drawings and shapes to a geometric analysis of geometric shape underlying. 

Some questions concern the comparison procedures: what are the abilities of students of CP (6 years 

old) or CE1 (7 years old) to distinguish a circle from another closed curve (an "almost circle")? What 

use of superposability as a validation procedure for that? 



We present an experiment in progress: students have to produce closed rounded shapes, and must 

prove if they are different from others. 

Proposed situation 

The problem is to build closed shapes using four circular or elliptic arcs (quarter of a big circle, little 

circle or an ellipse figure 1). Identifying that shapes built are different lead students to develop and 

formulate analytical geometric criteria. 

Two major phases of this situation are analyzed successively, the first concerns the problem solving 

phase to produce shapes: we briefly analyze the productions. The second concern comparison of 

production. We also present some exchanges during the validation of the solutions. 

Finally, a brief summary will address the explicit needs of teachers. 

Presentation of the activity 

Each pair of students has a deck of 16 cards: 4 quarts of a small circle, 4 quarters of a large circle and 

8 quarters of an ellipse (shapes figure 1 are cut following dotted lines like in figure 2). The major axis 

of the ellipse is the diameter of the large circle. The minor axis of the ellipse is the diameter of the 

small circle. Thus, shapes can be linked. 

 

 

 

 

 

     Figure 2 

 

 

Several successive phases in this situation:  

 

1- To ensure the pupils’ appropriation of the constraints of the problems 

they are experimented one by one. Each pupil must first assemble 

pieces to form a closed shape. Then they verify that these solutions 

are really closed. These discussions lead to clear assembly 

instructions: "Are only accepted shapes that are joined edge to edge 

(assembly like in figure 3 are rejected)". In this first phase, the 

students do not need to draw, but to assemble pieces of heavy paper. Then pupils have to 

make closed shapes using exactly four arcs. The findings, confirmed by teachers and 

observers in classes are that all students are aware of the goal, namely produce closed curves 

("tracks") consisting of four arcs at the end of devolution phase. Students have understood 

the problem’s rules.  

Figure 1 

Figure 3 



2- Then each student looks for new solutions. In order to save their shapes and be able to make 

new assembly pupils are asked to draw on tracing paper (or lite paper) the outline of each 

new shape found. When students believe they cannot find new shapes the search stops, and 

solutions are pooled: are they different? If a student thinks he has found another solution, it 

is displayed and compared with previous. Students explain why they think it is different or 

it's the same as another already displayed. The goals of the pooling are to identify products 

that meet or not the constraints and identify the identical solutions. 

 

Possible shapes 

The solutions are:  

 reconstruction of three basic shapes (large circle, 

small circle, ellipse) solutions 1-3 

 combining two half ellipses contiguous or half a 

small circle (ovoid: solution 4) a large circle (such 

as "roly poly" or "roller" or solution ... 5). Radius 

or half axes being concurrent. 

 combining alternative quarters of small circle and 

large circle (solution 6) 

 combining two quarters of alternating ellipses 

with a quarter of a small circle and a quarter wide 

circle (solution 7)  

 combining two quarter ellipses and a small circle 

(8, 9) or large circle (14,15) 

 juxtaposing four quarter ellipses (10, 11) 

 juxtaposing two quarters ellipse with on one side 

a quarter of large circle, and on the other side a 

quarter of small (12,13). 

Of course, the goal of this situation is not to find all 

solutions but finding shapes form 1 to 5 with also one or 

two shapes they cannot name globally is enough for pupils 

to learn. 

Description of pupils’ strategy to produce shapes 

 choose pieces of random way; 

 if unsuccessful start from scratch; 

 put two pieces, then try the other two; 

 replace one or two pieces in an assembly already achieved; 

 place the fourth piece by estimating its size. 

Description of the comparison procedure  

Solutions are shown on the blackboard (some of them may be identical but differently oriented).  

We describe comparison strategy used by pupils: 

Figure 4: 15 different shapes were found 



1. Use of the overall look of the drawing (perceptual validation): 

a. recognition of known shape (circle, round, egg ...); 

b. rely on variables: overall size, width; 

c. rely on differences of regularity in curves. 

2. Identification of the elements that compose the shape (analytical aspect). 

3. Recognition of identical shapes by rotation or reversal. 

4. Use of construction processes, with the possibly of remaking to the class. 

5. Use of symmetry properties of the shape, mention of the folding ... 

6. Use of a practical validation by overlapping. 

Strategies based on perception are meanly used.  

Those results confirm that spatial abilities are often neglected and that it is a great challenge of our 

current research.  

This pooling highlight some questions linked with the drawing: 

• the impact of the thickness of the lines on strategy using perception, 

• the acceptable tolerance to judge the compliance with constraint, for example the fact 

that the curve is closed. 

The fact is that those questions emerge are important because it lead pupils to progressively give up 

perception in favor of the analysis of the shape. This dialogue during the validation of solutions 

illustrated this aspect. 

Exchanges during the validation 

The solutions are exposed to the blackboard and students check if the set is suitable. 

Student (S2) I believe we cannot do it ... 

Teacher (T) The others, are you sure? 

S2 appears to confirm 

T This drawing there you think that doing it is impossible? 

S2 show the drawing of the shape and try to express something. 

T So, what could you do to know? 

S2 Take the pieces 

M So, the team who have made this track, you come back to the dashboard.  

Resuming the question of drawings validity 

S It looks like … 

T With four parts 

S2 But then there are bumps 

S …but in all there are bumps ... because we do not succeed in drawing…. 



T Yes, there is the problem of drawing, we will not be going back to that. Is this circuit 

possible to do? ” 

(Many S.) Yes 

We can see in this transcript that pupils manage to move away from the drawing to analyze the shape. 

plutôt un”.” que “;” 

After a pupil has the drawing of his shape on one hand and follows the lines of the set of pieces to 

check is the shapes are the same (we will show a video of this moment). 

Analysis of learning at stake 

Firstly, the effects of the situation on pupils learning we can observe are: 

1- A change in perception of the role of vocabulary: 

a. The familiar vocabulary for describing the known forms, is not effective for others. 

Many different shapes can look like an egg ... 

b. Since drawing on paper is not always successful students have to describe the shapes 

by analyzing the way they have been built: the arcs used and their sequence of use. 

2- The progressive understanding of the role of sheet layouts to work on the lines (here 

curves, but straight in other situations) 

3- A better knowledge of the circle, based on the development of procedures compared with 

other forms (Artigue & Robinet, 1982)  

4- The practice of displacement to produce new solutions and to recognize identical figures 

arranged differently  

5- Transition from a practical validation based on the superposition to a validation based on 

the analysis of the properties 

6- The perseverance in research: the students have to rely on perseverance and go to the end 

of the task, and of course explain, justify, criticize, debate. 

We think that, at the end of this situation, students are able to explain, with their words, several of 

their learnings.  

Secondly, we have analyzed what are the difficulties, and what is possible to propose to pupils. We 

think, after several experiences, that the main obstacles are not epistemological; they do not come 

from the inability of students to analyze forms or working on their uncluttered representation. But it 

is rather didactic obstacles created by neglecting their knowledge and solving capacity. There is a 

necessary transition from a perceptive approach of the shapes to the analysis of their geometrical 

characteristics (size, composition, curvature…). In our progression of learning we also offer other 

situations which contribute to this passage from "global" (for instance, students perceive the 

regularity of form) to "analytic". 

Thirdly we try to find condition of a real use in classrooms. For those of teachers who are not satisfied 

with their way of teaching geometry we think it is important to propose activities that are real 

problems (where pupils have to produce new strategies) and to clarify learnings at stake. But we think 

that it would be unrealistic for a teacher whose main objective would be to set a vocabulary to embrace 

the process. Potential learning is related to the possibility for the teacher to understand the issues: 

allow students to implement the different comparison procedures. 



This workshop proposes to enlighten those issues.  

In this presentation we have not detailed the many changes in the description of the situation, related 

to successive and necessary experiments for students to produce the specified procedures. On this 

aspect of the construction of a teaching situation, we simply discuss the question of the context: is it 

necessary for such young students to evoke a familiar context? The way quarter-circles or ellipses are 

drawn have also been choose different during the experiment: either simple lines (parts of the cited 

figures), double lines to evoke real-world objects: railway circuits. But does the latter choice provide 

a better understanding of the constraints (in particular the continuity of lines)? We currently believe 

that, on the contrary, this approach makes the problem harder to understand. 

Conclusions and prospects 

Let us return briefly to the issues addressed: 

On learning targeted: what learnings can be developed based on the perception (regularity of a shape) 

to contribute to the analysis of geometrical properties? We mentioned a shift from a parts assembly 

problem to a drawing problem (a graphical problem); to that extent, the sensitive space has changed. 

First it is the space of action on the shapes to assemble, which has been among the first personal 

procedures of the students in the resolution phase. During the pooling, pupils focus on curves 

continuity and sensitive space become the place where graphical plots are questioned: they are new 

geometrical objects. 

On taking initial knowledge of students into account: how knowledge, language, gesture, participate 

in the apprehension of the common elements to the diverse types of spaces?   

How are first procedures and knowledge of the "graphical-space" combined with previous experience 

on objects? In particular, these prior knowledge is not primarily "declarative" but rely on gestures (eg 

the difference between rotate and reverse or the use of drawing with instruments without necessarily 

aiming to represent a geometric objects ...) 

They are also expressed in the language forms, as part of a language used by the student to control 

his actions or to communicate about a production (formulation of a procedure, checking of constraints 

validation of a solution ...). The importance of this learning is often underestimated in education in 

favor of the use stereotyped and offline vocabulary. 

Our research aims to analyze and develop, not only in this specific example, general student abilities 

via experience and actions on objects with graphical plots. Thus they evolve from a spatial perception 

to geometric characteristics of the shapes. Our concerns are also those of Swoboda (2015) about 

problem solving mainly with older students: “Therefore, the problem of bringing students to the 

ability of making mental transformations I treat as an educational task. In the literature, there is no 

explicit opinion on what educational level there is possible to create such skills. »  
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In this paper, we report on how a group of UK 12-13-year-old students work with hierarchical 

defining and classifying quadrilaterals, an area which students find very difficult to understand. We 

implemented a geometry test to 9 groups of students. Quantitative data suggest that the students found 

very difficult to undertaking hierarchical defining and classifying quadrilaterals even in 

collaborative learning situations. Our qualitative video-recorded data from the four groups suggest 

that we find that even in collaborative learning settings prototypical images of geometrical figures 

strongly influence students’ ways of hierarchically defining and classifying quadrilaterals. In 

addition, groups often had opportunities to examine their ideas, but they did not explore these 

opportunities because each member did not see what others were saying ‘as if through the eyes of 

another’ 

Keywords: Dialogic, collective geometric thinking, defining and classifying quadrilaterals. 

Introduction 

Geometry has been recognised as of one of the most important topics in school mathematics as it 

provides students with learning opportunities for developing their spatial thinking, reasoning and 

sense making of this world. Sinclair et al (2016) reviewed over 200 research papers in geometry 

published since 2008, and identified six themes, including the understanding of the teaching and 

learning of definitions. They state that one of their research questions is about students’ understanding 

of hierarchically defining and classifying shapes (p. 706). Our paper is concerned with this issue, in 

the context of hierarchically defining and classifying shapes in collaborative learning settings which 

can be productive ways to develop mathematical thinking and understanding (e.g. Martin and Towers, 

2014). We chose this topic because the research has reported that students find the understanding of 

hierarchically defining and classifying shapes difficult, but how students tackle this in collaborative 

settings has not been sufficiently investigated.  

The purpose of this paper is to examine the following research question ‘What obstacles will be 

identified when students are working together with geometrical problems?’ In order to answer this 

question, we first propose our theoretical framework for emergence of collective geometrical thinking 

in the context of hierarchical defining and classifying quadrilaterals. We then investigate students’ 

collaborative learning process in defining and classifying quadrilaterals. In this paper, we focus on 

collaborative group work where teachers or instructors’ interventions are minimal. Therefore, while 

we acknowledge that teachers’ roles are highly important to support learners’ mathematical thinking 

and understanding (e.g. Martin and Towers, 2014), we do not consider this issue in this paper.  

  



Theoretical framework 

Concept images and definitions and prototypical examples of geometrical figures 

In order to study students’ thinking with geometrical shapes, the terms ‘concept image’ and ‘concept 

definition’, introduced by Vinner and Hershkowitz (1980) are useful. A concept definition is defined 

as ‘a form of words used to specify that concept’ and concept image as ‘the total cognitive structure 

that is associated with the concept, which includes all the mental pictures and associated properties 

and process’ (ibid, p. 152). When considering a parallelogram, at least two types of concept images 

are considered, i.e. one is ‘conceptual images’ such as ‘parallelograms have two sets of parallel lines’, 

‘opposite sides of a parallelograms are equal’, and the other is ‘visual images’ (e.g. ). In relation 

to learners’ concept image and definition, another useful idea is the prototype phenomenon 

(Hershkowitz, 1990). This theoretical idea claims that students’ difficulty in seeing geometrical 

shapes flexibly is caused by the prototype example, which students often encounter in their initial 

stages of learning of geometrical figures. For example, as a concept definition, parallelograms are 

introduced as ‘a quadrilateral with two pairs of parallel sides’, but a typical ‘slanted’ visual image is 

often used. This ‘visual images’ will stay strongly in students’ minds, and as a result their ‘conceptual 

images’ become “the subset of examples that had the “longest” list of attributes – all the critical 

attributes of the concept and those specific (noncritical) attributes that had strong visual 

characteristics.” (ibids., p. 82). Thus, for many students, when the hierarchical relationships between 

quadrilaterals are required, they cannot accept that rectangles can be a member of parallelogram group 

as, on the one hand, rectangles have 90 degree angles, and on the other hand, parallelograms should 

be ‘slanted’ (‘visual geometrical images’) and not have such angles, and therefore rectangle are not 

member of parallelograms, stating ‘rectangles have 90 degree angles and so they are not a member 

of parallelograms’ as their ‘conceptual image’  (e.g. Fujita, 2012).  

Collective geometrical thinking process 

Collaborative learning has been recognised as a key topic in mathematics education research, and the 

difficulties in geometric thinking described above might be overcome if students’ undertake problems 

collaboratively. Martin and Towers (2014) apply Pirie and Kieren’s model (1994), which describes 

the growth of mathematical understanding with eight potential layers; Primitive Knowing, Image 

Making, Image Having, Property Noticing, Formalising, Observing, Structuring and Inventing. The 

learners’ developmental paths from Primitive knowing to Investing would not be straightforward. For 

example, when an individual/a group of learners had difficulty in noticing properties during problem 

solving, they might examine their already made images, and as a result they re-make new images for 

exploring new paths for problem solving. This is what Pirie and Kieren call Folding back. Martin and 

Tower also suggest that this process is crucial in collective thinking process. For example, suppose a 

group of students are discussing whether a ‘rectangle’ can also be seen as a ‘parallelogram’. In order 

to solve this (under a curriculum hierarchical relationships of geometrical shapes are assumed), they 

have to collectively make and have their conceptual and visual images of rectangle and 

parallelograms including their definitions, examine their properties collectively, and then formulate 

their reasoning etc. In this process, they might fail to collectively have useful conceptual and visual 

images of parallelograms and in this case they have to fold back to their collective image making 

stage in order to continue to examine this problem.  



Dialogic process in collective geometrical thinking 

The framework for collective thinking process by Martin and Towers (2014) discussed above can 

offer useful ways of analysing collective thinking process which collectively made or had conceptual 

and visual images, held back, noticed properties and so on, but this approach can be strengthened by 

considering some of the dialogic processes involved in thinking. For example, Mercer and Sams 

(2006) studied how certain types of talk, which mediate conceptual knowledge, affect students’ ways 

of collective thinking and problem solving. They particularly consider that the roles of exploratory 

talk, described as being critical friends each other and using explicit reasoning during problem 

solving, showing how it is crucial for developing understanding, comparing to the other types of talk 

such as disputational (being competitive or disagreeing with each other in egoistic ways) or 

cumulative talk (agreeing each other without constructive criticisms). Extending this talk type 

approach further, Kazak, Wegerif and Fujita (2015) report that an ‘Aha!’ moment occurred after 

learners had engaged in productive ‘dialogues’. ‘Dialogues’ to which we refer include more than 

exchanging recognisable utterances, but it is in a Bakhtinian sense, which Barwell (2016) recently 

described as “a theoretical idea that defines the nature of many aspects of the relationality of 

language.” (p. 6). Our view is that such ‘dialogues’ elucidate differences and gaps, and encourage 

learners to see their learning from a different perspective, which is based on Bakhtinian dialogic 

theory (1963; 1984).  

From this point of view, in addition to effective collaborative practice such as building effective 

collective conceptual and visual images of geometrical figures for problem solving, seeing a problem 

‘as if through the eyes of another’ is important for emergence and development of collective group 

thinking and understanding. This includes, for example, recognising multiple ‘voices’ in 

mathematical concepts, seeing ideas from an ‘outside’ perspective, establishing dialogic space, 

learners’ attitudes to each other, laughter, and so on. This is what Wegerif (2011) refers to as dialogic 

process of conceptual growth. Barwell (2016) also states, in the context of the development of the 

concept ‘polygon’: “the process of making sense of the word and the concept ‘polygon’ arises through 

the differences between the two groups of shapes on the blackboard, between the different ways of 

classifying shapes that preceded this moment, and so on.” (p. 9). Let us take again the example 

whether a ‘rectangle’ can also be seen as a ‘parallelogram’. Here, in their utterances students will use 

‘rectangle’ or ‘parallelogram’, but they will contain ‘multiple perspectives and agencies, i.e. 

rectangles for their own definitions and conceptual and visual images, for peers’ definitions and 

images, for the formal definitions which appear in the textbook or for definitions used by teachers, 

and so on. In their talk they might agree or disagree with their thinking and if the group of students 

do not see a rectangle from an ‘outside’ perspective, they might not be able to reach mutual 

agreements or reasonable answers, or extend their discussions and apply other contexts such as ‘is a 

square a type of parallelogram?’, etc. 

Methodology   

The participants of our study were 27 Y7 students (12-13 year old) in a lower secondary school in 

South West England. Their abilities are recognised by their class teacher as the second highest group 

in the year group, meaning that their achievements are higher than the average students in the UK 

school context. They have also studied formal definitions of basic 2D shapes including 

parallelograms. The participates undertook the following tests in 2015-16, summarised in fig. 1. 



Group thinking measure test Geometry group test 

General group thinking test: We first identify 

groups’ thinking by using the group thinking test 

which consists of two tests A and B of 15 graphical 

puzzles each, carefully matched to be of equal 

difficulty. We used this test as it was reported that 

the test provides useful insights into how groups 

work well in general. Students do one test working 

in groups of three and the other test working 

individually, assuming a measure of individual 

thinking correlated to a measure of group thinking 

with a measure of the difference between the 

individual scores and the group score (Wegerif et 

al, in press). In our study, the half of students in 

the chosen class individually undertook Test A, 

and then we formed groups of three in accordance 

with their test scores. Then each group undertook 

Test B. The other half did Test B as their 

individual and Test A as group test. All groups’ 

work was video-recorded.  

  

For each question, students have to choose which 

graphical image should fit into ‘?’ based on 

patterns and properties of the other 8. For the left 

the answer is 5, and the right one it is 4 (by seeing 

‘outside’ as addition and ‘inside’ as subtraction). 

Geometrical thinking tests: The same groups of students 

undertook geometry test which are derived by Fujita (2012) about 

hierarchical relationships between parallelograms. 4 of 9 groups 

were video-recorded for further analysis, informed by their group 

thinking test performances. Students undertake the following 

questions related to inclusion relations between quadrilaterals. 

For each question, 3 points will be given if students’ choice is 

based on the hierarchical classification, but if it is prototypical 

then 1 point will be given. For example, for Q1, 3 points for ‘1, 

2, 4, 5, 6, 7, 9, 11, 13, 14, 15’ but 1 point for ‘1, 6, 9, 14’ or for 

Q3, 1 point for choosing (b) and (c) are correct. 

Q1. Which of the quadrilaterals 1-15 above are members of the 

Parallelogram family?  

 

Q2. What is a parallelogram? Please write its definition. 

Q3. Read the following sentences carefully, and circle the 

statements which you think are correct. 

(a) There is a type of parallelogram which has right angles. 

(b) The lengths of the opposite sides of parallelograms are equal. 

(c) The diagonally opposite angles of parallelograms are equal. 

(d) There is a type of parallelogram which has 4 sides of equal 

length. 

(e) Some parallelograms have more than two lines of symmetry. 

Q4. Is it possible to draw a parallelogram whose four vertices are 

on the circumference of a circle? 

Figure 1. Tests for group thinking and geometrical thinking 

In the data analysis, we first examined general relationships between general group thinking test and 

geometry test, focusing on whether geometrical thinking can be predicted from group thinking test 

performances. We then analysed the video data by considering what types of talk (disputational, 

cumulative, or explorative) can be recognised in their group work, what kind of ‘voice’ can be 

recognised in their collective Image Having/Making, Property Noticing and Folding Back processes 

(see the next section for the examples).  

 



Findings and analysis 

Overall performance in their group thinking test and collective geometric thinking 

The test results for our sample of 27 students are as follows: 

Test Mean S.D. 

Group thinking test (Individual, N=27) 9.3 (out of 15) 2.07 

Group thinking test (Group, N=9) 10.4 (out of 15) 1.24 

Geometry test (N=9) 3.67 (out of 12) 1.66 

There is no statistical significant difference between individual and group scores in the Group 

thinking tests (Mann-Whitney U test, p-value is 0.1063, p > .05), indicating in this class in general 

collaborative learning did not positively affect test scores. Also, low scores from geometry tests 

indicate that the students' collective geometric thinking are also governed by prototypical examples 

of parallelograms, despite being given opportunities to share their ideas and to work collaboratively 

to solve the geometry test. Furthermore, statistical analysis of the data, using linear regression 

modelling, showed that the ability to predict geometry test scores from individual thinking scores, 

and group maths test scores was very weak (R2 of 0.046). Likewise, the relationship between 

individual group thinking scores and geometry test scores was very weak (Spearman Correlation 

0.224). This might suggest that collective geometric thinking as 'measured' by the geometry test is 

different from the thinking ‘measured’ by the group thinking test at least in our sample (we will 

explain relationships between general group thinking and mathematical thinking in more detail in our 

presentation.) 

Examples of students’ collective thinking process 

Although quantitative analysis did not suggest strong relationships between general group thinking 

and collective geometric thinking, the video data suggest some interesting features relating to why 

students could not do well in the geometry test in their collaborative work. In total 340 interactions 

from students were examined in terms of stages of collective thinking process and dialogic theory. In 

this section we select examples from Group 1 and 5, whose obstacles were particularly related to not 

only their conceptual and visual images of quadrilaterals but also their dialogic relationships in their 

collaborative learning.  

In the individual test, the three students BS, AC, and JC in Group 1 scored 14, 10, 11 but their group 

score was 12. This means their group work did not benefit very positively (in the context of group 

thinking measure test). In their geometry test, their interactions were rather disputational and they 

could not see their peers’ ideas from the others’ point of view in addition to influences from 

prototypical examples. For example, in their collective Image Making/Having stage, they discussed 

what a parallelogram was conceptually and visually, one of them questioned if rectangle or square 

can be a parallelograms based on the statement voiced by BS (line G1 49), but immediately after AC 

said “And a square and a rectangle. It’s trash”. This indicate in the line 54, the word ‘square’ or 

‘rectangle’ by AC were very personal, and not accepting the ‘voice’ by BS or JC: 

G1 47. JC What is a parallelogram? Write the definition.  

G1 48. AC A squashed up rectangle. 



G1 49. JC No both sides are parallel. 

G1 50. AC A squashed up rectangle. 

G1 51. BS So that would mean thirteen as well and two. 

G1 52. AC: And a square. 

G1 53. BS: And one and… 

G1 54. AC: And a square and a rectangle. It’s trash.  

They then continued their discussion, and it is evident that their understanding is influenced by the 

prototypical image of parallelogram (line G1 59, G1 60 or G1 70). In addition, it seemed that they 

could not see each other’s positions. In the line 61, AC aggressively said ‘That’s what we got told 

in…’, referring to authoritative voices. In the line 64, BS again held back to a definition “all the sides 

are parallel” and suggested rectangle can be a parallelogram (line G1 67). There was a dialogic gap 

between BS and AC/JC. However, JC and AC again referred to a (wrong) definition based on the 

prototypical image (line G1 68 and G1 69), and BS’s voice was dismissed, and BS disappointingly 

said ‘Oh no’, and their collaborative explorations stopped.  

G1 58. AC I think it’s…  

G1 59. BS A squashed up rectangle.  

G1 60. JC No if it’s a squashed up I need to know squeeze it.  

G1 61. AC That’s what we got told in…  

G1 62. BS All sides are the same.  

G1 63. AC No they’re not.  

G1 64. BS No, no, all the sides are parallel.  

G1 65. JC Yeah. 

G1 66. AC Yes so is a square. 

G1 67. BS So that will do one, two (pointing a rectangle image). 

G1 68. JC No because that’s a quadrilateral not a parallelogram. A parallelograms are  

  like… 

G1 69. AC A squashed up rectangle.  

G1 70. JC No parallelograms are like that they’re like that they’re messed up.  

G1 71. BS Oh no.  

Let us see another group, Group 5. In the individual test, the three students JM, BH, and TF in Group 

5 scored 9, 10, 7, but their group score was 11. This means their group work did not benefit either 

positively or negatively. In their collective Image Making stage of the geometry test, JM first voiced 

his own image and definition (line G5 12) which was influenced by the prototypical image and then 

TF agreed. Then BH added ‘Two pairs of parallel sides” (line G5 14). This made JM question “a 

rectangle has two pairs of parallel sides as well?” (line G8 17), but after a moment he said “But it 

(parallelogram) doesn’t have right angles" (line G5 18), indicating he could not see BH’s point of 

view. TF then agreed with JM. BH did not argue back from here (a kind of cumulative talk), and they 

now had parallelogram as ‘a rectangle without 90 degree angles’ as their collective image of 

parallelogram. 

G5 7. JM       …Ok what is a parallelogram?   

G5 8. BH Oh. 

G5 9. JM It’s rectangle but… 



G5 10. BH It’s like… 

G5 11. TF Erm like… 

G5 12. JM It’s like, it’s a rectangle but it doesn’t, we’re not, it doesn’t have all ninety     

  degrees. It doesn’t have all right angles. 

G5 13. TF Yeah, yeah yes so it’s a rectangle but it doesn’t have… 

G5 14. BH Two pairs of parallel sides. 

G5 15. JM It’s a rectangle. 

G5 16. BH Two pairs of parallel sides. 

G5 17. JM Yeah but that erm that a rectangle has two pairs of parallel sides as well. 

G5 18. JM … (a moment) But it doesn’t have right angles so it’s rectangle without … 

G5 19. TF Ninety degree angles. 

After this, this shared definition used throughout the problem solving process in their Collective 

Property Noticing stage, resulting they only chose (b) and (c) of Q3 as true or in Q4 they formulated 

it would be impossible to draw a parallelogram whose four vertices are on the circumference of a 

circle because “the obtuse angles would not touch the circumference of the circle” (G5 line 56). The 

other groups (Group 2 and 8) also showed similar processes, i.e. definitions based on prototypical 

images were collectively made and had uncritically at first and then these were used to examine 

properties and formulate their answers.  

Discussion  

In this paper we examined what obstacles will be identified when students are working together with 

geometrical problems. By answering our research question, our findings suggest that even 

collaborative learning settings prototypical images (Hershkowitz, 1990; Fujita, 2012) strongly 

influence when students were making/having conceptual and visual images of geometrical figures 

collaboratively, i.e. collective Image Making and Having stages (Pirie and Kieran, 1994; Martin and 

Towers, 2014). Also, when learners collectively had definitions based on prototypical images and 

missed opportunities to dialogically examine these (Bahktin, 1964; Wegerif, 2011; Barwell, 2016). 

Even if they shared ideas during their problem solving processes well, these students could not reach 

the correct answers by examining different ideas voiced in their collaborative work (Barwell, 2016). 

It is interesting to see that groups often had opportunities to examine their collective definitions (e.g. 

line G1 67 or G5 18-19), but they did not explore these opportunities because each member did not 

see what others were saying ‘as if through the eyes of another’ (e.g. line G1 67-71 or G5 16-19). 

Thus, in conclusion, in addition to prototype phenomenon, in collaborative learning settings it is 

necessary for students to dialogically examine their starting points of problem solving (in this case 

the definition of parallelogram).  

In our research context, we did not find strong relationships between general group thinking and 

geometric thinking. As the sample size is relatively small, we would like to pursue this topic in our 

future research, together with developing effective pedagogical models for better collective geometric 

thinking.  

References 

Barwell, R. (2015). Formal and informal mathematical discourses: Bakhtin and Vygotsky, dialogue 

and dialectic. Educational Studies in Mathematics, 92(3), 1−15. 



Bakhtin, M.M. (1984). Problems of Dostoevsky’s poetics, (Caryl Emerson, Ed. and Trans.) 

Minneapolis: University of Minnesota Press. 

Fujita, T. (2012). Learners’ level of understanding of the inclusion relations of quadrilaterals and 

prototype phenomenon. The Journal of Mathematical Behavior, 31(1), 60−72. 

Hershkowitz, R. (1990). Psychological aspects of learning geometry. In P. Nesher, & J. Kilpatrick 

(Eds.), Mathematics and cognition (pp. 70–95). Cambridge: Cambridge University Press. 

Kazak, S., Wegerif, R., & Fujita, T. (2015). The importance of dialogic processes to conceptual 

development in mathematics. Educational Studies in Mathematics, 90(2), 105−120. 

Martin, L. C., & Towers, J. (2015). Growing mathematical understanding through collective image 

making, collective image having, and collective property noticing. Educational Studies in 

Mathematics, 88(1), 3−18. 

Mercer, N., & Sams, C. (2006). Teaching children how to use language to solve maths problems. 

Language and Education, 20(6), 507-528. 

Pirie, S., & Kieren, T. (1994). Growth in mathematical understanding: How can we characterise it 

and how can we represent it?. Educational studies in Mathematics, 26(2-3), 165−190. 

Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, 

K. (2016). Recent research on geometry education: An ICME-13 survey team report. ZDM – 

Mathematics Education, 48(5), 691–719. 

Wegerif, R. (2011). Towards a dialogic theory of how children learn to think. Thinking Skills and 

Creativity, 6(3), 179−190. 

Wegerif, R., Fujita, T., Doney, J., Perez Linares, J. Richards, A. and van Rhyn, C (in press for 2016). 

Developing and trialing a measure of group thinking, Learning and Instruction. 

http://dx.doi.org/10.1016/j.learninstruc.2016.08.001 

Vinner, S. & Hershkowitz, R. (1980). Concept images and some common cognitive paths in the 

development of some simple geometric concepts. In R. Karplus (Ed.), Proceedings of the 4th 

International Conference for the Psychology of Mathematics Education (pp. 177–184). Berkeley, 

CA: Lawrence Hall of Science, University of California. 

http://dx.doi.org/10.1016/j.learninstruc.2016.08.001


Double perspective taking processes of primary children  

– adoption and application of a psychological instrument 
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Perspective taking can be conceptualized in the framework of mental transformations in terms of 

subsequent egocentric transformations. Kozhevnikov and Hegarty’s (2001) PTSOT is a test 

instrument for adults that investigates double perspective taking processes. Both perspective taking 

processes can be defined by certain egocentric transformations. An adoption of this test for primary 

children reveals that they are able to understand the test and verbalize easily their thinking 

processes. 8 items were solved by 254 fourth graders. Results show a variety of typical difficulties 

that can be interpreted in detail using the egocentric transformations framework. The theoretical 

framework and the straightforward way of item construction allow us to systematically generate 

items for various applications in psychology and mathematics education. 

Keywords: Egocentric transformations, geometric thinking, perspective taking, spatial abilities. 

Theoretical background 

Spatial abilities have widely been debated within mathematics education, with a multitude of 

meanings and definitions (Mulligan, 2015). Discussions within WG4 in CERME highlight 

implicitly the implication of those abilities on all four geometrical competencies to support 

geometrical thinking that were proposed by Manschietto et al. (2013).  

Psychometric studies on individual differences have shown that the construct of spatial ability is 

multidimensional and consists of several spatial ability factors (e.g,, McGee, 1979; Linn & Petersen, 

1985). Although the exact factor structure of spatial abilities remains a subject of intensive debate, 

some of these factors were studied in detail, both for adults and children. One of these factors, 

spatial orientation, also denoted as perspective taking in the literature, was proposed to measure the 

ability to imagine the appearance of a set of objects from different orientations (perspectives) of the 

observer (McGee, 1979).  

In the experimental cognitive literature, spatial abilities have been conceptualized as the ability to 

engage different mental transformations that require the subject to update an encoded visual stimuli 

with respect to three different frames of reference: the intrinsic reference frame of objects, which 

encodes relations among objects, the egocentric frame of reference, which encodes object locations 

with respect to one’s body, and the environmental frame of reference (Huttenlocher & Presson, 

1973; Zacks et al., 2000). Perspective taking ability has been defined as the ability to perform a set 

of egocentric transformations on objects, in which the relationship between the environmental 

coordinate frame and those of the objects remain fixed, while each of their relationships with the 

observer’s egocentric reference frame are updated. Although the conceptualization of perspective 

taking within the theoretical framework of mental transformations is logically equivalent to the 

qualitative description of the factor spatial orientation, it adds value for the deconstruction of 

complex perspective taking into separable, analyzable transformation processes. 



Perspective taking abilities have been studied extensively in the developmental psychology 

literature (see Newcombe, 1989, for a full review). It has been highlighted that children demonstrate 

first perspective taking abilities even in infancy, show first achievements on more advanced tasks at 

around 4 or 5 years and improve performance considerably between the age of  6 and 8 (Frick et al., 

2014). Complex perspective taking tasks that involve typically conflicting frames of references such 

as Piaget and Inhelder’s (1956) Three Mountains Task are not fully mastered until the end of 

primary school. Although the involvement of conflicting frames of reference in perspective taking 

tasks, e.g. the involvement of a to-be-imagined frame of reference that conflicts with the child’s 

direct relation to the visual stimulus, has received criticism (see Huttenlocher & Presson, 1973, for a 

detailed discussion), it is valuable from a spatial cognition point of view. Tasks with conflicting 

frames of reference are of high interest, because they demand for the ability to represent, maintain 

and coordinate multiple frames of references within one coherent spatial framework. This ability is 

meaningful and predictive for a whole range of everyday life spatial abilities, such as misaligned 

map reading (Lobben, 2004), environmental learning and wayfinding (Allen, 1999; Hegarty et al., 

2006). A deeper understanding of perspective taking processes involving conflicting frames of 

references allows us therefore to discuss spatial abilities of primary children in a much broader 

context. This is consistent with the mathematics curriculum but also curricula of applied sciences 

and geography. 

A qualitative re-analysis of typical markers of perspective taking ability such as the Guilford and 

Zimmerman (1948) Spatial Orientation Test for adults turned out not to be construct valid as being 

solved mostly by mental rotation strategies (Barratt, 1953). Kozhevnikov and Hegarty (2001) 

proposed a novel, psychometric paper and pencil perspective taking/spatial orientation test (PTSOT) 

for adults in order to overcome the drawbacks of the Guilford-Zimmermann task. The test 

instrument consists of 12 items that display an arrow of seven 2D-objects. On each item, the 

participant is asked to imagine being at the position of one object (anchor point), facing another 

object (defining the imagined perspective within the array) and is asked to indicate the direction to a 

third object (target). Item formulation stimulates therefore complex perspective taking processes 

with conflicting frames of references. The answer is noted on an “arrow circle" (see example item in 

Figure 1, left side, item adopted for better readability). Participants are neither allowed to rotate 

physically the object array nor the “arrow circle”. 

The PTSOT has been shown to be construct valid by the authors themselves, involving mostly self-

reported perspective taking processes in adults (Kozehevnikov & Hegarty, 2001). Due to its 

accepted validity the test has been used to underline perspective taking abilities to be predictive for 

environmental layout learning in real world and virtual contexts (Hegarty & Waller, 2004). 

The present study aimed to address the development of an instrument that stimulates complex 

perspective taking processes with conflicting frames of reference. One goal of the study was an 

adoption of the original PTSOT for primary children. A second goal was to describe the instrument 

with respect to test characteristics and typical error patterns that are caused by problems or failure in 

a set of mental transformations that are necessary to solve the items. Finally, an overall goal was to 

conclude potential applications of the instrument within the field of psychology and mathematics 

education. 



Adoption and item construction 

Design of an adopted instrument 

The adoption process was conducted throughout a qualitative study with 25 fourth graders in a 

bachelor thesis project. We adopted the PTSOT with respect to 12 design parameters that are listed 

in Figure 1. We will elaborate in detail on the literature background in a following publication. 

Figure 1: Comparison between the PTSOT and the adopted instrument with respect to 12 design 

parameters. One item of the PTSOT is shown on the left, the whole adopted instrument is shown from 

a quasi-bird perspective on the right side, showing the object field and the solution answering disk 

 

The adopted instrument consists of a 3D, small scale array of six farm animals that are placed on a 

green sheet of paper (the “meadow”). The child is sitting in front of the fixed array of objects, taking 

an oblique view on the whole scene. Just in front of the child there is a fixed, circular disk with 12 

numbered sections and a mobile arrow on it. Animals can be stuck on the disk using glue dots. 

Verbal item formulation is standardized as following: 

Tutor: “Imagine that you are animal A (sticks animal A in the middle on the arrow of the 

disk) on the meadow and are facing animal B (places animal B on on the 

semicircle attached to the disk). In which direction do you have to turn in order to 

see animal C?”  

The child turns the arrow of the answering disk at the section which corresponds to the right 

direction and the tutor notes the answer. During the solution process, the child is allowed to gesture 

but not to turn the array, the answering disk or itself. 

Item construction & framework for item analysis 

We constructed eight initial items with the help of two parameters that describe two perspective 

taking processes within one item. In Figure 2 you can see that each item is defined by a set of four 

subsequent mental transformations of the egocentric frame of reference, which – pairwise – define 

one perspective taking process within the item.  



 Figure 2: Item analysis for an arbitrary item showing the two mental viewing directions (dashed 

lines), the original viewing direction of animal A (black line), the egocentric viewing direction of the 

observer as well as the item construction parameters α and β  

Exploratory Studies 

We studied the range of strategies that children use to solve different items in a qualitative interview 

study with 16 fourth graders in the context of a second bachelor thesis. Interviews served as an aid 

for the interpretation of results of the exploratory study as well as verification of the goal of the 

instrument.  

In a main study, we performed the eight items of our adopted test instrument with 254 fourth 

graders (mean age was 9.17 years; 116 boys and 138 girls) out of 11 classes in Lüneburg; forming a 

heterogeneous sample in terms of scholar achievement and social background. The test was 

administered in a separate room in a 1:1 situation with the experimenter. We documented children’s 

solutions, but we did not film the children.  

Results and discussion 

Test theoretical considerations 

In a first approach, Item Response Theory (IRT) analysis, we scaled the data using a Rasch-model1 

in Conquest. The characteristics prove that data fit well with dichotomous data from the exploratory 

study with a MNSQ within 0.95 and 1.07 for all items. EAP reliability is poor, 0.456, yet might be 

influenced by the small number of items. Discrimination values show poor discrimination (0.24 and 

0.33) for two items and acceptable (0.42- 0.56) discrimination for the other items. Item difficulties 

are between -0.52 and 2.8 (0 being medium difficulty), yet showing a tendency towards a selection 

of very difficult items. We conclude that from a test theoretical point of view, our selection of eight 

items is still far away from been applied as a psychometric measure of perspective taking. However, 

a first analysis pointed out a set of items with good characteristic values. 

Quantitative results 

                                                 
1 Rasch-models are one specific class of measurement models in IRT in which latent trait estimates depend on both 

persons’ responses and the properties of the item (difficulty, discrimination). 



In a second analysis, we interpreted the number of answers per section in the answering disk within 

the mental transformation framework that was presented in Figure 2. 

(Item 6) “Imagine that you are the cow and you are facing the dog. In 

which direction do you have to turn in order to see the chicken?” 

Item 6 is characterized by α=250°, thus demanding the child to rotate 

its egocentric frame of reference by more than 90° to the right while indicating the direction of the 

chicken (β=33°), thus asking for a clear left/right decision at this point of view. IRT analysis 

showed that the item is difficult (1.06) and has an acceptable discrimination value (0.55).  

We performed the analysis of item solutions within our mental transformation framework. Errors 

were classified into “problems” (task is basically understood but there are a few inaccuracies within 

one transformation), “failure” (one transformation is not performed at all, but the item is solved 

within the general item structures) and “neglect” (the goal of the item is changed due to a 

misunderstanding/heavy problem with one of the two perspective taking processes) in order to stress 

the amount of difficulty that a child showed during the solution of an item.  

A detailed analysis in Figure 3 demonstrates the depth in which item solutions might be interpreted 

with the mental transformation framework. Figure 3 shows typical error patterns, such as  

 neglect of the  first  perspective taking process, thus solving the item from a fixed egocentric 

viewing direction 

 failure at the last transformation T4, thus having left-right problems 

 failure at T2, the item is thus solved by taking the initial, fixed heading of the first animal 

(cow) and the child fails to shift the viewing direction from α0 to α 

 problems with estimation of the angle β in T3 

 neglect of the first perspective taking process and projection of the egocentric viewing 

direction on the first animal (cow), thus pointing towards the relative position of the dog  

 

Figure 3: Analysis of solutions for item 6.  



(Item 8) “Imagine that you are the chicken and you are facing the horse. 

In which direction do you have to turn in order to see the cow?” 

Item 8 is characterized by α=170°, thus demanding the child to 

transform its egocentric frame of reference by almost 180° while 

indicating the direction of the cow (β=68°), thus asking for clear 

left/right decision at this point of view. IRT analysis showed that the 

item is very difficult (2.48) and has an acceptable discrimination value 

(0.53). The high difficulty of this item results from the need to take 

almost an opposite perspective while indicating to the front right. 

For the analysis we expected therefore a large percentage of children to 

fail at the last transformation T4  (thus producing right-left-errors)  as well as a high number of 

children to neglect the first perspective taking process, thus solving the item from an egocentric 

viewpoint. Figure 4 demonstrates that the last item shows a whole range of typical difficulties. 

However, although the solution rate is for this item was low, many children managed to perform 

most of the transition processes correctly. Almost 77% of the children succeeded on performing at 

least T1,  47% succeeded in doing at least T1 and T2 correctly, 30% managed T1, T2 and T3 and 

almost 10% managed to do all the transformations correctly. Figure 4 shows that problems with the 

first perspective taking process may occur due to egocentric behavior, the failure to perform T2 or 

due to the projection of the egocentric viewing direction on the chicken. We explain errors in the 

first perspective taking process by difficulties that are inherent to children at this age (see 

Huttenlocher & Presson, 1973) but also by problems in understanding the item formulation and the 

item structure itself. The latter might be improved by doing multiple examples with the children (we 

explained the item structure with only one example). 

Figure 4: Detailed analysis of item 8, revealing problems in the T4 transformation process. Answer 

patterns that are not interpretable within our framework might be explained by counting in the field 

of animals or arbitrarily guessing the answer. 



Applications of the instrument in different contexts 

We analyzed performance on our adopted version of the perspective taking test at two different 

levels in order to underpin the argumentation on possible applications of the instrument.  

Diagnostics 

We demonstrated that item construction is straight forward using the construction parameters α and 

β. Our instrument allows therefore purposeful item construction in order to investigate individual 

differences and developmental issues in complex double perspective taking abilities.  Children 

verbalized easily their thinking processes in our qualitative study, using gesture for showing 

viewing directions and the direction of the third animal. A combination of item solution and 

explaining aloud the solution process might help to diagnose the transformation processes that are 

still problematic for each child. 

During construction and evaluation process, we identified two problems with our instrument that 

should be considered during item formulation: First, we measured angles from head to head of each 

animal. As the animals are quite large, the correct estimation of the angle β might depend on 

whether the child focuses on the head or the tail of each animal. Second, as the rabbit was placed at 

the center of the animal array, children had problems with taking the viewing direction of the rabbit. 

Instead, they projected their egocentric viewing direction onto the rabbit and answered items as 

giving relative positions of animal C to the rabbit.  

Learning environment 

Our adopted instrument consists of easily purchasable, inexpensive material. Again, our study 

showed that children are able to verbalize their spatial thinking processes with ease, using a whole 

range of gestures. Our instrument might be used for teaching of complex perspective taking 

processes (children solve pre-formulated items by the teacher), in communicative settings (children 

formulate items on their own), in discussions that address the transformation processes explicitly 

(“Can you explain me why this item is so complicated?”), or in creative settings (formulation of 

own items within constraints, e.g. difficulty, or re-configuration of all animals on the meadow).  

Psychological test instrument 

The original PTSOT has gained much attention concerning psychometric measurement of 

perspective taking ability because it is construct valid and reveals the predictive nature of 

perspective taking abilities for environmental learning. Another wishful application of our adopted 

version of the PTSOT is therefore in psychometrical measurement of children’s perspective taking 

abilities. IRT analysis revealed a poor reliability and pointed out some inappropriate items with low 

discrimination values. In a further study, an exploratory analysis on a larger set of items of 

intentionally different difficulties is planned. IRT analysis might then reveal good items for a 

psychometric test of spatial ability in children. An IRT analysis of the test instrument might then be 

linked to our analysis technique based on egocentric transformations in order to develop a typology 

of complex perspective taking in children. 



References 

Allen, G. L. (1999). Spatial abilities, cognitive maps, and wayfinding. In R. G. Golledge (Ed.), 

Wayfinding behavior: Cognitive mapping and other spatial processes (pp. 46–80). Baltimore, 

MA: John Hopkins University Press. 

Barratt, E. S. (1953). An analysis of verbal reports of solving spatial problems as an aid in defining 

spatial factors. The Journal of Psychology, 36(1), 17–25. 

Frick, A., Möhring, W., & Newcombe, N. S. (2014). Picturing perspectives: Development of 

perspective-taking abilities in 4-to 8-year-olds. Frontiers in psychology, 5(386), 1−7. 

Guilford, J. P., & Zimmerman, W. S. (1948). The Guilford-Zimmerman aptitude survey. Journal of 

Applied Psychology, 32(1), 24−34. 

Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking 

spatial abilities. Intelligence, 32(2), 175–191. 

Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial 

abilities at different scales: Individual differences in aptitude-test performance and spatial-layout 

learning. Intelligence, 34(2), 151–176. 

Huttenlocher, J., & Presson, C. C. (1973). Mental rotation and the perspective problem. Cognitive 

Psychology, 4(2), 277–299.  

Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial ability 

and spatial orientation ability. Memory & Cognition, 29(5), 745–756. 

Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial 

ability: A meta-analysis. Child development, 1479–1498.  

Lobben, A. K. (2004). Tasks, strategies, and cognitive processes associated with navigational map 

reading: A review perspective. The Professional Geographer, 56(2), 270–281. 

Maschietto, M., Mithalal, J., Richard, P., & Swoboda, E. (2013). Introduction to the papers and 

posters of WG4: Geometrical thinking. In In B. Ubuz, Ç. Haser, & M-A. Mariotti (Eds.), 

Proceedings of the Eighth Congress of the European Society for Research in Mathematics 

Education (CERME 8) (pp. 578–584). Ankara, Turkey: ERME. 

McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, 

hormonal, and neurological influences. Psychological bulletin, 86(5), 899−918. 

Mulligan, J. (2015). Looking within and beyond the geometry curriculum: Connecting spatial 

reasoning to mathematics learning. ZDM, 47(3), 511−517. 

Newcombe, N. (1989). The development of spatial perspective taking. Advances in Child 

Development and Behavior, 22, 203–247. 

Piaget, J., & Inhelder, B. (1956). The child’s conception of space (Langdon, FJ and Lunzer, J., 

Trans.). London: Routledge and K. Paul. 

Zacks, J. M., Mires, J., Tversky, B., & Hazeltine, E. (2000). Mental spatial transformations of 

objects and perspective. Spatial Cognition and Computation, 2(4), 315–332. 



Traveling in spatiality, in spatial sense 

Catherine Houdement  

Université Rouen Normandie, Laboratoire de Didactique André Revuz (EA4434), Rouen, France 

catherine.houdement@univ-rouen.fr 

What attention is given to spatial sense in Geometry? The outcome (2015) of a special ZDM issue, 

Geometry in the Primary School and the CERME conference is a good opportunity to think about 

and compare different approaches or frameworks regarding this topic.  
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Introduction 

A travel abroad enriches our way of thinking and furthers our understanding of the values and 

behaviours of his/her own culture. For us just the same an intellectual trip outside the country (or 

the language) helps deepen our knowledge and analysis of our way of thinking. The study initially 

aims to compare the perspectives of educational researchers regarding the notion of spatial sense. 

Along the way, it documents the conceptual frameworks which support research.  

In ZDM issue 47, Geometry in the Primary School, the theme of spatial sense is common to all 

papers (Mulligan, 2015). Could it be that the study involves primary school or that the imagery in 

thought is a topical subject in recent neuroscience research? In the 36 papers of the ICMI Study 

Perspectives on Teaching Geometry for the 21st Century (1998) the word spatial was mentioned 

353 times but never in a title. Our ongoing study is based on (not yet completely extensive) reading 

of ZDM 47 and CERME texts on Geometry since the first time (2003) that a specific group about 

Geometry exists. Such a group has persisted for all the CERME under the name Geometrical 

Thinking (except 2011 Geometrical teaching and learning).  

In short, this paper provides an overview on spatial sense the difference theoretical frameworks 

regarding it, based on literature published in ZDM issue 47 and CERME papers of the last decade 

(2003-2015). 

First definitions and motivations for studies about spatial sense  

Many expressions (spatial reasoning, spatial sense…..) are related to spatial when considering 

English papers from cross- and interdisciplinary fields of mathematics education, psychology, child 

development and neuroscience: In a first approach we consider these expressions as equivalent and 

agree the large definition quoted by Mulligan (2015), from Spatial Reasoning Group (2015)  

“Spatial reasoning (or spatial ability, spatial intelligence, or spatiality) refers to the ability to 

recognize and (mentally) manipulate the spatial properties of objects and the spatial relations among 

objects. Examples of spatial reasoning include: locating, orienting, decomposing / recomposing, 

balancing, diagramming, symmetry, navigating, comparing, scaling, and visualizing.” (Mulligan, 

2015, p. 513).  



It should be noted that this definition considers spatial in a broader sense than 3D- situations or 3D-

geometrical thinking. In this paper we are interested in spatial skills, which are not associated 

with objects 3D. 

Many researchers stress the utility of spatial reasoning for mathematical learning and problem 

solving (Owens & Outhred, 2006; Sinclair & Bruce, 2015), and to Science, Technology, 

Engineering and Mathematics Education (Mulligan, 2015). Tahta (1980) and others note the ability 

to mobilize wisely spatial skills in mathematical and scientific thought, which Battista (1999, 

quoted by Mulligan, 2015, p. 514) named spatial structuring and defined as: “the mental operation 

of constructing an organization or form for an object or set of objects. It determines the object’s 

nature, shape, or composition by identifying its spatial components, relating and combining these 

components, and establishing interrelationships between components and the new objects” (Battista, 

1999).  

Spatial structuring is also an important component of the early learning of numbers, of 

measurement units, and well of geometrical thought (Van den Heuvel-Panhuizen et al., 2015; 

Mulligan, 2015). Van den Heuvel-Panhuizen et al. (2015, p. 347) outline the strong relationship 

between spatial and mathematical abilities. Mathematical performance and spatial abilities are 

positively correlated, not only in mathematical domains that are ostensibly spatial.  

French scholars as Berthelot & Salin ‒ with a long story of research on geometrical education ‒ 

agree on the place of spatial abilities in geometry learning, also for geometrical proof. But they have 

always emphasised (since the 1990s) their interest for everyday life: “the treatment of spatial 

abilities is the main source not only of many of the further learning difficulties met by secondary 

school pupils, but also of some of the main deficiencies in spatial representation needs in everyday 

life” (Berthelot & Salin, 1998, p. 71). This point of view has encouraged them to define and 

elaborate, unconstrained by geometry (or dissociated by classical geometry), what they called 

spatial knowledge.  

In conclusion it appears that spatial abilities are critical for learning mathematics and beyond. As 

these abilities are naturally associated with geometry, geometry seems the ideal niche for their 

teaching. It could even be read between the lines that it would be, nowadays, the main reason for 

teaching geometry in compulsory school education. Indeed, the present trend in some countries is to 

marginalize geometry in curricula in favor of probability and statistics (Maschietto et al., 2013).  

Obviously spatial reasoning nourishes geometric reasoning (Mithalal-Le Doze, 2015), but 

geometric reasoning needs other abilities, like defining and classifying (in the sense of Brunheira & 

Ponte, 2015), axiomatic reasoning, and doesn’t take in account non-mathematical forms of 

deduction... Furthermore spatial problems, like finding one’s way in an unknown town, cannot be 

assimilated to geometrical tasks. Studying spatial reasoning for itself seems to be interesting.  

Spatial sense in CERME papers (2003 to 2015)  

Let us first examine how the successive CERME (2003 to 2015) working groups named 

Geometrical Thinking deal with spatial sense.  

The Group Geometrical Thinking worked within the continuity in the CERME3, 4 and 5 (2003, 

2005, 2007). In CERME5 the topic Spatial abilities and Geometrical tasks was considered; it is 



noted: if it seems possible to agree about Geometrical tasks, it is necessary to precise what spatial 

abilities mean. We try to do it in the next section.  

In CERME6 (2009) spatial abilities is not a specific topic of the Group even though it could be 

present in the sub-theme Teaching, thinking and learning 3D Geometry.  

In CERME7 (2011) spatial abilities is connected to diagrammatic reasoning. Deliyanni et al. 

(2011) explore spatial abilities in relation with 2D-geometrical figure understanding and consider 

the influence on reasoning of the different diagram’s apprehensions (Duval, 1995): perceptual, 

sequential and operative. Braconne-Michoux (2011) proposes to intertwine the Geometrical 

Paradigms (Houdement & Kuzniak, 2003; Houdement, 2005) and the Van Hiele levels which 

integrates visualization, a spatial ability.  

In CERME8 (2013) the Group introduction proposed four competencies (see Figure 1) to support 

geometrical thinking: reasoning, figural, operational and visual (Maschietto et al., 2013) and assume 

that the links between these competencies are more important for geometrical work. Spatial abiliies, 

spatial sense are not explicitly mentioned but it seems (see above in Mulligan, 2015) to “have a 

place” in each competency. Two papers assume a spatial entry (other than 3D activities): in Sevil & 

Aslan-Tutak (2013) and particularly de Freitas & Mc Carthy (2013) emerges a new face of spatial 

abilities, the gestural / haptic ones.  

 

Figure 1: The geometrical competencies (Maschietto et al., 2013) 

CERME9 (2015) in the continuity of CERME8 is supported by the same model (Figure 1). The 

topic quoted in relation with spatial abilities is visualization. The authors (Ceretkova et al., 2015) 

stress the influence of geometric knowledge on visualization, beyond perceptive and psychological 

aspects.  

How do educational researches deal with the issue of spatial abilities? More precisely what kind of 

theoretical frames do they use or construct for their research? 

Theoretical frameworks for spatial abilities   

Specifying the frame the authors use in order to analyse spatial abilities is quite rare: only once in 

ZDM, only a few times in CERME papers before CERME9. Let us give some examples of such 

frames. 



Example 1 

In Panaoura et al. (2007) spatial abilities are commonly addressed by three major dimensions 

spatial visualization, spatial orientation and spatial relations.  These researchers use an analysis 

model for spatial abilities (Demetriou & Kyriakides, 2006) with three components, namely image 

manipulation, mental rotation and coordination of perspectives to investigate whether or not 

and to what extent primary and secondary school students’ spatial abilities are related to their 

performance on geometry tasks involving 2D figures, 3D figures, or nets of solids.  

Example 2 

In Berthelot & Salin’s research (quoted in Douaire & Emprin, 2015) spatial knowledge is 

knowledge which enables to control one’s relations to the surrounding space, the sensible world. 

This control may consist in recognizing, describing, manufacturing or transforming objects; moving, 

finding, communicating objects’ position; recognizing, describing, constructing or transforming a 

route (Berthelot & Salin, 1999, p. 38). Children begin to integrate spatial knowledge before going to 

school while experimenting, and sharing with adults about their actions. Spatial knowledge cannot 

be reduced to geometrical knowledge but can be necessary to solve a geometrical problem. 

It should be noted that this definition relies on problems (what Berthelot & Salin name spatial 

problems). In Brousseau’s theory (the theoretical frame of Berthelot & Salin’s research) knowledge 

is what enables to solve problems, and problems solving is a condition for learning. For instance 

how to define knowledge to be taught to use efficiently a map when lost in an unknown town? First 

identifying situations in which using plans and maps are necessary; second analysing the spatial 

interactions to solve them and thus indentifying the necessary knowledge.  

Daily life interactions take place in space of different sizes which exert different constraints on the 

actions. Microspace is very close to the subject, like a sheet of paper, a computer screen, a touch 

screen; in this space objects can be moved, touched, turned; it corresponds to the usual grip 

relations. Mesospace is the surrounding space, inside a room, a building; the subject can move 

inside it, mesospace is the space of usual domestic spatial interactions. Macrospace is the broader 

space, unknown city, rural or maritime spaces; the subject has only local views, he had to 

conceptualize (Berthelot & Salin, 1998, p. 72; Douaire & Emprin, 2015, p. 532). Thus spatial 

knowledge is structured into three main conceptions, microspatial conception, mesospatial 

conception, macrospatial conception. For instance, following this frame, a straight line can be 

conceived as a print trace produced with a ruler, the edge of a door, or a set of trees properly 

aligned in a orchard.  

This framework has different functions: in Berthelot & Salin, as in Douaire & Emprin (2015) the 

framework allows them to construct situations as means to teach students spatial knowledge (as to 

alignment and straightness, through the good use of a map to navigate). In other described cases, the 

frame allows to evaluate and compare performances of students, or to map spatial abilities.  

Example 3 

Following Newcombe et al. (2013), Van den Heuvel-Panhuizen et al. (2015, p. 346) distinguish 

between two kinds of spatial skills: between-objects representation and transformation skills (for 



example in Perspective-Taking tasks –PT–-, like the Three Mountains of Piaget & Inhelder, 1956) 

and within-objects representation and transformation skills (for example a mental rotation).  

The aim of their research is to assess children’s PT-skills focusing on the difference between two 

components of what they named IPT (Imaginary Perspective-Taking): visibility and appearance. 

These two competencies are highlighted by the items they proposed to the children. 

Visibility 

 

A boy walks along the street. What does he see? 

Appearance 

 

How do you see Mouse if you look at it from 

above like a bird? 

Figure 2: Examples of drawings and questions in the test (Van den Heuvel-Panhuizen et al., 2015) 

It could be noted that the 3D situation (meso- or macro-spatial) is communicated to the 2D 

representation (micro-spatial).  

The analysis of their tests with more than 300 children of Netherlands and Cyprus (age 4-5) shows 

that kindergartners of the two countries can answer correctly: on average respectively 70% and 55% 

of the visibility items, and 40% and 30% of the appearance items; that the development of the IPT 

competence visibility precedes the development of the IPT competence; that specific item 

characteristics of the evoked context could also influence the difficulty level of the item.  

Example 4   

In the 1990s Duval (1995, 2006) has brought an important contribution to necessary visualization of 

the drawing (implicitly in a microspace) for geometric reasoning. Some authors rely particularly on 

Duval’s research, e.g., Mithalal-LeDoze (2009, 2015), Papadaki (2015) and Swoboda (2015).  

With iconic visualization “the drawing is a true physical object, and its shape is a graphic icon that 

cannot be modified. All its properties are related to this shape (…)” (Mithalal-LeDoze, 2009, p. 

797). With non iconic visualization “the figure is analysed as a theoretical object represented by the 

drawing, using three main processes: Instrumental deconstruction: in order to find how to build the 

representation with given instruments), Heuristic breaking down of the shapes: the shape is split up 

into subparts, as if it was a puzzle), Dimensional deconstruction: the figure is broken down into 

figural units — lower dimension units that figures are composed of —, and the links between these 

units are the geometrical properties (…)” (Mithalal-LeDoze, 2009, p. 797; Papadaki, 2015). Duval 

quoted two other processes Change of Scale and Change of Orientation.  



Studying visually impaired students moving 2D objects to imagine 3D objects, Papadaki (2015) 

introduces a new source for mental images, the kinesthetic one. For these students visualization 

integrated many repetitions of the same gesture, cross-checking it with one’s everyday life tactile 

experience and geometrical knowledge as objects’ definitions. Visualization is clearly more than 

vision, what Duval wrote for a long time describing different ways (iconic and non iconic) of 

visualizing a figure. But Papadaki (2015) introduces a new dimension in visualization, a dynamic 

one; conceiving a figure 3D as the result of a reproducible movement of a figure 2D.  

Swoboda (2015) stresses the rotation as a natural transformation for young students; mental rotation 

is a fundamental component of the frame of Demetriou & Kyriakides (2006), and of non iconic 

apprehension of Duval too. Maybe the rotary motion and the rotation as transformation could be 

studied sooner (than the line symmetry) in compulsory school to enrich visualization skills.  

Conclusion  

Spatial sense and the different frames regarding it is now better mapped. We will not go back on 

what was discussed above, but just stress some difference between the frames regarding it. 

1) The framework of Berthelot & Salin in relation with the size of space enables to realize that 

almost all the mentioned situations or items of the ZDM and CERME papers (except Douaire & 

Emprin, 2015) are located in the microspace; a priori they only request microspatial knowledge1. 

The existence and importance of mesospatial and macrospatial knowledge seem underestimated. 

For example in the paper of Van den Heuvel-Panhuizen et al. (2015) spatial apprehension of a 

picture (or a drawing, microspace) is considered as an apprehension of the evoked real world (meso- 

or macro-space).  

2) Some papers try to isolate “basic” skills or “basic” items which could be predictive of spatial 

sense and serve for students assessment, analysing spatial situations (for example Van den Heuvel-

Panhuizen et al., 2015) or geometrical problems (Duval 1999, 2006). On the other hand Berthelot & 

Salin, in coherence with their support framework, don’t attempt to describe finely “the” spatial 

skills but ask students to solve real spatial problems in which spatial skills are at work. 

3) Papadaki (2015) and Swoboda (2015) allow us to realize that gestures can be a powerful help to 

mentally construct geometrical images and facilitate visualization. Among the gesture the rotary 

motion (rotation) could play an important role.  

4) Visualization is enriched with new entries as gestures and motion; it has gained increasing 

importance on the spatial skills. But what is meant by this term? Another inquiry to lead… 
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Inclusive education urges educational research to deepen its understanding of students with special 

needs. The aim of this theoretical paper is to provide an overview of the didactical aspects in the field 

of autism and mathematics education. First we review literature on autism spectrum disorders (ASD) 

from a broad psychological perspective, and second, we focus on three cognitive theories which are 

used to explain the behavioral symptoms of ASD. Next, we discuss mathematics specific didactical 

issues that relate to these cognitive theories. Finally, we elaborate on an example of research on 

mathematics education for ASD students based on the Van Hiele model of thinking in geometry. In 

the conclusions we bring together the findings and give suggestions for future research. 

Keywords: Autism Spectrum Disorder, mathematics, geometry, Van Hiele, secondary education, 

didactics, inclusion. 

Introduction 

Autism is a neurodevelopmental disorder characterized by impairments in social interaction and 

communication, and by restricted and repetitive patterns of behavior (American Psychiatric 

Association, 2013). Different combinations of the impairments occur, and together form a continuum, 

which is called the autism spectrum of disorders (ASD; Wing, 1988). Both the severity of the 

symptoms and the intellectual capacities of people with ASD vary widely. There is a growing 

understanding that people with autism can also provide a substantial contribution to society (e.g. 

Mottron, 2011). In most countries, and also in the Netherlands, inclusion policies require schools to 

develop support for children with autism. In this article we will focus on ASD students with higher 

intellectual abilities1 and who require limited support, and hence can participate in inclusive 

secondary education. 

Mathematics is a school-subject that builds on logic, is well structured, uses symbolic language with 

well-defined meanings and deals, at least in its purer forms, with unambiguous questions. These 

characteristics make mathematics a subject that is relatively easy to access for people with ASD. 

Research shows that autism is found more often amongst mathematics students than those of other 

disciplines (e.g. Baron-Cohen, Wheelwright, Burtenshaw, & Hobson, 2007). However, other studies 

showed that the majority of ASD students and higher intelligence have an average mathematical 

ability compared to the normal population, while only some have mathematical giftedness (e.g. 

Chiang & Lin, 2007). 

In secondary schools that include ASD students, teaching mathematics is not an easy task. Based on 

research and our own experiences of teaching in inclusive schools, we claim that ASD students 

learning mathematics require specific subject-didactical support. A review of research on autism 

                                                 

 

1 In literature on autism this also indicated as High Functioning Autism and Asperger Syndrome or HFA/AS (Whitby & 

Mancil, 2009). 



showed that most studies are about medical or behavioral aspects, and less than 20% targets education 

(Graff, Berkeley, Evmenova, & Park, 2014). Research on autism in inclusive education is mainly 

about pedagogic topics concerning the ASD students (Ravet, 2011). However, there is little research 

on didactical aspects of autism in specific subject fields. 

The aim of this theoretical paper is to provide an overview of the didactical aspects in the field of 

autism and mathematics education. Our research question is the following: 

Which didactical issues are related to ASD students learning mathematics? 

Literature review 

Autism spectrum disorders 

After the first case studies by Kanner in 1943, and Asperger in 1944, it took until the end of the 

1970’s, when Wing and Gould (1979) provided their classic description of the triad of impairments 

of autism: first, the absence or impairment of social interaction, especially with peers; secondly, the 

absence or impairment of the development of verbal and nonverbal language; and third, repetitive, 

stereotyped activities of any kind. Confusion about different subtypes lead Wing (1988) to the 

conclusion that there must be an autistic continuum, which she coined the Autism Spectrum of 

Disorders (ASD) with diagnoses such as classic autism, PDD-NOS (Pervasive Developmental 

Disorder – Not Otherwise Specified) and Asperger’s syndrome. With the latest version of the 

diagnostic manual DSM-5 (American Psychiatric Association, 2013) the diagnosis of ASD is based 

on persistent deficits in social communication and social interaction, and on restricted, repetitive 

patterns of behavior, interests or activities. The subtypes of PDD-NOS and Asperger are no longer 

official diagnoses, and DSM-5 describes three levels of severity for ASD (i.e. requiring very 

substantial support; requiring substantial support; and requiring support). 

The psychological research into autism has been dominated by three cognitive theories (Rajendran & 

Mitchell, 2007): the Theory of Mind deficit; Executive Dysfunction; and the Weak Central Coherence 

accounts.  

The Theory of Mind deficit 

Children with ASD experience their social environment as unpredictable and incomprehensible 

(Baron-Cohen, Leslie, & Frith, 1985). They seem to treat people and things the same way. 

Observations showed, strikingly, that children with Down syndrome and a low intelligence developed 

a normal social competence, whilst children with ASD and higher intelligence did not (Baron-Cohen 

et al., 1985). To explain this, Baron-Cohen, et al. did research on the Theory of Mind: neurotypical 

children (non-ASD) are able to impute mental states to themselves and others (in other words, they 

have a “theory of mind”), whilst children with ASD fail to do so. This “mind-blindness” was shown 

by the false belief test: a story, played out for the child with dolls, where one doll has a belief about 

the location of an object that is incongruous with its real location. The test subject is then asked where 

the doll will look for the object. To answer correctly the test subject should infer the mental state of 

the doll (“I think she thinks”). A large proportion (80%) of children with ASD incorrectly assumed 

the doll would look on the real location. To explain the 20% of children with ASD who answered 

correctly, second-order false belief tests (“I think she thinks he thinks”) were developed, and based 

on those results, it was assumed that a Theory of Mind is not always lacking completely but may be 



not fully developed in children with ASD. Another problem was that Theory of Mind can be used to 

explain impairments in play, social interaction and verbal and nonverbal communication, but not for 

explaining the other characteristics of ASD, such as the restricted interests, obsessive desire to keep 

things unchanged (rigidity and inflexibility), and so on (Frith & Happé, 1994).  

Executive dysfunction 

Early in the 1990’s, Ozonoff, Pennington and Rogers (1991) suggested that deficits in the executive 

functions could explain symptoms of autism such as narrow interests, rigidity and inflexibility. 

Executive function is defined as the ability to maintain an appropriate problem-solving set for 

attainment of a future goal; it includes behaviors such as planning, impulse control, inhibition of 

pre-potent but irrelevant responses, set maintenance, organized search, and flexibility of thought 

and action (Ozonoff et al., 1991, p. 1083). 

The research by Ozonoff et al. (1991) showed that deficits with executive function where found in 

both children with classic high-functioning autism and those with Asperger’s syndrome (who 

succeeded on the second-order false belief test). This suggested that deficits in executive function 

form a primary cognitive deficit in ASD.  

Weak Central Coherence 

In neurotypical children (non-ASD) the development of information processing is oriented towards 

extracting the overall meaning from the sensory input. This inclination is called ‘central coherence’. 

Frith (1989) described how this development is different in children with ASD, and she proposed the 

weak central coherence theory to explain the symptoms of autism. Psychological tests later showed 

that children with ASD have superior performance on local information processing, but were less 

inclined to global information processing (Happé, 1999). In people with ASD this is also observed as 

a preoccupation with details and parts and a failure to understand the meaning of the whole. 

Implications of ASD for mathematics education 

Although the focus of this paper is on mathematics education, we first address some approaches for 

ASD students that apply to education in general. 

General education 

A general pedagogic approach for students with ASD is structured teaching (Mesibov & Shea, 2010). 

Structure can be provided in the physical environment (e.g. arrangement of the room and the use of 

visual clues), the sequence of events during the day (e.g. an understandable schedule), the individual 

tasks (e.g. provide specific information of the goals and the completion criteria) and the grouping of 

tasks into a work system. Many of these approaches in autism have not been well researched, and 

research is now addressing the determination of evidence-based practices (Reichow, Volkmar, & 

Cicchetti, 2008).  

Mathematics education 

Based on a review of 18 studies of mathematical abilities of ASD students with AS/HFA, Chiang and 

Lin (2007) found that the majority of the ASD students have average mathematical capabilities and 

only some ASD students have a mathematical giftedness. Based on these results, Chiang and Lin 



concluded that an age-appropriate mathematical curriculum can be used, but individual adjustments 

may be needed to support both relative strengths and weaknesses. 

In a review of the literature on academic achievement profiles of ASD students, Whitby and Mancil 

(2009) report that more than half (52%) of individuals diagnosed with ASD have IQs above 70 and 

for these children, academic goals come within reach. There is a need for appropriate interventions 

to allow these children to perform up to their potential and obtain meaningful employment. For 

mathematical abilities, Whitby and Mancil found that computational skills were intact, but applied 

mathematics capabilities were impaired. Issues with the application of mathematics are possibly due 

to executive functioning deficits with their organizational and attentional skills that have a negative 

effect on multi-step problem solving. Deficits in comprehension (both listening and reading) relate to 

contextual understanding (e.g. word problems) and conceptual understanding (e.g. abstract concepts). 

With word problems, ASD students have difficulty choosing the right approach because they have, 

due to their weak central coherence, difficulty seeing the similarities and the common structure of 

different examples and exercises. An ASD adjusted didactical approach for solving word problems 

should address improving reading comprehension, mathematics vocabulary, computation, and 

everyday mathematical knowledge (Bae, Chiang, & Hickson, 2015, p. 2206). 

In solving mathematical problems (“a question that exercises the mind”; Schoenfeld, 1985) ASD 

students are impaired by executive dysfunction (Ozonoff et al., 1991). In mathematical problem 

solving ASD students have similar issues as with word problems, but are also expected to face issues 

with cognitive flexibility, the use of heuristics and the use of meta-cognitive strategies. Positive 

results have been reported on the effects of cognitive strategy instructions for students with learning 

disabilities (Montague, Krawec, Enders, & Dietz, 2014), and these results may also be obtainable for 

ASD students. In classroom practice we see that some ASD students develop problem solving 

procedures of their own, which may work on the initial (simple) problems but cannot be generalized 

to later extensions. Upon receiving feedback, the rigidity of these ASD students sometimes inhibits 

them from accepting the time-proven approaches. Feedback is also known to play an important role 

in self-regulated learning (Butler & Winne, 1995). Improving feedback seeking strategies of ASD 

students, can support their self-regulated learning, and help to overcome barriers in problem solving. 

Conceptual understanding can be a challenge for ASD students: they have, due to their weak central 

coherence, difficulty integrating information and generalizing previously learned concepts (Klinger 

& Dawson, 2001). Minshew and Goldstein (2002) found that individuals with high-functioning 

autism had impaired concept formation. Furthermore, these individuals had difficulty with cognitive 

flexibility and showed incomplete understanding of learned concepts. Temple Grandin, diagnosed 

with ASD, describes (2006) how she memorizes as much facts and experiences as possible, and uses 

an internal search engine to retrieve visual images of prototypes to understand a concept. In general, 

ASD-students benefit from visualization of abstract concepts, and with their strong root memory, 

they remember the visualizations as prototypes of the concept. 

An example: A research study on learning geometry by ASD students 

To illustrate research on subject-specific didactic problems for ASD students, we describe an example 

from geometry and the cognitive theory of weak central coherence. This example is based on a master 

thesis of the first author (Klaren, 2012). The theoretical/ analytical framework is concerned with Van 



Hiele’s theory, which defines five levels of the learning process that learners are said go through 

when learning geometry. The five levels are described by Hoffer (1981) as: 

- Level 1, Recognition: the student 

learns some vocabulary and 

recognizes the shape as a whole;  

- Level 2, Analysis: the student 

analyzes properties of the figures; 

- Level 3, Ordering: the student 

logically orders figures and 

understands interrelationships 

between figures and the importance 

of accurate definitions; 

- Level 4, Deduction: the student 

understands the significance of deduction and the role of postulates, theorems, and proof; 

- Level 5, Rigor: the student understands the importance of precision in dealing with foundations and 

interrelationships between structures 

Van Hiele posited that learners master the levels in a stepwise manner and always in the same 

sequence. In other words: the difficulty of questions specific to the successive levels, will rise. Usiskin 

(1982) confirmed the ability of the Van Hiele theory to describe and predict the performance of 

students in secondary education on geometry. The fifth level was not well operationalized by Van 

Hiele, and left out of further analyses. 

Students with weak central coherence (operationalized as students with ASD), are hypothesized to 

have an inversion of the difficulty of level 1 and 2. In other words: they are expected to find questions 

at level 1 (“shape as a whole”; see Figure 1) more difficult than questions at level 2 (analyses of 

properties). 

To test the hypothesis, 81 children with ASD and higher intellectual abilities, age 12 to 17 years, were 

tested with the geometry test of Usiskin (with the texts translated in Dutch and the original diagrams). 

Rasch analyses was used to estimate the average difficulty (on a logit scale) of questions at each level. 

The results were compared with results found for non-ASD students by Wilson (1990) in a reanalysis 

of the data of Usiskin. The combined results (Figure 2) show that the estimated average item-

difficulty of questions on level 1 and 2 

were indeed shifted for ASD students 

(level 1 more difficult and level 2 

easier) compared to non-ASD students. 

However, level 1 was not found to be 

more difficult than level 2 for ASD 

students. Based on these findings, the 

(strong) hypothesis of inversion must 

be rejected, but the test gives some 

support for the anticipated differences 

between ASD and non-ASD students 

Figure 1: Example of question on level 1 (recognition) 

Figure 2: Average item-difficulty per level 



regarding the difficulty of the first two levels of Van Hiele. In the didactical practice of geometry 

teaching, this should raise awareness that visual recognition by ASD students is to be linked to explicit 

analyses of properties in order to support concept formation. 

A peculiar observation was that some students who performed well on questions on higher levels, 

made unexpected errors in questions on level 1: on questions where the squares were to be pointed 

out (e.g. Figure 1), they included the rectangles. A possible explanation of this type of errors is the 

ambiguity of the mathematical language: in Dutch the translation of square is “vierkant” (literal 

translation: “four sides”). In interviews after the test, students explained their answers by stating that 

the rectangles had four sides. Possibly these students where not relying on the shape as a whole, but 

applied rule-based logic in combination with literal understanding of the mathematical concept. 

Conclusions 

The three cognitive theories described in this paper represent theoretical frameworks that can guide 

research in autism and mathematics education. 

As described by the (lack of) Theory of Mind account, ASD students experience their social 

environment as unpredictable and incomprehensible. Research on ASD and general educational will 

address the development of evidence-based practices that support ASD students in their social 

interactions. Research on mathematics education can develop interventions that aim for using 

(understanding) and seeking feedback with respect to learning mathematical concepts and skills. 

Related to feedback is the use of self-regulated learning. Students with ASD, with their typical weak 

executive functioning, can be supported by interventions that improve their metacognition and use of 

strategies and heuristics, especially in the field of mathematical problem solving. 

Recent research on perception by people with autism (e.g. Pellicano & Burr, 2012; Hohwy, 2013) is 

deepening the neurocognitive understanding of the weak central coherence account. Research on 

mathematics education may benefit from these results, and improve the understanding of concept 

learning by ASD students. 

To summarize, students with ASD have deficits in their social interaction, their contextual and 

conceptual understanding, and the self-regulation of their executive functioning. In order to allow 

successful inclusion of ASD students in education, teachers have to apply effective instruction 

methods to overcome the “mind-blindness” of these students. Research can help define design 

guidelines for instructional methods in mathematics, which are attuned to the specific needs of ASD 

students and allow them to see the beauty of mathematics. 
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The purpose of this paper is to present a questionnaire devoted to trigonometry and its results. 

More specifically, the study focuses on curriculum and cognitive aspects of learning and teaching 

sine and cosine over the final five years in French secondary schools, from grade 8 to grade 12. We 

ask: what are the difficulties of students in learning sine and cosine concepts and making the 

transition from the geometric setting to the functional setting. We identify four major types of error 

committed by students. This raises the question of how to make students effectively assimilate the 

concepts of sine and cosine. 

Keywords: Trigonometry, sine and cosine, secondary school, available knowledge.  

Introduction 

In secondary schools in France, trigonometry notions are introduced progressively from grade 8 to 

grade 11 (science option), and end with sine and cosine functions in grade 12 (science option). We 

ask the key questions: How to articulate the passage from trigonometry in right triangles to the 

trigonometric circle and to sine and cosine functions? And, how to make the students assimilate 

these notions? To answer these questions, we investigate the status of the educational system: 

curriculum and learned knowledge. 

In connection with our analysis of institutional texts and manuals for the study of the mathematical 

organization (Anthropological Theory of the Didactic, Chevallard, 1999; Bosch & Gascón, 2014), 

we elaborated a questionnaire for grade 12 students. The purpose of this questionnaire is to test the 

knowledge acquired by students in the final five years of study on trigonometry and specifically the 

sine and cosine functions in grade 12 (science option), to identify implicit notions in learning and 

teaching of trigonometry, to clarify the set of issues in our research work on what the students have 

learned, and to generate further research questions.  

The questionnaire consists of six exercises, mainly concerning the cosine and sine of an acute angle 

in a right triangle, the cosine and sine of an oriented angle in the trigonometric circle, and some 

properties of the cosine or sine function like periodicity. In this paper, we analyze the first three 

exercises of the questionnaire and describe its results.  

Methodology 

For the curriculum study, we use the Anthropological Theory of the Didactic (Chevallard, 1999; 

Bosch & Gascón, 2014) as a theoretical framework in order to identify the mathematical 

organization (MO) of the French institutions that is developed in French mathematics textbooks. It 

is rather an exploratory analysis of French textbooks which gives us an overview of the teaching of 

trigonometry and of trigonometric functions in secondary schools.  

We do not present in details the curriculum study but the identified MO allowed us to construct a 

questionnaire. It is grounded in the most used types of tasks and techniques in the French teaching 

institutions, from grade 8 to grade 12 related to trigonometry in right triangles (Exercise I, grades 8-



9), trigonometric circle (Exercise II, grades 10-11) and trigonometric functions (Exercise III, grade 

12). 

To analyze the tasks in the questionnaire, we choose tools from the Theory of Double didactic and 

ergonomic Approach (Robert, 2008; Robert & Hache, 2013) which provides us with fine cognitive 

tools to analyze students’ knowledge. The questionnaire is a test given to grade 12 students outside 

the context of any particular chapter in order to avoid any didactical contract influence. We study 

the knowledge adaptation in these tasks (see the following section) and especially, in this paper, the 

available level of knowledge application. This will allow us to have an idea of the cognitive 

complexity of the questionnaire and what students have learned (particularly in terms of available 

knowledge).  

When tasks require adaptations of knowledge that are at least partly indicated, we speak of the level of knowledge 

application that can be mobilized. Students’ work is not effectively analogous, depending on whether they must look 

for the knowledge to use (questions of why or what), or apply and adapt the indicated knowledge (question of how). 

If it is up to the student to recognize the knowledge to use, we speak of the available level of knowledge application. 

[…] We also distinguish combinations, links, or changes among elements such as frameworks, and work further on 

different types of intellectual activities that are specific to mathematics. (Robert & Hache 2013, p.37)  

The questionnaire was given in two versions in order to avoid any influence of neighbor students. 

Variations between them were cognitively irrelevant to our study: different lengths in Exercise I, 

different coordinates in Exercise II, and cosine vs. sine functions in Exercise III. 

Presentation of the questionnaire, a priori analysis 

In this section we specify the aims of each question (of each exercise), the available knowledge 

(AK), the correct methods1, possible erroneous methods and possible errors made by students. Most 

of the tasks are not “simple and isolated tasks” in the following sense: 

We first distinguish simple and isolated tasks, or immediate applications of piece of knowledge without adaptation or 

combination. A single piece of knowledge is used, potentially with simple replacement of general inputs by the given 

information in the context of the exercise. (Robert & Hache 2013, p.36) 

Exercise I: Trigonometry in a triangle  

 

Figure 1: Exercise I – Trigonometry in a triangle 

Exercise I (see Figure 1) asks for the values of sine and cosine of the angles of the given triangle.  

                                                 

1 We focus on the knowledge effectively used by students, for example, we do not discuss methods using scalar product 

of vectors (seen in grade 11). 



Note that in this figure, there is no coding denoting that β is a right angle. We want to know the 

available knowledge of students, and particularly if the generalized Pythagorean theorem effectively 

is mobilized by students.  

The first Method, M-I.1, relies on the definitions of the cosine and sine of an acute angle in a right 

triangle (seen in grades 8 and 9) which require first the reciprocal of Pythagorean theorem (AK, 

seen in grade 8) or the visual recognition of the right angle of the given triangle without proof. 

Note that trigonometry in a right triangle only allows to calculate the cosine and sine of an acute 

angle whose measure is strictly between 0  and 90  but does not give cos  nor sin , which 

require another knowledge (AK). 

There are three steps in M-I.1, where steps a and b form a non-simple task, and step c reinforces the 

complexity: 

a. Recognition of a right triangle with the reciprocal of Pythagorean theorem (AK) or by visual 

inspection. 

b. Definitions of the cosine and sine of an acute angle of the right triangle to find independently 

cos , sin , cos  and sin .  

c. Property of the cosine and sine of the right angle to find cos  and sin .  

Note that there are two other possible pieces of knowledge that could be used: finding, for example, 

cos  with sin  via the formula 1sincos 22   (AK, seen in grade 9) or using a right triangle 

property (AK, seen in grade 9) that ensures the equalities  sincos   and  cossin  . 

Possible errors of the student are confusion between cosine and sine or an error in formulas.  

The second method, M-I.2, relies on the generalized Pythagorean theorem (or Al-Kashi’s formula, 

it allows to calculate the cosine of an angle whose measure is strictly between 0  and 180  or 

between 0 and   radians, seen in grade 11) to find the cosine of an angle of any triangle. In this 

case, what is the reaction of the student when finding 0cos  ? Does he/she conclude that   is a 

right angle? Noticing that the given triangle is in fact a right triangle, will he/she change the strategy 

to M-I.1 method to determine the remaining values?  

There are two related tasks, consisting in finding straightaway cosine, then sine. Apply the 

generalized Pythagorean theorem (AK) to independently find the three cosines and then, with the 

results obtained, use the fundamental relation 1sincos 22   (AK, seen in grade 11) to find the three 

sines. It is a non-simple task to find the cosine of an angle of a triangle. And, it is a non-simple and 

non-isolated task to find the sine of angle: there is the introduction of steps and also a combination 

of settings (numerical and algebraic) - transformation into an equation of the type ax 2
, 

determining the sign of the sine of the angle and deducing its value.  

Possible errors of the student are in the application of the formulas, in algebraic transformation, and 

in numerical calculations.  



Exercise II: Trigonometry in the trigonometric circle  

 

Figure 2: Exercise II – Trigonometric circle 

From Exercise II, we only discuss here the question 1 (see Figure 2) which consists in asking for the 

cosine and sine of   (an acute angle) and of   (an obtuse angle). In the context, we gave the 

coordinates of the points M(4/5; 3/5) and N(-24/25; 7/25). We want to know the available 

knowledge of students such as definitions of the cosine and sine of an oriented angle (seen in grade 

11). It is asked similarly to the Exercise I for the cosine and sine values but in another setting, and 

moreover, with different notions of angles.  

Note that in textbooks corresponding to the 2010 program in grade 11 (science option), one begins 

by defining measures of an oriented angle, then the cosine and sine of an oriented angle in this way: 

The cosine and the sine of an oriented angle are the cosine and the sine of any of its measures. 

The first method, M-II.1, relies on the expression of the Cartesian coordinates of a point of the 

trigonometric circle with the cosine and sine. As  baM ;  is a point of the trigonometric circle in a 

direct orthonormal frame  JIO ,;  of the plane and as   designates the oriented angle  OMOI ,  , 

so we have acos  and bsin  (AK). It is a non-simple task. As   does not designate a 

measure of the oriented angle  OMOI , , do students use the M-II.1 method, namely that the 

coordinates of the point M are   sin;cos ? If not, with the graph, will they think of using other 

methods, for example, like M-II.2 in the following?  

The second method, M-II.2, relies on the relations between algebraic writing of a complex number 

and its trigonometric writing (AK) and on the characterization of equality of two complex numbers 

via equality of real and imaginary parts (AK, seen in grade 12). It is a non-simple task - introduction 

of steps: mark, in the given graph, the angles  ,   - consider the points M and N as respective 

image points of complex numbers of module 1, then write the two complex numbers in two forms: 

algebraic writing and trigonometric writing - deduce the exact values of the cosine and sine of   



and of  . Compared to M-II.1 method, M-II.2 method requires the change of settings, of registers 

and of point of view in the reasoning (Duval, 2006).   

Possible errors of the student are the confusion of sine and cosine in the expression of Cartesian 

coordinates of a point of the trigonometric circle with cosine and sine, error in the application of 

formulas and in numerical calculations.  

Exercise III: Graph of trigonometric functions 

 

Figure 3: Exercise III – Graph of cosine function 

From Exercise III, we only present here the question 1.c. We want to know the available knowledge 

of students like the existence and the nonexistence of a point on the curve of a trigonometric 

function (cosine or sine) and the possibility of placing a point on the curve in the given graph, and 

particularly the property of periodicity.  

The third method, M-III.1: Placing the point C of abscissa 
6
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 on the curve C  within 

the graphic is an impossible task: recognize the existence of a point on a curve justifying it using the 

domain of a function and the given graph. It is a non-simple and non-isolated task - combination of 

graphical and functional settings.  

Comparing the coordinates of A and of C relies on the property of a point on a curve and that of the 

cosine of a real number (AK) (or rather that of periodicity of the cosine function). It is a non-simple 

task. Besides, one could use the geometric property of periodicity of a function (AK, using graph of 

the function with translation). 

Note that for comparing the coordinates of A and of C, there is another possible method based on 

the property of a point on a curve and the calculator in radian mode (an incomplete method with an 

erroneous conclusion starting from the numerical results from the calculator). 

Possible errors of the student are a numerical error in the calculation; the periodicity of cosine 

function might not be an available knowledge.     

 

 



A posteriori analysis of the three exercises shown and their results  

The questionnaire was given to 40 students in March 2016 in two grade 12 classes of two different 

high schools.  

Exercise I: 37 students used M-I.1 method (22 by reciprocal Pythagorean theorem (see Figure 4) 

and 15 by visual inspection), only 1 student used M-I.2 method, and 2 students did not answer this 

exercise.  

We identify three major types of error committed by students, denoted TE1 (5 students), TE2 (9 

students), TE3 (18 students). TE1 and TE2 are two types of more general errors, and TE3 consists 

in attempting to give different values of the cosine and sine of the right angle of the right triangle 

in the geometric setting. 

TE1: “Confusion of the values of the cosine and sine of an angle with the value of the angle”.  

For instance, 4.6713/5cos   (with or without the sign “  ” designating the measure of the angle 

  obtained in degree; here, the second “ = ” sign would designate “it gives”). We did not meet the 

error committed like 13/5  signifying that the angle   was the value of the cosine of  . 

TE2: “Confusion of the value of the cosine (or sine) of an angle with the value of the cosine (or 

sine) of a real number”. Students mobilize correctly, for example, the definition of the cosine of an 

acute angle of the right triangle but they do not stop there, they continue putting the sign “ = ” and 

conclude with an approximate value of the cosine of the real number which designates the value of 

the cosine of the acute angle obtained using the calculator either in degree mode or in radian mode. 

In this case, their result would be an approximate value of the “cosine of the cosine of the angle”. 

For instance, 99.013/5cos   with the calculator in degree mode, and in radian mode, 

93.013/5cos   (see Figure 4).  

TE3: “Inventing values of the cosine and sine of the right angle of the right triangle”. It seems that 

students do not remember the values of the cosine and sine of the right angle which are the 

respective particular values 0 and 1. Thus, they invent these values in the right triangle committing 

TE3 (see Figure 4). 

 

Figure 4: Exercise I – TE2 and TE3  

We can conclude that the cosine and sine of an acute angle ( or  ) of the right triangle are 

available knowledge only for half of the students while those of the right angle (  ) are not 

available knowledge because only about a quarter of students correctly gave the values 0 and 1. 



Exercise II: 11 students out of 40 did not do this exercise. 17 students out of 29 correctly gave the 

values of the cosine and sine of the angle  : 11 students recognized the cosine and sine of the angle 

  as the x and y coordinates of the point M (M-II.1); 2 students exploited the properties of complex 

numbers (M-II.2); 4 students used previous knowledge seen in the 8th and 9th grades (M-I.1). 13 of 

these 17 students also correctly gave those of cosine and sine of the angle   (11 used M-II.1 & 2 

used M-II.2) while 4 other students who used M-I.1 method to give the cosine and sine of the angle 

 (acute angle) had any difficulties to calculate the cosine and sine of the angle   (obtuse angle). 

3 students out of 12 who incorrectly gave the values of the cosine and sine of the angles   and   

committed TE2, and 5 students did not calculate those of  . Thus, cosine and sine of an oriented 

angle are not available knowledge because only about a quarter of students effectively mobilized 

this knowledge. 

Exercise III: Among 36 students who did this exercise, 11 committed TE4 (see below) and 14 did 

not answer question 1.c. And, 6 students out of 22 who answered question 1.c committed TE4 (see 

Figure 5) and they placed inside of the graphic the point C on the curve either at the point A or 

elsewhere. 

 

Figure 5: Exercise III-1.c – TE4  

TE4: “Confusion between the position of the two points on the trigonometric circle, images of two 

real numbers of the difference k2  (k is an integer) and that of the points on the cosine/sine curve 

with abscissas these two real numbers”. The TE4 is an error amounting to say, for instance, that the 

points A and C might have the same abscissa while the two points have in fact the same ordinate by 

the periodicity of the cosine function (see Figure 5a).  

Conclusion 

Through our analysis of this questionnaire, we clearly see the difficulties of students in using their 

knowledge on cosine and sine of an angle (seen in grades 8, 9, 11) and on those of a real number 

(seen in grades 10, 12) in the geometric and functional settings. Considering French institutional 

texts and manuals, and the work produced by students in answering the questionnaire, we identify 

the implicit notions related to the learning and teaching of trigonometry as follows. 

In the case of trigonometry in right triangles (grades 8, 9), the notion of cosine and sine of an 

acute angle is an available knowledge for students while that of cosine and sine of the right angle in 

right triangles is not an available knowledge. To give the values of the cosine and sine of the right 



angle, about half of the students tried to use the ratio of two lengths of the right triangle but it is not 

adapted to the case of the right angle, and other knowledge is required (seen in grades 10, 11).  

In the case of trigonometry in the trigonometric circle (grade 11, science option), a remarkable 

number of students have difficulties seeing the link between the coordinates of a point on the 

trigonometric circle and the cosine and sine of the oriented angle that is defined in this circle. This 

knowledge is an available knowledge for only about a quarter of the students.    

In the case of sine and cosine functions (grade 12, science option), some students have difficulties 

distinguishing between two real numbers of difference 2kπ (k is an integer) denoting two 

measurements in radian of the same oriented angle.  

Overall, there is available knowledge for students to solve mathematical tasks on the trigonometry 

and on trigonometric functions, yet there is a blur or confusion in using their learned knowledge: 

between the value of cosine (or sine) and the angle or a measure of the angle, between an angle and 

its measurements, between a measure of an angle and a real number. 

We can undoubtedly find epistemological, didactic, and curricular reasons; and this constitutes our 

research questions. 

References 

Bosch, M. & Gascón, J. (2014). Introduction to the Anthropological Theory of the Didactic (ATD). 

In Bikner-Ahsbahs, A. & Prediger, S. (Eds.), Networking of theories as a research practice in 

mathematics education (pp.67−83). Dordrecht, The Netherlands: Springer. 

Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du 

didactique, Recherche en Didactique des Mathématiques, 19(2), 221−266. 

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. 

Educational Studies in Mathematics, 61, 103−131.  

Robert, A. (2008). Une méthodologie pour analyser les activités (possibles) des élèves en classe. In 

F. Vandebrouck (Ed.), La classe de mathématiques: Activités des élèves et pratiques des 

enseignants (pp.45-57). Toulouse: Octarès. 

Robert, A. & Hache, C. (2013) - 2. Why and how to understand what is at stake in a mathematics 

class. In F. Vandebrouck (Ed.), Mathematics classrooms: Students’ activities and teachers’ 

practices, (pp. 23−73). Rotterdam, The Netherlands: Sense Publishers. 
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This paper refers to the Pythagorean theorem and the use of physical artifacts (called mathematical 

machines), which are related to one of the proofs of the theorem. It aims to discuss the didactical use 

of these kinds of artifact, paying attention to students’ work with them and the role of the teacher. It 

presents a laboratory approach to this theorem developed within the Theory of Semiotic Mediation 

in mathematics education for 13-year-old students in Italy. The analysis shows that manipulation of 

the machine only does not imply the emergence of the mathematical meanings embedded in the 

machine. It also pays attention to the different graphical representations of the artifact and their role 

in the learning process.   

Keywords: Artifacts, geometry, laboratory, lower secondary school education, Pythagoras. 

Introduction 

The Pythagorean theorem is a traditional content in the mathematics curriculum of the secondary 

school, not only in Italian school (Moutsios-Rentzos, Spyrou & Peteinara, 2014). This theorem is 

often proposed in the geometrical domain at the beginning, and it is soon converted into formulas and 

related to algebraic calculations. There exist several proofs of this theorem1, some of them are 

proposed as visual proofs. On this topic, Bardelle (2010) analyses how university students in 

approaching a visual proof of that theorem try to look for the algebraic relation among sides starting 

from their knowledge of the theorem rather than getting the relationships between the components of 

the given figure. On the other hand, different exhibits are constructed basing on this kind of proofs, 

and they are also associated with and spread as gadgets (Eaves, 1954). In our work, we ask if and 

how it is possible to approach the Pythagorean theorem starting from artifacts which embed one of 

its proofs (Rufus, 1975), taking into account the role of manipulation, with 7-grade students (13-year 

old students). At the same time, we are interested in reinforcing the geometrical meaning of equivalent 

figures, which makes this theorem a particular case.  

In this paper, we introduce the theoretical background for the didactical use of physical artifacts 

(called mathematical machine2, Maschietto & Bartolini Bussi, 2011), then we present the teaching 

experiment.  

Theoretical framework 

In this section, we outline the theoretical framework of our work, based on the Theory of Semiotic 

Mediation (Bartolini Bussi & Mariotti, 2008) and the cognitive processes in geometry fostered by the 

                                                 

1 http://www.cut-the-knot.org/pythagoras/index.shtml Accessed 20th March 2017. 

2 Mathematics Laboratory at the University of Modena e Reggio Emilia: www.mmlab.unimore.it. Accessed 20th March 

2017. 



task of reproducing artifacts. The teaching experiment is designed according to the methodology of 

mathematics laboratory (Maschietto & Trouche, 2010) with different kinds of artifacts.  

Mathematics laboratory 

The teaching experiment is proposed and analyzed within the Theory of Semiotic Mediation 

(Bartolini Bussi & Mariotti, 2008, TSM), grounded in the Vygotskian notion of semiotic mediation 

and role of artifact in cognitive development. Following to the TSM, the teacher chooses the artifacts 

evoking particular mathematical meanings and uses them to mediate those meanings, proposing tasks 

to be accomplished by those artifacts. The tasks are organized in terms of didactical cycles with group 

work, individual work and collective discussions (mathematical discussions) orchestrated by the 

teacher. The cycle usually starts with the exploration of the chosen artifact, above all in small group 

work, structured following fundamental questions as: “How is the machine made?”, “What does the 

machine make?” and “Why does it make it?”. In general, the first two questions try to take in account 

students’ processes of instrumental genesis (Rabardel & Bourmaud, 2003). In the mathematics 

laboratory, students’ processes of formulation of conjectures and argumentation are strongly 

motivated and supported by the third question. The mathematical meanings emerge from the use of 

the artifacts, the interactions among peers and between peers and the teacher, who has the role of an 

expert guide. In all the activities, students are involved in a semiotic activity (producing gestures, 

words, drawings, called artifact signs) that the teacher makes evolving into mathematical signs (i.e., 

linked to mathematical contents) by the means of pivot signs. In this sense, the teacher uses the artifact 

as an instrument of mediation for mathematical meanings. 

The teaching experiment on the Pythagorean theorem is carried out with the use of two mathematical 

machines (M1 and M2 in Figure 1)3. They were analyzed in terms of their semiotic potential (Bartolini 

Bussi & Mariotti, 2008), corresponding to a semiotic relationship between an artifact and: on the one 

hand the personal meanings emerging from its use to accomplish a task; on the other hand, the 

mathematical meanings evoked by its use. 

The analysis of the semiotic potential considers three components: mathematical content, historical 

references and utilization schemes (Rabardel & Bourmaud, 2003). This kind of analysis is essential 

for the choice of the artifact and the identification of mathematical meanings evoked by it.   

M1:                    M2:  

Figure 1: The mathematical machines proposed to the classes (M1 on the left, M2 on the right) 

                                                 

3 http://www.macchinematematiche.org/index.php?option=com_content&view=article&id=162&Itemid=243&lang=it. 

Accessed 20th March 2017. 

http://www.macchinematematiche.org/index.php?option=com_content&view=article&id=162&Itemid=243&lang=it


Semiotic potential of the artifacts 

The mathematical machine M1 (Figure 1, on the left) is a wooden artifact, composed of a square 

frame and four triangular prisms, with right triangles as the base that are congruent each other. The 

fundamental relationship between the prisms and the square inside the frame (red square in Figure 1) 

is that the sum of the legs of the right triangles (base of the prism) is equal to the side of the square 

frame. This artifact shows a proof of the theorem (Rufus, 1975). For making evident the interior 

squares as figures, we have added a red paper into the frame.  

The scheme of use of this mathematical machine is quite simple: shift the prisms into the square 

frame, without raising them from the base and without superposing them (this condition is evident 

because of the height of the prisms and the frame). The mathematical meanings involved in this 

artifact are: geometrical figures as right triangle and square, the area of those figures, and equivalence 

of area by addition/subtraction of congruent parts. The property of the triangles to be right-angled is 

obtained by the support of the square frame, and that represents the hypothesis of the theorem 

embedded in the machine itself. The movement of the prisms is bound by the frame, which ensures 

the invariance of the sum of the areas of the triangles and the squares or, in other words, the invariance 

of the area of the squares, whatever it is. Two tasks can be proposed: the first one is to place the 

prisms for obtaining square hole(s), the second one is to pass to a configuration (M1 in Figure 1, in 

the center) to the other one (M1 in Figure 1, on the right). 

In our experiment, we asked the students to reproduce 1:1 the first mathematical machine on paper 

(four triangles and square corresponding to the interior of the frame), after its manipulation and 

description. This choice was due to the fact that we had only one wooden model in the classroom and 

we wanted to propose the task about the configurations with a model for each small group. In such a 

way, the students constructed a new artifact. We want to pay attention to the two elements that 

characterize the semiotic potential of the reproduction of the machine: the negligible thickness for all 

the components of the machine and the lack of the frame. The first element can force the students to 

transfer implicit constraints of the manipulation of the wooden machine into a control of the reciprocal 

position of the right triangles to avoid their superposition (Figure 2, on the right). The second element 

fosters to make evident the range of the movement of the right triangles on the big square base (Figure 

2, on the left). In this way, making explicit the mathematical components of the utilization schemes 

is supposed to reinforce the link to mathematics evoked by the machine. 

     

Figure 2: configurations by manipulating the paper machine 

Drawings and geometrical figures 

In the first activities with the artifact, the students are asked to answer the question “how the machine 

is made”, with the request of representing it. As we have written above, in this case, the students had 



to physically reproduce 1:1 the machine (while, in general, they should draw the machine in their 

homework or worksheet, which often is not squared paper). In the TSM framework, drawing the 

artifact corresponds to individual production of artifact signs, strictly dependent on student’s 

knowledge and his interpretation of the artifact. However, with respect to the TSM, we aim to pay 

more attention to our request of drawing. Following Duval (2005), this is a task of geometrical 

construction involving student’s visualization and how geometrical properties are identified (see also 

Vendeira & Coutat, 2017). Our tasks involve the two kinds of visualizations that Duval distinguishes 

as iconic and non-iconic:  

A visualisation is iconic when, for instance, it represents positions or shape of real-world. It is non-

iconic while it is organised to internal constraints and gives access to all cases possible. (Duval, 

2008, p.49) 

Concerning the role of visualization as an argument in proof, Duval (2005) analyzes the proof of the 

Pythagorean theorem corresponding to our first mathematical machine (as given by Rufus, 1975). He 

claims that the visualization is not complete if it only considers the two configurations (see Figure 1), 

because the relationship between the big square and the hypotenuse of the right triangles on one hand, 

and the two other squares and the legs of the same right triangles on the other hand are supposed 

known for the reader. This is grounded on the relationship between a conjecture and a figure. But if 

an arrow from left to right, for instance, connects the two representations, the transformation from 

one representation to another is realized. Nevertheless, the comparison of the areas of the squares is 

not directly possible, but it has to consider a computation (i.e., the difference between the big square 

and the four triangles) for paying attention to invariant elements in that transformation. In our 

machines, the transformation of representations corresponds to the movement of the four triangles, 

nevertheless with the loss of their simultaneous view. 

Research questions 

In this paper, we are interested in the didactical use of the mathematical machines for the Pythagorean 

theorem. Our research questions are: 

1. Is it possible, and how, to approach the Pythagorean theorem with the mathematical machines 

described above?  

2. Does the sequence of movements with the machines give a sufficient representation of the theorem 

for its understanding?  

3. Which kinds of visualization are related to the tasks of drawing M1?  

Methodology 

According to our theoretical framework, the didactical methodology is the mathematics laboratory 

with artifacts. The tasks for students are organized in didactic cycles (Bartolini Bussi & Mariotti, 

2008), consisting of small group work (GW), individual activities (IW), and collective mathematical 

discussions (CW). In the classrooms, other technologies are available, such as the Interactive 

Whiteboard with its software for making animations of the machines, and the simulations of the 

second machine made with Dynamic Geometry Software from the web. In the specific case of two 

classes involved in the experiments, the platform Edmodo was used. Therefore, the teaching 



experiment proposes a learning environment in which material and digital technologies are present. 

In general, it is structured in three phases, as follows: 

Phase A: 1) GW: Exploration of the first mathematical machine M1 (Figure 1); 2) CW: sharing of 

the description of the M1; 3) GW: construction of the M1 by paper; 4) GW: study of the possible 

configurations of the four triangles of M1 (Figure 2); 5) IW: representation of M1 on workbook; 6) 

CW: identification of relationships (invariants) between the components of M1. 

Phase B: 7) History of the Pythagorean theorem and Pythagorean triples; 8) GW: Generalization of 

the theorem by different puzzles. 

Phase C: 9) CW: Exploration of the second mathematical machine M2 and its reproduction with 

paper; 10) GW: Preparation of posters on the two mathematical machines. 

The teaching experiments have started in 2013, and have involved six Italian classes of 13-years old 

students and two teachers, co-authors of this paper.  

The analysis is carried out on students’ worksheets, videos, photos and IWB files.  

Findings 

In this section, we refer to phases A focusing on the task of drawing the machine M1.  

Steps 1-3. Work with the material model in small group and its reproduction  

During the first three steps, the students worked in small group with the task of describing the machine 

M1 and collecting the elements (for instance, the types of triangles, the length of the sides) useful for 

its reproduction with colored paper. Before the reproduction, a collective discussion allowed students 

sharing their explorations and agreeing on a written description of the machine, with the measure of 

its sides. In particular, the right triangles were described as equivalent and some students recalled the 

Tangram game. Then, the students obtained the reproduction scale 1:1 by measuring and using tools 

for drawing (above all, rules and set square).  

After this, the students had to fill a worksheet with the properties of the two figures, square and right 

triangle, constituting the machine. The manipulation of this new paper machine was guided by the 

task of looking for “square holes”. But this task requires being conscious of the two schemes of use: 

the triangles must remain in the big square and do not overlap each other (Figure 2). During students’ 

work, the configuration with the two square holes (Figure 1, M1 in the center) often appears first with 

respect to the configuration with the square alone (Figure 1, M1 on the right). This could be because 

the sides of the square are not parallel to the side of the square frame.  

Individual Work for representing the two configurations in paper and pencil (Step 5) 

Although the students had correctly described the congruence of the four right triangles (and 

constructed those in the previous step) into the square, several representations were not correctly 

drawn. We summarize some elements of students’ drawings: 

1) Square base is not equal in the two configurations (Figure 3, on the right); 

2) All the four right triangles are not all congruent: a) in one confirmation itself (Figure 3, left, 

drawing on the left); b) between the two configurations (Figure 4); 

3) The “square with the hypotenuse as side” is not a square (Figures 3 and 4). 



The review of all the representations shows an important invariant of the machine was not taken into 

account by the students: the side of the square base is equal to the sum of the two legs. 

        

Figure 3: Students’ representations of the two configurations of M1 on their workbooks 

Figure 4: Student’ representations of the two configurations of M1 on his workbook 

Collective discussion with IWB  

The collective discussion had two phases: the teacher paid attention to the wrong representations of 

the configurations; he took into account the passage from acting on the machine (both wooden and 

paper) to identify the relationship between the two configurations. First, the teacher used a checklist 

with the geometrical properties of the components of the machine that had been shared in the previous 

discussion for comparing the different representations. After, he asked to make new representations 

on the workbooks. 

 

Figure 5: Collective work on IWB 

Then the machine is represented on the IWB from a photo (Fig. 5, on the left). The use of the IWB 

enables a new collective manipulation of the machine, in which the students passed from one 

configuration to another one by dragging the right triangles as they made with the material machine. 

An important part of the discussion focused on the argumentation that the holes were squares (Figure 

6, on the left). The collective use of digital machine allows students linking the manipulation of the 

triangles to the manipulation of Tangram pieces (Figure 6, on the right) and, so, emphasizing the 

conservation of the areas of the holes. The Pythagorean theorem becomes a particular case in the 

equivalence of areas. 

They are squares because you see the 

shape and the sides seem equal and the 

base of a triangle can be turned and it is 

equal to the other sides. 



        

Figure 6: Question on proof and conclusion of the collective work on IWB (screenshots) 

Discussion and concluding remarks     

This paper aims to study the approach to the Pythagorean theorem using some physical artifacts that 

are material representations of that theorem. Students’ answers to different task seem to confirm the 

assumption that the manipulation carried out by the students on the first mathematical machine is not 

enough for the emergence of mathematical meanings embedded in the machine. About our first 

research question, the analysis shows that those tasks allow fostering the production of signs, 

according to the theoretical framework of the TSM, and representations that can be used by the 

teacher for the mediation of mathematical meanings.  

The scheme of use of shifting triangles for obtaining different configurations can support the 

emergence of personal signs and show the Pythagorean theorem in the context of equivalence of 

areas. For instance, in the first task of describing M1, some students recall the Tangram. If this 

meaning is not available for the students, the teacher has to focus on areas through a written, and/or 

symbolic calculation. With respect to our second research question on the feasibility of approaching 

the theorem with artifacts, we can argue that the Tangram, or meaning related to it, can be considered 

a prerequisite. In this case, Tangram means equivalent areas and manipulation of pieces for obtaining 

equivalent figures. 

The comparison between the resolution of the tasks of making M1 by paper and representing M1 on 

workbook pays attention that the two tasks foster two different visualizations, as we have asked in 

our third research question. The first task solicits an iconic visualization of the two configurations, in 

which the shapes are drawn, but not their relationships inside the same configurations and between 

the two configurations. The second task seems to support a non-iconic visualization, because the 

students have to choose the measures of the sides of the figures (that are the parameters of M1) and 

make links between them. This choice has the potential of giving access to generalization to all the 

right triangles. However, it is not enough to draw twice a square and four triangles but the students 

have to represent their relationship, that is, an iconic visualization does not support the resolution as 

the wrong representations on workbooks show. Moreover, the students do not use the previous 

description of the components of M1.  

Within the TSM framework, when the teacher proposes the discussion about those representations, 

the students’ drawings are pivot signs for him. They are signs related to the artifact, but they are used 

for identifying and representing geometrical properties and invariants of M1. The potential of giving 

access to generalization is exploited by the teacher.  
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This paper presents a teaching sequence conducted with 4th grade students, aimed at the 

construction/conceptualization of axial symmetry and its properties in which a crucial role is played 

by a duo of artefacts. This consists of a concrete artefact and a virtual artefact which address the 

same mathematical content. According to the Theory of Semiotic Mediation, both the artefacts have 

been chosen for their semiotic potential, in terms of meanings that can be evoked by carring out 

suitable tasks involving their use. The design of the teaching sequence is developed with the purpose 

of exploiting the synergy between the artefacts, in such a way that each activity boosts the learning 

potential of all the others.   

Keywords: Axial symmetry, duo of artefacts, synergy of artifacts, semiotic mediation. 

Introduction 

The study of geometric transformations originates from the observation of phenomena and 

regularities present in real life, and takes on a particularly important role in the field of mathematics, 

both as a mathematical concept in itself and as a tool that can be used to describe geometric figures. 

For this reasons, it can offer an interesting lens through which investigate and interpret geometric 

objects, thus contributing to the development of students’ reasoning and argumentation skills 

(Xistouri & Pitta-Pantazi, 2011). However, an effective use of transformational geometry in 

mathematics education requires a correct mathematization process of real life observations, ending 

with the mathematical formalization of concepts and properties (Ng & Sinclair, 2015). This process 

of construction of meanings could be fostered by the use of artefacts. But, the design of the teaching 

sequences needs to be developed according to a theory that can take into account the key transitions 

from the personal meanings, emerging from the activities, to the mathematical meanings, that are the 

aims of the teaching. This paper presents a teaching sequence aimed at the 

construction/conceptualization of axial symmetry and its properties, in which a crucial role is played 

by a duo of artefacts (Maschietto & Soury-Lavergne, 2013). This is composed of a concrete artefact 

and a virtual artefact which address the same mathematical content. The design of the teaching 

sequence is framed by the Theory of Semiotic Mediation and is developed with the purpose of 

exploiting the synergy between the artefacts. Both the artefacts have been chosen for their semiotic 

potential, in terms of meanings that can be evoked when carring out suitable tasks involving their use. 

The components of the concrete artefact are a sheet of paper and a pin, while the components of the 

virtual artefact originate from the components of a specific dynamic geometry environment (New 

Cabri - Cabrilog), in which microworlds focused on particular concepts can be created.  The research 

hypothesis concerns the synergic action expected to develop when alternating the use of the concrete 



artefact and the virtual artefact, so that each activity can boost the learning potential of all the others. 

The aim of the paper is to highlight key moments of the design of a teaching sequence and to 

underline, in particular, how the meaning emerges not only through the unfolding of the semiotic 

potential of the two different artefacts, but also strongly through the synergy activated by the alternate 

experiences gained using the duo.    

Theoretical framework 

The geometric concept addressed in this research is axial symmetry, in the sense of the isometric 

transformation of the plane itself, with a line of fixed points (the axis); from the definition it can be 

deduced that axial symmetry transforms straight lines into other straight lines, segments into other 

congruent, comparable segments, and it is an involutory function (Coxeter, 1969). Attention will 

therefore be paid to the symmetrical properties by means of which it is possible to construct the 

symmetrical point from a given point in regard to a straight line, in other words the perpendicularity 

of the axis with respect to the line joining the corresponding points, and the equidistance of the two 

points from the axis. Although geometric transformation is traditionally reserved for high school 

students, we believe that it becomes crucial already for the primary school students to move from a 

generic perception of regularity to that of correspondence between figures, and subsequently to the 

transformation (point by point) of the plane in itself (Sinclair & Bruce, 2015). The design we present 

is based on the theoretical framework of semiotic mediation. The Theory of Semiotic Mediation 

(TSM), developed by Bartolini Bussi and Mariotti (2008) in a Vygotskijan perspective, deals with 

the complex system of semiotic relations among fundamental elements involved in the use of artefacts 

to construct mathematical meanings: the artifact, the task, the mathematical knowledge that is the 

object of the activity, and the teaching/learning processes that take place in the class. The aim of the 

teaching is to guide the evolution of personal meanings toward mathematical meanings, recognized 

as such by the math culture that the teacher needs to mediate. In a long, complex interweave process 

the teacher can foster the shared construction of mathematical signs. Some recent researches have 

drawn on TSM focusing the interplay between static and dynamic reasoning in the teaching and 

learning of geometry (i.e. Bartolini-Bussi & Baccaglini-Frank, 2015). The main aspect that we 

focused upon in the design process of the teaching sequence was the semiotic potential. The semiotic 

potential of an artefact consists of the double relationship that occurs between an artefact and, on the 

one hand, the personal meanings emerging from its use to accomplish a task (instrumented activity), 

and on the other hand, the mathematical meanings evoked by its use and recognizable as mathematics 

by an expert (Bartolini Bussi & Mariotti, 2008). This potential is the basis underlying both the design 

of the activities and the analyses of both the actions and production of signs and the evolution of 

meanings.   

The duo of artefacts involved 

As stated above, a duo of artefacts is employed: concrete and virtual. The concrete artefact consists 

of a sheet of paper, with a straight line drawn on it marking where to fold it, and a pin to be used to 

pierce the paper at the right points in order to construct their symmetrical points. This artefact allows 

an axial symmetry to be created in a direct fashion because the sheet naturally models the plane and 

the fold allows the production of two symmetrical points using the pin. The virtual artefact has been 

designed by the Authors to exploit the added value conferred by technology to the use of the chosen 

concrete artefact. It is embedded in an Interactive Book (IB) created within the authoring environment 



of New Cabri, which allows learning activities to be designed and created, including the objects and 

tools of a dynamic geometry environment. The IB appears as a sequence of pages including the 

designed tasks, together with some specific tools that correspond to specific elements of the concrete 

artefacts. In particular, among the tools available in the authoring environment, and in agreement with 

the general principles of dynamic geometry, the tools chosen are: those that allow the construction of 

some geometric objects (point, straight line, segment, middle point, perpendicular line, intersection 

point), the “Symmetry” and “Compass” artefacts and the “Trace” tool. A fundamental role is also 

played by the drag function, boosted by the “Trace” tool, that allows to observe the invariance of the 

properties characterizing the figures.   

Research methodology 

The study reported in this paper is inserted in a larger project that is aimed at validating the hypothesis 

regarding the possible synergic effect of the use of the two artefacts. The methodology employed is 

that of the teaching experiment (Steffe and Thompson, 2000). In this context the design of the 

teaching sequence plays a key role, because it is this sequence, designed in conformity with the chosen 

theoretical framework and the teaching hypotheses formulated, that constructs the teaching/learning 

environment where the observations will be made and, in general, the data collected on which to 

analyze the results of the experiment. In accordance with the TSM, the design of the teaching 

sequence follows the general scheme of successive “didactic cycles”. The expression didactic cycle 

refers to the organization of teaching in activities. These consist of using the artefact, individually 

producing signs and then in the end collectively producing and absorbing signs through Mathematical 

Discussion activities (Bartolini Bussi, 1998).  As regards the design of the activities using the artefact, 

in accordance with the study hypothesis that the two types of artefacts may be complementary, it was 

decided to alternate activities involving the use of one or the other artefact, formulating tasks that 

could exploit the complementarity of their semiotic potentials. The devised sequence was 

accompanied by an a priori analysis illustrating the semiotic potential expected to emerge during the 

activities.   

Developing the sequence 

In this paper we present the design of the sequence, addressed to 4th grade students, describing the six 

didactic cycles that make it up, and the tasks and semiotic potential of the artefacts involved. These 

are related to the conceptualization of axial symmetry as punctual transformation, and the properties 

that allow us to construct a symmetrical copy of an object with respect to an axis.    

The first didactic cycle and the semiotic potential of the concrete artefact 

The first didactic cycle involves three tasks (T1, T2 and T3). Given a figure (convex quadrilateral) 

drawn (in black) on a sheet, at the moment when handing over the sheet a red line is drawn on it.  In 

T1 the pupils are asked to draw in red a symmetrical figure to the black one, with respect to the red 

line, by folding the sheet along the line and using the pin to mark the necessary symmetrical points 

by piercing the paper. After completing this task, on the same paper a blue line is drawn and in T2 

they are asked to draw a blue symmetrical figure to the black one, employing the blue line. In T3 the 

pupils are asked to write an explanation of why and how they drew the red and blue figures and what 

looks the same and what looks different about them. In these first three tasks, folding the paper along 

the line evokes the meaning of axial symmetry, while the holes/points created with the pin evoke the 



idea of symmetry as puctual correspondence.  In addition, joining the points obtained with the pin is 

the process that yields as product the symmetrical figure, provided that the correspondence between 

the segments is preserved. This evokes the idea of symmetry as a one-to-one correspondence that 

transforms segments into other congruent segments. Finally, comparing what changes and what stays 

the same when drawing two symmetrical figures with respect to two distinct axes evokes the 

dependence of the symmetrical figure on the axis. The use of the pin can allow the meaning of the 

punctual correspondence to emerge without necessarily needing to explain the functional dependence 

between the points. In addition, folding the paper, so as to make one figure coincide with the other, 

can allow the intuitive meaning of line/axial symmetry to emerge as the element that characterizes 

the transformation. Finally, T3 makes the pupils reflect on the invariant aspects and the key role of 

the axis, when creating a symmetrical figure by folding the paper.  

The second didactic cycle and the semiotic potential of the virtual artefact 

The second cycle involves two tasks (T4 and T5) to be carried out using the virtual artefact: the 

button/tool “Symmetry” with the dragging function. In T4, the pupil is asked to build the symmetric 

point of a point A with respect to a given line, using the “Symmetry” tool and call it C. The second 

step is to activate the “Trace” tool on point A and point C, move A and see what moves and what 

doesn’t, and explain why. In the next two steps, in the same way the pupils are asked to move the line 

and the symmetrical point, after having activated the “Trace” tool on A, and to watch what happens 

during the dragging. In T5 the pupils are asked to write down in a summary table the answers to the 

questions asked by the interactive book in T4. In T4 and T5 clicking on “Symmetry” evokes the 

meaning of symmetry as punctual correspondence and once more underlines the key role of the axis 

as the element that characterizes the application, because in order to obtain the symmetry it is 

necessary to click not only on the point but also on the axis. Moreover, dragging the point of origin 

and observing the resulting movement of the symmetrical point evokes the idea of the dependence of 

the symmetrical point on the point of origin; dragging the axis and observing the resulting movement 

only of the symmetrical point evokes the idea of dependence of the symmetrical point on the axis; 

dragging the symmetrical point and observing the resulting rigid movement of the entire configuration 

evokes the idea of the dual dependence of the symmetrical point both on the point of origin and on 

the axis: the effect of the various drags is made even more evident by the “Trace” tool and by the 

observation of the relations among the trajectories. The difference in the movements between the 

symmetrical point and the point of origin can be compared to the distinction between dependent and 

independent variable.    

The synergy resulting from alternate use of the artefacts  

The hypothesis formulated is that the observation the pupils need to do in T4 will cause the concrete 

experiences they have already had with the concrete artefact to reemerge, in other words, that the 

images on the screen can be better interpreted in the light of the previous acts of folding and piercing.  

In this way we expect that the meanings that have already emerged thanks to the use of the concrete 

artefact may be extended and completed by the specific meanings that should emerge using the virtual 

artefact.  In short, the expected phenomenon is that a reciprocal boosting process will occur, in the 

form of a synergic process of mediation through the different types of artefacts.   For example, after 

having constructed the symmetrical point using the button, the relation between the two points can 

be interpreted through the actions of folding, so the two points can be seen as two holes.  But the 



meaning of the relation, that is symmetrical, can be enhanced by the distinction between the original 

point and the corresponding point, thus contributing to the development of the mathematical meaning 

of a functional – asymmetrical – relation between a point (independent) and its symmetrical point 

(dependent).  

The third didactic cycle and the semiotic potential of the concrete artefact 

According to our hypothesis, the third didactic cycle involves three tasks (T6, T7 and T8) again using 

the concrete artefact. In T6 the pupils are guided as they see how correct folding yields the 

perpendicularity between the segment joining two symmetrical points and the axis, and the 

equidistance of the symmetrical points from the axis. In T7 they are asked to construct a symmetrical 

point without using the pin but just by correct folding. In T8, finally, they are asked to explain what 

two segments joining two distinct pairs of symmetrical points have in common and what is different 

about them. In the tasks of the third cycle, folding the paper along the line passing through the two 

corresponding points and then, without opening, along the axis and finally observing the 

superimposition of four right angles, evokes the properties of perpendicularity between the axis and 

the segment joining two corresponding points; observing that the two points are superimposed when 

folding along the joining line and then, without opening, along the axis, in other words that the 

segment joining the two corresponding points is cut in half by the axis, evokes the property of 

equidistance of each of the two points from the axis. The complex folding processes required in the 

accomplishment of these tasks can be compared to the symmetry of the relationship between 

perpendicular lines and evokes the idea that the perpendicularity and equidistance properties allow a 

symmetrical copy of points to be constructed with respect to a line without needing to use the pin but 

just by folding correctly. Comparing the segments to be created in T8 could allow to see the 

perpendicularity and the equidistance as being characterizing properties. Finally, from the 

mathematical point of view, the step that leads to the elimination of the pin is fundamental in order 

to bring about the evolution of the meaning of symmetry from the simple operative level of folding, 

to the mathematical meaning of geometric transformation identified by a line and the geometric 

properties that characterize it.    

The synergy resulting from alternate use of the artefacts  

We expect that, the interpretation of the actions and the configurations with the concrete artefact 

might be related to the experiences within the virtual environment. In particular, we may expect that 

two different points, of which to construct the symmetric points, can be interpreted as different 

positions adopted by a point that has been dragged, thereby contributing to the generalization of the 

two properties (perpendicularity and equidistance) and to the evolution of the status of these 

properties from being seen as contingent to being seen as characterizing.    

The forth didactic cycle and the semiotic potential of the virtual artefact 

The fourth cycle involves two tasks (T9 and T10) to be carried out using the virtual artefact composed 

by the buttons/tools “Perpendicular line”, “Compass” and the dragging function. In T9 pupils are 

asked to construct the symmetrical point of a point A with respect to the given line, without using the 

tool “Symmetry”, and call it C.  Then it asks them to check whether the construction they have made 

is correct, using the tool “Symmetry” and moving point A.  In T10 it asks them to explain how they 

found C and why what they did works. Clicking the button “Perpendicular line” and then on point A 



and on the axis, evokes the idea of the perpendicularity between the segment for A on which the 

symmetrical point lies and the axis; clicking on the button “Compass” and then on the intersection 

point between the axis and the line through A perpendicular to the axis and on A, evokes the idea that 

the symmetrical point is obtained from the intersection between the circumference thus created and 

the perpendicular line, and so is at the same distance as A from the axis;  constructing the line through 

A perpendicular to the axis and the circumference with the center at the intersection point between 

the axis and the perpendicular line and radius at the distance of A from the axis, evokes the idea that 

by using the properties characterizing the symmetry, already previously constructed, it is possible to 

identify the symmetrical point. 

The synergy resulting from alternate use of the artefacts  

In the same way as occurred for task T7 we expect that so as to construct C, without using the tool 

“Symmetry”, the pupils will need to rely on the properties of perpendicularity and equidistance, 

already emerged from folding activities. However, this will bring them to recognize and to reuse these 

properties to construct the symmetrical point using specific buttons. These are quite complex notions 

and we do not expect the resolution process to be immediate but rather to be the result of trial and 

error. We also expect that the recognition of perpendicularity and so the possibility of using the button 

“Perpendicular line” may act synergically on the construction of the signs built up during the whole 

process, in terms of both images and words. We then expect a quite different complexity to present 

when transforming the properties of equidistance using the tool “Compass” (whose use should not be 

correctely linked to the mathamtical meanings embedded into it): the conceptualization of the 

configuration could consist of the relation between the segment joining the two points and the axis 

that divides it in half, rather than have been conceptualized in terms of distances and equalities among 

distances.  

The fifth and sixth didactic cycles: inverting the order of the artefacts  

In the fifth and sixth cycles the order of use of the two artefacts is inverted and they start with the 

virtual artefact. Both the cycles consist of the same two tasks (T11 and T12; T13 and T14), the 

difference is in the artefact. In T11 and T13 there are a pair of points A and C that must be interpreted 

as symmetrical points with respect to a symmetry where the axis is hidden. They are asked to identify 

and trace the axis. Finally, they are asked to check, using the button/tool “Symmetry” or with the pin, 

whether the symmetrical point of A with respect to the line is really C. In T12 and T14 they are asked 

to write down how the axis was identified and to explain why what they did works. In the tasks of 

these two last cycles, drawing the segment AC and then using the button “Midpoint”, such as folding 

along the line through A and C, and then without opening the paper, folding so as to superimpose 

points A and C, evokes the idea that the middle point is a point that is equidistant between A and C 

and so must belong to the axis; observing that by folding so as to superimpose A and C you obtain 

the superimposition of four equal angles, evokes the idea that the line/fold for the middle point that 

allows the superimposition of A and C is perpendicular to segment AC; clicking on the button 

“Perpendicular line” and then on the middle point between A and C and then on segment AC, such 

as folding first along the line through A and C and then without opening, superimposing A and C, 

and seeing that four right angles are formed, evokes the idea that the axis is perpendicular to the 

segment joining A and C, as well as that it is perpendicular to the axis, as they had already seen. It 

should be noted that these tasks have been devised so that the same properties of symmetry used to 



construct the symmetrical point with respect to a line (without using the artefacts “Symmetry” and 

pin) can be used to identify the axis that generates a pair of symmetrical points. But to draw up the 

construction the pupils need to invert the relation of perpendicularity between the axis and line 

through A and C. In addition, the property “the middle point of segment AC lies on the axis” must be 

redefined as “the axis passes through the middle point”. Also in this case it is a form of inversion of 

the belonging relationship, expressed in two different ways that have the same geometric meaning 

but that focus attention (by inverting the subject of the sentences) on one or the other element of the 

relation. 

The synergy resulting from alternate use of the artefacts  

The use of the same task (T11 and T13) with the two different artefacts, is not accidental but has been 

designed with the aim to bring out the common elements between the different schemes of use of the 

artefacts. We expect that this strengthens the idea that the two construction are both based on the use 

of the characteristic properties and are feasible only using them. In particular, what emerged in the 

previous activities, related to the double folding and to the properties of axial symmetry needs to be 

thinked over within the collective discussion aiming to bring out the development of the operational 

meaning of perpendicularity toward the geometric meaning of mutual relationship between lines. This 

is expected to recognize the geometrical meaning of the word perpendicular and of the configuration 

composed by two intersected lines so that four right angles are formed. In conclusion, two signs could 

be shared, a verbal and an iconc, defining the perpendicularity as “a property concerning two lines 

that by interesction form four equal angles”. It could be also noted that, this can be connected to the 

common routine to construct the “sample” of a right angle by means of a double folding. In T12 and 

T14, we expect that the pupils will describe the construction by listing, in the fifth cycle the used 

button and in the sixth the folding actions carried out and their effects. The relationships between a 

button and its embedded property such as the ones between the folding and its effects should emerge 

in the pupils’ descriptions.  

Final remarks 

The teaching sequence described above has already been experimented in a first pilot study. The 

analysis of results, based on videotapes and dialog transcriptions, has shown that the use of the duo 

of artefacts seems to develop a synergy whereby each activity enhances the potential of the others 

(Faggiano et al., 2016). Our research hypothesis concerning the synergy developed through using the 

artefacts has been validated. For instance, in the second cycle it was seen that the dynamic 

representation of the points and the observation of the coordinated movements of the points of origin 

and its symmetrical point, characteristic of the virtual artefact, recalled the meaning of 

correspondence between points that had previously emerged when piercing the paper with the pin 

using the concrete artefact. In this way, the dynamism of the virtual artefact enahnced the 

understanding of point-to-point correspondence, paving the way to making further considerations 

about the correspondence between segments and between lines. The study is still in progress but the 

results obtained encourage us to go ahead and develop a long term teaching experiment to confirm 

them.   
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In this paper I will present the implementation and some preliminary results of a teaching 

experiment conducted in a 9th grade geometry class within the framework of my doctoral studies. 

For the teaching experiment I designed geometry tasks in a Dynamic Geometry Software (DGS), 

with specific characteristics: they involve transitions from 2D to 3D geometric objects (and vice 

versa), they are “Black Box” tasks and they are designed to cause surprise, uncertainty or cognitive 

conflict to the students. The main foci of the paper are the description of the tasks, examples of 

strategies that a pair of students followed while dealing with them and the influence that the 

characteristics of the tasks had on students’ strategies, visualization and argumentation. 

Keywords: DGS, argumentation, visualization. 

Introduction 

In the lesson of geometry students are often asked to solve a problem, which is usually accompanied 

by a drawing. In many cases the drawing acts as an obstacle for students’ argumentation, as “since 

they are able to see results on the drawings, since they can work easily on it, mathematical proof 

seems to be useless” (Mithalal, 2009, p. 796). 

The idea behind the study presented in this paper could be expressed by the following question: 

What would happen if we asked students to solve geometry tasks designed in a DGS, in which the 

drawing of a geometrical solid that they would have to identify was actually invisible to them? This 

is something that one couldn’t do with physical objects, hence the designing of the tasks in a DGS. 

My hypothesis is, that when challenging the students with such a task, they will reach a point at 

which they will realize that when naive visualization is limited or fails, they have to turn to more 

efficient strategies in order to prove a conjecture or justify an answer. In this hypothesis the 

strategies are based on the use of geometrical properties of the figure. The aim of the study is to 

examine how students’ argumentation can be promoted by using tasks with specific characteristics 

and how visualization and argumentation are interweaved in 3D-DGS tasks. 

I will show how these two parts of the geometrical activity are linked theoretically and then present 

the teaching experiment that was conducted and some preliminary results. 

Theoretical background 

The interplay between visualization and argumentation in the frame of tasks designed in DGS 

The notion of visualization has constituted a topic of research interest both for psychologists and 

mathematics education researchers. Nevertheless, until today researchers have not yet agreed on one 

unique definition regarding this notion. In this problem-solving context it is the cognitive part of 

visualization that will be taken into account, as it is related to argumentation. 

Duval (2005) classifies visualization into two categories, iconic and non-iconic visualization. In 

iconic visualization “the drawing is a true physical object, and its shape is a graphic icon that cannot 



be modified. All its properties are related to this shape, and so it seems to be very difficult to work 

on the constitutive parts of it” (Mithalal, 2009, p. 797). In non-iconic visualization  

the figure is analysed as a theoretical object represented by the drawing, using three main 

processes: 

Instrumental deconstruction: in order to find how to build the representation with given 

instruments.  

Heuristic breaking down of the shapes: the shape is split up into subparts, as if it was a puzzle. 

Dimensional deconstruction: the figure is broken down into figural units — lower dimension 

units that figures are composed of —, and the links between these units are the geometrical 

properties. It is an axiomatic reconstruction of the figures, based on hypothetico-deductive 

reasoning (ibid, p. 797) 

It follows that argumentation isolated or visualization isolated, is not enough for students to solve a 

problem or prove a statement. There needs to be a continuous interplay between the two, for 

students’ geometric reasoning to progress and evolve. And it is through the use of tasks designed in 

a DGS that the interplay between visualization and argumentation is made stronger.  

Several studies that have been conducted show that the use of DGS can promote students’ 

visualization skills (see for instance Christou et al., 2006). During the last three decades DGS, like 

GeoGebra and Cabri, are being used more and more in the teaching of mathematics in secondary 

education. In this paper, the focus regarding DGS will be on their use in geometry teaching. 

As Laborde characteristically writes: “DGS contain within them the seeds for a geometry of 

relations as opposed to the paper and pencil geometry of unrelated facts” (2000, p. 158). Healy and 

Hoyles (2002) and Jones (2000) argue that DGS could play an important role in supporting students 

formulating deductive explanations and therefore also in the development of students’ deductive 

reasoning, as they  

appear to have the potential to provide students with direct experience of geometrical theory and 

thereby break down what can be an unfortunate separation between geometrical construction and 

deduction (Jones, 2000, p. 81) 

Before I proceed to the presentation of the study and the tasks, I would like to give some more 

insight regarding the theoretical perspectives on which the task-design was based. 

Theoretical perspectives behind the task design in this study 

The design (the characteristics) of the tasks, aims at challenging the students to produce conjectures 

and examine their validity using strategies that go beyond iconic visualization and naïve empirical 

justifications, engaging them naturally in mathematical activity that involves non-conic 

visualizations and argumentation. 

Characteristic No 1 – D-transitional tasks 

According to Markopoulos (2003), understanding the properties of a solid is equivalent to 

understanding the characteristic parts of a 3D shape, the comparative relations between the same or 

different structural parts and how the elements of the solid are interrelated. That is an idea which is 

very close to what Duval (2011) calls “figural units” of a figure. That means that the properties of 



the component parts (figural units) of a 3D geometrical object are also properties of the 3D 

geometrical object itself. 

This correlation of properties between shapes and geometric objects of different dimensions is 

vividly present in tasks that involve both 2-dimensional (2D) and 3-dimensional (3D) geometric 

objects. This thought generated the idea of what I call D-transitional tasks. These are tasks 

involving transitions from 2D to 3D (and vice versa) geometric objects. Such tasks provide students 

with the opportunity to think about an object through the manipulation of another, and thus combine 

their properties and identify the relationships, connections and dependencies between their 

properties. Furthermore, contrary to other studies which also use 3D DGS geometry tasks (see for 

instance Hattermann, 2009), the students are not asked to see 2D units in 3D shapes, but to identify 

3D shapes by studying 2D sub-figures of them. 

Laborde argues that: 

If properties of figures are not conceived as dependent, a deductive reasoning has no meaning. 

The question of the validity of a property conditional on the validity of other properties would 

not arise in a world of unrelated properties (2000, p. 157) 

As Pittalis and Christou explain: 

Students should understand that each paradigm of a 3D shape has a number of invariant and 

variant geometrical properties based on the properties of the isolated component parts and its 

own properties as a unified structure. The invariant properties constitute the criteria that the 3D 

shape should meet in order to represent an example of a class of 3D shapes (2010, p. 194) 

Characteristic No 2 – Cognitive conflict, uncertainty and surprise 

As cited in Hadas et al.: 

Goldenberg, Cuoco, and Mark (1998) stated that: “A proof, especially for beginners, might need 

to be motivated by the uncertainties that remain without the proof, or by a need for an 

explanation of why a phenomenon occurs. Proof of the too obvious would likely feel ritualistic 

and empty” (p. 6) 

They concluded that DGS may provide opportunities for the creation of uncertainties, leading 

students to seek for explanations (2000, p.128). 

But uncertainty is not the only possible motivation for students to seek for a proof of the validity of 

their conjecture. According to Healy and Hoyles (2002), and Laborde (2000) students feel the need 

for explanation when what they observe on the computer screen gives them a feedback that is 

surprising or is in conflict with what they expected.  

Characteristic No 3 – Black Box: A way to create uncertainty and surprise 

Black Box activities were designed by Laborde (1998) in the context of geometry teaching. Such 

activities have also been used by Knipping and Reid (2005) during a research in geometry teaching 

using Cabri Geometry. In such a task, a construction is already offered to the students but the 

properties and rules on which this construction is based are hidden. The Black Box activities give to 

students the opportunity of interesting and productive explorations. “When students’ predictions 



turn out to be wrong, this is a good opportunity for asking ‘Why is it so?’ and calling for an 

explanation or even proof” (Laborde, 2002, p. 311). 

The teaching experiment 

The teaching experiment was designed by the researcher and implemented by the participating 

teacher as part of his geometry lesson. The participants were 24 students of a 9th grade class. Five D-

transitional tasks were designed in the 3D Graphics environment of GeoGebra 5. Before the 

implementation of the teaching experiment, a 90’ session was dedicated to introduce the software to 

the students. During the teaching experiment the students worked in pairs on the computers. 

For the purposes of the data collection there were used 3 cameras. Each camera was focused on one 

pair of students. For the three pairs of students that were video recorded, a screen-recording 

program was used to record their work in GeoGebra. The analysis of the data is based on the 

transcribed video of the students’ discussions, the screen recordings and their notes on the 

worksheet they were provided with for each task. 

Description of the tasks 

In each task the GeoGebra window was divided into two sub-windows. On the right sub-window 

(3D Graphics) there was a 3D coordinate system in which a solid was designed, and a blue plane 

defined by axes x and y. On the left sub-window (Graphics) there were three sliders (h for height, t 

for tilt and s for spin), which the students could manipulate in order to move the solid, and a 2D 

depiction of the cross-section that was created when the solid intersected with the blue plane. The 

decision for the use of this representation was made, based on the prior knowledge of the students, 

who had already worked on intersections of solids in previous geometry lessons. 

         

Figure 1: Snapshot of Task 1                                         Figure 2: Snapshot of Task 3C 

In Task 1 (see Figure 1), the solid (a cylinder) was visible. The students were first asked to 

experiment with the three sliders and describe what the function of each slider was and how it 

affected the position of the solid in space. Subsequently, they were asked to examine the shapes of 

the cross-sections that were created in some different (h, t, s) positions of the sliders. 

In Tasks 2, 3A, 3B and 3C (see Figure 2) the solid was hidden. The question set to the students in 

each of these tasks was “Which solid do you think this could be, judging from its cross-sections?”. 

The teaching experiment was conducted in two phases. During each phase the students worked as 

shown in Table 1 below. 



Phases Steps of the Phases Duration 

1st Phase – Students work in pairs 

(1st day) 

Task 1 – Visible Cylinder 22’ 

 Classroom discussion 18’ 

Task 2 – Invisible Sphere 15’ 

 Classroom discussion 5’ 

2nd Phase – Work in parallel. Students 

work in pairs 

(2nd day) 

Task 3A - Invisible Cone 

Task 3B - Invisible Pyramid 

Task 3C - Invisible Cube 

 

50’ 

 Classroom discussion 30’ 

Table 1: Phases of the teaching experiment 

Before each phase, the teacher explained the lesson procedure to the students. He explained to them 

that the focus of these tasks should be the justification of their answers. That was both linked to the 

didactical contract and the tasks. The students were asked to be as precise and explicit as possible in 

their explanations, to use mathematical arguments in order to support their answers to the rest of the 

classroom, during the classroom discussions that would follow.  

During the time the students worked on the tasks, the teacher and the researcher were only observers 

of the situation. During the classroom discussions the teacher acted as a facilitator of the discussion. 

Preliminary results 

As the analysis of the collected data is still in progress, I will here present an example from the data 

as part of the preliminary results of this study. I will present the analysis of some excerpts from 

Gabriel and Elbert’s discussion while working together on Task 3C (see Table 2). The students 

started by exploring freely the situation in the task, without using the worksheet that has been given 

to them as a helper. 

 

Dialogue Pictures and Analysis 

G: Holy ****! What is this sh**? 

It should be symmetric! 

E: It could also be a cube. Change 

the height again. Make it zero (the 

tilt) and change the height. 

(They have set h=0 and d=0  and 

they change the tilt) 

E: Ay ay ay! 

G: We have here a diagonal cross-

section, that is no... 

E: No cube (he laughs) 

G: No cube… Right? 

 

The first sign of surprise is seen in the reaction of 

Gabriel, when he starts exploring the cross-sections 

performed, by the blue plane, on the solid when 

moving it with the sliders The students’ first 

conjecture, based on their visual perception, is that 

the hidden solid is a cube. Nevertheless, as soon as 

they find some unexpected cross-sections like 

pentagons and hexagons, their naïve visualization 

proves insufficient and they start questioning their 

initial conjecture.  



 

[…] 

E: Quite…not a cube. But it 

should be a cube. 

G: Could be one (cube). 

E: The other face is definitely 

square. We have seen that. 

G: Mhm.. (affirmative) 

E: The top face is also square. So, 

it could be a cube, it could – 

G: Wait, wait, wait. Spin 90, 90. 

So, 45. So, now is this thing 

perfectly oriented. 

E: Or it could be a – what do you 

want to see? 

G: More than one, more than one. 

I have more than one, therefore 

lets try the tilt. Now it is straight, 

right? I have simply oriented the 

thing (the solid) on the coordinate 

system 

E: That would work, if it is a 

cube, but it could also be a, a 

thingy. How is it called again? 

Prism? 

[...] 

G: That would be a cuboid. 

They start following a more organized exploration, 

by identifying some figural units of the hidden 

solid. They now start looking at the properties of 

the cross-sections (the 2D geometrical object), that 

is of the figural units, of the solid and relate and 

transfer them to the hidden solid (the 3D 

geometrical object). At this point, they discuss that 

according to the characteristics and properties of 

the cross-sections they have seen until now, they 

can only argue that the solid is a cuboid and not a 

cube yet. Although they have moved from iconic 

visualization to identifying figural units of the solid 

and some of their properties, they haven’t yet 

reached the level of dimensional deconstruction. 

 

[…] 

E: We know that the height and 

the width are equal. We know that 

it is square. That the faces are 

square. That means, it must –  

G: We check that, right? We are 

here at the smallest –  

E: No, this is so. Everything else 

makes no sense. We have a height 

of 2,35, a width of 2,35 and a 

length of 2,35. 

G: Well good. 

E: That is a square, eeh a cube! 

[…] 

G: Yes, as we proved, the face is 

square. We have proved that. But 

The students end up to the conclusion that their 

initial conjecture was true, basing their justification 

on deductive arguments linking together and 

relating the properties and the characteristics of 

both the visible cross-sections and the invisible 

solid. This process resulted to the reconstruction of 

the hidden solid by first achieving the dimensional 

deconstruction of its cross-sections. 

 



the length, the width and the 

height are equal, we have proved, 

because we changed the tilt and 

the object was always a square at 

90, 180, 270 and 360 and 0. Just 

turned round the axis. 

 

Table 2: Excerpts from the collaborative work of Gabriel and Elbert on task 3C  

Conclusion 

Gabriel and Elbert wanted to come up with a justification of their conjecture that would be 

satisfying for them. The nature of the task and the students’ initially “unorganized” exploration soon 

caused them surprise and cognitive conflict. The students started doubting their conjecture and they 

turned to a deeper exploration moving from iconic visualization to identifying figural units of the 

solid and their properties. They based their reasoning on the properties of both the cross-sections 

and the solid and also the dependencies between them. They achieved the reconstruction of a hidden 

solid, judging by its 2D cross-section and subunits. At the end they correctly identified the hidden 

3D shape as a cube by studying its 2D sub-figures. They stopped and accepted their conjecture as 

true only when they had produced what for them constituted a valid argumentation. 

There is still a long way to go until I can present some more general results from my study. 

Nevertheless, examples like the one presented here show that it is possible to support students’ 

visualization, argumentation and deductive reasoning in geometry, by using tasks whose design is 

based on the idea of the interplay between visualization, argumentation and which have the 

characteristics presented in this paper. 
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What influences grade 6 to 9 pupils’ success in solving conceptual 

tasks on area and volume 
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In this article, I investigate relationship of space structuring and multiplicative thinking with success 

in solving volume and area problems. The observations are made based on the analysis of written 

tests completed by 748 Czech pupils from grades 6 to 9. Phenomena observed in solutions of three 

volume problems are used as indicators of the level of space structuring and multiplicative thinking, 

which is then related to the pupils´ results in the conceptual part of the test. Relatively strong 

connections were identified for both factors. 

Keywords: Volume measurement, multiplicative thinking, structuring of space, hypothetical learning 

trajectory.  

Many Czech teachers mention measure in geometry as one of the critical parts of primary 

mathematics and Czech pupils scored in TIMSS well below their average in most of the tasks 

concerning area or volume. Moreover, our previous research (Vondrová, 2015; Tůmová & Janda, 

2014) shows that pupils’ problem often lies in conceptual understanding. However, the measurement 

in geometry is problem worldwide – the difficulty seems to be intrinsic to the topic itself (Duval, 

2006; Finesilver, 2015; Kamii & Kysch, 2006).  

The aim of my research has been to investigate how the conceptions of area and volume are built, 

what the major pitfalls and problems are, what skills and strategies are helpful for solving problems 

and what are the frequent unsuccessful strategies and pupils´ misconceptions.  

Theoretical framework and review of existing literature 

As Sáiz (2003) pointed out, it is helpful to distinguish between the concept of volume, which means 

a set of encyclopaedia knowledge of volume with its uses in various contexts (theoretical construct, 

or semantic field of volume) and conception of volume, which is its counterpart in the internal, 

subjective “universe of human knowing” (Pehkonen & Furinghetti, 2001, as cited in Sáiz, 2003, p.97). 

The concept of volume is rather complex compared to area also because there are several ways it can 

be understood: e.g., as a capacity, a free space inside a closed surface or a space occupied by the solid 

(Potari & Spiliotopoulou, 1996). I will focus on the second perspective which I also understand like 

a space that can be filled with cubic units (limiting myself to rectangular prisms). 

Further, I presume that pupils´ conceptions are built gradually and hierarchically – as described in the 

hierarchic interactionism theoretical framework presented by Sarama and Clements (2009, pp. 20nn). 

In order to describe a likely trajectory that pupils may take while getting familiar with the concepts 

of area and volume, I will use a tool called hypothetical learning trajectory (HLT). A learning 

trajectory describes a sequence of levels of thinking. It consists of a goal, a developmental 

progression, or learning path (i.e., ordered sequence of mental ideas and actions), and therefore it has 

also teaching implications (i.e., what instruction helps pupils to move along that path).  

The starting point of my further work has become the HLT for volume as proposed by Battista (2007, 

p. 903) as it distinguishes two parallel streams: numerical reasoning and non-numerical reasoning 



(Table 1). By non-numerical reasoning, I mean reasoning in the geometrical context about 

conservation, comparison, transformations, geometry motions, etc. The emphasis on non-numerical 

reasoning when building a conception of area or volume is in line with research (Kospentaris, Spyrou, 

& Lappas, 2011; Huang, 2011).  

Seeing the HLT as two parallel streams, we can see another important feature of geometrical 

measurement: the importance of building connections between numerical and non-numerical aspects. 

For example, Huang (2011) showed that both the curriculum which stresses the numerical 

calculations for area measurement and the geometry motions curriculum aimed at developing the 

non-numerical reasoning have to be combined to improve pupils’ performance.  

Non-numerical reasoning Numerical reasoning 

1. Holistic visual comparison of 

shapes 
1.  Use of numbers not connected to unit iteration 

2.  Visual comparison of shapes by 

decomposing/recomposing 

2.  Unit iteration and enumeration (coordinated 

structuring of space into arrays), includes: 

 Units properly located only along the 

edges/sides 

 Units properly located without overlaps or 

gaps 

 Units organized into composites (layers) – 

repeated addition; multiplication 

 Operating with other units than cubes 

3.  Comparison of shapes by property 

preserving transformations/ 

decompositions 

3.  Operating on numerical measurement 

 Structuring becomes implicit – multiplication 

of measures 

4. Integrated numerical and non-numerical reasoning  

Table 1: HLT used for the concept of volume 

I will use this HLT as a roadmap, showing a hypothetical way how the conceptions of volume and 

area is built. In my work, I will try to find relations between selected elements described in the HLT 

(e.g. space structuration into arrays) and success in solving conceptual area and volume problems. 

Battista (2007) distinguishes pupils’ problems with space structuring of the situation and problems in 

connecting the space structuring with appropriate numerical procedures. The latter is apparently very 

difficult. Pupils often use a completely different formula (e.g., for the surface or area instead of 

volume) or substitute wrong measures into the formula (Vondrova & Rendl, 2015; Tan Sisman & 

Aksu, 2016; studies cited in Battista, 2007, p. 893). These problems can be found not only with pupils, 

but also with prospective teaches (Dorko & Speer, 2013).  

Huang (2014) found a significant relationship between multiplicative thinking and performance at 

solving a certain type of area measurement problems. In our previous research (Tumova & Janda, 

2014), we also identified a relation between multiplicative thinking and success in solving application 

tasks for volume and area: pupils who were able to calculate the number of tiles needed using division 

were much more successful than pupils who had to draw the actual tiling and use multiplication.  

Connections 



The structuring of space into arrays is one of the main building blocks in the HLT. Dorko & Speer 

(2013) hypothesize that the ability to structure space into arrays of cubes is related to the 

computational success in all their tasks. I wanted to explore these two issues on a larger scale.  

Research questions 

The article focuses on the part of my work dealing with volume and grade 6 to 9 pupils. The research 

questions are: (1) Is the ability to structure space into arrays related to success in conceptual tasks? 

(2) Can we see any relation between multiplicative thinking and success in conceptual tasks?  

Methodology 

Tasks 

I constructed tasks roughly corresponding to the HLT of area and volume. They can be divided into 

three categories. The first category consists of non-numerical tasks that aim to find whether pupils 

can de-compose and re-compose 2D and 3D objects and manipulate these objects (or their parts) 

mentally. Results of these tasks are not used for the data analysis in this article.  

The second type are structuration tasks – i.e., tasks that rely heavily on array structuration of space 

(manipulation). In 3D, tasks H12, H13 and H14 were used.  

H12.3: The blue cube building has 20 cubes in the first layer. How 

many cubes do you have to add in order to get the smallest possible 

completely filled prism (in other words, if the building was in a 

tightfitting rectangular box, how many cubes you have to add in order 

to fill that box completely)?  

H12.1. and H12.2. are similar, with different cube buildings with first 

layers of 9 and 12 cubes, respectively.  

The aim of task H12 is to identify, how well the pupil can 

understand the array structure when the structure is depicted and unit cube is used. It can be solved 

by enumeration of the missing cubes, no calculation is needed. 

Task H13: You have exactly 59 cubes (with the edge of 1 unit) to build a cube building1 on a plot of 

land which is 4 units long and 3 units wide. You have to use all of the cubes but the building has to 

be as LOW as possible. How many layers will there be? How many cubes will there be in the top 

layer? [No drawing provided.] 

In H13, two types of solving strategies are possible. The first is calculation-based: divide 59 by the 

product of 3 and 4 (i.e., the number of cubes in one layer). The resulting whole number means the 

completely filled layers and the rest is the number of cubes in the last incomplete layer: 

59 : (3 ∙ 4) = 4 (rem. 11). The other approach is partially manipulative: draw cubes in the bottom layer 

and see how high we can continue building until all 59 cubes are used (using repeated addition or 

multiplication). Based on the method the pupil will use and drawings he/she will make (e.g., if he 

draws just a rectangle, or structure consisting of rows and columns), we can hypothesize what kind 

                                                 
1 This term was understood intuitively by pupils – it is a building made of unit cubes and a subset of a 3D array structure 

that can be physically built (all the columns must be built putting one cube on another). 

Figure 1: Blue cube building 



of space structuring the pupil used and relate it to the levels in HLT (Table 1, rows 2 and 3 in the 

right column). 

Task H14: What is the maximum number of parcels measuring 2x1x1 dm that would fit into a cubic 

box with an edge of 6 dm? Justify your answer. [No drawing provided.] 

H14 also has two types of strategies. One is calculation-based: calculate the volume of the box and 

the volume of the small parcel and divide the two to get the correct number of fitting parcels. The 

manipulative strategy: draw or imagine how may parcels are in one layer and multiply it by the 

number of layers. H14 is more complex because the unit to be used is not a cube, also the volume of 

the box has to be calculated from the length of the side.  

The third category  of tasks are conceptual tasks (4 for area and 2 for volume) – these are non-routine 

or novel tasks that require more advanced understanding of the underlying principles and concepts 

than a simple use of formula (see also the definition of Tan Sisman and Aksu, 2016, p. 1298). After 

piloting the tasks, only those were selected as conceptual tasks to the main test in which the percentage 

of pupils that used structuration as their solving strategy was less than 10 %. Task H16 is a typical 

example. 

Task H16. A cuboid-shaped vase has a base of 9x12 cm. If I pour one litre of water inside, how high 

it will reach? (Hint: 1 l=1000 cm2).  

Data collection 

After a small scale pilot testing of the tasks and revision based on discussions with experts, the test 

was distributed to more than 1 300 pupils (grades 4 to 9) from 8 different ordinary primary schools 

in Prague (it is to be noted that this was a convenience sample). The pupils solved the tasks within 

the first three weeks of September 2015, after summer holidays to eliminate the influence of the 

mathematics topic currently taught and test pupils’ long-term knowledge. The test was given by 

mathematics teachers who got instructions from me. The test took 55 minutes and it was completed 

by 735 pupils in grades 6 to 9. 

Data analysis 

Pupils’ solutions were coded by the author and two more coders. Based on the above a priori analysis 

of tasks, we had some preliminary codes. The coders first coded for the preliminary codes and while 

doing so, assigned points for each task and noted other phenomena such as what mistakes appeared, 

what other calculations appeared in the written solution, etc. Examples of codes are in Findings 

section. The codes were further grouped and analysed both quantitatively and qualitatively. The bulk 

of the quantitative analysis consisted of looking for relations between phenomena and the total result 

in all the conceptual tasks (CONC total).  

Note: Whenever I look at the performance of pupils, I always report the result of all conceptual tasks 

(CONC total) – i.e., for both area and volume problems (tasks H3-H6 and H15-H16). I wanted to 

assess the conceptual understanding of geometrical measurement therefore I included both concepts 

into the result. The results are reported in percentages calculated as the number of points actually 

achieved by the pupil divided by the maximum number of points. 



Findings 

Phenomena identified for structuration problems H12, H13 and H14 will be related to CONC total 

regardless of age of pupils. The findings will be grouped according to research questions.  

Structuration of space and its relation to the success in conceptual tasks 

H12 to H14 are hypothesized to form a series of tasks with a growing demand on space structuring 

abilities. H12 tests pupils’ ability to structure space properly in a situation when the structure of cubes 

is given (shown in a picture) and the unit is a standard unit cube. H13 tests whether pupils are able to 

calculate the height of a cuboid based on the knowledge of its volume and base in a discreet situation. 

H14 diagnoses how pupils can structure space using non-cubic units. 

Figure 2: Venn diagram showing the overall test score and a 

number of pupils successful in H12-14 

The Venn diagram in Figure 2 

shows the number of pupils 

who scored at least 50 % in 

H12, H13 and H14. The 

number in brackets is the 

average CONC result (i.e., of 

all conceptual tasks) for 

relevant group of pupils. For 

example, 252 pupils 

successfully solved H12 but 

not H13 or H14, the average 

CONC result for these pupils 

is 11%. There were 74 pupils 

successful in all three tasks (in 

the centre) and their average 

result was 51%.  

As expected, H14 proved to be the most difficult and the pupils who solved it, also scored the highest 

in the conceptual part of the test. As we can see, there seems to be a relationship between pupils’ 

ability to structure space into appropriate structure (3D array) and their success in the conceptual 

tasks in the test. If we calculate correlation between the result of structuration tasks (H2, H12-14) and 

conceptual tasks (CONC total), we get a relatively high Pearson correlation of 0.66.  

Further, in the solutions of H13, we identified almost all the strategies for space structuring mentioned 

in the HLT (pupils most often drew the first layer only, so the structuring is, in fact, a tiling). The 

strategies were coded as follows (see Table 2): “Unable to structure” (incorrect number of cubes in 

a layer, structure only along the edges – perimeter or structures 5x4, etc.), “Individual cubes” (each 

cube drawn separately), “Rows and columns” (partitioning drawn for whole rows and columns), “3D 

structure” (3D drawing), “Implicit structure” (no drawing or only the rectangle drawn and number of 

cubes correct), “Unable to identify” (where the structuring strategy was unclear from the test).  

The difference in CONC total result is statistically significant between strategy “Implicit structure” 

and all other strategies2. This means that the pupils who can determine the number of cubes in one 

                                                 
2 Data are shown in left part of Table 2. The independent sample T-test in SPSS was used for each pair of codes. 



layer without having to draw the structure (according to HLT, this means that they have reached the 

level where the structure became implicit for them), perform significantly better than other pupils. 

Again, there seems to be a relation between the way the space structuring is depicted and success in 

the test – the higher level of structuring (according to HLT), the better average result in the conceptual 

part of the test.  

To see connections with space structuration, we look at manipulative strategies in H14 in more detail 

(about half of the pupils solving this task used manipulative strategy) – see Table 2 right.  

Structuring of area 

in H13 

Avg CONC 

total 

No.  

pupils  
Strategy in H14 

Avg CONC 

total 

No.  

pupils 

Unable to identify 24% 71  Strategy cannot be 

determined 

16% 

 
31 

Unable to structure 11% 43  
Individual cubes 19% 68  First layer incorrect 19%  41 

Rows and columns 21% 80  No. of layers incorrect 24% 25 

3D structure 27% 31  Numerical error 34% 5 

Implicit structure 38% 93  Structure correct 47% 43 

Total H13 25% 386 
 

Manip. strategis total 31% 114 

 

Table 2: Space structuring and strategies vs. success rates in tasks H13 and H14 

First, we look at the manipulative strategies: 43 pupils were able to structure the space inside the box 

properly and solve the task (Structure correct) – they scored the highest in the conceptual tasks (the 

average result of 47%). These pupils performed significantly better in the conceptual tasks than pupils 

who used other strategies. Quite a few pupils (41) were not able to structure even the first layer (their 

average CONC result is only 19%). If we presume that the strategies represent the level of skill in 

space structuration, we can say that pupils who cannot fill even the first layer would form the lowest 

level, those who did one level correctly but did not get the number of layers right would be on the 

next level, followed by those who drew the correct structure. We can see that pupils who structured 

space better score higher in CONC total.  

 

Multiplicative thinking and its relation to the success in conceptual tasks 

To analyse the use of operation, we look at H13. The codes we used are (Table 3): “No operation 

mentioned”, “Unable to interpret results of operation” (includes 9 pupils who could not perform the 

operation of division correctly), “Repeated addition” (calculate the cubes one by one or by layers – 

i.e.,  12+12+…), “Repeated multiplication” (such as 3 ∙ 12, 4 ∙ 12 until something bigger than 59 is 

reached), “Division and correct interpretation” (division 59 : 12 = 4 (rem. 11) and correctly interpret 

results). All strategies were present in all grades – around 5% of pupils in all grades were not able to 

interpret results of the operation they used and 18% of all pupils in grade 9 still used repeated addition 

strategy to solve this problem.  

 



Strategy_OPERATION Average result of CONC 

and Structuration tasks  

Average of CONC 

result 

No. of 

pupils 

No operation mentioned (NO) 25% 13% 126 

Unable to interpret (UI) 23% 16% 33 

Repeated addition (RA) 32% 22% 106 

Repeated multiplication (RM) 38% 30% 53 

Division and interpretation (DI) 47% 39% 68 

Total 33% 18% 386 

 

Table 3: Use of mathematical operation and success rates in H13 

The independent sample T-test in SPSS showed that the combined result of Structuration tasks and 

CONC total result for strategy DI is significantly different from all other strategies, except from RM. 

The same is true for CONC result. This means that the pupils who can use division and correctly 

interpret results in this task, performed significantly better in all conceptual tasks and in all conceptual 

and structuration tasks than pupils who used repeated addition or pupils who could not interpret 

results of their calculations. The difference between RM and DI groups was not significant. 

Quite a few pupils (33 in H13) were not able to interpret results of the operation they used. This is 

apparent in other tasks as well. In H14, there were 41 pupils who used what may seem to the observer 

like a random mathematical operation on given numbers and their interpretations of results were 

incorrect.  

Conclusion and discussion 

To sum up, the structuring of space seems to be related to the success in our conceptual tasks. We 

looked at space structuring from two perspectives. First, when pupils are able to apply the correct 

structuring (i.e., which of H12 to H14 are solved correctly). Second, how pupils depict the structure 

of a layer which is in a rectangular form with given lengths of sides. In both cases, the pupils who 

structure space better achieved better results in area and volume conceptual problems. This seems to 

confirm the hypothesis of Dorko and Speer (2013) above.  

The relation between the use of mathematical operation (multiplicative thinking) and success in our 

conceptual problems seems to manifest itself even on a large sample which confirms our finding from 

the previous research (Tumova & Janda, 2014). From the observed number of pupils who were not 

able to interpret results of the operations they used we can see that connecting the appropriate 

mathematics operation with the geometrical situation is another major problem for Czech pupils as 

mentioned in (Battista, 2007). Not only how good is their multiplicative thinking, but what operation 

in which situation they decide to use and with what numbers might be the most important. 

Investigating this connection in more depth (how it is built, what promotes building it) remains an 

open question for future research. Also, connections between multiplicative thinking and space 

structuring seem to be worthwhile to investigate further. The connection seems to be bidirectional: 

structuring of space guides enumeration but also enumeration can help space structuring (Finesilver, 

2015, p. 257).   



One of the limitations of my research is the fact that the results cannot be easily generalised as the 

sample was not representative. Another limitation is in the set-up of research – I did inferences on 

pupils’ thinking based only on what was written in the test. Some of my interpretations of the written 

solutions might need additional support in interviews with pupils.  
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Shapes recognition in early school: How to develop the dimensional 

deconstruction? 

Céline Vendeira1 and Sylvia Coutat2 

1 University of Geneva, Faculty of Education, Geneva, Switzerland; celine.marechal@unige.ch 

2 University of Geneva, Faculty of Education, Geneva, Switzerland; Sylvia.coutat@unige.ch 

In primary school there is, in geometry, an important rupture between primary (age 4 to 12) and 

secondary school. Some activities are already proposed for students from 8 to 12 years old to help 

to prepare for this rupture. Our research has the same aims, but for students from 4 to 6 years old 

by developing some pre-geometrical activities around shape recognition using dimensional 

deconstruction. 

Keywords: Shape recognition, visualization, dimensional deconstruction, way of thinking. 

Context 

In all French speaking Switzerland we have a common program for all compulsory education. For 

the geometry curriculum, in the elementary division (from 4 to 8 years old), students use a physical 

space where «the shape is linked to the visual perception of the object»1. Then, from 8 years old, 

they use a conceptual space where objects are associated with figures as «unchangeable and ideal». 

These figures are independent of their graphical representation. We consider that there is an 

important gap between these two divisions, and we need to help students to overcome it. 

Theoretical framework 

Some researches like Berthelot and Salin (1993-1994), Houdement and Kuzniak (2000), Parzysz 

(2003), Braconne-Michoux (2008) show a rupture, in geometry teaching, between primary and 

secondary school where the focus is put on reasoning and deduction. Without reaching the 

theoretical level of the geometric objects and therefore of their properties, an intermediate work on 

the elements which compose the forms is possible and constitutes the heart of this research with 

students of cycle 1 and beginning of cycle 2. As Duval (1994) says, one of the aims of geometry in 

primary school is to emerge the operative apprehension of a figure parallel to the one, first and 

naturel, more perceptive. Therefore, to help, it “presupposes the dimensional deconstruction of the 

visual representations”2 (Duval & Godin, 2005, p.11). The first visualization is global; the 

perception is centered on the closed contours of the shape. This visualization is called two 

dimensional visualization (2D element), which is referred to by Duval (2005) as the iconic way of 

seeing. The dimensional deconstruction considers the elements of the shape like the sides and the 

lines, which are one dimensional elements (1D element) and the vertices and the points, the zero 

dimensional elements (0D elements). This is what Duval (2005) distinguishes as the non-iconic way 

of seeing. The decomposition of shapes into figural unities is an essential stage prior to building the 

non-iconic visualization. 

                                                 

1 Our translation from the French speaking Switzerland curriculum « Plan d’études romand » 

(https://www.plandetudes.ch/per) : « la forme est liée à la perception d’ordre visuel d’un objet ». 

2 Our translation. 

https://www.plandetudes.ch/per


Having as objective to evolve the students' visualization of geometrical shapes, we rely on the work 

of the Lille group (Duval (1994), Duval, Godin & Perrin-Glorian (2004), Duval & Godin (2005), 

Keskessa, Perrin-Glorian, Delplace (2007), Godin & Perrin (2009), Perrin-Glorian, Mathé & 

Leclercq (2013), Perrin-Glorian, Godin (2014), Perrin-Glorian (2015), Bulf & Celi (2016)) which 

consider the transition between the recognition of a form by global perception and the deduction 

from its axioms as the "identification of properties that are verified or produced with instruments"3 

(Houdement and Godin, 2014, p.28). Most of those researchers propose tasks of reproduction of 

figures in particular the reproduction problems called "restoration of figures (define by Perrin-

Glorian and Godin (2009)). In our case, we work on tasks of forms recognition. To prepare students 

to the rupture pointed out between primary and secondary school, we introduce two new levels 

between the global perception and the non-iconic way of seeing. We call them the “hybrid thinking” 

and “thinking by characteristics”. Below, we associate each thinking according to the ways of seeing 

of Duval. We give an example based on the following shape:  

 Iconic visualization  Towards dimensional deconstruction  

N
o

n
-i

co
n

ic
 v

is
u

al
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at
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n
 Way of 

thinking 

Perceptive thinking  Hybrid thinking Thinking by characteristics 

Associated 

vision 

  

 

 

 

Associated 

language4 

« It looks like a fish» « It looks like a fish with a 

flat nose and a curved 

body » 

« It is a shape with holes (the convex 

character). It as rounds and straights 

(straight and curved edges) » 

Table 1: Levels of the different visions of the shapes 

Those levels focus 1) on a global vision of the shape (2D) 2) on a hybrid vision of the shape (using 

the global vision and some characteristics of the shape (0-1-2D) 3) on the vison of only some 

localised areas of the global form (as the types of lines (straight or not, etc.)) considering therefore 

some of the characteristics of the shape (0-1D). This third level corresponds to pre-geometrical 

work. The last level “non-iconic visualization” relates to the definition of the properties of 

geometric figures. So, to think by the characteristics is more than a perceptive vision but does not 

yet correspond to the geometric properties. As for the hybrid thinking, it mobilizes in the same time 

the global vision of the shape, through its surface, and a more expert vision from its elements.  

This table shows a wider process of dimensional deconstruction than usual. Thus, our goal, in this 

research, is to develop some pre-geometrical activities around shape recognition using these two 

new levels to provide students with a more harmonious transition in order to overcome the gap 

between primary and secondary school.  

                                                 

3 Our translation. 

4 In the next steep of our research we will also consider the “associated action”. 



The developed material  

In order to help 4 to 6-year-old students to pass from the perception of the shapes as they are worked 

in primary school to what is expected in secondary school, we propose to work on shapes 

recognition tasks with a collection of 36 shapes. Very often, the most common use of characteristics 

concerns the number of sides of the shape. However, students at this age are precisely building the 

concept of number which is therefore "fragile". Other characteristics of shapes are nevertheless 

affordable and interesting from Cycle 1. For example, the presence of straight or curved edges, 

symmetries, parallel opposite sides or the convex or concave character of the shape. Of course, 

students are not expected to use the correct mathematical terms. What is important is that they 

identify these characteristics, whatever the vocabulary used. The collection of 36 shapes takes into 

account the different characteristics cited. Figure 1 presents the collection of the 36 shapes. All the 

different tasks are built around this collection (tasks of classifications, associations and housing). 

 

Figure 1: The collection of the 36 shapes 

The chosen shapes are not nameable, at least not using "classical" shape names such as triangles, 

squares, rectangles, circles. To identify them, students have to focus on other aspects than their 

name. Either students recognize, in the shape, a resemblance to a well-known object (for example 

the fish mentioned above), or they are obliged to refer to its characteristics. This last point promotes 

dimensional deconstruction with the components of shapes. 

Thus, the main objective aimed through the developed activities is that the student constructs a 

thinking of the objects based on their characteristics. This does not mean that it is necessary to 

replace the global thinking, but to supplement it. The joint use of the hybrid thinking and the 

thinking by characteristics is therefore also necessary. For example, in many activities, students can 

first classify the shape by global perception (we put together shapes perceptually close), and then 

only need to distinguish them through their characteristics. 

Below is an example of strategy to find a shape in a collection of eight shapes  : 

Starting Collection Reduced collection Identified shape in the reduced collection 

  
 

I observe and manipulate the 

assortment of forms 

I extract all "bow ties" 

(or "vases") of the 

assortment. 

I then focus on the characteristics "it is the one that is 

not regular (=symmetrical) and with rounds (=curved 

edges)". I select then the corresponding shape. 

Table 2 



The choice of the selected shapes is essential because it can directly influences the way of thinking 

that the students will mobilize. 

Perceptive thinking  Hybrid thinking Thinking by characteristics 

 
  

Table 3 

Thus, if the selected shapes are perceptively distant, the overall vision is promoted. Conversely, if 

the shapes are perceptively close, an entry through the characteristics is necessary. These shapes are 

cut out from "translucent" Plexiglas. The choice of a circle does not favour any particular 

orientation. With this material, we can work on the shape using the edging by the exterior or the 

interior of the shape. Depending on the activity, we may choose to present one or both of these 

supports (or both). The interest of this material is that it can be embedded providing direct feedback 

for students. 

    
The inside form  the empty circular part 

With this collection of shapes we then create activities working on shape recognition with different 

kinds of tasks, classifications, associations and housing. 

Methodology 

For one school year we have worked with six classes including four classes in a downtown Geneva 

school, a class in the Geneva countryside and a class in neighbouring France. This diversity makes it 

possible to confront our material and our activities in different contexts (without pretending any 

generalization). In total there were 112 students aged from 4 to 6. At the beginning and the end of 

the year all the students took a test. We do not develop the results of the tests in this article. The 

students worked in small groups with the researchers from 2 to 4 periods in total. Each period lasts 

45 minutes. In every class, except one, we realized, among the proposed periods, a session with big 

shapes in the “meso-space”.  

 

Photo 1: Work with big shapes 

In each class we have: 1) One individual pretest at the beginning of our research in which we use 

the activity « families to build ».  This test has been passed by the teachers and was not filmed. 2) 

Many activities using the developed material. Each session was filmed by one or even two cameras.  



3) One activity with big forms. 4) One « concluding activity » at the end of the year. 5) One post-test 

at the end of the school year (exactly the same as the pretest). 6) One pretest at the beginning of the 

following year (exactly the same as the previous ones). This test was filmed and students were 

systematically asked about their production.  

We thus have many hours of observations that allow us to verify if students of this age can mobilize 

the characteristics of the shapes.  

Presentation of an activity for 4 to 6 year old students: Families to build5 

The activity is done in groups of 2 to 5 students. The teacher selects an assortment of 8 to 16 pieces 

from the collection (the inside form or the empty circular part). Below is an example of an 

assortment that has been frequently used in classrooms with students. 

 

Figure 2: An assortment frequently used in classrooms 

In this activity students must build families (with a number of families imposed or not). The pieces 

are scattered on a table. Students must create families by putting the pieces "that fit well together". 

Students must agree and be able to explain their choice, possibly giving a name to the families 

created. Various objectives can be identified for this activity: 1) classification of shapes based on 

characteristics 2) emergence of a common lexicon that can be reinvested in other activities 3) peer 

collaboration with the need to agree and to argue. Thus, according to the assortment of selected 

pieces, students can use global or hybrid thinking or thinking by characteristics. The choice of 

perceptively close shapes or not is therefore an important didactic variable for this activity as well as 

the number of families (imposed or free). 

In the pooling phase the teacher can introduce new pieces to check the solidity of students' family 

choices. Either they manage to integrate the new pieces within the existing families, or they need to 

question their classification criteria and maybe modify them. 

                                                 

5 For more activities see Coutat & Vendeira (2015). 



 

Photo 2: An example of three families built by a group of students: 1) "the mountains" 2) "the 

pebbles" 3) "the fish" (vision according to the resemblance of the shapes to well-known objects) 

Some results 

In this section we look at the productions of three students which reveal three different ways of 

thinking that the students mobilize about the shapes following our interventions in class. These are 

outcomes from the activity "families to build" carried out during the pretest (done at the beginning 

of our research) and the same test realized a year later.  

Concerning the case of Luce, almost no change is noticable between the two productions at one year 

interval. During the first run, it is found that very perceptively similar objects are associated in order 

to create three families. A year later, the student explained that he had formed a family of 

mountains, trumpets, teapots and lamps and could not say more. It is possible to relate these objects 

to some of their characteristics as the sharp peaks for the mountains, the symmetry for the lamps or 

the asymmetrical spout for the teapot. However, this remains implicit and the primarily mobilized 

vision is, in this case, global. 

 

Table 4: the two productions of Luce at one year interval 

Lea's productions at the same task are identical to those of Luce for the first test. Her vision is 

essentially global. On the other hand, the two families created the following year are quite distinct. 

She chose only two families by mobilizing hybrid thinking. Indeed, the global perception is partially 

used with the second family where Lea recognizes thunder thanks to their "peaks in". As for the first 

family, it only possesses "rounded in" and does not belong to the family of the thunders. 



 

Table 5: the two productions of Léa at one year interval 

The first production of David is distinct from those of these two classmates. However, without a 

trace of his activity, it is difficult to understand how this student proceeded. It is conceivable (1) that 

devolution has not taken place; (2) that David mobilizes hybrid thinking but it is impossible for us 

to interpret. This is why we focus directly on the second production made the following year. The 

first family of David is justified according to two characteristics common to the three forms, namely 

"rounded and sharp". As for the second family, the forms are “all sharp”, but have no rounding. This 

student thus mobilizes some characteristics of the forms. 

 

Table 6: the two productions of David at one year interval 

Conclusion 

The task “build families” is very interesting for the researcher because it gives a lot of information 

about the student’s perception of the shape such as the visualization to build the families (global or 

not), the use of characteristics to build the families, the use of a pertinent language for oral 

interactions.  

The various tasks created with the developed material and experimented in classrooms allow a 

progressive change of the visualization of geometrical shapes. It is important to note that students 

do not replace their perceptual way of thinking with a new way of thinking by the characteristics of 

the forms. Indeed, these ways of thinking must coexist and intertwine, sometimes giving rise to a 

hybrid way. It remains to be defined 1) whether the work undertaken allows all students to change 

their eyesight and 2) whether they are able to mobilize the appropriate thinking according to the 

situation. 



Currently we are experimenting with new tasks with students from 6 to 8 years old and still 

analyzing the data collected with students from 4 to 6 years old. In addition, the developed material 

is currently tested in five schools. We look forward to the feedback from the teachers. 
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This work presents part of the thesis developed in the Professional Master’s Degree in Mathematics, 

at the Pontifical Catholic University of Rio de Janeiro, entitled “The study of Conics through 

Origami.” In the present work, we will focus on the construction and study of the Ellipse, 

highlighting the definition of its geometric place through the axiomatic geometry of the Origami.  

Teaching geometric concepts may present many challenges, because its process requires the study of 

concepts and relations that are not learned by students in activities which use memorizing and 

exercise techniques. Therefore, it's necessary to have creativity and reasoning. In this context, it is 

important that the student is encouraged to see the Geometry study as a practice of investigative and 

exploratory nature. 

According to Ponte, et al. (2006), “The geometric investigations contribute to realize the essential 

aspects of the mathematic activity, such as the formulation and conjecture tests, the search and 

demonstration of generalizations.” Moreover, to investigate, explore and establish conjectures in 

activities of geometric nature are not easy tasks. Among various teaching methods that can be 

explored in order to foster the meaningful learning, we can be highlighted the use of manipulable 

materials. In this regard, we spotlighted the possibilities of geometric investigation offered by a 

simple and powerful teaching tool: the paper. 

Ancient and modern at the same time, “the art of the paper folding”, better known as “Origami”, 

transcends the boundaries of a simple art with its ability of conducting to the mathematic learning, 

either by its harmonic visual or by the Axiomatic Geometry inherent in the folds. Its description is 

given by the Huzita-Haroti Axioms, which consists in the seven basic operations capable of align 

straight lines and pre-existing points in a paper sheet through a single fold.  

Some researches have already chosen origami as a resource which improves the learning of maths, 

such as Monteiro (2008), who used the technique to solve some equations and to demonstrate 

theorems, as well as Asrlan & Isiksal (2014) who described an experience about preservice teachers 

training using this japanese tool. 

Despite the different themes that can be broached through the axiomatic geometry of folds, allied to 

an investigative and exploratory practice, we will highlight an activity which the objective is to 

explore the definition of the geometric place of the Ellipse. In its teaching, it is verified an undue 

priority for the memorizing of equations, and in many cases, the students only dedicated themselves 

to the repetition of exercises which solely involved algebraic methods. In order to rescue the 



geometric approach of the topic in question, we unite these two elements in the present work, conic 

curves and Origami, with the aim of developing concepts of the first one from the constructions of 

the second, emphasizing the investigative practice through the process. 

In order to spread the geometry of folding as a resource for activities of geometric investigation, to 

rescue the approach of the geometric place of the Ellipse and to validate the presented research, a 

workshop was developed, applied, evaluated and enhanced in a group of 17 Mathematics Licenciate 

Degree students. 

As a basis for the development of the activity, which consisted of the construction of the curve, we 

used four moments related to the investigation process in mathematics classes mentioned by Ponte, 

et al (2006): recognition of the situation, its preliminary exploration and the formulation of 

questions; conjecture formulation process; testing and eventual refinement of the conjectures; 

argumentation, demonstration and evaluation of the work done. 

Thus, we will present in this poster the Huzita-Hatori axioms description, the method of the Ellipse 

construction, the mathematics concepts related to the folds and finally the results of the activity 

application with the future mathematics teachers.  

Through the application of the construction activity and the study of the Ellipse, we realize that the 

geometric place concept is underexplored in Mathematics Licenciate Degree courses, which 

culminates in disfavouring this content in Basic Education. Thus, this work is expected to be a 

source of motivation to the teachers and professors to valorise the approach of the geometric 

concepts in an investigative way. Also, we look to find in the folds a possibility to mix various 

mathematical themes in a meaningful manner. 
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Introduction 

We present a preliminary study focused on a scale on cognitive configurations for tasks requiring 

visualization and spatial reasoning. The main notion used is that of cognitive configuration from the 

onto-semiotic approach (Godino, Batanero and Font, 2007). The results show that there may be 

several configurations at each level and these levels depend on both certain conditions of the task 

and the visualization skills involved. 

Theoretical framework 

From the onto-semiotic approach (OSA), the analysis of the mathematical activity, of objects and 

processes taking part in it, focuses on the practices done by people implied in the solution of certain 

mathematical problems (Godino, Batanero and Font, 2007). The enforcement of this approach to 

visualization leads to distinguish between visual practices and non-visual or symbolic/analytic ones 

(Godino, Cajaraville, Fernández and Gonzato, 2011). In order to make these principles operative, 

the OSA poses as one of its tools the ‘onto-semiotic configuration’, i.e., the network of objects and 

processes involved in the fulfillment of a mathematical practice (Font, Godino and Gallardo, 2013). 

These configurations can be socio-epistemic (networks of institutional objects) or cognitive 

(networks of personal objects). Here we will focus on the second ones. 

Research problem and method 

Can we set a scale on cognitive configurations associated to tasks requiring visualization and spatial 

reasoning (VSR)? To answer this question, three spatial tasks requiring counting, folding/unfolding 

and composing/decomposing have been selected. These tasks have been proposed to a total of 400 

preservice teachers and the answers have been analyzed using the cognitive configurations (CC) 

proposed by the OSA (Fernández, Godino and Cajaraville, 2012). 

Results 

A variety of CC associated to each of the tasks has been found. This allows us to describe skill 

levels in VSR (Table 1) subject to certain conditions directly depending on the characteristics of the 

task, the visualization skills (Del Grande, 1990) required and the synergy between visual and 

analytical languages of each configuration (Godino, Blanco, Gonzato and Wilhelmi, 2013). 



 

Task Levels Rank % 

Truncated 

cube 

Level 1 Level 2 Level 3 Level 4 Level 5 High: levels 4 and 5 10,25 

CC2 CC1 

CC4 

CC3 

CC8 

CC6 

CC7 

CC5 Intermediate: level 3 11,50 

Low: levels 1 and 2 45 

Folding/ 

unfolding 

Level 1 Level 2 Level 3 High: level 3 8,5 

CC1 CC2 

CC5 

CC3 

CC4 

Intermediate: level 2 14 

Low: level 1 52,50 

Perforated 

cube 

Level 1 Level 2 Level 3 Level 4 High: levels 3 and 4 49,25 

CC2 CC4 

CC5 

CC3 CC1 

CC6 

Intermediate: level 2 0,75 

Low: level 1  24,25 

Table 1: Scale of configuration levels 

Conclusions 

In general the ratio of students expressing high level CC is significantly below than of those 

exhibiting low level. The analysis shows that students mobilized variety and quantity of visual 

objects and processes. However, they do not reach the solution successfully. This fact might be due 

to students are not used to working with these objects and visual processes. 

References 

Del Grande, J.J. (1990). Spatial sense. Arithmetic teacher, 37(6), 14–20. 

Fernández Blanco, MªT., Godino, J.D. and Cajaraville Pegito, J.A. (2012). Razonamiento 

geométrico y visualización espacial desde el punto de vista ontosemiótico. Bolema, 26(42), 39–

63. 

Font, V., Godino, J.D. and Gallardo, J. (2013). The emergence objects from mathematical practices. 

Educational Studies in Mathematics, 82, 97–125. 

Godino, J.D., Batanero, C. and Font, V. (2007). The onto-semiotic approach to research in 

mathematics education. ZDM-The International Journal on Mathematics Education, 39(1), 127–

135. 

Godino, J.D., Blanco, T.F., Gonzato, M., Wilhelmi, M. (2013). Synergy between visual and 

analytical languages in mathematical thinking. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), 

Proceedings of the Eighth Congress of the European Society for Research in Mathematics 

Education (pp. 645–654). Ankara, Turkey: ERME. 

 



Diagrams in students’ proving activity in secondary school geometry 

Keith Jones1 and Kotaro Komatsu2  

1University of Southampton, UK; d.k.jones@soton.ac.uk 

2Shinshu University, Japan / University of Southampton, UK; kkomatsu@shinshu-u.ac.jp 

Keywords: Geometry, proof, proving, diagrams, DGS. 

Introduction 

Diagrams appear in many different forms in mathematics and in its teaching and learning. While the 

use of diagrams is pervasive, research on learners’ activity with diagrams is somewhat limited (for 

partial reviews, see Jones, 2013; Sinclair et al., 2016). In this short paper, our focus is on the question 

of how secondary school students work with diagrams during proving activity in secondary school 

geometry. We use data from a project investigating the design of dynamic geometry software (DGS) 

tasks that facilitate students’ proving activity (see Komatsu & Jones, 2017). 

Existing research and theoretical background 

Samkoff et al (2012, p. 49) argue that “diagrams are viewed by mathematicians and mathematics 

educators alike as an integral component of doing and understanding mathematics”. Even so, existing 

research indicates that, amongst other things, learners’ beginning identification and interpretation of 

diagrams tends to be based on spatio-graphical properties represented in the diagram (Laborde, 2005) 

and that learners can have difficulties distinguishing within the configurations of a geometric diagram 

the visual characteristics that are relevant from those that are not (Gal & Linchevski, 2010). How 

secondary school students work with diagrams during proving activity in secondary school geometry 

is likely to vary depending on whether the geometrical diagram is ‘static’ (as in physical books and 

worksheets) or ‘dynamic’ (via digital technologies; for example Yerushalmy & Naftaliev, 2011). 

The study 

Data (in the form of transcribed student talk, student written work, and digital files) come from a 

task-based interview using the tasks in Figure 1 with a triad of 11th grade students (16-17 years old), 

Kakeru, Sakura, and Yuka (pseudonyms), from an upper secondary school in Japan. The students had 

previously learnt geometric proofs, including using the conditions for congruent and similar triangles. 

As such, they were familiar with the inscribed angle theorem, the inscribed quadrilateral theorem, and 

the alternate segment theorem. Prior to the task-based interview, they had four hours using DGS.  

For Q1, and only using paper and pencil, the students conjectured that ∆PAB ~ ∆PDC and wrote a 

suitable proof based on the inscribed angle theorem. For our analysis for this paper, we focus on what 

happened as the students worked on Q2 after they had used the DGS to construct the figure.  

Findings 

Our analysis found that during the time that the students worked on Q2, they moved (‘dragged’) 

points A, B, C, and D to various places on circle O. In working with this ‘dynamic’ diagram, we 

found that their discussion settled on various versions of the diagram that we could categorise into the 

six types of diagram shown in Figure 2. 



 

Q1. (1) As shown in the diagram given, there are four points A, B, C, and D on circle O. 

Draw lines AC and BD, and let point P be the intersection point of the lines. What 

relationship holds between ∆PAB and ∆PDC? Write your conjecture. (2) Prove your 

conjecture. 

Q2. Construct the diagram shown in Q1 with GeoGebra. Move points A, B, C, and D to 

various places on circle O to examine the following questions. (1) Is your conjecture in 

Q1 always true? (2) Is your proof in Q1 always valid? 

Figure 1: Tasks used in the interview 

 
Figure 2: Types of diagrams the students produced 

For Figure 2a, which the students created by dragging points so that points A and B (and consequently 

point P) coincided, they commented that “if (the points) overlap, (our conjecture is) impossible” 

because “(triangle PAB) disappears”. For Figure 2c, where they considered that line AC was parallel 

to line BD, they concluded that “(our conjecture is) impossible” because “intersection point (P) 

disappears when (lines AC and BD are) parallel”. Eventually, they concluded that their conjecture 

was not true for these two cases (for more on the other types of diagram, see Komatsu & Jones, 2017).  

Concluding comment 

The diagrams we found in the students’ proving activity underlines the observation by Samkoff et al. 

(ibid) that the processes involved in using diagrams in mathematics are “surprisingly complex”, 

especially the extent to which students are aware of the general result or a specific diagram.  
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QED-Tutrix (QEDX) is an intelligent tutoring system which assists students in proof problem solving by 

providing hints while taking into account the student’s cognitive state. QEDX stands out by the fact that it 

adapts to each user and class reality, not the opposite. However, this model implies recognizing, like a 

teacher would, proofs that do not necessarily conform to a formal logic. Hence, QEDX can’t rely on an 

automated proof engine (Tessier-Baillargeon, 2016), raising the question of how to expand QEDX’s 

problem database without manually implementing each valid proof. Therefore, our poster at CERME10 

doesn’t present a traditional research project with its research questions, it’s methodology and conclusions. 

It rather aims at presenting the new research questions that stem from the challenges that arise with trying to 

broaden QEDX’s problem bank while staying true to our main goal, which is to create a geometrical 

workspace (Kuzniak, 2006) according to witnessed student/teacher interactions through a design in use 

approach (Rabardel, 1995). Here we will focus our attention on the process of problem implementation, 

starting with how we currently generate a proof problem’s solution graph. 

Generating a proof problem’s solution graph. 

QEDX’s HPDIC graph (Figure 1) is used to record all the valid proofs to a given problem. It includes 

Hypotheses, Properties, Definitions, Intermediary results and a Conclusion. This graph is unique to each 

problem and is built from the inferences individually identified as true according to the problem to solve and 

the class context. The HPDIC graph for the rectangle problem in Figure 1 is fairly simple since it counts 

only 13 inferences. However, in the five problems implemented in the current QEDX version, one counts 

214 inferences creating a much more complex HPDIC graph. 

 

 



 

Figure 1: HPDIC graph, rectangle problem that asks to prove that a quadrilateral with three right 

angle is a rectangle 

Needless to say, there is a great amount of prerequisite work to be done before a problem can be added 

to the system. Therefore, in order to expand QEDX’s problem database, we need to, at least partially,  

automatically generate each problem’s solution space. A rich problem database will allow the student to 

navigate a geometrical workspace made up of a sample of problems put together to help him or her 

overcome difficulties as well as exercise proving skills through personalized problem itineraries. However, 

since QEDX aims at adapting to every didactical contract (Brousseau, 1998) by expecting and recognizing 

proofs according to what the teacher of any given classroom would require, manually generating every valid 

solution becomes almost impossible. How can we take into account teaching traditions while maximizing 

our proof problem pool? This challenge will define the next steps in QEDX’s design and development.  
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Introduction 

The main focus of the study is on primary students’ concept knowledge about geometrical solids. In 

particular, we intend to detect the development of geometrical concept knowledge of Year 3, 4 and 5 

students (aged 8 to 11). We investigate young children´s knowledge of geometrical solids by providing 

wooden blocks in construction tasks: 52 third-graders (German and Malaysian children), 30 fourth-graders 

and 9 fifth-graders were asked to construct cuboids and cubes according to their knowledge and 

visualization. Results are interpreted according to the Van Hiele framework. In addition, we have a closer 

look on the variety of cube and cuboid constructions and raise conclusions concerning the development of 

children´s conceptual knowledge. 

Theoretical framework 

The customary conception of a concept comprises the “ideal representation of a class of objects, based on 

their common features” (Fischbein, 1993, p. 139). In this sense, geometrical concepts refer to common 

features of a class of geometrical shapes or solids which can be visualized or perceived when encountering 

concrete representatives. Typical representatives (prototypes) depict specific features of the class of 

geometrical figures in particular (Mitchelmore & White, 2000). Based on this notion, students’ conceptual 

knowledge of geometrical solids reaches beyond the capability of correctly naming concrete 

representatives or giving a verbal definition. It rather comprehends the perception, visualization and 

identification of distinctive properties which refers to individual mental images students have while thinking 

of a specific solid (Tall & Vinner, 1981). The development of geometrical concept knowledge from 

primary to secondary has been described by the well-known Van Hiele Model which defines five levels of 

development (Van Hiele, 1986). Yet, most research which refers to the Van Hiele framework has been 

concerned about children’s geometrical concept knowledge of 2-D shapes, whereas little is known about 

children’s concepts of 3-D solids. Based on this theoretical framework, we assume that analyses of 

similarities and differences in individual construction processes and products of Year 3, 4 and 5 children 

provide deeper insights into children’s visualization of geometrical solids, regarded to be a core element of 

geometry and mathematics education in primary schools. 

Research questions, methods and results 

The results of the study are expected to contribute to a deeper understanding of the development of 

children’s concept knowledge of geometrical solids at primary level.  

 How do Year 3, 4 and 5 children (aged 8 to 11) articulate their conceptual knowledge of

geometrical solids via construction activities with wooden blocks (cubes, cuboids, prisms and

Froebel’s Gift No 6)? Are these constructions in line with their verbal explanations?



 What kind of cuboids and cubes do they construct and which variations occur? Do they possess

particular approaches in their activities?

 How can we interrelate these results to the Van Hiele framework and is there a necessity to enrich

the Model of Development of Conceptual Knowledge?

We analyse the conceptual understanding, strategies and reasoning of Year 3, 4 and 5 children when 

observing and video-taping their construction activities of 3-D solids (cuboids and cubes) with wooden 

blocks. In a first step, German and Malaysian children were asked to explain their ideas and knowledge of 

geometrical solids in a short dialogue with the interviewer. Afterwards, a variety of tasks invited them to 

express their knowledge of cuboids and cubes via construction activities. During their constructions children 

were encouraged to describe their strategies. Data was coded with software support by Atlas.ti. A 

coding-guideline was developed mainly according to Grounded Theory Methods (Corbin & Strauss, 

2015), trying to detect facets of articulating children’s conceptual knowledge of geometrical solids and to 

relate our first results with the Van Hiele framework (Van Hiele, 1986).  

Our results show an impressive variety of different types of constructed cuboids and cubes and of 

individual approaches, which indicate a wide variety in children‘s geometrical concept knowledge of the 

selected solids. Relating to cubes, most children focus on a square-base area during their constructions, 

some German and Malaysian third-graders only built one quadratic layer and name this a cube. 

Furthermore, we detected ambiguous mental images in children’s concept knowledge concerning cubes. 

Relating to cuboids, our results illustrate the existence of prototypical representatives, e.g. convex 

constructions with various layers, followed by constructions only consisting of one layer. Furthermore, 

children’s constructive activities can be (partly) interrelated to the Van Hiele framework, most children are 

at level of Visualization (“It’s a cube because it looks like a cube.”), resp. Analysis (“It‘s a cube because 

all surfaces are the same.“). None of the children are in the phase of transition from Analysis to 

Abstraction, all children Year 3, 4 and 5 faced difficulties in realizing relationships between a cube and a 

cuboid. 
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Overview 

The working group gathered 30 participants from 15 countries. 22 papers and 4 posters were 

accepted. 

The first session started with an ice-breaker activity. Firstly, the participants were asked to 

introduce themselves to a neighbor they had never met before.  In a second time, each participant 

had to briefly present her/his colleague: her/his name, occupation, country and expectations about 

the working group. The cross-presentations made it possible to identify 3 main expectations. First 

researchers who attended TWG5 sought after constructive feedback on their work. Then they hoped 

to widen their point of view: gather new ideas, get informed of new trends, get to know better 

research works from other countries. The third main expectation was about networking: meet nice 

and smart people and develop possible collaborations. 

The team of co-leaders had organized papers into 5 groups on 5 different topics. A session was 

devoted to each group and this session was managed and chaired by one of the co-leaders. 

Teacher education (Aisling Leavy) 

This session explored a broad spectrum of research in teacher education pertaining to statistics. The 

presentation by Artego, Diaz-Levicoy and Batanero reported on a study of the competence of 140 

Chilean primary school students levels in reading pictograms. Frischemeier and Biehler reported on 

the development of statistical literacy and thinking in a statistics course for elementary preservice 

teachers. Negotiating the content and the teaching of statistics during teachers’ professional 

development was the focus of the presentation by Bakogianni. The research reported by Gokce and 

Kazak examined middle school mathematics teachers’ pedagogical content knowledge in relation to 

statistical reasoning. Afeltra, Mellone, Romano & Tortora reported on the results of a study 

designed to support teachers’ interpretative abilities and use of errors as a didactic resource.  

Discussion focused on the following guiding questions: What are the important understandings that 

teachers/students need to develop? What experiences can we provide to promote and develop 

teacher understanding? What considerations should we take into account when designing tasks to 

assess statistical understandings?  In what ways might current knowledge frameworks limit/support 

the identification of teacher knowledge? 

When discussing the important understandings and knowledge that teachers need to develop, there 

was acknowledgement of the limited experiences of pre-service teachers in statistics and the limited 

space it receives in teacher education courses. The greater recognition in teacher education of the 

dual role of content knowledge and pedagogical content knowledge was welcomed. In moving 

forward there was the recommendation of the need to support teachers in developing awareness of 



the features of good tasks so they can design and modify their own tasks to ensure maximal learning 

benefit for children. When discussing the considerations that need to be taken into account when 

designing tasks to assess understandings/knowledge, there was agreement that it is difficult to 

assess teacher knowledge when we are not entirely sure what knowledge is important in order to 

teach statistics. Thus, there is the need for more research that elaborates what it is that teachers need 

to know in order to teach effectively in their classrooms. Finally, when discussing the ways in 

which we can we promote and develop teacher understanding, there was discussion around the 

importance of acknowledging what makes statistics unique (from mathematics). Consensus was 

also reached on the importance of task design is drawing attention to conceptual understanding, on 

the usefulness of focusing on children’s responses (both errors/misconceptions and correct 

responses) and on the use of collaborative feedback is useful in revising understandings about 

teaching and learning statistics. 

Informal statistical inference (Caterina Primi) 

Recently several researches effort are made to understand the informal ideas relating to statistics 

inference (ISI) as it is seen as having a potential to help build fundamental concepts that underlie 

formal statistic inference. Indeed, students can show complex ideas regarding statistical concepts 

(such as distribution, sampling) that can be seen as “precursor notions” of regular statistical 

concepts.   

Four papers were presented on this topic. Leavy explores the informal inferential reasoning of 

primary students (5-6 years old). In Büscher’s paper students’ patterns of thought and the processes 

of their conventionalization are reconstructed in a qualitative study with students of grade 7 (12-14 

years old). De Vetten shows the importance of preparing primary school teachers for teaching ISI, 

identifies learning goals for the teachers, and reports on an intervention study focusing on these 

learning goals. McLean’s paper reports on students’ modelling activities involving resampling 

process of bootstrapping. 

In the final discussion emerged the importance of informal inferential reasoning in particularly how 

it should be promoted at every level (from early years upwards) as it is the beginning of access to a 

statistical cultural. Additionally, the group agree that Informal inference has an important socio-

political contribution and may represent the first exposure to prediction and data-based inference. 

For this reason, the group has identified the need for national curricula and policy bodies to promote 

an emphasis on informal inference at the school level.   As future directions, the group has 

identified the critical role of task design, language and technology in accessing understandings of 

inference, and finally the research of evidence of whether and how informal statistical inference 

improves the transition to formal statistical inference. 

Probability and sampling (Sibel Kazak) 

Four papers were presented and discussed in the subtheme of probability and sampling. The paper 

by Paparistodemou, Meletiou-Mavrotheris and Vasou report on young students’ ideas of 

randomness and expressions of probability of an event when designing their own games with the 

use of Scratch software. Silvestre and Sanchez examine high school students’ reasoning while 

engaging with the idea of sampling distribution and the estimations of likelihood of outcomes in 

repeated random sampling by using Fathom software. Elicer and Carrasco explore the use of a 



sequence of tasks designed based on the framework of didactical engineering to introduce 

conditional probability as a decision-making tool. Eichler, Vogel and Böcherer-Linder describe and 

compare the use of different visualization tools, such as unit square, tree diagram and 2x2 table for 

visualizing Bayesian situations that involve conditional probability and Bayes’ rule. In the general 

discussion based on these papers the following issues were raised: 

 Use of ‘uncertainty’ term instead of ‘probability’ to emphasis the link between probability and 

statistics and informal inferential reasoning. 

 Current trend in teaching probability topics in higher grade levels in school mathematics 

curricula in different countries.  

 Mismatch between emergence of probabilistic ideas in young students and how the school 

mathematics curricula are designed. Lack of focus on subjective probability in school. 

 Role of representations in conditional probability situations and in decision-making. It was 

noted that there is no ultimate representation but variety of choices for different purposes. 

 The need for attending to cognitive and non-cognitive components of learning both for teachers 

and for students of all ages (elementary through to college level). 

 How to design tasks or activities in game-based environments like Scratch that will foster the 

development of statistical/probabilistic reasoning. By over stipulating the environment we may 

lose the affordances that the environment provides (i.e. openness, creativity). 

 Use of technology in task-design and challenges in implementating such tasks in classrooms. 

 Research (future directions): More research on ways of thinking about what children can do 

and more focus on philosophical perspectives in research are needed. 

Technology (Daniel Frischemeier) 

This session explored in what ways technology can promote and develop statistical reasoning. In 

detail we got to know about the use of different technology tools like educational software, 

spreadsheets, online platforms (for distance learning), response tools, and programming tools in 

statistics education.  Overall we have five papers in the session on technology.  

Parzysz reports on the use of spreadsheets to teach probability and introduces learning 

environments for French High school students to learn about the binomial distribution with 

spreadsheet software like Excel and discusses the potential and limitations of using spreadsheets 

when simulating random experiments and when shifting from discrete to continuous distributions. 

Serpe and Frassia present teaching examples to enhance the discussion on the meaning and 

interpretation of probability for higher secondary school students in Italy. In detail Serpe and 

Frassia show ways to implement programming for simulating chance experiments and introduce 

specific tasks (e.g., airplane task). In the article of Tacoma, Drijvers and Boon the reader gets to 

know about the potential of feedback devices and response tools in statistics education. Their 

research aims how students’ models can be used to generate feedback in an online course on 

statistical sampling. The paper of van Dijke-Droogers, Drijvers and Tolboom describes a study 

which investigates ways to enhance grade 8 students´ statistical literacy through within-class 

differentiation. The study is framed in a design-based research project and interventions like Digital 

Mathematics Environments and digital tools are used. Finally, Meletiou-Mavrotheris, 



Paparistodemou and Bayes describe an online course about statistical methods for post-graduate 

education majors and point out prospects and considerations of distance education.  

Two fundamental issues have arisen in the discussion at the end of the session regarding the 

learning and teaching with technology in statistics education: design issues (task design and design 

of learning environments) and also the role of technology in teacher education. Regarding the first 

aspect “design issues” two fundamental questions have arisen in the discussion process of the whole 

TWG5: How to support learners in their use of technology? How to concentrate on the content 

rather than on technical issues of the tool? Regarding the second aspect “technology in teacher 

education”, the group agreed that teachers need a solid technological knowledge (technological 

pedagogical content knowledge, TPCK) to be able to implement and orchestrate technology in 

statistics classrooms successfully. As future directions in the field of technology in statistics 

education the group has identified the potential of web-based applications, mobile devices and 

online learning systems for the learning and teaching of statistics. 

Varia (Corinne Hahn) 

Five papers were gathered in a “varia” group as they covered issues that were not directly related to 

other subthemes. Arteaga and colleagues describe a large study carried out in Chile with 6th and 7th 

grades students. The aim of this study was to explore students’ competencies in reading pictograms. 

They report that the highest level they called “critical interpretation” is rarely reached by students. 

Gea and colleagues analyse correlation and regression problem situation in Spanish textbooks. 

Amazingly they report that there were very few problems with context. Trakulphadetkrai presents a 

qualitative study carried out with undergraduate students, with the aim of exploring how students 

learn statistical concepts through enactive story writing. Gonzales and Chitmun describe a socially 

open-ended problem in a sport related context and present the results of an exploratory study on the 

impact of one of these problems. Chiesi and Primi investigate how students’ attitudes changes 

during an introductory statistics course and discuss educational implications. 

The general discussion at the end of this session focussed on the question of task design. We raised 

many questions, among which the following three have been particularly prominent: 

 Can a problem be “real” or simply realistic or meaningful? 

 What could be the most appropriate task for the statistic classroom: didactical situation, 

project work, inquiry-based activity, open problem? 

 What is the role and impact of tools? 

Conclusion 

In this working group, we challenged current frameworks and perspectives on statistics education 

research and some important issues emerged from the discussions. The participants agreed that we 

need to know more about: 

 uncertainty in IIR, 

 theoretical frameworks / philosophical frameworks for research purposes, 

 childrens’ naive conceptions and how to build on them. 
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In this paper we discuss a teacher education task centred on the request to interpret the reasoning 

of students addressing a ‘throw of the dice’ task. The task for teachers was designed after an 

analysis of class excerpts, carefully selected by our research group because of the interesting 

educational reflections to which they gave rise. The goal of the task is to support prospective 

teachers to develop interpretive ability in order to use errors as a didactic resource and to help 

students build their mathematical knowledge starting from their reasoning.  
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Introduction 

In the framework of PISA 2015 the domain “Uncertainty and Data” is put at the core of the 

mathematical cultural experience. Items about this topic are, by now, present in all the national 

assessment tests and the bad students’ results to these items, both in national and international tests, 

put in evidence the need to improve the teaching of Probability and Statistics in school. But this 

request, as is often the case, is not adequately satisfied, at least in Italy, by a specific plan of teacher 

education.  

Many studies (see, e.g., Batanero, Godino & Roa, 2004) have highlighted that teachers do show 

interest for this topic but, at the same time, declare to feel a lack of knowledge and experience in it. 

Indeed, on one side probability was not included in school curricula until a few years ago, and, on 

the other side, many teachers, even with a Master Degree in Mathematics, did not take the exams of 

Probability or Statistics in their plan of studies, as in the past it was an optional exam. Nevertheless, 

it is well known that the success of any educational design aimed at developing students’ 

knowledge and skills in Probability, as well as for any other topic, depends in great part on 

teachers’ knowledge and attitude toward the topic itself.  

In this study, we refer to Mathematical Knowledge for Teaching (MKT) framework that serves as a 

resource for specifically addressing the mathematical demands of teaching (Ball,Thames & Phelps, 

2008). More and more researches all around the world are demonstrating the effectiveness of this 

frame for teacher education.  

Several studies (Tversky & Kahneman, 1974; Jones, Langrall & Mooney, 2007), starting from the 

fact that situations of uncertainty are widely present in daily life, show that very often the common 

sense or the experience linked to gamble can conflict with the mathematical management of the 

situation. For this reason we think that it is crucial to design practices of teacher education in this 

topic which take into account students’ answers and look at them as didactic resources (Borasi, 



1994), even when these answers seem to be in conflict with the formalization goal of the 

educational design.  

In this paper we discuss a particular teacher education task in teaching Probability. Its design and 

implementation is rooted in the “modus operandi” of our research team, in which university 

researchers, in-service school teachers and Master students are involved as a co-learning 

community throughout an inquire research experience (e.g., Jaworski & Goodchild, 2006). We will 

explain the rationale that guided us in the choices of some transcripts of classroom discussions, used 

to design a task for in-service teachers that, in our opinion, should be considered the final product of 

a long training path and an effective tool to develop their interpretive skills. Finally, we try to 

answer to the question whether this particular type of task could be used also with perspective 

teachers, in order to scale up the reflections and the outcomes developed in our co-learning 

community. 

Theoretical framework  

Teacher knowledge and, in a broader sense, teachers’ attitudes and goals, play a key role in any 

effort of educational innovation. Among the different conceptualizations of teacher knowledge, the 

MKT effectively describes the particular features of mathematical knowledge needed for teaching 

(Ball, et al., 2008). In particular, many studies underline that, in order to improve the teaching of 

Probability, it is crucial to support teachers’ training not only in the Common Content Knowledge 

(CCK), subdomain of MKT, i.e. the general knowledge of a math topic, but also in terms of the 

Specialized Content Knowledge (SCK), that is the knowledge about the topic specifically connected 

with its teaching. However, to develop SCK in the context of Probability, different aspects need to 

be taken into account (see, e.g., Ponte, 2008): i) epistemological reflections on the meaning of 

concepts (e.g.,,different meanings of probability); ii) awareness of the closed connections between 

probabilistic and statistical issues; iii) students' learning difficulties, errors, obstacles and 

counterintuitive ideas in this field; iv) necessity to plan assessment tests and instruments for 

interpreting students’ responses.  

In this study, we focus on the third point of the previous list, looking at errors and non-standard 

reasoning not as something to avoid but rather as a source to be capitalized, that really shapes the 

dynamics in mathematics educational process (Borasi, 1996). Indeed, in our perspective, one of the 

main task for a mathematics teacher is to grasp the “meaning” of students’ answers, in order to 

develop their mathematical knowledge starting from students’ reasoning.  

This aspect is even more crucial in Probability than in other fields, considering that all the typical 

technical terms (probable, possible, random, event) are widespread common words. The 

epistemological consequent conflict can be faced only if teachers get aware that, according to 

Borasi (1996), ambiguities, in particular linguistic ones, can play a useful role in the development of 

mathematics learning. This peculiarity makes students, and, sometimes also teachers, more 

susceptible to counterintuitive ideas, which, in addition, arise in Probability already at an early 

level, more than in other branches of mathematics (Borovcnik & Peard, 1996).    

We are firmly convinced that improving students’ mathematical knowledge on the basis of their 

arguments, even when they seem naïve, requires that teachers activate a real process of 

interpretation, shifting from an evaluative listening to a more flexible hermeneutic listening (Davis, 



1997). In this peculiar field, the wrong answers of students often arise from well-known 

misconceptions (Ang & Shahrill, 2014), the same ones that afflict teachers, even in service, as 

discussed in (Batanero, Godino & Cañizares, 2005). According with this vision, we have proposed a 

design of tasks to develop teachers’ SCK, specifically addressed to support them in making didactic 

choices fit to develop students’ mathematical knowledge, starting from their reasoning (Ribeiro, 

Mellone Jakobsen, 2016). The tasks we have designed address the difficulties encountered by 

students in coordinating the classic and frequentist approaches to probability, above all with respect 

to the representativeness of the sample, and in recognizing the notion of equiprobability as a basic 

aspect of any probabilistic judgement. These tasks come as a final result of a training path in our 

research group, with the aim to enhance teachers’ professional development. But, after experiencing 

the task within our community, we also decided to propose a similar task for teachers’ learning, 

because we agree with (Robutti et al., 2016) that it is necessary to scale up the significant 

experienced practices for teacher professional development. 

Methodology 

The particular task we are going to present was developed during the meetings of our research 

group. In the last two years, our group have been working as a co-learning community, where 

educators : 

(…) create opportunity to work with teachers, to ask questions and to see common purposes in 

using inquiry approaches that bring both groups closer in thinking about and improving 

mathematics teaching and learning. (Jaworski & Goodchild, 2006, p. 354) 

This group is composed by five university researchers (two in mathematics education and two in 

physics education), fifteen in-service teachers with a long experience (one kindergarten teacher, five 

teachers from primary school, two from first order secondary school and 7 from second order 

secondary school), and some Master students in Mathematics or Education who have been working 

in their master thesis with us. Most of the teachers have been collaborating with the researchers 

since 2004, some were also involved in a three-year project (PDTR, Professional Development of 

Teacher-Researchers, www.pdtr.eu), financed by the European Community, aiming at “engaging 

classroom teachers of mathematics in the process of systematic, research-based transformation of 

their classroom practice” (Malara & Tortora, 2009 for the Italian contribution). It is worthwhile to 

say that we have found several similarities with the method of work of the mathematics learning 

communities in Norway described in (Robutti et al., 2016). 

In the last two years, we decided to start a reflection about Probability and we used to meet once a 

month for three hours at the Department of Mathematics of the University of Naples. The training 

path was divided into two parts. Firstly, we organized several theoretic seminars on the 

epistemological bases of Probability, the connections between Probability and Statistics and on the 

necessity to enhance the study of Probability at school. Secondly, our meetings were devoted to 

plan didactic activities in Probability, from primary to secondary school. Each teacher had the 

possibility to adapt the didactic paths to his/her school level according with the national curricola.  

Successively, the teachers were asked to illustrate the outcomes of the didactic activities in their 

classrooms, sharing with the community audio and video recordings of class discussions, and 

samples of students’ productions.  



In this paper, we focus on some excerpts of the discussions occurred in Piera’s (one of the author of 

this paper, and expert secondary teacher of the group) classroom of 10th grade students.  

The class discussions were registered and transcribed thanks to the help of Laura (another author of 

the paper) who have been working to her Master Degree Thesis in Mathematics on the experimental 

educational activities on Probability, carried out in Piera’s classes (Afeltra, 2015). Piera had already 

involved her two 10th level classes in inquiry based activities about descriptive statistics and her 

students were quite used to discuss each other, in order to deepen their understanding of what they 

were asked to study. The didactic path had been planned in the learning community with the aim to 

check if her students would have evidenced the predicted difficulties, also considering that most of 

them had studied the early elements of Probability in the previous years, often with a formula based 

approach. Among the others, we selected those class excerpts that gave rise to deep discussions 

during our meetings, about the possible interpretation of students’ answers, as we will illustrate in 

the following. In order to mobilize teachers’ SCK, we focused our attention on the following two 

frequent students’ errors: to view different outcomes of an event as always equally likely (within a 

classic approach to Probability); and to consider a too small sample as representative to estimate the 

probability (within a frequentist approach).  

These excerpts had a significant impact on the professional development of all in-service teachers, 

since most teachers, with a master degree in mathematics, seemed not able to act as students, 

because of a clear prevalence of their CCK on the SCK, necessary to predict students’ learning 

difficulties. In our learning community, Piera’s classroom excerpts were considered particularly 

interesting to be used for a pre service teachers’ training activities, as they show, even on a small 

sample, that these misconceptions are a common way of thinking, so a teacher has to be ready to 

appreciate the opportunity to transform a wrong answer into a challenging one. 

A teacher education task 

In the following, we present the teacher education task based on excerpts of a class discussion on 

the game of tossing two dice, indeed, a very rich and complex context, in spite of its apparent 

simplicity. In fact, it is one of the typical contexts used to introduce Statistics and Probability, 

nevertheless several research studies show that both students and teachers can run into 

counterintuitive ideas about the representativeness of the sample, when rolling one die, and about 

the item of equiprobability, when playing with two dice (see, e.g. Batanero et al., 2005). Moreover, 

this context offers many interesting experiences involving the necessity to handle at the same time 

different approaches to Probability. It is necessary that students become aware of the intrinsic limits 

of the two approaches: in the classical case, it may be all but easy to identify all the possible equally 

probable cases, whilst in the frequentist approach it may be not possible to repeat a large number of 

trails at the same conditions. On the other hand, students who have already studied some elements 

of Probability in their previous scholar levels can get quite confused about the probability of an 

event, when they may calculate it in two different ways, for example when playing with dice, but 

with a small sample. Indeed, the game with dice, as all kinds of gamble, allows to introduce the 

Law of the Large Numbers in a significant way.  

The task is organized as a questionnaire composed of three items, two of them centred on class 

discussion’s excerpts. In the following, we comment on each item, and, in particular, on the class 



excerpt, to illustrate the reasons why we consider them meaningful to be interpreted and interesting 

from the teacher education’s point of view. 

Item 1 

Read and analyse the following class excerpt. 

Teacher: Playing with one die, how can we measure the probability of each side? 

Daniele: There is no favourite side, so for each of them the probability is 1/6. 

Federica: But rolling the die, we have got five 8 times over a total of 63. So the 

probability is 8 over 63, that is approximately 0,127. 

Daniele: One sixth is 0,167, they are not the same! 

Federica: Yes, we can use both definitions… but we have studied that in this case it 

is certainly one sixth! 

a) For each students’ answer discuss if, in your opinion, it is mathematically correct or not;  

b) Plan a suitable didactic action to develop students’ learning, starting from their answers.  

We consider this excerpt as a good starting point to discuss the link between the classic approach 

and the frequentist one to Probability. The transcript shows that Federica is firmly convinced that 

the classical definition of Probability is prevalent over the frequentist approach. On the other hand, 

the play with one die is a very well known situation, and the “a priori” probability is so simple and 

evident that Federica’s answer is quite “reasonable”. In our opinion, the thought-provoking thing is 

her absolute indifference to the value of the relative frequency obtained as the result of rolling the 

die several times. Many speculations are possible: Federica’s certainty can come from a previous 

formula-based approach to probability, experienced in previous years, or, instead, from the 

awareness that the frequentist definition needs a large number of data. In both cases, the item allows 

to reflect on the necessity that teachers clarify the question with their students. Moreover, it shows 

the importance to involve students in activities of data collection, which gives the chance to 

significantly introduce the Law of Large Numbers, also, maybe, with the aid of a digital simulator, 

to work with large samples.  

Item 2  

During a lesson on Probability, a teacher submits to his/her students the following question: 

“When two dice are simultaneously thrown, what are the chances of obtaining 7 as the sum 

of the two sides up?” 

a) Answer the question, as you are able to do; b) Which possible answers, correct or not, in 

your opinion, will be given by students? c) Discuss about the possible difficulties that, in 

your opinion, a student will encounter when addressing this question. 

The first item of the task aims to put teachers at the place of students. The whole task involves 

teachers in a brainstorming activity, mobilizing their CCK about the topic. In this way, teachers can 

recognize a didactic obstacle, and, consequently, realize the need to design an educational path to 

face it. Moreover, in the following item, the teachers can confront their own answers with those 

given by the students. 



Item 3 

In the following excerpt it is reported a discussion between a teacher and his/her students 

about the previous question. 

Teacher: When two dice are simultaneously thrown, what are the chances of 

obtaining 7 as sum of the two numbers? 

Gianluigi: There are 11 possible sums, from 2 to 12, so the probability is 1/11.  

Ludovica: No, it would be true if we used a die with 11 sides. We have to consider all 

the possible couples, such as one and one, one and two and so on. 

Teacher:  Ok. And then, how many? 

Students work in groups for a while until one of them affirms: 

Massimo: There are 21 possible couples.  

a) For each students’ answer, discuss if, in your opinion, it is mathematically correct or not; 

b) Identify a set of possible questions that you would pose to students to support them their 

learning process. 

According to the classic definition of probability, Gianluigi’s answer has to be considered wrong, 

since the 11 values of the sum are not equally likely. But Gianluigi’s answer opens up the reflection 

about the difference between the sample space and the possible cases. The transcripts were 

enlightening for most teachers in our community. Even Piera, one of the author, witnessed that, in 

the previous years, on the basis of her CCK only, she would have rejected this answer, immediately 

underlining that the eleven possible outcomes are not equally possible. In the light of the reflections 

previously made in our community, this time she rather decided to give space to the classroom 

discussion. Moreover, Ludovica smartly refers to another context, where 11 would have been the 

correct answer, and this seems to us a significant process to support the construction of meaning, 

above all because it arose from students.  

Even Massimo’s answer, which is caused by the common belief that, throwing two dices, the order 

is not relevant (see, e.g., Batanero et al., 2005), is wrong but interesting. Indeed, we have selected 

this excerpt because, in our meetings, it triggered many discussions about the didactic choice, for 

example, to use or not dice of different colours, in order to avoid this error. Finally, we agreed on 

the opportunity to use dice of the same colours in order to open up the possibility that reasoning as 

Massimo’s one emerge.. In this way, a teacher has the possibility to ask students to look for 

contexts different from the dice game, where the order turns to be relevant. In our meetings, many 

ideas were proposed: the most popular examples were contexts of sport competitions, while a more 

sophisticated context could be the Bose–Einstein statistics. Only on the basis of her learning’s 

development, due to the participation in our co-learning community, the teacher was able to guide 

her students in finding a possible context in which Massimo’s answer could be correct, activating in 

this way an hermeneutic listening (Davis, 1997) Her actions helped students not only to better 

understand the crucial role of equiprobability, but also to describe mathematical models and 

formulate hypotheses about them.   



Conclusions  

For several years researchers in probability education have been investigating the counterintuitive 

ideas arising when people formulate judgements in real situations involving uncertainty (Tversky & 

Kahneman, 1974). These ideas are often in conflict with the mathematical formalization of 

Probability, so they can cause, if not recognized, paradoxical results. It is widely known that a 

correct probabilistic reasoning needs a specific instruction (Fischbein, 1975), therefore, it is 

fundamental that a teacher is able to use students’ intuitions, their counterintuitive answers or 

incorrect reasoning as resources for learning (Borasi, 1994). We think that this work is particularly 

useful for Probability, even more than for other mathematics topics, since, in this field, widespread 

counterintuitive ideas arise from many daily situations. 

Our research group has been working as a co-learning community (Jaworski & Goodchild, 2006), 

where the professional development of all the participants was enhanced throughout inquiry 

activities, in order to improve learning from experience and reflection. In this paper we have 

focused on the process which led us to design a teacher education task, starting from the analysis of 

excerpts of classroom activities. We selected the excerpts most challenging to be converted in 

interpretative tasks for teacher training, with the aim to improve teachers’ SCK about some crucial 

notions of Probability. The deep impact observed on the Math teachers of our community 

encourages us to redesign a similar path to be used for teacher training on a larger scale, as an 

attempt to face the issue of dissemination of the significant practices experienced in a co-learning 

community, as described in (Robutti et al., 2016). In this direction many questions are still open, 

and need further investigation. However, we are just now exploring the real effectiveness of this 

types of task with in-service and perspective teachers, their difficulties and limits. 
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This study builds on Wenger’s (1998) notion of meaning as the essence of a practice and the process 

of negotiation of meaning as determinant in the development of a practice. Following an emerging 

community of 11 secondary mathematics teachers, I aim at exploring the interactions between two 

dominant processes in teachers’ work, the negotiation of the statistical content and the negotiation 

of the teaching of statistics. The results indicate that the two processes act complementarily in the 

formation of the practice of the community and consequently in the professional development of the 

teachers. Evidence of how the one provides feedback and meaning to the other is also illustrated and 

discussed.  
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Introduction 

The development of teacher education programs that aim to support teachers to promote statistica l 

inquiry in their classroom, is gaining an increasing attention the last years in statistics education 

community. This current discourse emphasizes the importance of offering teachers opportunities to 

experience as learners statistical investigations (Makar & Fielding-Wells, 2011), and nominates the 

significance of teachers’ engagement with inquiry in the teaching (Shaughnessy, 2014). A further 

approach suggests combining experiences in teacher education, namely as learners and as teachers, 

and provide evidence that this combination can help teachers not only to strengthen their statistica l 

content knowledge but also to be able to transfer their understanding to the classroom (Heaton & 

Mickelson, 2002). Although the complementarity of teachers’ experiences as both learners and 

teachers seems to be crucial in teacher’s professional development, we still know very little on how 

these two types of experience interact and provide feedback to one another. 

In this study I explore the interplay between the process of negotiating the content of statistics (NCS) 

and the process of negotiating the teaching of statistics (NTS) in the professional development of 

teachers. Particularly, I followed a group of 11 secondary mathematics teachers who worked 

collaboratively in an emerging Community of Practice (CoP) (Wenger, 1998) to develop the statistics 

teaching practice. During their work in this community, the teachers had the opportunity to engage in 

tasks that promote negotiation of meaning in both the content and the teaching of statistics, and so 

they participated as both teachers and learners. The research question that guides this exploration is 

the following: 

How do negotiation of the content of statistics and negotiation of the teaching of statistics interact 

and provide meaning to each other in the context of a Community of Practice? 

Theoretical perspectives 

In this study, I view the teaching of statistics from a statistical thinking point of view (Wild & 

Pfannkuch, 1999) which sets inquiry at the core of statistical teaching and learning and highlights 

both the specificities and the complementarity between statistics, probability and mathematics. I focus 



on three dimensions related to statistics teaching practice. The first dimension is the learning 

potentials which refer to particular skills, abilities and knowledge that are connected to the statistica l 

activity, e.g. that students are expected to understand and deepen in the fundamental statistical ideas 

(Burrill & Biehler, 2011) or that they need to be able to use and evaluate appropriate statistical tools 

and methods in order to analyze data (e.g. Franklin et.al., 2005). The second dimension is the features, 

namely instructional tools and strategies that seem to be crucial in supporting students to achieve the 

defined learning potentials. Examples of features are students’ engagement in statistica l 

investigations (MacGillivray & Pereira-Mendoza, 2011) or the use of dynamic software tools that 

support data explorations (Ben-Zvi, 2006). The third dimension is resources. The variety of the 

resources that are brought into the teaching of statistics constitutes a dynamic ground where teachers 

can build and form their practice. In my view of resources I adopt Adler’s (2000) conceptualizat ion 

which extends beyond material resources (e.g. software tools, physical objects, media extracts, real 

data sets) to include human resources (e.g. previous experiences, collaboration with colleagues, 

knowledge about concepts and procedures) and cultural resources (e.g. time, classroom habits). 

In my view to practice, I use the lens of the social theory of learning (Wenger, 1998) which theorizes 

learning in practice through four components: meaning (the way we experience our life and the world 

as meaningful), practice (shared historical and social resources and actions), community (social 

configurations to which we belong) and identity (personal histories of becoming). In the social theory 

of learning, practice is about both action and interpretation of the action, and meaning is the essence 

of a practice and it is situated in the process of negotiation of meaning. In this study, I acknowledge 

two types of meaning that is negotiated in the CoP, the meaning related to the content of statistics 

where the teachers participate as learners in the negotiation, and the meaning related to the teaching 

of statistics where the teachers participate as teachers in the negotiation. The study of the interact ion 

between the process of NCS and the process of NTS aims to get insight on how NCS can provide 

meaning for NTS and vice versa. Especially in the case of teaching statistics where the mathematics 

teachers are challenged with a content that they are not familiar with (Hannigan et.al., 2013) and 

which contains epistemological differences from the mathematics content they teach (Moore & Cobb, 

2000), such insights could be rather helpful for the research in statistics teachers’ professiona l 

development. 

Methodology 

To achieve my research goal I followed an exploratory case study methodology (Yin, 2003), where 

the case was a group of 11 secondary school mathematics teachers, 5 practicing (Akis, Dinos, Kimon, 

Lidea, Marcos) with 8-30 years of teaching experience and 6 prospective (Athina, Chloe, Eva, Lia, 

Ria, Sofi). All teachers were mathematics graduates and also graduates or senior students in a 

Master’s program in Mathematics Education with no particular familiarity with the teaching and 

learning of statistics and with a varied background in statistics. This group was gathered in a voluntary 

basis and worked collectively for two years (2012-2013 and 2013-2014 academic years) in a regular 

base (about 2 meetings per month that lasted approximately two and a half hours each). Two 

researchers were also participants (the author-R1 and the supervisor of the study-R2) encouraging the 

active participation of the teachers, providing various resources, finalizing each meeting’s agenda 

and challenging teachers to reflect on their experiences. The main agenda of the meetings was formed 

around a cyclic route of: (a) inquiring the content of statistics, (b) designing for their classroom (c) 



implementing the designed tasks in their classroom and (d) reflecting on their practice. I considered 

this group as an emerging Community of Practice (Wenger, 1998) by encouraging the development 

of mutual engagement, joint enterprise and shared repertoire. This paper is based on the data of a full 

cycle (inquire the content, design teaching, teach the planning lesson and reflect on it) which covered 

10 of the total of 12 meetings in the first academic year. 

All meetings were audio and video recorded and the group discussions were fully transcribed. Semi-

structured individual interviews at the beginning and at the end of the study were also conducted. 

Another source of data was teachers’ journals regarding issues they considered as central in each 

meeting. Although these reports were not a complete source of data, they often constituted a useful 

source of triangulation in order to corroborate the study’s findings. 

The analysis of the data was based on a grounded theory perspective using the ATLAS.ti software. 

During the coding process I used as unit of analysis the task that the teachers were engaged in. In 

each task I distinguished NCS and NTS parts in which I assigned features, learning potentials and 

resources that were visible in teachers’ discussions. In Table 1 I present an example of the process 

we followed. Last, in a second level I focused on identifying how the negotiation of each type of 

meaning was mobilized as well as exploring interactions among the negotiation of the two types. 

 

Table 1: Example of the data analysis where the teachers were discussing the 5th problem presented 

on Fischbein & Schnarch’s article (Fischbein & Schnarch, 1997) 

Results 

In Figure 1 I present the various tasks that the teachers were engaged in during the 10 meetings. As 

we can see, there were tasks oriented to encourage negotiations in the content of statistics (e.g. 

exploration of statistical tasks/situations), tasks that aimed at negotiating the teaching of statistics 

(e.g. design for the classroom, reflection on the teaching) and tasks that had the potentiality to 

immobilize negotiations in both types of meaning. However, as we can see in Figure 2 the realized 

negotiations indicate that the interaction between NCS and NTS was not only a function of the nature 



of the task. This is especially obvious in the case of the design for the classroom tasks, where a quite 

large part of teachers’ discussion was related to NCS.  

 

Figure 1: General description of the meetings agenda 

How NCS provides meaning to NTS 

The analysis of the data showed that NCS was mobilized by the teachers’ need to understand better 

or deepen in a statistical concept or process. In the extract presented in Table 1 above, the teachers 

were discussing students’ false intuitions with regard to the effect of sample size while Akis’ 

intervention mobilized a negotiation of meaning related to sample notions and the Law of Large 

Numbers.  This episode was expanded and lasted for about 10 minutes during which the teachers 

together with R1 exchanged arguments and utilized various resources that aimed to deepen their 

understandings around these notions. This discussion helped teachers not only to deepen their content 

knowledge but also to negotiate new difficulties that they had (making connections with particular 

knowledge and abilities required to gain meaning, namely the learning potentials) and means that  

helped them to overcome these difficulties (namely the features that can facilitate these learning 

potentials). In other words, they had the opportunity to incorporate their NCS experience into their 

teaching practice. Akis notes in his meeting report are indicative of how NCS provided meaning for 

the teaching practice: “What I observed is that our beliefs and our attitudes towards probability and 

statistics are very close to those of students, I mean we are guided by an intuitive way of thinking. If 

we want our students to adopt a more inquiring stance, we first need to give them appropriate tools 

to overcome their intuitions. I think that the way we discussed in the meeting, revealing our 

misconceptions and resolving them could be a good model for our teaching”. 

 

Figure 2: Alternations in the content of negotiation in the various meetings  

Moreover, NCS was also mobilized by teachers’ need to gain experiences with data. This was the 

case for example in the 6th meeting, where the group conducted a pilot study for an experiment that 

was designed for the students by a team of five teachers. Particularly, in this experiment the students 

were supposed to investigate if listening to music affects their ability to recall words. The teachers 

designed the experiment and before they implemented it in the classroom they collected data inside 

the group, explored the data, made conclusions and thought of possible modifications in the 



experiment’s design. In this sense the NCS helped teachers to acquire experience and confidence 

regarding the implementation of the designed activity. The words of Dinos in his final interview are 

characteristic: “this interaction gives you the impression that this (he means the task) will be 

considered by many couples of eyes, by many views. I mean especially in statistics where you can 

never acknowledge all the possible parameters,… it is not that you will learn something new, it is that 

it helps to illuminate other dimensions that you may have neglected at first”. 

Furthermore, in many cases the teachers transferred directly their experience as learners to their 

teaching practice. For instance, in the 6th meeting Dinos used an example to help his colleagues to 

understand the notion of the standard deviation in the estimation of a probability. Later in the 

discussion, Dinos suggested using the same example in the classroom and the others responded: 

Sofi:  So you suggest using the same example with the students. I like it. Actually it helped 

me to understand so it would be also helpful for students to understand. 

Athina/Chloe: Yes, I agree too.     

Last, as can be seen in the examples discussed above, it is also the general context of their enterprise, 

namely the community of statistics teaching practice, that mobilized them to analyze their NCS 

experience in terms of identifying learning potentials that could be supported in the classroom, 

features that could support these learning potentials and resources that could facilitate students in the 

learning process.       

How NTS provides meaning to NCS 

Apart from the nature of the task, NTS was mainly mobilized due to a question posed by one of the 

researchers, such as “Would you use such a task in your classroom and if yes how?” or “What do you 

think a student can gain from the experience of such a task?”. Such questions encouraged teachers to 

extend their experience as learners to start a negotiation of meaning around the teaching and learning. 

The extract below is from the 3rd meeting when teachers discussed a statistical task and illustra tes 

how such NTS was mobilized. 

R1:  What difficulties can someone face in the classroom with this task? Would you try 

to implement such a task? If yes, then how and with what goal? 

Kimon:  I could try it with 12th Grade students not with younger ones. 

Dinos:  I could do this with young students as well, with 8th Grade students for example. 

Lia:  I agree with Dinos. I think this would be useful in the formation of their attitudes 

towards probabilistic ideas. In 12th Grade level they have already formed quite 

formal conceptions.  

Dinos:  But the point is what modifications we can do.  

This discussion for which the starting point was the question posed by R1, continued for about 30 

minutes during which the teachers exchanged views and suggestions, referred to specific learning 

potentials, discussed potential features that could serve their goals and utilized or suggested resources 

(e.g. use of statistical tools / suggestion to include in their study all the students in the school instead 

of the students in the classroom) that could facilitate the learning process with regard to the defined 

learning potentials. In this way, teachers extended their NCS experience to consider aspects of 



teaching and learning and to connect the statistical objects they negotiated with features, learning 

potentials and resources that broaden their view towards these objects.  

Another example is the case where, during NTS, the teachers or the researchers asked for 

clarifications regarding particular teaching decisions or suggestions. In this way teachers reconsidered 

their choices and developed a deeper understanding on the underlying concepts or possible conceptual 

connections. The following example, from the 7th meeting, is indicative of this case. In this extract 

Marcos was trying to explain his choice to use mean values instead of median when students study 

the difference in our ability to recall words and no words.   

R1:  Marcos, why did you choose to use the mean values here? 

Marcos:  It actually depends on what you want to see. 

Chloe:  And what about you? What do you want to see? 

Marcos:  Look. It is true that with the median is easier to manage the results, I mean it could 

be easier to find subsets that can give a difference on median that is so big or bigger 

than the one we get. But on the other hand… What if the difference is small, like 

here? If I was to choose from a students’ perspective, I would choose the median, 

but not with a very small difference. I mean maybe there are other parameters that 

result in such a small difference. I am not sure what I would say to students for a 

very small difference. 

This episode continued and lasted for about 4 minutes during which Marcos developed arguments to 

explain his choice. In this way, Marcos got insight not only in his didactical choice but also in the 

role of the mean value and the median in the study of differences between two variables. Such an 

inquiry, although it refers to NTS, was also helpful in illustrating statistical concepts and thus 

provided meaning to NCS as well. Almost all the teachers of our study, in their final interviews, 

referred to the positive impact of their inquiry in teaching on their content knowledge. This was either 

because they were facilitated by their colleagues or the researchers’ examples and explanations or 

because of their attempt to help or convince their colleagues, which guided them to develop 

appropriate examples or arguments and thus helped them to deepen in their own understandings. In 

both cases, the context of the CoP which encouraged the collaboration among them played a 

determinant role on this interaction. Below, we present two characteristic extracts from the final 

interviews. 

I feel I gained a lot, especially as a learner. You see, the concepts we decided to work with in the 

classroom were blurred for me, too. It was mainly Dinos’ examples and explanations that helped 

me to understand first these concepts and consequently what we were going to do with the students. 

(Chloe, final interview) 

These discussions helped me to develop a deeper awareness of many issues. I mean, when you are 

trying to take a stand towards an issue or a particular decision, it helps you either to get a more 

clear position, by developing a deeper understanding or to consider new views or aspects that were 

out of your attention. (Marcos, final interview) 



Conclusion 

This study aimed at getting insight into the interaction of NCS and NTS in the context of a CoP. The 

results showed that both processes were mobilized either by the nature of the task itself or by reasons 

that are related to the teachers’ needs and the context of their work inside the CoP. Moreover, we saw 

that NCS process, apart from teachers’ content knowledge, helped them to enrich their teaching 

repertoire (appreciate learning potentials, explore features, get access to new resources) as well as to 

strengthen their confidence in handling particular statistical concepts inside the classroom. Similar ly, 

NTS process, apart from a space for inquiring teaching and learning, was also a starting point for the 

teachers to develop deeper understanding on statistical content, to make conceptual connections and 

to acknowledge different dimensions of the underlying problem. These results go beyond the work 

of Heaton & Mickelson (2002), which shows the importance of the complementarity of the two 

processes in the professional development of teachers, to give empirical evidence of how the one 

process provide feedback and meaning to the other. Moreover, the collaborative context of a CoP 

acted supportively in the interactions between them. Thus, such a context, that fosters the co-existence 

of NCS and NTS, seem to help teachers not only to experience statistics as learners, but also to link 

this experience with classroom reality.     

Last, this complementarity and feedback are especially important to the professional development in 

the case of statistics since the stochastic nature of the content on the one hand, and the unfamiliar ity 

of teachers with the statistical tools on the other hand, constitute factors that, as we saw, reinforce the 

interactions between NCS and NTS. 
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Common patterns of thought and statistics:  

Accessing variability through the typical  
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Allowing students to construct meanings of statistical concepts like variability requires building on 

their individual experiences. The notion of patterns of thought is utilized to conceptualize the 

difference between formal statistics and learners’ initial thinking and to describe a pathway to bridge 

this gap between individual and mathematical thinking. Students’ patterns of thought and the 

processes of their conventionalization are reconstructed in a qualitative study with n = 10 students 

of grade 7. An outlook is given on the possibility of connecting students’ patterns of thought with 

formal statistics. 

Keywords: Informal inferential reasoning, design research, concept development. 

Introduction 

One of the aims of statistics education is to foster informal inferential reasoning (IIR), the ability and 

disposition to use data in order to reason about some wider universe (Makar, Bakker, & Ben-Zvi, 

2011). In IIR, statistical concepts are combined with contextual knowledge under certain statistica l 

norms and habits, such as a “critical stance towards data” (see Makar et al., 2011 for a more thorough 

overview). While the framework of IIR can explain the role of statistical concepts in producing 

informal statistical inferences (ISI, see Makar & Rubin, 2009), it does not account for the development 

of statistical concepts. Accordingly, there exists a lack of research concerning statistical concept 

development of students with little experience in statistics. Tracking of the development of concepts, 

Bakker and Derry (2011) draw on the background theory of inferentialism, linking students’ emerging 

concepts in inferential practices with IIR. Looking at the micro level of students’ reasoning processes, 

Bakker and Derry argue that students can show complex ideas regarding statistical concepts such as 

center, variation, distribution, and sampling. These ideas are not formally articulated, but can rather 

be seen as “precursor notions” of regular statistical concepts (Bakker & Derry, 2011, p. 20). 

These precursor notions could provide a promising basis for the development of more formal 

statistical reasoning. The challenge remains however to design tasks that draw on these precursor 

notions in order to foster students with little prior experience in formal statistics. These tasks need to 

draw on students’ individual ways of reasoning as a resource in order to develop statistical concepts 

meaningful to the students. This requires paying careful attention to students’ learning processes, and 

to uncover the links between formal statistical concepts and students’ everyday thinking. This study 

aims at reconstructing students’ individual ways of thinking on a micro level in order to find ways to 

connect students’ everyday thinking to regular statistical concepts. 

Patterns of thought in everyday thinking 

The mathematician and philosopher Wille (1995) argues that in order for mathematics to become 

learnable and possibly meaningful to non-experts (i.e. the general public), the discipline of 

mathematics itself has to be restructured in a program he coined Generalistic Mathematics 

(“Allgemeine Mathematik”). Wille calls for mathematicians to reveal the reasons, the aims, the 



common patterns of thought, and the boundaries and dangers of mathematical concepts and of whole 

mathematical theories. This however must not be done in the language of mathematical theory. 

Opening mathematics to the general public necessitates the use of common language, rather than 

specialized vocabulary, to describe those reasons, aims, patterns, and boundaries. 

This approach to make mathematics open and meaningful resonates well with Lengnink and Peschek 

(2001), who see the challenge and goal of mathematics education in explicating the connection 

between everyday thinking and mathematical thinking. For them, mathematical thinking manifests as 

conventionalized everyday thinking. In this way, confidence intervals can be seen as a 

conventionalized form of the generalizations taking place in daily life: being reasonably sure that 

some observation of daily life can be taken as true, with a certain intuitive degree of variation. 

This places a firm emphasis on the importance of common thought patterns and practices, so that a 

task of mathematics education becomes the identification of these patterns of thought. While Wille 

(1995) sees this task in the hands of (the philosophy of) mathematics, Prediger (2008) points out that 

empirical insights into mathematical learning processes form a valuable and even necessary basis for 

identifying connections between everyday thinking and mathematical thinking. This also means that 

thought patterns cannot be approached in a general way, but rather are tied to the specific 

mathematical content of the learning process under investigation. This study adopts the approach 

outlined by Prediger (2008), in order to reveal patterns of thought and their connection to the 

statistical concepts of center and spread when comparing distributions. 

The typical as a common pattern of thought 

One way students’ thinking differs from formal statistics is in the use of measures. In statistics, 

measures such as median or standard deviation function as highly specialized tools for talking about 

statistical concepts like center or variability. In their intuitive approaches to statistics, students use 

strategies such utilizing “modal clumps” instead (Konold et al., 2002) to point out ‘the majority’ of 

the data. Since to the students the location and the width of the clump both are important, these modal 

clumps can simultaneously address the center of a distribution as well as a form of spread. Thus, in 

their everyday language, learners integrate many different statistical concepts that would formally be 

strictly distinguished through use of different specialized measures (Makar & Confrey, 2005).  

This raises the question on what would be promising patterns of thought to build on. One such 

candidate would be the practice of identifying ‘typical’ values or ranges of values within datasets. 

Some research indicates that ‘typical’ might be a good way for students to think about the average 

(Makar, 2014), while other research finds ‘typical’ or ‘normal’ to be a term for talking about ideas 

combining center and spread (Büscher, 2016a; Büscher, 2016b). Thus, the pattern of thought of 

identifying the ‘typical’ of a distribution seems a promising candidate as a resource for concept 

development, although it remains unclear for which concepts exactly. 

Patterns of thought and concept development 

To address the question of how patterns of thought can support concept development, this study 

follows a conceptual change approach (Duit & Treagust, 2003). Learning is understood as a 

restructuring of prior conceptions, occurring when these conceptions no longer satisfactorily exp lain 

phenomena. The goal of statistics teaching is then to initiate the development of conceptions into 

statistical concepts. Since statistical concepts show a high degree of connection to each other, learning 



trajectories in statistics however should not address concepts in an isolated way, but rather in a holist ic 

way (Bakker & Derry, 2011). This calls for organizing structures that (a) connect to learners’ prior 

conceptions, (b) holistically address statistical concepts, and (c) lead to regular statistical concepts. 

Patterns of thought can provide just such a structure, as they encompass different prior conceptions 

and thus enable the connection of everyday thinking to mathematical thinking. 

Research questions 

The theoretical background of this study suggests that designing learning trajectories towards 

statistical concepts should start from fruitful patterns of thought. It is thus an issue for empirica l 

investigations to find those patterns of thought in students’ thinking which can indeed serve this 

function as starting points in learning trajectories. Looking at what is ‘typical’ was identified as one 

potential pattern of thought that could result in such concept development. This study therefore aims 

to answer the following research question: What concepts do students address and develop when 

conventionalizing the vague pattern of thought of ‘identifying the typical’? 

Research design 

This study adopts the methodological framework of topic-specific didactical design research 

(Prediger & Zwetzschler, 2013) with a focus on learning processes (Prediger, Gravemeijer, & 

Confrey, 2015). This approach aims at providing empirically grounded local theories on topic-

specific learning processes as well as design principles and concrete teaching- learning arrangements 

for the topic. While the framework utilizes iterative cycles of design experiments, this study reports 

on the third cycle of design experiments. 

Data gathering 

Design experiments were conducted with five pairs of grade 7 students (aged 12 – 14) who had only 

little experience with statistics within the mathematics classroom. Experiments consisted of two 

sessions of 45 minutes each, with each session having its own arrangements of data and tasks. They 

were fully videotaped and partially transcribed. The process-focused analysis of the video data from 

the first session of the design experiments allows to reconstruct the development of students’ patterns 

of thought, in their relation to task design. 

Task Design 

For designing the teaching- learning arrangements, various design principles have been implemented 

throughout the different cycles of design research, two of which play an important part in this study. 

Drawing on ‘typical’ as pattern of thought. As outlined above, connecting to the pattern of thought 

of characterizing what is ‘typical’ of a certain distribution can potentially provide a starting point for 

processes of conventionalization that lead to meaningful use of formal statistics. Therefore, ‘typical’ 

has to be explicitly addressed in the task design, and the setting of the task has to provide a context 

in which this pattern of thought can naturally occur. 

Criticizing conventionalizations. As Lengnink and Peschek (2001) point out, mathematical learning 

has to explicitly address the relation between everyday thinking and mathematical think ing.  

Following this, it is not enough for a task to just utilize students’ patterns of thought and to encourage 

conventionalization of those patterns of thought. It is rather these conventionalizations that have to 



become the object of investigation. Under a Generalistic Mathematics perspective this could mean 

addressing reasons, aims, and boundaries of these conventionalizations. 

These design principles were realized in the design of the Antarctic weather task . The initia ted 

activity puts the students into the role of consultants to researchers at the Norwegian Antarctic 

research station Troll forskingsstasjon. In the first phase of the task, the students investigate dot plots 

of daily temperatures for the month of July 2004 and predict the weather for next July by giving a 

distribution of ten days. In Phase 2, additional data for July 2002 and 2003 were included (Figure 1). 

Predicting the weather was chosen as activity because it is rooted in everyday thinking, combining 

experiences of short-term variability (one can never be too sure about the weather…) with long- term 

signals (… but there are typical temperatures after all). 

 

Figure 1: Distributions of the Antarctic weather task (translated from German) 

In order to support conventionalization of patterns of thought, the third phase introduces a design 

element called report sheets (cf. Figure 2 and 3). The report sheets are introduced to serve as a brief 

summary of the Antarctic weather in July. They combine graphical representations and the use of 

measures with a brief inference. First, the students are asked to fill out their own report sheet. After 

that, in the fourth phase, the students receive three different filled- in report sheets by fictit ious 

students (Figure 2). These filled- in report sheets differ in their interpretation of typical. This serves 

as a basis for discussing and criticizing the different conventionalizations of typical, as the students 

are asked to evaluate the correct use of typical. 

 

Figure 2: Fictitious students’ filled-in report sheets (translated from German) 

Data Analysis 

The students’ patterns of thought were reconstructed in an interpretative analysis using concepts-in-

action and theorems-in-action from Vergnaud’s (1996) theory of conceptual fields. Concepts-in-

action are “categories (objects, properties, relationships, transformations, processes etc.) that enable 

the subject to cut the real world into distinct elements and aspects, and pick up the most adequate 



selection of information according to the situation and scheme involved” (Vergnaud, 1996, p. 225). 

Theorems-in-action are statements held to be true by the learner. 

Which concepts-in-action and theorems-in-action are activated depends on the pattern of thought 

utilized by the learners. Thus, patterns of thought are conceptualized as groups of concepts-in-action 

concurrently occurring in the learners’ activity. Concepts-in-action and theorems-in-action are 

reconstructed from the students’ point of view, and do not necessarily correspond to regular statistica l 

concepts. In the analysis, the reconstructed concepts-in-action are symbolized by ||…||, while 

theorems-in-action are denoted by <…>. 

Empirical Insights: The case of Maria and Natalie 

The first snapshot starts with Phase 2 of the Antarctic weather task. After getting the additional data 

of the years 2002 and 2003, Maria and Natalie, Grade 7, try to explicate their view on the data. 

1 Maria: We are pondering what the relationship, like, how to… 

2 Natalie: Yes, because we want to know what changes in each year. And we said that 

there [2003] it came apart.  

[…] 

8 Maria Yes, I think it [2004] is somehow similar to that [2002], but that one [2003] 

is different. 

9 Natalie: Like here [points to 2004, around -12 °C] are, like, like the most dots, and 
here [2002, -12 °C] are almost none. And there [2002, -8 °C] are the most 

and here [2004, -8 °C] are almost none. 

This excerpt serves as an illustration of the starting point in the students’ reasoning. The students are 

trying to characterize the differences observed in the distributions. At first, the students formula te 

differences between 2003 and 2002/2004 in terms of ||spread||: in 2003, the temperatures “came 

apart” (#2). Another difference they notice is the difference of the location of the ||center|| between 

2002 and 2004, indicated through modal clumps (“the majority”, #9). 

It is important to note that at this stage, the students face difficulties in trying to express their findings. 

The distributions of 2004 and 2002 are found to be “somewhat similar” (#8) though “different” (#8) 

to 2003, with further explanation supplied by Natalie through use of gestures and improvised 

vocabulary (“like, like the most dots”, #9). Few minutes later, the students find a way to deal with the 

complexity. 

21 Maria: Well, we first should look at how many degrees it has risen or fallen. 

Generally. In two years. 

[…] 

27 Natalie You mean average, like… 

28 Maria The average, and then we look at how the average changed in two years. 

By introducing the notion of reducing the distributions to a ||general value|| (“Generally”, #21), the 

students are able to handle the complexity of the differences between the distributions. For this 

general value, they appear to already know an adequate measure: the ||average||. To the students, 

<the average represents the general value of a distribution>. The average acts as a summary to be 

used in further procedures, as <the differences between distributions can be described by differences 

in general values>. 



In the following exchange, after having estimated the averages to be -12 (2002) and -14 (2004), Maria 

and Natalie try to use their result for a linear extrapolation of the weather in 2015 to be predicted. 

41 Natalie: Wait. If it gets colder by 2 °C in two years, then it gets colder by 1 °C each 
year, so we have to… 

42 Maria: Nah, eh, yeah okay 

43 Natalie: 13 °C colder average temperature. Right? 

44 Maria: Yes. 

45 Natalie: But that’s too much, isn’t it? 

When reflecting on their result however, the students realize that a decline of the average temperature 

by 13 °C is not a realistic proposition (#45). While their knowledge of the real-world context helps 

them to identify this contradiction, they are not able to find another solution. In the minute following 

(not shown here), the students stay insistent in using the average and a linear extrapolation of the 

trend. It is important to note that, at this stage, their ideas concerning ||spread|| as expressed in the 

first excerpt seem to have disappeared, replaced by the stronger notion of ||general value|| expressed 

through the more conventionalized form of ||average||. 

The design experiment progresses through the third phase, in which the students create their own 

report sheet (Figure 3). The analysis picks up at beginning of the fourth phase, with the students 

comparing the different interpretations of ‘typical’ in the filled- in report sheets. 

 

Figure 3: Maria and Natalie ’s report sheet  

Comparing the different interpretations of ‘typical’, Maria and Natalie are intrigued by the possibility 

to use an interval to characterize ‘typical’. This leads them to reflect on their use of the average. 

61 Natalie: But the average temperature isn’t really typical, is it? 

62 Maria: What, typical? Of course the average temperature is the typical. 

[…] 

66 Maria: Well, no. Typical is more like where the most… no… 

67 Maria:  The average temperature isn’t the typical after all. Because it’s only the 
general, the whole. The typical would be for example for this [2004] here 

[points to -14 on the 2004 dot plot]. 

68 Natalie: Typical I think simply is what is the most or the most common. 

The students utilize Typical to differentiate between two different ideas: The ||general value|| that is 

expressed through the ||average|| (“the general, the whole”, #67), and the ||most common|| part of the 

Translations: 

“Report sheet: temperatures at Troll Forskningsstasjon” 

Skizze – Sketch 

Typisch – Typical 

Zusammenfassung – Summary 

Temperaturen - Temperatures 

(The black graph was drawn first, labeled a mistake, and 

immediately replaced by the red graph. Typical was first 

assigned as -15, then after the fourth phase changed to -

19 to -15.) 

 



distribution, expressed through the ||Typical|| (“the most common”, #68) – although at this point it is 

not yet clear if Typical consists of a number or an interval. With the ||most common|| corresponding 

to the notion of ||center|| expressed earlier (“the most dots”, #9), Typical seems to help the students 

to express ideas that got swept aside by the more conventionalized average. Both, average and typical, 

start to act as conventionalized tools for talking about specific aspects of distributions.  

Some minutes later, Natalie summarizes her view on the relation between ‘typical’ and average. 

81 Natalie:  And average is pretty imprecise, because it doesn’t say anything about a 

single day. And with typical, I’d say, that it’s a span between two numbers, 
because that way you can better overlook how it is most of the time. 

In the end, typical and average provide two different applications. Whereas the average acts as a 

summary, ‘typical’ gives an overview into a distribution. The average can be used in comparing 

distribution in an efficient way, while ‘typical’ gives an insight into a range of ‘normal’ or ‘expected’ 

temperatures, to which any single day can be compared. In this way, ‘typical’ combines aspects of 

||center|| and ||spread||. 

Conclusion 

The aim of this study was to examine the interaction of concept development and students’ patterns 

of thought. The students showed two different patterns of thought: Characterizing data through a 

general value and through a range of typical values. These patterns differed in their degree of 

conventionalization. While the general-pattern was addressed through use of the average, the students 

lacked a conventionalization corresponding to the typical-pattern. This resulted in the typical-pattern 

to be suppressed in favor of the general-pattern, as the ideas addressing spread disappeared. Only 

when the students were supplied with different conventionalizations of Typical, they were able to 

reconnect to their typical-pattern. This then allowed them to express ideas combining center and 

spread. 

This identification of thought patterns provides a promising starting point. Work still remains 

however utilizing these thought patterns to develop regular statistical concepts. This could be 

achieved by reconceptualizing formal statistics in terms of a typical-pattern. One possible connection 

could be interpreting the ‘box’ of a box plot as the typical area of a distribution. Additionally, more 

insight into processes of conventionalization is needed in order to be able to successfully guide 

students on their way to meaningful statistics (for one example see Büscher, 2016). 
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Do attitudes toward statistics change during an introductory statistics 

course? A study on Italian psychology students 
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Mixed results have been reported about changes that might occur in students’ attitudes as a 

consequence of attending introductory statistics courses and about male and female students’ 

differences in attitudes. Thus, the aim of the current study was to shed light on attitudes changes in 

students attending introductory statistics courses taking gender into account. Overall, we observed 

changes in attitude that resulted in a more positive attitude from the beginning to the middle of the 

course. Nonetheless, along with a general positive trend, it was possible to highlight that some 

students get significantly worse attitudes and many of them do not substantially change their initial 

attitudes. Overall, no significant differences were found between male and female students. Finally, 

probabilistic competences along with statistics anxiety accounted for individual changes in attitudes 

toward statistics. Educational implications were discussed. 

Keywords: Statistics education, attitudes toward statistics, attitude changes, gender differences. 

Introduction 

Attitude toward statistics is a disposition to respond favourably or unfavourably to objects, situations, 

or people related to statistics learning (Schau, Stevens, Dauphinee & del Vecchio, 1995). It is 

commonly described as a multi-dimensional concept that consists of affective (students’ positive and 

negative feelings about statistics), cognitive (beliefs about the ability requested to learn statistics and 

about the discipline), and behavioral (interest and effort) components, which are deemed to have an 

effect on achievement. Emmioglu and Capa-Aydin (2012) provided a meta-analysis that addressed 

this relationship suggesting that there is a significant correlation between students’ achievement and 

statistic-related beliefs, motivation, and feelings. Indeed, whereas the reviewed studies employed 

different research approaches and included different kinds of samples and courses, more positive 

attitudes were correlated - with different extent, and directly or indirectly- to a better course 

performance.  

For this reason, a basic question of research refers to the changes that might occur in students’ 

attitudes as a consequence of attending introductory statistics courses. Although some studies 

reported an increase in attitudes as a result of the courses (e.g., Chiesi & Primi, 2010), Schau and 

Emmioglu (2012) conducted a large-scale investigation reporting that the different attitude 

dimensions do not substantially change through the courses. Nonetheless, Millar and White (2014) 

highlighted that the mean changes were around zero but the variability in the individual changes was 

relatively large, i.e., whereas in some cases the attitudes actually did not changed, positive changes 

(i.e., shifts to a more positive attitude) and negative changes (i.e., shifts to a more negative attitude) 

were both observed.  

Finally, literature on attitudes toward statistics addressed the issue of gender differences. Presumably 

due to the different sample and course characteristics (engineering students, economic students, 

psychology students, pre-service teachers), inconsistent results were reported. Some authors found 



that men expressed more positive attitudes toward statistics than women (e.g., Chiesi & Primi, 2015; 

Tempelaar & Nijhuis, 2007), others studies found no gender differences (e.g., Martins, Nascimento 

& Estrada, 2011), and some others documented more positive attitudes for women (e.g., Rhoads & 

Hubele, 2000).  

These mixed results suggest, in line with the recommendation made by Eichler and Zapata-Cardona 

(2016), to intensifying research on students’ statistics-related attitudes. Thus, the aim of the current 

study was to shed light on attitudes changes in students attending introductory statistics courses taking 

into account gender differences. The specific aims can be detailed as follows.  

a. To investigate the possible changes in attitudes as result of the course. Based on previous studies 

conducted on similar samples (e.g., Chiesi & Primi, 2010), we hypothesized that a positive overall 

change might occur from the beginning to the middle of the course. To take into account possible 

gender-related difference in attitudes, we observed the differences from pre- to post-test in male 

and female students separately. We expected that the course had an effect on both genders. 

b. To provide a more fine-grained investigation we looked at the individual differences in attitude 

changes, i.e. if the student shifted to a better attitude, or if she/he got worse attitudes as a result of 

the course, or if the student’s attitudes remained unchanged. In defining these typologies we 

referred to Schau and Emmioglu (2012) and Millar and White (2014). They suggested that, along 

with the statistical significance of the change in attitude scores, it is important to ascertain if 

students’ attitudes change consistently, i.e., if there is a substantial increase/decrease in the 

observed scores. As such, following their indications to determine the relevance of the score 

change, we investigated individual differences in attitude changes controlling for gender. We 

expected that positive and negative shifts as well as no changes might be observed in both men 

and women. 

c. Since we expected that students – all attending the same course - might change in positive or 

negative their attitudes towards statistics or maintain them stable, we explored if some specific 

factors could accounted for individual differences. In line with previous studies on cognitive and 

non-cognitive factors related to statistics education, we looked at mathematical and probabilist ic 

competences along with test anxiety and statistics anxiety. 

Method 

Participants 

Participants were 136 psychology students enrolled in an introductory statistics course at the 

University of Florence in Italy (mean age = 20.93 years, SD = 3.59; 70% female). They were first 

year students who did not have previous experience with the discipline at the university level but they 

might have encountered the discipline before in school-related contexts or in their out-of-school lives. 

All students participated on a voluntary basis after they were given information about the general aim 

of the investigation (i.e., collecting data for a research project on students’ statistics achievement).  

Description of the course 

The course was compulsory. It covered the usual introductory topics of descriptive and inferentia l 

statistics (including basic concept of probability theory and calculus), and their application in 

psychological research. It was scheduled to take place over 10 weeks, and takes 6 hours per week (for 



a total amount of 60 hours). During each class some theoretical issues were introduced followed by 

exercises using either paper-and-pencil procedure or a computer package (R-commander). Students 

were assigned homework for which they were allowed to work in groups. Consultation hours were 

also offered for one on one help with exercises. The instructor was one of the authors of the current 

paper. 

Measures 

Attitude toward statistics was measured administering the 28-item version of the Survey of Attitudes 

toward Statistics (SATS) (Schau et al., 1995; Italian version: Chiesi & Primi, 2009). The SATS 

contains Likert-type items using a 7-point scale ranging from strongly disagree to strongly agree. It 

assesses four attitudes components: Affect (6 items) measures positive and negative feelings 

concerning statistics (e.g. “I will feel insecure when I have to do statistics problems” or “I will like 

statistics”); Cognitive Competence (6 items) measures students’ attitudes about their intellectua l 

knowledge and skills when applied to statistics (e.g. “I can learn statistics” or “I will make a lot of 

math errors in statistics”); Value (9 items) measures attitudes about the usefulness, relevance, and 

worth of statistics in personal and professional life (e.g. “Statistics is worthless” or “Statistical skills 

will make me more employable”); Difficulty (7 items) measures students’ attitudes about the 

difficulty of statistics as a subject (e.g. “Statistics formulas are easy to understand” or “Statistics is a 

complicated subject”). Two versions to use at the beginning (pre-SATS) and during or at the end 

(post-SATS) of the course were developed. For both the pre- and post- versions of the SATS 

responses to negatively scored items were reversed. Because the subscales were composed of a 

different number of items, scores were obtained by dividing each component score by the number of 

items that assess that component. As such all the scores ranged from 1 to 7 and higher scores indicated 

a more positive attitude. For Difficulty a positive attitude (i.e., high scores) means that students 

believe that statistics is easy whereas a negative attitude (i.e., low scores) means that it is harder. 

The Mathematics Prerequisites for Psychometrics (MPP, Galli, Chiesi & Primi, 2011) was employed 

to measure the mathematical skills needed by students enrolling in introductory statistics courses. The 

MPP consists of 30 multiple-choice format questions (one correct out of four alternatives) from which 

a total score (range 0-30) was calculated. Additionally, the Probabilistic Reasoning Questionnaire 

(PRQ; Primi, Morsanyi & Chiesi, 2014), designed to measure proportional reasoning and basic 

probabilistic reasoning ability, was administered. The scale consisted of 16 multiple-choice questions 

from which a total score (range 0-16) was calculated.  

The Test Anxiety Inventory (TAI; Spielberg, 1980) was administered to measure anxiety associated 

with test-taking situations. The TAI is self-report instrument consisting of 20 items. Respondents are 

asked to report how frequently they experience specific symptoms of anxiety from 1 (almost never) 

to 4 (almost always). A total score was calculated as the sum of all items, with higher scores 

corresponding to high test anxiety. Along with this general anxiety indicator, the specific anxiety 

toward statistics was assessed using the Statistical Anxiety Scale (SAS; Vigil-Colet, Lorenzo, & 

Condon, 2008; Italian version: Chiesi, Primi & Carmona, 2011). The SAS is a self-reported measure 

consisting of 24 items with a five-point rating scale ranging from 1 (no anxiety) to 5 (very much 

anxiety). The SAS includes Examination anxiety (8 items, e.g., “Studying for examination in a 

statistics course”), Asking for help anxiety (8 items, e.g., “Asking the teacher how to use a probability 

table”), and Interpretation anxiety (8 items, e.g., “Trying to understand a mathematica l 



demonstration”). A composite score was calculated with higher scores corresponding to high statistics 

anxiety.  

Procedure 

Students were administered the SATS-pre, the MPP, the PRQ, and the TAI at the beginning of the 

course. At the middle of the course (about four weeks later), the SATS-post was administered along 

with the SAS. The questionnaires were introduced briefly to the students and instructions for 

completion were given. Answers were collected in paper-and-pencil format and the time needed to 

complete them ranged from 20 to 40 minutes.  

Results 

To ascertain the possible changes in attitudes toward statistics and the gender related differences, we 

ran a 22 mixed ANOVAs with course (pre/post) as a within-subjects factor, and gender as between-

subjects factors on each of the four attitude dimensions. It was found a main effect of course - that 

resulted in an overall increase -  on Affect (F(1, 134) = 17.34, p<.001, p
2 = .12; pre: M = 3.44, SD = 

1.08, post: M = 3.74, SD = 1.25), Difficulty (F(1, 134) = 24.17, p < .001, p
2 = .15; pre: M = 3.23, SD 

= 0.64, post: M = 3.51, SD = 0.66), Cognitive Competence (F(1, 134) = 59.67, p < .001, p
2 = .31; 

pre: M = 4.19, SD = 1.01, post: M = 4.72, SD = 1.07), and Value (F(1, 134) = 4.89, p < .05, p
2 = .04; 

pre: M = 5.03, SD = 0.85, post: M = 5.20, SD = 0.94). With the exception of Value (F(1, 134) = 1.91,p 

=.17), significant between-subject differences were found for the remaining attitude dimens ions 

(Affect: F(1, 134)=8.36 p < .01, p
2 = .06; Difficulty: F(1, 134) = 4.82, p < .05, p

2 = .04; Cognitive 

Competence: F(1, 134) = 6.17, p < .05,  
2 = .04) with male holding more positive attitudes. 

Nonetheless, there were not significant course by gender interactions (Affect: F(1, 134) = 2.08,p = 

.15); Difficulty: F(1, 134) = 0.26, p = .61; Cognitive Competence: F(1, 134) = 1.99, p =.16; Value: 

F(1, 134) = 0.89, p = .35) indicating that attitudes improved regardless gender differences in the 

attitude degrees. In Figure 1 the descriptives by gender are reported for each attitude dimension. 

 

 

Figure 1. Mean scores of the four components of the  Survey of Attitudes toward Statistics (SATS) at the 

beginning and at the middle of the course in male and female students. 

 

Because the rating scale ranged from 1 to 7 and 4 is the midpoint, mean values revealed that male 

students were around the midpoint at the beginning of the course and later tended to be above it. 

Female students, whereas they get better across time, remained below it. On average, even taking into 



account the positive shift from the beginning to the middle of the course, both men and women were 

below the midpoint for Difficulty, whereas scores over it were observed for Cognitive Competence 

and Value. 

To look at the individual differences, i.e. if students get better, worse, or unchanged attitudes, we 

referred to Schau and Emmioglu (2012) and Millar and White (2014) to weigh the relevance of the 

change. Thus, we considered differences of about .5 point or more in absolute value as important. 

This means that students’ scores would change consistently if they changed, for example, their Likert 

scale responses by 1 point on half of the items in the component. In the current study, to take into 

account the direction of change, we classified the score as follows: a negative difference of .5 point 

or less indicated a substantive decrease, a positive difference of .5 point or more indicated a 

substantive increase, all the other values indicated no substantive changes To take into account 

possible gender-related difference in attitudes, we observed the kind of pre-/post-test differences 

separately in male and female students (Figure 2).  

 

 

Figure 2. Percentages of negative, stable and positive pre-post difference scores of the four 

components of the Survey of Attitudes toward Statistics (SATS) in male and female students. 

 

Chi-square tests indicated no significant differences between genders (Affect: 2(2) = 2.16,p = .34; 

Difficulty: 2(2) = .34, p = .84; Cognitive Competence: 2(2) = 2.48, p =.30;  Value: 2(2) = 3.83, p 

= .15). Comparing the four components, the highest percentage of negative shifts (more than 15%) 

was found for the Affect component. A prevalence of stable scores (60% or more) was observed for 

the Difficulty and Value dimensions. Finally, we registered the highest percentage of positive shifts 

(about 50%) for the Cognitive Competence component. 

To establish the relative impact of mathematical and probabilistic competences, test anxiety, and 

statistics anxiety on attitude changes, regression analyses were run (Table 1). In order to capture the 

variability in the changes occurred from the first to the second assessment, the criterion variable was 

the difference between the pre- and post-test scores. Given the overall absence of gender differences 

these analyses were conducted on the total sample. Results showed that none of these factors 

explained changes in Cognitive Competence (F(4,130) = 0.71,p = .59) and Value (F(4,130) = 0.76, p 

= .55). On the contrary, the regression models indicated that probabilistic competences and statistics 

anxiety contributed in explaining changes in Affect (F(4,130) = 4.90, p < .01, R2 = .13) and Difficulty 

(F(4,130) = 5.02,  p < .01, R2 = .14). Specifically, higher competences were associated with higher 



positive changes, whereas higher anxiety levels were associated with higher negative changes. 

Finally, test anxiety predicted changes in Difficulty in the same direction observed for statistics 

anxiety, i.e., the greater the degree of anxiety, the less the attitude increase (Table 1).  

 
Criterion Predictors  β t p 

Affect 

change 

Mathematical competence (MMP) 

Probabilistic competence (PRQ) 

Test anxiety (TAI) 

Statistics anxiety (SAS) 

.045 

.29 

.04 

-.24 

0.41 

2.87 

0.45 

-2.33 

.66 

.005 

.65 

.02 

Difficulty 

change 

Mathematical competence (MMP) 

Probabilistic competence (PRQ) 

Test anxiety (TAI) 

Statistics anxiety (SAS) 

.15 

.25 

-.20 

-.36 

1.46 

2.47 

-2.02 

-3.60 

.15 

.015 

.045 

<.001 

 

Table 1. Regression analyses on statistics attitude changes (in brackets the scales employed to measure 

the predictor variables) 

 

Discussion 

The current study aimed at investigating in detail attitude changes in male and female Italian 

psychology students attending introductory statistics courses. In doing that, we took into account 

some cognitive and non-cognitive variables that might help in shed light on individual differences in 

attitude changes. Overall, we observed changes in attitude that resulted in a more positive attitude 

from the beginning to the middle of the course. Except for the Value component, men held more 

positive attitudes. However, there were not significant course by gender interactions indicating that 

attitudes improved in both male and female students. On average, and regardless the positive shift 

from the beginning to the middle of the course, both men and women believed that statistics was 

difficult, although they had confidence they would be able to learn it. Finally, all students valued 

statistics somewhat positively. 

To provide a more fine-grained investigation we looked at the individual differences in changes as 

well as to the relevance of the change. Indeed, along with a general positive trend, it is possible to 

highlight that, although part of the students shifted markedly to better attitudes, some of them got 

significantly worse attitudes, and many of them did not substantially change their initial ones. 

Investigating gender-related difference in attitude changes, we observed no significant differences in 

male and female students. Thus, looking at the general patterns of change, it emerged that about half 

of the sample remained substantially stable across the four attitude dimensions (with the higher 

percentage for the Value component), more than one third of the sample shifted to a more positive 

attitude (with the higher percentage for the Cognitive Competence component), and a small 

percentage showed a negative shift (with the higher percentage for the Affect component).  

When looking at the factors influencing the direction of the shift, we observed that probabilist ic 

competences along with statistics anxiety accounted for changes in Affect and Difficulty components. 

That is, students with stronger competences were more likely to move to positive feelings about the 



discipline and to consider it less hard. At the same time, more anxious students were more resistant 

to positive changes, i.e., they persistently dislike statistics and consider it hard.  

Given these findings, it is interesting to note that the course per se promote positive changes in the 

students’ attitudes. That is, arguably when interacting directly with the topics at an introductory level, 

some students tend to perceive it in a more favorable way. However, many students do not change or 

even get worst attitudes. Thus, it becomes important to identify methods for promoting better 

attitudes, for example arranging activities in which students could reinforce their basic competence 

in probability and providing them the adequate learning strategies to cope with anxiety. As such, they 

can perceive the subject easier and reduce negative feelings toward the discipline.  

The present study has some limitations that we have to take into account when interpreting the results. 

First of all, it was conducted with Italian psychology students and this may limit their generalizabil ity. 

Thus, future investigations should be conducted with different student populations to provide further 

evidence on the changes in attitudes and their determinants. Second, individual differences in changes 

of the value and cognitive competence components remain basically unexplained. As such, other 

factors (i.e., self-efficacy, motivation) should be taken into account to understand why some people 

do not change while others do. Finally, students valued statistics somewhat positively contradict ing 

to some extent previous results on psychology students (e.g., Dempster & McCorry, 2009). This 

might be a result of social desirability effect that should be controlled in further studies. 
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Teachers who engage primary school students in informal statistical inference (ISI) need to have a 

good content knowledge (CK) and pedagogical content knowledge (PCK) of ISI themselves. However, 

little is known of how teacher college education for pre-service teachers can contribute to the 

development of their ISI CK and PCK – a shortcoming we attempt to address in this paper. A class 

of 21 pre-service primary school teachers participated in an intervention consisting of five lessons. 

Design research methodology guided the design of the intervention. The preliminary results indicate 

that most pre-service teachers seemed to be aware of the inferential nature of research questions and 

the uncertainty inherent to ISI, but not all of them understood the fundamental idea that if a properly 

selected sample is representative for the population it can be used for an inference. Lacking this 

understanding might hinder them in teaching ISI. 

Keywords: Informal statistical inference, informal inferential reasoning, primary education, statistics 

education, teacher education. 

Introduction 

In daily life, sample data is regularly used to make generalizations that go beyond the data collected; 

informal statistical inference (ISI) is a form of this phenomenon. The ability to critically evaluate 

such generalizations is increasingly useful in participation in present and future society. ISI is defined 

as “a generalized conclusion expressed with uncertainty and evidenced by, yet extending beyond, 

available data” (Ben-Zvi, Bakker, & Makar, 2015, p. 293). Unlike formal statistical inference, ISI 

does not make use of formal statistical tests that are based on probability theory (Harradine, Batanero, 

& Rossman, 2011). In recent years, statistics education researchers have turned their attention to how 

primary school students can be introduced to ISI. It is hypothesized that if students are familiar ized 

with the concept in primary school, it will help them to understand the processes involved in its 

reasoning and in statistical reasoning in general (Bakker & Derry, 2011; Makar, Bakker, & Ben-Zvi, 

2011). Evidence suggests that meaningful learning environments can render ISI accessible for 

primary school students (Ben-Zvi et al., 2015; Meletiou-Mavrotheris & Paparistodemou, 2015). 

If students are to be introduced to ISI in primary school, future teachers need to be well prepared to 

conduct this introduction (Batanero & Díaz, 2010). This requires them to have an appropriate content 

knowledge (CK) of the subject and to have adequate pedagogical knowledge (PCK) (Burgess, 2009). 

Recent research shows that pre-service teachers have difficulty making generalizations and 



understanding sampling representativeness and the logic of sampling (De Vetten, Schoonenboom, 

Keijzer, & Van Oers, 2016a; De Vetten, Schoonenboom, Keijzer, & Van Oers, 2016b). However, 

little is known how we can prepare pre-service teachers to teach ISI to primary school students. This 

paper reports on the design and preliminary results of an intervention at a teacher college for primary 

education that aimed to foster the development of the ISI content knowledge (CK) and PCK of pre-

service primary school teachers.  

Teachers’ knowledge of ISI 

In his seminal article, Shulman (1986) uses two broad categories to categorize the knowledge teachers 

need to have to teach a particular subject: pedagogical content knowledge (PCK) and content 

knowledge (CK) of the subject. Shulman’s first category, pedagogical content knowledge, includes 

knowledge of how to present, illustrate and explain new material (Knowledge of Content and 

Teaching; KCT for short); and knowledge about the students’ conceptions and misconceptions 

(Knowledge of Content and Students; KCS for short). Concerning content knowledge, teachers need 

to understand the subject at the level of student (Common Content Knowledge; CCK for short), but 

also need to have specialized knowledge of the subject that enables them to teach the subject and that 

is specific for the job of teaching (Specialized Content Knowledge; SCK for short) (Ball, Thames, 

and Phelps, 2008). 

For ISI no categorization of CK and PCK is available. We combine the categorization of Shulman 

with the ISI framework of Makar & Rubin (2009) to conceptualize the CK and PCK needed for 

teaching ISI. Makar & Rubin (2009) argue that an ISI consists of the following three components: 

1. ‘Data as evidence’: The inference is based on the data, and not on tradition, personal beliefs 

or experience. 

2. ‘Generalization beyond the data’ (in short: ‘Generalization’): The inference goes beyond a 

description of the sample data to make a claim about a situation beyond the sample data. 

3. ‘Uncertainty in inferences’ (in short: ‘Uncertainty’): The inference includes a discussion of 

the sample characteristics, such as sample size and sampling method, and a discourse on what 

these characteristics imply for the representativeness of the sample and the certainty of the 

inference. Moreover, it requires an understanding of basic logic sampling: the understand ing 

that if a properly selected sample is representative for the population it can be used for an 

inference, because sample-to-sample variability is low. We have subdivided this component 

into three subcomponents: sampling method, sample size and uncertainty. 

There are a limited number of studies that investigate (pre-service) primary school teachers’ CK of 

ISI. The authors of this paper have investigated all three ISI components in two studies (De Vetten et 

al., 2016a; De Vetten et al., 2016b). In an exploratory design study, De Vetten et al. (2016a) show 

that regarding ‘Data as evidence’ most pre-service teachers indeed use data as evidence when 

comparing two samples to generalize to the population. In a large scale questionnaire study, De Vetten 

et al. (2016b) found less positive results when pre-service teachers were asked to evaluate whether 

data can be used as reliable evidence for a generalization. Concerning ‘Generalization’, De Vetten et 

al. (2016b) show that pre-service teachers are well able to discern that probabilistic generalizat ions 

are permissible, while deterministic generalizations are not. However, De Vetten et al. (2016a) report 

that pre-service teachers tend to only describe the samples, and do not generalize beyond the data. 



The evidence on the ‘Uncertainty’ component suggests that many pre-service teachers show a limited 

understanding of sampling methods, sample size, representativeness and the logic of sampling and 

sampling variability (De Vetten et al, 2016a; De Vetten et al., 2016b; Meletiou-Mavrotheris et al., 

2014; Mooney, Duni, VanMeenen, & Langrall, 2014; Watson, 2001). 

Research on teachers’ PCK of ISI and ways to prepare to teach ISI is even scarcer than research on 

teachers’ CK of ISI. Leavy (2010) reports that pre-service teachers tended to focus excessively on 

procedures, spent too much time on descriptive analyses at the expense of discussion of inferences,  

and failed to stimulate data-based reasoning. Using the same data, Leavy (2015) shows that it is 

critical that pre-service teachers learn how to pose questions that invite students to reason about 

inference. Madden (2011) shows that tasks that are statistically, contextually and/or technologica lly 

provocative triggered high school mathematics teachers to reason about ISI. 

Since little is known how to prepare pre-service primary school teachers to teach ISI, the aim of the 

present study is to investigate in what way teacher college education for pre-service teachers can 

contribute to the development of their ISI CK and PCK. The research question is: To what extent, 

and how, do the ISI CK and PCK of pre-service school teachers develop during, and as a result of, an 

intervention at primary education teacher college aiming at developing ISI CK and PCK? 

Method 

Context 

In many countries, including the Netherlands, current statistics education curricula in primary and 

secondary education do not include ISI. Actual teaching practices focus primarily on statistica l 

procedures and graphing skills, where concepts are learned without reference to the need to collect 

and analyze data (Ben-Zvi & Sharett-Amir, 2005; Friel, Curcio, & Bright, 2001; Meijerink, 2009). 

When statistical inference does form part of the secondary education curriculum, the ideas of sample 

and population are often only dealt with on a technical level. Consequently, many students enter 

tertiary education with a shallow and isolated understanding of the concepts underlying statistica l 

inference (Chance, DelMas, & Garfield, 2004). In contrast to many other countries, where students 

can only opt for teacher education after completion of a bachelor’s degree, in the Netherlands, initia l 

teacher education starts immediately after secondary school and leads to the attainment of such a 

degree. For these students, mathematics teaching is usually not their main motive for becoming 

teachers.  

The intervention was part of a course on mathematics education for grade 3 to 6. The course was the 

fourth course on mathematics education and the second for mathematics in grade 3 to 6. During the 

semester the pre-service teachers worked in a grade 3 to 6 class in a work placement school. Since in 

the Dutch mathematics curriculum for teacher college statistics gets only minor attention and since 

we wanted to have an intervention that would fit in the normal teacher college curriculum, we decided 

to restrict the length of the intervention to five lessons, out of the 16 lessons of the total course. 

Design 

We employed design research methodology to study the development in ISI CK and PCK of the pre-

service teachers and to explain this development (Van den Akker, Gravemeijer, McKenney & 

Nieveen, 2006). Previous research (Ben-Zvi, 2006; De Vetten et al., 2016a&b; Paparistodemou & 



Meletiou-Mavrotheris, 2008; Saldanha & Thompson, 2007) and our own ISI teaching experiences 

with primary school students informed us which learning goals are within reach of pre-service 

teachers and what PCK is necessary to teach ISI to primary school students (see Table 1). These 

learning goals were categorized into the three ISI components ‘Data as evidence’, ‘Generalizat ion’ 

and ‘Uncertainty’. 

Table 1: ISI learning goals for the  intervention at primary education teacher college  

ISI component Knowledge 
type

a
 

Learning goals Attain-
ted?

b
 

General KCT 

To reason with students about ISI in a meaningful way, teachers can (1) have students 

conduct empirical investigations with an inferential research question about a meaningful 
topic or (2) have students evaluate research (for example as reported in the media) with an 
inferential research question about a meaningful topic. 

0.75 

Data as evidence 

CCK Use data as evidence, not other sources 1 

CCK Sample provides information about likelihood of population parameters 0.5 

KCS Many students do not use data as evidence 0.5 

KCS Many students think that every sample distribution is evenly likely 0.25 

KCT 

To teach students that data can be used as evidence for answers on inferential questions 
teachers can (1) have students conduct empirical investigations where sample and population 
are concretely visible, (2) regularly point at the sample, and (3) ask students on what 

arguments they or other researchers reached their conclusion.  

0.25 

Generalization 
beyond the data 

CCK It is possible to make claims about population, despite individual differences between 
subjects 

0.75 

CCK It is possible to use sample to make claims about population 1 

CCK Awareness of inferential nature of research questions 1 

CCK Claims about a population are often based on a sample 1 

CCK Correctly articulate answers to inferential questions 0.5 

KCS Many students answer inferential questions descriptively only 0.5 

KCT 

To teach students that it is not necessary to investigate an entire population, but that a sample 
suffices for a reliable conclusion, teachers can (1) use examples from media where a sample 
is used, or (2) use resampling activities where different samples yield similar results.  

0.25 

KCT 

To make students aware of the inferential nature of research questions, teachers can (1) use 

real empirical investigations where sample and population are concretely visible, and (2) ask 
questions, such as 'Does our result hold for the sample only, or also for the population?'  

0.25 

KCT 
To help students to correctly articulate answers to inferential questions, teachers can 
reformulate students’ responses. 

0.25 

Uncertainty 
inherent to 

inferences 
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CCK 
Which of the following sampling methods are (in-)appropriate: convenience sampling, 

random sampling, quota sampling 

0.75 

SCK Understand why random sampling is appropriate 0.75 

KCS Many students think random sampling is not an appropriate sampling method 0.5 

KCS Many students tend to use incorrect matching techniques in sampling 0 

KCT 

To teach students that a sample needs to be representativeness of the population, a teacher 
can (1) ask students to investigate how other researchers have selected their sample and what 

students think of the representativeness of the sample and (2) let students discuss how they 
would select a representative sample to answer a specific research question and let the 
children execute the sampling. 

0.75 
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SCK Why a larger sample leads to more certainty 0.5 

CCK Sufficient sample size 0.25 

CCK Sample size is independent of population size 0.5 

KCS Many students do not take sample size into account in the certainty of their answers 0.5 

KCS Many students make very certain inferences, even for small samples 0.5 

KCS Many students think that sample size is dependent of population size 0.25 



KCT 
To teach students the effect of sample size on the certainty of inferences, teachers can use 
real empirical investigations where resampling is used, select to two samples of different size 

and ask which sample provides more certainty. 

0.5 

U
n

ce
rt

a
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CCK Acknowledge uncertainty of inferences and impossibility of absolute certain inferences 
1 

CCK The larger the sample, the more certain the inference 1 

CCK The better the sampling method, the more certain the inference 0.75 

CCK When a sample is properly selected, the probability is small that another but likewise sample 
gives an entirely different result  

0.5 

CCK Correctly articulate uncertainty in inferences 0.5 

KCS Many students express complete (un-)certainty in their inferences 0.5 

KCT 
To make students aware of the uncertainty of inferences, teachers can use real empirical 
investigations where resampling is used, and confront the children that different samples lead 
to different conclusions. 

0.25 

KCT 
To help students articulate uncertainty in inferences, teachers can reformulate studentś  

responses or ask how much certainty the students have. 

0.25 

a
CCK: common content knowledge; SCK: specialized content knowledge; KCS: knowledge of content and students; KCT: knowledge of con tent and 

teaching. 
b
Each learning goal received one of the scores 0, ¼, ½, ¾ or 1 (0: not attainted; 1: attained by (almost) all pre-service teachers) 

For each lesson, a hypothetical learning trajectory was designed, connecting activities with the 

learning goals for the lesson, while also explaining in what way the activities were hypothesized to 

help to attain the learning goals. Using example lessons was one type of activity used to foster the 

CK and PCK of the pre-service teachers. These lessons introduced many CK concepts and provided 

opportunities to discuss how children would deal with issues involved in these lessons. Each lesson 

was evaluated to inform the design of the next lesson. Table 2 provides an overview of the 

intervention. Part of the intervention was that pre-service teachers would give an ISI lesson in their 

work placement school. The analysis of these lessons is beyond the scope of this paper. 

Table 2: Overview of the ISI intervention at the teacher college  

Week Activity 
1 Informed consent, pre-test and homework instruction 

Between 1 
and 3 

CK: Pre-service teachers make homework assignment:  
1. Look up an article in the media that makes a claim about a population based on a sample and that somehow appeals to you.  
2. Describe how the researchers came to their conclusions. 

3. Write a critical evaluation about the quality of the research: to what extent is in your opinion the conclusion justified based 
on the research conducted? 

3 Lesson 1 
CK & PCK: Small group and whole class discussion of homework assignment, attention for both CK and PCK aspects of the 
assignment 

CK: Explanation of random sampling and appropriate sample size using an ICT demonstration 

5 Lesson 2 
CK & PCK: Teacher educator models an example lesson which the pre-service teachers could give themselves in their work 
placement schools 
PCK: Discussion of teacher educator’s experiences with teaching the example lesson in primary school 

5 Lesson 3 
CK & KCS: Discussion of equiprobability bias using a task 
CK Short recap of main ISI concepts 
PCK: Teacher educator presents learning goals of ISI lesson (KCT) , discusses typical responses of students (KCS) and provides 
instructions for the ISI lesson (KCT) 

Between 5 

and 12 

Half of the pre-service teachers teach an ISI lesson in their placement school. 

12 Lesson 4 
PCK: Discussion of pre-service teachers’ experiences with teaching with teaching the ISI lesson 
PCK: Pre-service teachers provide suggestions for alterations of the ISI lesson and tips for their fellow students.  

Between 12 
and 16 

The other half of the pre-service teachers teach an ISI lesson in their placement school. 

16 Lesson 5 
PCK: Discussion of pre-service teachers’ experiences with teaching the ISI lesson  

16 Post-test and evaluation of the intervention 

 



Participants 

One class of second year pre-service teachers participated in this study. They studied at a small 

teacher college for primary education in a large city in the Netherlands. The intervention took place 

in their second year of study, because statistics is part of the knowledge base that is tested in the third 

of study. This particular class was chosen, because the pre-service teachers had fewest credits open 

from their first year of all three second year classes. The class consisted of 23 pre-service teachers. 

They were asked to provide their informed consent. While all of them were required to participate in 

the activities and lessons, one pre-service teacher invoked the possibility to have her results excluded 

from the analysis. The results of another student were also excluded, because of absence during all 

but one of the lessons. This resulted in a sample of 21 pre-service teachers. The procedure was 

approved by the ethical board of the Faculty of Behavioural and Movement Sciences of Vrije 

Universiteit Amsterdam. The average age of the participants was 21 years (SD: 2.19); 6 were male; 

10 had a background in secondary vocational education (students attending this type of course are 

typically aged between 16 and 20), 7 came from senior general secondary education, 2 had been 

enrolled in university preparatory education, and the educational background of the remaining 2 was 

either something else entirely or unknown. Their average score on the obligatory first-year 

mathematics exam for Dutch pre-service teachers was 135 out of 200 possible points (SD: 12.86). A 

score of 103 equals the 80th percentile of Grade 6 primary school students in the Netherlands. The 

first author was the teacher educator. He had four years of experience as a mathematics teacher 

educator, a master degree in economics and experience as a university statistics lecturer. He had 

taught most of the pre-service teachers during their first year of study. 

Data collection 

During the lessons, whole class interactions were recorded on video and audio, while small group 

interactions were recorded on audio. Furthermore, during most lessons one of the co-authors was 

present as observer, taking notes. Finally, all written work was collected. A pre-test and post-test were 

used to measure ISI CK and PCK at the start and at the end of the intervention. The results of these 

tests will be presented during the CERME presentation. 

Data analysis 

The goal of the analysis is to study the development of the ISI CK and PCK and to explain these 

developments. This paper reports preliminary analyses. After each lesson, the teacher educator’s and 

observer’s notes and reflections were used as for estimating to what extent the learning goals relevant 

for the particular lesson had been attained by the pre-service teachers as a whole. Each learning goal 

received a score ranging from 0 to 1 (0: not attainted; 1: by large attained by (almost) all pre-service 

teachers). These estimations per lesson were used to make an overall score for each learning goal.  

Next, average scores were calculated for the various components and types of knowledge. Based on 

these notes and reflections, these scores were related to the activities used during the intervention. 

The final results will show in detail the development of ISI CK and PCK at the level of the pre-service 

teacher and the role of the activities used in the intervention. 

  



 

Table 3: Attainment of the learning goals, summarized by ISI component and knowledge type  

Component Average scorea  Knowledge type Average scorea 

General 0.75  Common content knowledge 0.73 

Data as evidence 0.5  Specialized content knowledge 0.63 

Generalization beyond the data 0.61  Knowledge of content and students 0.39 

Sampling method 0.55  Knowledge of content and teaching 0.43 

Sample size 0.43    

Uncertainty 0.59    

aEach goal received one of the scores 0, ¼, ½, ¾ or 1 (0: not attainted; 1: by large attained by (almost) all pre-service teachers) 

Preliminary results 

The preliminary results reveal to what extent the learning goals have been attained and shed some 

light on what activities helped to reach these goals. Table 1 shows to what extent the learning goals 

are attainted. Table 3 shows the average score for the learning goals summarized for components and 

knowledge type respectively. There are some notable results. First, most pre-service teachers seemed 

to be aware of the inferential nature of research questions and the uncertainty inherent to the results. 

The homework assignment at the start of the intervention seemed to have helped to foster this 

awareness. Second, the modeling of the example lesson seemed to be a good context to reason about 

sampling methods, because it naturally led to the use and discussion of  random and quota sampling 

methods. Moreover, although average scores on PCK learning goals are lower than on CK learning 

goals, modeling helped the pre-service teachers to get a better idea how to teach ISI to primary school 

students. Thirdly, while the presentation of PCK issues by the teacher educator in lesson 8 did not 

seem to contribute much to the pre-service teachers understanding, the discussion of PCK based on 

the pre-service teachers’ experiences in lesson 12 and 15 did. Finally, an understanding of the 

fundamental idea that if a properly selected sample is representative for the population it can be used 

for an inference, might be conditional for understanding other ISI concepts. While part of the pre-

service teachers seemed to understanding this idea, part of them did not. Lacking this understand ing 

might hinder them in teaching ISI. 
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In this paper we analyse the competence in reading pictograms by 140 Chilean students (6th and 7th 

grades). The written responses to two activities taken from textbooks are used to describe the 

children’s reading levels and strategies to interpret pictograms and translate them to a table. Results 

suggest that students do not find major difficulties in translating the pictogram to a table; however, 

few of them reach the upper reading level needed for a critical interpretation of the information 

displayed in the pictogram. 

Keywords: Pictograms, understanding, primary education. 

Introduction 

A relevant part of the information we face every day is given in statistical graphs, whose interpretat ion 

is often needed to make different decisions; therefore there is a need for citizens to achieve enough 

graphical competence (Ridgway, Nicholson & McCusker, 2008). These reasons led countries like 

Chile to introduce statistical graphs in the primary education (Díaz-Levicoy, Batanero, Arteaga, & 

López-Martin, 2015).  More specifically, in Chile children are requested to collect and record data to 

answer statistical questions about themselves and their environment, using bar charts, tables and 

pictograms, as well as to read and interpret these representations since the 1st grade (MINEDUC, 

2012). There is however no available empirical studies providing evidence that Chilean children 

understand these graphs at the end of primary education. The aim of this paper is to analyse the 

reading level of the pictograms, reached by Chilean children in the last year of primary school (6th 

grade) and what they remember a year later (7th grade). Since statistical graphs are included in 

primary education in many countries, this information may be useful in other contexts. Below we 

describe the foundations, method and results. 

Pictograms are statistical graphs that display information using icons, whose size is proportional to 

the frequency of each attribute. Each icon represent a fix value, and  can be repeated, to achieve the 

attribute frequency; its iconic character has been considered relevant in conveying recommended 

modes of behavior (Tijus, Barcenilla, De Lavalette, & Meunier, 2007), such as helping sick children 

understand a treatment that they are undergoing (Hämeen-Anttila, Kemppainen, Enlund, Patricia, & 

Marja, 2004).  

Understanding statistical graphs involve composing individual data values into an aggregate or 

distribution and perceiving this distribution as a whole; however, some students only perceive graphs 

as “collections of values” instead (Konold, Higgins, Russell, & Khalil, 2015). In our research we are 

interested in the children competence in interpreting a distribution represented in a pictogram and in 

the reading level shown in the children responses when reading pictograms. We use Curcio’s (1989) 

categorization. 

 Level 1. Reading the data. At this level the student can successfully perform a literal reading of 

the information presented in the graph, but does not succeed in more sophisticated reading, do not 



provide an interpretation, or carry out additional calculations with the information displayed in the 

graph. 

 Level 2. Reading within the data. In addition to making a literal reading, the student can obtain 

information that is not explicitly displayed in the graph, with simple mathematical processes, such 

as arithmetic operations or comparisons.  

 Level 3. Reading beyond the data. The student is able to extrapolate or interpolate the data to 

predict values that are not shown in the graph. He or she is also able to make a critical reading to 

detect an incorrect interpretation of a graph. 

We only found a few investigations related to our study. Cruz (2013) analysed the interpretation of 

pictograms by 21 children in 3rd year of Primary Education in Lisbon after a teaching process. The 

responses to a written questionnaire with different types of graphs were analysed: 82% of children 

properly completed those reading activities that required Level 1 in Curcio’s (1989) classificat ion, 

while 70.5% reached level 2 and 66.5% level 3. One of the activities consisted in reading a pictogram 

where each icon represents a unit. In his item the author obtained 95% of correct answers to Level 1 

questions and 77.3% to the Level 2 questions. There were no questions of Level 3.  Regarding other 

types of graphs, Evangelista (2013) proposed single and double bar graphs and line charts to a sample 

of 60 students in grade 5th in Brazil. The results show that children correctly answer 51% of the 

activities; on average, the students correctly answered 59% of the activities in bar graphs and 43% of 

line charts. Level 1 questions had an achievement of 60% and level 2 between 51% and 41%. 

Method 

The sample consisted in 140 Chilean Primary Education students from 6th grade (69 students, 11-12 

years old) and 7th grade (71 students, 12-13 years old). Two different schools in the city of Osorno 

took part with collaboration from the schools’ principals and of the teachers responsible of these 

groups, to all of whom we sincerely thank. Although we used a convenience sample, the socio-

economic setting and average mathematical ability of children is varied and represent the situation in 

Chile. 

The questionnaire (Figure 1) included two items taken from Chilean mathematics primary education 

textbooks. In the pictograms included in the questionnaire each symbol represents a uniform and 

defined value; therefore, a priori, should be simple for children. In the first adapted from a 3th grade 

Primary Education textbook (Charles et al., 2014, p. 253) item the student should read the pictogram, 

where each icon represents 15 statistical units (books). The student has to read two sentences; the first 

one is false (since there are 30 science fiction books) and the second is true (there are 60 child ren 

books). To complete the task the student must recognize the row for each value  of the variable book 

type and understand that its frequency  is given by the number of icons multiplied 15 (the frequency 

represented by each icon). Therefore, the student first has to read within the data (Level 2 according 

to Curcio’s, 1989 classification), as he or she has to perform calculations with the values in the graph. 

In addition, the student should reason that each statement is true or false; therefore the student has to 

make a critical reading of the graph and consequently work at Level 3 (reading beyond the data in 

Curcio’s, 1989 classification). 

In the second item, adapted from a 4th grade primary education textbook (Batarce, Cáceres & 

Kükenshöner, 2013, p. 343), the student has to translate information from a pictogram to a table . 



Besides reading the number of icons corresponding to each value of the variable, the student has to 

perform calculations; in this case, two types of icons are used to represent either 10 or 5 hours of 

light. The student has to reach level 2, reading within the data and complete the table, calculating the 

total amount of hours the light was turned on. 

Item 1. The school librarian made an inventory of the library books. 

 
Decide if each of the following statements is true or false. Explain your answer. 
    True False 

1. There are only two science fiction books.    
2.  There are 60 children books.   

 
Item 2. Complete the following table with the information displayed in the graph.  

  

Number of hours per week that the light is turned on 

Place Number of hours 

Exercise room  

Dressing room  

Swimming pool  

Tennis court  

Total  

 

Figure 1: Questionnaire   

Results in item 1 

In item 1 we first analyse the percentage of correct responses and then the reading level that the 

students of our sample reach when providing a justification of their response. 

Percentage of correct answers 

In Table 1 we present the percentage of correct answers in the questions regarding the truth or 

falseness of the two statements given in this item. We observe that less than 50% of the students 

provided a correct response to these claims. The results are apparently worse than those obtained by 

Cruz (2013) in reading pictograms, but this author only made questions that involved reading within 

the data (Level 2) and each icon in his pictograms represented only one unit, while in our item each 

icon represents 15 units; therefore, our items are comparatively more difficult. 

There was a higher level of success in the 6th graders than in the 7th graders, which may be due to 

the effect of forgetfulness, since pictograms are studied in Chile with more intensity in the first four 

years of primary education, and in 6th grade some activities related with pictograms are proposed in 

textbooks (Díaz-Levicoy et al., 2015). On the contrary, pictograms are rarely used in 7th grade. 

Anyway, the differences were not statistically significant difference in the t-test of difference of 

proportions (that test the hypothesis of having equal proportion of correct responses in both groups). 

  



 

Statement Total 

(n=140) 

6th grade 

(n=69) 

7th grade 

(n=71) 

p-

value* 

1.It is not true that there are only two science 

fiction books  

47.9 55.1 40.8 0.0904 

2. There are 60 childhood books  49.3 55.1 43.7 0.1774 

* Test of difference of proportions in independent samples 

Table 1: Percentage of correct answers according to statements of item 1 

Reading level  

We secondly analyse the reading level that the students achieved to decide the truth and falseness of 

the statements and to justify their response. Their arguments were classified according to Curcio’s 

(1989) reading levels, which are interpreted as follows: 

 Level 0 is reached if the information requested in the question is not read or the graph reading is 

incorrect (students do not even read correctly the number of icons).  

 The students’ justifications are classified in Level 1 if they simply read the number of icons for the 

variable values indicated in the question without performing any calculations. The student has 

identified the graph row corresponding to the variable value, and has counted the number of 

corresponding icons. However, he or he does not take into account that each icon represents 15 

books, and does not perform the necessary calculations to determine the frequency corresponding 

to each category. Some examples are: 

It is true, because in the inventory two science fictions books appear (Student 55, first question) 

It is false, there ae four children books (Student 73, second question) 

 Level 2 is reached if the student correctly answers the question and apparently has carried out the 

calculations required to determine the frequency of a category in multiplying the number of icons 

by 15. In this case, the student is able to correctly interpret the pictogram but do not sufficie nt ly 

argues the truth or falseness of the claim posed. We have also considered within Level 2 those 

responses in which students perform an incomplete argument, i.e. they do not explicit the 

arithmetic operations performed. For example:  

It is false; there are 30 science fiction books (Student 21, first question) 

It is true, one book is 15 and there are 4 books (Student 66, second question) 

 We consider that a student response reaches Level 3 if the student has performed the calculat ions 

required to determine the frequency of the category and interprets correctly the pictogram. In 

addition, the student reaches a critical reading, because he or she can give an argument that 

supports the correct or incorrect statement. 

It is false, because as you can see each icon represents 15 books and there are two icons for 
science fiction books; for this reason if we sum 15+15 the results is 30 books (Student 38, first 

question). 



In Table 2 we present the distribution of the reading levels achieved by the whole sample, as inferred 

from the arguments that children provide to express their agreement or disagreement with both 

statements.  

Statement Reading Level 

 0 1 2 3 

1. There are only two science fiction books 1.6 37.3 55.4 5.6 

2. There are 60 childhood books  2.3 33.4 53.2 11.1 

Table 2: Percentage of reading levels achieved by students in their responses to item 1 

Overall the most common reading level in both questions was Level 2, which involves comparisons 

and data operations. The second most frequent was Level 1, where students read literally the 

information displayed, and very few students reached Level 3, which involves critical reading (a few 

more in the second statement). 

6th grade students 7th grade students 

Figure 2: Percentage of Reading levels in both parts of the item1 in each group 

When analysing the results by grade and statement (symbolized by S1 and S2) (Figure 2), 7th grade 

students more frequently provided Level 1 answers in both statements (63.4% in the first statement 

and 59, 2% in the second) that the 6th grade students (50.7% in the first statement and 43.5% in the 

second). These, also had higher percentage at Level 2 (42% in the first statement and 40.6% in the 

second), while the 7th grade student’s percentages at level 2 were 26.8% and 21.1%. Level 3 answers 

were scarce in both grades; at this level, 7th grade students got better results than 6th grade students, 

due to their better level of reasoning, but the difference is small. Overall the 6th grade students have 

better results, since they achieved a higher percentage of responses in Levels 2 and 3.  

Results in item 2 

In this item we first describe the results achieved in the reading level and then those related to student 

competence to translate the graph to a table. 

Percentage of correct answers 

In  this item, students should make a translation of the pictogram to a table. The answers given by 

students are classified according to the following categories: 

 Correct table. When the student has successfully translated all data on the pictogram to the table. 

He or she has also correctly calculated the total of the table.  



 Partially correct table. The student makes a partially correct translation of the information shown 

in the pictogram; the table is correct, with some mistake. These errors are: a) taking into account 

one icon more or less when calculating frequency (12 students); b) wrong calculation of total hours 

(7 students); c) considering that the icon that represents half bulb is equivalent to 15 hours of 

consumption, instead of five (1 student); d) considering that one of the icons represents one hour 

of consumption, while the rest has been translated well for 10 hours (1 student); e) producing some 

correct rows in the table, but not finishing the table (1 student); f) not calculating the total, although 

the table is correctly constructed (1 student); g) making two of the above errors (1 student). 

 Incorrect Table. When all or most of the rows in the table are incorrect, what happens, in particular, 

to all of the students who only reached the Level 1 when reading the pictogram.  

 Do not complete the table. When the student does not develop the activity or when students reached 

Level 1 partially. 

Table 3 shows the distribution of the answers given by the students in translating to a table, where 

most students have completed the task successfully, with a percentage bigger than 76% in each course 

and globally. The differences were not statistically significant.  

Type of answer 6th grade (n=69) 7th grade  (n=71) Total (n=140) 

Correct 76,8 78,9 77,9 

Partially correct 18,8 15,5 17,1 

Incorrect 0 2,8 1,4 

The task is not completed 4,3 2,8 3,6 

Table 3: Percentage of students by table correctness  

 

Reading level  

In this item these levels are interpreted as follows:  

 At Level 0 are the students who provided no answer or who fail to read the graph. 

 At Level 1 students perform a literal reading of the data (either all or part of the data). For example, 

some students believe that each bulb represents a unit. An example is given in Figure 3 in which 

the student considers the bulb as an unit in all the categories, except one. 

 At Level 2 are those students who identify the number of icons corresponding to each variable 

value and multiply this number by 10 or 5 to obtain the corresponding frequency. An example is 

given in Figure 4. 

 



 

 

 

 

Figure 3: Level 1 table (Student 29) Figure 4: Level 2 table (Student 75) 

In Table 4 we present the distribution of the reading levels reached by the students in this item, where 

the highest percentage of responses are located at Level 2 (reading the data) in both courses. Over 

90% of students are able to correctly read the pictogram at level 2 and 7th grade students show better 

performance levels when the translation is done correctly. 

Level 6th grade (n=69) 7th grade  (n=71) Total (n=140) 

0 0 2.8 1.4 

1 8.7 2.8 5.7 

2 91.3 94.4 92.9 

Table 4: Percentage of students reaching each reading level by course and in total 

Discussion and conclusions 

This study has provided information about the reading levels reached by the students in the sample 

when reading pictograms and when translating between pictogram and data table, complementing 

previous work. In relation to the work of Cruz (2013) we used more complex pictograms, as each 

icon represents several units, while in those proposed by the author each icon symbolized one unit. 

In relation to the work of Evangelista (2013) with lines and bar graphs, the results in levels 1 and 2 

are somewhat lower than in our work but not too much. 

In our first item students can reach up to Level 3 in Curcio’s (1989) categorization, while Cruz only 

considered the first and second level. This explains why our results are apparently lower than those 

in Cruz. However, the second item proposed in our study has been very easy; both in reading the 

pictogram where our results were better, as in the translation to a table, a task that was not proposed 

by Cruz. Part of the errors found in the first item, where students are asked to refute or confirm a 

statement, are due to their lack of critical reading, and argumentations skills. As suggested by 

Freedman and Shah (2002), graph comprehension is influenced not only by the display characterist ics 

of a graph, but also a viewer’s domain knowledge, graphical literacy skills, and explanatory and other 

scientific reasoning skills that these children may lack. In the next step in our research we are 

expanding the sample of children and schools to confirm the results. 
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Conditional probability arises as a tool for analyzing a strategy for decision-making that molds to 

new conditions. From that point of view, an introductory sequence which utilizes diachronic games 

is designed and analyzed under the framework of didactical engineering, bringing conditional 

probability into play as a decision-making tool. It can be observed that students tend to base their 

decisions on heuristics and experiential considerations, and do not see the need for a proper 

calculation of theoretical probabilities. At most, they use experimentation as a tool, not computing 

probabilities based on relative frequencies, but comparing absolute frequencies. 

Keywords: Decision-making, conditional probability, didactical engineering. 

Introduction 

UNESCO has dedicated a full chapter about confronting uncertainties on its “Seven complex lessons on 

education for the future”. It describes uncertainties of reality and knowledge, and proposes ways of taking 

action despite the unavoidable uncertainty of the world (Morin, 1999). Ignoring or downplaying uncertainty 

could lead us to make fragile decisions, which can generate a negative impact as soon as the circumstances 

change (Taleb, 2012). In this matter, probability and statistics emerge as the core mathematical subjects for 

facing this challenge. Thus, these subjects should play an important role in modern mathematics curricula for 

general education. 

However, in general students have low scores on these fields. PISA 2012 reveals that 76.9% of tested 

students do not pass the second level of accomplishment in the areas of uncertainty and data (Organisation 

for Economic Co-operation and Development [OECD], 2014). At the best they can apply suitable 

calculation basic procedures in familiar contexts such as coin tossing or dice rolling. However, they are not 

able to reason and make critical reflections in order to make valid contextual or general conclusions. 

Probability and statistics have given shape to a field of economics studied since the 40s. It has been 

dominated essentially by “expected value theory” as a normative model of rational choice, proposing that 

rational individuals maximize the expected value of their utility functions (Friedman & Savage, 1948). This 

approach has been criticized lately by behavioral psychology and behavioral economics, pointing out many 

situations in which the axioms of the theory show themselves inadequate for modelling reality (Kahneman & 

Tversky, 2007). The authors propose a “prospect theory”, taking into account individuals’ biases towards 

the probability and impact of each choice. 

The research related to this paper is embedded within a broader domain that embraces the relationship 

between didactics of probabilities and statistics, and decision-making under uncertainty. It involves facing 

the philosophical debate between the idea of probability and statistics as decision-making tools, against 

decision-making scenarios as resources for improving the institutionalized techniques within probability and 

statistics. Moreover, the research relates to critical mathematics education, which emphasizes the 

empowerment of students as citizens as an argument for mathematics in general education (Skovsmose, 

1994). 



In this frame, two research questions are addressed. (1) “What kind of probabilistic contents and related 

didactics could help students make better and more reflexive decisions in their lives?” and (2) “How do we 

assess the students’ learning of probability theory and methods, and which role can decision-making 

scenarios play in such assessment?” 

In particular, this paper reports the results of an exploratory application of didactical engineering that 

involves conditional probability in decision-making scenarios. The purpose is to illustrate challenges and 

difficulties involved in the teaching of probability under this point of view. 

Theoretical framework 

From an enactivist perspective (Brown, 2015), knowledge is only reflected by and detectible through 

action by those who know. One learns with an embodied mind, within a process called enaction. This 

notion breaks representationist ideas of the mind, considering an incarnated cognition, in which meanings 

arise as particular states of cooperation in neuronal networks. These states are put into action –enacted– 

via retroactive co-definitions between the subjects and the contexts they live in. This concept implies that, 

when faced upon a learning situation, students will enact the knowledge that had let them to act in similar 

situations, not only their school experience. 

Within the scope of this research, students would enact what they have learned from situations of 

uncertainty and decisions they made before, their previous formal school knowledge, operational aspects 

such as heuristics and perceptual aspects like feelings that the context evokes in them. 

According to mathematical philosophy literature (e. g. Leitgeb & Hartmann, 2014), two types of decision-

making scenarios can be defined. Namely, a situation under uncertainty is a setting in which one does 

not know what the relevant probabilities are, and in decision-making situation under risk, the probabilities 

of the various outcomes are in principle. In both cases, decisions are made based on the best available 

information and building conjectures about likelihood of different results. We will consider the latter one in 

this paper. Here we will intend to use mathematical objects, such as probability theory and calculations, in 

the context of mathematics teaching. 

Morin proposes “(…) two ways to confront the uncertainty of action. The first is full awareness of the 

wager involved in the decision. The second is recourse to strategy” (Morin, 1999, p. 47). Strategy must 

prevail over program, which gets stuck as soon as the outside conditions are modified. A strategy is meant 

to be adaptable to variations in the context. In this regard, as one acquires new information about the 

situation in which one requires to make decisions under uncertainty, the notion of conditional probability lets 

us incorporate changes in the degrees of belief about possible outcomes (Batanero & Díaz, 2007), 

improving decision-making based on predictions. As a consequence, the rank of experiments to consider in 

the classroom becomes wider. 

The central mathematical object of study is, therefore, conditional probability. The learning goal is, as stated 

on the study program at 11th grade in Chile, to “solve problems that involve computation of conditional 

probabilities within simple situations” (Ministerio de Educación [MINEDUC], 2004). The choice of 

situations and means of representation (tree diagram, 2x2 tables) are left open for the teachers, but the 

given established notions involved are: 

 Meaning of “probability of event A, given event B”, using the notation P(A|B). 

 If A and B are independent events, then P(A|B) = P(A). 



 If A and B are not independent events, then P(A|B) = P(A and B)/P(B), with P(B) not equal to 0. 

As an example, let’s say that an experiment consists of tossing a fair coin twice. Let A be the event of 

obtaining two successive heads, and B be the event of obtaining a head in the first toss. According to 

previous contents, students should be able to calculate theoretically that P(B) = ½ and P(A and B) = ¼. 

Given the context, students should be able to interpret and calculate that P(A|B) = ½, because now that we 

know that B happened, then for A to happen, a second head should be obtained. Also, it may be obtained 

that P(A|B) = P(A and B)/P(B) = ¼ / ½ = ½. 

Methodology 

Didactic engineering is assumed as a research and design method, and includes four phases: preliminary 

analysis, a priori analysis, execution, and contrast and redesign (Artigue, 1988). 

For the preliminary analysis, historic-epistemological elements are obtained by selected authors, in 

particular, Pascal and Huygens, and their significant work on the development of probability (Pascal, 1983; 

Basulto, Camuñez, Ortega, & Pérez, 2004). The analysis is made from a chronological construction of the 

concepts by the authors and their sociocultural contexts. Practices that build the necessity and give meaning 

to gambling and decision-making are documented. For the cognitive analysis (Elicer & Carrasco, 2014), 

exploratory tests are taken to gather productions of students about their probability notions and their 

strategies to make decisions in the Monty Hall game (Batanero, Fernandes, & Contreras, 2009). The 

didactic analysis is made from the 11th grade study program and textbook delivered by the Chilean 

government to public and subsidized schools, which represent 91.1% of the total enrolled students in 2015 

(MINEDUC, 2015). 

The didactic sequence is then designed taking into account key notions resulting from preliminary analysis 

and an increasing level of complexity. Students should start making specific calculations and end making 

justified decisions. For the a priori analysis, conjectures emerge from the authors, according to the 

cognitive analysis. It is fair to anticipate similar outcomes from the students and, therefore, to add questions 

that help them have a critical insight about them. 

The execution stage consists in the application of the didactic sequence to a group of students and the 

contrasting between initial conjectures and the students’ actions and productions. The experimental group is 

one upper secondary class of 19 students aged 15-17 years old. They have already been introduced to 

probability calculations using Laplace’s law, tree diagrams and basic combinatorial techniques. Students 

have not yet studied the concept of conditional probability. 

Finally, transcriptions of students’ written outcomes are tabulated according to defined categories in the 

preliminary analysis (Elicer & Carrasco, 2014). Those which are unexpected and do not match these 

categories are highlighted and mentioned in the results. Suggestions for redesign resulting from the 

discussions with the teachers are mentioned for each activity. 

Results and discussion 

The designed sequence is fully exposed on the Appendix of this paper. It is meant to be executed as an 

introduction to the mathematical object of conditional probability. This means no new institutional contents 

would be presented, they should use their previous knowledge. The first session includes Activities 1 and 2, 

and the second session concludes with Activities 3 and 4. 



For a full revision of relevant elements of the preliminary analysis see Elicer & Carrasco (2016). Those 

considered for the design are as follows, given in parentheses the questions implemented. 

Historic-epistemological. In Pascal-Fermat correspondence, probability analysis arises from projective 

decision-making, in the effort of setting a fair share (1.1, 1.4, 2.1 and 3.4), in particular when a gambling 

game stops (2.5, 2.8 and 2.9). After this notion comes the idea of betting with some kind of advantage. 

Studying the ratio between favorable and all cases comes from getting to know every possible case. 

Huygens brothers association between forecasting situations, such as life expectancy, and gambling, allows 

us to give a new meaning to the idea of probability in a game, as an a posteriori calculated probability. 

From this point of view, possible outcomes of a game are described in statistical data (1.2, 1.4, 2.4, 2.7 

and 3.3). 

Cognitive. Students conceive that different realizations are all possible cases, without weighing them, and 

draw upon non-mathematical arguments to make a choice (3.1). They also recognize that they would make 

different decisions if they played the actual game, where they had to make a choice in situ and not a priori 

(4.1 and 4.2). 

Didactic. The main activity proposed in the textbook is theoretical probability calculation (1.3, 2.2, 2.3, 

2.6, 3.2 and 3.5), without decision-making or searching for an advantage in gambling. This is implemented 

on Activity 3, where the Monty Hall problem involves an actual decision. 

Activity 1 goes as expected. Students unanimously recognize this is a fair game because both players have 

the same probability of winning (1.1), which is well calculated using the Laplace law (1.3). Usually, the 

distraction of doing eleven repetitions is recognized by them, saying there are too few repetitions, that it is 

an odd number (1.2), and that results depend on chance or luck (1.2 and 1.4). One particular comment we 

didn’t expect was that “the game is not fair, because the results depend on chance and not on personal 

abilities” (1.1). Considering a future design, the meaning of fairness should not be trivialized.  Might be 

defined or discussed. 

Activity 2 throws similar responses about the basics (2.1 and 2.4), which is the intention. Some students 

still confuse the concept of “possibility” and “probability” (2.2) when giving their answer, which could be 

revised before. They do not use their previous combinatorial reasoning. Instead, they count different 

scenarios than come up to their minds (HTT, HHT, …), which not always lead to counting four possibilities 

for each player (2.2). For this reason, they might answer that each player has the same probability of 

winning (2.3), based on their intuition and the scheme made in question 2.2. The same schemes lead some 

of them to wrong answers. 

For the second part of Activity 2, most students recognize that one player has an advantage after the first 

toss. Just a few could actually compute the theoretical probability (2.6), so most of them base their answers 

on interpreting experimentation results (2.7). Here the probability of success arises as an estimation of 

compared absolute or relative frequencies, giving use to fractions. Our observation is that an exact 

calculation of these probabilities does not seem to be necessary for answering the question, so the intention 

must be revised. 

As for the repartition when the game is interrupted, (2.5, 2.8 and 2.9), there are two main types of 

reasoning among the students. One big group defends an equal repartition of 50% and 50%, arguing that 

“even when one of us has more possibilities of winning, randomness says that any of us could win”, giving 



randomness a mean for equality. Others recognize fair to split it according to probabilities, using fractions 

constructed on their ratio phase (Fandiño, 2015) as an operator to multiply the poll to be shared. 

In Activity 3, most of students believe each of the remaining doors give an equal chance of winning (3.1), 

falling into an isolation effect (Tversky, 1972). Since there is a choice to make, they use personal 

experience-based explanations, repeating many of the answers obtained on the preliminary analysis. This is 

expected to change after the experimentation, finding the need for a proper probability calculation. Most of 

them change their position (3.3 and 3.4), based only on experience. This means the frequentist meaning of 

probability is stronger than a classic or theoretical one, as a decision-making tool. Questions 3.2 and 3.5 

are too confusing for them and most of answers are left blank. We recognize there is no need for analyzing 

the sample space in an introductory session. 

Conclusion 

In the context of primary and secondary compulsory education, probability and statistics usually arise as 

mathematical concepts that represent tools for description of uncertainties. In order to move forward, the 

authors participate on the idea of having them as elements for decision and action. Didactical sequences 

should involve escalating decision-making scenarios and questions. According to the historical development 

of probabilities, it is convenient to ask if a game is fair or not (Hernández, Yumi & de Oliveira, 2010), 

followed by building a strategy to make it favorable. 

Researchers and teachers should anticipate that heuristics and personal experiences are frequently more 

powerful considerations than calculations about probability and risk, when students are faced with 

decision-making scenarios. This has been documented not only in the didactics of mathematics research 

(e.g. Serrano, Batanero, Ortíz & Cañizares, 1998), but also (even previously) in psychology and 

economics literature. In particular, teaching and learning the conditional probability object could involve 

decisions within diachronic games. These are subjected to the isolation effect (Tversky, 1972; Kahneman 

& Tversky, 2007), among other difficulties, such as perceptions of independence and sample space, and 

interpretations of convergence (Batanero et al., 2009). 

We recommend creating new sequences for other probabilistic concepts. Natural extensions are total 

probabilities and Bayes’ theorem. Given information about medical research, students may decide whether 

approving or not a certain pharmaceutical product; or deciding about changes on their habits according to 

the relationship between cancer and processed meat or smoking. 
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Appendix: Proposed sequence for execution 

Activity 1: Single coin toss 

Two players choose heads or tails. They toss a coin and whoever guesses wins. 

1.1 Do you think this is a fair game? Why? 



1.2 Repeat this game eleven times and register who wins each time. Do you keep your answer for 

question 1? 

1.3 What’s the probability of winning for each player? 

1.4 [Teachers compile the results on the board]. Do you still keep your answer for question 1? 

Activity 2: Best out of three 

The game consists in two players choosing heads or tails, betting 60 each. They toss a coin successively 

three times and whoever obtains the most guesses wins. 

2.1 Do you think this is a fair game? Why? 

2.2 How many options does each player have of winning? 

2.3 What’s the probability of winning for each player? 

2.4 Repeat this game ten times and register who wins each time. Do both players have the same 

amount of victories? Why do you think this happens? 

Now suppose the first coin toss results on heads and the game is interrupted. You must decide what to do 

with the poll. 

2.5 Would it be fair to split the poll by 60 each? Why? 

2.6 Could you calculate the probability of winning for each player starting from that point? 

2.7 Still assuming the first toss resulted in heads, simulate ten times the two remaining tosses, and 

register who wins the best out of three each time. 

2.8 Given this scenario, would it be fair to split the poll giving 80 to the player who betted heads, and 

40 for the one for tails? 

2.9 Propose a repartition coherent with each one’s probability of winning. 

Activity 3: Monty Hall game 

You are faced against three doors. Behind two of them there are goats and the other has a new car. Your 

goal is to guess the door where the car is hidden. The sequence is as follows: (1) The host offers you to 

pick a door. (2) After your choice, the host opens another door, different from the one you have chosen 

and shows there’s a goat. (3) Now he offers a second chance: will you keep your first choice or change it 

to the other closed door? 

3.1 What would you decide; would you keep your first choice or change it? Explain what is relevant for 

you to make this decision. 

3.2 Which events have the same probability of occurring? 

3.3 In pairs, play the game with your cups and car toy. One of the players will always change his or 

first choice, and the other will never change it. Repeat this ten times and compile the results for the 

whole class. Is there any difference between both types of players? 

3.4 Is, therefore, any way of betting with an advantage? 

3.5 Reconsider your answer from question 3.2. Given that the game has two stages of choice, which 

events have the same probability of occurring? 



Activity 4: Plenary 

Each pair of students responds the following questions in front of the class. 

4.1 How would you face the Monty Hall game if you had to be there? 

4.2 What recommendations would you give to someone who is about to play? 
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Stepwise development of statistical literacy and thinking in a statistics 

course for elementary preservice teachers  
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In this paper we describe the design, realization and evaluation of a course for elementary 

preservice teachers, applying the PPDAC-cycle (Wild & Pfannkuch, 1999), using innovative 

methods and digital tools like TinkerPlots (Konold & Miller, 2011). We will refer to design 

principles of the course and show in which way a stepwise development of statistical literacy and 

thinking with TinkerPlots works in cooperative learning environments.  

Keywords: Elementary preservice teachers, design based research, cooperative learning, statistical 

literacy and thinking, TinkerPlots. 

Introduction 

Since the implementation of the leading idea “Data, Frequency and Chance” (Hasemann & Mirwald, 2012) 

in mathematics classrooms in primary schools in Germany, statistics has become a central topic in primary 

school. This has set requirements not only for schools and teachers, but also for universities who have to 

educate preservice teachers in statistics for their upcoming school career. Requirements for teacher 

education in statistics can be found on German national level (e.g. AK Stochastik, 2012), and on 

international level (e.g. Batanero, Burrill & Reading, 2011). Two important aspects appear at both levels: 

applying a whole data analysis cycle (like PPDAC, see Wild & Pfannkuch, 1999) and analyzing data with 

digital tools (see Biehler, Ben-Zvi, Bakker & Makar, 2013). We decided to use TinkerPlots (Konold & 

Miller, 2011) for our purposes, since it is easy to learn, no formulas are needed, and it enables learners to 

create multiple representations of data. In our sense, TinkerPlots can serve as educational software for 

pupils from grade 4, as software for teachers for analyzing data, and as medium for demonstration 

purposes in classroom. This was our motivation to design, realize and evaluate a statistics course for 

elementary preservice teachers with TinkerPlots on the basis of the Design Based Research paradigm 

(Cobb, Confrey, diSessa, Lehrer & Schauble, 2003).  

Our course to develop statistical literacy and thinking with TinkerPlots 

The main goal of this course is to develop statistical literacy and thinking components (for a definition see 

Garfield & Ben-Zvi, 2008, pp. 34) and the technological knowledge of our participants. At Paderborn 

University in Germany elementary preservice teachers for mathematics attend an obligatory course 

“Elementary Statistics”, which is about data analysis, combinatorics and probability theory. Due to limits of 

time, there is no space for going through a whole data analysis cycle like PPDAC or to do further data 

explorations in multivariate datasets. For that reason our course was designed taking into account the 

principles of the “Statistical Reasoning Learning Environment” (Garfield & Ben-Zvi, 2008), to expand 

preservice teachers’ knowledge in data analysis and to introduce a new tool to them, which better fits to 

primary and lower secondary school. Fundamental ideas realized in our new designed course are to “focus 

on developing central statistical ideas”, to “use real and motivating data sets”, to “use classroom activities to 

support the development of students´ reasoning”, the integration of “appropriate technological tools”, to 

“promote classroom discourse that includes statistical arguments and sustained exchanges that focus on 



significant statistical ideas” and the “use of formative assessment” (see Garfield & Ben-Zvi, 2008, p. 48). 

On the paradigm of the PPDAC-Cycle (Wild & Pfannkuch, 1999), the course has the aim to encourage 

participants to define a statistical problem and to pose statistical questions (First “P” in PPDAC), to plan 

and to prepare a data collection (Second “P” in PPDAC), to collect data (with regard to data management 

and cleaning – “D” in PPDAC), to analyze data (“A” in PPDAC) and to make conclusions of the data 

explorations (interpretation – “C” in PPDAC). We implemented cooperative learning environments like the 

“Think-pair-share” method to develop the statistical literacy and thinking components of our participants 

(see Roseth, Garfield & Ben-Zvi, 2008) and to support peer-learning, peer-feedback and expert-

feedback. In this respect, in a “Think-pair-share” setting, students first deal with the task on their own 

(“think phase”), discuss about their findings in peers (“pair phase”) in a second step and finally discuss their 

findings in class with the teacher (“share phase”). All in all, the course consists of four modules: The first 

module deals with the generation of statistical questions, the preparation of data collection and the 

collection of data. Here the participants get to know the “PPD” elements of the PPDAC cycle with a 

special emphasis on the generation of adequate statistical questions (see Biehler, 2001). The second 

module has the intention to introduce the participants into data analysis with TinkerPlots. Here the 

participants can learn first steps in data analysis using data cards and hands-on-activities and then use 

TinkerPlots for first explorations in small datasets. Because the focus is on the “AC” (Analysis & 

Conclusion) elements of the PPDAC cycle, the datasets are given to the students in an already prepared 

form. Furthermore the students learn to describe and interpret distributions of categorical and numerical 

variables with special emphasis to the elements and characteristics of distributions like center, variation, etc. 

as it is proposed in Rossman, Chance & Lock (2001) and Biehler (2007a, 2007b). Module three builds 

on module two and covers advanced data analysis with TinkerPlots in large multivariate datasets. Here the 

learners are introduced into comparison of groups (Pfannkuch, 2007). A major aspect in module two and 

three is to enable the participants to explore datasets and make their own statistical investigations with their 

own statistical questions (for a typical task for a statistical investigation in this respect see Figure 1). 

Module four has the intention to introduce the participants into inferential statistics, especially into 

randomization tests with TinkerPlots (Frischemeier & Biehler, 2014). Further details on the course design 

and the lesson plans can be read in Frischemeier (2017). 

Accompanying research of the course: Stepwise development of statistical 

literacy and thinking 

The course was taught by the first and second author and consisted of 14 sessions, each session lasted 90 

minutes. One major goal of the course was to develop the elementary preservice teachers’ statistical 

literacy and thinking components with TinkerPlots. Since statistical investigations of complex datasets are 

new to our participants, we want to evaluate the statistical investigations in the introductory stage (module 

2) and see in which way the quality will improve over time in cooperative learning environments. Two 

major research questions arise: How is the quality of the statistical investigations in the intermediate steps in 

module two? How does the quality of the statistical investigations develop in process of module two? 

Participants, task and data collection 

All in all 22 elementary preservice teachers participated in the course. All of them attended the course 

“Elementary Statistics” as described in the introduction. As a typical task a multivariate dataset with an 

exercise sheet consisting of four subtasks was given. As example you can see the “KinderUni”-task in 

Figure 1, where the dataset “KinderUni” had to be explored. The KinderUni dataset, is a (non-random 



sampled) dataset with 28 variables containing information about leisure time and school activities of 39 

pupils in the area of Kassel, Germany. In the introductory phase of module two the idea was, that learners 

at first explore small multivariate datasets to get used to data explorations with TinkerPlots and then to 

explore larger datasets in module three. So when working on the “KinderUni” task, the participants are at 

first (subtask (i)) asked for a short description of the dataset to get familiar with it. The second part (ii) of 

the task was to generate an appropriate statistical question. This statistical question of subtask (ii) is the 

starting point for subtasks (iii) and (iv). In subtask (iii), the participants are asked to create suitable graphs 

with TinkerPlots, which allow answering the statistical question arisen in part (ii). In subtask (iv) the 

participants are supposed to describe and interpret the TinkerPlots graphs of (iii) and finally to answer the 

statistical question posed in (ii).  

 

Figure 1: Task “KinderUni” as typical statistical investigation task in module two 

The participants worked in pairs of two on the “KinderUni” task. So all in all, we had 11 pairs, who 

remained constant all over the course. When working on the task “KinderUni”, the participants were asked 

to document the procedure of their statistical investigations in written form in Microsoft Word with the 

TinkerPlots graphs implemented. We collected all word documents from the “KinderUni” task. As 

mentioned above, one major idea of the course was to improve the quality of the statistical investigations by 

peer-feedback and expert-feedback. This happened with cooperative learning activities like “think-pair-

share”. First, in the “think” phase, all pairs worked on the task on their own and produced the preliminary 

version of the task (preliminary version: V1). Then two pairs came together and discussed the products of 

their statistical investigations (not necessarily with the same questions) in peers in the “pair” phase with the 

goal to find improvements for the TinkerPlots Graphs, for the descriptions of the TinkerPlots Graphs, etc.. 

Finally after revising the documents after the “pair” phase (version after peer feedback: V2), as a last step, 

the revised documents were discussed in plenum with the first and second author. After this phase the 

participants were again asked to revise their products for a final version (version after peer- and expert-

feedback: V3). So for our data analysis we have the documentations on the statistical investigations of the 

participants as preliminary version (V1, n=11 documents), as version after peer feedback (V2, n=11 

documents) and finally as version after expert-feedback (V3, n=10 documents).  

Methodology for data analysis and coding 

Our main goal was to rate the quality of the statistical investigations by points. Due to the huge amount of 

data, we used qualitative content analysis (Mayring, 2010) for rating the quality of the subtasks. We 

decided to weigh the subtasks (ii), (iii) and (iv) with equally two points maximum since these tasks are 

fundamental for the statistical investigation. In subtask (i) only one point is given, since this is an 

introductory task and easier than subtasks (ii), (iii) and (iv). 

For subtask (i) we expected a description of the dataset (number of cases and variables, description of 

variables). In our course we have set the norm to begin every statistical investigation with an introduction. 

So two codes are given: “subtask (i) done correctly” and “subtask (i) not done correctly”. If subtask (i) is 

done correctly, one point is given, if it is not done correctly no point is given for this subtask. Details given 

with examples can be found in Frischemeier (2017, p. 350). 



To distinguish the quality of statistical questions posed in subtask (ii), we took into account the classification 

of Biehler (2001) in “one-variable-” and “two-variable-” questions from a deductive point of view. So we 

distinguished whether the questions take into account one variable (example: “What is the distribution of the 

variable height?” - variable: height) or two variables (example: “In which way do boys and girls differ in 

respect to the variable height?” - variables: gender and height). For questions taking into account only one 

variable one point is given as maximum, because the exploration coming out of questions containing one 

variable is easier than for questions taking into account two variables. For “two-variable-questions” a 

maximum of two points are given. In between we inductively identified different qualities of statistical 

questions: So there can be “one-variable-questions”, which have just “yes” or “no” as answer (example: 

“Do 60% of the pupils have a mobile phone?”) – rated with 0.5 points, whereas “one-variable-questions” 

in regard to a characteristic of a distribution (example: “How many pupils have a personal computer?”) – 

rated with 1 point - are a little bit more sophisticated. Also in the set of “two-variable-questions” we find 

different types: There are questions leading just to a “yes”/”no” – answer (example: “Is there a difference 

between boys and girls in their time spending on computer use?”), whereas other types of questions lead to 

working out differences between the distributions (example: “In which regard does the computer use differ 

between boys and girls?”). Questions of the first type are rated with one point, questions of the second 

type are rated with two points. There is also another type of “two-variable questions”, which we call “open 

and complex”-questions like “which differences exist between boys and girls in regard to their leisure time 

activities?” This type of “two-variable-question” is also rated with two points. In this course we have set 

the norm to try to pose statistical questions which aim at two variables. As an example for our rating in 

regard to subtask (ii) we take the question “How many kids have a way to school of 30 or more minutes?” 

of the pair Anne and Alice. We rated the question with one of two points, since it only covers one variable 

(“way to school”) and it is aimed at one characteristic of a distribution (“how many …?”). Further details 

for the categorization of questions are given in Frischemeier (2017, p. 350).  

For subtask (iii) an adequate TinkerPlots graph has to be created, which enables participants to answer the 

statistical question posed in (ii). Since we want our participants to focus on the distribution of the 

investigative variable and on the influence in regard to further variables, we have set the norm in our course 

that the icons should be stacked in TinkerPlots and further explorations (taking into account other 

variables) have to be made. If all three requirements (informative TinkerPlots graph, stacked dots and 

further explorations) are fulfilled, subtask (iii) is rated with the maximum of two points. Table 1 shows the 

several ratings for subtask (iii).  

 

Informative TinkerPlots graph, stacked and further explorations 

Informative TinkerPlots graph, stacked and no further explorations 

Informative TinkerPlots graph, not stacked and further explorations 

Informative TinkerPlots graph, not stacked and no further explorations 

Non informative TinkerPlots graph/missing TinkerPlots graph  

2 points 

1.5 points 

1.5 points 

1 point 

0 point 

Table 1: Overview of ratings and their definitions of subtask (iii) 

As an example for our rating with regard to subtask (iii) we take the pictogram (with stacked icons) of 

Anne and Alice in Figure 2. With this TinkerPlots graph they are able to answer their question (“How many 

kids have a way to school of 30 or more minutes?”) posed in subtask (ii). Since icons are stacked, but no 



further explorations are made, this graph is rated with 1.5 of 2 points. Further details and examples on the 

ratings of subtask (iii) can be read in Frischemeier (2017, pp. 354). 

 

Figure 2: TinkerPlots graph for “KinderUni” task of Anne and Alice  

In subtask (iv) the TinkerPlots graph (see Figure 2) has to be described adequately in at least one aspect 

and the question arisen in subtask (ii) has to be answered correctly. A maximum of two points are given, if 

both conditions are fulfilled. As adequate descriptions of the TinkerPlots graph we see elements like center, 

variation, shape, peaks, clusters and outliers (see Rossman et al. 2001, p. 48) but also absolute and 

relative frequencies of bins. For adequate elements to be carved out in group comparisons, see 

Frischemeier (2017, p. 42). In Table 2 we see the ratings for subtask (iv).  

Component of TinkerPlots graph described and question (ii) answered correctly  

Component of TinkerPlots graph described and question (ii) not answered correctly  

Component of TinkerPlots graph not described and question (ii) answered correctly  

Component of TinkerPlots graph not described and question (ii) not answered correctly  

2 points 

1 point 

1 point 

0 points 

Table 2: Overview of ratings and their definitions of subtask (iv) 

As an example for our rating in regard to subtask (iv) we have a look at the conclusion of Anne and Alice 

in subtask (iv): „We can see that 12+3 pupils have a way to school of 30 minutes or more.“ This was rated 

with the maximum of two points, since one component (absolute frequency of pupils in bins 30-59.9 and 

60-90) of the graph is described and the question posed in (ii) is answered correctly. Further details on the 

ratings of subtask (iv) can be read in Frischemeier (2017, pp. 362). 

 

Results  

Let us have a look at the quality of the statistical investigations for the “KinderUni” task in module two in 

the different stages V1, V2, V3. For each team we rated the subtasks and calculated the success rate 

“points gained in all subtasks divided by the maximum points in all subtasks” for the “KinderUni” task in 

each stage (V1, V2, V3). In Figure 3 we see the distributions of the success rates in stages V1, V2 and 

V3.  



 

Figure 3: Success rates of the statistical investigations  in stages V1, V2 and V3 

Regarding to our research questions we can say that the median and also the mean (see blue triangles in 

Figure 3) of success rates of the different teams increase in the process of the several stages: In preliminary 

version (V1), where the pairs where on their own, 10 of 11 statistical investigations have a rate below 

0.50, the median of the rates is 0.40, the mean of the rates is 0.3636. After the peer feedback phase 

(“pair”), there is a big positive shift in quality from V1 to V2. Exemplarily one peer feedback component 

which has often occurred was the advice to stack the dots in the plot to get a better view on the distribution 

of the data. The quality of the statistical investigations in V2 has increased a lot (mean=0.5236; 

median=0.56), since in this version only 3 of 11 statistical investigations are below the 0.50 rate. After the 

expert feedback (“share”) in stage V3 all reports are over the 0.50 rate, the median of the rates is 0.65 and 

the mean of the rates is 0.6520. The expert feedback concentrated most notably on prompts which suggest 

a better description of the TinkerPlots graph and a more adequate answer to the statistical question posed 

in subtask (ii). Finally we can identify a positive development of the quality from V1 to V3. We can also 

see that the distributions in Figure 3 are heterogeneous at the beginning (stage V1) and become more 

homogeneous in V2 and V3. For a more detailed look we will have a look at Table 3, which identifies the 

changes within the development of quality in between the four subtasks (i), (ii), (iii) and (iv) in the stages 

V1, V2, V3. We see that there is an improvement of quality in all subtasks, but the amount of the 

improvements differ on the kind of subtask. In subtask (i) there is a high quality (0.73) even in the beginning 

at the preliminary version (V1). This quality improves over time in the different stages V2 (0.91) and V3 

(1.00). In V3, the rate is 1.00, which means that every pair began their report at this stage with an 

introduction of the dataset. In subtask (ii) we see the smallest development of quality: for the questions in 

the preliminary stage (V1) the rate is 0.47 on average, there is no improvement in V2 (0.47) and only a 

small improvement in V3 (0.50). Even at the stage V3, in subtask (ii) all questions were only rated with one 

point, since none of the questions went beyond single characteristics of a distribution or beyond “yes”/”no” 

answers. One reason might be that the peer and also the expert feedback concentrated too much on the 

improvement of subtasks (iii) and (iv) but not enough on the development of the quality of the statistical 

questions. 

 V1 V2 V3 

Average success rate in subtask (i) of all pairs 0.73 0.91 1.00 

Average success rate in subtask (ii) of all teams 0.47 0.47 0.50 

Average success rate in subtask (iii) of all teams 0.39 0.51 0.68 

Average success rate in subtask (iv) of all teams 0.19 0.55 0.74 

Table 3: Development of quality (average of rates) between the subtasks 



In subtask (iii) the tasks were rated 0.39 on average at the preliminary stage and improved over time (0.51 

at V2 and 0.68 at V3). In subtask (iv) the performance was very poor at the beginning (0.19), but 

improved in progress: In V2 the rate was 0.55 on average and in V3 the rate was 0.74 on average. So in 

summary we can say that peer feedback and expert feedback in a think-pair-share environment enhances a 

stepwise development of statistical literacy and thinking components with TinkerPlots. Especially with 

regard to subtask (iii) und (iv) the creation of TinkerPlots graphs and their description seem to improve 

after peer and expert feedback. Only in subtask (ii) problems with the generation of statistical questions 

occur and there was no “big” improvement of quality. 

Discussion and implications  

The quality of statistical investigations depends on the statistical question rised for the investigation. As we 

could see, some questions only lead to a short exploration because the answer to that question is just “yes” 

or ”no”, wheares there can be also other questions which are aiming at carving out many differences 

between two or more variables. The analysis of the reports on the “KinderUni” task shows, that especially 

the creation of informative TinkerPlots graphs and also their description and interpretation with regard to 

the statistical question succeeds and the peer- and expert-feedback can improve the TinkerPlots graphs 

(subtask (iii)) and the descriptions and interpretations of the TinkerPlots graphs (subtask (iv)). The key 

point is the generation of adequate statistical questions aiming at more than only one variable. Although this 

was taught in our course, too many statistical questions lacked quality. For the re-design and the upcoming 

cycle of the course it would be important that there will be feedback on the statistical questions to improve 

their quality as well. Here it could be helpful to discuss adequate and non-adequate statistical questions in 

class to help learners to differentiate between adequate and non-adequate statistical questions.  
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The aim of this paper is to analyse the problem situations within the topic of correlation and 

regression in the Spanish high school textbooks for Mathematics Applied to Social Sciences. In a 

sample of eight textbooks we firstly characterize the main problem situation used to contextualize 

correlation and regression, starting from the historical analysis of the topic. We then study the 

distribution of the following variables characterizing these problem situations: strength, sign, type 

of relationship and data contexts. Results show predominance of high and direct correlations, 

scarce examples of nonlinear regression and an excess of problem without context. 

Keywords: Correlation and regression, textbooks, problem-situations. 

Introduction 

New curricular reforms emphasize statistical reasoning and its role in decision making and 

professional work (e.g., NCTM, 2000, CCSSI, 2010). Main content in these curricula for high 

school in Spain (MEC, 2007; MECD, 2015) and other countries are correlation and regression, 

which are fundamental statistical ideas that expand the previous knowledge about univariate 

distributions and mathematical functions. They also extend functional dependence to random 

situations and can be applied in a variety of other school subjects (Engel & Sedlmeier, 2011). 

Previous research is mainly focused on students understanding of correlation (Estepa & Batanero 

1995; Estepa, 2008; Zieffler & Garfield, 2009) with little attention to teaching materials, and, in 

particular, to the way the topic is taught or presented in the textbooks, in spite of their role as 

educational tools. From the official curricular guidelines until the teaching implemented in the 

classroom, an important step is the written curriculum reflected in the textbooks (Herbel, 2007). 

The selected textbook is an important part of teaching and learning mathematics, since it provides 

the main basis why the topic is taught (Shield & Dole, 2013). Moreover, mathematical textbooks 

receive increasing attention from the international community; see for example Fan and Zhu (2007). 

The aim of this research was to analyse the tasks characterizing the problems used to present 

correlation and regression in high school Spanish textbooks directed to Social Sciences students. It 

is part of a wider project, where the way in which correlation and regression are presented in the 

textbooks in Spain is analysed. Complementary results were published in Gea et al. (2015). 

Theoretical framework 

We base on the Onto-semiotic approach to teaching and learning mathematics (Drijvers, Godino, 

Font & Trouche, 2013; Godino, Batanero & Font, 2007), where mathematical knowledge has a 

socio-epistemic dimension, since it is linked to the person’s activity and depends on the institutional 

and social context in which it is embedded. In this framework, the meaning of mathematical objects 
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is linked to the mathematical practices carried out by somebody (a person or an institution) to solve 

specific mathematical problems. Around the mathematical practices linked to these specific 

problems, different rules (concepts, propositions, procedures) emerge (Godino et al., 2007) 

supported by mathematics language (terms and expressions, symbols, graphs, etc.), which, in turn, 

is regulated by the rules. All these objects are linked to arguments that serve to communicate the 

problem solutions, and to validate and generalize them to other contexts and problems.  

The authors conceive different types of institutional meanings for a mathematical object (in this 

case correlation and regression): a) reference meaning (the system of practices used as reference in 

a particular research); b) intended meaning (the part of the meaning that is planned for teaching; for 

example, that proposed in the curricular guidelines); c) implemented meaning (what was finally 

taught to the students); and d) assessed meaning (content of assessment) (Godino et al., 2007). In 

our research we try to identify the implemented meaning of correlation and regression, as defined 

by the problems proposed in the textbooks, and to compare it with the intended institutional 

meaning for these students, as defined in the curricular guidelines (MEC, 2007; MECD, 2015). 

Background 

In spite of the relevance of these topics, previous research suggests poor results in people’s 

understanding of correlation and regression. For example, Erlick and Mills (1967) found that 

negative correlation is commonly estimated as close to zero. Other authors studied the influence of 

previous theories about the context of the problem on the accuracy in estimating correlation. In this 

respect, Chapman and Chapman (1967, p. 194) described "illusory correlation" as “the report by an 

observer of a correlation between two classes of events which in reality (a) are not correlated, or (b) 

are correlated to a lesser extent than reported, or (c) are correlated in the opposite direction than that 

which is reported”. The estimates are more accurate if people have no theories about the type of 

association in the data. If the subject’s previous theories agree with the type of association reflected 

by the empirical data, there is a tendency to overestimate the association coefficient. But when the 

data do not reflect the results expected by these theories, the subjects are often guided by their 

theories, rather than by data (Jennings, Amabile & Ross, 1982). 

According to Barbancho (1992), the correlation between variables may be explained by the 

existence of a unilateral cause - effect relationship (one variable produces the other), but also to 

interdependence (each variable affects the other), indirect dependence (there is a third variable 

affecting both variables), concordance (matching in preference by two judges in the same data set) 

and spurious correlation (or coincidental covariation). In addition to the estimate accuracy, 

understanding correlation involve the discrimination of these types of relationships between 

variables.  

Estepa (1994) studied the understanding of correlation in a sample of 213 Spanish high school 

students. The author defined the causal conception according to which the subject only considers 

correlation between variables, when it can be explained by the presence of a cause - effect 

relationship. He also described the unidirectional conception, where the student does not accept an 

inverse association, considering the strength of the association, but not its sign, and assuming 

independence where there is an inverse association.  

As regards research on textbooks, Sánchez Cobo (1999) classified the definitions of concepts 



 

presented in 11 textbooks published in the period 1977-1990 as procedural, structural or a mixture 

of them. Lavalle, Micheli and Rubio (2006) analysed the concepts and procedures included in 7 

high school textbooks from Argentina. The current paper complements these publications and our 

previous paper (Gea et al., 2015), where we analyse the presentation of concepts, properties and 

procedures in the same textbooks that we are analysing here.  

Method and results 

The sample was made of eight mathematics high school textbooks (H1 to H8), directed to Spanish 

Social Sciences students that are listed in the Appendix. They still are used in the schools, and were 

published by editorials of prestige and wide diffusion in Spain just after the past curricular 

guidelines were introduced (MEC, 2007). We performed a content analysis (Neuendorf, 2002) of 

the chapters devoted to correlation and regression with an inductive and cyclic procedure, and 

classified all the problems, exercises and examples used in the chapter according the variables 

described below. The total number of problems analysed were 2166, distributed according Table 1. 

 Textbook 

 H1 H2 H3 H4 H5 H6 H7 H8 

Number of problems analysed in the book 268 221 258 225 318 176 403 297 

Table 1: Sample of problems analysed 

Main types of problem fields 

Anthony and Walshaw (2009) reported on the different types of tasks that have been analysed in 

mathematics education research, which include problems centred on specific mathematical content; 

problems that promote mathematical modelling; tasks requiring students to interpret and critique 

data and those that prompt sense making and justification of thinking. The problems analysed 

belong to the first category and were classified according the main types of problems identified by 

Gea, Batanero, Cañadas and Contreras (2013) in the study of correlation and regression: 

P0: Organising and summarising bivariate data, which include graphical representation and 

computation of summaries statistics. 

P1: Determining the existence of a relationship between the variables, which can be subdivided in 

four types of problems: (P11) Defining the univariate variables that constitute the bivariate data; 

(P12) Determining the type of dependence (functional, random or independence); (P13) Determining 

the strength of the relationship; and (P14) Determining the direction (direct, inverse or nonlinear). 

P2: Predicting a variable from the other, which can be subdivided in the following types: (P21) 

Fitting a model to the data (usually, the linear model); and (P22) Making estimations from the 

model, where we also include assessing the goodness of fit. 

All these types of problems appear in the books, with different frequency, as shown in Table 2, with 

the following distribution: 11% P1, 61% P2 and 28% P3. The most frequent field of problems 

consisted in identifying the strength of correlation (P13), (with percentages ranging from 19% in H3 

to 24% in H2). The textbooks paid less attention to the problem field P0, with the exception of H3, 

H4 and H7, despite the organisation of data is an important step prior to analysing a relationship 

http://link.springer.com/chapter/10.1007/978-1-4614-4681-1_3/fulltext.html#CR4


 

between the variables. We also observe that H4 is more balanced as regards the different types of 

problems, although the percentage in P22 problems is still a little low.  

Problem field H1 H2 H3 H4 H5 H6 H7 H8 

P0 6.7 10.9 17.4 16.9 8.8 4.5 17.4 7.7 

P1 P11 10.1 11.8 6.2 20.0 6.6 15.3 8.4 12.8 

 P12 14.6 14.0 19.8 11.6 13.8 13.6 11.2 14.8 

 P13 20.9 24.0 19.0 20.0 23.9 22.2 22.8 20.5 

 P14 19.4 9.5 14.0 12.0 16.0 9.1 13.4 13.5 

P2 P21 16.4 11.8 10.1 11.6 15.7 15.9 14.6 20.2 

 P22 11.9 18.1 13.6 8.0 15.1 19.3 12.2 10.4 

Table 2: Classification of activities in the textbooks by problem field 

Strength, sign and shape of association 

For each problem analysed, we computed the Pearson’s correlation coefficient when the data 

suggested linear relationship and the square root of the determination coefficient when the 

dependence was non-linear. We then classified the problems according to the strength of 

association in the following way: a) independence, if the value of the coefficient was very close to 

zero; b) low dependence if these coefficients ranged in the interval [0.1; 0.5); c)medium for the 

interval [0.5; 0.8), d) high for the interval [0.8; 1), and e) functional where there was a perfect fit of 

the data to a model and r = ±1 or D = 1. In Table 3 we classify the problems according the strength 

of the dependence in the data suggested by these coefficients. 

Strength of association H1 H2 H3 H4 H5 H6 H7 H8 

Independence 0.7 2.3 9.3 5.3 1.6 3.4 7.4 7.1 

Low  9.3 8.6 7.8 23.1 9.7 8.5 22.1 9.1 

Medium  19.8 10.4 13.2 20.0 17.3 11.9 16.1 16.8 

High 47.4 76.0 48.1 39.1 53.1 60.8 28.3 49.2 

Functional 5.6 1.8 8.6 6.2 2.2 1.7 8.7 8.1 

No data provided 17.2 0.9 13.2 6.2 16.0 13.6 17.4 9.8 

Table 3: Percentage of problems, according strength of relationship 

Most commonly the data showed a high association or medium association; there were scarce 

problems with independent data or corresponding to functional relationships, in agreement with 

previous results from Sánchez Cobo (1999). We remark that most statistical studies in Social 

Sciences (the speciality that these students intend to follow) deal with moderate correlation, so that 

we recommend to include more problems with moderate association and a more balanced 

distribution of this variable in future textbooks.  



 

We also studied the sign of correlation (direct or inverse) in case of linear relationship and found 

about 60% of problems that used direct correlation, as shown in Table 4. The scarce presence of 

inverse correlation problems (20% on average), also noticed by Sánchez Cobo (1999), may 

contribute to the unidirectional conception of correlation (Estepa, 1994) where students wrongly 

identify negative correlation with independence.  

 H1 H2 H3 H4 H5 H6 H7 H8 

Independence 0.7 2.3 9.3 5.3 1.6 3.4 7.4 7.1 

Direct 59.7 85.1 47.7 68.0 46.2 61.9 51.6 56.9 

Inverse 22.4 11.8 28.3 20.4 36.2 21.0 22.8 26.3 

Others 0 0 1.6 0 0 0 0.7 0 

No data provided 17.2 0.9 13.2 6.2 16.0 13.6 17.4 9.8 

Table 4: Percentage of problems, according sign of correlation 

A third variable analysed, not considered in previous research, was the type of function that fits the 

data. In order to determine this model, in each problem, we fitted different types of functions to the 

data and selected the function providing the best fit. Most situations corresponded to linear 

relationship, as shown Table 5, because this type of function is easier for the students for an 

introduction for the topic. However, we recommend incorporating some examples of functions well 

known by the students, for example, quadratic, polynomial or exponential functions to develop their 

statistical thinking, while avoiding the deterministic conception (Estepa, 1994). We remark that all 

the books include the least square line, as well as its use for prediction, while only one (H8) 

includes the Tukey line (2% of problems proposed in the book). 

 H1 H2 H3 H4 H5 H6 H7 H8 

Independence 0.7 2.3 9.3 5.3 1.6 3.4 7.4 7.1 

Functional 
Linear 4.5 1.8 6.6 6.2 1.9 1.7 7.7 6.1 

Non-linear 1.1 0 2.0 0 0.3 0 1.0 2.0 

Random 
Lineal 76.5 57.9 62.0 66.2 76.1 80.1 63.8 62.3 

Non-linear 0 37.1 7.0 16.0 4.1 1.1 2.7 10.8 

No data provided 17.2 0.9 13.2 6.2 16.0 13.6 17.4 9.8 

Table 5: Percentage of problems, according type of function defining the line of best fit 

Data context 

The relevance of context in the teaching of statistics has been extensively discussed by different 

researchers. We analysed the context of the situations proposed to the students in these textbooks 

and classified them (see Table 6) in the following categories: a) Biology (e.g., parents and children 

heights); b) Science (e.g., speed and distance); c) Sport (e.g., distance and time spent in a 

competition); d) Economy (e.g., energy consumption and gross national product); e) Education 



 

(e.g., score in two exams in a group of students); f) Sociology (e.g., birth rate and percentage of 

women at work). Results show a high percentage of problems with no context (students cannot 

relate their results to a meaningful context) and a similar distribution of other contexts. 

Context H1 H2 H3 H4 H5 H6 H7 H8 

Biology 8.2 10.9 7.0 4.4 13.8 17.6 6.9 12.5 

Science 13.1 33.0 14.7 13.3 13.2 16.5 9.4 9.1 

Sports 4.5 0 5.4 2.2 2.2 0 0 0 

Economy 14.2 8.1 13.6 5.3 6.9 14.8 3.5 10.1 

Education 10.4 4.5 1.9 14.2 17.0 15.3 5.7 11.8 

Sociology 6.3 17.2 10.9 14.2 9.1 12.5 9.9 9.8 

No context 43.3 26.2 46.5 46.2 37.7 23.3 64.5 46.8 

Table 6: Percentage of problems according to context 

Discussion and didactic implications  

The study suggests important differences in the problems proposed by the different textbooks; for 

example, H2 and H6 include a lower proportion of problems with no context, although H2 has the 

highest proportion of high correlation problems and H6 the lowest percentage of problems P0. We 

also found some biases in the distribution of the variables analysed, in particular there is a tendency 

towards direct, strong and linear relationship. It is important that teachers complement these types 

of problems with a wider variety of strength, sign and type of association, as well as with contexts 

that are interesting for the students, as it is suggested in the curricular guidelines (MECD, 2015): 

“The teaching of this subject should not be dissociated from its application to social phenomena”.  

Our results suggest that the institutional intended meanings for correlation and regression and the 

implemented meaning in the textbooks analysed do not fit appropriately according to the variables 

analysed. In this sense, these problems should also be complemented with statistical projects in 

which the students experiment a complete cycle of statistical enquiry and get experience in the 

different modes of statistical thinking in Wild and Pfannkuch (1999)’s model (need for data, 

transnumeration, variation, reasoning with models, integration of statistical and contextual 

knowledge). Today there are plenty of data available on Internet that can be used to introduce ideas 

of correlation and regression via projects, as suggested in Batanero, Gea, Díaz and Cañadas (2014). 
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To investigate middle school mathematics teachers’ pedagogical content knowledge (PCK) with 

regard to statistical reasoning, an interview protocol was developed and used with nine teachers. 

This paper focuses on one of the problems in this interview protocol (Basketball problem) to illustrate 

teachers PCK in relation to four components: big ideas, student responses, student difficulties, and 

instructional intervention. Our analyses showed that levels of teachers' PCK varied in each 

component. Teachers had difficulties mostly in explaining student difficulties, developing instruction 

intervention strategies and distinguishing appropriate and inappropriate student reasoning. 
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Introduction 

The reliability and persuasiveness of advertisements or arguments that people encounter in daily life 

were ensured by the statistical information (Ben-Zvi & Garfield, 2004). For being informed citizens, 

it is crucial to analyze and interpret such statistical information and to make inferences from them. 

These problem solving, inquiry, analysis, justification and interpretation skills in statistics are all 

related to statistical reasoning. Garfield, delMas and Chance (2003) define statistical reasoning as 

“the way people reason with statistical ideas and make sense of statistical information” (p. 8). In 

statistics education, teachers have a critical role in helping learners develop deep conceptual 

understanding of statistical ideas. Shulman (1987) notes the importance of the capacity of a teacher 

to transform their content knowledge into pedagogically more powerful forms. Shulman (1986) states 

that the teacher content knowledge is not sufficient by itself for teaching a subject and points out the 

teacher pedagogical content knowledge (PCK) referring to the combination of content knowledge 

and pedagogical knowledge. More specifically, PCK is described as “the blending of content and 

pedagogy into an understanding of how particular topics, problems, or issues are organized, 

represented and adapted to the diverse interests and abilities of learners, and presented for instruct io n” 

(Shulman, 1987, p. 8). In statistics education literature, the studies by Watson and her colleagues 

(Watson, Callingham & Donne, 2008; Callingham & Watson, 2011) on examining levels of teachers’ 

statistical PCK suggest that teacher knowledge needs to be investigated more systematically and note 

the need for uncovering the current state to advance the statistics education. However, there is little 

research on teacher knowledge particularly with regard to statistical reasoning (e.g., Mickelson & 

Heaton, 2004; Makar & Confrey, 2004). Thus, the aim of this study is to investigate middle school 

mathematics teachers’ PCK related to statistical reasoning. Our research question is: In a distribution 

comparison task, to what extent do mathematics teachers consider the big ideas in statistics in their 

reasoning, how students might reason and how they would intervene to promote appropriate statistica l 

reasoning?  

  



Theoretical framework 

The notion of PCK, as noted by Shulman (1986), entails teachers’ knowledge about both the 

understanding/misconceptions of students and pedagogical strategies for instruction. According to 

An, Kulm and Wu (2004) there is an interaction between PCK and content knowledge and between 

knowledge of curriculum and knowledge of teaching, and the knowledge of student thinking is in the 

center. Moreover, teachers’ competence of making instructional interventions is considered as part of 

‘enacting mathematics for teaching and learning’ which is one of the components in the model of 

PCK developed by the Teacher Education and Development Study in Mathematics (Tatto et al., 

2008). Accordingly, responding to unexpected mathematical issues, evaluating student solutions, 

identifying student misconceptions, providing appropriate feedback, explaining and representing 

mathematical concepts are amongst the essential criteria for teacher competency to achieve the goals 

of learning-teaching process and increase its quality. This study focuses on the knowledge of student 

and knowledge of instructional interventions as the two components of PCK.  

The study by Watson, Callingham and Nathan (2009) focused on teachers’ PCK with regard to 

statistical knowledge at the middle school level. The researchers identified four non-hierarchica l 

components of PCK.  The first two components, “Recognizing Big Ideas” and “Anticipating Student 

Answers”, reflect the link between teachers’ knowledge of content and knowledge of understand ing 

students. The other two components, “Employing Content-Specific Strategies” and “Construct ing 

Shift to General”, involve elements of pedagogical practices that the teachers used by foreseeing the 

progress of student understanding. In another study by Watson and Nathan (2010), teachers’ PCK 

was investigated using three different problems. Teachers were asked about the big statistical ideas 

in each problem, possible appropriate and inappropriate student responses and opportunities provided 

by the problem for teaching. Teachers’ responses were analyzed based on the four components of 

PCK developed previously by Watson et al. (2009). In our study we utilized these two studies for 

developing interview questions and coding teacher responses. 

Method 

This exploratory study focuses on one-on-one interviews with nine middle school mathematics 

teachers (two females and seven males). The participants were selected on voluntary basis and from 

two different middle schools in Denizli. Their teaching experience changes from 2 to 30 years. The 

national curriculum of school mathematics includes data analysis strand since 2005 but according to 

our classroom observations, the participants tend to teach mainly computations and procedures in a 

traditional way rather than to focus on developing students’ statistical reasoning.  

Data collection and task  

Interviews with each teacher were conducted by the first author and video-recorded. These video 

recordings were transcribed for analysis. An interview protocol was developed to study teachers’ 

PCK with regard to statistical reasoning. In the larger study, the interview tasks involved three 

different scenarios, in which teachers were asked to determine possible student reasoning and 

difficulties. In order to develop teacher-student dialogues in these scenarios, these problems initia lly 

were administered to a classroom of 6th graders. Students’ responses provided a basis for constructing 

the dialogues given to teachers during the interview (see Figure 3). Motivated by the design of 

statistical reasoning tasks used in Cobb and his colleagues’ study (Cobb, 1999) each problem involves 



comparing two or three data distributions from equal and small sample sizes to unequal and larger 

sample sizes. And four kinds of statistical reasoning were addressed in these problems: reasoning 

about distribution, reasoning about center, reasoning about spread, and informal statistical inferentia l 

reasoning. This paper focuses on one of these problems, called Basketball Problem. In the interview, 

each teacher was initially asked to decide and explain which of the players they would choose to the 

school basketball team looking at the given data in Figure 1. 

 
 
 
 
 

 
Graph 1: Arda’s scores in the last 10 matches 

 
Graph 2: Baris’s scores in the last 10 matches 

 
Graph 3: Cem’s scores in the last 7 matches 

Players Players’ scores  

Arda 8 14 11 13 15 12 10 10 9 13 

Baris 4 15 8 17 18 9 19 6 18 5 

Cem - - - 13 14 10 7 13 11 9 

 

 

Figure 1: Data given in the Basketball problem in the interview protocol 

Next, in order to explore teachers’ PCK in relation to students’ statistical reasoning and instructiona l 

interventions, participants were asked to come up with examples of appropriate and inappropriate 

student reasoning in the context of given problem (see questions 1-5 in Figure 2).  

Q1: In the context of this problem with appropriate reasoning, how might students answer? 
Q2: Why do you think that reasoning is appropriate? 
Q3: In the context of this problem with inappropriate reasoning, how might students answer? 
Q4: Why do you think that reasoning is inappropriate? 
Q5: How would you guide those students who reasoned inappropriately to correct reasoning? 
Q6: In this page, there is a dialogue between students and teacher about basketball problem (see Figure 3). 
Firstly I want you to read this (dialogue sheet).  

a) Here, could you identify which students make appropriate reasoning? Why? 
b) Could you identify which students make inappropriate reasoning? Why? 
c) What is the difficulty that prevents the student from reasoning in an appropriate way? 
d) When you encounter such a situation in the class, what kind of questions would you ask to your 

students to make them reason appropriately? What kind of intervention would you consider? 

Figure 2: Interview questions to elicit teachers’ PCK in the context of Basketball problem  

After these questions, teachers were given a dialogue between students and teacher about the problem 

(see Figure 3) to examine their PCK further by the questions 6 a-d in Figure 2. 

Simge: Well, there is also the probability that Cem will score more or less than that you say he would 
make. So you also took risk in a way. In my opinion we can do this: Arda made 15 points the most, 8 the 
least score. So if I sum up these two numbers and divide by 2, I will find the number 11,5 as the middle 
point. Baris made 19 the most and 4 the least. The middle point of these two numbers is 11,5. Cem made 
14 the most and 7 the least. The middle point of these two numbers is 10,5. So I would eliminate Cem. 

Teacher: Well Simge, how would you choose between Arda and Baris? 



Simge: I would look at the highest score for both of them. Since Arda made 15 points and Baris 18 points, 
I would choose Baris. 

Kagan: As there is a difference between the numbers of matches played so far, we should look at the mean. 
As the mean of Arda’s score is 11,5; Baris’s is 11,9 and Cem’s is 11, I would choose Baris.  

Duygu: Baris’s mean score can be high. But he performed very well in one match and very poor in another 
match. He has a varying performance in the range of 4 and 19 points. He is not consistent.  

Teacher: What do you mean by ‘not consistent’? How do you conclude that he is not consistent?  
Duygu: When we look at the graphs we see that these scores that Baris made seem far and dispersed from 

each other. Arda’s scores seem closer together. Arda has a varying performance between 8 and 15 points. 
He is more consistent than Baris. There is not much difference between Arda’s average score and Baris’s 
average score. I would choose Arda. 

Figure 3: Part of a dialogue between students and teacher about basketball problem  

Data analysis 

Qualitative analysis of data was done by two researchers. Initially a number of codes were adapted 

from Watson and Nathan’s (2010) study to examine interview transcripts for PCK in relation to 

statistical reasoning and codes were assigned. During the content analysis phase new codes were 

created from the data. The categorizations of teacher responses were discussed and agreed on by two 

researchers. As a result, four components of PCK were formed as seen in Table 1: Big ideas, student 

responses, student difficulties, and instructional intervention.  

Aspects of 

PCK 
Codes/Levels f 

Big Ideas 

0- Response confused and /or incorrect - 

1- Response implied and/or understanding revealed beyond initial question  4 

2- Statistical reasoning 5 

Student 

Responses 

0- Response irrelevant 1 

1- Appropriate or inappropriate but not both, or unclear 1 

2- Distinguishes both appropriate and inappropriate, but no reason/explanation 1 

3- Demonstrates understanding of students’ reasoning with reason/explanation 6 

Student 

Difficulties 

0- Response irrelevant 5 

1- Unclear (General statements, lack of knowledge)  1 

2- Correct reason/explanation 3 

Instructional 

Intervention 

0- Response irrelevant / personal view 1 

1- Noticing content without given data (common beliefs)  5 

2- Promoting the appropriate use of percents, numbers, measures of center and spread for 

statistical reasoning  
3 

3- Promoting generalization beyond data  - 

Table 1: Codes for PCK (new codes were indicated in italics) and their occurrences  

Differently from Watson and Nathan’s study, a new component called “student difficulties” was 

considered in the current study. In addition, “instructional intervention” was used as a more general 

component that covers the two components in Watson and Nathan’s study, namely “Employs 

Content-specific Strategies” and “Constructs Shift to General”. “Big ideas” aspect of PCK was 

formed to uncover teachers’ statistical reasoning by using big ideas in statistics with the addition of 

“code 2-statistical reasoning” to the codes in Watson and Nathan’s study. Moreover, “no reason or 

explanation for the appropriateness of student reasoning” and “explaining the reasons for the 

appropriateness of student reasoning” criteria were added to code 2 and code 3, respectively, in 

“student responses” component. The codes in “student difficulties” component were formed as a 



result of the content analysis. The codes in “instructional intervention” component were formula ted 

as a result of the content analysis and aspects of statistical reasoning skills.  

Findings 

Teachers’ PCK level with regard to big ideas 

Five of the teachers were able to reason with the big ideas in statistics (code 2 level). These teachers 

took into account both variability and central tendency in their comparisons of distributio ns as it can 

be seen in Semih’s reasoning: “First we should compute their means. Arda’s is 11,5; Baris’ is 11,9; 

Cem’s is 11. Baris scored the most. I would choose Arda because of his stability.  His scores are 

placed between 8 and 15 in the graphs. Baris’ scores are placed between 4 and 19. Baris’ average is 

not much higher than the others.” Another teacher, Ebru, made her decision based on somehow a 

middle range in addition to the stability criteria. Her reasoning was: “I would transfer Arda. I chose 

a lower and an upper limit [between 8 and 15]. Even though Baris scored more points than this upper 

limit, from stability point of view Arda is more consistent.” Other four teachers’ responses were yet 

considered partially correct (code 1 level) because they focused on either the mean or the spread. The 

following two quotes illustrate code 1 level responses. 

I would transfer Baris. He scored in every game, no points less than 4. By just looking at the 

average, it does not look bad. (Eren) 

Their means are close. Arda’s performance is better. These data aren’t adequate. I would prefer 

Cem. His scores are closer. I am hesitant but I don’t have any reason. I said that I would choose 

Cem, but I wouldn’t choose Baris. He scored once 4 and the other time 19. There is no consistency. 

Arda scored 10 twice, 13 twice, these numbers are closer, so more stable. I can take Arda. (Suat) 

Teachers’ PCK level with regard to student responses 

Responses of six teachers showed an understanding of students’ reasoning with appropriate 

explanation (the code 3 level) as seen in the answer below:  

A student who reasons appropriately will firstly look at the mean. Arda’s is 11,5; Baris’ is 11,9; 

Cem’s is 11. Student would look at the place where the cluster is more. Not only the cluster but 

also between which numbers the cluster is [pointing to the range]. His mean is high and the cluster 

is above a certain number, so he would choose Arda. Moreover their means are close to each other 

[pointing to Arda and Baris]. A student who reasons inappropriately would choose Baris scoring 

the highest number 19. Student reasoned inappropriately because there is only one match in which 

Baris scored 19, he scored 4 as well. Student should look at the whole. (Semih) 

The other three teachers’ responses were identified at the other levels. For example, Eren’s response 

was considered at the code 0 level because his answer was related to the use of representations given 

in the problem rather than using statistical ideas/measures for his reasoning: “Student reasoning 

appropriately would look at both the graph and the table, evaluate them together and choose Baris. 

Student who doesn’t reason appropriately would only look at the graph and choose Arda.” In the 

following quotes, Suat was uncertain about the appropriate student reasoning due to the mistrust in 



his own reasoning (the code 1 level) while Sema could distinguish appropriate and inappropriate 

student response but with inadequate explanation response (the code 2 level). 

Since I had a difficulty in answering the question in this problem, I am not able to guess how 

students could respond. I don’t even think that my answer was sound, but a student who reasons 

appropriately might choose Arda because of the two modes and their being close to each other. A 

student who reasons inappropriately chooses Baris because he makes the high score. (Suat) 

Student reasoning appropriately would interpret the data looking at the table. By computation, he 

would choose Baris with the highest mean. Because we have only numbers, there is nothing else. 

Student who reason inappropriately would choose Baris since he scored the highest point. (Sema) 

Teachers’ PCK with regard to student difficulties  

When asked to explain student difficulties in their reasoning, the teacher responses mostly were 

inadequate and had irrelevant details (the code 0 level) as seen in Ismail’s response: “A student saying 

‘I’d choose Baris because he scores the most number’ thinks in a shallow way.” At the code 1 level 

Okan linked student difficulty to a wider context of school practice while at the code 2 level Suat 

made an evaluation based on what is expected statistically. 

The difficulty in a student who would choose Baris because of his highest mean could be the 

following. Students have computed the mean since primary school and so always mean stays in 

mind. The others [other measures of center] are introduced in the middle school. For students, the 

first thing they have learned seems more accurate. That is a student who chooses the extr eme 

values maybe do not know measures of center and spread. (Okan) 

A student who chooses Baris according to highest score is looking at the players’ best result. In 

fact the student should look at all of the results. (Suat) 

Teachers’ PCK with regard to instructional intervention 

When teachers were asked about the kind of questions they would ask and interventions they would 

consider in the classroom to guide students to reason appropriately, most teachers responded at the 

code 0, code 1 and code 2 levels and none at the code 3 level. Since Suat’s example of what he would 

ask to students was far from the context and irrelevant to the problem, his response was at the code 0 

level. When Ismail gave the following answer: “I would ask the following question to the students 

who choose Baris scoring the highest: ‘Guys, if you made a critique about the performances of Arda 

and Baris, which of them would you find successful? Why?’. If it is the final match, student may say 

Baris or for league matches Arda. This is important.”, it was considered at the code 1 level because 

his response involved a use of context but not based on data. However, in the following response (the 

code 2 level) teacher’s approach tended to involve having a discussion about the measures of center 

and spread within the problem context:  

I’d ask the student who chooses Baris due to his highest score: ‘Who scored the lowest?’. Scoring 

the least is Baris as well. I would also ask Arda’s highest and lowest scores. I would have the 

student find the range. Arda’s range is 7, Baris’ is 15. I would show that the scores Baris has made 

are in a wider interval. I would ask student: ‘Would you choose the player who scores 4 in one 

match and 19 in the other or the player who scores 8 in one match and 15 in the other?’ (Semih) 



Identifying appropriate and inappropriate student reasoning in a given dialogue  

In the given dialogue between teacher and students within the basketball problem context, only one 

of the teachers was able to distinguish appropriate and inappropriate student reasoning properly. This 

teacher (Göksel) argued that since consistency is important in this context, both mean and spread 

should be used in making the decision. The other eight teachers’ responses were partially correct. For 

instance, one of these eight teachers (Suat) correctly identified student responses using both the mean 

and range with attention to consistency and yet he also considered the student responses using only 

the mean or the increases/decreases in the scores as appropriate reasoning. 

Discussion and conclusion  

In this study, teachers overall seem to do better in using big ideas in their reasoning and considering 

possible student responses on the Basketball problem. Yet, some teachers still had slight difficult ies 

consistent with those that students might have in comparing distributions (Cobb, 1999) and in using 

big ideas for solving statistical problems (Watson & Nathan, 2010). Similar to the previous find ings 

(Watson & Nathan, 2010; Watson, et al., 2008) some challenges also exist for these teachers when 

considering how students might reason in their decisions. In contribution to the previous research 

results, this study shows other challenges that most of the teachers tend to have: (1) somewhat 

incomplete understanding of potential student difficulties, (2) inadequacy for suggesting instructiona l 

intervention strategies that could help students make generalizations beyond data and (3) 

distinguishing appropriate and inappropriate student reasoning in the given classroom dialogue. 

These findings related to teachers’ knowledge about student responses may not be unique to statistics 

teaching since they show consistencies with previous research with mathematics teachers in other 

mathematical topics, such as functions and undefined mathematical operations (e.g., Even & Trosh, 

1995). The insufficiencies in teacher PCK both in our findings in relation to statistical reasoning and 

other studies by Watson and her colleagues suggest that there is a need for in-service teacher training 

on PCK in statistics. More specifically, teachers need to be able to anticipate possible student 

difficulties in statistical reasoning and develop ways to respond to them. 
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The purpose of this article is to describe the features, as well as the instructional potential and 

advantages, of socially open-ended problems set in a sport-related context, through which students 

could be challenged to model variability in order to assess performance and develop data-driven 

decision-making skills. These arguments will be illustrated by using as an example the “Darts game” 

task, a problem from a study conducted by González and Chitmun (2015) on Japanese and Thai 

secondary school mathematics teachers’ professional knowledge of data-driven decision-making. 

Keywords: Decision-making, socially open-ended problems, variability modeling, value awareness, 

statistical investigations. 

Introduction 

The importance of using, handling and interpreting data to inform decision-making is fundamental to 

participate competently in today’s society. Such importance has been acknowledged by recent 

reforms to the mathematics curriculum in many countries, in which having the attitude and ability to 

purposely process and grasp features of daily-life data, and making informed decisions in real- life 

situations, are instructional goals explicitly stated in the statistics-related strands of the mathematics 

curriculum (e.g., MEXT, 2008, 2009; MOE, 2008). Thus, it is necessary for teachers to be able to 

choose the most appropriate tasks to take students further in the achievement of such goals. 

Although important, being able to grasp features of daily-life data is not enough to make informed 

decisions. Today’s society is a value-pluralistic one, in which it is natural for people to hold mult ip le 

values which, due to life experiences and interactions, will be prioritized, accommodated, negotiated, 

compromised and traded-off. Moreover, value awareness has been regarded as fundamental for 

engaging in effective decision-making, since values are principles used to evaluate actual or potential 

consequences of action or inaction, of proposed alternatives and of decisions (Keeney, 1992). 

Under this scenario, socially open-ended problems (Shimada & Baba, 2015) emerge as an appealing 

and plausible way of providing students with the possibility of using, handling and interpreting data 

to inform decision-making, as well as with the opportunity to develop the skill of value awareness. 

The purpose of the present article is to clarify the instructional potential and advantages of socially 

open-ended problems set in a sport-related context by analyzing the features of a problem of this kind 

from a previous study (González & Chitmun, 2015). Moreover, in light of the aforementioned 

analysis, it is our purpose to propose this kind of problem as an instructional way to challenge students 

to structure variation among repeated observations of the “same” event, to model variability, and to 

make data-driven decisions. A lesson implementation of the aforementioned socially open-ended 

problem will be discussed and analyzed, and some conclusions will be given based on the results of 

the lesson implementation. 



Decision-making process: Definition and related skills 

A decision is the process within which a choice among specific options will be made, regarded here 

as having six phases: Definition, planning, data, evaluation, weighing impact, and making and 

justifying a decision (e.g., Arvai, Campbell, Baird, & Rivers, 2004; González, 2015). Some related 

skills are ability to identify, design, and choose optimal ways to make a decision; ability to seek, 

collect and process data relevant to a decision; and ability to give an informed justification for a 

decision made. Factors such as values hold by the decision-maker, communication and interpersona l 

interaction all influence the development of each phase of the decision-making process (Keeney, 

1992). 

Statistical investigation: Definition and type of problems to engage students in it 

A statistical investigation is one of the four central aspects of statistical thinking used in statistica l 

inquiry of authentic problems (Makar & Fielding-Wells, 2011). It is a process, comprised of the 

following five phases: Problem, Plan, Data, Analysis, and Conclusion (PPDAC). Since each phase of 

this process can be tied to a particular phase of the decision-making one, in the present article, the 

process of statistical investigation will be considered as being included under the most general process 

of decision-making (González, 2015; Keeney, 1992). 

Teachers need to be able to plan and conduct statistical investigations that develop rich statistica l 

understandings in their students, and one key issue to achieve this is using problems worthy of 

investigation, or to guide students to do so (Makar & Fielding-Wells, 2011). Such problems should 

have the following characteristics (Makar & Fielding-Wells, 2011, pp. 349-350): 

Interesting, challenging, and relevant: Topics of interest include sport, weather, music charts,  

movies, and more serious topics of social issues relevant to teenagers (González & Chitmun, 2016). 
Challenging questions are those calling for a thorough analysis of the given data. 

Statistical in nature: Problems posing questions calling for students to gather and interpret data 

and to justify their choices based on such interpretation. Appropriate interpretation of evidence 
requires simultaneous consideration both of one’s knowledge about the domain and of the 

discernible patterns in the data (Lehrer & Schauble, 2004). The data related to the problem at hand 

must also offer enough complexity to generate interesting results. 

Ill-structured and ambiguous: Questions such as “who is the best player?” or “which one is the 

best team?” raise the issue of what the meaning of “best” is, which enables negotiation and data-

driven argumentation and discussion by students. 

Socially open-ended problems 

Socially open-ended problems (Shimada & Baba, 2015) are problems that are embedded in a real- life 

context, are familiar to the students and, by extending the traditional open-ended approach (Becker 

& Shimada, 1997), have been developed to elicit and address students’ mathematical values (e.g., 

visual appeal, parsimony, efficiency, elegance and sophistication), social values (e.g., social 

responsibility, compliance with the law, human rights, fairness, compassion and equity), and personal 

values (e.g., persistence, integrity and friendliness) through modeling and argumentation. According 

to Shimada (2015, p. 11), this ability to address multiple values is one of the competencies expected 

to be developed in students by using socially open-ended problems in the mathematics classroom. 

Such ability requires the following skill-set: (1) The ability to build mathematical models—such as a 

formula, equation or system of equations describing how underlying factors are interrelated—based 



on values, which is usually manifested in the first-half of the mathematics lesson; (2) the ability to 

appreciate the diversity of mathematical models based on values, which is usually manifested in the 

middle stage of the mathematics lesson; and (3) the ability to critically examine mathematical models 

based on values, which is usually manifested in the last-half of the mathematics lesson. 

An example of socially open-ended problems: The “Hitting the target” task. 

Shimada and Baba (2015) carried out a problem-solving lesson using the socially open-ended 

problem “Hitting the target” (see Figure 1).  

 

Figure 1: The “Hitting the target” task (Shimada & Baba, 2015) 

“Hitting the target”, which is a very popular game among children in Japan, is basically a darts game, 

but instead of throwing pointed darts at a concentric circles dartboard, small tennis-like balls covered 

with magnetized foam are used as a safety measure. Through engagement with the “Hitting the target” 

problem, it is expected from students to create rules in the form of mathematical models, in order to 

assign a score to the game performance of a participant after completing a set of three throws. The 

lesson planned by Shimada and Baba (2015) was deployed as follows: Provision of the problem; 

individual solutions by the students; whole-class presentation and discussion of students’ 

mathematical models and reasons, and individual selection of one model with its reason at the end of 

the lesson. Each of these steps can be matched to a phase of a statistical investigation, and the problem 

itself seems to meet the criteria to be considered a problem worthy of investigation, or to guide 

students to do so (Makar & Fielding-Wells, 2011). Through the analysis of classroom interaction and 

students’ data, Shimada and Baba (2015) identified four characteristics: (1) Diverse mathematica l 

models with the same values; (2) Implicit values became apparent through comparison with other 

values; (3) Some students who transformed their initial values and those who did not; (4) Some 

students who changed their initial mathematical models under the same values. 

Shimada (2015) and Shimada and Baba (2015) concluded that the decision of adopting a 

mathematical model for this particular problem was made based not just on the ball position on the 

target board, but also on the values (mathematical, social or personal) held by the students. This is in 

line with Keeney (1992), who stated that values are the primitive for considering any decision, since 

the first step in an effective decision-making process is for decision-makers to carefully consider their 

own values by clearly defining what it is they want to achieve in the decision context. 



The “Darts game” task: Socially open-ended problems as potential tools for 
engaging students in decision-making and statistical investigations 

Assessing sport outcomes (such as in the case of the “Hitting the target” task) has been discussed as 

potential way to build students’ data-driven decision-making skills through statistical investigat ions 

(González & Chitmun, 2016). A similar (but more complex) problem to the one posed by the “Hitt ing 

the target” task is the “Darts game” task (González & Chitmun, 2015, 2016). This problem was the 

only one with a sport-related context posed by a Thai teacher—hereafter T1—from a sample of 15 

secondary school mathematics teachers in the study conducted by González and Chitmun (2015) on 

professional knowledge of data-driven decision-making. In the present article, we will use the lesson 

plan designed by T1 (see Figure 2) as an example of a potential way of instructional design link ing 

understanding of variability, modeling, statistical investigations and value awareness, all under the 

umbrella of the decision-making process. 

The “Darts game” task—which can be considered a socially open-ended problem—represents an 

enhanced version of the “Hitting the target” task, with a more robust statistical nature. For example, 

the problem posed by the “Darts game” task will allow students to actively engage in the processes 

of generation, testing, and revision of real-life models of the world, which are at the very heart of 

what it means to think statistically (Lehrer & Schauble, 2004, p. 636). Furthermore, this problem 

focuses on the role of inventing measures of variability as a means for structuring variability. 

Inventing measures (statistics) of variability affords opportunities for coming to see differences 

among cases in new ways (Lehrer & Kim, 2009). As in the discipline of statistics, inventing statistics 

is not a solitary act: The meaning of a statistic for “team performance score” could be discussed and 

negotiated amongst students in a classroom community (Keeney, 1992; Lehrer & Kim, 2009; 

Petrosino, Lehrer & Schauble, 2003). Moreover, the formulation of a mathematical model—and 

scoring functions are mathematical models—can present an interesting challenge to the students. 

In the “Darts game” task, unlike the “Hitting the target” problem, landing a dart on any region of the 

dartboard was not assigned a pre-established score (adding so ill-definition and ambiguity to the 

problem). So, by interpreting the patterns of the thrown darts to determine which team is the best one, 

students will engage in data modeling. Characteristics of distribution, like center and spread, could 

be made accessible and meaningful to students by displaying and structuring variation among 

observations of the “same” event, instead of considering such observations simply as a collection of 

differences among measurements (Lehrer & Schauble, 2004; Petrosino et al., 2003). In the “Darts 

Game” task, students will be required to structure variation among observations of the “same” event . 

The outcome of that process will be a mathematical model for scoring each team’s performance, in 

order to make a decision regarding which team is the best one. Such models will be a source of 

information on students’ structural behavior, observations, in situ measurements, and values. 

According to Kazak (2006), engaging students in scoring a dart game will provide them with 

opportunities to engage in analysis concerning scores assigned around the target point, as well as in 

a discussion about what to do to get the highest score.  



 

Figure 2: Lesson plan designed by T1 to engage students with the “Darts game” task 

T1 did not mention explicitly the role of values in her lesson; however, as a socially open-ended 

problem, the “Darts game” provides an opportunity to develop students’ ability to address mult ip le 

values through the implementation of the ability to address multiple values (Shimada, 2015).  



Research methodology overview: Implementing the “Darts game” task 

Study sample and research methodology: Overview 

On November 16, 2016, the second author carried out a problem-solving lesson using the “Darts 

game” task with Grade 12 students in a public high school in Bangkok. The sample consisted of 34 

students, with18 boys and 16 girls. The second author is a teacher specialized in mathematics 

education, with 13 years of teaching experience. In this study, almost the same lesson design depicted 

in Figure 2 was implemented, with two main modifications: Firstly, before lesson implementat ion, 

students were asked to find out as many answers as possible to the task as a homework; and secondly, 

during the presentation and discussion of the individual solutions and reasons, students were not 

organized in groups, following the lesson design presented by Shimada and Baba (2015).  

Findings and discussion of results 

In average, about two answers were provided per student, being the mode one solution (21 students, 

61.8%), and the number of given solutions ranging from one to seven. Among those answers, 10 

different decision models were identified (see Table 1). Since students were allowed to provide more 

than one decision model, the total will be more than 100 per cent.  

 Model description Frequency (%) 
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M1: Tallying the number of darts landing in each concentric circle. The winner team will 
be the one with more darts landed closer to the innermost circle. 

9 (26.5) 

M2: Tallying the number of darts landing on the outermost circle. 1 (2.9) 

M3: Determining how clustered the three thrown darts are. 5 (14.7) 

M4: Tallying the number of darts landing on a line. 10 (29.4) 

M5: Measuring the distance of the farther shot to the bullseye. 3 (8.8) 

M6: Developing a scoring function 21 (61.8) 

M7: Tallying the number of times a dart hit the bullseye. 3 (8.8) 

M8: Counting the times a player landed the darts inside the same concentric circle.  1 (2.9) 

M9: Tallying the number of darts landing on the innermost circle. 7 (20.6) 

M10: Measuring the total distance to the bullseye 1 (2.9) 

Table 1: Different decision models posed by the students in this study 

The reasons given by students during the phase of individual solutions revealed a diversity of 

considerations to decide the winner team: taking into account all the members of a team (21 students, 

61.8%) vs. only considering a team representative (7 students, 20.6%), or posing decision models 

considering both perspectives (6 students, 17.6%). Among the reasons for choosing particular models 

in the phase of individual solutions are the following: difficulty in landing the shot in a particular area 

of the dartboard (e.g., on a line or on the innermost circle); precision (i.e., how tightly clustered, or 

spaced apart, the thrown darts are among each other in a particular trial, regardless of their position 

relative to the bullseye); accuracy (i.e., how close the thrown darts are to the bullseye); fairness and 

consideration to the whole team; and maximizing the likelihood of winning by selecting the best team 

player under a particular condition. Students mainly used tables while tallying, and calculated 

frequencies and modes. As expected, multiple scoring functions emerged from the students’ answers. 

Although different scores were assigned to landing a dart on a particular circle region, most of the 

scoring functions assigned the highest score to the innermost circle, and the lowest score to the 

outermost one. Landing a dart on any line was also scored in multiple ways: averaging the score of 



adjacent circle regions; assigning either the highest or the lowest score of adjacent circle regions; a 

fixed score (e.g., 10 points); no points; or invalidating the trial results for the player. 

After engaging in the stage of whole-class presentation and discussion of the mathematical models 

and reasons, some students changed the decision model from the initial self-resolution stage in the 

final selection stage (7 students, 20.6%), while most of the students kept one decision model within 

those posed by them during the self-resolution stage (27 students, 79.4%). Five out of seven students 

who changed their initially-posed model somehow modified it, introducing aspects that emerged 

during the whole-class discussion (e.g., scoring by team instead of considering a team representative, 

and vice versa; considering landing a dart on the line as disqualification). The reasons to make a final 

decision were also varied: acknowledgement of the effort by all team members; fairness; establishing 

equal winning opportunities for both teams; easiness to either score or explain the final decision to 

the team members; and keeping the nature of the game (i.e., the shot closer to the bullseye wins). 

Conclusions 

All in all, students engagement with the socially open-ended problem “Darts game”, set in a sport-

related context and involving measurement of different observations of the “same” event, seemed to 

be an appealing and plausible way to, among other things, (1) make accessible and meaningful to 

students characteristics of distribution such as center and spread; (2) provide students with 

opportunities to structure variation and coordinate variability and chance by engaging actively in 

modeling challenges; (3) develop an aggregate view of data; (4) provide students with an opportunity 

to discuss, argue and negotiate the meaning of a statistic for “team performance score” as members 

of a classroom community; (5) actively engage students in the processes of generation, testing, and 

revision of real-life models of the world; and (6) develop students’ value awareness in a climate of 

open discussion, by implementing the threefold ability to address multiple values. So, in a society in 

which the role of values, data and decision-making is fundamental for both education and active 

engagement in critical citizenship (Ernest, 2001), implementing sport-related socially open-ended 

problems in the mathematics classroom to address statistical contents seems to be a plausible way to 

help teachers achieve the aims of the mathematics curriculum regarding statistics education.  
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There is growing awareness of the statistical reasoning abilities of young children. In this study the 

informal inferential reasoning skills of a class of 5-6 year old children are examined as they reason 

about data in the context of a week-long data investigation unit. The strategies young children use 

to make predictions about data are identified. A discussion ensues around what these strategies 

communicate about early understandings of statistical inference. The findings suggest that making 

inferences from data can be challenging for younger students primarily due to the powerful 

influence of their developing understandings of number. However, there is evidence that children 

possess some of the building blocks of informal inference most notably in the approaches that point 

to a pre-aggregate view of data. Situating data investigations within interesting and relevant 

contexts, alongside good teacher questioning and opportunities to listen to the reasoning of their 

peers, contributes to the creation of statistical environments that support and develop early 

understandings of inference. 

Keywords: Informal inferential reasoning (IIR), early childhood, data modelling.  

Theoretical perspective 

Informal ideas relating to inference are those understandings that are foundational to the development of 

inferential reasoning. While many different definitions of informal inference have been posited, a useful 

definition of informal inference is “the way in which students use their informal statistical knowledge to make 

arguments to support inferences about unknown populations based on observed samples” (Zieffler, 

Garfield, delMas & Reading, 2008, p. 44). Zieffler et al. (2008) identify three components of an IIR 

framework as: making judgments or predictions, using or integrating prior knowledge, and articulating 

evidence-based arguments. Arising from research with primary students, Makar & Rubin (2009, p. 85) 

propose three principles that are considered essential for informal statistical inference as ‘(1) 

generalization, including predictions, parameter estimates, and conclusions, that extend beyond 

describing the given data; (2) the use of data as evidence for those generalizations; and (3) employment 

of probabilistic language in describing the generalization, including informal reference to levels of certainty 

about the conclusions drawn.’ 

One statistical perspective identified as a necessary building block to form a basis for IIR is the ability to 

view data as an aggregate (Rubin, Hammerman & Konold, 2006). Statistical properties of aggregates 

such as their centers, variability and shapes emerge from attending to features of distributions rather than 

features of individuals. Thinking about aggregates, while possible, has been shown to be challenging for 

children (Cobb 1999; Hancock, Kaput & Goldsmith, 1982). Recent work by Konold, Higgins, Russel & 

Khalil (2015) has resulted in the identification of four perspectives that students use when working with 

data. The use of these perspectives as a way to analyse an individual’s particular interpretation of data may 

provide valuable insights into their statistical reasoning and in turn the extent to which they possess the 



necessary building blocks for informal inference. These perspectives include data as pointer (focus on the 

event rather than the data), data as case value (focus on individual data values or cases), data as 

classifier (identifying subsets of data values that may be the same or similar) and data as aggregate (view 

all the data values in aggregate as an “object” or a distribution).  

A study of first-grade student’s data modelling approaches carried out by English (2012) categorised 

children’s predictions and approaches when working with data using the lenses identified by Konold et al. 

(2015). Using this framework to guide categorization, 6-year olds in English’s study viewed data in a 

variety of different ways. Many children focused on the values of particular cases (case value lens) and 

others demonstrated the ability to consider the frequency of cases with a particular value (classifier lens). 

There was also evidence of what English (2012) terms a pre-aggregate lens which included approaches 

that considered all the data, compared the frequencies and had some attention to overall trends. While not 

as sophisticated as an aggregate lens, which involves consideration of the entire distribution as an entity in 

itself, the presence of this pre-aggregate lens is a strong indicator of the nascent potential of young children 

to engage in informal inferential reasoning. 

A number of studies have explored the reasoning abilities of young children when engaged in data modeling 

activities in environments supported by the use of picture books (English 2010, 2012; Kinnear 2013, 

2016) and data-visualization tools and technologies (Ben-Zvi, 2006; Paparistodemou & Meletiou-

Mavrotheris, 2008). This study continues this line of research by exploring the informal inferences young 

children make about the data presented in a data modelling environment and examining what these 

inference tell us about children’s perspective on data.  

Method 

A multitiered teaching experiment (Lesh & Kelly, 2000) was carried out with twenty-five 5-6 year olds as 

they engaged in a weeklong data modeling activity. Statistical activity was motivated by a driving question 

(Hourigan & Leavy, 2016) and the context was the ‘design of a zoo’ as it was familiar to children and 

incorporated opportunities to work with data, encourage exploration of variation and make predictions 

about the data. The Ertle, Chokshi, & Fernandez (2001) lesson note format, developed for use as part of 

Japanese Lesson Study, guided lesson design considerations. This framework promoted a focus on 

expected student reactions, concomitant teacher responses and evaluation strategies. These foci supported 

examination of students’ ability to engage in IIR. This study examines the final lesson which focused on 

making informal inferences about data.  

The inquiry was stimulated by playing a video excerpt that we produced:  

Hi, I am James the zoo keeper. The elephant’s home in the zoo is getting a little bit crowded. I think we 

need to make it a bit bigger. But, I don’t know how many elephants will be in the zoo next year which 

makes it difficult to plan ahead. I was hoping you could look at the numbers of elephants in the zoo for 

the last four years, and predict how many will be there next year? 

Children were then shown live video feed of the elephant enclosure in Dublin zoo and presented with a 

table of data illustrating the number of elephants born in the first year (3 elephants), second year (4 

elephants), the third year (7 elephants) and fourth year (5 elephants) (see figure 1). Children worked in 



groups of 5 to reason and make predictions about the number of animals born the following year (year 5). 

Following the predictions, other data relating to the birth rates of wolves [5, 6, 2, 3], giraffes [8, 8, 5, 5] 

and monkeys [3, 5, 0, 2] across four years were presented. Children worked in groups and predicted the 

number of respective animals born in the fifth year. The design of these tasks was informed by the Zieffler 

et al. (2008) framework to support IIR by challenging students to make predictions and judgments about 

data and by incorporating opportunities to capture students’ informal inferential reasoning. 

 

Figure 1: The ‘elephant birth task’  

Conversations in 4 of the groups were audio recorded and one group was video recorded. Our primary 

focus when analyzing the data was on identifying the ways in which young children make informal inferences 

in a context rich data modelling environment. 

Recordings of group conversations were transcribed. Transcripts were coded according to whether they 

embodied Makar & Rubin’s (2009) principles of IIR. Thus each transcript was coded at least three times 

in an effort to identify children’s ability to generalize beyond the data, to use data as evidence and to use 

probabilistic language. All predictions were further categorized as representing data as pointer, case value, 

classifier or aggregate perspectives on data (Konold et al., 2015). 

Findings 

Children understood the task and were enthusiastic when making predictions about animal births in Year 5. 

However, making data informed predictions was challenging for some. Initially there was some evidence of 

idiosyncratic reasoning that was distanced from the context and from the data presented, however, this 

soon disappeared once the data and context were discussed further. Many children based their predictions 

on their knowledge of the context and modified their prediction based on discussion with peers. The 

findings are structured using the three principles of IIR that are considered essential for informal statistical 

inference (Makar & Rubin, 2009).   

 

Principle 1:  Generalizations beyond the data 

While all children made predictions regarding the number of births, not all of the predicted values indicated 

an ability to generalize beyond the data. Rather, they reflected the influence and power of counting in the 

mathematical development of the young child. For these children, there was an awareness of frequencies 

and this was demonstrated in the tendency to list the numbers, order them and then compare the outcome 



to the counting numbers. This focus on the frequencies resulted in two approaches to predicting births. The 

first approach was to fill in the gaps. Children compared the frequencies to the sequence of counting 

numbers usually leading to the identification of a ‘gap’ in the list of numbers. Children were eager to fill this 

gap i.e. identify a count/frequency that hadn’t occurred in the presented data and avoid presenting a value 

that had already occurred. Thus, they believed that this missing number would likely be the number of 

animals born the next year (see discussion between Sheena and Ayesha below around wolf birth rate [5, 6, 

2, 3]). The second approach was to extend the number sequence. In these situations children were not 

overly perturbed by an identified gap in the counting sequence and chose instead to extend the numbers 

beyond the range of the presented data (see Kate below). Generally, the next highest counting number 

above the upper value of the range was their prediction for the number of births in year 5. Both these 

strategies indicate a focus on pattern in the sense of ordinal counting numbers and thus the ‘power of 

counting’. However, from a statistical sense the reasoning was located and justified within the world of 

counting numbers thus indicating a lack of focus on pattern and trends in the data.  

Teacher: How many wolves will be born this year (pointing to year 5)? 

Sheena: We say maybe 4 cause 5, 6, 2, 3. And there’s no 4. 

Ayesha: We’ve got our reason. 2, 3, 4, 5, 6. It’s 4 cause 2, 3, 4, 5, 6. 

Teacher: What would happen if there was a year 6? How many animals might be born then? 

Kate: 1. Cause it would start 1, 2, 3, 4, 5, 6. 

Principle II:  Using data as evidence 

Analysis of the transcripts revealed an abundance of situations when children used data as evidence to 

support their predictions and conclusions about data. The explanations provided by children were 

categorized as falling within one of the four perspectives on data posited by Konold et al. (2015).   

Observation 1: The prevalence of a case value lens 

The focus on individual data values indicated the presence of a case value lens. In particular, children were 

attuned to the appearance of zero births for year 3 in the monkey data [3, 5, 0, 2] and commented ‘there 

were none that year’ and ‘there are zero there’. While this case value lens indicates a lack of focus on the 

aggregate, the individual data values were considered within the greater data context. For example, Eva 

drew on her knowledge of the context in her efforts to explain why no monkeys were born in year 3 when 

she stated ‘because if they had too many babies there [pointing to the 5 born in year 2], the mommy babies 

would have to rest all day’.  

Young children’s approaches involving summing data values and calculating totals have been used as 

indicators of a case value lens (English, 2012). Similarly, in this study, several predictions of the births in 

year 5 also indicated a case value lens as they were based on summing all or some of the values and 

presenting this total as the prediction for year 5. Matthew predicted ‘I decided there will be 10 monkeys 

altogether born’ based on summing the births in years 1-4, and Kornelia predicted that 16 wolves would 

be born in year 5 ‘because I counted all of them’. This difficulty in attending to the variation in the data was 

also evident in another child’s response that 10 giraffes [8, 8, 5, 5] would be born because ‘5+5 makes 

10’.  



However for many of these same children, while there was a focus on counting and the application of a 

case value lens, there was an awareness of pattern in magnitude of numbers. When large numbers were 

presented as predictions, children rejected these numbers as too big and drew on contextual information to 

justify their reasoning. In the following segment, children are predicting the number of giraffes [pattern: 8, 8, 

5, 5] that will be born in year 5. 

Thomas: I think 85. Because there is an 8 there and a 5 there. 

Polina: They wouldn’t fit into the box. They are definitely not going to fit into the zoo also. 

Teacher: Really? Why do you think that? 

Polina: Because they [giraffes] are very big. 

Observation 2: Awareness of trends in the data and evidence of a pre-aggregate lens 

The responses of 20% of children suggest an awareness of overall patterns and trends in the data. This was 

termed a pre-aggregate lens by English (2012) and may point to some emerging sense of distribution. The 

awareness of pattern was evident in Mia’s response to the wolf births which she described as ‘going up 

and going down’. Similarly the recognition and subsequent extension of a repeating pattern in the giraffe 

data set [8, 8, 5, 5] was evident when Melios predicted ‘8. It’s 8, 8, 5, 5, 8. Cause it’s a pattern: 8, 8, 5, 

5, 8’. During a whole class discussion about the number of monkeys that would be born in year 5, 

awareness of patterns was evident in the comments from Otille and Kate below: 

Teacher: How many monkeys did you think were born in year 5? [3, 5, 0, 2] 

Otille: I think 1 because it goes down, up, down, up, down. 

Kate: 5. Cause 5 here [points to 5] and then low [points to 0 and 2] so it would go back to high. 

As can be seen from the transcripts above, children’s justifications did not explicitly refer to the context of 

the data (in this case birth rates) and hence there is the possibility that this awareness of trends stemmed 

more from an algebraic rather than statistical perspective. However, the greatest indication of the presence 

of a pre aggregate lens was in the reasoning of those children who married an awareness of trends in the 

data with their understandings of the context in constructing their predictions. In the discussion of the trends 

in elephant births [3, 4, 7, 6] Polina imagined that animals born in year 1 would have grown up by year 5 

and be giving birth to elephants in year 5.  

Polina: We put 8 elephants (born in year 5) 

Teacher: Why did you put 8 in?  

Polina: Because I think these are going to grow up [pointing to the 3 elephants born in year 1] and 

these ones will be in their tummies [pointing to her prediction for year 5]. It is always 

going to get bigger. 

Teacher:  So do you think it will always get bigger?  

Polina: Yes, I think so, I think there will be babies born from these ones. These ones are going to 

be all grown up, they will be adults. 

Thus her understanding of the variation in the data influenced her predictions and ensured she always 

predicted beyond the upper range of the presented data. Another child, Anna, demonstrated her ability to 

view the trends across the years and used this trend to inform her initial prediction. However, she 



subsequently used her knowledge of the context and adjusted her prediction downwards. Here, Anna is 

discussing her prediction for the number of giraffes born [8, 8, 5, 5] and her initial prediction of ‘3’ may 

indicate some developing notion of center. However her attention to the context makes her mindful of how 

her prediction (if it were correct and acted upon) would affect the other animals in the zoo and she adjusts 

her predict to ‘protect’ other animals from the negative outcomes arising from her prediction.  

Anna:  It was different on different years sometimes 5 [pointing to the values for year 3 and 4] 

but here and here it was 8 [pointing to the year 1 and 2]. So I think 3. 

Teacher: Why 3?  

Anna: Cause it is like the others. Not too many (baby giraffes) but not none (baby giraffes).  

No. No. I think 2. Because if there are too many, all of the branches and the leaves would 

be gone and there would be no place for a monkey. 

Principle III:  Use of probabilistic language 

Makar & Rubin (2009) emphasize the importance of expressing uncertainty when making inferences – this 

can be identified in efforts to avoid deterministic claims and in the use of probabilistic language. Analysis of 

the transcripts reveal that children drew conclusions based on the data presented to them (birth rates over 

time) and used this data to make predictions beyond the data. All the while they were articulating 

uncertainty as demonstrated in their use of terms such as ‘I think’ (see Thomas, Otille, Polina and Anna 

above), ‘probably’ ‘maybe’ (see Sheena above) and ‘I’m not too sure’. It is particularly interesting to note 

that children were comfortable with uncertainty and with the different predictions of others. This openness 

was evident when Eva pointed out ‘we don’t know’ in relation to how many elephants the mother elephant 

would have. Her partner Paul continued the reasoning and stated that ‘maybe there would be six elephants 

born because there are 6 elephants there and they could have 6 babies’.  

Conclusions 

Young children in this study demonstrated the seeds of informal inference in their ability to ‘look beyond the 

data’ and engage in data-based argumentation to support their predictions. However, making data-based 

predictions was a challenging task for some children. Case value perspectives were most prevalent. The 

lack of repeating data values in the presented data may account for the low incidence of classifier 

perspectives as compared to the study by English (2012). Similar to English’s study there was evidence of 

the presence of a pre-aggregate lens in the approaches taken by children. A large proportion of children 

scanned the data for patterns, sought ‘missing numbers’ and many made predictions based on patterns in 

the ordered lists of data rather than thinking from a statistical perspective. This reliance on number and 

algebraic reasoning is not surprising given the curricular emphases in early years mathematics curricula. It is 

interesting to note the influence of zero on children’s deliberations about data was also a factor in the work 

of Kinnear (2013) and Kinnear & Clarke (2016) when engaging young children in data modeling activities. 

The success that some children experienced in making informal inferences was due to a number of factors. 

The role played by the data and task context is particularly evident. The use of an interesting and relevant 

context provided a ‘crutch’ for the children when making predictions. Their personal experiences and high 

task interest ensured that rather than reasoning about decontextualized data, children were reasoning about 

and making sense of the situation at hand – this supported their inferences. Secondly, the development of 

skills in making data-informed predictions was due in large part to the use of good questioning on the part 



of teachers and due to their efforts in drawing children’s attention to aspects of the data and clarifying 

misunderstandings as they occurred. Similarly, the work of Paparistodemou & Meletiou-Mavrotheris 

(2008) highlighted the important role that prompting by the researcher played in supporting children in 

speculating about larger data sets. The third factor was the importance of peer interactions. Children built 

on the ideas of others as they reasoned and made prediction within their groups thus providing evidence for 

the power of co-constructing meaning in small groups and demonstrated ‘building on the ideas of others’ 

(Whitin & Whitin, 2008, p.93). This importance of peer interaction in promoting inference and deriving 

conclusions from data was also evident in the work of third grade students when engaging in inference 

(Paparistodemou & Meletiou-Mavrotheris, 2008).  
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In this study, we examined the models of resampling that a group of students constructed in order to 

use one sample to make informal inferences about a population of data. Students participated in a 

model eliciting activity which aimed to elicit the resampling process of bootstrapping. We will discuss 

the model of resampling and inference constructed by one group of students, the factors which led to 

the group constructing a model of resampling with replacement, and how these students’ conceptions 

of the sample related to their model. We suggest that the students' conception of the relationship 

between the sample and population was a key factor in constructing a model of resampling and 

inference similar to the method of bootstrapping. 

Keywords: Statistics education, modeling, informal inferential reasoning. 

Introduction 

Bootstrapping is one method of simulating data through resampling that has become an important 

tool for statisticians, who suggest that it is intuitive to novice statistics students (Lock, Lock, Lock-

Morgan, Lock, & Lock, 2013). The term bootstrap is used in the idiom to pull oneself up by one's 

bootstraps, which means to accomplish a goal with the resources on hand. Rather than take many 

samples to estimate a sampling distribution, the bootstrap method uses the one sample on hand to 

accomplish the same goal. Bootstrapping is a process of simulating data beginning by drawing one 

sample from a population. Resamples are constructed by choosing elements from the original sample, 

one at a time with replacement, until as many elements are drawn as in the original sample. This new 

sample is called the bootstrap sample. The process is repeated many times to create a collection of 

such bootstrap samples. A statistic from each of these bootstrap samples is aggregated to form an 

empirical bootstrap sampling distribution, which can then be used to make inferential claims about 

the population from which the original sample was drawn. 

Bootstrapping was introduced by Efron (1979) as an alternative to earlier resampling methods. He 

asserted that the bootstrap was more widely applicable and dependable than earlier resampling 

methods, while also using a simpler procedure. New curricula for introductory statistics courses at 

the secondary and tertiary levels have been created which focus on simulation and resampling 

methods such as bootstrapping (Garfield, delMas, & Zieffler, 2012; Pfannkuch, Forbes, Harraway, 

Budgett, & Wild, 2013; Tintle, VanderStoep, Holmes, Quisenberry, & Swanson, 2011). Pfannkuch 

et al. (2013, p. 2) asserted that “the bootstrapping and randomisation methods using dynamic 

visualisations especially designed to enhance conceptual understanding have the potential to  

transform the learning of statistical inference.” Lock et al. (2013) claimed that bootstrapping 

capitalizes on students' visual learning skills and helps to build students' conceptual understanding of 

key statistics ideas. While these curricula and subsequent research have examined students’ 

understandings of the use of method of bootstrapping, studies have not examined how students 

construct and develop these understandings. We suggest that this lack of research on student 



understandings of eliciting the concept of bootstrapping is a gap in the research literature. In this 

study we examine aspects of the model of resampling and bootstrapping that one group of students 

constructed in order to make informal inferences about a population of data and these students’ 

conception of the sample’s relation to the population. The research question driving this study was 

what factors led students to construct models of resampling with replacement. 

Review of literature 

The current research literature has viewed the bootstrapping method through the lens of formal 

inferential reasoning, such as using the method as a means to estimate standard errors and construct 

confidence intervals (Garfield, delMas, & Zieffler, 2012; Pfannkuch, Forbes, Harraway, Budgett, & 

Wild, 2013). In this study, rather than focus on students’ understandings of how this method could 

be used for formal inference, we focused on how students constructed and developed methods similar 

to bootstrapping and made informal inferential claims from the resulting empirical bootstrap 

distributions. Key to eliciting students’ models of resampling and inference in this study was 

understanding the use of students’ informal inferential reasoning to make claims about a 

population. Informal inferential reasoning is the drawing of conclusions from data that extend beyond 

the data, from viewing, comparing, and reasoning with distributions of data (Makar & Rubin, 

2009; Pfannkuch, 2007).  

In order to make informal inferential claims in this study, groups of students first needed to determine 

a method of simulating data. Saldanha and Thompson (2002) explored students’ conceptions of a 

sample in relation to the population while the students participated in an activity which constructed 

an empirical sampling distribution by collecting repeated samples from a population. Students' 

conceptions of a sample in relation to the population and sampling distributions were categorized as 

either additive or multiplicative. Those with an additive conception of the sample only viewed the 

part-whole relationship between the sample and the populations, with multiple samples representing 

multiple parts of this whole. The resemblance and relationship between the sample and population 

distributions was not a factor for those with this conception. Those with a multiplicative conception 

of the sample viewed the sample as a “quasi-proportional, mini version” (p. 266) of the population. 

The sample can be used to approximate the distribution of the population, with an understanding that 

various samples' distributions may bear more or less resemblance to the distribution of the population. 

We posit that this multiplicative view may be critical to understanding the use of bootstrapping for 

informal inferential reasoning, since the proportion of each element in a sample is assumed to 

represent the proportion of those elements in the population.  

The focus of analysis for this study was the model of resampling and bootstrapping which participants 

constructed and developed while engaged in a model eliciting activity (Lesh, Cramer, Doerr, Post, & 

Zawojewski, 2003). Models are “conceptual systems … that are expressed using external notation 

systems, and that are used to construct, describe, or explain the behaviors of other system(s)” (Lesh 

& Doerr, 2003, p. 10). Model-eliciting activities encourage students to generate descriptions, 

explanations, and constructions in order to reveal how they were interpreting situations. Model 

eliciting activities are designed in order for students to:  

 Make sense of the situation drawing on both their school mathematics real-life sense-making 

abilities;   



 Recognize the need to construct a model to complete the activity, rather than produce only an 

answer.   

 Create documentation that shows solution paths, patterns, and irregularities that the students 

considered while constructing their model;   

 Assess when their responses need to be improved, refined, or extended,   

 Create models that can be extended to use in a broader range of situations (Lesh, Hoover, 

Hole, Kelly, & Post, 2000).   

By using a modeling approach to examine student reasoning, we viewed reasoning as dynamic and 

developing over the course of instruction. Observing students as they participated in a model elicit ing 

activity allowed us to view the construction and development of their thinking of resampling and 

inference. 

Design and methodology 

This study is a qualitative case study and part of a larger study (McLean & Doerr, 

2016) that consisted of an eight-class-session teaching experiment that was enacted in four 

introductory statistics classes at the high school and community college levels (n=68) in the United 

States. This study focuses on the student reasoning that developed during one class-session as a group 

of four students from a community college participated in a model eliciting activity that aimed to 

elicit the method of bootstrapping. During the model eliciting activity, we collected written 

classwork from all participants and videotaped the group of students in order to document the group’s 

model construction and development. We analyzed the videos and written classwork for evidence of 

informal inferential reasoning, quantities used and the relationships between these quantities, and the 

representations and explanations used in their arguments in order to reconstruct the development of 

the reasoning that were created by the participants.   

The group of students participated in a model eliciting activity, using hands-on manipulatives, where 

they were given one sample from a population and constructed a model of resampling and inference 

in order to make claims about a population. The activity was designed to elicit a model that could 

be used to resample from a sample, with replacement, in order to construct a bootstrap sample of the 

same size as the original sample and use the distribution of these bootstrap samples to determine 

which outcomes are most likely to occur. The model eliciting activity asked groups of students to 

help a manager in a grocery store predict the percentage of peanuts in a certain brand of mixed nuts. 

The students were given a sample of mixed nuts in the form of seven craft sticks marked with a ‘P’ 

for peanut and 18 not marked to represent other kinds of nuts. The model eliciting activity prompt 

and manipulatives are shown below (Figure 1). 

[Grocery store] carries many types of nuts, dried fruits and candies in their bulk food section. The 

manager of bulk food is always interested in bringing new types of food for her customers to try. 

She recently ordered a sample of a new brand's mixed nuts. From past experiences, she has 

determined that customers prefer mixed nuts with fewer peanuts. She plans to order a large 

shipment of mixed nuts and is considering this new brand. Before she orders, the manager wants 

to know more information about the percentage of peanuts in this new brand. From this one sample 

of mixed nuts, the manager has asked that you determine a likely range for the percentage of 

peanuts in the entire brand of mixed nuts. She would also like to know the methods that you 



develop to come to your conclusion. Your methods may of use for future bulk food purchases. The 

bag of sticks is the sample of mixed nuts. Sticks marked with a 'P' are peanuts. Those not marked 

are other types of nuts. 
 

Figure 1: Model eliciting activity manipulatives  

Prior to the model eliciting activity, the group of students participated in a model development 

sequence which elicited and developed models of repeatedly sampling from a population, 

constructing an empirical sampling distribution, and making informal inferential claims regarding the 

population. In this model eliciting activity, students could no longer repeatedly sample from a 

population in order to construct an empirical sampling distribution and needed to construct a new 

model of resampling and inference that could use only one sample from the population to make 

informal inferential claims.  

Results 

In the larger study from which this data was gathered (McLean & Doerr, 2016), groups of three or 

four students constructed two categories of models for making inferential claims of a population from 

one sample. The first category of model (n=16 groups of students) treated the sample of 25 nuts in a 

manner similar to a population and collected resamples without replacement, from the 25 nuts. The 

second category of model (n=4 groups of students) discussed or collected resamples from the sample 

of mixed nuts in a manner which preserved the makeup of the sample while resampling. We will 

report findings from one of the four groups who constructed this second category of model. This 

group constructed a model of resampling with replacement similar to the method of bootstrapping. 

We will discuss two findings of student understanding that were key to constructing these models: 

the representativeness of the sample to the population; and a method of resampling that preserved this 

representativeness. Findings like these were unique to the groups of students who constructed the 

second category of model of resampling and inference, which preserved the make-up of the sample 

while resampling. 



Representativeness of the sample  

Before discussing methods of resampling, the group of students first discussed how they believed that 

one sample could be used to make inferential claims and how their sample of mixed nuts related to 

other possible samples of mixed nuts taken from the sample population 

Susan: I would say from this sample, that a little over a quarter of the peanuts, of the nuts 

are peanuts, from our random sample. 

Randy: But it’s only one sample. 

Ted:          But this is the only sample we have. 

Brenda: So if you pick another random sample what’s going to happen? 

Ted:        It’s most likely going to change. 

Susan:     It’s going to change, but I feel like it will probably be still about the same.  

Susan made an assertion about the percentage of peanuts in the population under the condition that 

she was basing her assertion on the random sample, which Randy stressed is only one random sample. 

Susan emphasized that although other samples of nuts will be different from their one sample, they 

will probably be “still about the same”.  Susan demonstrated an understanding that the percentage of 

peanuts in the sample likely represents the percentage of peanuts in the population. This is a key 

aspect of inferential statistics. When making inferential claims you take for granted that the sample 

likely represents the population because as Ted stated, “this is the only sample we have” and as Susan 

asserted, “it will probably still be about the same” as other samples. 

Preserving the representativeness of the sample when resampling 

The group initially decided to take a resample of 14 mixed nuts by drawing one at a time from the 

bag of mixed nuts, without replacement. The group only took one sample with this method, which 

yielded five peanuts out of 14 nuts. The instructor then came back over to the group to discuss how 

the group had collected the sample of 14 nuts. 

Instructor:  So how are you choosing those? 

Susan:        He [Randy] randomly puts them together, and then I randomly without looking 

draw them out. 

Instructor: Okay. So you’re drawing out one at a time? 

Susan:        Uh-uh. 

Instructor:  Okay, and you’re setting it on the table? 

Ted:            Yes. 

Instructor:  Then you’re going back in and you’re drawing another one? 

Susan:        Yes. 

Instructor:  Okay, so … 



Ted:            Ohh! Wait, you said that you’re putting them on the table. Was that like, do you 

think that we should put them back in the bag after we draw it out? Like for 

probability simulators?  

From this exchange Ted considered how the sampling would change if they resampled with 

replacement instead of resampling without replacement. By using the term “probability simulato rs” 

he was approaching the idea that if you do not replace the stick after choosing each one, the 

probabilities of choosing a peanut or another nut will change. This term was not used previously in 

the coursework for this class, but likely came from his earlier experience in a mathematics or statistics 

classroom. Ted was combining the idea of the representativeness of the sample to the population, that 

the group discussed earlier, with the idea of the probabilities staying constant for each choice of nut, 

the key concepts of bootstrapping. The group continued to discuss how this process of replacement 

was different than their initial approach without replacement.  

Randy:    What are we going to do now? 

Susan:     Now I’m going to hand you back the Popsicle stick and you’re going to mix it back 

in. 

Randy:    So you’re going to draw … 

Susan:     From the 25, not from, you know how before, like when I drawed [sic] and set it 

down, it went less and less and less and less and less? 

Ted:        So we’re going to do it again, we’re still going to draw 14, we’re just going to put 

them in. 

Susan:    So each time we’re drawing from 25, instead of a reduced … 

Ted:        ‘Cause as we would draw, in this one we would draw and there were 10, that meant 

that there were only 15 left in the bag, which doesn’t account for the sample, right? 

‘Cause you’re reducing it.  

They asserted that when not using replacement, the nuts that they were drawing from the bag no 

longer represented the sample after some nuts were drawn and not returned. The group followed this 

procedure of resampling with replacement to collect a sample of 14 nuts. This was the only sample 

that they had time to gather before the class was reconvened to discuss each group’s approach to 

determine the likely range of peanuts in this new brand. The group did not use this one sample to 

draw a conclusion since time ran out for developing their model. 

Discussion and conclusions 

We assert that a key difference between this study and previous research addressing data simulation 

and bootstrapping (Garfield, delMas, & Zieffler, 2012; Pfannkuch, Forbes, Harraway, Budgett, & 

Wild, 2013), is the elicitation of bootstrapping methods by groups of students rather than the 

instruction of students on how to use the method. By eliciting the method, we were able to view 

students’ statistical reasoning which led students to construct a process similar to bootstrapping: the 

representativeness of the sample to the population; and a method of resampling that preserved this 

representativeness. We assert that these students exhibited a multiplicative conception of the sample 

(Saldanha & Thompson, 2002). These students claimed that the distribution of the sample likely 



represented the population and constructed a model of resampling with replacement that simulated 

resamples which upheld the quasi-proportional relationship of the sample to the population. These 

finding have implication for future curricula design by examining the key understandings that 

students may need before instruction on methods of resampling, such as bootstrapping. The finding 

also suggested that the use of model eliciting activities are useful design for instruction in 

introductory statistics classrooms in order to analyze students’ developing thinking of resampling 

and inference. 

Two limitations of this study were that: although this group of students constructed a model of 

resampling similar to bootstrapping, they did not collect resamples that were equal in size to the 

original sample of mixed nuts; and the time needed to sample by replacement with manipulatives 

did not allow the students to collect a distribution of samples from which to draw informal 

inferences. Collecting resamples of the same size is key in order to observe the variability in a 

statistic for samples like the original. While designing the model eliciting activity, we did not 

foresee issues with how the context of the activity encouraged students to make claims about the 

populations of mixed nuts, rather than the proportion of peanuts in future samples from the 

population of mixed nuts. Within this context, rather than use a bulk supply of mixed nuts in which 

samples of many sizes could be taken, the model eliciting activity may have been better designed to 

focus on the small packages of mixed nuts with consistent sample sizes. The time demanding nature 

of resampling could have been alleviating by using smaller original samples or with transitioning to 

the use of technology. A different context from mixed nuts where smaller samples felt natural, 

rather than merely a simplification may have allowed more resamples to be simulated. We made the 

choice to initially explore resampling with manipulatives and in later activities use technology to 

simplify the resampling process.  
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This article focuses on how information and communication tools made available online could be 

effectively exploited to help improve the quality and efficiency of college-level, at-distance statistics 

training. The paper first provides an overview of the content, structure, and pedagogical and 

didactical approach underlying Quantitative Educational Research Methods, an online course 

targeting post-graduate education majors that has been built based on contemporary visions of web-

based statistics instruction and computer-mediated communication. It then presents some of the 

insights gained from a case study of a group of students (n=49) participating in a recent offering of 

the course. The article concludes with some instructional and research implications. 

Keywords: Statistics education, distance education, statistical inference, model-eliciting activities. 

Introduction 

The affordances offered by modern Internet technologies provide new opportunities for statistics 

instruction, making it possible to overcome restrictions of shrinking resources and geographica l 

locations, and to offer, in a cost-effective and non-disruptive way, high-quality learning experiences 

to geographically dispersed students. In recent years, we have witnessed an exponential growth of 

distance education worldwide. Online course delivery has become common in a wide variety of 

disciplines, including statistics. This expansion is likely to continue, given the expanding access to 

the Internet and the greater emphasis to lifelong learning. Several advantages associated with distance 

education have been identified in the literature. In addition to the flexibility and convenience it offers, 

the distance option may also allow students the opportunity to take courses from established experts 

in their field of study that might not be available locally. From the viewpoint of statistics, it creates 

some unique opportunities for enhancing instruction, including the provision of a vast array of 

technological tools and resources for better understanding of statistical methods and concepts (e.g. 

interactive applets, virtual laboratory experiments, etc.). Several successful examples of successful 

programs of teaching statistics via distance have been documented in the literature (e.g., Evans et al., 

2007; Everson & Garfield, 2008; Meletiou-Mavrotheris, Mavrotheris, & Paparistodemou, 2011). 

Despite its proliferation and the unique opportunities for enhancing statistics teaching and learning 

that it offers, online statistics course delivery also presents several unique challenges. There are 

several pedagogical and technical issues that need to be incorporated into the design of an online 

statistics course for it to provide an effective learning environment. Review of the existing research 

literature alerts us to the fact that the quality and effectiveness of online statistics training currently 

offered is variable and inconsistent (Evans et al., 2007). While most of the conducted studies indicate 

that students taking courses with an online component have similar achievement and satisfact ion 

levels compared to students in traditional, face-to-face classrooms (Mathieson, 2010), there is 



growing evidence of many web-based distance learning courses failing to meet the expectations 

raised. For example, while it is well-documented in statistics education research that the incorporation 

of discussion and active learning in the classroom can help learners to think and reason about 

statistical concepts, bringing these important learning approaches to an online course has proved very 

challenging (Gould, 2005; Meletiou-Mavrotheris & Serrado, 2012).  

Early attempts at web-based instruction assumed that setting up an attractive website with interest ing 

multimedia applications was adequate for learning to occur. However, it has now been recognized 

that the level of success of distance education is determined by multiple factors, including underlying 

theory, technologies, teaching strategies, and learner support. Elements in the design of an online 

course such as its content and structure, the tools and cognitive technologies employed, and the 

amount of interaction between instructors and learners as well among learners, are important factors 

affecting students’ learning and attitudes (Tudor, 2006). A particularly important criterion for the 

level of success of at-distance statistical training is also the extent to which instruction allows learners 

to experience the practice of statistics and to apply statistical tools in order to tackle real-life problems. 

This article provides an overview of a post-graduate quantitative research methods course that has 

adopted a non-conventional approach, which promotes online participation and collaboration of 

students using contemporary technological and educational tools and resources. After describing the 

course pedagogical approach, and content and structure, the paper presents some of the insights 

gained from a case study of a group of students participating in a recent offering of the course.  

Nature of the Quantitative Educational Research Methods course 

“Quantitative Educational Research Methods” is a graduate-level course targeting students enrolled 

in the M.A. in Educational Studies program offered at European University Cyprus. Although 

originally developed for a face-to-face setting, the course was in 2013 redesigned as an online course 

to make it accessible to students enrolled in this program through distance education. In designing 

the e-learning course, efforts were made to preserve the pedagogical approach, and content and 

structure of the classroom-based course. 

Contemporary visions of web-based instruction and computer-mediated communication underpin the 

course design. Concurring with Roseth, Garfield, and Ben-Zvi (2008), the online learning 

environment has been built upon the premise that instruction of statistical methods ought to resemble 

statistical practice, an inherently cooperative problem-solving enterprise. Students enrolled in the 

course are provided with ample opportunities for interactive and collaborative learning. They are 

actively involved in constructing their own knowledge, through participation in authentic educationa l 

activities encouraging enculturation such as projects, experiments, computer explorations with real 

and simulated data, group work and discussions. Statistical thinking is presented as a synthesis of 

statistical knowledge, context knowledge, and the information in the data in order to produce 

implications and insights, and to test and refine conjectures. There is a focus on modeling and 

simulation—along with inference – which is being facilitated by having students use the dynamica l 

statistical software package TinkerPlots2 (Konold & Miller, 2011) for all modeling and analysis. This 

software was selected because it is designed explicitly to support integration of exploratory data 

analysis approaches and probabilistic models, and to allow for generation of data (e.g., drawing 

samples from a model) and experimentation (e.g., improving models, conducting simulations). 



The course lasts 15 weeks. It is made up of 7 modules, that are concept driven and focused on 

enriching students’ knowledge of quantitative research methods (mainly inferential) by exposing 

them to innovative learning situations, technologies, and curricula. Each module involves a range of 

activities, readings, contributions to discussion, and the completion of group and/or individua l 

assignments. The activities and assignments mirror those completed in the classroom-based course.  

Throughout the course, students use TinkerPlots2 to work on a set of carefully designed open-ended 

Model-Eliciting Activities (MEAs) (Lesh et al., 2000) in which they create and test statistical models 

in order to solve real world problems of statistics (Garfield, delMas & Zieffler, 2012). The activit ies 

are carefully designed to support but, at the same time, also explore students’ evolving understand ings 

of fundamental ideas related to statistical inference. Some of the MEAs are completed individua lly, 

and others collaboratively in groups of 3-4 students.  The MEA “How many tickets to sell?” (adapted 

from http://new.censusatschool.org.nz/resource/using-tinkerplots- for-probability-modelling/) is a 

typical example of these activities.  It is based on the following fictitious scenario: “Air Zland has 

found that on average 2.9% of the passengers that have booked tickets on its main domestic routes 

fail to show up for departure. It responds by overbooking flights. The Airbus A230, used on these 

routes, has 171 seats. How many extra tickets can Air Zland sell without upsetting passengers who 

do show up at the terminal too often?” In this MEA, students use Tinkerplots2 to model the Air Zland 

flight (e.g. model the scenario in which AirZland sells five extra tickets, i.e. books 176 tickets). They 

repeat the experiment a large number of trials using the “Collect Statistic” feature of Tinkerplots2 to 

keep track of the number of passengers not showing up, and draw the resulting distribution of 

collected sample statistics. Students then decide whether their model should be adjusted or not and, 

based on that, make recommendations to the airline as to how many extra tickets it should issue. 

Finally, they use the properties of the binomial distribution to determine theoretical probabilit ies 

when booking a certain number of seats (e.g. 176 seats) and compare the results with those they get 

through the Tinkerplots simulation. (see Meletiou-Mavrotheris et al. 2015 for more details). 

A progressive formalization approach is being employed in the course. The first part focuses on 

building a teaching pathway towards formal inference by helping students experience and develop 

the ‘big ideas’ of informal inference. Through their engagement with the open-ended MEA activit ies, 

students learn where these ideas apply and how. Later in the course, students are introduced to 

confirmatory or formal inference methods, and begin comparing empirical probabilities with the 

theoretical ones. They learn the formal procedures for building sampling distributions, construct ing 

confidence intervals, and conducting hypothesis testing using different statistical tests. The 

similarities and differences between ideal, mathematical models of reality, and statistical models 

based on experimental data are being emphasized throughout the course. From informal uses of 

models early in the course to formal uses as part of significance tests at the later part, instruct ion 

encourages explicit discussion of how every model is essentially an oversimplification of reality 

which involves loss of information, and of how the success of probability models depends on their 

practically and potential to give useful answers to our research questions.  

The course is delivered completely online using the instructional content and services of the project  

platform (on the LMS Blackboard system). In addition to the course content (video lectures, 

PowerPoint presentations, video tutorials, links to statistics resources available on the internet, etc.) 

the site offers access to various tools for professional dialogue and support (email, videoconferenc ing, 

http://new.censusatschool.org.nz/resource/using-tinkerplots-for-probability-modelling/


chat rooms, discussion forums, wikis, etc.). The course instructor acts as a facilitator of a deeper 

learning experience through guiding discussions, encouraging full, thoughtful involvement of all 

participants, and providing feedback, in both asynchronous and synchronous activities. 

Methodology 

The case studied was a group of students taking the online version of the Quantitative Research 

Methods course during the Fall 2014 semester. The first author was the course instructor. There were 

forty-nine (n=49) students enrolled in the course, residing in Greece (n=38) or Cyprus (n=11). Course 

participants were characterized by a wide diversity in a number of parameters including age, and 

professional and academic background. Their age ranged from 23 to 55. Some had an academic 

background in primary education (n=18), while the rest were secondary school teachers in different 

domains (languages, humanities, natural sciences, physical sciences etc.). While the majority were 

experienced educators with several years of teaching experience, a sizeable proportion were either 

unemployed or employed in non-education related occupations. Students also had a varied 

background in statistics. Most of the older participants had very limited prior exposure to statistics, 

while the younger ones had typically completed a statistics course while at college. Even students 

who had formally studied statistics had attended traditional lecture-based courses that made minimal 

use of technology. Thus, upon entering the course, almost all students had very weak statistica l 

reasoning and/or a tendency to focus on the procedural aspects of statistics. 

Documenting online student activity and collaborative knowledge construction is a multiface ted 

phenomenon that requires complementary methods of data collection and analysis in order to 

understand how learning is accomplished through interaction, how learners engage in knowledge 

building, and how designed media support this accomplishment (Hmelo-Silver, 2003). Consequently, 

to increase understanding of the research setting, the current study employed a variety of both 

qualitative and quantitative data collection techniques, including: (i) The contents of the online 

discussion boards, chats, and wikis, in which students had been participating during the course; (ii) 

Bi-weekly collaborative assignments, in the form of Model Eliciting Activities (MEAs); (iii) 

videotaped synchronous sessions taking place weekly throughout the semester using Blackboard 

Collaborate as a communication tool; (iv) final course examination administered to both students 

enrolled in the course under study, and students enrolled in a face-to-face version of the same course 

again taught by the same instructor; (v) an open-ended survey administered at the course completion, 

aimed at determining students’ perceptions, opinions, and feelings regarding the course; (vi) 

Quantitative statistics automatically collected by the system (e.g. number of students participating in 

a discussion forum or successfully completing group assignments, etc.). 

The text-based and video-based data collected during the course (MEAs, discussion forums, 

videotaped synchronous sessions, open-ended survey at course completion) were eventually analysed 

in order to examine how students’ engagement with Tinkerplots2, with MEAs and with each other 

impacted their motivation and participation levels, and how it scaffolded and extended their 

understanding of the big statistical ideas encountered during the course. We did not use an analytica l 

framework with predetermined categories. What we instead did was a content analysis aimed at 

identifying, though careful reviewing of the transcripts, the recurring themes or patterns in the data.  

Quantitative data (system statistics, performance on final examination) were analysed using 

descriptive and inferential statistics.  Linking the depth of qualitative data with quantitative breadth 



provided a more holistic picture of the course impact on students’ attitudes and learning of statistics. 

Results 

Analysis of the data obtained during the case study, indicates that the online Quantitative Educationa l 

Research Methods course provided students with experiences parallel to those provided in its face-

to-face version. The course was characterized by high levels of student engagement in online 

discussions and participation in videoconferencing sessions, and by successful collaborations for the 

completion of group assignments. Findings also suggest that the adoption of a pedagogical approach 

focused on modeling, using a dynamic statistics software like Tinkerplots2 for the conduct of 

statistical investigations, and of technological tools for facilitation of communication and 

collaboration among learners, is a viable option for online statistics instruction. The informal 

approach to statistical inference espoused by the course, using TinkerPlots2 as a tool for investigat ing 

authentic, open-ended model-eliciting activities (MEAs), fostered students’ ability to reason about 

the stochastic, while also developing their appreciation for the practical value of statistics. Through 

their engagement in MEAs in which they collaboratively built models and used them to evaluate 

research claims and hypotheses, the graduate students in our study developed relatively coherent 

understandings of fundamental concepts related to statistical inference. 

The affordances offered by Tinkerplots2 for building and experimenting with data models to make 

sense of the situation at hand, proved instrumental in supporting student understanding of both 

informal and formal inferential statistical ideas. Of course, similarly to other researchers we also 

witnessed a number of challenges associated with the adoption of a modelling approach (Konold, 

Harradine, & Kazak, 2007), and different levels of student reasoning and understanding of the role 

of models and modelling, and of the key assumptions underlying the models simulated by the 

computer (for more details, interested readers could refer to Meletiou-Mavrotheris, Paparistodemou 

& Serrado, 2015). Nonetheless, use of Tinkerplots2 enabled students to build and modify their own 

models of real world phenomena, and to use them to informally test hypotheses and draw inferences. 

Their engagement with data-driven inferences helped them to develop sound informal understand ing 

of the logic of hypothesis testing and its related statistical ideas (significance level, p-value, null and 

alternative hypothesis etc.), and served as a foundation for the formal study of inferential statistics.  

Student performance on assignments and assessments was comparable to what was observed in the 

face-to-face version of the course concurrently taught by the first author. When the end of the 

semester, both groups of students were administered an identical assessment instrument (as a final 

exam) with several open-ended tasks aimed at investigating their understanding of the main ideas and 

concepts related to statistical inference covered in the course, both groups obtained very similar 

results (Mean Score: At distance=76.1, Face-to-face=77.06). A two-sample unequal variance t-test 

(conducted after checking all assumptions) indicated that there was no significant difference in mean 

scores (p=0.73) between the two groups of students (see Table 1). 

Course No. of students  Mean Score Standard deviation t test for equality of means 
At-distance 49 76.10 14.68 t Two-tail Sig. 

Face-to-face 34 77.06 10.49 -0.3463 0.73 

Table 1: Two-tailed t-test Comparison of Mean Differences in final exam scores  

In the survey administered at the end of the course, students were asked to indicate what they liked 



most about the course. The overall feedback regarding the course content, services, and didactical 

approaches was generally very positive. The flexibility and convenience associated with distance 

education was an aspect appreciated by all course participants, since it made it possible for them to 

determine their own place, pace and time of study. Another aspect also much appreciated by the 

majority of the participants was the fact that both the discussions and the assignments were carefully 

designed to be learner-centered, and to make explicit ties between theory and practice by utilizing 

students’ own experiences as learning resources. The promotion of communication and collaborat ion 

was also considered to be an important strength of the course by most learners. Students, in general, 

enjoyed the interaction and the sharing of experiences and ideas, although there were a few who 

expressed a preference for individual assignments, arguing that “group assignments are less flexible 

since you have to regularly meet online with your group”, or that “in group tasks, some members do 

minimal work while the rest work very hard, but the end they all get the same score… this is unfair.” 

In a previous study conducted by the authors in the context of a transnational online teacher 

professional development course in statistics education, the biggest difficulty experienced was the 

limited success in establishing a functional online community of practice (Meletiou-Mavrotheris and 

Serrado, 2012). Similarly to other statistics education researchers (e.g. Gould and Peck, 2005), there 

was a much lower than anticipated level of learner-to-learner interaction in the course. Although 

community building was a main objective, and while at the course outset there was big enthusiasm 

and very high participation in discussion forums, interaction dropped off over time. The vast majority 

of messages (around 80%) had been sent during the first half of the course, while in the second half 

only a handful of learners actively participated in the discussion forums, while the rest had made 

minimal or no contributions. In the current study, by contrast, students’ level of engagement in the 

discussion forum was consistently high throughout the semester. All discussion forums created during 

the course were characterized by vibrant interaction and rich dialog. 

We consider the active participation of students in the discussion forums witnessed throughout the 

semester to be an important success of this course since, as the literature indicates, leading a 

discussion of substance on a “discussion board” is much more challenging and difficult to achieve 

than in a real classroom (Gould & Peck, 2005). We believe that, in the current study, the adoption of 

the following strategies led to more successful community building compared to our prior research: 

(i) Making participation in group activities a compulsory element of the course that counts towards 

learners’ grade; (ii) Establishing a clear set of criteria in the course syllabus to help learners better 

understand the academic expectations and increase the intellectual depth of their contributions; (iii) 

Providing sufficient time for group members to make meaningful interpersonal connections before 

the assignment of the first cognitive task; (iv) Increasing the duration of each discussion forum to 

allow adequate time for learners to formulate and articulate their contributions; (v) Providing more 

prompt and effective moderation of online interactions. 

Despite the overall success of the course, analysis of the collected data has allowed us to identify a 

number of issues and student concerns that adversely affected the online participation of course 

participants. The biggest shortcoming identified was the course overload. When requested, in the end-

of course survey, to indicate what they liked the least about the course, most participants mentioned 

the course workload that made it extremely difficult for them to keep up with the course requirements 

due to their overburdened schedules. Also, participation in videoconferencing and other activities that 



required synchronous communication (e.g. chat sessions) proved very difficult to schedule, as it was 

almost impossible for all of the students to be available at the same time.  

The Quantitative Educational Research Methods course team has adopted a continuous improvement 

iterative model. Insights from the current study informed the revision of the course, so as to further 

improve its quality and effectiveness. The heavy workload was corrected in subsequent offerings, and 

more realistic work expectations were set so as not to overburden students. There has also been more 

careful scheduling of course activities to offer students more flexibility.  

Discussion 

Teaching online courses is a new, unexplored territory for most statistics instructors. Distance 

education is similar yet different from classroom-based instruction, and requires new teaching skills 

and strategies. Several pedagogical and technical issues should be taken into account in the course 

design to provide an effective online learning environment. Using the case study of a distance-based 

approach to a quantitative educational research methods course as an example, the paper has provided 

some suggestions on how to best exploit the affordances offered by modern e-learning technologies 

to improve the quality and attractiveness of the online learning experience through the promotion of 

hands-on and collaborative knowledge construction. In accord with contemporary visions of web-

based instruction that support collaborative and participatory models of online learning, the article 

has offered some insights on how to build an online learning environment in ways that resemble 

statistical practice, an inherently cooperative, problem-solving enterprise involving participation in 

projects, modelling and experimentation with real and simulated data, group work, and discussions.  

Statistics education research in distance education settings is still at a developmental stage. More 

research is needed to advance our understanding of how to best take advantage of computer-media ted 

communication tools to support the development of effective virtual learning environments. By 

exploring the forms of collaboration and shared knowledge building undertaken by the group of 

students participating in our online course, the current case study has contributed some useful insights 

into the factors that may facilitate or impede the successful implementation of distance education. 

These insights have helped to further improve the quality and effectiveness of the course, and sketch 

a road map for our future research work, and for other similar endeavours.  
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Making modeling, generalization and justification an explicit focus of instruction can help to make 

big ideas available to all students at all ages (Carpenter & Romberg, 2004). Because mathematical 

models focus on structural characteristics of phenomena (e.g. patterns, interactions, and 

relationships among elements) rather than surface features (e.g. biological, physical, or artistic 

attributes), they are powerful tools in predicting the behavior of complex systems (Lesh & Harel, 

2003). Based on this assumption, we attempted to enhance students’ (aged between 8 to 13 years 

old) reasoning about probability by asking them to design a computer game for modeling 

probabilistic ideas. Students were introduced to the block-based programming language Scratch 

2.0, and used it to create their own games. The findings show that the idea of chance had an 

important role in their games and that they expressed many probabilistic ideas while they were 

designing and playing their game. 

Keywords: Statistics education, randomness, educational game, game design, Scratch. 

 

Background of the study 

Although probability is increasingly being integrated into the school mathematics curriculum, 

students face difficulties in understanding a variety of probabilistic concepts. Probability is difficult 

to teach because of the gap between intuition and conceptual development, even as regards 

elementary concepts (Batanero & Diaz, 2012). The current article contributes to the emerging 

literature on game-enhanced statistics learning by exploring the capabilities of a learning 

environment that uses programming logic in a game setting, as a tool for facilitating the emergence 

of young learners’ informal reasoning about randomness and other key probabilistic concepts. 

Based on a case study of a group of students (aged 8-13) who developed their own games through 

use of the visual block-based programming language Scratch 2.0 (Massachusetts Institute of 

Technology, 2013), the following question was explored: How do students use elements of 

reasoning about probability when they design their own games?  

The research literature suggests that digital educational games have many potential benefits for 

mathematics and statistics teaching and learning. One of their foremost qualities is the capacity to 

motivate, engage, and immerse players. It has been shown that educational games captivate 

students’ attention, contributing to their increased motivation and engagement with mathematics 

and statistics (Ke, 2008). Studies have also demonstrated that, in addition to providing an incentive 

for young people to engage in learning, games also have the potential to yield an increase in 

students’ learning outcomes (Kolovou, van den Heuvel-Panhuizen, & Köller, 2013). Although 

much of the research on the effectiveness of gaming on learning is inconclusive at this point, there 

are strong indications in the literature that appropriately designed and constructively used games 

can support experimentation with mathematical and statistical ideas in authentic contexts, and can 
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be used as the machinery for engaging students in problem solving activities, and for promoting the 

attainment of important competencies essential in modern society (Lowrie & Jorgensen, 2015). 

While digital educational games can provide a range of potential benefits for statistics teaching and 

learning, high quality, developmentally meaningful, digital games for students are less common 

than hoped. There is a wide variability in content, scope, design, and appropriateness of pedagogical 

features, with many educational games including mediocre or even inappropriate content, being 

drill-and-practice, and focusing on basic academic skills rather than on high-level thinking. 

Nonetheless, some exceptional exemplars that can help create constructive, meaningful, and 

valuable learning experiences do exist. One promising type is coding gaming software, which 

teaches students the concepts behind programming in a playful context.  With an increasing focus 

on programming and coding finding its way onto the curriculum in many different countries across 

the world, some innovative, educationally sound game-based learning environments that support the 

development of computer programming skills from a young age have begun to appear. Several 

educational applications are currently available for helping students with no coding background or 

expertise to grasp the basics of programming through the exploration and/or creation of interactive 

games (e.g. Scratch, ScratchJr, HopScotch, Bee-Bot). Often, coding game applications enable 

students to share their games with others, and to play or edit games programmed by others. 

Having taken their inspiration from Logo (Papert, 1980), educational programming environments 

promote a constructionist approach to technology use, with the emphasis being on students using 

technological tools to become creators instead of consumers of computer games. In addition to the 

provision of a highly motivational and practical approach for introducing students to computer 

programming and developing their computational thinking, coding software provide rich 

opportunities for the reinforcement of problem-solving, critical thinking, and logical thinking skills 

(e.g. sequencing, estimation, prediction, metacognition) that can be applied across domains.  

Methodology 

Participants and context 

A total of four workshops were organized and each one lasted for 2 hours. Twenty-six students 

(N=26, 16 male, 10 female), aged between 8 and 13, participated in all four workshops during July 

2016 (summer school vacations) on a volunteer basis.  An invitation to parents was placed in social 

media and the students were selected from a priority list based on registration date. All participants 

had the right to pause or stop their participation entirely at any given moment. Additionally, all 

parents provided their written consent regarding the use and publication of their students’ work for 

research purposes. In this paper, all names used are pseudonyms in order to preserve participants’ 

anonymity.  

To serve the role of the gaming platform, our research team chose Scratch, a visual programming 

language developed at the MIT Media Lab that consists of reusable pieces of code, which can easily 

be combined, shared, and adapted. Scratch can be used to program interactive stories, games, and 

animations, art and music and share all of these creations with others in an online community 

(http://scratch.mit.edu/). It was created to help students think more creatively, reason systematically, 

and work collaboratively, all of which are essential skills required for the 21st century (Resnick, 

2007). The software was first released in 2007 while Scratch 2.0, which is its second current major 

version, came out in 2013. In this study, we deemed Scratch 2.0 as the most appropriate option to 



adopt, due to the fact that there is very little research on how coding learning environments could be 

used as a tool for developing concepts related to the stochastic.  

For each workshop, a different set of extra-curricular activities were closely designed based on 

constructionism (Papert, 1980), and each meeting was structured in such a way as to promote an 

unhurried and creative process. The first workshop aimed to a general introduction to the software 

and in the second workshop students worked on activities based on the movement of a sprite around 

the screen. In the second workshop the x and y axis were discussed based on the position of a sprite. 

In the third workshop, students worked on variables and the idea of randomness through 

experimentation with a flipping coin game, and ways to pick random block. Finally, students were 

asked to create their own game based on what they had learned. In the last session, students 

continued their games from their previous meeting, changed them if they wished, and asked a friend 

to play their game so to identify any bugs and fix them. 

Data collection 

For the purposes of collecting our data, we used a variety of methods, including live video 

recording of the workshop and screen capturing of the participants’ interactions with the software. 

Other sources of data also included field notes and classroom observations. In six cases, we also 

conducted individual mini-interviews of selected students (interviewed while engaging in game 

design) that expressed some exceptional ideas regarding the element of randomness, in an attempt 

to study further their contributions to this project. For the purpose of analysis, we did not use an 

analytical framework with predetermined categories. What we instead did was, through 

careful reading of the transcripts and field notes and examining of the various interactions for 

similarities and differences, to identify recurring themes or patterns in the data. To increase the 

reliability of the findings, the activities were analyzed and categorized by all three researchers and 

any inter-rater discrepancies were resolved through discussion. 

Insights from students’ reasoning about probability in their Scratch games  

In the following paragraphs, we present two main categories of students’ reasoning about 

probability in the context of creating their Scratch games. First of all, we describe how students 

used the idea of chance and randomness in their games and secondly how they used spatial 

representations for expressing probabilistic ideas. The students’ games we present here were from 

the last workshop.  

The role of randomness in designing games 

In our sessions, students experimented with different mathematical and statistical ideas while 

designing their games.  One of the ideas brought up during the class discussion was that of 

randomness. The 'pick random' block, which allows users to bring randomness into Scratch 

projects, was casually explained to students, in a similar way to how the rest of the blocks were 

introduced. It was interesting to find out that the students ended up using randomness in their 

games. 

  



 

 

 

 

 

 

 

Figure 1: Eric’s and Nicole’s random game with letters 

Eric (a ten-year-old boy) and Nicole (a twelve-year-old girl) designed a game where the first letter 

of their name appears randomly when you click on the board. It is like a tic-tac-toe, but the player is 

not sure where the letter goes. 

Eric: I like the fact that the letters appear in a random position. This makes our game more 

interesting. 

Researcher: Why is that? 

Nicole: You have to see the probability, where it might go [the letter], and then select the 

letter.  

Eric: You don’t know at the beginning…You need to make a guess. If you don’t look at the 

results and just play, then you are more likely to lose…but nothing is for sure. 

Eric and Maria used the random rule in their game in order to make it more interesting. 

Randomness and uncertainty made their game to have action. Nicole referred to the concept of 

probability in order to make a correct guess based on the results of the game. So, students were 

playing the game and trying to guess where the next letter would appear based on the idea that the 

probability of each letter to appear somewhere is equal-according to their design.  

Charis, a nine year old boy, also made a game by using randomness.  

 

 

 

 

 

 

 

Figure 2: Charis’ dragon random game 

The aim of Charis’ game is to click on the dragon. When the dragon is clicked, it appears in a 

random position. The magician then follows the dragon to its new position.  



Charis: You know, I made it just for fun! It is nice to see the dragon moving around without 

knowing…But I will develop it. I made the dragon to move all over the place. 

Researcher: So, will it appear again in this position we see now? 

Charis: Of course! I will make something to count where it goes, so we will see which 

position it takes…May be to touch something…Let me see what I can do… 

Charis realizes that randomness is something that you don’t know in advance. It is interesting that 

he designed a dragon with a random move and then he tried to predict its movements by counting 

the dragon’s position each time. He admits that this is how the game begins to have fun! The idea of 

using the x and y variables in a random way, and of trying to predict the next position prompted 

Charis to use the idea that the dragon will move on the pre-designed space and after a long time 

(law of large numbers) the dragon will pass from every point (based on x and y).  

Spatial representations for expressing probability 

Chris, a 13 year-old boy, was one of the students who really liked using randomness in his games. 

Chris designed a game of a dog crossing the street. The aim of the game is to help the dog to cross 

safely (without touching any of the cars).  

 

 

 

 

 

 

 

Figure 3: Chris’ first version of random game 

Researcher (R): So, what is the game here? 

Chris (C): Try and see… 

R: Interesting… [While R is playing the game.] 

C: Yes, you don’t know where the car goes. You should be careful! 

R: Why? The car will move and cross the road. 

C: Not only…It [the car] moves randomly on this road I design. That’s the interesting 

part…So, you don’t know where it goes. And when you touch it! You see! The dog 

touched the car. Do you like it? 

We have also here the existence of randomness in games as a factor of making a game interesting. It 

is important how Chris refers to the dog’s movement - the one that the player controls - and not to 

the car’s movement. This also shows a realization that randomness in his game is something 

‘uncontrolled’ and this was made on purpose for making the game interesting. 

  



 

R: Why didn’t you just make the car to move forward? 

C: This is boring…just seeing the cars and move around. Now you don’t know…Of course 

it is easy with one car. …Chris is making different things on his game.  

We found it interesting that Chris’ game was a non-deterministic model of crossing a road. His idea 

of moving the cars in the road randomly is what makes his game appealing. Chris designed a car 

that moved in a random way. Although a random movement of the car might have sufficed for the 

aim of the game, he also used the road as a spatial sample space and tried to increase the difficulty 

of the game by increasing the number of cars. 

 

 

 

 

 

 

 

Figure 4: Chris’ second version of random game 

R: What have you done? 

C: I just put two cars, a counter, made a bigger road and I changed the dog. I changed the 

code of the cars. 

R: Why? 

C: It is better this way. I made the road bigger and I asked the cars to move randomly all 

over the road. This makes it more difficult for the dog to cross.  

[The researcher plays the game. The dog cannot cross the road. The counter keeps track of her 

failed attempts.] 

R: It is very difficult that way. 

C: Yes [he laughs]. This is something that reduces the probability of the dog safely crossing 

the     road to less than fifty-fifty. Actually, it makes it go to zero. 

R: Would you like to play it? 

C: Actually, that way is not interesting…it’s not fair. You know…I can make some change 

to the design. I will make the dog smaller. That will make it fair…Let’s see. 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 5: Chris’ final version of random game 

Chris uses the idea of fairness and the probability of 1/2 in his game while he is designing and re-

designing his own game. It is interesting that although in the workshop we never referred to spatial 

probability, Chris in his game connects the concept of space with the concept of probability. We can 

see that he did not change the code in his game, although he could have done that in order to reduce 

the probability of the car crossing the road. What he did instead was to reduce the space in the road. 

Discussion and conclusions 

The aim of the paper was to explore how students use elements of reasoning about probability when 

they design their own games. The students in the study experienced statistics as an investigative, 

problem-solving process. Although we tried to separate the use of randomness from the spatial 

representation of probability, the reader might notice that this was difficult to do. Because of 

designing, students used simultaneously the idea of randomness in terms of the icons they had in 

their game. We were really surprised with how these ideas came out without even mentioning what 

sample space is, or how we calculate probability. The design, coding, revision, and debugging of 

computer commands, helps students develop higher order problem solving skills such as deductive 

reasoning, while at the same time improving their conceptual understanding of key mathematical 

and statistical ideas. Thus, it becomes crucial to incorporate computer programming into existing 

statistics curricula. Game coding learning environments provide an ideal opportunity for doing so in 

an engaging, non-threating, and child friendly manner (Resnick, 2007). Educators and others can 

ensure that coding gives opportunities for new expressions, even for reasoning about probability.  

This increased popularity and proliferation of computer games has led to a widespread interest in 

their use as learning tools. Several statistics educators have, in recent years, been experimenting 

with digital games, investigating the ways in which this massively popular worldwide youth activity 

could be brought into the classroom in order to capture students' interest and facilitate their learning 

of statistical concepts (e.g. Pratt et al., 2008; Paparistodemou et al., 2008; Meletiou-Mavrotheris, 

2013; Erickson, 2014). Our study shows evidence that randomness is an important factor in playing 

games and a software like Scratch can give opportunities to fill the gap between intuition and 

conceptual development of probabilistic ideas (Batanero & Diaz, 2012). When we reconsider prior 

work on randomness (for example, Pratt, 2000), we find resonance in the use of symmetry between 

apparent fairness and the tendency for children to consider the appearance of the dice (or coin, or 

spinner…), something that we also found in Chris’ case. The present study showed some insights 

from students’ reasoning about probability while they were designing Scratch games. We intend to 



further analyse our collected data and to continue with further research on how students express 

probabilistic conceptions like the law of large numbers and how students use and elaborate their 

codes. 
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Using spreadsheets to teach probability in French high school 
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Including a ‘frequentist’ point of view has resulted in experimentation becoming an important issue 

in the teaching of probability in high school. Spreadsheets are now widely used, but the status of the 

results produced and how to use them are not always clear for the students, since two domains are 

at play in turn: statistics and probability. Through the French example – but this can also be applied 

to the teaching of probability in other countries − this paper reviews some questions about 

spreadsheets, namely simulating random experiments and shifting from discrete to continuous 

distributions.  

Keywords. Probability, simulation, continuous distribution, spreadsheet. 

In France as in many other countries, probability has become a prominent subject in the teaching of 

mathematics, in link with the growing importance of numerical data in everyday and professional life 

and the development of technologies allowing to process them. Conversely, the point of view on 

probability has evolved, taking into account a ‘frequentist’ point of view implying students making 

experiments. Among the technological tools spreadsheet has become much used in the teaching of 

probability, the main reason being that it makes getting a large number of tries of a random experiment 

very easy and fast. This paper is based on the French current situation, but it certainly can apply to 

many other countries all over the world. Its aim is to give some insights on how new didactic questions 

have occurred and have now to be tackled by teachers in their classes. As it has already been noticed, 

“it is not good enough to only consider which technology to use, but (…), in order for effective 

learning to take place, it is how the technology is integrated into the curriculum and learning process 

and how the teacher uses it that are vital” (Pratt, Davies & Connor, 2008, p. 98), the more so that 

“most teachers have little experience with probability and share with their students a variety of 

probabilistic misconceptions” (Batanero et al., 2005, p.1). I shall discuss some questions about the 

use of spreadsheet in high school, namely: 

- the nature of simulation, implying using a model of the random experiment and making in turn 

intervene probabilistic and statistical paradigms; 

- possible purposes of a simulation: visualize the law of large numbers, make conjectures, bring out 

the notion of stochastic model, help solving probability problems… 

- the suitability of spreadsheet for introducing continuous distributions (exponential, Gaussian…). 

For this, I shall use a theoretical framework including Kuzniak’s Mathematical Working Space 

(MWS), Kuhn’s paradigms and Duval’s semiotic registers.  

Theoretical framework 

In order to get a holistic view of the work undertaken by somebody solving a mathematical problem, 

one has to take into account not only the domains at play but also the cognitive processes involved. 

The Mathematical Working Spaces, or MWS, framework (Kuzniak, 2011) considers two “planes” 

−epistemological and cognitive−, each one having three components: 



- in the epistemological plane: a set of representations (‘real space’), a set of artefacts (instruments) 

and a theoretical reference system; 

- in the cognitive plane, three processes: visualization, construction and proof 

An important feature of the model is the interaction between these two planes according three 

dimensions, semiotic, instrumental and discursive, linking each component of one plane to a 

corresponding component of the other (Figure 1). The model also assumes that efficient mathematic 

work results from involving the 3 dimensions together with interactions between them. 

 

Figure 1: The MWS model (after Kuzniak, 2011) 

Kuzniak distinguishes 3 main MWSs: 

- reference MWS, defined by the syllabus, 

- suitable MWS, planned by the teacher to be implemented in his/her class, 

- personal MWS of the student. 

Kuhn (Kuhn, 1962) defined scientific paradigms as "universally recognized scientific achievements 

that, for a time, provide model problems and solutions for a community of researchers," (page X of 

the 1996 edition). This notion was adapted by Kuzniak to taught mathematics, regarding the 

epistemological plane. In the case of probability several paradigms can be distinguished (Parzysz, 

2011): 

- a realistic paradigm (R), i.e. the real (‘concrete’) random experiment itself; 

- a paradigm (P1) resulting from a first (“light”) modelling of the real experiment by establishing 

a precise protocol, a list of issues and assigning a probability to each of them; 

- a paradigm (P2), in which notions of random experiment and probability are defined, together 

with properties of probability which can be used for solving problems. 

- a paradigm (P3) of the axiomatic type, taught in university. 

N.B. In France, at secondary level, only P1 and P2 paradigms are considered, the latter being possibly 

extended with some elements of calculus at the end of high school  (P2+) for the study of continuous 

distributions. 

Regarding the semiotic dimension I shall refer to the notion of ‘semiotic register’, i.e. a coherent 

semiotic system allowing 3 cognitive activities: produce identifiable elements (representations), 

transform an element into another of the same register, convert an element into an element of another 

register (Duval, 1995). For Duval, a better knowledge is obtained through the use of several registers 

interacting one with another. He also indicates that the shift from one representation to another one 



is more efficient when there is a ‘semantic congruence’ between them, i.e. when there is a one-to-one 

correspondence between signifying elements of the two representations. 

Simulation 

In the beginning of its being studied in high school, probability was taught as an application of 

combinatorics, through Laplace’s formula (probability = number of favorable issues / number of total 

issues). This ‘cardinalist’ point of view implies that all the issues have the same chance to appear, 

and then other random phenomena had to be left aside. For instance this is the case for drawing pins: 

when tossed, they may come down in two ways, like coins, but no argument of symmetry can help 

and one cannot assign a plausible a priori probability to each of them. In such a case you have to 

observe the relative frequencies of the issues, assuming that they will ‘converge’ toward their 

probability when the number of tries grows ‘to infinity’. This is the ‘frequentist’ point of view, 

theorized by the law of large numbers. This point of view was introduced in French high school 20 

years ago. Anyway, whatever is the point of view on probability, one has to decide which probability 

will be allocated to each issue of the experiment, the difference being that the decision is made: 

- either on a priori ground (e.g. ‘symmetry’ of the issues) in a cardinalist approach; 

- or on a posteriori ground (frequencies of the issues) in a frequentist approach. 

In past days, teachers were reluctant to let their students perform sequences of a random experiment, 

mostly because it was noisy and requested too much time, but the coming of computers in classrooms, 

namely spreadsheet including a so-called ‘random’ generator (see for instance Kroese et al., 2011), 

provided them with an alternative path (although starting with real experimentation remains necessary 

to materialize the link with reality). Spreadsheet is now widely used to simulate random experiments, 

with various purposes. 

1) Spreadsheet can be used to visualize the compatibility of the cardinalist and frequentist points of 

view, and finally get the students confident in the generator. For this purpose one has to introduce 

into the machine a probability for each issue. Then the evolution of the relative frequencies on fairly 

large numbers of tries can be observed (Figure 2), this process being in fact a visualization of the 

‘law’ of large number (belonging to the P3 paradigm). 

 

Figure 2: Relative frequencies of heads in 1000, 2000, …50000 tries of heads and tails  

Thus performing a simulation implies constructing at least a simple probabilistic model (within the 

P1 paradigm), in order to implement it in the machine. Hence simulation is a ternary process: what is 

implemented in the software is not the real experiment but a theoretical model of it (Figure 3). 
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Figure 3: The ternary process of simulation 

In such a task several registers are appealed to in turn: natural language, symbolic language (software) 

and Cartesian graphs. The semiotic-instrumental plane of the MWS is at play, involving the initial P1 

paradigm (finding a model of the experiment), then shifting to another paradigm: descriptive statistic 

(DS) (results of the simulation). It is only when a conjecture about the experiment is asked that the 

discursive dimension appears (within P2 paradigm). 

Both as teacher and teacher trainer, I could observe that some students find it difficult to distinguish 

between statistical and probabilistic paradigms (the more so than some notions are similar), somewhat 

analogous with geometrical paradigms.  Here, like with GDS, the dynamic feature of spreadsheet, 

allowing an easy and fast observation of many samples −and consequently many different results 

(Figure 4)−, can help distinguishing the P2 paradigm (theoretical value) from SD (observed value).  

But French textbooks do not put the stress on the distinction between the two domains, in particular 

using the notions in a very loose way (e.g. confusion average / expectation), this probably reflecting 

actual teaching in classrooms. Similarly, about the instrumental dimension a tendency of textbooks 

to ‘overguide’ the students, in order to help them deal with the software, must also be noticed. 

 

Figure 4: Relative frequencies of heads in 50 samples of 100 tries of heads and tails 

2) Simulation can also be used to estimate the value of a probability. For instance, if various models 

of a same experiment give different probabilities for a given event, a simulation mimicking the 

concrete experiment can tell which model(s) can be discarded. This is the case with the following 

problem, which was the basis of an action research with high school students introducing the 

frequentist approach (Parzysz, 2007): 

Toss a well-balanced coin; if head (H) happens you win and if tail (T) happens you toss the coin 

again; then if H happens you win and if T happens you lose. What is your probability of winning? 

In 1754, Jean Le Rond d’Alembert thought that one has 2 chances against 1 to win, at variance with 

“all authors” claiming that one has 3 chances against 1; Mimicking the process with spreadsheet leads 

to some difficulty, since one has to distinguish between the two possible results of the first toss. For 

an easier implementation in the computer the teacher may decide that the coin would be tossed in 

every case. From a probabilistic point of view the two processes are equivalent but all students are 

not convinced. (Historically, a similar argument opposed Blaise Pascal with Gilles Roberval in 1654). 
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The reason for such a reluctance is that the second process is not semantically congruent with the real 

experiment. 

Table 1 shows the corresponding spreadsheets. 

Try n° 1st toss Again? 2nd toss Result 

1 H no  won 

2 T yes H won 

3 T yes T lost 

4 T yes T lost 

5 T yes H won 

6 H no  won 

7 H no  won 
 

Try n° A coin B coin Result 

1 H T won 

2 T H won 

3 H T won 

4 T T lost 

5 H T won 

6 T T lost 

7 T H won 
 

Table 1: Spreadsheets of the two simulations 

 When comparing the sheets, one can see that putting anything (H or T) in the empty boxes of the left 

sheet has no influence on the final result. After that one can forget the “Again?” column and have a 

second toss in all cases, i.e. replace the initial procedure by the second one without any inconvenience 

(Figure 5). 

 

Figure 5: From experiments to model 

Thus a visual comparison within the register of double entry tables, in the semiotic-discursive plane, 

can be a means for deciding if two models are equivalent. And for younger students this can be a 

possible path towards the bnotion of stochastic model. 

3) A most widespread type of activity in French 10th and 11th grades describes a random experiment 

and then asks the student to simulate it a number of times with the spreadsheet, observe the results 

and formulate a conjecture about the probability of one of the issues or the possible value of a 

parameter. Then he/she is asked to solve the problem using the probability theory and compare the 

theoretical results with the initial conjecture. 

In this process several paradigms are at play. As seen above, starting from reality (R), the student 

shifts to probability (generally P1), then moves to descriptive statistic (DS) to extract information 

from the spreadsheet (frequency, mean, etc.) and back to P1 to formulate a conjecture; solving the 

problem within P2 will imply the discursive dimension (Figure 6). 

N.B. In such activities the spreadsheet is used as a multi-purpose tool: it intervenes in turn as logica l 

tool (instructions for software), random generator (simulation), copying machine (results of tries), 

calculator (statistical parameters) and plotter (diagram). 



 

Figure 6: The paradigms and processes involved in the activity 

Continuous distributions 

N.B. This point is based on a recent research (Derouet & Parzysz, 2016). 

The French syllabus for 12th grade includes an introduction to continuous probability laws, and the 

official resource document for that level suggests starting with a statistical continuous variable, in 

order to approximate the histogram of a sample by a continuous curve “which fits the histogram, the 

area under the curve being equal to 1”. The general idea is to link a random variable X, not with a set 

of isolated probability values as was previously the case, but with a function f  (density) verifying : 

P(a ≤ X ≤ b) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 for any a and b with a ≤  b. This modelling process, which seems quite 

sensible, implies also a shift from statistics (DS paradigm) to probability (here P2+) and an essential, 

though transitional, point is histogram. This rises a difficulty, since spreadsheet cannot produce 

histograms, or rather what it calls histogram is in fact a bar chart. In order to overcome this problem 

one may widen the bars till they become contiguous (Figure 7), but this trick is restricted to cases in 

which all intervals have the same width. But the notion of density gets sense only with unequal 

intervals, since in a histogram the basic notion is area, not height. Thus in this case spreadsheet 

appears to be of no help if the software does not permit producing real histograms.  

 
 

Figure 7: From bar chart to pseudo histogram 

This same syllabus includes the study of normal law and recommends introducing the standard law 

N(0, 1) from the observation of the distribution of Zn= 
𝑋𝑛−𝑛𝑝

√𝑛𝑝(1−𝑝)
, where Xn follows the binomial law 

B(n, p). Then the bar chart for Zn is approximated by the curve of a function of the x → λ.exp(-ax2) 

type. As above a shift from discrete to continuous law occurs, but this time spreadsheet can help since, 

contrary to the general case, the values of Zn are equidistant (the distance being 1 √𝑛𝑝(1 − 𝑝)⁄  ) and 

then a pseudo histogram is suitable. 

All textbooks follow this scheme, in which three types of diagrams are at play in turn: first bar chart 

(for Zn), then pseudo histogram, then bell curve. Spreadsheet is necessary at every stage of the process, 

first to get the values of P(Xn = k) for 0 ≤ k ≤ n) and various values of n and p, then the corresponding 
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bar charts of Zn, then its pseudo-histogram and finally the (pseudo-)curve of the standard normal law 

(in fact a polygon). The main difficulty comes from the histogram and the curve looking proportional 

but not equal (Figure 8) because the distance between the values of Zn is different from 1 (see above). 

  

Figure 8: Pseudo-histogram and pseudo-curve 

This problem of scale is tackled rather awkwardly in textbooks, as is the standardization of the 

binomial variable. However, the question appears when one wants to compare the shapes of the bar 

charts for several binomial distributions (Figure 9); one may then think of a ‘calibration’, i.e. changing 

the units on the axes, in order to get diagrams with the same average and height. 

 

Figure 9: Comparison of binomial distributions (B(100, .1) and B(50, .4)) 

In the process the semiotic and instrumental dimensions of MWS are much appealed to, but the 

discursive dimension is not much present, due to the students’ lack of knowledge. 

Conclusion 

The current French high school curriculum starts with descriptive statistics (from 6 th grade on) and 

later goes on with probability (at 9th grade), introduced through a dual, frequentist and cardinalis t, 

point of view involving several mathematical paradigms (DS, P1, P2, P2+). Experimentation has 

become a central issue in teaching probability and in this process spreadsheet extends real tries, for 

the reason that it is incomparably faster once its use (language, gestures) is mastered. It is now 

included in the semiotic-instrumental plane of the MWS and can play an important role in many ways 

and for multiple purposes. Some points are of importance for teaching with simulation, namely pay 

attention to the model subjacent to the ‘real’ random experiment (even when it does not clearly 

appear), help students distinguish between the statistical and probabilistic paradigms, bring out the 

idea of stochastic model…  When coming to continuous probability a sensible way to introduce it 

consists of approximating a histogram by a continuous curve. Unfortunately usual spreadsheet cannot 

produce general histograms –i.e. with unequal classes− but only bar charts, becoming possibly 

‘pseudo histograms’, and histograms should have to be produced with another software. However 

class experimentation showed that a pseudo histogram may prove useful as a transitory artefact in the 

particular case of shifting from binomial to normal law. 

On the whole, although spreadsheet was not conceived for educational but for professional purposes, 

it has now become a quite appreciable, if not indispensable, tool for the teaching of probability in 

high school. 
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The paper presents a proposal of a teaching practice aimed at higher secondary school students, 

which intends to enhance discussion on the meaning and interpretation of probability, a topic which 

is often neglected in Italian schools. The authors are convinced that turning the traditional teaching 

method upside down - that is, proceeding directly to a problem solving approach with the aid of 

computers as programming tools - better develops in the students the ability to analyse and address 

uncertain situations correctly, and consolidates a probabilistic mentality. The chosen method was a 

phenomenon-inductive approach with the help of simulations, which encouraged the formulation of 

hypotheses and speculation concerning random phenomena. 

Keywords: Computer-based simulations, problem posing and solving, programming environment, 

random phenomena, secondary high school.  

Introduction 

Probability is a formidable tool for investigating the world around us, so it definitely ought to be part 

of the education of informed citizens. The importance of the calculus of probability in the higher 

secondary school curriculum in Italy had already been acknowledged by the ministerial experimenta l 

curricula1.  That is because the topic of probability lends itself well to mathematical and formal 

elaboration processes of sensible reality, as well as numerous applications which project a dynamic 

vision of Mathematics open to the real world. Other European countries have also contributed to the 

debate on the meaning and interpretation of probability, alongside the development of mathematica l 

theory, by including it in the school curriculum (Ahlgren & Garfield, 1991; Shaughnessy, 1992). 

However, efforts in this direction in most cases have not produced significant results, that is to say 

the topic has not received adequate attention for a number of reasons, among which the teachers' 

insufficient education and training stand out (Stohl, 2005). The fact that in Italy the teaching of 

probability in higher secondary schools has been relegated to a secondary and often marginal level 

has led with time to a number of misconceptions, which can have dangerous consequences, especially 

when one takes into consideration the strong growth of gambling. Learning about probability helps 

to understand the structure of gambling, but probability has much more important applications2. The 

difficulties in the classic approach have so far represented a real obstacle to classroom teaching and 

learning of the topic, not only in Italy but also in other countries (Batanero, et al., 2005). However, 

in recent years the growing interest for statistical methods and the use of information technology have 

contributed to the study of probability as a limit of stabilized frequency (Biehler, 1991). The 

                                                 

1 PNI (Piano Nazionale Informatica) in the second half of the 80s and Brocca at the start of the 90s. 

2 One only has to think of modern Physics, Biology, Economics, telecommunications, etc. 



modelling point of view was adopted in recent years, linking probability teaching with statistica l 

thinking. The introduction of efficient computers in secondary education allows us to simulate models 

resulting from statistical observations and to introduce students to the large field of statistica l 

inference. The advantage of using simulations is that we can overcome much of the difficulty 

encountered when using the formal rules. The present paper fits this framework, and proposes an 

example of teaching practice - aimed at higher secondary school students - which intends to enhance 

discussion on the meaning and interpretation of probability. 

Theoretical framework 

In the Italian Secondary school the approach to probability is either classic or frequentist. In 

particular, the classic approach has long been dominant; but in recent years the frequentist approach 

has also been used. The classic approach, based on combinatory calculus, is very hard for the majority 

of students because of the calculations involved in solving the formulae. This perspective introduces 

an a priori approach to probability in which probabilities can be calculated before any physical 

experiment is performed (Prodromou, 2014). The frequentist approach is based on observations of 

relative frequencies of an event associated with a random experiment that is repeated a sufficient ly 

large number of times under the same conditions. In this view, experimental probability is estimated 

as a limit towards which the relative frequencies tend when stabilizing (Von Mises, 1928). The idea 

of stabilization is based on the empirical laws of large numbers. However, the frequentist approach 

does not provide the exact value of the probability for an event and we cannot find an estimate of the 

same when it is impossible to repeat an experience a very large number of times. It is also difficult to 

decide how many trials are needed to get a good estimation for the probability of an event (Batanero 

& Díaz, 2012). To adopt one or the other approach does not help the students to understand the 

meaning and conceptual scope of the calculus of probability; it is even detrimental because it widens 

the gap between formal education and actual practice (Pfannkuch & Ziedins, 2014). So we need to 

look for a synthesis of the two approaches focused on problem-based learning, which also stresses 

connections with inductive applications and reasoning. Today all this is possible thanks to technology, 

which both supports training activities effectively, and can itself be the object of the training, and deal 

with the related problems. The use of appropriate didactic software, for example, while drawing 

attention to conceptual aspects of the methods, also familiarises the students with the handling of 

data. The programming environments - already familiar to the learners - which are used as mathematic 

tools to simulate and analyse casual experiments, are very productive. Computer simulation in fact 

allows to reproduce a model of a real or imaginary system; from a learning point of view, it facilita tes 

learning ‘through discovery' and ‘programmed learning'. Moreover, when teaching probability it is 

fundamental to make effective and efficient representations which help to clarify and explain why 

some resolving approaches work and aid generalisation. The practice of programming is an important 

resource in teaching because it is at all effects an infrastructure for the representation of mathematica l 

objects; in this case, simulation through the realisation of algorithms and their implementation helps 

the student to understand the importance of using models to describe reality and at the same time to 

formulate clearly and in detail the theory at the basis of the phenomenon to be represented. This paper 

presents a teaching proposal which emphasises the value of information technology to support 

probabilistic reasoning, and at the same time moves beyond pre-packaged didactic software which 

imply the rigid application of ‘recipes' in limited contexts and cannot be easily applied to models in 



real situations. Specifically, the proposal harmonically combines the classic and frequentist approach 

to probability into a pedagogic perspective which sees the computer as a programming tool in the 

MatCos3 environment. The authors aim to study and experiment new curves in the field of teaching-

learning of the calculus of probability taking full advantage of computers, whose potential has already 

been well illustrated by William Feller in his book (New York: Wiley, 1950). 

Methodology 

The psychology of conceptual learning has shown how concepts and judgment are formed along a 

lengthy pathway which starts from often confused or even distorted intuitions. These however 

become progressively clearer as new cases either confirm or disprove the initial assumptions, thanks 

to the reflections triggered by the new experiences. This is also true for probability, one of the 

concepts which is most likely to be misunderstood or distorted. Form the didactic point of view, 

computer programming plays a crucial role in the creation of social interactions which can assist 

students in the difficult transition from an empiric and objective interpretation of numbers to a 

relational and functional one. Based on these premises, the choice of methodology has privileged a 

phenomenological- inductive approach, which encourages the formulation of hypotheses and 

conjectures on random phenomena. In Figure 1 we can see the synoptic outline of the process: 

 

Figure 1: Model of the didactic procedure  

The model in Figure 1 consists of five phases, with appropriate intermediate steps, which lead to the 

next phase. In practice, starting from reality, first we investigate it; then, after mathematisation, we 

derive rules of behaviour to be applied to reality itself. The process is carried out encouraging 

inductive reasoning, in an effort to blend the topics and solution methods while leaving plenty of 

opportunity for discovery. The simulations allow the students to take stock of the situation and start 

again from what they already know, to make appropriate considerations and understand why 

phenomena occur, and their implications. In particular, computer simulation through programming 

represents a constructive and cognitive activity because it enables the student to acquire skills, 

strategies and techniques for the solution of problems through the concepts of variable, procedure, 

repetition and reoccurrence; concepts which are also cross-curricular. 

Design of the teaching procedure 

Here we provide details of all the phases of the didactic model described previously. 

                                                 

3 Designed and developed by the Interdepartmental Centre for Didactical Research of the University o f Calabria, and 

widely tested as part of MIUR projects (Ministry for Education, University and Research). 



Problem posing 

The teacher proposes to the students the following problem situation: 

For a tour in Sicily, a well-known airline company provides a small plane with 23 seats laid out in the 

following way: the first row has 2 seats while the others have 3. Those wishing to travel must book on-

line through a dedicated platform, which allocates seats in a completely random way. Luisa is the first 

to access the booking platform; how probable is it that the system allocates her a seat in the first row? 

If Luisa also books for her husband, does the probability that the system allocates at least one seat in 

the first row remain the same? 

A careful reading of the text is followed by a discussion guided by the teacher. Such a process of 

verbalisation is important from the cognitive point of view, and represents a first step towards the 

formalisation of the problem; at the same time, from the constructive viewpoint it becomes a bridge 

towards the next phase, to be carried out in groups, which implies the real simulation of the problem 

(Frassia, 2016). 

Real simulation 

The teacher divides the class into groups giving each group a non-see through plastic urn containing 

23 spheres, numbered from 1 to 23, identical in shape and material. The task for all the groups is to 

simulate the previous problem situation and register the results obtained on a chart. The following is 

the specific task set for the real simulation: 

"From the urn containing 23 spheres numbered from 1 to 23, one is taken out. Calculate the probability 

of getting a number lower than 3". 

The students simulate for n consecutive times (for example n=25) the casual choice of seat by drawing 

a numbered sphere, recording the results on a two-way chart. When comparing the results obtained 

by the different groups, the learners realise they are different, and this motivates them to make a 

sufficiently high number of trials in a limited time. The need for a tool which can aid the learning 

experience, an instrument able to simulate a high number of repeated trials within a reasonable time, 

thus becomes evident.  

Mathematical modelling 

The actual simulation of the proposed problem constitutes an important occasion to highlight the 

ability to switch from the plane of reality to that of mathematics; but in order for the teaching to 

contribute to a real understanding of the concepts and a solid acquisition of them, the use of computers 

as programming tools acquires great importance because it is a method, "a mental place" where 

students have a real chance to explore mathematical concepts, to formulate conjectures to be validated 

or refuted, and then to continue the experience of problem solving  (Frassia, 2015). Mathematica l 

modelling requires the students to reproduce some aspects of sensible reality in order to analyse and 

study them. Moving from the experience to the construction of the meaning requires the construction 

of a simple algorithm representing the simulation of the event.  Being able to work within a 

representation register and going from one to the other - that is what Duval (1993) calls ‘competences 

of dealing with and converting' - is fundamental because the meaning of mathematical objects is 

accessible only through their representations. The probabilistic model is made explicit and reviewed 

in a logical sequence thanks to the algorithm; furthermore, the use of a programming environment 



like MatCos adds value because it helps the students to reinforce their skills in handling mathematica l 

language (Costabile & Serpe, 2009, 2013).  The construction of the algorithm is an important and 

delicate phase because the students have to design the 'finite sequence of steps' that allows the 

computer to get to the solution. The steps of the algorithm are: 

Step 0  Assignment: n  (Simulation number). 

Step 1 Initialization:  cf = 0 (counter for the number of favorable cases). 

Step 2  Cycle (simulation of n prove consecutive) 
- Creating one variable a; 
- Control action: if (a = 1 o a = 2) then do 

 Increase counter cf. 

Step 3  Calculation:  p=cf/n. 

Step 4  Print action: cf. 

Step 5 Graphic representation: histogram of the absolute and relative frequencies . 

Virtual simulation 

The previous algorithm is easily implementable in MatCos. 

Code MCS1 

n=readnumber; cf=0; 

for(i from 1 to n) do; 

 a=int(random(1,23.99)); 

 if((a=1)o(a=2))then do; 

  cf=cf+1; 

 end; 

end; 

print("In ", n , " extractions, a number lower 

3 is taken out ", cf , " times "); 

v=Array(2); v(1)=cf; v(2)=n-cf; histogram(v); 

w=array(2);w(1)=cf/n;w(2)=1-cf/n; 

histogram(w); 

 

Figure 3: Output of simulation for n = 1000 

The students now proceed to the algebraic solution of the set problem and compare the results with 

the numerical values of the relative frequencies obtained in output. Summing up, considering the 

event: 

A = “Draw a number lower than 3, drawing a sphere from a pool of 23 spheres numbered from 1 to 23” 

The number of favourable cases and the number of possible cases related to the event A are: 

𝑐𝑓 = 2 𝑐𝑝 = 23

So, the probability of the event A is: 

𝑝(𝐴) =
2

23
≈ 0,087. 

From a comparison of the results obtained in output with the theoretical ones, the students realize that 

when the number of repeated trials increases, the value of the relative frequencies gets closer to the 

real value of the probability. 



A question still standing… 

The first question has now been answered, but the second is still standing: 

If Luisa books also for her husband, does the probability that the system assigns at least one seat in the 

front row remain the same? 

The corresponding question is made explicit in the following task: 

“From an urn containing 23 spheres numbered from 1 to 23 we pull out two spheres. Calculate the 

probability that at least one is lower than 3”. 

Supported by the experience so far, the students decide to start directly from the virtual simulat ion 

and so make some changes to the previous algorithm. They are convinced that the two questions must 

have the same solution, and that the teacher just wants to trick them. 

Revisiting the previous algorithm implies further steps. 

Here we report the steps of the algorithm and one output. 
Step 0  Assignment: n  (Simulation number). 
Step 1 Initialization:  cf = 0 (counter for the number of favorable cases). 
Step 2  Cycle (simulation of n prove consecutive) 

- Creating one variable a; 
- Control action: if (a = 1 o a = 2) then do 

 Increase counter cf. 
Else do 

- Creating one variable a; 
- Control action: if (b = 1 o b = 2) then do 

 Increase counter cf. 
Step 3  Calculation:  p=cf/n.. 
Step 4  Print action: cf. 
Step 5 Graphic representation: histogram of the absolute and relative frequencies.  

 

Figure 4: Output of simulation for n = 1000 

The students now proceed to the algebraic solution of the set problem and compare the results with 

the numerical values of the relative frequencies obtained in output. In the drawing of 2 spheres from 

a pool of 23 spheres numbered from 1 to 23, the students consider the event: 

E = “Obtain at least a number lower than 3” 

The event complementing event E: 

EC= “From the drawing of 2 spheres from a pool of 23 spheres numbered from 1 to 23, both are lowered 

than 3” 

 

 



So: 

𝑝(𝐸) = 1 − 𝑝(𝐸𝐶) = 1−
21

23
∙
20

22
=
19

55
≈ 0,170 

The students by now have all the necessary information to answer the second question in the problem, 

which requires a comparison of the probability of the two events: event A and event E. From such 

comparison it becomes apparent that the probability of the two events does not coincide. So the 

students’ prior conviction that the two questions of the problem - albeit expressed in formally different 

terms – share the same solution is proven wrong. The probability of event E is indeed bigger than the 

probability of event A. 

Conclusions 

The teaching proposal increases students' confidence on the effectiveness of statistical methods, and 

at the same time raises awareness of random events. The difficulties encountered during the learning 

phases of the mathematics of uncertainty can thus be overcome. Virtual simulation, through the 

practice of programming, plays an essential role because it helps the student to develop good problem 

solving skills. In particular, simulation aids the understanding of the concept of probability of an 

event, assigning to it a ‘degree of reliability' in the prediction of random phenomena. The novelty of 

this proposal is the setting up of an environment for the learning of probability, showing the close 

link between probability and statistics thanks to a very specific task (problem posing). The objective 

is to insist on the role of intuition because, in the majority of cases, students’ probabilistic intuit ions 

lead to erroneous convictions and answers. The use of computer programming enables the students 

to take explorative steps which can lead to the solution of  a problem and trains their ability to 

‘anticipate’ and "being able to see" in mathematics. The learner through the programme breaks down 

complex concepts into simple ones, thinks of and adopts new solution strategies, and compares with 

previous results. In so doing learners expand their mental processes and consolidate constructive 

knowledge. After all, education that promotes informed and solid learning cannot fail to redress 

wrong perceptions on the notions of probability and encourage reflection on its conceptual 

implications, but this had already been pointed out by Bruno De Finetti in 1967. 
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We report some initial results of an ongoing investigation about Mexican high school students’ (17-

18 years) reasoning when working with the sampling distribution (SD) for the first time in a regular 

classroom setting. Learning activities involve the usage of simulations and are part of a 

hypothetical learning trajectory (HLT) aimed at fostering a distributional and stochastic 

perspective of sampling and inference. We describe some appropriate strategies and limitations 

that students exhibited as evidenced by their a priori reasoning. 
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Introduction 

Several errors and limitations have been reported on statistical and probability education in the past 

decades (Batanero, Godino, Vallecillos, Green & Holmes; 1994). In recent years, the development 

and availability of educational software in these areas have allowed some researchers to explore the 

idea that notions or informal versions of different objects and processes embedded in such 

disciplines, such as statistical inference, can be introduced before tertiary educational levels 

(Zieffler, Garfield, delMas & Reading; 2008). In particular, we point out that a number of proposals 

use empirical SD’s and random simulations as key resources for developing appropriate 

conceptions and reasoning of fundamental statistical ideas, such as sampling, estimation and 

inference (e.g. Rossman, 2008; Batanero & Diaz, 2015; Garcia & Sanchez, 2015). Hence, we 

consider SD’s to be a strong candidate and a starting point for instruction and teaching, with 

assistance of technology, when introducing statistical inference. We report on some preliminary 

results of an ongoing investigation that uses an HLT (Simon & Tzur, 2004) aimed to develop and 

foster a distributive and stochastic concept of sampling based on the SD. We focus on the initial 

learning activity that explores students’ notions of probability, classification of most and least 

probable sample values, and the use of average as a measure for representation and summary of the 

SD. Related literature, method of inquiry, analysis of students’ performance and some final 

reflections and discussions are described. 

Some related literature 

There are a variety of interrelated elements that intervene in the process of construction, 

applicability and interpretation of statistical inference such as sample and population, statistic and 

parameter, distribution and variability, probability and significance, etc. Some researchers suggest 

that several conflicts and limitations of students, teachers and even professionals regarding their 

capacity to draw inferences from sample data are strongly related to a lack of or poor formation of 

concepts such as variability, sampling variability and SD’s. For example, a review by Herradine, 

Batanero & Rossman (2011) points out that people in general hold deep misconceptions about 

sampling and inference (e.g. representativeness heuristics, law of small numbers, incapacity to 

reason about many samples) that traditional teaching does not help to overcome, as it tends to focus 

on calculus and computations instead. Chance, delMas & Garfield (2004), and Liu & Thompson 



(2007) also indicate that a deficient or limited understanding of concepts such as the SD and 

probability could inhibit an appropriate reasoning of statistical inference. 

On the other hand, Fathom is a specialized software developed to assist teaching and learning in 

statistics and probability. It offers the possibility to, among other capabilities, generate random 

simulations that can cause the emergence of abstract and complex mathematical objects such as the 

SD. It also allows access to analyze how this concept behaves through the manipulation of its 

parameters (sample size, population parameters, number of samples); this opens the possibility for 

didactic treatment substantially different from the traditional one that parts from a theoretical 

posture. These are key resources that can potentially promote and foster students’ statistical 

thinking (Chance, Ben-Zvi, Garfield & Medina, 2007; Biehler, Ben-Zvi, Bakker & Makar; 2013) 

and, particularly, can introduce ideas of the logic behind statistical inference (Rossman, 2008). 

However, only a few of the aforementioned studies target high school students, with practically 

none having been conducted in Mexico. The actual curricula incorporate very few, if any at all, 

statistical and probabilistic content for elementary and secondary education; it is only for some high 

school programs that introductory courses of statistics and probability are included. In addition, 

traditional practices use no technology to assist teaching and focus heavily on computations. This 

makes us believe that students’ lack of experience with sampling and statistical inference within 

schools’ practices make them become highly dependent on wrong or inappropriate intuitions and 

misconceptions when making inferences. The presence of this conflictive situation, and the 

availability of research results that propose alternative ways to overcome such difficulties, have 

motived us to set our initial phase of this investigation: to explore and gain insight as to how these 

students reason when working with the SD, and with the assistance of Fathom (simulations of 

random samples), in order to better understand the extent of their reasoning and potential learning. 

Method 

A regular high school classroom of 44 students participated in the study (28 female and 16 male); 

they had previously taken an introductory course (traditional style) to Statistics and Probability 

containing descriptive graphics, measures of center and variability, introduction to classical and 

frequentist approach to probability, calculations of probabilities for simple events, probabilities for 

conditional and independent events. Students didn’t have any previous experience with Fathom. 

This particular learning activity is divided in two stages and was applied in two class sessions of 

two hours each (one stage per session). The problem was posed/introduced to students (described 

below) during the first stage and, in the second, they were allowed to work freely in pairs to respond 

some questions using the software. Data for analysis consist of students’ responses (using digital 

worksheets), observations of two teachers/researchers who also attended the sessions and some 

brief interviews. We are using principles and initial techniques of the Grounded Theory 

methodology (Glaser & Strauss, 1967; Birks & Mills, 2011) to analyze students’ responses; 

specifically, we are using: initial purposive sampling, initial (and open) coding, and concurrent data 

generation and analysis. These techniques have oriented our methodological approach by: (1) 

selecting appropriate participants to study the phenomena of interest (students’ reasoning); (2) 

depart from a pre-established theoretical framework and apply an open codification and 

categorization of data (based on incidents-patterns in procedures and arguments students exhibit 



when resolving the activities); (3) comparison between incidents-patterns and codes for a greater 

refinement. At this point, the initial codes provide a general description and evidence of students’ 

reasoning; our ongoing analysis focuses on identifying core categories, something at this time 

beyond the scope of this communication. 

The HLT and the unfolding of the learning activity 

The main goal of the HLT is to encourage and provide students with an image of sampling and 

inference grounded on the study and exploration of the SD from a stochastic and distributional 

perspective; a conception set apart from the one that usually consists of an image that just reflects a 

“mini version” of the population. This HLT includes eight learning activities organized in three 

phases: 1. Introduction to the SD (to obtain estimations of probabilities for samples’ outcomes; to 

generate an unambiguous method to identify usual or typical sample results and; to relate the 

average of the SD with the population’s parameters); 2. Analysis of the SD when sample size is 

modified (changes in form, sampling variability, estimations of probabilities and typical sample 

results); 3. Estimation of an unknown population’s parameters (assessing estimations based on 

sample size). In addition, after the three phases are completed, students must face a situation that 

requires the usage of (informal) hypothesis testing; a key aspect of interest in our research is to 

analyze students’ performance in order to evaluate how much they draw on their knowledge about 

the SD and aforementioned concepts to do so. 

The selected learning activity for this communication is the very initial one of the HLT and the 

core’s first phase. It is based on Saldanha & Thompson’s (2007) exploration of students’ thinking 

of sampling and inference, with the distinction of being focused on specific sample outcomes. Due 

to space restrictions, we do not include explicitly all the components for this activity (learning 

objectives and hypothesis about the learning process) but briefly describe the unfolding of the 

mathematical task and its procedure of application. 

The first stage of the activity follows a dynamic of an open class discussion guided by the 

teacher/researcher. It begins by presenting Mr. B to students: a small-medium size container 

composed of 7,000 beans, of which 50% are black beans and the rest 50% are pinto beans (Figure 

1); Mr. B represents a physical dichotomous population whose composition is initially unknown to 

students. The main interest at first is to estimate the total percentage of pinto beans based on a small 

sample outcome. After one student draws by hand a random sample of 10 beans from the jar, the 

starting question that opens discussion is: “is this result (sample’s %) enough evidence to assure 

that Mr. B has X% of pinto beans?” Some students are expected to intuitively detect sampling 

variability and ask to obtain more samples; the teacher encourage students to explore their argument 

by allowing them to draw as much samples as they consider necessary to propose a parameter. 

We have observed that students don’t pay much attention to high levels of variability and tend to 

hand-draw only a small collection of samples (less than 15), and then roughly conjecture a 

population percentage out of it using the frequencies, mode or average. After making this proposal 

(most likely different from 50%), the parameter is revealed to students and their “failed” estimation 

produces an engagement that is used to explore what parts of the process can be refined. Once the 

parameter is known to students, the exploration starts by the teacher proposing the classification of 

the obtained sample values as “favorable” (such as 40% - 60%) or “unfavorable” (replacing 



Saldanha and Thompson’s “usual/unusual” to highlight the tension between the presence of 

sampling variability and the expectation of obtaining sample outcomes that match or are very close 

to the parameter); the next step is to investigate how is it possible to quantify how expectable these 

results might be and how much for those considered the opposite. That is, we land and focus on 

obtaining probabilities of sample outcomes through the SD. 

Then the teacher guides discussion to the proposal of generating many samples by posing the 

questions “What if we repeat this experiment a lot of times? Could the generation of many samples 

help us to calculate a probability or identify which are the most and least likely values?”. The 

second stage of the task begins and Fathom is used to simulate a random collection of 300 sample 

outcomes and to generate a graph/distribution out of them (an empirical binomial SD emerges, with 

n = 10 and P = .1, that students can generate repeatedly instantly using the software). Then the 

students are organized in pairs to freely respond a series of questions using the software and digital 

worksheets, which aim to explore key aspects of the SD such as estimations for probabilities, most 

frequent/probabilistic values and the identification of center. We extract for this report the analysis 

of the following items: 

a) Express a number from 0% to 100%, which represents how likely you consider it that you’ll get a 

value of 70% of pinto beans in the sample #301 (n = 10). Write down your procedure and any 

calculations you made. 

b) Which of all possible sample percentages do you think are the most likely to obtain in sample 

#301? Which are the ones you consider to be the least likely? Describe the method you used to 

select those values. 

c) Express a particular value that summarizes and represents all 300 percentages obtained in a 

particular simulation. Explain your procedure and include any computations you made. 

 

 

 

 

Figure 1: Mr. B (left) and display of an empirical SD using Fathom (right) 



Results: Students’ responses 

Codes for summarizing students’ responses in question (a) are: 

  Codes: Procedures and arguments 

Makes 
computations: 6 

pairs 

Computes correctly an estimation for the probability: provides intervals or 
particular values – (6) 

Makes no 

computations: 16 
pairs 

Assigns a probability of 30% or 40% and points out one or two of the 
following features: the sample value (70%) is less likely to obtain due to its 
low frequency; considers that the values of 40%, 50% and 60% are the ones 

that present the highest frequencies (most likely values); specifies the sample’s 
value frequencies – (6) 

Makes no numerical assignment and only points out one or two of the previous 
features – (3) 
Assigns a probability of 35% or 0% because they consider that sample values 

have those tendencies – (2) 
Others: Assumes the maximum frequency of the sample value as the 

probability; assigns 10% because it’s one of 10 possible options (of the random 
variable); assigns 35% as the probability, incoherent argument – (5) 

Table 1: Students’ quantification of probability of a particular sample value (numbers in parenthesis 

indicate frequencies/number of pairs with the same type of answer) 

Two main groups of responses appear; the first one consists of six pairs of students that made an 

appropriate estimation for the probability of obtaining a specific sample value; five of these gave a 

particular value for the probability regardless of the number of simulations they made of the 

sampling distribution, while only one of them expressed it in a form of an interval. For example, 

pair 16 (P16) mentioned: 

“We estimate that sample #301 has a probability of 10%-13% of obtaining 70% of pinto 

beans because we observe that, when generating different samples, the sample value of 70% 

appeared in a range of 30 to 40 times, which equals to 10% -13%” 

It seems that the other group of students was not able to quantify correctly their expectation of 

obtaining the value of 70% and, instead, they assigned (six pairs) a value of 30% or 40% as the 

probability with no computations but most likely based on the frequency of the sample value. Nine 

of these 16 pairs also mentioned some features they observed in the SD, such as values of very low 

or high frequencies that they considered were related to a high or low expectation (probability) of 

obtaining the sample value. For example, P9 answered: “40% because when running the simulation, 

the value of 70% was not one that appeared constantly or continuously more than the previous 

values.”. Codes for students’ responses in question (b) are: 

  Codes: Procedures and arguments 

Arguments 
based on 

frequencies: 14 
pairs 

Sample values of 40%-60% because they present the highest frequencies (specifies 

a particular value for the frequency) – (1) 

Sample values of 40%-60% because they present the highest frequencies (points 
out some sample values or the interval) – (13) 

Includes or 

based entirely 

Sample values of 40%-60% because they present the highest frequencies and 

because the population’s parameter equals 50% – (1) 



on the 
proximity 

criteria: 6 
pairs 

Sample values of 40%-60% because they are the closest to the population’s 
parameter (points out some sample values or the interval) – (4) 

Sample values of 40%-60% because the population’s parameter equals 50% – (1) 

Others: 2 pairs Sample values of 40%-60%, redundant answer or incoherent argument – (2) 

Table 2: Students’ selection of the most likely/probable sample values (numbers in parenthesis indicate 

frequencies/number of pairs) 

Fifteen pairs of students used the highest frequencies to determine which sample values they 

considered to be more likely, but only one of them specified a value for the frequency as a main 

reference to compare the rest. These two types of responses are shown by P2: “40%, 50% and 60% 

because their frequency is higher to 55”; and P22: “The values of 40%, 50% and 60% because the 

Fathom graph shows us that these percentages appeared the most”. Six pairs argued that these 

percentages are the most likely since the population’s parameter equals 50% (five pairs’ responses 

are based entirely on this), which is what we call the “proximity criteria” (note that this type of 

thinking is devoid of reasoning with the main objects at hand, such as frequencies, image of 

distribution or sampling variability embedded in the SD). To exemplify this, P15 answered: 

“40%, 50% and 60% because the quantity of pinto and black beans is the same (50-50) but 

it’s not likely that we will get 50% pinto beans in every sample, so the closest percentages are 

40% and 60%.” 

Due to space restrictions, we do not include responses for the selection of the less likely values; 

however, we mention that the obtained responses match closely with those previously described. In 

this case 21 pairs referred to the values of 20% or less and 80% or more (special emphasis on 10% 

and 90%) as the least likely percentages; only one pair mentioned the values of 30% and 70%. 

Codes for students’ responses in question (c) are: 

  Codes: Procedures and arguments 

Uses (or 
proposes to) 
the average: 

10 pairs 

Computes correctly the average of the sampling distribution – (3) 

Computes incorrectly the average (applies another method to high frequencies of 

sample values) – (2) 

Computes incorrectly the average (applies the "rule of three" based on a single 
sample value of high frequency) – (1) 

Computes incorrectly the average, does not specify method – (1) 

Only proposes to use the average, makes no computations – (3) 

Uses the 

mode: 10 
pairs 

Uses the mode (50%) as a representative for the sampling distribution – (6) 

Uses a biased-mode (values greater than 50% that are not in the set of the random 

variable values) – (3) 

Uses a biased-mode (less than 50%) – (1) 

Others: 2 
pairs 

Values of 50% or 60%, does not justify or explain the reasoning – (2) 

Table 3: Students’ numerical representation of the sampling distribution (numbers in parenthesis 

indicate frequencies/number of pairs) 

The first 10 pairs of students decided to use the average to represent the sample values but only 

three did so correctly. Three out of four pairs that incorrectly computed the average mistook sample 



values for their frequencies, didn’t include all values and applied a different method; three more 

pairs only proposed to use the average but seemed incapable to compute it. For example, P11 

mentioned (considers some high frequencies and calculates a percentage): 

“We made an average out of the percentages that repeated the most and we came to the 

conclusion that this percentage value is at least of 68% of the 300 percentages. The 

calculations were to obtain a percentage of the percentages that presented the highest 

frequencies: 40 with 60 times, 50 with 82 times and 60 with 62 times. Computations: 60 + 82 

+ 62 = 204 / 300 = 0.68 * 100 = 68%” 

The next 10 pairs decided to use the mode but four of these failed to do so correctly; four of them 

used a biased mode, where three selected values greater than 50% that are not included in the 

random variable. As an example of this, P21 responded: “Of the 300 simulated percentages, we 

estimate that the value that repeats the most is 54% because no sample is equal to the previous one 

and most of the time we get something greater than 50%”. 

Conclusions and discussion 

The procedures and arguments showed above are evidence of an a-priori reasoning since we 

consider our students have not been previously instructed on this type of activities (despite their 

introductory course). In this study, we identify some appropriate reasoning such as students relating 

high and low frequencies of sample values to high and low probabilities of obtaining them (even a 

few calculated correctly this estimation); and the use of the average and mode to summarize and 

represent the sample outcomes of the SD. Also, we identify limited or biased reasoning such as an 

incapability to calculate reasonable estimations for probabilities of sample outcomes; an ambiguous 

method to classify the most or least probable sample values (there’s no definition for “the 

highest/lowest frequencies”; sample values of 30% and 70% are missing for classification); the use 

of the “proximity criteria” as a resource that avoids reasoning with the available data and is based in 

distance or proximity to the population’s parameter; and limitations to calculate an average (despite 

“having all data at hand”). We believe these kinds of learning activities helped us significantly to 

expose students’ conceptions about sampling and probability when working for the first time with 

the SD. The evidence suggests that students are capable of grasping and displaying important 

statistical-probabilistic notions, as well as resources, when placed in a rich-exploration and problem 

based environment. These constitute a starting point for researchers (and teachers) to assess and 

target more efficiently the different learning objectives of statistics education from a more 

constructivist point of view; it is the focus on the limitations founded in their strategies what can 

potentially and progressively re-orientate their reasoning to a more appropriate one. Overall, we 

strongly feel that more studies that can exhibit and foster students’ reasoning are still needed in 

order to better understand and influence more efficiently students’ learning of the complex (and 

necessary) discipline that is statistical inference. 
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Using student models to generate feedback in a university course on 

statistical sampling 
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Due to the complexity of the topic and a lack of individual guidance, introductory statistics courses 

at university are often challenging. Automated feedback might help to address this issue. In this 

study, we explore the use of student models to provide feedback. The research question is how 

student models can be used to generate feedback to university freshman in an online course on 

statistical sampling. An online activity was designed and delivered to 40 Biology freshmen. 

Instruments for generating student models were designed and student models were generated. Four 

students were interviewed about the generated models, and about the differences with their own 

estimation of their understanding. Results show that it is possible to generate individual feedback 

from student work in an online learning activity and suggest that discussing differences between 

own estimations and generated student models can be a fruitful teaching strategy. 

Keywords: Statistics, feedback, educational technology, higher education, student model.  

Introduction 

Many bachelor programs offer introductory courses in statistics. Success rates for these courses are often 

low, which makes them an obstacle for students in obtaining a bachelor’s degree (Murtonen & Lehtinen, 

2003; Tishkovskaya & Lancaster, 2012). One challenge is that such courses are often taught to large 

groups of students, making it difficult for teachers to provide individual guidance. The main challenge 

concerns the complex topics in these courses. One of these topics is statistical sampling, which involves 

concepts such as sampling distributions and sampling variability. Understanding statistical sampling does not 

only require students to understand these concepts, but also the connections between them (Castro Sotos, 

Vanhoof, Van den Noortgate, & Onghena, 2007).  

To address both the problem of individual guidance and the complexity of the subject matter, an approach 

using automated individual feedback can be promising. If appropriately designed and timed, feedback has 

the potential to increase student learning (Hattie & Timperley, 2007; van der Kleij, Feskens, & Eggen, 

2015). Especially for large groups of students, automated feedback can add individual support that would 

otherwise be unattainable. For the case of statistical sampling, such automated feedback should aim at 

student understanding of the complex concepts involved. This asks for feedback on a global level, 

aggregated per concept, rather than on a local, task level. To gather input for such an overview, a specific 

digital assessment activity might be set up, but this would take valuable instruction time. A less time-

consuming option may be to use student work in an online learning activity. Although such an activity is 

primarily designed for learning rather than assessing, it might still be possible to track the students’ evolving 

understanding (VanLehn, 2008).  

The question now is: how can we use students’ solutions to tasks in an online learning activity to generate 

feedback on their knowledge of statistical sampling? This paper makes a start in answering this question by 

describing a prototypical approach through the use of student models. 



Theoretical background 

The theoretical background of this study includes two main elements: an analysis of the difficulties in the 

domain of statistical sampling, and the notion of student model.  

Difficulties in the domain of statistical sampling  

Samples are the key instruments to make inferences about a population. An important idea in making these 

inferences is that samples provide useful, but not complete, information about the population. This idea 

relates to two concepts: sample representativeness and variability. Sample representativeness means that 

for properly selected samples, sample characteristics will likely resemble those of the population. Sample 

variability means that not all samples are equal, and that sample characteristics do not necessarily meet 

population characteristics, and may not even be close. Making inferences from a sample involves a trade-

off between these two concepts; a balance that is influenced by factors such as sample size and population 

variability (Batanero, Godino, Vallecillos, Green, & Holmes, 1994). 

Castro Sotos et al. (2007) identify three main misconceptions that students may have about samples and 

sampling distributions. The first concerns the effect of sample size on the variance of the sample mean: as 

sample size increases, sample characteristics are likely to approach the population characteristics more and 

more. Many students misinterpret this so-called law of large numbers and use the sample 

representativeness heuristic to conclude that any sample’s characteristics should be very similar to those of 

the population. The second misconception concerns the different distributions involved. Students often 

confuse the distribution of one sample of data with the distribution of sample means for several samples 

(Chance, del Mas, & Garfield, 2004). This can, for example, result in confusion between the standard 

deviation in a sample, the mean of the standard deviation over many samples, and the standard error of the 

sample mean. The third misconception concerns the central limit theorem, which states that for sufficiently 

large sample sizes, the sampling distribution of the sample mean can be approximated by a normal 

distribution. Students tend to wrongly extrapolate this theorem and believe that the larger the sample size, 

the closer the distribution of any statistic in the population will approximate a normal distribution (Bower, 

2003).  

Automated feedback through student models  

In many online learning environments, automated feedback is offered at a task level or even at a step level. 

However, as we are interested in the students’ conceptual understanding of sampling, it seems more 

relevant to provide the students with an overview of their knowledge of the entire domain, which, of 

course, is still based on the scores on single tasks. Such an overview for an entire domain is often called a 

student model (Brusilovsky & Millán, 2007; Bull, 2004). Student models can be used to adapt the 

educational intervention (i.e. the series of tasks) to the specific needs of the individual learner (Bull, 2004) 

and are in this role often invisible to the student. However, opening up the student model can promote 

learner reflection on his knowledge and understanding, and may help learners to monitor and plan their 

learning (Bull & Kay, 2007; Sosnovsky & Brusilovsky, 2015). 

A student model contains a domain model and an overlay. The domain model consists of knowledge 

components (KC’s) that each describe a piece of knowledge in the domain. All tasks in the learning activity 

are connected to one or more KC’s in the domain model. The overlay contains a score for each KC, 

based on the student’s performance on connected tasks, which describes the student’s current 

understanding. The KC’s in a domain model can be more or less coarse grained. An advantage of a fine-



grained domain model is that it enables a very sophisticated and precise diagnose of the student’s current 

understanding. However, when using a course-grained domain model, connections between tasks and the 

domain model are much easier to manage, while still a reasonable diagnosis can be accomplished 

(Sosnovsky & Brusilovsky, 2015).  

In the light of this theoretical framework, the research question addressed here is: How can student models 

be used to generate feedback to university freshman in an online course on statistical sampling? 

Methods 

To address the research question, a prototypical environment to generate feedback on the understanding of 

statistical sampling through the use of student models was set up. In this explorative design research, 40 

freshmen Biology participated. The design included an online activity on statistical sampling, and a domain 

model and Q-matrix for generating student models. Data collection included digital student work, a 

questionnaire and interviews with students. Analysis aimed at choices in generating overlays and describing 

the students’ reactions to their student model.  

Design of an online activity on statistical sampling 

 

Figure 1: Example page of the DME-activity on statistical sampling 

The online activity on statistical sampling was designed in the frame of the Utrecht University project 

“Innovative remedial digital learning modules for statistics”, by an educational designer and the researcher 

(first author), in close collaboration with the teacher of the statistics course for biology students. For the 

design, the Freudenthal Institute’s Digital Mathematics Environment (DME, see Drijvers, Boon, Doorman, 

Bokhove, & Tacoma, 2013) was used. Aim of the designed activities was to deepen the students’ 

understanding of statistical sampling and sample variability. The activities contained theory, a simulation on 

sampling and questions about the students’ intuitions, the simulation, and the theory. The difficulties 

described in the theory section were addressed extensively. Students were able to enter answers to all 



questions and receive immediate feedback on the correctness of their response. For many tasks, hints and 

feedback on incorrect responses were designed. For an example page of the activity, see Figure 1.  

Development of a domain model and Q-matrix 

Through studying theory on statistical sampling1, a set of knowledge components (KC’s) for the domain of 

sampling was identified by the researcher. As the intended use of the domain model was to present it to 

students, a rather coarse-grained approach was chosen and too detailed KC’s were avoided. Moreover, 

for a clear presentation to students, complete descriptions of the KC’s were formulated, as opposed to 

one or two words per KC. Four main KC’s were identified: Taking samples (procedure), Estimations 

based on a sample, Distribution of the sample mean, and Standard error. For each main KC, four detailed 

KC’s were identified.  

After the domain model was designed, all tasks in the module were linked to the corresponding KC’s by 

the researcher. This resulted in a Q-matrix, in which entry (i, j) is 1 if task j is related to KC i, and 0 

otherwise. The module contained 45 (sub-)tasks in total. For twelve tasks, the researcher judged that no 

KC’s were relevant. In Figure 1, for example, the students are asked to read off values from a table. This 

activity helps students understand the table-tool they will be working with in this module, but how well 

students read off the values does not involve their knowledge of any of the KC’s. For four subtasks, more 

than one KC was judged to be relevant. All other subtasks were connected to one KC.  

Data collection: Student work, questionnaire and interviews 

The participants in this study were 40 biology students, who participated in the first year introductory 

course Experiment & Statistics at Utrecht University. The students first attended a lecture on sampling and 

worked on the designed online module in the week following the lecture. Three sources of data were 

collected in this small-scale explorative study: 

 Student work: the DME stores all student work, including all attempts that students do before 

reaching a final answer. Student work was collected for all 40 students; 

 A questionnaire, in which the KC’s from the domain model were presented to students. Students 

were asked to give their own estimation of their understanding of each KC. The questionnaire was 

completed by seven students. 

 Interviews, in which students were questioned about the appropriateness of the domain model and 

generated overlay, and about differences between their estimated and generated overlay. Out of 

the seven students who completed the questionnaire, four were interviewed. 

Data analysis  

In the analysis, the students’ attempts were extracted from the DME, exported to Excel and prepared for 

generating overlays. For each student, an overlay was generated. Next, the generated overlays for the four 

students who would be interviewed were studied and remarkably high and low scores were recorded. 

                                                 

1 Sources used are two text books on introductory statistics: Whitlock, M., & Schluter, D. (2009). The analysis of 

biological data. Greenwood Village, Colo: Roberts and Co. Publishers , and Field, A. P. (2009). Discovering statistics 

using SPSS: (and sex and drugs and rock 'n' roll) . Los Angeles [i.e. Thousand Oaks], Calif.: SAGE Publications. 



Explanations were sought by studying tasks connected to the remarkable KC’s and by analysing student 

explanations in the interviews.  

The interviews were transcribed and the students’ answers were aggregated by topic. Next, summaries for 

each topic were written to create a general image of the students’ reactions to the overview, and to identify 

issues in the current calculation of the overlays.  

Results 

In addition to the domain model and the Q-matrix, which are described in the Methods section, the results 

of this study include the generation of overlays, and the students’ reactions to their student model.  

Generating overlays  

To generate overlays, the students’ interactions with the DME had to be translated into scores for each 

KC. Student interactions with the DME are stored as attempts. Three attempt types are possible: correct 

attempts, half-correct attempts (for example when a student still needs to round off an answer) and 

incorrect attempts. To generate an overlay, correct attempts were counted as 1, half correct attempts as 

0.5 and incorrect attempts as 0. For each task, the mean attempt score was calculated by dividing the sum 

of the attempts by the number of attempts. For each KC, the overlay score was calculated as the mean 

attempt score of all tasks that were connected to this KC in the Q-matrix. See Figure 2 for an example.  

 

Figure 2: One student’s generated overlay and his own estimation 

The method used is not the only possible calculation method. Another option that was considered is taking 

only the student’s first attempt for each task into account. The student’s subsequent attempts are guided by 

the DME’s immediate feedback and therefore do not directly reflect the student’s knowledge, but rather a 

combination of this knowledge and the student’s reaction to the immediate feedback. However, this 

method neglects the fact that students are likely to learn from the immediate feedback, and therefore this 

approach is left out of the analysis.  

The generated overlays are different for different students, which confirms that they provide individual 

feedback indeed. Moreover, the scores for each individual student were more or less spread out, so 

students did score different for different KC’s. This shows that our way of calculating discriminates 

between KC’s, and hence can inform students on their understanding of the different KC’s. 

Students’ reactions to their student model 

The domain model was first presented to students in the questionnaire, in which students were asked to 

estimate their own overlay. In the interviews, the domain model was presented again, this time with the 

generated overlay. All four students said that they understood the domain model well and thought it formed 

a useful summary of the domain of statistical sampling. One student explicitly mentioned that he would use 

the domain model in his exam preparation.  

The comparison between the generated overlays and the students’ own estimations resulted in fruitful 

exchanges. Most students seemed to adopt the generated overlay as a true representation of their 

knowledge. Three students seemed to adjust their own estimation to the generated overlay. For example, 



when seeing the generated overview, one student concluded: “Apparently I can give myself higher grades 

than I did.” The fourth student, however, thought that the activities in the DME were easier than other 

activities in the course, and therefore thought her knowledge of the topic was not as good as her work on 

the DME-activity suggested.  

When asked about differences between their generated and estimated overviews, students came up with 

some meaningful explanations: 

 One student made some initial mistakes on a certain KC, because he did not understand it 

correctly yet. Therefore, his generated score was low. But with the help of the DME’s immediate 

feedback, he realized what he had understood wrongly, and therefore learned from these mistakes 

and the feedback. In his own overlay, he rated his knowledge in this KC as high.  

 Some students were tempted to guess answers to see what immediate feedback the DME would 

provide. As in the previous explanation, such trial-and-error-behavior results in lower generated 

scores, but it is likely that students learn from the immediate feedback they obtain.  

 Initial confusion about what students were required to do in the DME also resulted in low scores 

for some tasks. Here, a low score indicates difficulties with DME-interaction, rather than little 

knowledge or skills.  

These explanations for difficulties show two things. First, these are exactly the difficulties that arise when 

learning material as opposed to assessment material is used for generating feedback. The tasks are above 

all designed to make students learn, and it is sometimes difficult to determine whether that learning has 

taken place before or after the student has answered a task. Second, the discussions with the students 

seemed to help them get a clearer picture of which KC’s they understood and which they did not. So using 

student work to generate an overlay, confronting that with the student’s own estimation and discussing 

differences seems to be a fruitful teaching strategy.  

Conclusion and discussion 

In this explorative study, we have shown an example of the use of student models for providing individual 

feedback in a university statistics course. We developed an online activity on statistical sampling, a domain 

model for the domain of statistical sampling and a Q-matrix connecting the tasks from the online activity to 

the domain model. Next, we used the students’ work to generate overlays and presented the generated 

student models to the students, to give them more insight in their understanding of the different concepts 

involved in statistical sampling.  

The generated student models were different for different students, which indicates that they indeed 

provided individual feedback. Students regarded the domain model as a useful summary of the domain of 

statistical sampling. As such, the domain model seems a useful instrument to confront students once again 

with difficult aspects of the domain of statistical sampling. Moreover, students regarded the generated 

overlay as a more or less true representation of their knowledge of the domain.  

Asking students to compare their generated student model with their own estimations resulted in fruitful 

exchanges and therefore seemed a promising teaching strategy. Students tended to adjust their own 

estimation according to the generated model, but were also able to explain remarkable differences between 

their estimation and the generated model. These explanations often involved the immediate feedback 

provided by the DME, or, more general, the fact that the feedback is based on student interaction with an 



activity that is designed to learn from. Calculation methods that account more for this fact are available 

(VanLehn, 2008) and can be taken into account in future experiments. 

Another lesson we have learned is that some tasks are important for the learning activity, but are not useful 

for the generation of overlays. This concerns, for example, tasks that serve to explain a tool or simulation to 

be used. Therefore, careful considerations should be made whether or not to include specific tasks in the 

Q-matrix.  

In this study, with its explorative nature, we have shown that it is possible to generate useful student 

models, based on student work in an online learning activity. A next step is to investigate how these models 

can best be embedded in education to help students monitor and plan their learning.  
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This qualitative exploratory study examined non-statistics specialist students’ perceived benefits and 

limitations of learning statistical concepts through creative story writing. Stories can be a powerful 

tool as it provides an opportunity for statistics learners to refine their statistical understanding in 

different contexts – ones that are relevant to their personal experience and interest. The added benefit 

of learning through creating stories is how it can shift the focus from dealing with numerical data 

and formulae exclusively to the meaningful application of statistical concepts. Interview and 

observation data involving seven social sciences undergraduate students at an English university 

revealed a range of perceived cognitive and affective benefits as well as some limitations of this 

innovative statistics learning approach. 

Keywords: Introductory statistics, statistical anxiety, creative story writing, picture book. 

Introduction 

A deficit in quantitative skills among UK university graduates has recently been highlighted as a 

major cause for concern. In its position statement titled Society Counts, the British Academy (2012) 

- the UK’s national academy for the social sciences and the humanities - expresses its deep concern 

in the UK’s weakness in the quantitative skills, particularly within the social sciences and humanit ies 

(SSH) disciplines, and highlights how such deficit can have serious implications not only for the 

future of the UK as a world leader in research and higher education, but also for its graduates’ 

employability and its economy’s competitiveness. While the focus of SSH disciplines is not 

mathematical per se, the recent drive for research-based teaching in higher education (e.g. Jenkins & 

Healey, 2005) implicitly requires SSH students to be confident in using their quantitative, particular ly 

statistical, skills, to help critically interpret statistical data (as reported in some articles within their 

field of study) and, where applicable, to help them quantitatively analyse data for their own research-

based dissertation project. However, statistics teaching is not often delivered to students in a relevant 

and exciting way (British Academy, 2012). It is hardly surprising then that statistical anxiety among 

university students, particularly those within the SSH disciplines, has been widely reported 

(Lalayants, 2012). The current study proposes an innovative statistics teaching whereby students 

produce a creative story where statistical knowledge and understanding are required to construct the 

storyline. More specifically, the study intends to examine the students’ perceived benefits of the 

approach.  

Literature review 

Statistics education 

The research field of statistics education is primarily concerned with studies that aim to explore 

different ways to make statistics learning and teaching more effective, and in some cases, even more 

enjoyable. In relation to the current study, two key strands of relevant studies include those that focus 



on transferability, and those that focus on associating statistics learning with something lighthear ted 

and enjoyable. Concerning the former strand, Groth and Bergner’s (2005) study in the USA, for 

example, investigated the role of metaphors in providing insights into students’ statistical think ing. 

Whilst the focus of Groth and Bergner’s (2005) study is on using metaphors to reveal pre-service 

elementary school teachers’ understanding of statistical sample (e.g. “a sample is one toy off a toy 

shelf” (p. 34)), it can be argued that the underlying principle of using metaphors is deep-rooted in the 

concept of transferability which can be applied to any group of students and any statistical topic. 

Concerning the second strand, Friedman, Friedman and Amoo (2002) argue for the use of humour in 

statistics teaching and learning. Specifically, they argue that humour can be used to build relationships 

and enhance communication between students and instructor, as well as can be used as a stress-

reducing tool in statistics classes. In Neumann, Hood and Neumann’s (2009) study, use of humour 

was evaluated. Through interviewing 38 students who were randomly selected from those enrolled 

on a first-year Psychology course in Australia, it was found that “humor aided teaching by providing 

amusement, breaking up content, bringing back attention, lightening the mood, increasing motivat ion, 

reducing monotony, and providing a mental break” (para. 1).  

Whilst the aforementioned studies represent an attempt to make statistics learning more accessible 

and enjoyable, the current study would argue that the effectiveness of these attempts to improve 

statistics learning and teaching experience is limited due to their lack of emphasis on embedding 

statistics learning in a relevant and meaningful context. This study thus sets out to explore students’ 

perceptions of using creative story writing whereby statistical knowledge is required to construct the 

story’s narrative in order to help them develop their statistical understanding. 

Creative stories as a learning tool 

Egan and Judson (2016, p. 4) argue that “the old distinction of arts dealing with imagination and 

academic subjects dealing with reason has led to a neglect of engaging students’ imaginations in 

learning academic subjects”. This, they argued, acts as a key barrier to effective teaching and learning. 

The use of creative stories (whether as consumer or producer) thus has a great potential to bridge this 

gap. The current study would argue that two key features underpin the creative story writing approach, 

namely 1) transferability and knowledge application in meaningful context, and 2) self-motivat ion 

through relevance of and emotional engagement in the story. As highlighted by Groth and Bergner 

(2005) with metaphor and Martin (2003) with analogy, transferability one’s (statistical) knowledge 

and understanding from, for example, statistics textbooks (context-free) to their own story (context-

rich) encourages them to first think carefully about what the concepts are, and then engage in higher 

order thinking by applying the concepts in a meaningful context. This process is crucial as Tannen 

(1999, as cited in Haven, 2007, p. 64) argues that “Story merges abstract information with common 

sensory details to create context and relevance for the abstract”. Both context and relevance, as Haven 

(2007) argues “trigger the conscious mind to pay attention and to remember” (p. 64). Additiona lly, 

when learners get to think of a context or storyline for their own story, they are more likely to be 

engaged and self-motivated in their own learning process and become more emotionally invested not 

only in the story (Egan & Judson, 2016), but also in the ownership of their knowledge construction.  

In terms of research, to the best of the author’s knowledge, only one small empirical study has been 

conducted to explore the potential benefits of using creative stories in statistics learning. The study, 

by D’Andrea and Waters (2002), set out to examine how short stories can be used to reduce statistica l 



anxiety among her 17 graduate Education students enrolling on an introductory statistics course in 

the USA. Using the Statistical Anxiety Rating Scale (STARS), the survey results showed that the 

students’ anxiety towards the statistics course steadily declined when their ratings before and after 

the course were compared. However, one key limitation of this study is how the short stories were 

written by the researchers (i.e. the course instructors) themselves, as opposed to providing an 

opportunity for the students to create their own stories – a shortfall that the current study aims to 

address.  

Theoretical perspectives 

This study argues for a statistics teaching and learning strategy that is grounded in Papert’s (1991) 

theory of constructionism. Unlike constructivism, constructionism places a great deal of emphasis 

not only on internationalization, but also the process of externalization. More specifica lly, 

constructionists argue that construction of knowledge takes place both in the head (internalizat ion) 

and supported by “construction of a more public sort ‘in the world’” (externalization), whereby 

learners creating a public artefact of what they know that can be “shown, discussed, examined, 

probed, and admired” (Papert, 1991, p. 142). In turn, this process helps to shape and sharpen the 

knowledge (Ackermann, 2001). In the context of the current study, such public artefact is the story 

created by the learners where knowledge and understanding of the assigned statistical concept is first 

required before applying such knowledge and understanding to construct their storyline. 

The current study 

The current study is exploratory in nature, and it sets out to investigate non-statistics-specia l is t 

undergraduate students’ perceptions of using creative story writing to learn introductory statistics. 

More specifically, the key research question asks: What are non-statistics-specialist undergraduate 

students’ perceptions of key benefits of learning introductory statistics through creative story 

writing? 

Methodology 

Research design 

This study is predominantly qualitative, reflecting a recent call from the research field of statistics 

education and cognition to move beyond it being a purely quantitative field (Kalinowski, Lai, Fidler 

& Cumming, 2010). The data collection took place in May and June 2016, and it primarily involved 

semi-structured interviews with first-year undergraduate non-statistics-specialist students within the 

social sciences discipline. To allow the students to form well-developed perceptions of the approach, 

they were asked to attend a three-hour session where they mostly worked in pairs to independently 

research a given statistical concept for the first 30 minutes. This independent learning was supporte d 

by making a range of introductory statistics textbooks available to them during the session. They were 

also encouraged to watch tutorial videos available on Youtube on their electronic devices. For the 

remaining 2.5 hours, they were then asked to collaboratively produce a creative story to illustrate that 

concept. Before they started creating the story, the participants were asked to vote on the format of 

their story output, and everyone voted for the picture book format, over two other choices, namely 

the graphical novel and the story book formats.  



Audio recordings were made of each team’s discussion whilst they were working on separate tables. 

A week after the session, each team was interviewed separately and they were asked to reflect on 

their own experience of using creative story writing to learn introductory statistics at the interview. 

Together with the stories produced, these multiple sources of data were used as a form of triangulat ion 

to maximise the degree of reliability in the analysis.  

Standard deviation, as a measure of variability, was chosen as an introductory statistical concept for 

the participants to base their story on, for its importance as a building block to more advanced 

statistical knowledge, such as sampling distributions, inference, and p-values (delMas & Liu, 2005). 

It is beyond the scope of this paper to present in detail examples of the picture books created by the 

students in this study. Examples and brief discussions of these picture books were presented in the 

author’s CERME10 presentation. 

Sampling strategies and sample size 

The participants were seven undergraduate Education students, who nominated themselves to be part 

of the study after a recruitment call. The students are English native speaking students of Caucasian 

origin, aged ranging from 18 to 19 years old. Non-random purposive sampling was used to ensure 

that none of the participants had a Mathematics or Statistics post-16 academic qualificat ion 

(commonly referred to as A Level in England).  

The students were split into two pairs and one triad: Team 1 (all male students) with Jim and Dylan 

(pseudonym), Team 2 (all female students) with Maria and Sarah, and Team 3 (mixed) with Rosie, 

Ryan and the additional student - Olivia. The reason for including both single-sex pairs and a triad of 

male and female students in the study was to minimise any impact certain type of pairing could have 

on learning. (One of the male students, Ryan, did not confirm his participation by the agreed deadline, 

prompting the researcher to recruit an additional student, Olivia, as no other male students were 

available. Thus, a total of 7 students attending the session. Ryan also did not turn up for the scheduled 

interview, resulting in having interview data from only 6 students) 

Data analysis 

Due to the study being exploratory in nature and not aiming to test any particular existing theory, an 

inductive thematically-coded approach to qualitative data analysis was adopted. Audio recording 

transcripts of both the group discussions during the session and of the interviews after the session 

were read and reread to identify emerging themes. The process was done manually without the use 

of any software. The researcher alone did the coding, and thus fully acknowledges the limitation this 

presents in terms of the reliability of the analysis. 

Results and discussion 

As previously mentioned, this study sets out to explore non-statistics-specialist undergradua te 

students’ perceptions of key benefits of learning and teaching introductory statistics through creat ive 

story writing. The findings are presented and discussed below. 



Perceived cognitive benefits 

Four key cognitive skills were developed through the creative story writing approach, namely 

understanding, application, visualization and communication.  

Concerning understanding, in order for the participants to come up with a storyline, they first had to 

understand what the given statistical concept (standard deviation) was. For example, Rosie explained 

that “The process helped me because I had to concretely understand what the statistical concept was 

and what misconceptions there may be before we started writing the book”. This resonates well with 

Dylan’s view as he stated that “I think it helps because you have to completely get every single step 

of it … know how to do it … you will have to go over it all before you were able to even start think ing 

about how could we use this in the task [story]”.  

Application is another key cognitive skill put forward by the students. Using creative story writing to 

learn statistical concepts requires learners to think carefully of a meaningful and purposeful context 

in which the concepts can be applied. This encourages them to contextualise statistical concepts. 

Dylan, for example, explained that “figuring a story that would fit around it […] makes you think 

about how could I use it in real life – where it would be applicable. I think […] having to put it in the 

story helps you understand it quite a lot.” Such view is also echoed by Maria who stated that: “having 

to work out a context for the story where there would be a need to use standard deviation further 

helped. […] If it doesn’t have a context, it doesn’t really make sense. It’s harder to understand it”. 

From the observation, students’ conceptual understanding of standard deviation was evidently 

developing through their discussion about the context for and application of the concept. This 

highlights the role of what Donaldson (1987) referred to as embedded thinking.  

As previously mentioned, all participants voted to present their story in the picture book format. 

Whilst originally not central to the key research question, several participants cited the benefits of the 

format, particularly visualization, as contributing to the development of their understanding of 

standard deviation. More specifically, they highlighted how the format encourages them to think 

about how statistical concepts can also be represented visually through illustrations. Jim explained 

that “I think it gives you different ways to learn because you might be a visual learner. The pictures 

will help”, highlighting how producing creative story in the picture book format could cater for 

diverse learning styles.  

Finally, communication – another key cognitive skill that came up several times in the interview with 

the students. This is primarily concerned with how the creative story writing approach explic it ly 

requires authors to break down the concept and communicate it to their readers. Jim, for example, 

explained that “It’s also about breaking it down into a narrative that other people can understand 

because you write it for other people, so you have to … not dumb it down … but you would certainly 

break it down, and I think it helps you understand it that way”. For Maria, she linked this aspect of 

the approach to teaching: “You’re teaching it and you remember it better when you’re trying to teach 

something rather than when you’re just listening. We’re writing a story to teach other people what it 

was”. The participants who were not at all familiar of the concept prior to the session were later able 

to articulate that standard deviation measures the spread of the different data points in relation to their 

mean average. While the definitions offered by Sarah and Ryan did not make clear the relationship 

between the data points and their mean average, it can be argued that their understanding is still 



emergent. Even for Maria and Rosie who already had some understanding of the concept prior to the 

session, the definition of the concept that they offered after the session was more detailed. In line with 

Haven (2007), this demonstrates that creative story writing can be a powerful learning strategy for a 

wide range of learners. 

Perceived affective benefits 

Different aspects of the story writing approach were highlighted by the participants as helping to 

make statistics learning more engaging. Rosie, for example, pointed out that “Personally, maths has 

always been my nemesis, so for me [the story writing] puts maths and statistics in a lighter viewpoint 

rather than being factual and quite off putting”. Similarly, Olivia – echoing Egan and Judson’s (2016) 

– found herself fully engaged in the process as she explained that:  

Before the session, the thought of statistics was fairly scary to me and seemed like something 

I would struggle to engage with. […] But, as the story writing process began, I was able to 

view standard deviation from a less scary lens. Before I realised, I was fully engaged with the 

story writing activity, rather than focusing on how scary the topic was initially.  

Through its hands-on approach, Sarah and Jim commented about how the story writing approach 

helped to make them more engaged in statistics learning than they would otherwise be in traditiona l 

lectures. Sarah, for example, highlighted that:  

The activity was enjoyable and therefore more engaging than if I’d just read about standard 

deviation in a text book or been told about it in a lecture. Being able to have fun with it and 

produce something creative helped me to really get into it and actually want to pay attention 

to getting it right.  

Jim also highlighted how learning statistics through story writing is more enjoyable and less scary 

when “you’ve got a picture involved for a start and you’re making a narrative”. This resonates well 

with Maria’s view. Not only did she attribute the positive statistics learning experience to the story 

writing, Maria also attributed it to the picture book format specifically, as she explained “Picture 

books are also associated with happiness and adventure and putting statistics into a picture book can 

make statistics seem more exciting”. Her view emphasises how the combination of story writing and 

the picture book format seems to compliment each other quite well.  

The way these students described statistics and its learning in itself is revealing: ‘nemesis’, ‘scary’, 

‘factual’, ‘struggle’, ‘complicating’, ‘mundane’ and ‘off putting’, highlighting how disengaged these 

students would have carried on feeling towards the subject had it not been because of the story writing 

approach to learning statistics. When examining how the same students described statistics and its 

learning using the story writing approach, the positive attitudes towards statistics learning became 

apparent: ‘fun’, ‘fully engaged’, ‘more exciting’, ‘creative’, ‘more engaging’, ‘more accessible’, 

‘immersed’, ‘more switched on’, ‘lighter viewpoint’ and ‘your own knowledge’. 

Conclusions 

Key findings and discussions 

Overall, the approach, according to the students, appears to make use of four key cognitive skills, 

namely understanding, application, visualization and communication, and these are labelled as 



perceived cognitive benefits. Concerning understanding, in order for the participants to come up with 

a storyline, they first had to understand what the given statistical concept (standard deviation) was. 

Application is another cognitive skill that is put forward by the students. Using creative story writing 

to learn statistical concepts requires learners to think carefully of a meaningful and purposeful context 

in which the concepts can be applied. This encourages them to contextualise statistical concepts, and 

highlights the role of what Donaldson (1987) referred to as embedded thinking. The students 

themselves highlighted that the picturebook format encouraged them to think about how standard 

deviation could be represented visually through illustrations. This is particularly relevant when 

visualization is often seen to be a key mode of representation that can help learners develop their 

mathematical and statistical understanding (e.g. Bruner, 1966; Haylock, 1982; Haylock, 1984; 

Haylock & Cockburn 2013). Finally, communication is another key cognitive skill that came up 

several times in the interview with the students. This is primarily concerned with how the creative 

story writing approach explicitly requires authors to break down the concept and communicate it to 

their readers. Equally important, the students reported that the creative story writing approach 

motivated them to engage in learning introductory statistical concepts, as this is labelled as perceived 

affective benefits. The students particularly enjoyed incorporating humour in their storyline and page 

illustrations. The fact that laughter could be heard throughout what was essentially a statistics lesson 

was very encouraging as it demonstrates that it is entirely possible to have an enjoyable statistic 

teaching strategy that, according to the students, also helped them learn an introductory statistica l 

concept. This is in line with the findings of Neumann et al.’s (2009) study that found students to be 

more motivated in their statistics learning process when they were able to include humour in their 

statistics learning.  

Implications 

The study highlights the potential benefits of using creative story writing, particularly in the picture 

book format, as an effective introductory statistics learning tool for non-statistics-specialist students. 

Such benefits are both cognitive and affective in nature. Additionally, whilst the students in this study 

were undergraduate students, this study would argue that both high school and postgraduate students 

would too find the approach beneficial.  

Limitations of the study 

The participants in the current study created their story in an arguably clinical setting, as opposed to 

their authentic learning experience. Additionally, it is important to remember that these participants 

volunteered to be part of the study. Taken together, it can be argued that the views and attitudes of 

this group of participants might be potentially different from those who are required to engage in 

creative writing as part of their course. Thus, any findings emerge from this study must be treated 

with caution, and this highlights the need for this study to be replicated in an authentic learning 

environment. 
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Current secondary school statistics curricula focus on procedural knowledge and pay too little 

attention to statistical reasoning. As a result, students are not able to apply their knowledge to 

practice. In addition, education often targets the average student, which may lead to gifted students 

missing challenge. This study explored ways to enhance grade 8 (Pre-University level) students’ 

statistical literacy through within-class differentiation. The developed course materials consisted of 

a differentiated module in the Digital Mathematics Environment (DME), combined with investigation 

activities during classroom sessions. The material focused on statistical reasoning using visual 

representations made with TinkerPlots We concluded that this teaching arrangement indeed 

increased students’ statistical literacy.  

Keywords: Statistical literacy, descriptive statistics, Digital Mathematics Environment, level 

differentiation, TinkerPlots©. 

Introduction 

Statistical literacy has become important for all of us, and statistics will only continue to become 

more critical in the future (Shaughnessy, 2010). Despite the global effort to innovate the ways in 

which statistics is acquired, current statistics education is still viewed as a field with a need for 

significant improvement (Garfield & Ben-Zvi, 2008). Strong educational foci on methodologica l 

skills, procedures and computations result in the limited ability to reason statistically and to apply 

statistics in practice (Allen et al., 2010; Gal, 2002). 

The Netherlands are no exception to this. In grade 8 of the Dutch pre-university stream, for example, 

the statistics curriculum stresses the calculation of mean, modus and median. Statistical investigat ion 

and use of technology hardly occur in the current approach. The emphasis on calculating statistica l 

measures contributes insufficiently to interpreting, critically evaluating and reasoning with data (Van 

Streun & Van der Giessen, 2007).  

As a second concern, the current educational approach pays too little attention to gifted students. 

PISA research shows that the best quartile of Dutch students performs relatively poorly (Kordes, 

Bolsinova, Limpens & Stolwijk, 2013). It is plausible to assume that the education received is 

insufficient for these students. This is endorsed by the KNAW (2003), which calls for more 

differentiation between students and for offering enrichment material.  

To address the abovementioned issues this study focuses on the following key question: Does a 

differentiated learning trajectory that focuses on statistical reasoning with visual representations 

increase students’ statistical literacy in grade 8? The hypothesis is that an educational approach in 

which differentiated online tasks are combined with investigation activities in class will increase 

statistical literacy. 

 



Theoretical framework  

The theoretical framework we used integrates notions of statistical literacy and level differentiation.  

Statistical literacy 

Gal (2002) defines statistical literacy as interpreting, critically evaluating and reasoning with 

statistical information. This requires, in addition to procedural statistical skills, reasoning with and 

about data (Tolboom, 2012). Students should be taught the necessary skills to interpret and reason 

with statistical concepts. Research indicates that students in an early stage can reason meaningfully 

about distributions (Bakker & Gravemeijer, 2002). According to Piaget and Inhelder (1951), students 

have an intuitive sense of statistical reasoning. This intuitive concept can be used to develop statistica l 

literacy. Moreover, research literature suggests that students become statistically literate by 

conducting their own research projects (Abel & Poling, 2015).  

Web-based tools like TinkerPlots (Konold & Miller, 2011), which focus on the use of dynamic 

visualizations, may support statistical reasoning and literacy. The use of such software, in addition to 

manual data processing experiments, has the advantage that problems are taken care of, so there is 

more room for reasoning. There is evidence that the use of ICT in statistics can improve learning 

results (Morris, Joiner & Scanlon, 2002) and, especially if embedded in classroom discussions, can 

lead to increased statistical literacy (Bakker, 2004). Based on these findings, we focus in this study 

on literacy and reasoning using digital tools.  

Level differentiation 

The Dutch education system1 is based on homogeneous streaming. Nevertheless, within a class of a 

specific achievement level, major differences between students in intelligence and performance may 

exist. Students’ learning progress may suffer from neglecting these differences. In differentia ted 

teaching, teachers provide individual learning paths to students, adapted to their levels, to learn as 

much as possible (Tomlinson, 1999). That level differentiation leads to better academic performance 

in primary education (age 4-12) has been shown by several researchers (e.g., Vernooy, 2009). With 

respect to differentiation in secondary education (age 12-17), less is known, even if Terwel (1988) 

and Van Dijk (2014) suggest that differentiation within mathematics lessons may lead to improved 

performance. 

Differentiation assumes the classification of students. The RTTI model (Drost & Verra, 2015) can be 

used to identify the cognitive level of a learner. Dutch secondary schools and textbook editors 

increasingly use this model. It is based on four learning levels: Reproduction (R), Training (T1), 

Transfer (T2), and Insight (I).  Based on RTTI test scores, the students can be clustered into level 

groups (Berben & Teeseling, 2014). In terms of the RTTI model, statistical literacy relates to T2 and 

I levels. Based on the aforementioned findings, in this study we opted for a differentiated educationa l 

approach based on the RTTI learning levels. 

 

Methods 

                                                                 
1 For an overview of the Dutch educational system see https://www.epnuffic.nl/en/study-and-work-in-holland/dutch-

education-system. 



We successively describe the design, intervention, participants, data collection, and data analysis of 

the study. 

Design research 

Since teaching materials that aim at increasing the statistical literacy by offering differentia ted 

teaching arrangements and using digital tools for this group hardly existed, we used a design research 

method (Bakker & van Eerde, 2015; Plomp & Nieveen, 2013). Because the learning objectives differ 

from the current curriculum in grade 8, no control groups were used; we compared the students’ 

learning gains during the intervention through pre- and post-tests.  This research can be characterized 

as a "proof of concept" of an intervention that focuses on statistical literacy and reasoning through a 

technology-rich, differentiated approach based on RTTI. 

Intervention 

The intervention consisted of statistics modules within the Freudenthal Institute’s Digita l 

Mathematics Environment (DME, see www.dwo.nl/en), combined with investigation activit ies 

during the classroom sessions using Tinkerplots. The DME is a digital environment in which students 

work on mathematical activities. It includes opportunities for differentiated education by offering 

several learning routes. The work of students is saved in the DME and teachers can monitor the results 

(Bokhove & Drijvers, 2012). In this study the procedural skills, e.g., calculating central tendency and 

variation measures and values of various graphs including boxplots, were offered within the DME. 

The DME modules were individually run and consisted of two learning routes: the basic route and 

the plus route. The students were assigned to these conditions according to their RTTI achievements 

during the past schoolyear. Students with average score T2 and I less than 65% followed the basic 

route, and others the plus route. Within the designed DME modules, students could check their work 

and correct it when necessary. Adjacent to each classroom session, students worked at home on the 

DME module. The hypothesis was that the procedural skills of students will strengthen through the 

DME-modules, so that they can use them in reasoning with statistical information. 

Statistical reasoning in the frame of investigation tasks was central to the eight 60-minute classroom 

sessions offered in parallel to the DME modules. During this classroom sessions students worked in 

homogeneous teams (clustered according to the RTTI learning levels). The investigation activit ies 

were based on the stages of the statistical investigation cycle (Franklin et al., 2005). The students 

analysed their data manually and by using the software TinkerPlots© (Konold & Miller, 2011). This 

software provides rich visualization opportunities, flexible and investigative functions, and is user-

friendly. Figure 1 shows some examples of the 

visual possibilities in TinkerPlots. The hypothesis was that clustering of students while working on 

investigation activities and using visual representations in TinkerPlots, sharpens and reinforces the 

Figure 1: Examples of visual representations in TinkerPlots © 

 

http://www.dwo.nl/en


statistical literacy of students at the different levels. 

Participants 

In the pilot the designed material was tested in a classroom at the school of the researcher, the Csg 

Prins Maurits in a rural area in the Netherlands. The pilot class consisted of 25 pre-university grade 

8 students (14-15 year olds), with sixteen students turning out to be basic students and the other nine 

plus students. The students had no previous experience with statistic education. 

Data collection and data analysis 

To verify whether the intervention improved statistical literacy, we examined students’ DME 

progress, results on two statistical tests, logbook data from the teacher-researcher and students’ final 

investigation task. The data of basic and plus students were analysed separately. To analyse the DME 

work we used data on score and time investment. Further to the DME modules two individual tests 

were taken. One of these tests was a RTTI standardized test conducted with 45% of questions at 

learning level R and T1 and 55% of questions at level T2 and I, the latter corresponding to statistica l 

literacy. This ratio is in line with the standard approach in the research class, so the results can be 

compared with previous RTTI scores on math tests. The additional test consisted of questions at 

learning level T2 and I with a higher difficulty compared to the RTTI standardized test, so as to obtain 

additional information about the level attained.  

The logbook of the teacher-researcher contained information about students’ progress in interpret ing, 

critically evaluating and reasoning with statistical information during the investigation activities in 

class. To find out whether the students in the end applied the statistical methods in practice, a final 

investigation task was administered in homogeneous level groups of 3-4 students. A rubric was 

developed for the analysis of this task to assess performance at learning level T2 and I.  

 DME  

data 

RTTI 

test 

Test at  

T2 and I 

Log Research 

task 

Statistical literacy in solving concrete problems x x x x x 

Statistical literacy in investigation activities x x x x x 

Table 1: Table of triangulation of research instruments  

To ensure the quality of the research data triangulation is used. Table 1 shows how the statistica l 

literacy has been measured with multiple instruments. The font sizes for x indicate the degree to 

which each instrument measures statistical literacy. 

Results 

We now present the results of the learning process using the DME, the test results and the 

development during the investigation tasks.  

Learning process using the DME 

Average time investment per DME module in minutes (sd) 

 Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 Mod.  6 Total 

Basic students (n = 16) 36(21) 30(13) 36(19) 39(21) 27(14) 33(29) 34(20) 



Plus students (n = 9) 42(28) 25(16) 30(27) 37(23) 19(16) 21(22) 28(22) 

Average score per DME module in percent (sd) 

Basic students   (n = 16) 87(9) 81(23) 80(13) 79(16) 70(30) 53(31) 75(24) 

Plus students (n = 9) 79(24) 91(8) 72(27) 61(33) 65(37) 43(35) 67(32) 

Table 2: Time investment and score using the DME 

The investment of time and scores of the DME work for each level group and per module are 

summarized in Table 2. The students used the DME with an average time investment of more than 

half an hour per session. During the learning trajectory the time investment, in particular for the plus 

students decreased. Initially, the students needed extra time for getting acquainted with the materia l. 

Moreover, the students indicated that over time they thoughtfully chose their way through the module 

by skipping known problems. 

The students’ scores on the DME show an average of about 70%. The basic and plus students 

respectively achieved an average score of 75%(24) and 67%(32) per module. The exercises in the 

plus route were more difficult. The scores decreased during the learning curve when difficulty 

increased. In the last module there is a substantial decline. This module contains no new material, but 

includes joint exercises from the completed chapters. The plus students show more variability in 

score. The considered choices in learning exercises by these students might have strengthened this 

trend. 

Test results 

Table 3 provides an overview of the pre-test score (RTTI average score on nine math tests over the 

past schoolyear) and post-test score (RTTI score on the final statistics test). The RTTI pre-test scores 

indicate the achieved learning level of the students at the end of each chapter. This means that based 

on the presented pre-test scores the expected RTTI post-test scores should be on average 55% at the 

levels T2 and I. However, the RTTI post-test scores reached on T2 and I, the parts that measure 

statistical literacy, show a 9% higher score of 64%. The dissimilarity in progress between the basic 

students (12%) and plus students (4%) 

at the levels T2 and I may be caused by a ceiling effect or maybe the exercises in the RTTI  

standardized test gave too little space to plus students to exhibit their knowledge. 

 Whole class (n=25) Basic students 

(n=16) 

Plus students (n=9) 

 Pre av. Post Pre av. Post Pre av. Post 

Score on R and T1 in 

percent (sd) 
79 (16) 85 (10) 79 (13) 85 (10) 80 (20) 86 (10) 

Score on T2 and I in 

percent (sd) 
55 (18) 64 (21) 47 (16) 59 (24) 69 (10) 73 (12) 

Table 3: RTTI scores before and after the intervention 



On the additional test both level groups exhibit a high score on T2 level, in spite of the increased 

difficulty. A smaller increase appears on learning level I. The results cannot be compared with 

previous tests because the difficulty of the 

conducted questions was considerably higher. 

Learning process during investigation activities 

The usual statements of students’ written work at 

the start of this intervention can be characterized as 

short answers with a calculation of the mean. The 

used visual representations were limited to bar and 

pie charts. Figure 2 shows 

students’ work on the first 

investigation task:  Investigate 

the colour composition of a bag 

of M & M's.   In the final 

investigation task the students’ 

work contained detailed 

descriptions and rich 

visualizations with a wide 

diversity of graphs. Attention 

was paid to the interpretation of 

the data. Learning progress was 

visible in terms of interpret ing, 

critically evaluating and 

reasoning with statistica l 

information. Figure 3 shows a small part of students’ work on the final investigation task in which 

they formulated and investigated their own research questions using datasets within TinkerPlots. The 

results on the final investigation task with respect to learning level T2 (65% of the total score) and I 

(35% of the score) are shown in Table 4.  

 Whole class (n=8) Basic groups (n=5) Plus groups (n=3) 

Score on T2 in percent  89 (7) 85 (6) 95 (4) 

Score on I in percent  51 (24) 35 (6) 79 (10) 

Total score in percent 70 (26) 60 (27) 87 (11) 

Table 4: Scores on T2 and I at the final investigation task  

On level T2, for example, we evaluated in the assessment-rubric correctly representing and 

summarizing the data and on level I we examined the choice of an appropriate visual representation 

and the critical interpretation of the results. In comparison to the basic groups, the plus groups show 

a higher score on learning level I. This investigation task probably provided more room to gifted 

students to exhibit their statistical reasoning.  

Figure 2: Students’ work on the first investigation task 

Figure 3: Students’ work on the first investigation task 



Conclusion and discussion 

The main question in this research was: Does a differentiated learning trajectory that focuses on 

statistical reasoning with visual representations increases students’ statistical literacy in grade 8? The 

results suggest it does. The RTTI scores reached on T2 and I, the parts that relate to statistical literacy, 

were much higher than would be expected according to the pre-test scores. Moreover, the final 

investigation task showed strong progress on interpreting, critically evaluating and reasoning with 

statistical information according to the start of this trajectory. This is consistent with the theories by 

Bakker & Gravenmeijer (2002) and Abel & Poling (2015) on developing statistical literacy. Both 

basic and plus students showed considerable improvement during the learning trajectory which 

suggests that both groups were challenged in this differentiated approach as suggested by Terwel 

(1988) and Van Dijk (2014). The use of all kinds of visual representations within TinkerPlots helped 

the students to explore their data. In summary, the results suggest that the designed educationa l 

intervention, which consisted of differentiated online modules within the DME combined with 

investigation activities using TinkerPlots during classroom sessions, led to increased statistica l 

literacy. However, this study has its limitations: no control with other groups was possible; we cannot 

indicate whether the differentiated approach or the focus on statistical literacy and reasoning caused 

the increased level; the pilot took place in just one class, taught by the researcher. Therefore, the 

results cannot be generalized and further research is needed. 
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Theoretical background 

In the Guidelines for Assessment and Instruction in Statistics Education (GAISE) College Report (2016) 

endorsed by the American Statistical Association following the GAISE College Report of 2005, the ASA 

revision committee recommends in addition to the teaching of statistical thinking and focusing on conceptual 

understanding, to use software combined with real data and to foster active learning. The main goal of the 

given recommendations for students is to develop statistical literacy and achieve the ability of thinking 

statistically. Therefore, students should understand the nature of data and all parts of the statistical process 

from obtaining and generating data to the communication and interpretation of the results after the analysis. 

In an international meta-analysis of 70 studies from the past 40 years Larwin & Larwin (2011) show that 

students in postsecondary statistics education strongly benefit from computer-assisted instruction (CAI) 

under certain circumstances, for example, when CAI is continuously and supplementary applied in lessons 

and homework. They also warn, however, of an overestimation of CAI. Several studies show the 

advantage of student-centered (e.g., Kuiper, Carver, Posner & Everson, 2015) and problem-based 

learning (e.g., Cantürk-Günhan, Bukrova-Güzel & Özgür, 2011) supported by technology (e.g., Koparan, 

2015). Neumann, Hood and Neumann (2013) explored the benefits of using real data in statistical 

education. Gil & Ben-Zvi (2011) underline the importance of context in the emergence of younger 

students’ informal inferential reasoning in an inquiry-based, technology-rich learning environment.  

Research questions 

The focus of the presented research lies on the beneficial implementation of statistics software in classes, 

considering, for example, the characteristics of various software programs. Another field of this research is 

how the use of statistical software in an inquiry-based learning environment leads to the development of 

conceptual understanding and not to dependence on the software and the learning of tools and procedures. 

This leads to the following research questions. First: How is the situation about the context- and inquiry-

based learning of statistics supported by technology in Austrian secondary schools? Second: Is there an 

evident connection between context and using real data on the one hand and CAI on the other hand to 

provide a meaningful learning of the overall statistical process. Third: How should software under a given 

context in classes of higher secondary schools be installed to support conceptual understanding of the 

statistical investigative process and which characteristics of statistical software are especially beneficial to 

this purpose? 

Research design 

Various learning sequences for the 10th grade of Austrian higher secondary school are being created and 

will be inserted in different Austrian secondary schools. According to Strauss and Corbin’s approach of 

Grounded Theory, diagnostic interviews will be carried out before and after the implementation of the 



learning sequences. Some students’ work on the sequences will be filmed and worksheets will be analyzed. 

The goal is, to develop provable hypotheses relating to the research questions.  

The poster gives an overview of the theoretical framework, the research questions and design and focuses 

on a created worksheet that will be applied for this research. First results show that software in Austrian 

schools is commonly used in other mathematical fields, e.g. for plotting graphs, but not even in 30% of the 

cases for calculating statistical key figures.  
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Statistical concepts often have multiple faces and deep understanding of these concepts requires 

combining these different perspectives. For example, mean is a complex concept (Mokros & Russel, 

1995) that can be thought as a typical value, fair trade or center of gravity (Gattuso, 1994). The 

teachers who teach statistics in social sciences curricula have very different backgrounds (Hahn, 

2015). The question is whether this variety of backgrounds leads them to implicitly favor one of the 

dimensions of the concepts when they teach. 

To answer this question, I chose to use metaphoric representations. Lakoff and Johnson (1980) have 

shown the central role of metaphors in the process of construction of scientific concepts. This question 

has been widely explored in mathematics education, a working group was specifically devoted to this 

topic at Cerme 2 to 5 (Parzysz, 2015). Soto-Andrade (2006) explains that a metaphor connects a 

concept already built in a familiar area with a concept to build in an area that is not familiar. These 

representations are usually “image like” (Sfard, 1994). That is why I chose to use depictive 

representations of these metaphors. In this research, these representations are external to the subject 

as they were not drawn by them. 

The protocol for this research involves six steps: 

1. Choice of statistical concepts  

2. Didactic analysis of these concepts and identification of the different perspectives from the 

literature 

3. Identification of metaphors who are used to teach these concepts and selection of the metaphors 

that can be associated with the different faces of each concept 

4. Drawing of representations of these metaphors 

5. Pretest with teachers from different backgrounds 

6. Semi-structured interviews of professors who teach statistics in a business school. 

The poster presents step 1 to 5 of this research. I chose the concepts of mean, sample and confidence 

interval. Following the review of the literature, different perspectives were identified and assumptions 

were made about the perspectives that should be preferred by teachers considering their background. 

From informal discussions with professors and the study of textbooks, I identified a few metaphors 

and selected those that seemed directly linked to the different faces of the selected concepts. I then 

draw for each concept, three pictorial representations of these metaphors. Through the pre-test, it 

seems that teachers do not at first always identify the concept behind the drawings. They associate 

the pictorial representations with concepts directly related to the target concept and linked to the 

perspective chosen. For example, regarding the mean, interviewed teachers “saw” the concept of 

distribution when they were shown the image referring to the "fair share" and the variance in the 

image referring to the "balance point". 



 

References 

Gattuso, L. (1994). La moyenne: Un concept inexploité d’une richesse exceptionnelle, Repères Irem 

34, 79−93. 

Hahn, C. (2015). La recherche internationale en éducation statistique. Enjeux et questions vives, 

Statistique et Enseignement, 6(2), 25−39 

Lakoff, G. & Johnson, M. (1980). The metaphors we live by. Chicago: The University of Chicago 

Press. 

Parzysz, B. (2015). Le groupe “Métaphore” de CERME, in l’analogie: Études sur son usage en 

didactique, chimie, mathématiques, physique. Cahier du Laboratoire de Didactique André 

Revuz, 15, 79−90. 

Mokros, J. & Russel, S. (1995). Children’s concepts of average and representativeness. Journal of 

Research in Mathematics Education, 26(1), 20−39. 

Sfard, A. (1994). Reification as the birth of metaphor, For the Learning of Mathematics 14(1), 

44−55. 

Soto-Andrade, J. (2006). Un monde dans un grain de sable: Métaphores et analogies dans 

l’apprentissage des mathématiques. Annales de Didactique et de Sciences Cognitives, 11, 

123−147. 

 



Non-mathematics majors doing statistics: Factors behind performance 

Theognosia Michailidou 

University of Leeds, UK; edtgm@leeds.ac.uk 

 

Keywords: Statistics education, cognitive and non-cognitive factors, achievement.  

 

Main objectives and theoretical foundation of the research study 

Nowadays, a large proportion of undergraduate university students are required to undertake at least 

one statistics or statistics-related course. The main consideration guiding my research study is the 

exploration of several cognitive and non-cognitive factors, the “other” outcomes of statistics 

education (Schau, 2003), and their relationship with the students’ academic performance in 

introductory statistics courses offered at tertiary institutions. Cognitive, affective and motivationa l 

factors under investigation include: students’ feelings, attitudes and beliefs about statistics;  students’ 

anxiety feelings and perceived self-efficacy regarding statistics; motivational orientations, 

achievement goals, students’ interest in and engagement with statistics (such as effort, persistence, 

learning strategies); resilient behaviour characteristics when learning and studying statistics; and prior 

mathematics or/and statistics background and performance. A proposed theoretical causal model, 

including direct and indirect effect of these variables on achievement in statistics, will be tested. 

Moreover, the study focuses on exploring and documenting non-mathematicians’ perceptions, 

behaviors, challenges and experiences when completing a statistics course.  

My theoretical foundation is supported by some key theories: Social-cognitive learning theory 

(Bandura, 1997) and Self-efficacy theory (Bandura, 1977), Expectancy-Value theory (Wigfield and 

Eccles, 2000) and Achievement Goal theory (Dweck, 1986). Some ideas behind these theories have 

been adapted to statistics learning experiences and they have been used as a guide for both the 

quantitative and qualitative strands of my research work. 

Research design and methodology, and data collection and analysis procedures 

In order to accomplish the research aims and goals, a mixed-methods research design (that is a 

combination of quantitative and qualitative data collection methods) has been employed. A self-

reported questionnaire, which was designed and developed specifically for the purposes of the 

doctoral study, has been administered to a larger sample of students in university classroom settings.  

It comprised of open- and closed- ended questions, and Likert-type questions on a 5-point scale. 

Individual (and pair) face-to-face semi-structured interviews were conducted with a sample of 

participants who had completed the questionnaire and consented to be interviewed.  

The data collection procedure can be summarized in three many stages (not in chronological order): 

quantitative data-gathering (executed in two phases - at the beginning and at the end of the period of 

instruction of various statistics courses); qualitative data-gathering; and participants’ final grades 

obtained at the end of a statistics course from each of the instructors.  The data collection was carried 

out over a period spanning two academic semesters, the fall semester 2015 and the spring semester 



2016. I collected data from six universities – all the recognized universities (both public and private) 

operate in Cyprus.  I observed and gathered data from 35 statistics classes (23 courses) taught by 15 

different instructors. I collected over 1000 questionnaires and I executed 60 face-to-face interviews.  

The participants, with a variety of mathematics background and experience, came from diverse 

academic departments and degree programmes.  

The quantitative data will be analysed using a variety of methods: basic statistical techniques 

(descriptive statistics, reliability estimates, correlation coefficients, χ2 tests, t-tests, analysis of 

variance and regression analysis); advanced statistical methods (multilevel analysis, factor analys is 

and structural equation modelling techniques). Τhe qualitative data will be coded using thematic 

analysis approach.     

Potential significance and contribution 

This study may act as a springboard for further research in Cyprus and cross-cultural comparisons 

between Cyprus and other countries. The major findings and recommendations of the research work 

may constitute a helpful tool for the statistics instructors and stakeholders of statistics education in 

implementing interventions, innovations and instructional strategies/ practices to develop and 

improve the quality, the efficacy and the relevance of statistics courses that provided for non-

mathematics majors. 

The poster for the CERME-10 conference includes a brief introductory statement of the background, 

context and objectives of this doctoral study as well as information about the research design and 

methodology and data collection and analysis processes. Also, some preliminary findings (along with 

visual and graphical representations) are presented.  
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Theoretical framework and research questions 

Most of the recent studies emphasise the challenges when dealing with probability problems. As 

Horvath & Lehrer (1998) show, young children are able to see a relationship between theoretica l 

probability and empirical outcomes, but „[t]he children never understood the role of the sample space 

without significant support and, hence, never completely understood the reasons why patterns were 

more predictable than simple outcomes“ (Horvath & Lehrer, 1998, p. 132).  

The largest challenge for the development of conceptions of probability and chance seems to be 

coordinating empirical and theoretical perspectives on probability. This means to relate the (relative) 

frequency of outcomes (empirical law of large numbers) and theoretical assumptions considering the 

distinction between long-term and short-term on random processes (Schnell, 2014; Horvath & Lehrer, 

1998). A core condition for emerging conceptions of probability seems to be the change of 

perspective from focussing on single outcomes to the long-term results (Prediger, 2005, p. 40) and 

changing from long-term to short-term perspective (Johnston-Wilder & Pratt, 2007). 

This project aims at providing insights into the development of students´ conceptions of probability 

and chance during a board game. Towards this end, this study pursues the following research 

questions: Which elements of a teaching- learning arrangement can support the distinction between 

long-term and short-term? (RQ1) Which elements of a teaching-learning arrangement can support 

students in relating empirical and theoretical probability? (RQ2) 

 

Method  

In this project, students´ conceptions of probability and chance are identified within game interviews 

based on the board game „Who wins?“ (see Figure 1). Players take turns in throwing dice with 

asymmetrical colour distribution (green: 3 sides; red, blue and yellow: 1 side) and taking one step 

with the token of the matching colour. The goal of the game is to predict the winning token. During 

the interview the game is played several times, so that the learning environment provides stochastic 

experiences in a short-term context.  

  

The students are asked to systematise the results with the help of different record types: a winning list  

Figure 1: Who wins? Figure 2: single game list and many games list 

 



recording the winner of each game, a result list recording each individual thrown dice, a single game 

list providing histograms of colours thrown for individual games, and a many games list providing a 

histogram of the aggregated colours thrown over all games (see Figure 2). Simulated long- term 

documents provides opportunities to relate short-term to long-term results.  

In total, 27 students were interviewed in groups of three. Each group met for three interview sessions.  

The 27 sessions were videotaped and fully transcribed (including oral statements, actions, and results 

of games and throws of dice). The students’ conceptions on probability were identified in a qualitat ive 

interpretative analysis. 

First conclusions 

A first analysis of the empirical data shows that the learning environment can initiate a change of 

perspective from short-term to long-term. In particular, comparing long-term results with short term 

AND with other long term results revealed the difference between the contexts. Experienc ing 

variability in a short-term context may support changing perspective from long-term to short-term. 

Different record types (e.g. single outcomes, cumulated outcomes) seem to support “seeing” the 

distinction between long-term and short-term on random processes.  

Relating the outcomes and the colour distribution of the dice support the understanding of the  

relationship between empirical and theoretical probability. Reflection on mathematically unexpected 

outcomes may initiate explanations of the relationship in a more detailed way.  
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Introduction 

Mathematical modelling and its teaching at various educational levels are widely accepted all over 

the world. There is consensus of the need to integrate mathematical modelling and applications in 

curricula and this has already taken place in many European countries. However, there is no 

unanimity on how to integrate mathematical modelling and applications into the processes of 

teaching-and-learning mathematics. In addition, there is little secure empirical knowledge available 

on how to implement efficiently the necessary new learning environments. In its discussions at 

CERME 10, the thematic working group TWG 6 on modelling and applications aimed to contribute 

answers to these open questions and hence further develop the work from previous ERME 

conferences. The contributions discussed at the congress are characterized by a strong and fruitful 

diversity in the research questions considered, the school levels addressed and the theoretical 

approaches taken. On the whole, the papers address theoretical, methodological, empirical or 

developmental research on the teaching and learning of applications and modelling. The group 

involved 35 participants from 16 countries – participants were from Europe, and also from South 

and Central America. A total of 20 papers and four posters were presented and discussed during the 

working group sessions.  

In the following, we describe all presented papers, although not all have been submitted for the 

proceedings, grouped around eight comprehensive themes, which refer to current issues within the 

teaching and learning of mathematical modelling.  

As a first important theme, we identify the interplay between disciplines into modelling activities 

referring to the specificities of interdisciplinary modelling activities, especially in engineering 

teaching. The second theme relates to the connection of the problem solving perspective and 

mathematical modelling and to the development of problem solving strategies and competences, 

when students work in groups and develop individual competences. The third theme covers 

developing modelling strategies and competences, for example theoretical and empirical work 

focused on the analysis and use of heuristic strategies adopted by teachers and/or students which 

illuminates strategies used to foster students’ performance when solving modelling problems. The 

fourth theme refers to the tools and methodologies used to analyse modelling processes, namely 



studies focusing on elaborating specific methodologies for analysing and evaluating modelling 

practices. The fifth theme focuses on teachers’ beliefs in relation to the teaching of mathematical 

modelling, including, for example, research on the role of teachers to foster modelling practices. 

The sixth theme covers teachers’ interventions in mathematical modelling. The seventh theme 

refers to experimental materials and technology in modelling, which covers two topics, a first 

primarily focused on the role of the auxiliary material and its impact on modelling and a second 

concerned with how to combine different resources with technology in concept development by 

means of real word contexts. The eighth theme refers to the assessment of modelling practices. 

Overarching themes  

Modelling and interdisciplinary teaching 

This theme focuses on the interplay between disciplines in modelling activities. The first study by 

Borromeo and Mousoulides describes theoretical reflections about the differences and similarities 

between mathematical modelling and interdisciplinary mathematics education. Besides its focus on 

underlying similarities and differences, this paper provides some examples of projects that make 

connections explicit and how these may be useful for teachers while discussing modelling as a 

means for solving interdisciplinary problems. Within this thematic strand, other empirical works 

were presented based on particular case studies involving interdisciplinary projects with 

mathematical modelling as a central issue. In particular, Brake and Lantau described a pilot study of 

an interdisciplinary project used with experienced students of grade 12 based on modelling segways 

which supported them to build models based on linear systems of differential equations. 

Furthermore, Sala, Font, Barquero and Giménez reported on the design and analysis of an 

implemented interdisciplinary project, where mathematical modelling was embedded into an 

archaeological context. The study showed how the complementarity between two subjects (history 

and mathematics) can be an important tool in supporting modelling and inquiry. Besides the 

potential of designing interdisciplinary modelling situations, such as those presented in these papers, 

a couple of important question remain unresolved: 

 What are the specificities of interdisciplinary mathematical modelling in relation to 

mathematical modelling more generally? 

 How is it possible to manage the interplay between mathematics, mathematical modelling 

and non-mathematical knowledge to enrich teaching practices in the learning of 

mathematics? 

 Can some analytical tools widespread in the research frame of modelling, such as the 

modelling cycle, be adapted to analyse mathematical modelling in interdisciplinary 

contexts? And, if yes, how? 

 What relationships exist between the mathematical modelling cycle and the inquiry process? 

 How do we best integrate different disciplines in developing modelling tasks? 

Another important topic referred to modelling in the particular case of teaching of engineering. The 

papers from Romo, Tolentino and Romo-Vázquez, and Siero, Romo and Abundez reported intentions 

to design and analyse modelling activities for the mathematical education of teachers. Both studies 

were based on the Anthropological Theory of Didactics. They focused on analysing the roles and 

interplay of institutions in the educational programmes of engineers and on the institutional 



conditions that the design of the study and the research activities expose in the teaching of 

modelling in such contexts. Some of the questions discussed were: 

 How can different institutions become involved in mathematical modelling in engineering 

education? 

 How can practical knowledge be grounded on mathematical knowledge? 

 How can the steps of an engineering project (design, mathematical model, prototype) be 

described? How are these steps interrelated? How are they connected to the modelling 

cycle? 

Connection of the problem-solving perspective and mathematical modelling  

The second theme refers to the connection between problem-solving activities and mathematical 

modelling. First, Clohessy and Johnson examined the relationships between the problem-solving 

performance of small groups with that of individual students in order to identify the influence of 

group work as an effective instructional strategy when teaching problem solving. Second, Karatas, 

Soyak and Alp presented an investigation about mathematical non-routine problem solving 

processes of fifth grade students in small groups. Their study aimed to determine problem solving 

behaviours within different episodes of problem solving. As both papers focused on the description 

and measurement of problem solving competences in small groups and individually, some common 

questions appeared: 

 How might individual competences improve when students are participating in a group? 

 What instruments can we use to measure the improvement of individual competences 

before, during and after mathematical modelling processes? Which are the most valuable 

indicators we might use to measure these changes? 

 What are the cultural aspects that have most impact on planning the implementation of 

problem-solving activities? 

Developing modelling strategies and competences 

This third theme concerns the use of heuristic strategies to support modelling practices. The paper 

from Stender and Kaiser presented a study on the usage of heuristic strategies by students in school 

within modelling activities and the promotion of strategic help provided by academic tutors, who 

guide the modelling activity of the school students. The paper of Schmelzer and Schukajlow focused 

on the relationship between reading comprehension and mathematical modelling. The study 

identified strategies to help learners comprehend a modelling problem and described ways these 

strategies might be implemented in the classroom. The following important questions emerged from 

discussions of the working group: 

 How far can heuristic strategies developed in the frame of problem solving be transferred to 

mathematical modelling? 

 Can their identification and characterisation be helpful in supporting teachers’ strategic 

interventions? 

 How, in different teacher education programmes, may these heuristics be made explicit? If 

we make them explicit, do we risk narrowing the radius of action of teachers when guiding 

modelling activities? 



 What are the effects of text length and superfluous elements on reading comprehension in 

modelling problems? 

 How can we prepare teachers to foster students’ reading comprehension in modelling? 

A closely related topic was that focused on the metacognition of modelling competencies as an 

essential part of developing competence in modelling. Vorhölter, Krüger and Wendt presented their 

results from a pilot study about the identification and measurement of metacognitive modelling 

competencies in small groups when working on modelling activities. The following relevant 

questions were discussed: 

 How might we best define metacognitive competencies? How can their characterisation be 

used to evaluate students’ development of competencies? 

 How is it possible to separate the individual progress of metacognitive competences from 

that of the collective group? 

 How might a detailed evaluation of students’ teamwork enrich the understanding of 

metacognitive competences? 

Analysis of modelling processes 

This fourth theme addressed tools and methodologies used to analyse modelling processes. On the 

one hand, Barquero, Monreal and Ruíz-Munzón presented a study, proposed within the frame of the 

Anthropological Theory of Didactic, about how to forecast the increasing number of Facebook 

users. The analysis of the implemented research path was based on three dialectics essential for 

mathematical modelling: the questions-answers dialectic, that of the media-milieu and that of 

individual-collective dynamics. On the other hand, the paper from Delgadillo, Viola and Vivier 

presented an analysis of a modelling task in the context of pre-service teacher education based on 

the theory of the Mathematical Working Space. In this latter study, the modelling cycle was used as 

an essential tool to analyse the personal Mathematical Working Space of students solving a 

modelling task. Some questions appeared in the discussion of both papers: 

 Which different dimensions, or levels, of analysis may be taken into account when analysing 

mathematical modelling practices? 

 Which are the most valuable observables (depending on the focus of study)? 

 Up to what point can tools for analysis be used as tools to help with designing mathematical 

activities? In which more general approaches to task-design do they appear? 

 How do we carry out analysis that takes into account both individual activity and collective 

interactions in modelling processes? 

Teachers’ beliefs on teaching modelling  

This theme refers to a study on teachers’ beliefs on modelling tasks. The paper from Ramirez 

explored mathematics teachers’ beliefs about teaching and learning mathematical modelling and 

about modelling itself. It presented an exploratory study of responses from teachers collected in an 

online questionnaire related to the characteristics of modelling practices. Several questions came up 

about the relation of teachers’ beliefs with their experience and knowledge about modelling: 



 While analysing beliefs many aspects have to be taken into account, which are difficult to 

separate. Thus, what is the relation between ideas, beliefs, previous experiences, and 

modelling competences? 

 The role of teachers’ beliefs in connection with teachers’ knowledge is examined. Therefore, 

the question arises: How do we take into account teachers’ knowledge about modelling? 

 The role of teachers as individuals within institutions is studied. Thus, which cultural and 

school conditions influence their opinions? 

Teachers’ interventions in teaching modelling 

This section refers to teachers’ interventions in teaching mathematical modelling. Ferrando, Donat, 

Diago and Puig presented an analysis of the different kinds of interventions teachers made during a 

project in which students worked on a modelling task about the intensity of sound distribution 

throughout a classroom. The study aimed to identify the influence of such interventions on students’ 

learning opportunities. The following questions arose:  

 How do available resources and means influence the openness of the task and students’ 

possible responses? 

 Who validates the final answer in a project? 

Experimental materials and technology in modelling 

This theme focused on the role and use of experimental materials and of technology. Two topics 

were dealt with. The first focused on the role of auxiliary material and its impact on modelling and, 

the second concerned the combination of different resources with technology to assist concept 

development by means of real-word contexts. Guerrero-Ortiz, Mena and Morales discussed how 

the handling of auxiliary material can favour knowledge transfer between real world situations and 

mathematical models. The research, which was conducted within pre-service teacher education in 

Chile, presented insights into the design of modelling tasks and the affordances of auxiliary 

materials in supporting modelling.  Carreira and Baioa base their research on an episode of a 

modelling activity with grade 9 students which aimed to reflect on the authenticity of the modelling 

task and to examine how students used experimental work to help them succeed in modelling 

activities. Some of the matters discussed were:  

 How can auxiliary material support the learning process? Is it necessary to support students 

in its use or is it self-explanatory? 

 Does the auxiliary material simulate the real processes taking place in the real setting? 

 How far are problems authentic or meaningful to students? 

 To what extent can we include the way things are really done in the real world in modelling 

tasks for students? 

Regarding the second topic, Karimianzade and Rafiepour presented a study about the introduction 

of decimal numbers. The study showed how different resources were introduced and how 

experimental work helped fifth grade students to develop their knowledge and understanding of 

decimal numbers in the context of measurement. Lieban and Lavicza reported about students’ work 

in using dynamic geometry systems in a geometric modelling situation. They suggested the use of 

some new manipulative resources together with digital applets that progressively enrich the 

development of the modelling process by students. Several ideas were debated around the questions: 



 Which alternative ways exist to introduce decimal or rational numbers taking into account 

the introduction of standard units? 

 How can we produce computer simulations of physical models? 

 What are the goals for the different people (students, teachers and researchers) involved in 

creating GeoGebra models? 

Assessment of mathematical modelling  

This last theme refers to the assessment of mathematical modelling. The paper of Greefrath, Siller 

and Ludwig analysed the official school leaving examination in Germany allowing university 

entrance, the so-called Abitur examination, which is supposed to contain elements that examine 

mathematical modelling. For this purpose, they based their analysis on certain criteria: reference to 

reality, relevance, authenticity, openness and partial competence of modelling, to analyse the 

potential of problems included in the official examination. In addition to the difficulties of deciding 

how to evaluate modelling practices in these kinds of official examinations, several questions were 

discussed: 

 Which criteria can be used to describe good examination questions for modelling? 

 Can all the sub-competences of modelling be assessed within examination tasks? 

 How can we design school examination tasks that cover various aspects and goals that 

include mathematical modelling? 

Within this strand, Ärlebäck and Albarracín proposed an analysis of various definitions of Fermi 

problems from a modelling perspective. They focused on analysing how the definition and 

descriptions of Fermi problems in the literature align with different perspectives on modelling. They 

also discussed how far Fermi problems and modelling are connected and how strongly that 

connection is influenced by the definition of Fermi problems. 

Concluding remarks and perspectives 

The overarching themes tackled in TWG 6 show the variety of research questions the papers dealt 

with, for example concerning the theoretical frameworks used or the underlying perspectives on the 

teaching and learning of mathematical modelling (Kaiser & Sriraman, 2006, Kaiser et al., 2007). 

Furthermore, the educational levels involved span from primary to tertiary education.  

In their analysis of the development of the teaching and learning of mathematical modelling over the 

last decades, Cai and colleagues (2014) introduce five perspectives, which can be helpful in order to 

identify the progress made during ERME conferences and potential future development. 

The first perspective, the mathematical perspective, describes the differences between modelling at 

practitioner level and at school level. However, industrial examples can play a powerful role in 

education, because they are authentic and of varying complexity. There is a long tradition of 

discussing examples from engineering education in TWG 6 at various ERME conferences. In 

addition, the relation to other disciplines has always played an important role and needs to be 

mentioned under this perspective. 

The second perspective, the cognitive perspective, focuses on students’ cognitive processes when 

modelling, and cognitive barriers, when students work through the modelling cycle. Cognitively 

oriented analyses have played a prominent role in many sessions of the modelling group at previous 



conferences. At CERME 10, this aspect can be found within two thematic strands, that on 

developing modelling strategies and competences and also that on the analysis of modelling 

problems. The discussions there broadened our focus on the cognitive perspective and helped us 

develop further our thinking. 

The third perspective, the curricular perspective, refers to the inclusion of mathematical modelling 

in the curricula. This question was addressed in all meetings at previous conferences and is 

addressed in nearly all thematic strands of TWG 6 at CERME 10 and highlights the significance and 

urgency of this theme. 

The fourth perspective, the instructional perspective, claims the necessity of high quality modelling 

education in order to promote effective learning. The question on how to implement effective 

modelling environments is a hot topic that has persisted for decades and was addressed at CERME 

10 within various strands of TWG 6, especially within the themes that addressed experimental 

materials and technology in modelling and teacher interventions.  

As a final and fifth perspective teacher education and teachers’ activities in school are addressed, 

because of the obvious necessity of preparing pre-service teachers for the teaching of mathematical 

modelling, although the importance of this topic at the various sessions of the Applications and 

Modelling TWG at previous ERME conferences was less prominent than at this. At CERME 10, 

teachers and their role in teaching as well as teacher education played a prominent role within the 

work of the Applications and Modelling TWG. This was integrated into various themes such as 

modelling strategies, teacher interventions and teachers’ beliefs. This shift shows a clear further 

development of the discussions and the work of TWG 6 and needs to be fostered and broadened. 

Teachers and their education are the key for the effective and efficient integration of mathematical 

modelling into mathematical education at various levels.  
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In this paper we use a modelling perspective to analyse three descriptions and definitions of so-

called Fermi problems found in the literature. We discuss how the three definitions align with, and 

what they potentially have to offer to, realistic or applied modelling, contextual modelling, 

educational modelling (either a didactical or conceptual), socio-critical modelling, epistemological 

or theoretical modelling, and cognitive modelling. Our findings show that the definitions share 

some similarities, but for the most part are formulated in lose terms. From a modelling perspective, 

we found that the conceptualisation of Fermi problem we studied foremost and directly align with 

contextual modelling and both strands of educational modelling. We also discuss the seemly 

incompatibility between Fermi problems and the other modelling perspectives, and suggest new 

lines of research on Fermi problems in particular, and on conceptualizing modelling in general. 
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Introduction 

The notion Fermi problem is tributed to the Italian Enrico Fermi (1901-1954), the 1938 Nobel Prize 

winner in physics, who had a special liking for posing and solving problems like How many 

shopping malls are there in the United States? (Anderson & Sherman, 2010). Fermi’s philosophy 

was that any thinking and reasonably educated person should be able to solve problems of this type 

by just combing one’s capabilities of making quantitatively accurate realistic and intelligent order of 

magnitude estimates, reasoning, and doing simple calculations (Efthimiou & Llewellyn, 2007). The 

perhaps most famous and classic Fermi problems is How many piano tuners are there in Chicago? 

Allegedly Fermi repeatedly gave this problem to his physics students at the University of Chicago 

many times over the years, and illustrated of the power of such reasoning by quickly calculating an 

astoundingly accurate and reasonable answer based on just a few sensible assumptions and 

estimates. Besides going under the name Fermi problems, these types of problems are also called 

back-of-envelope calculation problems or order of magnitude (estimation) problems.  

Much due to the influence of Fermi, Fermi problems have been widely used in physics and 

engineering college courses in the US. Indeed, one can find many “shout-out” advocating and 

claiming various beneficiary effects for using Fermi problems in teaching, often exemplifying the 

assumptions and calculations involved in an explicit example as well as listing Fermi problems to 

try out in the classroom (see for example Carlson (1997)). However, it seems that systematic 

science- and engineering education research focusing on Fermi problem is sparse or at best 

marginalized. In recent years however, a number of studies in mathematics education have focused 

on the use of Fermi problems in the teaching and learning of mathematical modelling. Peter-Koop 

(2004) used Fermi problems to investigate third and fourth graders’ problem solving strategies and 

among other things found that students’ solutions “revealed multi-cyclic modelling processes” (p. 



461). At the upper secondary level Ärlebäck (2009) investigated the potential of using Fermi 

problems as ‘miniature modelling problems’ to introduce modelling. Using so-called MADs 

(Modelling Activity Diagrams) the result showed the complexity of the modelling process involved 

when students at the high school level engaged in solving Fermi problems, something which 

recently also have been documented for college students (Czocher, 2016). Fermi problems have also 

been used to study students’ reasoning involved in solving so called Big numbers estimation 

problems, such as How many persons can fit in the playground of our high school to attend a 

concert there? Albarracín and Gorgorió (2013) showed that problems requiring equivalent 

mathematical solving approaches, but formulated using different context-specific wording, resulted 

in the students using differing solving strategies. Building and furthering this study, Albarracín and 

Gorgorió (2014) showed that some of the solving strategies the students used normally not would 

been considered valid as mathematics classrooms activities. For example, one such strategy found 

was the exhaustive recounting of objects, which requires excessive effort and/or time, or input from 

external sources which would eliminate the need to solve the problem altogether. However, it was 

concluded that 47% of the students’ strategies were based on mathematical models.   

Sriraman and Lesh (2006) have argued for the introduction of Fermi problems as interdisciplinary 

tasks which potentially bridge and connect mathematics and other school subjects. In addition, due 

to the directness aspect of Fermi problem, one can also easily incorporate different social issues of 

interest within the task, such as estimating the amount drinking water consumed, the consumption 

of gasoline or other fuels, the amount of discarded food or other ecological types of problems 

(Sriraman & Knott, 2009). 

In this paper we present our on-going work aimed at doing an exhaustive and systematically review 

of the literature on Fermi problems from all educational fields. As part of this endeavour, we in this 

paper analyse three different definitions and descriptions of Fermi problems in the literature from a 

modelling perspective. We use the classification of perspectives on modelling by Kaiser and 

Sriraman (2006), and map the key features of Fermi problems in the definitions and description 

onto the different perspectives and discuss the potential of using Fermi problems in a modelling 

setting from different viewpoints. Our aim is that this preliminary analysis will point out areas and 

directions that are worth to further explore in the larger study.  

The research question that guided our work in this paper was: How does the definitions and 

descriptions of Fermi problems in the literature align with different perspective on modelling? 

Methodology and method 

Three of our goals with doing a systematic review of Fermi problem is to i) elaborate a research 

grounded coherent definition that characterize Fermi problems as completely as possible; ii) find 

and describe the connection between Fermi problems and modelling in general and connections 

between modelling perspectives in particular; and iii) create a research agenda for future research 

(Ärlebäck & Albarracín, in preparation).  

The literature for the exhaustive review was identified using a) search engines such as Academic 

Primer, ERIC, Google Scholar, and Scopus, and key word searches on Fermi problem/question/ 

estimate, back-of-envelope problem, order of magnitude estimate, “how many piano tuners”, b) 

snowballing (using literature already found and concluded relevant for the research to identify  



further literature; cf. Petticrew & Roberts, 2006), and c) asking colleagues with other mother toughs 

than our own for papers in their native language. It should be noted that there are similar notions 

and concepts in chemistry and physics, and hence the searches will result in large numbers of hits. 

However, the majorities of these can be dismissed since they not are about education. The papers 

that did have and educational focus was skimmed and paper that only mentioned Fermi problems in 

the passing was excluded from the final selection. This resulted in a list of 59 papers from 

mathematics education and other educational subjects (such as science, economics and engineering), 

written in English, Spanish, German Japanese and Dutch. All 59 papers were read and three 

representative definitions and descriptions were selected. We then used the characterisation of 

perspectives on modelling by Kaiser and Sriraman (2006) as an analytic lens to compare the three 

definitions as well as contrast them relative the different modelling perspectives. We chose this 

high-level framework to structure the analysis rather than a more specialized and “derived” 

framework (such a framework classifying modelling tasks) for two reasons. Firstly we wanted do 

use the existing definitions and descriptions of Fermi problems in the literature as the point of 

departure for the analysis, and secondly we wanted to use a neural framework not based on too 

specific cultural or epistemological stances. 

The three definitions and descriptions of Fermi problems 

Although the number of papers related to Fermi problem found is numerous, many of them do not 

offer any explicit definitions of the notion, but are rather based on shared knowledge and often 

provide some elaborated examples to characterize how Fermi problems are conceptualized and 

understood. 

For the analysis and discussion in this paper we have chosen to focus on the following three 

different definitions and characterisations of Fermi problems in the literature: Ärlebäck (2009), 

Goodchild and Fuglestad (2008), and Sriraman and Knott (2009). All three sources are selected 

from the mathematics education research literature and use and discuss characteristics of Fermi 

problems and how students work with these. Ärlebäck (2009) is included since the characterizing of 

Fermi problem in this paper is one of the most cited and used definition in the more recent literature 

(in 9 of the 59 papers in our list of research paper on Fermi problem). Goodchild and Fuglestad 

(2008) and Sriraman and Knott (2009) are both included since their papers are representative for 

much of the other papers in literature. One can discuss whether the expressed conceptualizations of 

Fermi problems in the three papers are definitions in strict sense or mere characterizations or 

descriptions, but to avoid ambiguity and awkward formulations in the paper we will from now on 

refer to the three simply as definitions. 

The first quote, from now on referred to as (Ärlebäck), comes from Ärlebäck (2009) who suggested 

and adapted so-called Realistic Fermi problems defined by: 

 their accessibility, meaning that they can be approached by all individual students or groups 

of students, and solved on both different educational levels and on different levels of 

complexity. A realistic Fermi problem does not necessarily demand any specific pre-

mathematical knowledge; 

 their clear real-world connection, to be realistic. As a consequence a Realistic Fermi problem 

is more than just an intellectual exercise, and I fully agree with Sriraman and Lesh (2006) 



when they argue that “Fermi problems which are directly related to the daily environment are 

more meaningful and offer more pedagogical possibilities” (p. 248); 

 the specifying and structuring of the relevant information and relationships needed to tackle 

the problem. This characteristic prescribes the problem formulation to be open, not 

immediately associated with a know strategy or procedure to solve the problem, and hence 

urging the problem solvers to invoke prior constructs, conceptions, experiences, strategies 

and other cognitive skills in approaching the problem; 

 the absence of numerical data, that is the need to make reasonable estimates of relevant 

quantities. An implication of this characteristic is that the context of the problem must be 

familiar, relevant and interesting for the subject(s) working in it; 

 (in connection with the last two points above) their inner momentum to promote discussion, 

that as a group activity they invite to discussion on different matters such as what is relevant 

for the problem and how to estimate physical entities. (Ärlebäck, 2009, pp. 339-340, italics in 

original) 

The second definition of Fermi problem is by Goodchild and Fuglestad (2008), who draw on (Swan 

& Ridgway, n.d.). Their definitions will be referenced as (Goodchild & Fuglestad): 

These [Fermi problems] are ‘plausible estimation’ tasks, which consist of one or two easily-

stated questions which at first glance seem impossible to answer without reference material, but 

which can be reasonably estimated by following a series of simple steps that use only common 

sense and numbers that are generally known or amenable to estimation (Goodchild & Fuglestad, 

2008, p. 52). 

The third and last definition, from this point referred to as (Sriraman & Knott), is from Sriraman 

and Knott (2009): 

Fermi problems are estimation problems used with the pedagogical purpose of clearly identifying 

starting conditions or assumptions and making educated guesses about various quantities or 

variables which arise within a problem with the added requirement that the end computation be 

feasible or computable by hand. (p. 220) 

Analysing and situating Fermi problems from different perspectives on 

modelling 

We now briefly summarise the main characteristics of the different perspectives in Kaiser and 

Sriraman (2006) and discuss how the three definitions of Fermi problems above “fits” with the 

respective perspective and why. The brief characterization presented of realistic or applied 

modelling, contextual modelling, educational modelling (either a didactical or conceptual), socio-

critical modelling, epistemological or theoretical modelling, and cognitive modelling are based on 

Kaiser and Sriraman (2006) and Blomhøj (2009). 

The realistic or applied perspective of modelling stresses the importance of using authentic 

problems from science and industry as well as for the students to engage in the whole modelling 

process rather than fragmented parts thereof. Although none of the definitions explicitly excludes 

authentic contexts from science and industry, they all tend to suggest and promote more mundane 



and everyday problem contexts: “the context of the problem must be familiar, relevant and 

interesting for the subject(s)” (Ärlebäck); “reasonably estimated by following a series of simple 

steps that use only common sense” (Goodchild & Fuglestad); “making educated guesses” (Sriraman 

& Knott). It could be noted that the use of the word ‘realistic’ in Ärlebäck’s definition might be 

misleading with respect to the realistic and applied perspective of modelling. This wording merely 

stresses that the Fermi problem should have a meaningful real-world connection and not be purely 

intellectual in nature. However, in the sense that Fermi problems that focus on issues like the 

number of piano tuners in a city, or the number of grains of sand in a glass, are not normally 

relevant questions for students. On the other hand, problems that ask students to estimate the 

amount of trash produced, or the volume of fresh water consumption, connect with the students’ 

physical and social environment and have meanings by themselves. The meaning of ‘realistic’ in the 

realistic or applied perspective on modelling is much stronger. This suggests that Femi problems, at 

least as portrayed in the definitions discussed here, have little to offer to the realistic and applied 

perspective on modelling. 

Contextual modelling, having its roots in the word problem solving tradition, is centred around the 

design of carefully structured and meaningful situations, were the students develop, refine, and 

extend their own mathematical constructs as well as apply these in different contexts. The emphasis 

on meaning-making in the contextual modelling perspective can be seen echoed in (Goodchild & 

Fuglestad) and (Ärlebäck) but not evidently in (Sriraman & Knott). In (Goodchild & Fuglestad) the 

students have to meaningfully understand and come to grips with the context of the Fermi problem 

at hand to overcome the “easily-stated questions which at first glance seem impossible to answer”, 

whereas (Ärlebäck) stresses the problem formulation to “be open, not immediately associated with a 

know strategy or procedure to solve the problem, and hence urging the problem solvers to invoke 

prior constructs, conceptions, experiences, strategies and other cognitive skills in approaching the 

problem“, which resonates with the ‘traditional’ problem solving tradition that historically has been 

strongly associated with the contextual perspective on modelling. (Sriraman & Knott) on the other 

hand describe Fermi problems as intentionally designed with the explicit “pedagogical purpose of 

clearly identifying starting conditions or assumptions and making educated guesses about various 

quantities or variables which arise within a problem”. This focuses more on solving (meta-) 

strategies than stressing meaning-making or for the students to develop, refine, and extend their own 

mathematical constructs. 

Both ‘flavours’ of educational modelling (didactical and conceptual) are so-called integrative 

perspectives in that they seek to combine modelling as a learning goal in its own right as well as 

modelling as a vehicle for learning other content matter. The two strands within this perspective 

forefront pedagogical goals such as using modelling as a didactical tool for structure learning 

processes and modelling as a mean to introduce concepts and promote concept development. Within 

this perspective, the cyclic view of modelling (aka the modelling cycle) has a prominent role. 

Looking at the three definitions, we argue that (Ärlebäck) and (Sriraman & Knott) both put forward 

Fermi problems as vehicles for learning other curricula objectives as well as have explicit didactical 

considerations as central features. On the one hand the two characteristics of accessibility and 

discussion promoting in (Ärlebäck) address classroom dynamics and classroom norms as innate 

components of the Fermi problems themselves. (Sriraman & Knott) on the other hand explicitly 



describe the use of Fermi problems as having a “pedagogical purpose”. Looking at the definition in 

(Goodchild & Fuglestad) however, these educational aspects are not emphasised. 

Central from the socio-critical perspective on modelling is critical reflection and critique of 

mathematics role and function in society as manifested in the use of mathematical models and 

modelling. Although it is an innate feature of Fermi problems to engage the problem solver in 

making reasonable, and arguable critically realistic, assumptions and estimates, these need not 

inherently nor explicitly focus on or be connected to the social dimensions involved in the context 

of the problem. Similarly as for the realistic and applied perspective on modelling, there are nothing 

in the definitions that explicitly stresses the fundamental core characteristics of the respective 

perspective. That is, with regards to the socio-critical perspective on modelling, neither of the 

definitions analysed forefronts the social aspects and implications of the use of models and 

modelling in society. However, it is worth noticing that (Goodchild & Fuglestad) use a formulation 

that indicates that Fermi problem can be used to get students to appreciate the potential and power 

of mathematics to address and make sense of real problems in the world, namely “questions which 

at first glance seem impossible to answer without reference materials”. 

Epistemological modelling focuses on theory building and uses modelling as a mean to re-construct 

topics and branches of mathematics as a discipline. Neither of the three definitions (Ärlebäck), 

(Goodchild & Fuglestad) and (Sriraman & Knott) express the ambition to draw on Fermi problems 

to derive theory in terms of re-building and constructing mathematical (sub-)topics or (sub-)areas. 

Indeed, as pointed out in Ärlebäck (2009), Fermi problem can be experienced as limited with 

respect to various mathematical content, and given a particular learning goal within mathematics, it 

might be very challenging to design and formulate a Fermi problem that focuses on eliciting this 

content in a natural way. 

The cognitive modelling perspective is sometime described as meta-perspective in the sense that it 

focuses on fundamental research questions related to various aspects of modelling from a cognitive 

perspective. From the point of view of the cognitive modelling perspective being a meta-perspective 

that guides research into the practices of mathematical modelling and all that goes around and into 

the modelling process, we find it difficult to elaborate on what the different definitions might offer 

in this respect. We fear that such a discussion would be far too speculative to be constructive or 

productive and not inform our aim about how to classify definitions of Fermi problems. 

Discussion, conclusions, and future research 

The limited analysis we have presented in this paper points to some of the challenges in developing 

a classification scheme of definitions of Fermi problems from a modelling perspective. Having 

engaged in this exercise, we conclude that the level of interpretation needed to apply the different 

perspectives on modelling as analytical lens introduces uncertainty in the results. Partly we believe 

this has to do with the fact that the definitions and characterizations of Fermi problems in the papers 

found in literature are vague and ambiguous. However, we also contribute some of this difficulty to 

the used perspectives on modelling in Kaiser and Sriraman (2006), which describes the modelling 

debate from evolutionary viewpoint, connecting todays trends and approaches with their historical 

traditions and roots. This suggests on the one hand, that an overarching and general characterisation 

and definition of Fermi problem could make the research on Fermi problem more connected and 



coherent, rather than scattered and compartmentalized. On the other hand, is also suggests that 

alternative ways of thinking about and characterize different aspects of the on-going modelling 

debate might provide new insight into the growing literature on the teaching and learning models 

and modelling – ranging from basic ontological and epistemological considerations to different 

aspects of both general and particular designs and practices involved in the teaching and learning of 

mathematical models and modelling. 

In going through the papers in our list of research on Fermi problem and looking at the definitions, 

we found that most definitions adapted in the different papers are of a local and pragmatic nature in 

the sense that they are relevant and work fine in the particular setting and study described and 

reported on the paper. We also identified patterns of linkages between the work of some authors 

who draws and build on each other’s work, whereas some pieces of research are more like isolated 

islands. To us this is a second indication motivating the need for a more coherent view and 

characterisation of Fermi problems, in order to coordinate the various research finding in the 

literature and advance our collective experiences and knowledge with respect to Fermi problems. 

As we mentioned before, there is no consensus of what the characteristics of Fermi problems are in 

the research literature. This is perhaps not surprising since this type of problems have been part of 

everyday mathematics and science teaching in various degrees and in various forms for decades, but 

only in recent time been subject for more systematic investigations. Doing the analysis of the three 

definitions have pointed to some communalities and difference in general and from a modelling 

perspective in particular. We are of the opinion that Fermi problems have much to offer from a 

modelling perspective, both as a tool to promote modelling (cf. (Ärlebäck, 2009)) and as a research 

tool. Hence we would like to promote the use of Fermi problems in schools, and through our 

systematic literature review (Ärlebäck & Albarracín, in preparation) we hope to lay the foundation 

for finding a common ground for promoting these types of problems in education and research. Our 

next step is to build on the initial ideas and results presented in this paper to make a more carful 

analysis of our sought out literature, with the ambition, to among other things, come up with a 

tentative and coherent definition of Fermi problems together with a rationale for how, when and 

why to used then in connection to mathematical modelling.  
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This paper presents the a posteriori analysis of an study and research path (SRP) on comparing 

reality versus forecasts of Facebook users, which appears as a teaching and learning proposal for 

mathematical modelling. We present the main elements of the SRP that have been designed through 

a virtual platform developed in the frame of the European project MCSquared and experienced in a 

first-year course at university in management sciences degrees. The three-layer analysis we present 

is based on three main study dialectics: the questions-answers, media-milieu and individual-

collective dialectics, which are central for an SRP and for mathematical modelling. In particular, we 

focus our a posteriori analysis on how these three dialectics were fostered and which are the main 

weaknesses as well as strengths of the SRP experienced. 

Keywords: Mathematical modelling, study and research paths, dialectics, university level. 

Introduction: The SRP as teaching proposal for mathematical modelling 

During the last decades, researchers and practitioners agree that teaching should not be focused only 

on the formal transmission of knowledge, but also should provide students of the tools for enquiring 

into the study of real phenomena and integrate mathematics as an essential modelling tool. It is thus 

important to foster a change of the school paradigm, with new functionalities to mathematical 

knowledge, novel responsibilities to teachers and students, different ways of questioning 

mathematical knowledge, that is, moving from a school paradigm which most of the time focused on 

introducing students to already built mathematical knowledge devoid of its rationale to a paradigm 

of questioning it, ‘questioning the world’ in the words of Chevallard (2015). In the particular case of 

the research on modelling and their applications and on inquiry-based approaches some big steps 

have been made showing how, under certain suitable conditions in different educational levels and 

curricular frames, modelling activities may be successfully put into practice (Artigue & Blomhøj, 

2013; Burkhardt, 2008; among others). Hence, the dissemination and long-term survival of activities 

based on modelling, enquiring and other innovating proposals are one of the main challenges for 

Mathematical Education. Therefore, to support and analyse any kind of alternative teaching proposal, 

researchers need reference models that allow them to analyse and evaluate the impact that these 

innovative teaching practices have on the way mathematics is conceived, on the nature of the didactic 

systems and milieus emerged through these practices, and on the conditions and constraints that help 

or hinder the viability of these practices. 

In our research, developed in the framework of the anthropological theory of the didactic, we bet on 

the use of the study and research paths (SRP) as epistemological and didactic model (Chevallard, 

2015; Winslow et al., 2013) to face the problem of moving towards a functional teaching of 

mathematics and, particularly, where mathematics are conceived as a modelling tool for the study of 

problematic questions. 



Traits and levels of analysis of an SRP 

According to Barquero and Bosch (2015), the starting point of an SRP should be a ‘lively’ question 

of real interest for the community of study (students and teacher/s). The study of Q0, called the 

generating question, evolves and opens many other derived questions Q1, Q2,…, Qn. The continuous 

looking for answers to Q0 (and to its derivative questions) is the main purpose of the study and an end 

in itself. As a result, the study of Q0 and its derived questions Qi leads to successive temporary 

answers Ai that can be helpful in elaborating a final response R♥ to Q0. These first characteristics can 

be associated to the first level of analysis of the SRP that we here consider, it consists in the dialectic 

establishing between the questions posed and the likely answers appearing (questions-answers 

dialectic) which also provide the basic structure of an SRP to be implemented and to be enriched after 

each implementation. This first layer can be linked to the cronogenesis dimension of the teaching and 

learning practices, referring to the evolution of questions to be faced and the necessary knowledge to 

be used.  

Another central dimension for an SRP is the media-milieu dialectic, which constitutes the second 

level of analysis. As described in the aforementioned investigations, the implementation of an SRP 

can only be carried out if the students have some pre-established responses accessible through the 

different means of communication and diffusion (that is, the media), to elaborate the successive 

provisional answers Ai. These media are any source of information, such as: textbooks, treatises, 

research articles, class notes, or the teacher acting as main media. However, the answers provided are 

constructions that have been elaborated to provide answers to questions that are different to the ones 

that may be put forward throughout the mathematical modelling process. Thus they have to be de- 

and re-constructed according to the new needs. Other types of milieus will therefore be necessary to 

test the validity and appropriateness of these answers. This second level of analysis put attention to 

the mesogenesis, that is, the evolution of the experimental milieu. Finally, we may consider the 

collective dimension of the research and study of questions in an SRP. This third dimension focuses 

on the roles and responsibilities that, far from the traditional didactic contract, students and teachers 

may assume in experiencing an SRP and how the individual work is shared, transferred and agreed 

with the wider community, and vice versa. We will denote this third level as the individual-collective 

dimension, which refers to the topogenesis. 

Didactic analysis of a mathematical modelling process: The case of an SRP about 

comparing reality against forecast 

We focus on analysing the case of an SRP on comparing forecasts against reality in the case of 

Facebook users’ evolution. This SRP was designed in the frame of the European project MCSquared 

(http://www.mc2-project.eu), the goal of which is the design of innovating teaching proposals (the 

so-called c-book units) to foster creative mathematical thinking. This c-unit in particular has been 

produced by a group of five multiple background designers: 2 Maths Education researchers, 2 

university lecturers, who were then in charge of its implementation, and an expert on modelling in 

the field of Operations Research, which enrich a lot the way to structure the teaching sequence to 

prompt mathematical modelling. The teaching proposal was made in the virtual socio-technical 

environment developed along the project, the c-book that integrates some narratives with several 

applets of different factories of different educational technologies. Next we present the details about 

the design of the SRP experienced, combining the virtual environment offered by the c-unit with face-

http://www.mc2-project.eu/


to-face sessions during the winter term of the academic year 2015-16 with first-year students of 

Business Administration Degree and of Innovation Management (BAIM), all from the ‘Escola 

Superior de Ciències Socials i de l’Empresa-Tecnocampus’, Pompeu Fabra University.  

The initial situation starts from a real news about a research developed by Princeton University in 

2014, in which it was predicted that Facebook would lose the 80% of its users before 2017. Hence, 

the initial question Q0 presented to students is about: Can these forecasts be true? How can we model 

and fit real data about Facebook users’ evolution to provide our forecast the short- and long-term 

evolution of the social network? How can we validate Princeton conclusions? The experimentation 

was structured in three interconnected phases linked to the generating question Q0, building up the a 

priori design of the SRP, then reflected in the design of the c-book unit. A first phase that focuses on 

the open research of real data about Facebook users, a second one focused on which mathematical 

models (mainly based on elementary functions) can provide a good fitting to real data, and a third 

one about the use of these models to provide the short-, medium- and long-term forecasts of Facebook 

users and about how to decide about best and most reliable model. The students, working in 

‘consultant teams’ of 3-4 people, got the order from MS2 Consulting (‘Mathematical Solutions 

Squared’) previously described as Q0 and they were asked to deliver a final report by the end of their 

work as an oral presentation as response to the order. The implementation combined face-to-face 

sessions in the teaching device called ‘Math modelling workshop’ (in a total of six 90-minuts weekly 

sessions) for the miss-in-common of the junior consultant teams’ partial reports, with work out of the 

classroom. The guiding c-unit that gives the workshop support was ready before starting in order to 

let the different teams attach their answers, pose new questions by providing an interacting device (as 

chats or shared spread-sheets) and use some applets designed especially to get through the different 

phases of the SRP. Next we sketch how different dialectics were prompted by both: (a) the c-unit 

design (by its initial design but also by the different changes that were introduced according to 

students’ requirements: new questions and answers not envisioned, new media required, etc.) and (b) 

the didactic gestures and devices to manage its implementation.  

The questions-answers dialectics 

We can visualize the first level of description of the SRP designed and experienced as an arborescence 

of the questions that were proposed and faced and the answers foreseen and appeared. This questions-

answers structure constitutes a first layer of analysis of the process designed and of the trajectories 

followed in the implementation of the SRP. As introduced above the generating questions Q0 of the 

SRP on comparing forecasts against reality in the case of Facebook users’ evolution was broken into 

three main derived questions (see Figure 1 for the SRP questions’ organization), which guided the 

successive phases of its implementation. A first phase that focuses on the open research of real data 

about Facebook users, a second one focused on which mathematical models (mainly based on 

elementary functions) can provide a good fitting to real data, and a third and last one about the use of 

these models to provide the short-, medium- and long-term forecasts of Facebook users and about 

how to decide about best and most reliable model.  



 

 

 

 

 

 

 

Fig 1: Tree of questions and answers of the different phases of the SRP 

Q1: Which data sets about Facebook users are better to consider in our research?  A1: Each group 

look for the data set to be used and shared; the whole community agree on the terminology (year, 

period, units, etc.) and on the dependent and independent variables to consider. 

Q1.1: Which time intervals may be considered? Q1.2: How can data be well-organized? Q1.3: How to 

organise and visualise data? Q1.4: What can we say about the growth tendency of the data analysed?  

Q2: Which mathematical models provide the best fitting of real data about FB users?  A2: Each 

consultant group is asked to propose and justify three mathematical models fitting real data. 

Q2.1: Which models (based on elementary functions: linear, parabolic, exponential, etc.) may fit the data? 

Q2.2: How can the coefficients of the model be determined? 

Q3: How can we decide about the ‘best’ models fitting data? Can we use this model to predict the 

future evolution of FB users?  A3: Need to create tools to justify why a mathematical model/s 

is/are the ‘best’ with respect to: (a) fitting data and (b) forecasting the evolution of FB users.  

Q3.1: How can we compare the error committed between reality and forecasts provided by models? 

Q3.2: Can be the same model used for the short- and long-term forecasts? 

Let us comment the main aspects of the a posteriori analysis of the experimentation referring, in 

particular, to the questions-answers dialectic level. About the first phase, we should remark the ease 

with which the students found real data about the evolution of the social net. The most format they 

found the information was by means of a graphical representation (for example, a bar chart). This fact 

strongly determined their analysis, since they focused mainly in the graphical analysis of the data 

growth tendency, but not in their numerical versant (variation tax, that appeared in a tangential way). 

Besides, the fact that many groups found the same data triggered an intense debate and interchange 

of ideas among them, which took us to consider a brainstorming session about the previous hypothesis 

in the classroom, and as a consequence, the duration of the first phase was extended from 3 to 4 

sessions. Due to the wealth of answers collected by the teams during the brainstorming session we 

decided to ask the students to deliver a first report in a poster format, so that each team could 

synthesize their findings and share their conclusions at that moment. About the second phase of the 

SRP, since many groups worked finally with very similar data on the worldwide evolution of FB 

users, we made two new decisions: (a) give each team a second set of different data, corresponding 

to different geographical areas, in order to contrast their hypothesis and extend their study; and (b) 

ask for more than one fitting model for each data set. The analysis of the teams proposals made arise 



a non-expected aspect: many of them proposed using piecewise functions, so that the expected 

answers to Q2 about the consideration of models based elementary functions (linear, quadratic, 

exponential, etc.) was extended. Otherwise, during the brainstorming in the first phase the teams 

started enquiring in the history of FB and about the possible reasons of the changes in the tendency 

of the data or number of users (IPO, new rival social nets, purchases of the company, new 

developments, etc.), and also the moments of change of tendency. New questions and answers 

appeared at this stage about changing the fitting model in accordance to a particular action or 

decisions of FB. Concerning the third and last phase, we only dedicated two face-to-face sessions of 

the workshop (one with the whole group and the other for the consultant teams’ doubts) and were not 

enough for a rich development of Q3. Although this time constraint, there were some applets designed 

and integrated in the c-unit to help on the simulation of models and its contrast to real data, as we 

explain in the following section about the media-milieu.  

The media-milieu dialectic 

Since we have the first layer of analysis of the SRP in terms of the arborescence of the questions-

answers, it is important to ask when, where and how questions can arise and answers can be 

developed. It is at this new level when there may appear the different elements taking part of the 

milieu, composed of varied elements: questions, temporary answers, pre-existing answers in or out 

school, means to validate answers, experimental data, etc., accessible through different kind of media 

(textbook, lectures, website resources, etc.). The relation among these elements can be analysed 

through the media-milieu dialectic. In our SRP it has been central the constant dialectic between the 

search for data (for instance, real data about Facebook users, or about the company changes) and of 

pre-existing answers (ways to organise data, common models to fit population evaluation, elementary 

functions, tools to control error, etc.) that exist in different media that were available to students, such 

as web resources, contents of Mathematics course, answers from lecturers from other courses; and 

the creation of the appropriate means (milieu) to integrate (or refuse) them it their SRP path study. 

Let us stress the importance of some of them. 

In the first phase of the SRP, it was important to count on the help of the teacher of another course 

called ‘Introduction to digital communities’ (running in parallel to the workshop) who helped on 

providing a general sense and functionality to Q0 and to show how the students could look for real 

data about FB and some techniques to organise them. Also, having open access to the news and papers 

published by Princeton University about FB, as well as FB answer to Princeton or their monthly 

report about users growth was very useful for students. All these elements took part of the media 

accessible to students, at the time it enriches students’ milieu mainly composed at this stage of the 

data sets that each team chose to work with, shared and debated with the whole class sessions. All 

these elements helped them to prepare a first report with the first temporary answer A1, in a poster 

format given in the c-book platform, and then shared and debated in the face-to-face session (see 

Figure 1, left side). With respect to the second phase, the a priori design of the c-unit contained some 

applets (designed with Geogebra) proposed to help students to explore different models based on 

elementary functions (Q2). These applets provided the main media for students to visualize data 

jointly with model simulation, and also took part of their milieu as main tools for contrasting, 

comparing and deciding on the ‘best’ models to choose. As aforementioned, in the SRP experienced 

students suggested using piecewise functions, which pushed designers to make changes in the 



questions and applets as these necessities were coming up. Moreover, some groups started to present 

new hypothesis about model to use with non-elementary functions (such as Gaussian function), most 

of which were part of their milieu because they had been introduced in previous courses. So that, 

designers had to quickly cover this demand by designing a new applet with Geogebra to let them 

manipulate also these types of mathematical models.   

 

 

 

 

 

 

 

 

 

With respect to the last phase, despite of the lack of time, the study of Q3 that the consultant teams 

developed was in general very rich. Concerning Q3.1 about comparing the error committed by models’ 

forecasts against reality, we decided to integrate a new applet from Cinderella (see Figure 2, on the 

right) to provide students with the main media, also milieu, to simulate models they had bet for and 

to be able to compare graphically and numerically the error between data and forecasts coming from 

models’ simulation. Through this tool, one could obtain the numerical calculation and graphical 

representation of the punctual and the averaged error (absolute and quadratic error) at the time one 

can changed the parameters that define the model to obtain a better fitting. Although the several 

advantages that this applet provided to students, students assumed and used uncritically the tools 

proposed by the applet. The lack of time and these designers’ decisions made that the media-milieu 

dialectic at this stage was not so rich as it could be.  

The individual-collective dialectic 

In this level of analysis we focus on the relation between the teaching devices habilitated for the 

implementation of the SRP and the changes on the traditional didactic contract that are necessary, 

that is, changes on the roles and responsibilities that both students and lecturers involved in this 

experience had to assume. This layer, closely related to the two previously introduced, provides a 

finer detail about how individuals and the group developed their work in the SRP. And, how all the 

actions and objects of study and research (looking for questions and answers, proposing new media, 

adopting external answers, enlarging the milieu, etc.) are shared, agreed and transformed from the 

individuals to the community. Although we will be not able to go very deep in this description, due 

to space restriction, let us stress some important features of the SRP about its collective dimension.  

First, the devolution of Q0 was presented as an external order coming from MS2 Consulting 

(‘Mathematical Solutions Squared’) and students were asked to spend more than a month to prepare 

and deliver a final report by the end of their work as an oral presentation. The lecturer of the (official) 

Fig 2: Example of page format and applets of the c-unit about Facebook users 

 



Maths course now changed their role to become only a guide of the study and research process, 

transferring most of the responsibilities to students on elaborating their answer. Moreover at the end 

of the implementation, two external persons carried out the validation and evaluation of the final 

consultant team’s answers, in coherence with what was asked at the beginning and trying to make 

students assume these responsibilities. Second, students were organised all the time in consultant 

teams with an autonomous functioning, who were asked since the beginning to jointly deliver a 

collective report, although in its evaluation each of them had to be responsible of explaining responses 

to one of the phases and all could be asked about any phase. To help on assuming this autonomy, 

lecturers took several decisions: (a) distribute different data sets to help them not to be very influenced 

by other teams work and rhythms; (b) use the workshop sessions for the common debate of groups 

work and to share the main advances in finding answers (although different) and new questions 

emerged, and (c) constantly introduce changes in the design of the c-unit design, which work as the 

shared support, with the new questions that had emerged and with the media that could help them at 

each step. For instance, at the last of phase 1, designers decided to integrate a poster format to fix the 

things students had to share with the rest of the groups and dedicate a workshop session when 

consultant’s teams could explain their answers to Q1; or, as explained in the previous section, in phase 

2 and 3 designers decided to create new applets to deal with new models proposal and to facilitate 

them the media and milieu to make the SRP progress. 

Final remarks and conclusions 

In this paper we focus on the case of an SRP on comparing forecasts against reality in the case of 

Facebook users’ evolution to show the use of three dialectics: the one of the questions-answers, of 

the media-milieu and of the individual-collective, corresponding to the three complementary level of 

didactic analysis of teaching and learning processes (Chevallard, 2008). Besides their analytic use, 

they suppose a productive framework to enrich teaching and learning practices, in particular, on 

modelling.  

In what concerns to the questions-answers dialectic, since the beginning of the workshop, the 

generating question Q0 about the controversy of the article by Princeton was adopted by the students 

with a great interest and, up to the end of the process, was kept alive. From its implementation we 

can underline very important conditions that were created. First, the flexibility of the lecturers and 

designers team that were opened to readjust the schedule according to students’ team work, that is 

why we devoted more sessions to the first phase and consequently reducing the ones to the last phase. 

Furthermore, they were very attentive to integrate in the c-book unit all new questions and means that 

students asked for. Second, students were very active on workshop session to share their proposals 

from which many derived questions appeared, some of them planned in the a priori design, some 

others that extended the initial proposal. About the media-milieu dialectic, in the case of this SRP and 

with the support of the c-unit infrastructure, we took several decisions along the implementation of 

transforming the media offered to students to help them in the modelling process and also to observe 

the impact new media had on students’ milieu. We may again insist on the importance of very 

important contributions, such as: collaboration with other subjects (as the one of ‘Introduction to 

digital communities’), focusing some workshop sessions on the discussion external answers that 

students brought, or by the creation of widgets to foster students’ experimental work, etc. Last but 

not least, about the individual-collective dimension, we may underline that students easily accept the 



request of presenting their final response in front of an external committee. The last session that we 

dedicated to these presentations brought to the light the richness and variety of answers given to the 

stated initial question, as well as the complementarities of consultant teams’ answers. But, we are 

aware of the weakness and insufficiency of mechanism to collect individual and teams internal work, 

as most of the workshop sessions were dedicated to the common debate. This is one aspect to be 

improved in the following experimentations and to integrate means to get access to the dynamics 

established between the individual and collective work. 
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In the last years the discussion for promoting Science, Technology, Engineering, and Mathematics 

(STEM) education became a central goal of educational policy in many countries worldwide, in an 

attempt to prepare students for a scientific and technological society. However, interdisciplinary 

mathematics teaching and learning is not limited to the “STE” and should include other disciplines 

across the curriculum. Mathematical modelling, as a mathematical practice and key competence 

within mathematics education standards could be interpreted as an excellent example for promoting 

not only modelling competencies, but also interdisciplinary mathematics education (IdME) in 

school. In this paper we focus theoretically on the question, ‘Which core similarities and differences 

can be stated between the two fields along three perspectives?’, by presenting a piece of theory 

describing the interplay between IdME and mathematical modelling. 

Keywords: Mathematical modelling, interdisciplinary mathematics education, theory development. 

Introduction 

The purpose of the present study is to examine, from a theoretical point of view, the interplay 

between mathematical modelling and interdisciplinary mathematics teaching and learning, and to 

propose how mathematical modelling can promote interdisciplinary mathematics education. 

Following our theoretical approach, we present an example of an activity, based on our previous 

work, which exemplifies the key features and components of such a modelling activity that can 

promote interdisciplinary mathematics teaching and learning. 

In the following sections, we present mathematical modelling as a means for teaching and learning 

mathematics through an interdisciplinary lens, by referring to the characteristics of modelling that 

make this approach feasible. We later present the teacher perspective on using modelling in 

promoting an interdisciplinary approach, and an example of an interdisciplinary modelling activity. 

We finally present and discuss a model of the interplay between mathematical modelling and 

Interdisciplinary Mathematics Education (IdME). 

Mathematical modelling as means for interdisciplinary teaching and learning 

In this section we firstly give a brief general view on mathematical modelling and interdisciplinary 

mathematics teaching and learning by defining the two fields and by posing some initial thoughts 

for consideration. Although these definitions show strong overlaps, one has to look deeper 

concerning their differences, to understand both fields as exclusive as well. To make this more 

transparent we discuss mathematical modelling as a means for interdisciplinary teaching and 

learning, along the following perspectives: (a) the modelling cycle perspective and the individual 

modelling routes, (b) the teachers’ perspective and the cross-link approach, and (c) the 



interdisciplinary activities and the students’ work. These perspectives are presented in the following 

sections. 

General view and definitions 

Whereas there is a strong consensus in the international discussion that mathematical modelling can 

be described as an activity that involves transitioning back and forth between reality and 

mathematics, the definition of interdisciplinary mathematics education is very vague. Recently 

several researchers from different disciplines, including both authors of this paper, published a 

monograph entitled “Interdisciplinary Mathematics Education – State of the Art” (Williams et al., 

2016). Without going into detail here, it became clear that describing a ‘discipline’ is much easier 

than to think about, if more disciplines could be multi-, inter-, trans- or meta –disciplinary. So what 

does interdisciplinary mean? An interesting paper by Nikitina (2006) described three core 

approaches to the teaching of science and mathematics in integrative ways, that differ from one 

another in form and purpose. These three strategies, namely conceptualizing, contextualizing, and 

problem-centering, ask different questions of mathematics and science, and serve different learning 

goals. The authors discussed these strategies based on their empirical study and furthermore they 

claim that understanding the strengths and weaknesses of each strategy can help educators choose 

the optimal way to present their interdisciplinary material. In contrast, a brief pragmatic definition is 

formulated by Roth (2014), who stated that: “Interdisciplinarity denotes the fact, quality, or 

condition of two or more academic fields or branches of learning. Interdisciplinary projects tend to 

cross the traditional boundaries between academic disciplines” (p. 317). In the following we use this 

definition of IdME as a basis for our theoretical reflections in this paper. Following Roth’s (2014) 

definition, some thoughts arise by contrasting it with mathematical modelling: Without having a 

real life problem, mathematical modelling activities are not possible. At first, real life questions 

come out of another ‘(scientific) discipline’ than mathematics. This makes sense and so we have the 

solution and found the overlap between these fields by arguing that mathematical modelling is the 

same as interdisciplinary mathematics and vice versa! – Stop, this would be too easy! Can we easily 

speak about ‘disciplines’ or is it better to say that real life questions of modelling problems come 

out of other ‘realities’? Do modelling problems always include or promote further disciplines/ 

realities and what is the importance when having one or more of them? If there are other disciplines 

implicitly and explicitly distinguishable in a modelling problem, is it the teacher’s goal to connect 

them and make them understandable for the students? Are modelling problems per se a prototype 

for interdisciplinary mathematics education? In the next section the cycle perspective gives some 

answers to the raised questions and again new thoughts are presented. 

Cycle perspective and individual modelling routes 

Recently the importance of modelling cycles, independent of type (see Borromeo Ferri, 2006), 

became clear for the teaching and learning of mathematical modelling in the classroom. In addition 

to promoting general modelling sub-competencies, fostering the meta-cognitive modelling 

competency can be seen as a strong goal in the learning process as well. Research on students’ 

cognitive processes while modelling also showed that the individual’s process of modelling is far 

from linear. So, individual modelling routes (Borromeo Ferri, 2007) better describe students’ jumps 

backward and forward within the cycle. These jumps could be empirically reconstructed between 

phases, not only inside “reality” or “mathematics”, but mostly between “reality” and “mathematics”. 



Looking from the cycle perspective on modelling and interdisciplinary mathematics we would like 

to formulate two main thoughts/ideas, where (b) is dependent on (a). 

(a) The modelling cycles which were developed in the field of applied mathematics and 

mathematics education during the last decades have a strong focus on the mathematics itself of 

course (Pollak, 1979; Blum, 1985). The interdisciplinary view is not explicitly visible. The often 

used terms in the modelling cycles, like “simplifying” or “working mathematically” do not imply 

that other disciplines are involved. This shows exclusiveness and no overlap when just focusing on 

the cycles. The same phenomenon can be observed when looking at modelling cycles in physics or 

chemistry (e.g. Goldhausen & DiFuccia, 2014), because they indeed focus on their discipline, but 

applying mathematics, if necessary, is only a side product. 

(b) Considering that the interdisciplinary view is not explicitly visible in the known cycles, it is 

clear that it can only happen in connection with appropriate modelling problems. The individual has 

to interpret by reading the problem the other disciplines/realities that are included in the problem. 

This means that the extra-mathematical knowledge is not only limited to one’s own experiences, but 

to the knowledge of other disciplines, like physics or ICT. One could argue that the stronger the 

“discipline knowledge” and the “mathematical knowledge” the better a student’s modelling process 

will be. Speaking on an abstract level, the individual modelling routes are on a multi-dimensional 

level, when the other discipline(s) included in the modelling problems is understood by the students. 

From this point of view, we see strong overlaps between mathematical modelling and 

interdisciplinary education.  

Teachers' perspective and the cross-link approach 

With respect to the previous section we focus now on the teachers’ perspective. If we want teachers 

to be qualified in interdisciplinary mathematics, is it expected from them to become experts, for 

example, in all of the four STEM (Science, Technology, Engineering, and Mathematics)-fields? 

This question was the starting point for our theoretical conceptualization of STEM from a teaching 

and educational perspective, which is also based on the existing debate in STEM-education. 

Borromeo Ferri and her colleagues (2016) distinguish between the single-field teaching approach 

and the cross-link field teaching approach. The first approach describes promoting a single 

discipline in school very deeply, like for example an engineering learning environment (e.g. English 

& King, 2015). The other disciplines are not fundamentally included within this environment. The 

second approach means to promote multiple disciplines; at least two disciplines are promoted in one 

learning environment in order to cross-link these disciplines (see Star et al., 2014 for an example). 

Within the empirical classroom study of the “Leonardo-da-Vinci Project” (Borromeo Ferri et al., 

2016) mathematics, physics, engineering and art were explicitly included in one learning 

environment. Grade 9 students (14 year olds) built and modelled the Leonardo bridge in an Inquiry-

based Learning environment. The main goal of the lesson-unit was the permanent reflection of 

cross-linking the disciplines. On the basis of the empirical data and theoretical thoughts “cross-link” 

could be characterized as follows: One can speak from cross-linking, if at least two (scientific) 

disciplines are combined during one lesson or within the whole lesson-unit and are reflected with 

students on a metacognitive level (Borromeo Ferri et al., 2016). Again, the main aspect of making 

several disciplines explicit is at the foreground. If the teacher decided to look at the Leonardo bridge 

from only a strong mathematical perspective by neglecting the other disciplines, it is also possible. 



The students had the opportunity to understand and to model the bridge by also using and naming 

the other disciplines.  

Interdisciplinary activities and students' work 

A great number of research studies has focused on the development of activities and learning 

materials, following an interdisciplinary approach. In this paper, we focus on the development (and 

the characteristics) of learning activities that have adopted a modelling perspective (e.g. English & 

King, 2015; English & Mousoulides, 2015; Mousoulides, 2016). Such activities are set within 

authentic contexts, and allow for students’ multiple interpretations. With regards to mathematics, 

such activities provide students with opportunities to be engaged in important mathematical 

processes, such as describing, analysing, constructing, and reasoning (Lesh & Doerr, 2003).  

Research in the field listed six design principles for developing such learning activities, following a 

modelling perspective. These design principles are based on the work of teachers and researchers 

and that have subsequently been refined by Lesh and Doerr (2003). The ‘Model Construction 

Principle’ ensures that the solution requires the construction of an explicit description, explanation, 

procedure, or justified prediction for a given mathematically significant situation. The ‘Reality 

Principle’ requires that students can interpret the activity meaningfully from their different levels of 

mathematical ability and prior knowledge. The ‘Self-Assessment Principle’ ensures the inclusion of 

criteria that the students themselves can identify, and use to test and revise their ways of thinking. 

Specifically, the modelling activity should include information that students can use for assessing 

the usefulness of their solutions, for judging when and how their solutions need to be improved, and 

for knowing when they are finished. The ‘Model Documentation Principle’ ensures that while 

completing the modelling activity, the students are required to create some form of documentation 

that will reveal explicitly how they are thinking about the problem situation and their solutions. The 

fifth principle is the ‘Construct Share-Ability and Re-Usability Principle’, which requires students 

to produce share-able and re-usable solutions that can be used by others, beyond the immediate 

situation. The ‘Effective Prototype Principle’ ensures that the modelling activity is as simple as 

possible yet still mathematically significant. The goal is for students to develop solutions that will 

provide useful prototypes for interpreting other structurally similar situations. 

By adopting the principles mentioned above, Mousoulides and colleagues (e.g. English & 

Mousoulides, 2015; Mousoulides, 2016; Williams et al., 2016) have developed a number of 

interdisciplinary modelling activities for students. These activities have been piloted and 

mainstream tested in various schools in a number of countries. Such an example, the ‘How can I 

lose weight’ activity is presented in the monograph by Williams and colleagues (2016). The activity, 

which targeted 11-12 year olds, focused on the balance between nutrition and physical activity for a 

healthy life. The activity required students to actively participate in the collection, presentation and 

interpretation of data regarding their nutrition and exercise habits. Based on an analysis of their own 

data, students had opportunities to explore the variables (and their dependencies) that may affect the 

amount of energy intake on a daily basis (e.g. height, mass, age) and suggested specific diet and 

exercise plans, always taking into consideration the need of balancing the two.  

The activity consisted of three parts. In the first part, the case of Mary, a 14-year-old girl who cannot 

fit into her favourite clothes, was presented. The students then considered the general question, “Is 



not eating the best approach to losing weight?” Students, with teachers’ support, quickly realised 

that the question needed to be refined in order to be answered meaningfully. On refining the 

question in their own ways, students acknowledged that real (actual) data on nutrition, and also on 

physical activity are needed. Students were then encouraged (by teachers) to work with their parents 

to collect the required data, through an anonymously completed questionnaire. Using their own data, 

students worked in groups to summarise their results, by categorising data into the different food 

categories (e.g. protein, carbohydrates, dairy products, fruits, vegetables, sweets, etc.), and by 

discussing the advantages and disadvantages of each category (Reality Principle). Students also 

explored trends and relationships in their data, by using a spreadsheet software (Self-Assessment 

Principle). An example of their work is presented in Figure 1.  

During the second part of the activity teachers guided a student-centred exploration for identifying 

the factors that determine a person’s daily calorie intake (age, gender, height and body mass). 

Students worked on analysing tables and graphs by using an applet software, designed to support the 

interdisciplinary activity.  

 

Figure 1: Student eating habits 

In the third part of the activity students worked on suggesting a balanced diet plan (for a single day), 

taking into consideration the daily amount of energy a person needs (Model Construction Principle). 

Students could use the provided ‘food database’ for creating the person’s diet for a day (Model 

Documentation Principle) and then explore the appropriateness of the diet with regards to the 

calories taken and the food categories (Figures 2 and 3). After completing the tasks and sharing their 

results in a whole class discussion, students then moved to the last part of the task, in which they 

designed their own balanced nutrition and physical activity case (Construct Share-Ability and Re-

Usability Principle). 



 

Figure 2: Creating a person’s diet 

 

Figure 3: Examining the appropriateness of a diet in terms of calories and food quality 

The interdisciplinary nature of the activity focused on the role of the bridging concept (balance 

between calories intake and exercise) (Effective Prototype Principle). The quite complex activity 

setting provided opportunities for students to explore important concepts from mathematics and 

biology. The implementation of the activity revealed that both teachers and parents found the 

interdisciplinary nature of the activity challenging; for teachers, it provided a new way of thinking 

and working, while for students it provided a real world problem framework, in which they could 

explore and connect concepts from different, yet connected, school subjects.  

Theorizing the interplay between mathematical modelling and interdisciplinary 

mathematics education  

When summarizing the presented theoretical analysis, it becomes clear that there are strong overlaps 

between mathematical modelling and IdME. The real context of modelling problems, like the case 

presented in the previous section, in fact evokes interdisciplinary activities, but the teacher is at first 

the person who should make them more explicit to students, and finally actively connect the 

different fields, through her/his teaching. Although in some ways mathematical modelling could 

serve as a prototype for interdisciplinary mathematics education, mathematical modelling has its 

own conditions. Theorizing the interplay between mathematical modelling and IdME is a challenge, 

which we like to think about furthermore and also find an appropriate visualization. At this point we 

argue that mathematical modelling has its own “theory(-ies)”, because the characterization of 

mathematical modelling, and further terms/ concepts/ processes like “problem understanding”, and 

“validation”, are part of the theory(-ies) of modelling. This can be seen as the theoretical part of 



mathematical modelling, based on the theoretical and empirical research in this field in the past 

decades. It is rather difficult to separate mathematical modelling from IdME, because on one hand 

mathematical modelling as itself is (can be) a part of IdME, but also on the other hand we can view 

mathematical modelling as a comprehensive research field. By adopting this modelling oriented 

approach in the “nutrition-exercise” case study, students could work in finding/proposing a model 

for balancing the intake-consumption of calories. For instance, students could be asked to propose 

models for different people (e.g. peers, professional athletes, teachers, parents), which balance their 

daily diets and their exercise habits. In doing so, the emphasis of the activity would not be within 

mathematics or biology, but rather on modelling.   

IdME can be situated in its own field, if the (interdisciplinary) task does not fulfil the criteria of the 

modelling problems, e.g. when you have some kind of a “word problem”. Not every 

interdisciplinary task, which has (some) mathematics in it, is a modelling problem per se. IdME can 

be done differently and cannot be connected with a modelling problem, so one can cross the 

disciplines of mathematics, and for example biology in a task, but only focusing on mathematics 

when dealing with the problem at last. This is what we mean with pure crossing disciplines. The 

interplay of modelling and IdME is clearly observed, when a real life question is embedded in a real 

modelling problem, in which students understand the context, recognise all the disciplines involved, 

and use or get to know about the extra-mathematical (other disciplines) knowledge. By adopting this 

perspective, in the Nutrition-Exercise case study students could work in solving a problem related to 

finding algebraic formulae for calculating the number of calories in various types of food and/or 

sport activities. In doing so, students have to work with both mathematical and scientific concepts, 

in solving the required problem, but the emphasis would be on the mathematical concepts or the 

biology ones (e.g. different types of food and relation to calories per gram, etc.). 

There is a number of possible implications, especially for the teachers, in promoting both modelling 

competencies and IdME-competencies. By using modelling problems, teachers can work with their 

students in crossing the boundaries between disciplines. In doing so, interdisciplinary modelling 

activities can provide unique opportunities for teachers to collaborate, synthesize and integrate more 

interdisciplinary pedagogies and teaching methods in their teaching (Berlin, & White, 1995), and for 

students to develop better and more coherent solutions for complex, yet interesting and real world 

based problems. Such approaches raise teachers and students’ expectations and confidence in 

working in a more interdisciplinary way, and lessened their focus on the difficulties in using and 

working with interdisciplinary modelling activities.  
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Dynamical systems like a segway can be described by linear systems of ordinary differential 

equations of the form Obviously, modelling of dynamical systems at school is a huge 

mathematical challenge for students and teachers. Therefore, in a pilot study with a math course 

consisting of 12 students of grade 12, it was analysed if, and up to which depth, modelling projects 

of dynamical systems (using the example of a segway) can be implemented at school. The 

interdisciplinary project was based on the modelling cycle of Blum and Leiss (2007). First of all, 

we describe the implementation and results of the pilot study. Then, we outline the design of a 

follow up study that will be carried out during school year 2016/2017. In this part we formulate our 

research questions, mainly the design of teacher training with a special focus on teachers’ 

attitudes, which are driven by the findings from the pilot.  
 

Keywords: Dynamical systems, interdisciplinary project, mathematical modelling. 
 

Introduction 
 

In a pilot project the modelling of dynamical systems at school (with a math course of twelve grade 

12 students) was carried out by the example of a segway. The project was designed as an 

interdisciplinary project and started with the students independent modelling that lead to a physical 

description of acting forces of a segway. After a review on the appropriate linearisation of nonlinear 

terms, a linear time-invariant system for the segway was proposed. This introductory phase took 

five lessons. Next, we had three full project days where the students worked in groups of up to four 

students to concentrate on one of the several interdisciplinary aspects of the project. Namely they 

worked on 1. How to construct and control a segway and the basics of the Lego Mindstorms EV3-

brick, 2. How to simulate a segway by the help of suitable software and 3. The mathematical model 

of a segway, including finding of a mathematical solution for the theoretical stabilisation. The 

project was completed by a final presentation of the students for a mixed audience of teachers as 

well as university staff members. Obviously, the theoretical and practical issues are highly 

challenging for students and teachers and therefore the research issue of the pilot study was if an 

interdisciplinary modelling project of this complexity can be realised at school. The results of the 

pilot project were impressive, because the students managed to construct and control a Lego 

Mindstorms segway as well as acquiring mathematical knowledge about systems of ordinary 

differential equations and their solutions and eigenvalues to assess the stability of solutions of a 

system of linear ordinary differential equations. Furthermore, they applied a theoretical and a 

practical control of a segway by using a proportional derivative control (PD-control). Based on the 

outstanding results of the pilot study, but with concern that the data set of 12 students is not 

representative for a quantitative analysis, the following main research questions are raised for a 

follow up study: Which form of modelling supervision (open = research-based, fine-structured = 

content-based, or semi-structured = connecting the two approaches) promotes the best development 

of mathematical competencies for the students during this kind of interdisciplinary projects? 

Secondly, it will be discussed how teacher training with respect to modelling projects for dynamical 

systems has to be designed. Altogether there will be a short introductory meeting at the beginning 

followed by a two-day teacher training focussing on possible implementations in class (with a focus 

on different aspects of the whole STEM project). The third part is going to be the implementation of 

the project by the teachers participating in our study. Accompanying the whole study, the attitude of 

teachers (regarding self-efficacy and prior experience) as well as self-assessment (regarding 



opportunities and difficulties for themselves and their students towards interdisciplinary modelling 

projects of dynamical systems) will be evaluated by a series of pre and post surveys (and 

interviews). Furthermore, it will be researched, which competencies can be promoted through an 

interdisciplinary modelling project. The study shall be conducted with 10 to 15 math teachers and 

100 to 150 students from grade 10 to 12.            

The pilot project 
 

The pilot project (cf. Lantau, 2016) will be described in detail since due to the complexity this is 

necessary to understand the generation of our research questions as well as the design of the 

upcoming study.  

A short mathematical background of modelling a dynamical system, such as a Segway 
 

The mathematical analysis of a dynamical system is based on the comprehension of system and 

control theory. A real dynamical object, in this case a segway, is at first described by physical 

equations to model the acting radial- and horizontal forces. After using suitable simplifications for 

nonlinear terms in the equations of forces (by using linear Taylor approximations) the physical 

model is transformed in a mathematical model by the introduction of variables like angle and 

position and their derivatives into a state-space vector . Considering the force  of the regulating 

motor, after linearisation of nonlinear terms one can model a dynamical system by a linear time-

invariant system  of ordinary differential equations. In the case of a segway, the state-

space vector x includes the variables angle, angular velocity, (horizontal) position and (horizontal) 

velocity. This linear time-invariant system can be shifted into a linear system of ordinary 

differential equations by feedback-regulation , to get . Now, the theorem of 

Wonham (Sontag, 1985) yields that if and only if the linear time-invariant system is controllable 

(which means that every possible state can be reached due to a regulation of the motorforce u; 

that holds true for the segway), for every real monic polynomial P there exists a matrix F, such that 

P is the characteristic polynomial of the matrix A+BF. Since the eigenvalues of the matrix A+BF 

are the roots of the polynomial P, the goal is now, to place all eigenvalues of the matrix A+BF into 

the open left half complex plane , such that the segway stabilizes itself to the rest position 

Another approach to control a segway can be realised by a proportional-derivative control. 

The basic idea of a proportional-derivative control, e.g. for the control of the angle , is to choose 

the motor force , to stabilise the segway to its rest position. To implement this type 

of control, some conditions on the parameters  and  have to be fulfilled. 

Realisation of the pilot project                                                                                                                                     

The pilot study was inspired by the modelling cycle of Blum and Leiss (2007) consisting of the 

seven steps Constructing (1), Simplifying/Structuring (2), Mathematising (3), Working 

mathematically (4), Interpreting (5), Validating (6) and Exposing (7).  In what follows, the seven 

steps of the modelling cycle will be connected to corresponding parts of the pilot study. During the 

project the teacher played different roles (research guide/advisor, leader of phases with questions 

and development) that will be explained in detail in what follows. 

1. Constructing: 

The introduction into the project was given by means of a video showing the popular German 

entertainer Stefan Raab unsuccessfully trying to control a segway (URL: 

https://www.youtube.com/watch?v=_m3YBSQYGuw). After this motivating start, the students 

were asked to create their own model of a segway. This task, carried out through a group work of 

four students per group, lasted 30 minutes and was done as an independent work. The construction 

of three fitting models for a segway has successfully been realised by the students (cf. Figure 1) 

who were experienced in modelling real-life situations, since many modelling tasks have been 

https://www.youtube.com/watch?v=_m3YBSQYGuw)


established in this class. But in general it is not necessary to be experienced in mathematical 

modelling to participate in teachers trainings or as a student in the project. 

   

Figure 1: The independent modelling of a segway – Three different approaches 

2. Simplifying/Structuring 

Figure 1 shows, that the students recognized that the description of acting forces is a necessary part 

to obtain a mathematical model of a segway. In the next step the three different approaches to 

model a segway were summarised in one model, to describe the acting forces of a segway. 
 

 

Figure 2: Model of a segway based on acting forces 

The part of simplifying and structuring was supported by a matching task, where the students 

should match acting forces, such as radial forces and horizontal forces, to equivalent terms. In the 

sequel the different forces were collected to describe the horizontal forces and the radial forces in 

two equations: 

  (horizontal forces) 

   (radial forces) 

At this point it has to be mentioned, that during the project three different approaches to model a 

segway were proposed to the students. The first one, presented in this paper, leads to a control of a 

segway using the variables angle and position of the segway as well as their derivatives. Another 

possibility to model a segway, is by modelling acting horizontal forces for the variables position of 

the wheels and the centre of gravity of the segway (and their derivatives). The third approach is to 

model the segway as an inverted pendulum by describing radial forces. This leads to a proportional-

derivative control for the angle and the angular velocity of a segway. Due to the fact, that in the 

modelling approaches 2 and 3, only the variables position (of wheels and centre of gravity) and 

angle, respectively, are analysed, the number of physical terms to describe the segway is less in 

comparison to the first approach. However, it has to be clarified, that the physical comprehension of 

acting forces is essential to promote a mathematical model. And this motivates some deep 

mathematical concepts: (linear) ordinary differential equations and their solutions as well as a 

stability analysis through the concept of eigenvalues/-vectors.  

3. Mathematising 

The transfer from the physical model to a mathematical model is achieved by a linear Taylor-

approximation around the rest position taking into account the nonlinear terms in the equations of 



forces. The linearisation for the functions sine, cosine and quadratic function were discussed 

geometrically on the blackboard but the general concept of Taylor-approximation has not been 

introduced to the students. After linearisation, the two equations can be summarised into a linear 

time-invariant system introducing a so-called state-space vector. This phase of the project was 

designed by lessons with question and development. The introductory phase of the study preparing 

the three project days was concluded by the formulation of the linear time-invariant system that was 

jointly developed on the blackboard. 

 

Figure 3: Development of a linear time-invariant system on the blackboard 

 

4. Working mathematically 

To emphasize the interdisciplinary character of the project the three project days (each lasting from 

8 am to 2 pm) started by the formation of three groups. The task of the first group was to construct a 

segway by using a Lego Mindstorms set. Afterwards, the aim was to control the segway, 

specifically regulating the segway into the rest position, using the Lego Mindstorms Software or 

using the Java-based software lejosEV3 – in each case with the help of a gyro-sensor. The students 

were highly experienced in working with Lego Mindstorms, since they have managed several 

projects in the past, where the use of Lego Mindstorms was necessary. For the second group four 

exercise sheets were designed in which the students were introduced to new mathematical concepts, 

namely: One-dimensional ordinary differential equations and their solutions, linear systems of 

ordinary differential equations, the matrix exponential function as a solution for linear systems of 

ordinary differential equations, stability theory for solutions of linear ordinary differential 

equations, eigenvalues in a non-geometric concept, proportional-derivative control and at last, 

feedback-regulation for linear time-invariant systems. The task of the third group was to carry out 

computer simulations according to the mathematical concepts worked on by the second group. To 

this end, a single exercise sheet including six tasks was designed to guide these students. All 

exercise sheets can be found as an appendix to the master’s thesis of Lantau (2016). During the 

three project days the students worked nearly autonomously in class on their tasks and the teacher 

supervised the work of the different groups following the concept of minimal help. 

5. Interpreting and 6. Validating 

The interpretation and validation of the mathematical model also took place during the three project 

days and was motivated by the interdisciplinary character in a very natural way. In particular, this 

can be seen in the application of the proportional-derivative control: While groups 2 and 3 used the 

inverted pendulum to model the segway in order to use the proportional-derivative control for the 

angle and angular velocity, the first group used the information about the theoretical restrictions for 

the proportional- and derivative parameters  and  to practically stabilise the Lego segway for 

about 10 seconds. While two groups established a theoretical concept to model and control a 

dynamical system, including the development of fitting constraints for the control (interpretation), 

the third group used the results of the other groups to practically stabilise the segway (validation). 



Considering steps 2, 5 and 6 of the modelling cycle, we observe that a successful modelling of 

dynamical systems, such as a segway, includes several disciplines like physical comprehension of 

acting forces, engineers’ competencies to construct and control a Lego Mindstorms segway, 

scientific programming for the control and finally, mathematical competencies to acquire a 

theoretical comprehension for the control of dynamical systems. The students also observed that 

several disciplines must be considered in a highly connected sense to promote the success of the 

modelling task. 

7. Exposing 

In order to collect and structure the theoretical and practical results of the project the students were 

asked to create a final presentation. This promoted the mathematical learning success in a holistic 

sense because the students who worked more practically on the project got a deeper insight into 

theoretical results through the explanations of their classmates and the connection of the theoretical 

results to practical results. The same also holds vice versa. During the creating of a final 

presentation the students needed to prepare their newly acquired knowledge properly to present it 

for a mixed audience of math teachers, students, schoolmates, parents and math professors. The 

exploration of the pilot study shows that the phase of presenting (exposing) the results of the 

modelling project promotes many mathematical competencies. Hence, in our view, this step is 

essential when modelling dynamical systems at school.  

Main results of the pilot study 

Considering the project´s realisation it can be observed that a modelling project of a dynamical 

system sets a high demand on physical-, engineering-, computer science- and mathematical 

competencies for both students and teachers. Therefore, the main question of the pilot study was if 

this kind of interdisciplinary projects can be realised at school. The pilot gives a positive answer, 

and it also shows that fundamental mathematical competencies, as proposed by the German 

Education Minister Conference (KMK, 2012), are highly promoted by the students during the 

project. Next, the six fundamental mathematical competencies are listed and connected to processes 

that promoted the corresponding competency during the interdisciplinary project. 

1. K1: to argue mathematically: This competency was promoted at three different stages of the project. 

At first it was promoted during the discussion of linearisation for nonlinear terms, secondly during 

the development of stability criteria for linear systems of ordinary differential equations and thirdly 

during the discussion of constraints for the parameters of the PD-control.  

2. K2: to solve problems mathematically: The research issue for the students was how a segway can be 

theoretically and practically stabilised. This problem has been solved practically by a PD-control 

based on the Lego Mindstorms Software and theoretically, by learning the concepts of feedback- 

and PD-control.  

3. K3: to model mathematically: The competency of creating mathematical models has been the centre 

of the pilot and was highly promoted. The students got the insight that mathematical modelling is 

very useful to solve real-life problems. 

4. K4: to use mathematical forms of representations: By the preparation of a final presentation the 

students were requested to illustrate their main results in a mathematically correct way. 

5. K5: to work with technical, symbolic and formal elements of mathematics: During the development 

of a linear time-invariant system as a model of a dynamical system the students used technical, 

formal and symbolic elements. This competency was also highly requested for the two groups that 

worked out the concepts of eigenvalues, PD-control, feedback-regulation and ODE-theory. 

6. K6: to communicate: During their creation of a model for a segway and especially during preparation 

of the final presentation the students communicated frequently to discuss models, mathematical 

solutions and open questions. Furthermore, this competency was promoted through the final 

presentation itself. 



Corresponding to the development of mathematical competencies during the project, the 

mathematical learning success of the students has been detected. To investigate the learning success 

a multiple-choice test was developed containing 10 questions regarding the mathematical concepts 

that are introduced during the project. The test has been carried out one week after the final 

presentation and was analysed by counting the correct answers of the content-related questions. 

More than half of the class reached at least 83 % of the maximum score and two students answered 

every question completely correct. This shows that the concept of ordinary differential equations, 

their solution and the stability of solutions, the concept of eigenvalues considering the stability of 

solutions for a linear system of ordinary differential equations, modelling a segway as a linear time-

invariant system and controlling it by means of feedback-control or PD-control can be taught 

through an interdisciplinary modelling project. The concepts of eigenvalues (embedded in a 

geometric context of linear mappings and its characteristics) and (one-dimensional) ordinary 

differential equations and their solutions are part of the curricular standards in mathematic for 

secondary level in Rhineland-Palatinate (MBWWK, 2015). Both of them can not only be taught 

through an interdisciplinary modelling project, but also the connection between a classical algebraic 

concept (eigenvalues) and a concept of analysis (ordinary differential equations) can be established. 

But not only these two fundamental mathematical concepts for secondary level courses could be 

transmitted; even concepts that are usually taught in master degree courses for mathematics teachers 

can be included. From our point of view, the combination of promoted mathematical-, physical-, 

engineering-, and computer scientific competencies and a huge learning success in advanced 

mathematical concepts legitimates the implementation of interdisciplinary modelling projects in 

secondary level courses. Beside the description of the pilot project, the paper focuses on research 

issues concerning a follow-up study, explained in the next section.  

Research issues for a follow-up study 

Regarding the results of the pilot study two main research questions are aimed to be analysed within 

the framework of Grounded Theory: 

1. How shall teacher trainings for interdisciplinary modelling projects be designed? 

2. Which competencies can students acquire, depending on the implementation and the type of 

supervision of an interdisciplinary modelling project? 

As explained in Kaiser (2013) the most advanced approach of including mathematical modelling in 

school is by an interdisciplinary project which requires each discipline – in our case of modelling 

dynamical systems: physics, mathematics, engineering and computer science – to share its concepts 

and information in order to guarantee success of the modelling project. This task is very challenging 

for math teachers, considering the fact that some teachers neither have the specific mathematical 

knowledge to understand real problems (here: theory of dynamical systems) and its didactic 

transposition (Chevallard 1985) nor they are experts in other required fields like physics or 

computer science. Therefore, one aim is to design appropriate trainings that help teachers to convey 

the interdisciplinary character of modelling dynamical systems. In our example this includes the 

adequate physical-didactical preparation of detecting acting forces of a segway as well as an 

introduction to basic concepts for the control and programming of a Lego Mindstorms segway. 

However, in order to promote mathematical competencies and a mathematical learning success, it is 

also necessary to design trainings for the inner mathematical concepts required by this project. For 

this purpose it is planned to design learning material for complex mathematical concepts like 

stability theory for ordinary differential equations as well as an introduction to linear time-

invariant systems and their control. To this end the material designed for the pilot study will be 

analysed and modified based on the students´ and teachers’ comments.  

During the follow-up study the attitude of teachers towards mathematical modelling of dynamical 

systems, represented by the example of a segway, will be explored and evaluated through a series of 



surveys. The attitude of teachers will be measured by analysing three connected questions. Since 

the mathematical foundation of a dynamical system is located within the scope of systems and 

control theory and the project requires knowledge from several disciplines, one question is which 

inner and extra mathematical comprehension issues do maths teachers have or expect when they 

think of modelling a dynamical system. According to this question it will also be analysed how far 

the teachers are engaged to fill their content-related gaps. Additionally, teachers will be asked for 

possible implementations of each step of the modelling cycle in secondary level math courses. 

During the first teacher training (end of 2016) there will be pre and post surveys to answer these 

questions. Then, the results will be considered to prepare the second teacher training in spring 2017. 

Moreover, the teachers´ expectations on possible obstacles will be assessed before, in between an 

after a series of trainings regarding the design and supervision of the modelling of a segway. 

Regarding these questions it is planned to design a survey, based on the theory of planned 

behaviour (Ajzen, 1991). The survey shall point out to what extend the teachers´ attitude to 

modelling projects, their subjective norms and their perceived behavioural control influence their 

intention and, later on, the execution of their modelling project of dynamical systems. Additionally, 

teachers shall comment on the possibilities of developing each of the six mathematical 

competencies K1–K6 by modelling a dynamical system. Furthermore, they shall assess the potential 

learning success regarding the two fundamental mathematical concepts of ordinary differential 

equations and eigenvalues/-vectors that can be addressed by this modelling project. Finally, we 

want to analyse the correlation between the teachers´ attitudes and the students learning success.   

Beside the teacher focussed research, our second research question is Which mathematical 

(physical, engineering- and computer scientific-) competencies of the students can be strengthened 

significantly through an interdisciplinary modelling project of dynamical systems. It is planned to 

use video recordings to detect the enhancement of students´ mathematical competencies during the 

project. The video material will be transcribed based on the work of Mayring (2015). To evaluate 

the enhancement of mathematical knowledge there will be pre-and posttests. Furthermore, the 

mathematical working techniques preferred by the students will be evaluated. For the analysis of the 

students´ prerequisites surveys will be designed and it is planned to use video recordings to analyse 

the mathematical working techniques and to detect the phases of the project in which competencies 

of the students are promoted.  

For the teacher trainings, options for different ways to conduct and supervise the project will be 

designed: The first approach is an open modelling process in which the initial problem of a segway 

to be stabilised is given to the students  without further hints or work sheets. The main idea is to 

develop the students’ independence in modelling activities including the competencies of 

„developing productive dispositions, flexible strategies, and foster student persistence and 

independent thinking” (Common Core State Initiative 2010; National Research Council, 2001 as 

cited in Doerr & Ärlebäck 2015, p.1). As described in the paper of Doerr and Ärlebäck (Brodie 

2011; Lobato & Ellis, 2005; Magiera & Zawojeski, 2011 as cited in Doerr & Ärlebäck, 2015, p.1), 

this type of modelling challenges the teacher „to tackle classroom discussions, to structure group 

interactions and to provide effective feedback to students.“ Regarding the task of modelling a 

segway we would like to find out how far students can model a segway independently in a way that 

develops mathematical techniques (e.g. PD-control) to solve the real problem. This question refers 

to the framework of Wake, Foster and Swan, who proposed that students´ competencies of a 

simplification of the reality and the development of a mathematical structure that represents and 

simplifies the reality are under-emphasised in school mathematics (Wake et al. 2015, p. 8). 

Following the theory of Wake et al. it is also planned to create material that promotes a pre-

structured and more teacher-controlled modelling of a dynamical system as an alternative. Our aim 

is to check which approach teachers prefer for their class and to analyse which competencies are 



promoted in a modelling project depending on the conduction and supervision in one of the two 

specified ways.  
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Creating a color palette: The model, the concept, and the mathematics 
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Based on a brief episode of a modeling activity involving experimentation, performed by 9th graders, 

the goal is to reflect on criteria of authenticity for school modeling tasks. The study shows that 

students adhered to the experimental work and materials; still their understanding of the real event 

and their proposed solution to the problem seems to have missed the real problem setting. 

Keywords: Concept development, experiential learning, mathematical models, proportion.  

Introduction 

Worldwide school mathematics curricula embrace the goal of ensuring the knowledge, skills, and 

competences that will enable individuals to understand today’s highly mathematized and 

technological world and to allow them to critically and consciously engage in processes that involve 

mathematics and its applications. This strategic goal of mathematics education is clearly echoed by 

the rhetoric of international tests such as PISA and TIMSS. However, mathematical modeling is 

admittedly a demanding activity for students, not only because each step of the modeling cycle can 

become a potential blockage (Blum, 2015) but also because, for example, the focus for many students 

seems to be to arrive at a single solution instead of developing a suitable mathematical structure for 

a real world problem situation. 

Recently, Blum (2015) has reaffirmed that the aims of teaching applications and modelling can be 

seen as having a dual function. On the one hand, the knowledge of mathematics and its use is vital to 

the real world and its progress, mainly in solving real problems and carrying out complex projects; 

on the other hand, the real world and the way it incorporates mathematical knowledge is 

extraordinarily important as a vehicle to provide meaning to the learning of mathematical concepts 

and generally to mathematics as a discipline. 

Bonotto and Basso (2001) also discussed another dual nature: that of cultural artifacts, which besides 

belonging to the world of everyday life are also part of the world of symbols. If artifacts can be the 

basis for understanding the mathematical structures underlying reality, they can also be used for 

vertical mathematization, where the concepts embedded in real-world objects and processes become 

material for reflection and problem solving. 

In this article we want to reflect on this duality of goals of modelling real situations and, in parallel, 

on the duality of roles that a particular type of task, here labeled as an experience-based task, can play 

in the application/understanding of the concept of direct proportionality. Experiential mathematics is 

a way of students dealing with living and practical knowledge of a problem or situation in the context 

of mathematical modeling at school. It intends to develop students’ ability to collect and interpret 

data in addressing real world situations as well as the ability to develop mathematical thinking and 

communication, while reporting their ideas and findings to others. The experiential mathematics puts 



the real situation as an integral part of the students’ work, allowing them to understand how it works 

in reality and how they can “handle” it mathematically (Palm, 2008, 2009; Vos, 2011, Galbraith, 

2006).  

Theoretical perspective 

Authenticity of a modelling situation 

The question of the authenticity of the examples proposed for the implementation of mathematical 

modeling has been dissected by several researchers and gains particular emphasis on educational 

environments informed by a socio-critical view of mathematical modeling. For example, Rosa and 

Orey (2016) advocate the use of ethno-modeling as a tool for teaching purposes where rather than 

distorting the cultural and ethnic reality, the aim is to help students learn how to find and work on 

authentic situations and real-life problems emerging from cultural and historical artifacts, embracing 

mathematical ideas, thoughts and practices as developed by cultures across time and space. In any 

case, the perspective of the actors who actually participate in the actual settings has long been 

emphasized by Niss (1992), in pointing out that genuine problems, issues and situations must be 

recognized as such by the people who actually work in them. Despite such concerns, there is still 

considerable lack of authenticity in many situations that school mathematics presents to the students, 

which often end up just mimicking real-world scenarios, prioritizing educational goals and curriculum 

alignment over facing the ill-defined reality of many problems (Vos, 2011; Palm 2008, 2009; Eames, 

Brady & Lesh, 2015).  

Blum (2015) explicitly notices that the motivating or the marketing role often attributed to 

mathematical modeling tasks in textbooks and curriculum materials results in the creation of problems 

that are only a disguise of a real situation. But other authors have strongly criticized the pseudo 

authenticity of modeling problems, particularly in the PISA tests. This does not invalidate the 

accepted notion that an out-of-school scenario cannot match completely a proposed scenario in a 

school mathematics assignment. And that seems to be even more unquestionable when it comes to 

formulating problems in assessment tests. 

A school task can, of course, never completely simulate an out-of-school task situation. 

Nevertheless, sometimes the school situation can be organized and the assignment formulated in 

such a way that many of the aspects of a real life task situation may be simulated fairly well 

following that the students’ task solving can take place under conditions fairly close to those in 

the simulated situation. Other times, for example in largescale high stakes testing, the conditions 

under which the task solving takes place put severe restrictions on the possibilities to simulate 

many of the aspects with high fidelity (Palm, 2008, p. 40). 

According to Palm (2008), students have been predominantly faced with unrealistic mathematical 

tasks and have given in many cases unrealistic answers to them. At the same time, it is not totally 

obvious to what extent the realism of the tasks would produce greater caution and attention from 

students to the realism of their answers. Furthermore, Palm notes that there is a lack of consensus in 

the mathematics education community on the concept of realism of a task in terms of adjustment 

between a school assignment and a real life situation. And the evidence of that may be found in the 

variety of different terms for tasks that somehow try to emulate real situations (authentic tasks, 



realistic tasks, real life tasks), together with the many different meanings that have been attached to 

each of them. 

Vos (2011, 2015) has been systematically addressing the issue of authenticity and suggesting criteria 

that allow us to judge the more or less authentic trend of a task. Her first concern is the use of the 

term authentic tasks because the educational environment will require adaptations in the same way 

as with a flight simulator: the criteria of the effectiveness of the learning environment and the realism 

of the proposed situations should therefore prevail. The leading proposal is that the concept of 

authenticity of a task is first and foremost a social construct, so never universally definable. Therefore, 

a task may have some authentic aspects but it may also have others that are deliberately introduced 

and designed to respond to educational purposes. In short, it must be acknowledged that not all aspects 

of a task need to be authentic while accepting that the tasks are more engaging if a number of issues 

that have their origins in the situation are respected. 

Once put into perspective the question of authenticity of modeling tasks, the consequent challenge 

concerns the search for principles to guide the construction of interesting modeling tasks, that are 

both effective and intellectually honest (Blum, 2015; Galbraith, 2006; Palm, 2009). To a great extent 

the challenge is to convert a fruitful idea rooted in a real-world situation in a problem that is fairly 

well framed by the details of the situation and that is accessible to a resolution that also respects the 

authentic school mathematics (Vos, 2011). 

There are at present some proposed formulations of basic principles to inform the authentic character 

of modeling tasks in school mathematics. Here we will consider the work of Palm (2009), Galbraith 

(2006) and Vos (2015).  

Palm (2009) considers a number of variables: Event; Question; Information; Presentation; Solution 

Strategies; Circumstances; Solution Requirements; and Purpose. Galbraith (2006) proposes a number 

of principles: Link to the real world; Tractable question; Feasible solution process; Existing 

knowledge; Evaluation available; Structure. Vos (2015) offers a set of criteria within a pragmatic 

definition of authenticity where the purposes and methods of the modelling researchers and task 

designers converge: authentic aspects in the field of mathematics (symbols, research questions, 

research experience) and authentic non-mathematical aspects (apparatus, professionals, mathematics 

applicability, problem settings). 

In this study, we will concentrate on the aspects which directly relate to experiencing the real-world 

situation and developing a mathematical solution. We will thus select the following parameters: the 

event and the question, the link to the real world, the apparatus and the problem setting. 

Experiential learning 

The use of cultural artefacts and, in particular, objects that are part of children and adults’ everyday 

experience is suggested by Bonotto and Basso (2001) as a strategy to make connections between the 

mathematics involved in real-world situations and  the mathematics that is targeted in the classroom. 

They found that for students to bring mathematics into reality, it is helpful to introduce mathematical 

facts that are embedded and encoded in artefacts. According to their reports, in carrying out 

mathematical experiences from the interpretation of artefacts, the students make the transition from 

the real world to the world of symbols (horizontal mathematization) but in addition the use of artefacts 

also give them the opportunity to advance the construction of mathematical concepts (vertical 



mathematization). The artefacts (concrete materials) may also be used as tools for the application of 

previous knowledge in new contexts and for consolidating the existing mathematical knowledge, 

pushing it to a higher level (Bonotto & Basso, 2001). 

Bonotto (2007) advocates the need for change if we want to create realistic situations in mathematical 

modeling activities, i.e., recommends less stereotypical and more realistic situations, namely with the 

use of concrete materials; those are relevant to the students as part of their life experience, offering 

meaningful references related to concrete situations.  

Other theorists also argue that fundamental knowledge and skills may be more easily accessible if 

students are directly involved in practical and experimental activities, as those can promote not only 

the perception of the usefulness of the materials in question but also a better understanding of the 

concepts explored. The discovery learning and the learning in practice are ideas inherent to the 

experiential education model. The model of learning by doing, developed by Kolb (1984), consists 

of a four-process cycle. The four processes are: experience (perform an activity); reflect (ask 

questions and talk about what happened in the experiment, analyzing possible inconsistencies 

between the observed and the predicted); abstract (generate a new idea or modify a previous idea); 

and apply (use what was learned in a similar or different situation, which can in turn create the need 

for new experiences). Experimental activities lead students to interact, analyze, question, reflect and 

transfer. The activity comes first; learning comes from the thoughts and ideas that arise as a result of 

the process of learning by doing. Accordingly, the drive for the development of new concepts is 

provided by new experiences. “Learning is the process whereby knowledge is created through the 

transformation of experience” (Kolb, 1984, p. 38). “Learning by doing” therefore appears as a natural 

learning perspective if modeling is seen as an activity that is similar to the methods in the 

experimental sciences or to the applied mathematics research. 

The perspective of experimental modeling environments described by Halverscheid (2008) focuses 

on activities supported by experiments that give the opportunity to build mathematical models and 

produce mathematical knowledge around the questions investigated during experimentation. The role 

of experience is to lead the search for a suitable mathematical model that can explain the real data 

and results. The practical experience, as advocated by the author, becomes the rest of the world inside 

the classroom or school laboratory. The models are therefore produced to explain and interpret that 

intended authentic world. 

Our theoretical approach, intends to combine the matter of authenticity with the idea of experimental 

modeling environments. We therefore consider that the authenticity of the school modelling task 

requires a clear account of an event that takes place in an out-of-school situation and the formulation 

of a question that is relevant and pertinent in that real world. But we add that the search for a solution 

entails a link to the real world that is made by an experimental apparatus, and a problem setting 

which is experientially emulated in the classroom. 

Methodological approach 

This study adopts a qualitative methodology of action research as the pillar of the methodological 

approach is a teaching experiment on the implementation of a new pedagogical approach involving 

modeling and applications in mathematics classes (Loughran, 2007; Latorre, 2003). The pedagogical 

motives of the teaching experiment corresponded to the need of providing meaning and practical 



sense to mathematics, to contribute to change the negative view that many students held about 

mathematics, and to develop their appreciation for mathematics in their daily lives. 

Two classes of 9th graders participated in this study. The ages of the students ranged between 14 and 

17 years old, with an average of 14 years old. They were usually collaborative and committed 

students. Most of the lower achievers worked hard to improve their performance but showed many 

difficulties in applying mathematical concepts and in problem solving. None of the students had come 

across modeling activities in previous school years. 

The modelling activities included 4 sections. The first is the introduction to the topic under study. 

The second consists of a practical activity, using manipulatives and everyday objects. The third 

comprises the analysis of the data obtained in the experimental stage, with the purpose of creating a 

model that might be used in similar situations. Finally, a written report should entail the following 

points: explanation of the experimental situation, assumptions made, strategies used, results, 

evaluation of the work and the difficulties found. 

To solve the tasks students worked in groups of three or four elements organized at their will. The 

time allocated to each task was between 90 minutes (1 lesson) and 180 minutes (2 lessons). During 

the activities, the students had the opportunity to move around the room and discussing with 

colleagues the ideas from another group. 

The data collection included participant observation and field notes from the teacher. The classes 

were recorded on video and audio with a mobile camera and the activity of a target group was also 

recorded on video and audio with a still camera. For each activity, a target group was randomly 

chosen. The written reports delivered by all the groups at the end of each activity were also collected. 

Here we will focus on the activity and work of a single group of four students. We will consider in 

particular what they developed in the experimentation phase and on the model proposed.  

The task involved color dispensing and mixing paint solutions. It aimed to simulate the procedure 

used in industrial machinery called tintometric systems. In a tintometric system once the white base 

has been dispensed the container automatically positions itself under the volumetric tinting system, 

which dispenses all the coloring pastes and then mix them. The task was presented as follows: 

Introduction. An indoor and outdoor paint shop uses a mixing paint machine in which it is only 

necessary to place the can with the neutral paint and introduce the code of the chosen color in the 

catalog. But a problem arose in the machine and it partially crashed. It no longer dispenses the 

required pigments, it can only mix them. Now the shop assistants must manually place the pigments 

to obtain the color chosen by the client. This means a new problem. They do not have information 

about the quantities of pigment to be used for each color of the catalog. So, your mission is to create 

a palette of colors and provide the amount of pigments to be used for each color. 

Practical activity. You have at your disposal white liquid (milk) and colored liquid pigments (food 

coloring), a gauge and 1 ml syringes. Your mission is to produce a color palette that involves two 

primary colors and a reference table with the precise amounts to be used by the assistants. 

Analysis. Choose two primary colors and prepare a palette of colors with various shades and make a 

table with the amounts of pigments for tins of 1L, 5L, 10L and 20L.  

Report. Record all your procedures and results and submit your final report. 



A case of proportional reasoning 

The process held with the experimental apparatus was the same in most of the groups. It was clear 

that the students knew the idea of a paint catalog and knew that colors are labeled with names. 

Therefore, in general, they were creating a sequence of shades and were making labels for each shade. 

They used a small amount of pigment at a time and always added that amount to the previous mixture. 

At the beginning they only had milk (equivalent to the neutral paint) and then added color by the 

addition of two pigments. Throughout the experiments all groups recorded the values in the tables 

and subsequently calculated the amounts of pigment for different paint tins. Some of the groups did 

not present a formula to generate any amount of paint (unknown value) and only made the calculation 

of the amounts necessary to make the quantities asked in the problem.  

The target group used yellow and green pigments. In their report the group described how they created 

a palette of four shades: 

Using the syringe we started with 0.1 mL of yellow pigment in the cup with milk (60 mL) and this 

color was Vanilla. Then we added another 0.2 mL of yellow pigment to the glass that already had 

0.1 mL of yellow and the color was Cream. After we added another 0.2 mL of yellow pigment 

and 0.1 mL of blue pigment to the glass which already had some amount of pigment and the color 

was Mint. Lastly we added to the glass another 0.4 mL of yellow pigment and another 0.5 mL of 

blue pigment and the color was Amazon Green. Now, using the results of our table, we will 

determine the amount of pigment to be used with 1L, 2L, 5L and 10L of paint. To obtain those 

values, we use the rule of three. For the case of Vanilla we get:  

x ----- 0.1

 1000 -----  60
 mL )6.(1

60

1.01000



x   

To complete our description of the results of the group we note that they created a table for each tin 

size and the four shades, showing the quantities of paint, yellow pigment and blue pigment. For the 

Amazon Green, the table indicated: 20000 mL of paint, 300 mL of yellow, and 200 mL of blue. 

Discussion and conclusion 

In this teaching episode and from the empirical data presented we want to emphasize that the students 

apparently attributed significant authenticity to the task, namely: to the event of producing a color 

catalog of paint; to the question of finding the quantities of pigments for manual mixing; to the link 

with the real situation, that is, helping the assistant to retrieve the quantities of pigments for each 

shade; and to the use of the experimental apparatus which was essential for the ongoing 

mathematization and emulated the real process. 

However it seems that some aspect of authenticity has lacked. At a certain point the mathematical 

model is clearly formulated by the students and it shows their awareness of the fact that there is direct 

proportionality between the quantities of white paint in the experimental model an in the real sized 

tin, as well as direct proportionality between the quantities of a pigment in the model and in the real 

sized tin. That is obviously a sound conclusion. However, they went on assuming that the amount of 

white paint in the real tin was equal to the capacity of the tin, which is equivalent to say that the tin 

would be completely full with white paint and thus with no capacity available for an additional 

amount of color paste.  



We are suggesting that the missing aspect of the modelling situation concerns the authenticity of the 

problem setting.  The students had actually visited a paint supplying store in the neighborhood and 

could learn about a machine used to automatically dispense and mix the paints and produce the desired 

color. But one detail is relevant on the machine operation: it begins by asking the operator the size of 

the tin and then retrieves the amounts of neutral and of colored pastes. The total of the mixture has to 

be equal to that volume (or slightly below).  Instead, the setting in which they worked was a scenario 

involving much lower quantities than the actual tins. Therefore, no absolute urge for correctness of 

the calculations was at stake, as Vos (2011) points out. Indeed, the initial volume of milk was little 

and imperceptibly changed by adding small doses of pigments. In other words, there was almost no 

distinction between the volume of white and the volume of the mixture in the glass of the experiment 

(Figure 1). But that is no longer valid when we want to produce a 

can of 20 liters of Amazon Green color. In this case, the value 

obtained for the combined quantities of yellow and blue pigments 

was 500 mL and that would be a quantity which, if added to the 

neutral paint, greatly exceeds the capacity of the tin.  

Surely, other factors can be considered as responsible for the 

inaccurate mathematisation carried out. One of them refers to the difficulty students have with the 

notion of ratio, which is well documented in research. In fact, the rule of three was a ready strategy 

for students. And the ratio was never really considered. In any case, what happened is that students 

did not differentiate the amount of colored paint from the amount of white paint, as it is evident from 

their table that shows 20000 mL of “paint” instead of “white paint”. Still, that value was the 

correspondent to the 60 mL of milk in their rule of three. In conclusion, the concept of ratio was never 

activated and instead proportionality was used as a process of enlarging the “size” of each ingredient 

in the mixture (enlarge a small cup to a large tin). Therefore, questions of authenticity that are 

recognized by those who work with them in practice (Niss, 1992) seemed to have been absent from 

the process of translation between students’ real model of the mixture produced in the classroom and 

the actual process of paint production. 
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This paper reports on a post-primary classroom intervention conducted to investigate the effect that 

carrying out problem solving in small groups as an instructional strategy has on the problem-solving 

performance of individual students. Over the course of the 6-week intervention students were 

introduced to an explicit problem-solving framework and challenged to solve weekly problems both 

in small mixed-ability groups and also individually during their traditional mathematics classes. It 

was found that there was a strong correlation between the problem-solving performance of the small 

groups and that of the individual students which suggests that group work could be utilised as an 

effective instructional strategy when teaching problem solving. 

Keywords: Group activities, problem solving, secondary school students, secondary school 

mathematics. 

Introduction 

In 2008 in Ireland there was a change in the mathematics syllabus in secondary education in response 

to a number of studies and publications (e.g. Conway & Sloane, 2005). All of these studies identified 

that there were major deficiencies in the mathematical competency of students in secondary education 

and those commencing third level education. These concerns, along with others, fuelled the 

introduction of a new secondary mathematics syllabus in Ireland in 2008 named Project Maths. 

Project Maths identified five key skills that they saw as being central to effective teaching and 

learning across the new curriculum - information processing, being personally effective, 

communicating, critical and creative thinking and working with others (DES, 2015). 

This new secondary mathematics curriculum also places an increased emphasis on group work and 

the development of problem solving skills within the classroom. This syllabus change should lead to 

an increase in the amount of group work occurring within Irish classrooms, but this beg the question 

as to how effective group work actually is? Can we measure what effect group work will have on the 

individual student, particularly when dealing with activities such as problem solving? 

In terms of problem solving it has long been accepted that increasing the problem solving skill set of 

students is one of the primary goal of mathematical instruction (Travers, 1977). In the early nineties 

in America, the National Council of Teachers of Mathematics (NCTM) set out the goals for 

promoting problem solving as a curricular focus by declaring it as one of the three main goals of 

mathematical instruction in a second level school (Szetela & Nicol, 1992). In Ireland this focus on 

problem solving has only taken place in recent years due to the change in the syllabus brought about 

by the new Project Maths course. Many research papers focus on the individual problem solver but 

others have focused on the idea of problem solving in small groups (Artzt & Armour-Thomas, 1992). 

In addition to the obvious benefits of improving the problem solving skills of the students research 

highlights the additional benefits that working in small groups yields e.g. developing personal and 

social skills (McGlinn, 1991), enhancing self-esteem (Slavin, 1991) and reducing the dependency of 

mailto:eamonc1@hotmail.com
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the students on the teacher (Sandberg, 1990). In light of these benefits and the emphasis that the new 

syllabus places on working with others and problem solving, this current research project decided to 

examine whether working in small groups to complete mathematics problems would improve the 

general problem solving ability, and overall mathematical ability, of individual students. This 

research aimed to address this hypothesis by answering the following questions: 

1. Is there a relationship between an individual student’s problem solving achievement scores 

and their achievement scores when solving problems as part of a group? 

2. Do students believe that working in small groups to solve problems is beneficial in the 

development of their individual problem solving ability or overall mathematical ability? 

Framework for problem solving 

With the increased emphasis placed on problem solving in the new syllabus, and the relative newness 

and unfamiliarity of both teachers and students with problem solving, it was deemed necessary to 

provide students with guidelines to assist them during their initial problem solving exploits. The 

instructional framework selected by the authors to assist in the problem solving activities in the 

classroom was developed by Artzt & Armour-Thomas (1992) and was specifically tailored for 

problem solving in small groups. This framework was based on an earlier framework developed by 

Schoenfeld in 1985 but expanded and added additional episodes. Schoenfeld (1985, p. 292) defined 

an episode as “a period of time during which an individual or a problem-solving group is engaged in 

one large task”. Artzt & Armour-Thomas (1992) finally settled on eight episodes when looking at 

problem solving in small groups – read, understand, analyse, plan, explore, implement, verify, and 

watch and listen.  

Methodology 

Participants 

34 students from a medium sized rural secondary school in the west of Ireland participated in the 

research project. 22 of the students (12 male and 10 female) were from a mixed ability first year class 

(average age 13 years) whereas the remaining 12 students (7 males and 5 females) were from an 

ordinary level1 third year class (average age 15 years). The first year cohort only had two classes per 

week with their teacher as part of this intervention whereas the third year group had four classes per 

week with their teacher over the course of the six week intervention. A typical mathematics class lasts 

for 40 minutes. 

Selection of content and questions 

The selection of content for this study was primarily based on the Project Maths Junior Cycle2 

syllabus. The topic covered by the first year students during the six week intervention was ‘area and 

perimeter’, whereas the third year students covered the topics of ‘circles and cylinders’ and ‘area, 

perimeter, and volume’. Note that the third year cohort covered more material due to the extra contact 

                                                 

1 After first year all classes in Irish secondary schools are streamed into two groups, Ordinary and Higher, with higher 

being the more challenging stream.  

2 The Junior Cycle caters for students aged from 12 to 15 years and covers the first 3 years of post-primary education.  



time with their teacher during the intervention. An example of a question given to the first year 

students whilst working in groups is provided here: 

The first rectangle has a perimeter of 30 units and an area of 50 square units. The second rectangle 

has a perimeter of 24 units and an area of 20 square units. Charlie wondered if he could find a 

rectangle, with a side of length 10 units, whose perimeter and area have the same numerical value. 

  

Each week during the intervention the students were challenged to solve some combination of either 

purely mathematical or worded problems based on the previous week’s mathematical content. 

Verschaffel, Greer, and De Corte (2000) use the term ‘word problem’ to refer to any mathematical 

task where significant background information on the problem is presented as text rather than in 

mathematical notation and this is also the meaning that the authors have adopted as part of this study. 

Problems were selected from past examination papers, books and online websites and were deemed 

appropriate for the age and ability levels of the students. 

Intervention and assessment 

The intervention took place in the students’ traditional 40 minute classes over a period of six weeks. 

Normal teaching operations took place during the intervention with approximately 10 minutes of 

certain classes being assigned to the testing of the students’ problem solving abilities. In the first week 

of the intervention the students were given an individual assessment to gauge their initial problem 

solving skills prior to working in groups to solve problems. During the following five weeks students 

were regularly placed in small mixed ability groups of 3 or 4 and asked to solve 4 problems together 

during that week. At the end of each week students were asked to individually solve 2 problems so 

that their individual progress could be monitored. Individual students and all the members of a group 

were awarded a single correct mark if the problem was answered correctly and awarded no mark if 

they failed to correctly solve the problem. A focus group with 6 students randomly selected from both 

the first and third year groups was conducted following the intervention. 

The role of the teacher during the intervention 

Throughout the intervention the primary role of the teacher was that of a facilitator or a time-keeper. 

The teacher answered any questions that the students had with regards to the use of the problem 

solving framework or specific questions such as issues regarding units of measurements (i.e. is 𝑐𝑚3 

associated with volume). When asked a question related to the solving of the problem the teacher 

declined to answer directly and instead used probing questions to try and guide the students towards 

a solution. The frequency of questions directed at the teacher lessened after the initial weeks of the 

study as students began to rely on the other members of their group for assessing their ideas and 

potential solution strategies and not the teacher. Fewer questions were directed at the teacher during 



the individual problem solving sessions as the students viewed these more as ‘tests’ and therefore 

assumed that they were not supposed to ask questions of the teacher. 

Findings 

First-year students 

Looking at the assessment trend among the individual students it can be seen from Figure 1 that over 

the course of the intervention there was an upward trend in the number of questions answered 

correctly. The pre-test resulted in only 5 correct answers (11.36%) out of the possible 44 (22 students 

times 2 problems). This number of correct answers increased to 16 (36.36%) in week 1, 28 (63.63%) 

in week 2, 30 (68.18%) in week 3, 31 (70.45%) in week 4, and finally 38 (86.38%) in week 5. From 

Figure 1 it is clear that there is an almost linear increase in the number of correct responses between 

the pre-test and the week 2 assessment but this increase is then followed by 2 weeks of a much slower 

advancement by the students before increasing more significantly in the final week. 

 

Figure 1: Individual assessment scores for first year students 

In terms of the group assessment, Figure 2, there was evidence of a positive increase in the number 

of correct group responses as the weeks progressed. Out of a total score of 24 (6 groups times 4 

problems) possible correct responses each week 8 groups (33.33%) answered the problems correctly 

in the first week. This increased to 17 (70.83%) in week 2, remained at 17 for week 3, increased 

marginally to 18 (75%) in week 4 and increased again to 19 (79.16%) in week 5. 

 

Figure 2: Group assessment scores for first year students 
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Comparing the number of correct individual solutions against the number of correct group solutions 

each week it was found that there was a strong correlation between the number of correct answers 

among individual students and among the groups (r = 0.95). This suggests that as the first year 

students became more efficient at solving problems within groups so too did they become more 

efficient at solving problems individually. 

Third-year students 

Similar trends are noticeable among the third year group in both the individual and group problem 

solving assessments, although the scale of the improvement is not as significant as with the first year 

students. The pre-test of the individual students problem solving ability resulted in 2 (8.33%) correct 

responses out of a possible 24 (12 students times 2 problems). At the end of week 1 the number of 

correct responses had decreased to 1 (4.16%) before increasing to 14 (58.33%) at the end of week 2, 

15 (62.5%) at the end of week 3, 22 (91.66%) in week 4 and then dropping slightly again to 19 

(79.16%) in week 5 as seen in Figure 3. 

 

Figure 3: Individual assessment scores for third year students 

In terms of the number of correct responses from the groups of third year students there appears to be 

less fluctuation in the results. Out of a total score of 12 (3 groups times 4 problems) 4 groups (33.33%) 

answered the problems correctly in the first week. This increased to 6 (50%) in week 2, 7 (58.33%) 

in week 3, 10 (83.33%) in week 4 and 11 (91.66%) in week 5 as seen in Figure 4. 

 

Figure 4: Group assessment scores for third year students 
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Comparing the number of correct individual solutions against the number of correct group solutions 

each week for the third year class again found that there was a strong correlation between the number 

of correct answers by individuals and among the groups (r = 0.889). 

The second research questions focused on whether the students felt that working in small groups to 

solve problems had been beneficial in enhancing their individual problem solving skills or their 

overall mathematical skills. Overall the students were positive in their responses to the focus group 

question relating to whether they felt that their individual problem solving abilities had improved as 

a consequence of the intervention.  

Interviewer: Do you feel that your problem solving ability has improved? Why do you think 

this? 

Student4: I think it has because I have been finding it easier to figure out my homework, so I 

think it has. 

Most students responded in a similar manner although two of the group did confuse the question 

slightly and make reference to working in groups.  

Student2: Ah, yes because I now know that I can ask others for help and use their opinions to 

build on to get my answer. 

As already alluded to by some of the students in the previous question, all of the students responded 

that they found working in small groups enjoyable and some even stated that it increased their 

confidence in the mathematics classroom. Worryingly some of the students appeared to suggest that 

this type of active is not common place in their traditional classroom which is in opposition to the 

overall aims of the new syllabus. 

Interviewer: How did you find working in groups as part of your mathematics class? 

Student1: I enjoyed doing maths more because I got a fair share of trying to work it out and it 

wasn’t as boring as a normal maths class. I felt like my opinion mattered which is 

different to other classes. I found it weird that the teacher encouraged us to talk 

while in class, usually they are trying to keep us quiet. 

Student5: I feel more confident because maths seems a bit more fun when you can talk to your 

friends. Also it improved my ability to say I could do things when I though I 

couldn’t. I now try a different way of answering the question if I get stuck when I 

try it the first time around. 

When asked about whether working in groups was beneficial in helping them solve the problems all 

the students agreed. 

Student5: Am, yes because it helps it go faster and if you’re stuck you’d have another person’s 

opinion to help work it out. It was really fun working with your friends in class like 

that. 

The final question focused on whether or not the students felt that, as a result of their participation in 

the intervention, their overall mathematical knowledge had improved. The responses to this question 

were positive, but varied. Some students focused on the idea of being able to approach questions 

differently now because they were able to ask other students their opinions and then solve the problem 



themselves, based on the insight from the other student. Another student spoke about being able to 

analyse the ideas of the other members of their group and how it forced them to look at the problems 

from different perspectives.  

Interviewer: Have the classes improved your overall mathematical knowledge? In what ways? 

Student2: I think that I have new ways of solving problems. Before the group work, I used to 

look at the question and if I couldn’t understand I used to leave it because I didn’t 

know what to do. Now I would ask someone else if they could do it and see if I 

could use their idea to answer it. 

Student3: I found it improved my knowledge because I think I had to think more about the 

question. 

Interviewer: What do you mean by ‘think more’? 

Student3: Am, well because if someone in the group had a different opinion, I would try to 

see where they got that idea from and try and see if that would work. I also tried to 

see if it was the same as my idea but said in a different way. 

Conclusion and discussion 

The primary aim of this study was to investigate whether problem solving in small groups had any 

effect on a student’s problem solving achievement when working on their own. Solving problems in 

small groups affords students the opportunities to ask questions, challenge assumptions, discuss 

opinions and share work among colleagues. The results of this study found that the there was a strong 

positive correlation between the weekly number of correct responses to the problems solving tasks in 

small groups and the problems solved by individual students in both of the student groups. This would 

suggest that working in small groups to solve problems has had a positive impact on the individual 

problem solving skills of the students. Reading too much into this results could be misleading though 

as the unfamiliarity of the students with problem solving, or problem solving approaches, meant that 

the improvement in overall problem solving skills shown by the students could be a consequence of 

being introduced to a problem solving framework rather than from working in small groups, or some 

combination of both. 

This been said, all of the students commented positively when asked about whether they felt that 

working in small groups had been beneficial to them. The students highlighted how they liked the 

ability to talk to this classmates and discuss the problem which was not something that was common 

in their previous mathematics classes. This seems to contradict the aims of Project Maths which 

stresses the importance of developing the key skills of communicating and working with others (DES, 

2015). In line with the finding of Slavin (1991) students commented positively about several qualities 

which they felt that working in groups had helped to develop, such as feeling like this opinions 

mattered and feeling more confident towards mathematics. Additionally Sandberg (1990) found 

results that coincide with the findings of this study in that students are willing to persevere when 

faced with a problem that they cannot solve straight away and overall become less dependent on the 

teacher. These are all key skills that need to be developed in students and this would suggest that the 

teaching of a problem solving framework in conjunction with working in small groups to solve 

problems appears to be an effective instructional strategy. 



Finally it is worth noting that the students did highlight some issues with the intervention in its current 

form. Two students commented that they felt that there wasn’t enough time allocated to the group 

work activities at the end of the classes and that they always felt rushed. Another two students 

commented that in one instance one student in their group had taken over the activity and proceeded 

to solve the problem by themselves without consulting or involving the other members of the group. 

Obviously there are limitations to every study but going forward it is important that more focus be 

placed on the roles and monitoring of individual students within the groups. 
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Examples of mathematical problems in German school leaving examinations are examined in detail 

as to the extent to which they verify the competence of mathematical modelling. For this purpose, 

the relevance, the authenticity of the context, the openness of the task and the partial competencies 

as criteria are examined in more detail. It is shown that authentic contexts but no relevant contexts 

are contained in the problems. As a rule, the use of mathematics is not authentic and problems are 

not open. The partial competencies in modelling are quite unequally divided and are not covered 

completely. It is recommended to use all the criteria for the design of future examination questions.   

Key words: Modelling, examinations, Abitur, authenticity. 

Introduction 

In Germany, an overall policy of the Conference of Education Ministers has been in place with 

respect to “Educational Monitoring“ since 2006. The intent is to enhance competence orientation 

within the educational system. In mathematics, the focus also lies on the general competence in the 

field of modelling. From the year 2017 onwards, a task pool of Abitur examinations will be 

available out of which all Federal States can take problems for Abitur examinations. This is an 

important step towards improving the quality of examination problems and to align levels of 

requirements between the Federal States step by step. Such examination problems have been 

developed on the basis of educational standards and also contain, in particular, elements examining  

mathematical  modelling. Studies regarding problems in written Abitur examinations are rare. Still 

today, it is obvious that there are very few theoretically and methodically profound and empirically 

substantiated approaches in respect of examination problems in the framework of the written Abitur 

examinations, which at times just focus on individual standard-related aspects (Kühn, 2016, p. 75). 

Therefore, this applies in particular to problems regarding mathematical modelling. At the core of 

mathematical modelling lie the translation of a problem from reality into mathematics, the work 

with mathematical methods and the application of mathematical solutions to the real problem. 

Usually, the entire modelling process is represented as a cycle. Idealisation here means that the 

representation itself is, again, a model. In Borromeo Ferri et al. (2006) the creation of a 

mathematical model is contemplated in detail, representing the process of the individual, creating 

the model, from the starting situation to the mental representation as a first step. 

Modelling competence 

Blum et al. (2007) describe modelling competence as the capacity to execute the relevant process 

steps required when switching between reality and mathematical problem adequately as well as to 

analyse models or comparatively evaluate such models. This can be discussed in more detail on the 

basis of modelling cycles by Blum and Leiss (2005, p. 19). Thus, it is possible to analyse the 

various partial processes of modelling activities considering various details and other aspects. It is 



also possible to consider the capacity to implement such a partial process as a partial competence of 

modelling (Kaiser, 2007; Maaß, 2004). In consideration of the modelling cycle one could 

characterise such partial competences as shown by Greefrath and Vorhölter (2016, p. 19). We do 

not mention inner-mathematical working between the mathematical model and the mathematical 

results as a partial modelling competence since this is not specific for modelling processes. 

Characteristics of modelling problems 

It is not always easy to select or develop the right modelling task. As an indication, characteristics 

may be specified that a modelling task should fulfil. In her comprehensive classification scheme for 

modelling problems, Maaß (2010) focuses in particular on the type of relation to reality, to the 

openness and the modelling activity as criteria for modelling problems. With respect to the focus on 

the modelling activity, partial competences of modelling will be observed more closely. As regards 

the relation to reality, the relevance and authenticity of the context will be examined more closely 

(cf. Greefrath et al. 2013).  

Relevance 

Initially, we deal with the classification of reality-related problems handed down in German 

discussions. In connection with the factual context of problems, we traditionally talk about 

“embedded problems“, problems formulated in text form and “factual issues“. These types of 

problems provide facts about the relevance of the factual context used for students.  

Embedded problems have no real relation to reality. The factual context is of no importance 

regarding the solution of problems and can be exchanged arbitrarily. The intention of embedded 

problems is the application and practice of numeracy skills. An embedded task as a modelling task 

is suitable only to a limited extent since the mathematical model is already implicitly contained in 

the problem. Word problems are problems formulated in text form – sometimes complemented by 

figures. Similar to the embedded problems, the issue is basically exchangeable as reality is often 

represented in a very simplified manner. The intention is to promote mathematical skills. It is not 

really about an autonomous development of a mathematical model because of the lack of reality and 

the given simplifications. Nevertheless, one major problem for students is the translation of the text 

into the corresponding mathematical symbolism such as terms or equations. For this reason, the 

known term “mathematisation“ in the field of modelling is normally used in this context (Schütte, 

1994, p. 79). In the case of problems formulated in text form the mathematical problem dominates 

the embedding of it. Another focus then lies - depending on the specific problem - on the 

interpretation of the mathematical results in the factual situation and in the wording of a 

corresponding answer. The substantial and - particularly in connection with factual problems - 

frequently exclusive treatment of problems formulated in text form in mathematics classes has been 

strongly criticised. One reason is the lack of genuine reference to reality. Another reason is the 

process of practising similar mathematical issues, formulated in text form, as a result of which a real 

reflection about the context used becomes redundant. In the case of factual issues a factual 

environmental problem is of primary importance. In this context, the function of “Factual 

Calculation“ is described by Winter (2003) as “Environmental Development“. In this context, real 

data are frequently given in respect to which authentic questions are then asked. Since the processed 

issue plays a real role, information about the respective matters must be gathered and processed. 



Therefore, the processing of factual issues is also to be considered as interdisciplinary or - ideally - 

even as discipline-linking. In this context, the factual issues can be viewed as modelling problems 

(Franke & Ruwisch, 2010). 

Authenticity 

Authenticity is one central characteristic of modelling problems. Authenticity means both the 

authenticity of the extra-mathematical context and of the application of mathematics in this 

particular situation. The extra-mathematical context must be real and not be specially designed for a 

certain arithmetical problem. The application of mathematics in this situation must also be 

reasonable and realistic and should not just be used in mathematics lessons. Authentic modelling 

problems are problems that genuinely belong to an existing subject or problem area where they are 

accepted by people working in those areas (Niss, 1992). Thus, an authentic task becomes credible 

and at the same time a realistic task for students from an environmental point of view. Authenticity 

helps students take problems seriously and avoid superficial substitute processing strategies as in 

the case of embedded problems (Palm, 2007). In the case of authentic problems, students can 

assume that the things they are dealing with really exist and that the task they are presented with is a 

real task that finds its justification outside mathematics lessons as well (the task have an out-of-

school origin and a certification (Vos, 2015)). Authenticity of problems helps students take such 

problems seriously. However, authenticity of problems does not mean that the problems are actually 

important for the students‘ present or future lives. 

Openness 

Open problems are those problems that - for instance - allow for more than one approach or 

solution. Openness enables students to choose their own approaches or solutions regarding the 

problems. There are various classifications of open problems. We limit ourselves here to the 

examination of openness by initial state, transformation and target state (cf. e.g. Wiegand & Blum 

1999). Said classifications use the known problem-solving psychological description of a problem 

through its initial state, target state and a transformation that transfers the initial state into the target 

state and are not limited to modelling problems (Klix, 1971). Open problems are divided by the 

clarity of their initial and target statuses as well as by transformation. Maaß (2010) suggests another 

classification of open modelling problems based on Bruder (2003) which includes seven different 

types and which distinguishes between overdetermined and underdetermined problems. 

Criticism concerning Abitur examination problems with modelling elements 

The use of modelling in examination problems, however, is not unreservedly viewed positively. The 

fact that in many cases the relevance of the factual context used is not at the focus of examination 

problems, gave rise to (fundamental) criticism on the part of some expert representatives with 

regard to modelling in examinations. On the one hand, the criticism is directed against the fact that 

“modelling competence“ is not at all examined by the problems (Kühnel 2015, p. 76). On the other 

hand other authors show the categorical refusal of modelling problems (cf. Bandelt & Weidl, 2015, 

p. 4). Strong criticism is also directed against the greater part of texts in examination problems (cf. 

(Jahnke et al. 2014, p. 120): “Instead of dealing with mathematical problems, A-level students have 

to tackle wording problems“.  



Criticism regarding examination problems can be absolutely justified, in particular if it is about 

embedded problems and not about factual problems in examinations (cf. Fig. 1). Henn and Müller 

(2013, p. 205) comment: “Unfortunately, most of the so-called “modelling problems“ at school - 

and in particular in the Abitur exam are not at all modellings according to our way of thinking. 

Almost always one starts out from a more or less complex function equation, allegedly describing a 

ski jump, a tower, a playground or another construction. Now, with this function, a common 

functional examination is to be made. However, the whole thing is not a modelling task, but entirely 

a mathematical problem.“ 

 
Figure 1: Stimulus text of an examination task (www.iqb.hu-berlin.de) 

This brief insight shows that the use of the term “modelling problem“ - in particular in examinations 

- does not at all guarantee the clear characterisation of a certain type of problem. It should be 

considered, however, that the conditions given in examination or in normal lesson situations are 

different from each other (cf. Siller et al., 2016, p. 381/382). Ultimately, in examination situations 

the focus is on the term of “measuring“ the students‘ performance as outlined by Siller et al. (2016, 

p. 384). Thus, less attention may be paid to a creative phase in a test situation. In addition, 

psychometric findings (cf. Rost, 2004) reveal that - for the measurement of performance - such 

performance must be addressed explicitly and structured into small units in order to obtain a valid 

statement.   

Research issue 

Against the background of criticism directed towards current Abitur examination tasks and in 

consideration of the importance of competence of mathematical modelling for German levels of 

education and of international discussions as well as of the theoretically clarified criteria for 

modelling problems, we have to ask ourselves the question, how to evaluate the quality of existing 

Abitur examination problems with modelling elements in Germany. We limit ourselves here to the 

calculus subject area, which accounts for the largest part of the Abitur examination in mathematics 

in Germany. With regard to the criteria discussed above, the question is: How can German Abitur 

examination problems in calculus be assessed with regard to the partial competences of modelling, 

to relevance, to authenticity and to openness? 

Research method 

For preparing for the pool of Abitur examination problems which will be available from the year 

2017 and from which all Federal States can easily draw Abitur examination problems, the Institute 

for Educational Quality Improvement in Berlin will provide a collection of examples (cf. 



www.iqb.hu-berlin.de/bista/abi). Such samples were chosen as a basis for the examination because 

they best fit with the Abitur examination problems of 2017. Among the sample problems there is a 

total of four examination problems for calculus for general grammar schools. Two of the problems 

are of an increased level and a further two are intended to be used in Computer-Algebra-Systems 

(CAS). All in all, the four examination problems include 50 items.  

 

Figure 2: Part b) of an examination task (www.iqb.hu-berlin.de) 

Problems were evaluated by items according to different criteria. The selection of criteria follows 

the frequently quoted central characteristics of modelling problems (cf. Bruder 1988, Greefrath & 

Vorhölter 2016, p. 17, Maaß 2004, p. 22). Problems were discussed and evaluated per item and on 

the basis of Tab. 1 in the framework of a qualitative research process including three evaluators. 

Finally, all items could clearly be allocated the corresponding characteristics (cf. Bortz & Döring 

2006) – by using 0 (does not match – e.g. Relevance 0 in Fig. 2) or 1 (matches the criteria – e.g. 

Authenticity in Fig. 2). In this way, a detailed compilation of the examined items was created and 

an allocation to the aforementioned criteria became possible.   

Reference to reality Does the problem refer to an extra-mathematical factual context? 

Relevance Is the factual context relevant to the students (factual problem)? 

Authenticity Is the factual context authentically related to the actual situation?  

Authenticity Is the factual context authentical with regard to the use of mathematics? 

Openness Is there more than one possibility to solve the problem (solution variety)? 

Partial competences  

of modelling  

Which partial competences of modelling are required for dealing with the problem 

(simplifying / structuring, mathematising, interpreting, validating)? 

Table 1: Criteria used for the Assessment of Items 

Results 

In an initial assessment of the existing data material, we focus on the criteria reference to reality, 

authenticity, openness, relevance and modelling competence. Due to the small data basis, it was not 

possible to make valid quantitative statements. However, certain trends are visible. 20 items out of a 

total of 50 contain a reference to real life situations. The problems, though, included in the basic 

level more items with reference to reality (52 %) vs. items without reference to reality than in the 

higher level group (31 %). Correspondingly, on average, problems with the use of CAS contain 

more items with reference to reality (46 %) than in the group without the use of CAS (33 %).   

Authenticity: If one looks at the problems considering the requirement that the respective items 

should contain realistic situations, our analysis reveals that such items appear both at the increased 



level and at the level where CAS are used. More than one half of the items with reference to reality 

also contain realistic situation at both levels. Regarding a realistic use of mathematics which from 

our point of view represents a further aspect of authenticity (cf. table 1), this has been identified in 

just three items. Students were required to explain in the factual context of a parabolic modelled 

trajectory that only certain parameter values are possible. It should be noted here that quadratic 

functions are used even by experts for modelling trajectories. 

Openness and Relevance: Open problems have not been identified in the items examined. Also with 

respect to the relevance of the problem, no item can be identified in the present examination 

problems that would fulfil this requirement. 

Modelling competences: The analysis concerning the partial modelling competences show that the 

items normally address one of the partial competences. However, the partial problems are not 

designed in such a way that the sequence of an idealised modelling cycle reflects the appearance of 

the partial competences of simplifying, mathematising, interpreting and validating one after the 

other. Most items focus on mathematising, followed by required interpretations. Simplifying or 

structuring or the validation within one item is not required by the current examination problems. 

One item requires both mathematising and interpreting. This item requires the determination of an 

intersection point on the basis of a model given by a function equation with an unknown parameter 

with self-determined conditions interpreted in the framework of the factual context.  

Discussion 

Generally, it can be said that around 40% of the items examined include reference to reality. 

However, this does not mean that such items also contain modelling problems. The application of 

common criteria for modelling problems shows that we can talk about modelling problems only to a 

limited extent. Not a few items include an authentic factual situation, but a realistic use of 

mathematics is given just in exceptional cases. None of the problems is open or relevant. This is 

why criticism towards Abitur examination problems must be taken seriously if one must conclude – 

as already concluded by Henn and Müller (2013).  

It is comprehensible that in individual items only a partial modelling competence is dealt with due 

to the examination situation or to performance measurement, respectively. This can also be 

observed essentially in respect to the problems examined. It would be desirable though, that all 

partial competences of modelling were contained in a test problem and that this problem was tested 

in the typical sequence as in the modelling cycle. This is not the case with regard to the problems 

examined. There are even partial competences, which are not tested at all, such as simplification.  

Numerous general conditions must be observed when preparing examination problems. In order to 

actually test the modelling competence, it is necessary not just to use problems with reference to 

reality which describe an authentic situation only partially and to test just a few competences of 

partial modelling competencies, but to start with an intensive and criteria-led development of 

modelling problems for an examination on the basis of the current educational standards.  

In order to improve the competency modeling and the development of modelling problems for 

examinations, the criteria used here should also be used for the development of examination 

problems and for training problem developers. In order to increase the share of suitable modellings 



in examinations, it seems that a substantially greater proportion of reality-related problems or a 

substantially targeted development of suitable items is needed.  
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The purpose of the study is to investigate mathematical non-routine problem solving processes of 

students in small groups. The study was conducted with nine fifth grade students in three small 

groups. A framework developed by Artzt and Armour-Thomas (1992) for protocol analysis of problem 

solving in mathematics is used for this study to determine problem-solving behaviors observed within 

different episodes of problem solving. The findings revealed that although the understanding episode 

was coded as the greatest percentage, the analyzing episode was coded as the lowest percentage 

within the three groups. 

Keywords: Problem-solving process, small groups, fifth grade students. 

Introduction 

Problem solving has become an integral part of learning mathematics since it helps students to 

understand mathematical contents. It also leads students to understand how to apply their knowledge 

into their daily lives when solving problems. The NCTM (2000) also emphasizes the mathematical 

problem solving activities from pre-kindergarten to grade 12 in all mathematics classrooms. 

Moreover, problem solving is strongly emphasized in recent Turkish elementary mathematics 

curriculum. It is considered as a basic skill that should be developed in each content area (MoNE, 

2005). Besides, students should be able to develop their own strategies and apply them to solve their 

real-life problems when solving problems (MoNE, 2005). 

Moreover, problem solving entails engaging in a task for which the solution process is not identified 

beforehand (NCTM, 2000). Mayer (1992) defines problem solving as a cognitive process in which 

one figures out how to solve a problem of which the solution is not already known. Most definitions 

of problem solving emphasize problems that require problem solvers to use information and 

procedures in unfamiliar ways. Problem solving is an extremely complicated human endeavor.  It is 

considerably more than the implementation of well-learned procedures or the simple recall of facts. 

Problem solving involves the construction of sequential procedures that build strategies in addition 

to the application of the structure (Hammouri, 2003). Problem solving also entails arranging several 

cognitive and metacognitive processes, deciding and performing suitable methods, and regulating 

behavior for varying demands of problems (Montague, 1991).  

A variety of models are proposed that describe the processes that problem solvers use from the 

beginning until they finish their tasks (Garofalo & Lester, 1985; Mayer, 2002; Montague & 

Applegate, 1993; Polya, 1957). For example, Polya’s model comprises of four stages; namely, 

“understand the problem, make a plan, carry out the plan, and look backwards” (Polya, 1957). Later, 

Garofalo and Lester (1985) revised the model proposed by Polya and include cognitive and 

metacognitive components. Their model is described in four stages as orientation, organization, 

execution, and verification. Montague and Applegate (1993) presented a model focused on seven 



cognitive processes “reading, paraphrasing, visualizing, hypothesizing, estimating, computing, and 

checking” and three metacognitive processes “self-instruction, self-questioning, and self-

monitoring”. Mayer (2003) proposed another cognitive process model that included translating, 

integrating, planning, and executing processes. In particular, Artzt and Armour-Thomas (1992) 

developed a framework to examine the problem-solving processes of individuals as they work in 

small groups.  

Furthermore, non-routine problems are problems where how to solve the problem is not obvious 

immediately, or they have not been encountered before in the curriculum. Non-routine problems 

require critical thinking and an extension of prior knowledge that may include concepts and 

techniques which will be explicitly taught at a later stage, and may include finding connections among 

mathematical concepts (Schoenfeld et al., 1999). The findings of this study support that challenging 

problems are likely to enable metacognitive process so that students consciously adjust and regulate 

their cognitive processes (Montague & Applegate, 1993).  

All over the world the importance of exploring elementary school students’ problem solving abilities 

is highlighted. There are some international examinations such as Program for International Student 

Assessment (PISA) and National Assessment of Education Progress (NAEP) to determine the 

performance on non-routine problems and in problem solving. In the 2012 version, students’ PISA 

ranking scores in problem solving show that Turkey is among one of the worst in the world (42nd out 

of 65 countries, 2012 PISA). Therefore, researchers need to find out why this is so. As a country 

students’ problem solving abilities can be improved if how students think, and their awareness of 

their actions while solving non-routine problems are determined. In addition, exploring cognitive and 

metacognitive abilities is difficult in problem solving. Especially, elementary school students may 

not be aware of what, and why, they are doing. As a result, the purpose of this study is to investigate 

problem solving processes of fifth grade students when they solve non-routine mathematical 

problems. 

Significance of the study and research question 

Many research studies and projects have pointed out the importance of learning problem solving in 

school mathematics courses (Higgins, 1997; NCTM, 2000; Verschaffel et al., 1999). One of the major 

goals of mathematics education is the acquisition of the skill of learning how to solve problems. 

However, there are conflicting views about the attainability of these goals (Verschaffel et al., 1999). 

Despite long years of instruction many research studies show that children are insufficient and not 

confident in having the aptitudes required for approaching mathematical problems in a successful 

way (Higgins, 1997; Doorman et al., 2007). The reasons for these deficiencies, particularly in 

elementary students, can be attributed to two factors. The first of them is the lack of specific domain 

knowledge and skills (concepts, formulas, algorithms, problem solving). The second factor is 

shortcomings in the heuristic, metacognitive and affective aspects of mathematical competence. 

When confronted with unfamiliar complex problem situations, students mostly do not spontaneously 

apply heuristic strategies such as drawing a suitable schema or making a table. They usually only 

glance at the problem and try to decide what calculations to perform with the numbers. In addition to 

this, many students have inadequate beliefs and attitudes towards mathematics itself, learning 

mathematics, and problem solving. These beliefs exert a strong negative influence on their 

willingness to engage in a mathematical problem. Some examples of such beliefs and attitudes are 



that there is only one correct way to solve a problem; that a mathematical problem has only one right 

answer; and that ordinary students cannot solve problems which requires higher order thinking. These 

insufficiencies in students’ beliefs are related to the nature of the problems given in the lessons and 

the classroom culture. Hence, problem solving activities should give opportunities to students for 

investigation, reasoning and deciding on the solution process and improve their problem-solving 

skills. Small groups in problem solving may provide natural setting for interpersonal monitoring and 

regulating of students’ goal directed behaviors. In this study, the problem-solving processes that occur 

as individuals engage in mathematical problem solving in small-group settings are examined.  

The findings of the study may contribute the studies on the process of fifth grade students’ thinking. 

The determination of these students’ thought processes will helps teachers to design and adjust 

problem solving instruction and better support the development of students. The findings of this study 

may be applicable for developing teaching methods and materials to enable the development of fifth 

grade students’ problem solving skills in future non-routine problem solving classrooms. In addition, 

this study can be significant for the design of curriculum in that the results support the design of 

educational or special programs that can be more effective and supportive of elementary students. 

Thus, the research question of the study could be stated as follows: 

Which are the most dominant problem solving processes of fifth grade students when solving non-

routine problems? 

Theoretical framework 

It is necessary to appraise the information about problem solving processes to develop a framework 

that can explain how students figure out mathematical problems. Mathematics educators and 

psychologists have suggested various problem solving process models. Polya (1957) proposed four 

phases called “heuristics” to understand problem solving processes. The phases are known as 

“understanding the problem, devising a plan, carrying out the plan and looking back”. Polya also 

proposes several strategies that can be used when students solve problems. His strategies include 

using diagrams, looking for patterns, trying special cases, working backward, intelligent guessing and 

checking, creating an equivalent problem and creating a simpler problem. Considering the problem-

solving processes, an appropriate strategy can be essential to reach the solution of the problem. 

After that, Schoenfeld (1982) developed a model for mathematical problem solving based on the 

Polya’s model. The model includes five episodes; namely, “reading, analysis, exploration, 

planning/implementation and verification”. Adding cognitive and metacognitive aspects of problem 

solving to Polya’s and Schoenfeld’s model, Garofalo and Lester (1985) proposed a framework with 

orientation, organization, execution and verification phases. Montague and Applegate (1993) also 

proposed cognitive-metacognitive aspects of mathematical problem solving. This model focused on 

seven cognitive processes “reading, paraphrasing, visualizing, hypothesizing, estimating, computing, 

and checking” and three metacognitive processes “self-instruction, self-questioning, and self-

monitoring”. These various models have been used to investigate problem solving processes, but only 

two models by Garofalo and Lester’s model as well as Montague and Applegate’s model have been 

used with gifted students as a framework to describe problem solving processes in the literature 

(Garofalo, 1993; Montague, 1991; Montague & Applegate, 1993; Sriraman, 2003). Several 

metacognitive actions during problem solving were described in each phase of those models by 



cognitive theorists, in mathematical problem solving. To examine the problem-solving behaviors and 

cognitive processes of individuals as they work in small groups, Artzt and Armour-Thomas (1992) 

developed a framework based on Schoenfeld's (1982) framework. Schoenfeld (1985) defined an 

episode as "a period of time during which an individual or a problem-solving group is engaged in one 

large task" (p.292). The framework for the protocol analysis of problem solving in mathematics is 

used for this study to differentiate between cognitive and metacognitive problem-solving behaviors 

observed within the eight  episodes (read, understand, analyze, plan, explore, implement, verify, and 

watch and listen) of problem solving. The framework synthesizes the problem-solving phases 

identified in mathematical research by Garofalo and Lester, Polya and Schoenfeld, and of cognitive 

and metacognitive levels of problem solving behaviors studied within cognitive psychology, in 

particular, by Flavell (1981). This framework used in this study is to examine the interactions between 

two levels of cognitive processes (cognitive and metacognitive) observed in the problem-solving 

behaviors of students working in small groups on mathematics problems. 

Methodology 

This project consists of qualitative research in which case studies are employed. A qualitative design 

is appropriate for this study because the study focuses on gaining in-depth information about what 

actually occurs during the problem-solving process. The study conducted with nine fifth-grade 

students in a private school in the capital of Turkey. Purposeful sampling was used to select the 

participants as the researcher wanted to obtain more knowledgeable information about the problem-

solving processes within the groups. Voluntary participants were involved in the study. The students 

who have high self-expression skills were selected by two mathematics teachers. 

This study used multiple methods including a think aloud procedure when the students are engaged 

in solving problems, researcher’s field notes of observation, and analysis of students’ solution papers 

to collect data. Prior to the data collection, the participants practiced the think aloud technique with a 

sample problem. The procedure provides participants with important practice for understanding and 

developing confidence prior to utilizing the technique with the research problems. Over the one day 

3-hours period of data collection, three mathematical problems which were selected from PISA 

problem solving sample questions (going to the cinema, transportations system and holiday) from 

decision making units (OECD, 2005), were given to participants to solve in small groups by using 

think aloud method. All three students in small groups had their own paper and problem sheet to 

follow the process. They continuously spoke aloud while they work on the problems explaining their 

thoughts. Also, they had unlimited time to solve each problem. Since misinterpretations of the data 

might have resulted with only a single researcher as the data collector, the researcher maintains a 

record of field notes explaining her reflections about the activities. The field notes included the 

explanations of questions, reactions, and behaviors that occurred during data collection. 

In the study, group members were chosen from different classes, and they had never studied together 

before. Data collection was in a one-to-one setting between the participants and the researcher to have 

some field notes. One researcher observed exactly one group and took field notes. The researcher 

videotaped all the processes to record the participants’ behaviors, how they responded to the 

problems, and what mathematical language they used. All data from the think aloud session, 

participants’ solution papers, and researchers’ field notes were transcribed for analysis by the 



researchers. To generate the categories, the researchers read through all transcribed data sentence-by-

sentence and identify words or phrases that described the participants’ responses. For example, in 

group 1, student 1 says for cinema question: “First we will read the question then we will discuss”. 

This sentence is coded as Read. Again in group 1, student 1 says for cinema question: “Until now, 

what did you understand?” and student1 suggests:” Let’s underline the important sentences” These 

two sentences are coded as Understand. Also, student 2 says: “They cannot go to that film because it 

is for above 18 years old”. This sentence is coded as Analyze. For the second question, student 1 says: 

“Let’s try the other way” and coded as Explore.. Student 2 says: “They cannot go to Children in Deep, 

Carnaval and Pokemon” coded as Implement. Student 2 says: “Let’s look at it carefully. They can all 

go to Mystery. Let’s check” coded as Verify. 

After each interview is transcribed, participants check the accuracy of the described experiences and 

themes. Then, the codes were applied based on a review of the data and the concepts emerging from 

the data. The responses of one student were compared with those of other students in the same 

problem, as well as the same student across other problems. Multiple data sources were used to 

triangulate and confirm patterns that emerged. Each response was compared with other responses 

with the same idea, regarding the source of the responses. The codes were grouped into categories. 

At this point, preliminary categories were developed. Responses were compared across categories in 

terms of similarities and differences. Next, the researchers revised categories with transcribed data 

again and again until the final categories are confirmed. The final categories were also reviewed 

against the transcribed data for the last time. 

Findings 

The coding for each of the three groups was done and the behavior of each group was categorized by 

episode. As it was suggested by the study, the three groups’ episodes or problem solving behaviors 

were recorded and ranged. The audio records of the groups were coded in 1-min intervals based on 

the emergent behaviors through sentence-by-sentence and identify words or phrases that described 

the participants’ responses. Groups were differentiated from one to another by giving numbers such 

as Group 1, Group 2 and Group 3.  

Table 1 lists the number and percentage of behaviors across all groups, of the 519 behaviors that were 

coded, 25% belonged to Group 1, 21.65% belonged to Group 2 and 53.4% were demonstrated by 

Group 3.  

According to the results students in Group 1, out of 130 items (sentences, phrases, words), show 

“understanding” behavior (e.g. Student 1 says: “Stanley cannot come to the cinema on Sunday also 

he cannot watch Pokemon” which represents rephrasing the questions in different ways) 44 times, 

33.8%, which is the most frequent behavior observed, “exploring” behavior 25 times, 19.2% which 

is the second most frequent behavior observed and “implementing” behavior, 22 times, 16.9% which 

is the third most frequent behavior. As it was mentioned, the greatest percentage of existing behaviors 

was in understanding followed by exploring.   

For Group 2, out of 112 items, students show “understanding” behavior 53 times, 47.3%, which is 

the most frequent behavior observed, “exploring” behavior 19 times, 16.9%, and “implementing” 

behavior, 15 times, 13.3%, which is the third most frequent behavior observed. 



For Group 3, out of 178 items, students show “understanding” behavior 75 times, 42.1%, which is 

the most frequent behavior again, “exploring” behavior 27 times, 15.1%, which is the second most 

frequent behavior observed and “planning” behavior 19 times, 10.7%, which is the third most frequent 

behavior observed among the other behaviors. Differently from Group 1 and Group 2, this group 

shows more “planning” behavior than other groups. 

Table 1: Percent distribution of behavior categories (episodes) by problem solving group 

  Groups 

Behavior 

Category 
Group 1  Group 2  Group 3 

Read 12 (9.2%) 6 (5.3%) 17 (9.5%) 

Understand 44 (33.8%) 53 (47.3%) 75 (42.1%) 

Analyze 1 (0.7%) 2 (1.7%) 1 (0.6%) 

Explore 25 (19.2%) 19 (16.9%) 27 (15.1%) 

Plan 7 (5.3%) 9 (8.0%) 19 (10.7%) 

Implement 22 (16.9%) 15 (13.3%) 15 (8.4%) 

Verify 11 (8.4%) 4 (3.5%) 10 (5.6%) 

Watch & 

Listen 
8 (6.1%) 4 (3.5%) 14 (7.8%) 

 

Of all the episodes coded, the understanding episode was the coded as the greatest percentage within 

three groups while analyzing behavior was very rare. Among 419 items, 172 items represent 

“understanding” episode, 71 items represent “exploring” episode, 52 items represent “implementing” 

episode. The percentages of each episode are given in Figure 1.  

 

Figure 1: The percentage of the problem-solving behaviors for each episode in all groups 

Discussion 

According to Artzt and Armour-Thomas (1992) the greatest percentage of time was exploring 

(60.4%). In contrast to their study, we found that understanding was the most frequent observed 

behavior (33.1%). Watching and listening can play an important role in addressing the issue of 

communication between group individuals. These low and high percentages of watching and listening 

behaviors may be as a result of different reasons. For example, in Group 1, one student interrupted 

the other two students and also this student was writing the majority of the solution. The records and 

observations indicated that in each group some students assumed a leadership role. Therefore, it was 

possible that this kind of act would discourage the other two students in the group. However, during 

the problem-solving procedures, some productive interactions occurred while Student 1 (in Group 2) 

was not only supporting and guiding others but also got benefits from group members’ ideas. These 



results are in agreement with Artzt and Armour-Thomas’ (1992) findings which showed different 

patterns interactions between group members and show the significance of intergroup relations for 

active and productive contribution.  

The framework contributed the observation of individuals while working in small group settings. As 

it can be realized from the records and observations, group composition affected the group life. As 

group members were chosen from different classes, it is interesting to note that in all three groups 

students reflected a pragmatic desire in order to achieve the common goal by working together 

productively. With the exception of one student in Group 3, the small group study enabled researchers 

to observe peer to peer communication in a small group environment.   

‘Understanding’ was the behavior that was coded the greatest percentage by students in this study. It 

would be expected that after this phase, students could decompose the problem into basic components 

and examine the relations between given elements and common goals at the analysis level, and then 

explore the problem by guessing and testing. In our study, understanding led group members to the 

exploration without making visible analysis.  
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We report on the experience gathered in a study using a geometric modelling approach based on 

dynamic geometry systems complemented by physical modelling. Our strategy intends to strengthen 

the interconnections between the current trends in Science, Technology, Engineering, Art and 

Mathematics Education. To help students to better understand how certain physical mechanisms 

work, some da Vinci machine prototypes were reconstructed and used as a starting point for this 

study. Building upon previous experience, our work currently concentrates on the analysis of 

connecting physical and digital resources and on how they contribute to students’ creative thinking 

and problem-solving. We discuss the concept of geometric modelling, focusing on spatial thinking, 

joints and their movements. Further, we present some new manipulatives that are being tested 

together with digital applets and discussions from this practice. 

Keywords: geometric modelling, GeoGebra, problem solving, creative thinking. 

Introduction 

Geometric modelling has been used in a wide range of contexts, but continues to deserve more 

attention in mathematics education. The term “geometric modelling” usually refers to different digital 

techniques for representing specific objects or surfaces. This concept seems to be associated mostly 

with computer-aided design, the tasks of which are usually related to shape and to improving models 

in order to approximate real structures by means of sophisticated algorithms and software. This work 

intends to bring geometric modelling, supported by dynamic geometry systems (DGSs) and combined 

with physical resources, to the classroom. While an analogue model provides “hands-on experience” 

to students so they can comprehend certain mechanical movements (and their restrictions), a digital 

model forces them to develop suitable strategies for transcribing such actions. Students must therefore 

think about how to apply mathematical concepts properly in order to use them successfully in their 

digital models. In our case, creating a digital representation is not only a mathematical exercise, but 

also an opportunity for the students to refine and review their comprehension processes and to 

improve their physical models. In this modelling approach, students are faced with problem-solving 

in Science, Technology, Engineering, Art and Mathematics (STEAM) contexts.  

Modelling is characterized as the branch of mathematics that deals with the translation of a real-world 

situation into mathematical language. In publications discussing mathematical modelling (e.g., 

Brinkmann & Brinkmann, 2008; Lingefjärd & Holmquist, 2001), data are used to optimize particular 

processes or to develop algorithms for analysis or prediction. Geometric modelling approaches also 

concentrate predominantly on processes rather than on actual goals and concepts (e.g., Mason, 2001; 

Henning  & Keune, 2008; Siller, 2008). We use geometric modelling for both the virtual (on the 

computer screen) and physical (concrete manipulative) representation of objects, which allows both 

the objects’ functionalities and the interactions between them to be analyzed. Exploring linked 



mechanisms by using either concrete manipulative or digital tools such as GeoGebra, students can 

examine mathematical ideas in order to improve their constructions. We focus on the process of using 

modelling to support geometrical relationships and vice versa. Our goal is that students gain a better 

understanding of how certain mechanisms work, beyond connect such STEAM areas. As a starting 

point, we used some mechanisms introduced by Leonardo da Vinci and shared them in an interactive 

GeoGebra book (see https://ggbm.at/AnHK7nCX). Although da Vinci invented them more than 500 

years ago, their basic physical principles are still used in engineering and in education. Reconstructing 

these models does not only mean redoing what has already been done; it means connecting ideas and 

strategies for learning and using new resources based on some classical ideas, and maybe even 

improving them along the way.  

In this paper, we present an activity developed within a vocational course in Brazil. Building upon 

this preliminary experience, we intend to investigate (in the form of a PhD project) how the combined 

use of physical and digital tools is of mutual benefit and promotes learning in science and 

mathematics.  

Theoretical framework 

Enhancing geometric modelling through Dynamic Geometry Systems 

More than a “mathematical playground”, dynamic geometry systems (e.g., GeoGebra) must be 

considered as a proper space for transforming students into explorers – a platform where 

mathematical understanding takes on another dimension and goes beyond merely applying formulas. 

Numerous studies have advocated this (e.g. Schumann, 2004; Gawlick, 2005; Bu & Hohenwarter, 

2015) and stress the importance of transcending traditional geometry courses before the increasingly 

sophisticated and widespread application of geometry in science and daily life. In particular, they 

highlight how DGSs have supported changes in mathematics teaching and learning as well as in 

professional mathematical practice. Among the perspectives associated with the DGS approach, we 

outline those that are closer to geometric modelling: problem-solving, concept formation, 

construction, measurement, visualization, exploring, and variation/animation. DGSs often grant 

access to information that would otherwise be inaccessible. For instance, in spatial geometry, 

GeoGebra enables users to see an object from different points of view and its cross sections. Such 

features provide an important link between 2D and 3D representation. Investigating whether some 

ideas established in 2D also work in 3D or how they should be adapted is a promising strategy for 

promoting spatial thinking. Consider an example where the reasoning based on circles in a plane can 

be extended to a sphere in space: We have a point given in a plane and a line at a certain distance d 

from the point. In order to mark those points on the line that are located at the same distance e > d 

from the point, one could use a circle in 2D, but this would not suffice in 3D space (a more appropriate 

approach would be to use a sphere in this case). The attempts to find a solution using DGS software 

enhance the students’ conjecturing processes – another benefit of DGSs. 

Teaching approach using analogues and DGS 

In the didactic domain, Alsina (2007) proposed that students gain insights from the functionality of 

objects and thus engage themselves in a creative process because they can identify the potential or 

restrictions of a particular phenomenon. Gravina (1996) suggested that dynamic geometry can foster 

an approach to geometric learning in which assumptions are made from experimentation and the 

https://ggbm.at/AnHK7nCX


creation of geometric objects. In the same vein, Swan et al. (2007) stated that students can refine their 

own thinking by interacting with different representations of problem situations. In our case, the 

aligned and parallel modelling process led students to a practice where they had to hone their ideas 

in every construction step. Facing the need to convey their ideas, students tapped into their previously 

acquired understanding (an example is discussed in more detail further below).  

Recent studies (e.g., Sinclair, Bussi, de Villiers, et al., 2016; Camou, 2012; Lesh and Sriraman, 2010) 

support the positive effect of the design and implementation of a multi-representational approach to 

exploring 3D objects using crafts, computer technology, and paper-and-pencil methods. In this 

context, we seek to provide an integration of geometry with algebra and trigonometry (using the 

example of joints with circular movements) that goes beyond technical instrumentation.  

In our case in particular, the use of mechanical principles provides the background for the modelling 

process, as can be seen from the diagram in Figure 1, which was adapted from De Sapio and De Sapio 

(2010): they considered the relevance of applying an approach to problem-solving at an elementary 

stage through constructing mechanical analogues to geometric problems. In this case, mechanical 

reasoning supports geometric reasoning. Note that we added the arrow in the opposite direction, since 

the reverse case (geometric reasoning supports mechanical reasoning) is equally possible, as shown 

in our study: On the one hand, mechanical reasoning was essential to discussing the proper ratio for 

a pulley system in one case. On the other hand, with the help of rotational simulations (i.e., geometric 

reasoning) by means of digital modelling, the students figured out how to build a functioning physical 

prototype in another case.  

 

Figure 1: the solution’s correspondence come out in both directions 

Concerning the activity’s driving, the activity is consistent with DeHaan (2009), who stated that some 

strategies can transform the lecture hall into a workshop or studio classroom (even partially), and 

stressed the use of computer-based interactive simulations as a promoter of creativity instruction.  

In fact, researchers investigating creativity generally argue that projects tend to be more creative when 

the solution is redefined, revisited, and questioned numerous times during the process (Lee & 

Carpenter, 2015). Furthermore, there are many different ways of developing prototypes. The process 

of refining ideas and designs puts students on an unrestricted path. Siswono & Novibasari suggested 

that problem-posing activities using the “What’s another way?” strategy could 

improve students’ abilities in creative thinking (as cited in Siswono, 2010). In our study, the students 

discussed their different ideas, especially in digital modelling. In this phase, they considered various 

points of view and also tried to gain some insights to check whether their ideas were feasible or not 

in order to do make the model as simple as possible. 



Methodology  

Our experiment started in September 2015 at the Federal Institute of Education, Science and 

Technology in Brazil. It took approximately four months and had the form of a partial extra-class 

activity with two weekly meetings to follow the progress. The students (most of them were 16 years 

old) participating in the vocational (informatics) course were supported by two additional teachers 

(physics and mathematics). Although supervised by teachers, they chose their own topics to 

investigate. We first present the Da Vinci Rotatory Bridge Project (Figure 2) developed by 4 students. 

It was agreed that they should develop both physical and digital models in order to try to improve the 

joints of the existing mechanisms. Our intention was that, by comparing similarities and differences 

between the models, the students should be able to use one to support the other. No particular order 

was prescribed, but parallel development was suggested. Use of GeoGebra was also optional but 

recommended, since we were exploring it during class. In fact, da Vinci projects have been promoted 

since 2011, but this was the first time GeoGebra materials and GeoGebra 3D features were integrated. 

Particularly in the digital modelling process, the students concentrated on principles of rotation, 

translation, and spatial geometry.  

 

 

 

 

 

 

 

 

 

Figure 2: The digital prototype developed using the GeoGebra 3D feature (left) and the physical model 

made of wood (right) were developed in parallel  

As a further development we are combining this activity with a new resource, 4Dframe1, which is a 

flexible material and easy to manipulate. In the next example (Figure 3), we follow the development 

of a digital catapult in two versions. The second one is based upon the 4Dframe model.  

                  

 

 

 

Figure 3: Catapult evolution and becoming easy to represent  

Since mechanical principles are highlighted in a simple way, it becomes easier for students to 

represent them in GeoGebra. Furthermore, elementary models with straws and connectors become 

part of the digital modelling more easily when only segments and points are used to represent the 

structures.  The functional principle of the joints, however, is preserved. In addition, various colours 

are used to represent the corresponding elements and to contribute to the visualization and facilitate 

spatial comprehension. 

                                                 

1 For some examples, see https://www.geogebra.org/m/xCxJUyyx.  

https://www.geogebra.org/m/xCxJUyyx


Finally, another important benefit is that the digital model allows a wide range of representations to 

be created by simple cursor movements (in the example in Figure 4 by dragging the blue points). 

Using 4Dframe, the students can think freely about different possible solutions and the constraints 

arising for an eventual construction, and are engaged in a learning process involving critical and 

creative thinking.  

 

 

 

           

Figure 4: Multiple representations promote creative thinking. By dragging the blue points in the 

digital model, students can create a range of possible solutions.   

Construction’s ideas and discussion  

In order to illustrate some basis used by students to support such models, we share some parts of 

them. The students were free to construct according to their own previous knowledge and were not 

required to use any specific content. However, if the need arose in a particular task, the students 

received proper support. In such cases we enjoyed discussing the problem at hand with them and, 

together, introduced new concepts or strategies, as presented below. 

Given a circle with its centre in A (located on the x-axis) and an arbitrary radius2 we started the task 

(Figure 5). First students investigated the relative position of a point B on the circle in relation to its 

center while sliding along a line. Since the goal here was to simulate the movement of a wheel, they 

needed to implement rotational movement. To figure this out, they changed the definition of point B 

to (x(A) + sin(x(A)), y(A) + cos(x(A))). Naturally, this result was obtained after several attempts and 

discussions. Note that, in this case, the point B is a function of point A.  

 

 
 

Figure 5: Three-frame cycles represent the transition from a “dragging circle” to a “rolling circle”  

In a 3D representation, the same logic is preserved, but this concept was totally new for the students: 

Each point then has three inputs. If a circle is perpendicular to one of the standard axes, then all points 

belonging to this circle have a constant input regarding to such axis. The other two coordinates repeat 

the idea from the previous 2D example. For instance, in the case below (Figure 6), B is given by (x(A) 

+ sin(x(A)), 0, z(A) + cos(x(A))). The connected elements can be completed by rotation or symmetry.  

Additionally, some principles applying to spatial coordinates were used to define proper points as a 

                                                 

2 The radius could also be controlled by a slider. In this case, the scale had to be in accordance with the remaining 

construction.  



basis for such constructions. In the boat example (Figure 6), a first reference segment was built to 

guide the following marks through translations and reflections.  

 

 

 

 

 

 

Figure 6: Developing a 3D representation in 3 steps  

In this activity, the students should preserve the coherence between analogue and digital model as 

much as possible. To illustrate this, we refer to the bridge example, where the relation between the 

turns of the driver pulley and the bridge was to be determined; this is an issue easily identified in the 

physical prototype but not as readily in the digital model. When the students realized that the models 

were not in agreement, they concentrated on the geometrical problem and concluded which ratio 

between the number of turns of the bridge and of the pulley should be appropriate. In contrast, when 

students modelled only the digital boat (in a previous experiment), they recognized the following 

misconception before building the physical model: if the paddle wheels spun together at the same 

speed, the boat would move only forward and backward. They then fixed this problem in the physical 

model. This suggests that it does not matter which model they build first as long as the whole model 

contributes to their experience and improves their learning process. When digital geometric modelling 

was the goal, students needed to use their knowledge of trigonometry and parameters (functional 

thinking) in order to establish links between elements to obtain the desired representation. Questions 

such as “If you want to change the direction of the rotation, what do you have to do?” often initiated 

their investigative process and sometimes became a challenge.  

Conclusion 

 “Inviting” students to reconstruct historical models is one of many possible ways to teach 

mathematical concepts and to promote students’ creative thinking processes. Students must decide 

how they can use their previous knowledge in order to solve a given task. In this way, students 

increase their autonomy and become more involved in their own learning processes. An important 

step of Pólya’s heuristic strategies can be outlined: “If you cannot solve the proposed problem, try to 

solve first some related problem” (as cited in Schoenfeld, 2016). 

While we promote STEAM on the one hand, we introduce different dimensions of learning to students 

and enable deep learning driven by their own interests on the other. Problem-solving and geometric 

modelling can also become a basis for the integration of mathematical learning into trans-disciplinary 

educational frameworks, currently referred to as STEAM.  

In the course of this study, students left some testimonials on Moodle.  One such testimonial referred 

to some physics aspects: “I enjoyed two videos posted by the teacher that showed how da Vinci’s 

bridge worked. They enabled a better understanding of the functioning of the rotatory bridge. I 

understood better how the system of ropes and pulleys works in order to reduce the workforce.” 



Feedback such as this and examples such as those reported above illustrate the students’ interaction 

with different resources that supported them. They indicate that the geometric modelling approach 

can motivate and contribute to their learning process. We therefore seek to evaluate and promote this 

activity among teachers as part of our current research. We are now working on developing new 

resources that connect the physical and the digital world and will report on these at a further occasion.  
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In this paper we report on students' work in Argentina and in France when performing a modelling 

task. The problem given, named the "gutter", is quite a classic in university calculus courses. Analyses 

have been realized by using the Mathematic Working Space (MWS) research model in relation to 

mathematization of a modelling process. We are mainly concerned with the influence of the teaching 

in students’ productions. Since the modelling process is an important issue of teaching, we have 

chosen the population of the study among pre-service teachers. 

Keywords: Mathematical Working Space, paradigms, modelling task. 

Introduction 

Nowadays, modelling is fostered in secondary school and at the university level, and one expects 

teachers and engineers to be trained to achieve the modelling competence. For instance, modelling 

constitutes a specific competence that has to be developed by civil engineers in Latin America, 

according to Tuning project (Guerrero, 2013). But, what modelling problems have to be considered 

in upper secondary school and in university? Are the modelling problems used in high school, and in 

the university, standardized by the institutions? Do they refer to real situations? We think that 

mathematical objects, different representations used, and properties involved in the modelling process 

give a richer sense for students in term of the knowledge they can construct. Teachers have of course 

an important role to play that highlights the importance of the teachers training. In that way, the 

population of this study was mainly choosen in secondary teacher training.  

In this study we present a relation between the Mathematical Working Space research model 

(Kuzniak & Richard, 2014; Kuzniak, Tanguay & Elia, 2016) and the modelling cycle (Blum & 

Borromeo-Ferri, 2009) that could be understood as a first cycle for the resolution of the modelling 

task. Mathematical Working Space (MWS) is a model that is used in research in mathematics 

education, first developed in the field of geometry. When a student starts with the given situation, one 

assumes that he/she begins a horizontal mathematization process which is a foundation for bringing 

the situation problem into a mathematical domain. Then a vertical mathematization process takes 

place where the MWS framework and the modelling cycle can interact with each other. That is our 

approach in this study. 

We first present how to use the MWS model to analyse a modelling activity. Then, we study a 

modelling task given to pre-service teachers in Argentina and in France. Our aim is not to make a 

comparative study, since both populations are different, but rather to identify the personal MWS of 

the students when solving this modelling task. The focus is mainly on three levels of teachers training 

in Argentina. We also looked at primary teachers training in France in order to have an idea of no 

scientific students’ answers. 



MWS and Modelling 

We consider a MWS that depends on a specific mathematical field (Kuzniak, Tanguay & Elia, 2016) 

such as, among others, analysis, geometry, algebra or statistics. Paradigms in an MWS, depending of 

the domain, serve to characterize the work according to a community or an institution. We develop 

the paradigms for analysis (Montoya Delgadillo & Vivier, 2016).  

The MWS model 

Three types of MWS may be distinguished: (i) MWS of reference, which is defined according to the 

relation to knowledge, ideally under mathematical criteria; (ii) suitable MWS, which depends on the 

institution involved, and is defined according to the way that this knowledge is supposed to be taught 

in the institution; (iii) personal MWS, which depends on the individual and is defined by the way in 

which the individual handles a mathematical problem with his or her own knowledge and cognitive 

capacities. 

MWS is an environment in which reflection results from the interaction between an individual and a 

problem in a mathematical domain. It is an environment organized for an expert of this domain, by 

means of two interconnecting planes: the epistemological and the cognitive planes (Kuzniak & 

Richard, 2014; Kuzniak, Tanguay & Elia, 2016). 

The epistemological plane is composed of three poles (Figure 1a), namely referential (properties, 

theorems, definitions…), representamen (semiotic signs), and artefacts (material or symbolic). The 

cognitive plane consists of the processes of visualization, construction and proof. The functioning of 

a MWS must not be understood as a union of single components lying on the epistemological and 

cognitive planes, but rather as links activated by two or three geneses, semiotic, instrumental and 

discursive genesis, that articulate the two planes. 

 
Figure 1a: The Mathematics Working Space, 

geneses and vertical planes (Kuzniak & Richard, 

2014) 

 

Figure 1b: The modelling cycle 

(Bloom & Borromeo-Ferri, 2009) 

Paradigms of analysis 

The situation we propose (see following section) is an optimization task. Hence, using (mathematical) 

analysis is quite natural, even if the problem can be solved in various ways. In order to identify the 

paradigms of analysis in the answers of the students, we present the three working paradigms of 

analysis identified by Montoya Delgadillo and Vivier (2016): 

− Arithmetic/Geometric Analysis (GA): it enables interpretations with implicit assumptions 

based on geometry, arithmetic calculations or the real world. 
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− Calculation Analysis (CA): the rules of calculation are defined more or less explicitly and 

are applied independently of reflection on the existence and nature of the objects.  

− Real Analysis (RA): it is characterized by work involving approximation and 

neighbourhoods; definition and properties are set theoretically; an “ε work”. 

Modelling 

The development of the modelling skills (Blum & Borromeo Ferri, 2009) mobilizes notions and 

mathematical objects of different mathematical domains, where the knowledge that the students can 

learn is grounded on arguments that belong to different domains (analysis, probabilities, geometry, 

etc.). This gives rise to different MWS and paradigms.  

Recently, two doctoral theses in probability in Paris Diderot university proposed a use of MWS in 

modelling processes1. The whole modeling cycle (Figure 1b) is not taken into its totality: the focus is 

on phases 3 to 5 of the cycle and our aim is to analyse, with the MWS model, the mathematization 

process when students solve a modelling task. We expect to identify, in students’ work, the solving 

mathematical domain and mathematical objects, representations or signs, artefacts, mathematical 

knowledge, and the working paradigm. We show below how the two frameworks may be used 

together and their complementarity.  

In the following, we do not consider all the modelling process with the lens of the MWS model, but 

rather how is it possible to analyse mathematical activity. In particular, we set the following questions: 

Given a specific task, what domain and (personal) MWS will a student choose during the modelling 

process? Is it possible to see an influence of a suitable MWS? 

Experimental study 

The "gutter" situation (see below) was given to three groups of future secondary mathematics teachers 

in Argentina: two groups of a private training institute, namely 1PC of 1st year and 2PC of 2nd year, 

and one group of 4th university year, 4PF, of the Universidad Nacional de Córdoba – unfortunately, 

a 3rd level group was not available. The study focuses on these pre-service teachers, but the task was 

also posed in France, in an examination of 3rd year future primary teachers, at the Université Paris 

Diderot. This extra population helps to understand what kind of solving processes one can expect 

from non-scientific students. Students of the study are named L1 to L28, 1PC1 to 1PC24, 2PC1 to 

2PC15, and 4PF1 to 4PF12 accordingly. 

As announced above, it is an optimization task, quite classic except for modelling aspects. Here, we 

make the hypothesis that the majority of students who followed a calculus course that provided a 

method for solving a class of optimization problems (derivation or optimum of quadratic functions) 

will work in paradigm CA, and that they will resort to functions. 

The aforementioned was the case for 4PF students trained at the university, since these students had 

courses on mathematical analysis. But CA paradigm was not expected for 1PC students and 2PC 

students, since in Argentina the first calculus course takes place during the second year and the 

experimentation was at the very beginning of the academic year. We then expected more GA methods 

(see below). 

                                                 
1 See also the poster “Modelling tasks and mathematical work” in TSG6 of CERME 10. 



On the other hand, French students were in a multidisciplinary third university year after the 

validation of two disciplinary university years (mathematics, or biology, or history, or English…). 

Students’ profiles were very diverse and a few of them studied mathematics, and specifically calculus. 

We make the hypothesis that, spontaneously, most of L-students work in GA paradigm, whether or 

not using functions. 

The gutter situation: a priori analysis 

First, we give the statement of "the gutter", then we make an a priori analysis. 

We have a rectangular metal sheet of 30 cm width and of big length. We fold up perpendicularly edges on each side to 

make a gutter (see dotted lines on the figure below). For obvious reasons, both side edges of the gutter will have the same 

size.  

 

How should we fold up the metal sheet in order to obtain a gutter with a maximum flow? 

This is a partially modelled task, since many parameters are fixed and, moreover, the geometrical 

mathematization is given. The choice to fold perpendicularly allows simplifying the task by 

eliminating other cases. There is a lack of parameters to study the flow, among them, the slope of the 

gutter (that we shall not discuss) and the length of the sheet. 

The latter is not necessary because we can replace the study of the flow by the study of the area of a 

cross-section of the gutter supposing that the flow through this section is constant. Nevertheless, it is 

simpler to work with the volume than with the flow which is a quotient magnitude. Thus, some 

students may choose a length to make a calculation of volume. Is this length considered as a parameter 

or either as a numerical value added to the statement? This length is used in calculations or is it only 

a useful intermediary to think of the situation? 

Let us note that there may be problems of understanding of the proposed geometrical modelling. An 

inadequate understanding of the situation corresponds to the addition of an idea or a belief, which is 

not correct regarding the situation. We expect in particular to have equitable answers with 10 cm for 

each of the three edges, as well as the assertion that the area, and thus the flow, does not vary because 

of the constant 30 cm. 

On the other hand, there is no indication on the mathematization allowing to make calculations for 

solving. We focus our analyses on this phase of mathematization, which we interpret as the choice of 

a MWS by students, and the phase of solving. We then look at students’ answers with an adequate 

understanding of the modelling situation: good geometrical shape (specified in the statement), and 

considering the area of a cross-section, or a volume, to study the various values (the variations) of the 

flow. We also look at a schema of the gutter: cross-section, in 2D or in 3D. 

In the following, we present the types of answers expected for solving the modelling task. Before 

that, let us notice that the task can be solved in the geometry field of the statement, with magnitude 

and a knowledge on the areas of rectangles of given perimeter: By taking two “gutters", one forms a 

rectangular pipe the section of which has a perimeter of 60 cm. Since the area is maximal for a square, 

30 cm 



the solution is obtained for a 60 cm/4 side, that is, 15 cm. So, the basis has 15 cm of length and one 

has to fold in 15 cm/2 = 7.5 cm. 

The resolution can be made in a numerical MWS, that is, by doing several calculations of the area or 

the volume. Several levels are possible: choice of some values of the length of the edge, calculations, 

and then decision-making. Numbers to be considered are essentially whole or decimal numbers. The 

solution being 7.5 cm, considering only integers multiples of cm does not allow to find the optimal 

value (unless changing the unit of length). These values can be grouped in a table or not, obtained in 

an organized way or not (for example, with all integers from 0 to 15, or by an oriented search), with 

a sign (as the letter x) to denote the length of the edge or not. A formula allows to automate 

calculations and, possibly, the implementation in an instrument of calculation. Obtained values can 

be also put in a graph. 

The production of a formula can allow to change of MWS to a functional MWS, in calculus. One 

expects the introduction of a quadratic function2: 

 Using only algebra, with the expression of a global variational principle:  

f(x)  f(a) where a is the candidate value, that has to be find, to be the optimal value; 

 With recognition of a quadratic function, its properties, vertices or symmetry axis of a 

parabola, allow to solve the problem. This is a work in CA paradigm. 

 Using the derivative of the function. Is the theorem quoted? Is the change of sign of the 

derivative evoked or forgotten? This is mainly a work in CA paradigm. 

 Setting a values table or a graphic, recognizing or not a parabola, in GA paradigm. The 

difference with numerical MWS mentioned above may be difficult to identify. 

Results 

Let us note that 12 L-students do not answer, and utterances from 5 students of 1PC are not classified. 

Three of these 1PC-students gave the solution 7.5 cm without any justification: possibly an exchange 

of information between students or, for at most two students, the divisions of 30 cm by 4 like for a 

square3. There is also the atypical 1PC24’s production, which will be mentioned later on.  

In Table 1 there is a summary of the results with four groups of indicators: 

1. Representamen: cross-section of the gutter (CS), letter for the edges (Ledg), letter (L) or value 

(V) for the fixed length of the gutter (Par), table (T) and graph (G); 

2. Objects used: function (Fu) or formula (Fo); 

3. Knowledge: derivation (Der), vertex of a parabola or quadratic function (Ver) in a MWS of 

function, CA paradigm; numerical calculations (Num) in a numerical MWS; 

4. Non adequate modelling: 10 cm for each edge (10), no variation (noV) and also extreme 

folding (ExtFold) for “the edge must be the lower” or “the greater”. 

                                                 
2 A quadratic function limits the technical difficulties. The task was also chosen for this reason. 

3 That method is not expected here: since (a,b)ab is bilinear, optimizing the area of rectangles with fixed perimeter p 

is the same than optimizing the area of rectangles of sizes a and b with a + b + a = p.  



Table 1: Students’ answers to the “gutter task” 

 CS Ledg Par  T/G Fu/Fo Der Ver  Num 10  noV ExtFold  

4PF (12) 8 12 6L,0V 0T, 3G 12Fu, 0Fo 7 5 0 0 0 0 

2PC (15) 3 2 0L,1V 2T, 0G 0Fu, 1Fo 0 1 5 4 5 2 

1PC (24) 7 2 1L,2V 0T, 0G 0Fu, 0Fo 0 1 11 5 2 0 

L (16) 0 7 2L,3V 2T, 2G 4Fu,2Fo 2 0 5 2 0 4 

There is a lot of 2D schema, close to the statement schema, but only four 3D schema. On the other 

hand, a cross-cutting (see Table 1) seems characteristic of 4PF-students, more advanced 

mathematically. It is the same with formalization, introduction of letters (variables and parameters) 

or using functions: the 12 4PF-students used a modelling with functions. It is also the same with the 

use of knowledge: 4PF-students work in CA paradigm, either by using derivation or the formula 

giving the vertex of a parabola (rarely justifying that it is a maximum; only two students justified it, 

by calculating the second derivative). There were a few students that used this knowledge in the three 

other groups, or in an empirical way by working in GA paradigm (by numerical calculations, more 

or less organized, or graphs). 

Although the work seems largely guided by the knowledge the 4PF-students have, with few 

variations, modelling was adequate, what is not the case in other groups. For students who do not 

well understand the situation, either no MWS rises from modelling, or a very poor MWS appears, not 

allowing a substantial mathematical work. Answers of inadequate modelling are: 

 Equitable length of the three sides: 10 cm each (5 students); 

 There is no variation, all is constant (4 students); 

 An extreme folding, the littlest lateral side possible (5 students), but sometimes with the (real) 

constraint that 0 is forbidden, so that the water remains in the gutter; 

 L27: a pyramid (to have a pipe?) without understanding the geometry of the statement; 

 1PC24 drew a roof explaining: “if there is a few water that does not go strongly”, and “if there 

is a lot of water and with great strength”. 

Although the productions of the group 1PC are very poor, with not much formalization, in the groups 

2PC and L we find a various types of rich productions: trying values with calculations, sometimes 

leading to the accurate solution when the student thinks out of the integers domain (some students 

remain in the field of the arithmetic of integers, sometimes with answers with two solutions, 7 and 8, 

and even the constraints to have a basis of even length in order to be able to divide by two), graphs 

and tabulations which can lead to the awareness of a symmetry (L6, L28 below). 

L14 proposes a formula with a letter x for the length of the edge and l=10 for the length of the gutter, 

to calculate what he calls Dmax (figure 2). He uses this formula to find a values table for a whole 

number between 1 and 15. He writes: "we notice that the maximal flow is achieved for an edge 

between 7 and 8 cm". Other students stop at this stage, while L14 continues with another table for the 

values of x between 7 and 8 with a step of 0,1. This allows him to conclude correctly, in GA paradigm, 

that "to have a maximal flow, edges have to be 7.5 cm each". 



Student L6, after the introduction of the function f(x) = (30-2x)x, establishes a valuable table for 

integers and draws the graph of f (figure 3). She concludes with visualization on the graph to 

determine the solution by drawing what seems to be the axis of symmetry of the curve. 

 

 

 

 

Figure 2 : Answer by student L14   

 

Figure 3 : L6's graph 

L28 declares the same function but in a more formal way: “x(0,15) f(x)=(30–2x)x”. He then 

calculates the values for the whole values of x that he associates two by two, which is an organization 

adapted to the function at stake. "We notice a symmetry in the values of f(x) when x varies between 

1 and 15. We deduct that the maximum is in the middle of the values, that is: 

fmax(x)=f(7,5)=112,5 cm2.” 

 

Figure 4: Production of L10 

L10's work is very complete (figure 4). She uses a formalism (she fixes the parameter a to 200 cm), 

a function, and a graphic calculator to propose a conjecture for the candidate maximum value in a 

visualization work in GA paradigm. She strengthens her conjecture by considering the middle of the 

function roots. She continues by calculating, algebraically, in paradigm CA, V(x)–V(7.5)= –(20x – 

150)2, what allows her to justify her conjecture and to conclude. 

Finally, 2PC4 has an atypical production with a modelling by means of a paper model: he takes two 

paper strips, which he folds to form a pipe and gives, by a reasoning close to the solution in the 

MWSGeometry described above, the right solution. 

Conclusion 

The recognition of a function in the situation, like the introduction of a letter, is an important 

modelling activity, because a concept is introduced, which a priori has no relation to the situation. 

But more than a letter – by using it the work can remain in a numerical MWS –, the introduction of a 



function switches the work to a MWS of functions with specific techniques (e.g. derivation) and 

representations (graphic, table value). However, the work done can be very different and the personal 

MWS involved can also be different from a student to another. 

The understanding of the situation and the asked question made each student choose a MWS, that is 

to say, mathematical objects, knowledge, theorems, signs (letters, graphics,…), artefacts (calculator, 

spreadsheet,…) and the processes of visualization, construction and proving in various domains – in 

other words, the MWS... – . Those are complex issues for a teacher to control the various knowledge 

involved. 

Then we wonder whether the modelling process for some students is a routine that has been 

"normalized" by the institution, mostly for a specific class of problems, or a mathematical activity 

which has been taught in their institution. It seems that for 4PF group, students’ answers are 

standardized with only a choice between two knowledge on functions. This is a first influence of the 

suitable MWS that we point out. The diversity of the L-students productions reinforce this 

standardization and we set the problem of the possibility for teachers to be aware and open to 

alternative answers that their students may have.   

MWS model allows us to analyse in depth the concepts and mathematical objects coming from 

mathematization identified in the modelling process. However, the possibility that different MWS 

from this process are generated makes an attractive but complex task to control for the teacher, overall 

for a second modelling cycle. Indeed, this study focus on a first cycle where one asks to students to 

solve a modelling task. Then, teachers may use a second cycle in order to reorganize and to point out 

knowledge that arose during the first cycle. 
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In this study, a teaching experiment was used in which fifth grade students developed their own 

knowledge about decimal number based on their prior knowledge and real life actual experiments. A 

Realistic Mathematics Education approach was used for designing this research. Participants in this 

study were 27 students from a primary school and they did not have formal instruction at school on 

decimal number until participating in the current study.  These students engaged in some measuring 

activities during four sessions in two weekends. They discovered the idea of calibration of a 

measurement unit and tried to use this idea for measuring the length of objects. This study shows how 

real life experiments of students help them to calibration a measurement unit.  

Keywords: Decimal number, measurement activities, realistic mathematics education, primary 

students.  

Introduction 

Understanding of decimal numbers is very important for people who live in twenty first century 

because they use computer, calculator, digital monitor and other measurement activities in their real 

life experiments. Usually, people encounter with decimal number in their real life. For example 

nutrition facts written on foods, factors for buying products, vaccination card of children and … have 

a lot of  things related to decimal number. All children encounter with decimal number before formal 

education at school, although its meaning is not understood. According to Bonotto (2009) connection 

between outside of school experiments of children and formal education can support students’ 

conceptual understanding.  

In traditional teaching, decimal numbers developed through place value. Usually students use tens 

and hundreds blocks for consolidating decimal numbers concept. Operations and procedures explain 

by teachers abstractly and then ask students to do some similar exercises. Indeed, students hadn’t 

active role in developing their own knowledge and there is no connection between out of school 

students experiment and their math classroom activities.  

It seems to we need to develop new approaches for teaching decimal number. One of the useful ideas 

in this regard is realistic mathematics education approach. In current study, we try to use this 

approach for finding some real contexts which are authentic for students and these contexts used for 

starting point for constructing mathematics by students themselves. Indeed, this paper will be 

introducing a teaching experiment in decimal number domain. During this teaching experiment, 

students do sequence of measuring activities to develop a measurement unit and calibrate it for 

measuring different lengths. Students also discover different representation for decimal number 

through these activities. The main purpose of this research was that show how students develop their 



 

own knowledge about decimal number in the context of real world with using their common sense 

and prior knowledge.  

Literature review and theoretical framework 

Decimal number is one of important topics in school mathematics which has plenty of application in 

students’ real world experiments. But several studies show that students and even adults haven’t good 

understanding about decimal numbers (Moloney & Stacey 1997; Steinle, 2004; Lai & Tsang, 2009; 

Sengul & Guldbagci, 2012).  Lai and Tsang (2009) show that procedural knowledge of students in 

decimal number was very good, but their conceptual knowledge in decimal number and decimal 

notation were so weak.  

One of the important concerns of Lai and Tsang (2009) is that do the mathematics teachers know how 

to deliver decimal conceptual knowledge to the students? Bonotto (2001) believe that students’ 

difficulties in decimal number rooted in teachers teaching strategies which have no connection to real 

life of students. Indeed, students usually encounter with decimal number in format of some stereotype 

word problems. Niss, Blum, and Galbraith (2007) said word problems exist several centuries in 

school math curricula and used as application of mathematics, but these types of problems in fact are 

a pure math problem in cover of words. Greer (1997) believes that word problems are artificial. 

Verschaffel (2002) states that emphasis on word problem cause to suspend common sense during 

mathematical problem solving.  

Bonotto (2004) in the line with realistic mathematics education, believe that engaging students into 

the contextual activities that related to their own personal life, help them to enhance their conceptual 

knowledge in mathematics and having positive attitude toward math. She mentions two below factors 

that separation between school mathematics and real life facts: Stereotype problems of mathematics 

textbooks and Classroom environment.  

If teachers of mathematics wish to establish situations of realistic mathematical modeling in 

problem-solving activities, Bonotto (2005) proposes below suggestions:  

 The type of activity to which teachers delegate the process of creating interplay between math 

classroom activities and everyday-life experience must be replaced with more realistic and 

less stereotyped problem situations;  

 Teachers must endeavour to change students’ conceptions, beliefs, and attitudes toward 

mathematics;  

 A sustained effort to change classroom culture is needed. 

Bonotto (2001) maintains that children’s understanding of decimal numbers can be fostered by 

classroom activities where learners can transfer their out-of-school knowledge and utilize familiar 

tools, such as the ruler, that they also use in out-of-school contexts. She believes it is possible to 

attempt an innovative teaching trajectory in which decimal numbers are introduced through 

contextualized measuring activities. Indeed, measuring activities requiring vast use of a ruler can 

offer children good opportunities to move toward the construction of a comprehensive understanding 

of decimal number and notation. For example, a study of Astuti (2014) shows that, if students use 

paper strip and calibrate it by themselves, then their understanding about decimal numbers and 

notation will be more developed.  



 

Method 

In this study, a teaching experiment about decimal number will be introduced. Based on the research 

aim, the type of the research is categorized as design research. This research contributes to develop a 

Local Instruction Theory (LIT) to support students develop the understanding of decimal number and 

notation. LIT has cyclic spirit (Gravemeijer, 2004) that in this study is prototyped by a Hypothetical 

Learning Trajectory (HLT) (Simon & Tzur, 2004) which is elaborated and refined when conducting 

the design. The initial step of HLT in this study is developed based on the analysis of key areas of 

decimals from literature review, the analysis of Iran mathematics curriculum, and the analysis of the 

potential use of contexts and model based on the framework of RME. 

Current study is part of larger study that investigates conceptual understanding of fifth grade students 

in several aspects such as constructing a measure, calibration a measure unite, familiarize with 

decimal and notation, comparison of decimal number, density of decimal number, and submission 

and multiplication of decimal number. This study concentrates only on constructing a measure, 

calibration a measure unite, familiarize with decimal and notation. Main purpose of this study was 

familiarizing students with concept of decimal number. In this regard five activities designed which 

related to students real life facts (see figure 1).  

1. Select a measuring unit arbitrary and measure length and width of classroom 

board, approximately. Represent length and width of classroom board with 

mathematical symbol.  

2. How we can get better approximation? Write your proposed method completely, 

then record measured length in a mathematical form.  

3. Select an object that smaller than your measuring unit. How you measure the 

length of this object? Explain your method and write measured length. 

4. In this week a one meter non-graded tape give to each group of students and ask 

them where do you hear about “half” concept? What is the meaning of “half”? 

What is mathematical symbol for that?     

5. Divide non-graded tape in 10 parts. Then try to measure a selective object 

approximately, and then show it with new mathematical symbol (decimal 

number). 

Figure 1: Activities of first week 

These activities implemented in four 80 minutes sessions in two continuous weekends’ day. First 

three activities implemented in session 1 and 2 in the first weekend. Fourth and fifth activities 

implemented in session 3 and 4 in the second weekend. 

This study conducted in a primary school in the beginning of school year (Fall 2014). Participants of 

this study were 27 fifth grade (10-11 years old) female students. These students had no formal 

program in these two days and all of them participate in this extracurricular class voluntarily. All 

students work on activities in group. Each group contains three students. Two types of 

complementary communications occur in this study: group discussion and whole class discussion.   



 

During these teaching experiment sessions, second author and two other math educators record all 

communication of students in group. In the end of each session, students’ group works collected also. 

Below considerations navigate activities designing process, data collection and data analysis.  

 Using of non standard measuring units for measuring objects in the classroom;  

 Measuring with high accuracy;  

 Calibrating a measuring unit; 

 Numerical representation of length of object with using calibrated unit;   

 Importance of decimal division and decimal representation of length of object.  

After each session, video record of session and students’ group works and researchers note analyzed 

and use them for leading teaching experiment in next sessions.  

Results 

Results of first day (Sessions one and two) 

The students used different tools for measuring the length and width of classroom board, such as 

notebook, math book and A4 paper size. As it was asked them to measure the length and width 

approximately, so they write these sizes as follow and in term of a complete unit. In fact, the extra 

parts were neglected. A group of students who chose their notebook size as measuring unit (module) 

had stated that the classroom is 23 and a half notebook size length. Using the term "half" showed that 

they know the decimals informally. 

In the second activity, it was asked them to measure the length more carefully. In all the groups it was 

seen that they divided the measuring unit (module) to small sections. The difference between group 

operations is in the numbers of divisions and choosing denominator. The mathematical symbols 

which were used in this activity are as the length of a natural number plus a fraction or a Mixed 

number.  

To guide students to a more accurate calibration, they were asked to measure the length of an object 

that is smaller than the length of their module and write its mathematical symbol in the third activity. 

In this activity, student should choose smaller objects than unit. They chose the length of pencil lead 

packet, pen, notebook and etc to measure. The students' performance was divided in three 

classifications.  

 Four groups of students neglect the previous division and creating the new one for their 

measuring. They changed the number of their part and explained that the length of chosen 

object is smaller than their unit, so they change the numbers of divisions. Indeed, they divided 

the length of measuring unit into larger equal parts.  

 Three groups of students keeping their previous division. They just divide their previous 

division again.  

 Two groups solve this problem in different way. They divide the unit into the five parts and 

then divide each part into the five parts again.  

 



 

Maryam: we divided our set unit into 2 parts. We divided each into 3 

Researcher: can you represent the length of measurement in math symbols? 

Aida: one second (one a half) and three of this part. 

 (i.e. 1/2 and 2/3of this part).  

Researcher: would you please represent it in math symbols? 

Aida: we should calculate it.  

Maryam: we should add 1/2 and 2/3. 

Marjan: no, it's not the 2/3 of the notebook length. It is 2/3 of one half of its length… It 

means its 5/6. (She shows it on the picture to her partners). 

In fact, this group is faced with a challenge in calculating the length with mathematical symbols. 

They needed to be able to add the fractions in unequal denominator. Dividing the previous parts into 

same part numbers, the operation of one group was different. First, they divided the unit into 5 

divisions and do it again for each part. They stated: 

 ”Although we can re-divide each part into 5 sections and we repeat it again and again for smaller 

parts. But if we want to notate the length, it will be difficult. For example, we have to write one 

fifth plus two twenty fifth plus … so, probably the next denominator is 125. Again 125 times 5 … 

then set the common denominator…”    

The fourth group operation was, writing the numbers in base 5. They stated interestingly that they can 

continue this trend. They expressed that for setting the denominator, it's necessary to multiply the 

denominator to 5, so it was obvious that they found a regular algorithm for approximating the length 

of object.  

In the classroom discussion, which is performed at the end of the first session, students expressed that 

writing the mathematical symbol for the length is very important. They have some problems in 

irregular dividing of parts, so they choose the third method as the best way to calibrate the units of 

measuring.  

Results of second day (Sessions Three and Four) 

In the first activity in the second session, the students were asked to express that where in real life 

have seen the word half and their symbol "half" and its mathematical symbol. Some of the students' 

expressions were as the following ones. 

 We usually say in the grocery store: I need 2.5 kg lentils or in my mother's shopping list it was 

written 1.5 kg beans. 

 The house is 15.5 m length. 

 The jar contains 2.5 litter of water. 

 The volume of the coke bottle was specified 1.5 liters of water. 

 We need 1.5 meters fabrics for making this shirt. 



 

All these written expressions showed that the students have seen and heard of these decimal symbols 

during shopping, in parents' shopping lists, food labels such as cokes etc. and they understand this 

concept. The following classroom discussion was conducted: 

Researcher: what does one half mean? 

Student: it means a half. 

Researcher: what does number 5 mean based on 0.5? 

Fatemeh: half a kilogram means a half of one kilogram, it is 500 grams. Half a meter means a 

half of a meter, so it is 50 centimetres. You can find number 5 in both of them. 

Zahra: in my opinion, one second is equal to one half, so ½=0.5. 

Rezvan: ....so it means that there are many fractions which are equal to 1/2.... For example, 

½=5/10=50/100 ...that all of them are half or a half. 

Maryam: eureka, eureka. 1/2 is one out of two, so 0.5 is 5 out of 10. 

Parisa: that’s right teacher. 0.5 is 5 out of ten. It is the same as 50 out of 100 or 500 out of 

1000. All are the same and mean a half. 

Teacher: could you tell me that what 4 out of 10 looks like? Please, write down your answers 

on the paper (all the students wrote 0.4). 

In this discussion, the teacher tries to help the students using their own knowledge of "half" concept 

in real world to find an equivalent phrase for ½ in mathematical world. Using the concept of one half 

and 1/2 and in regards to their knowledge about equal fractions, they can interpret 0.5 by their own 

and this process shows the horizontal mathematizing. In fact, these students are moving back and 

forward between the real and mathematical worlds for exploring this concept.  

In the second activity in which a one meter ribbon was given to all the groups, all the students divided 

the ribbon into 10 parts. In fact, it was asked them to specify the decimetres on the ribbon and 

measure the object in decimetre or one tenth accurately. In other words, they realize the relationship 

between number 10 in denominator and decimal numbers go out one decimal place. 

According to the class discussion in the previous session, the students divided decimetres into 10 

parts for more accurate measuring and made the centimetres. They made a calibrated ribbon in 

centimetre accuracy. In fact, it was asked them to specify the decimetres on the ribbon and measure 

the object in decimetre or one tenth accurately. In other words, they realize the relationship between 

number 10 in denominator and decimal numbers go out one decimal place (figure 2). 

 

Figure 2: related to measuring the length of objects by calibrated ribbon in decimetre accuracy 



 

When the teacher pointed that the ribbon is one meter length while one of the students said:  

“That’s interesting, we divided the ribbon into 10 parts, and re-divided it into 10 so it means we have 

one meter into 100 divisions. These are centimetres. We knew one meter is 100 centimetres but I 

perceive it now”  

The process of making a calibrated tape measure helps the students to realize the relationship between 

meter, centimetre and decimetre. 

Discussion and conclusion 

In the first session of teaching test, the students are allowed to calibrate a measuring unit freely but 

they had no idea about how to calibrate the unit. In the results of this study, it was seen that they faced 

a challenge with writing the mathematical symbol for the length, in the other words, these challenges 

caused to create a regular algorithm for calibrating the unit of measuring. The results of this study 

showed that choosing a division in base 10 is not natural. In the experience of Astuti (2014), the idea 

of direct division in based 10 was provided by researcher but here it was tried to conduct the students 

to dividing the unit in base 10. 

This study confirmed the Van de Wall (2001) quote as said "students' mind is not like a whiteboard as 

entering the class". As it was mentioned, although the students had not learnt the decimal numbers 

formally and before the research but they used them in their real life frequently or found them on 

some objects covers, their parents' notes and etc. also they had seen the decimal numbers and 

separator mark. As Freudenthal (1991) stated, using students' background experience and 

information could help them in learning decimal notation and its concept. Measuring the length of an 

object for many times and in more accurate ways help them to realize the meaning of the digits after 

the decimal point. In fact, when they divided one meter into 10 sections and re-divided it again and 

again it means that they realize the position and concept of decimal and centesimal scales. One of 

them expressed, for more accurate scales; we can divide the centimetres into 10 and make it smaller 

and smaller. In fact, he noted the millesimal position and could guess the decimal demonstration 

correctly.  

This study represented that if the classroom environment changes and better information in regards to 

the students’ real life experience are provided they can find new unknown mathematical structures by 

discussing and talking to each other and develop their mathematical knowledge.  
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Drawing upon a theoretical framework based on beliefs, learning and teaching of mathematical 

modelling as well mathematical modelling itself, this paper explores mathematics teachers´ beliefs 

about these themes. Based on responses to an online questionnaire, teachers’ beliefs, experiences, 

and mathematical modelling lessons were shared from the teachers’ perspective; several 

similarities with the cyclical process of modelling emerged, as well as sharing a new point of view 

of the aspects that teachers consider as mathematical modelling for example, real-life situations 

and processes behind mathematics problems.   

Keywords: Teacher beliefs, mathematical modelling, mathematical model, learning and teaching 

mathematical modelling. 

Introduction 

Mathematical modelling involves the development of models to explain real-world situations. Such 

models allow for making predictions, explaining phenomena, making decisions, and disseminating 

knowledge (Schichl, 2004). In addition, learning mathematical modelling is a cyclical process in 

which pupils’ study a problem derived from the real world and create a mathematical model to 

explore, predict and explain in order to provide a solution to that problem (Mason & Davis, 1991). 

Mathematical modelling may also be seen as an approach to learning that uses elements of reality to 

create models with mathematics. In this approach, students work together in a cyclical process that 

involves different stages, such as formulating a mathematics problem based on a situation in real 

life, setting up a mathematical model that explains the problem, attempting to find a mathematical 

solution for the problem, explaining the model and interpreting the solution, and comparing the 

solution with the original problem in real life (Mason et al., 1991; Blum & Borromeo, 2009; 

Lawson & Marion, 2008). It is important to note that while it is true that the students are engaged in 

the modelling process in a lesson, it is the teachers who initially implement the strategy, for 

example, by choosing the modelling task. 

In this context, previous studies have suggested that, when applying mathematical modelling, 

teachers should consider, for example, ‘teachers have to know ways how to support adequate 

student strategies for solving modelling task’ (Blum et al., 2009, p. 54). Complementary to this idea, 

Tekin Dede and Bukova Güzel (2016, p. 1) suggest that ‘some researchers indicate the teacher are 

not be sure about how they should act in this implementation process. Especially the teacher who 

are novice or have not enough experience in modelling can have difficulties in this process’. 

Considering that the role of the teacher appears to be a crucial part of the development of the cycle 

of mathematical modelling; the question then arises of what beliefs teachers have about 

mathematical modelling that they could share with their students. As Kaiser (2006, p. 399) notes, 

‘teachers and their beliefs concerning mathematics must be regarded as essential reasons for the low 

realization of applications and modelling in mathematics teaching’. 



Bearing these factors in mind, this study seeks to examine mathematics teachers’ beliefs about 

mathematical modelling through an online questionnaire about teachers’ backgrounds as well as 

their opinions about mathematics classes, mathematics models, and modelling. This study is the 

first part of an ongoing process of a doctoral research project; the aim of this paper is thus to 

examine teachers’ beliefs and practices related to mathematical modelling in order to discuss future 

implications when conducting mathematical modelling.  

Theoretical framework 

Thompson (1992) discussed the idea that teacher beliefs about the nature of mathematics should be 

considered – for example, concepts, meanings, and rules, among others – as well as teachers’ beliefs 

about teaching and learning mathematics. In addition, as Stipek, Givvin, Salmon, and MacGyvers 

noted in their study on evaluating teacher beliefs, we should consider (2001, p. 213):  

(1) the nature of mathematics (i.e., procedures to solve problems versus a tool for thought), (2) 

mathematics learning (i.e., focusing on getting correct solutions versus understanding mathematical 

concepts), (3) who should control students’ mathematical activity, (4) the nature of mathematical 

ability (i.e., fixed versus malleable), and (5) the value of extrinsic rewards for getting students to 

engage in mathematics activities.(6) Teachers self-confidence and enjoyment of mathematics and 

mathematics teaching.  

Handal (2003, p. 47) states that teacher beliefs can be related to ‘what mathematics is, how 

mathematics teaching and learning actually occurs, and how mathematics teaching and learning 

should occur ideally’. It would appear that beliefs about mathematics share common themes with 

the field of mathematics itself, as well as with teaching and learning mathematics. Indeed, many 

researchers currently study beliefs about mathematics, practices, and teaching, so it is natural that 

many researchers would study beliefs within specific areas of mathematics (for example, 

mathematical modelling), since mathematical modelling is part of mathematics.  

When examining beliefs about mathematical modelling, we should consider that ‘beliefs in the 

context of mathematics education can be classified as beliefs about mathematics (as a science), 

beliefs about the learning and teaching of mathematics [,] and teacher self-efficacy beliefs’ (Mischo 

& Maaβ, 2013, p. 22). According to those authors, the first aspect – mathematics as a science – 

refers to the formal aspect of mathematics as theorems, rules, problem-solving, and applications as 

subjects to be learnt. In this context, mathematical modelling is part of this frame, since it is a 

process that involves a task that takes elements from reality to be explained mathematically. The 

second aspect – learning and teaching mathematics – refers to constructivist and socio-constructivist 

views as a way of teaching modelling. Finally, teacher self-efficacy refers to teachers’ beliefs that 

should be carried out and activities that should be implemented in order to reach the teacher’s goals 

within a lesson.  

Ärlebäck J. (2009, p.2100) posits that in order to understand the beliefs from teachers about 

mathematical modelling and models it is necessary to take account of ‘beliefs about the nature of 

mathematics, real world (reality), problem solving, school of mathematics and beliefs about 

applying, and applications of, mathematics’.  

Previous studies from the literature review, however, do not seem to have taken into account the 

‘perceptions and beliefs about mathematics [that] originate from past experiences’ (Mutodi & 



Ngirande, 2014, p. 432); perhaps these studies would have had more to offer if they had included 

relations with past experiences, because if teachers have a history with mathematics (in particular 

mathematical modelling, because it is part of mathematics), then their beliefs about the field can be 

related to the background and experiences they have lived: for example, when they teach or learn 

mathematics. 

According to the literature, we may observe that teachers’ mathematics beliefs may be classified 

into different topics; these topics stem from the experiences that teachers have had with 

mathematics, either through teaching or learning or when they themselves have studied the subject. 

In this study, considering the idea that mathematical modelling is part of mathematics, teachers’ 

beliefs about mathematical modelling will be classified into three dimensions on the basis of the 

literature review: (1) mathematics in itself, in particular considering mathematical models and 

modelling; (2) beliefs about learning and teaching mathematics modelling, considering students, 

behaviours, lesson planning, and task design; and (3) real-life experience with mathematical 

modelling, which means that the history described by each participant will be taken into account in 

relation with mathematical modelling and models, since our beliefs about mathematics stem from 

our past experiences. It is important to note that this third dimension cannot be separated from the 

first two, because the experience gained from any context will be enriched by the mathematics itself 

as well as by the experiences of teaching and learning mathematics.  

Methods  

The aim of this study was to explore teachers’ beliefs about mathematical modelling, therefore an 

exploratory research was adequate because this attempts to ‘seek new insights’ (Robson, 2002, 

p.59) on teaching mathematical modelling in light of my considerations in the introduction, 

consequently gaining familiarity with the beliefs of mathematics teachers. 

Bearing in mind that beliefs are related with mathematics on different dimensions, the selection of 

the participant was through an activity that is related to mathematics, such as teaching mathematics, 

conducting research in mathematics education, or studying mathematics itself. Consequently, three 

of the participants were Chileans who worked at a university in Chile in the mathematics faculty 

where they are training future mathematics teachers; six of the participants were from the United 

States, where they worked at high-need schools1. The richness of these participants, helps me to 

have an international overview of the beliefs in this area.  

In order to research the beliefs of mathematics modelling, an online questionnaire was designed, 

comprising ten structured and open-ended questions based on the literature review about 

mathematical modelling with a focus on the teachers’ relationships with the field of mathematics 

education, mathematical modelling and models. In addition, there are similarities between online 

questionnaires and structured interviews, in that the researcher has the same direct pre-established 

questions for each participant without giving interruptions among questions. Those similarities, 

                                                 

1  ‘The school is located in an area in which the percentage of students from families with incomes below the poverty line is 30 percent or more; or in 

an area with a high percentage of out-of-field teachers; is in an area in which there is a high teacher turnover rate; or is in an area in which there is a 

high percentage of teachers who are not certified or licensed; is within the top quartile of elementary schools and secondary schools statewide, as 

ranked by the number of unfilled, available teacher positions at the schools’ (No Child Left Behind Act of 2001, 2002, p.115, STAT.1656). 



made me consider and exploring the online questionnaire as a way to approach at teacher beliefs. 

Furthermore, taking into account the limitations of distances between countries and accessibility, 

the online questionnaire was adequate.  

The online questionnaires were distributed between December 2015 and January 2016. The answers 

were transcribed and analysed based on categories described above; the way that I used to analyse 

the answers was considering all of them, highlighting common factors that emerged and after that 

observing how these related to the theoretical framework described previously.   It would have been 

preferable to include the questions, but this was not possible due to space limitations. 

Because this is an initial study on mathematics teachers’ beliefs about mathematical modelling, it is 

impossible to generalise from this point of view, but the study can present an opportunity to explore 

what occurs in beliefs of teachers about this subject on persons related with mathematics but not 

necessarily those currently working with mathematical modelling and thus provide insights within 

this large and expanding field, for example, when an implementation is carried out by teachers.  

Results 

A few representative teacher examples are provided below to illustrate their responses; the 

responses were transcribed whole, to prevent loss of fluency. In the transcripts, certain parts of the 

texts have been put in italics font below for emphasis, showing the common factor highlighted on 

the analysis process. In addition, ‘TUS’ refers to teachers from the United States, while ‘TC’ refers 

to teachers from Chile. The number next to the initials indicates the person who has answered the 

question. 

Mathematical modelling 

Real-life situations and processes behind mathematics problems  

According to teachers’ responses about mathematical modelling, for example, what comes to mind 

when you think of mathematical modelling, teachers’ beliefs may be categorised in two ways: (1) 

real-life situations or real-life problems and (2) the process involved in solving mathematics 

problems. Both considerations also take mathematics itself into account: more specifically, the real 

world and the application of mathematics, as Ärlebäck (2009) has noted. 

TC1:                Real situations, math representation, solving, and interpretation. 

TC8:            It came to my mind to think of applied math, i.e., to relate math with nature or a 

daily situation. 

TUS2:           I explain to the students that we use mathematics to model situations in real life to 

be able to understand them better and, if possible, to find a solution to the 

situation … I think of it as visuals that will simplify the situation I am reading. I 

think of equations or systems of linear equations that will allow me to find 

solutions. 

TUS4:          I think mathematical modelling means showing the students the thought process 

that is involved in solving a math problem. It’s the problem-solving techniques in 

regard to a given (abstract or real-world) math situation – explaining which 



method, formula, etc., is going to work and why. That’s what I think mathematical 

modelling is. 

TUS5:          The teacher needs to model the way a problem should be processed and thought 

through in order to come up with a valid solution. 

As the reader may have noted, there is a link between the beliefs about mathematical modelling and 

the ‘real situation’ which can be interpreted, for example, with real life and is related to the 

modelling cycle mentioned previously. However, there is also a distinction between these beliefs 

because to others ‘modelling’ means modelling through a ‘step by step’ approach showing the 

process behind a mathematics problem.  

Mathematical models  

In response to the question ‘what do you think about mathematical models?’, some of the teacher 

beliefs about modelling are related with the use of models within mathematics; in some of the 

teachers’ responses, the teachers’ beliefs were related to the nature of mathematics itself (Ärlebäck, 

2009; Thompson, 1992; Handal, 2003; Stipek et al., 2001; Mischo & Maaβ, 2013) as well as with 

mathematics learning (Handal, 2003; Stipek et al., 2001; Mischo & Maaβ, 2013). In accordance 

with Mutodi and Ngirande’s work (2014) about experience and beliefs, some of the teachers 

mentioned their past experience with models, when they were responding to ‘what is your opinion 

about the statement: ‘Modelling is everywhere’’ (Mason & Davis, 1991, p. 9). 

TUS7: Taking real-world data and using graphing tools and computers to assist in 

obtaining models. 

TUS6:          I think a mathematical model is a key factor in describing measurement that is 

located in space. [Models are] essential for describing the composition of matter 

in our universe. 

TUS2:            During college, we used mathematical models in calculus and geometry as well as 

numerical calculus and number theory … I agree with ‘modelling is everywhere’. 

I believe some of the models are more elaborate than others, but in general, I can 

see everything being a model of concepts, including numbers and graphs. 

TC9:               Visuals are necessary; hands-on [teaching] is almost vital for understanding. 

From the transcript, it is possible to infer that the teachers viewed mathematical models as ways to 

understand mathematics with a factor of utility of model, using words such as assist, essential or 

necessary. 

 

Learning and teaching mathematical modelling 

Experience with mathematical modelling 

In terms of experience in modelling, some of the teachers mentioned that they had studied 

modelling at their universities (i.e., dynamic systems and geometry, among others); they also 

discussed their experience in teaching (or not having experience in mathematical modelling). This 

situation relates to what Mutodi and Ngirande (2014) discuss in their work: our beliefs about 



mathematics come from our experience with mathematics. In addition, some of the teachers 

recognized that they had limited experience with mathematical modelling, or they lacked the time to 

do it; one of the teachers, however, also mentioned her intention to learn more about modelling. 

These ideas could help to explain why teachers are often unsure of how to act when they work with 

mathematical modelling, which results in necessary (and time-consuming) planning during the 

implementation stage, as mentioned by Tekin Dede and Bukova Güzel (see the introduction to the 

current paper). 

TUS2: As a school teacher, I would love to be able to have the time to read and 

understand more about mathematical modelling.  

TUS3:             I have not spent nearly enough time doing mathematical modelling. 

TC8: My experience with mathematical modelling is with dynamical systems. In this 

area, you can find many examples of different situations where modelling is 

present. In the classroom, you can use simple examples and particular cases of this 

area to show the students. 

Mathematical modelling class 

After the question, ‘how do you imagine a mathematical modelling class?’, several teacher beliefs 

have presented several similarities when using elements from reality yet only one teacher mentioned 

focussing on models, as has been mentioned by several authors in this paper (Mason & Davis, 1991; 

Blum, 2009; Lawson & Marion, 2008); In addition, teachers’ beliefs as to how mathematics 

teaching and learning can occur as Handal (2003) described previously were present.  For example, 

some of the teachers’ responses in the present study suggested that mathematical modelling lessons 

could be very creative, active, and didactic, where the students could take part in the learning 

process. 

TUS2: I imagine [that mathematical modelling class] focusses on models more than a 

specific area of mathematics. 

TUS6:           Let’s take, for example, the concept of geometry. The setting within a classroom 

could be used as mathematical modelling. Without going outside the four walls 

[of a classroom], one could introduce to students the concept of angles, lines, 

planes, perpendicular and parallel lines, congruent angles and similar figures, and 

so on … I think of [mathematical modelling class] as very creative; it is an 

atmosphere where students are launched into using their minds so that they will 

become creative, inquisitive, and analytical… Mathematical modelling is one of 

the most intriguing, creative, and thought-provoking subjects that one can teach. 

It blends into other subjects, such as art, physics, and chemistry.  

TC8: I imagine a mathematical modelling class as being very active and didactic – 

students working in groups and discussing the problem that has been assigned. 

Discussion 

Through this study, we can observe that the beliefs are quite similar in both countries. Teachers link 

mathematical modelling with situations to be modelled; this situation stems from real-life 



experiences. This belief shows a similarity with mathematical modelling as a subject that can 

involve the development of models to explain real-world situations (Schichl, 2004). One teacher, 

however, said that mathematical modelling was how ‘a problem should be processed’; in this case, 

the teacher’s beliefs were not related to real-life situations but to the process involved in solving 

mathematics problems. Perhaps this particular belief about mathematical modelling could be 

understood in light of some of the teachers’ limited experience with mathematical modelling or, as 

Tekin Dede and Bukova Güzel (2016) have stated, because the teachers were unsure how to act 

when working in a class that involves mathematical modelling. 

On the other hand, teachers’ beliefs about mathematics modelling classes in general showed that 

they felt that classes could be very creative, intriguing, and thought provoking; as one teacher said, 

they could be taught with the participation of the students. One teacher did recognise, however, that 

it can be difficult to break down some students’ beliefs. Even so, other teachers stated their intention 

to learn more about mathematical modelling.  

In terms of mathematical models, sometimes teacher’s beliefs referred to the utility of using a model 

as a way to demonstrate mathematics concepts. In this sense, mathematical model beliefs are related 

to the nature of mathematics (Mischo & Maaβ, 2013; Stipek et al., 2001; Thompson, 1992; Handal, 

2003; Ärlebäck, 2009) as well as with the experiences that they have had in the past (Mutodi & 

Ngirande, 2014). Then the questions that naturally arise include, In which ways can the utility 

beliefs of a model influence the implementation of mathematical modelling? What kind of decision 

does the teacher take during an implementation? What types of feedback can the teacher give to the 

students?  

Finally, through this particular study and in consideration of teachers’ beliefs about mathematical 

modelling, more questions and insights have emerged; for example, how to lead an implementation 

of the mathematical modelling cycle that would bear teachers’ beliefs in mind, and how can the 

usefulness and reliability of online questionnaires be linked to carry out an exploratory study on 

beliefs.  
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In this paper we present a methodology to design didactical activities for training engineers. One 

phase of this methodology is selecting an extra-mathematical context, allowing identification and 

analysis of mathematical models used by engineers. We selected an industry beer context and we 

identified the Pareto chart as a tool to solve different problems, for example faults in production 

lines. This work uses elements from Anthropological Theory of Didactics. We present a 

praxeological analysis as basis of didactical activities. 
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Introduction 

Over the past 30 years, mathematical modelling and applications have been a subject of study and 

development in the field of Educational Mathematics, as in the ICMI 14 study, edited by Blum, 

Galbraith, Henn and Niss (2007). Mathematical modelling and applications are activities in which 

math is used to solve problems in various contexts (math, engineering, economy, medicine, etc.). 

They are based on developing competencies associated with the application of mathematics and 

constructing mathematical models in extra-mathematical contexts (Niss, Werner and Galbraith, 

2007). However, mathematical modelling and applications are not widely used in primary and 

secondary education, which give more importance to concepts and procedures. At the university 

level, modelling has emerged as a new educational paradigm (Bissell & Dillon, 2000). In the future, 

teaching professionals will be required not only to create but also adapt mathematical models to 

solve practical problems (Bissell & Dillon, 2000) related to interpreting solutions proposed by other 

professionals and to employ technology to perform mathematical tasks. This demands teaching 

math in such a way that it includes the use, adaptation, handling, and interpretation of mathematical 

models in order to adequately deal with tasks in extra-mathematical contexts. One of perspectives 

that comes closest to this demand is known as the realistic perspective, which is described in the 

proceedings of the Topic Study Group 21 (TSG21) of the 11th International Congress on 

Mathematical Education in 2008, as follows: “In this perspective, mathematical modelling is viewed 

as applied problem solving and a strong emphasis is put on the real life situation to be modelled and 

on the interdisciplinary approaches” (Blomhoj & Carreira, 2009). In this work, we consider the 

work of Kadijevich (2009), which illustrates this perspective, is a very interesting approach to the 

mathematical modelling due to the type of problems chosen to address it and to the use of 

information technology that is proposed. However, we believe that is not clear, from a theoretical 

point of view: how do you choose the actual context? How is a modelling activity generated in the 

context chosen? How is analyzed their relevance to the classroom? In general, it seems that the 

question of choosing the extra- mathematical context in order to propose the modelling activity has 

been theoretically little worked, it appears as a little cloudy element, leaving the emphasis on the 

characteristics of didactic activities (Galbraith & Stillman 2006) and on the modelling cycles that 



allow to describe and analyse it (Blum & Borromeo Ferri, 2009). In an effort to attend to this lack of 

theoretical framing of the choice of additional mathematical context for the design of didactic 

activities, we have proposed a methodology based on the extended praxeological model (Castela & 

Romo, 2011) for designing didactic activities based on modelling that incorporate elements of the 

use of models in real contexts.  

Elements of the Anthropological Theory of Didactic 

Since the extended praxeological model (Castela & Romo, 2011) is based on the Anthropological 

Theory of Didactics (ATD), we present in this section some of its elements. The ATD is an 

epistemological model that allows the study of human activity in its institutional dimension. An 

institution is a stable social organization that defines the human activities generating resources that 

make them possible. These materials or intellectual resources, which are made available to the 

subjects, have been produced by communities along the confrontation of problematic situations with 

the objective of solve them in a regularly and effectively way (Castela & Romo, 2011). The classic 

praxeological model, proposed by Chevallard (1999), recognizes the praxeology [T, τ, θ, Θ] as a 

minimal unit of analysis of human activity. Its four components are: the task type (T), the technique 

(τ), the technology (θ); and the theory (Θ). The ‘task’ refers to what is to be done; the ‘technique’ is 

how it is to be done; the ‘technology’ is a discourse that produces, justifies and explains the 

‘technique’; while the ‘theory’ produces, justifies and explains the ‘technology’. Mathematical 

praxeologies or mathematical organizations can be of different level and they serve to a hierarchy of 

levels of determination proposed by (Chevallard, 2002). Mathematical institution imposes a model 

of subjection to the mathematical praxologies: it rests on a structure that organizes praxeologies in 

different interlocked levels that are in increasing order of size as follows: specific, local, regional 

and global. The most basic level of a mathematical organization is the punctual [T, τ, θ, Θ] and it 

has only one technique for performing such tasks. The next level is the local, which groups all 

punctual mathematical organizations associated with the same θ technology. The regional level 

regroups all punctual organizations associated with same theory Θ, global or domain regroups 

certain regional mathematical organizations; discipline is the top level and combines all domains.  

Codetermination of the mathematical and didactic 

Chevallard (2002) develops the model presented below, in order to take into account the subjections 

that weigh on the didactic organization of the study of praxeologies. In this work, the author notes 

that didactic organizations cannot be developed if they are found far from higher levels, domain and 

discipline; reciprocally these levels cannot be imposed without considering the conditions of the 

educational institution. In that sense yields a co-determination of mathematical and didactic 

organizations. 

[…] each level imposes, at a given moment during life of educational system a set of 

constraints and support points:  ecology that results is determined both by what restrictions 

prohibit or drive, and the exploitation that actors make to the support points that different 

levels offers. (Chevallard, 2002, p.49) 

As you can see the fact that Chevallard be interested in teaching leads to extend the range of levels. 

He introduces three higher levels: society, school and pedagogy, noting that levels of domain and 

discipline are also subject to restrictions imposed by these three levels that complement the scale 



upward: Society → School → Pedagogy → Discipline → Domain →Sector → Local → Specific. 

This hierarchy makes us consider that the study of mathematical praxeology or modelling 

praxeology in an institution that is subject to various restrictions imposed by institutions of higher 

levels.  

Moments of the study 

In the frame of ATD, the study is seen as the construction or reconstruction of elements of a 

mathematical praxeology, in order to perform a troublesome task (a task type for which a 

mathematical praxeology does not exist or is not available). In order to finely describe this process 

of construction or reconstruction, the ATD proposes a model of study of a punctual mathematical 

praxeology. This model distinguishes six moments, which are also associated with groups of 

activities. A moment is a dimension of the activity, a phase in the process of study, which may 

appear several times but following an internal global dynamics. Chevallard (2002) presents the 

model as follows: 

Group I (Study and Research Activities [SRA]) 

1. Moment of the (first) meeting with T;  

2. Moment of the exploration of T and technical emergency τ; 

3. Moment of construction of the technological-theoretical block.  

Group II (Synthesis) 

4. Moment of institutionalization. 

Group III (Exercises and problems) 

5. Moment of work of the mathematical organization (specifically of the technique). 

Group IV (Controls) 

6. Moment of the evaluation. 

These moments are not detailed in this paper, but they are presented with the aim of showing how 

the ATD in the process of construction and reconstruction of a praxeology is conceived.  

In particular, we are interested in considering group I and generating an SRA: a didactic device for 

students to construct, in this case, a modeling praxeology involving the Pareto Diagram. One of our 

questions is, what legitimizes the chosen mathematical modeling praxeology? Why is it important 

for students to build this praxeology? And in particular, future engineers. For us it is important that 

the mathematical modeling of the classroom is related to the mathematical modeling of its 

professional practice, which is seen as a relationship between institutions as shown below. 

Training in mathematics and the professional world seen as institutions 

In the framework of the ATD, analysis of mathematical activity is considered in its institutional 

dimension. Given that our proposal is to generate a methodology for designing activities based on 

mathematical modelling that links mathematical knowledge teach at the training institution and the 

one used in the professional field, we must identify institutions that are adequate to participate in 

this process, and their interrelations. Romo-Vázquez (2009) argued that training engineers involves 

three types of institutions: Production (P), where praxeologies are produced, Teaching (E) 

responsible for transmitting the praxeologies. Use or users Ip, where the praxeologies are employed. 

By producing institutions we refer to mathematics P(M) seen as a discipline, together with its 



intermediate disciplines P(DI), which we will also call Engineering Sciences (e.g. signal processing, 

control theory, electrical circuits, etc.). Teaching institutions are represented by mathematics E(M), 

and the intermediate disciplines E(DI); while the practical institution is Ip. The latter is examined at 

two levels: the professional practice of engineers, and the devices that, upon approaching practice, 

are developed in schools; for example, a project to innovate a product or service. Also taken into 

account were three inter-institutional tours that can be followed by a mathematical praxeology by 

going from P(M) to Ip. These can be represented schematically as follows (Figure 2):  

 

Figure 1: Institutional tours of a mathematical praxeology to go from P(M) to Ip 

The transpositive effects (changes that occur upon moving from one institution to another) can be so 

large that a mathematical praxeology in Ip may not be recognized as mathematical. Research by 

Hoyles, Noss and Pozzi (2000) shows that some professionals utilize techniques and strategies in 

their practice that are based on mathematical models, but that when automated are no longer 

recognized as such. This begs the question: what sorts of didactic activities can be generated so that 

the mathematical models used in Ip practice or E(DI) find a place in methods of teaching 

mathematics E(M) (see Figure 2)? To answer these questions we propose the following 

methodology. 

 

Figure 2: News institutional relations between Ip- E(M) and E(DI)-E(M) 

Methodology for designing didactic activities (SRA) based on mathematical 

modelling 

This methodology for designing didactic activities based on mathematical modelling emerged from 

research by Macias (2012). Here, modelling activities are seen as praxeologies (mathematical and/or 

modelling) to be performed in E(M), but in relation to praxeologies of E(DI) and/or Ip. It consists of 

four phases: 1) Selecting an extra-mathematical context, 2) Praxeological analysis and identification 

of a mathematical model. 3) Analysis of the mathematical model identified and its relation to E(M) 

and 4) Design of the didactic activity (SRA) for E(M).  

1) Selecting an extra-mathematical context. First, we must consider the educational level at which 

teaching will take place, then the contexts where the mathematical applications will be put to use. 

For example, if we consider teaching programs for engineers, the natural contexts of use are 

specialty training E(DI) and professional practice Ip. After that, one must identify some of the 

elements (resistance of materials, control theory, data structure, among others) that are of macro 

scale and may include various sub-institutions for the analysis of the modelling activity that occurs 

there. Selecting this context must be based on an approach to the institution or sub-institution 



through interviews with one or more of the subjects involved (e.g. professors, expert users, 

researchers), a review of relevant documentation (suggested by the aforementioned subjects, and/or 

one’s own search), and visits aimed at identifying the type of mathematical and modelling activity 

that is used. Specifically, it is important to analyse whether the mathematical models identified as 

being in use correspond to those that are actually taught E(M); examples could include functions, 

vectors, matrixes, mathematical optimization, or differential equations, among others. In this way, 

one can determine whether the context chosen provides a suitable analytical basis for designing the 

didactic activity.  

2) Praxeological analysis and identification of a mathematical model. In this phase 

mathematical modelling activity is analysed through praxeologies. Modelling activities in an extra-

mathematical context may consist of mathematical praxeologies and/or mixed praxeologies.  

3) Analysis of the mathematical model identified and its relation to E(M). A mathematical 

model that is in use but that is also taught in E(M) is identified and then analysed through the 

functions of the technology practice; i.e., describe, validate, explain, facilitate, motivate and 

evaluate. Describing the model in use allows us to elucidate the reasons relative to context on the 

basis of which that particular model was chosen to resolve tasks in the extra-mathematical context. 

Identifying the elements that validate the use of the model, and under what conditions, makes it 

possible to understand what contextual elements must be considered in designing didactic activities. 

For example, many mathematical models are used in “ideal” conditions such that they make it 

possible to resolve certain tasks more easily, though the solutions obtained will later need to be 

adapted to reality. This adaptation is conducted on the basis of certain elements that validate it. 

Recognizing the explanations of use allows us to understand what each element of the model 

represents and to what degree the model used allows us to model the context (or part of it). 

Analyzing the elements that facilitate the use of the model reveals the process of mathematical 

modelling, which entails not only assuring that the mathematical model chosen will make it possible 

to resolve a problem in an extra-mathematical context but also that the resolution reached will be 

the least complex one. Identifying precisely what it is that motivates the use of the chosen model is 

a medullar phase in designing didactic activities, but this analysis of use must be complemented by 

a didactic analysis of the model in the context in which it is taught. 

4) Designing didactic activities (SRA). Designing a didactic activity must be based on both the 

praxeological analysis of use (praxeologies present in an Iu) and the mathematical model identified; 

i.e., one must recognize the praxeologies of both use and teaching in order to perceive the relations 

between them. One must choose the types of tasks that, because they emerge from use, can be 

adapted for a type of school task; for example, studying the behavior of a continuous signal, 

determining the total cost of an inventory, or calculating the inverse of a mixed matrix, etc. These 

types of tasks require mathematical techniques that may be school-related (being part of curriculum) 

but are also used in the professional field, so mathematical and non-mathematical technologies will 

have to be built by the students (3rd moment) in order to validate, explain and justify techniques that 

emerges when confronting the problematic tasks. Specifically, technologies of use (part of practical 

praxeologies) must be adapted in such way the students can build them in the first college courses. 

The objective of the didactic activities must be oriented towards the type of praxeologies that figure 



in the activity, whether this be constructing, mobilizing, or searching, for knowledge. It is intended 

that this activity may be an SRA which allows building a praxeology of modelling.  

The context proposed: Pareto chart in beer industry 

To make a praxeological analysis we are chosen a Beer industry that is constituted by ten production 

lines and produce about one million hectoliters of beer per month. Apart from domestic beer this 

industry produce lots of beer for export to countries in all continents. To meet domestic demand and 

shipments abroad, it requires each of the ten production lines, meet high levels of efficiency. 

However, in each production line problems requiring immediate attention in order to achieve the 

planned goals they are presented. Thus various problems for the maintenance of thousands of 

machines, components and parts that make up each of the production lines are also presented. And 

logistics to control the flow of materials required in the production and control of shipments. In 

Tolentino (2015), these questions are studied: What Mathematics used in this industrial 

environment? Are there some common mathematical tools to manage the wide range of problems in 

the brewing? Tolentino, was both a master's student of mathematics education program and he was 

working in the industry as an engineer, he found that a Pareto chart is used to solve problems in the 

industry. This chart is based on the principle that if 20% of the causes of problems is attended a 

solution of 80% is obtained in effect. 

Praxeology faults problems 

Type of task. Identify the most important causes of faults in production lines of an industry.Task. 

To solve faults (time) that arise in different production lines of beer production. Technique. Step 1. 

Data collection. It is recorded in a table stop time of production lines due to operational faults, 

faults in machinery or material defects. Step 2. Is ordered from highest to lowest the time column of 

this table, the percentages of stop time are obtained for each line, in relation to the accumulated 

from 157.62 hours. A column for cumulative percentage is added.  

 

 

 

 

 

 

 

Table 1: Wasting time of production lines 

Step 3. Two graphs are performed in Excel: in the bar graph the columns for each line indicate stop 

time. Graph of the Lorenz curve or cumulative percentage. On the right vertical axis measures the 

time from 0 to 41.02 h. For the Lorenz curve on the right vertical axis the percentage of 0 is 

measured at 100 percent (See figure 3). Step 4. Identify the diagram. Finally add a line from the 80 

percent that intersects the graph of the cumulative percentage, and descends to the x axis, to 

separate lines that are to the left of this line it is the line 2, 8, 12, 6 and 10 (see figure 4). These are 

the lines that generate 80 percent of the total time of overall production stoppages during this time 

period. 

Line Wasting time (h) Percentage Cumulative Percentage 

Line 2 41.02 26.02 26.02 

Line 8 25.65 16.27 42.30 

Line 12 24.34 15.44 57.74 

Line 6 14.73 9.35 67.09 

Line 10 14.17 8.99 76.08 

Line 3 13.8 8.76 84.83 

Line 11 11.03 7.00 91.83 

Line 5 8.33 5.28 97.11 

Line 4 4.55 2.89 100.00 

cumulative 157.62   



   

Figure 3: Bars and Lorenz curve  Figure 4: Analysis of the Pareto Diagram 

Step 5. Analyze the Pareto chart. As a result of the above analysis, attention is directed to lines 

that generate 80 percent of stop time, ie lines 2, 8, 12, 6 and 10. Therefore proceeds to Pareto 

analysis of each one of these 5 lines, starting at line 2. Leaving as trivial the 4 lines: 3, 4, 5 and 11. 

That is although the line 11 was stopped 11 hours during this week, is considered out of importance 

according to the analysis Pareto realized. In this case, the Pareto Diagram is used again to analyze 

lines 2, 8, 12 and 6, to make decisions about the elements that must be repaired urgently, in each of 

the lines. The Pareto Diagram is made by engineers and allows them to identify the main causes of 

the problem, however a deeper analysis of the industry is necessary to recognize how the practical 

and theoretical knowledge allows solving the identified causes. This analysis is repeated in the 

brewing industry several times to have elements to act and address problems optimally, using fewer 

resources and obtaining the greatest benefits.  

Conclusion 

We consider that this praxeological analysis (phase 2 of methodology), briefest presented, allow us 

to see the importance of Pareto chart on the beer industry. To design the SRA, it is necessary to 

analyze university courses likely to identify a local Praxeology the Pareto chart. However, analysis 

of the Pareto chart of the beer industry gives elements for SRA: from data of different problems ask 

propose a model that allows the company to identify the major causes of the problems. Considering 

the problem of faults, you can ask students a model to identify the line that causes the greatest 

wasting time or the lines that cause 50% of the strikes, then 75% and then 80%. The interesting 

thing about this proposal may lie not only that students can work with data from businesses, but they 

reach handle the Pareto Principle, the 80-20 ratio. The Pareto Diagram also involves mathematical 

elements that support them as the Lorenz Curve, which has hardly been mentioned here. In 

Tolentino (2015) the mathematical analysis of the origin and evolution of the Pareto Diagram is 

presented and this must also be considered in the design of the SRA, involving three institutions 

P(M), E(M) and Ip. 
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This paper focuses on analyzing the potentialities of using a codisciplinary inquiry context to 

enhance the appearance of mathematical modelling in teaching and learning practices. We focus on 

an archaeological context where modelling becomes an essential tool to enquire into and progress 

on the study of questions emerged from the interplay between two main disciplines: Mathematics 

and History. We present the design, implementation and analysis of a teaching sequence based 

upon the ruins of a Roman theatre discovered in Badalona (Catalonia) to promote inquiry and 

modelling students’ competences. The sequence was implemented in 2015 with 12 and 14-year-old 

students. The central question introduced (what kind of building could have been the discovered 

ruins) involved students in a reflective inquiry process that facilitate them to progress on modelling, 

at the time modelling facilitate that the inquiry process could follow. 

Keywords: Inquiry competence, mathematical modelling, co-disciplinary context, geometrical 

model, task design. 

Introduction 

The main aims of our research are to (1) design codisciplinary teaching sequences to promote 

inquiry students’ competence, (2) implement them and (3) analyze their affordances to enhance 

inquiry and modelling students’ competences. In particular, this paper focuses on the design, 

implementation and analysis of a teaching sequence based upon an archaeological context—the 

ruins of a Roman theatre discovered in Badalona (Catalonia, Spain) and how modelling became an 

essential tool to enquire into several questions that emerged from this extra-mathematical context, 

in order to progressively build up the necessary subject knowledge to provide and validate answers. 

As aforementioned, the sequence started with an initial situation that leads to the formulation of the 

specific initial question and became the core of the students’ research. The starting situation which 

is presented to students is the discovery of some Roman ruins in a Badalona’s suburb by the 

archaeologists’ team of the city Museum. The archaeological report that is provided explained that 

these ruins could belong to an ancient Roman building, but what kind of building could it have 

been? Could be a theatre? A circus? An amphitheatre? In order to face these questions, it is 

essential to make students unfold their inquiry and modelling competences and help teachers to 

guide student’s reflections and to organize inquiry activities so that (mathematical and historical) 

knowledge could emerge and be used.  

In the research we present, the codisciplinary context here considered for the design of the sequence 

—an archaeological context adapted from a real research— presents several advantages, which will 

be further developed in the following sections. On the one hand, requires that Mathematics and 

History work together to face most of the questions that appear in the teaching and learning 



 

 

sequence. This no so common complementarity between both disciplines allows us to provide 

authenticity (Vos, 2011) to the questions faced and to promote the blend of inquiry and modelling 

in different steps of the study, as also some previous investigations have shown (Sala, Giménez & 

Font, 2013; Sala,  Barquero, Font & Giménez, 2015). On the other hand, this codisciplinary context 

is enough close to students (as it is located in the same city that the school is) that facilitates that 

students can have access to the real ruins and to experts’ answers about their real investigations, 

providing legitimacy to their inquiry process and responses. After describing the main theoretical 

frameworks upon which the design of the teaching sequence was proposed and analysed, we present 

the main research questions about how the use of codisciplinary inquiry contexts can help to break 

disciplinary boundaries (in particular between Mathematics and History) and about how their 

interaction leads to a rich complementarity between inquiry and modelling.  

Theoretical framework and research questions 

The research we present in this paper considers different theoretical aspects. First, it is assumed the 

notion of basic competence considered in Catalan curriculum. More concretely, we are interested in 

the notion of inquiry competence that, following Sala (2016) and framed according to the Catalan 

curricula of Primary and Secondary school education, it is defined as:  

The ability to mobilise the suitable knowledge and the appropriate resources that facilitate the 

development and application of a logical and critical methods —under the teachers’ guidance— 

in order to look for and find answers to problematic questions or situations in some school  

and/or out-school context. (Op. Cit. 2016, p. 64) 

In the same line than Artigue & Blomhoj (2013) underlines, an important step in legitimising 

inquiry-based approaches was the publication of the National Science Education Standards (NSES; 

NRC, 1996), which called for students to do and know about scientific inquiry, and that teachers 

should foster the development of inquiry skills. When the inquiry-based approaches migrate 

towards mathematics, it seems important to consider approaches paying attention to establishing 

connections among mathematical and extra-mathematical world, such as modelling approaches. In 

this sense, some of the inquiry requirements (such as making observations, posing questions, 

examining sources of information, identification of assumptions, considering alternative 

explanations; NRC 1996, p.23) are closely related to some essential steps of the cycling process 

through which mathematical modelling is developed. So that, sometimes, it is difficult to find the 

differences between both processes (see for instance, the modelling and inquiry cycles presented in 

Blomhoj, 2004) and the linked competences. In particular, as pointed in Niss, Blum & Galbraith. 

(2007, pp.3-8), modelling constitutes a competence in its own right, which needs to be developed 

through appropriate modelling activities. From our viewpoint, to promote inquiry mathematical 

modelling should be placed at the core of the mathematical (and scientific) teaching and learning 

practices to ensure the right and rich development of important enquire abilities. Also, in the other 

way round, to promote and ensure mathematical modelling practices, inquiry should nourish some 

essential steps that may make modelling successfully progress. 

Second, we considered different theoretical elements to ensure that the sequence design could offer 

a rich and functional teaching and learning of mathematics. With this aim, the mathematical and 



 

 

didactic design quality is justified based on the three criteria of didactic ‘suitability’ —emotional 

suitability, ecological suitability and epistemic suitability— proposed by the onto-semiotic approach 

(Godino, Batanero & Font, 2007). Different aspects of its design considered justify the emotional 

suitability of the teaching sequence: the students could work with real data evidence —data from 

the research report of the discovery of real Roman ruins—; they could interact with the 

archaeologists’ team of the city Museum and could share their results with them, etc. In turn, 

ecological suitability was justified by the curricula of these secondary-school students having a 

competency-based approach. Likewise the implementation allowed students to unleash relevant 

processes of mathematical activity, in particular processes of mathematical modelling that justifies 

the epistemic suitability or mathematical quality.  

Finally, we also use the notion of research and study path (SRP) proposed in the framework of the 

anthropological theory of the didactic (Chevallard, 2015) and their main characteristics to design 

the sequence of tasks to achieve a high epistemic suitability (see also Sala et al., 2015). The SRP 

proposal emphasises the necessary dialectics between ‘research’ or ‘inquiry’ (facing open-

problems, problem posing, making observations, examining different media or source of 

information, etc.) and ‘study’ (attending teachers’ explanations to provide mathematical knowledge, 

building up models, testing the validity of mathematical tools, etc.). As underlined in Barquero, 

Serrano & Serrano (2013), mathematical modelling cannot be considered only as an aspect or 

modality of mathematical activity but has to be placed at the core of it. Modelling is not only as a 

way to make the functionality of mathematics visible, but also as a key tool for the functional 

construction and connection of mathematical and extra-mathematical knowledge. In this sense, 

inquiry and modelling have to be mutually enriched. On the one hand, modelling activity needs 

from more inquiry moments (posing questions, looking for external resources, looking alternative 

proposals, etc.). For instance, in the SRP the role of the questions and of question-posing is 

essential (as the starting point of an SRP with a generating question, powered enough to pose many 

derived questions) so that it is essential to help students develop some reflective inquiry gestures 

such as posing new questions along their particular study or using extra-mathematical context to 

validate mathematical models and make new questions emerge and thereby starting new loops in 

the modelling cycle. And, on the other hand, inquiry needs from modelling processes (when 

mathematical tools and models are build, used analysed, validate, etc.) to make the study progress.  

Research questions 

The aim of our research is to analyse if the implementation of the sequence we had designed, with 

features as the ones detailed above, could promote the inquiry students’ competences and how 

modelling could become an essential tool to enquire into the inquiry questions that were emerging 

in order to provide and to validate answers.. Therefore, our main research questions that we focus 

on are the following: 

Can a teaching sequence based on the study of an archaeological problem in a codisciplinary 

context help students to face an inquiry that needs modelling processes as an instrumental tool to 

find, test and validate answers? Which is the relationship between modelling and inquiry in this 

kind of teaching sequence?  



 

 

Design and implementation of the teaching sequence 

As it has been introduced, the starting situation is based on the discovery of certain Roman ruins, 

some years ago, in the centre of Badalona (a city next to Barcelona, Catalonia) by the 

archaeologists’ team of the Badalona’s Museum. They concluded that these ruins could have been 

an antique public building belonging to the classical Baetulo (the Roman old name of Badalona), 

surely a theatre, and they explained their research in an article (Padrós & Moranta, 2001).  

The sequence was named «What are these ruins hiding? Investigating the Roman ruins of Baetulo» 

and all the sources, devices designed, links recommended and the worksheets that they had to 

follow were available in the blog designed by the authors: http://ruinesdebaetulo.blogspot.com/ 

We implemented the teaching sequence with a group of a 30 students (12-13 year-old) of a 

Secondary school education in Badalona during two weeks of June in 2015. The selection of the 

participants was intentionally chosen due to the facility that the first author of the paper had to the 

school, and the age and syllabus adequacy of the group class. Students worked during all sessions in 

‘inquiry teams’ of three or four members, set up in the first session. They worked as real research 

teams, formulating hypothesis and doing tasks to validate them, discussing the partial results 

obtained during the process, finding points of agreement and writing an inquiry report to gather all 

the ideas, proofs and work done. Each team had on member in charge of explaining and defending 

their temporary report. Moreover, during all the study process, students got an inquiry guide to help 

them to progress in such a new activity.  

From the archaeological reality to the emergence of questions 

The didactic sequence was inspirited in a real archaeological investigation, a situation very close to 

a real extra-mathematical context, which was introduced to the students by the teacher and the first 

researcher paper signatory. The aim of the inquiry proposed to the students it is the same of the 

original aim research: discovering with which kind of building the ruins could be identified. In this 

sense, the context used to design the didactic sequence was an authentic situation (Vos, 2011) 

because the situation introduced to the students is clearly not created for educational purposes even 

though some elements are included for educational purposes.  

Therefore the students had to investigate —from real data, archaeological reports, and canons of 

Roman architects— what type of building the discovered Roman ruins could have been and its 

features. In the first session, they could explore the map of the zone where the ruins were located by 

the link in the blog. They also visited later the place of the discovery accompany by one of the 

archaeologists of the Museum of Badalona and asked questions, took photographs, and 

measurements. The current constructions in this zone, houses and streets, followed a curious curved 

shape—easily perceptible in the map. It indicated, surely, that all these constructions were built on 

top of the ancient structures. 

The role of the context in the students’ process of enquiring 

Students looked up and investigated information about the Roman architecture to find what type of 

buildings had a curved part of their perimeter. They found few buildings that showed this feature at 

least. For instance, theatres were circular, amphitheatres were elliptic or circuses had a part circular 

http://ruinesdebaetulo.blogspot.com/


 

 

and other part quadrangular. This fact generated some other questions that promoted the developing 

of the inquiry process because the students could formulate their first hypothesis about that kind of 

building the ruins could below: Which Roman building (theatre, circus, amphitheatre, etc.) shape 

would concur with the shape of the part of the Roman wall found? What do the geometrical shape 

of the partial Roman wall discovered determine? 

In the first stage of the process, the problematic situation was introduced to the students by the 

History teacher and the first author. Then, first questions emerged and the students started to look 

up information about the public Roman buildings in the links, maps and books. At the end of this 

stage most of the students should have understood the context of problem. So, they could formulate 

their preliminary hypothesis and conjectures about which kind of public building the ruins could 

have been only based on the historical information found. So that, at this stage when they had only 

took into account this historical information, their assumptions included more than one building (all 

the buildings that could have a curved part). Each inquiry team had to write in their report the 

agreed hypotheses they reached. 

Actually, the inquiry was based on a mainly discovery: a part of a Roman curved wall, a metre and 

half high. This partial wall belonged to a building that was the centre of the inquiry. It was the 

external wall of the public building and determining it shape could mean to know which type of 

Roman building it was. The students had to follow their inquiry from the study of this element and 

the context where it was find. The number of types of Roman buildings existing limited the quantity 

of different type of shapes the students had to consider; but other information deduced from de 

context directly as the orography and the dimensions of the place where the ruins were discovered, 

or the dimensions of the curved Roman wall discovered, also limited the options that the students 

could choice in order to formulate their hypothesis about the building the ruins would fit with. In 

this case, the context influence on the inquiry helps students to deal with a problem that would be 

very difficult to resolve from an only mathematical point of view and completely unachievable to 

their level. 

Improving the first hypothesis: Building up models to systematise and mathematize the 

archaeological system  

The second stage started with an important session that had the objective of discovering the 

geometrical shape that the Roman wall described (a circumference, an ellipsis, etc.) and test their 

first hypothesis. From this stage the teachers of Mathematics, Technology and Catalan Literature 

had involved in the sequence management. The results obtained from this central task provided 

enough data that allowed formulate sufficient plausible hypothesis about the type of public building.   

The session in where the problematic situation began to be systematised and mathematized were 

placed on the public square next to the school, and was recorded and afterwards analysed. The 

students work with an exact representation of the part of the roman wall drawing on the ground. 

They could experiment with different ways to proof what was the geometrical shape that fit with the 

Roman wall. After few tasks in which students had to construct and drawing different curves on the 

ground, all the teams could check that the perimeter of the curve Roman wall fits with a 

circumference and so, they could conjecture about the building would have been a theatre. Also, 



 

 

this evidence lead students to think that it was necessary to find the radius of the circumference in 

order to know how large the building was. The students find the radius of the circumference (16 m.) 

with graphical methods, always on the ground of the square. Then they spread out on the square, 

drawing with their bodies the perimeter, to notice the likely real dimensions of the Roman theatre. 

After this session they returned to the classroom and tried to explain the experimentation in their 

reports but it emerge the necessity to get a tool to draw the theatre properly. Moreover, the teacher 

introduced the book by Vitruvius (available in the blog), classical Roman architect who wrote 

several canons that Roman people followed to construct each type of public building. In this stage 

the technology had an essential role in order to allow students drawing their geometrical model of 

the theatre following the Vitruvius’ instructions. The students constructed their model of the theatre 

using the software Geogebra.  

Interpreting and validating mathematical models within the archaeological context 

When each team had their model of the theatre finished could export the file as an image and pasted 

it on the map of the area studied, fitting it properly in the exactly site where the ruins was 

discovered (Figure 1). This task allowed students interpret their model considering the specific 

context and verify if their construction and hypothesis were suitable. 

   

 

 

 

 

 

 

Figure 1. (a) Application the theatre model, which is construct with Geogebra, on the map studied 

from one of the inquiry teams report; (b) Detail enlarged 

To do the tasks in this second stage the students had to deal with information from the Mathematics 

—data related of geometrical shape of the wall, extracted from the activity on the square—and from 

the History —considering the features of the context in where the ruins were discovered—. 

Modelling, in that moment, became an essential tool that facilitated find answers. 

Then, when the students were became competent researchers yet, it started the third stage of the 

sequence. They arrived at that point with an important collection of questions and doubts but in the 

following session they had the opportunity, firstly, to share it with other groups and, thereupon, 

preparing an interview to ask the archaeologist of the Museum. During this interview students could 

contrast and validate their results about the model selected. It was another especial time you could 

notice that in the real world different disciplines interacts in a natural way to find solutions of real 
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problems. After the session outdoors talking to the archaeologist, they could apply their geometrical 

model construct with Geogebra on maps with other ruins of theatres in Europe and thus could check 

how the same model fits there, too. The model also was useful counting how many people would fit 

in the theatre, the last task of this stage. Finally, the students finished writing the final report of their 

inquiry describing their process, the mathematical tools used, the result of verifying their 

hypothesis, new opened questions, etc.  

Conclusions 

We would like to stress the importance that the context and the initial question studied had to 

deeply involved students in the inquiry activity. Moreover, the possibility to work with real data, 

the facilities to get access to the ruins and to other real archaeological investigation facilitated that 

students faced the inquiry questions from a wider approach. What the design and implementation of 

the activity shows is that the context easily offered different kind of information, such as the one 

coming from the history, from orography, from geometrical models used to measure and drew 

plans. It facilitated that students considered all these kind of different nature information and tried 

to systematise it and to work with it in order to provide answers.  

On the one hand, we have shown how the enquiring process carried out in the implementation nests 

a sub-process of modelling that appears as a tool to contemplate information emerged from the 

context that could become mathematized (such as: the measure of the curved wall, of the ratio, of 

the building perimeter or the possible use of the Vitruvius canon) in order to be able to progress in 

looking for specific answers. Thus, at some stages, mathematics appears as an essential modelling 

tool to look into systems, build up mathematical models, simulate and test them.  

More concretely, in the task done on the square next to the school, students wondering how could 

know the geometrical shape of the whole Roman wall from the partial wall in the map. But this is a 

difficult mathematical problem to resolve—to find the geometrical curve from a part of it— because 

there could be a lot of solutions. Besides, the methods to finds these solutions only from the 

mathematical point of view, are totally beyond the powers of secondary school students’.  

On the other hand, the dialogue with History limits the possible answers because the Roman 

buildings only had three relevant shapes: ellipsis (amphitheatre), circle (circus) or semi-circle 

(theatre). Due to the contribution of the historical information the problem became achievable at the 

students’ level of mathematical knowledge and allows the beginning of modelling.  

Last but not least, it was also very important the possibility that students know about the experts’ 

work (the real research of archaeologists) and to realise that the process they follow are quiet 

similar to the process of enquiring and modelling that they were following. It also had an important 

impact on their motivation and on the perception they had about the usefulness of Mathematics and 

of modelling. The interaction with the archaeologists allowed students to validate their whole 

process of enquiring and their results.  
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A profound level of reading comprehension is essential for solving modelling problems, as a 

problem solver has to understand the real-life situation presented in the task in order to construct 

an adequate situation model, real model, and mathematical model. The aim of this paper is to 

present the theoretical grounds and a sample learning environment for fostering reading 

comprehension. In the first part of this article, we summarise research on reading comprehension 

while solving modelling problems, report on research on two strategies (text highlighting and self-

generated drawing) that can help learners comprehend a modelling problem, and describe ways to 

implement both strategies in the classroom. In the second part, we present a learning environment 

that can be implemented to foster reading comprehension in the lower secondary classroom.  

Keywords: Modelling, strategies, reading comprehension.  

Introduction 

Reading comprehension is important for learning in school and for students’ everyday lives. As each 

school subject offers students different kinds of texts, fostering subject-specific reading 

comprehension strategies is necessary for learning and problem solving. In math classes, students 

have to read different kinds of texts such as proofs or word problems. We address word problems, 

which, in order to be solved, require a demanding transition from the real world to mathematics as 

modelling problems (Blum, Galbraith, Henn, & Niss, 2007). To solve a modelling problem, students 

need a profound understanding of the task, as a superficial combination of the numbers given in the 

task is not sufficient for finding a solution to a modelling problem. In this paper, we characterise the 

role of mathematical reading competency for the solution of modelling problems, summarise 

research on two strategies (highlighting and self-generated drawings) that might improve reading 

comprehension, and present a learning environment for fostering these strategies in the classroom. 

Theoretical background for reading comprehension and modelling 

Reading comprehension while solving modelling problems  

Analyses of the cognitive processes that people engage in during mathematical modelling have often 

distinguished the following activities in the solution process: (1) The problem solver constructs a 

situation model on the basis of the information presented in the task and on his or her prior 

knowledge. The situation model reflects the learner’s mental representation of the given situation. A 

profound level of reading comprehension is essential for constructing the situation model if a 

problem is partly or completely represented as text. (2) The situation model is then simplified and 

structured to obtain a real model that contains only the information necessary to solve the task. The 

problem solver needs a deep understanding of the problem to separate relevant from redundant 

information. (3) Mathematising the real model leads to the mathematical model. (4) Working 



mathematically then serves to produce a mathematical result, which is then used to refer back to the 

real situation given in the task by interpreting and validating the real result. In the following, we 

concentrate on understanding and simplifying/structuring, for which reading comprehension is 

critically important.  

Understanding and simplifying/structuring are expected to be essential for solving the entire 

modelling problem. These expectations were supported by the results of the study by Leiss et al. 

(2010). In this study, the strategies that students used in the construction of an adequate situation 

model and real model were found to have a positive influence on their modelling competency. 

Therefore, we conclude that it is important to support learners’ reading comprehension by the use of 

strategies. Two strategies suitable for fostering reading comprehension in modelling problems are 

presented in the following chapter. 

Highlighting and self-generated drawings for reading comprehension 

Highlighting. Highlighting is a cognitive strategy that aims at directing the learner’s attention to the 

specific words or sentences in a text. To highlight important information, the learner has to identify 

and select the relevant information.  

The prompt “Use the highlighting strategy” is not sufficient by itself to support the learner’s reading 

comprehension, as the quality of strategy use has been found to be important for effects on students’ 

performance. The use of highlighting has to be regulated by students in order to be efficient, 

otherwise the learner might highlight too many words in the text or might forget to highlight some 

important information. In a study of college students, Leutner et al. (2007) examined the effects of 

training the highlighting strategy with expository texts. They compared three groups: The first group 

did not receive any training and served as a control group, the second was given a strategy training 

in highlighting, and the third was given a combination of strategy and self-regulation training. The 

findings revealed that the third group outperformed the others in text comprehension. Thus, self-

regulation seems to be an important factor for strengthening the appropriate and purposeful use of 

cognitive strategies such as highlighting. The combination of strategy and self-regulation training 

included the following elements: First, the learning goal was presented. Second, the participants 

observed how a fictive person applied the highlighting strategy. Third, they were given a strategy 

training in which the steps of the highlighting strategy were presented and then applied. Fourth, a 

self-regulation training followed, in which the steps of the highlighting strategy were recalled, and 

then the steps of the metacognitive strategy (monitoring, self-evaluation, and reaction) were 

introduced and applied.  

Highlighting strategies can also be expected to be useful in the domain of mathematical modelling, 

as modelling problems with reference to real life often contain redundant information. In order to 

construct a situation model and a real model, students have to identify relevant information. In an 

exploratory case study by Leiss et al. (2010), some difficulties in the use of the highlighting strategy 

while solving modelling problems were observed. An analysis of students’ solutions showed that 

some students highlighted all numbers written in numeric form given in the task, including numbers 

that were not needed to solve the modelling problem. Further, some students did not highlight 

numbers written in word form, even when these numbers were essential for the solution. These 



observations demonstrate the limited quality of the highlighting strategy by students and emphasise 

the importance of improving the quality of the use of this strategy.  

Self-generated drawings. Another important cognitive strategy that can be applied to support a 

learner’s reading comprehension and problem solving is the creation of self-generated drawings. 

Whereas highlighting is aimed at selecting the most important information, drawings are aimed at 

organising and visually representing information given in the text.  

A study by Leopold and Leutner (2012) revealed the advantages of drawing activities for the 

comprehension of science texts. Students in grade 10 were instructed to read text paragraphs and 

then make a drawing that represented the main ideas of the paragraphs. To train the students to use 

the strategy, they worked on an example that demonstrated how to process the text with a related 

drawing. The results showed positive effects of the drawing instructions on students’ science text 

comprehension. Drawing activities encourage students to construct a mental model and seem to 

offer a useful strategy for facilitating students’ deeper understanding. In the domain of mathematics, 

positive effects of drawing activities were found on 3rd-grade students’ word problem solutions 

(Csíkos, Szitányi, & Kelemen, 2012). 

Drawing activities might also support the construction of a situation model in the context of 

mathematical modelling (Rellensmann, Schukajlow, & Leopold, 2017). Strategic knowledge about 

drawing was found to have a positive effect on modelling performance. This effect was mediated by 

the accuracy of the situational and mathematical drawings and emphasised the importance of the 

quality of the strategy for solving modelling problems. In addition, the study revealed that the 

accuracy of mathematical drawings is a strong predictor of modelling performance, whereas the 

situational drawing had only indirect influences on performance by facilitating the construction of a 

mathematical drawing. These findings suggest that self-generated drawings offer a strategy that is 

useful for fostering modelling. The most promising was found to be the generation of accurate 

mathematical drawings. Thus, when instructing students how to generate a drawing, teachers should 

pay special attention to the accuracy of the mathematical drawing (namely that it contains correct 

relations and all relevant numbers). Learners should be encouraged to generate a situational drawing 

if they do not succeed in drawing a more abstract mathematical model in their first attempt.  

Even though highlighting and drawing seem to be useful strategies for fostering reading 

comprehension during mathematical modelling, they need to be taught in rich learning 

environments. In the following chapter, we present some learning environments that are appropriate 

for teaching these strategies. 

Highlighting and self-generated drawings in learning environments for improving modelling 

Several studies have investigated the effects of different learning environments on students’ 

modelling competency. In the following, we present two studies that integrated highlighting and 

drawing strategies (among other elements) in their learning environments to foster modelling 

competency.   

Verschaffel et al. (1999) revealed the positive effects of a certain learning environment on 5th 

graders’ modelling and problem-solving competency. The learning environment contained the 

acquisition of an overall metacognitive strategy that involved five stages in the planning of the 

whole solution process. Eight strategies (e.g., “Distinguish relevant from irrelevant data” or “Draw a 



picture”) were embedded in the first two stages (Verschaffel et al., 1999, p. 202). The distinction 

between relevant and irrelevant data is related to the highlighting strategy, as appropriate 

highlighting aims to make this distinction. Another condition under which the results were acquired 

was the instructional technique used in this study. It consisted of systematic changes between 

whole-class discussions and small group work. In both phases, the teacher encouraged the use of 

strategies and encouraged the students to reflect on their purposeful use in order to stimulate the 

regulation of strategy use.  

A learning environment for modelling that included strategic elements was examined by 

Schukajlow et al. (2015). A scaffolding instrument called the solution plan with four steps was used 

in this study to support students’ modelling activities. Strategic prompts were assigned to each step. 

As a whole, the solution plan served as a metacognitive planning strategy that was designed to guide 

students through the process of solving a modelling problem. Fostering reading comprehension was 

not the sole focus of the solution plan, but it included cognitive strategies that were aimed at 

improving reading comprehension (e.g., strategies such as “Look for the data you need and, if 

necessary, make assumptions!” or the strategy “Make a sketch!”; Schukajlow et al., 2015, p. 1244). 

Although the highlighting strategy was not explicitly mentioned in the solution plan, it is closely 

connected to the strategy of looking for relevant data.  

The student-centred operative-strategic learning environment used in this study is characterised by a 

systematic change between individual work in groups and whole-class discussions. The whole-class 

discussions included presenting solutions and reflecting on the solution processes (Schukajlow et 

al., 2015, p. 1243). The study found that an experimental group that was taught the solution plan 

outperformed a control group that was not taught the solution plan in solving modelling problems. 

Furthermore, students in the experimental group reported more frequently using self-reported 

strategies than the control group.  

On the basis of the theoretical and empirical findings on the effects of highlighting and self-

generated drawing, we developed a learning environment for fostering reading comprehension. We 

describe this learning environment which will be approved in the next step of the project in the 

following section.  

Learning environment for fostering students’ reading comprehension while they 

solve modelling problems 

Based on the theoretical grounds presented in the first part of this paper, the following learning 

environment was developed to foster 9th graders’ modelling competence with special regard to the 

beginning of the modelling process, namely understanding, structuring, and simplifying. The aim of 

the learning environment is to improve students’ performance in these sub-competencies by 

fostering their reading comprehension via trainings in highlighting and the use of self-generated 

drawings. Similar to some other studies that implemented strategy trainings (see e.g., Leutner et al., 



2007, or Schukajlow et al., 2015), the duration of the teaching unit will be five lessons with a total 

of approximately 225 minutes1.  

The modelling problems that will be used in the present learning environment include text and can 

be solved by applying the Pythagorean Theorem as a mathematical procedure. The Pythagorean 

Theorem was chosen because of the importance of this mathematical procedure for national and 

international curricula. Before the beginning of the teaching unit that was designed to foster reading 

comprehension, students are expected to know the Pythagorean Theorem and to practise it on intra-

mathematical problems. A sample problem Reaction time is shown in Figure 1.   

Reaction time 

During the 2016 European Championship, Germany played against Slovakia in the round of the 

last sixteen. With goals by Boateng (minute 8), Gomez (minute 43), and Draxler (minute 63) the 

German team won with a score of 3 to 0. 

In the 14th minute, Germany was allowed a penalty kick after a foul by Slovakia. A penalty kick 

is shot from a distance of eleven metres from the goal, which has standard measures of 2.44 m in 

height and 7.32 m in width. The German penalty taker was Mesut Özil, and Matus Kozacik was 

in the Slovakian goal. 

Unfortunately, the penalty kick was stopped by Kozacik so that Özil missed the chance to have an 

early score of 2 to 0 for Germany. His penalty kick was shot a bit too feebly and flew just over the 

ground to the lower right corner where Kozacik was able to deflect it away from the goal.  

Although the penalty kick was not shot very hard, the goal-keeper didn’t have much time to react, 

as the football flew at a speed of about 80 km/h towards the goal. 

Calculate how much time the goal-keeper had after Özil’s kick to reach the position where 

he stopped the ball just before the corner of the goal. 

Figure 1: Sample modelling problem Reaction time 

In line with the solution plan study by Schukajlow et al. (2015) and the study by Verschaffel et al. 

(1999), the learning environment that we chose for our teaching unit includes systematically 

changing between individual work, group work, presenting solutions, and reflecting on the solution 

process as a class (Schukajlow et al., 2015, p. 1243).  

In the first lesson, both of the strategies of highlighting and using self-generated drawings are 

introduced. The students are given the modelling problem Reaction time (cf. Figure 1) and are 

requested to highlight important information and to generate a drawing while doing their own 

individual work in groups, but they are asked not to solve the problem. The task requires the 

application of both the highlighting and drawing strategies.  

                                                 

1 Schukajlow, Kolter, and Blum (2015) measured effects after 205 minutes of total treatment. Leutner, Leopold, and den 

Elzen-Rump (2007) used a time of 150 minutes. Verschaffel et al. (1999) used 20 lessons to teach eight strategies, so 

five lessons for teaching two strategies seemed appropriate for our teaching unit. 



After the individual work in groups, students present their highlighted texts and their drawings and 

describe how they proceeded in applying both strategies. To encourage a discussion about potential 

difficulties in the use of these strategies, the group that the teacher chooses to make the first 

presentation should be one that had difficulties with the generation of the highlighting or drawing. 

During the presentation and the subsequent reflection on the presented solution, the teacher should 

direct students’ attention to typical problems that result from the misapplication of strategies. The 

teacher should then present the learning goal of the teaching unit to the students, namely to improve 

reading comprehension and the ability to solve modelling problems.  

After that, the first two steps of the solution scheme (cf. Figure 2) are introduced. They save the 

results of the class discussion in written form and might also provide some advice that was not 

mentioned by the students. The solution plan by Schukajlow et al. (2015) was adapted to better fit 

the aim of fostering reading comprehension and to guide the application of both of the strategies of 

highlighting and producing self-generated drawings. The solution scheme with the reading strategies 

of highlighting (integrated in step 1) and the creation of self-generated drawings (integrated in step 

2) is shown in Figure 2. 

 

Figure 2: The solution scheme used in the learning environment 

The entire solution scheme serves as a planning strategy for the whole solution process. In step 1, 

the highlighting strategy is presented. First, students are told to skim the task. This means they 

should get an overview of the task, which might contain a title, text, questions, pictures, tables, or 

diagrams. While skimming the text, students do not need to understand each word in detail. After 

skimming the text, the students are prompted to imagine the situation presented in the task. This 

might help to activate prior knowledge about the topic and facilitate reading the text in detail in the 

next step. These activities stimulate the understanding of the real situation. The highlighting is 

prompted after they read the question again, as the selection of relevant data depends on the 

question posed in the problem. After they finish the highlighting, students evaluate whether they 

highlighted only the most important information in the task and revise their highlighting if needed. 

The highlighting is aimed at helping students to simplify the given information.   



In step 2 of the solution scheme, the students are asked to make a drawing and label it with relevant 

data from the text. These activities help them simplify and structure the information given in the 

text. During the following monitoring activities, students check whether their drawings contain all 

relevant data from the text and whether all mathematical relations are represented correctly. If 

students do not succeed in constructing an accurate mathematical drawing, they can first generate a 

less abstract situational drawing. At the end of step 2, students mathematise the information given in 

the drawing. In step 3, the students calculate a solution and obtain the mathematical result. They 

interpret, validate, and present the result in a final answer in step 3. The arrow pointing back 

towards step 1 indicates that the solution process might be restarted if the result does not fit.  

In the first two lessons of the teaching unit, the students are familiarised with only the first two steps 

of the solution scheme in order to train their reading comprehension strategies and the sub-

competencies of understanding, simplifying, structuring, and mathematising as part of the modelling 

process. In lessons 3, 4, and 5, students practise the entire modelling process by applying the entire 

solution scheme.  

In line with Leutner et al.’s (2007) study, the current learning environment contains the same main 

elements to stimulate self-regulation. First, goal setting is realised in the first lesson. Students are 

confronted with a modelling problem that requires a profound level of reading comprehension. The 

teacher explains that the aim of the teaching unit is to learn strategies that support reading 

comprehension and to solve reality-related modelling problems. Second, instead of observing the 

application of the strategy by a fictive person, students analyse their classmates’ highlighted texts 

and drawings in both the work done in small groups and the presentations involving the whole class. 

These practises are implemented in order to stimulate students’ activities in the classroom. Third, 

the strategy training begins with a presentation of the steps that are necessary for highlighting and 

drawing and is followed by an application of the strategies while solving modelling problems. In 

contrast to Leutner et al.’s (2007) study, the self-regulation training is integrated in the strategy 

training. If requested, the teacher gives strategic advice by referring to the relevant steps of the 

solution scheme and stimulates reflection on the use of strategies during the individual work in 

groups and during the whole-class discussion when solutions are presented and reflected on. This 

process helps to encourage the use of strategies and to establish the solution scheme as a scaffold for 

solving modelling problems. In order to stimulate the self-regulation of strategy use, we included 

the prompts “Check your marks and change them if necessary” in step 1 and “Check your drawing” 

in step 2 of the solution scheme. Further, the validation of the results of solution problems is 

stimulated by the prompt “Check if your result fits approximately” in step 3 (cf. Figure 2).  

Summary and future steps 

In the first part of this paper, we discussed the theoretical background for reading comprehension 

and modelling. Based on the theory, we presented in the second part of the paper a learning 

environment to foster students’ reading comprehension while solving modelling problems. This 

learning environment will be evaluated in a project for pre-service teachers. The pre-service 

teachers will obtain the material and instructions to implement the learning environment in their 

classrooms to gain practical experience in fostering reading comprehension in mathematical 



education. They will attend a seminar to prepare for the project and to reflect on the experiences 

they made while implementing the project.  
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The objective of this investigation is designing an activity research study in mathematical modeling 

for the training of future engineers in the subjects of linear algebra, and structural mechanics of 

composite materials, in an application of stress and strain calculation. Considering elements of the 

Anthropological Theory of Didactics (ATD) implementing a methodology within the mentioned 

theory. This allows the analysis of mathematical models in use, as basis for designing didactical 

activities, in order to create a link between these two subjects, showing the future engineers that 

mathematics can be used to solve problems in an extra-mathematical context. This took place in the 

Research Center for Applied Science and Advance Technology of the National Polytechnic Institute 

(CICATA-IPN) and in the School of Science of Engineering and Technology of the Autonomous 

University of Baja California (ECITEC-UABC). 

Keywords: Mathematical models, linear algebra, engineering training, ATD. 

Introduction  

The objective of this work is to design modeling activities for a mathematical training of engineers. 

The design is based on mathematical modeling analysis on specialty training courses, focusing on 

laminated composite materials. This collaborative work involves aerospace, mechanical engineers 

and mathematicians that teach in the carriers of Aerospace engineering and mechanical engineering, 

having an opportunity to analyze a real context of modeling; namely Calculation of stress and strain 

of composite materials. This project was proposed on a structural mechanics of composite materials 

course; because the students wanted to know where they could use the mathematics they were 

learning. For this work we have considered elements of the Anthropological Theory of Didactics 

proposing a methodology associated to this theory that permits the analysis of mathematical models 

in use based on the design of didactic activities. 

Elements of the Anthropological Theory of Didactic 

The ATD is an epistemological model that allows the study of human activity in its institutional 

dimension. An institution is a stable social organization that defines the human activities generating 

resources that make them possible. These materials or intellectual resources, which are made 

available to the subjects, have been produced by communities along the confrontation of problematic 

situations with the objective of solve them in a regularly and effectively way (Castela and Romo, 

2011). The classic praxeological model, proposed by Chevallard (1999), recognizes the praxeology 

[𝑇, 𝜏, 𝜃, Θ] as a minimal unit of analysis of human activity. Its four components are: the task type (𝑇), 

the technique (𝜏), the technology (𝜃); and the theory (Θ). The ‘task’ refers to what is to be done; the 

‘technique’ is how it is to be done; the ‘technology’ is a discourse that produces, justifies and explains 

the ‘technique’; while the ‘theory’ produces, justifies and explains the ‘technology’.  



The training of engineers through institutions 

The training of engineers can be seen through institutions, Romo (2009) distinguish three types: 

production of knowledge P(S), teaching of knowledge E(S) and use of knowledge or practices Ip. 

This distinction seeks to recognize the first vocation of the institutions and the production of 

knowledge correspond to scientific disciplines, such as mathematics or engineering sciences, are 

validated in these the existence of knowledge and the relations between them. The teaching of 

knowledge E(S) are responsible for displaying and disseminating praxeologies, meanwhile in the 

institutions of usage Ip, the praxeologies are used to solve problems of practice. This does not mean 

that within the institutions P(S) there is no teaching or usage praxeologies nor in teaching E(S) and 

practice Ip there is no production of knowledge. In this investigation linear algebra is considered an 

institution of teaching mathematics E(AL), and in teaching engineering, structural mechanics of 

composite materials E(MC) and connect them through a Study and Research Activity (SRA). The 

SRA constitute didactic devices for the construction of a praxeology through three didactic moments 

that are: first encounter with T, exploration of T and the emergence of the τ technique and construction 

of the technological-theoretical block, in this case coming from the structural mechanics of composite 

materials as outlined below 

 

 

 

 

 

Figure 1: The SRA as an element linking educatinal institutions 

In order to initiate the transition from the traditional paradigm in mathematics ”visitinng works” (to 

the teaching of pre-existing mathematical objects) to questioning the world according to inquiry-

based mathematics education (IBE).  

Didactical design methodology of an SRA 

The methodology initially proposed in Macias (2012) allows the design of SRA that involves non 

mathematical elements. Its four stages are: 1) Election of an extra-mathematical context; 2) 

Praxeological analysis and identification of a mathematical model; 3) Analysis of the identified 

mathematical model and their relationship with E(M) and 4) design of the SRA. 

Election of an extra-mathematical context 

To choose an appropriate extra-mathematical context for the design of an SRA, the following 

elements were considered. 

1) Generation of surveys aimed at teachers and students about mathematical needs of engineers in 

training: 

Students. Which of these subjects you thought more important, and why? Have you used or adapted 

a mathematical model? Which model and for what? 

Training of engineers 

 

 

 

Engineering Teaching 

Structural mechanics 
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materials E(MC) 
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Teachers. In any of your subjects taught in an engineering career you use mathematics? Have you 

used a mathematical model or adapted one in any of your courses? Which model and for what? 

67 students from 3rd to the 7th semester were surveyed, finding that the most useful subjects are 

calculus and linear algebra. 54% recognizes the work with mathematical models. All teachers who 

teach subjects of MC, integral calculus CI and AL were surveyed, 92% of them recognize the use of 

matrices in their courses 

2) Interviews with the coordinator of the career of mechanical engineering, who noted that the subject 

of MC required early in the course of a review of linear algebra. 

3) Approach with MC teachers, who pointed out that in general, students do not recall procedures or 

operations previous courses, AL for example. 

4) Joint work with engineers-researchers in the area of materials. 

Praxealogical analysis and identification of a mathematical model 

The praxeology that is identified and analyzed is the calculation of stress, strain and elastic modulus 

in laminated materials. The type of task is to calculate the stress or strain of a laminated material, the 

technique is associated with the use of the matrix S (strain) or matrix Q (stiffness), the technology is 

Hooke's law and the theory is the mechanics of materials. The analysis is based on a technical report 

of basic mechanics of laminated composite plates (Nettles, 1994), suggested by an engineer-

researcher, who indicated it, as a heavily used reference material. In this section the theoretical 

technological-block is shown, which displays how the stiffness matrix associated with the technique 

of calculating the stress and strain is presented. This will provide the basis to show in the next section 

full praxeology from the analysis of an exercise presented in a class of structural mechanics of 

composite materials. 

Technology: Generalized Hooe´s law for anisotropic materials1 

Nettles explains that the relationship between stress and strain is independent of the direction of the 

force, and is provided by the constant of elasticity (Young's modulus), this is for isotropic2 materials. 

In nonisotropic materials it should use two elastic constants at least. The relationship stress / strain 

for isotropic materials appears as follows:   σ = Eε  (1) 

Where 𝜎: is the stress, E: Denotes the Youngs modulus and 𝜀: is the strain. 

For orthotropic materials 3, the direction must be specified in the stress/strain relationship:  

   𝜎1 = 𝐸1𝜀1;  𝜎2 = 𝐸2𝜀2  (2) 

where  

𝜎1: Denotes the stress in the longitudinal direction  

𝐸1: Denotes the stiffness in the longitudinal direction (Young´s modulus) 

𝜀1: Denotes the strain in the longitudinal direction 

𝜎2: Denotes the stress in the transversal direction 

                                                 
1 Anisotropic materials: is the material that its mechanical properties differ according to the load direction 

2 Isotropic materials: It is the material that has identical mechanical properties in all directions regardless of the direction 

of the load 

3 Orthotropic materials: is the material in which mechanical properties are different in three perpendicular directions 



𝐸2 : Denotes the stiffness in the transversal direction 

(Young´s modulus) 

𝜀2: Denotes the strain in the transversal direction 

𝐸1 = 𝐸𝐿 Defines the stiffness in the longitudinal direction 

and 𝐸2 = 𝐸𝑇  is the stiffness in the transversal direction. This law produces different techniques, 

Nettles initiated by the special orthotropic plates and is why we analyze them below.. 

Stress and strain for special orthotropic plates 

The author begins by explaining that on a plate, stress can be given in more than one direction. 

Immediately he defines Poisson's ratio as the strain perpendicular to a given loading direction, 

showing the relationship for different loads. 

For loading along the fibers: 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛´𝑠 𝑟𝑎𝑡𝑖𝑜 = 𝜈12 =
𝜀𝑇

𝜀𝐿
=

𝜀2

𝜀1
  (3a) 

For loading perpendicular to the fibers 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛´𝑠 𝑟𝑎𝑡𝑖𝑜 = 𝜈21 =
𝜀𝐿

𝜀𝑇
=

𝜀1

𝜀2
  (3b) 

The strain is equal to the difference between the stretched component deformation due to an applied 

force and contraction of the Poisson´s effect due to other forces perpendicular to the applied force, 

thus: 

𝜀1 =
𝜎1

𝐸1
− 𝜈21𝜀2    𝑦    𝜀2 =

𝜎2

𝐸2
− 𝜈12𝜀1  (4a) 

aplicando la ecuación (2) 

𝜀1 =
𝜎1

𝐸1
− 𝜈21

𝜎2

𝐸2
   𝑦    𝜀2 =

𝜎2

𝐸2
− 𝜈12

𝜎1

𝐸1
  (4b) 

Subsequently, the author considers the presence of shear forces. The shear stress and shear strain are 

related by a constant called shear modulus, denoted by G.      

   𝜏12 = 𝛾12𝐺12   (5) 

Where: 𝜏12: Shear stress, 𝛾12: Shear strain y 𝐺12: Shear modulus 

Equation (5) is similar to equation (1) it only considers shear stress and strain, where the indices 1-2 

indicate shear in the 1-2 plane. The author mentions that a relationship exists between the Poisson 

constant and the Young's modulus in both directions, in the longitudinal direction and the transverse 

direction to the material, and then it holds that: 

𝜈21𝐸1 = 𝜈12𝐸2  (6) 

Equations (4b) and (5) can be written in their matrix form obtaining 

[

𝜀1

𝜀2

𝛾12

] = [

𝑆11 𝑆12 0
𝑆12 𝑆22 0
0 0 𝑆66

] [

𝜎1

𝜎2

𝜏12

]  (7)  where, 

 

Here it is where we can see a relationship between the subjects of linear algebra and structural 

mechanics of composite materials as a matrix model for calculating stress or strain of laminated 

𝑆11 =
1

𝐸1

 𝑆22 =
1

𝐸2

 

𝑆12 = −
𝜈12

𝐸1

= −
𝜈21

𝐸2

 𝑆66 =
1

𝐺12

 



materials whether they are isotropic or orthotropic. Calculating the inverse stress matrix S, we obtain 

the stiffness matrix Q turning out to be:  

[

𝜎1

𝜎2

𝜏12

] = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0

0 0 𝑄66

] [

𝜀1

𝜀2

𝛾12

]  (8) 

where,  

𝑄11 =
𝐸1

1 − 𝜈12𝜈21
 𝑄22 =

𝐸2

1 − 𝜈12𝜈21
 

𝑄12 =
𝜈12𝐸2

1 − 𝜈12𝜈21
=

𝜈21𝐸1

1 − 𝜈12𝜈21
 𝑄66 = 𝐺12 

We can appreciate in equation 7 to 8, the calculation of the inverse matrix was made, to switch the 

stress matrix to the stiffness matrix, with basic operations taught in linear algebra. The author 

explains, broadly, the mathematical model based on the algebraic work, having left the reader the 

task of verifying the connections between the different equations, until reaching the mathematical 

model that relates the stress, strain and Young's modulus (which are the elastic properties of the 

material). All this is the technological component of the praxeology. To illustrate the types of tasks 

that can be solved and the associated techniques to the praxeology, we analyze below a classroom 

exercise from the subject of structural mechanics of composite materials. 

Analysis of the identified mathematical model and its relationship with E(M) 

In the class of structural mechanics of composite materials (MC), where we analyzed and identified 

the praxeology of the stress calculation of a laminate material, with a task type T, calculate the 

modulus of elasticity of a laminated material in a particular direction, with two tasks, t1 y t2: 

t1: Calculate the modulus of elasticity of a laminated material in the X direction. 

t2: Calculate the modulus of elasticity of a laminated material in the Y direction. 

For laminate fiberglass polyester matrix that is laid up in a [452/−452 /0]𝑠 stacking sequence. 

τ1: Find the stiffness matrix of a laminate material, with the following information 

𝑬𝟏 = 𝟒𝟎 𝑮𝑷𝒂 𝑮𝟏𝟐 = 𝟐. 𝟖 𝑮𝑷𝒂 

𝑬𝟐 = 𝟗. 𝟖 𝑮𝑷𝒂 𝝂𝟐𝟏 = 𝟎. 𝟑 

[𝑄] = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0

0 0 𝑄𝑆𝑆

] 

[𝑄] = [
40.90 3.01 0
3.01 10.02 0

0 0 2.80
]  𝐺𝑃𝑎 

Determine the stiffness matrix of the lairs in 45°. 

Using the expressions for the calculation of the stiffness matrix, for any fiber orientation it can be 

written by: 

[𝑄] = [

�̅�𝑥𝑥 �̅�𝑥𝑦 �̅�𝑥𝑆

�̅�𝑦𝑥 �̅�𝑦𝑦 �̅�𝑦𝑆

�̅�𝑆𝑥 �̅�𝑆𝑦 �̅�𝑆𝑆

] 

xy axes: global axes; 1,2 axes : material axes. Thus the stiffness matrix turns to be: [𝑄] =

[
17.03 11.43 7.72
11.43 17.03 7.72
7.72 7.72 7.01

] 𝐺𝑃𝑎 



For the  −45° the stiffness matrix is [𝑄] = [
17.03 11.43 −7.72
11.43 17.03 −7.72
−7.72 −7.72 −7.01

] 𝐺𝑃𝑎 

Stiffness matrix in the flat tension of the laminate material 

[𝐴] = ∑ [𝑄]𝑖𝑖 ∙ ℎ𝑖where ℎ is the thickness of the material [𝐴] = [
218.04 97.46 0
97.46 156.28 0

0 0 61.68
] 109 ℎ

𝑁

𝑚
 

Normalized stiffness matrix in the plane stress of the laminate is written as [𝐴∗] =
[𝐴]

109 ℎ
=

[
21.8 9.75 0
9.75 15.63 0

0 0 6.17
]  𝐺𝑃𝑎 

𝝉𝟏: Applying a tensile stress in the X direction {

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

} = {
𝑁𝑥

0
0

}. As mean stress acting on the 

laminate material {

𝜎𝑥
0

𝜎𝑦
0

𝜏𝑥𝑦
0

} = {

𝜎𝑥

0
0

}; The relation between the average stress and the strain of the material 

is given by: {𝜎} = [𝐴∗] ∙  {𝜀}; Calculating the strain state for the loading state. {

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

} =

{
0.06362

−0.03969
0

} 109 𝜎𝑥 

In the direction of the X axes the relation between the strain and stress is given by: 𝜀𝑥 =

0.06362 (109) 𝜎𝑥, on the other hand the apparent elasticity modulus in the X direction is presented 

as 𝐸𝑥 = 1.572 𝐺𝑃𝑎 

𝝉𝟐: Applying a tensile stress in the Y direction 

Analogously the mean stress acting on the laminate material is 

{

𝜎𝑥
0

𝜎𝑦
0

𝜏𝑥𝑦
0

} = {
0

𝜎𝑦

0

} Therefore the strain state is {

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

} = {
−0.03969
0.08874

0
} 109 𝜎𝑦 

Particularly in the Y axis direction the relationship between the stress and strain is: 𝜀𝑦 =

0.08874 (109) 𝜎𝑦. Furthermore the apparent elasticity modulus in the X direction is given by 𝐸𝑦 =

11.27 𝐺𝑃𝑎. The praxeological analysis of the technical report and the classroom exercise presented 

here very briefly, allowed to identify the matrix as a mathematical model for calculating strain of a 

laminate (isotropic, anisotropic and orthotropic) material. Also, the matrix operations and calculating 

the inverse of the matrix are used to determine the modulus of elasticity of a composite material, 

specifically laminated materials. 

SRA design proposed for a tactile sensorial therapeutic ramp (RTEST) 

For the SRA design, we considered the construction of a product that requested the use of a laminated 

material and calculating the stress and strain of the material to ensure the usefulness of the product. 

Therefore, it was intended that the use of the mathematical model appear the way it happens in 

engineering projects. Determining that for students in the early college years, more than a structure 

was necessary to think of a product consisting of plates, which also would be useful for the 



community. Thus, it came to the proposal of a tactile sensory therapeutic ramp (RTEST) with 

laminate material to help children from three to ten years to correct gait problems.  

Moment of the first meeting with T. To design the ramp students must develop three basic tasks, t1) 

design the ramp, t2) choose the laminate and stress calculations, t3) determine the type of material 

with which the ramp will stimulate the sensory part. Moment of the exploration of T and technical 

emergency τ. Students should find the technique or techniques to solve t1, t2 y t3. For t1, they should 

investigate the types of ramps, analyze and choose one. For t2, they should investigate laminated 

materials, choose one and make the stress calculation (the technic, p. (3-5)). And for t3, investigate 

the materials that promote sensory stimulation and choose one, justifying the reasons for their choice. 

Moment of construction of the technological-theoretical block. The third moment intersects with the 

second because here students must build the ramp, using drawings and stress calculations previously 

made, as well as the preparation of the composite material. In t2 students should know and apply 

Hooke's law, for the problem they are solving, they have to know how to build the stress matrix and 

determine the stiffness matrix. To perform these calculations students can use computer programs 

such as MathLab, Scilab and SolidWorks.  

First implementation of the SRA 

Presenting a first implementation of the evolution of the SRA of one team: 

 

Figure 2: Momentum schematics of the SRA 

The implementation with students of the core curriculum of engineering, designers and aerospace 

engineering; Of three different semesters (2, 6 and 7), trying to mimic the form of work of the 

industry: as different specialties as well as novices and experts engineers. The SRA was proposed to 

each teacher of the course to see if the assignment was pertinent to their subject and if they could 

make it part of their class and grade it. The development of the SRA was parallel to the classes of the 

teachers that agreed to work on the project assigning a certain time in each course for doubts they 

might have. A report was requested for each of the three phases. Phase 1: Proposal of a design for a 

RTEST ramp (3 weeks), phase 2: Strain calculation of the laminate material (3 weeks) and phase 3: 

Elaborate and choose materials for the RTEST ramp: Laminate materials and for the tactile and 



sensorial part of the project (4 weeks). The SRA had three phases associated with the first three 

moments described above.  

Conclusion 

The SRA is proposed within the framework of the paradigm of questioning the world in the training 

of engineers. In this SRA unlike the commonly proposed projects of engineering the mathematical 

topics are highlighted. In addition the engineering topics are shown in a more important roll in the 

mathematics subjects. The SRA involved students and teachers from different specializations. The 

design of the material and the RTEST requires the calculation of stress -matrix model-, knowledge 

of materials and design. To do this the students must investigate and study elements from different 

disciplines as well as practical knowledge, students learn to do research, model, use available 

knowledge to create new, teamwork, communicate their ideas and justify the practice with theoretical 

elements of different levels. The analysis of the development of the SRA would allow us to 

understand the institutional necessary conditions for designing SRA in a more complex environment. 
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The use of heuristic strategies in modelling activities  
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For students working on realistic modelling problems as autonomously as possible the support by a 

tutor is indispensable. However, how this support can be realised is still not a sufficiently answered 

question. In the paper we describe a study in which students worked on complex, realistic, authentic 

modelling problems over three days supported by tutors. The tutors participated in a teacher training 

prior to the modelling activity. The focus of the study is the usage of heuristic strategies by students 

within modelling activities and the promotion of strategic help provided by the tutors. Based on 

videotaping of ten groups while they were working on the modelling problem of the optimal placement 

of a bus stop, the study could show that heuristic strategies are an indispensable basis for adequate 

decisions in the modelling process. Their promotion by the tutors seems to be highly adequate in 

order to foster modelling competencies under a broader perspective. 

Keywords: Mathematical modelling activities, heuristic strategies, modelling example.  

Introduction 

Modelling and applications are receiving increasing attention all over the world, modelling 

competencies are required internationally by many curricula. However, the complexity of real world 

examples and the according modelling process to tackle the problem leads to a strong discrepancy 

between the high relevance of these kinds of activities in curricula and their factual relevance in 

school. In the following we will present a study, which examines how tutors can foster the tackling 

of complex and authentic modelling problems by students in special learning environments, the so-

called modelling days. We will in particular focus on heuristic strategies from the problem solving 

discussion and their possible usage in modelling classrooms.  

Theoretical framework 

Mathematical modelling and modelling cycle  

In our research modelling is understood as a process where a ‘real situation’ from the ‘Rest of the 

World’ (Pollak, 1979) comes up and needs to be understood and simplified and transferred into a 

realworld model. The real world model is transformed into the world of mathematics, i.e. the 

formulated mathematical problem is (partly) solved and the solution is validated according to the real 

world situation. Often the first results do not answer the primary problem adequately, so the modelling 

cycle is run through again with an adjusted real world model. This process is repeated until a solution 

is produced which is adequate for the real situation from the standpoint of the modeller. The according 

process can be visualized with the following modelling cycle (figure 1).  
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Figure 1: Modelling cycle (Kaiser & Stender, 2013, p. 279) 

Fostering student’s independent modelling activities in cooperative learning environments 

If it is intended that students work as independent as possible on the modelling task in cooperative 

learning environments self-directed learning environments as required by many scholars in the 

modelling discussion (e.g. Kaiser and Stender, 2013, for an overview see Blum et al., 2007), the 

support by a tutor has to be adaptive. We use the definition given by Leiss (2007) of an adaptive 

intervention: 

Adaptive teacher interventions are defined as those kinds of assistance by the teacher to the 

student, which supports the individual learning and problem solving process of students minimally, 

so that students can continue to work at a maximal independent level. (Leiss, 2007, p. 65, own 

translation) 

As guidelines for teachers supporting students who need help in their work, we refer to a framework 

developed Zech (1996), who suggests a five step approach to realise adaptivity: (1) motivate, e.g. 

‘You will make it’; (2) feedback, e.g.: ‘Go on like this!’; (3) strategic help based on strategy what to 

do next, e.g. ‘Simplify the situation by making it as symmetric as possible!”; (4) content-related 

strategic help gives a strategic help with additional information to the problem, e.g. which aspect 

should be described as symmetric; (5) content-related help shows the students aspects of concrete 

steps to work on. 

If motivational and feedback support are not sufficient to enable the students to continue their work, 

strategic help is according to this framework the next step to support the students, as the students only 

get a possible way how to go on, but the students themselves still have to realise the work by their 

own. Important strategic helps are based on references to the steps of the modelling cycle: ‘Simplify 

the situation!’, ‘Try to transfer this into a formula!’, ‘What does the mathematical result mean in the 

real world?’, ‘Does the result answers the real world situation meaningfully?’ More specific support 

is offered by the use of heuristic strategies. 

Heuristic strategies 

The usage of heuristic strategies is a well-known approach in mathematical problem solving (e.g. 

Pólya, 1973), that can be used while tackling modelling problems as well. Based on the work of Pólya 

and others we distinguish the following heuristic strategies, which were formulated in the frame of 

ongoing empirical research in mathematical modelling (for details see Stender and Kaiser, 2015): 



 organise your material / understand the problem: change the representation of the situation if 

useful, try out systematically, (Pólya, 1973) use simulations with or without computers, 

discretize situations,  

 use the working memory effective: combine complex items to supersigns, which represent the 

concept of ‘chunks’ (Miller, 1956), use symmetry, break down your problem into sub-

problems),  

 think big: do not think inside dispensable borders, generalise the situation (Pólya, 1973), 

 use what you know: use analogies from other problems, trace back new problems to familiar 

ones, combine partial solutions to get a global solution, use algorithms where possible (Pólya, 

1973),  

 functional aspects: analyse special cases or borderline cases (Pólya, 1973), in order to 

optimise you have to vary the input quantity,  

 organise the work: work backwards and forwards, keep your approach – change your 

approach – both at the right moment (Pólya, 1973). 

Although these heuristic strategies are well-known in the problem solving discussion, there is only 

little empirical research known, how these heuristic strategies can be implemented in classroom 

teaching and how far these heuristic strategies can be transferred to other mathematical activities such 

as mathematical modelling. 

Research Question 

In our research study we aim to evaluate, how far heuristic strategies developed in the problem solving 

discussion can be transferred into the teaching and learning of mathematical modelling. Furthermore, 

we examine how far these heuristic strategies are appropriate strategic interventions for the tutoring 

of students who are working on complex, realistic and authentic modelling problems.  

Design of the Empirical Study 

Modelling Days as learning environment 

As this kind of work is not very common in usual classes we established modelling projects in schools 

as learning environment, called modelling days and offer these to schools as special, project-oriented 

activity organised in their school. The problems, on which the students work, are developed by the 

university research group. The tutoring of the students, who work in groups of four to six, is organised 

either by the teachers or future teachers within their master studies. Both groups receive a special 

training, in which they become acquainted with complex modelling examples and how to support 

students during their modelling activities. During the modelling days students of grade 9 (15 years 

old at the end of lower secondary level) work on one modelling problem for three full days in school. 

The students can choose the problem out of three problems presented by the research group.  

In the following we describe one example and describe exemplarily one possible solution.  

Modelling problem: The Bus Stop Problem – a possible solution 

We used the bus stop problem in two different versions within various modelling days: the more 

complex one asks for the best positions of the bus stops for the entire public transport system of the 



city of Hamburg. The simplified (but still complex) version only asks for the bus stops of one single 

bus line.  

A solution for the more complex version is based on the idea of covering the city with circles of the 

same diameter in a regular pattern where the centres of the circles are the bus stops. In a second step 

a rule is developed based on the adjustment of the bus stops to the requirements of the city-map. The 

diameter of the circles has to be calculated, which leads to the distance of two bus stops by a certain 

bus line. For this problem there are a lot of possible aspects that can be considered. One possible 

approach is to reduce the bus line to a straight line, where the bus stops all have the same distance to 

the next stop.  

 

Figure 2: Bus line 

In this solution the following aspects were taken into consideration: the average walking time from 

and to the bus station (velocity vF), the time the bus drives (velocity vB) over the distance s and the 

extra time (TH) each stop causes in between. An optimal bus stop distance shall minimize the total 

travel time T(x).  

This leads to the function  and setting the derivation as zero yields the 

following solution  These formulae now can be interpreted according to the 

situation, e.g. in respect of the influence of the distance s or the walking velocity. Students usually 

will not receive this general result using variables, but with set numbers and they often produce a 

graph like figure 3. For a more detailed version of this solution see Stender (2016). 

 

Figure 3: T(x): Travel time depending on the bus stop distance 

Data collection and data evaluation 

Within our study we videotaped ten groups of students who were working in five rooms at higher 

track school in Hamburg (so-called Gymnasium), overall about 40 students participated in the study. 

Over three days the students worked around 15 hours on this modelling problem. We transcribed the 

phases during which the tutor communicated with the students, including a short time before, so that 

we could identify the causes leading to the contact and a few minutes after the communication so it 

was possible to analyse the effect of the tutors’ intervention. In total 238 contacts between tutors and 

individual groups were transcribed and coded using qualitative content analysis (Mayring, 2015). 

Based on the analysis of the codes for the phases before, during and after the intervention the success 

of the interventions could be determined. Detailed findings were presented in Stender & Kaiser 



(2015). Interventions that were not successful or gave too strong content-related help were subject to 

a more detailed examination. In these cases we tried to formulate alternative strategic interventions 

for use in further teacher training. The solution processes of the students were reconstructed based on 

the work of different groups and hereby an idealised modelling process could be reconstructed (for 

more details see Stender, 2016).  

Results of the study 

The reconstructed and idealised modelling process is in the first part of the results section used in 

order to identify, which heuristic strategies students used either intuitively or by referring explicitly 

to the modelling cycle, to which they had been introduced explicitly using the example of the length 

of traffic light phases. All students had worked on this example as introduction. The second part of 

the results section identifies possible interventions by tutors, introducing the students to the usage of 

heuristic strategies or by using these heuristic strategies by themselves in order to support the 

students.  

Reconstruction of heuristic strategies in the solution process  

In the following we analyse this reconstructed idealised solution regarding the use of heuristic 

strategies, which are highlighted in italic. 

The first step of every modelling process is the exploration of the situation, that means as heuristic 

strategy organise your material / understand the problem. The students explored public transport 

maps and collected important places like schools or hospitals. It took a longer time to change this 

point of view to a more abstract representation of the situation, where the bus line is a straight line 

and special places do not matter. In this situation the more abstract representation is less complex as 

a lot of details from reality (traffic lights, curves, crossings, hills, …) are missing. So, here a heuristic 

strategy derived from the modelling cycle is applicable: simplify the situation as much as possible at 

the beginning! Describing the representation of a bus line as a straight line needs another heuristic 

strategy, namely to construct the situation symmetrically. Using this strategy leads to the assumption 

that the distance between two contiguous bus stops should be all the same. Figure 2 shows that even 

more aspects are symmetrical in this model. The transfer from the complete public transport system 

to one single bus line, that is used later to reconstruct the whole transport-system, uses as heuristic 

strategy to break down your problem into sub-problems! This is another way to simplify the situation. 

To understand the problem of the simple straight bus line two extreme cases should be analysed, a 

powerful heuristic strategy: If there are few bus stops, the bus can drive fast without being interrupted 

by time consuming boarding, but the walk to the next bus stop will be very long for many passengers, 

which leads to a high total travel time. The other extreme situation has many bus stops, e.g. every 50 

m. Now the walking time to the bus stop will be short for all passengers, but the bus will need a long 

time for a certain distance, because it is stopping every 50 m. So it becomes clear that between these 

two extremes there is an optimal distance between two bus stops that minimises the total travel time.  

For the students the situation was still too complex and they were not able to formulate a functional 

based approach as they did not have enough experience with these kinds of problems. Now several 

heuristic strategies were employed: use analogies, break down your problem into sub-problems, try 

out systematically or work on special cases. As already mentioned all groups had worked on the 

length of traffic light phases as introductory example, they therefore knew the formulae 21( )
2

s t at



and  ( )v t at  and how to calculate acceleration processes. They reduced complexity again by the 

heuristic strategy  simplify in the modelling cycle setting the distance between two bus stops a x = 

500 m. This heuristic strategy is related to the heuristic strategy of working backwards as x should be 

the result of the calculation but is used here as if the result is already achieved. Then the students 

calculated the driving time between the two bus stops using certain values for the acceleration and 

the velocity of the bus and using analogies from the traffic light problem as heuristic strategy. This 

can be described again as using the heuristic strategy of break down into sub-problems as the 

calculation was not done for the whole bus line, but only for the part between two bus stops. As the 

choice of x = 500 m was made as ad hoc decision it can be described as heuristic strategy of trying 

out a special case. The calculation itself that led to a certain driving time includes several steps and 

is mathematically challenging, but was achieved due to the use of the analogy from the traffic light 

problem. The result of this approach was the calculation of a certain traveling time that unfortunately 

was not the answer to the question of the best distance between two bus stops. So, in a second loop 

through the modelling cycle the students calculated the time for a longer distance of 12 km with a bus 

stop every 500m combining the partial results from above. Again this shows an interesting result but 

no answer to the initial question.  

The next step was to vary the number of bus stops on the 12 km journey using a heuristic strategy for 

optimisation you have to vary the input quantity. The travel time was calculated in the same way as 

before so an analogy was used. The calculation was realised using a spreadsheet and used the heuristic 

strategy trying out systematically different distances. This approach yields the result that with 

increasing number of bus stops the traveling time increases proportionally.  This was expectable as 

one of the crucial aspects – the walk to the bus stop – was not considered up to now. 

Based on this insight an average walking time to the bus stop was included in the calculation while 

the rest of the calculation was analogue to the previous one. This led to a result similar to figure 3, 

but the students still used as variable the number of bus stops, not the distance between two bus stops. 

With the heuristic strategy of a change of representation the students switched to the more meaningful 

variable, again the new calculation was analogue to the previous one. Still everything was calculated 

with a spreadsheet so it had the character of a simulation or just trying out special cases. Only few 

students were able to realise the next change of representation and combined the single steps of the 

calculation into one formula. They developed one function T(x) that included several steps of the 

calculation in one single mathematical term and T(x) works as a supersign, which is another, less 

discussed heuristic strategy. This approach opened the way to use the derivate and calculate a solution 

like it is shown above. This was done with concrete numbers instead of parameters (vF, vB, TH, s, r) 

by one group of students, but in another group there were students able to use parameters instead of 

concrete numbers, which again means the use of supersigns as each character stands for an infinite 

amount of numbers.  

The results from different traveling distances s were compared and it became clear as meaningful 

result that on shorter trips the bus stops may be closer together. This result was validated, a heuristic 

strategy from the modelling cycle, by analysing the map of the public transport in Hamburg. Near the 

city, where people often use the bus only for the short distance to the next metro station, the bus stops 

were much closer than in the outer parts of Hamburg. The calculated distances matched very well to 

the distances in the map. 



The subsequent step was to go back to the public transport network and cover the city with circles of 

a certain diameter. Now the results from the single bus line were used, which uses the heuristic 

strategy to combine partial solutions to get a global solution in order to choose meaningful diameters. 

These diameters were not the same over the whole city according to the previous results and in 

opposition to the initial idea.  

To summarise, the analyses of the modelling activities by the students showed an intensive usage of 

heuristic strategies, partly referring to the various phases of the modelling cycle and partly as intuitive 

usage.  

Heuristic strategies as strategic interventions 

The heuristic strategies that were used quite often intuitively by the students in the modelling process 

can be transferred into strategic interventions by tutors, if the students are not able to continue their 

work on their own. In the following examples for these activities are described, which were shortly 

included in the teacher training beforehand and which were used by the tutors, but not as intensively 

as wished, probably due to their low importance in teacher training.  

In each situation, where an analogue acting to previous work occurs, the following hints are possible: 

“This work is analogue to something you have done bevor!” or “Calculate this in the same way you 

did in the traffic light problem”. 

While constructing the real model the simplification of the situation is essential. “In your first 

approach build the real model as simple as possible – for this, it’s a good idea to describe the model 

as symmetric as possible!”   

The idea to break down the problem into sub-problems can be initiated by “For this problem you have 

to work on several steps – try to solve only one simple part at the beginning and then try to use these 

result for the next steps!” 

The idea of using special cases can be implemented as follows: “If you have no idea how to go on, 

select specific numbers and work with them! Just work on special cases in the beginning!” As shown 

above this strategic intervention is a powerful mean for modelling activities.  

The heuristic strategy For optimisation you have to vary the input quantity can be helpful for students 

who are not familiar with functional thinking. The following hints can be given:  “You calculated 

with 23 bus stops. What happens if you use more or less bus stops?” “Vary the number of bus stops!” 

“If you look for an optimal solution you have to make sure that a nearby situation is less good!” 

To summarise, these examples show how a heuristic strategy can be used to create a strategic 

intervention. Depending on the work of the students, more or less information on the concrete 

modelling problem can be included in the intervention in order to give a less abstract input to the 

students if necessary.  

Summary and conclusions 

The empirical study displays a great variety of heuristic strategies used by the students within their 

modelling activities, a few were developed intuitively, a few derived from the description of the 

modelling cycle introduced beforehand. 

An important result of the study is that strategic interventions often were successful when a tutor 

supported students working on complex modelling problems, because the usage of these heuristic 



strategies is not self-evident. Because the usage of adequate strategic interventions by tutors is very 

hard, it often only will be possible if prepared beforehand. In order to react on the students in class in 

an adaptive way the tutor needs a deep insight into the modelling process, the modelling problem, 

possible solutions as well as heuristic strategies and strategic interventions. 
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Metacognitive modelling competencies are an essential part of modelling competence. When 

working on a modelling problem in small groups, the metacognitive modelling competencies of an 

individual may be less important, but in particular those shared in the group are of major 

importance. In this paper, results of a pilot study are presented which clearly indicate that 

measuring metacognitive group competencies is challenging. Furthermore, it is shown that the 

measurement of metacognitive competencies of individuals is not sufficient to get insight in the 

students’ metacognitive behavior. 

Keywords: Modelling competencies, metacognition, group work. 

Introduction 

Solving complex modelling tasks in mathematics education in school in Germany is usually done in 

small groups, at least in tandems. The reason for this is not the promotion of skills for cooperative 

collaboration - basic skills in this regard are taken for granted. Rather, there is the conviction that 

such complex problems can only be solved by students, if the ideas and skills of many are shared. 

This does not only refer to the so called sub-competencies of modelling competencies, which are 

necessary for getting from one phase of a modelling cycle to the next, but also concerning 

overarching skills such as metacognitive modelling competencies. However, in recent years, 

research on modelling competencies has merely focused on individual students. Thus, group 

dynamics were often neglected. This paper presents first results of a pilot study, in which students’ 

perception and attitude towards metacognitive strategies used by themselves as well as by group 

members were measured by using different instruments for data collection. 

Theoretical background 

Modelling competence 

Working on modelling problems successfully and goal-oriented requires modelling competence. 

Although there is no in general accepted concept about which competencies are comprised, the 

definition of Maaß (2006) is widely accepted. According to her definition, modelling competencies 

include “abilities and skills to conduct modelling processes adequately and in a goal-oriented way; 

as well as the willingness to put these abilities and skills into practice.” (Maaß, 2006) Here it 

becomes obvious that those competencies, necessary for getting from one step of a modelling cycle 

to another, are surely part of modelling competence (Kaiser, 2007). Furthermore, the definition 

given above, indicates that appropriate beliefs and insights as well as comprehensive competencies 

such as working cooperatively in groups, communicating with each other and metacognitive 

competencies are necessary as well. 

Metacognitive competencies  

The concept of ‘metacognition’ is a fuzzy one. Schneider and Artelt (2010) define metacognition as 

“people’s knowledge of their own information-processing skills, as well as knowledge about the 

nature of cognitive tasks, and of strategies for coping with such tasks. Moreover, it also includes 



executive skills related to monitoring and self-regulation of one’s own cognitive activities.” This 

definition provides the most common distinction of metacognition into metacognitive knowledge 

from metacognitive skills (often called metacognitive strategies). Thus, metacognition comprises 

metacognitive knowledge about the specifics of modelling tasks, the knowledge about appropriate 

strategies for working on modelling tasks successfully and knowledge about person’s own skills 

and competencies and as well as those of other people involved the modelling activity. Furthermore, 

the procedural aspect of metacognition contains the use of strategies for planning, monitoring, 

regulating and evaluating the whole modelling process (see Vorhölter & Kaiser, 2016)  

For solving a modelling problem successfully and goal-oriented, both aspects of metacognition 

mentioned above are necessary: A complete lack or only a very low level of meta-knowledge about 

modelling processes and problems can result in considerable problems when working on such tasks. 

For transitioning between the stages of a modelling process and for dissolving cognitive barriers 

while working on them, meta-knowledge as well as metacognitive strategies are needed (Maaß, 

2006). Regarding problem solving processes, for example Schoenfeld (1992) points out the 

importance of planning the solution process. Furthermore, monitoring each other by reciprocal 

asking and answering metacognitive questions while working on a complex task can improve 

mathematical performance as well as metacognitive competencies at the same time (project 

IMPROVE, Mevarech & Kramarski, 1997). This finding is confirmed by the conclusion of Goos 

(1998): collaborative interactions deliver metacognitive benefits. However, not only metacognitive 

strategies referring to planning, monitoring and regulating the modelling process are of great 

importance for solving modelling problems: Blum (2015) points out that reflecting one`s own 

activities is crucial for transferring knowledge and skills from one task to another. 

Important metacognitive strategies for working on modelling problems in small groups 

The influence of metacognition on learning results was investigated in many studies, but the 

conclusions are ambiguous, as mentioned above. A reason for the ambiguity may be the fact, that 

metacognition is normally measured regarding a single person and correlates with her/his own 

mathematical performance. Solving modelling processes, however, is usually done in small groups. 

Therefore, one has to distinguish between the performance and metacognitive competencies of 

single team members and those of the group as a whole. But research on metacognition in the past 

has merely focused on individual processes. „By focusing on the individual student, researchers 

have failed to address the dynamics required for progressive knowledge building by collaborative 

learning groups“ (Chalmers, 2009). However, “team cognition emerges from the interplay of the 

individual cognition of each team member and team process behaviors.” (Cooke, 2004) So to solve 

a modelling problem successfully, not the individual, but the group competencies are crucial: 

Students have to share their knowledge and their competencies (Artzt & Armour-Thomas, 1992). 

Thus, for working on modelling problems successfully in small groups, metacognitive strategies are 

of great importance. In previous studies at the University of Hamburg the following strategies were 

identified as those, that were used by students as well as classified as useful or even necessary:  

 Strategies for planning:  

▪ P1: Subdivide the solution process in several steps, 

▪ P2: Allocate parts of work to different team members, 



▪ P3: Structure the solution process according to the time available, 

▪ P4: Choose useful solution strategies 

 Strategies for monitoring and, if necessary, for regulating the working process  

▪ M1: Identify different kinds of red-flag-situations 

▪ M2: Notice incomprehension 

▪ M3: Keep track of the time available 

▪ M4: Check the work habits 

▪ M5: Reconsider solution strategies  

 Strategies for evaluating the modelling process to improve it 

▪ E1: Evaluate the strategies used  

▪ E2: Reflect on the working habit 

▪ E3: Validate on the solution (cf. Schroeder, 2013) 

The identified strategies were used for developing instruments for measuring students’ use of 

metacognitive strategies while modelling, as shown in the next paragraph. 

Measuring metacognitive strategies  

In general, for measuring procedural metacognitive modelling competencies, two possibilities exist: 

Online-methods such as thinking aloud, observations, eye-movement or logfile registration enable 

process diagnostics concurrent to task performance. Thus, a deeper look into the metacognitive 

behaviour of students is possible without disturbing and influencing them too much. However, these 

methods cost a lot of time and money. Therefore, they can only be used for small samples. While 

using offline methods like (prospective or retrospective) interviews or questionnaires, the results 

rely on the students’ self-reports. These methods bear the risk that strategies may be used 

unconsciously or their use may be forgotten by the students. Furthermore, the item formulation may 

remind the students on the usefulness of certain strategies. Consequently, they will answer 

according to their metacognitive knowledge and not on basis of their behaviour. However, in 

contrast to observations and thinking-aloud-protocols, processes which were not verbalized because 

of different reasons can be measured with the help of questionnaires or interviews. In addition, 

questionnaires can be used for bigger samples. (Veenman, 2011). 

For obvious reasons, the development of a questionnaire is desirable. For doing so, the identified 

metacognitive strategies mentioned above were used as a basis. The questionnaire used in this study 

consists of 40 items divided into the sub-processes of planning, monitoring, regulating and 

evaluating, 27 of them concern individual metacognitive strategies, 13 items regard group 

strategies. Students are asked to judge their use on a five-point-scale. Furthermore, students are 

asked to judge their motivation to work on the task, the task difficulty and their satisfaction with 

their small group. To give an impression of the questionnaire, selected items and the relation to the 

coding guideline presented above are shown in Table 1. 



 

 

Item 

Relation 

to coding 

guideline 

1.1 I have thought about how to solve the Problem best on my own. P1 

1.2 We tried to recognize possible steps together. P1 

2.1 I questioned my own ideas. M5 

2.2 I questioned the others’ ideas. M5 

3.1 When we found a solution, I reconsidered the whole solving process.  E1 

3.2 When we found a solution, we were wondering what we can do better next time. E2 

Table 1: selected items of the questionnaire 

Research questions 

As presented above, metacognitive competencies seem to be necessary for working on modelling 

processes successfully. Therefore, teaching units for fostering these kinds of competencies are 

desirable. To evaluate these teaching units, instruments for measuring metacognitive competencies 

are needed. Thus, a questionnaire for measuring students’ individual metacognitive modelling 

competencies as well as those of a small group was developed. In the study presented in this paper, 

the students’ self-reports in the questionnaire were compared to experts’ ratings on the students’ use 

of metacognitive strategies while working on a modelling task and to students’ self-reports in an 

interview afterwards. Hence, the research questions of this study are: 

 For which metacognitive strategies – at an individual as well as at group level - do the 

students’ statements in the questionnaire correspond with experts’ ratings as well as with 

students’ statements in interviews?  

o Which metacognitive strategies can be measured more reliable by students’ self-

reports? 

o Is any further information required to interpret students’ self-reports? 

o Which metacognitive strategies can be measured more reliable by experts’ ratings?  

Design and methods of the study 

For answering these questions, students of grade nine of three different classes were introduced to a 

modelling cycle and then worked in groups of four on a modelling problem. The working process 

was videotaped. After working on the problem, the students were asked to fill in the questionnaire 

presented above. While doing so, they were not allowed to speak to each other and discuss the 

items. In the afternoon, students were interviewed using a stimulated recall-interview (Gass & 

Mackey, 2000). For this, selected scenes from the video were shown to them and they were asked to 

comment them. Afterwards, some questions about their attitude towards the importance of 

metacognitive strategies were posed.  

To answer the research questions, the videos as well as the interviews were analyzed using the 

items of the questionnaire as coding guideline, following qualitative content analysis (Mayring, 



2010). Those codings were compared with the answers in the questionnaires. In the next section, 

first results from the study of one of the small groups are presented.  

First results of the study 

The group consists of four girls, which are named Anna, Julia, Olivia and Lea in this paper; three of 

them were interviewed afterwards. Anna, Julia and Olivia all mentioned in their interviews that they 

were used to work together in this group; Julia indicates in the interview, that Lea is a new student 

and is not familiar with the other students. She assumes that this might be the reason for Lea not 

taking part during group work.  

In the following, special attention is paid to items that were answered very differently by the 

students within the small group or items for which the different sets of data provide different 

information. Thus, students’ statements in the questionnaire concerning selected items of the sub-

processes of planning, monitoring and evaluation will be compared with the respective statements 

in the interviews as well as with outcomes of the analysis of the videos. An overview of the 

students’ statements in the questionnaire is shown in Figure 1. 

Figure 1: selected students’ judgements in the questionnaire 

In the questionnaire, Julia and Anna indicate that they worked out a plan own their own before 

planning the solving process together, whereas Olivia only did this partly and Lea did not plan on 

her own at all. Their perception of developing a plan in the whole group differs (see Figure 1). 

Thus, questions on the causes of these differences arise. When analyzing the video, one can clearly 

identify a scene in the beginning, in which the group is discussing how to proceed. You can see that 

Anna is the one, who develops a plan, whereas Julia and Olivia are not convinced and ask several 

questions. Before their questions are answered satisfactorily and before they are convinced, Anna 

starts to work. This scene was shown to the girls during the interview. When asked to comment on 

the scene, Olivia did not say much about the planning process: 

Interviewer: How did you proceed in this situation? 

Olivia:  I don’t really know. Actually, Anna said we should use a scale and then we knew 

what to do. 



Only when asked about the necessity of having a plan, she talked about the importance of planning: 

Olivia: Most times, planning is better, because you then know this is the next step, and 

then that step.  

Anna on the other hand spontaneously commented her behavior: 

Interviewer:  In this scene, you have decided how to solve the problem. How did you decide? 

Anna:  I said how to, I don’t know. We have. I had the idea of scale and then, Julia 

wanted to calculate the volume. But then we decided for the scale. 

Summing up, the statements in the questionnaire express the level of conviction concerning Anna’s 

plan. This suggests that the students’ perspective on group planning was measured correctly, 

although the statements regarding group planning differ. 

Regarding the sub-process of monitoring, both Anna and Olivia state in the questionnaire that they 

have not or only to a very small extent questioned their own ideas, but to a higher extend others’ 

ideas (Table 1, 2.1 and 2.2). Comparing this data with those from expert ratings and from the girls’ 

statements in the interview, different reasons for these statements are revealed. By analyzing the 

video of the girls’ working process, Anna can be described as the one, who brought in the most 

ideas and managed the group in some ways. Although she wasn’t aware of doing so during group 

work, she recognizes her behavior in the interview when asked to comment the scene:  

Anna: I said that doesn’t matter, I took over power and blocked other’s suggestions and 

explanations. Seeing my behavior frightens me, I did not realize I was doing this.  

Thus, her statement in the questionnaire indicates that she was a group leader that did not approve 

of others’ ideas, because she was very convinced of her own. In contrast, Olivia did not participate 

with her own ideas or took over any other active responsibilities. However, it becomes clear from 

several statements that she was monitoring the whole process and questioned the process if 

necessary. But based on her statements in the interview, it becomes clear that she is not aware of 

doing so herself:  

Interviewer: And what about looking about one’s own shoulder? […]  

Olivia: I don’t think so. 

Interviewer: Why not? 

Olivia: I don’t know. We are a group that simply work. And then, ready. 

Thus, Olivia uses metacognitive strategies of monitoring unconsciously. This makes clear that it is 

sometimes necessary to have further information about the group processes and the different roles 

of the students. One possibility are ratings by experts. However, those are not sufficient solely, as 

one can see in regards to Lea. She did not say a word while working on the problem, but states to 

have monitored the whole process. If her judgement is right, it cannot be proved. But as the answers 

from the questionnaire do not count regarding marks and it was clear to the students that their math 

teacher will not get their judgements, you can state that Leas statements are correspondent with her 

perception of her own behavior. 



The students’ statements about evaluating the whole modelling process correspond and match with 

the researchers’ analysis completely: The group did not evaluate their working process significantly 

(except of Julia). 

Conclusion and outlook 

The selected results of the pilot study presented above illustrate in a considerable way the 

importance of sharing metacognitive competencies in a group: Presumably, none of the girls would 

have solved the task on their own. Even Anna, the “group leader”, needed Julia and Olivia for 

monitoring and validating the modelling process. However, it also becomes clear that measuring 

students’ metacognitive competencies is challenging. Measuring metacognitive group competencies 

is even more challenging. In this study, different methods for measuring the use of metacognitive 

strategies while working on a modelling problem in small groups were used: students had to fill in a 

questionnaire and were interviewed. Furthermore, their behavior was judged by researchers.  

The presented results clearly show that some answers in the questionnaire are not consistent with 

statements in the interviews or with the analysis of the students’ working process. In addition, 

students’ judgements about incidents during group work differ. 

As presented above, almost all differences could be explained by consulting not only one, but 

different items or by using all three datasets. However, not all students, who take part in the main 

study (about 600), can be interviewed nor can their group work be analyzed. Therefore, it should be 

analyzed next, if there are any key or filter-items in the questionnaire that give information about 

how to judge other items. In accordance, the items have to be identified that can be rated by experts 

better than by students themselves and it has to be analyzed whether this is a question of special 

items in general or a question of students and the role of the students in small groups.  
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Introduction 

Beginning with the first Pisa study in 2000 (OECD, 2001) there is a worldwide discussion of an 

appropriate education in the so-called STEM subjects. One cause was the alarming fact that in many 

countries the majority of secondary school students fail to reach proficiency in math and science 

(Kuenzi, 2008). One significant reaction to the above mentioned debate was to strengthen the role of 

mathematical modeling in teacher training and the curricula. In Germany, this can be seen from the 

fact that mathematical modeling is mandatory in most of the recently introduced master programs 

for mathematics teachers. Moreover, there is a strong increase in the number of publications on 

mathematical modeling of real-world, realistic or authentic problems over the past decade. The 

following definition is due to Bock & Bracke (2013): 

Definition 1: An authentic problem is a problem posed by a client, who wants to obtain a solution, 

which is applicable in the issues of the client. The problem is not filtered or reduced and has the full 

generality without any manipulations, i.e. it is posed as it is seen.  A real-world or realistic 

problem, is an authentic problem, which involves ingredients, which can be accessed by the 

students in real life.  

Real-world problems and authentic problems are used and studied in many different modeling 

activities such as the TheoPrax method (TheoPrax), modeling weeks and modeling days, the Junior-

Engineering Academy (Bock & Bracke, 2013), Fraunhofer-MINTeC1 Talents (Bracke et. al., 2015). 

Especially in TheoPrax and also the modeling activities in vocational education (e.g. Wake, 2014) 

the activities aim towards a specified product from the beginning. In product management a product 

is a deliverable or set of deliverables that contribute to a business solution. In (Kotler et.al. 2006) it 

is defined as “anything that can be offered to a market that might satisfy a want or need” (p. 230). In 

the client-provider situation the product thus is the good sold to the client by the provider. It, 

therefore, is directly related to the needs of the client meaning the task the client gives to the 

provider. In the real world, e.g. in industry, an actual client is not really interested in mathematical 

models – very unfortunate to most of mathematicians - but mostly in a tool or a strategy he can 

directly use for his purposes. In our opinion for modeling activities having real-world or authentic 

problems this is a dimension which is to be included into the existing modeling process. For 

authentic and real-world problems we therefore define the notion of a product. 

Definition 2: In a mathematical modeling situation (with an authentic and real-world problem) a 

product is a deliverable in the language of the client which satisfies the needs incorporated in the 

                                           
1 See also:  Fraunhofer MINT-EC Talents programme. http://www.fraunhofer.de/de/jobs-karriere/nachwuchsfoerderung 

/mint-ec-talents.html  and MINT-EC e.V. http://www.mint-ec.de 

 

http://www.mint-ec.de/


task given by the client to the provider in such a way, that the client can use it directly for his 

purposes.  

Research questions 

At the University of Kaiserslautern modeling activities including products have been performed for 

years. Even in the first modeling week in 1993 one can find in 3 of 8 projects concrete products 

such as computer programs and strategies. It is planned to study how modeling tasks and the 

development of products changed during this time based on the reports of past modeling activities. 

It is to expect that both changed with the introduction of computers and the increase of 

programming skills. For this purpose we intend to analyze existing material from the past 23 years 

on how strong the focus on project orientation in the modeling tasks have been. The use of 

computers during the modeling weeks is well documented, however the data is not enough for 

empirical studies. Thus for a more involved study we plan to gather material from other universities 

involved in modeling weeks. Furthermore we want to investigate how the client action during the 

modeling process changes the whole process of the modeling cycle and the product itself. A product 

can in reality be produced without a modeling cycle; on the other hand the modeling cycle can be 

performed without producing a product. However the quality of the product can be improved by an 

iterated mathematical modeling process in most cases. The client in this case plays the role of an 

external control in the sense that he/she will accept or not the product. He/she can also ask for new 

features or ask for specific extensions.  To study this we plan to apply different approaches (with 

client/without client) to different but similar groups in modeling activities. The performance of the 

group should be investigated via video analysis, such that we can estimate how often a modeling 

cycle was performed. 
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In the Mathematical Working Space (MWS) model, an epistemological plane and a cognitive plane 

are introduced with a focus on their interactions related to semiotic, instrumental and discursive 

dimensions (Figure 1a). The model is devoted to the analysis of mathematical work with, 

specifically, paradigms guiding and orienting the work. Numerous researches are based on the 

MWS model and the reader may refer to special issues in journals such as Bolema 30(54) and 

ZDM-Mathematics Education 48(6) in which an introduction to the model is given in the survey 

paper. Nevertheless, until now, few studies on modeling tasks have been based on the MWS model 

and we want to highlight recent researches, in particular coming from PhD studies within our team. 

Based on the modeling cycle (figure 1b) proposed by Blum and Leiss (2005), we suggest, in the 

poster, some adaptations which help to understand how MWSs can be used. The whole modeling 

process is not taken in its whole, and we focus more on how the analysis can be refined, mostly 

between phases 3 and 5 of the cycle, in relation to activity in different mathematical domains. 

 

Figure 1a: MWS diagram; Figure 1b: modeling cycle (Blum & Leiss, 2005) 

Nechache (2016) suggests describing the modeling work in probability situations, with the MWS 

framework. She identifies the importance of the theoretical referential of the MWSProba in the 

constitution of the real model. Then, for the analysis of the mathematical part, she fully uses the 

MWSProba. In the same way, the MWS model can be used for studying other mathematical domains. 

Derouet (2016) proposes a similar type of use for the mathematical part, but she associates sub-

phases to the stages of the cycle in order to investigate the progress of the modeling process. She 

isolates a part of the cycle containing “real model” and “real results” that she names pseudo-

concrete. It allows her to identify, in a modeling situation related to continuous probability, a work 

within the MWSProba in various working paradigms. 

In these studies, the MWS model allows to refine the analysis of the mathematical part by taking 

into account a first horizontal mathematization followed by a second vertical mathematization 

allowing to strengthen the mathematical model. Other types of change, or transition, are possible, 



like the change of MWS or mathematical domains. In his study in relativist kinematics, Moutet 

(2016) suggests an extension of the MWS model to take into account a change of matters. He 

considers a second epistemological plane for physics, and he studies the interactions between these 

two planes and the cognitive level. 

In these studies, simulation associated with digital models can also be considered as an important 

stage of the modeling process. It plays two different roles. The first one is in relation to the 

development of the real model with a simulation close to the initial situation (urn model or a 

calculator which proposes rolls of dice or coin, in probability). The second role presupposes a 

stronger mathematical expertise in the MWS of the domain at stake as, for example, the 

implementation of an algorithm of dichotomy in analysis. 

Hence, the use of the MWS framework can enrich and strengthen the analysis of the modeling 

process based on the study of a cycle (figure 1b) in connection with a first resolution of the problem. 

It constitutes a first interaction between MWS and the modeling cycle, as a first cycle1: The 

modeling problem has been mathematized and it is possible to identify the epistemological and 

cognitive components of the MWS in relation to the student’s activity and realization in the 

different domains and paradigms. But we can also, in a more didactic way, think of a second cycle 

aiming at a better understanding of the model and of the mathematical objects introduced to solve 

the problem by students. In that case, the modeling task proposed by a teacher aims not only at 

solving a real problem but more deeply at exploring and understanding the numerous uses of a 

mathematical notion, enriching the MWS, in particular the theoretical referential. This is what we 

are developing in a work on progress on the exponential function. 
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The research aims at introducing modeling tasks with an ultimate goal to engage students more 

actively into learning mathematics through tasks that are biologically ‘colored’. My focus is on the 

individual progression (if any) of students’ mathematical competencies during a sequence of 

modeling sessions as part of their first year mathematics. My goal is to explore the nature of 

progression within the competency profile of participating student, the relation between modeling 

processes and this progression and what transformations are applied in these sets of competencies. 
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Short description of the research topic 

The literature provides documentation of learning benefits by engaging students in mathematical 

modeling: educational benefits (Kaiser et al., 2006); students engaged in modeling may develop a 

deep understanding of the content and an ability to solve novel problems and that it can bring 

students into alignment with the epistemic aims of science and help them develop more 

sophisticated ideas within the area of study they are focused on. I adopt a design based research 

approach in which an iterative process of design, implementation and analysis takes place. 

The research questions 
 

RQ_1) What is the nature of progression in a student’s competency profile through the course of the 

mathematical modeling unit? 

RQ_2) Considering a set of competencies (competency profile) as a body of knowledge, what 

transformations are applied in the course of the modeling sessions? 

Theoretical and methodological framework 

My theoretical approach is informed by the anthropological theory of the didactic (Bosch & Gascón 

2014) and, in particular, by the distinction between four bodies of knowledge: scholarly knowledge; 

knowledge to be taught; knowledge taught; and knowledge learnt. A significant work on 

mathematical and modeling competencies has been done by many researchers (e.g. Maaß 2006; 

Blum & Kaiser 1997) while Niss (2003) created an 8-fold (KOM project) system of mathematical 

competencies. I decided to proceed to an adaptation of the KOM model adjusted to the above 

mentioned literature and the specific context I am working on: students of a Biology Department. 

Part of my analysis will be based a 3-D (radius of action, degree of coverage and technical level) 

model of progression for each competency from Niss and Højgaard (2011). I have also constructed 

a coding system in order to “attach” specific students’ expressions to a certain mathematical 

competency. These constructs form a first set of tools for data collection and analysis.



The context and methods for data generation and analysis 

The context (or arena) of this study is the Biology Department of a Norwegian university and a 

mathematics course for first year Biology students. My main study took place with first year 

Biology students. Modeling sessions occur weekly during the first semester. These sessions (for 

groups of 3 to 4 students) are 50 minute in length and supplement lectures to the whole cohort of 

students. Tasks in the sessions are designed in five 2-week blocks focused on a subset of 

mathematical competencies that students should bring into action in order to complete the task. 

To address RQ_1 I will, as above, explore selected students’ small group discourse activity. Data 

were collected through audio-visual recordings of students working on tasks synchronized with 

their writing (using Smartpens which records audio and visual data accompanying written data). At 

RQ_2 

I am addressing the question: what is the “offered body of competencies” (an a-priori analysis). For 

the next three steps I will use my data to provide answers or useful directions. A task-design 

analysis, for example, can provide what the existing literature provides on population dynamics and 

exponential growth (scholarly knowledge) but also which task was finally decided to be presented 

(knowledge to be taught) and this will happen for every different modeling block. 

Potential significance and contribution 
 

My research will contribute to the following areas (1) dynamic competencies profiles for students, 

(2) a critique of Niss’ (2003) 8-fold system of mathematical competencies, and (3) a description, in 

the context of mathematical modeling in the Biological Science, of ATD’s four bodies of 

knowledge. 
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Improving the learning of students has been a concern in research in Mathematical Education. 

Consequently, didactical aspects and tools for teaching of a successful mathematic, have received a 

growing attention in different studies. The Didactical Analysis (DA) is considered by Rico, 

Lupiañez & Molina (2013), as (a) a tool for teaching training; b) an instrument for curricular 

innovation; and (c) a methodological and research tool, this latter considered in this study. The DA 

is a cyclic process which implies four sub analysis: content analysis, cognitive analysis, instruction 

analysis and performance analysis (Gómez, 2002). In the content analysis, we find the 

Phenomenological Analysis (PA) of a concept, that consist of "describing what are the phenomena 

for which (the concept) is the means of organization and what relationship has the concept or 

structure with these phenomena" (Puig, 1997, p.62). Freudenthal (1983) names didactical 

phenomenology to the phenomenology that is characterized by consider the concept as a cognitive 

process, as a subject of teaching and to be learned by students, that beside organizes phenomena in 

the student`s world and proposed in the teaching of concept. For this author PA’s aims is to serve as 

the basis for the organization of mathematics teaching. 

The intention of this poster is to present results of a PA of line concept on the Cartesian plane, 

based on the DA of this concept, to answer: what is the knowledge related with the line used for? 

The data were collected between 2013 and 2014 through a books selection of mathematical and 

didactics texts of secondary level. The PA of the line was carried out by documental analysis of 

these texts and its construction was realized in three phases: (i) define mathematical substructures of 

line concept on the Cartesian plane (mathematical-world), (ii) define the phenomena that each 

mathematical substructure organizes (real-world), (iii) establish the relationship between 

substructures and phenomena.  

Our proposal consists to show that from this PA, mathematics teachers can organize the teaching of 

the line on the Cartesian plane promoting the mathematical modelling process of Borromeo Ferri 

(2006), where phenomena and mathematical substructures are part of different sets, but they are 

related each other according to the proposed steps in the modelling process. In our study, we 

identified four contexts that lead to this modeling process, each one referring to phenomena and 

substructures of how organize the contents of line: (C1) the slope of a linear trajectory with respect 

to a fixed reference line, (C2) the linear relationship that occurs between two magnitudes, (C3) the 

behavior between two or more linear relationships, (C4) the distance between two or more objects. 

For instance, in C1, a possible real-world model related to the mathematical substructure of the 

slope of the line is as follows: 



The picture presents the information of a car when climbing p a road. In this one is 

showed the position of the car in two 

different moments, when it has moved 50 m 

and 350 m respectively. 

What is the slope and angle of inclination of 

the road?  

What is the relationship between the slope 

and the tangent of the angle of inclination? 

In relation to C2, a possible real-world model related to the mathematical substructure of the linear 

equation of two variables (or the equation of two variables of first degree) is the following: 

Carlos has a bank account where he earns 0,5% interest from the initial savings each 

month. If Carlos opened the account with 2000€ ten months ago, how much money will 

Carlos currently have? How many months are needed to have 8000€? 

In the poster, we would present examples of each context, highlighted the details to consider them 

like starting points to promote the modelling process in the learning of the line in the Cartesian 

plane.  
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Introduction 

This chapter introduces the contributions discussed during the working sessions of the TWG8 

“Affect and mathematical thinking” in CERME 10.   

In this edition our TWG has been enhanced by the inclusion in the group and the contribution in the 

discussion of the researchers from the TWG7 “Mathematical Potential, Creativity and Talent”. 

The quantitative data about the participation to our group confirms the interest toward affective 

issues in the field of Mathematics Education: 41 manuscripts were initially submitted to the groups, 

26 were accepted for the discussion, and finally in these proceedings 24 papers and 2 posters are 

included.  

Moreover, our group confirms its spirit of inclusion: 12 different countries were represented and 11 

newcomers welcomed. 

The papers (24) and the posters (2) were presented and collectively discussed in the first six 

sessions. Presenters had 10 minutes (5 minutes for posters) to introduce the key-ideas of their 

papers, then we developed a 10 minutes discussion. At the end of each session, 20 minutes were 

used to discuss the main aspects emerged in the section. 

In the fourth section, one hour has been devoted to the presentation of the ERME Chapter about 

affect: the draft of the chapter was been sent to all participants before the conference, and each 

participants had to share two questions, comments or criticisms about this draft. The collected 

comments are been the thread of the discussion related to the chapter. 

In the seventh and last session, we discussed the main themes emerged during our previous work, 

developing the structure of the report for the final day.  

The issues emerged in TWG8 at CERME10 and the related discussion  

The analysis of the affective focus of the papers discussed in our TWG reflects the current diversity 

of interests and approaches inherent in the field of affect research. Many different affective 

constructs emerged: beliefs, motivation, values, emotions, needs, relaxed, memory, aesthetic, 

confidence, meta-affect, identity, self-efficacy, meaning, motivation, values, images, views, flow, 

perseverance, tolerance, interest. 

It is important to underline as many of these constructs are clearly related, sometimes – and this is a 

well-known critical aspect in the affective research – different labels are used to indicate the same 

constructs, and vice versa. Sometimes the same term is used in a very different meaning by different 



researchers. As we will underline later, this communicative issue is particularly critical for the 

emotions. 

In our discussions, we underlined the lack of conceptual clarity again, and called researchers to use 

a clear definition in their studies and to label the constructs appropriate.    

Despite this variety, we recognized five recurrent and crucial dimensions involved in the discussion 

of our group: students, problem solving, self-concept, emotions and context.  

In the following, we briefly discuss some aspects related to these five dimensions.  

Students 

Enriched by the contribution of researchers from the TWG7, we have long debated about the so 

defined “achievement problem”, discussing around the following clearly related questions: 

 Looking at school transitions: what are the effects of these transitions on school 

achievement? How and why do the parameters of the school achievement change 

dramatically from a school level to the next?     

 What is the relationship between school achievement and mathematical talent? 

 What is the distinction between low and high achievers in mathematics apart from the 

grade? 

We also argued as it would be interesting to develop research around the above themes, looking at 

students who are studying mathematics in different contexts (for example modelling, IT 

environment, etc.). 

Problem solving  

There is a known and long tradition of research about affective construct and problem solving. This 

kind of research it is particularly important for our field, since it shows two crucial aspects: the strict 

relationship between affect and cognition (problem solving activities surely involve cognitive 

aspects but also strong emotional reactions); the relevance and peculiarity of the research on affect 

in the specific context of mathematics: indeed problem solving is one of the main activity for 

mathematicians. 

As usual, one of the main issues is how teachers can create the context in order to develop the 

appropriate mathematical activities and environment for positive affect, increasing motivation and 

also performance. In several discussions within our group, it emerges as problem solving is not only 

an essential activity for developing the mathematical competence, but it has also the potential to 

draw attention and to motivate students, because – in some sense – problem solving is one of the 

beautiful side of math (the eminent mathematician Ennio De Giorgi used to say: a nice problem, 

even if you do not solve it, accompanies you).  

Many papers presented in our group stressed the relevance of two aspects in order to take advantage 

of the affective potential of problem solving.  

The first one is related to the setting: here setting is understood in a broad meaning, on the one hand 

we mentioned the classroom climate – a positive climate is needed to develop significant problem 

solving activities, in particular it appears crucial to not identify problem solving activities and 



assessment – and the context (for example the spatial organization of the classroom). On the other 

hand, we mentioned the organization of the problem solving activities with the promotion of 

collaboration and discussion among students.    

The second one is related to the choice of the mathematical problem. It is confirmed as only 

cognitive demanding (and not routine) problems can foster students’ engagement, but, above all, 

can challenge students shifting their attention from products to processes. In particular, it is also 

crucial the monitoring of the possible imbalance between skill and challenge that student can 

experience during problem solving. In this setting, problem solving can be a tool to involve high-

achievers, but also low-achievers, in mathematical activities and increase positive affects towards 

mathematics.  

Self-concept 

The fact that students/teachers self-concept strongly affects their choices, the effort they devoted and 

their perseverance in doing some specific activity is one of the fundamental points in our field. 

Therefore, it is not a surprise that many discussions in our group focus around self-concept and 

related constructs, such as: self-efficacy, self-perception, self-regulation, identity, personal meaning.  

In particular, three aspects related to the self-concept have been analysed and discussed in this 

edition of the TWG8:  

 How students’ self-concept influences their interpretation of the mathematical environment; 

 How the context affects the self-concept, in particular it emerges the idea that context 

provides available identities; 

 The connection between the self and the emotions (in the context of mathematics education). 

Self has seen as a filter for interpreting experiences. 

Emotions  

Obviously the study and the discussion around emotions is a must in the group of affect.  

In particular, we discussed some crucial dichotomy related to the concept of emotion:  

 Emotions sometimes are a cause for some didactical outcomes, but sometimes are a 

symptom. In the first case, we see positive emotions as an educational goal, in the latter 

emotions are an indicator; 

 Emotions have a double nature: more rapidly changing state-aspect and more stable trait-

aspect. The study of state, as opposed to trait, is necessary to give a more detailed 

description of emotional experiences in the mathematical teaching-learning process; 

 Emotions can be the cause for opposite pathways during problem solving, or more in general 

mathematical activities (go on vs. give up). 

As usual, we also discussed how deal with two classical critical issues in the research about 

emotions: one related to the observation and the other related to the communication. 

Emotions, in truth as many other constructs, are not directly observable, therefore we never observe 

emotions, but we infer them from some indicators. Sometimes we collect information about 

emotions through self-reports, and – already at this stage – communication issues intervene; studies 



developed in different countries stress the level of emotional illiteracy of a large part of the 

population: it is difficult to reflect about emotions, and it is more difficult to have the dictionary to 

communicate them.  

The communication problem involves the field of the research not only for the difficulties related to 

the emotional illiteracy, but also for the internal communication (the communication between 

researchers): as a matter of facts, the labels for emotions have different shades in every language, 

and sometimes they are associated to a different meaning.  

Context  

Affective issues are mainly social for their nature: as we have seen, context plays a crucial role in 

the development of affective reactions. For this reason, context is always been one of the leading 

actors in discussion within TWG8. 

A still open problem is the exact definition of context: what is the context? We are convinced that 

the context is dynamic in nature (it depends on the group/individuals), and this dynamicity makes 

more complex to circumscribe it. 

In the group discussion was observed that in the context of emotion, the term ‘culture’ needs to be 

‘unpacked’ and broached not from the assumption that cultures are uniform, but rather from more 

dynamic conceits such as put forward by identity theories. 

Some studies in this edition focus on the difficulties related to the transition from a context to 

another one (for example in the school transition), analyzing how and how much these context-

transitions change affect. 
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Mathematics education researchers utilize different theoretical frameworks to study the role of 

affect in learning mathematics. This paper utilizes a discursive framework (Evans, Morgan, & 

Tsatsaroni, 2006) to study middle-achieving students' emotions in learning, utilizing technology, the 

topic of 'the quadratic function as a product of two linear functions'. The students' learning was 

videoed and then transcribed to be analyzed according to the discursive framework. The research 

results indicate that members in the middle-achieving groups claimed the collaborator positioning 

in order to learn the mathematical topic using mainly behavioral, social and cognitive processes. 

Leaders claimed their positioning through carrying out processes related to the different aspects of 

learning, mainly the cognitive, metacognitive, meta-emotional, social and linguistic aspects. 

Dominant emotions in the groups' learning were frustration, enjoyment and content.   

Keywords: Discursive framework, positioning, emotions, middle-achieving students. 

Introduction 

The affective aspect is a growing area in educational research due to its relationships with other 

aspects of students’ learning, especially the cognitive one.  In the present paper, we study middle-

achieving students’ emotions in relation to their positionings when they learned the quadratic 

function as a product of two linear functions using dynamic software. In a previous research, we 

examined students’ positioning and emotions in one group learning geometry (Daher, Swidan & 

Shahbari, 2015), where the group consisted of two high-achieving students and one middle-

achieving student. Following that study, we wondered how emotions and positioning are 

experienced by groups consisting of only middle achieving students. This paper intends to examine 

this issue, using the discursive framework (Evans, Morgan, & Tsatsaroni, 2006).  

Emotions in mathematics education  

Polya (1957) addressed the necessity to consider emotions as they influence the problem solving 

process. Later, especially in the 1980’s, researchers considered affect as a significant component of 

students' mathematical problem solving (e.g., McLeod, 1988; Schöenfeld, 1985). Emotion is one of 

the fundamental elements of the affective aspect (Hannula, 2004). Hannula (2004) describes 

emotions as connected to personal goals. Furthermore, emotions, when managed appropriately, 

become a potential tool for effective thinking rather than a disturbance to this thinking (Antognazza, 

Di Martino, Pellandini, & Sbaragli, 2015; Salovey & Mayer, 1990). In the present research, we 

intend to study, by using the discursive emotions and positioning framework, middle-achieving 

students' emotions when they utilize technology to study Algebra.  



The discursive positioning framework for studying students' emotions 

Positioning is defined as “the discursive process whereby people are located in conversations as 

observably and subjectively coherent participants in jointly produced storylines” (Davies & Harré, 

1999, p. 37). Evans, et al. (2006) suggest this discursive positioning framework for studying 

students' emotions. This framework assumes that meaning making occurs in social practices, using 

semiotic resources. Social practices have an emotional dimension that helps maintain social identity. 

Moreover, empirical data in this framework is seen as text, the analysis of which demands attention 

to its context(s). This analysis entails a combination of structural and textual phases that each 

informs the other. The structural analysis considers the positions available to or claimed by the 

participants. Positions are associated with power in relation to others, as well as with differing 

values within the discourse, which creates spaces within which emotion may arise. Usually, there is 

more than one available position for a participant, either within a single discourse or several 

competing discourses. Evans, et al. (2006) describe the positionings taken care of in the structural 

analysis: Helper and seeker of help, collaborator and solitary worker, director of activity and 

follower of directions, evaluator and evaluated, insider and outsider. 

The textual analysis considers the exchange of meanings. This phase has two functions (Evans, 

2006): (a) showing how positionings in social interactions are actually taken up by the participants, 

and (b) providing indicators of emotional experience. The textual analysis has two stages. In the 

first stage, the focus is to identify the interpersonal aspects of the text that establish the positions of 

the participants. Indicators at this stage include reference to self and others, reference to valued 

statuses (e.g. claiming understanding or correctness), modality (indicating degrees of un/certainty), 

hidden agency (e.g., passive voice) or repetition. For example, leadership is indicated by 

demonstrating knowledge or meta-emotional behavior (e.g., trying to change the negative emotions 

of the group members). The collaborator position is indicated by the activity of a group member, as 

answering questions or doing actions in response to events occurring during the group learning. 

The second stage of the textual analysis attends to (a) indicators of emotional experience that 

include: direct verbal expression (e.g., ‘I feel anxious‘), use of particular metaphors (e.g. claiming to 

be ‘coasting’ ), emphasis by words, gesture, intonation, or repetition, body language (e.g., facial 

expression); (b) indicators suggested by psychoanalytic theory, as indicators of defenses against 

strong emotions like anxiety, or conflicts between positionings (as ‘Freudian slips’), surprising error 

in problem solving, behaving strangely (as laughing nervously), denial (e.g., of anxiety). 

Research rationale and goals 

In spite of mathematics education researchers' acknowledgement of the role of affective aspects in 

mathematical education in general and mathematical problem solving in particular, research related 

to this aspect is still not widespread (Antognazza et al., 2015).  We intend to study emotions in 

problem solving using the discursive framework developed by Evans, et al. (2006). In more detail, 

we intend to analyze the positionings taken by ninth grade students and their related emotions when 

learning in groups, with the help of GeoGebra, the quadratic function as a product of two linear 

functions. Doing so, we introduce to the discursive framework the different aspects of learning; as 

the meta-cognitive and meta-emotional aspects. This will shed more light on the factors that 

influence middle-achieving students' experiencing of positioning and emotions.  



Research question 

- How are positionings taken up by middle-achieving ninth grade students, working in a group to 

learn the quadratic function as a product of two linear functions, in the presence of technology? 

- How are middle-achieving ninth grade students’ emotions associated with the positionings that 

they claim, when learning with technology the quadratic function as a product of two linear 

functions? 

Methodology 

Research setting and participants  

In a previous research (Daher et al., 2015); we analyzed the affective aspect of one group's learning 

of mathematics, where the members were both high and middle achieving students. We wondered 

how the affective aspect would be affected in just middle achieving or high achieving groups of 

students. In the present research, we analyze this aspect in three groups of grade 9 middle-achieving 

students (ages between 14 and 15 years). One group consisted of three female students (Sana, Amal, 

Asil), and two consisted of two female students and one male student each (Fairouz, Noura, Salim) 

and (Alaa, Siham, Amin). All the participating students had not worked with GeoGebra before, and 

they were introduced to it in two hours’ session before learning the quadratic function topic. 

Furthermore, the students had learned some issues in the topic of the quadratic function (the 

function's maximum or minimum, the vertex of the function and the domain of 

increasing/decreasing), but not the quadratic function as a product of two linear functions. The third 

author taught the three groups in a middle school in Israel.  

Data collecting and analyzing tools  

We collected our data using observations of the learning of the three groups. We also conducted 

interviews with their members. Every group's learning was videoed and at the end of each lesson, 

the three students in each group were interviewed individually regarding their positionings and 

emotions during learning. We analyzed the two types of collected data using the discursive analysis 

framework presented above. Moreover, we combined the analyses of the data collected by the two 

tools (observations and interviews). The findings section in this paper sheds light on this method.  

Learning material  

The three groups of ninth grade students worked with a sequence of activities; all related to the 

quadratic function as a product of two linear functions.  Following is an example of these activities. 

In the same coordinate system, we want to draw the three functions: y=x, y=x 2+  and y=x(x+2).  

- What are the algebraic characteristics of the linear function: y=x? 

- What are the graphical characteristics of the linear function: y=x? 

- What are the algebraic characteristics of the linear function: y=x+2? 

- What are the graphical characteristics of the linear function: y=x+2? 

- What are the algebraic characteristics of the linear function: y=x(x+2)? 

- What are the graphical characteristics of the linear function: y=x(x+2)? 

- What are the similarities and the differences between the characteristics of the two above linear 

functions and the characteristics of the quadratic function? 



Note: Algebraic characteristics are related to the parameters of an equation, while the graphical 

characteristics are related to the intersection points with the axes, increasing or decreasing of a 

function, etc. 

Findings 

The present research aimed at characterizing middle-achievement students' positioning and 

emotions when learning algebra with technology. Doing so, we found that mainly the students had 

the leader and collaborator positionings during a lesson. We will describe how the students in the 

middle-achieving groups claimed each of the positionings and experienced their emotions and/or 

reported them in each positioning. Doing so, we will address the following aspects of learning that 

the positioning is related to: behavioral, cognitive, meta-cognitive, social and linguistic. The 

emotional aspect of learning will be considered in light of the taken positioning.   

Collaborator's functioning  

The middle-achieving groups utilized collaboration to learn the new mathematical ideas. This is 

exhibited in that generally the members of each of the participating groups claimed the collaborator 

positioning to pursue, with the help of the mathematical software, their learning of the quadratic 

function. This claiming resulted in making the group's members learn enthusiastically to understand 

the appropriate mathematical relations. This resulted in the group's members enjoying the activity 

and being content when arriving at its solution. Thus the collaborator's positioning helped make the 

students' emotions concerning their learning experiences positive ones. 

To claim the collaborator positioning, the group members were involved with behavioral processes 

(working with GeoGebra), social processes (group discussions), as well as cognitive processes 

(mathematical reasoning). These three types of processes, not only helped the group members claim 

the collaborator positioning, but at the same time, supported their attempts, as described above, to 

perceive the new mathematical ideas. In the interview, the students associated their behavioral 

processes with positive and negative emotions: enjoyment of their work when the software helped 

them solve the mathematical problem, and frustration when finding difficulty to operate the 

software. Excerpt 1 shows this claiming the collaborator's positioning. 

A1 Sana We need to find the intersection with x for the three functions. 

A2 Amal What's the first function?  

A3 Asil 3x-2 

A4 Sana [drew the first function in GeoGebra] 

A5 Amal What's the second function? 

A6 Asil 2x+3 

A7  Sana [drew the second function in GeoGebra] Let's find the intersection points with x. 

Excerpt 1: claiming the collaborator positioning 

Excerpt 1 shows the claiming of the collaborator's positioning as connected with the behavioral 

aspect of the group's learning. This aspect is expressed by the students’ action with the Geogebra 

software (A4, A7). However, this positioning also involves the meta-cognitive aspect. The 

utterances of Sana (A1, A7) are concerned with regulating the processes of the problem solution. 



Leader's functioning 

The leader's positioning in the middle-achieving groups was claimed by directing the learning of the 

group, as well as to advance this learning towards the solution of the mathematical problems and the 

sharing of the new mathematical ideas. Moreover, leaders in the middle-achieving groups claimed 

their positioning through carrying out different types of processes, mainly cognitive, metacognitive, 

meta-emotional, social and linguistic processes. Below, we elaborate on these processes. 

The group leader's cognitive functioning was actualized through demonstrating knowledge during 

carrying out the mathematical activity. For example, Fairouz, a leader in one middle achieving 

group, argued that they only needed to know the intersection points of the two linear functions with 

the x axis in order to draw the resulting quadratic function.  

The group leader's metacognitive functioning was actualized through asking questions during the 

group learning as means to decide upon the method of solving a problem. Moreover, the group 

leader's meta-emotional functioning was actualized through trying to change the negative mood of 

the group when encountering a difficulty. For example, Alaa, a leader in a middle-achieving group, 

tried to lessen the anxiety of group members by saying: "Don't worry. It's O.K. Sure we made a 

mistake. Let's read again our solution to find it". 

The group leader's social functioning was actualized through answering other members' questions, 

asking questions and requesting actions from the group members to keep the group learning going. 

Regarding the linguistic aspect of the leader's functioning, the leaders in the middle-achieving 

groups used the first person plural pronoun to talk about the mathematical actions that they needed 

to perform, which showed them as collaborators with the other members of the group. This indeed 

happened in the middle-achieving groups but not numerously (See for example excerpt 2).  

The leader's functioning resulted in different emotions, but generally speaking this functioning 

resulted in frustration, when unable to find a way for solving a mathematical problem, enjoyment 

during the successful solution process, and content when finally solving the activity.   

Difficulties in claiming the positions of leaders and collaborators 

The members of the middle-achieving groups, due to the lack of appropriate previous knowledge in 

the subject matter and sometimes in GeoGebra manipulation, encountered difficulties in claiming 

the positions of leaders and collaborators during the process of the mathematical problem solving. 

This led to their experiencing some negative emotions. Moreover, the members of the middle-

achieving groups experienced calmness, anxiety and confusion in accordance with their leader.  

Working with GeoGebra, the members of the middle-achieving groups encountered at the beginning 

difficulties related to working with a new technological tool, which could be related to the 

behavioral aspect of the group's learning.  Excerpt 2 describes such a difficulty, where Salim, Noura 

and Fairouz wanted to draw the function (2x-9)(3x-4) in GeoGebra [B1], but found difficulty doing 

that due to not writing correctly the appropriate number of brackets [B2-B6].  

B1 Fairouz We should write 3x-4 multiplied by 2x-9.  

  [Noura started to write the expressions] 

B2 Salim Perhaps the brackets can be put afterwards, wait Noura, wait, it keeps moving. 

B3 Fairouz Write it from the beginning.  



B4 Salim No, no [He takes the mouse from Noura who seemed annoyed by the act of Salim. 

Salim works on GeoGebra] O.K. Now write it again.  

B5 Noura [Noura puts her hand on her mouth with boredom] 

B6 Fairouz [Fairouz worked on GeoGebra, then she said with annoyance] something wrong 

with the brackets. 

B7 Teacher Don't get anxious. At the beginning, brackets are tricky. Everything will get O.K. 

Excerpt 2: Students' difficulties in working with GeoGebra and related emotions 

Excerpt 2 shows some of the difficulties encountered by the middle-achieving groups, as a result of 

their behavioral functioning; specifically when working with a technological tool. Fairouz, in the 

interview, said they felt out-of-control and thus frustrated not being able to draw from the beginning 

the graph of the function f(x)= (2x-9)(3x-4) in GeoGebra. Salim pointed at the teacher's 

interference as supporting them in getting back control over their work with GeoGebra, which made 

them satisfied with their work on the mathematical problem.  

Encountering difficulties in learning the new topic, not only influenced students' positioning and 

emotions, but also colored the linguistic aspect of their learning, especially their use of pronouns. 

This is the case in excerpt 3, where the difficulty is related to simplifying an algebraic expression. 

C1 Siham We want to draw the quadratic function y=(2x-9)(-x-4). 

C2 Amin Multiply first the brackets. 

C3 Alaa (-x-4)(2x-9)= -2x2+9x-8x+36, Now we compute +9-8. 

C4 Amin -17 

C5 Siham Minus 8 plus 9. 

C6 Amin Minus 17, plus ..  [He seemed anxious, not sure of his computation] 

C7 Alaa What? 

C8 Amin Minus one or plus one 

C9 Alaa What? 

C10 Siham Plus 1. 

C11 Alaa Write -2x2+x-36. 

Excerpt 3: Having difficulty in simplifying an algebraic expression 

Excerpt 3 shows that confronting difficulty constrained the group's sense of control and produced 

anxiety. In this situation, singular pronouns or no pronouns were used.   

Discussion and conclusions 

Research of students' emotions in mathematics learning is growing (e.g., Antognazza et al., 2015; 

Daher, 2011; Hannula, 2004). The present research aimed at characterizing grade 9 students' 

positioning and emotions when learning algebra with technology. The research findings indicate 

that to claim the collaborator positioning, members of the middle-achieving group were involved 

with behavioral processes (working with GeoGebra), social processes (class discussions), as well as 

cognitive processes (reasoning). These processes helped them reach their learning goal, thus 

resulting in positive emotions. It could be said that collaboration was associated mainly with 

positive emotions as enjoyment and content, though negative emotions as anxiety were experienced 

when having difficulty in solving the mathematical problem; i.e. in arriving at the learning goal.  



To claim the leader positioning in a middle-achieving group, the member was involved with 

different learning processes, as demonstrating knowledge, which was also reported in Evans, et al. 

(2006), but their functioning was distinguished from the other group members by performing 

metacognitive and meta-emotional processes, as reported in Daher et al. (2015). These processes 

helped plan, monitor, evaluate and take decisions regarding the group learning, especially in time of 

difficulty in arriving at the learning goals. Thus, these processes helped maintain the leader 

positioning (Black, Soto & Spurlin, 2016), as they supported the leader in advancing the group 

learning.  

In addition, the leader metacognitive functioning was actualized by asking questions as means to 

decide upon the method of solving a problem. This decision making could be looked at as a social 

process (Vroom & Jago, 1974) with the goal to advance the group learning. Moreover, it seems that 

critical thinking skills, actualized in decision making, were needed to claim the leader's positioning. 

Furthermore, the goal of the leader meta-emotional functioning was to change the negative mood of 

the group when encountering a difficulty, which motivated the members' work (Leithwood, Louis, 

Anderson & Wahlstrom, 2004). So, we argue that the leader positioning was claimed by paying 

attention to different aspects of the group learning, especially the metacognitive and meta-emotional 

aspects. This leader's functioning resulted in different emotions related to the difficulty and success 

in performing the mathematical task, which could be associated with Goldin's (2000) emotional 

pathway, where generally frustration preceded enjoyment and enjoyment preceded content. This 

emotional pathway included the three dominant emotions in the groups' learning, i.e. no singular 

emotion was dominant but the emotional pathway was thus. Furthermore, the group members' 

emotional experience was influenced by that of the leader, which could be related to the emotional 

contagion suggested by Hatfield, Cacioppo and Rapson (1993), where there is tendency to converge 

emotionally with others. We say this is especially true in group learning when the other is the leader.  

Students encountered sometimes difficulties in learning the new topic. This encounter, not only 

influenced students' positioning and emotions, but also their linguistic use of pronouns. This was 

expressed in their use of singular pronouns or no pronoun at all when getting anxious for not being 

able to proceed with the carrying out of the activity.  

Future studies are needed to compare the positioning and emotions of different achievement-groups 

in solving mathematical problems. Furthermore, research is needed to verify the effect of prior 

positions of the group members on their current positioning, which the present research did not 

target.   
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The tertiary transition between secondary school and university appears to be an insurmountable 

struggle for many students. This is also the case, surprisingly, in a certain sense, of students 

enrolled in Mathematics degree courses, and therefore students considered “gifted” with respect to 

mathematics. This case seems particularly interesting from an affective point of view: these students 

often live failure in mathematics as a tragedy, and – above all – initially they are not able to 

interpret their failure. For these reasons, it appears crucial to investigate which role is played by 

emotions in the emergence and management of this crisis, and how the students’ view of 

mathematics and their self-perception develop in the tertiary crisis period. 

Keywords: Mathematics failure, affect, gifted student, theories of success in mathematics. 

Introduction and theoretical background 

As Nardi (2008) underlines, the teaching and learning of undergraduate mathematics is a relatively 

new field of mathematics education research.  

The most part of the research about this topic focuses on cognitive aspects, highlighting the 

difficulties related to the learning of advanced mathematics (Artigue, 2001). In particular, Tall 

(1991) discusses the students’ difficulties in conceptualizing some specific mathematical constructs 

(for example the notion of limit of a function), and in using the formal definitions of these 

constructs.  

Other scholars focus on the specific difficulties related to the tertiary transition, discussing the 

enormous gap between secondary and tertiary mathematics (De Guzmàn et al., 1998; Wood, 2001) 

in terms of cognitive, metacognitive, linguistic and also practical demands.  

Alcock and Simpson (2002, p. 33) underline how “certain reasoning strategies are inadequate when 

applied to university mathematics, although they might be efficient and sufficient in non-technical 

contexts and in the kind of reasoning with specific objects required by school mathematics”. 

Schoenfeld (1985) analyzes the undergraduate students’ difficulties in managing with non-routine 

tasks. Ferrari (2004) discusses the linguistic difficulties related to the shift from an informal 

approach to mathematics to a formal one. De Guzmàn and colleagues (ibidem, p. 756-757) 

underline how “many students arriving at University do not know how to take notes during a 

lecture, how to read a textbook, how to plan for the study of a topic, which questions to ask 

themselves”. 

All the scholars describe the mathematical tertiary transition as a very challenging moment for 

students: Tall (1991, p. 25), points out that it “involves a struggle (...) and a direct confrontation 

with inevitable conflicts, which require resolution and reconstruction”.  



Nevertheless, affect appears to be the ‘great absent’ in this overview about the factors playing a role 

in this transition: for example, in the previous editions of CERME, there are no reports of the TWG 

about affect related to the undergraduate level (with the exception of the study related to the 

undergraduate course needed to become a primary teacher). 

In particular, Clark and Lovric (2008), drawing on anthropological theories, describe the tertiary 

transition in mathematics as a three-stages rite of passage that includes: separation (from secondary 

school), liminal (from secondary school to University) and incorporation (into University). This rite 

of passage is characterized by a real crisis in which the consolidated routines are suddenly 

interrupted, changed and distorted.  

As Bardelle and Di Martino (2012) underline, this crisis appears to be particularly challenging for 

mathematical high-achievers in the secondary school level: it can be difficult for these freshmen to 

understand why the reasoning strategies that worked in their previous mathematical experiences 

suddenly stop working at university level. 

Therefore, it becomes interesting to investigate which role emotions play in the arise and 

management of this crisis, and how the high-achiever students’ view of mathematics and their self-

perception develop during this crisis period.  

In other words, considering the TMA-model for attitude developed by Di Martino and Zan (2010), it 

is interesting to study the development of students’ attitude towards mathematics during the tertiary 

crisis. 

With this aim, in the AY 2014/15 we developed a narrative study involving different categories of 

current and ex-students of the Bachelor in Mathematics in Pisa:  

1) freshman: to collect the voice of the subjects during the crisis period;  

2) expert students, i.e. students enrolled in the third year of the Bachelor: to understand what they 

remember about their transition difficulties, their idea about the causes of such difficulties and 

about how they overcame them;  

3) dropout students, i.e. students that have left the Bachelor in Mathematics without obtain the 

degree in Math: to collect their memories about the crisis period, in order to reconstruct their 

emotions, the motives of their resignation, their theories of success (Nicholls et al., 1990) and 

causal attributions (Weiner, 1986).   

Context and methodology 

Context. The Bachelor in Mathematics in Pisa is one of the most prestigious in Italy, the majority of 

its students is considered excellent in math during secondary school. This fact is confirmed by data 

collected for our research. We analysed data from AY 2009/10 to 2012/13: Table 1 shows the 

percentage of the high-rated students in final exam of secondary school (we define high-rated a 

mark between 90/100 and 100/100). It compares the situation in Pisa with the average from all 

Italian Bachelors in Mathematics.  



 

 2009/10 2010/11 2011/12 2012/13 

Italy 45% 42.4% 44.5% 40.1% 

Pisa 73.6% 58.6% 65.7% 60% 

Table 1: Percentage of high-rated students in the Bachelor in Mathematics, in Pisa and nationalwide. 

The percentage of high-rated students in Pisa is much higher than the global one. However, the 

dropout rates of the Bachelor in Pisa are within the national average range. 

The high concentration of above the average students and the presence of difficulties, as witnessed 

by the failure rates, make the Bachelor in Mathematics in Pisa the ideal contest for our research. 

Procedure. The study was conducted in two different phases.  

In the first phase, we developed and administered three online questionnaires (one for each category 

of the involved students) including open and close questions about the mathematical experience at 

the University and, in particular, the difficulties encountered. Students were requested to answers in 

an anonymous way: respondents were invited to share an e-mail address in order to participate in the 

second, non-anonymous, phase of the research. The participation to this study was voluntary. At the 

end of this first phase we had collected: 26 answers by freshmen; 75 by students enrolled in the third 

year of the Bachelor; 52 by students that had left the Bachelor.  

In the second phase, 40 students (3 freshmen, 27 expert students, 10 dropout students) were 

interviewed by the second author of this report. The time for the interviews varied in a range from 5 

to 90 minutes. The interviews were audio-recorded and then fully transcribed. 

We will quote the students’ answers using an alphanumeric code: F, E or D (which mean freshman, 

expert student or dropout student, respectively); a serial number (it indicates the order in which the 

student completed the questionnaire); Q and I (which mean questionnaire and interview, 

respectively). 

Rationale. We developed a narrative approach because we wanted students to feel free to express 

what they consider important, using the words that they consider more appropriate. In particular, we 

considered the open-ended questionnaire and the interview to be two complementary narrative 

instruments: according to Cohen et al. (2007), an open-ended question can catch the authenticity, 

richness, depth of response, honesty and candor which are the hallmarks of qualitative data. On the 

other hand, questionnaires have their limitations: they are one-way compared with interviews.  

Discussion 

In the students’ stories the difficulties are often linked to strong and negative emotions, persisting 

over time. Both questionnaire and interview had specific questions about emotions; for example, a 

question in the questionnaire was: “Write a feeling that is linked to your experience at the Bachelor 

in Mathematics”. E69Q, despite he was able to overcome the initial difficulties, reports: 

“unfortunately, now [after having dropped out of the Bachelor in Mathematics] I like math a lot 

less, or rather, it still fascinates me but it is now linked to very negative emotions that ruin it all”.  



The percentage of students who indicate negative emotions changes drastically depending on the 

category of interviewed students. Only 32% of the freshmen report having bad feelings relating to 

their experience at the Bachelor in Mathematics and to their difficulties and failures. This fact may 

be connected with some characteristics of the sample: the questionnaire was published at the end of 

the academic year, when the students with serious difficulties have already left the Bachelor. The 

percentage of students that report having bad feelings increases among the expert students: as many 

as 52% write about bad feelings and emotions. Predictably, the percentage increases among the 

dropout students: 75% of these students link difficulties and the experience at the Bachelor in 

Mathematics with very negative feelings. 

Different types of bad feelings are reported, we have identified some categories: anxiety/ distress/ 

anguish; frustration/ despondency/ hopelessness; fear/ apprehension; sadness/ sorrow/ depression; 

inadequacy/ insecurity. 

The majority of bad feelings are related to the anxiety caused by the Bachelor in Mathematics: “for 

the first two years I was in a permanent state of anxiety and distress” (E6Q), “[my experience in 

Pisa has been] angsty” (E8I). This topic is reported by all three categories of students. 

The frustration and despondency category appears despondency among the expert students, but also 

among the dropout students. Many students report they are not been able to reach their goals via 

techniques and mechanisms that had been successful in the recent past. The persistence of such a 

situation forces many students in a state of frustration and it brings them to reevaluate their skills: “I 

realized that I would go to class and not understand a word of what was being explained. 

Therefore, I felt some frustration and I thought that I was not intelligent enough, that I was 

inadequate” (D49Q). 

The category of sadness and sorrow characterizes particularly the students who left the Bachelor in 

Mathematics. The decision of leaving the Bachelor in Mathematics seems to be linked to a strong 

sadness: “I remember [of that period] just a lot of tears” (D39Q).  

Also the category of inadequacy and insecurity is strongly linked to the experience of difficulties, 

and in particular to their lasting and to the failure in overcoming them. These feelings are new for 

the students, they never felt them before because they have always been good at math. The 

consequences, in these cases, can affect the students’ self-esteem and his or her learning abilities: “I 

think that my experience at the Bachelor in mathematics left me with less confidence in my ability to 

study” (D10Q), “as far as I’m concerned, low self-esteem kills any productive drive” (E8Q).  

The emotions reported by the interviewed are often felt as negative because they are unexpected: the 

student shifts suddenly and in unexpected ways from a mathematical welfare to a mathematical 

malaise, and he doesn’t understand the causes of the shifts. The persistence of the difficulties causes 

the growth of bad feelings and the sense of helplessness (“there were a lot of difficulties and 

disappointment… I felt like there was no way out”, E29Q), contributing to foster a downward spiral. 

In our study a special attention has been given to the students’ attributions for their difficulties. The 

students both spontaneously or answering specific questions, have made causal attributions. The 

narrative data collected have permitted us to identify the more frequent causal attributions, and to 

organize them in categories:  



 Transition aspects: differences between secondary school and University (contents, 

organization, teaching styles, assessment, …); 

 Low preparation: insufficient secondary school prerequisites; 

 Low ability: lower math ability than they thought, inadequate mindset (these factors are 

often attributed to a faulty way to assess in secondary school);    

 Comparison aspects: many of these students were considered (and perhaps they really were) 

the best math-students in their school, and for the first time in their life they are “one of 

many”. This impacts with their self-perception in math. 

The students blame an important part of their failures to the great differences (related to math) 

between secondary school and University. These differences and the subsequent difficulties often 

cause significant changes in the students’ view of math, and in particular of what it means to be 

good in math. In particular, most of the students point out that they got good grades in secondary 

school without significant efforts: “[in secondary school I considered myself good at math] because 

I could avoid studying it and still get the highest grades” (F14Q) and “I realized that the high 

learning speed was due to the easiness of the topics we studied in high school, rather than to an 

above the average skill” (D51Q). The secondary school’s math is regarded as a simplified and 

procedural math, surely not as the math studied at the University: they seem two completely 

different subjects! (“Math you do in high school is not the one you do in your first year in 

University”, E52Q). Students recognize that in University more formalism, abstraction and proofs 

are required: math switches from numbers and figures (a practical mathematics) to structures, like 

vector spaces or groups (a theoretical mathematics), and it involves a radical and hard cognitive 

shift. Despite the connected difficulties, the discovery of this new math usually is welcomed (“I 

think I like the subject even more than I did in high school. I’ve found topics that I find fascinating”, 

E65Q), but sometimes it isn’t (“I’ve changed Bachelor since I couldn’t find the practical math I was 

expecting”, D6Q).  

Anyway, the crucial point seems to be that this discontinuity in the subject is typically unexpected 

by the students: they choose Mathematics with a clear idea of what it is and of how much they are 

good in math, and suddenly they have to compare with a new reality.  

Among the transition aspects, teachers and style of teaching have a predominant role. There is a 

shared perception amongst students that at the university level there is not a particular attention to 

the students’ difficulties: it is interesting to underline that this perception is often shared also at 

secondary school level by students with difficulties in math (Di Martino & Zan, 2010).  

Students also underline the fact they are left alone from the beginning: “in University they gave for 

granted many notions, or they didn’t focus enough on topics they deemed to be easy, creating 

enormous doubts and flaws” (D41Q). So students feel abandoned and powerless against apparently 

insurmountable difficulties, unable to find successful strategies.  

From our data, it emerges that students blame responsibility to secondary and university teachers for 

their transition difficulties. In their view, secondary school teachers did not teach them what math 

really is and how it needs to be studied, and university teachers do not pay attention to the natural 

difficulties in the transition.  



In this framework, math is seen (often for the first time for these students) as intrinsically 

complicated, and the transition aspects seem to add up further difficulties. Many students thought, 

and continue to think, a particular mindset is required to succeed in math, and this “math mindset” 

is innate (“from birth you are not cut out for it, as you would need to be”, E45I).  

The great amount of difficulties in the transition and this belief represent an explosive mix: 

according to the students’ narrations, it is one of the main causes of resignation (to be good in math 

you need to have an innate talent; now, with the real math, I’m not good in math; so I don’t have the 

innate talent and I can’t do anything to improve, because I’m not talented).   

The above explosive mix is also strongly affected by the comparison with peers. Most of the 

interviewed were the best of their class, or even of their school, during secondary school. At 

University, the context is completely different: you are one of many, and – above all – there is a 

natural reluctance in sharing personal difficulties (this reluctance appears to be linked to the 

emotional reactions to the difficulties we have commented before). The consequence is the spread 

of a feeling of loneliness, a lot of students stated that they thought to be the only ones in that context 

with difficulties: they believed that most of their peers understood all without difficulties. This 

(wrong) perception affects and quickens the change in the math related self-perception of the 

students, creating doubts about their own brightness. This has strong effects on the emotional side: 

“I have really downsized the opinion of myself I had by seeing that there were way more capable 

people than myself” (D33Q), “I had begun to think that maybe I wasn’t so good as I had thought 

and that it had all been an illusion. Moreover, I saw geniuses that new everything and understood 

everything right away and so I felt like an idiot” (D44Q).  

Despite a lot of common themes, there are also some significant differences between the causal 

attributions for difficulties of the expert students and those of the dropout students. 

In particular, most of the dropout students claimed that, despite a hard and extensive study, or even 

despite the supposed sufficient comprehension of math, they failed the exams. In their opinion, the 

reasons for the lack of success is therefore linked to their natural inability or even stupidity: they 

seem to think that a kind of innate ability is needed to succeed in mathematics. Other respondents 

said that one of the reasons for failure was that some professors seemed to teach only for the 

excellent students, without taking care of the bulk of the average students. So, the exceptional 

students’ presence is seen as a problem, as much as the exams’ scale of evaluation.  

In the final analysis, the dropout students used especially external and uncontrollable causal 

attributions. 

Also the freshmen and the expert students used external causal attributions but, they reported that 

after of an initial period in which the difficulties were perceived as uncontrollable, they found a way 

to turn them in to something controllable. In particular, they refer to a shift in their theories of 

success or to a change in the strategy they adopted to deal with their pre-existing theories of success. 

The students report of some strategies or changes that have led them to the overcoming of their 

difficulties; the most frequent reasons are relative to the quantity and quality of their study and 

relative to their study habits. A lot of the interviewed spoke about the cooperation with peers as of 

being of great help: “obviously a relevant part of my success is due to the people that have 

supported me” (E44Q) and “Personally it was group study that allowed me to go on” (E7Q). Peers, 



especially better students, also helped to find the right study habits and to create the necessary 

mindset to succeed in math: “the older students helped me by convincing me that it was all about 

getting settled with new ways of reasoning” (E44Q). 

So, as a student said, “challenging one’s study habits” (S63I) is important; the first step is to 

understand that the study habits are amendable and this happens especially after failures and through 

the comparison with peers or teachers. From this quote, as from many others, it appears that the 

personal awareness of what is going wrong and what can be improved is a necessary step towards 

overcoming one’s difficulties. “Seeing the teachers in action has been fundamental for me, in the 

sense that it helped me adopt the right mindset. By just studying on the books, I would have never 

obtained the same results” (E52Q). Teachers are also fundamental for their emotional support: 

“some teachers were fundamental in the process of overcoming my difficulties! In my opinion it is 

important that the professor lets you know that he believes in you, that he is aware you spent 

months preparing for the exam, that he is sorry if he fails you and that you are not just a number!” 

(E28Q). Moreover, lots of students have found the meetings with peers or teachers very useful, 

overcoming the fear of the professor’s judgment, which is instead very common in secondary 

school. Finally, great study and effort are necessary: “I overcame my difficulties by endeavor and 

maximum commitment” (E44Q). 

Conclusions 

From our study there thus emerges a path that seems to characterize the experience in the Bachelor 

in Mathematics. A student which was a high-achiever in high school enrolls in the Bachelor in 

Mathematics; almost always, in an unexpected and abrupt manner, he faces difficulties; these 

difficulties are linked to strong negative emotions (such as anxiety, frustration, sadness…) and are 

combined with a reevaluation of the previous scholastic experience and of one’s skill in math; math 

is seen under a new light: it is, in some sense, new and it is taught differently; the student produces 

theories of success and causal attributions: these can be internal or external, but the difficulties are 

initially almost always perceived as uncontrollable.  

Up to this point in the student’s path, most of the stories we have heard agree, regardless of the 

interviewed student’s category. But from now on there is a definite distinction between the 

experience of who has abandoned the Bachelor in Mathematics and who has succeeded in 

continuing his or her studies. The comparison of the experiences of the subjects from different 

categories has in fact provided us with precious information: those who, for possibly emotional 

reasons, persevere in producing uncontrollable causal attributions or in implementing the same 

strategies to reach success, will eventually drop out of the Bachelor in Mathematics; on the other 

hand, changing one’s theories of success or one’s causal attributions or just identifying them as 

controllable allows one to overcome difficulties and failure. Our study seems to suggest that what 

makes the difference between dropping out and overcoming the difficulties are one’s success 

theories and causal attributions, and in particular the ability to modify them and identify controllable 

factors. 

It thus seems that the processes that leed to changes in the students’ success theories and causal 

attributions, which bring to light the controllable aspects of one’s difficulties, is worthy of a deep 

investigation. 
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The issue of what teachers need to teach mathematics effectively has been widely dealt with in the 

past decades; nevertheless, there are still few studies focusing on what future teachers think they 

need in order to be effective. In order to get a deeper understanding of future teachers’ viewpoints 

about what they need to learn, a narrative study concerning primary future teachers’ expectations 

on a course on Mathematics Teaching was developed. Issues about a lack of connections between 

theoretical notions provided by university courses and teaching practice were raised, as well as 

problems about affective dimension in mathematics learning and about mathematics itself. 

Keywords: Future teachers, expectations, mathematics teaching, professional development.  

Introduction and theoretical framework  

What do teachers really need to teach mathematics effectively? In Mathematics Education this 

question has been mainly addressed by studying the relationship between teachers’ knowledge, 

behavior and attitude, and students’ achievements (Ball et al., 2008). Other studies highlight several 

aspects perceived by different figures (students, administrators, teachers) as necessary for the 

teacher to be effective, e.g. competence in the subject, teaching style, enthusiasm for teaching, care 

for students’ difficulties and interest in students’ lives outside of the classroom (Stronge, 2007). 

It emerges that people have different ‘ideals’ of good mathematics teachers, and this is true in 

particular in the case of future teachers. This case is interesting because this ‘ideal’ strongly affects 

how a future teacher approaches learning opportunities (Liljedahl et al., 2015). From this viewpoint, 

teachers’ development can be seen as an ongoing process nurtured by teachers’ desire to “fill the 

gap” between their current developmental stage as teachers and the “ideal” mathematics teacher 

they want to become (Sfard & Prusack, 2005). In particular, future teachers’ development depends 

not only on the training planned by teacher educators, but also on individual needs and aims: 

“teachers do not come to professional learning opportunities as blank slates. Instead, they come to 

these settings with a complex collection of wants and needs” (Liljedahl, 2014, p. 1). This is crucial 

for primary level teaching, in which involved people are not specialized in mathematics. 

In this framework, it appears relevant to collect future teachers’ opinions about what they want to 

learn in their professional development, and, above all, what expectations they have about the 

mathematics courses they have to attend. In fact, in the field of mathematics education, 

expectations are quite an unusual focus even for research concerned with affective issues: more 

often, research regarding the implementation of educational courses or workshops takes into 

account future teachers’ a posteriori evaluation of whether their expectations have been fulfilled or 

not (Bartolini Bussi, 2011).  

For these reasons, this paper focuses on a study on narrative data collected from future teachers at 

the beginning of a course dealing with mathematics teaching, in order to bring out future teachers’ 



expectations and hopes about their education in mathematics teaching before they participate in a 

specific educational course. 

Methodology 

Population and procedure. This study concerns the analysis of the answers to one of the questions 

of a questionnaire that was administered in February 2016 to a class of future teachers during the 

first day of the course of the third year in Mathematics Teaching (Bachelor’s Degree in Primary 

Teacher Education, University of Modena and Reggio Emilia, Italy; the duration of the whole 

degree course is 5 years). The answers were collected from a class made up of 49 future teachers. 

The choice to consider a class attending the third year of degree course is not irrelevant, because it 

was strictly related to one of the purposes of the inquiry, which was to study the story of future 

teachers’ relationship with mathematics, paying attention to their perception of the value of their 

university education. From this viewpoint, a third year class was interesting because future teachers 

in this university must attend two courses in Mathematics in the first two years and a course in 

Mathematics Teaching in the third year: in particular, they cannot take the exam for this last course 

until they take both Mathematics exams. Furthermore, the course in Mathematics Teaching is also 

the last compulsory course they must attend regarding mathematics. So, it was interesting to 

investigate what these future teachers expected about this course after two compulsory courses on 

Mathematics.  

In order to pursue this goal, an open questionnaire was specifically developed. It was composed of 

three questions, where the first two aimed to investigate future teachers' relationship with 

mathematics and its changes during the years of university and pre-university education; the last 

question on the other hand – “What are your expectations about the course on Mathematics 

Teaching?” – was aimed to grasp also future teachers’ viewpoints about their own wants and needs 

regarding their education as teachers. This last question is the focus of this paper. 

The questionnaire was presented and administered at the beginning of the first lesson of the course; 

the time available to fill it in was about 30 minutes. Since the questionnaire is part of a bigger 

project aimed to study the development of future teachers’ beliefs throughout the years, future 

teachers were asked to write their I.D. numbers, but it was explained them that it was impossible for 

the researcher to match these numbers with their personal details. 

Rationale. Results obtained by previous narrative studies show that the analysis of narratives is a 

very powerful tool, especially for the purpose of research on future teachers’ beliefs, identity and 

attitudes (Kaasila, 2007). A narrative approach, in fact, permits respondents to focus on the aspects 

they consider most important, and to explain their own thinking with the words they consider the 

most appropriate. This way, the variety of answers produced provides the researcher an amount of 

details and information that has an enormous value for the purpose of qualitative studies (Cohen et 

al., 2007). 

Regarding more specifically the method chosen to collect narrative data, in this case it was essential 

to make future teachers not frightened of being penalized for their real opinions. So, the most 

suitable inquiry tool was undoubtedly an open questionnaire, because it allows respondents to 



remain anonymous – a possibility that other inquiry tools, such as oral interviews, do not permit. 

This is also the reason why future teachers were assured of the confidentiality of their answers.   

The data were analyzed adopting a content-categorical approach – e.g. the analysis was focused on 

the content of collected answers, not on their form, and the unit of analysis was single utterances 

isolated from the rest of the discourse, and not the whole narrative (Lieblich et al., 1998). This 

approach, in fact, has been proven to be very appropriate to study phenomena common to a group of 

people (Kaasila, ibidem). 

In the discussion, we will use the acronym FT (Future Teacher), followed by a progressive number 

from 1 to 49, to quote excerpts of protocols. 

Results and discussion 

The first interesting feature of the collected data is that there were no answers such as “I don't 

know”, and no answers left blank: future teachers had something to declare about their expectations 

on the course on Mathematics Teaching. The overall feeling emerging from the answers is a 

compelling need for courses focused on teaching practices, rather than lessons about theories of 

teaching (“[…] I hope that we will deal with things that are more inherent to our future profession, 

because some courses of our degree course deal with many notions that are difficult to employ in 

practice”, FT16). This feeling is well reflected in the high rate of respondents – 40 on 49, around 

82% – asking for teaching methods (“[…] I hope that methods to employ once in class will be 

illustrated as much as possible”, FT44), or more generally asking for a course to learn “how to 

teach mathematics at primary school” (“I expect a course to understand what and how to teach 

when I will be faced with children at primary school”, FT3). 

However, after a closer examination of the answers, it emerges that expressed expectations involved 

mainly two dimensions, the pedagogical one and the affective one, so that it was possible to 

distinguish with enough clarity two kinds of expectations: those related to pedagogy and 

pedagogical content knowledge (according to Shulman’s definition, 1986) and those about affective 

issues. Since most of the expectations fell in one of this two categories, the few ones that were not 

directly related to pedagogical or affective issues were grouped into a third category that we called 

other expectations concerning mathematics or mathematics teaching. In order to give to the reader a 

clearer explanation of the features of each category, they will be analyzed one by one in the 

following subsections.  

Expectations related to pedagogy and pedagogical content knowledge 

As one could expect, this is the most recurrent category, since every answer involves at least one 

expectation related to pedagogical knowledge or pedagogical content knowledge. In most cases, as 

it was anticipated earlier, the respondent makes a generic wish to expand his/her knowledge about 

methods and means for teaching mathematics. In particular, our future teachers mainly seek 

methods that are efficient (“I hope that […] alternative methods will be proposed to us […] [that 

are] significant and efficient for children’s learning”, FT46) and possibly fun (“I hope to learn 

practical and fun methods to teach mathematics in primary school”, FT2). In many cases, 

respondents seem to wish to learn a sort of recipe for good teaching, e.g. which method works best 

according to the situation (“I expect to learn several methods for teaching mathematics that are 



suitable for the various difficulties that a child can encounter in learning mathematics”, FT31). 

Many answers even talk about learning “the best method to teach mathematics” (“I hope to face 

more topics, for example the best way to teach mathematics in order to make children appreciate 

it”, FT34). Sometimes the list of notions the respondent expects to learn is so extensive that it can 

even be hard to believe that a single course would be enough to fulfill all these expectations (“I 

expect to learn to understand children’s learning processes, strategies to adopt to present this 

subject, which methods should be used, how to organize the lessons and the topics”, FT4). 

In some cases, as previous excerpts show, future teachers’ main concern is about the real teaching 

practice: this is also confirmed by the rate of answers (17 answers on 49 – around 35%) stressing the 

practical and concrete nature of the notions that future teachers would like to learn (“I hope that in 

the course we will talk not only exclusively about theory, but, on the contrary, mainly about 

PRACTICE. Practice and advice about how to facilitate [children’s learning] and make our way of 

teaching more efficient”, FT41, capital letters in the original). Some of them ask more specifically 

for some practical examples from real experiences of in-service teachers (“I hope that […] [the 

course] will be focused on efficient methods for teaching this subject, perhaps also those based on 

real experiences of teachers”, FT32). These answers perhaps point out a lack of connections to 

didactics of mathematics in previous mathematics courses.  

A slightly different kind of expectation regards the enhancement of respondent’ competencies as a 

teacher. In some cases, in fact, future teachers seem to be more concerned with personal 

improvement, rather than with learning a set of “ready-made” methods (“I hope to join my 

enthusiasm for the subject to the competencies that are necessary to teach it step by step”, FT11). 

However, what competencies they refer to is not clear from these answers. There’s just one case 

where the competencies that the respondent would like to gain are sufficiently clear to be described 

as organizational competencies, competencies in explaining, and diagnostic competencies (“[…] I 

expect that [the course] will be useful from a practical viewpoint, so that […] I will know how to 

organize the lessons, how to explain and how to help those who have more trouble”, FT4). The last 

competence in particular seems to be quite an important one for our future teachers, since many of 

them underline their need to learn more about children’s learning processes and difficulties, and 

about ways to make children overcome such difficulties – as can be seen from some of the previous 

excerpts. It is noteworthy that none of the respondents talks about issues regarding creation of tests 

and assessment of tests’ results – suggesting that, in our sample, future teachers are more concerned 

with making children understand mathematics, rather than assessing their learning. 

Expectations about affective issues 

This category of expectations includes those ones referring to emotional aspects related to the 

relationship with mathematics. We can distinguish in particular two kind of expectations, according 

to the subject of this relationship: in some case this subject is the future teacher itself, whereas in 

other cases the subject is the class, e.g. the pupils that the future teacher imagines to have.  

The first kind of expectations refers to those answers that express the desire to reconcile with 

mathematics and the hope that the course on Mathematics Teaching could facilitate such 

reconciliation: such answers correspond, in fact, to narrations of difficult or fluctuating relationships 

with mathematics in the other answers of the questionnaire. A clear example is given by FT46, who 



affirms: “I hope to stop being stuck with this subject, and to be able then to learn and employ useful 

strategies to teach this discipline at best”, and in the other answers tells about her fluctuating 

relationship with mathematics, and in particular about her rejection for solving problems when she 

was a young student. In these cases, mathematics is described as far from future teachers’ interests, 

and a course focused on mathematics teaching, not on the subject itself, seems to be an opportunity 

to come closer to mathematics (“I hope that this course will let me come closer to a discipline that 

has always been too distant from me, but I hope above all that I will be able to look at it and 

perceive it in a different way”, FT37), as highlighted also in the investigation by Coppola et al. 

(2013) on the “math-redemption” phenomenon. It is possible that, beyond the sense of utility of 

studying teaching rather than the subject itself, for these future teachers plays a role their hope that 

studying how to teach topics could be also helpful to clarify their doubts from primary school. Only 

in a couple of cases did future teachers claim to expect to continue improving their relationship with 

mathematics, even if it is already a very good one (“My expectations are varied. First of all, I hope 

to renew my interest in the subject”, FT16).  

The second kind of expectations, on the other hand, regards future teachers’ need to learn how to 

support the growth of a good relationship with mathematics among their future students. The 

request to learn how to support pupils’ emotional involvement in doing mathematics is quite 

widespread: it is detectable in 17 answers out of 49 (around 35%). In particular, there are four main 

emotional responses to mathematics that future teachers wish to elicit into their future students – 

listed in order of increasing intensity:  

 No hate for mathematics (“I hope that it will teach me how to teach mathematics in order to 

make sure that children don't hate it”, FT17); 

 Having fun when doing maths (“I expect to acquire competencies to teach mathematics […] 

in a way that my children learn it as adequately as possible, perhaps also having fun”, 

FT8); 

 Feeling a real interest in the subject (“I hope to discover new methods to revive children's 

interest in mathematics [...]”, FT35); 

 Being passionate about mathematics (“I hope to learn, or at least to get hints and advice 

[…] about how to make children passionate about mathematics, and to engage those who 

have more troubles or feel aversion for this discipline”, FT5).  

As we can see from the above quotations, even if these emotional responses could all be interpreted 

as ways to make pupils have a good relationship with mathematics, they do not seem to have the 

same importance in future teachers’ eyes. For example, in the answers that talk about having fun, it 

is not clear if future teachers are interested in an amusing emotional climate in the classroom per se 

or if they are just looking for fun methods for teaching mathematics – i.e. if establishing a good 

emotional climate for them is an aim to reach when teaching, or a means to facilitate the 

understanding of some mathematical content (“Through this course I hope to learn instruments that 

are necessary to explain mathematics to children. It is not an easy discipline, and I would like to 

discover methods to make it fun, easy and efficient at the same time”, FT22). In fact, the importance 

of the influence of pupils’ emotions on their learning seems to be underestimated in the answers that 

talk about avoiding making children hate mathematics: the feeling the reader gets is that the quality 



of the climate to create in the class stops at a sort of “peaceful coexistence” between the pupils and 

the mathematics to be learnt – as we can see in the excerpt by F17 above. If so, a “peaceful” 

emotional climate could be seen not as an aim or as a means for teaching, but rather as a constraint 

for the learning to occur.  

Other expectations concerning mathematics or mathematics teaching   

Regarding mathematical contents of the course. Since the course is expected to address teaching 

practice, most of the answers do not mention expectations about its mathematical contents. “Less 

mathematics and more practice” could be a good motto to summarize some claims (“I hope that 

there will be less numbers and less formulae with respect to the previous courses, and that it will be 

focused on efficient methods of teaching this subject”, FT32). However, when a respondent refers to 

some mathematical content, generally he/she expresses the need of a course focused more 

specifically on mathematical contents to be treated in primary school, rather than on new topics (“I 

expect that the focus will be on the topics that we will have to teach to children, rather than on 

topics that actually we will never deal with at primary school”, FT39). Just in one answer we can 

find a demand for the explanation of new mathematics topics, but also in this case new knowledge 

is hoped to be useful in practice (“I hope to come into contact with topics, materials and teaching 

methods we have never dealt with, that will constitute a new part of knowledge that I could employ 

in my future profession”, FT16). 

Regarding the view of mathematics to communicate. Another group of answer express the wish to 

learn to teach in a way that communicates a particular view of mathematics (since the focus is not 

on teaching methods per se, this answers were not included among expectations regarding pedagogy 

and PCK). It could be possible to identify three main kinds of such demands, which can be 

summarized as: I hope I will learn how to teach mathematics in order to make it… 

 …“reality-based”. Some people ask for teaching methods that will make them able to make 

pupils recognize and use mathematics in real-life situations (“In this course I'd like to 

discover new methods and ways of teaching that start to talk about mathematics from the 

real world, from everyday life”, FT19). 

 …“cross-cutting”. This feature is emphasized in particular in FT1's answer, where she 

describes her will to set her future lessons in a way to link mathematics to other scholastic 

subjects: “[...] But above all I hope that [this course] will help me to understand how I can 

develop a course on mathematics that crosses other disciplines”. 

 …neither mnemonic nor mechanical. A couple of answers express the will to learn to teach 

mathematics discouraging a view of it as a subject merely based on memory (“[...] I'd like it 

if children could receive an approach to the learning of mathematics which is not 

mnemonic”, FT33) or on mechanical techniques (“[...] I hope to receive hints to dispel the 

myth of mathematics as a strict and mechanical subject”, FT46). 

Regarding the reasons for teaching mathematics. To conclude, I would like to report one answer 

which is particularly original. In this case the respondent expresses her hope to improve her 

mathematics education, because she seems to seek for a more complete and interrelated overview of 

mathematical topics, and for an explanation of the reasons why they are taught at primary school: 



[…] I hope to reach a more organized and coherent way of thinking about mathematical 

contents. But above all I hope to understand the reasons why we study mathematic, in order to 

return it to the children of my future classes. […] Obviously acquiring competencies in the 

management of tools and communication techniques is important but is secondary; the main 

goal remains to know why one is studying a certain discipline. [FT10]  

Conclusions 

In the introduction we underlined how long researches in Mathematics Education has been pursuing 

the goal of establishing what do teachers need to teach mathematics effectively. Initially the efforts 

were directed to defining aspects related to knowledge – as in the work by Ball et al. (2008). More 

recently, research has widened its perspective to other aspects as well, as affective aspects of 

teachers’ education (Coppola et al., 2013). Another aspect investigated just in recent years is what 

future teachers think they need to teach mathematics effectively: as Liljedahl (2014) underlines, it 

does matter “what the results [of the research] say about teacher autonomy and the role that 

workshops play in the professional growth of teachers”.  

These considerations also suggest another direction of inquiry: future teachers’ expectations about 

courses for professional development. This aspect was the focus of the present study. The results 

obtained are obviously context-bound, since we are concerned with one class of a specific Italian 

university; nevertheless, there are some observations rising from our findings that seem to be more 

apt to be generalized and discussed here. 

The first one concerns the shared judgment about the compulsory courses on Mathematics: courses 

focused only on mathematical contents are generally considered to be too theoretical – sometimes 

even beyond future teachers’ capabilities – and scarcely connected with teaching practice. On one 

hand, as suggested by Boero and Guala, it could be advisable to incorporate the study of 

mathematical content with tasks “clearly related to crucial educational issues” (Boero and Guala, 

2008, p. 232) aimed at stimulating a deep reflection on mathematics as a social and historical 

product; on the other hand, we believe that poor preparation in mathematics cannot adequately 

support the development of knowledge for teaching, e.g. a certain level of content knowledge is 

absolutely necessary for the development of pedagogical content knowledge. The challenge for 

teacher educators is to make future teachers aware of the importance of a strong preparation 

regarding content about this sense.  

Another general aspect concerns future teachers’ expectation about learning mathematics teaching 

methods that take into account also affective aspects. This consideration highlights two other issues 

for teacher educators: one is to develop workshops aimed to restore future teachers’ relationship 

with mathematics; the other is to develop courses providing some space for reflections about 

affective issues, without losing the connection to mathematical content. The main risk, in fact, is to 

draw future teachers’ attention to children’s amusement, and thereby neglecting the activities’ 

mathematical relevance. In our viewpoint, mathematical significance has to come first, and 

moreover, the focus should be not on fun activities, but rather on the ideal emotional conditions to 

make the activities work, making children feel free to express their thoughts and make mistakes. 

The analysis of future teachers’ expectations raises serious challenges for us, both as researchers in 



mathematics education and as teacher educators: accepting them is the further direction of this 

paper. 
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This paper explores the use of the CRT (Classification and Regression Tree) methodology to 

analyse data from a fuzzy rating scale-based questionnaire. Based upon a questionnaire to assess 

the state of perplexity in mathematics undergraduate students, the rule structure obtained from the 

CRT analysis is reported. We anticipate these findings may be of interest both to evaluate the 

interplay between cognition and affect as well as to researchers in the Fuzzy Logic field. 
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Introduction 

In this paper, we will focus on perplexity in mathematics. In the studies concerning determination of 

affective pathways during the solving of problems (Goldin 2000; Gómez-Chacón, 2000, in press), 

the state of perplexity or puzzlement is considered to be one of the interesting emotional states into 

which the individual can drift along positive or negative pathways when solving the problem. 

Perplexity does not in itself have unpleasant overtones—but bewilderment, can include 

disorientation and a sense of having “lost the thread”. If problem solving continues, a lack of 

perceived progress may generate frustration, where the negative affect becomes more powerful and 

more intrusive, but where there is still the possibility that a new approach will move the solver back 

to the sequence of a predominantly positive affect. The studies mentioned above show the need to 

understand and to know, in depth, the benefits that this state can achieve for the teaching and 

learning of mathematics.  

A big challenge today is to improve the methodological tools for evaluating affect detection 

systems. This need is motivating studies in trying to explain this gradualness in the processing of 

affective mechanisms. Further research is necessary to reference the identification, discrimination, 

and the unclear boundary between the cognitive and affective processes. This paper explores the use 

of decision trees to analyse data from a fuzzy rating scale-based questionnaire. Thus, here we will 

report our results in the form of a tree structure providing rules to assess the state of perplexity in 

mathematics undergraduate students, built upon the basis of the previous questionnaire. 

The present research is primarily exploratory for two reasons: 1) perplexity has been scantly 

analyzed in mathematics and educational psychology; and 2) the use of the CRT methodology to 

analyse data from a fuzzy rating scale-based questionnaire is a new development. The theoretical 

background and empirical studies related to perplexity need to be developed.  

Theorists of science and mathematics (Lakatos 1976) claim that mathematical reasoning and 

complex problem solving are typical cognitive tasks in which perplexity is directly involved. 

However, an analysis of the psychological (cognitive and affective) processes involved in it lacking, 

in order to clarify the definition. (.Studies about confusion (Silva 2010) indicate an appraisal 

structure of this emotion of novelty-complexity that is reflected in a state of uncertainty and 

comprehensibility, reflecting an inability to understand. Smith and Ellsworth’s (1985) appraisal 



model maintains that in order to differentiate emotional experiences some dimensions are key 

(pleasantness, attentional activity, control, certainty, goal-path obstacle and anticipated effort). 

Taken together in this study, these dimensions and mathematical cognitive processes could provide 

information about perplexity, a knowledge emotion that is rarely studied, and illustrate the 

relationships between these cognitive variables and emotion in order to deepen understanding of its 

nature.  

The following hypotheses guided the work: (1) the emotions associated with the perplexity state 

could be positive, negative, or neutral; (2) those participants with more positive ability to cope with 

the situation (control), better ability to predict, or with a wider understanding, are those who will 

better handle their state of perplexity in the reasoning. 

Fuzzy rating method for questionnaires 

The method of fuzzy rating scale applied in this research was introduced by Hesketh, Pryor, and 

Hesketh (1988) and subsequently developed in various studies by Gil et. al., (2015). The fuzzy 

approach is based on the idea that, in some cases, it is not reasonable to say that an object has to 

either verify a property or not verify it (Zadeh, 1975). Objects or people may exhibit some 

properties only partially—i.e. up to a certain extent or degree. In many of the conducted researches 

the evaluation of the emotion parameters is qualitatively performed through reports, interviews, 

recording observations or, if it is quantitative, through Likert scales. In the case of Likert scales 

(based on an implicit subjacent numerical continuum), such kind of imprecise information is lost, 

since finally just a single category has to be chosen (which excludes the representation of a potential 

hesitation between categories).  

   
Fig. 1. Examples of Fuzzy sets valuating emotion Fig. 2. Fuzzy sets modelling 

linguistic variable 

In this sense, fuzzy logic allows relaxing this constraint by admitting valuations to be given in the 

form of fuzzy numbers over the subjacent numerical scale. That is, in this setting each possible 

numerical evaluation is assigned a degree of membership or verification, between 0 and 1, 

representing the validity of such number as a measure of the observed emotional phenomenon 

(Fig.1). 

The idea of using these fuzzy sets to describe imprecise terms is closely linked to the concept of 

linguistic variable introduced by Zadeh (see Zadeh, 1975). A linguistic variable is considered one 

that takes linguistic values, which is less accurate than the use of numbers. For example, a linguistic 

variable used to evaluate ‘confidence’ may take the (linguistic) values: never, rarely, sometimes, 

often and always. Each of the linguistic terms that can take the variable is modeled by a fuzzy set 

(see Fig. 2, and notice the subjacent numerical scale that accompanies the linguistic descriptions). 

There are values of the variable that can be assigned up to a degree to two of these fuzzy sets (e.g. 

through disjunction) and, therefore, the boundaries between two consecutive linguistic values can be 

made flexible. 



In this study, trapezoidal fuzzy sets (or fuzzy numbers) were used to perform evaluation on a 

continuum, assigning a membership degree between 0 and 1 to each point of the interval [0,100] 

(see Fig. 2 again). Notice that trapezoidal numbers allow representing a continuum of prototypes 

(i.e. elements that are assigned membership degree 1) with a linear decay. 

Regression trees  

The CRT methodology is a data mining approach widely employed to develop ‘IF-THEN’ rule 

models in order to explain the behaviour of a variable of interest (the dependent variable) in terms 

of logical conditions over a set of explanatory or independent variables (see Breiman et al., 1984). 

As such, classification and regression trees have been successfully applied to different data-analysis 

tasks, such as segmentation, stratification, forecasting, data reduction, variable selection, etc., in 

wide variety of practical contexts (see Strobl et al., 2009).  

Particularly, the CRT methodology allows determining a subset of the available independent 

variables as well as a set of conditions over these variable’s values that separate the data into groups 

as homogeneous as possible in terms of the values of the response or dependent variable. To this 

aim, the CRT method performs successive dichotomous splits of the data by identifying both the 

independent variable and its cut-point that provide the greatest variability (i.e. variance) reduction at 

the split data groups verifying either condition (i.e. being greater or lower than such cut-point). This 

process starts at the root node containing all the available data, and is iterated at the resulting nodes 

or groups until some stopping criterion (usually concerning the depth or number of splits or the 

sample size in the undivided nodes) is reached. The nodes that are left undivided at the end of this 

process, usually known as leaves, provide conditional response-variable distributions (assumed to 

be as homogeneous as possible) given the conditions or premises formed by the conjunction of the 

different branches (i.e. splits) that separate each leaf from the root node.  

Notice that CRT is a data analysis methodology with almost no assumptions, and particularly that it 

is a non-parametric and distribution-free model-building method (e.g. no normality or independence 

assumptions are made). For these reasons, CRT is especially useful as an exploratory tool allowing 

to uncover some relationships and patterns in the data that may be expressed in logical form. 

In this work we apply this regression tree methodology to develop a rule model capturing the 

relationships between a numerical dependent variable, measuring either the intensity of perplexity 

or pleasure experienced by students while solving a mathematical problem, and a set of independent 

variables measuring the intensity of other emotions that may appear in consonance with perplexity. 

Our aim, at least in a first stage, is basically exploratory; that is, we do not pursue a complex 

mathematical model of those relationships of perplexity with other emotions, but rather a simple 

model describing the most significant relationships in terms that may be checked intuitively. In this 

sense, we found that the CRT methodology fitted this aim quite well. 

Research questions and methodology  

Research Questions 

We particularly pursued the following research questions: Research question 1: What emotions and 

cognitive appraisal processes have more influence on the state of perplexity? Research questions 2: 



How pleasant is being in the state of perplexity? What variables are related to the dimension of 

pleasantness? 

Participants and instrument 

Data was collected in 2014 from 100 (56 women and 44 men, aged between 22 and 23) Caucasian 

undergraduates working toward a BSc. in mathematics. All of the participants were in their last year 

of academic study, and were distributed into three training groups established by the academic 

institution. They were following advanced courses in several areas of geometry, algebra, probability 

and analysis. With regard to solving problems, the students had been introduced to the problem 

solving heuristics and they received training as students and in one subject related to advanced 

professional knowledge, practice and relationship skills relevant to teaching. They had not received 

any special training about backtracking heuristics. 

The work dynamic was individual work and began with a paper and pencil resolution of four tasks 

(problems), each of one hour and a half duration. One example problem, the results of which will be 

analysed later in section of results, is shown below: 

Paths: How many paths consistent in a series of horizontal segments and / or vertical can be 

counted in the figure below (Fig. 3) (where we have indicated a possible path) so that each 

segment links a pair of consecutive numbers, to form, from the beginning to the end the 

number 1234567? 

 

Figure 3. Possible Path 

In this session, students were given the problem and asked to describe their approaches to resolving 

the problem using protocols including: steps in the resolution, explanations of the difficulties they 

might face, and strategies they would use. Afterwards, each problem was followed by a 

questionnaire based on the measure of fuzzy rating scales and focused on heuristics related to 

backwards thinking and the difficulties that are generated during the process of solving problems 

and emotions and cognitive processes (Gómez-Chacón, in press).  

The questionnaire is based on the measure of fuzzy rating scales that used a scale of free fuzzy 

numbers, in which the respondent represents the same fuzzy number that most closely matches their 

assessment of an interval (Fig. 4). The questionnaire has two parts, one referring to the cognitive 

dimension and the other, the affective dimension. The cognitive dimension refers to the 

characterization of the personal meanings of the subjects on the cognitive dimension of heuristic 

backtracking, or backward reasoning, and the cognitive appraisal processes of the interaction with 

emotion. The studied emotions were: confusion, uncertainty, hesitation, surprise, frustration, 

bewilderment, boredom, and confidence. And the cognitive appraisal dimensions to differentiate 

emotional experiences were pleasantness, attentional activity, control (self-other 

responsibility/control, situational control), certainty, goal-path obstacle, anticipated effort and 

mental flexibility.  

 



Data analysis 

Both qualitative and quantitative methods were used to address the subject of this study. This paper 

presents the quantitative analysis performed on the undergraduate students’ written responses to the 

questionnaire. The first step of the analysis was the defuzzification of data. This refers to converting 

the trapezoidal numbers provided at the student’s responses into usual numbers that can be handled 

by the CRT methodology. For the purposes of our study, the average centre (also known as the 

centroid) defuzzification method was used. With such defuzzicated data, different regression tree 

analysis were performed with SPSS to uncover the prescriptive nature of the variables. Two of these 

regression trees, together with their associated rule models, are reported next. 

 
 

Fig. 4 Examples of some items from the questionnaire: Perplexity and backwards reasoning processes 

(Gómez-Chacón, in press) 

Results  

Research question 1. For the interpretation of the classification tree, we should go looking at the 

nodes and branching them until the final leaves. First, we look at the root node 0 that describes the 

dependent variable: Perplexity of students to solve the problem (P2). It indicates that the group 

mean is 49.040. Then, note that the data is split into nodes 1 and 2 depending on the variable 

Bewilderment (P19), indicating that this is the main predictor variable. Node 1 indicates that 22% of 

students who feel Bewilderment <= 21.37 has a mean of 25.04 perplexity (P2). This node 1 is again 

split up into nodes 3 and 4 depending on variable P8, Ability to influence (i.e. Control). We note in 

node 4 that the students who had Control > 67.87 experience perplexity with an average intensity of 

40.28, while students at node 3 have a lower ability to influence and experience a mean perplexity 

intensity of 16.33. These two nodes 3 and 4 are leaves that allow us to infer rules 1 and 2 below. 



Particularly, each path from the root of a decision tree to one of its leaves can be transformed into a 

rule simply by conjoining the conditions along the path to form the antecedent part, and taking the 

leaf’s mean as the rule prediction or consequent. Similarly, in order to define the rest of the rules, 

node 2 and the following ones are studied. The profile of students who experience perplexity is 

defined by nodes 3, 4, 5, 9, 10, 11 and 12 through the following variables: Ability to influence (P8), 

Bewilderment (P19), Confusion (P13), Boredom (P21) and the ability to solve simpler problems 

and also goal-path obstacles (P11). The inferred rules are the following: 

Rule 1 (node 3): IF ((Bewilderment (P19) <= 21.37)) AND (Ability to influence (P8) <= 67.87) 

THEN the prediction of perplexity (P2) is = 16.33, with a support of 14% (i.e. 14% of the 

participants verify the premise of this rule). 

Rule 2 (node 4): IF ((Bewilderment (P19) <= 21.37)) AND (Ability to influence (P8)> 67.87) 

THEN the prediction of perplexity (P2) is = 40.28, with support 8%. 

Rule 3: (node 5): IF ((21.37 < (Bewilderment (P19) <=64.6)) THEN the prediction of perplexity 

(P2) is = 48.84, with support 48%. 

Rule 4 (node 9): IF (Bewilderment (P19)> 64.6) AND (Confusion (P13) <= 64.87) AND (Boredom 

(P21) <= 12.62) THEN the prediction of perplexity (P2) is = 67.15, with support 5%. 

Rule 5 (node 10): IF (Bewilderment (P19)> 64.6) AND (Confusion (P13) <= 64.87) AND 

(Boredom (P21)> 12.62) THEN the prediction of perplexity (P2) is = 55.65 with support 5%. 

Rule 6 (node 11): IF (Bewilderment (P19)> 64.6) AND (Confusion (P13)> 64.87) AND (the ability 

to solve simpler problems and goal-path obstacles (P11) <= 80.75) THEN the prediction of 

perplexity (P2) is = 66.99, with support 15%. 

Rule 7 (node 12): IF (Bewilderment (P19)> 64.6) AND (Confusion (P13)> 64.87) AND (the ability 

to solve simpler problems and goal-path obstacles (P11)> 80.75) THEN the prediction of perplexity 

(P2) is = 78, with support 5%. 

In summary, the perplexity is closely linked with the emotions of bewilderment and confusion. The 

bewilderment could generate a fork towards a positive path depending on the ability to influence on 

the problem and the ability to influence the process of resolving. The perplexity state may stem 

entail only high novelty, reflecting a state of uncertainty but may entail a searching of understanding 

when perplexity may share with appraisal dimensions linked to the ability to influence (self-control 

dimension) and the perception of overcome obstacles and the ability to solve simpler problems. 

Research question 2. Pleasantness. Pleasantness is considered as an important dimension. It is a 

function of two appraisals—appraisals of what one wants in relation to what one has, and these are 

intrinsically pleasant or unpleasant. The mean of the group with respect to pleasure (P5) 

experienced during the state of perplexity is 40.92. From the classification’ tree (Fig.6) can infer the 

following rules: Rule 1 (node 2): IF Confidence (P15) >55.75 THEN the prediction of pleasure 

(P5) = 48.07, with support 58%. Rule 2 (node 3): IF Confidence (P15) <= 55.75 and Understanding 

(P9) <= 38.37 THEN the prediction of pleasure = 16.63, with support 13%. Rule 3 (node 4): If 

Confidence (P15) <= 55.75 and Understanding (P9) > 38.37 THEN the prediction of pleasure (P5) = 

37.5, with support 29. In summary, a state of perplexity could not only be a mental perturbation or 

anxiety, but a pleasure experience given sufficient levels of confidence and understanding. 



 

 

Fig. 5. Regression tree for variable ‘Intensity of 

perplexity’ (P2) 

Fig. 6. Regression tree for variable 

Pleasure (P5). 

Conclusions and discussion  

The discussion and conclusions are structured around the objectives of the research, and 

methodological effectiveness in the use of regression trees for establishing rules. 

Relative to the interplay between cognition and affect in the perplexity state the perplexity is closely 

linked with the emotions of bewilderment and confusion. The degree to which students associate 

state of perplexity with an emotion of pleasure is linked to the levels of confidence and the 

understanding of the problem. Likewise the perplexity state shares cognitive appraisal dimensions 

linked to the ability to influence (self-control dimension) and the perception of overcome obstacles 

and the ability to solve simpler problems. The relationship shown between cognitive appraisal 

dimensions and the emotions that make up the state of perplexity highlights conditions about 

learners who have the ability to appropriately manage their perplexity. This study shows the central 

role of impasse in mathematics, perplexity it is not a negative event to avoided by intellect, it is 

responsible for the activation of thinking (Lakatos 1976, Goldin 2000; Gómez-Chacón, 2000). 

Regarding the methodological adequacy of the present study, the use of a non-parametric, 

assumptions-free data mining model as regression trees provides a solid basis for the kind of 



exploratory analysis aimed at this work. Particularly, this model allows for robust variable selection, 

as significant variables are identified through a greedy process in which the effectiveness of all the 

available variables in reducing the variability of the response variable is checked, and that obtaining 

the greatest reduction (or improvement) is selected. This assures that the selected variables that 

conform the premises of the obtained rules are relatively good explicative factors of the studied 

response variables.    
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Impact of long-term regular outdoor learning in mathematics – The 

case of John 
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This paper reports on a longitudinal study investigating the impact of long-term regular outdoor 

learning in mathematics in the school-grounds. An interview-based case study of John, a lower 

secondary school student, will be analysed. The case study will describe John’s perceived experience 

of long-term regular outdoor learning in mathematics and its impact on affective and academic 

factors. The findings emphasise the positive outcomes of long-term regular outdoor learning in 

mathematics, indicating enhanced cooperative learning, reduced mathematics-related stress and 

anxiety, changed self-concept, and enhanced mathematical proficiency.  

Keywords: Outdoor learning, mathematics anxiety, self-regulation, mathematical proficiency.  

Introduction 

The constant focus on textbooks and formal mathematical practice might invoke a view among 

students that mathematics is abstract, distanced and only useful in a classroom context, working only 

in the textbook (Boaler, 1998). If students are not given the opportunity to engage with real-life 

problems in mathematics they will encounter problems applying their knowledge in an outside school 

context (Desforges, 1995). Mathematics taught in the classroom will have limited value if it is not 

transferable to students’ everyday life and future academic and career endeavours. Current research 

on outdoor learning in mathematics demonstrates positive affective outcomes and possible academic 

benefits (Daher & Baya'a, 2012; Moffett, 2011; Noorani et al., 2010). In this paper, by analysing 

John’s perceived experiences of long-term (3 year period) regular outdoor learning in mathematics, 

we explore any possible impact on both affective and academic factors. By affective factors we mean 

mathematics-related stress and anxiety, and motivation. With academic factors we refer to possible 

academic outcomes such as application and understanding of mathematical knowledge, enhancement 

of mathematical proficiency, learning strategies, self-regulation and self-concept. 

Theoretical background 

Outdoor learning 

Outdoor education can be referred to as organised learning that takes place in the outdoors and is 

drawn up on the philosophy and theory and practises of environmental as well as experimental 

education. The embodied and multisensory experiences provided by well-organised outdoor learning 

are believed to enhance the individual's learning and understanding within a subject, in this case, 

mathematics. The variation of context between the indoor classroom activities and the outdoor 

activities enables rich opportunities for cooperative learning in real-life situations (e.g. Jordet, 2007).  

Mathematical proficiency 

In the present paper we use the framework of mathematical proficiency presented by Kilpatrick, 

Swafford, and Findell (2001). According to Kilpatrick et al. (2001), mathematical proficiency has 

five strands: conceptual understanding (comprehension of mathematical concepts, operations and 



relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently, and 

appropriately), strategic competence (ability to formulate, represent and solve mathematical 

problems), adaptive reasoning (capacity for logical thought, reflection, explanation, and justification) 

and finally, productive disposition (habitual inclination to see mathematics as sensible, useful, and 

worthwhile, coupled with a belief in diligence and one’s efficacy) (Kilpatrick et al., 2001, p. 116). 

Mathematics anxiety, motivation, self-regulation and self-concept 

Mathematics is highly valued by society, and proficiency in mathematics has become increasingly 

important in order to become a fully functioning citizen, with resulting financial empowerment, 

making the ability to use mathematics in an out-of-school context even more important (OECD, 2004; 

Peterson, Woessmann, Hanushek, & Lastra-Anadón, 2011). A variety of studies have shown that 

many students have negative attitudes towards mathematics, which sometimes results in 

mathematics-related stress and anxiety (Ashcraft, 2002; Maloney & Beilock, 2012). Within a student, 

engaged in a mathematical activity, an on-going unconscious evaluation of the situation with respect 

to the student’s self-concept and personal goals is taking place. Depending on the individual’s 

evaluation of the outcome, the student may become emotionally affected being either motivated or 

not for further mathematical activities (Hannula, 2002; Pintrich, 2004). According to PISA (OECD, 

2013), Ryan and Deci (2009) and Wigfield, Tonks, and Klauda (2009) two forms of motivation to 

learn mathematics within self-regulative skills exist. The two forms are intrinsic motivation and 

extrinsic motivation. Intrinsic motivation is the motivation to perform mathematics merely for the joy 

gained from doing mathematics. While extrinsic motivation is the motivation to perform mathematics 

due to its importance in society, usefulness and the fact that mathematical knowledge will aid future 

career prospects and further academic studies. An individual with mathematics-related stress and 

anxiety is emotionally affected in a negative sense and tends to have a low self-concept (self-related 

cognitions of ability that can explain as well as predict achievement related behaviour, belief in one’s 

abilities) as well as low levels of self-efficacy (a student’s belief that he/she has the capability to 

perform a given mathematics task at a designated level) (Bandura, 1994; Bong & Skaalvik, 2003). 

Furthermore, these individuals also tend to lack the ability to self-regulate, resulting in avoidance 

behaviour and a decline in mathematics performance. As a consequence they are assigned lower 

grades and tend to have limited choices of possible future academic and non-academic career paths 

(Wu, Barth, Amin, Malcarne, & Menon, 2012).  

One important factor to promote learning is students’ capability to self-regulate (Pintrich, 2004). If 

students’ are provided with guidance on how to self-evaluate their own learning process and how to 

develop suitable strategies to promote their own learning during formal schooling, such guidance will 

enable acquired knowledge to remain updated after leaving school and to be used in an outside school 

context (Pintrich, 2004; Zimmerman, 2002). Self-regulation refers to the degree in which students are 

active participants in their own learning. It is an individual’s ability to set mastery goals, mobilizing 

the efforts and resources the individual will need in order to achieve these goals. To reach these 

mastery goals, students use a wide range of self-regulatory processes and display a number of 

adaptive motivational factors such as self-efficacy and self-concept, where moderate levels of 

mathematics-anxiety may actually facilitate learning as well as performance (Pintrich, 2004). 



Cooperative learning 

Procedures in cooperative learning are designed to engage students actively in the learning process 

through inquiry and discussion with their peers in small groups, which need to be well organised with 

a clear structure to promote cooperative participation and learning (Davidson & Worsham, 1992, p. 

xii). Cooperative learning provides students with academic factors such as positive effects in 

mathematics performance and student achievement (Whicker, Bol, & Nunnery, 1997). Cooperative 

learning is a preferable method when helping individuals with mathematics-related anxiety to reduce 

their stress and anxiety. Furthermore, it is also an important feature of self-regulated learning because 

active participation is a crucial element of the self-regulation construct (Clark, 2012; Daneshamooz 

& Alamolhodaei, 2012).  

Focus of the study 

The aim of the study was to investigate John’s perceived experience of long term (three years) regular 

outdoor learning in mathematics in terms of possible impact of integrated outdoor mathematics 

activities on affective and academic factors.  

Methodology 

This paper is a part of a larger intervention research project aiming to explore the possible impact of 

outdoor teaching and learning in lower secondary school (Fägerstam, 2012). Outdoor teaching and 

learning was implemented on a regular basis as a complement to ordinary classroom teaching during 

the entire lower-secondary school period of three years. The focus of this paper is to explore the 

possible impact of long-term regular outdoor learning in mathematics, and the case of John is 

presented as an example of its possible impact. The research is exploratory to its nature because there 

are few longitudinal studies on outdoor learning in mathematics. John is 15 years old, attending his 

third and final year of lower secondary school. John is a fictitious name that has been given to ensure 

the individual’s anonymity. John’s class had one of their four weekly mathematics lessons outdoors 

on a regular basis during the entirety of lower secondary school. The same mathematics teacher taught 

John during the three years of the intervention project. The school to which John and his class belong 

was situated in the suburbs of a medium-sized (approx. 85000 inhabitants) municipality in Sweden. 

The school, grade 7 to 9, was a normal sized school with approx. 450 students in six parallel classes. 

John was interviewed using semi-structured interview as a method. The interview was audio-recorded 

and transcribed using verbatim. Data was analysed thematically to identify recurrent patterns and 

commonalities using thematic coding (Boyatzis, 1998). Aspects of self-regulation skills were 

analysed based on concepts originally used in the PISA survey (OECD, 2004), namely intrinsic and 

extrinsic motivation, self-concept and mathematics anxiety. Representative illustrative quotes will 

describe the possible impact of regular outdoor learning in mathematics on self-regulation in 

mathematics and mathematical proficiency as well as John’s perceived experience. The ethical 

guidelines and directives stipulated by The Swedish Research Council regarding good research have 

been followed (Hermerén, Gustafsson, & Pettersson, 2011). 

The case of John 

John is a fifteen-year-old boy who has had severe difficulties with learning and understanding 

mathematics since he started school. John was selected as a case due to his low levels of mathematics 



self-concept, expressed mathematics-related stress and anxiety and low levels of mathematical 

proficiency, which were reflected in his mathematical performance.  

John’s overall experience: Well-planned lessons, structure, intelligibility, and time 

John emphasises the importance of well-planned lessons, structure and intelligibility. It is important, 

he says, that one knows what is expected and that everyone knows what to do.  

It is of importance that everyone knows what he or she is supposed to do. It is important that the 

teacher gives a thorough briefing before the outdoor lesson. It is important that the teacher presents 

a well-organised picture of the task. You need to have a check before you start as well so you know 

what to do and that you do not just start directly and miss out on something that is of importance 

when solving the task that is presented to you and your group. 

Through well-organised lessons and well-made tasks, it is easier to understand the mathematics and 

what is expected of you. John continues: 

It is crucial that you understand what you are supposed to do, what kind of theory you need in 

order to solve the task that is presented to you. If the lessons are not well organised, the head, the 

brain, you get so, you disconnect, you start to think of other things.  

Time is another aspect of John’s experience of the long-term regular outdoor learning. He thinks that 

the teacher who teaches mathematics provides time to work with mathematics outdoors. However, he 

questions why other teachers in other subjects do not provide time and prioritise time to have some 

of the weekly lessons outdoors.  

I think that you should have outdoor lessons in other subjects too. Take biology for example. In 

biology there are so many “outdoors and environmental issues” so it would be a great possibility 

to work more outdoors. But, we are never outdoors during our lessons in biology, which I think is 

strange. 

According to John, outdoor learning in mathematics provides more time and space to understand what 

and why you do things.  

Indoors you seldom receive any help from the teacher. Often you just sit there for like ten minutes 

waiting for the teacher to have the time to help you. This results in you not raising your hand to 

ask for help, because it is quite meaningless. On the contrary, during the outdoor lessons in 

mathematics the group could either help each other or if the group needs assistance from the 

teacher, the teacher helps the whole group at the same time, which is really great. 

Impact on affective factors 

John experienced and expressed a change in self-concept. 

Outdoor lessons in mathematics make it easier for you to remember what you do and why. When 

you have your lesson in mathematics outdoors, the teacher explains clearly what to do. You are 

given a clear picture of what is expected of you and what the task at hand is about and what the 

aim of the lesson is. You will better understand what you do and why you do it. 

Moreover, it seems like the change of learning environment reduces the mathematics related stress 

and anxiety.  



It is relaxing to work on a regular basis with mathematics outdoors. I get really stressed during the 

regular indoor lessons in mathematics and suffer from mathematics-related panic attacks. 

However, during the outdoor lesson in mathematics I really enjoy myself, I am more relaxed and 

do not suffer from mathematics-related anxiety attacks.  

John experiences that he is enjoying himself and feeling more relaxed during the regular outdoor 

lesson in mathematics. 

John also indicates that his extrinsic motivation has a tendency to hamper his achievement and 

performance in mathematics. He brings up the pressure to perform and the stress and anxiety the 

national tests in mathematics cause. However he also brings up a sense of changed perception of 

himself and emphasises the positive outcomes of variation of context for the learning of mathematics. 

It makes you understand everything much better. You become more engaged and motivated. 

Regular outdoor lessons in mathematics provide you with more input and understanding of 

mathematical concepts. In addition, you feel better and enjoy the mathematics lessons more.  

John appears to address the idea of losing one’s self-confidence, which will lead to low self-concept.  

John emphasises the importance of feeling engaged and motivated. To be extrinsically motivated 

tends to have a negative impact on understanding and learning mathematics. It rather makes you give 

up because you feel like a loser who cannot manage mathematics. However, by working to engage 

with real-life problems in mathematics with regular outdoor lessons in mathematics solving these 

real-life problems together with others provides, according to John, the possibility to become aware 

of one’s true mathematical proficiency and that it might be enhanced. As demonstrated, John 

experienced that he began to enjoy mathematics more. He changed from being extrinsically motivated 

to become more intrinsically motivated and was more ready to face new, more challenging tasks 

because he started to believe in yohisur own abilities.  

Impact on academic factors 

John also stated that he had difficulties with negative numbers when using them and understanding 

the concept of them. During one of the outdoor lessons in mathematics they had worked with negative 

numbers. Before this outdoor lesson they had, during the indoor lesson, talked about negative 

numbers and worked with them in the textbook. 

Well, we had one lesson when we worked with negative numbers, you know plus and minus and 

that kind of stuff. We did this exercise where you were supposed to run and put a piece of paper 

next to another on one of these big long things that looks like a row, and then there were also, you 

know, numbers in between and at the far end there was perhaps minus something and in the middle 

was zero. After a while you started to realise that it was kind of a huge thermometer. It was almost 

like the numbers became connected with each other. The visual picture and the practice of actually 

building the thermometer gave you a better understanding of the concept. It is strange but you 

actually need lots of self-confidence when it comes to learning and understanding mathematics. 

As seen, working more visually and practically with negative numbers, strengthens John's conceptual 

understanding of negative numbers.  



John emphasised the gain of cooperative learning. During the outdoor lessons in mathematics the 

students were supposed to collaborate when solving different problems they were given. During the 

outdoor lessons in mathematics, John was given a feeling of participation.  

The class cooperated better when working with mathematics outdoors than indoors. Indoors the 

class seem to be more divided into certain groups. There is that group with the smart kids, who are 

good at mathematics, then the rest of us who are kind of left behind. During the outdoor lessons 

there tends to be more cooperative work, because all of us know that you must first begin to solve 

the given mathematics task on your own to begin with and then help the group by discussing the 

problem together. It is important that everyone can join in, participate and be given the possibility 

to explain how to solve the task at hand. Everyone should be given the opportunity to show his or 

her proficiency and share one’s knowledge with others. It is a way to better understand how a 

given task can be solved. You become more engaged and motivated if you are allowed to 

participate and speak your mind regarding how you believe that the task at hand can be solved. 

John emphasises that cooperative learning opens up opportunities for and development of adaptive 

reasoning. Through the outdoor lessons in mathematics, the students are given the possibilities to 

reason with each other. They have the opportunity to explain and try out their logical thoughts as well 

as justify their thoughts and chosen solution to the task at hand by reasoning with others. 

Productive disposition 

John expressed experiencing that he began, thanks to the regular outdoor lessons, to recognise and 

realise the importance of mathematics and that it is worthwhile to make the effort to understand the 

concepts of mathematics. Through cooperative learning he realised that he actually possesses a certain 

level of proficiency in mathematics. He realised that a task can be solved in several different ways. 

You need self-confidence in mathematics and if you enjoy mathematics then you become more 

confident and more motivated. Indoors you just sit and understand nothing. But when you work 

with mathematics outdoors you understand how it all works.  

Discussion 

John’s perceived experiences of regular outdoor learning in mathematics indicate that it is reasonable 

to assume that students can benefit from regular outdoor learning in mathematics. We may conclude 

that long-term regular outdoor learning in mathematics shows a tendency to have an impact on 

affective factors by altering the individual’s self-concept, reducing mathematics-related stress and 

anxiety and resulting in a more engaged and motivated student, which is supported by the findings of 

previous studies (e.g. Moffett, 2011). In addition, long-term regular outdoor learning in mathematics 

shows a tendency to have an impact on academic factors and one major feature was the importance 

of variation of context. It is reasonable to assume that the possibility to work more visually and 

practically with real-life problems, which had first been presented theoretically during the indoor 

lessons, might be a key factor for enhanced conceptual understanding (Kilpatrick et al., 2001). We 

may conclude that engagement and motivation for learning mathematics is enhanced. Accordingly, 

students tend to become more engaged and motivated by regular outdoor learning in mathematics. 

Cooperative learning is a prominent part of outdoor learning in mathematics and is emphasised by 

John as a key feature for the enhancement of his adaptive reasoning (Kilpatrick et al., 2001). Previous 

findings have indicated that cooperative learning tends to help mathematics- anxious individuals 



reduce their stress and anxiety for mathematics (Daneshamooz & Alamolhodaei, 2012). The main 

feature of cooperative learning is the opportunity to discuss and reason with others and justify one’s 

mathematical thoughts on how to solve different mathematical problems. John stresses that 

cooperative outdoor learning in mathematics tends to make students aware of their true mathematical 

proficiency by being given the possibility to observe that a task at hand can be solved in more than 

one way and that more than one “right” solution to the problem may exist. John experienced that 

when mathematics became less abstract and more transferable to his everyday life, learning 

mathematics becomes more joyful resulting in a more positive attitude towards mathematics making 

him engage instead of avoid learning mathematics (e.g. Maloney & Beilock, 2012). Long-term 

regular outdoor learning in mathematics gave John the possibility to develop the ability to self-

regulate his learning (Wu et al., 2012). Finally, it is reasonable to assume that if a student is provided 

with a sense of control, that student may enhance the levels of self-concept and reduce mathematics 

related stress and anxiety. 

References 

Ashcraft, M. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current 

Directions in Psychological Science, 11(5), 181−185.  

Bandura, A. (1994). Self-efficacy. In V. S. Ramachaudran (Ed.), Encyclopedia of human behavior 

(Vol. 4, pp. 71−81). New York: Academic Press. 

Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings. Journal 

for Research in Mathematics Education, 29(1), 41−62.  

Boyatzis, R. E. (1998). Transforming qualitative information: Thematic analysis and code 

development. Thousand Oaks, CA: Sage. 

Clark, I. (2012). Formative assessment: Assessment is for self-regulated learning. Educational 

Psychology Review, 24(2), 205−249.  

Daher, W., & Baya'a, N. (2012). Characteristics of middle school students learning actions in outdoor 

mathematical activities with the cellular phone. Teaching Mathematics and its Applications, 31(3), 

133−152.  

Daneshamooz, S., & Alamolhodaei, H. (2012). Cooperative learning and academic hardiness on 

students’ mathematical performance with different levels of mathematics anxiety. Educational 

Research, 3(3), 270−276.  

Davidson, N., & Worsham, T. (1992). Enhancing Thinking through Cooperative Learning: ERIC. 

Desforges, C. (1995). Learning out of school. In C. Desforges (Ed.), An introduction to teaching: 

psychological perspectives. (pp. 93−112). Oxford, UK: Blackwell. 

Fägerstam, E. (2012). Space and place: Perspectives on outdoor teaching and learning. 

(Dissertation), Linköping University, Linköping.    

Hannula, M. (2002). Attitude towards mathematics: Emotions, expectations and values. Educational 

studies in mathematics, 49(1), 25−46.  

Hermerén, G., Gustafsson, B., & Pettersson, B. (2011). Good research practice. Stockholm, SWE: 

The Swedish Research Council. 

Jordet, A. N. (2007). En undersøkelse om uteskolens didaktikk i et danningsteoretisk og 

erfaringspedagogisk perspektiv (Doctoral dissertation). Oslo: Oslo University. 

Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. 

Washington, DC: National Academies Press. 



Maloney, E. A., & Beilock, S. L. (2012). Math anxiety: Who has it, why it develops, and how to 

guard against it. Trends in Cognitive Sciences, 16(8), 404−406.  

Moffett, P. V. (2011). Outdoor mathematics trails: an evaluation of one training partnership. 

Education 3–13, 39(3), 277−287.  

Noorani, M. S. M., Ismail, E. S., Salleh, A. R., Rambely, A. S., Mamat, N. J. Z., Mudaf, N., . . . Majid, 

N. (2010). Exposing the Fun Side of Mathematics via Mathematics Camp. Procedia-Social and 

Behavioral Sciences, 8, 338−343.  

OECD. (2004). Learning for Tomorrow's World: First Results from PISA. Paris: OECD Publishing. 

OECD. (2013). PISA 2012 results: Ready to learn - students' engagement, drive and self-beliefs (Vol. 

III). Paris. 

Peterson, P. E., Woessmann, L., Hanushek, E. A., & Lastra-Anadón, C. X. (2011). Globally 

challenged: Are US students ready to compete? The latest on each state's international standing 

in math and reading. (PEPG Report No. 11-03). 

Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-regulated learning 

in college students. Educational Psychology Review, 16(4), 385−407.  

Ryan, R. M., & Deci, E. L. (2009). Promoting self-determined school engagement. In K. R. Wentzel 

& A. wigfield (Eds.), Handbook of motivation at school (pp. 171-195). New York: Taylor Francis. 

Whicker, K. M., Bol, L., & Nunnery, J. A. (1997). Cooperative learning in the secondary mathematics 

classroom. The Journal of Educational Research, 91(1), 42−48.  

Wigfield, A., Tonks, S., & Klauda, S. L. (2009). Expectancy-value theory. In K. R. Wentzel & W. A 

(Eds.), Handbook of motivation at school (pp. 55−75). New York: Taylor Francis. 

Wu, S. S., Barth, M., Amin, H., Malcarne, V., & Menon, V. (2012). Math anxiety in second and third 

graders and its relation to mathematics achievement. Frontiers in Psychology, 3 (162).  

Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory Into Practice, 

41(2), 64−70.  

 



Finnish educators’ conceptions of the social-emotional needs of 

mathematically gifted high school students 

Eeva Haataja1 and Anu Laine2 

1University of Helsinki, Finland; eeva.haataja@live.fi 

2 University of Helsinki, Finland; anu.laine@helsinki.fi 

This article presents conceptions of social-emotional needs of mathematically gifted adolescents of 

certain Finnish educators. The article is based on a qualitative research study conducted with the 

methods of semi-structured interviews and participant observation in a Finnish high school that offers 

a special programme for mathematically oriented students. The study shows that the educators 

considered the most essential social-emotional needs of mathematically gifted students to be the need 

to be respected as unique personalities, to meet other gifted, to feed and guide the intrinsic motivation. 
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Introduction 

The purpose of this study is to present and analyse the conceptions of the social-emotional needs of 

mathematically gifted students held by certain educators who work in a mathematically oriented high 

school in Finland. The research is conducted in a unique Finnish school community that is focused 

on educating students who exhibit particular interest in mathematics. The data of this research was 

collected by interviewing five educators of the school and by participant observation in the school. 

The research context provides valuable knowledge as it brings together the practices and theories of 

research on gifted education (Ambrose et al., 2010; Laine et al. 2016). 

Giftedness is a very complex concept and varies both qualitatively and quantitatively within gifted 

persons (Passow, 2004), and multiple definitions of giftedness have been written over the decades 

(Ambrose et al., 2010). This chapter presents the theoretical fundamentals on mathematically gifted 

adolescents and summarises former research on teachers’ conceptions of giftedness and gifted 

education. 

Being gifted means possessing promising potential in a certain domain of giftedness and being able 

to develop this potential into actual high performance. This domain, e.g. mathematics, is the field and 

the context in which the gifted activity occurs (Cross & Coleman, 2014). Mathematical giftedness in 

particular means the ability to abstract numbers, variables and functions and the relations between 

them. For a mathematically gifted person, it also means courage, persistence and intrinsic motivation 

to go further and deeper in such mode of comprehension (Gardner 1983; Reis & McCoach, 2002; 

Movshovitz-Hadar & Kleiner 2009; Subotnik, Pillmeier, & Jarvin, 2009). The development of such 

person is not only affected by personal characteristics, but also by the structure and properties of the 

individual’s particular domain of talent (Coleman & Cross, 2000). 

Mathematically gifted students need mathematical activities, and with the support of their 

surroundings, they are able to take an active role in their own learning and develop into professional 

mathematicians (Cross & Coleman, 2014; Usiskin, 2000). They have also certain social-emotional 

needs… A gifted person is able to fulfil his whole potential only if his intrinsic abilities, the support 

of his social surroundings and the social-emotional dimensions are in balance (Subotnik et al., 2009; 



Usiskin, 2000). Exceptionally gifted adolescents often experience dissimilarity and even unpopularity 

among their schoolmates (Mönks & van Boxtel, 1985; Rimm, 2002), especially when the giftedness 

takes place in the domain of mathematics (Pettersson, 2008). 

Many professional educators still view giftedness as a fixed and innate characteristic of a person 

(Laine, Kuusisto, & Tirri, 2016). Some of teachers even consider the gifted as students who actually 

do not need training or instruction (Laine et al., 2016). However, recent theoretical definitions of 

giftedness have shifted towards contextual and malleable conceptions (e.g. Ambrose, VanTassel-

Baska, Coleman, & Cross, 2010; Cross & Coleman, 2014). Various researches illustrate this gap 

separating the theoretical knowledge of giftedness from the conceptions of professional educators 

(Ambrose et al., 2010). Research further shows that there is also a gap between the teachers’ 

conceptions of gifted education and the educational practices they conduct. Therefore there is need 

for in-depth research to further our understanding of teachers’ conceptions of giftedness (Laine et al., 

2016). 

Teachers’ conceptions have a significant role in supporting young gifted students in advancing their 

talent (Mann, 2006; McNabb, 2003; Pettersson, 2008). Teachers tend to favor quite traditional 

conceptions of giftedness (Moon & Brighton, 2008). Generally, according to teachers, the most 

determining characteristic of a gifted student in the school context is a specific difference from others, 

which presents itself as the gifted student’s capability to perform fast, intelligent and creative learning 

(Kaya, 2015; Laine et al., 2016; Mattsson, 2010; Moon & Brighton, 2008). It is interesting to note 

that teachers also associate mainly positive social-emotional characteristics with giftedness, such as 

enthusiasm, sensitivity and curiosity (Kaya, 2015; Laine et al., 2016; Mattsson 2010). 

There seems to be a gap between the theories and teachers’ traditional conceptions of giftedness. 

Therefore, the purpose of this study was to examine the educators’ conceptions of the social-

emotional needs of the mathematically gifted adolescents in a school with successful practices. We 

were especially interested in the conceptions that were also enacted in their practices. 

Methodology 

In this qualitative research the data was collected by interviewing all the teachers who had regularly 

supervised the summer schools (two mathematics teachers, the biology teacher) as well as the 

principal and the healthcare officer. Additionally… by observing, filming and participating in the 

mathematics classes in the autumn of 2011 and an overnight school session in January of 2012. A 

qualitative semi-structured interview technique was used in order to give the interviewees the 

possibility to conceptualize and describe the topic in the way they prefer.  

The researcher spent time with the student participants of the overnight school and participated in the 

social and mathematical activities of the event. Short informal discussions were conducted with the 

students while participating. As the data was collected in the authentic environment of the research 

subjects by means of participant observation, this study contains characteristics of ethnographic 

research (Delamont 2004; O’Reilly 2005). 

The data was transcribed and analysed with inductive content analysis. Inductive content analysis 

means categorizing and combining units of the analysis into larger aggregates (Elo & Kyngäs, 2008). 

A whole statement was chosen to be the unit of the analysis. The whole statements included one 

thought, conception or opinion varying in length from a couple of words to several sentences. These 



units were first categorized into codes. After that, as is done in inductive content analysis (Elo & 

Kyngäs, 2008), the codes were connected into categories and such categories into main categories, 

and finally the results were interpreted in the light of the theoretical background of the study. 

Results 

The purpose of the school is to gather together and educate adolescents interested in mathematics. 

The students of the school are offered a wide range of instruction in mathematics and diverse learning 

environments such as the Night of Mathematics and an annual summer school in Lapland. The 

educators interviewed in this study generally described their students as gifted. They defined 

mathematical giftedness as the ability to picture, learn and remember mathematical causations rapidly 

and with clarity. They described two types of giftedness appearing in the school: students with 

multiple talents and those with a single exceptional talent. The students with multiple talents were 

interested in societal influencing and social activities. On the other hand, the exceptionally talented 

tended to impress their teachers with their commitment to studying and with their high level of 

mathematical reasoning skills. 

Principal: Roughly speaking there are those Renaissance talents who are widely talented and 

then those exceptionally gifted, who focus on the area of their deepest interest. 

The uniqueness of the school’s students was emphasized in the interviews. The interviewees were 

unwilling to stereotype the students and rather described their personalities, interests, social skills and 

profiles of giftedness as very individual.  

Principal: I don’t want to give any stereotyped answer here. I don’t want to say that they are this 

kind or that kind. 

According to the educators, many of the students have experiences and memories of feeling different 

and isolated during elementary school. Sometimes a change of school climate can be essential for a 

gifted adolescent. 

Mathematics Teacher2: And we offer a community where you can discuss the Schrödinger equation 

during a break without being sneered at. 

Biology Teacher: I just received a message where the parents were thankful because it has been so 

great [for him]. To be accepted in the group and let him be himself and encouraged 

and so on. 

According to the interviews, the students with exceptional mathematical giftedness had more 

challenges in terms of social skills than those who were gifted in various fields. Moderately gifted 

students are usually relatively popular among their school mates and age peers, while the 

exceptionally gifted are more prone to being left alone (Gross 2002; Rimm 2002). Any school 

environment requires various social skills from students (Payton et al. 2008). According to 

Mathematics Teacher 1, both “social sharks” as well as those who have “obvious problems in that 

respect” could be found among the students of the school. 

Biology Teacher: Some of them have very poor social skills. …It is often related to this narrow field 

of giftedness. 



Every student was welcome to participate in the social activities of the school to the extent of their 

own preferences. According to the interviews, one important social skill for the students is tolerating 

of all kinds of personalities. In the interviews, the diversity among the students was seen as an 

important part of the school’s social climate. 

Mathematics Teacher1: Of course one can choose to enjoy small groups or solitude.  

Mathematics Teacher1: We have a vast variety of personalities and a tight community, which means 

that it becomes a tolerant community.  

To study and associate with other gifted students was considered one reason behind the distinctive 

solidarity of the school community. These views are congruent with the literature (Gross 2002; Rimm 

2002). Even though a variety of social skills existed among the students of the school, the common 

interests made social interaction easier. 

Health-care officer: To find congenial people. And I know how the teachers describe, how they [the 

students] make experiments in the physics lesson or somewhere, the burning 

enthusiasm they show.  

According to the interviewees, the students of the school were able to form close friendships with 

each other. The class-based structure and diverse range of informal activities formed the basis for the 

development of friendships at the school. 

Biology Teacher: And then across the groups of each year’s class, because on Mondays [when extra 

courses in mathematics are taught] and at overnight schools, they spend time together, 

there are no boundaries. 

Associating and studying with other gifted students are emphasized both in these results and in the 

literature (e.g. Subotnik et al. 2009; Rimm 2002). The positive social climate of the school was 

constructed upon acceptance of the dissimilarities of students, diverse social interaction, shared 

experiences and interest in learning mathematics. These features were also seen as suitable for 

enhancing giftedness.  

Intrinsic motivation is one of the most essential social-emotional characteristics for the development 

of mathematical giftedness (e.g. McNabb, 2003; Subotnik et al., 2009). The importance of motivation 

was also emphasized by the mathematics teachers interviewed in this study. 

Mathematics Teacher2: They are very motivated. And that is more determining than giftedness. Of 

course they need some kind of giftedness. But with some kind of basic giftedness you 

can go very far.  

Even though motivation is often seen as a person’s inner characteristic (Subotnik et al. 2009), the 

interviewees highlighted the significance of peer support in connection with maintaining motivation. 

The shared motivation and interest in mathematics was also apparent in the overnight school, where 

groups of students solved mathematical problems together while demonstrating amazing enthusiasm. 

Health-care officer: It is the passion for [mathematics] that creates common good things in the class 

or the group or among the students.  

Mathematics Teacher2: The social pressure can influence them one way or another… They support 

each other very much in studying.  



The observations of the overnight school showed that the students were able to discuss their 

perfectionism, too. The conversation was humorous, and the participants were laughing at their 

perfectionistic characteristics. 

Student1: I am not a workaholic at all! 

Student2: No you’re not. You only scared all the freshmen with your stories last year. 

Sometimes high motivation comes with negative phenomena such as unbeneficial perfectionism. The 

biology teacher and the healthcare officer had seen that achieving certain objectives or failing to do 

so may cause stress and exhaustion.  

Principal: It [exhaustion] does not occur often, but someone every year.  

Health-care officer: Often great giftedness and striving for perfection and achievements are a part of 

the personality. There is a risk of stress and fatigue and exhaustion.  

The interviewees tended to see perfectionism as a practical problem of the educational system rather 

than a problem in the adolescents. The perceptions of the interviewees were summed up by the 

healthcare officer. According to her, negative perfectionism can be prevented and treated by guiding 

the students, being adaptive and offering constant care to the students. 

Health-care officer: Flexibility and a flexible education system are what secure the path of the 

adolescents somehow. And also the caring, in particular, daily care.  

Studying with the other gifted students in a supporting school climate was described to help the 

adolescents to form a realistic self-image and a strong self-confidence as people and mathematicians. 

Mathematics Teacher1: It is easy to obtain perspective, [because] some really are incredibly good. – 

– But nobody is the best of all.  

Health-care officer:  It is amazing to notice how they somehow gain self-confidence. 

The gifted students were described as both ordinary and special at the same time, as they encounter 

the common social-emotional challenges of adolescence but also have special characteristics and 

needs due to their mathematically oriented and ambitious environment. The influence of the domain 

of mathematics on the development of mathematically gifted adolescents cannot be ignored. 

Discussion 

All qualitative research should be subject to realistic reflection on its general reliability (Lincoln & 

Guba 1985). In this particular study, the use of triangulation of data collection increases the validity 

of the research. Nevertheless, a longer participatory observation could have offered more profound 

information on the social interactions of the students. Additional reliability was achieved by 

presenting the interviewees with the results of this study. 

This research studied educators who possess particular experience in the context of Finnish education 

on teaching students who are recognised as gifted. Therefore its results differ from earlier studies on 

conceptions of giftedness of Finnish teachers (Tirri & Kuusisto, 2013; Laine et al., 2016). The 

interviewees of this study described giftedness as advanced performance and a modifiable 

characteristic of a student as well as of the whole school community. Finnish teachers tend to relate 

gifted students only with positive social-emotional characteristics, such as creativity and high level 



of motivation (Laine et al., 2016). The interviewees of this study were prone to discuss also social-

emotional challenges related to lives of the gifted adolescents. Still, the positive attitude to giftedness, 

enthusiasm for teaching and pride of their students were easily heard within the interviews. Research 

has also noted that the amount and especially the quality of cooperation with gifted students 

determines the teachers’ conceptions of and approaches to giftedness (Kaya, 2015). 

The concept of dissimilarity is widely included in definitions of giftedness as well as in the 

conceptions of giftedness commonly held by teachers. If someone is thought to be gifted, she is also 

seen as somehow, although often positively, different from others (Shani-Zinovich & Zeidner, 2009). 

In this research, the school was described as a meeting place for mathematically gifted students who 

are, in some way, different from many other adolescents. Therefore it is significant to understand the 

difference as a subjective experience of a gifted adolescent. Although the society, parents and teachers 

usually appreciate giftedness, exceptional talents often experience isolation within their age group 

(Gross, 2002; Rimm, 2002). 

The organization and the curriculum of national school systems should meet the needs of every 

student including the gifted ones (Cross & Coleman, 2014; Kaya, 2015). The school investigated in 

this research does not represent a common high school in Finland. Neither does it reflect general 

Finnish attitudes toward special education of highly performing adolescents (Laine et al., 2016; Tirri 

& Kuusisto, 2013). A person’s individual growth and particular social environment determine the 

social-emotional challenges of a mathematically gifted child instead of the mathematical giftedness 

per se (Wilson, 2015). Finnish teachers are highly qualified and skilled at differentiating learning 

contents both for fast and slow learners (Laine et al., 2016). However, this research shows that even 

the most devoted and competent teacher cannot replace the need of meeting, studying and making 

friends with other congenial peers. As a conclusion, when planning education for gifted students the 

social-emotional aspects of gifted education and the gifted students’ need for meeting congenial 

adolescents should be considered. 
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There are some discussions about the relationship between creativity and the aesthetic sensibility.  It 

has been a characteristic of mathematician and mathematical gifted that the aesthetic sensibility has 

a generative characteristic. On the other hand, some studies demonstrated that the generative 

characteristic also was available even by the non-mathematician or non-mathematical gifted. The 

purpose of this paper is to clarify the process to produce qualitative differences in the generative 

characteristic of the aesthetic sensibility through the analysis of learners’ problem solving. For this 

purpose, two pairs of high school students and one pair of college students were observed during 

problem solving. As a result, it was clarified that it is critical whether learners have their own goal 

other than the given one to evoke the generative characteristic. Moreover, it was suggested that the 

difference of one’s own goal is associated with qualitative difference in the generative characteristic. 

Keywords: Aesthetic, generative, creativity, problem solving, qualitative study. 

Introduction 

There are two directions for the term “mathematical creativity” used widely: extraordinary creativity, 

known as big C, or everyday creativity, known as little c (Sriraman, Haavold & Lee, 2014, p.110). 

Everyday creativity also is important for mathematics educators. Silver (1997) said, 

Although creativity is often viewed as being associated with the notions of “genius” or 

exceptional ability, it can be productive for mathematics educators to view creativity instead as 

an orientation or disposition toward mathematical activity that can be fostered broadly in general 

school population. (Silver, 1997, p.75) 

In today’s national curriculum in Japan, developing all students’ creativity is one of the objectives in 

high school mathematics education. So, this paper uses the term “mathematical creativity” or 

“creativity” as the meaning used by Silver: everyday creativity.  

Since Poincaré (1908/2003) pointed the importance of the aesthetic sensibility in mathematical 

discovery, the interest in the relationship between creativity and the aesthetic sensibility has risen in 

the field of mathematics education. Some studies have claimed that the aesthetic sensibility is one of 

characteristics of mathematician or mathematical gifted student (Dreyfus & Eisenberg, 1986; Hardy, 

1956/1992; Krutetskii, 1976; Poincaré, 1908/2003; Silver & Metzger, 1989). As the bases for such a 

claim, these studies had drawn attention to the process that the aesthetic sensibility worked (Dreyfus 

& Eisenberg, 1986; Krutetskii, 1976; Silver & Metzger, 1989). In particularly, Silver & Metzger 

concluded that there were several characteristics of aesthetic sensibility during mathematical problem 

solving only by mathematicians.  On the other hand, other studies disagree with above claims in that 

general learner, non-mathematician or non-mathematical gifted student, can have the aesthetic 

sensibility and their aesthetic sensibilities have the similar characteristics with mathematician or 

mathematical gifted student (Papert, 1978; Sinclair, 2006a). These studies demonstrated that the 



generative characteristic of the aesthetic sensibility, which works as a guide in decision making 

during mathematical discovery, could work in general learners’ mathematical problem solving. 

If the difference of such a characteristic is not due to the mathematical talent, the questions have 

remained unanswered what critical factor causing difference is or how such difference is caused. The 

purpose of this paper is to clarify the process to produce qualitative differences in the generative 

characteristic of the aesthetic sensibility through the analysis of general learners’ problem solving. 

Theoretical background 

The characteristics of the aesthetic sensibility in problem solving 

There is not a clear and widely accepted definition of the term “aesthetic” in mathematics education. 

Poincaré (1908/2003) explained using both the form of mathematical objects and the sense of the 

perceiver as following: 

It is the harmony of the different parts, there symmetry, and their happy adjustment; it is, in a 

word, all that introduces order, all that gives them unity, that enables us to obtain a clear 

comprehension of the whole as well as of the parts. (Poincaré, 1908/2003, pp.30-31) 

Hardy (1956/1992) and Dreyfus & Eisenberg (1986) defined it using subjective qualities like 

“economy”, “simplicity” and “surprise”. Without referring to its subjectivity, Hardy argued that 

mathematician would share them. In contrast to the above studies, Wells (1990) claimed that the 

aesthetic qualities are subjective and context-dependent.  

On the other hand, some studies paid attention to the working process of the aesthetic sensibility, 

which is the ability to appreciate and respond to aesthetic qualities of mathematical objects, rather 

than strictly defining the term “aesthetic” (Papert, 1978; Silver & Metzger, 1989; Sinclair, 2006a, 

2006b). Though claims about what the aesthetic is are various, the discussion about what 

characteristics the aesthetic sensibility have is a convergent as below. Papert (1978) was focused on 

the process of creation explained by Poincaré. Papert regarded the aesthetic widely and observed 

non-mathematicians’ proving process. As a result, Papert concluded non-mathematician also could 

be guided by the aesthetic sensibility. Silver & Metzger (1989) classified the role of the aesthetic 

sensibility into two categories. First is “the guidance of decision making during problem solving” (p. 

62). The viewpoint of this category can be regarded as the same as Papert’s. Second is “the evaluation 

of the elegance of a completed solution” (p.62). In addition, Silver & Metzger observed 

mathematicians’ problem solving and identified these roles in their problem solving. Similarly, 

Sinclair (2006b) classified characteristics of the aesthetic sensibility into three categories: the 

evaluative characteristic, the generative characteristic, the motivational characteristic. Moreover, 

Sinclair (2006a) observed learners’ problem solving and problem posing and identified these 

characteristics of the aesthetic sensibility. Sinclair’s generative characteristic and evaluative 

characteristic can be regarded as the same as Silver & Metzger’s two roles.  

The above results demonstrate that whether the aesthetic sensibility does work in problem solving is 

due not to only mathematical talent but also to something else. The existence of this “something else” 

is consistent with the claim of Papert. However, there has been not enough study done concerning this 

point. In particular, few studies have attempted to observe learners’ generative characteristic of the 

aesthetic sensibility.  



Based on the above background, this paper defines the generative characteristic of the aesthetic 

sensibility (GCA) as a guide in decision making during mathematical discovery, and clarifies the 

process to produce qualitative differences in the GCA.  

Four categories of the generative characteristic of the aesthetic sensibility.  

Poincaré (1908/2003) regarded the aesthetic sensibility as a thing working in the unconscious level. 

In contrast, some studies limited the discussion to the conscious level (e.g. Papert, 1978; Silver & 

Metzger, 1989; Sinclair, 2006a). This paper also limits a discussion to the conscious level. 

Papert regarded reasoning without conviction or logic but with pleasure as “the problem of guidance” 

(p.109) by the aesthetic sensibility. Sinclair (2006b) associated such non-conviction reasoning to 

intuition as “capitalising on intuition” (p.94). Moreover, Sinclair (2006b) identified additional three 

categories of the GCA based on the mentions by mathematicians. First category is “playing with or 

‘getting a feel for’ a situation” (p.94). This means exploration “in that the one playing is seeking to 

identify organizing themes and structures and to arrange the objects being played with in a 

meaningful, expressive way” (p.95). That is, it can be interpreted as pursuing these goals without 

depending on the goals of the given problem. Second category is “establishing intimacy” (p.94). This 

means, for example, to give a name to the considered subject. Third category is “enjoying the craft” 

(p.95). This is interpreted as consideration using mastered tools. Although the question remains 

whether it is reasonable that intuition is regarded as one of the aesthetic generating, this classification 

by Sinclair (2006b) can be used as viewpoints for extraction of the GCA from one’s behavior in 

problem solving. 

A study on the generative characteristic of the aesthetic sensibility in general 

learners’ problem solving 

Participants 

Two pairs of high school students and a pair of college students, who had several mathematical 

knowledge and mathematical experience, were selected as participants, and observed during solving 

a problem. One pair of high school students belonged to 10th grade (Pair H1), another pair belonged to 

11th grade (Pair H2). One of college students belonged to third year and another belonged to fourth 

year of mathematics teacher-training course (Pair C). Although they were all better than the average 

learners in Japan, they were not so good as mathematician or mathematical gifted student. 

Pair H1 and Pair H2 belonged to the same high school in Japan. Pair H1 had learned double radical 

signs. However, they had learned about a particular type like which could be transformed 

into other form without a double radical sign. In addition, they had not learned the relationship 

between the roots and the coefficient of the quadratic equation. The other hand, Pair H2 had learned 

same type double radical signs with Pair H1. This pair had learned the relationship between the roots 

and the coefficient of the quadratic equation.  

Pair C did not belong to the same high school with Pair H1 and Pair H2. They had learned double 

radical signs and the relationship between the roots and the coefficient of the quadratic equation. 

Although a student belonged to third year had never “studied” mathematics in college, another 

student belonged to fourth year had “studied” mathematics in college for a half year. So, fourth grade 



student was expected to have experienced mathematical discovery and to show the experience in the 

process of problem solving. 

Procedure of the study 

Because the GCA is “involved in the actual process of inquiry, in the discovery and the invention of 

solutions or ideas” (Sinclair, 2006b, p.93), participants were observed their problem solving behavior 

in following process. 

Each pair calculated in order to clear some concrete double radical signs like  as warm-up. 

Then, observer showed another type which cannot be cleared double radical signs like . 

After that, each pair solved a problem about an abstract double radical sign (it is shown below). After 

they finished to solve, they were interviewed about how to solve it.  

In order to analyze verbal report during solving problem as data, participants were asked to solve a 

problem while consulting in pairs. By this setting, it was expected to provide simultaneous and nature 

verbal report. All participants’ verbal report was recorded on a IC recorder. (Only Pair H2 was 

recorded on a video camera, too.) 

A problem   

In this study, a following problem was chosen.  

Find the conditions for clearance of a double radical sign from .  However, and  

belongs in positive rational number. Moreover, is not the square of rational number. 

There are multiple conclusions in this problem as following. The participants were not informed what 

conditions were appropriate as the conclusion. Therefore, they were also asked value judgments for 

determining their finding as a conclusion. In contrast to that the multiple solution problems need 

participants to solve problem by more than one way — general learners usually do not so, such 

open-ended problems need participants’ value judgments more naturally.  

(Conclusion 1): If a double radical sign can be transformed into following expression:  

 

 then right side of above equation can be transformed into following expression: 

 

From the above transformations, a necessary condition for clearance of a double radical sign 

from  is the existence of belonging to positive rational number such that 

 and  Conversely, if belonging to positive rational number such that 

 and exist, then the double radical sign of  can be clear as following: 



 

 

(Conclusion 2): Existence of belonging to positive rational number such that  

and is equivalence with that  are the roots of the quadratic equation  

in . From this, the latter condition is also a conclusion of above problem. 

In the following,  expresses the discriminant of the quadratic equation. If , then  

 

From this, if  can be expressed as the square of rational number like ( , then 

 has positive rational roots in . Conversely, if  can be expressed as ( 

, then the two roots of quadratic equation  are 

 

These sum and product are 

 

From these, 

 

 

From above, if  can be expressed as ( , then the double radical sign 

of  can be clear. 

(Conclusion 3): Looking back at the conclusion 2 can provide next developmental conclusion. That is, 

the conditions for clearance of a double radical sign from  is that  can be expressed as ( 

, too. 

(Conclusion 4): Moreover, seeing  as  can provide another perspective. That is, if  

in the  is replaced to , then a conclusion of finding the conditions for clearance of a 

double radical sign from  is that  can be expressed as ( . 

 



Results 

Overview of three pairs’ problem solving is shown in Table 1.  

 Pair H1 (H1-1&H1-2) Pair H2 (H2-1&H2-2) Pair C (C1&C2) 

Conclusion 1 04:00 H2-1 02:20/ H2-2 06:02 08:16 

Conclusion 2 16:20 H2-1 05:37/ H2-2 06:59  

Conclusion 3, 4    

Finish 16:20 51:16 38:00 

Table 1: Overview of three pairs’ problem solving 

In Table 1, each of the values show the time participants spent to get to the conclusion shown to far 

left, and diagonals show that participants did not arrive at the conclusion. Each participant of Pair H2 

had got to the conclusion on their own before they started to consult each other. Therefore, each time 

of Pair H2 was shown in Table 1. Line of the “Finish” shows the time which each pair had spent 

solving problem. For instance, Pair H2 and Pair C kept pursuing more exact condition than their 

conclusion in cooperation each other. Solving process of each pair are as follows. However, the 

symbols used below are the same as those used by participants. 

(Pair H1) 

After confirming the question, each immediately got to the relationship: . H1-1 

continued more investigations from the reason that "  and  cannot be found when these are the large 

numbers. I want another one easily puts out with only  and .", and continued for a further inquiry. 

In addition, H1-2 said "it is not good to use the new  and ", and continued to explore. H1-1 

associated the factorization from the above equation, and flashed that it will go well if he can factorize 

as following: . H1-1 started to think about that H1-2 had been 

questioned: the case has the rational solutions. H1-1 paid attention to the 

discriminant of the quadratic equation, but dismissed this idea. H1-1 dazzled that if the root in the 

quadratic formula could be clear, it will go well. H1-2 agreed this. They established conclusion that 

 is square number, and finished the solving. 

(Pair H2) 

After confirming the question, H2-1 and H2-2 went ahead the discussion using a specific example. 

However, they did not use the peculiarities of example, generalized immediately once outlook was 

obtained. Up to this point, they worked on the problem at each, and got to a conclusion 2 through the 

conclusion 1. However, they had not been convinced that the condition they got was the one they 

sought for. When the observer was urged to check the progress of each other, they decided to consider 

in cooperation about the conditions with the  and , which H2-1 had considered. H2-1 was looking 

for a simple conclusion than conclusion 2. Ultimately, they made out that can be expressed as the 

square of rational number is necessary and sufficient condition for clearance of a double radical sign 

without deriving another “simple” conclusion. 

(Pair C) 



After confirming the question, C1 remembered following condition as a formula: . 

Then, they considered they could regard this formula as conclusion. They made sure that 

, and could regard the formula as conclusion. By the "intervention" of the observer: 

asking them about example, they began to consider whether concrete double radical signs can be clear 

based on above "conclusion". C1 noticed that  were rational number when a double radical sign 

could be cleared, and he said, "I guess I should add another conditions". C2 considered that the 

example which could not be clear a double radical sign was really not able to clear through a specific 

calculation. As a result, they confirmed that it could not clear. In response to the results, they 

concluded as following: 

Condition (ⅰ): . 

Condition (ⅱ):  

Condition (ⅲ):  are rational number. 

The analysis 

The analysis was carried out in the following procedure. First, making transcripts of participant's 

problem solving process. Next, judging whether some of the four GCA proposed by Sinclair (2006b) 

can be seen through the observation of problem solving behavior and the interpretation of the 

intention of the behavior. The interpretation of the intention is based on the transcripts of the problem 

solving process and the explanations of their process that the participant did after solution. Finally, 

comparing the GCA of each pair. As a result, the GCA were seen as following Table 2. 

the GCA Pair H1 Pair H2 Pair C 

Removing new symbols (for Conclusion 2) ○ ○  

 Pursuit of exactness (for Conclusion 2)  ○ ○ 

Pursue of simplicity (for other Conclusions)  ○  

Table 2: The GCA of three pairs in problem solving process 

Discussion: The qualitative differences in the generative characteristic of the 

aesthetic sensibility 

From a comparison of the three pairs, mainly three of qualitative differences in the GCA in problem 

solving were observed. First is the point whether they attempt to remove new symbols  and . Both 

Pair H1 and Pair H2 discussed about this point, but Pair C did not. Second is the point whether they 

confirm the exactness of the conclusions. Pair H1 did not check it, and the remaining two pairs did. 

However, there was a difference in the method used by pair H2 and pair C. Pair H2 was showed 

exactness by considering that the found condition was necessary and sufficient condition. On the 

other hand, pair C confirmed the exactness by considering a concrete example. Third is the point 

whether they attempt to further improve the conclusion that could be expressed as the square of 

rational number. This had done only pair H2. However, this pair could not obtain conclusion. 

From above results, it can be presumed that the qualitative difference of the GCA in problem solving 

depends on participants’ goal in problem solving. For instance, pair H1 wanted not only to find 

condition, but also find condition without new characters  and . Pair H2 also had this goal, but pair 

C did not. As a result, only pair C did not pursue another conclusion. Therefore, in order to evoke the 

GCA it is critical whether learners have one’s own goal other than the given one. In addition, even if 



learners have same goal such as exactness, the difference in means of the “exactness” can cause 

qualitative differences of the GCA. 

From above discussion, if we can make learners to have one’s own goal, it is possible that we can 

evoke learners’ GCA. However, it is not clear in this paper that what kind of goal is desirable for 

mathematical creation, and how can we make learners to have one’s own goal. Therefore, a further 

study of these points should be conducted.  
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Identifying subgroups of CERME affect research papers 
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Research in mathematics related affect uses a variety of theoretical frameworks. Three different 

dimensions have been suggested as significant to characterize concepts in this area: (1) emotional, 

motivational, and cognitive aspects of affect, (2) state and trait aspects of affect, and (3) 

physiological, psychological, and sociological level of theorizing affect. In this study, we used the 

information in reference lists and graph theory to identify Graph Communities (coherent clusters) of 

research papers published in the affect groups of CERME conferences. The four main Graph 

Communities identified in the analysis were Foundation (beliefs, attitudes, emotions), Self-Efficacy, 

Motivation, and Teacher Development. There were six smaller Graph Communities that may suggest 

emerging new frameworks: Academic Emotions, Metacognition, Teacher Beliefs, Resilience, 

Meaning, and Identity. These results suggest that of the three possible dimensions to structure the 

area, the distinction between cognition (beliefs), motivation, and emotions is the most important one. 

Keywords: Affect, educational theories, graphs, literature reviews. 

Introduction 

The affect group in CERME has spent a lot of time and energy discussing the conceptual framework 

and terminology, leading to more extensive theorization of the area. Three theoretical frameworks 

have been especially influential in CERME for structuring the area of affect. The first is McLeod’s 

1992 framework that identified three main topics of research in mathematics related affect: emotions, 

attitudes, and beliefs. Moreover, the framework suggested that emotions are the most intensive, the 

least stable, and the least cognitive of the three, while beliefs are at the other end of the continuum 

and attitudes are in the middle.  

An important synthesis of discussions in the group was Op ‘t Eynde’s graphic representation of the 

conceptual field at CERME 5 (Hannula, Op ‘t Eynde, Schlöglmann & Wedege, 2007, Figure 1). This 

model identifies some new constructs that had been then discussed in CERME affect group: most 

importantly, the model identifies motivation as a dimension separate from affect, and meta-affective 

constructs. Moreover, the model highlights the local (classroom) and socio-historical contexts. 

The model was discussed and developed by Hannula in his CERME plenary (2011) and further 

elaborated in the CERME special issue of RME (2012). This cube model (Figure 2) identified three 

dimensions that are relevant when discussing affective constructs. The first dimension addresses 

cognitive, affective, and motivational types of constructs. The second dimension separates the rapidly 

changing state-type constructs and more stable trait-type constructs. The third dimension identifies 

three levels of theorizing affect: psychological, social and embodied theories. 

These distinctions identify separate research areas of mathematical affect. But how separate are they? 

Do the studies on attitudes, emotions, and beliefs form three separate research traditions or even 18 

separate research areas, as Hannula’s cube model suggests? Perhaps the studies on state and trait type 

affects are separate? Or are the different topic areas partially overlapping with diffuse borders, as Op 

‘t Eynde’s figure depicts it?  
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Figure 1. A graphic representation of the different dimensions of mathematics-related affect and their 

relationships, presented at CERME 5 (Hannula et al., 2007, p. 204) 

 

 

Figure 2. Hannula’s (2011; 2012) cube model of the three dimensions for affective constructs  

One way to analyze the question empirically is to analyze the references different research papers 

share. We are aware that there is a lot of cross-referencing between authors of CERME affect papers 

and that there are some fundamental articles that keep being cited often. However, there has not yet 

been any systematic analysis on the cohesion of the research papers. We are going to make a network 



analysis of CERME papers in this research area. With this analysis we can identify whether there are 

some clusters of different research traditions within the CERME affect group. Moreover, we expect 

to identify important foundation works for each research tradition. 

Our research questions are: (1) What possible subgroups can we identify among CERME research 

papers on affect when analyzing the cited authors of each paper? (2) What are the defining 

characteristics of each subgroup of papers? 

Methods 

Corpus and measures 

Our corpus for analysis were the 100 research reports published in the affect groups in CERME 

conferences four to nine. The first two CERME conferences did not have an affect group and 

CERME3 one was left out because of some difficulties in the formatting that we did not have time to 

solve. We excluded from our analysis affect papers published in other groups, for example in groups 

of teacher beliefs or comparative studies.  

Knowing the CERME publications in affect group, we knew that some authors had published papers 

that might fall into different research traditions. For example, many researchers have published papers 

both on teacher affect and student affect, and it could be possible that these fields would be 

empirically separate clusters. Therefore, we decided to search for clusters of papers published in 

CERME rather than identifying clusters of researchers. 

When analyzing the lists of references, we had two basic options to identify links between papers. 

We could identify whether the same reference appeared in the reference lists of two papers, or we 

could link them whenever they had papers by the same author in their lists of references. Because our 

data corpus was modest in size, there was high probability that papers using the same theoretical 

framework might not share the same exact references even if they use papers by the same authors. 

Therefore, we decided to use the authors in the reference lists rather than the exact references as the 

method of connecting papers. 

As a conclusion, our data consisted of research reports published in the proceedings and the authors 

appearing in their reference lists. For each of the papers, we created a connecting link from the paper 

to each of the authors mentioned in the references. For analyzing the connections between papers, we 

identified CERME papers and cited authors as vertices of a graph. Edges of the graph are the links 

that connected each CERME paper with the authors mentioned in the list of references, allowing 

multiple edges when a paper had several references by the same author. Hence, we produced a graph 

connecting all papers to their cited authors and this was then subjected to a mathematical analysis. 

Analysis 

The analysis included two stages: (1) To identify Graph Communities, and (2) to identify 

commonalities within the papers and authors of the selected Graph Communities. 

We identified related papers using the FindGraphCommunities algorithm with modularity-based 

clustering to identify how papers and cited authors are related (Wolfram Alpha LCC, 2016). The 

modularity approach was originally developed by Newman and Girvan (2004) and the algorithm used 

in Wolfram Alpha is based on Fortunato’s article (2010). 



The input for the algorithm was the graph connecting research reports to authors cited in these papers. 

The output was subgraphs called Graph Communities, each of which consisted of some of the 

research reports and authors. The algorithm chooses only one Graph Community for each of the 

graph’s vertices. In other words, although the same author may originally appear in the reference lists 

of papers from many graph communities, in these subgraphs each cited author belongs exclusively to 

one Graph Community. This accentuates the differences between Graph Communities, especially 

with respect to those authors who are cited in papers in several communities. In addition, we are 

aware that the current method does give additional weight to authors cited several times in a paper. 

The next stage of analysis was to identify which Graph Communities to include in further analysis. 

This stage was based on a visual inspection of Graph Communities to see how well they are 

connected. The five biggest Graph Communities are presented as graphs (Figures 3 – 6), all affect 

papers published in CERME are represented as vertices with multiple edges. However, authors may 

have either one or multiple edges, depending on how many times they appeared in references. Another 

six Graph Communities are described but due to space limitation their graphs are no presented.  

In the last stage of the analysis, we examined which papers and authors were represented in each of 

the Graph Communities. 

Results 

The algorithm identified 21 Graph Communities. We shall describe nine of them.  

The first Graph Community 1 (29 papers; Figure 3) we call Foundation. It was the largest and the 

most cited authors in it included arguably the most influential researchers in the area of mathematical 

affect: McLeod (e.g. 1992), Schoenfeld (e.g. 1992) and Goldin (e.g. 2002). The most frequently cited 

authors in Foundation were active participants of CERME affect group: Hannula, Zan, Pehkonen, 

and Di Martino. Foundation is perhaps the most difficult to describe and may be best done by 

contrasting it with other Graph Communities. The Foundation’s papers represent a large scope of 

research topics and theoretical frameworks, including papers that focus on beliefs, attitude, affect 

during problem solving, and emotions. This group also contains several papers that deal with 

dynamically changing affective states. 

The second Graph Community (11 papers, Figure 4,) was given the label Self-efficacy. It had papers 

mostly from Cyprus and Turkey (e.g. Arslan & Bulut, 2015). The shared theoretical framework of 

self-efficacy was indicated by numerous references to Pajares and Bandura. 

The third Graph Community (11 papers, Figure 5) we named Motivation. Philippou and Pantziara 

were influential authors in this Graph Community. Seven of the papers included at least one of them 

as the author (e.g. Pantziara & Philippou, 2011). Also Wæge appeared three times in this group as an 

author. This group shared motivation theory framework, and the most cited authors were well-known 

motivation theorists Midgley, Deci, Ryan, Pintrich, and Elliot.  

 



        

Figure 3. The Graph Community Foundation  Figure 4. The Graph Community Self-Efficacy 

The Fourth Graph Community (8 papers, Figure 6) collected together papers on Teacher 

Development. Liljedahl was an important author in this group with four papers and the most cited 

authors include Liljedahl and Ball.  

                         

Figure 5. The Graph Community Motivation  Figure 6. The Graph Community Teacher Development    

The following six Graph Communities were smaller, each including 3 to 5 papers. Due to space 

limitations, these will be described only briefly. The four papers in Academic Emotions share 

Pekrun’s (e.g. Pekrun, Goetz, Titz, & Perry, 2002) academic emotions framework and all these papers 

have been published in CERME8 or CERME9. All four papers in Metacognition were authored by 

Panaoura (citing e.g. Flavell, 1987). Teacher Beliefs had three papers from CERME8, citing, e.g. 

Fives & Buehl (2008). Resilience included 5 loosely connected papers without any frequently cited 

author. Meaning (citing e.g. Skovsmose, 2005) included four papers, and Identity (citing, e.g. Sfard 

& Prusak, 2005) four papers.  

The remaining 14 Graph Communities included one or two papers each, altogether 16 papers. Nine 

of these papers were by authors who have ever published only once in the CERME affect group. Yet, 

these included also papers by frequent CERME participants (e.g. Hannula and Philippou).  

Discussion 

The analysis identified nine groups of CERME affect publications. Their defining features were a 

shared theoretical framework and often a research team. The largest group, Foundation, did not hold 

a theoretical framework clearly separating it from other groups. Rather, this group seemed to rely 



more on the seminal works in the field of mathematics related affect and cover a variety of research 

topics indicating that there is much cohesion in this research field. 

How much are these identified groups of papers determined by having the same authors? Most 

researchers with several papers in the analysis had most of their papers in a single community and 

only Philippou appears in three different Graph Communities. Often, having publications in different 

Graph Communities seems to be explained by supervisors co-authoring their students’ papers that 

may often have quite different theoretical frameworks than their own papers. 

The current method did not allow overlapping of Graph Communities, which made it difficult to 

identify possible authors who have a cross-cutting importance across several graph communities. 

However, looking at the total numbers of citations across all Graph Communities we found some 

such authors. The clearest examples were Ernest, who was cited 12 times in total, but not more than 

four times in any Graph Community, and Mason, who was cited 10 times but not more than twice in 

any Graph Community. Also, most authors described above as defining a Graph Community are cited 

in many papers of other communities. This suggests that results might identify groups more clearly, 

if we defined connections through specific cited research papers rather than cited authors. However, 

our current corpus might not be sufficiently large for that kind of analysis. Such analysis would be 

recommended when using a data corpus of at least a few thousand articles. 

There are some methodological issues that we are aware of. We realized that summaries of the affect 

group from the previous CERME proceedings were cited often, inflating the number of citations by 

their authors. A more fundamental question is, that we have no measure for the reliability of The 

Graph Community analysis. With the current data corpus, our first analysis included an error that 

excluded 11 of the 100 papers. This was enough to produce a significantly different result: A subgroup 

of Foundation papers (Pehkonen and his students) was identified as a separate Graph Community and 

Teacher Development was not identified as a Graph Community. This suggests that the results of the 

analysis are quite sensitive to changes in data. 

The first author of this paper has published several synthesizing articles on research in mathematics 

related affect. Using the graph analysis was an attempt to overcome possible personal biases in 

perceiving the structure of the research area. Our method of connecting CERME publications by 

authors appearing in their lists of references seems to have worked. It confirmed research on 

motivation research as a specific research domain. The analysis also identified specific research 

traditions on self-efficacy and academic emotions. While earlier reviews (e.g. Hannula, 2011), 

identified beliefs and emotions as two areas within mathematics-related affect, the current analysis 

identified research on beliefs in three different groups: Foundation, Self-Efficacy, and Teacher 

Beliefs. Similarly, the current analysis identified Academic Emotions as separate group while most 

emotion papers were part of Foundation. These results suggest that in the Hannula (2011; 2012) 

model, the distinction between cognition (beliefs), motivation, and emotions is the most important 

one. On the other hand, one small Graph Community, Identity, can be considered to be characterized 

by its theoretical background being sociological. A possible new characterizing feature for research 

could be focus on the dynamics of change, exemplified by the research traditions Teacher 

Development and Resilience. 
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Understanding mathematics related belief change in teacher education programs has been a concern 

due to the information it presents about the effectiveness of program experiences. The present study 

investigated how preservice mathematics teachers’ (PMTs) mathematics related beliefs changed 

through a teacher education program by implementing a belief scale to a cohort of PMTs 12 times 

during 6 consecutive semesters. Comparison of mean scores for different time periods showed that 

the cumulative effect of the teacher education program is more detectable than year-long or semester-

long effects. While such implementation is likely to provide a perspective for monitoring belief change 

and possible effects of courses, it might also address that the contents of the courses should be 

connected to ensure the best cumulative effect of the programs.  

Keywords: Mathematics related beliefs, preservice mathematics teachers, tracing beliefs. 

Beliefs and teacher education programs 

Training teachers with knowledge, skills, and disposition to practice the reform-oriented teaching has 

been a major goal for teacher education programs as teachers are the key to the success of the reforms 

aiming constructivist and student-centred mathematics instruction at schools (Handal & Herrington, 

2003). Hence, initiating and strengthening mathematics related beliefs parallel to the reform 

movements have been a concern for teacher education programs (Raymond, 1997). This study aimed 

to identify possible key courses and experiences in teacher education programs that influence PMTs’ 

beliefs by monitoring the changes in beliefs for three years in a four-year middle grades mathematics 

education program. The other aim is to gain perspective on the information that continuous 

monitoring of beliefs can provide. We adopted the identification of beliefs which Muis (2004) used 

for students’ mathematics related beliefs and considered PMTs’ beliefs as availing if they had the 

potential to help PMTs to achieve the reform-oriented goals of the teacher education program and 

middle school mathematics curriculum, and nonavailing otherwise.  

Preservice teachers generally start teacher education programs by nonavailing mathematics-related 

beliefs (Szydlik, Szydlik, & Benson, 2003) for their learning in the program. Although programs aim 

to initiate and strengthen availing beliefs to reach program outcomes and teach through reform when 

PMTs become teachers, availing beliefs are initiated and developed to a limited extent (Clift & Brady, 

2005). However, nonavailing beliefs are carried to the student teaching and teaching profession and 

they influence teachers’ practices and implementation of reform principles in classrooms (Szydlik, et 

al., 2003). Therefore, teacher educators face the challenge of understanding PMTs’ beliefs in the 

beginning of programs and organize tasks and experiences to develop and strengthen the availing 

beliefs (Swars, Smith, Smith, & Hart, 2009). This requires monitoring PMTs’ beliefs throughout 

programs and the possible influence of program experiences.  



Several studies investigated the effects of teacher education program experiences on PMTs’ 

mathematics related beliefs mostly by emphasizing a single course or set of courses such as the 

methods courses and student teaching. These studies have shown that course experiences had limited 

effect in terms of the extent and the duration of the developed beliefs (Szydlik, et al., 2003). 

Longitudinal studies which documented changes in PMT beliefs through a set of courses are rare. 

Swars, et al. (2009) investigated 24 preservice elementary teachers’ mathematics teaching and self-

efficacy beliefs, mathematics anxiety and specialized content knowledge through 3 semesters of a 4-

semester teacher preparation program. They implemented the belief instruments at the beginning and 

end of the 2nd semester (1st methods course), at the end of the 3rd (2nd methods course) and 4th (student 

teaching) semesters. The analysis showed that preservice teachers’ scores significantly increased after 

the 1st methods course, decreased non-significantly at the end of the 2nd methods course, and 

significantly decreased at the end of student teaching. Yet, there was a significant increase from the 

1st implementation to the 4th showing that preservice teachers gained more cognitively aligned beliefs 

(as targeted by the program) at the end of the 4 semesters.  

The present study attempted to trace PMTs’ beliefs through a teacher education program beginning 

from the semester they were enrolled in the initial pedagogical content knowledge courses (beginning 

of the 3rd semester) until they graduated (end of the 8th semester). PMT beliefs were monitored by 

implementing a belief instrument for 12 times in 6 consecutive semesters. In this paper, we report 

and discuss the changes based on timing of the implementation through the following research 

questions: (1) How do PMTs’ mathematics related beliefs change through the 2nd, 3rd, and the 4th year 

of a 4-year mathematics teacher education program (a) in the long term (between academic years and 

throughout the three years); (b) in the short term (within the academic years)? (2) What kind of 

information does timing of belief instrument implementation offer about mathematics related belief 

change for teacher educators? 

Method  

A longitudinal survey design was employed and data were collected from the same group of PMTs 

for 6 consecutive semesters to capture the possible changes in their mathematics related beliefs.  

Participants and context 

Turkish education system is centralized at the national level with national curricula implemented at 

all grade levels at all contents. All students have to take a national examination at the end of high 

school to attend 4-year degree programs at universities including teacher education programs. The 

context of the study was a four-year middle grades (grades 6-8) mathematics teacher education 

program (EME) at a Turkish public university. EME program had three mathematics education 

faculty members at the time of the study and was placed under the Department of Elementary 

Education with 10 faculty members. The program had mathematics courses offered by the 

Department of Mathematics in the first four semesters. Mathematics education courses started in the 

3rd semester and were offered by the program faculty and pedagogical courses were offered by the 

Department of Educational Sciences. The participants of the study were a total of 33 female and 10 

male PMTs who started the EME program in 2006, referred here as the “cohort”.  

EME program started in 1998, was renewed in 2006 and the cohort was the first to study the renewed 

program. The changes in the EME programs were due to a major constructivist curriculum reform in 



the national mathematics curriculum in Turkey in 2005. Previous EME program offered a mandatory 

minor degree in science education which was removed in the renewed program. School Experience 

course in the 2nd semester and Textbook Analysis course in the 8th semester were removed, and 1-

semester Methods of Teaching Mathematics course was renewed as a 2-semester course, which 

allowed the dense content be covered in more time and depth. Methods of teaching course content 

was combined with curriculum issues content in a new course. Two new courses on research methods 

and nature of mathematical knowledge, and two statistics courses from the Department of Statistics 

were added to the renewed program. Mathematics courses, field experience courses in the 7th and 8th 

semesters and most pedagogical courses were maintained. The previous program experiences were 

based on constructivist approaches, however, the renewed program provided more opportunities for 

widened and deepened experiences for PMTs.   

Two studies investigated the belief change in the previous EME program. Haser and Star (2009) 

conducted a cross-sectionally longitudinal study through interviews with 2nd, 3rd, and 4th year PMTs. 

Their findings revealed that PMTs’ mathematics related beliefs did not change much throughout the 

program. However, methods of teaching mathematics course provided PMTs a different 

understanding of teaching and learning mathematics, which they did not experience in their pre-

college education. Haser and Doğan (2012) investigated how mathematics related beliefs differed 

among PMTs in different year levels. They first surveyed a total of 100 PMTs who were at the 

beginning of the 2nd, 3rd and the 4th year. Their analysis showed that PMTs who just started the 4th 

year in the program had significantly higher belief scores. Then, they focused on the effect of the 

general methods of teaching course in the 3rd year of the program on PMTs’ beliefs. 

The major changes in the EME program and the opportunity to monitor the 2006 cohort from the 

semester they started to take courses from the Department enabled us trace the possible influence of 

the renewed EME program experiences on PMTs’ mathematics related beliefs.  

Data collection instrument 

The belief scale used in this study was developed and used in the previous study (Haser & Doğan, 

2012) in order to investigate Turkish PMTs’ beliefs about the nature of mathematics and teaching and 

learning mathematics. Mathematics-related belief scale (MBS) included 38 five-point Likert type 

items asking PMTs’ agreement with belief statements with responses ranging from totally disagree 

(1) to totally agree (5). Higher scores in MBS indicated existence of more availing mathematics 

related beliefs. Some of the MBS items are as follows: “Problem solving should be used as a teaching 

method within mathematics education”, “The aim of mathematics education is to obtain correct 

answer by using the ways previously shown in the course” and “Visual and concrete materials are 

used in order to set up an environment for students to investigate their ideas”. The Cronbach’s alpha 

coefficient for MBS was calculated as .85 in the earlier study.  

Data collection and analysis  

MBS was implemented for 12 times at the beginning and the end of each semester in the 2nd, 3rd, and 

4th year in one of the courses PMTs attended. However, the number of PMTs who took the MBS in 

each implementation varied due to the number of PMTs present at the implementation time. PMTs 

completed the MBS in about 15 minutes in each implementation. 



Data were analysed to investigate both long-term and short-term changes in mean MBS scores, 

therefore, separate analyses were conducted. Long-term changes were investigated by comparing 

mean MBS scores of PMTs in the beginning of 2nd, 3rd, and 4th year, and at the end of 2nd, 3rd, and 4th 

year by one-way repeated measures ANOVA. Mean MBS scores in the beginning of 2nd year and at 

the end of 4th year were compared through paired-samples t-test. Short-term changes were 

investigated by comparing PMTs’ mean MBS scores at the beginning and the end of each year and 

semester by paired-samples t-test. Cronbach’s alpha coefficient was calculated for each 

implementation and ranged between .74 and .95. 

Results  

The results are presented for long-term and short-term changes. First, for long-term changes, 

beginning of 2nd, 3rd and 4th year scores were compared to see the belief change based on the 2nd and 

3rd year experiences. Then, end of 2nd, 3rd and 4th year scores were compared to see the change after 

3rd and 4th year experiences. When there is a significant change in the MBS scores, it is interpreted as 

the effect of the EME program. MBS scores at the beginning of 2nd year and end of 4th year were 

compared to see the cumulative effect of the 3 years in the program. “Cumulative effect” refers to the 

effect of all program experiences until the mentioned implementation. Short-term changes were 

explored by comparing beginning of year/semester scores to end of year/semester scores. The aim 

was to detect possible influence of course experiences on PMT beliefs. The comparisons helped us 

discuss the information that the timing of the implementation might provide.  

Long-term changes 

In order to identify possible change in PMTs’ beliefs at the beginning of the academic years through 

the program a one-way repeated measures ANOVA was conducted to compare scores on MBS at the 

Time 1 (beginning of the 2nd year), Time 2 (beginning of the 3rd year) and Time 3 (beginning of the 

4th year). A total of 19 PMTs were common at all Time 1, Time 2, and Time 3 of MBS 

implementation. The means and standard deviations are presented in Table 1. 

Time (beginning of year) N M SD 

Time 1 (beginning of the 2nd year) 19 3.81 .237 

Time 2 (beginning of the 3rd year) 19 4.00 .246 

Time 3 (beginning of the 4th year) 19 4.08 .318 

Table 1: Descriptive statistics for PMTs’ MBS scores at the beginning of the 2nd, 3rd and 4th years 

There was a significant effect for time, [Wilk’s Lambda = .550, F(2, 36) = 10.379, p < .05, 

multivariate partial eta squared = .366]. Pairwise post-hoc comparisons with Bonferroni adjustment 

(p < .05) showed that there was a significant mean difference between Time 1 and Time 2, and Time 

1 and Time 3. The difference between Time 1 (beginning of 2nd year) and Time 2 (beginning of 3rd 

year) indicated that 2nd year experiences in the EME program had a significant effect on PMTs’ 

mathematics related beliefs. Similarly, the difference between Time 1 (beginning of 2nd year) and 

Time 3 (beginning of 4th year) indicated that a possible cumulative of 2nd and 3rd year experiences in 

the EME program had a significant impact on PMTs’ mathematics related beliefs. 



We wanted to explore if the effect of the program differed for academic years through the program 

when the program experiences were rather recent for the PMTs by conducting another one-way 

repeated measures ANOVA to compare mean scores on MBS at the end of the academic years as 

Time 4 (end of the 2nd year), Time 5 (end of the 3rd year) and Time 6 (end of the 4th year). A total of 

21 PMTs were common at all Time 4, Time 5, and Time 6 implementations of MBS. The means and 

standard deviations are presented in Table 2. 

Time (end of year) N M SD 

Time 4 (end of the 2nd year) 21 3.86 .197 

Time 5 (end of the 3rd year) 21 4.03 .251 

Time 6 (end of the 4th year) 21 4.01 .239 

Table 2: Descriptive statistics for PMTs’ MBS scores at the end of the 2nd, 3rd, and 4th years 

There was a significant effect for time [Wilk’s Lambda = .543, F(2, 40) = 5.919, p < .05, multivariate 

partial eta squared = .228]. Pairwise post-hoc comparisons with Bonferroni adjustment (p < .05) 

showed that there was a significant difference between Time 4 and Time 5, and Time 4 and Time 6. 

The difference between Time 4 (end of 2nd year) and Time 5 (end of 3rd year) indicated that 3rd year 

experiences in the EME program had a significant impact on PMTs’ mathematics related beliefs. 

Similarly, the difference between Time 4 (end of 2nd year) and Time 6 (end of 4th year) indicated that 

a possible cumulative of 3rd and 4th year experiences in the EME program had a significant effect on 

PMTs’ mathematics related beliefs. There was no significant difference between Time 5 (end of 3rd 

year) and Time 6 (end of 4th year), which might indicate that the 4th year experiences did not have a 

significant effect on PMTs’ beliefs. Indeed, mean MBS scores were slightly lower at Time 6. 

The effect of the teacher education courses through the three years of the program was investigated 

by comparing the MBS scores between Time 1 (beginning of 2nd year) and Time 6 (end of 4th year) 

by a paired-samples t-test. A total of 25 PMTs were administered the MBS at Time 1 and Time 6. 

There was a statistically significant increase in mean MBS scores from the beginning of 2nd year (M 

= 3.76, SD = .174) to the end of 4th year (M = 4.05, SD = .235), t(24) = 5.868, p < .001 (two-tailed). 

The eta squared statistics (.59) indicated a very large effect size. This showed that a possible 

cumulative of 2nd, 3rd, and 4th year experiences in the EME program had a significant effect on the 

mathematics-related beliefs of PMTs. 

Short-term changes 

Three paired-samples t-tests were conducted to investigate the possible effects of year-long 

experiences on PMTs’ mean MBS scores by comparing the beginning-of-year and end-of-year scores 

for each year. Table 3 presents paired-samples t-test results and the number of PMTs who were 

common for in both implementations of MBS for each year.   

  



Year N Paired-samples t-test results 

2 27 No significant difference between the beginning (M = 3.82, SD = .256) and end of 

2nd year (M = 3.88, SD = .222), t(26) = 1.035, p > .05 (two-tailed). 

3 25 Statistically significant increase from the beginning (M = 3.93, SD = .230) to the end 

of 3rd year (M = 4.07, SD = .262), t(24) = 2.755, p < .05 (two-tailed). The eta squared 

statistic (.24) indicated a large effect size. 

4 27 No significant difference between the beginning (M = 4.07, SD = .302) and end of 4th 

year (M = 4.05, SD = .240), t(26) = -.381, p > .05 (two-tailed). 

Table 3: Paired-samples t-test results for MBS scores and the number of PMTs for each year 

Comparisons of beginning-of-year and end-of-year mean MBS scores showed that only 3rd year 

experiences had a significant effect on PMTs’ MBS scores. The scores did not significantly change 

from the beginning to the end of the 2nd and 4th year of the program. However, the mean MBS scores 

increased in each implementation until the beginning of the 4th year.   

A series of paired-samples t-tests were conducted to investigate the possible effects of semester 

experiences by comparing the PMTs’ mean MBS scores at the beginning and end of the semester for 

each semester. Table 4 presents paired-samples t-test results and the number of PMTs who were 

common in both implementations of MBS for each semester.  

Semester N Paired-samples t-test results 

3 

 

29 Statistically significant increase from the beginning (M = 3.83, SD = .216) to 

the end of the semester (M = 3.95, SD = .246), t(28) = 3.027, p < .01 (two-tailed). 

The eta squared statistic (.25) indicated a large effect size. 

4 

 

26 No significant difference between the beginning (M = 3.86, SD = .233) and end 

of the semester (M = 3.92, SD = .211), t(25) = -1.849, p > .05 (two-tailed). 

5 

 

28 No significant difference between the beginning (M = 3.96, SD = .225) and end 

of the semester (M = 4.00, SD = .259), t(27) = -.973, p > .05 (two-tailed). 

6 32 No significant difference between the beginning (M = 4.02, SD = .230) and end 

of the semester (M = 4.05, SD = .263), t(31) = -1.041, p > .05 (two-tailed). 

7 

 

32 No significant difference between the beginning (M = 4.07, SD = .284) and end 

of the semester (M = 4.05, SD = .271), t(31) = -.747, p > .05 (two-tailed). 

8 

 

26 No significant difference between the beginning (M = 4.06, SD = .253) and end 

of the semester (M = 4.03, SD = .244), t(25) = .656, p > .05 (two-tailed). 

Table 4: Paired-samples t-test results for MBS scores and the number of PMTs for each semester 

Results showed that semester-long changes in mean MBS scores were not significant except for the 

3rd semester, while mean MBS scores generally increased at the beginning each semester. 



Summary of the analyses and information given by the timing of implementation 

Analyses showed that there was a general trend of increase from the beginning of the 2nd year to the 

end of the 4th year of the EME program with slight decrease in the 4th year. This increase was 

significant for long-term comparisons and showed that EME program courses and experiences 

seemed to help PMTs develop or strengthen availing beliefs through the years. 

When the analyses focused on short-term differences, the increase in mean MBS scores was not 

statistically significant in most of the comparisons. The comparison of mean MBS scores for the 

beginning and end of each academic year revealed significant increase only for the 3rd year of the 

program. On the other hand, semester-long comparisons of mean MBS scores addressed significant 

results only for the 3rd semester. These results showed that belief change might not always be 

significantly detectable in shorter periods. PMTs might not fully internalize course experiences only 

in one semester. The significance of the 3rd semester comparisons might show us that the first course 

on mathematics education was effective on beliefs, probably because it included methods of teaching 

PMTs had never experienced. The significance of the 3rd year comparisons pointed the effect of the 

2-semester Methods of Mathematics Teaching courses, whose effects on preservice teachers’ beliefs 

have often been investigated in the literature. Indeed, studies conducted in the previous program 

showed that courses on methods of teaching and mathematics teaching have influenced PMTs’ beliefs 

in a more availing way (Haser & Doğan, 2012; Haser & Star, 2009). Although the decrease in MBS 

scores from the beginning of the 4th year to the end was not significant, it might signal for the rather 

undesired effect of the student teaching experiences on soon-to-be-teacher PMTs’ beliefs due to the 

reality of classroom environment, differences in students, and lack of support from program 

instructors at the classrooms (Swars et al., 2009). These findings showed that detecting belief change 

for shorter time periods provided rather limited knowledge, but it raised issues about the effects of 

the program experiences for semesters or years.   

The analyses reported here were conducted based on the number of common PMTs in the analysed 

implementations. When we compared the mean MBS scores at each point of time to the mean scores 

in the repeated measures ANOVA (Table 1 and Table 2) as well as the paired-samples t-tests (Table 

3 and Table 4), we observed minor mean score differences between the mean scores of the PMTs 

who were common across the implementations and all the PMTs who were administered the survey 

at that implementation. These results are not given here due to space limitation. Hence, we concluded 

that missing cases did not impact the results of the study. Yet, it should be kept in mind that the 

analyses were not conducted with all PMTs for all implementations.  

In summary, the results of the analyses showed that change in PMTs’ mathematics-related beliefs 

were more detectable when the change was investigated in the long-term, throughout the program. 

The nature of the increase in MBS mean scores suggested a cumulative effect of the program as PMTs 

progressed. The short-term investigations did not give much significant results, yet they might give 

us clue about how courses might influence PMTs’ beliefs. The significant results have addressed the 

possible influences of certain courses that should be investigated in detail. 

Discussion 

The long-term and short-term change analyses results showed that while PMTs seemed to benefit 

from program experiences and develop more availing beliefs through the years in the program, 3rd 



year experiences seemed to contribute to the belief change the most. Course experiences were not 

investigated in-depth in this study, therefore how PMTs made sense of these experiences and how 

these experiences helped them in forming rather availing beliefs were remained unexplored in this 

study.  

The results suggest that teacher educators should investigate change in beliefs through the teacher 

education programs in different ways. The first teaching related course in the program, methods of 

mathematics teaching courses, and student teaching courses might have relatively more weight (either 

positive or negative) within the cumulative effect of the teacher education programs. Considering the 

significant cumulative effect of the program, it is possible that this cumulative effect might get 

stronger when the program experiences are meaningfully related to each other to support the availing 

beliefs and related practices. 
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The purpose of the present study was to investigate whether teaching self-regulation strategies via 

“Solve it” to students with learning disabilities could affect their problem-solving performance in 

mathematics. The mathematical problems involved four mathematical operations with natural and 

decimal numbers. Also, the present study investigated the effect of “Solve it” instruction on students’ 

self-efficacy and value related to mathematics. It was a single-subject design with a pre-test, four 

repeated post-tests and a maintenance test. The results indicated that the students’ problem-solving 

performance was improved and their self-efficacy and value attributed to mathematics were 

increased.        

Keywords: Self-regulation strategies, mathematical problem solving, LD, self-efficacy, value.   

Introduction         

Learning how to solve mathematical problems plays the most important role in the promotion of 

mathematical thinking. Mathematical problem solving process is especially complex as it requires 

the use of cognitive and metacognitive strategies as well as emotional management in case of a failure 

(Freeman-Green, O’Brien, Wood & Hitt, 2015; Rosenzweig, Krawec & Montague, 2011). Some 

researchers argue that many students with LDs face difficulties in solving mathematical problems due 

to their deficits in metacognitive processes, such as prediction and evaluation as well as difficulties 

in using metacognitive strategies in order to monitor and control their learning (Babakhani, 2011; 

Rosenzweig et al., 2011). A recent learning approach that combines the selection and use of cognitive 

and metacognitive strategies, motivation for learning and successful control of emotions is called self-

regulated learning (Wirth & Leutner, 2008).      

This paper is part of a larger study which was conducted for the requirements of a Master’s Degree 

and explores whether teaching self-regulation strategies with the program “Solve it” can influence 

problem-solving performance of students with LDs. This program includes the use of seven cognitive 

strategies and three metacognitive strategies. In this paper, it was investigated if the use of seven 

cognitive strategies and three metacognitive strategies in combination with self-assessment which 

plays the role of motivation to students can improve problem-solving performance of two students 

with LDs in order to reach the mastery criterion of the program. In addition, it was explored if teaching 

problem solving process with these strategies can affect these students’ self-efficacy and value 

attributed to mathematics. Also, the study tried to shed further light on the metacognitive and self-

regulated learning processes and their interplay with motivation in students with LDs in mathematics.       

Theorεtical framework and research questions       

It is accepted that learning how to solve mathematical problems plays the most important role in the 

promotion of mathematical thinking. According to van Garderen & Montague (2003, p. 246)  



mathematical problems are challenging problems set in realistic contexts that require 

understanding, analysis, and interpretation. They are not simply computational tasks embedded in 

words; instead, they require appropriate selection of strategies and decisions that lead to logical 

solutions.   

Over the last 20 years, a new approach called self-regulated learning has been developed aiming 

among others at improving problem solving skills. This approach has been successfully implemented 

in developing problem solving skills as it examines metacognitive, motivational and affective aspects 

of problem solving activity. A lot of researchers have tried to define the composite construct of self-

regulated learning (Wirth & Leutner, 2008). Self-regulated learning is defined as  

a learner’s competence to autonomously plan, execute and evaluate learning processes, which 

involves continuous decisions on cognitive, motivational, and behavioural aspects of the cyclic 

process of learning. (Wirth & Leutner, 2008, p. 103)    

Research reveals that many students and especially students with LDs in both primary and secondary 

education face difficulties in solving mathematical word problems (Rosenzweig et al., 2011). Before 

proceeding to the description of these difficulties, a definition of the term “learning disabilities” 

should be provided. Under the Individuals with Disabilities Education Act of 2004 (IDEA), the 

federal law that protects students with disabilities, a specific learning disability is defined as   

a disorder in one or more of the basic psychological processes  involved  in  understanding  or  in 

using language, spoken or written, that may manifest itself in an imperfect ability to listen, think, 

speak, read, write, spell, or to do mathematical calculations, including conditions such as 

perceptual disabilities, brain injury, minimal brain dysfunction, dyslexia, and developmental 

aphasia. The term does not include learning problems that are primarily the result of visual, 

hearing, or motor disabilities, of mental retardation, of emotional disturbance, or of environmental, 

cultural, or economic disadvantage. (34 C.F.R.300.7[c][10])   

These students have difficulties in using metacognitive strategies in order to monitor and control their 

learning (Babakhani, 2011; Rosenzweig et al., 2011).  

International contemporary research has shown that teaching self-regulated learning strategies is 

associated with the improvement of problem solving performance of students with LDs (Babakhani, 

2011; Freeman-Green et al., 2015). A self-regulation program that has been successfully implemented 

in interventions in order to improve problem solving performance of students with LDs is called 

“Solve it” (Montague, 1992). This program was introduced by Montague (1992) and it combines the 

use of three self-regulation strategies: self-instruction, self-questioning and self-monitoring with the 

following four major instructional techniques: problem solving assessment, explicit instruction of 

problem solving strategies, process modeling and performance feedback. The program includes the 

following seven cognitive strategies which correspond to seven instruction phases (Read, Paraphrase, 

Visualize, Hypothesize, Estimate, Compute and Check). Each of these strategies, including three 

self-regulation strategies: self-instruction, self-questioning and self-monitoring are taught. These 

strategies rely heavily on metacognitive processes. “Self-instruction implies telling oneself what to 

do before and while performing actions” (Montague, Warger & Morgan, 2000, p.111). “Self-

questioning means asking oneself questions while engaged in an activity to stay on task, regulate 

performance and verify accuracy” (Montague et al., 2000, p.111). “Self-monitoring requires the 



problem-solver to make certain that everything is done correctly throughout the problem-solving 

process” (Montague et al., 2000, p.111).                  

The “Solve it” program includes seven instruction phases and it is separated into eight lessons 

(Montague et al., 2000). Lesson one includes an overview of “Solve it” and a description of the 

cognitive strategies. In lesson two students are tested for the mastery of seven cognitive strategies. 

Lessons three, four and five include metacognitive strategy instruction and students solve one 

mathematical problem in each lesson. For example, for the cognitive strategy “Reading” there were 

three self-regulation strategies that had to be implemented (SAY, ASK, CHECK). The students said 

to themselves “Read the problem. If I don’t understand, read it again.”, asked themselves “Have I 

read and understood the problem?” and checked by saying “Check for understanding as I solve the 

problem”. The criteria for moving to lesson six are three: remembering cognitive strategies, 

remembering metacognitive strategies (SAY, ASK, CHECK) and solving problems with relevant 

confidence. In lesson six, students solve ten mathematical problems and they can consult the diagram 

with the strategies which had been given to them in lesson one and think aloud. Each problem-solving 

process is modeled by the students or by the teacher after it has been solved. Lesson seven requires 

the students to solve all 10 problems before modeling the correct solutions for the problems. Lesson 

eight is the first Progress Check (test of ten problems). Students plot their “grade” on their 

performance graph and then model the solutions. From then on there will be more tests and students 

will plot their performance. Student progress graphs show whether students can make constant 

progress and move toward mastery. It is important to engage students in assessing their own progress 

by having them chart their performance in diagrams which motivate them to continue trying 

(motivation) (Montague et al., 2000). The mastery criterion of the program, which is the ultimate 

goal, is solving 7 out of 10 problems correct on four consecutive tests (Montague et al., 2000).    

It should be noted that this program is more frequently used in secondary education (students with 

and without LDs) with great success (Montague, 1992; Montague, Krawec, Enders & Dietz, 2014) 

for solving one-, two- and three-step problems with natural and decimal numbers but as Montague 

(1992) states, this program can be used with younger students provided that adaptations should be 

made in processes and materials. In the studies where the program was implemented with younger 

students, they did not manage the mastery criterion as there were no adaptations. As the participants 

of this study were sixth grade students of an elementary school, some adaptations regarding “Solve 

it” were required in order to manage the mastery criterion of “Solve it”. In addition, acronyms were 

used for the description of the strategies in order to be remembered by the students. The acronyms 

came from the first letter of each strategy in Greek language. Furthermore, it should be noted that 

there is no clear exploration of the effects of teaching self-regulation strategies via “Solve it” to LD 

students’ self-efficacy sense and value attributed to mathematics so this is the novelty of this study.       

Consequently, the purpose of this study was to investigate whether teaching self-regulation strategies 

with “Solve it” could affect students’ with LD mathematical problem solving performance, their 

mathematics self-efficacy and value. Therefore, the following 4 research questions were stated as 

follows: 1) Will sixth grade students with LDs improve their mathematical problem solving 

performance in problems with four mathematical operations with natural and decimal numbers after 

the implementation of “Solve it”? 2) Will students’ self-efficacy related to mathematics and problem 

solving activity change after the implementation of the intervention? 3) Will students’ value attributed 



to mathematics and problem solving activity change after the implementation of the intervention? 4) 

Will students with LDs maintain their improved performance one month after the intervention with 

“Solve it”?                                   

Method 

The present study was a single-subject design as two students with LDs participated in the study. In 

addition, an experimental design with one experimental group (two students with LDs) was 

implemented. A pre-test and four repeated post-tests took place. One month after the last post-test, a 

maintenance test was implemented. In this experimental design, the independent variable was the 

intervention with the program “Solve it” and the dependent variables were the following three: 

mathematical problem solving performance, self-efficacy in relation to mathematics and the value 

which was attributed to this school subject.     

Participants  

Two students (a male and a female) with LDs took part in the present study. The students were 

identified as having learning disabilities based on psychoeducational evaluations from an outside state 

agency. Specifically, the boy encountered specific learning disabilities of dyslexic type and speech 

problems and the girl learning disabilities in reading, writing and mathematics. Both students were 

studying in the 6th grade of an elementary school, in North-West Greece and they had difficulties in 

mathematical calculations and mathematical problem-solving. Moreover, they attended the subjects 

of Mathematics and Greek Language in a general education classroom and they additionally received 

resource room support on these subjects from a special education teacher. Parental consent was given 

for both participating students.     

The students’ teacher (first researcher) taught the self-regulation strategies. The teacher implemented 

“Solve it”, designed the tests with the mathematical problems, administered and collected the 

questionnaires. The teacher was 25 years old female and she had met the children six months before 

the beginning of the intervention. She had completed her practicum with these children in the context 

of earning Master’s Degree so she had already been acquainted with the students and that was the 

reason why they were selected to be the sample of the study.          

Procedure  

The intervention of the present study began in November 2015 and finished in December 2015.The 

maintenance test was implemented on 15th January 2016. The boy attended 18 sessions and the girl 

23 sessions that lasted 35-40 minutes. One week before the beginning of the intervention, the pre-test 

was implemented. The pre-test included 10 one-, two- and three-step word problems (Montague et 

al., 2000). Also, the two students responded to the 2 questionnaires assessing mathematics self-

efficacy and value attributed to mathematics. Afterwards, “Solve it” intervention began and included 

8 lessons. The 8th lesson was the first progress check (post-test) and three additional posttests 

followed. In the last post-test, students responded again to the two questionnaires on mathematics 

self-efficacy and value. Additionally, as it was mentioned previously, an adaptation took place. 

Specifically, for the better interpretation of the strategies, the strategies were visualized. Specifically, 

each of the seven cognitive strategies was displayed with words and small pictures that showed the 

steps of action implied by the strategy. For example, the strategy “Read” was presented verbally, in 

a diagram and with this icon.                   



Data collection  

The mathematical problem solving performance was measured with tests which were designed by the 

researcher by following the suggestions offered by the creator of “Solve it”. Each test included 10 

mathematical one-, two- and three-step word problems which were based on the mathematical 

problems that students had been taught in their classroom (e.g. two-step word problem: ‘Nick wants 

to buy three car-miniatures. Each of them costs 3.6€. He has already collected 8€. How much money 

does he need in order to buy them?’).    

Despite the small number of participants, quantitative methods for the data collection regarding self-

efficacy and value were used, as the time for the completion of the intervention was limited and the 

school principal could not give extra teaching hours for an interview. However, some verbal questions 

were done for clarifications of some of the students’ answers in the questionnaires. The data 

concerning self-efficacy regarding mathematics learning were collected with the use of a 

questionnaire. The questionnaire was developed by Dermitzaki and Efklides (2002) and assessed 

students’ reported self-efficacy in mathematics with 5 items (e.g. ‘I believe I will have a better 

mathematical problem-solving performance this year’). Answers were given on a five-point scale 

from 1-‘Not at all true for me’ to 5-‘Totally true for me’. Because of the students’ difficulties in 

reading comprehension, the questions were being read by the researcher and students were asked to 

circle the answer that was true for them. After the completion of the questionnaires, the students were 

verbally asked some questions in order to clarify some of their answers (“mini interview” for 

clarifications). These answers were written down by the teacher-researcher at the same time.                    

The data regarding value which was attributed to mathematics and mathematical problem solving 

were also collected with the use of a questionnaire which was made by the researcher based on Ames’ 

scale (1983). This scale assessed students’ value beliefs about mathematics as a school subject. The 

questionnaire included 3 items (e.g. ‘Learning how to solve mathematical problems is…..’) and the 

answers were given on a five-point scale from 1-‘Not at all important’ to 5-‘Highly important’. Each 

question was asked verbally by the researcher and the students had to circle the answer that was true 

for them. After the completion of the questionnaire, the students were asked to clarify some of their 

answers (“mini interview” for clarifications) which were written down by the teacher-researcher at 

the same time.       

Data analysis                 

The quantitative data that were collected from the tests were not statistically analyzed because of the 

small data number. However, a diagrammatical representation with Microsoft Office Excel 2010 was 

made. The quantitative data that were collected from the two questionnaires and mini-interviews were 

qualitatively analyzed. Because of the small number of questionnaires, a statistical analysis could not 

take place. The careful data reading and the description of the data had as a result two categories 

deriving from each questionnaire. Two categories were developed based on the first questionnaire. 

The first category included self-efficacy regarding mathematics and the second included self-efficacy 

regarding a problem solving activity. Similarly, two categories were derived from the second 

questionnaire. The first category included value attributed to mathematics and the second category 

included value attributed to a problem solving activity.                



Results  

Regarding to the first research question, the progress graph showed that both students’ mathematical 

problem solving performance improved significantly. Specifically, the boy increased his performance 

from 2.6/10 on pre-test to 9.65/10 on the first post-test and the girl increased her performance from 

0.5/10 on pre-test to 7.89/10 on the first post test. Additionally, both students achieved the criterion 

of solving at least 7 out of 10 word problems correct on four consecutive word problem tests which 

is the ultimate goal of “Solve it” according to Montague et al. (2000).  

Concerning the second research question, the results showed that both students increased their self-

efficacy regarding mathematics and mathematical problem solving activity. The boy reported that he 

was feeling a little efficacious in solving mathematical problems and towards mathematics before the 

beginning of the intervention. However, he reported that he felt very efficacious about solving 

mathematical problems and confident towards mathematics after the end of the intervention. The girl 

reported that she felt a little efficacious about mathematics and very efficacious about solving 

mathematical problems before the intervention. When the researcher asked her while she was 

completing the questionnaire “Why do you think that you will be more efficacious in solving 

mathematical problems?”, she answered “I will read more, I will attend carefully the lessons and I 

will learn how to solve mathematical problems. ” After the intervention, she reported that she felt 

very efficacious about mathematics and solving mathematical problems.   

Additionally, both students attributed important value to mathematics and to the problem solving 

activity after the intervention with “Solve it”. The boy reported that both mathematics as a school 

subject and problem-solving as a mathematical activity were of little importance for his life before 

the intervention. After the intervention, he thought that mathematics was highly important and 

problem solving was very important for his life. The girl attributed very important value to 

mathematics but she thought that solving mathematical problems was not an important activity for 

her life before the intervention. When the teacher asked her while she was completing the 

questionnaire “Why mathematics is very important for you?”, she answered “Because learning the 

multiplication table is very important for our lives”. After the intervention, she thought that both 

mathematics and problem solving activity were highly important for her life.  

It should be underlined that both students expressed that they had developed more positive emotions 

such as happiness, when they solved mathematical problems after the intervention. That happened 

because according to them, they felt safety with the use of the strategies as the last ones had proved 

to be very helpful in order to solve a mathematical problem.  

Finally, regarding the fourth research question, both students maintained their improved performance 

on the maintenance test one month after the intervention. The score for the boy was 9.6/10 and for 

the girl 9.05/10. It seems that the girl not only maintained her performance but also improved it more 

in relation to the last post-test. This finding has not been found in other studies.      

Discussion                 

This study aimed to investigate whether teaching self-regulation strategies via “Solve it” affected 

students’ with LDs mathematics problem-solving performance, their maths self-efficacy and reported 

value of maths. The results of the present study are very encouraging. In agreement with other studies 

(Babakhani, 2011; Montague, 1992; Montague et al., 2014) both students’ mathematical problem 



solving performance was considerably improved. Also, they seemed to achieve the ultimate goal of 

“Solve it” (7 out of 10 problems correct on four consecutive tests). This was a surprisingly good result 

as there was not such a result in other studies which used “Solve it” with elementary school students. 

As Montague (1992) states, the sixth grade students have not easily reached the mastery criterion. 

However, in this study students appeared to maintain this performance on the maintenance test a short 

while after; maybe as the result of the visualization.  

 Furthermore, both students reported increased self-efficacy in relation to mathematics as a school 

subject and in relation to problem solving activity. Additionally, both students attributed higher value 

to mathematics as a school subject and to problem solving activity after the intervention. As 

Chatzistamatiou, Dermitzaki, Efklides & Leondari (2015) state, there is a positive relationship 

between the use of self-regulation strategies and self-efficacy and between the use of these strategies 

and value attributed to mathematics by typically developing students.  

Although, the effect of teaching self-regulation strategies on students’ emotions regarding problem-

solving activity was not examined in this study, it is important to mention that both students reported 

they felt happier when they solved mathematical problems after the intervention with “Solve it”. More 

particularly, the boy said “Now I do not feel so stressed when my teacher tells me to solve a 

mathematical problem and I feel happy when I do it, even if I cannot find the solution”. A future 

research could examine in more depth whether and how self-regulation strategies could influence 

students’ emotions during problem-solving activity.           

In conclusion, this study showed that “Solve it” can improve problem-solving performance not only 

in older but also in younger students with LDs provided that some adaptations will take place. 

Furthermore, “Solve it” seemed to affect positively students’ self-efficacy and value attributed to 

mathematics. However, there are some limitations such as the limited generalizability of the results 

(case study), the different characteristics of the two students, the short time in which the study was 

carried out and the absence of a control group. Future studies could use “Solve it” in other 

mathematical domains such as geometry which students with LDs find quite challenging and difficult. 

In addition, a future study could test how teaching self-regulation strategies would influence LD 

students’ emotions in relation to mathematics. Such data would be actually illuminative for 

educational research and practice.    
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To err is human. The management and emotional implications of 

teacher error  
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Research into errors in mathematics classrooms is often centred on student error. Whilst 

investigating teacher emotional expressions, using data from experienced teachers and affective 

pathways, I encountered examples of teacher mathematical error occurring in association with 

expressed emotions. Similarly, I have observed instances of new teachers making errors and hence 

have begun exploring the implications of teacher error management. In this paper, after describing 

illustrative examples, I suggest a model based on a continuum of affectively driven strategies that are 

likely to be familiar to secondary mathematics teachers. Each affectively driven strategy has 

implications for teacher student relationships and for the learning of mathematics. I discuss some of 

these implications in terms of longer term affective impact on classroom climate and for students. I 

offer the model for further discussion in relation to developing growth mindsets. 

Keywords: Error handling, emotions, classroom, expertise. 

Introduction 

There is no doubt that we all make errors and human instinct is to avoid errors as unpleasant 

experiences. Yet brain analysis research suggests error, however unpleasant, is essential for effective 

learning; for creating neural connections. Moser et al. (2011) through studying the neural mechanisms 

when making numerical mistakes shows that this activity fires synapses. There seem to be two 

synaptic responses. Firstly, when the brain experiences conflict, without awareness, there is an 

increase in electrical activity. Secondly, brain signals act to draw conscious attention to the error. 

Conflict (such as recognising an error), also triggers emotions which means making a mistake triggers 

an observable emotional response. The emotions may be exaggerated as error provides not only a 

trigger for emotions, but also requires the person experiencing the error to engage in some form of 

minimising or regulation. Such a positive view of errors is supported by Boaler (2015) and others 

who suggest we should go further than just avoiding error; that errors should be attended to as part of 

addressing misconceptions and hence are necessary for learning. In mathematics teaching errors can 

take many forms, often numerical. Boaler suggests creating a culture where students are comfortable 

with handling error is beneficial for learning mathematics. Such a culture depends not only on how a 

teacher addresses student error, but also on how they model addressing their own errors. There seem 

to be international and cultural differences that merit discussion in terms of how errors are seen and 

addressed by teachers, from commonly using error as a teaching tool through to avoiding errors and 

associated discussion as damaging to self-esteem (Santagata, 2005). 

Researchers investigating error focus on teacher responses to student error, and a few explore how 

students respond to teacher error (e.g. Borasi, 1987, Heinze, 2005; Ingram, 2014b; Santagata, 2005; 

Steuer et al., 2013; Tainio & Laine, 2015). There is less research on the role of error or how teacher 

error management occurs in the classrooms of experienced teachers. If error triggers an emotional 



response, this has implications for classroom relationships and for students who may not notice error. 

This is important in mathematics as there are perhaps, more opportunities for error. 

The definition of ‘error’ used here, interchangeable with ‘mistake’, is that error is a mismatch. A 

mistake demarcates the distinction between norms (such as usual behaviours) and a deviation (Borasi, 

1987), (the unexpected or different) thereby defining what is false and what is correct (Heinze, 2005). 

Using the classic constructivist definition of emotion as a response evoked by recognition of a 

disparity (Mandler, 1989), it seems error cannot occur without an emotional association. This 

association implies that patterns of individual emotions in mistake situations is indicative of 

classroom culture. For this reason, Steuer et al. (2013) asked students about their teacher’s handling 

of mistakes. In addition to identifying ‘mistakes friendly’ environments, they found that perceived 

mistakes friendly environment resulted in increased effort. Yet as recently as 2014, research suggests 

that UK teachers still predominantly give the message that errors are to be avoided, often through a 

variety of teaching strategies that rarely indicate an incorrect solution. “These strategies all give the 

interactional message that errors are to be avoided, or that errors are undesirable even when the 

teacher does not explicitly say this, or in fact explicitly states the opposite” (Ingram et al., 2014, p.40). 

In terms of beliefs, a teacher’s stance on error may be revealed by their response to incorrect answers, 

but more indicative is their response to public revealing of their own errors. Such responses model 

expected emotional responses to error for that class. Tainio and Laine (2015) consider this in relation 

to emotional contagion where “Emotional contagion means that in interactions, emotions are usually 

shared by participants after one participant has offered public forms of emotion for others to attend 

to” (p.84). Further, students will mimic or synchronise (Hatfield, 1994) with their teacher’s publically 

expressed affective pathway. According to Goldin (2000), people experience a series of emotions as 

they pass through the process of problem solving in mathematics. The result is an error climate. Steuer 

et al. (2013) see what I refer to as affective pathways as a predominantly positive (adaptive reaction) 

or negative (maladaptive) patterning which, if public, means displaying certain emotions enhances 

learning. 

Primarily, an adaptive reaction pattern is distinguished from a maladaptive pattern: An adaptive 

reaction pattern following errors and failure maintains learning motivation and functional 

affects such as joy; a maladaptive pattern decreases learning motivation and increases feelings 

of shame and hopelessness. (Steuer et al., 2013, p.197) 

Examples of transcript and identified affective pathways (Table 1 & 2) from the classrooms of 

experienced teachers (> 10 years) illustrate encountering and managing of error. I examine the data 

from the lens of affective pathways (Goldin, 2000) as a potentially useful model to examine the 

illustrative examples. A pathway structures the interpreted emotional journey by labelling emotions 

from identifying a problem through to either resolution or abandonment. Examining teacher 

modelling of how to deal with error in conjunction with how a teacher emotionally manages error 

may assist in interpreting the affective impression given to students. Mandler (1989) suggests that 

using and modelling emotional responses to error inculcates a tolerance for error that benefits learning 

mathematics. How a teacher frames the handling and recovery from error can shape student 

experiences, and indicated preferred attitudes to error management (Santagata, 2005) especially if we 

consider error as a stimulus to action (Borasi, 1987). 



It seems we need errors to learn, whilst teachers can support learning and affect classroom 

environments by modelling positive responses to error. The question addressed here is whether 

developing a model of error management examining how teachers model error is useful. To address 

this question, the data presented below is from a larger study on teacher expressions of emotion in 

the classroom. Both extracts are drawn from episodes of emotional expression, deemed as such 

through observation, measurement of galvanic skin response (GSR), (used to roughly indicate internal 

emotions) and confirmed in post observation discussions. They represent how experienced teachers 

might manage error. Other strategies, such as used by novice teachers, are drawn from the literature, 

collaborated by my own experience of working with teachers. 

Modelling dealing with mathematical error (Adam and Bertha)  

In these examples, both Adam and Bertha successfully address a small numerical error, one type of 

mathematical error. Both express emotions (the dominant emotion is determined by the observer, 

using standard emotion classifications (Scherer, 2005)), yet differ in pathway from recognising 

discrepancy to resolution, showing the teachers’ disparate ways of modelling error management.  

In the first example (Table 1), Adam accidently writes 2 for the difference between 4.5 and 3.5 when 

demonstrating upper and lower bounds for 5 – 4. As he reads the four possible answers aloud, 

‘2,0,2,1’, he slows, quietens his voice and movements, pauses with pen poised, whilst his head moves 

from side to side scanning. He then steps back and looks, appearing absorbed. Once he has identified 

the error, he utters the sound ‘uhh’, interpreted as ‘never mind’. He then engages in an exchange of 

silly noises with a student, corrects the error, rewards a student who is quick to align, and continues 

in a faster pace, as at the start of the episode, quickly moving on from the error. 

T You can either do for 5..., 4.5 or 5.5, they’re your two options, because that’s the 

lower and the upper bound. So what I have written out on the board is all four 

different combinations of what can happen. 

Confident 

 

 Ok… [pause] Uneasy 

 I’m going to work out all of them. So I am going to get 2, 0, 2, 1.                      [GSR 

PEAK] 

ERROR 

S1 Blast-off…  

S2 It should be 1.5  

 Right, think about this. [pauses] Confused 

 The question was saying upper bound, the upper bound for 5 minus 4. That number 

is going to be as big as possible.      [emphasis and shift in pace into regular time beat 

1- and-2- and-3- and-4-] 
as big as Pos-si-ble 

Re-

establishing 

certainty 

Interested  

 Hm. [Pause with pen ready, his head moves as scans writing and then steps back] 

Looks like 2. [Pause] …  Which 2 is it going to be?  

Well here... [ pauses again, this is in a quieter voice] 

Doubt  

Uncertainty 

Thoughtful  

 Oh, that’s right, I’ve done that wrong, that should be 1, uhh, [faster pace resumed] Satisfaction  

 Who picked up on that? [HANDS UP] Chris [S3]? Gold star[smiling] Pleased  

S2 How about me? Oh. Uh   

 Uh Humorous  

S2 Uh I said one though sir  

 Sorry, that’s a 1. The biggest number is 2. How did I get 2? I took the biggest number 

possible here for 5, but the smallest number possible for 4. That made the difference-

as-big-as-possible. 2. [firmly stated] Upper bound. 

Confident  

 

Table 1: Affective Pathway from Adam’s lesson, where he makes an error 



Bertha uses a well-known mathematics website to produce questions on the area of a circle (Table 2). 

Following the students finding the area for a given radius, Bertha enters a volunteered answer, but the website 

rejects this answer. As Bertha has already calculated the answer herself, agreeing with the student, the website 

rejection brings an unforeseen problem; she thinks she has made an error but has not. The discrepancy is 

between using π or 3.14, so it relates to the degree of accuracy.  

S1 254.46 [student is providing answer to question on the board]  

T .46 Neutral   

S2 I’ve got .34 [Different answer which legitimises other students who also have 

different answer and they start calling out as well] 

 

T Ok. Whoa, whoa, whoa, whoa, whoa.  Uneasy  

 Does anybody disagree with the 254 bit? Neutral 

Many No, yes, [some hands up]  

T NO? Right. Can anybody think of a reason... Neutral  

 ...Oh, I don’t think if we can... yeah, we have.                                   

 [GSR PEAK] 

Uncertain 

 Can anybody think of a reason why you might have different, very slightly different 

answers? [Terry among others raises his hand] Terry... 

Confident  

Terry Is it because like one of us...um...were like... we weren’t... um.... I don’t know if it’s 

right or.... 

 

T [Frowning]Well just, Terry, just say it, have more confidence in yourself 

sweetheart... 

Hopeful  

Terry ...some people pressed the... the pi button and some people didn’t.  

T Absolutely brilliant, well done you.  Pleased 

 That’s exactly right.  Satisfied  

 When you press the pi button on your calculator, it uses a really accurate version of 

Pi. If you just put in um... 3.14, [writing something on wall behind teacher desk] 

then that’s not so accurate... 

Neutral  

 ...and that’s the only reason.  Satisfied  

 But anyway, it’s coming up and telling us we’re wrong. Uneasy   

 So, it says use the area of the square, we’ve got the area of the square as 9x9, and 

then multiply it by 3.14... [Does this on a calculator] 

Neutral 

S2 It’s 254.34  

S4 Error  

T ... 3.14 .... (yeah) 254.34 .... Satisfied  

Many Yes!  

S4 Error  

T ...2...5...4....point... oh I see, point 3 4. Let’s try it again [enters answer which is 

shown on the projector] Yeah! 

Confused 

to satisfied 

ALL Yeah!   

T OK Satisfaction  

Table 2: Affective Pathway from Bertha’s lesson, where she makes an error 



A proposed model of teacher error 

Drawing attention to teacher error informs discussions about how such error should and could be 

managed, as this is not the same as when a student makes an error. Firstly, that there are emotional 

implications of the choices made by a teacher, including the degree of emotional labour required. 

Secondly, that the choices are indicative of how a teacher perceives error, both for themselves and 

for their students. And thirdly, that repeated over time, modelling by the teacher of error management 

sets the climate for students in terms of their own error management. If it is desirable to challenge 

behaviourist views of learning mathematics (Boaler, 2015), then discussion of error management 

provides an accessible route to address teacher beliefs. To support such discussions, the following 

continuum of error management strategies is proposed. This is derived from both the literature on 

error and the above data. The continuum moves from negative (associated with a mistake unfriendly 

environment and maladaptive error patterns) through to positive, and similarly from strategies with 

perceived reduced benefits, through to those which may have longer term positive impact for learning 

(mistakes friendly environment and adaptive patterns). 

To compare and contrast with the examples above, I draw from research on and observations of 

trainee teachers. In this cohort, I observed embarrassment at making an error, ignoring the error, even 

when noticed, and errors on the whiteboard left uncorrected. I also observed surreptitious correcting 

when the students were engaged in another task. There is ample anecdotal and observable evidence 

that teachers hide numerical errors. They may later notice and leave it, or notice and amend privately. 

The communicated message is that errors are dispreferred (Ingram et al., 2014), and should be hidden. 

Similarly, public error can evoke teacher embarrassment or be correctly rapidly, where the teacher 

‘steps out of’ rather than ‘stepping into’ learning through addressing the error. ‘Stepping out’ attaches 

a negative emotional association to error making. A teacher may respond to revealed error by faking, 

as in “I meant to do that” and publically amend. Although positive in avoiding misunderstanding 

resulting from the error, this choice can be negative emotionally, in that frequent repetition erodes 

trust in the teacher. A further response is to associate self with the error through self-depreciation. A 

teacher might say something like, ‘What a silly error!’ The effect may be that students view all error 

as silly, and to be laughed at. This may be positive or negative as context specific, but students may 

reduce contributions if they feel they may be laughed at.  

There are suggestions in the literature on error that using deliberate error as a teaching strategy can 

be effective. This assumes a constructivist view, that the place of error is a learning opportunity, 

rather than a culturally located behaviourist view, that errors should be avoided (Santagata, 2005). In 

constructivist terms, viewing error as a learning opportunity is an ideal, yet how a mathematics 

teacher might cultivate such an ethos needs further research. Research from Ingram et al. (2014) 

found examples aimed at this ethos, but that in most cases the errors are still managed as something 

to be avoided. They identify a role for further strategies when positioning error in this way. They 

suggest either distancing self from the error since the purpose is for students not to make the same 

errors themselves, or apologising for an error. A more positive management might dismiss the error, 

but go on to associate with an emotionally positive outcome, such as thanking the student for pointing 

out the error. The emotional message is that criticism will not follow from error identification. 

However, taking the error handling strategy further, the identification may be made into an event 

through provoking a discussion, or may be acted out. There are many possible options, such as 



expecting error due to rapid engagement in doing mathematics or that error is just to be expected. The 

event could show that corrections are fine, that corrections are neither good or bad, and are just a 

learning opportunity. The attribution of value to the error communicates a positive message. 

In the examples from Adam and Bertha there is a mixture of the above that tend to the emotionally 

positive end of the continuum. What was not apparent either in the examples of data collection was a 

view that ‘I never make mistakes’. Although both examples are public, Adam notices his own error 

as part of the next step, whilst Bertha’s attention is claimed by rejection of her answer by an online 

website. What may be significant is the emotion work in both cases to turn the event to a positive 

learning experience. As for similar examples from Tainio & Laine (2015), the teachers take affective 

stances that display affiliation and humour (p.73). They also evoke emotionally positive responses 

for the students. Both show happiness in resolution of error, and give praise albeit located differently. 

Bertha tells in a later interview of an occasion when a formal observation that went wrong because 

the questions on the website changed. A repeat experience, when again being observed, albeit for 

research purposes, is likely to re-evoke emotions associated with insecurity, and a need to check 

solutions with a form of authority, in this case the website answer. Modelling a need for accuracy, 

for rechecking, reinforces a product orientated ‘feel’ in the example, where correctness takes 

precedence. There is also modelling of internal thought processes. In Bertha’s case public thinking 

out-loud for self, “[muttering quietly] ...2...5...4...point...oh. I see, point 34. Let’s try it again.” 

Possibly this indicates Bertha seeking mathematical correctness. This corresponds with what she says 

in interview,  

I don't see myself as a mathematician. I see myself as someone who is good at maths and you 

can teach me anything in maths and eventually get it, which does again sounds obnoxious but 

that's...you know... it might take me a lot longer with some of the things. (Bertha)  

Seeking confirmation of correctness perhaps indicates a belief that ‘real’ mathematicians do not make 

errors. This example shows an intention to model what she thinks a teacher should be doing, 

indicating a disparity between real and aim more commensurate with trainee teachers. In contrast, 

Adam models shifting ownership of error by repositioning from ‘we’ to ‘I’, modelling that gives an 

impression that it is ok to err. He positively manages the error, moving sequentially from a point of 

uncertainty into exhibiting positive emotions using humour via exchanging noises and giving praise, 

which acts to restore lesson balance. His modelling of how to deal with error includes distraction of 

attention and shifting attention via assigning a social reward for correction of error. In the episode, 

the error becomes an object unassigned, before it is quickly shifted into a positive outcome. As an 

observer, it felt as if he was pinning the error somewhere distant from self. However, he included 

students in his happiness at resolving the error, and hence was rewarded. Either interpretation is a 

modelling that downplays error. As he says afterwards,  

Oh, yeah, did I put a mistake on the board to start off with? (Yeah) Yeah...I’m not fussed with 

that. It happens quite a lot. I always say to the students... I’ll make mistakes, and they’ll make 

mistakes...and there it goes...(Adam)  

Both teachers seem to experience cognitive conflict, observable in the lesson as uncertainty, and 

resolve the error for themselves. They both resolve positively for their students, stepping into the 

error again as part of positive modelling. The data confirms that it is not the error itself but how it is 



managed that has implications. Public teacher error has more impact, whereas perhaps students are 

expected to make errors. Underlying the difference between the examples and trainee teachers lie the 

issues of confidence and risk with the subsequent implications to learning climate of handling error 

after and during public exposure. We assume that expert teachers have confidence, but the examples 

show that the use of emotions is part of the restorative process, perhaps as a distraction. This seems 

to warrant further investigation, as does the disparity between the expert (who makes no mistakes) 

and Adam’s declared and enacted position on error. Mandler (1989) suggests emotions activate other 

mental contents to deal with situations perceived as being a mismatch between what is intended and 

what occurs.  

Conclusion and implications 

In the above I have used two short episodes to illustrate teacher error management, since the research 

suggests that modelling of error responses plays an important role in construction of positive 

emotional climates in a mathematics classroom. Based on this initially small sample, the use of 

affective pathways seems to support exploration of the adaptive/maladaptive reaction patterns. There 

may be potential in exploring adaptive patterns with teachers as part of professional development. It 

may also be useful, in conjunction with ideas such as positive mindsets (Boaler, 2014), to consider 

how students might participate in error management to a greater degree, for example as springboards 

as suggested by Borasi (1987). The different responses of the teachers, although both successfully 

resolved in that student reward is given as restorative praise in both cases, have different longer term 

impressions. Adam says, ‘gold star’ for a student and quickly moves on, whilst Bertha draws attention 

to the correct answer, and to rewarding the student. The impact on students of repeated modelling of 

‘not my error, let’s move on’ (process interruption only) compared to ‘we must get this right’ (product 

orientation) may be significant. Shifting attention acts to distance the teacher from the ownership of 

error, modelling addressing error as positive. This distancing compares to a negative impact that 

models dealing with errors as an annoying problem, one owned by both teacher and students. There 

is inevitably a degree of uncertainty in relation to error management. These examples represent 

extremes of a management continuum from valuing error as a learning experience (modelling an 

expectation of error into learning), to a belief that errors are obstacles to avoid. Indeed, an emotional 

risk to a teacher may be in not using positive emotions to manage error.  
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Students’ images of mathematics: The role of parents’ occupation 

Ciara Lane  
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A questionnaire survey was conducted as part of a study investigating post-primary students’ images 

of mathematics in Ireland. A definition of ‘image of mathematics’ was adopted from Lim (1999) and 

Wilson (2011). Students’ images of mathematics were proposed to include attitudes, beliefs, 

motivation, self-concept, emotions and past experiences regarding mathematics. This paper focuses 

on one aspect of the study; the relationship between students’ images of mathematics and parents’ 

occupation. Some emergent findings regarding this relationship are presented and discussed. 

Keywords: Image of mathematics, affect, parents’ occupation. 

Introduction 

Mathematics education researchers have come to realise in recent decades the significance of 

mathematics-related affect, with consequential effects on mathematical engagement and performance 

(Hannula, 2016; Hannula, Ryans, Philippou & Zan, 2004; Lane, O’Donoghue & Stynes, 2014, 2016; 

Lim, 1999; McLeod, 1994, OECD, 2016). Affect in mathematics education has also been seen to be 

influenced by various factors including, but not limited to, gender, teachers, parents, peers, society 

and prior achievement (Frenzel, Goetz, Pekrun & Watt 2010; Hannula et al, 2004; Lane et al, 2014, 

2016; Lim, 1999; Morgan, Thornton & McCrory, 2016, OECD, 2016). 

There are various constructs investigated by mathematics education researchers in the field of affect. 

In this study, we focus on the construct ‘image of mathematics’.  

Although there is no universal definition of ‘image of mathematics’, there appears to be a general 

consensus that the term comprises several affective constructs such as: attitudes, beliefs, emotions, 

self-concept and past experiences regarding mathematics (Brown, 1995; Ernest, 2004; Lane et al., 

2014; Lim, 1999). This paper derives from the author’s PhD study that examined the image of 

mathematics held by post-primary students in Ireland (Lane et al., 2014; 2016). No previous research 

in Ireland had extensively examined second-level students’ mathematics-related affect, although 

studies such as the Programme for International Student Assessment (PISA) have reported on 

particular aspects such as students’ attitudes and confidence (Perkins, Shiel & Merriman, 2013). Lane 

et al. (2016) found that, similarly to the international context, statistically significant differences 

occurred for Irish students’ images of mathematics with regards to gender, prior achievement and 

past experiences. Students’ image formation was also reported to be influenced by their teachers, 

parents and peers (Lane et al., 2014). In this paper, one particular aspect of parental influence is 

examined, with the aim to establishing whether there exists a relationship between parents’ 

occupation and students’ images of mathematics. In particular, the author highlights parents’ 

occupations with a strong mathematics base as a distinct occupation category, hypothesizing that 

these parents would hold positive views of mathematics e.g. in terms of value, and this paper aims to 

examine whether this positivity would appear to manifest itself in their children.  



Theoretical framework 

In her study on the public image of mathematics in the UK, Lim (1999) examined the influences on 

a person’s image of mathematics. She found that images were influenced by four external factors, 

namely: teachers, parents, peers and society (listed in descending order of reported influence). While 

the relationship between students’ mathematics-related affect and their teachers/the way in which 

they are taught, as well as the importance of peers and peer-learning in relation to affective issues, is 

evident in the literature (Dweck, 1986; Frenzel et al., 2010; Hill, 2008; OECD, 2016; Pantziara, 

2016), the relationship between students’ mathematics-related affect and parents/family is less 

visible. 

Parents’ occupation 

The role of parents as an influence on students’ mathematics-related affect and achievement has 

received some attention in the literature (Fennema & Sherman, 1976; Frenzel et al., 2010; Lane et al., 

2014; Lim, 1999; OECD, 2014). Parents’ influence can be explained by three underlying mechanisms 

according to Bosco & Bianco (2005), these being: socialization, modelling and resources. As part of 

these mechanisms, it is suggested that parents’ values, attitudes etc. can be passed to their children, 

with obvious connotations with regards to students’ images of mathematics. Lim (1999) and Lane et 

al. (2014) found parents to be the second most common influence in forming an image of 

mathematics. This influence occurs chiefly in the form of support and encouragement, but also 

indirectly from parents’ own images of mathematics. In Frenzel et al. (2010), students’ ‘interest’ in 

mathematics was found to be higher when his/her parents expressed higher levels of mathematics 

values. Similarly, ASPIRES (2013) found that a key factor affecting young people’s science-career 

aspirations was the amount of ‘Science Capital’ a family has. Which includes science-related 

qualifications, understanding, knowledge, interest and social contacts. 

With regards to the role of parents’ occupations, this aspect has been found to indirectly impact on 

children’s occupational choices, through their interests and skills (Lawson et al., 2015). The influence 

of parents’ occupation on students’ mathematical performance was examined in PISA 2012. Results 

indicated that across most countries, children whose parents worked as professionals (in health, 

teaching, science, business or administration) had the best results in mathematics (OECD, 2014) 

indicating a relationship between students’ socio-economic background and their mathematics 

achievement. Furthermore, PISA results indicate that students from disadvantaged backgrounds tend 

to have a more negative mathematical self-concept than advantaged students, likely linked to lower 

mathematical achievement (OECD, 2016). Given the influence of parents in terms of students’ 

mathematics-related affect (Frenzel et al., 2010; Lane et al., 2014; Lim, 1999) and also the 

relationship between affect and achievement in mathematics (OECD, 2016), parents’ occupations 

may impact on student achievement not only in terms of students’ socio-economic background, but 

also in terms of students’ images of mathematics. 

In this paper, we adapt the definitions of Lim (1999) and Wilson (2011) for her study, with ‘image of 

mathematics’ conceptualized as follows: a mental representation or view of mathematics, presumably 

constructed as a result of past experiences, mediated through school, parents, peers or society. This 

term is also understood broadly to include three domains: 



 The affective domain dealing with attitudes, emotions, and self-concept regarding 

mathematics and mathematics learning experiences. 

 The cognitive domain dealing with beliefs regarding mathematics and mathematics learning 

experiences. 

 The conative domain dealing with motivation regarding mathematics and mathematics 

learning. 

The theoretical framework for the author’s study is outlined in more detail in Lane et al. (2014). 

Methodology 

A mixed-methodology was employed to investigate the image of mathematics held by 5th-year 

ordinary level mathematics students in second level education in Ireland. The main method used to 

examine students’ images of mathematics was a questionnaire survey. The questionnaire contained 

both quantitative fixed-response items and qualitative open-ended questions. The quantitative aspect 

incorporated eight pre-established Likert scales, with a total of 84 items, to examine students’ 

attitudes, beliefs, emotions, self-concept and motivation regarding mathematics – see Table 1. As no 

single scale existed to measure image of mathematics, the scales were selected that most closely 

resembled the elements comprising our ‘image of mathematics’ construct and also that fit with the 

other scales concisely in terms of length and layout. The five open-ended questions sought to gain 

further insight into students’ images in terms of their influences, prior experience, use of mathematics 

in everyday life and their causal attributions for success/failure in mathematics. However, this paper 

aims to address only one aspect of the study with the following research question: 

Is there a relationship between image of mathematics and parents’ occupation for 5th year, ordinary 

level mathematics students in Ireland? 

In order to address this question, we focus on the quantitative data, with students’ scores on the eight 

Likert-type scales examined with respect to parents’ occupation. 

Author Scale Image of 

Mathematics 

Element 

Aiken (1974) Enjoyment of Mathematics Attitude 

Aiken (1974) Value of Mathematics Attitude 

Fennema & Sherman 

(1976) 

Attitude Toward Success in 

Mathematics 

Attitude 

Fennema & Sherman 

(1976) 

Effectance Motivation in Mathematics Motivation 

Fennema & Sherman 

(1976) 

Anxiety about Mathematics Emotions 

Fennema & Sherman 

(1976) 

Mathematics as a Male Domain Beliefs 

Gourgey (1982) Mathematical Self-Concept Self-concept 

Schoenfeld (1989) Beliefs about Mathematics Beliefs 
Table 1: Image of Mathematics Scales 

A random stratified sample of 60 schools was selected for this study, although only 23 of these agreed 

to participate. A total of 356 students completed the questionnaire survey. The students were aged 



between 15 and 18 years and were all studying ordinary level (intermediate level) mathematics for 

the Leaving Certificate (end of second level state examination). The author decided to focus on 

ordinary level students as it was hypothesized that students in this cohort would provide a wider range 

of images. In addition, a majority of students (72.14% at the time of the study) took the ordinary level 

mathematics examination for the Leaving Certificate. 

Findings 

In this section, findings are presented in relation to parents’ occupation and the relationship with 

students’ images of mathematics. The quantitative data were analyzed using Statistical Package for 

the Social Sciences (SPSS) (version 19). In acknowledgement of the debate among researchers as to 

whether parametric or non-parametric methods of analysis should be applied to Likert scales 

(Jamieson, 2004), both methods were employed with similar findings (see Lane et al., 2014). The 

internal reliability of the eight scales was examined using Cronbach’s alpha, with six scales found to 

have values above 0.8. The Value scale scored above 0.7, still a good internal consistency but the 

Beliefs scale was found to have a very low Cronbach’s alpha of 0.21, possibly due to the short length 

of the scale – six items. The 84 items in total – referred to here as the combined image of mathematics 

scale – had a very high internal consistency of 0.94. Correlation was carried out on the scales, with 

each scale correlated with all other scales and also with the combined scale. The relationships between 

the scales was also examined using partial correlation, controlling for the effect of each individual 

scale on the relationship between the other seven scales. A Principal Components Factor Analysis 

and Multiple Regression Analysis were also employed. The analyses indicated that the Attitude 

towards Success in Mathematics Scale and the Mathematics as a Male Domain Scale were not found 

to correlate highly with the other scales used in this study and so the author has decided to not address 

these scales here. The median scores on each of the remaining six scales are examined according to 

parents’ occupation. A higher score on any of the scales indicates a more positive attitude, belief, 

emotion etc.    

As parents’ occupation was an optional item on the questionnaire, this item received the lowest 

response rate out of the entire questionnaire with just over half of students providing an answer 

(n=179). Reported parents’ occupations were qualitatively reviewed and grouped into categories. 

Occupations were grouped similarly to Lim (1999) in her study on the public image of mathematics. 

Due to the fact that the author wished to acknowledge occupations involving a significant knowledge 

of mathematics, i.e., financial banking, accountancy, mathematics teacher etc. it was decided to 

include a sixth category relating to this. Initially, parents’ occupation was explored with categories 

that differentiated between one or both parents’ occupations being provided. However, as some of 

these categories contained very few students, groups were collapsed into the 6 categories of: 

Professional; Managerial and Technical; Skilled (both manual and non-manual); Unskilled and 

Partially skilled; Mathematics; and Others (unemployed, retired and unclassifiable occupations). 

Median scores for these categories are also compared with those for students who did not provide 

their parents’ occupations (Not Given). 

Enjoyment of mathematics  

The re-grouped categories of the parent(s)’ occupation variable were first examined with regards to 

students’ enjoyment of mathematics. The highest possible score for this scale was 55. Students with 

the highest median score for enjoyment of mathematics (40.5) had parents whose occupation involved 



mathematics. The lowest median for enjoyment of mathematics (27.0) was found to be students 

whose parents’ occupations were categorized as ‘other’. There was little difference between the 

medians for the other 5 categories. 

Value of mathematics 

Parents’ occupation was examined in relation to students’ value of mathematics (highest possible 

score being 50) but the range of medians for the Value of Mathematics Scale was quite small with 

the highest median (38.0) being for students with parents grouped as Managerial and Technical as 

well parents grouped as Mathematics, and the lowest median (33.0) being for students whose parents’ 

occupations were classified as Other. 

Motivation in mathematics 

The highest median score for motivation in mathematics (39.5 out of a possible 60) was found for the 

Managerial and Technical category. This was closely followed by the Mathematics grouping with a 

median score of 39.0. The lowest median score on the Motivation scale (30.0) was recorded for 

students’ whose parents’ occupations fell within the Other classification. 

Beliefs about mathematics 

For the Beliefs scale, the range of median scores was small for the parents’ occupation categories. 

The highest median score on the Beliefs about Mathematics Scale (20.0 out of a possible 30) was 

found for students whose parents’ occupations were classified as either Managerial and Technical or 

Other. The lowest median score (18.0) was recorded for students’ whose parents’ occupations fell 

within the Skilled grouping. 

Mathematical self-concept 

It was found that the students with the highest median score for the Mathematical Self-concept scale 

(43.5 out of 60) were those with parents in the Mathematics category. The lowest median score for 

the Self-concept scale (33.0) was recorded for students whose parents were classified as Professional. 

This was the first instance of the Professional grouping scoring the lowest on a scale. 

Anxiety about mathematics 

Finally, the parents’ occupation variable was examined with regards to the Anxiety about 

Mathematics Scale. Students with parents who work with mathematics had a much higher median 

score for the Anxiety scale (43.0) compared with all other groups (meaning these students reported 

the lowest anxiety levels). The lowest median score for the Anxiety about Mathematics Scale (34.0) 

was recorded for two groups of students, those with parents in the Skilled and Other classifications. 

Discussion 

The most significant finding with regards to the relationship between parents’ occupation and 

students’ image of mathematics may be with regards to students whose parents are involved in 

mathematics-related occupations. For most of the scales, and also for the combination of the scales, 

the Mathematics category of parents’ occupation showed the highest median scores and, in some 

situations, was set apart considerably from the other categories. Students with parents in the 

Mathematics classification of occupations were found to report the highest enjoyment of 

mathematics, the highest value of mathematics, a high motivation regarding mathematics, the highest 



mathematical self-concept and the lowest anxiety levels with regards to mathematics. Given the 

suggestion in the existing research that parents can influence students’ mathematics-related affect and 

possibly, their achievement in mathematics (Frenzel et al., 2010; Lane, 2013; Lim, 1999), it is perhaps 

to be expected that parents employed in mathematics-related occupations will have children with a 

more positive image of mathematics. In particular, it is not surprising that students whose parents 

work with mathematics would report a positive value of mathematics, but it would not necessarily be 

anticipated that these students would report higher enjoyment, higher self-concept or lower anxiety. 

While the PISA findings (OECD, 2014) indicate a relationship between parents’ occupation and 

achievement in mathematics, the occupation category linked with higher achievement in that study 

was not specific to mathematics, although it would include mathematics related work. Their findings 

relating to parents’ occupation and achievement are likely due to the better educational opportunities 

afforded to students whose parents are classified as professionals (the resources aspect of parental 

influence seen in Bosco & Bianco, 2005), but for the students in this study, there was no significant 

difference between students’ reported images with regards to the type of school attended (Lane et al, 

2016). Therefore, it can be hypothesized that the differences come from the parents themselves, and 

not from the educational opportunities afforded by parents. This ties in with the socialization and 

modelling aspects of parental influence (Bosco & Bianco, 2005). The significance of this finding lies 

in the important role parents play in positively influencing their children’s mathematics-related affect. 

Another possibility is that parents involved in mathematics-related careers are more able to provide 

help with mathematics homework. This extra home support may also positively influence these 

students in terms of their image of mathematics. Similar findings were observed in the ASPIRES 

study (2013) in relation to parental influence and engagement with science and science careers. 

Whatever the case, parents who work in mathematics related occupations would seem to have 

children with a more positive image of mathematics, and while the possibility of other factors should 

be acknowledged, the relationship between parental influence and student affect with regards to 

mathematics is clearly one that requires attention. That students whose parents were employed in 

mathematics based occupations reported the highest self-concept and lowest anxiety regarding 

mathematics is particularly of note, as Pantziara (2016) highlights the predictive role of students’ self-

efficacy in their current and future education and course selection. Thus, the potential benefits of 

positive parental influence in terms of mathematics-related affect are far reaching. 

Conclusion 

Findings from this study suggest a relationship between parents’ occupation and students’ self-

reported images of mathematics exist. The positive image of mathematics found to exist among 

students whose parents are employed in mathematics-related careers, may offer an insight into the 

role of parents in the formation of a student’s image of mathematics, particularly in terms of the 

socialization and modelling aspects of influence (Bosco & Bianco, 2005). Parents with positive 

attitudes, beliefs etc. about mathematics, may pass this positivity to their children, thus creating a 

cycle of positivity and engagement with mathematics. These parents are likely to be in a better 

position to provide additional support with mathematics work. Given the role played by parents in 

terms of their children’s education and future occupations (ASPIRES, 2013; Lawson et al., 2015), the 

influence of parents in students’ image of mathematics formation (Lim, 1999; Lane et al., 2014) and 

the link between affect and future course selection and achievement (OECD, 2016; Pantziara, 2016), 

it is essential to recognize the part that parents may play in influencing students’ engagement with 



mathematics education and mathematics related careers. Due to the small number of students in this 

study with parents involved in mathematics based careers, these findings cannot be taken as 

conclusive and indeed further research would be necessary to clarify the relationship between parents’ 

occupation and students’ images of mathematics, and also the role of parents in influencing students’ 

mathematics-related affect and indeed their current and future engagement in mathematics.  
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Emotions and problem solving by prospective primary school teachers 
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This paper reports on a study into the motivations and emotions of prospective primary school 

teachers and how they change before, during and after a problem solving task. The results highlight 

the need to build the emotional intelligence or cognitive-affective competences, resources and 

strategies to overcome negative emotion and to scaffold learning. 

Keywords: Motivation, emotion, problem solving. 

Background 

The link between emotion and the experience of learning mathematics has long been recognised  

(Buxton, 1981). In particular, negative experiences, leading to negative emotions, are seen to inhibit 

or disable the learning of mathematics. Buxton’s study provided evidence of the damaging effect of 

lack of confidence and competence that motivation and emotion play in the learning of mathematics. 

Skemp (1977) also described the part played by a range of emotions in successful and unsuccessful 

strategies for learning mathematics. Yet until recently, much research on emotion and mathematics 

has focussed on anxiety, and particularly test anxiety (Hembree, 1990).  Evans (2000, p. 108) claimed 

“there is still little or no explicit acknowledgement of the importance of the affective – feelings of 

anxiety, frustration, pleasure and/or satisfaction which attend the learning of mathematics.” More 

recently, there have been attempts to classify emotions related to learning mathematics (Pekrun, 

Frenzel, Goetz, & Perry, 2007). This characterisation does not account fully for the wide range of 

emotions reported in other research (Schorr & Goldin, 2008). Schutz and DeCuir (2010) point out the 

tendency of research to characterise emotion as trait, and that this in turn tends to promote more 

reductionist interpretations. They note the methodological problems in the attempt to study emotions, 

since they happen ‘in vivo’, and in the moment. Although not specific to mathematics, Meyer and 

Turner’s (2010) review of emotions in classroom motivation research argues for the key role of 

emotions in learning, using terms such as ‘essential’ and ‘pivotal’.  

In relation to emotion and disaffection with school mathematics, there have been few studies.  One 

such is Skinner, Furrer, Marchand and Kindermann. They view disaffection as negative engagement, 

or, more specifically (2008, p. 767): “the occurrence of behaviours and emotions that reflect 

maladaptive emotional states.” Amongst the emotions accounted for are boredom, anxiety, anger and 

shame. The framework takes account of these emotions, but offers no theoretical account of their 

genesis. Lewis  (2016), using a Reversal Theory structure, has attempted to widen the range of 

emotions studied, and has reported on the existence of a range of negative emotions that inhibit or 

disable learning. 

Emotions, then, have received less attention than other affective constructs. In particular, emotion-

as-state has been under-researched. The importance of state, as opposed to trait, or to more stable, 

cognitively-mediated constructs such as attitudes and beliefs, has been pointed out by Hannula. He 

says (2012, p. 155): “There is a clear imbalance in favour of studies that focus on traits over studies 

that focus on states.”.  He goes on to say (ibidem, p. 155): “In particular, studies that focus on the 

dynamics of emotional or motivational states in classroom or other learning community are still rare.” 



More recently, researchers have begun to pay attention to this deficit. The Cerme community, at 

Cerme 9, 2015, saw a number of papers address issues of emotion, and focussed on emotion-as-state, 

in rather innovative ways. Liljedhal  (2015) collected data from 38 prospective mathematics teachers 

after an intensely negative experience. The results contribute to work in mathematics education that 

anchors emotions in a theoretical framework and links them to other constructs in the affective 

domain, particularly motives. Di Martino and colleagues (Antognazza, Di Martino, Pellandini, & 

Sbaragli, 2015) look at if, and how, young students’ emotions change during problem solving, the 

factors behind the change, and the potential impact of certain emotional changes on mathematical 

activity. They investigate young students’ problem-solving difficulties, and the links between 

affective and cognitive factors in context. They note that intrinsic causes seem to be attributed by 

students to positive emotions, and extrinsic causes to negative emotions. 

Despite there being a number of significant differences between the studies, they share a number of 

features that help to address the difficulties of studying emotion ‘in-situ’. They both involve polling 

participants before, during and after the performance of mathematical tasks, and both make creative 

use of open-ended responses. These studies can be taken together to form a conversation within the 

research community, where researchers respond to identified gaps in the field, and cooperate to move 

the research on at each stage. A number of points seem to me to be particularly worth exploring 

further. The first is the interaction between affect and cognition, which research is only now beginning 

to explore. Secondly, as pointed out above, we need to understand more fully how affective and 

emotional states help to facilitate or inhibit learning. Further evidence is needed of the dynamic 

progression of motivational and emotional states through the problem solving process, how these 

interact with cognition and cognitively-mediated constructs such as attitudes and beliefs. 

The study 

The aim of the study, then, is to investigate the motivations and emotions associated with the 

performance of a problem solving task. More specifically: 

What are the motivational and emotional pre-dispositions of prospective primary teachers to 

performing a problem solving task? How do these change during the process of the task, and how are 

they interpreted after completion of the task? What is the role of self-regulatory skills in mediating 

negative emotions? How do motivations and emotions interact with cognition in the undertaking of 

the task? 

Prospective primary school teachers on initial teacher training represent a category of whom many 

members are lacking in confidence and a facility in mathematics (See Liljedahl, 2015). There is a lot 

of interest in this group for this reason. Looking to take and adapt the methods and protocols from 

the studies outlined above, I ran a session with a group of primary PGCE students in which these 

ideas can be explored. The protocol involves presenting them with mathematics problems, and polling 

them both prior to working on them and after the task, about their affective dispositions. The task was 

actually a set of graduated questions involving working out terms in series in which they were given 

the first few terms. By using a graduated set of tasks, I was hoping that there were tasks that were 

simple enough for everyone to get some right, but also some that would stretch the most 

accomplished. 



Seventeen students on the Postgraduate Certification of Education (PGCE) programme for 

prospective primary school teachers at a UK University volunteered to attend a lunchtime session. 

They were informed only that I was interested in researching affect in mathematics education. All but 

two of the volunteers were women, and they were split equally between those who considered being 

mathematics specialists, and those who did not.  

At the beginning of the session, students were briefly shown the task, and then given a questionnaire. 

Prior to the task, they were asked to rate the difficulty of the task on a 5-point scale from easy to 

difficult. They were also asked how they felt about the task, what they were thinking, and why. They 

then undertook the written task. After completion of the task, they were asked how well they did on 

the task, to describe their emotions and thoughts and feelings as they undertook the task, and about 

their most negative emotion, and how they dealt with it. The data was content analysed according to 

the categories of responses, as reported below. 

Results 

Initial thoughts and feelings 

Ten respondents assessed the task as quite easy, and no one assessed it as difficult. Consistent with 

the Antognazza et al. study, students who rated the task easy or quite easy felt positively about the 

prospect of doing the task. When asked how they felt about the prospect of the task, prior to 

undertaking it, a range of positive feelings were expressed: 

I like a challenge; Excited; Confident; Relaxed; Curious; Anticipation 

These all reinforced the apparent perceived simplicity of the task. However, there were a few other 

responses (and these all came from volunteers who rated the task as of medium difficulty): 

It makes me feel excited because I want to get it correct, but scared because I might get it wrong 

(sc) 

I think I will be able to do the first ones and then they will get harder and I probably won't be able 

to do them so anticipation (ja) 

When asked what they were thinking, and why, most volunteers reflected confidence and excitement. 

The two exceptions were those again, who judged the task to be of medium difficulty. 

How can I get it right and not look silly. (sc) 

I'm thinking that although maths isn't my strongest subject, I'm not being judged and marked so I 

feel more relaxed (an) 

In terms of the task itself, volunteer scores were evenly distributed between scores of 4, 5 and 6 out 

of 6, reflecting their evaluation of the task as fairly easy. After the task, volunteers were asked how 

well they thought they did, and most seemed to judge that they did quite well. What is clear from the 

narratives is that the motivation to succeed at the tasks was strong. There are multiple mentions of 

determination and perseverance. 

I really wanted to get the answer …… I didn’t want to be defeated (ce) 

My main emotion was one of determination (rp) 



I was just determined to get the right answer (cp) 

Added to this, not only is getting right answers important, but speed in doing so is also seen as a 

requirement. Thus we hear: 

How quickly I could work it out.. (cp) 

I wanted to get through it quickly (sj) 

I was quite upset when I took a little bit longer to do the last one (id) 

Fine until I felt rushed due to time (cw) 

A number of responses suggests that getting ANY answer wrong is unacceptable, and causes negative 

emotion. 

I didn't do well because I was unable to answer the last two questions (an) 

Post task reflection 

Although the questionnaire prompts participants to distinguish between emotions on the one hand, 

and thoughts and feelings on the other, including how they dealt with their most negative emotion, 

the responses seem to represent a ‘package deal’ in which the emotions and cognitions are conflated, 

thus demonstrating how intimately connected they are. In terms of emotions, a range of words and 

terms are used. They include: confidence; stress; panic; confused; happy; confident; uncertainty; 

worried; feeling worse; frustration; anger; annoyed; irritated. 

This list seems to indicate quite a narrow range of primary emotions, comprising variations of anxiety 

and anger, on the negative side, and happiness and confidence on the positive side. Confusion and 

uncertainty appear to be cognitive conditions with negative valence, that result in negative emotions 

such as anxiety. 

Again, as with Antognazza et al., making progress and getting right answers are seen as a vital 

condition of satisfaction. 

I was just determined to get the right answer, each time I solved one I was happy (cp) 

Mainly joy at being able to do the task relatively easy (gh) 

The sense of satisfaction and positive emotion continues until the prospect of getting the answer right 

is perceived to be at risk, when the emotion turns negative. Getting answers right, and then not being 

able to get an answer, is expressed in emotional dualities: 

Happiness, success, proud I could do it. Annoyed when I had to take a few looks at the last one 

(id) 

The negative feelings seem to easily initiate more deep seated negative and disabling thoughts: 

I felt quite happy and relaxed at the beginning when I was able to complete the sequences but later 

on I felt inadequate as everyone else seemed to know the answers (an) 

I began to doubt myself (nd) 

Frustration stimulating a negative thought process that I am not that great at maths (ao) 



I was happy and confident until I reached 'E'. At this point my uncertainty about maths re-surfaced. 

I have never been confident in maths and so the fact that I struggled on the last 2 questions made 

this emotion re-surface  (nd) 

Other categories of narrative expression also emerge from the data. One category relates to the 

mathematical or heuristic strategies employed by the volunteers either in the search for pattern or 

answers, or in response to negative emotional conditions. Examples include: 

My prior knowledge of sequences helped (cs) 

My confidence went up and down as I used trial and error, once I'd figured out the pattern that was 

fine (cp) 

Try out a variety of methods until I found the one that worked (id) 

My most negative emotion was before the last question when I worried 'whoa' not sure I can do 

this, but I dealt with it by trying to think about the problem from a different perspective and take 

a different approach as I had with other questions (ce) 

I approached it very methodically, wrote things down to help remember what I was processing 

mentally. As I cracked each pattern I felt more willing to try the next (rp) 

I was thinking about the possibilities of how to work each one out. What different methods may I 

need to use? (hr) 

Since the tone of emotion changed from pre-task to post-task, and from mainly positive to mainly 

negative, it is interesting to examine how these students deal with the negative emotion. There is 

evidence here of significant self regulation, which is often mediated by self-talk: 

Can I do it? Can’t I do it? (sj) 

I had to tell myself that I had tried my best (nd) 

Come on you can do better (cp) 

It’s not a test so it is ok if and when I get it wrong (ja) 

Self talk also plays a part in the negative case: 

I couldn’t find the sequence and therefore must be rubbish at maths (sc) 

The following example illustrates such a negative pathway or series of responses: 

I was confused as soon as I couldn't find an obvious pattern and consequently panicked and 

guessed. That made me feel inadequate (sc) 

Note the sequence (with comments in parentheses): 

1. I couldn’t find an obvious pattern… [searching for pattern is a cognitive strategy – in this case 

unsuccessful] 

2. This made me confused…[ lack of success leads to lack of solution and the cognitive condition 

leads to high arousal] 

3. Therefore I panic…[this induces negative emotion] 



4. When I panic I guess…[ this leads to a poor behavioural response] 

Many of the accounts talk about confusion leading to panic, and the panic relates to the very strong 

(but unsatisfied) need for progress, often leading to inappropriate strategies for quick solutions: 

I felt panicked to try and find a solution as quickly as possible (sc) 

Motivational and emotional pathways in mathematical problem solving 

By assembling the evidence, it is now possible to propose a model for the possibility space of the 

pathways for this motivational-emotional-behavioural nexus. To do this, I will draw on the reversal 

theory framework, but instantiated by data from this study, and consistent with data from other, 

similar studies. More details about the eight motivational states, and their associated emotions can be 

found in Lewis (2016). 

The motivational state combination determines how the experience or engagement in the task will be 

evaluated against the needs of the active states. If the need is satisfied, or if satisfaction is anticipated, 

it will lead to positive emotion. If not, it will lead to a feeling of frustration, and negative emotion 

determined by the specific state combinations active at the time. In this case, there is a behavioural 

dilemma which can be resolved in two ways. Illustrated visually, the space comprises the following 

pathways: 

     Positive outcome/  Continue (A) 

     Emotion   

 

Activity-outcome  

           Continue (B) 

Negative outcome/ 

     Emotion    Avoid or withdraw (C) 

In the serious self-mastery state combination, which evidence suggests is the dominant motivational 

disposition of students in problem solving contexts, achieving progress, getting right answers 

(quickly) and the associated feeling of power or competence, is necessary for a positive affective 

outcome. The likely behavioural response is attraction, leading to the desire to continue (A). 

If progress or positive outcome is not achieved in the serious self-mastery motivational disposition, 

this will result in anxiety, anger (serious), or humiliation or helplessness (self-mastery, losing), 

whereas in paratelic (playful) state combinations, boredom or sullenness will result if arousal is low 

and excitement is unavailable. 

From this situation, the student has choices available. One choice is to use strategies to override or 

mitigate the negative emotions. One such approach is the learnt behavioural response to ‘call down’ 

mathematical strategies or heuristics, as evidenced above. Another available resource is the 

application of metacognitive skills such as determination or perseverance. This allows the student to 

continue, even if it is painful or uncomfortable to do so. 



There is also another process that appears to take place. Negative emotions such as anxiety, anger, 

(possibly in conjunction with helplessness or humiliation) seem to induce a strong need for meaning, 

significance or explanation for the failure. Since this is unavailable in the situation, it appears to 

initiate a search of cognitively-mediated constructs (such as attitudes or beliefs) in order to satisfy 

this need. This search for meaning seems to be strongly mediated by self-talk, and may result, as the 

evidence shows, in evaluations of self and capability (‘You can do it’ or, ‘I am dumb’), or evaluations 

or attributions related to the situation (‘these questions are too hard’, ‘mathematics is useless’). But 

as Antognazza et al. point out, negative emotion is more often associated with explanations extrinsic 

to the problem at hand. 

If such evaluations about self or the situation are positive and enabling, they provide a kind of 

behavioural override to the negative emotion, and encourage further qualified or reluctant attraction 

and engagement, as expressed, for instance, in ‘come on, you can do better’, as illustrated in path (B). 

If, on the other hand, such evaluations are negative, they result in repulsion and avoidance or 

withdrawal from the task, as in path (C). We can see this last option in operation in statements of the 

form ‘I am no good at maths’, ‘I feel less intelligent than the others.’  

Since all students will, at times, encounter negative emotions, it is important to understand in more 

depth what influences the choice between pathways B) and C). It seems clear that having a range of 

cognitive-affective resources are the key to the likelihood of students choosing pathway C). The 

evidence here suggests that these resources and strategies fall into three categories: 

 A repertoire of mathematical or heuristic processes to enact in seeking progress in tasks and 

problems. 

 Meta-cognitive and self-regulatory resources such as determination and perseverance in order 

to continue with a task when it is affectively uncomfortable or painful to do so. 

 An architecture of positive or enabling cognitively-mediated structures or representations 

such as attitudes or beliefs, that provide a frame of confidence in which otherwise 

psychologically risky situations can be tackled. 

Discussion 

This study, then, has attempted to contribute to the understanding of affect, and particularly negative 

emotions and their effect on learning or not learning, mathematics. A number of interesting points 

arise. Firstly, further evidence to the Liljedahl study of just how prevalent negative emotion is among 

prospective primary teachers. Secondly, the evidence here shows just how intimately connected affect 

and cognition are in undertaking mathematical tasks, and the influence of affect on learning, or not 

learning mathematics, and indeed, the reciprocal influence of learning on affect. I have proposed a 

model of the mechanisms by which emotion and cognition interact when students are engaged in 

mathematical tasks, and in particular, ways that aspects of cognition and behaviour can be used to 

mitigate negative emotion, such that it doesn’t disable learning. 

This is a modest study which has a number of limitations, especially related to the small sample, and 

the fact that they were volunteers. Because of this, no attempt has been made to make quantitative 

generalisations from the data. 



One of the key points to emerge that should inform teaching practice and pedagogy is that explicit 

focus and attention is needed to help students to build the emotional intelligence or cognitive-affective 

competences, resources and strategies to overcome negative emotion and to scaffold learning.  
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On the edges of flow: Student engagement in problem solving  

Peter Liljedahl, Simon Fraser University, Canada; liljedahl@sfu.ca 

Engagement in mathematical problem solving is an aspect of problem solving that is often overlooked 

in our efforts to improve students' problem solving abilities. In this paper I look at this construct 

through the lens of Csíkszentmihályi's theory of flow. Studying the problem solving habits of students 

within a problem solving environment designed to induce flow, I look specifically at student behavior 

when faced with an imbalance between their problem solving skills and the challenge of the task at 

hand. Results indicate that most students have perseverance in the face of challenge and tolerance in 

the face of the mundane, and use these as buffers while autonomously correcting the imbalance.  

Keywords: Flow, engagement, perseverance, challenge, tolerance. 

 

Flow 

In the early 1970's Mihály Csíkszentmihályi became interested in studying, what he referred to as, 

the optimal experience (1990), 

“a state in which people are so involved in an activity that nothing else seems to matter; the 

experience is so enjoyable that people will continue to do it even at great cost, for the sheer sake 

of doing it.” (Csíkszentmihályi, 1990, p.4) 

In his pursuit to understand the optimal experience, Csíkszentmihályi (1990) studied this 

phenomenon among musicians, artists, mathematicians, scientists, and athletes. Out of this research 

emerged a set of nine characteristics common to every such experience (Csíkszentmihályi, 1990) – 

the first three of which are characteristics external to the doer, existing in the environment of the 

activity, and crucial to occasioning of the optimal experience. 

1. There are clear goals every step of the way. 

2. There is immediate feedback to one’s actions. 

3. There is a balance between challenges and 

skills. 

The last of these – balance between challenge and 

skills – is central to Csíkszentmihályi's (1990) 

analysis of the optimal experience and comes into 

sharp focus when we consider the consequences of 

having an imbalance in this system. 

Csíkszentmihályi found that if the challenge of the 

activity far exceeds a person's ability they are likely 

to experience a feeling of frustration. Conversely, if their ability far exceeds the challenge offered by 

the activity they are apt to become bored. When there is a balance in this system a state of, what 

Csíkszentmihályi refers to as, flow is created (see fig. 1).  

Flow is a powerful ways for us, as mathematics education researchers, to talk productively about the 

phenomenon of engagement in general, and the three aforementioned elements of flow gives us a way 

to think about the potential environments that occasion engagement in our classrooms in particular.  

 

Fig. 1: Graphical representation of the 

balance between challenge and skill  



 

Williams (2001) used Csíkszentmihályi's idea of flow and applied it to a specific instance of problem 

solving that she refers to as discovered complexity. Discovered complexity is a state that occurs when 

a problem solver, or a group of problem solvers, encounter complexities that were not evident at the 

onset of the task, is within their zone of proximal development (Vygotsky, 1978), and occurs when 

the solver(s) "spontaneously formulate a question (intellectual challenge) that is resolved as they work 

with unfamiliar mathematical ideas" (p. 378). Such an encounter will capture, and hold, the 

engagement of the problem solver(s) in a way that satisfies the conditions of flow. What Williams' 

frame-work describes is the deep engagement that is sometimes observed in students working on a 

problem solving task during a single problem solving session.  

Extending this work, I argued that engagement was an affective experience and used the notion of 

flow to look at situations of engagement extended over several days or weeks wherein students return 

to the same task, again and again, until a problem was solved (Liljedahl, 2006). The results of this 

work showed that although flow was present in each of the discrete problem solving encounters, what 

allowed the engagement to sustain itself across multiple encounters was a series of discovered 

complexities in each session linking together to form what I referred to as a chain of discovery.   

More recently, I looked at the practices of two teachers through the lens of flow in general and their 

ability to set clear goals, provide instant feedback, and maintain a balance between challenge and skill 

in particular (Liljedahl, 2016a). From this a number of conclusions emerged. First, thinking about 

flow as existing in that balance between skill and challenge, as represented in figure 1, obfuscates the 

fact that this is not a static relationship. Flow is, in fact, a dynamic process. As students engage in an 

activity their skills will, invariably, improve. In order for these students to stay in flow the challenge 

of the task must similarly increase (see fig. 2).  

   

Fig. 2: Balance as a dynamic 

process 

Fig. 3: Too fast an increase in 

skill 

Fig. 4: Too great an increase in 

challenge 

In a mathematics classroom, these timely increases of challenge often fall to the teacher. But this is 

not without obstacles. For example, if a student's skill increases either too quickly or too covertly for 

the teacher to notice that student may slip into a state of boredom (see fig. 3). Likewise, when the 

teacher does increase the challenge, if that increase is too great the student may become frustrated 

(see fig. 4). How teachers manage these situations of boredom and frustration is important. In 

Liljedahl (2016a) one of the teachers managed such situations synchronously, either giving hints or 

extensions to the class as a whole, usually after three groups finished or she got three of the same 

questions respectively. For most groups the timing of these hints and extensions was off, and not 

helpful in maintaining flow. The second teacher, however, managed these situations asynchronously, 

dealing with groups individually as they got stuck or completed a problem. Student engagement in 



 

the second teacher's class was visibly higher as he was maintaining flow through the constant and 

timely maintenance of the balance between ability and complexity for each group.  

What I did not learn from this aforementioned research is how students cope with imbalance when 

the teacher does not provide help or extensions in a timely fashion. In the research reported here I 

look closely at exactly this phenomenon in general, and student autonomous actions and reactions in 

such moments of imbalance in particular.  

Methodology 

To get at this behavior I chose to observe students in a problem solving settings where student work 

was easily visible. To this end I strategically selected two senior high school classrooms belonging 

to two different teachers (Cameron and Charmaine), both of whom conducted their classrooms 

according to a teaching framework designed to shape their classroom into a space "that is not only 

conducive to thinking but also occasions thinking, a space that is inhabited by thinking individuals as 

well as individuals thinking collectively, learning together and constructing knowledge and 

understanding through activity and discussion" (Liljedahl, 2016b, p.364).  

My earlier empirical work (Liljedahl, 2016b) on the design of such classrooms had emerged a 

collection of nine elements that offer a prescriptive framework to help teachers build such spaces. For 

the research presented here, five of these elements are particularly salient: 

1. At the beginning of every class, students are assigned to a visibly random group (Liljedahl, 

2016b, 2014) of two to four students.  

2. These groups work collaboratively to solve a number of problems (usually) right from the 

beginning of the lesson.  

3. This work is done with groups working at vertical non-permanent surfaces such as 

whiteboards, blackboards, or windows (Liljedahl, 2016b).    

4. Students' flow is occasioned and maintained through the teacher's judicious and timely use of 

hints and extensions (Liljedahl, 2016a, 2016b).  

5. At some point within this sequence of tasks the teacher brings the students together to debrief 

what they have been doing – either by going over one or more of the students' solutions or 

working through a new problem together with the class as a whole. This is timed so that every 

group is able to participate in discussion and benefit from the reification.  

Taken together, both of these classrooms offered the affordances for me to easily observe students 

working within and an environment designed to occasion flow. The teachers were both managing 

engagement through the timely use of hints and extensions to maintain a balance between the 

challenge of an activity and the ability of each group. The student work was visible and there was 

enough autonomy afforded in the room that the students could take some kind of action when they 

found themselves in a situation where challenge and ability may be out of balance.  

Data for this research were collected in Cameron's grade 12 Pre-calculus class and Charmaine's grade 

11 pre-calculus class. Each class was visited five times over a seven week period in the middle of the 

second semester.  



 

The data 

Because the collection of video data creates such a narrow field of view, I instead used a variant of 

noticing (van Es, 2011) to scan the classrooms. Csíkszentmihályi (1990) characterizes flow as 

enjoyment, fluidity, and focus. These characteristics manifest themselves in the physicality of 

individuals and groups in flow and allows for the easy identification of flow and the absence of flow 

in a classroom. As per my research question, what I was looking for, then, were moments where an 

individual or a group was out of flow and where that individual or group was left to cope with this on 

their own. Once such a moment was identified I would focus in on that individual, or that group, 

taking detailed field notes and occasional photographs. When these moment seemed to wane I would 

conduct short, in-the-moment, interviews. 

Csíkszentmihályi's theory of flow (1990) predicts that lack of flow is the result of a group of students' 

abilities exceeding the challenge of the task (see fig. 3) or the challenge of the task exceeding the 

abilities of a group (see fig. 4), resulting in the groups quitting, respectively, out of boredom or 

frustration. As such, flow served as the initial framework for analyzing the data. As it turns out, the 

theory was far from adequate for explaining all of the students' actions and reaction in the data. As 

such, I also used analytic deduction (Patton, 2002) to look more closely at students' actions and to 

group these actions into themes.   

Results and analysis 

From this analysis a series of six nuanced themes emerged, each marked by a different type of student 

action or reaction to being out of flow. In what follows I present cases exemplifying each of these 

themes as well as some general comments about similar cases.  

When skills exceed challenge: The case of quitting  

As mentioned, Csíkszentmihályi (1990) found that if a person's ability exceeded the challenge they 

are apt to become bored, and then quit out of this boredom. I found evidence of such behavior in 

Cameron's and Charmaine's classrooms.   

Researcher I notice you are not working on the assigned questions. What's up? 

Mikaela We did some of them.  

Researcher I saw that. I noticed that you did two very quickly. Took a little break from the math 

and then went back and did another one. I was sort of waiting to see if you would 

get back to it.  

Allison This stuff is easy. I'll finish it at home on my own.  

Mikaela It's actually too easy. I don't even think I will bother finishing it at home.  

Allison … Yeah. I probably won't either.   

During the ten lessons I observed in Cameron's and Charmaine's classes I only managed to capture 

three other instances that I would say fall into the same category – quitting because the students were 

bored by seemingly too easy a collection of tasks.  

When skills exceed challenge: The case of seeking increased challenge  

Quitting out of boredom was not the only reaction to a situation where the skills of a group or of an 

individual exceeded the challenge of the task at hand. Some students opted, instead, to autonomously 



 

seek increased challenge. To exemplify this I look at a case from Cameron's class captured while 

students were working at the whiteboards in randomly assigned groups. During this part of the lesson 

Cameron moved around the room helping groups that were stuck (or had made a mistake) and giving 

more challenging questions to groups that were done. Before a group would get his help or the next 

question, however, he engaged the group in conversation to assess where the group's thinking was. 

This took time and sometimes groups that were done were left waiting.  

Researcher So, I notice that you guys are now on question 5 and your teacher has not visited 

you once. How are you getting your questions? 

Ameer We just look around and see what the next question is and do that one.  

Researcher What would your teacher say about that? 

Carl Um … he'd probably want to check to see that we got the previous one before giving 

us the next one … 

Ameer … but we are doing that. 

Researcher Why don't you just wait for your teacher to get here and give you the next question? 

Carl We're on a roll. And sometimes we have to wait a long time.   

Researcher Do you realize that you are doing the problems out of sequence from the order your 

teacher is giving them? 

Colton Oh really? That’s probably why some were so hard.  

This was a very common reaction in both Cameron's and Charmaine's classrooms. Rather than wait 

for their teacher to give them the next questions groups were opting, instead, to move forward on 

their own by pulling the next question from groups that were ahead of them. This was facilitated by 

the visible nature of the work on the vertical surfaces.  

When skills exceed challenge: The case of tolerance in the face of the mundane 

An altogether different reaction to being tasked with doing easy and redundant questions is to just do 

them – without quitting and without seeking to increase the challenge. I observed such behavior in 

the case of Jennifer, who always worked at her desk on her own at the end of Charmaine's lessons.   

Researcher I have been watching you while I have been here. I notice that you always do a lot 

of questions. Can you tell me about that?  

Jennifer Yeah. I like to do a lot of questions. It's good practice. It's how I learn. 

Researcher So, are you looking for harder and harder questions to challenge yourself? 

Jennifer Not really. I just do all of them. So, if the teacher asks us to do 4a, I will also do 

4bc and d and so on.  

Researcher Do you find them easy?  

Jennifer Yeah. 

Researcher How many do you do? 

Jennifer I just work the whole time at the end of class and then for maybe an hour at home.  

I came to call Jennifer's behavior tolerance for the mundane. In my time in Cameron's and 

Charmaine's classes I saw two other girls who I suspect were very much like Jennifer in their approach 



 

to learning and their tolerance for the mundane. These girls also worked alone in their desks in the 

last part of every lesson.  

When challenge exceeds skills: The case of quitting 

Csíkszentmihályi's framework (1990) predicts that sometimes students quit out of frustration. I found 

three cases of this in Cameron's classroom – all near the beginning of class.  

Researcher I have been watching your group for a bit and I notice that you aren’t working? 

Robert We gave up. This question is stupid.  

Katrina We tried, but we weren't getting anywhere. So we gave up. 

Researcher What do you think the problem is? 

Shannon This question is too hard.  

Robert … too hard. We don't get it.  

Katrina And the teacher hasn’t come over to help us.  

Researcher What kind of help are you looking for? 

Shannon You know, a hint or something.  

Researcher What would a hint do for you? 

Shannon Help us understand the question.  

Katrina … or remind us a little bit about how to do it.  

For this group the question they have been asked to solve exceeded their abilities and without any 

help from the teacher they gave up. Interestingly, the help they were seeking was not only to reduce 

the complexity of the task (understand the question), but also to increase their ability (remind us of 

what we have done in the past). In the ten lessons I observed, I only managed to capture four instances 

of a group giving up out of frustration.  

When challenge exceeds skills: The case of seeking help 

A much more common reaction to facing too great a challenge was for students to seek help. What 

this looked like, however, was much more subtle than simply asking the teacher for help.  

Researcher I notice that you have been moving about the room a bit. Why? 

Michael  Oh. We were just stuck so we went over there to get some ideas.  

Researcher Did it help? 

Michael  Oh yeah. We got it now.  

This sort of behavior was endemic in both classrooms with too many occurrences for me to track. 

The vertical and visible work spaces facilitated the ability for groups to check their answers and get 

ideas. The random groups created the porosity (Liljedahl, 2014) that made the more active 

interactions and movement of ideas possible.  

When challenge exceeds skills: The case of perseverance in the face of challenge 

But not all groups sought help when they were stuck.  

Researcher Question #5 was a tough one, huh? 

Oliver Yeah, that one took us a while.  



 

Connor In the end it wasn't that hard though. We were just missing something.  

Researcher Oh really. How did you figure it out?  

Connor We just kept at it and then we saw it.  

Researcher I noticed that your teacher came over to help. Did she help you? 

Oliver No, we wouldn't let her. We knew how to do it and we wanted to figure it out 

ourselves.  

 

In all the lessons I observed I captured four instances where a group or an individual opted to not seek 

help, either from the teacher or the groups around them. I called this behavior perseverance in the 

face of challenge.  

Discussion 

The aforementioned six nuanced student reactions to being out of flow show that for different 

individuals and different groups the transitions from flow to boredom or frustration has variable 

immediacy. Some groups became bored or frustrated and quit.  For these groups, Csíkszentmihályi's 

(1990) original representation of flow holds (see fig. 1).  

For others, this transition was not as abrupt. Jennifer showed a great tolerance for the mundane as she 

spent long periods of time within a space where her ability far exceeded the challenge posed by the 

tasks she was working on. Likewise, Connor and Oliver demonstrating great perseverance while 

working on a task that presented too great a challenge for her ability. Taken together, these two cases, 

and the cases like them, indicate that for some students the boundary between flow and boredom and 

frustration is not as thin as Csíkszentmihályi's (1990) theory of flow would imply and is buffered by 

tolerance and perseverance (see fig. 5).  

Other students used this buffer to avoid frustration or boredom as they sought to correct the imbalance 

between skill and challenge that they were experiencing. Carl, Ameer, and Colton used the groups 

around them to check their own answers and to seek out more challenging tasks when they were done. 

Similarly, Michael's group used the groups around them to access help when they were stuck. These 

groups, and the groups and individuals like them, managed to autonomously maintain the balance 

between challenge and ability. When their ability was too great they autonomously sought to increase 

the challenge (see fig. 6) and when the challenge was becoming too great they autonomously sought 

to increase their ability or decrease the challenge (see fig. 7). The highly visible and collaborative 

environments created by the use of vertical non-permanent surfaces and visibly random groups were 

shown by the data to be instrumental in facilitating these autonomous actions. 

  



 

 

   

Fig. 5: Modified representation 

of flow 

Fig. 6: Reaction to too great an 

ability 

Fig. 7: Reaction to too great a 

challenge 
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There is not much research on emotions of mathematics teachers other than the wide research on 

mathematics anxiety of mathematics teachers and pre-service teachers in elementary school. With 

the goal of beginning to fill this gap, this research pursues the aim of identifying the daily emotions 

in a classroom of a high school mathematics teacher. Data was gathered through audiotaped self-

reports where the participant reported his emotional experiences during 13 mathematics classes. The 

data analysis show that the participant experienced diverse emotions such as satisfaction, 

disappointment, appreciation, happy-for, sorry-for, reproach and anger. The triggering situations 

for the cognitive appraisals are about the achievement of the planned activities for the lessons. The 

belief of the participant on the “good attitude” of students – perceived as students’ “collaboration”, 

“independence” and “participation”– supports the appraisals. 

Keywords: Teachers’ emotions, cognitive appraisal, self-reports of experience. 

Teachers’ emotions in mathematics education 

In the field of mathematics education, most of the research on teachers’ emotions focuses on 

mathematics pre-service elementary teachers. There is also some research on elementary teachers. 

Mathematics anxiety—“a set of negative emotions about a state of discomfort, occurring in response 

to situations involving mathematical tasks” (Bekdemir, 2010) — is the most widely emotional 

phenomenon studied in pre-service elementary school (e.g. Bursal & Paznokas, 2006; Di Martino, 

Coppola, Mollo, Pacelli, & Sabena, 2013; Di Martino & Sabena, 2011; Hodgen & Askew, 2007). 

These investigations show that “mathematics anxiety is a common phenomenon among pre-service 

elementary school teachers in many countries and it can seriously interfere with students becoming 

good mathematics teachers” (Hannula, Liljedahl, Kaasila, & Rösken, 2007, p. 153). For example, , 

Harper and Daane (1998) found that mathematics anxiety persists in prospective elementary school 

teachers, enrolled in a U.S. midsized south-eastern university, and that often, the anxiety was 

originated in elementary school. Causes for these students’ mathematics anxiety included an emphasis 

on right answers and the right method, fear of making mistakes, insufficient time, word problems and 

problem solving. 

Some other research focused in the study of specific emotions in elementary school teachers (Bibby, 

2002; Di Martino et al., 2013). For example, Bibby (2002) found the presence of shame [a reaction 

to other people’s criticisms and an emotional response to knowing and doing mathematics] related 

with epistemological beliefs about the nature of mathematics: absolutist/product conceptions of 

mathematics provide ideal opportunities for experiencing shame. Bibby found statements relating to 

the fear or anticipation of judgement against those standards they felt they had to measure up: “These 



comments feature notions of trust, lack of trust and self-doubt, doubt, all of which indicate a fear of 

shame: a fear of (imagined or real) criticism, ridicule or rejection by others” (Bibby, 2002, p. 710)..  

The research of teachers’ emotions in mathematics education outlined here shows the strong presence 

of negative affect towards mathematics on elementary education teachers. There is a consensus 

among researchers that the main cause of all negative emotions is that most elementary and pre-

service elementary teachers are not specialists in mathematics and often had negative experiences 

with mathematics as mathematics students in elementary or middle school (Coppola, Martino, Pacelli, 

& Sabena, 2012; Di Martino et al., 2013; Hodgen & Askew, 2007; Philipp, 2007). The appearance of 

mathematics anxiety in the first years of school is linked with the way in which mathematics is 

presented to pupils, with the teacher playing a central. Under these negative affective circumstances 

it is generally recognized that changes in mathematics education is a difficult and sometimes painful 

process (Hannula et al., 2007; Hodgen & Askew, 2007).  

The previous review shows that most of what we know on teachers’ emotions from different scholar 

levels is almost limited to mathematics anxiety. The intention of this research is to start filling these 

gaps by following the aim to identify the daily emotions experimented by a high school mathematics 

teacher in classroom. 

Theory of cognitive structure of emotions 

The theory of cognitive structure of emotions Ortony, Clore, & Collins, 1988)—known as “OCC 

theory” for the initials of the surnames of the authors—is an appraisal theory structured as a three-

branch typology, corresponding to three kinds of stimuli: consequences of events, actions of agents, 

and aspects of objects. Each kind of stimulus is appraised with respect to one central criterion, called 

the central appraisal variable. An individual judges: (1) the desirability of an event, that is, the 

congruence of its consequences with the individual’s goals (an event is pleasant if it helps the 

individual to reach his goal, and unpleasant if it prevents him from achieving his goal), (2) the 

approbation of an action, that is, its conformity to norms and standards, and (3) the attraction of an 

object, that is, the correspondence of its aspects with the individual’s likes. In terms of the distinction 

between reactions to events, agents, and objects, we have three basic classes of emotions: “being 

pleased vs. displeased (reaction to events), approving vs. disapproving (reactions to agents) and liking 

vs. disliking (reactions to objects)” (Ortony, Clore, & Collins, 1988). 

OCC theory describes a hierarchy that classifies 22 emotion types. The hierarchy contains three 

branches, namely emotions concerning consequences of events, actions of agents, and aspects of 

objects. Additionally, some branches combine to form a group of compound emotions, namely 

emotions concerning consequences of events caused by actions of agents. OCC theory provides 

specifications for each emotion type with three elements: (1) The type specification provides, in a 

concise sentence, the situations or events that elicit an emotion of the type in question, (2) a list of 

tokens is provided, showing which emotion words can be classified as belonging to the emotion type 

in question.  

For example, ‘frighten’, ‘scared’, and ‘terrified’ are all types of fear (of course, ‘fear’ is also a type 

of fear): (1) TYPE SPECIFICATION: (displeased about) the prospect of an undesirable event and 

(2) TOKENS: apprehensive, anxious, cowering, dread, fear, fright, nervous, petrified, scared, 



terrified, timid, worried, etc. In Table 1 we summarized the type specifications of all 22 emotion 

types. 

Appraisals 

in terms of 

Group of 

emotions 

Types of emotions (sample name) 

GOALS 

Fortunes-

of-others 

Pleased about an event desirable for someone else (happy-for) 

Pleased about an event undesirable for someone else (gloating) 

Displeased about an event desirable for someone else (resentment, 

envy) 

Displeased about an event undesirable for someone else (sorry-for) 

Prospect-

based 

Pleased about the prospect of a desirable event (hope) 

Pleased about the confirmation of the prospect of a desirable event 

(satisfaction, joy) 

Pleased about the disconfirmation of the prospect of an undesirable 

event (relief)  

Displeased about the disconfirmation of the prospect of a desirable 

event (disappointment, frustration) 

Displeased about the prospect of an undesirable event (fear, worry) 

Displeased about the confirmation of the prospect of an undesirable 

event (fears-confirmed) 

NORMS Attribution 

Approving of one’s own praiseworthy action (pride) 

Approving of someone else’s praiseworthy action (appreciation, 

admiration) 

Disapproving of one’s own blameworthy action (self-reproach, shame) 

Disapproving of someone else’s blameworthy action (reproach, 

rejection) 

NORMA/ 

ATTITUDE 

Well-

being/ 

Attribution 

Approving of someone else’s praiseworthy action and pleased about a 

desirable event (gratitude=admiration + joy) 

Disapproving of someone else’s blameworthy action and displeased 

about an undesirable event (anger = reproach + distress) 

Approving of one’s own praiseworthy action and pleased about a 

desirable event (gratification=pride+ joy) 

Disapproving of one’s own blameworthy action and displeased about 

an undesirable event (remorse = shame + distress ) 

Table 1: Emotion types according to the OCC theory (an extract) 

Research question 

Considering the above theoretical considerations, in this research we have chosen to identify the 

emotional experiences (the individuals’ explicit positive or negative appraisals of the triggering 

situations) of a high school mathematics teacher. Thus, the research question arising from the aim of 

our investigation —identify the daily emotions experimented by a high school mathematics teacher 

in classroom— is: What are the daily individual emotional experiences of a high school mathematics 

teacher in classroom? 



Methodology 

Participant and Context 

Christian, our participant and fourth author of this paper, was 35 years old by the time of the data 

gathering. He studied Communication and Electronic Engineering and has a master degree in 

mathematics education. From 2010, he ventures into mathematics teaching gaining 5 years of 

experience in teaching at the university and at a technical high school. High school where Cristian 

works is part of the national high school Mexican system, which has a dual system: it prepares 

students for university studies but is also engaged with those who need to enter the labour market and 

require a technical certificate.  

Data gathering 

The source of data was the daily self-informs of Christian’s experiences in his high school Integral 

Calculus course. The diary methods “involve intensive, repeated self-reports that aim to capture 

events, reflections, moods, pains, or interactions near the time they occur” (Iida, Shrout, Laurenceau, 

& Bolger, 2012, p. 277). Christian’s self-reports of experiences in class followed an event-based 

protocol (Iida et al., 2012). The focal experience of the participant that triggered the data collection 

is the emotional experience of teaching a mathematics class. After each of the 13 lessons (from 

October 14 to December 4, 2015) of his Integral Calculus course Christian send an audio with a 

smartphone to the second author of this paper via WhatsApp™  with his answers to the questions: (1) 

Name and date of the report, (2) What course does this report attend?, (3) What mathematics topics 

did you work at class today?, (4) How did you design your class?, (5) How were your students 

intended to learn?, (6) What emotions and feelings did you experiment today at class?, (7) Tell us 

about the positive experiences you lived today at mathematics class, why were they positive 

experiences? and (8) Tell us about the negative experiences you lived today at mathematics class, 

why were they negative experiences?  Questions 3, 4 and 5 were designed to understand Christian’s 

expectations and goals in each class. Questions 6, 7 and 8 were designed to know the experimented 

emotions of Christian in each class. The running time of the self-reports of Christian were among 

1:40 y 2:54 minutes. 

Data analysis  

The data was completely transcribed and repeatedly read for several times. Christian did not 

participate in the analysis of the data but agreed that the final report adjusted in general to his 

experience in class. He did not propose any significant change in the interpretation made by the first 

three authors but made some observations on the interpretations of some fragments of his self-reports 

and interviews. He also suggested new elements to detail the context of the research. 

Following OCC theory, we considered two aspects to identify the type of emotion: (1) Concise 

phrases that express the triggering situations of the emotional experiences. We highlight them with 

italic bold, and (2) emotional words or phrases that express the emotional experience from the 

participants words or phrases that indicate the appraisal of the triggering situations. We highlight 

these words or phrases in italics. Rn (n from 1 to 13) denotes the number of the participant’s report. 

For the analysis we only consider excerpts that express emotional experiences; this means that it must 

contain at least one explicit positive or negative appraisal of the triggering situation. We interpret the 



positive or negative valence according to the question reported by Christian (the valence is negative 

if it corresponds to questions 8 and it is positive for question 7).  For example, in:  

Christian-R2: [The emotions and feelings I experimented in class were] Being happy because the 

students managed to structure answers to different doubts of their classmates {satisfaction-

appreciation}. [The positive experience I lived was] the interest of the students in helping their 

classmates {appreciation} [I consider this experience as positive] because of the reflected attitude 

during the class, it was to help them {happy for-appreciation}. 

We interpret “the students managed to solve doubts” as a triggering situation (‘the students managed 

to solve doubts’) of a satisfaction type of emotion (Pleased about the confirmation of the prospect of 

a desirable event).  We interpret “the interest of the students to help their classmates” as a triggering 

situation (‘the students help their classmates’) of an appreciation type of emotion (Approving of 

someone else’s praiseworthy action). Sometimes in the same emotional experience we identify two 

types of trigger situations and two types of emotions. In “being happy because the students managed 

to structure answers to different doubts of their classmates” we interpret as a triggering situation (‘the 

students managed to solve doubts’) of a satisfaction type of emotion and a triggering situation (‘the 

students help their classmates’) of an appreciation type of emotion.  

We build a table with all emotional experiences for each report. The second and third author of this 

paper identified the triggering situations and the types of emotions for each self-report on separate 

analysis but using the same table based on the 22 types of emotions proposed the theory of cognitive 

structure of emotions. They worked the consensus of the triggering situations and the types of 

emotions with the participation of the first author of this paper. Table 2 shows an example of these 

analyses. 

Emotional experience Type of emotion 
Triggering 

situation 

Being happy because the students managed to structure 

answers to different doubts of their classmates 

Satisfaction 

 

The students 

managed to 

solve doubts 

Appreciation 

The students 

help their 

classmates 

[Positive experience] the interest of the students to help 

their classmates 
Appreciation 

The students 

help their 

classmates 

[Positive experience] because of the reflected attitude 

during the class, it was to help them 

Happy for 

The students 

have a positive 

attitude in 

class 

Appreciation 
The students 

help each other 

[Happiness and joy]when I realize they answered the 

doubts 
Satisfaction 

The students 

solve their 

doubts 



[Happiness and joy] because of the participation and 

enthusiasm of the students 

Satisfaction 

The students 

participate in 

class 

Appreciation 

The students 

show 

enthusiasm in 

class 

[Positive experience]because of the interest showed by the 

students helping their classmates to solve their doubts, 

letting them to move on and understand the integration 

techniques 

Satisfaction/ 
Students solve 

doubts 

Appreciation 

Students help 

their 

classmates 

Happy for 

Students 

understood the 

integral 

techniques 

[What I learn in class today] I consider that the help 

received from their classmates, in the sense that they 

shared different knowledge about the integration 

technique studied and this allowed their classmates to 

advance on the topics of the class. 

Appreciation 
Students help 

each other 

Happy for 

Students make 

progress in the 

topics 

Table 2. Types of emotion and triggering situations of R2 (an extract) 

Results 

We identified 95 emotional experiences from 7 different types corresponding to 4 groups of emotions 

(Table 3). We found that Christian experimented emotions of satisfaction, disappointment, 

appreciation, happy-for, sorry-for, reproach and anger triggered by the cognitive appraisal of 6 types 

of triggering situations: (1) on the achievement of the planned activity, (2) on the students’ 

participation, (3) on the students’ collaboration, (4) on the students’ attitude, (5) on the students’ 

independence, and (6) on the students’ learning and understanding. During the data analysis, we 

identified the importance of Christian’s the notion of “students’ (good) attitude”. We asked Christian 

specifically about his. We found that the supports the appraisals is the his belief about the “good 

attitude” of students— perceived by Christian as students’ “collaboration”, “independence” and 

“participation”— is a necessary condition to achieve participant’s goals in class and for the students 

to learn. 

Christian’s most common experimented emotions were satisfaction (F=36), appreciation (F=26) and 

disappointment (F=16). These emotions represent 82% of his emotional experiences. More than half 

of the emotional experiences are Satisfaction (pleased about the confirmation of the prospect of a 

desirable event) and disappointment (displeased about the disconfirmation of the prospect of a 

desirable event). This means that they are the result of the appraisal of situations in terms of the goals 

Christian expressed for his lessons. On the other, appreciation (approving of someone else’s 

praiseworthy action) represent more than a fourth of the emotional experiences. This highlights the 



important role Christian attributes to his students’ behavior (“good attitude”, “participation” and 

“independence”) to achieve their goals. 

Types of emotion Total F Triggering situations 

Satisfaction 36 21 Students solve exercises 

6  Students participate in class 

4 Students solve doubts 

2 Students propose methods 

2 Students understand 

1 Students must be independent while solving 

Appreciation 26 10 Students help their classmates 

6 Students participate in class 

5 Students are independent in solving processes 

4 Students must have good attitude 

1 Students solve doubts 

Disappointment 16 8 Students do not do the planned activity. 

3 Students cannot enter the correct results in the platform 

3  Students do not participate in class. 

2 Students do not understand. 

Note: F denotes the amount of times we identified the triggering situation. 

Table 3. Types of emotion and triggering situation (the most frequent) 

Discussion 

Table 4 presents the types of triggering situations. As we said before, Christian considers the “good 

attitude” of a student in terms of “independence”, “participation” and “collaboration”. Therefore, we 

include all the triggering situations expressed in these terms in only one type of triggering situation 

named “students’ attitude”. In this way, we obtained that most of the triggering situations (95%) are 

divided in two types: (1) Students’ attitude (52%) and (2) achievement of the planned activity (43%). 

This means that the success of an activity depends on his students’ attitude above all. 

Our results are consistent with those investigations that focused on teachers’ emotions based on 

appraisal theories (e.g. Frenzel, 2014; Schutz, 2014). We believe that this consistency results from 

the hypothesis that emotions are the result of cognitive appraisals about what happens in class, 

realized in terms of goals. Our research shows that the appraisal of students’ behavior, conceptualized 

as “good attitude”, is the main triggering situation of Christian’s emotional experiences. This is also 

highlighted in the Frenzel’s (2014) “reciprocal model on causes and effects of teacher emotions”. We 

propose the thesis that the emotional experiences of other mathematics teachers could mostly be 

triggered by the mathematics behavior of their students. 
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The suitability of rich learning tasks from a pupil perspective 
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The construction of tasks is important to challenge pupils, but the exploration of pupils’ perceptions 

connected to their work with tasks, is rare. This paper presents the results of a study using a tool 

aimed at measuring pupils’ perception of joy and interest connected to ‘rich learning tasks’ by 

comparing the views of mathematically promising pupils and others. Two tasks were pre- and post-

evaluated, the first by 139 and the second by 106 pupils from grade 4-9. The results indicate that the 

tool is suited for the exploration of pupils’ views, especially as it can be deduced from the comparison 

that mathematically promising pupils perceived both tasks more positively than the other pupils, and 

that the non-identified pupils became more positive after working especially with one of the tasks.  

Keywords: Mathematically gifted, mathematically promising, rich tasks, pupils’ perception. 

Introduction 

One of the main goals in research on mathematical giftedness is to identify and foster mathematically 

promising pupils (Käpnick & Benölken, 2015). The construction of mathematical tasks is seen to be 

important for both purposes (Fuchs & Käpnick, 2009; Nolte, 2012). It is a consensus that tasks 

suitable to identify and foster mathematically promising pupils should, for example, be challenging, 

open-ended, encourage creativity and engagement, and promote enjoyment (Fuchs & Käpnick, 2009; 

Nolte, 2012; Sheffield, 2003). In Sweden there is no differentiation among students, every classroom 

is diverse and includes pupils of all abilities. Therefore, it is interesting to explore how the work with 

specific tasks are perceived by all pupils in the classroom. Of special interest is the perception of the 

mathematical promising pupils since in a diverse classroom there is a risk that they not are given 

opportunities to be challenged (Leikin & Stanger, 2011). A task suitable to implement in the whole 

class should offer a challenge to pupils at every level, which for example rich learning task are said 

to do (Sheffield, 2003). However, it is rare that the assessment process of the tasks appropriateness is 

explored, especially from the pupils’ perspective. This leads to the question how tasks aimed to 

support mathematically promising pupils can be evaluated by the pupils. Against the background of 

this question this paper presents a study aiming to explore a tool in development that investigates 

pupils’ perception of joy and interest connected to specific tasks. 

This paper gives a theoretical background on tasks suitable to challenge mathematical promising 

pupils and other pupils. Further, the aspect of perceived joy and interest for pupils connected to work 

on mathematics is elaborated. The study and its results are presented and thereafter the tool used and 

the interpretation of the results are discussed. 

Theoretical background 

Pupils in a diverse classroom naturally have different levels of knowledge. Engström and Magne 

(2006) showed that in Swedish classrooms the mathematical knowledge of the 15 percentage lowest 

achieving pupils in grade nine are on the level of a grade four pupil. Also in a mathematical classroom 

there is a mix of pupils, some are highly motivated while others lack motivation, some are high 

achieving and others are low achieving (Boaler, 2006). All pupils should be given opportunities to 

learn and develop, and on task level there are ways to differentiate education to meet and challenge 



all pupils. One way is for example through the use of rich learning tasks, which also fulfills the criteria 

for tasks seen to be suitable to identify and foster mathematically promising pupils (Sheffield, 2003). 

Because of the Swedish context with the diverse classroom the aim is to meet and develop all pupils, 

however, the mathematically promising pupils are of particular interest in this study. Therefore, it is 

important to elaborate on what is important in a task for a mathematically promising pupil as well as 

for pupils in general. 

First, considering the mathematically promising, it is important to give them challenging tasks to help 

them develop according their mathematical potential (e.g. Benölken, 2015; Koshy, Ernest, & Casey, 

2009; Nolte, 2012). Open-ended tasks, like rich learning tasks, are examples of tasks known to be 

challenging for mathematically promising pupils (Nolte, 2012; Sheffield, 2003). In addition, the joy 

factor is stated as important in the development process for the mathematically promising (Fuchs & 

Käpnick, 2009). The importance of joy in working with mathematics is further consolidated by being 

strived for in activities aiming to support and foster the mathematically promising, such as for 

example math clubs (Benölken, 2015).  

Second, considering pupils in general, Taflin (2007) states that it is important that pupils perceive the 

problem solving process of a task as positive, challenging, and that it stimulates their creativity. Taflin 

actually writes that if they do not perceive this, then it is better not to implement the tasks. As to the 

perspective of joy, Mellroth (2014) showed that tasks aiming to evoke joy make some pupils achieve 

highly, even though they do not achieve highly on traditional mathematics tests. In addition, to further 

strengthen that pupils’ enjoyment in mathematics is important, Chen and Stevenson (1995) showed 

that positive attitudes and interest are significantly related to mathematical achievement. And the 

results of Skaalvik, Federici, and Klassen (2015) show that pupils’ self-efficacy in mathematics is 

positively and strongly related to intrinsic motivation which they directly connected to pupils’ 

enjoyment when working with mathematics.  

Based on the theory it can be assumed that pupils’ perception of interest and their positive attitudes 

towards the task have effect on their motivation on working with the task. This is valid for both 

mathematically promising pupils and for others. Therefore, it is interesting and important to explore 

how pupils perceive working with specific tasks, especially by comparing promising and other pupils. 

A developed tool, easy to use, could help teachers choosing tasks that challenge and interest all pupils. 

Aim 

The aim of the presented study is to investigate how to identify mathematical tasks that can stimulate 

all pupils in a diverse classroom, including the mathematically promising. Utilizing a pupil 

perspective, which stresses the importance of pupil interest and joy when working with mathematics, 

the study provides a comparison of data from promising children and others. 

The study is conducted in Sweden within the frame of a professional development program on 

mathematical promise for seven in-service teachers, teaching mathematics for pupils from grade 4 to 

9 (Mellroth et al., 2016).  

Method 

Two tasks that fulfilled the criteria of rich learning tasks were implemented in seven classrooms, i.e. 

all pupils in “regular” classes worked with the tasks aiming to solve them. The pupils went in grade 



4 (age 10) to 9 (age 15), all grades covered. The tasks considered to be suitable to challenge all pupils, 

specifically mathematically promising, were chosen (Sheffield, 2003), see Figure 1 (Task 1) and 

Figure 2 (Task 2). In the first intervention Task 1 was implemented: 139 pupils responded on the 

evaluation of the task, among them 32 pupils were identified as mathematically promising1.  

 

Figure 1: Example from Task 1, named Where am I? (Sheffield, 2003). 

In the second intervention Task 2 was implemented: 106 pupils responded, among them were 20 

pupils identified as mathematically promising. All pupils did the interventions in the same order i.e. 

Task 1 first and Task 2 second. 

 

Figure 2: Example from Task 2, named Field of dreams (Sheffield, 2003); The number in a circle, 

denotes the total number of students in all adjoining fields. 

The pupils involved in the two interventions all came from the same seven classes, 44 pupils did Task 

1 but not Task 2 and 11 pupils did Task 2 but not Task 1. Therefore 95 pupils participated in both 

interventions, 20 of those were identified as mathematically promising. Since the suitability of the 

tasks in the classroom was of interest, evaluations from all participating pupils were used in the 

analysis for each intervention. 

Within the frame of the professional development program a tool how to measure pupils’ perceptions 

on interest and joy connected to working with specific tasks was developed. In the development 

process experts on motivation and attitudes in mathematics education, and in educational psychology 

were consulted. The tool resulted in a pre-evaluation that utilized an emoji-note, Figure 3, and a post-

evaluation, in which the emojis were changed to words, Figure 4. The reason for the change from 

emojis to words was to decrease the risk that pupils would chose the same emoji twice due to the 

short time, the time of one lesson, between the pre- and post evaluation. 

                                                 

1 Selected through a synthesis of different tools, see Mellroth et al. (2016). 



To collect data each teacher presented a power point slide with a picture related to each task2 in their 

specific classes, without revealing the actual task. Before the task was handed out to the pupils, they 

were asked to mark how they felt about the task by choosing an emoji on a paper given to each one 

of them, see Figure 3. Thereafter the pupils were given time to work with the task. 

Your teacher has presented a mathematical problem. 

Which emoji best matches your feeling about this problem? 

 

 

Figure 3: Evaluation note before starting to work with the task, adapted from Mellroth et al. (2016). 

When the teacher ended the pupils work with the task, but before the task was discussed orally in the 

whole classroom, pupils were asked to evaluate the task again. This time by choosing words, see 

Figure 4. 

What words best describes how you felt about the task while working with it?  

 

Very interesting 

Interesting 

Neither or 

Uninteresting 

Very uninteresting 

Figure 4: Evaluation note after completing working with the task (Mellroth et al., 2016). 

Data from all classes were collected and summarized. For the summary process pupils identified by 

the teachers as mathematically promising were separated from the non-identified pupils. The 

evaluations, see Figure 3and Figure 4, were translated to numbers from 1 to 5, where 1 was the most 

positive evaluation and 5 the most negative. Thereafter, a descriptive analysis was conducted. For 

further details of the method see Mellroth et al. (2016). 

Results 

The results from each task are presented in Figure 5 and Figure 6: the graphs show the distribution of 

pupils’ perception of the task before they started to work on it. Each bar in the graph is also split to 

show pupils change in perception of the task after they completed working with it. For example, in 

the left-hand graph in Figure 5, the bar on number 2 shows that 12 pupils, identified as mathematical 

promising, chose the second most positive emoji before they started to work on Task 1. Further, the 

same bar shows that of those 12 pupils, five gave the task a more negative judgement, two gave it a 

more positive judgement and five still gave them the second most positive judgement after they 

completed the work with the task. 

                                                 

2 The process of choosing and analyzing the tasks are described in Mellroth et al. (2016) 



 

Figure 5: Pupils evaluation of Task 1, before starting their work on the task and after they completed 

their work (Figure adapted from Mellroth et al, 2016, p. 19). 

 

Figure 6: Pupils evaluation of Task 2 before starting their work on the task and after they completed 

their work (Figure adapted from Mellroth et al, 2016, p. 19). 

As both Figure 5 and Figure 6 show, through the concentration of the bars to the left, pupils identified 

as mathematically promising perceive both tasks more positively compared to the non-identified 

pupils before they started to work with the tasks. Considering Task 1, the two groups of pupils, 

identified and non-identified, did not differ much in how they changed their evaluation of the task 

after they completed it. 28 percent compared to 33 percent judged the task more positively after they 

completed it, 28 percent compared to 24 percent judged it more negatively, and 44 percent versus 43 

percent judged it the same as before. As to Task 2, and the results of comparing identified and non-

identified pupils and how they changed their evaluation of this task after they completed it show: 15 

percent compared to 33 percent gave a more positive judgement afterwards, 25 percent compared to 



19 percent gave the task a more negative judgement afterwards and 60 percent compared to 49 percent 

did not change their judgement of the task. 

Interpretations and discussion 

The aim of the study was to investigate how to identify mathematical tasks that can stimulate all 

pupils in a diverse classroom, including the mathematically promising. The two tasks used in the 

study were chosen because they were rich learning tasks and said to be suitable to challenge all pupils, 

including the mathematically promising (Sheffield, 2003). The positive evaluation given by 

especially the mathematically promising pupils were expected, therefore the results can be seen to 

verify the developed tool. 

For Task 1 the results show that the majority of the mathematically promising pupils, before starting 

to work on it, evaluated it as more positive: 63 percent choose the most, or the second most positive 

emoji, compared to 40 percent of the non-identified pupils. For Task 2 the comparable percentages 

are 85 and 63 respectively. This indicates that the mathematically promising, especially, perceived 

the tasks interesting and joyful already before they knew the associated question. The results show 

that Task 2 has this effect to a higher extend for all pupils, also the non-identified. The post evaluation 

of Task 2 shows a relatively large shift to a more positive judgement of the task for the non-identified 

pupils, Figure 6 right graph. Altogether the results indicate that considering pupils’ perception of joy 

and interest, Task 2 is suitable for all pupils in the diverse classroom, including mathematically 

promising pupils.  

The results also indicate that Task 1 is not as suitable for all pupils. However, even if Task 1 is not as 

good as Task 2 according to the results, the mathematical promising pupils perceived it relatively 

positively before starting to work on it. In addition, just as many of them judged the task more 

negatively as those who judged it more positively afterwards. Also slightly more pupils of the non-

identified judged it more positively after the completed work compared to the number that judged it 

more negatively. Therefore, Task 1 might also be a suitable task in a diverse classroom even if it is 

not as good as Task 2. 

According to the chosen frame for this study, tasks challenging and stimulating for mathematically 

promising pupils lead to that they feel joy and develop learning (Fuchs & Käpnick, 2009; Nolte, 2012; 

Sheffield, 2003). The identified pupils positive evaluation of the tasks, especially Task 2, can be a 

sign of that they felt the tasks challenging and stimulating. The results for the promising pupils can 

also be interpreted as an indication of that the developed tool fulfills its purpose to measure pupils 

joy and interest in a rich learning task. Furthermore, it is indicated that the tool can grade the 

suitability of different tasks, concerning joy and interest, in this case Task 2 is perceived slightly more 

positive than Task 1.  

It has been found that teachers rarely provide mathematically promising pupils with learning 

opportunities that benefit them in the diverse classroom (Leikin & Stanger, 2011), and also that 

positive attitudes towards working with mathematics make pupils achieve better (Chen & Stevenson, 

1995). Based on this, the results show that the tasks might provide mathematical learning 

opportunities for all kind of pupils. Further development and verification of this tool can provide 

teachers with a simple way to find tasks that provide learning opportunities for all pupils in the diverse 

classroom, also for the mathematical promising. 



Even if the simple tool has proven its use in principle, there are, of course, several limitations in this 

study, the investigation is simple and the tool used is not statistically verified. Nor does the 

investigation consider in depth how joy and interest is perceived by the pupils. In this study, pupils’ 

motivation to work on a task is assumed to be connected to the perceived joy and interest. The 

teachers’ evaluation of how the pupils worked with the implemented tasks is another important aspect, 

which this paper does not address. Within the frame of the professional development program the 

teachers observed and interviewed some pupils connected to their work with the investigated tasks; 

inclusion of this data would have strengthened the results (Mellroth et al., 2016). Also, to be able to 

compare different groups of pupils like for example mathematically promising and others (non-

identified), teachers need knowledge on how to identify the different groups. In this study the teachers 

who collected the data participated in a professional development program on mathematical promise, 

their knowledge on how to identify those pupils can be considered as relatively deep. But it is needed 

to highlight this for someone who wants to repeat the study.  

If further research is done to develop and validate the tool used here, it could provide in-service 

teachers with an easy and quick way to evaluate the suitability of tasks from a pupil’s perspective. In 

turn this might result in mathematically promising pupils being presented with tasks that help them 

to develop according to their potential. In addition, complex single-case studies might explore specific 

aspects of tasks that are assessed highly by the pupils applying the tool presented in this study. 
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This study investigates grade 10-12 mathematics teachers’ beliefs about their roles as mathematics 

teachers through metaphors. These mathematics teachers’ metaphors were analysed using the 

categorization developed in the context of NorBa-TM project. Most of these mathematics teachers 

described their teaching role as didactics experts. A closer investigation of these mathematics 

teachers’ metaphors and their teaching experience revealed some variation although not 

statistically significant. 
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Introduction 

The study of mathematics teachers’ beliefs and their influence on their teaching practices has gained 

considerable research attention.  Research on teachers’ thinking reveals that teachers hold coherent 

educational beliefs that shape their teaching practices (Handal, 2003; Thompson, 1992; Zhang & 

Morselli, 2016).  

Metaphors offer insights into beliefs that are not obviously or consciously held (Oksanen & 

Hannula, 2012). A teachers’ creation of a metaphor could be the result of his/her attempt to 

conceptualize his/her teaching. As Martinez, Sauleda and Huber (2001) state there is a need for a 

“shared system of interpretation and classification” of the metaphors teachers and prospective 

teachers hold, in order to communicate these metaphors and thus to develop them further. 

Recent studies in mathematics education (Haser, Aslan & Celikdemir, 2015; Oksanen & Hannula, 

2012; Oksanen, Portaankorva-Koivisto & Hannula, 2014) have used the extended model of 

Beijaard, Verloop and Vermunt (2000) to investigate pre-service and in-service mathematics 

teachers’ (grades 7-9) beliefs as expressed through their metaphors.  The present study aims to 

explore whether the extended model suggested by Löfström et al. (2010) can be used to describe 

and categorize Cypriot mathematics teachers’ beliefs expressed through metaphors.  

Theoretical framework 

Mathematics teachers’ beliefs 

Teachers’ mathematical beliefs refer to those belief systems that teachers hold regarding the 

teaching and learning of mathematics (Handal, 2003). These beliefs seem to be derived from 

personal experience, experience with schooling and instruction, and experience with formal 

knowledge (Zhang & Morselli, 2016).  

Studies have shown that each teacher holds a specific belief system which consists of a range of 

beliefs about teachers, learners, teaching, learning, school settings, resources, knowledge and 



curriculum. The importance of them is that they act as a filter through which teachers make their 

decisions and they do not rely solely on their knowledge about pedagogy and curriculum (Handal, 

2003). 

Beliefs and metaphors 

An important trend on research regarding teachers’ mathematical beliefs is the issue of teacher 

belief change (Zhang & Morselli, 2016). Researchers suggested a variety of methods and activities 

in order to investigate teachers’ beliefs and also to support teachers reflect upon their experiences. 

One efficient way is through metaphors. Cooney et al. (1998) found that reflection played a 

significant role in prospective secondary teachers’ growth. Researchers aiming to capture the 

meaning teachers ascribed to their educational experience, assessed preservice teachers’ beliefs by 

collecting multiple data, including teachers’ choice and responses to metaphors (e.g. a mathematics 

teacher is like an entertainer, a doctor, a gardener, a coach etc.). 

Metaphors 

Metaphors provide a unique way to represent the world by helping people frame the meaning of 

their experiences (Kasten, 1997; Zhao, Coombs & Zhou, 2010). As Martinez et al. (2001) state, 

metaphors are not just “figures of speech” but compose an important mechanism of the mind. The 

word “metaphor" is derived from the Greek word 'metaphora' (transfer) (Kasten, 1997). Metaphors 

refer to the understanding of one kind of object or experience in terms of a different kind of object 

or experience which is more familiar, concrete or visible (Lakoff & Johnson, 1980; Zhao, Coombs 

& Zhou, 2010).  As Lakoff and Johson (1980) emphasized, a major part of the human conceptual 

system is structured by metaphorical relations, which are rich and complex.  

In educational settings, educators are “unconsciously guided by images and metaphorical patterns of 

thought as recurring in the field, which can be seen as “archetypes” of professional knowledge” 

(Martinez et al., 2001, p. 966). In this way, metaphors reflect teachers’ understanding of teaching 

and learning which is difficult to access in a verbatim language providing a deeper and more 

profound insight into teachers’ beliefs and affect in relation to their teaching and the wider social 

context (Zhao, Coombs & Zhou, 2010).  Teachers’ beliefs about teaching and learning are 

associated with teaching roles and in this way metaphors are used to encapsulate the teaching roles 

(Kasten, 1997).  

Categories of metaphors 

Löfström et al. (2010) investigated university students’ metaphors in Estonia using the Beijaard et 

al. (2000) model of teacher identity. This initial model identifies three distinct knowledge bases of 

teacher knowledge reflecting teachers’ professional identity. According to the model, teachers’ 

professional identity can be described in terms of the teacher as a subject matter expert, the teacher 

as a pedagogical expert and the teacher as a didactics expert. The results of the study indicated that 

the model by Beijaard and colleagues could be expanded to include three additional categories. Self-

referential metaphors, contextual metaphors and hyprids. A description of each category of this 

extended model of teacher identity follows: (a) A teacher as a subject matter expert: The teacher has 

a deep and full understanding of his/her subject area and is a transmitter of knowledge to the 

students. (b) A teacher as a pedagogical expert: The teacher is someone who supports the child’s 

development as a human being.  Emphasis is on relationships, values, and the moral and emotional 



aspects of children development. (c) A teacher as a didactics expert: The teacher has knowledge 

about how to teach specific subject-related content so that students can capitalise on their learning. 

This kind of knowledge is referred to as knowledge of didactics, and it is discipline- and subject 

specific in nature. (d) Self-referential metaphors: Self-referential metaphors do not refer to acts 

central to teaching, students or classroom instruction. These metaphors focus on what teaching 

represents for the respondents as individuals. They describe features or characteristics of the 

teacher’s personality, with reference to the teacher’s characteristics (self-referential) without 

reference to the role or task of the teacher. One might say that these metaphors describe who the 

teacher is. (e) Contextual metaphors: These metaphors describe features or characteristics of the 

teacher’s work/work environment or in other ways refer to characteristics of the environment 

(contextual). (f) Hybrids may include elements of more than one of the above categories.  

The above categorization was employed in recent studies investigating teachers’ beliefs through 

metaphors. Specifically, Oksanen and Hannula (2013) used this categorization to investigate 70 

Finnish 7-9 grade mathematics teachers’ beliefs regarding teaching and teachers as expressed 

through metaphors. The results revealed that the teacher as a didactics expert was the most 

frequently used metaphor (49%). The results showed no statistical significant associations between 

metaphors and age or gender. In the study by Oksanen et al. (2014) including 72 Finish pre-service 

teachers and 65 Finish in-service (grade 7-9) mathematics teachers, the most common metaphor 

used by pre-service teachers was self-referential (46%) while the most frequently used metaphor by 

in-service teachers despite their teaching experience was the category didactics expert (51%). The 

researchers explained that as in-service teachers gain more teaching experience, this does not affect 

the metaphor they use to describe their mathematics teachers’ role. Finally, in the study by Haser et 

al. (2015) with 249 Turkish pre-service students, 29.6% used didactic expert metaphor while 26.5% 

used self-referential metaphors to express their beliefs. 

The purpose of the current study was to explore if the categories included in the model by Löfström 

et al. (2010) can be used to categorize upper secondary school teachers’ beliefs expressed through 

metaphors in Cyprus and whether the categories proposed in this model are exhaustive enough to 

cover all metaphors.  

Context  

According to the Annual Report of the Cyprus Ministry of Education and Culture (2014) the Public 

Secondary General Education in Cyprus is offered to students between the ages of 12 - 18, through 

two three-year levels - the Gymnasium (Grades 7-9) and the Lyceum (Eniaio Lykeio) (Grades 10-

12). The curriculum includes common core subjects, such as Modern Greek and Mathematics and 

Optional Subjects. Some subjects are interdisciplinary such as Health Education and Environmental 

Studies. In the academic year 2000 - 2001, the institution of the Eniaio Lykeio was introduced in all 

public secondary schools in Cyprus. All subjects in Grade 10 are common core subjects. In Grades 

11 and 12 students attend common core subjects and at the same time select optional subjects for 

systematic and in depth study. In Cyprus there are 38 Lycea and 7 joined Gymnasia and Lycea. 

Approximately 280 mathematics teachers work in Lycea. These mathematics teachers are also 

responsible for the preparation of students for their entrance exams in the public University of 

Cyprus and the public universities in Greece. 



Methodology 

Data collection, instruments and participants 

Data for this study was gathered from mathematics teachers working in Lyceum (Eniaio Lykeio) 

during the school year 2015-2016. The study was conducted in the context of the international 

comparative study New Open Research: Beliefs about Teaching Mathematics (NorBa-TM) 

investigating mathematics teachers’ beliefs in more than 15 countries.  

A questionnaire was developed and culturally adapted in the participating countries in the context of 

the project NorBA-TM. The questionnaire comprised of seven parts: one of them qualitative and six 

quantitative (86 items). The current study used data only from two parts of the aforementioned 

questionnaire: Part A, that collected data on teachers’ background variables (age, gender, education, 

teaching experience, teaching maths at Lyceum etc.) and Part H that collected data on metaphors. 

Specifically, Part H included two questions that invited the teachers to think and write down a 

metaphor characterising themselves as upper secondary level mathematics teachers and to explain 

their metaphor:   “As a mathematics teacher I am like……” and “My brief explanation of the 

metaphor is as follows:….”. We assume that the metaphor research is a useful social science 

methodology that can be used for generating authentic case study evidence in a certain field. 

Data collection took place in June 2015. First, informative letters along with the questionnaire and 

prepaid envelopes were sent to mathematics teachers in all Lyceums inviting them to participate in 

the study on a voluntary basis. Teachers who wished to participate in the study completed the 

questionnaire and returned it to the Cyprus Pedagogical Institute without disclosing their personal 

data (name and school). A total of 147 out of 280 (53%) mathematics teachers completed and 

returned the questionnaire. Out of these 147, only 49 (33%) completed Part H by presenting a 

metaphor and providing an explanation. 

Data analysis was performed using the categorization of Löfström et al. (2011) which was explained 

in detail in the manual developed for the NorBa project. The metaphor categorization was judged on 

a case-to-case basis using three independent raters whose coding were compared at the end. The 

raters compared their codes and discussed their differences. In the majority of cases, agreement 

between the three raters could be reached. In three cases though, consensus between raters was not 

reached and external researchers with experience in mathematics teachers’ metaphors were 

involved. 

Results 

Categorizing teachers’ metaphors  

The distribution of metaphors used by the Cyprus in-service mathematics teachers is presented in 

Table 1.  

Teacher as a 

subject matter 

expert 

Teacher as 

didactics 

expert 

Teacher as 

Pedagogical expert 

Self-

referential 

Contextual 

 

Hybrid 

 

8 (16,3%) 12 (24,5%) 6 (12,2%) 9 (18,4%) 7 (14,3%) 7(14,3%) 

Table 1: Distribution of metaphors used by Cypriot mathematics teachers 



Teacher as didactics expert was the most common metaphor used (24,5%).  Mathematics teachers in 

this category used metaphors like “a coach”, “a builder”, “an electrical wire”, “a gardener”, “a 

playmate, play-maker”. In their explanations, teachers emphasized their role as facilitators of 

students’ learning process, as mediators between students and the discovery of the new 

mathematical knowledge, as contributors to the construction of the new mathematical ideas. They 

referred to the communication of ideas and the team spirit, emphasizing a more constructivist view 

of learning and teaching. They made also reference to the active role of the students in the learning 

process.  

As a mathematics teacher I’m like a playmate in a team game that usually has the role of the 

play-maker. I’m trying to arrange the learning activities because we function as a team with a 

preset schedule of the game. I encourage initiatives but I control for the application of certain 

rules. 

Self-referential was the second most common metaphor used (18,4%). Mathematics teachers in this 

category used metaphors like “a painter”, “a musician”, “a hard-working bee”, “a perfect circle”, 

“an angle”. In their explanations these teachers refer to their individual characteristics and their 

personality traits without reference to the role or task of the teacher.   

As a mathematics teacher I’m like an angle. Sometimes acute, sometimes obtuse, sometimes 

convex and sometimes non-curved. 

Teacher as Subject matter expert was used by 16,3% of the teachers. Mathematics teachers in this 

category used metaphors like “a machine of knowledge”, “a guide in a journey”, “a vocation 

backpack”, “a well of knowledge”. In their explanations these teachers refer to their teaching role as 

transmitters of ready-made knowledge to the students and organizers of routines. Mathematical 

knowledge is conceived as predetermined knowledge that can be delivered by the teacher. 

As a mathematics teacher I’m like a well of knowledge. When I’m in class I find ways and 

examples to transmit the mathematical knowledge to students.  

A percentage of 14,3% of the teachers provided metaphors that fell within the category Contextual. 

Mathematics teachers in this category used metaphors like “an actor”, “a salesman”, “the guy for 

every job”. In their explanations these teachers refer to the characteristics of the teachers’ work, or 

the characteristics of the environment the teacher works stressing that it is too demanding and 

multifunctional. They refer to the teacher in a social context but they do not refer to any specific 

aspect of the teachers’ professional knowledge or teaching. 

As a mathematics teacher I’m like a guy for every job. Mathematics teachers are like ping pong 

balls. They are involved in many tasks and processes in the school setting but these efforts do not 

lead to something recognizable or efficient. 

A percentage of 14,3% of the teachers provided metaphors that fell in more than one category  thus 

they were categorized as Hybrid. Most of the metaphors in this category include the didactics 

expert’s characteristics along with another category. The following metaphor was categorized as 

both didactics expert and contextual metaphor. 



As a mathematics teacher I’m like a director who writes a movie and participates in it. As a 

mathematics teacher I design the teaching of a lesson, I decide for the way to implement it in 

different faces and last like as an actor I perform different roles. 

Finally, 12,2% of the teachers provided a metaphor that fell in the category teacher as pedagogical 

expert. Mathematics teachers in this category used metaphors like “a parent”, “a mother”, “and an 

eagle”, “a priest”. In their explanations these teachers emphasized the values, the moral and 

emotional aspects of students’ development. They reveal a more affectional relationship and 

communication with the students. 

As a mathematics teacher I’m like a spiritual father (e.g. a priest). I believe that my main goal is 

to advice students that with hard work, healthy competition and honesty they can be better in 

mathematics and in society. Just by hard work.  

Metaphors and background characteristics 

No statistically significant differences were detected between gender, teaching experience and 

metaphors. Table 2 presents the distribution of metaphor used according to teaching experience. 

Teaching 

experience 

n Subject-

matter expert 

Didactics 

expert 

Pedagogical 

expert 

Self-

referential 

Contextual Hybrid 

0-10 
9 

2 (22.2%) 2 (22.2%) 3 (33.3%) 1 (11,1%) 0 (0%) 1(11.1%) 

11-20 
26 

2 (7.6%) 9 (34.6%) 3 (11.5%) 4 (15.3%) 5 (19.2%)  3 (14.2%) 

21 and 

more 

14 
4 (28.5%) 1(7.1%) 0 (0%) 4 (28.5%) 

2 (14.2%) 
3 (21.4%) 

Table 2: Teaching experience and categories of metaphors 

As it can be observed, the most common category for teachers with the least years of experience is 

the teacher as pedagogical expert. The most common metaphor category for the second group of 

teachers is the teacher as a didactics expert. For the group of mathematics teachers with 21 years of 

experience and over, the most common categories are teacher as subject matter expect and self-

referential metaphors. Contextual and hybrid categories are most frequently met in teachers with 

more years of teaching experience than those with 0-10 years of experience. 

Discussion 

The results revealed that the model proposed by Löfström et al. (2010) can be applied to categorize 

the metaphors provided by the in-service Cypriot mathematics teachers in upper secondary 

education (Grades 10-12) and that the categories included in the extended model were collectively 

exhaustive. The results showed that these teachers prioritize didactics knowledge, self-reference and 

subject matter metaphors. In particular, the findings showed that the teacher as didactics expert was 

the most common metaphor provided. This finding is in line with the results of other similar studies 

(Oksanen & Hannula, 2013; Oksanen et al., 2014) which reported that this category was the most 

common among mathematics teachers teaching Grades 7-9. However, in the current study the 

percentage of teachers who used metaphors which described them as didactics expert  (24.5%) was 

not as high as in the other two studies (46% and 51% respectively). Self-referential metaphors were 

also used by participants of the current study (18.4%). This percentage is higher than the 



percentages reported by the other studies in the literature, which state that this category reflects the 

multi-functionality of teachers’ role (Oksanen & Hannula, 2013; Oksanen et al., 2014).  The 

emergence of hybrid metaphors has been explained in other studies (Oksanen & Hannula, 2013; 

Oksanen et al., 2014) by the complexity of a teachers’ job. 

The investigation of these teachers’ metaphors in relation to their teaching experience revealed no 

statistically significant differences similar to the results of the study by Oksanen et al. (2014). In that 

study the researches described that that the most common metaphor for all groups of teachers was 

the teacher as didactics expert. In the current study, pedagogical expert and didactics expert were the 

most common metaphors for the group of mathematics teachers with the least years of experience, 

didactics expert was the most common metaphor for the group of teachers with 11-20 years of 

experience and subject matter expert and self-referential were the most common metaphors for the 

group with 21 and more years of experience. However, these relationships were not statistically 

significant. Modifications in mathematics education at the university level, as well as modifications 

in the work context related to the Cyprus Educational Reform of 2011 could by associated with 

these groups of teachers’ perceptions about their roles as teachers of mathematics.  

The results indicated that the model suggested by Löfström et al. (2010) is a useful model that can 

be used to categorize teachers’ metaphors. These teachers’ metaphors mapped their current practice 

and understanding of teaching and learning and revealed what they are and how they feel about their 

work (Zhao et al., 2010). But how stable are these imageries provided? Will these teachers provide 

the same metaphor if they are asked again under different conditions, working in different school 

with other students or if they are under the pressure of their students’ entrance exams or at the end 

of a stressful day? How the methodology used could be developed to include teachers’ current state?  

Further studies investigating the stability of these metaphors are needed. Moreover, further studies 

could investigate the relation between mathematics teachers’ beliefs and mathematics teachers’ use 

of metaphors.  
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Emotions are important for learning. In a previous study, we found that students who constructed 

more solutions for real-word problems with vague conditions reported higher enjoyment and lower 

boredom (Schukajlow & Rakoczy, 2016). In the present study, we had students construct multiple 

solutions by applying multiple mathematical procedures to real-world problems, and we 

investigated effects on the enjoyment and boredom. 307 students were assigned to the experimental 

or control group. Students in the experimental group applied two mathematical procedures, and 

students in the control group applied one mathematical procedure to solve real-world problems. 

During the lessons, they were asked to report their enjoyment and boredom. Contrary to our 

expectations, the results revealed no effects of the intervention on students’ enjoyment or boredom. 

Keywords: Emotion, affect, modelling, word problems, multiple solutions. 

Introduction 

Emotions are important for learning (Zan, Brown, Evans, & Hannula, 2006). Although students’ 

academic emotions are prerequisites, mediators, and outcomes of the learning process in 

mathematics (Schukajlow & Rakoczy, 2016), they were neglected for decades. Thus, except for the 

emotion of anxiety, we do not know much about students’ emotional development. Moreover, there 

is a lack of research on how teaching methods influence emotions. As there have been several calls 

for intervention studies, we decided to conduct a study that was aimed at clarifying the impact of 

constructing multiple solutions for real-world problems on cognitive and affective outcomes. We 

chose this teaching method and this kind of problem because constructing multiple solutions and 

solving real-world problems are emphasized in curricula in different countries. In the present paper, 

we taught students to construct multiple solutions by applying different mathematical procedures to 

solve real-world problems, and we investigated how this process affected enjoyment and boredom.  

Theoretical framework and hypotheses 

High-quality mathematics teaching implies that students should develop multiple solutions and 

compare these solutions in the classroom. Empirical evidence for the effects of constructing 

multiple solutions on cognitive outcomes comes from international comparative studies (Hiebert et 

al., 2003) and from experimental studies (Levav-Waynberg & Leikin, 2012; Schukajlow, Krug, & 

Rakoczy, 2015). However, the impact of constructing multiple solutions on affect is an open issue. 

For high-quality mathematics teaching, both cognitive and affective outcomes have to be taken into 

account. As we determined in the project MultiMa1 (Multiple Solutions for Mathematics Teaching 
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Oriented Toward Students’ Self-regulation Learning), apart from students’ achievements and 

strategies, there is also a need to consider their self-regulation, interest, motivation, and emotions. 

Multiple solutions and real-world problems 

Previous research on multiple solutions was conducted for the most part on intra-mathematical 

problems in different content areas such as geometry (Levav-Waynberg & Leikin, 2012) or early 

algebra (Star & Rittle-Johnson, 2008). Students’ ability to solve real-world (or modelling) problems 

was not previously the focus of research on multiple solutions so far. Solving real-world problems 

first and foremost involves demanding transfer processes between reality and mathematics (Niss, 

Blum, & Galbraith, 2007). As real-world problems often include vague conditions and allow 

students to construct different mathematical models and apply different mathematical procedures, 

we distinguished between three categories of multiple solutions (Schukajlow & Krug, 2014b). The 

first category of multiple solutions are typical of real-world problems with vague conditions. In 

solving this type of problem, students make different assumptions about vague conditions and 

therefore arrive at different outcomes or results. Another type of multiple-solution problem occurs 

as a result of applying different mathematical procedures or strategies, a process that typically leads 

to the same mathematical outcome. The third category combines the first two categories. In the 

current paper, we explored the effects of applying multiple mathematical procedures while solving 

real-world problems for the topic of linear functions. We would like to illustrate this type of 

multiple-solution problem with the sample problem “BahnCard” (cf. Figure 1), which was 

developed in the framework of the MultiMa Project. 

 

Figure 1: Real-world problem “BahnCard” (Achmetli, Schukajlow, & Krug, 2014) 

The problem solver is asked to read the problem “BahnCard,” and identify the important values: 

price per year for each card and the amount of a round-trip journey that would be paid with each 

card. After mathematizing the problem, different mathematical procedures can be applied.  

One mathematical procedure that can be applied is called “differences.” In order to solve the 

“BahnCard” problem by using differences, students first have to calculate differences in the prices 

per year and for each round trip for owners of each card. Whereas the “BahnCard 50” is 181 € (= 

240 € - 59 €) more expensive than the “BahnCard 25,” each round trip with the “BahnCard 25” is 

25 € (= 50 € - 25 €) more expensive than with the “BahnCard 50.” The open question is how often 

Mr. Besser has to take a trip with the more expensive “BahnCard 50” until the cheaper prices for the 



journeys pay off. This is exactly after 7.24 (= 181 € ÷ 25 €) journeys per year. This result has to be 

rounded up, interpreted—for example, “For up to 7 journeys per year, the ‘BahnCard 25’ is 

cheaper”— validated, and the recommendation has to be wrote down.  

Another way to solve this problem is to apply a mathematical procedure “table.” To apply this 

procedure, students must compare the costs for owners of the “BahnCard 25” and the “BahnCard 

50” for different numbers of journeys per year (e.g. 1, 3, 6…). By performing this comparison 

systematically, they can identify that the “BahnCard 25” is cheaper for up to 7 journeys. If the owner 

makes 8 or more journeys, the “BahnCard 50” is preferable for him/her. Finally, students need to 

validate their result and write down their recommendation. 

Enjoyment and boredom as achievement emotions  

Emotions are typically defined as complex phenomena that include affective, cognitive, 

physiological, motivational, and expressive parts (Pekrun & Linnenbrink-Garcia, 2014). In the 

academic context, researchers are interested in achievement emotions, which occur in learning 

settings and are related to epistemic processes. Research on emotions in mathematics education has 

emerged from different philosophical traditions (Hannula, 2015) and has categorized emotions 

according their value (positive or negative), level of activation (activated or deactivated), or other 

characteristics. For example, enjoyment is one of the positive activating emotions (Pekrun, 2006). 

Students who enjoy problem solving are expected to report pleasant feelings. Moreover, when 

students enjoy mathematics, they feel activated excitement while working on a problem. The 

opposite behavioral and cognitive patterns are expected for the emotion of boredom. Boredom was 

suggested to be a negative deactivated emotion because boredom is accompanied by unpleasant 

feelings, and if students feel bored, they experience a state of deactivating relaxation. Following 

these considerations, a positive relation between enjoyment and performance and a negative relation 

between boredom and performance were hypothesized and confirmed in two empirical studies in the 

domain of mathematics (Schukajlow, 2015; Schukajlow & Krug, 2014a). Moreover, enjoyment but 

not boredom was found to predict students’ performance in a longitudinal interventional study 

(Schukajlow & Rakoczy, 2016). 

According to the control-value theory of achievement emotions (Pekrun, 2006), emotions are 

strongly determined by control and value appraisals, which arise in learning situations. In order for a 

positive emotion such as enjoyment to emerge, students should (1) perceive their problem solving 

activities as controllable and be confident that they can influence the learning situation and (2) 

ascribe the problem solving activities a high value. If students think that they do not have any 

influence over their problem solving activities, or if they view these activities as meaningless, 

negative emotions will emerge. For example, boredom arises if students ascribe a low value to their 

activities. The relation between boredom and control appraisals is complex and is proposed to be a 

curvilinear U-shape. This relation implies that boredom occurs when perceived control is very high 

(i.e. task demands are very low) or when perceived control is very low (i.e. task demands are very 

high). However, in the context of problem solving activities, students do not have to deal with 

routine tasks. Thus, a negative linear relation between control appraisals (e.g. assessed via students’ 

performance or self-efficacy beliefs) and boredom was expected and confirmed in most empirical 

studies (e.g. Schukajlow, 2015).  



Enjoyment, boredom, and multiple solutions for real-world problems 

On the basis of theoretical considerations from control-value theory, we expected to find that 

constructing multiple solutions would increase students’ control appraisals when solving real-world 

problems. Higher appraisals should increase students’ enjoyment and decrease their boredom. 

Positive effects of constructing multiple solutions on enjoyment and negative effects on boredom 

were confirmed in our previous study. Students who constructed more solutions enjoyed their 

classes more and were less bored (Schukajlow & Rakoczy, 2016). In the current study, we sought to 

confirm these findings for the other type of multiple-solution problem and investigated the effects of 

applying multiple mathematical procedures for real-world problems on enjoyment and boredom.  

Hypotheses 

The hypotheses we addressed were: 1) Constructing multiple solutions by applying multiple 

mathematical procedures for real-world problems has a positive effect on students’ enjoyment of 

mathematics; 2) Constructing multiple solutions by applying multiple mathematical procedures for 

real-world problems has a negative effect on boredom in mathematics. 

Method 

Sample and procedure 

Three hundred seven German ninth graders from four schools with three middle-track classes each 

(48.26% female; mean age=14.6 years) participated in the present study. Before and after the 

teaching unit, students were asked about their enjoyment and boredom. The teaching unit consisted 

of two sessions with two 45-minute long lessons each. Each of twelve classes was divided into two 

parts with the same number of students in each part in the way students’ mathematical achievements 

did not differ between the parts. Further, the number of males and females was approximately the 

same in each part. Eight of twenty-four groups were randomly assigned to the one-solution 

condition “differences” (OS1), eight groups to the one-solution condition “table” (OS2), and eight 

to the multiple-solutions condition “differences + table” (MS), taking into account that in each 

school, there had to be the same number of groups assigned to each condition, and the students in 

each class had to be assigned to different conditions (more details about the procedure can be found 

in Achmetli, Schukajlow, & Rakoczy, manuscript submitted for publication). Each group was 

taught separately by one of six teachers (three female, age: 27 to 60) who participated in the present 

study. The teachers taught the same number of groups in each condition in order to minimize the 

differences between conditions that might result from the influence of teacher personality on 

students’ learning. All of the teachers received instruction manuals that included the lesson plans, 

problems for the students, and the solutions to these problems.  

Treatment 

The three treatment conditions implemented in the present study (OS1, OS2, and MS) were based 

on the positively evaluated student-centered learning environment for teaching modelling problems 

(Schukajlow, Kolter, & Blum, 2015). This student-centered learning environment was 

complemented by direct instruction at the beginning of the teaching unit. For the purpose of 

maintaining comparability between the conditions, the same order was implemented for all three 

treatment conditions. In the first lesson, the teacher demonstrated how real-world problems could be 



solved by applying one mathematical procedure (in the OS conditions) or multiple mathematical 

procedures (in the MS condition). In the three lessons that followed, the students solved real-world 

problems by applying the demonstrated procedures according to a special procedure for group work 

(alone, together, and alone), presented their solutions, and discussed these solutions with the whole 

group in the classroom. At the end of each lesson, the teacher summarized the key points of each 

treatment condition. In the multiple-solutions condition, the teacher encouraged the students, 

further, to compare and contrast the two mathematical procedures and the mathematical results.  

Students first solved four similar tasks in the one-solution conditions and in the multiple-solutions 

condition. The only difference between these four problems was that students in the one-solution 

conditions were required to apply one mathematical procedure (“table” or “differences”), whereas 

students in the multiple-solutions condition were required to apply both mathematical procedures 

(“table” and “differences”). The sample problem “BahnCard,” which was given in the one-solution 

conditions, is presented in Figure 1. In the multiple-solutions condition, the problems were modified 

by adding the following sentence: “Use two different mathematical procedures to solve this 

problem.” As the discussion of the connection between mathematical procedures required additional 

time in the MS condition, one additional task was offered in each OS condition. Thus, in sum, 

students in the MS condition solved six and students in the OS conditions solved seven problems.  

Measures 

Enjoyment and boredom during the teaching unit were measured after the second and fourth lessons 

with a 5-point scale ranging from 1 (not at all true) to 5 (completely true). Both scales included 

three items each (see Table 1).  

Scale Item 

Enjoyment I enjoyed task processing. I was happy during task processing. Task processing was 

great fun for me. 

Boredom Task processing was boring. I got so bored during task processing that I had 

problems staying alert. I did not want to continue my work because it was so boring. 

Table 1: Items used in the study to assess enjoyment and boredom 

The scales were adapted from the well-evaluated Achievement Emotions Questionnaire (Pekrun, 

Goetz, Frenzel, Barchfeld, & Perry, 2011). The Cronbach’s alpha reliabilities were .80 and .79 for 

enjoyment and .81 and .83 for boredom for Sessions 1 and 2, respectively. 

Treatment fidelity 

To ensure the fidelity of the treatment, we videotaped the teaching unit, observed the lessons, and 

analyzed the students’ solutions. The analysis confirmed the treatment fidelity (Achmetli et al., 

manuscript submitted for publication). For example, we found that students in all classes worked on 

the respective version of the problem (MS vs. OS) and all teachers implemented the intended 

methodical order in their lessons. More specifically, we found that students in the MS condition 

developed significantly more solutions than the students in the OS conditions (MS vs. OS1: effect 

size Cohen’s d=4.97; MS vs. OS2: d=3.61).  



Results 

Preliminary results 

In order to simplify the analysis of the effects, we combined the OS1 and OS2 conditions into one 

OS condition. Combining the two conditions did not influence the results significantly, as our 

statistical analysis did not show a difference at the 10% level of significance between the two OS 

conditions for motivational variables such as self-regulation (Achmetli et al., 2014) or interest 

(t(186) = 0.182; p = .856). Further, in order to ensure that the two conditions were comparable, we 

compared interest between the MS condition and the combined OS condition as this construct is 

closely connected to students’ enjoyment and boredom (Schukajlow & Rakoczy, 2016). The 

analysis of interest at pretest revealed no differences between the MS and OS conditions (MS: M = 

2.39 (SD = .90), OS: M = 2.39 (SD = .96)). This result indicates that students’ emotional 

prerequisites were similar in the MS and OS conditions. 

Applying multiple mathematical procedures and students’ enjoyment or boredom 

We hypothesized that constructing multiple solutions by applying multiple mathematical procedures 

would increase students’ enjoyment and decrease their boredom. We tested both hypotheses by 

computing t-tests. The crucial assumption when using a t-test is that the variances are equal in the 

two groups. Levene’s test of equality of variances was significant for students’ boredom measured 

after the second and third lessons, indicating that the assumption of equal variances in the two 

groups had been violated (F(280) = 4.022, p = .046; F(279) = 4.851, p = .028). Thus, we used the 

adjusted degrees of freedom, t-values, and p-values for students’ boredom. The descriptive statistics 

are presented in Table 2. 

 Enjoyment  

first session 

Enjoyment  

second session 

Boredom     

first session 

Boredom  

second session 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

MS 3.42 (0.92) 2.96 (0.91) 2.24 (1.05) 2.53 (1.16) 

OS 3.43 (0.88) 3.00 (0.96) 2.03 (0.90) 2.30 (1.00) 

Table 2: Means and standard deviations for enjoyment and boredom 

Against our expectations, students’ enjoyment during the first and second sessions did not differ 

between the MS and OS conditions (first session t(280) = 0.75, p = .940, Cohen’s d = 0.02; second 

session: t(279) = 0.297, p = .767, d = 0.04). Thus, the enjoyment of students who solved real-world 

problems by applying multiple mathematical procedures was similar to the enjoyment of students 

who applied one mathematical procedure.  

We did not find support for the second hypothesis. Our analysis did not reveal benefits of 

constructing multiple solutions by applying multiple mathematical procedures for students’ 

boredom during the first or second session (first session t(165) = 1.67, p = .097, Cohen’s d = 0.22; 

second session: t(156) = 1.62, p = .108, d = 0.22). Moreover, there was a slight (but not significant) 

tendency for students in the multiple-solutions group to feel greater boredom than students in the 

one-solution condition.  



Discussion 

In this paper, we aimed to analyze how constructing multiple solutions by applying multiple 

mathematical procedures while solving real-world problems would affect students’ emotions. On 

the basis of theoretical considerations from the control-value theory of achievement emotions 

(Pekrun, 2006) and prior research that found that developing multiple solutions had positive effects 

on students’ enjoyment and negative effects on their boredom (Schukajlow & Rakoczy, 2016), we 

expected positive effects of the treatment on enjoyment and negative effects on boredom during 

learning. However, our analyses did not confirm these hypotheses. Enjoyment and boredom in 

solving real-world problems did not differ between the multiple-solutions and one-solution 

conditions. Moreover, boredom was slightly lower in the one-solution condition compared with the 

multiple-solutions condition. One explanation for this finding might involve students’ high control 

appraisals. In the previous study, the mean values for students’ experience of competence, which 

can be taken as an indicator of students’ control appraisals (sample item: “I felt confident about my 

knowledge of the topic today”; range from 1 to 5), were 3.85 and 3.65 in the MS and OS conditions, 

respectively (Schukajlow & Krug, 2014b). However, in the current study, the mean values for 

students’ experience of competence were nearly one standard deviation higher and close to the 

theoretical maximum of 5 (Achmetli et al., manuscript submitted for publication). As noted in the 

control-value theory, if students’ control appraisals are too high (or task demands are too low), they 

can have a negative influence on students’ emotions. Thus, a future research question might involve 

asking whether posing more demanding real-world problems that require students to apply multiple 

mathematical procedures can increase students’ positive emotions such as enjoyment and decrease 

their negative emotions such as boredom. Another research question that should be addressed in an 

experimental study is about the non-linear connection between control appraisals and students’ 

emotions. This assumption of the control-value theory needs more empirical evidence from 

randomized studies. More specifically, the corvilinear U-shape relation between control appraisals 

and boredom should be addressed in future longitudinal studies. Further, it might be the case that 

the type of multiple-solution problem makes a difference. Whereas students enjoy making different 

assumptions about missing information, constructing different solutions, and comparing their 

results, this enjoyment might not hold when they apply different mathematical procedures. Similar 

effects (low level of boredom for the first type of multiple-solution problem, but no difference in 

boredom for the second type of multiple-solution problem) were also found for students’ boredom. 

Another explanation for no effects of the intervention on emotions might be that students in the 

multiple solution condition were not offered to chouse their favorite procedure during three of four 

lessons. More efforts are needed to clarify the role of multiple solutions for affective measures and 

more generally, with respect to the effects of teaching methods on students’ affect. 
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Several studies have looked at either the effects of students’ Self-Efficacy Expectations (SEE) on their 

mathematics performance results, or the effect of previous mathematics performances on students’ 

SEE. Few studies have tested the theoretically proposed reciprocal relationship between mathematics 

SEE and performance in mathematics. Furthermore, previous studies have not included levels of 

difficulty, although this is an integral part of the definition of SEE. This study applied a new measure 

of SEE, which included both test taking facets and levels of perceived difficulty, to investigate their 

relationships with students’ performance on a national test in mathematics. Two models gave very 

good fit to the data, and supported the reciprocal effects model. These models provided estimates of 

the relationships between students’ test performance and their level and facet-specific SEE, 

respectively. 

Keywords: Self-efficacy, performance, reciprocal effects, levels of difficulty, test taking facets. 

Introduction 

Self-efficacy expectations (SEE) are important because extensive research indicates they are related 

to student learning and performance (Zimmerman, 2000). Studies have demonstrated the effect of 

mathematics SEE on performance results (e.g. Pajares, 1996) and vice versa (e.g. Pampaka, 

Kleanthous, Hutcheson, & Wake, 2011), but the proposed reciprocal relationship between SEE and 

performance (Bandura, 1997) has received little attention. Investigating this relationship empirically 

is important in order to understand the relationship between SEE and performance in mathematics, 

and the process by which SEE may influence performance in mathematics and vice versa. Few studies 

have investigated reciprocal effects between SEE and mathematics performance with longitudinal 

data, and none that we know of in relation to national tests in Norway. 

Bandura (1997) argued SEE vary according to three dimensions, but we know of no studies that have 

included SEE level of difficulty to investigate reciprocal effects with mathematics. As we argued in 

Street, Malmberg, & Stylianides (2017), including level of SEE is important as it is an integral part 

of the definition of SEE (Bandura, 1997). We aimed to address this research gap by testing a 

reciprocal effects model including students’ level and facet-specific SEE, and their scores on a 

Norwegian national test. To this aim, we applied a recently developed measure of mathematics SEE 

that includes four facets of test taking as well as three levels of perceived difficulty. We included 

students’ SEE responses and test scores as they progressed from grade 8 to grade 9.  

Theoretical background 

Self-efficacy expectations (SEE) are individuals’ judgments about perceived capability to perform on 

future tasks (Bandura, 1997), for instance students’ expectations they are able to carry out the various 

facets involved with taking a mathematics test. Examples are problem-solving skills such as solving 



a certain number of problems or solving tasks of a certain challenge, or skills in self-regulation such 

as concentrating for a length of time or persevering through difficult problems.  

SEE affect future performance through mediating processes, influencing students’ behaviors and 

motivations. SEE may influence individuals’ tendencies to approach learning tasks, their effort and 

persistence while engaged in such tasks, as well as their self-regulatory processes (Zimmerman, 

2000). SEE have been found to predict mathematical problem-solving after controlling for factors 

such as cognitive ability, mathematics Grade Point Average, anxiety, and gender (Pajares, 1996). 

There is also empirical support for the influence of past performances on SEE (e.g. Pampaka et al., 

2011). According to Bandura (1997), SEE are formed through four sources, where mastery 

experiences is the strongest source. Mastery experiences stem from individuals’ appraisals of 

previous performance situations, for instance their experiences from a previous, similar test. 

Importantly, previous experiences do not influence SEE directly, but are interpreted and made sense 

of by the individual (Usher, 2009). 

A mutually reinforcing pattern of influence between self-beliefs and academic achievement is 

supported for several types of self-beliefs (Valentine, Dubois, & Cooper, 2004). Studies have, for 

instance, investigated reciprocal effects between self-concept and achievement (Marsh, Trautwein, 

Lüdtke, Köller, & Baumert, 2013), however only few studies have investigated reciprocal effects 

between SEE and mathematics performance. Williams and Williams (2010) proposed a reciprocal 

effects model, which fit the data well for PISA results from 26 out of 33 countries. They argued 

reciprocal effects might be a fundamental psychological process, however the data from Norway was 

excluded from the analyses due to little variation in the grade-level variable. Hannula et al. (Hannula, 

Bofah, Tuohilampi, & Metsämuuronen, 2014) investigated the dominant direction of effect between 

mathematics performance and SEE, as students progressed from grade 3 to grade 9 in Finland. Their 

results supported a reciprocal effects model, where the effect from performance on SEE (.30) was 

somewhat stronger than the effect from SEE on performance (.26). Both measures were also relatively 

stable over time.  

Measures of SEE have typically included SEE strength and SEE specificity (also called generality). 

While Bandura proposed a third dimension of SEE (1997), only few studies have included level of 

difficulty. Students’ SEE may vary between different facets of mathematics, and in regards to 

different perceived levels of difficulty. In relation to the task ‘naming uses for common objects’ 

Locke et al. (Locke, Frederick, Lee, & Bobko, 1984) found that SEE for tasks of medium to high 

difficulty were most predictive of subsequent task performance.  

Theoretical model and research questions 

In line with theory and empirical findings discussed, we propose a theoretical model (see Figure 1), 

where SEE and mathematics performance are reciprocally related. We included Norwegian students’ 

SEE responses and subsequent test scores to investigate this model. In the model, students’ SEE in 

grade 8 and 9 are related to their performance in mathematics in the same year. Furthermore, students’ 

mathematics performances in grade 8 predict their SEE in grade 9. Both SEE and mathematics 

performance are relatively stable (mathematics performance the most stable of the two), with the 

grade 8 constructs predicting scores in grade 9. We further propose level and facet-specific SEE have 

differential relationships with mathematics performance.  



 

Figure 1: Theoretical model 

RQ1: What is the relationship between SEE and performance on national tests in mathematics in 

grade 8, and SEE and performance on national tests in mathematics in grade 9? 

RQ2: Do the relationships between SEE and performance on national test differ according to levels 

or facets of SEE? 

Methodology  

Participants 

The participants were 95 students (44 female) in Norwegian secondary school who completed self-

report questionnaires and took national tests in mathematics at the beginning of grades 8 and 9 (13 

and 14 years old). The participants were part of a larger sample, selected for cross-sectional 

investigations (see Sørlie & Söderlund, 2015). Included in the study were schools where students had 

performed above and below what might be expected on national tests, considering measures of socio-

economic-status. For a detailed explanation of this strategy see Langfelt (2015). 

Measures 

The Self-efficacy Gradations of Difficulty Questionnaire was applied to measure SEE at the two time 

points (see Street et al., 2017, for a detailed analysis). This is a recently developed multidimensional 

measure of mathematics SEE, that includes four test taking facets (facet-specific SEE) related to 

problem solving (complete a number of problems, solve tasks of a certain challenge) and self-

regulation (concentrate, not give up), and three levels (easy, medium, and hard) of perceived difficulty 

(level of SEE). Each of the 14 items in the measure are related to one test taking facet and one level 

of difficulty within each facet (see Figure 2 for an example facet, ”concentrate”, with three levels of 

difficulty). For each item, students are asked to indicate their confidence (strength of SEE) on an 11-

point scale from 0 “not at all certain” to 10 “completely certain”. The structural validity of this 

measure was tested (Street et al., 2017), and the resulting best-fit measurement model included three 

latent (unobserved) level constructs, with correlated uniquenesses (correlated error terms) specified 

for each of the four facets. 



 

Figure 2: Example from the Self-Efficacy Gradations of Difficulty Questionnaire 

The performance measure was raw scores from national tests in numeracy (Norwegian Directorate 

for Education, 2016). “Numeracy” is similar to what researchers generally refer to as mathematics. 

Norwegian students sit these tests at the start of the school year in grades 5, 8 and 9. Students in 

grades 8 and 9 sit the same test, which involves 58 problems, scored as either correct (1) or incorrect 

(0). We used unique identifiers to link the national test scores with the questionnaire responses. 

Specification of empirical models 

Our modeling choices were informed by the previously established factor structure of our measure, 

as well as our theoretical model. Street et al. (2017) found that the best-fit models were those that 

accounted for the multidimensional nature of SEE, through correlated latent constructs and correlated 

uniquenesses. In order to estimate the relationships between latent constructs in our models we used 

item parceling technique. Parceling involves aggregating (taking the sum or average) two or more 

items to manufacture an indicator of a construct (Little, Cunningham, Shahar, & Widaman, 2002, p. 

152). While our measure of SEE is multidimensional, the factor structure has been tested and 

established in a previous study. Item parcels were formed to achieve “clean” latent constructs from 

each year, through aggregating items in such a way that the secondary loading was spread across 

parcels (Little et al., 2002). For example, the “easy” parcel contains all items related to the easy latent 

construct, across four facets. Similarly, the “concentrate” parcel includes all items related to the 

concentrate facet, across three levels of difficulty. As an example, the “concentrate” parcel in Figure 

2 is created through summing the scores of the three items included. 

Two reciprocal effects models were specified. Our hypothesized model (Model 1) includes national 

test scores and item parcels for SEE levels, representing the best-fit model from the previous study. 

The alternative model (Model 2) includes national test scores and item parcels for facet-specific SEE. 

In both models, SEE constructs in grade 8 are related to test scores in grade 9. Similarly, SEE 

constructs in grade 9 are related to test scores in grade 9. Correlations are specified rather than 

regression paths (see Street et al., 2017). SEE constructs in grade 8 are intercorrelated, as are SEE 

constructs in grade 9. Furthermore, corresponding SEE constructs are related across the two years 

(e.g. SEE easy in grade 8 predicts SEE easy in grade 9). Test scores in grade 8 predict test scores in 

grade 9. Finally, the reciprocal relationships tested are the path from test scores in grade 8 on SEE 

constructs in grade 9, and the paths from SEE constructs in grade 8 on test scores in grade 9. 



Analyses 

We analysed the data with structural equation modeling, using the maximum likelihood estimator in 

Mplus (version 7.31 for Mac: Muthén & Muthén, 2012). We used fit indices recommended by 

previous studies (e.g. Morin, Marsh, Nagengast, & Scalas, 2014; Schermelleh-Engel, Moosbrugger, 

& Müller, 2003), specifically we used the chi square (χ2/df =<3 acceptable), the Root Mean Square 

Error of Approximation (RMSEA <.08 acceptable), the Standardized Root Mean Square Residual 

(SRMR<.10 acceptable), the Comparative Fit Index (CFI) and the Tucker-Lewis index (TLI) 

(CFI/TLI > .90 acceptable). To assess improvement in fit between models, we used the following cut-

offs: RMSEA (.015), CFI (.010), SRMR (.030).  

Results 

Item cross-correlations for items from the same year were consistent with previous results from the 

same measure. The correlation matrix indicates items are related to two types of latent constructs; 

levels (easy, medium, and hard) and facets (no. of problems, solve tasks, concentrate, and not give 

up). Autocorrelations between items in grade 8 and the same item in grade 9 demonstrate two 

tendencies. First, autocorrelations are significant for all items, except for two cases, both associated 

with the easy level (no. of problems_easy, and concentrate_easy). Second, the magnitudes of the 

associations are consistently weaker for items associated with the easy level, than the medium and 

hard levels. To illustrate this: the strongest autocorrelation of the easy level items is .21, while the 

weakest autocorrelations of the medium and hard level items is .26 and .29, respectively. Thus, the 

cross-correlations for each of the years indicate support for a multidimensional construct, while the 

autocorrelations indicate that students’ scores on the medium and hard level items were more stable 

across time, than students’ scores on the easy level items. The non-significant autocorrelations 

between the grade 8 and grade 9 easy level items might be related to a lack of variability in scores. 

Most students were highly confident in relation to the easy level items.  

 Fit indices for confirmatory factor analyses      
  Model 2 p RMSEA CFI TLI SRMR 

1 

Correlated levels model, 

reciprocal relationship with test 

scores 

2
(6)= 4.397

p=.623  .000 1.00 1.02 .048 2/df=0.73 



2 

Correlated facets model, 

reciprocal relationship with test 

scores  

2
(12)= 10.890

p=.538 .000 1.00 1.01 .061 2/df=0.91 



Table 1: Results from structural equation models 

Results from the structural equation models are presented in Table 1. Both our proposed models 

resulted in excellent fit. The aim of the present study is not model comparison, but to test a reciprocal 

effects model, as well as to estimate the relationships between national test scores and level and facet-

specific SEE, respectively. Accordingly, parameter estimates from both models are reported (see 

Figures 3 and 4).  



 

Figure 3: Structural equation model, Model 1 (correlated levels model) 

 

Figure 4: Structural equation model, Model 2 (correlated facets model) 

As can be seen in Figure 3, results from Model 1 partially support a reciprocal effects model between 

levels of SEE and national test scores. Specifically, national test scores in grade 8 predict levels of 

SEE in grade 9 in relation to medium and hard, but not easy, tasks. The predicted relationship from 

SEE level constructs in grade 8 to national test scores in grade 9 is not supported. However, all three 

levels of SEE are associated with test scores the same year, including when previous test performance 

is controlled in grade 9. Two further relationships are nonsignificant: the path from SEE easy level 

in grade 8 to grade 9, and the path from national test scores in grade 8 to SEE easy level in grade 9.  

Model 2 results (see Figure 4) are generally consistent with results for Model 1. Test scores in grade 

8 predict three facets of SEE in grade 9 (not “concentrate”), while the paths from SEE facet constructs 



in grade 8 to test scores in grade 9 are nonsignificant. However, facet-specific self-efficacy constructs 

are related to performance results in each year, including in grade 9 (not “solve tasks”) when previous 

test scores are included in the model. Unlike the other facets, the magnitude of the relationship 

between “not give up” and test scores is very similar in grade 8 and 9. Similar to the easy level in 

Model 1, the relationships between “solve tasks” and “not give up” from grade 8 to grade 9 are not 

significant. Finally, we see that test scores are more stable over time than either level or facet-specific 

SEE. 

Discussion 

The current study lent empirical support to a reciprocal relationship between level and facet-specific 

SEE, and performance in mathematics (RQ1). It was demonstrated that students’ SEE were associated 

with scores on a test in the immediate future, while national test scores predicted their SEE one year 

later. All SEE items in our study are explicitly linked with the immediately upcoming test, thus it is 

reasonable the SEE constructs are associated with performance results of the immediately upcoming 

tests, but not with the tests one year later. In two previous studies, measures of SEE and performance 

were collected over the course of a single day (Locke et al., 1984) or three years apart (Hannula et 

al., 2014). Findings from both these studies indicated the dominant effect was from performance to 

SEE. The type of test, and whether it is considered important by the students, might influence the 

relationship between performance experiences and SEE. National tests are quite “talked about” in 

school in Norway, and students in grades 8 and 9 are likely becoming increasingly aware of upcoming 

exams (at the end of year 10). This might have provided a particularly memorable context for their 

test experiences. 

Furthermore (RQ2), differential relationships were found between national tests and easy, medium 

and hard levels of perceived difficulty. The associations with test scores were stronger for medium 

and hard levels of difficulty, which is in line with previous research (Locke et al., 1984). The 

relationships with test performance also varied between different facets of test taking, where “not 

give up” provided the strongest association. 

In our sample students’ SEE for medium and hard level tasks had both a stable (SEE regressed on 

SEE) and a dynamic (SEE regressed on test scores) component, while these estimates differed for the 

different SEE facets. For instance, in regard to ‘concentrate’, grade 9 SEE were predicted by grade 8 

SEE, while in regard to ‘not give up’, grade 9 SEE were predicted by grade 8 test scores. This 

indicates students drew on their previous test experiences to a larger degree when formulating their 

SEE for perseverance, as compared to concentrating. This implies it is important to consider how to 

support student perseverance, particularly after adverse test experiences.  

The current findings are limited in that we could not control for other factors that may have influenced 

students’ SEE and test performance. Also, while the measure of SEE provided interesting 

information, partitioning the effects of test taking facets and levels of perceived difficulty, further 

replications are needed with a larger sample, and in different cultural contexts.  
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Personal meaning, understood as the personal relevance of an object or an action (Vollstedt, 2011), 

seems to be closely related to motivation. However, the structural relationships between personal 

meaning and motivation are unexplored yet. Two motivation theories, self-determination theory (Deci 

& Ryan, 2002) and expectancy-value theory (Wigfield & Eccles, 2000), are used to work out these 

relations. The focus of this paper lies on theoretical considerations. 

Keywords: Personal meaning, motivation, self-determination theory, expectancy-value theory, 

theoretical considerations. 

Introduction 

Students are in the need for meaning when dealing with mathematics in an educational context 

(Vinner, 2007). As Kilpatrick, Hoyles and Skovsmose (2005) point out, the notion of meaning is 

blurred in the mathematics education community: 

When we consider the question of meaning with respect to mathematics education, the issue 

becomes even more complex, since philosophical and non-philosophical interpretations of 

meaning can become mixed. Thus, on the one hand, we may claim that an activity has meaning as 

part of the curriculum, while students might feel that the same activity is totally devoid of meaning. 

(Kilpatrick et al., 2005, p. 2) 

This paper is interested in the perspective of the students and their individual attribution of personal 

relevance to deal with mathematics in an educational context. Vollstedt (2011) called this construct 

personal meaning. Theoretical considerations suggest a strong link between personal meaning and 

motivation drawing on the basic needs theory (BNT) and the organismic integration theory (OIT) of 

self-determination theory (SDT, Deci & Ryan, 2002) and expectancy-value theory (EVT, Wigfield & 

Eccles, 2000).  

Personal meaning 

With respect to the fuzziness of meaning, Howson (2005) suggests that 

one must distinguish between two different aspects of meaning, namely, those relating to relevance 

and personal significance (e.g., “What is the point of this for me?”) and those referring to the 

objective sense intended (i.e., signification and referents). These two aspects are distinct and must 

be treated as such. (Howson, 2005, p. 18) 

According to Howson (2005), one important interpretation of meaning is the personal one. Personally 

experienced meaning, again, has a wide notion of concepts: it can be understood as a personal goal, 

a value, an intention, a purpose, a reference, or a use that an object or an action may have for the 

individual (Vollstedt, 2011).  
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Personally experienced meaning depends on the individual and a certain context (see below). It has 

an endogenous character, i.e. it cannot be provided by the teacher but, on the contrary, must be 

constructed out of the learner’s individual biography (Meyer, 2008). Regarding mathematics, the need 

for meaning cannot be fulfilled globally: for each mathematical learning content, personal meaning 

must be constantly interpreted and subjectively constructed (Fischer & Malle, 1985). Therefore, at 

the same time and in the same context, different students can give different meanings to the same 

mathematical content (Kilpatrick et al., 2005; Vollstedt, 2011). 

Vollstedt (2011) developed a model of personal meaning when learning mathematics and dealing 

with mathematical contents in a school context. In her theoretical framework (see Figure 1) she took 

the student’s perspective, as the following two main preliminaries influence the construction of 

personal meaning: Firstly, the personal background of the student describes aspects which cannot be 

influenced by himself/herself like his/her socio-economic or migration background. Secondly, 

personal traits. i.e. aspects that concern the student’s self, are relevant. They comprise concepts from 

various fields like educational psychology (self-concept, self-efficacy), education (developmental 

tasks), and mathematics education (beliefs). In addition to the individual preliminaries of a student, 

the situational context, i.e. context of the learning situation in terms of topic as well as classroom 

situation, is also a crucial factor for the construction of personal meaning. The theory of personal 

meaning developed by Vollstedt (2011) consists out of 17 different kinds of personal meaning. They 

were reconstructed based on interview data with students from lower secondary level from Germany 

and Hong Kong. These kinds vary between the duty to deal with mathematics because it is a school 

subject, the cognitive challenge that is contained in mathematical tasks, and the experience of 

relatedness among the fellow students. Note that the experience of the three basic psychological needs 

for autonomy, competence, and relatedness as described in the SDT of motivation (Deci & Ryan, 

2002; cf. Self-determination theory) turned out to be meaningful for students. Accordingly, they were 

also given the status of kinds of personal meaning. The various kinds of personal meaning can be 

distinguished with regard to the intensity of the relatedness to mathematics and to the individual 

respectively, giving rise to seven superordinate types of personal meaning (see Figure 2). 

Figure 1: Theoretical framework of personal meaning (Vollstedt, 2011) 



A relation between the theories of personal meaning and motivation seems likely due to the obvious 

link via the SDT of motivation. Other links may additionally be assumed (see Interplay between 

personal meaning and motivation for further details). The structural connections between personal 

meaning and motivation, though, are yet unexplored. 

Motivation  

Self-determination theory 

According to the SDT by Deci and Ryan (2002), learners have innate and constructive tendencies to 

develop an ever more elaborated coherent “sense of self” (Deci & Ryan, 2002, p. 5), i.e. individuals 

possess a tendency to promote growth or rather integration. They have the primary demand “to forge 

interconnections among aspects of their own psyches as well as with other individuals and groups in 

their social worlds”. This general integrative tendency is called the organismic metatheory of SDT. 

Besides, SDT includes the dialectical tendency, which focusses on the interaction between the active, 

integrating human nature and social contexts that either nurture or impede human’s effort to “integrate 

their experiences into a coherent sense of self” (Deci and Ryan, 2002, p. 27).  

Those contextual elements can be defined by the basic psychological needs for competence, 

autonomy, and relatedness, which support or rather thwart motivation, performance, and well-being. 

Figure 2: Model of personal meaning (Vollstedt, 2011) 



SDT embraces six sub-theories that all contain organismic and dialectic characteristics, two of which 

have a special significance for our study, namely the basic needs theory for competence, autonomy, 

and relatedness (BNT; Deci & Ryan, 2002, p. 22) and the organismic integration theory (OIT; Deci 

& Ryan, 2002, p. 14). These two sub-theories were formulated to clarify the interrelation between 

“motivation and goals to health and well-being” (Deci & Ryan, 2002, p. 10). 

In BNT it is supposed that the basic needs are universal, i.e. they are valid across time, age, gender, 

situations, and culture. When they are satisfied, they support well-being, however when they are 

impeded, they might interfere with psychological health.  

The OIT focusses on “internalization and integration of values and regulations (amotivated, external, 

introjected, identified, integrated, and intrinsic)” (Deci & Ryan, 2002, p. 14). Thereby, it defines the 

development and dynamics of extrinsic motivation in more detail. This process is characterized by 

“the degree to which individuals’ [sic] experience autonomy while engaging in extrinsically 

motivated behaviors” (Deci & Ryan, 2002, p. 9). This taxonomy of regulation is neither a 

developmental continuum by itself, nor do human beings have to proceed through each level of 

internalization. In fact, it is possible for humans to take in a regulation at any level, when the relevant 

prior experience and the immediate individual climate encourage the interpersonal basic needs. 

Expectancy-value theory 

A second theory of motivation that stems from different theoretical roots is the EVT (Feather, 1982; 

Wigfield, Tonks, & Klauda, 2016). In it, motivation is described as a consequence of an interaction 

of expectancy and value. Wigfield and Eccles (2000) conceptualize motivation following EVT in a 

school context. They argue that “individuals’ choice, persistence, and performance can be explained 

by their beliefs about how well they will do on the activity and the extent to which they value the 

activity” (Wigfield & Eccles, 2000, p. 68). Expectancy address the perceived likeliness of achieving 

a set goal or being successful on a task (self-efficacy). Value represents the extent to which a goal or 

an activity is desirable (Eccles et al., 1983; Wigfield & Eccles, 1992). 

Wigfield and Eccles (2000) describe four subjective task values: attainment value, intrinsic value, 

utility value, and cost. These are also referred to as the components of achievement value. Attainment 

value is described as the personal importance of doing well on a task, for example on a mathematical 

exercise. Intrinsic value is characterized by the sense of pleasure in doing that task. Utility value 

defines how a task suits one’s future plans or goals, such as making an effort during the mathematics 

lesson in order to be well prepared for an exam. Cost concerns how the decision of putting effort into 

an activity (e.g. doing mathematics homework) restrains opportunities for other activities (e.g. 

watching TV). The subjective task values serve the estimation of effort, the likelihood of task 

achievement, and emotional cost (Wigfield & Eccles, 2000). 

  



Interplay between personal meaning and motivation 

The conceptualizations of motivation introduced above contain various links to personal meaning. In 

a first approach, several networking strategies comparing, combining, coordinating, and synthesizing 

(Prediger & Bikner-Ahsbahs, 2014) were used to connect the different theoretical perspectives and 

construct an elaborated theoretical framework of the interrelation between personal meaning and 

motivation. This process is described below. 

Common similarities and differences between parts of theoretical approaches can be identified 

through the networking strategy of comparing (Prediger & Bikner-Ahsbahs, 2014). Comparing the 

three theoretical approaches shows that in general, the theories of personal meaning, SDT, and EVT 

all include organismic and dialectical components, i.e. they consider the learner’s biography in detail 

and the constant interaction with the learner’s social environment (Bruner, 1991; Deci & Ryan, 2002; 

Vollstedt, 2011; Wigfield & Eccles, 2000). This is an essential factor and forms the basis for further 

elaboration of the concrete interaction between these three theories. 

The networking strategy of combining makes it then possible to combine theoretical approaches even 

from different origin. As EVT-values and intrinsic and extrinsic constructs of SDT are examined from 

different theoretical perspectives they, thus, have different bases (Wigfield & Eccles, 2000; Wigfield, 

Tonks, & Klauda, 2016). Nevertheless, close relations could be extracted by combining the theoretical 

constructs of SDT and EVT: The intrinsic value of EVT is linked to the construct of intrinsic 

motivation as described in SDT. It refers to behaviors performed out of one’s own interest, enjoyment, 

and the pleasure inherent in these activities (Ryan & Deci, 2002). Utility value describes more 

extrinsic motives to put effort in a mathematical task, such as doing a task to attain certain outcomes. 

Accordingly, utility value can be connected to extrinsic motivation (Wigfield & Eccles, 2000). Hence, 

extrinsic rewards may also help to anticipate individuals’ own efforts (Spence & Helmreich, 1983). 

In addition, SDT points out that the regulation of motivation is important to pursue a certain goal or 

value. Thus, it differentiates between qualitatively different reasons for action, arguing that different 

types of motivation will lead to very different outcomes (Ryan & Connell, 1989). 

Through the networking strategy of coordinating it is possible to clarify empirical evidence by 

constructing a conceptual framework grounded in different theoretical ideas. Hence, the three theories 

were interwoven and synthesized to link equally solid theories in such a way that a new unit of theory 

arises into, for example, an elaborated new theoretical approach (see Figure 3 below). To begin with, 

personal meaning and SDT are linked in three ways (cf. also the section Personal meaning above): 

Firstly, the three basic psychological needs for competence, autonomy, and relatedness as described 

in BNT are part of Vollstedt’s (2011) theoretical background for the construction of personal meaning 

(see Figure 3 below). Secondly, their experience turned out to be meaningful for students so that there 

are three kinds of personal meaning closely related to the three basic psychological needs (see Figure 

2 above). Thus, these two aspects directly link the theory of personal meaning to SDT. Thirdly, there 

is an indirect link. One of the two overall-dimensions of the model of personal meaning, namely the 

intensity of the relatedness to the individual, describes the degree of one’s subjective involvement in 

the action or the content respectively.  

Vollstedt’s results (2011) suggest that the intensity of the relatedness to the individual is possibly 

interrelated with the types of regulation described in OIT. This results from the fact that the intensity 

of the relatedness to the individual focuses on the personal involvement of the individual with respect 



to the action or object in focus. Hence, this establishes a link to self-determined behavior and 

internalization (Vollstedt, 2011). 

 

Figure 3: The role of personal meaning in the generation of motivation according to EVT 

With relation to EVT, we also suppose a close link to the theory of personal meaning (see Figure 3 

above). We assume that the expectancy as described in EVT is part of the individual’s personal traits, 

i.e. they are contained in the crucial preliminaries for the construction of personal meaning (cf. the 

section Personal meaning). Besides, the subjective values of EVT are embodied in different kinds of 

personal meaning (cf. the section Expectancy-value theory). For instance, the particular nature of 

intrinsic value is inherent in those kinds of personal meaning which refer mostly to the relatedness to 

mathematics or the learning of mathematics (e.g. “Purism of mathematics”, see Figure 2 above). 

Another assumption that can be made refers to the relation between utility value and the kinds of 

personal meaning which have instrumental or functional character (e.g. “Vocational Precondition”). 

Furthermore, attainment value may relate to those kinds of personal meaning which refer to the 

knowledge of mathematics being important for one’s own identity (e.g. “Self-perfection”).  

These considerations suggest that motivation may be understood as a result from the interaction 

between expectancy being characterized by the preliminaries of an individual, and the values being 

embodied by the different kinds of personal meaning. The resulting motivation influences the 

consequence that results from the construction of personal meaning. Thus, depending on the kind of 

personal meaning and its related motivation, an action will follow that may but does not have to do 

with mathematics (e.g. doing homework instead of playing football – or vice versa). Hence, the 

inclusion of EVT may provide additional insight into the interplay between personal meaning and 

motivation.  

When looking at the interplay of personal meaning and motivation as a process, with reference to 

EVT we suggest to think of personal meaning as being constructed chronologically before motivation.  

In our understanding, personal meaning is the energizing factor (1st in Figure 3 above), which is 

significant for the students’ motivation (2nd in Figure 3 above). We even assume that personal 

meaning is necessarily required for motivation, i.e. that the individual must think that something is 



meaningful for him/her and, thus, is motivated to engage in an action that supports his/her goals and 

values. This suggestion gives personal meaning the status of a key factor for the theory of motivation 

in general (see Figure 3).  

Conclusion and further perspectives 

This paper provides the theoretical background to examine the relationship between personal meaning 

and motivation when learning mathematics. Hence, personal meaning is linked with motivation 

through the two motivation theories of SDT and EVT. The results of Vollstedt’s (2011) study may 

suppose connections between personal meaning and SDT, i.e. BNT and OIT (Deci & Ryan, 2002). 

Three of the subjective values of EVT (attainment value, intrinsic value, and utility value) may be 

embodied by certain kinds of personal meaning. As cost has a negative connotation, it is not related 

to personal meaning denominating personal relevance of an object or action. 

To conclude, we assume an interrelation between personal meaning and motivation as has been 

elaborated above. The model sketched above will be elaborated further in an empirical study. 
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The present study deals with the role of the mathematical memory in problem solving. To examine 

that, two problem-solving activities of high achieving students from secondary school were 

observed one year apart - the proposed tasks were non-routine for the students, but could be solved 

with similar methods. The study shows that even if not recalling the previously solved task, the 

participants’ individual ways of approaching both tasks were identical. Moreover, the study 

displays that the participants used their mathematical memory mainly at the initial phase and 

during a small fragment of the problem-solving process, and indicates that students who apply 

algebraic methods are more successful than those who use numerical approaches. 

Keywords: High-achievers, mathematical memory, mathematical abilities, problem solving. 

Introduction and background 

Despite a growing emphasis on the identification and teaching of mathematically able pupils, much 

remains unknown about the abilities they display when solving mathematical problems. For reasons 

of social justice and equality, research has typically focused on low achieving pupils (Swanson & 

Jerman, 2006) while relatively few studies have observed the abilities of the gifted and high-

achievers (e.g. Vilkomir & O´Donoghue, 2009) or addressed those pupils’ memory functions during 

mathematical activities (Leikin, Paz-Baruch, & Leikin, 2013; Raghubar, Barnes, & Hecht, 2010). In 

particular, just a few studies (e.g. Krutetskii, 1976; Szabo & Andrews, 2017) examined the role of 

the mathematical memory in gifted and talented students’ problem-solving activities. 

Mathematical abilities 

Our innate ability to estimate quantities, known as the approximate number system, is extremely 

limited (Dehaene, 1997), but an active contact with the subject may, under favourable conditions, 

generate mathematical abilities that are both complex and structured (Krutetskii, 1976). The nature 

of mathematical abilities has engaged researchers for more than 120 years; already at the end of the 

19th century, Calkins (1894) presented, based on observations of Harvard students, significant 

information about the way mathematicians approached the subject. However, the research on 

mathematical abilities – mainly because of the dominance of psychometric approaches, and thereby 

considering abilities as innate and static – has not delivered widely accepted results during the first 

half of the 20th century (Vilkomir & O´Donoghue, 2009). Therefore, of importance for the present 

paper is the research of Krutetskii (1976), whose longitudinal observational study analysed the 

problem-solving activities of around 200 pupils. He concluded that able pupils’ mathematical 

ability, while complex and dynamic, typically comprises four broad abilities. These are 

 

 the ability to obtain and formalise mathematical information (e.g. formalised perception of 

mathematic material),  



 the ability to process mathematical information (e.g. logical thought, flexible mental 

processes, clear and simple solutions, generalized mathematical relations),  

 the ability to retain mathematical information, that is, mathematical memory (a generalized 

memory for mathematical relationships) and  

 a general synthetic component (mathematical cast of mind) (Krutetskii, 1976, pp. 350–351).  

However, while these abilities have frequently been associated with mathematical giftedness, 

Krutetskii (1976, pp. 67–70) argues they can also be displayed properly by high-achievers.  

Mathematical memory 

It is largely agreed that memory plays an essential role both in the learning of mathematics and in 

mathematical problem solving (e.g. Leikin et al., 2013; Raghubar et al., 2010). Thus, what seems to 

be crucial “is not whether memory plays a role in understanding mathematics but what it is that is 

remembered and how it is remembered by those who understand it” (Byers & Erlwanger, 1985, p. 

261). Calkins’ (1894) early study showed that the memories of mathematicians are more concrete 

than verbal, that mathematics students do not memorise facts more easily than other students and 

that, when performing mathematics, there is no difference between men and women. Some decades 

later, Katona (1940) found that rational methods are easier to memorise that random digits, while 

Bruner (1962) showed that simple interrelated representations are effective when recalling detailed 

knowledge. However, Krutetskii (1976) distinguished mathematical memory from the mechanical 

recalling of numbers or algorithms, by stressing that it is a memory consisting of generalized 

methods for problem solving. Hence, the mathematical memory does not retain “all of the 

mathematical information that enters it, but primarily that which is ‘refined’ of concrete data and 

which represents generalized and curtailed structures” (Krutetskii, 1976, p. 300). Moreover, he 

found that able students usually retain the contextual facts of a problem only during problem-

solving and forgot it instantly afterwards, but remember several months later the methods they 

applied. Conversely, low-achievers often remember contextual facts but rarely the problem-solving 

methods (Krutetskii, 1976). Cognitive psychology studies (e.g. Sternberg & Sternberg, 2012) 

indicate important distinctions between different memory systems; that is, long term memory can be 

divided into implicit and explicit memory, based on the type of the stored information. In a 

mathematical context, the implicit memory contains automatized procedures and algorithms, while 

explicit memory retains information about experiences and facts which can be consciously recalled 

and explained, such as schemas for problem-solving. Thus, according to the cognitive model, we 

may assume that mathematical memory, as defined by Krutetskii, is explicit. Besides, it is a memory 

formed at later stages (e.g. Davis, Hill, & Smith, 2000) based on the ability to generalize 

mathematical material, because at young able pupils “the relevant and the irrelevant, the necessary 

and the unnecessary are retained side by side in their memories” (Krutetskii, 1976, p. 339). 

The study 

The present study had two aims, both based on Krutetskii’s (1976) definitions of mathematical 

ability. The first was to identify the structure of mathematical abilities when high-achieving students 

solve non-routine but structurally similar problems. The second was to examine the role of 

mathematical memory during problem-solving activity. 



Participants 

Because young children and low-achievers rarely exhibit mathematical memory (Krutetskii, 1976), 

participants were 16-17 years old volunteers from an advanced mathematics programme in Swedish 

upper secondary school who had achieved the highest grade in the Swedish national test. Prior to 

data collection study, to familiarize students with the study, I spent 30 hours, over a period of four 

months, as a participant observer in their mathematics classroom. During this period, they came to 

trust me as an observer of their problem-solving activities. At the end of this process, after 

consulting their teacher, 6 students, 3 boys and 3 girls, were invited to participate. 

Tasks 

The theoretical background indicates that an appropriate way to identify the distinct structure of the 

mathematical ability is to analyse the problem-solving activities of the individuals (e.g. Krutetskii, 

1976). Moreover, the structure of a mathematical problem reveals the mathematical thinking which 

is required to solve it, because problem solving “is an activity requiring the individual to engage in a 

variety of cognitive actions, each of which requires some knowledge and skill, and some of which 

are not routine” (Cai & Lester, 2005, p. 221). However, able students typically forget the context of 

a problem shortly after solving it, but, as an impact of their mathematical memory, they are several 

months later able to recall the methods applied to solve it. Thus, in order to complete the aims of the 

study, the participants solved two problems approximately one year apart. At the first observation, 

in order to avoid as far as possible the influence of previous experiences, the main criterion was to 

select a challenging non-routine task, Task 1 (T1). When selecting Task 2 (T2) – in order to 

emphasize the role of the mathematical memory – the main criterion was to propose a task which 

was non-routine, but could be solved by methods similar to those used previously. 

Task 1: In a semicircle we draw two additional semicircles, 

according to the figure. Is the length of the large semicircle longer, 

shorter or equal to the sum of the lengths of the two smaller 

semicircles? Justify your answer. 

Task 2: In a square we draw two arbitrary contiguous squares, 

according to the figure. Is the perimeter of the large square 

longer, shorter or equal to the sum of the perimeters of the two 

smaller squares? Answer the question without measuring the 

figure. Justify your answer. 

 

Both tasks underwent substantial a-priori testing with corresponding groups of high-achievers, 

confirming that they were well-suited for the study and for the mathematical knowledge of the 

participants. This test confirmed that the students solved the proposed tasks with similar methods, 

that is, by applying the formulae for perimeters of circles and squares. 

Observations and interviews 

To avoid confounding factors during classroom interaction, which may affect pupils’ thought 

process (Norris, 2002), every participant was observed individually and, to avoid stress, given 

unlimited time to solve each task. T1 was solved and approximately one year later T2 was solved. In 



order to avoid participants’ memories being activated mostly because of recalling the circumstances 

for the first observation as an unusual element in their daily activities – that is, not because of 

recalling the previously solved task – I continued to interact with them during their mathematics 

classes between the two observations. The students were invited to solve the tasks in a think-aloud 

manner and encouraged to describe every step in the process. To minimise participants’ influence 

on each other, the tasks were solved during single days. The observations took place in a private 

room at their school and, when needed, supplementary questions were posed in order to facilitate 

the process. If a student neither wrote nor spoke for a while, the following questions were posed: 

What is bothering you? Why do you do that? What do you want to do and why? What are you 

thinking about? Pupils generally are not used to verbalise their problem-solving process (Ginsburg, 

1981), thus, in order to avoid the risk that essential parts of their cognitive activities would not be 

communicated, every observation was followed by a reflective interview. The purpose of the 

interviews was to display the hidden cognitive processes at problem-solving and to evaluate the 

levels of competence in those processes (Ginsburg, 1981). Each observation was recorded using a 

technology that digitises both speech and handwritten notes; the audio recordings were transcribed 

verbatim. Although they were given unlimited time, no participant needed more than 14 minutes to 

complete a single task. 

Data analysis 

The piloting of the tasks on corresponding groups of high-achievers indicated that the general 

synthetic component – a typical ability of gifted students (Krutetskii, 1976, p. 351) – was unlikely to 

be observed during problem-solving; consequently, this ability was excluded from the analysis. The 

analytical framework for this study contained the following abilities from Krutetskii’s framework: 

obtaining and formalizing mathematical information (O), processing mathematical information (P), 

generalizing mathematical relations and operations (G), and mathematical memory (M). 

The digital recordings resulted in an exact linear reproduction of the students’ actions, which was 

especially beneficial when performing qualitative content analysis of the material, inspired by van 

Leeuwen (2005). The participants´ actions were analysed by identifying, coding and categorising the 

basic patterns in the empirical content. This method highlighted the abilities that were directly 

expressed in the empirical material; each episode lasting at least one second in written solutions and 

verbal utterances was scrutinised for the presence of the focused abilities. Next, the data from 

observations were combined with data from the interviews. I exemplify this with data from Linda, 

who, when solving T2, didn’t say or wrote anything during the initial 62 seconds, before stating: 

Linda:  I would like to write down, start with writing a… some nice little estimations… 

After this episode she drew three squares with sides a, b and c, and wrote “a + b = c”. Thus, based 

on the observation, the presence of O was certain, but it was not possible to decide if other abilities 

were also present in the actual episode. Yet, the following sentences from the reflective interview 

proved that she recalled another task which could be solved with similar methods: 

Linda:  I got blocked until I remember similar tasks, because it’s a lot more difficult to 

solve this kind of tasks if one doesn’t have a determined way to approach it… I 

believe I will bring up the same task as last time, with triangles and squares. 



The utterances “a determined way to approach it” and “the same task as last time” indicate that 

Linda recalled a different task and its methods, thereby validating the presence of both O and M in 

the actual episode. In this way, the analysis revealed both the structure and the sequential order of 

the focused abilities, that is, every ability which occurred during the 12 problem-solving activities 

was displayed in a matrix. However, as exemplified above, some abilities (e.g. O and M) occurred 

closely interrelated during certain episodes and were extremely hard to differentiate. 

Results 

When asked, each participant confirmed that both tasks were non-routine, this being a prerequisite 

for the study. The analysis concluded in a matrix, with every episode of the process related to the 

focused abilities. As mentioned, certain abilities were closely interrelated during some episodes. As 

displayed (Table 1), M is present – solitary or interrelated – at 16% during the first and at 10.5% 

during the second observation. The most manifested ability is P, which increased from 53% to 67% 

a year later, while O, the second most exposed ability, decreased from 47% to 31.5%. 

 O O & P O & M P G M 

Task 1 31% 4% 12% 49% 0% 4% 

Task 2 20% 1.5% 10% 65.5% 2% 0.5% 

Table 1: Average time for the focused mathematical abilities in the problem-solving process 

According to the a-priori testing of the tasks, G could be revealed when numerical results – that is, 

solutions for particular cases – were developed into general, algebraic solutions. Thus, every student 

who offered purely numerical results – namely Erin, Sebastian and Larry – was encouraged to 

consider general solutions. Yet, when solving T1 and asked if their numerical results apply also for 

arbitrary semicircles, none of them could generalize (G) their findings: 

Erin: I don’t know how I should prove this … if I have to do some general method. 

Sebastian: I don’t know if I shall demonstrate that it should be the same thing there, for every 

measure. But now in my head it sounds like that it should be so. 

Larry: Yes, I suppose, but I don’t know how to confirm it, it only feels that way. 

Thus, the increase of G from 0% to 2% (Table 1) occurred because during the reflective interview 

connected to T2, when offered additional opportunities to reflect over the patterns in her numerical 

results, Erin performed a successful generalization of the obtained solutions, and stated: 

Erin: I’ve never made a general solution like this ... But it was fun ... Especially when it 

concluded in something. 

When concerning the efficiency of the applied methods, the analysis shows that Earl, Linda and 

Heather solved both tasks properly by applying general, algebraic methods. Conversely, purely 

numerical approaches didn’t lead to fully acceptable results. The most efficient solutions were 

offered by Linda, who applied the same algebraic model (and its identical steps) at both tasks. 

 



The role of mathematical memory 

The recalling of the applied methods several months after solving a problem is a typical display of 

mathematical memory (Krutetskii, 1976). Thus, another main criterion for the study was that both 

tasks could be solved with similar methods. However, only Earl and Larry associated T2 to T1: 

Earl: We got a very similar task last year, when we had the circle and that semicircle. 

Larry: We did a pretty similar task last time, when it was something like this, something 

with the radius or diameter on them. 

Earl and Larry applied identical methods at the individual level when approaching both tasks. That 

is, Earl solved both tasks by using the same algebraic method, while Larry approached both tasks 

with the same numerical method. However, Earl’s algebraic method gave accurate solutions while 

Larry couldn’t solve any task properly. The other four students said that they didn’t associate T2 to 

T1. But even though not recalling T1, they approached both tasks in identical ways at the individual 

level. For example, when Linda solved T2, despite stating that she didn’t think at all of T1, she 

applied the same general method as a year before: 

Linda:  I will bring up the same task as last time, with triangles and squares. It is a bit the 

same thing ... I connect very often geometrical tasks to that. I have written that 

solution many times and I can see every step in the process in front of me. 

As seen above, Linda refers to a generalized method which she associates to a geometrical task – 

about finding the side of a square drawn in a right triangle – which differs considerably from the 

proposed tasks. Yet, influenced by her mathematical memory (Krutetskii, 1976, p. 300) she states 

that “It is a bit the same thing” and applies the same method when solving both T1 and T2. 

Heather as well used identical algebraic approaches for both tasks a year apart: 

Heather (T1): I needed a common variable. Otherwise it will be difficult to calculate. 

Heather (T2): I needed some relation among these sides in that and the large square’s sides. 

Otherwise it will be difficult. 

Also the individual approaches of Erin and Sebastian were respectively identical; Erin approached 

both tasks by reasoning, testing numerical values and applying particular solutions, while Sebastian 

reasoned carefully before requesting the use of numerical values at both occasions. Thus, every 

participant approached both tasks identically at the individual level. The analysis also shows that M 

is displayed mainly at the beginning of the process, for recalling mathematical relations and 

problem-solving methods; moreover, none of participants modified the initially selected methods. 

Discussion 

One of the aims of this study was to display the role of the mathematical memory (M) when high-

achieving students solve non-routine tasks, which can be solved with similar methods. Despite its 

small proportion, M seems to play a pivotal role in problem-solving because the participants 

selected their methods at the early stages of the process and the methods were not changed later. 

Thus, by confirming earlier results (e.g. Szabo & Andrews, 2017), it seems that the choice of 

methods is directly influenced by M and it is critical for the success of the problem-solving. 



However, unexpectedly, only two of the six participants recalled the solution process to the earlier 

task, contradicting Krutetskii’s (1976) finding that able students recall the process but not the 

context of earlier problems. But even when not recalling T1, every participant approached both 

tasks in the same individual way. For example, Linda’s method, connected to a square in a triangle 

and apparently very different from what is predicted, is a general approach that she uses for non-

routine geometrical tasks. And even though the individual approaches of Erin, Larry and Sebastian 

were not successful when solving T1, they were repeated a year later. Thus, it seems that the 

participants rely on methods which appear to be inflexible and applied regardless of their success. 

The general structure of the participants’ mathematical abilities indicates that O and M decrease 

while P increases at the second observation. Hence, it is not unreasonable to assume that the 

displayed stability of the individual approaches made O and M more efficient at T2, and therefore 

students had a larger focus on P. And even if none of the students could generalize numerical results 

at the first observation, Erin generalized her results during the interview after T2. Thus, when 

additional opportunities were offered, by evolving the patterns in her numerical results, which may 

be interpreted as a form of convergent thinking (Tan & Sriraman, 2017), Erin could improve the 

quality of her problem solving. These findings may suggest that some participants are unlikely to 

have experienced teaching focused on methods of generalization, because the individual structure of 

the mathematical ability depends on received instructions (Krutetskii, 1976). However, by 

confirming earlier studies (e.g. Krutetskii, 1976), the methods of this study were not able to 

differentiate M from O during episodes when students did not say or write anything; thus, a better 

investigation of the mathematical memory requires further studies. In addition, the study shows that 

mathematical memory has a key role during the early stages of problem-solving (e.g. Szabo & 

Andrews, 2017) and that individual problem-solving methods seem to be very stable and apparently 

independent of their efficiency when high-achievers solve non-routine tasks. Finally, the study 

indicates that, if given additionally opportunities to reflect over their numerical solutions, some 

students might be able to display their ability to generalize mathematical relations and operations. 
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The present study aimed at investigating the mathematical values embedded in the Turkish Middle 

School Mathematics Applications Course Curriculum (MACC). For this purpose, MACC was 

carefully analyzed by considering main components of the curriculum. The findings indicated that 

all of the mathematical values, namely objectism, rationalism, control, progress, openness and 

mystery, were embedded in MACC. Although the balance among the embedded mathematical 

values in MACC was not equal, the findings clearly proved that the mathematical values were taken 

into consideration by curriculum developers, and thus it might be expected to raise awareness 

among mathematics teachers, students as well as textbook writers about the values in mathematics 

education. 

Keywords: Mathematical values, mathematics applications course, curriculum analysis.  

Background of the study 

In almost all field of human endeavor, astounding developments and advancements are indebted to 

mathematics to a great extent. Among the other disciplines, “… mathematics was considered the 

Queen of the sciences.” (Gregorian, 2009, p. ii). Mathematical literacy has always been at the heart 

of nations’ capacity for economic growth and social welfare. In other words, there is no doubt that 

mathematics is not only vital to economic prosperity; but also a fundamental skill for life. Thus, it is 

essential for all societies to provide learning opportunities in which students will possess and use 

the understanding of mathematics purposively and interactively. Although mathematics is 

considered as one of the crucial subjects of school, it is a well-known fact that “…many students 

leave school with negative attitudes towards mathematics; some dislike the subject, others feel 

inadequate about it, still others feel it is irrelevant in their lives. This is an unacceptable outcome of 

school mathematics.” (Education Department of Western Australia, 1998, p.9). In many classrooms, 

mathematics has delivered in a way that follows a textbook under the guidance of a teacher with 

little emphasis on affective side of mathematics. Thus, most of the students perceive mathematics as 

a non-creative, mechanical, value-free and teacher- or textbook writer-invented subject (Diamond, 

2001). Seah, Andersson, Bishop, and Clarkson (2016) argued that such negative perceptions held by 

many students are not due to the nature of mathematics itself. It is most likely as a result of 

developing and implementing a mathematics curriculum which is full of concepts, skills, and 

procedures but not explicitly include the values of mathematics and the values of mathematics 

education. Indeed, values are powerful tools for promoting cognitive and affective development in 

mathematics education since they lead teachers’ and students’ interests, thoughts, decisions, 

preferences and behaviors about mathematics (Bishop, 2008; Corrigan, Gunstone, Bishop, & 

Clarke, 2004). The values expressed by teacher either intentionally or unintentionally in the context 

of the mathematics classroom may root in his/her personality, pedagogical approach and 

instructional materials preferred to use, etc. However, the important point is here that “what kinds 
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of values are embedded in the intended mathematics curriculum?” Because as a teacher, it is his or 

her responsibility to implement the curriculum as intended. Therefore, analysis of curriculum 

regarding mathematical values will shed lights on what kind of values that a teacher is expected to 

convey into instruction as well as what kind of an image of mathematics is going to be presented for 

students.  

Affective issues in mathematics learning and teaching have been a prolonged and persistent interest 

among researchers. McLeod (1992), attributed to as the pioneer in work on the affective dimension 

of mathematics education (Gil, Blanco, & Guerrero, 2006), identified three main constructs of 

affect as beliefs, attitudes and emotions “...representing increased levels of affective involvement, 

decreased levels of cognitive involvement…” (p. 579). The scope of the mathematics-related affect 

has broadened with the addition of a fourth construct – values (sometimes including morals /ethics) 

– by such leading works of Bishop (2001); De Bellis and Goldin (2006); Leder and Grootenboer 

(2005). Considering the studies on the affective constructs such as beliefs, motivation, anxiety and 

attitudes, research on values in mathematics education is still insufficient (Zan, Brown, Evans, & 

Hannula, 2006). Leder and Grootenboer (2005) stated that the field of affective domain has been 

dominated by the studies on beliefs and attitudes, yet there has been a few number of study 

concerned with values. Although different conceptualizations of values in mathematics education 

have been described in the literature, the Bishop’s (1988) classification of the mathematical values 

provides a widely-used framework while analyzing mathematical values (Hannula, 2012; Seah, 

1999). Besides, there is no doubt that mathematics is the sum of the human activities, and thus the 

Bishop’s framework (1988) not only gives room for discussing the values from the socio-cultural 

perspective but also corresponds to White’s (1959) three components of culture – ideology, 

sentiment, sociology. In this respect, the present study is primarily concerned with “mathematical 

values” and thus the Bishop’s framework was chosen to analyze the mathematical values. 

According to Bishop (1988), Rationalism-Objectism (the ideological component of mathematical 

values), Control-Progress (the sentimental component of mathematical values), and 

Openness/Mystery (the sociological component of mathematical values) are the mathematical 

values grouped as three pairs of complementary values. Table 1 summarizes each pair of 

mathematical values.  

During the past decade, there have been the bulk of theoretical and research-based arguments on 

values in mathematics education (e.g. Values in mathematics and science education by Bishop, 

2008; Identification of a learner’s value orientations in mathematics learning by Seah, Zhang, 

Barkatsas, Law, & Leu, 2014), yet the number of the studies on mathematical values embedded in 

math curricula is still very limited. In this respect, the present study aimed to is to explore the 

mathematical values embedded in the Turkish Mathematics Applications Course Curriculum 

(MACC) by addressing the following research questions: (1) What are the mathematical values 

embedded in the MACC? (2) Where are the mathematical values located in the components of the 

MACC?  



 

Three Pairs of Mathematical Values 

Rationalism Objectism 

Focuses on the development of students’ mathematical 

reasoning through discussions, explanations, evaluating 

their way of solutions etc.  (Bishop, 1988, p. 62). 

Focuses on concretizing abstract ideas through the use 

of symbols and objects, promoting to use different 

kind of representations  (Corrigan, et al., 2004) 

Control Progress 

Focuses on control ensured by the nature of mathematics 

for the problems related to both natural phenomenon and 

social environment through application of mathematical 

knowledge and favors stability (Seah & Bishop, 2000).  

Puts emphasis on change and progress in society by 

means of mathematical knowledge (Seah & Bishop, 

2000). 

Openness Mystery 

Focuses on transparency/verification aspects of 

mathematical ideas and conclusions through proofs 

(Corrigan, et al., 2004) 

Focuses on mystique and unclear origins of 

mathematics and puts emphasis on dehumanized 

knowledge, intuition, wonder (Corrigan, et al., 2004) 

Table 1: Three Complementary Pairs of Mathematical Values 

In 2012, a comprehensive change took in the Turkish educational system. The length of compulsory 

education was increased from 8 to 12 years and redefined the system into three levels (12-years 

compulsory education covering 4-years elementary, 4-years middle and 4-years high school) and 

this structural reform required for the curricular revision as well. One of the results of the curricular 

revision was the inclusion of more than twenty elective courses offered for the Turkish middle 

school students who can able to choose max.6 hours in a week. Along with the fact that 

mathematics is one of the core subjects of the curriculum, “Mathematics Applications Course” 

(MAC) is one of the elective courses for middle school students since 2013-2014 academic year. 

According to statistics, MAC is the most popular elective course among 5th-7th graders in 2014-

2015 academic year (Ministry of National Education [MONE], 2015). The main purpose of MAC is 

not only to improve students’ mathematical knowledge and skills but also to like mathematics and 

develop positive attitudes towards mathematics through the learning opportunities that allow 

students to practice mathematics (MONE, 2013).  

Keeping in mind that the concept of a value is associated with “what is desirable, preferable, 

worthy, important, right, or beneficial” (Bishop, Seah, & Chin, 2003, p. 723) by different scholars 

and they, as cultural products, depend on personal choices, preferences and decisions, the focus of 

the present study is on the mathematical values of the mostly chosen elective math course by the 

Turkish middle school students. In this respect, the present study might shed lights on what kind of 

values about mathematical knowledge and discipline that a teacher is expected to convey into 

instruction as well as what kind of an image of mathematics is going to be presented for students. 

Further, the results of the study might raise the awareness of curriculum developers, mathematics 

teachers, and textbook writers about the values in mathematics education. It is also expected that the 

results of this study may contribute to the math-related affect studies by giving an example from the 

values of mathematics in the Turkish Mathematics Applications Course Curriculum. 

Method 

This study was designed to explore the mathematical values in the MACC (5th-8th grade). For this 

purpose, data were collected through document analysis. The main data collection source of this 

study was MACC published by the MONE. In this respect, the focus of the present study is on the 

intended curriculum and limited to the MACC which is available on the MONE’s official website. 



Before the data analysis process, the framework for curriculum analysis was developed by 

considering the literature on the mathematical values and the structure of MACC as well as the 

research questions. In order to portray the mathematical values, namely “Rationalism-Objectism; 

Control-Progress and Openness-Mystery”, Seah’s outline of the major signals for the mathematical 

values was adapted (Seah, 1999, pp.110-111). Afterwards, MACC was examined carefully to find 

out what type of mathematical values embedded in which part of the curriculum. MACC consists of 

8 main chapters as (1) Introduction part; (2) Aims of MAC; (3) The developmental characteristics 

of middle school students; (4) The structure of core mathematics curriculum; (5) Explanations about 

the implementation process of MACC; (6) Basic principles of MAC; (7) Assessment and evaluation 

process and (8) Learning objectives of MACC. While locating and analyzing the data, the 

researchers independently read all chapters line by line and coded all instances of the mathematical 

value statements in MACC according to the framework. To establish internal consistency, inter-

coder reliability was carried out using the formula (Reliability= Number of agreements / Total 

number of agreements + Disagreements) proposed by Miles and Huberman (1994). A high 

agreement score (0.92) between the two coders (the researchers) was obtained. Then, the basic 

descriptive statistics including frequencies and percentages were carried out by means of IBM 

SPSS.23. 

Results 

The mathematical values in the Turkish Mathematics Applications Course Curriculum 

The major focus of the content analysis here was to identify all instances of the mathematical values 

in the written curriculum, namely MACC. The findings indicated that totally 39 value signals of the 

mathematics embedded in MACC. As given in table 2, it is obvious that objectism (f = 10) was 

emphasized more than rationalism (f = 6); progress (f = 8) was emphasized more than control (f = 2) 

and openness (f = 12) was emphasized more than mystery (f = 1). According to the results, while 

“openness” (f = 12) was the most-emphasized value; there is only one reference to the value of 

“mystery” (f = 1) in MACC. 

Mathematical Values Number of value signals (f ) Proportion (%) 

Rationalism 6 15.4  

Objectism  10 25.6  

Control 2 5.1 

Progress 8 20.5 

Openness 12 30.8 

Mystery 1 2.6  

Total  39 100 

Table 2: The proportional distribution of mathematical value embedded in MACC 

The place of the mathematical values in MACC  

The last research question of the study aimed to portray the parts of MACC in which the 

mathematical values are embedded. As given in Table 3, the results indicated that the mathematical 

values mostly located in the learning objectives (f = 14).  However, both in the introduction part and 

assessment part of MACC, only three statements referring to the mathematical values were found.  

 

 



 

Mathematical values Introduction Aims & Principles Objectives Teaching & Learning  Assessment  

Rationalism 1 2 1 1 1 

Objectism 0 2 6 1 1 

Control 0 0 1 1 0 

Progress 1 3 3 1 0 

Openness 1 4 3 3 1 

Mystery 0 0 0 1 0 

Total 3 11 14 8 3 

Table 3: Frequencies of the mathematical values embedded in the parts of MACC 

Considering the Introduction part, it was found that the value of rationalism was embedded in the 

statements explaining the importance of providing the learning opportunities to develop students’ 

mathematical thinking as well as finding reasonable, rational and logical solutions/answers for 

problems. It was also found that the value of openness was conveyed in the expressions about the 

importance of cooperative learning. In addition to rationalism and openness, the value of progress 

was highlighted in the introduction part through the statements putting emphasis on making 

connections with mathematics and daily life. Further, the value of rationalism, objectism, openness, 

and progress were included in part of the Aims and Principles of MACC. More specifically, the 

value of rationalism was embedded in such statements that underline the use of mathematical 

reasoning; focusing on symbolization and modelling portrayed the value of objectism; putting 

emphasis on group working, sharing/discussing ideas addressed to the value of openness; and the 

statements signifying the relationships between mathematics and the other disciplines as well as 

daily life were found as the indicators of the value of progress. It’s also noting worth that in the 

following statement, the attention aimed to draw on the mathematical values “…it is important for 

students to develop true values about mathematics” (p. 1). However, there was no explanation 

related to what are the true values about mathematics provided in this part of MACC. In order to 

portray the mathematical values, all learning objectives (totally 21) were analyzed in line with the 

framework. As given in Table 3, the mathematical values embedded in MACC were mostly located 

in the part of the Learning Objectives. The objectives putting emphasis on the use of appropriate 

mathematical symbols while solving problems were found as the indicators of objectism; asking 

students to discuss their solutions process through mathematical reasoning were the indicators of 

rationalism. Additionally, the learning objectives that put emphasis on the development of students’ 

problem solving abilities through daily life math problems were considered as the indicators of 

progress, and the objectives aimed to promote students’ procedural fluency through the tasks asking 

to test or evaluate the way of solution process were the signs of control. Further, the learning 

objectives aimed to improve students’ problem solving skills through sharing/discussing ideas and 

pose questions/problems were found as the indicators of openness. Considering the part of Teaching 

and Learning Approach, it was found that while the value of objectism was fostered through the 

statements suggesting the use of different kinds of representations in problem solving process, the 

value of rationalism was embedded in the explanations related to the characteristics of problems 

that should promote students’ mathematical reasoning. The indicators of control were found in the 

sample problem that required using of mathematical knowledge in an attempt to change the 

environment. The sample problem also indicated the value of progress by means of addressing the 

relationship between mathematics and daily life. The statements emphasizing the idea of sharing 

information and collaborative working were found as the indicators of the value of openness. 



Besides, the statement suggesting the use of interesting mathematical games was found as the only 

one indicator of mystery. In the last part of the MACC, Assessment and Evaluation Process, three 

types of mathematical values were found. The value of rationalism was embedded in the statements 

suggesting the development of students’ reasoning and logical thinking skills should be assessed by 

such methods as classroom observations, self-evaluation reports, etc. Besides the value of objectism 

was found in the statements that ask teachers to evaluate students’ ability to use different 

symbolizations while explaining their problem solving process. Finally, the value of openness was 

implied in the suggestions about the assessment of collaborative work.  

Conclusion and discussion 

The present study was designed to examine the mathematical values embedded in MACC which is 

the most popular elective course among the Turkish middle school students in 2014-2015 academic 

year. For this purpose, the written curriculum was analyzed by the researchers in a detailed manner. 

In general, it can be concluded that all of the mathematical values, namely objectism, rationalism, 

control, progress, openness and mystery, are embedded in MACC. Although the balance among 

these embedded mathematical values in MACC is not equal, the findings clearly proved that the 

mathematical values are taken into consideration by curriculum developers. Further, the results 

indicated that the value of openness was the mostly-embedded mathematical value in MACC and 

thus, it can be concluded that the democratic side of mathematics is intended to be promoted 

through communicating with the mathematical ideas and questioning the mathematical facts. In 

other words, the intended implementation process of MAC seems more likely to focus on the 

appreciating the role of public sharing and discussions in facilitating understanding of mathematics. 

On the other hand, a considerable amount of the signals were also placed on the value of rationalism 

and objectism in MACC. This situation might support a widespread image of mathematics as 

abstract, theoretical, ultra-rational discipline (Ernest, 2004).  

One of the more noteworthy findings to emerge from the present study is that both the value of 

progress and control were rarely mentioned in the curriculum. When considering one of the main 

aims of MAC that provide learning opportunities for students to experience mathematics through 

mathematical problems and to develop their mathematical knowledge, it is quite surprising. 

Besides, there was only one reference related to the value of mystery found in MACC. Such little 

emphasis on the value of mystery might limit the opportunities indicating the mystical, surprising, 

and fascinating side of mathematics. Taken together, the results of the present study indicated that 

the image intended to transmit through MACC might be mathematics as symbolized, open to 

discussion, theoretical and questionable discipline. What research has found about the mathematical 

values embedded in math curricula yielded the similar results with the present study (Clarkson & 

Bishop, 2000; Seah et al., 2016).  Moreover, the following statement “…it is important for students 

to develop true values about mathematics” (MACC, p.1) might be considered as evidence that 

explicitly mentioned “values about mathematics” in MACC. Nevertheless, it is too vague for 

teachers to interpret what are the true values about mathematics, so further explanation should be 

provided in the written curriculum.  

Considering the place of the mathematical values, the results indicated that the value signals were 

embedded in almost all parts of MACC. However, while the value of openness was placed in each 

part of the MACC, the value of mystery was only mentioned in the teaching and learning approach 



part. One of the main reasons behind this situation might be due to MAC itself. In other words, 

MAC mainly focuses on the development of students’ problem solving and mathematical thinking 

skills through the applications of mathematics. Thus, students are expected to learn collaboratively; 

to solve and pose problems from daily life and other areas of science; to share and discuss their 

ideas through mathematical reasoning and to test and evaluate their problem solving process rather 

than focusing on mystic and fascination sides of mathematics. Taken together, these results clearly 

indicated that the mathematical values were mostly embedded in the form of implicit statements in 

the different parts of MACC. Therefore, the reflection of these mathematical values from the 

intended to enacted curriculum might probably stay as hidden and vague. On the one hand, the 

image of mathematics embedded in the curriculum will shape students’ future choices and career 

plans about mathematics; on the other hand it will be shaped by the mathematical values hold by the 

curriculum developers. Therefore, it is essential to raise the awareness about the values in 

mathematics education as well as to conduct more studies on the mathematical values in the 

intended, enacted and attained math curriculum.     
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A case study on Finnish pupils’ mathematical thinking: Problem 
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In this article, the mathematical thinking of four Finnish pupils is reported using two temporally 

different data sets: problem-solving processes and view of mathematics. While the pupils seem 

similar on the surface level (high achievers, successful problem solvers, enjoy mathematics, 

motivated to learn mathematics), a closer look at their problem-solving processes and view of 

mathematics reveal very different strengths and weaknesses in their mathematical thinking. Most of 

the similarities in this study were found in individual pupils’ problem-solving processes and view of 

mathematics. 

Keywords: Problem solving, view of mathematics, affect, metacognition, meta-affect. 

Introduction 

Developing mathematical thinking is one of the key tasks for mathematics instruction in the Finnish 

curriculum (FNBE, 2014, 2004). And indeed, Finnish pupils have succeeded well in international 

studies that assess pupils’ mathematical thinking (PISA and TIMSS; see e.g. OECD, 2014; Mullis, 

Martin, Foy, & Arora, 2012). However, the most recent national and international studies show that 

the mathematics performance of Finnish pupils is descending (e.g. Välijärvi, 2014; Rautopuro, 

2013). Additionally to the alarming trend in mathematics performance, we know very little about 

Finnish comprehensive school pupils’ mathematical thinking that go beyond paper tests. Thus, a 

quantitative research study was conducted with the aim of describing what characterises Finnish 15-

year-old pupils’ mathematical thinking. 

On the way to describe what characterises Finnish pupils’ mathematical thinking, the study reported 

in this article examines four high-achieving Finnish pupils’ mathematical thinking through the 

intertwined relationships of problem-solving processes and view of mathematics. While some of the 

results of individual pupils’ mathematical thinking have been discussed in previous publications 

(Viitala, 2013; 2015; 2016a), the purpose of this paper is to bring the results together, and answer 

what similarities and differences related to mathematical thinking can be found between these 

pupils. With this question, we can reveal some of the possible trends in skills and competences that 

the Finnish high-achieving pupils might have in their mathematical thinking. 

Theoretical framework 

Developing pupils’ mathematical thinking is in the heart of mathematics education, also according 

to the Finnish curriculum (FNBE, 2014). While research in mathematics education does not seem to 

have a common understanding of the meaning of mathematical thinking, Schoenfeld (1992) 

recognised five aspects that are important in a study on mathematical thinking: the knowledge base, 

problem-solving strategies, monitoring and control, beliefs and affects, and practices. Similar 

findings have also been found in connection to literature on problem-solving performance (Lester 

1994), and are also listed as part of final-assessment criteria in the Finnish curriculum (see FNBE 

2014, pp. 433-434). 



Similarly as the most recent theories on affect, mathematical thinking can be viewed through two 

temporally different aspects: state and trait (cf. Hannula, 2011; 2012). On one hand, mathematical 

thinking is always situational (state). Following Schoenfeld’s (1992) categorisation, it is influenced 

by the pupils’ knowledge base and heuristics, and guided by their metacognitive skills, affects and 

classroom practices. In this study, mathematical thinking is studied through problem-solving 

processes. In other words, ‘pupils’ activities, actions and explanations during problem solving are 

interpreted as visible signs or expressions of their mathematical thinking’ (Viitala, 2015, p. 138). 

Pupils’ problem-solving behaviour is influenced by pupils’ metacognition, affect and meta-affect 

that occur in a problem-solving situation. The successful application of problem-solving activities at 

the correct moment is a result of metacognitive skilfulness (e.g. van der Stel, Veenman, Deelen, & 

Haenen, 2010), affect influence the problem-solving situation for instance through the feeling of 

confidence, and meta-affect transforms individuals’ emotional feelings (DeBellis & Goldin, 2006) 

and directs problem solving behaviour (Carlson & Bloom, 2005). 

On the other hand, problem-solving situations can show patterns of thought that can be interpreted 

as signs of more stable ways of thinking. Some of these patterns can also be revealed through 

pupils’ view of mathematics (see e.g. Viitala, 2016a). View of mathematics draws from 

psychological theories. It is a mixture of cognitive, motivational and emotional processes that 

include for instance beliefs, attitudes, values, feelings and motivation (Hannula, 2011; 2012). In this 

study, view of mathematics is studied through four components: mathematics (as science and as a 

school subject), oneself as a learner and user of mathematics, learning mathematics, and teaching 

mathematics (Pehkonen, 1995, cf. Op’t Eynde, de Corte, & Verschaffel, 2002). 

Methods 

Data collection 

At the time of data collection, the four pupils (Alex, Daniel, Emma and Nora) were 15 years old and 

in their 9th and final year of compulsory school in Finland. Additionally, they were all high 

achievers (mathematics grades between 9 and 10 on a whole number scale of 4 to 10). 

The data was collected in three cycles over the course of three months. In each cycle, one 

mathematical task was solved in an ordinary classroom situation as a ‘main task’. The pupils solved 

the tasks individually but they were allowed to talk about the tasks with a friend or ask for help 

from the teacher. In each cycle, the pupils were video recorded while they solved the task(s) in class 

and their solutions on paper were collected. Below, there is an example of a main task (School 

Excursion, OECD, 2006, p. 87). 

A school class wants to rent a coach for an excursion, and three companies are contacted for 

information about prices. 

Company A charges an initial rate of 375 zed plus 0.5 zed per kilometre driven. Company B 

charges an initial rate of 250 zed plus 0.75 zed per kilometre driven. Company C charges a flat 

rate of 350 zed up to 200 kilometres, plus 1.02 zed per kilometre beyond 200 km. 

Which company should the class choose, if the excursion involves a total travel distance of 

somewhere between 400 and 600 km? 



In each cycle, the pupils were interviewed individually. The interviews took place either on the 

same day, or on the next day after solving the task in the classroom. The interviews contained two 

parts. The first part concentrated on affective traits and treated the following themes: pupil’s 

background, mathematical thinking, and pupil’s view of mathematics (following the categorization 

of Pehkonen, 1995; see example questions in Table 1, Viitala, 2016a, p. 1295). This part of the 

interview was semi-structured and focused (Kvale & Brinkmann, 2009). 

Theme Example questions 

Background Tell me about your family. 
Mathematical thinking 

Mathematics 
What does mathematical thinking mean? / How do you recognise it? 
What is mathematics as a science? / Does it exist outside of school? (How? Where?) 

Oneself and mathematics Is mathematics important to you? / Does it help you think logically? (How?) 

Learning mathematics How do you learn mathematics? / Is it most important to get a correct answer? 
Teaching mathematics Does teaching matter to your learning? (How?) / What is good teaching? 

Table 1: Interview themes and example questions. 

The second part of the interview was about problem solving. The classroom data was used as 

stimuli when the pupil’s problem-solving process was discussed. The pupils were asked to explain 

their thinking and actions during the problem-solving situation and additional questions were asked 

(e.g. what are you thinking now? Why are you doing so? What did you feel when you read the task? 

Did you think about your own thinking when solving the task?). 

Finally, in each interview, the pupils were asked to assess their confidence before, during and after 

solving the problem, as well as their confidence in school mathematics using a 10 cm line segment 

(scale from ‘I couldn’t do it at all’ to ‘I could do it perfectly’). All interviews were video recorded. 

Analysis 

Following the state and trait aspects of the study, the analysis was divided into two sections: 

problem solving and view of mathematics. The problem-solving processes were analysed first by 

going through the problem-solving phases introduced by Carlson and Bloom (2005): orienting, 

planning, executing and checking (cf. Polya, 1957). Then the results on problem-solving behaviour 

were complemented with metacognitive activities (orientation, planning, evaluating and elaboration 

van der Stel et al., 2010), affect (state and trait, as well as cognition, emotion, motivation; Hannula, 

2011; 2012) and meta-affect (DeBellis & Goldin, 2006) emerging in problem-solving processes. 

Finally, the pupils’ confidence to solve the problems was analysed. 

The first analysis of the pupils’ view of mathematics followed the themes of data collection 

(Pehkonen, 1995). After condensing the results, a pupil profile was created to be used as 

background information about the pupil. Pupil profile is a short description of the pupil that is based 

on the pupil’s mathematics grade, motivation to learn mathematics, and the core of his view of 

himself as a learner of mathematics (ability, success, difficulty of mathematics, and enjoyment of 

mathematics, following Rösken, Hannula, & Pehkonen, 2011). 

In the end, the results of problem solving and view of mathematics were compared to see if there 

are similarities in pupil’s problem-solving skills (state) and competences found through pupil’s 

view of mathematics (trait). More details of the methods used in the study are reported for instance 

in Viitala (in press). 



Results 

On a surface level, Alex, Daniel, Emma and Nora seem quite similar: they are all high achievers in 

mathematics, they enjoy mathematics, and they are motivated to learn mathematics (see excerpts in 

Table 2). They are also successful problem solvers, that is, they could solve all the problems given 

to them in the study and justify their answers and solutions. However, a deeper look at their 

problem solving and view of mathematics introduce four pupils with a very different skills and 

competences. In the following, the key results of each pupil will be introduced individually. 

Alex is very fluent and thorough mathematics learner and problem solver. He can move naturally 

between different phases of problem solving. He is aware of his own thinking and fluent in 

explaining and justifying his cognitive and metacognitive actions in problem solving. Similarly, 

when explaining his learning of mathematics, he says he is actively seeking for connections 

between new knowledge and prior knowledge, and he is able to spontaneously give examples of this 

behaviour. He says he trusts his own thinking more than his calculations, and shows to be able to 

direct his behaviour according to his affects in problem solving. He is confident in school 

mathematics but in the interviews, he constantly compares his abilities to mathematics as a science 

and recognises that there is much more than school mathematics (more results in Viitala, 2013; 

2016b). 

Whereas Alex seems to be very fluent in every aspect of mathematical thinking studied in this 

research project, from a similar starting point, Daniel shows somewhat different strengths in 

mathematics. Unlike any of the three other pupils, he is extremely confident in mathematics. He 

says that mathematics is easy for him, and he shows to be very aware of his success in mathematics. 

His confidence seems to guide also his problem-solving processes. He is able to move fluently back 

and forth between problem-solving phases and is skilful in performing metacognitive acts. 

However, even though (or because of) learning mathematics and solving problems are easy for him, 

he cannot explain the processes he goes through in or for learning, and he has problems in 

explaining his problem-solving actions after the problem-solving situation. An illustrative example 

of this situation is Daniel’s explanation about how he learns mathematics: pieces just click together 

or things become familiar (more results in Viitala, in press). 

Similarly as in Daniel’s case, also Emma’s learning of mathematics and problem solving are 

strongly influenced by her confidence in mathematics, or more precisely, her lack of confidence. 

Because of the uncertainty in mathematics, for Emma, learning takes time and effort. She says she 

learns every topic as a separate entity, and she is able explain the steps that are needed for her to 

learn a new thing. Similarly, she uses a considerable amount of time for orienting and planning in 

problem solving. After understanding the problem and the given data, she is able to follow her plan 

through and check her solution. It seems that Emma‘s uncertainty in mathematics makes her work 

harder, and through hard work, she succeeds in mathematics. Moreover, she says that succeeding in 

mathematics and understanding it, makes it worthwhile studying. On the other hand, affect can also 

be an obstacle in her problem solving, since she does not seem to have efficient tools to overcome 

the feeling of getting stuck (more results in Viitala, 2015; 2016a). 

Also for Nora, learning mathematics takes time and effort but after learning something, applying is 

easy. She says that she is quite confident in mathematics and likes learning mathematics very much. 



She is capable in explaining her thinking and problem solving, and connecting mathematics to her 

own life. She also has a diverse view of mathematics as a science. In problem solving, she is 

flexible in directing her actions based on the affective states occurring in problem-solving 

situations. She is also fluent in moving between orienting, planning and executing in problem 

solving. However, given the choices she had made while planning, she is happy with the first 

answer she gets, and does not check her results (more results in Viitala, 2015). 

 Ability and success Difficulty of mathematics Enjoyment of 

mathematics 

Motivation to learn 

mathematics 

Alex Confident in math; deserves 

the high grade: knows 

school math quite 

thoroughly 

Learning ‘a separate thing’ is 

easy, connecting it to ‘other 

things’ might take time 

Learning math is fun 

and interesting; 

routine learning is 

boring 

Good grade and 

future studies, also 

understanding the 

issue at hand 

Daniel Very confident in math; can 

do math well; deserves the 

high grade (active learner, 

succeeds in tests) 

Learning math is easy and it 

does not take much time or 

effort 

Math is enjoyable, 

even fun 

Math is needed 

through life; the 

most important 

school subject 

Emma Not confident in math; could 

not get a better grade in 

math 

Learning math takes time and 

effort 

Learning math is 

irritating and tiring; 

succeeding and 

understanding is fun 

Wants to succeed in 

mathematics and be 

proud of herself; 

future studies 

Nora Quite confident in math; not 

perfect in math but deserves 

the high grade in school 

math (active learner, 

succeeds in tests) 

Math can be easy or difficult, 

more on the easy side; 

learning takes time and 

effort, applying after that 

does not 

Learning math is 

interesting, likes math 

very much 

Good grade; wants 

to learn math 

Table 2: Examples of pupils’ own statements about their view of mathematics (cf. pupil profile). 

Some reflections of the results 

In addition to forming descriptions of pupils’ mathematical thinking, and showing pupils’ strengths, 

the study also revealed issues that pupils could work with in order to develop their mathematical 

thinking. For instance, even though Alex was fluent in problem solving and school mathematics, he 

did not relate the problems to real life and his view of mathematics outside school was quite limited 

(see Viitala, 2013, 2016b). Recognising mathematics more in his own life could enrich Alex’s view 

of mathematics, and through that, also his understanding of school mathematics might develop. 

Daniel, on the other hand, had problems explaining his thinking after the problem-solving situation 

and had similar problems with explaining his mathematics learning (see Viitala, in press). Problem 

solving and learning mathematics might be easy for Daniel in compulsory school, but what happens 

if (when) the situation changes? Becoming aware of his own learning and problem-solving 

processes could help him cope in new situations and develop his metacognitive skills not only in 

mathematics but also in other school subjects. 



Emma’s weak point was her uncertainty which she had turned into success in problem solving and 

learning of mathematics. She had overcome some of the uncertainty with the support of her family 

(see Viitala, 2016a). However, because she was not confident in mathematics, she learnt every topic 

in mathematics as its own entity, and did not connect it to prior knowledge. This might also hinder 

her learning. Hence, supporting Emma emotionally could open doors to more thorough learning and 

understanding of mathematics. Finally, Nora’s results were not always correct, and both her 

activities and explanations showed that she does not evaluate her problem-solving process or check 

her results (see Viitala, 2015). Supporting her to look back, and perhaps exposing her more to, for 

instance, open problems, might help her to become more reflective user and learner of mathematics. 

Summary and discussion 

The purpose of the paper was to answer the question what similarities and differences related to 

mathematical thinking can be found between the four Finnish high-achieving pupils. Mathematical 

thinking was studied through two temporally different data sets: problem-solving processes (state) 

and view of mathematics (trait). The results showed that the similarities between the pupils were 

found to be mainly on a surface level: all the pupils liked mathematics, were motivated to learn it, 

enjoyed doing mathematics and were successful problem solvers. However, after a deeper look into 

their problem-solving processes and view of mathematics, the study revealed a great deal of 

differences between the pupils, and showed different competences: Alex is a very conscious thinker 

and learner of mathematics, and excellent in justifying his thinking and actions in mathematics. 

Daniel is extremely confident and metacognitive skills are prominent in his problem solving. Emma 

is an unsure but very thorough problem solver and learner of mathematics. Nora is fluent in 

expressing her thoughts and connecting mathematics to real life. 

In addition to the strengths found in these four pupils, the framework also revealed some of their 

weaknesses. The strengths, together with the weaknesses can be used to support individual pupils’ 

development in mathematics. For instance, Alex seemed to see mathematics only as a tool to solve 

something and his view of mathematics outside school was quite limited (see Viitala, 2013, 2016b). 

This knowledge can be used to develop pupil’s mathematical thinking. Four years after the data 

collection of this research project, I met Alex again. At this point, Alex was as a university student. 

He explained that only after realising the tool value that mathematics had for him, and learning that 

mathematics is not just calculations but also ways of thinking, he began to see mathematics 

everywhere in his real life, and he began to use his mathematical thinking more creatively (see 

Viitala, 2016b). 

All in all, the results showed that even though the pupils seem similar on the surface level, on a 

closer look, they have very different skills and competences in mathematics. This is an indication 

that the framework allows different pupils to show different strengths, and also different 

weaknesses in problem solving and learning of mathematics. Hence, the framework could assist 

also teachers to pay attention to the aspects that pupils might need help with in developing their 

mathematical thinking, which in turn can help the pupils to recognise the knowledge, skills and 

affects that might need further developing (cf. FNBE, 2014, p. 377; Viitala, in press; see also 

Viitala, 2015). An example of how teachers can use this framework to support their teaching is 

presented in Viitala (in press). 
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Background 

Around four decades ago the use of programming as a medium for mathematical learning became 

the focus of research for some mathematics educators (Papert, 1980; Noss and Hoyles, 1992). The 

new computing curriculum in the UK with a strong focus on programming inspired the 

ScratchMaths project which rescues this idea and aims to exploit the potential of programming in 

Scratch to support mathematical thinking (Benton et al., 2016). Using this project’s designed 

materials the purpose of my research has been to investigate the kind of affective reactions that 

emerge from the experience of Year 5 children working with the activities during their computing 

lessons. Given the connection of the materials with mathematics, and the relationship between 

mathematical and computational skills, those children that underperform in both subjects have been 

of particular interest for my study. Three Year 5 classes (sixty 9-10 years old in total) from a 

primary school in London and taught by the same teacher were observed for sixteen weeks during 

computing lessons. 11 children were purposively chosen to participate in the research. 

Building mainly on the literature on affect and mathematics education (McLeod, 1992; Hannula, 

2012) and based on results from the pilot study, three categories concerning efficacy beliefs and 

emotions were explored: perceived efficacy, general emotion and emotion enjoyment. The three 

main research questions were: 

- What kind of experiences do participants have when working with the activities?

- What changes can be observed (positive/negative evolution of the learner’s perspectives)?

- On what might a positive or negative evolution of the learner’s perspective depend on?

Methodology 

The research used a case study approach and combined different methods for data collection: 

questionnaires (a short questionnaire administered lesson by lesson during 12 weeks and the 

attitudes towards Scratch questionnaire), field notes, students’ work and critical incident (CI) 

interviews. The short questionnaire allowed the researcher to capture systematic information along 

the three categories explored regarding different types of tasks. Indicators above 5 were considered 

positive reactions, below 5 were considered negative reactions, and equal to 5 were considered 

neutral. Key moments were identified and were then triangulated with data from other sources. 

Results  

Kim’s responses to the short questionnaire (Figure 1, left) suggest that for her, positive affective 

reactions tended to happen when the activities were of an exploratory nature and negative reactions 



 

when the activities had a more explicit mathematical focus (Figure 1, right). Nonetheless, she had 

positive or neutral experiences around 80% of the times that the questionnaire was applied. 

                         
Figure 1: On the left, graph of Kim’s response to the short questionnaire. On the right, examples of a 

task with mathematical focus (lesson 5) and a more playful and exploratory task (lesson 6) 

Data from the affect towards Scratch questionnaire administered in January and June of 2016 

indicates that she had had a negative evolution of perspectives as a learner in this context. Data 

triangulation from all sources suggests that Kim had noticed a connection between the activities and 

mathematics and that this connection might have played a crucial role in her learning experience. 

Children who struggle with mathematics may be in disadvantage when tackling some of the 

ScratchMaths activities on their own in classroom conditions. In the case of Kim, the involvement 

of mathematical skills in the activities seemed to trigger negative affective reactions and the belief 

that she just could not do it. However, when extra material and individual support was given during 

the lesson she was able to solve the task, help other students in the class, and moreover, she 

regarded that particular lesson as her best moment working with the activities. 
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Theoretical background 

The poster gives an overview of the research and theoretical background of an ongoing dissertation 

project the major focus of which is on metacognition in mathematics education. A central objective 

is the documentation of metacognition during mathematical activity in prospective mathematics 

university students and using the results of this study to expand upon existing category systems of 

metacognition – especially for the field of Calculus. 

Metacognition is generally understood as knowledge about and cognitive processes dealing with 

(one’s own) knowledge and cognitive processes (Flavell, 1976) as well as regulating those. 

Metacognition is usually divided into a declarative and a procedural component and their respective 

sub-categories. Declarative metaknowledge signifies available, explicable knowledge a person 

possesses about the workings of their own cognitive functions and knowledge. Further specifying 

the concept, declarative metaknowledge can be subdivided into the three categories person 

knowledge, task knowledge and strategy knowledge. Procedural metacognition on the other hand is 

focused on planning, cognitively monitoring, reflecting and evaluating cognitive activity as well as 

regulating the latter. (Schneider, 2010) 

It is expected here that in order to be metacognitively active during mathematical learning or 

problem-solving processes two or more of these (and possibly further) subcategories “interact”. 

The usefulness of metacognition (for learning and doing mathematics) has been documented in the 

past.  

On the mathematical side of the project, the field of Calculus/Analysis was chosen due to its 

potential for metacognitive activity. For example, developing a stable idea of the concept of limit 

demands for a change in perspective when dealing with its dynamic and static aspects and 

integrating them into a coherent idea. It seems likely that the ability to metacognitively reflect and 

regulate one’s own learning processes is beneficial to enable this change and for mathematics 

learners and practitioners in general.  

Research questions 

1) Which kinds of metacognitive activity can be observed in high school graduates/ prospective 

mathematics students when dealing with mathematics? 

2) Can these activities be fully described using existing category systems or can they be used to 

expand those? 



3) How and where can metacognitive activity be beneficial with regard to the field of

Calculus/Analysis? What will a category system look like that classifies the term

metacognition for that field and expands existing – and possibly more general – models?

Empirical study 

Prospective mathematics students’ pre-existing use of metacognition was documented via a 

qualitative interview study at Wuerzburg University. As a sample group, eleven prospective 

students from mathematics study courses were selected on a voluntary basis. Five participants were 

invited for a single interview (one participant, one interviewer) in order to avoid inhibitors between 

two or more participants (such as shyness, different levels of extroversion or different levels of 

(perceived) “competence”). Six participants were interviewed in pairs (two participants, one 

interviewer) to reduce inhibitors between interviewer and participant (such as shyness, artificiality 

of the situation or different levels of mathematical experience) and to give the students the 

possibility to interact with each other – such as mutually explaining ideas and one’s understanding 

of a mathematical concept, motivating each other to go on, detecting each other’s errors and 

correcting them, discussing strategies, etc.. A partially-structured interview design was chosen, 

focusing on metacognitive activities during high school and on developing problem-solving 

strategies for a Calculus problem at hand. The interviewer had a manual at his disposal to guide the 

participants through various metacognitive topics, but in order to reduce influencing effects direct 

questions were avoided and the conversation was mostly left to the participants. The resulting 

interview transcripts are currently being evaluated by means of Qualitative Content Analysis 

methods (Mayring, 2010).  

Perspectives 

It is the aim of the project to specify the term metacognition and its sub-categories with regard to the 

field of Calculus/Analysis, building upon existing category-systems and expanding them. It is hoped 

that such an expanded category-system can be used as a base for introducing metacognitive activity 

in Calculus classes (at school and university level) in a structured way and to precisely evaluate 

students’ metacognitive “abilities”. Documenting prospective mathematics students’ pre-existing 

metacognition should help to both further specify the afore-mentioned categories and possibly add 

more sub-categories to the system, as well as to gain information about which metacognitive skills 

students may already possess and actively apply in their learning practice and which kinds of skills 

need to be strengthened and/ or introduced into a “metacognitively-supported” curriculum.  
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Introduction 

Within the context of mathematics education research there is strong agreement on the importance of 

language for learning and thinking, and on the centrality of being able to communicate 

mathematically for learning and teaching school mathematics. These standpoints are particularly 

idiosyncratic of TWG09 and the group of papers presented therein on the occasion of CERME10. It 

is assumed that developing more knowledge about language and language processes can aid the field 

in terms of a better understanding of what is involved in mathematics learning, teaching and thinking. 

In the centre of important debates around which theories and conceptualizations of language to take, 

there is a growing awareness that dialogue between theories will help to refine our approaches to the 

various phenomena embedded in mathematics education and language research. Within the context 

of TWG09, this awareness has been present in many ways over the course of past editions (e.g. Planas, 

Chronaki, Rønning & Schütte, 2015; Rønning & Planas, 2013). Also in the TWG09 sessions at 

CERME10 participants did not restrict themselves to ‘defending’ their positions. They were interested 

in exploring common ground and opportunities to take the field forward.  

The T of TWG09 stands for a number of topics, themes and theories. As a group, we cover 

frameworks drawing on linguistics, cultural and social semiotics, sociolinguistics, positioning theory, 

functional grammar, theory of didactical situations, social interactionism, and content analysis, to list 

only a few. The main idea we want to share in this short introduction is precisely the possibilities of 

dialogue between theories opened up to the group and to the domain by the existence of such 

theoretical diversification –i.e., the fact that theoretical perspectives mostly construct their identities 

by differing from others. Biehler, Scholz, Strässer, and Winkelmann (1994) recommend talking about 

diversification instead of diversity. Dialogue is seen to be one of the positive and productive outcomes 

of diversification, which can keep the domain moving in several ways.       

Diversification and dialogue in TWG09 

In this section, we take the collection of TWG09 papers at CERME10 to illustrate the line of argument 

of a landscape of diversification and dialogue. By commenting on the joint discussions within 

different groups of papers, we will claim that both diversification and dialogue were present in our 

working sessions. Throughout these sessions, the emerging common themes showed that dialogue, 

even if it sometimes remains elusive, is worth pursuing. Dialogue between perspectives was actually 

made possible because people from different perspectives worked together.   



In the first session, we had a discussion of four classroom-based papers by: Brandt and Keuch; Häsel-

Weide; Ingram, Andrews and Pitt; and Tatsis and Maj-Tatsis. All these papers have in common that 

they represent studies of social interaction, each on the basis of different theories and methods. The 

number of differences visible in the use of terms competing with each other –e.g., deviations, mistakes 

and opportunities– turned into a collaborative search for common themes. One theme emerged 

regarding the relationship between long-term mathematics learning and short-term language accuracy 

in mathematics teaching and learning. Patterns of corrective responses and markers of authority, as 

reported in some of the papers, were viewed as indicators of discourses of language accuracy at the 

intersection with processes of meaning construction and negotiation, as reported in all four papers. A 

related issue in the discussion was the extent to which the suppression –if possible– of certain 

discourses of language accuracy was necessary for the development of mathematical activity in 

classrooms. Either explicitly or implicitly, the different analyses presented in the papers reveal this 

tension between mathematics learning and language accuracy.        

The second session brought many of the methodological issues explored by the group to the fore.  

Four papers by Farrugia, Schubert-Meyer, Ní Ríordáin, Flanagan and Brilly, and Wessel each 

highlighted the back and forth flow between conceptual development in mathematics and language 

learning within classrooms with varying degree of linguistic diversity. The papers were each offering 

a different perspective on the relationship between word  and use, including within which language 

the word is used, and learning mathematical ideas including subtraction, fractions, relative frequency 

and undergraduate mathematics. Again each of these papers drew from different theories and 

methods, and researched different settings, but each raised methodological questions at the core of 

language research within mathematics education. The discussion focused on how integrative 

frameworks can be developed that draw upon the different approaches that are grounded in the study 

of language in mathematics.  

The third session included five papers that focused on higher grades in mathematical education. The 

paper presented by Wille dealt with the topic of the shift from difference quotient to the derivative, 

moving from algebraic to analytic concept formation explored through imaginary dialogues. With 

this method, different perspectives (horizontal and vertical) could be identified with preservice 

teachers, which helped focus on the diversity of conceptions later in class. Related to this topic, 

Zweidar also worked with the topic of functions and its implicit meanings in the classroom. Her 

research focused on mathematics lessons through a lens that shows the invisible demands of 

mathematical discourse. Ulises pointed his research also in the direction of mathematical discourse. 

He examined the signs of vector quantities and their corresponding gestures in regard to novice 

teachers and he raised awareness of the semiotic dimension. Schlager examined the connection 

between language proficiency and achievement in mathematics with 10th grade students, who work 

on tasks with different linguistic characteristics. The results demand further research but suggest that 

extremely difficult linguistic structures should be avoided to reduce the achievement gap. Finally, 

Arce, Ortega and Planas researched students’ mathematical notebooks. They analysed comments into 

different groups of knowledge to later conceptualize them as a learning resource. Especially 

interesting in this session was the focus on higher grade mathematics education. These papers all 

showed that mathematics and language is not a topic that is solely important in early education. Ideas 

of interactionistic learning theories of mathematics (Krummheuer 2015; Schütte 2014) are not just 

about  building a foundation for later learning but also can be used in higher classes with exceptionally 



more complex topics. As all papers stated, research in the specific fields has to be extended to draw 

broader conclusions but the results look promising.   

All four papers presented in the fifth session deal, in various ways, with learning by participation in 

practices. Another theme, common to most of them, is that they are concerned with explanation and 

logical reasoning. Logic is central to mathematics but in the paper by Ludes and Schütte the authors 

take this out of the context of mathematics when they discuss a project which aims to include 

computer science in primary education. An important aim is to look for possibilities to integrate 

computer science and mathematics and in the paper, competencies in mathematics from the German 

core curriculum are listed alongside relevant competences from computer science. Carotenuto, 

Coppola and Tortora also report from a project which is about logic. In the project the students are 

working with logical riddles, which are not about mathematics but where logical reasoning is needed 

to solve the riddles. Erath is interested in how students learn to participate in mathematical practices, 

and in particular how they participate in explaining practices in whole class discussions. The paper is 

based in interactional discourse analysis and builds on data from grade five classes. The paper by 

Fetzer and Tiedemann is of a more theoretical nature. Their interest lies in reconstructing 

mathematical learning processes with a special focus on the interplay between language and objects. 

They discuss and compare three theoretical frameworks: by Aukerman on language and context, by 

Bauersfeld on domain-specific learning and by Latour on objects as actors.  

In the sixth session connections between the modality of the language used and the learning of specific 

mathematical concepts became the focus. The relationships between informal everyday language and 

formal mathematical language, between informal gestures and sign language, between visual, 

dynamic and verbal modes are explored, considering not only how the mathematics is learned, but 

also how the mode influences how the mathematics is conceptualised.  Here the links between 

diversification and dialogue are readily apparent.  Each paper draws upon different frameworks, with 

Ferrari drawing upon Systemic Functional Linguistics, Khalloufi-Mouza drawing upon the Theory 

of Semiotic Mediation, Krause drawing upon the Theory of Embodied Cognition, Mizzie drawing 

upon Cummin’s model of language use, and Rønning and Strømskag drawing upon the Theory of 

Didactical Situations, and indication of the diversification within the field. Yet the dialogue within 

the group focused on the commonalities between each of the papers, that is the relationship between 

the mode of language and the conceptualisation of the mathematics. 

Four posters were also part of our group. Using a meta-analysis, and a qualitative analysis of its 

results, Dyrvold investigates demanding textual features of mathematics tasks, and the relevance of 

these features to the mathematical content. Rauf and Schmidt-Thieme sketch the required linguistic 

competencies of mathematics teachers, and outline a “language curriculum” recently introduced for 

future mathematics teachers at the University of Hildesheim. Similarly, Krosanke presents a study 

investigating the effect of integrating inclusive language teaching into the education of mathematics 

teachers in Hamburg, using analysis of interviews and video-vignettes. Kenton, meanwhile, examines 

the role of metaphor and language in the development of individuals’ understanding of risk, 

confirming that this understanding is enhanced when probability is expressed in natural language. 



Old debates, contemporary challenges   

Debates regarding dialogue between perspectives are not new and are not unique to our research 

domain (Bikner-Ahsbahs & Prediger, 2014). In particular, in mathematics and language research, the 

risks of moving towards a fragmented domain cannot be underestimated. The last decades of 

increasing research on mathematics and language have provided a serious and valuable diversification 

of theories and lines of interest, inside (Morgan, 2013) and outside ERME (Pimm, 2014). We are 

progressively including work of a review nature in the agenda in order to recognize what different 

theoretical perspectives have in common. As a group, we are mature enough to know that the 

multiplicity and richness of theoretical positions go with articulation and dialogue.  

Throughout the reading of the following collection of papers, we invite you to look for common 

grounds emerging from contemporary ERME research on mathematics and language. Although it 

may be easier to grasp differences rather than commonalities between papers, careful attention to 

questions, approaches and methods will offer evidence of similar problems and theoretical challenges. 

Hopefully some of these challenges have been discussed in this introduction.        
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We illustrate and expand some findings from research on students’ mathematics notebooks in four 

classrooms (Arce, 2016). Through methods of interpretive content analysis, we discuss what we call 

comments and group them into a typology of three regarding whether they are primarily instances 

of: 1) conceptual knowledge, 2) procedural knowledge, or 3) practical knowledge in which it is 

difficult to recognize the exploration of either conceptual or procedural knowledge of mathematics. 

We indicate that comments are relevant in the investigation of: 1) How different they are according 

to the representation of mathematical knowledge, and 2) How influential they are according to the 

development of student mathematical activity. We anticipate that the analysis of comments may be 

essential in the conceptualization of notebooks as tools and resources.      

Keywords: Student mathematics notebook, written communication, student comments, texts. 

Introduction 

The mathematics notebook of the student (MN) is a common tool in many classrooms and has been 

an object of study in former CERME papers (see, e.g., Segerby, 2015). This is the material instrument 

in which lesson notes are taken, and mathematical work is developed and revised. In our study, we 

deal with contents that belong to the private domain of students (Fried & Amit, 2003). In their 

notebooks students produce a language for communication with themselves about the contents to be 

developed and learned, and they are the ones ultimately responsible for the small units of information 

that conform the written outcome. Thus, notebooks somehow act as windows into student work and 

understanding in the mathematics classroom. Despite this significance of notebooks, research on them 

is still rare (together with Segerby, 2015, some exceptions are Fried & Amit, 2003; Yau & Mok, 

2016), in part due to an expanded “illusion of transparency” (Villarreal & Borba, 2010). Notebooks 

are often seen as learning resources per se (i.e. MN represents information used in the student learning 

experience). Our study contributes to research on mathematical communication (Morgan, Craig, 

Schütte, & Wagner, 2014) by focusing on the under-researched idea of MN as a communicational 

tool in the relationship between learner and learning content.  

We follow up on a larger study with eleventh-grade students in four Spanish mathematics classrooms. 

The lessons in these classrooms consisted of the initial exposition of contents and tasks by the teacher, 

followed by student work on the resolution of tasks. A type of notes emerged as distinguishable during 

the processes of MNs content analysis. Regarding the teaching dynamics, it was expected that the 

students wrote down blackboard contents –from the stages of exposition and resolution of tasks– and 

oral contents dictated by the teacher. The students, however, wrote annotations that do not fit into the 

former types of content. These annotations constitute what we name comments (see Arce, 2016; Arce, 

Conejo & Ortega, 2015). Regarding comments, in this paper we address two research questions: 

- To what extent are comments different depending on the mathematical 

knowledge they represent? 



- To what extent do comments seem to have influence on the development of 

students’ mathematical activity?    

Framework for analysis of comments as texts 

Arce (2016) applied a complex system of ideas to analyse what students seem to be saying and 

communicating in their mathematics notebooks. In this section, we address the theoretical grounding 

for some of those ideas in order to cover the notions more directly linked to the present research 

questions. Before making sense of the students’ written comments from the perspective of their 

implications for learning, we need to organize the information represented in these comments.  

Arce (2016) makes use of the first two types of writing out of the three discussed by Britton, Burgess, 

Martin, McLeod and Rosen (1975): transactional, expressive and poetic. The transactional type is 

particular of public domains (Fried & Amit, 2003) in that it communicates meanings intended to 

inform and persuade an audience. In contrast, the expressive type is particular of private domains in 

that it communicates personal reconstructions of public meanings. Transactional and expressive 

writing relate to each other in the articulation of theoretical, algorithmic, logical, methodological and 

conventional contents (Shield & Galbraith, 1998). All these contents are modulated by the language 

used, either particularized or generalized, and procedural or descriptive. What we have in comments 

are all sorts of combinations of contents and forms in the writing.  

Types of writing, contents and forms intersect with types of knowledge, namely, conceptual and 

procedural knowledge of mathematics (Hiebert & Lefevre, 1986). This is a distinction that emerged 

as fruitful in the analysis of how, and how much mathematical concepts and procedures are present 

and related in MNs. Due to the complex overlap involved, we consider these two types of knowledge 

as critical in the analysis of comments. By the conceptual type, we refer to mathematics knowledge 

that is rich in semantic relationships between concepts and propositions, while by the procedural type 

we refer to mathematics knowledge that is rich in syntactic relationship, often expressed by means of 

rules and algorithms. Again, what we have in MNs and particularly in comments are all sorts of 

combinations of types of writing, contents, forms and types of knowledge.  

In his analysis of comments in MNs as representational texts, Arce (2016) adds the differentiation of 

issues not strictly related to the communication of mathematical knowledge. We strategically put 

these multidimensional issues in one group because they all fit into a type of comments where the 

focus on either conceptual or procedural mathematical contents is difficult to recognize. All these 

issues are grouped under the name of practical knowledge to provide visibility to and promote 

discussion of the use of comments that may be facilitating their role in student learning even though 

they do not primarily address conceptual and procedural contents particular to mathematics.   

Context, background and methods 

For the examination of comments under the conceptual-procedural-practical framework in line with 

the first research question, we scanned data from the MNs of 41 volunteering students that had been 

collected in four high school classrooms chosen by availability. We selected contents of the teaching 

units on functions, limits of functions, and derivatives. With inspiration on deductive methods of 

manifest content analysis (Krippendorff, 2004), the first two authors examined comments according 

to types of mathematical knowledge (i.e. conceptual and procedural), contents involved in the writing 

(i.e. theoretical, algorithmic, logical, methodological and conventional), forms involved (i.e. 



particularized, generalized, procedural, descriptive), and other issues regarding organizational, 

pedagogical and personal aspects. These were the codes useful in the initial stage of the current 

research in order to get a first general picture of comments as tools. 

In line with the second research question and together with the findings about differences across 

comments, the collaboration with the third author helped to rethink the previous analysis with data 

from eight interviews with pairs of participant students. The selection and pairing of students followed 

criteria, decided in the context of the larger study, about comparison and contrast among MNs in 

terms of written contents. By applying inductive methods of interpretive content analysis (Ginger, 

2006) to MNs and interview data, some possibilities of comments as sources of mathematical activity 

for the production of mathematical texts in notebooks were preliminary inferred. When there is 

mention of or allusion to the comments’ impact on either the development of MN contents or the 

performance of mathematical activity, the third author mentioned the possibility of comments playing 

a role in the development of student mathematical activity. In the next section, we present some 

instances of comments to reproduce partially the analyses.  

Are student comments more than texts? 

The groups of comments below are not exclusive of each other. The groups may occur in various 

combinations although we present them separately by choosing comments that more clearly illustrate 

the dominance of some particular features over others. With their characterization, we want to make 

the argument that they must be taken into account in student written communication. Moreover, these 

groups of comments are sufficiently important to be included in the investigation of relationships 

between the knowledge communicated by students in their writing and the mathematics learning 

opportunities created and eventually explored by them.    

Comments related to conceptual knowledge of mathematics 

There are comments in which we find the name of the concept, a more or less formal narrative for its 

definition or an explanation about the concept definition. Figure 1 shows two instances of this: on the 

left, a generalized comment on the definition of the absolute minimum of a function; on the right, a 

particularized comment on the definition of constant function applied to f(x)=-3.  

 

Figure 1: Examples of conceptual comments on definitions 

There are other comments from this group with an emphasis on relationships between concepts, 

properties and rules like those in Figure 2: on the left, a comment on a relationship between different 

kinds of asymptotes; on the right, a comment on the relationship between the derivative of the identity 

function and the power rule. In this last case, and different from the comment about asymptotes, as 

the rules had been independently presented by the teacher, we see expressive writing.      



 
   Figure 2: Examples of conceptual comments on relationships  

Other conceptual comments are centered on the requirement and justification of conditions for a 

specific process to be applied, and in this way they may express attention to logical aspects of 

mathematics. Still some other comments anticipate the need to introduce a new concept or technique, 

and therefore communicate broader networks of concepts and relationships.  

In all these comments of a conceptual type, the overall focus becomes student work on concepts and 

eventually on relationships between concepts involved in the construction of mathematical 

knowledge. Different uses of these comments by the students emerged in the interviews. Some 

students said that comments are useful to “clarify”, “evoke” or “remember” concepts, as well as to 

“support their study at home.” Similarly to the reflections made by Morgan (2005), we see in some 

of these texts (e.g. Figure 2, on the right) the reconstruction and use of mathematical concepts in ways 

that allow students to learn mathematics. This is confirmed in the interviews in which students refer 

to this type of comments as an aid for developing their learning of concepts and relationships.   

Comments related to procedural knowledge of mathematics 

In this group, we place the comments in which we see procedural knowledge of mathematics, that is, 

comments about recalling or clarifying the application of procedures such as algorithms, rules and 

techniques, as well as the conventions around them. There is an emphasis on algorithmic aspects 

when mentioning steps or actions that constitute a procedure such as: the calculation of the domain 

of a function, the resolution of limits with indeterminate forms and the representation of elementary 

functions. Figure 3 shows on the left, two comments of a student recapitulating how to solve two 

indeterminate forms, specifically “→0/→0” and “→∞/→∞”, and on the right, the comment of another 

student who indicates the steps to be followed to examine any function.  

 
 Figure 3: Examples of procedural comments on methods 

There are comments with verbal and symbolic marks that recall or clarify mathematical properties 

applied in the development of the steps of a procedure. Figure 4 shows two instances of this kind: on 

the left, a comment recalling the calculation of the cube root of any real number; on the right, some 



marks by means of arrows clarifying how to operate in a quotient of fractions. In all these comments 

of a procedural type, the overall focus becomes student work on methods and eventually on the 

symbolic and formal representation of properties and procedures. As said by the students in the 

interviews, they provide different uses to their procedural comments, namely: highlighting and 

clarifying procedural aspects found more difficult (Figure 4), and acting as an aid in order to 

“mechanize” a mathematical procedure (Figure 3, on the right). 

 
Figure 4: Examples of procedural comments on properties 

Together, conceptual and procedural comments point to an important presence of expressive writing 

with modifications and connections to the mathematics communicated by the teacher in the lesson. 

We interpret the engagement with expressive writing as evidence of some mathematical work. 

Drawing on this, these comments may be acting as resources in that they develop written 

representations of student understanding. One could possibly expect to see in representations of 

understanding at different moments some traces of different learning stages.  

Comments related to practical knowledge   

The third group of comments does not directly refer to contents about types of mathematical 

knowledge communicated in the notebooks; instead, it refers to contents that privilege pedagogical 

and organizational knowledge, among others. This is a “big” group of comments in this report whose 

detailed deconstruction in codes can be found in Arce (2016).     

Some comments record texts that teachers said during the lessons concerning the organization of 

curricular issues and other forms of pedagogical support. On the left of Figure 5 there is an instance 

of an indication about the school time for a curricular content to be considered. Other comments 

highlight processes that are “tricky” as said by a teacher in a lesson; here we find rules of action as 

ways to manage difficulty. On the right of Figure 5 there is an instance of a rule for the generation of 

a table of values in order to represent a function with three positive and three negative values.  

 

Figure 5: Examples of practical comments on organization 

There is also practical knowledge in comments about the forms and contents of evaluation in the 

subject. This is clear in the two instances of Figure 6 with references to an exam and to the expected 

contents to appear in it. Comments such as those in Figures 5 and 6 are difficult to be recognized as 



representations of mathematical understanding. They also contain/are mathematical texts. Some sort 

of practical knowledge with purposes of optimization of opportunities as learner is communicated.   

 
Figure 6: Examples of practical comments on evaluation 

Similarly to the instances in Figures 5 and 6, the texts in Figure 7 do not provide evidence of the 

creation of opportunities for mathematics learning, but rather seem to indicate the creation of 

opportunities for the student writer as learner. In Figure 7 we find question marks on the left, and 

sentences to indicate doubts and uncertainty on the right. Other comments documented in Arce (2016) 

use impersonal forms of language to recommend “reviewing”, “studying”, or “asking”.  

 
Figure 7: Examples of practical comments on cognition 

There is some evidence of personal meta-cognition and control over the learning process in all these 

comments. We found in the interviews that some students add comments like those of Figure 7 in the 

resolution of tasks to focus and increase their attention when the teacher makes corrections in the 

classroom or to ask directly the teacher about a doubt. However, except for Figure 7 (on the left), 

there are no concrete initiatives in the MNs aimed at exploring or clarifying what has been indicated 

as mathematically difficult to understand.  

We claim that all these practical comments are also valuable; they communicate part of the knowledge 

that the student needs to develop, together with particular mathematical knowledge, in the 

mathematics classroom. These comments provide an opportunity for students to make their own 

judgments on, for example, what needs to be known (i.e. what is to appear in the exam, what is 

planned for another school year) and who they are as knowers of mathematics (i.e. what is not 

mathematically clear to them, which learning requires revision).     

Rethinking comments as more than texts 

We are in the position to adventure some initial thoughts and questions about the conceptualization 

of student comments as resources. Conceptual and procedural comments like those exemplified in 

this report (Figures 1 to 4) facilitate the exploration of mathematical knowledge, even though there 

may be some instances of a routine writing activity enabling the development of reproductive or 



imitative patterns (also studied by Yau & Mok, 2016). However, our analysis of comments includes 

one more practical function about prescriptions of what is to be learned (Figures 5 and 6) and about 

judgments on what is not known (Figure 7). It is not easy to elucidate whether the learning process 

would be similarly facilitated if particular types of comments were not present. We anticipate that all 

types of comments –conceptual, procedural and practical – are necessary in order to create learning 

opportunities oriented to both the creation and communication of mathematics learning.  

We agree with Fried & Amit (2003) that there is a need to further investigate the role and use of MNs, 

and not only of comments, as a learning resource in the mathematics classroom. A significant question 

for which this area of investigation might provide understanding is why some notebooks are better 

facilitators of opportunities for mathematics learning. This is an issue related to the broader question 

of the role of mathematical writing in mathematics learning. As noted already with the analysis of 

comments, the written elaboration of conceptual and procedural knowledge of mathematics seems to 

indicate work relevant for the development of student mathematics learning. However, these 

comments alone may not be enough in the construction of mathematics learning. Other types of 

comments, like those that constitute what we have called practical knowledge, may be required in the 

process that goes from student written communication to mathematical understanding and from here 

to student written communication again. Especially important may be the ways in which all these 

types of comments appear combined and related.  
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This paper deals with aspects of language learning in settings planned for mathematical learning 

by kindergarten teachers. Using qualitative and linguistic analysis tools, we reconstruct patterns of 

language use and the language sensitive organization of kindergarten teachers. We mainly focus on 

the children’s language use, particularly on semantic deviations in utterances in relation to the 

mathematical negotiation process. 
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Introduction 

The importance of language for cognitive (subject-specific) learning processes is undeniable and 

well established with regard to research in early mathematics education. Scientific language 

proficiency is seen as an important factor for successful education and schooling. There are still 

unsatisfied needs for Germany to appropriately support children with disadvantageous starting 

conditions (for example migration, socio-economic background, developmental speech disorder), in 

order to give them an equal chance to participate in education processes (Gogolin & Lange, 2010).  

Early education in kindergarten, which puts emphasis on supporting language education, could 

provide a remedy. Prediger (2015) suggests that academic language education processes start as 

early as possible, to design them age-appropriately and to orientate it to specific contents. However, 

Germany is particularly lacking language education approaches that integrate subject-related 

learning processes and not only selective training single academic language terms. Rudd, 

Satterwhite and Lambert (2010) describe how mathematical learning and language learning can be 

combined in (natural) kindergarten situations. They introduce the concept of Math-Mediated 

Language (MML). This means that mathematical learning is embedded in dialogues, which include 

mathematical as well as linguistic knowledge (Rudd et al., 2010). They give examples for different 

mathematical topics, e.g. how to foster complex counting strategies by modeling them in concrete 

situations or by requesting them from children using corresponding questions. Even though the 

concept of MML emphasizes mathematical learning in kindergarten, it points to the need that 

kindergarten teachers consider both the mathematical context and linguistic effort involved in the 

dialogues – and address this connection in their planning as well as in spontaneous situations. Thus, 

MML deals with the integration of language education and subject learning in everyday activities 

for kindergartners.  

MML requires a certain amount of language awareness. For pre-service early childhood educators, 

Moseley (2005) found out that their perceptions of MML is restricted to technical terms and basic 

mathematical terminology. In our qualitative-empirical project, we are interested in kindergarten 

teachers’ language awareness in everyday situations. We put our focus on the support of language 



 

 

learning in settings planned for mathematical learning. This idea corresponds to the underlying idea 

of supporting language development within the subject (Leisen, 2013; Prediger, 2013; Prediger & 

Wessel, 2013) as it is discussed in the schooling context. Often, these concepts trace back to the 

Immersion Model for bilingual education for children with migration background in school contexts 

(e.g. Cohen & Swain, 1976).  

Kindergartners are not only ’subject learners’ but, independently from their language background, 

always ‘language learners’. Hence, they sometimes have difficulties expressing complex facts and 

their language productions often show deviations from the standard language (Volmert, 2005). In 

this paper, we want to deal with deviations from standard expressions that can have an impact on 

mathematical learning processes. Since we are dealing with spoken language, which often includes 

aspects of dialectal variation and language change phenomena, it is not always trivial or even 

possible to decide whether one utterance is correct or not. In German for example, there are nouns 

with locally varying genders (cf. der Joghurt: male or das Joghurt: neuter, both possible in standard 

German; and in eastern parts of Austria die Joghurt: female).1  

In principle, mistakes can be divided into lexical (neologisms and wrong pronunciation), syntactical 

(wrong conjugation or flexion, word order) and semantic (inappropriate choice or combination of 

words) ones. In this paper, we concentrate on semantic deviations, which we list as a separate 

category since the meaning of utterances does not always depend on the choice of single words or 

grammatical constructions alone. Meanings rather tend to exceed verbal boundaries, which also has 

to be taken into consideration when looking at inappropriate utterances (Brandt & Keuch, in Press).  

In particular, our aim is to reconstruct the empirical language in use, to detect aspects of language 

support, and to show the connection to specific meanings and concepts that are negotiated in certain 

situations. In our prior analyses, we found different kinds of language support and correction 

strategies (Brandt & Keuch, in Press). Similar to Moseley’s results (2005), when using language in 

everyday situations, kindergarten teachers put special emphasis on technical terms and only a 

limited focus on complex language structures.  Thus, in this paper we will concentrate on semantic 

aspects of the empirical language and the corresponding questions:  

 What kind of semantic deviations can we identify in the field of measurement? 

 Which impacts for negotiation processes about measurement can we deduce from these 

deviations? 

Research design  

The data basis for our analysis consists of mathematical situations designed by kindergarten 

teachers and taken from the project erStMaL (early Steps in Mathematical Learning) (Acar 

Bayraktar, Hümmer, Huth, & Münz, 2011). Methodologically, our project is based on grounded 

theory (Glaser & Strauss, 1967). We figure out the negotiation of meaning in the interaction 

processes through the interaction analysis (Krummheuer, 2007), which is a sequential analysis and 

is organized as an extensive turn-by-turn interpretation.  Further, we determine linguistic features 

                                                 

1 Duden, 2013; 26. Aufl., Dudenverlag, Berlin. 



 

 

that originate from a linguistic valence analysis (Herbst & Götz-Votteler, 2008) by looking at the 

relation between verbs and their objects (Brandt & Keuch, in Press)2. Our aim is to create a 

category system of difficulties and deviations, and their corresponding reactions and support from 

the kindergarten teachers. According to qualitative content analysis (Mayring, 2000), these 

categories are generated inductively. Based on these analysis methods, we will present case studies 

that point out the empirical language use in this partial corpus in the following paragraph.  

In this paper, we refer to five situations, which kindergarten teachers designed and realized to 

support mathematical learning. Besides the general topic measurement and the involved children, 

there were no content-related or structural prompts for the realization of mathematical situations.  

Situation Teacher Children  Magnitude  

A Doris 

(MA3) 

Nikola (f): 4;2 / BL4; Orania (f): 3:10 / L1  (Greek); Regina (f): 

4;4 / L1; Uwe (m): 3;11 / L1 

length 

B Sabine 

(MA)  

Mona (f): 5;5 / L1; Omara (m): 4;11 /L2 (Tamil); Sadira (f): 

5;11 / L2 (Urdu); Theresa (f): ? / L2; Oslana (f): 5;3 / L2 

(Croatian) 

length and 

volume 

C  Berna (L2 

/unknown) 

Bella (f): 6;0 / L1; Can (m): 6;0 / BL (Turkish); Denis (m): 6;0 

/ L1; Friedel (m): 6;0 / L1 

length 

D Johanna Ona (f): 5;6 / L2 (Turkish); Tamila (f): 4;10 / L2 (Pasto / 

Afghan) 

length  

E  Linda  Irvin (m): 5;0 / L1; Torben (m): 5;5 / L1  weight 

Table 1: Basic information on the focused situations 

Difficulties and deviations in language usage  

Example from situation D: The kindergarten teacher and the two girls are building towers with 

colored rods and building blocks of different sizes. One tower of the teacher’s construction falls 

down, which she comments on: “huu jetzt is es gefallen \” (huu now it has fallen). Ona takes up this 

structure: “deiner war nicht gut meiner hat nich gefalln.” (yours was not good mine has not 

pleased). Her utterance is grammatically correct. However, using the auxiliary “hat” (to have) 

instead of “ist” (to be) like the kindergarten teacher for the perfect tense, Ona expresses the 

meaning of ‘pleasing’ instead of ‘falling’. Certainly, this was not Ona’s intention. Thus, semantic 

deviation can only be determined by focusing one’s attention to the context. 

                                                 

2 For more details see our analyses in the next paragraph. 

3 MA: trained in mathematics. 

4 L1 means, the child learned and uses German as a first language; L2 means, the child learned another language than 

German as a first language, now learns, and speaks German as a second language; bilingual (BL) means, the child 

learned German and another language as first languages and now uses both languages at home. 



 

 

According to Bishop (1988), “measuring (...) is concerned with comparing, ordering, and with 

quantifying qualities” (p. 34). Comparing, ordering, and quantifying qualities ask for a 

differentiated language usage, including certain technical terms and grammatical structures. In the 

next sections, we illustrate semantic deviations in this context. That means we look for language 

productions that are syntactically correct but their initial meaning does not fit with the context of 

actions.  

Verbal constructions with to measure: Measuring (yourself) with something or someone  

In Brandt and Keuch (in press) we explain how linguistic valence (Herbst & Götz-Votteler, 2008) 

can be used to explain the emergence of a cognitive concept of measuring and the acquisition of 

case endings in relation to the verb to measure. With the verb to measure, you normally use a 

subject (someone who measures), something that is measured (the accusative object) and a tool you 

use for measuring (the dative object). There are, however, situations in which children as well as 

kindergarten teachers use this expression in a slightly different way.  

In situation C, measuring the children’s body lengths occupies most of the situation. The children 

lie down on the floor and have the position of their head and their feet marked with chalk on the 

floor. Subsequently, the distance between those two chalk lines is measured with different devices:  

Berna you can actually measure it with all those things here  

Can  wait . I measure it with the chalk \ here it starts  (draws a line from one 

limiting line to the other) 

Berna so Can / now wait \ 

Can  sooo \ (.) up to my line \ 

Berna up to your line 

While Can’s utterance is syntactically correct, his actions do not fit with its meaning. If he was 

measuring a certain length with the piece of chalk he carries in his hand, he would aim to find out 

how often that piece of chalk fits into that length. The group had used a building block before in a 

similar way. What he does, instead, is to draw a line from one point to another. Since he incorrectly 

uses the verb measure in this context, probably synonymously to draw or even connect, we consider 

his utterance as a semantic deviation.  

In German, as well as in other languages, certain words used as a collocation in combination with 

certain prepositions or complements can have a different meaning than the original word, often 

metaphorical or figuratively. For the verb measure, if used with a reflexive pronoun, it gets the 

meaning of competing with someone (in any possible way, not limited to magnitudes). In situation 

B, the kindergarten teacher Sabine asks Oslana to stand back-to-back with Sadira and compare their 

sizes. She accompanies her request with the words “Willst du dich jetzt mit der (.) Sadira messen?” 

[Do you want to measure yourself / compete with Sadira?]. Sabine does not seem to notice the 

ambiguity in her utterance on the one hand and the children do not seem to notice the figurative 

meaning on the other hand. In the course of the situation, Sabine leaves out the reflexive pronoun. 

She now asks Omara “Whom do you want to measure with?” While the meaning is probably 

relatively clear due to the unambiguous situation, the dative object is no longer a measuring tool but 

a person, which could lead to confusion. One could also argue whether the sentence is really any 



 

 

longer syntactically correct. Mona (the only child whose mother tongue is German in this situation) 

finally takes up Sabine’s sentence structure and says, “I want to measure with you”. In contrast to 

the usual valence, the dative object (“with you”) does not represent the measuring device but it 

rather works as an adverbial phrase, expressing the kind or manner how the activity of measuring 

shall be done.  

The use of personal pronouns with comparisons 

In almost all situations, the groups address (direct) comparisons of sizes. When it comes to 

someone’s own body length, competitive situations emerge quite often. For the children it is 

important to know “Who is taller than the other?” or “Who is the tallest?”. This aspect of rivalry is 

especially obvious in Situation E, when Irvin and Torben compare different things with a beam 

balance. The kindergarten teacher has prepared different building blocks and plastic figures, which 

possess certain weight proportions. The main idea of Linda’s arrangement seems to be producing 

balance with these special objects. Both children use one scale together and each child fills the 

balance pan on their side. In their first attempt, in Irvin’s balance pan there is one green stone and 

two blue ones in Torben’s balance pan. The scale is in balance. The kindergarten teacher asks the 

children to compare the stones:  

Irvin     ahh / that that is small and I am big /  

Linda     right \ this is a bit smaller / and this is a bit bigger \   

Irvin’s sentence structure is perfectly correct from a syntactic point of view and in principle as a 

statement as well, since Irvin really is big in contrast to the building block on the scale. However, 

he probably wants to express that the green stone on his side is “big” in contrast to the blue stone on 

Torben’s side. In this sense, Linda paraphrases his statement. She indirectly corrects his verbal 

expression (Brandt & Keuch, in Press), by formulating the relational connection “smaller – bigger” 

on the one hand, and the personalization “I’m big” connected with the pointing gesture to the actual 

object of comparison. While Torben uses correct possessive pronouns with corresponding 

comparisons (“then mine are / heavier\”), Irvin consequently uses the personal pronoun and 

therefore figuratively makes himself the object of comparison. Finally, Torben picks it up. With the 

following utterance, Irvin and Torben alike refer to the fact that the content of ‘their’ balance pan is 

heavier. Nevertheless, through the context of actions, both children are able to understand each 

other:  

Irvin  then I’m heavier \  

Torben now I’m stronger hihihaha \ 

Irvin  yooo I’m the strongest \ 

Torben no / I‘m stronger \ 

Irvin  there I’m heavier \ 

Using the words strong and the related forms of comparison stronger and the strongest, the children 

focus on the idea of competition. However, at least Torben would be able to express himself 

correctly in such situations. Irvin as well uses the correct possessive pronouns at the end of the 

situation to explain, why “his” balance pan with the smaller (and therefore lighter) piece of 

cardboard is up: “Because this is very big / and mine is very small \” – interestingly this is a 



 

 

situation in which he would not be the ‘strongest’. This competition, generated through language, 

gains momentum and prevents the original request to balance out the different objects through 

skillful placing.  

Scale values and their verbalization 

In most situations, the kindergarten teachers measure the children‘s body length and name and 

record them in different ways (some write them down, others document them with woollen strings, 

(Brandt & Keuch, in Press). When you capture body length with standardized measuring tools, you 

read the numbers on the measuring tools as a scale value. With measuring tools, the scale value 

indicates the corresponding measuring value based on a certain scale unit; for ordinary leveling 

boards or carpenter’s rules, that is centimeter.  

When using measuring sticks and carpenter’s rules, the kindergartners on the one hand are 

confronted with measuring units (meter and centimeter), whose meaning they rarely comprehend 

and only hesitantly take over into their active vocabulary (Brandt & Keuch, in Press). On the other 

hand, they also have to deal with numbers that exceed their actively mastered range of numbers. 

The kindergarten teachers seem to be willing to make the numbers consciously perceivable as scale 

values with different circumscriptions and complements. In the following example, the focus on the 

meaning of the scale becomes obvious, when Doris refers to the animal symbols on the leveling 

board: 

Doris  okay / look here \ one meter are you \ (.) hee \ one one meter one \ up to 

there \ [unintelligible] at the monkeys right \  

Nikola up to here \ 

Doris  exactly at the monkey \ and Uwe / (.) at what have you / [unintelligible] [at 

the sea lion\] 

The kindergarten teacher therefore uses the animal symbols here as scale values; the connection 

with the local preposition “up to there” points to the distance from the floor to the symbol as a 

representation of the body length. The children take up the animal symbols on the leveling board for 

their comparisons of size:  

Regina the biggest ehm \ 

Uwe  is the duck  

The generated verbal co-construction is a grammatically correct utterance: The duck is the biggest 

one in relation to a (not further specified here) selection of reference objects. This statement, 

however, is neither correct for the mentioned animal symbols (sea lion, monkey, duck) nor their real 

counterpart. Still, Uwe does not formulate a ‘wrong’ statement. A few minutes before, Nikola 

determined that the duck stands for the scale value 116 (Regina’s body length). Therefore, Uwe 

related with “the duck” to the corresponding scale value without using the corresponding local 

preposition. Regina is indeed the tallest child, as Doris confirms shortly after “Regina has 

[unintelligible] is the tallest”. The statement “The biggest is the duck” stands for the comparison of 

body length and gives an answer – at first with reference to the measured values – to the question: 

Who is the tallest? Concerning the linguistic means, Uwe treats the scale value ‘duck’ syntactically 



 

 

like a representation of the measured length: “The biggest is 116 centimeter.” Interestingly, we also 

find comparable deviations in the language usage of our kindergarten teachers:  

Sabine now I measure you \ that means the hand is now on this / (.) und you are one 

meter and ten centimeters \ look \ and you are exactly (.) as big as this red 

number is \  

Here as well Sabine is eager to make the numbers comprehensible for the children. On the 

carpenter’s rule used in this situation, the scale values are marked in red every ten centimeters, 

while all other numbers are black. The red number thus references the measured body length. 

Similar to Uwe, Sabine syntactically uses the red number as a representation for the measured size 

value 110 centimeters. 

Conclusion 

In this article, we looked at semantic deviations concerning verbal constructions with to measure, 

the use of personal pronouns in comparisons and the verbalization of scale values. Each of the 

analyzed sentences were syntactically correct, the semantic deviations, however, emerge from 

prepositions, pronouns; and additions and omissions of phrases. In everyday situations and action 

settings, these sentence constructions rarely lead to misunderstandings. In the analyzed situations 

too, the action flow is preserved. However, it remains unclear which conceptual understanding of 

measuring, comparing or scale values the children develop, which goes beyond the actual action 

context.  The vague and imprecise use of to measure immediately concerns the meaning of measure 

as an activity, as well as the associated behavior patterns in relation to measuring devices. 

“Measuring” becomes the hypernym for the whole situation and is not delimited from other 

activities. By means of personalization, the comparison in the balance beam situation becomes a 

competition, and the semantic deviation becomes a play on words with its own dynamics. For 

linguistically less competent children, the pun might not be accessible and therefore they do not get 

a chance to improve their linguistic competences. The negotiation process related to the 

mathematical content stays at the surface, since it is overlapped by the play on words.  

Ambiguity and change of meaning by using different prepositions as well as adding or omitting 

certain objects can lead to confusion in more in-depth negotiation processes. With regard to the 

development of less context-dependent language registers, one has to look critically at the observed 

reactions by the kindergarten teacher. Although all kindergarten teachers show pedagogical as well 

as didactic competences, in relation to our investigated difficulties and deviations we only observed 

minor language awareness. On the one hand, we just find a few reactions to semantic deviations in 

the children’s language productions. On the other hand, even our kindergarten teachers produce 

such deviations. Especially for learners of German as a second language, figurative language 

constitutes a specific problem. In this area, we still perceive a major challenge in order to establish 

educational equality via early education.  
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The focus of the paper is the analysis of written argumentation in solving logical-linguistic riddles 

by 6th and 7th grade students. This is part of a larger path dealing with the introduction of some 

logical contents, in which all the activities are immersed in a narrative framework. In analyzing 

students’ productions, we pay great attention to the interplay between logical-scientific thinking 

and narrative thinking, with the awareness that a rigorous mathematical argumentation can be 

obtained only at the end of a path starting from different, often not rigorous, forms of reasoning. 
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Introduction 

In this paper we focus on the analysis of written argumentations produced by 6th and 7th grade 

students to solve logical-linguistic riddles. This kind of activities is part of a path carried out within 

a project in a secondary school near Salerno (Italy), during the year 2014-15. The aim of the whole 

project was to reconcile students with low level of mathematical skills with the subject. In 

accordance with the teachers of the school, the focus was on linguistic competences in a scientific 

environment, with particular attention to the development of the argumentative competence.  

The starting point was the didactic path described in Tortora (2001), consisting of 15 structured 

worksheets. Its aim was to bring the contents of classical propositional logic to the students, through 

a fantastic and attractive way. The innovation with respect to the initial idea, favoured by the 

introduction of the logical-linguistic riddles (Smullyan, 1978), is the great attention devoted by us 

to students’ reasoning. To give importance to students’ answers, we have let them naturally emerge 

from a learning set in which discussion had a central role. In analysing students’ productions, we 

can observe how their spontaneous reasoning is a first step toward the development of their 

argumentation skills. We are aware that a rigorous mathematical argumentation can be obtained 

only at the end of a long path that starts from different forms of reasoning, often not scientifically 

rigorous. This does not mean that different forms of rationality should be dismissed in favour of the 

specific mathematical rationality. We know that for each of us all the forms of rationality coexist 

more or less in our life, but what is important is the possibility given to all students as early as 

possible to acquire the special kind of mathematical rationality.  

This is the specific purpose of this work, where we analyse some of students’ productions in solving 

the riddles and we trace the development of their reasoning. Therefore, our main research question 

is to what extent, and by means of what specific didactic mediations, the use of logical riddles with 

their linguistic challenges, can favour the development of argumentative competences and of 

scientific language and thought. 

Theoretical background 

Language and in particular linguistic competencies are considered very relevant issues in 

mathematics learning. For example, Sfard (2000), to quote just a single seminal work, interprets 

thinking as a form of communication and considers languages not only as vehicles of pre-existing 



meanings, but as builders of the meanings themselves. These competencies are the basis of many 

cross abilities, argumentation, communication, problem solving and so on, recommended as 

essential in all the official documents (for example, MIUR, 2012, Italian Ministry of Education). 

In our works (e.g., Coppola, Mollo & Pacelli, 2010) we have often used logic in educational 

contexts, just because, in addition to being an important learning goal in itself, it has a special role 

in relation to language. In fact, logic appears as a privileged field for analysing the relation between 

language and interpretation, for identifying, studying and using linguistic manipulation rules and 

especially for the dual role of object and tool of investigation that language plays within logic 

(Ferrari & Gerla, 2015). The attention to the distinction between language and metalanguage is 

evident in our study, where the language is in the logical riddles and the metalanguage occurs in the 

discussions and the written argumentations used to solve them. However, no educational use of 

mathematical logic can be exhausted in its strictly disciplinary or formal aspects. These aspects may 

at most be considered a point of arrival, bearing in mind that in any case the way leading to the 

formalization is long and arduous. Along this road, the language takes on different forms and levels 

and the argumentations meet various needs. The importance of the contexts in which 

communication occurs and of the different forms of language has been widely recognized by the 

research that has put into the foreground the pragmatic aspects of language (Ferrari, 2004). 

In general, the topics of pragmatic are deeply connected to the critical points of the research on 

learning and teaching mathematics (Ferrari, 2004). In our study, we use these tools to interpret 

some of the students’ behaviors, elsewhere classified as ‘irrational’. On the contrary, according to 

(Zan, 2007), we believe that the behaviors of the subjects ‘getting wrong’ may appear consistent 

when considered in relation to contexts and purposes other than those strictly adhering to rigorous 

logical reasoning. For this reason, we prefer to speak of two forms of rationality, rather than counter 

the rationality of mathematics with other behaviors that obey to different pulses. For example, 

according to one of the central issues of the pragmatic (Grice, 1975), in a particular context it is 

possible to make interpretive inferences based on the belief that who speaks or writes respects the 

Principle of Cooperation, according to which the communication is a collaborative process among 

those who are involved. These inferences, called conversational implicatures, differ by the logical 

implication, which relies only on the semantic content. Moreover, in making inferences in a certain 

context, it is frequent and legitimate to resort to one’s own encyclopedic knowledge, that is the 

general knowledge of a person about the world (Zan, 2007).  

The aspects of language brought to the fore by the studies on pragmatics are intertwined with the 

Bruner’s distinction between two kinds of language or thought, the narrative and the scientific ones 

(Bruner, 1986). The scientific thought categorizes reality, recognizes the order of things, and 

produces demonstrative argumentations. It comes up in linguistic forms which are typically 

impersonal and timeless. Narrative thought, instead, interprets human facts: actions, intentions, 

desires, beliefs and feelings. It comes up in linguistic forms in which actions are performed by 

individuals and are accomplished in time. The acquisition of the first kind of thought and language, 

necessary for the understanding of science and mathematics in particular, is slow and it requires a 

careful didactic mediation, whereas the narrative way is more spontaneous and within everyone’s 

means. For this reason, in many researches there are several suggestions for using narrative forms 

or even invented stories as a way to present mathematical contents (see, e.g. Zazkis & Liljedahl, 



2009). Hence our decision to use a fantastic setting to introduce abstract concepts and present 

logical tasks. Our choice also depends on other reasons. It prepares the students themselves for 

using narrative modes. This establishes a working setting in which teachers and researchers can use 

and interpret students’ answers in order to guide them through the gradual acquisition of forms of 

scientific language. Moreover, a third reason, regarding the logical contents we introduce, led us to 

design a fantasy narration. In fact, we agree with what Eco (2009) says about the relationship 

between narration and the notions of true and false: 

“[…] every statement in a novel draws and constitutes a possible world whence all our 

judgments of truth or falsity will refer not to the real world but to the possible world of that 

fiction [...] The epistemological function of such fictional statements is that they can be used as a 

litmus paper for the irrefutability of any other statement. They are the only criterion that we have 

to define what the truth is” (Eco, 2009, translated by the authors). 

It is only in the context of an invented story that true and false are incontrovertible: for example, 

Rome could stop being the capital city of Italy, but Juliet will never stop loving Romeo. 

Methodology  

The study involved eighty 6th and 7th grade students of the same school with medium-low level of 

mathematical skills for about two months. The activities were carried out outside school time, in the 

presence of a mathematics teacher and a researcher (one of the authors of this paper). In a 

Vygotskian perspective, according to which the reasoning ability increases in the interaction among 

peers under the guidance of an expert (Vygotsky, 1934), the children participated in the activities 

working in small (2, 3 or 4 people) cooperative groups. Moreover, in accordance with the notion of 

didactical cycle (Bartolini, Bussi, & Mariotti, 2009), the activities were carried out with the 

alternation of different phases: exploration of the artefact, problem solving and collective discussion 

guided by the researcher. In our case, the artefact is the text of the riddle, so a linguistic artefact.  

The students alternated their work with structured worksheets and with logical riddles. All the texts 

are adapted from the tales of “the knights and knaves island” (Smullyan, 1978): an imaginary island 

populated by two kinds of inhabitants, the knights who always tell the truth, the knaves who always 

lie. The activities on the structured worksheets, already used in the original path (Tortora, 2001), 

were proposed in the first part of every lesson. Their aim was to introduce in each lesson some of 

the basic elements of logic, e. g. the notion of proposition, the truth values, the distinction between 

simple and compound sentences, the logical connectives. The worksheet activities also gave to the 

researcher the opportunity to involve students in reflections about the differences between 

mathematical logic and common sense, as well as about the relativity of the notions of true and false 

and their dependence on the available information, the context and in some cases the judgment of 

the evaluator. The second part of every lesson was devoted to the solution of logical-linguistic 

riddles, as an application of the notions and the abilities acquired. From a formal point of view, the 

resolution of this kind of riddles requires that the students succeed in determining the only model1 

coherent with the dialogues in the text of the riddle.  

                                           
1 We use here the term ‘model’ to mean a correspondence that assigns to each character in the story the category he 

belongs to (knaves or knights). 



All the collected data, that is, the students’ written argumentations and the audio-recordings of their 

interaction within the group, have been analyzed. Here we refer only to the analysis of some written 

protocols, produced as answers to a single riddle. The task we examine is the solution of the first 

riddle, proposed at the end of the first lesson, after having introduced the notions of logical 

proposition and true values. We find this task the most interesting in order to reflect on how the 

students switch from one kind of thought and language to another, since in this first phase they were 

totally free from the influence of any didactic contract in solving linguistic riddles. Protocols have 

been examined on the basis of the awareness that different contexts and aims activate different 

forms of rationality and different linguistic styles (narrative vs. scientific). This aspect is crucial 

since we required students to logically solve linguistic riddles situated in a narrative environment.  

The analysis was carried out recognizing students’ behaviors just on the basis of these categories. 

The task that we examine is the solution to the riddle described in Figure 1. 

Team: 

Riddle 1 

Oreste is in the knights and knaves island and he meets 

two persons, Alberto and Bernardo. 

Alberto claims: “One of us is a knave, at least” 

What can we say about Alberto and Bernardo? Can we 

establish which kind of inhabitant is Alberto? Can we 

know what kind of inhabitant is Bernardo? Discuss about 

this with your team mates. Then, write your reasoning. 

Figure 1: Riddle 1 - The right answer is: Alberto is a knight and Bernardo is a knave 

Analysis of protocols 

We report four protocols2, which seem to be meaningful and representative. We have selected them 

among the others, to show a spectrum of resolutions starting from a completely narrative approach 

until a prevalently scientific one. In them we have found also many interesting examples of 

conversational implicatures. 

Protocol G1 (Fig. 2) gives us an example of completely narrative resolution of the riddle, without 

any explicit argumentation. In the first part, the students attach to Alberto the identity of a knight: 

probably, since Alberto speaks with Oreste, they affirm that “he seems sincerer”. From that they 

deduce that Alberto is a knight and Bernardo is a knave. 

 

Figure 2:  Protocol G1 - Answer: Alberto is a knight and Bernardo is a knave 

 

G1: [First part] I think that Bernardo is the knave and Alberto is the knight because he 

seems sincerer. [Second part] In a certain way one of the two has got a 

particularity, but they should be 2 knaves. 

                                           
2 The labels G1, G2,…indicate the protocols of the different groups (Group 1, Group 2,…). In Figures 2 to 5 we show 

the original protocols (including some erasures), and then just below we report our English translations.  



Many groups attribute conversational purposes to knaves and knights. In particular, here students 

seem to believe that the knaves prefer not to intervene in the dialogues, because they do not want to 

risk, exposing themselves to reveal their nature, whereas the knights speak freely, because they 

have nothing to hide.  

In Protocol G2 (Fig. 3), the possibility that Alberto be a knave is excluded on the basis of 

encyclopedic knowledge: in fact, the group imagines that in that case Alberto would have said 

something different. Thus we have an example of narrative thinking, with an argumentation.  

 

Figure 3:  Protocol G2 - Answer: Alberto is a knight 

G2:  Alberto is a knight because, if he were a knave he would have said the opposite 

i.e., thatbothneither of them was a knave. 

Very often the students’ priority in solving their first linguistic riddle seems to be to preserve the 

coherence of the story, based on their daily life experience. In this protocol, for example, we note a 

change of script, which is one of the most frequent phenomena we found in the first approaches to 

the riddles. By this we mean an argumentation used to exclude cases that appear to the students 

inconsistent with the narrative. When the students judge a case as inadmissible, they try to make 

examples of what the characters would have said in a case coherent with the narration (“this case is 

not possible, because otherwise the character would have said so…”). This change of script is in 

accordance with the cooperative purpose often attributed to the knaves. 

Nevertheless, already within the activity of resolution of the first riddle, it is possible to notice the 

emergence of a different form of rationality. In many protocols, there is a transition from a first 

response, corresponding to an involvement of only the narrative thinking, to subsequent responses, 

in which the students bring into play simple forms of logical-scientific thinking. This evolution was 

supported by collective discussions, which took place during the activity. For example, in Protocol 

G4 (Fig. 4), we can read three successive different kinds of resolutions: exactly what we intend for 

a complete spectrum of different approaches to the riddle resolution. 

 
Figure 4:  Protocol G4–First version answer: Alberto and Bernardo are both knaves. 

Second and third versions answers: Alberto is a knight and Bernardo is a knave 



G4:  [First version, erased in the protocol] Alberto and Bernardo are both knights 

knaves, because, after that saying, Bernardo does not rebut, therefore this means 

that the proposition is true. 

  [Second version, erased too] Alberto is a knight and Bernardo is a knave, because, 

saying what he says Alberto affirms that one of them is a knave and so, among 

them, there is necessarily a knave. 

  [Third version] Let us suppose that Alberto is a knave. By saying this, his 

sentence will be true. But, since he is a knave, he should not tell true things. 

Therefore Alberto is a knight; and Bernardo is a knave. 

In the first version the answer is wrong and the argumentation seems ascribable to a totally narrative 

approach, with reference to personal encyclopedic knowledge. By saying “Bernardo does not 

rebut”, he wants to express that “Bernardo does not justify himself”: according to their life 

experiences the students interpret this attitude as an admission of guilt. In the second version the 

answer is correct. Nevertheless, in their attempt to argue, the students only explain the meaning of 

the sentence pronounced by Alberto, with special attention to the crucial expression “at least”, 

which was examined during a short collective discussion. Finally, the third version, which 

maintains the correct answer, contains a “scientific” argumentation. It comes after a longer 

collective discussion, in which the researcher, comparing the productions of the different groups, 

pursued two principal objectives: to support students in re-situating the activity in the mathematical 

context, introduced in the first part of the lesson; and to build a shared more rigorous language. It 

can be said that the discussion favored the appearance of words like “sentence”, “true”, “true 

things” and, at the same time expressions like “let us assume”, “but”, “since” and “therefore”, in 

this way supporting a complete “reductio ad absurdum” form of reasoning. A similar evolution can 

be found also in other groups, as we can see in Protocol G7 (Fig. 5). 

 

Figure 5:  Protocol G7 - The answer in both versions is: Alberto is a knight and Bernardo is a knave 

 

G7: [First version, erased] Alberto is a knight because if he were a knave he would tell 

the false and if he were a knave he would say that one of them is a knight. 

Consequently Bernardo is a knave. 

[Second version] Going by cases, we can deduce that: they cannot be both 

knights, otherwise they would not say that one of them is a knave, since the 

knights say the truth; they cannot be both knaves otherwise they would have said 



to be both knights; if Alberto was a knave it cannot be that Alberto is a knave 

otherwise he would have said to be a knight. Therefore by exclusion Alberto is a 

knight having told the truth and consequently Bernardo is a knave. 

In both versions the answer is correct. In the first argumentation, we can notice a clear 

predominance of the narrative thinking over the logical one, leading to a change of script, coherent 

with the conversational purposes attributed to the characters. On the contrary, in the second one, 

which comes after the long collective discussion, we notice the use of a scientific language, while 

the content is at the same time narrative and logical. In fact, the possibility that Alberto and 

Bernardo are knights is ruled out by means of a logically correct argumentation. The other two non-

admissible cases, instead, are excluded on the basis of narrative argumentations, through changes of 

script. For example, the change of script “they cannot be both knaves otherwise they would have 

said to be both knights”, is based on the conversational purpose that the knaves team up to hide. 

Discussion and conclusions 

It is well known that the logical formalism, although necessary, to a certain extent, for a full 

acquisition of mathematical notions, may constitute a difficult obstacle for students, due to its 

distance from common sense and to its exasperated exactness. The awareness of this risk was the 

starting point of our research and experience. For this reason, a first decision was to introduce the 

didactic activities by means of riddles, which are a sort of game. Secondly, these puzzles were 

immersed in a fictional context, using explicitly a narrative mode. But in the experimentation 

analysed in this study, the role of narrative has been twofold. On the one hand, as we have said, 

following a well-established research trend, we have benefited from the context of an invented story 

and its appeal to introduce some not easy logical-mathematical concepts; on the other hand, we 

have paid special attention to the narrative mode adopted by students in their oral and written 

productions. It seems to us that our experimentation has brought some interesting results. First, the 

path supported the students toward a strengthening of the metalinguistic control over the texts, 

spurring a reflection on the relationship between language and metalanguage. In our context, the 

object language corresponds to the sentences pronounced by the knights and the knaves, whereas 

the metalanguage is the one used in group discussions and in the production of written 

argumentations. Thus the students became aware of the dual role of language, as a communication 

tool and an object of manipulation. In addition, our way of introducing the activities allowed the 

students to grasp a first sense of the logical formalism, although deliberately not rigorous. 

Addressing the proposed activities, the students were gradually able to experience directly how a 

rational management of statements, at a first glance uninformative, could be very efficient. The 

narrative dimension has played a key role in providing a criterion of truth, which was naturally 

accepted by the students and which allowed to (partially) approach what logicians call a ‘model’. 

During the steps towards the resolution of the riddles, alternated with the collective discussions 

about the students’ argumentations, it seemed to emerge a gradual evolution from a purely narrative 

approach toward an approach where some form of scientific thinking appears. Even in the solution 

of the first riddle, where the two kinds of rationality are intertwined, it emerges a shift towards a 

more conscious management of the two forms of thinking, spurred by the resolution of the logical 

tasks. This kind of evolution is supported by the emergence of a more and more rigorous language. 



Our further step will include a deeper analysis of the oral discussions among the students, in order 

to try to better understand if and how the peer discussion, the comparison of different views and the 

necessity to write down the shared conclusions favour the transition toward a more and more 

sophisticated use of a scientific language. If this will be the case, there will be room for designing 

and experimenting further didactic proposals also in order to observe whether, in a longer period of 

time, there are positive repercussions on mathematical competences. 
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Implicit and explicit processes of establishing explaining practices – 

Ambivalent learning opportunities in classroom discourse 

Kirstin Erath 
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Participation in mathematical practices is widely accepted as important for students’ meaningful 

learning of mathematics. But how do students learn to adequately participate in these practices? 

This paper addresses the question for the specific case of oral explaining practices in whole class 

discussions. The study is theoretically based on merging an interactionist and an epistemological 

perspective to describe explaining practices as interactive processes in a classroom microculture 

while simultaneously keeping in mind the development of the broached mathematical content. The 

identified implicit and explicit processes of establishing explaining practices are exemplified and 

discussed with respect to ambivalences in the differing learning opportunities they offer. 

Keywords: Explaining practices, student participation, discourse, interaction, implicitness. 

Introduction 

This study is based on the assumption that students’ learning is inseparably linked to participation in 

classroom interaction, which is mainly based on verbal communication. Therefore, learning of 

mathematics is conceptualized as “a process of enculturation into mathematical practices, including 

discursive practices (e.g., ways of explaining, proving, or defining mathematical concepts)”  

(Barwell, 2014, p. 332). In this study, the discursive practice of explaining in whole class discus-

sions is further investigated. Erath, Prediger, Heller, and Quasthoff (submitted) show that explaining 

is the most frequent discursive practice in German grade 5 mathematics classrooms. Furthermore, 

explaining has an important role for the meaningful learning of mathematics since it serves to com-

municate about more isolated pieces of knowledge, including talking about meanings and connec-

tions (Prediger & Erath, 2014). But how do students learn to participate in explaining practices and 

the corresponding epistemic processes? This question is investigated in this paper on the level of the 

interactive processes of establishing explaining practices in four microcultures. 

Theoretical background: Explaining as practices of navigating through differ-

ent epistemic fields 

Following Interactional Discourse Analysis, explaining is understood as multi-turn units which are 

interactively co-constructed, contextualized and serve to convey or construct knowledge (Erath et 

al., submitted). This definition is extended and intertwined with an interactionist and an epistemo-

logical perspective from mathematics education: From an interactionist perspective, explaining can 

be conceptualized as a mathematical practice (Cobb, Stephan, McClain, & Gravemeijer, 2001) that 

is interactively established in a classroom microculture and that allows talking about collective 

mathematical development. Here, this concept is used descriptively to talk about identified ways of 

collective explaining processes in whole class discussions that are interactively established by  

students and the teacher. But not every explanation constitutes an own practice. To clarify this point, 

the notion of mathematical practices is enriched by the following definition from general education-

al science: “Practices are […] understood as rule-governed, typecasted, and routinely recurring  



activities” (Kolbe, Reh, Fritzsche, Idel, & Rabenstein, 2008, p. 131; translated from German by the 

author). Therefore, mathematical explaining practices are conceptualized as recurrent ways of ex-

plaining that are treated as matching the classroom microculture from the participants’ perspective. 

The epistemic matrix was derived from research in mathematics education from an epistemological 

perspective (Prediger et al. 2014) and is used to further specify the notion of ‘recurrent ways of ex-

plaining’. Different possible objects of explanations in mathematics are systematized in the lines of 

this matrix (not readable in Figure 1 that focusses on the depicted pathways), called logical levels 

(from top to bottom): Concepts, propositions, representations, and models (conceptual logical lev-

els) and conventional rules, procedures, and concrete solutions (procedural logical levels). Each of 

these mathematical aspects can be explained by different means that are distinguished in the col-

umns of the matrix (Prediger & Erath, 2014), called epistemic modes (from left to right): Labeling 

& naming, explicit formulation, exemplification, meaning & connection, and purpose & evaluation.  

   

Figure 1: Three explaining pathways contributing to the practice of explaining ‘good’ representations  

On the one hand, the epistemic matrix is used to characterize the utterances of students and teachers 

in explanations by analyzing which cells (called epistemic fields) of the matrix they address. On the 

other hand, the matrix is used to depict the explaining pathways that are interactively established by 

mapping these characterizations of utterances in the matrix (see Figure 1): Students’ utterances are 

depicted as rectangles (including turn number and name), the teacher’s utterances as circles with 

turn numbers. These pathways give access to the underlying mathematical structure of explaining 

sequences, which are especially characterized by the teacher’s navigations through different episte-

mic fields (indicated by arrows in the pathways). Therefore, the matrix is used as tool of analysis 

and at the same time the associated language of ‘explaining pathways’ serves to specify the defini-

tion of explaining practices: Altogether, explaining in mathematics classrooms is conceptualized as 

practices of navigating through different epistemic fields, which are identified by building catego-

ries of pathways with similar structures (Erath, 2017). Hence, different practices are constituted by 

different defining patterns of their pathways describing the ‘recurrent ways of explaining’. For ex-

ample, all three pathways in Figure 1 have entries in the lines of “representations”, “procedures” and 

“concrete solutions” in common and after working in the column of “purpose & evaluation” (more 

on the right) the teacher navigates towards the column of “explicit formulation” (more on the left). 

This recurring pattern defines the practice of explaining ‘good’ representations in one classroom: 

“navigating from the evaluation of a student’s concrete solution and suggestions for improvement to 

deriving more general hints for drawing and characteristics of good representations”. 

But how do students learn to adequately participate in these interactively established explaining 

practices? Studies on the establishment of related norms in mathematics education (e.g. Yackel & 

Cobb, 1996) and discourse analysis (Heller, 2015) identify implicit and explicit processes as oppor-



tunities for students learning how to explain in their classroom. This work is extended to the pro-

cesses of establishing explaining practices in this paper. 

Methodology of the study 

Larger data corpus. In the larger project INTERPASS, video data was gathered in 10 x 12 mathe-

matics and language lessons (each 45-60 min.) in five different grade 5 classes (age 10-11 years) in 

an urban area of Germany. Eight lessons were observed in the beginning of the school year directly 

after the transition from primary school since it could be expected that processes of establishing 

practices are more explicit in this time of getting to know each other. Further four lessons each were 

gathered in the middle of the school year in order to get a long-term impression.  

Sampling for the case study of this paper. The presented study builds on data of four mathematics 

classrooms chosen due to the following different characteristics in order to observe a broad range of 

interactions (Erath, 2017): Two higher tracked secondary schools (German: “Gymnasium”) and two 

normal secondary schools (German: “Gesamtschule”) and within each of these subgroups one class-

room with students from a privileged and one with students from an underprivileged quarter. 

Data analysis. This paper is based on analyses done for the PhD thesis “Mathematical discursive 

practices of explaining in different classroom microcultures” (Erath, 2017) enrooted in the larger 

project INTERPASS. In this context, all explaining sequences in whole class discussions were tran-

scribed and analyzed by means of the epistemic matrix resulting in explaining pathways for each  

sequence. In a second step, explaining practices were identified in each classroom by developing 

categories of pathways with similar structures. In this way, three to five different explaining  

practices were explored in each of the four classrooms. In order to answer the question “How do 

students learn to adequately participate in the explaining practices of their classroom?” the inter-

active processes of establishing practices were further investigated. More precisely, it was explored 

if these processes were explicit or implicit and which turn teachers use in order to express their  

expectations and if this makes any difference for students learning opportunities. 

All presented transcripts were translated from German and simplified (capital letters indicate 

stressed words, round brackets indicate phrases difficult to understand in the video data). 

Empirical results: Processes of establishing explaining practices 

The investigation of processes of establishing explaining practices in four German grade 5 class-

rooms (Erath, 2017) shows that there are some explicit but primarily implicit processes that contri-

bute to the establishment of explaining practices. Furthermore, it comes to the fore that teachers 

(implicitly or explicitly) explicate their expectations in the turn of demanding an explanation as well 

as in the turn of responding to a student’s utterance.  

Explicit processes 

Out of 16 identified explaining practices, only the practice of “explaining a concrete solution by 

means of a conventional rule” in Mr. Maler’s classroom is recurrently established in an explicit way. 

The following transcript from the sequence “rounding on tens” (see Prediger & Erath, 2014 for a 

longer extract of the sequence) exemplifies how the teacher explicates his expectations for a ‘good’ 

explanation in his response to Kosta’s explanation why 63 can be rounded on 60: 



8 Kostas: °hhh [articulated clearing his throat] Well, if you are rounding DOWN the 

sixty-three on TENS; then it comes, it gets, there must be ALWAYS a zero 

at the end, it MUST be, 

9 Teacher: [hm_hm                          ] 

10 Kostas: [when you are rounding.] 

11 Teacher: On TENS yes. 

12 Kostas: And then there, if you take AWAY the three and shift the ZERO to it. So, 

you could DO that, but actually it’s WRONG. You just have to round down 

and nea.. nearest number with a ZERO you have to write there. 

… 

20 Teacher: […] and you already implied WHY; but does any of you know a RULE, 

HOW one has to proceed here, and when one here, when the ten stays the 

SAME? In this case, and the place BEHIND, which is rounded, goes to 

ZERO? Ha; [4.5 sec. break] Katja. 

21 Katja: With zero one two three FOUR you are rounding down and with five six 

seven eight NINE you are rounding (up). [3.5 sec. break] 

22 Teacher: Did EVERYBODY understand that? 

23 Class: YES [affirms in choir] 

Kostas explains his solution by referring to the meaning related model of distance and closeness on 

the number line. This is implicitly rejected as a matching explanation by the teacher in #20, immedi-

ately followed by questioning the class about a rule that could be applied to explain the solution. In 

this way, Mr. Maler explicates his idea of a ‘good’ explanation of a concrete solution, which is un-

derlined by his reaction to Katja’s formulation of the corresponding rule. This sequence is an exam-

ple of explicating expectations in responding to a student’s explanation by navigating to the epis-

temic field (explicit formulation of a conventional rule) that would match for an explanation from 

the teacher’s perspective and directly demanding an answer in this epistemic field. Another con-

ceivable possibility would be that the teacher explicitly talks about which mathematical aspect of an 

explanation he values or which part did not match from his perspective. 

These kinds of explicit processes can also be observed in Mr. Maler’s demands for explaining a so-

lution. The following extract from “rounding on thousands” in the context of a homework on round-

ing the length of rivers illustrates the case of explicating expectations in the turn of asking for an 

explanation by pointing to the expected epistemic field (explicit formulation of a conventional rule): 

6 Tabea: SIX thousand 

7 Teacher: GOOD; but now my QUESTION is, HOW did you arrive at this six thou-

sand? Since we also want the RULE 

8 Tabea: Because from e:r, 

9 Teacher: to be CLEAR 

10 Tabea: Well up to five, well up to four, you have to round DOWN, and from five 

six seven eight nine you have to round UP. 

11 Teacher: EXACTLY. […] 

After naming the right number (#6), Tabea is asked by the teacher in #7 to explain her solution. In 

this turn of demanding an explanation he directly states that she should refer to the conventional 

rule (shortly interrupted by Tabea): “HOW did you arrive at this six thousand? Since we also want 



the RULE […] to be CLEAR” and in this way explicitly points to the expected epistemic field. 

Tabea follows this navigation (#10), which is explicitly evaluated positive by Mr. Maler in #11. 

In both ways, the teacher explicates his expectations and reveals the recurring, typical structure of 

explaining a concrete solution by means of stating the related conventional rule. That is, this struc-

ture is made accessible to all learners and not only to those who can interpret the implicit processes 

of establishment (see below). Hence, the teacher’s explication of expectations in the turns of deman-

ding for and responding to an explanation are major learning opportunities for explaining a concrete 

solution adequately in this classroom (this must not hold for other classrooms since every microcul-

ture establishes different practices). Especially the way of explicating in the demand for an explana-

tion seems to be important: This allows all children to contribute in the subsequent explanation even 

though they might not yet recognize the recurrent pattern of the underlying practice. 

Implicit processes 

Explicit establishments (see above) have only been found in rare cases in the data corpus. Instead, 

processes take course implicitly. Three different ways of implicit processes contributing to estab-

lishing explaining practices were identified and are exemplified in the following: (1) marking match 

or mismatch in responding to a student’s explanation without giving reasons for the evaluation, (2) 

picking up only particular aspects of a student’s explanation without explication, and (3) navigating 

recurrently to specific epistemic fields without revealing the underlying (intended) pathway. 

An example for evaluating a student’s explanation without further comments is the sequence “dis-

tinguish lists” from Mrs. Bosch’s classroom. During revision at the beginning of the lesson, students 

are asked to distinguish the concepts of tally sheets and frequency tables. 

12 Teacher: […] Now, WHAT was tally sheet, WHAT was frequency table, this PART, 

Barbara, 

13 Barbara: Tally sheet is where you did strikes; and frequency table is er [4.0 sec. 

break] er- 

14 Teacher: Can you HELP Maria? 

15 Maria: YES, when you did it all count up and then wrote it DOWN with numbers 

16 Teacher: EXACTLY. Well CAUGHT. […] 

Mrs. Bosch marks Maria’s explanation explicitly as matching (#16) but does not reveal the under-

lying pathway in her response: The analysis of several sequences on explaining concepts in this 

classroom unfolds that in this microculture a concept is adequately explained by means of address-

ing an epistemic field on the level of procedures, which means formulating an instruction for gener-

ating a representation of the concept. Therefore, the sequence is an example of an implicit process 

that contributes to the establishment of an explaining practice by marking an explanation as match-

ing or mismatching without commenting on the reasons for the evaluation. 

The second kind of implicit processes (picking up only particular aspects of a student’s explanation 

in a response without explication) is concretized by the sequence “function of diagrams” from Mr. 

Schroedinger’s classroom in the context of talking about different ways of presenting data.  

1 Teacher: […] WHY they’re doing quite frequently in printed media but also um on 

TV in the news, um why they’re not giving a LIST like that […] 



2 Nikolas: um because maybe because this CATCHES one’s eye much faster and um 

well that you can SEE this faster; so that something is BIGGER; because 

this is also bigger from its SIZE. So it’s MORE because it’s BIGGER from 

its size. 

3 Teacher: [nods] [Markus        ] 

4 Marcus:            [Because you] can CATCH it very fast. For example um now up 

RIGHT I think there are such PERCENTAGES; because (that they) CATCH 

that well it’s actually even BETTER than this; (also how many) PEOPLE; 

5 Teacher: hm_[hm  ] 

6 Marcus:        [How] many SIBLINGS they have, because then in parts they would 

maybe have to always go THROUGH our classroom that small. 

… 

9 Teacher: THIS exactly meets the point, these two utterances. THEREFORE you nor-

mally do it in the form of such diagrams, because of the clarity actually […] 

In his evaluation in #9, the teacher explicitly marks that the students’ answers match but in his sub-

sequent summary, only specific aspects are picked up: The teacher takes on the aspects related to 

functionality but he does not refer to the further issues of meaning (#2, “it’s MORE because it’s 

BIGGER”) or examples (#4/6, number of siblings) addressed by the students. This selection is in 

line with the practice of explaining that is established during several sequences: In Mr. Schroeding-

er’s classroom, concepts are adequately explained by referring to purposes and functionality.  

The third way of implicit processes contributing to establishing a practice is the teacher’s repeated 

steering to specific epistemic fields without revealing the underlying (intended) pathway. This di-

rectly refers to the definition of explaining practices that forms the basis of this study. Figure 1 

shows three pathways of sequences that show the same regularities. These kind of pathways are 

identified five times in Mr. Schroedinger’s classroom in the context of explaining how ‘good’ rep-

resentations are designed. But, as with the two ways illustrated before, the underlying pathways are 

not revealed. The following extract from the sequence “lists of pets” exemplifies the navigation 

from evaluating a concrete solution to formulating hints for generating ‘good’ representations. 

1 Teacher: What would you SAY which ADVANTAGES, DISADVANTAGES [break 

1.3 sec] have these particular ways of writing it down; […] 

34 Büsra: Well, in my POINT of view number two is BEST [break 1.7 sec.] 

35 Teacher: WHY; [break 1.2 sec.] 

36 Büsra: Yes because it doesn’t that much TIME and em like Monir-Zohir already 

SAID em it only takes you like two MINUTES or so- 

37 Teacher: hm_HM, [break 1.3 sec.] But with number two TOTALLY obvious- some-

thing is MISSING in order to make it as clearly arranged as POSSIBLE […] 

WHAT is missing TOTALLY obvious with number two so you can SAY 

yes THIS makes somehow sense- this there you need LITTLE time- this is 

SOMEWHAT clearly arranged 

…   

40 Uwe: the NUMBERS; [break 1.7 sec.] 

41 Teacher: SAY again- WHY does it make sense to write numbers behind it? 

42 Uwe: So that you don’t always have to count THROUGH; 



43 Teacher: [writes on the transparency] EXACTLY; […] 

Mr. Schroedinger initiates (#1) the evaluation of the representations and after some students stated 

pros and cons for the different representation, he navigates to formulating suggestions for improving 

the lists (#37), which helps clarifying how good lists should be designed. By repeatedly starting 

from a student’s concrete solution and navigating from its evaluation and suggestions for improve-

ment to deducing more general hints for drawing and characteristics of good representations this 

explaining practice is established across several sequences. 

Although the three presented ways of establishing explaining practices must be characterized as im-

plicit processes, they serve as opportunities to learn how to participate adequately in whole class 

explanations, at least for some learners. But the examples also show how challenging it is for other 

students to interpret these implicit processes (see e.g. Gellert, 2009, for further discussion of diver-

gent learning opportunities related to implicitness). In the cases of marking matches and mismatches 

or picking up particular aspects without further comments, it might be challenging for students to 

follow since they must relate the teacher’s evaluation to a classmate’s utterance that is not present 

any more. The third way (recurrent teacher’s navigations) allows all students to contribute in the 

explanations as long as the teacher explicitly demands for the shifts of epistemic fields. However, it 

probably takes students several sequences of one practice to recognize that there is a pattern and that 

knowing “how explaining works” is important for adequately taking part in whole class discussions. 

Conclusion and discussion 

The distinct dominance of implicit processes found in the qualitative analysis of the video data cor-

pus is in line with research that identifies criteria of “successful participation” and “expected student 

contributions” (Gellert, 2009, p. 131, translated from German by the author) as often staying implic-

it. The presented study deepens these findings for explaining practices. Furthermore, the epistemic 

matrix offers a possibility to talk about mathematical aspects of ‘good’ explanations and to make 

the hidden regularities visible and discussable by means of the pathways. The dominance of implicit 

processes also suits the observation that explaining (as well as oral communication in general) is not 

treated as an explicit learning goal by the teacher (Erath, 2017). Instead, explaining serves as learn-

ing medium that is used without talking about adequate participation beyond general social behav-

ior, i.e. the mathematical aspects of ‘good’ explanations. Moreover, it becomes apparent that learn-

ing how to adequately participate in whole class explanations is a learning process (across several 

sequences and lessons) and hence especially not a feature that students bring to the classroom but a 

competence that can be acquired in the interaction of collective explanations guided by the teacher. 

The explicit and implicit processes of establishing explaining practices relate to different learning 

opportunities for students as explicated above: More explicit processes are eligible since they reveal 

the underlying patterns of the pathways and provide more students access to this mathematical as-

pects of participation, not only those who are able to also interpret the implicit processes. However, 

this does not imply a call for direct instruction: Talking about language on meta-level while simul-

taneously talking about mathematical content may ask too much especially from weaker students. 

Instead, it is about making the criteria for matching and mismatching utterances in relation to a 

practice accessible in responses to explanations or in the turn of demanding for explanations. There-

to, teachers need to be sensitized for the role of oral explaining as a learning goal in order to be able 



to deliberately initiate particular practices. But as a first step, research in mathematics education 

should further specify which explaining practices are reasonable (also related to general discourse 

acquisition) or rather necessary in which grade in order to help teachers to enable even more stu-

dents to actively participate in oral explanations and the corresponding epistemic processes. 
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I describe a teaching experience I carried out in Malta with a class of 5-year-old children of different 

language groups. The language of instruction was English and the topic subtraction. I explicitly 

taught mathematical expressions and sentence frames and planned class and paired activities 

wherein the children themselves would use the language to express the concepts at hand. The 

theoretical framework underlying my interpretation of the children’s efforts is learning-as-

participation. More specifically, I used Krummheuer’s empirical model designed for interpreting 

classroom interaction in terms of producers and recipients. My teaching experience illustrates that 

with careful attention to both mathematics and language objectives, young learners in plurilingual 

Maltese classrooms can appropriate and use mathematics discourse within structured activities. 

However, more research is needed with regard to how students might use this language to author 

novel contributions.  

Keywords: Learning-as-participation, mathematical discourse, subtraction, elementary education.  

Introduction  

Atlhough the academic language for mathematics in Malta (an ex-British colony) is English and 

written texts are in English, interaction in classrooms is usually conducted through both Maltese and 

English. However, the number of non-Maltese students in classrooms in increasing over time, 

prompting teachers to use more English during lessons; although English may not be the non-Maltese 

children’s home language, it is more likely that they would familiar to some extent with English rather 

than Maltese. Anecdotal evidence suggests that teachers generally view this situation to be 

problematic, as they need to cater linguistically for Maltese and non-Maltese children. I carried out a 

study in the form of a teaching experience with a mixed language group of children  with the aim of 

encouraging students to learn and use topic related language. My reasons for carrying out the study 

were (1) to apply to the Maltese context, the recommendation from the field of mathematics education 

for teaching mathematics language explicitly; (2) to focus on specific aspects of the mathematics 

register. I hoped that the reflections would aid me in my discussions with local colleagues, trainee-

teachers and policy-makers on medium-of-instruction issues. My research question was: How can 

children of different language groups be supported to learn English mathematical language? By 

‘learning’ I mean that the children would be able to express mathematical ideas through appropriate 

language during and after a series of lessons wherein specific language structures were emphasized.   

Learning mathematical discourse 

Several researchers, among them Gibbons (2015) and Murray (2004), make a strong case for teaching 

students explicitly how to talk about mathematics. Learning the language of mathematics allows 

individuals to express the ideas and concepts that form the discipline of mathematics, and by learning 

the language pupils begin to be enculturated into it (Lee, 2006). Thus, children learn the discourse of 

the discipline. This includes more than just learning subject specific vocabulary. Rather, it involves 



learning  - and using - the ‘ways of saying’ particular to the subject. For example, Sammons (2011) 

states that students need to learn how to formulate questions, make inferences and predictions; Murray 

(2004) and Gibbons (2015) recommend reflective journal writing as part of learning mathematics 

while Gerofsky (2004) considers word problems to be a genre forming part of the discourse. Whereas 

learning mathematical discourse is important for all learners, second-language learners have the dual 

task of learning the second language and content simultaneously (Bresser, Melanese & Sphar, 2009). 

Consequently, the teacher of second-language learners faces the challenge of not only making the 

mathematics lessons comprehensible for students, but also of ensuring that the students have the 

language needed to express their grasp of mathematics concepts. Coggins, Dravin, Coates and Carroll 

(2007) and Melanese, Chung and Forbes (2011) offer suggestions for classroom activities to support 

these students in learning ‘academic’ language, while Gibbons (2015) suggests that when planning 

lessons, both subject and language objectives should be listed. 

In her consideration of mathematical language as a ‘register’, Morgan (1998) highlights grammatical 

features such as the imperative (command) and nominalization (nouns derived from verbs like 

rotation and construction), the passive voice (e.g., a line is drawn), being concise and the use of 

symbols. Whereas Morgan refered to written mathematics, these features also contribute to spoken 

mathematical discourse. Prediger and Wessel (2011) link the verbal register with what they call non-

verbal registers including concrete, graphical and symbolic-numerical representations. They note that 

cognitive development of mathematical concepts is deeply connected to the ability to relate concepts 

in different representational modes. In this study, particular features of the register were addressed 

and developed by using them alongside non-verbal represenations.  

Theoretical framework 

Lave and Wenger (1991) proposed that learning can be considered as participation in a community 

of practice. As students progress in their learning of an apprenticeship, they move from what Lave 

and Wenger call ‘peripheral’ to ‘full’ participation (p. 37), which involves learning the tools of the 

activity and gaining autonomy. Dealing with a similar theme of apprenticeship, Rogoff (1995) writes 

about two concepts: guided participation and participatory appropriation. The former refers to the 

mutual involvement of individuals, including communication, in a collective valued activity. 

‘Participatory appropriation’ refers to the process by which individuals transform their understanding 

of, and responsibility for, activities through their own participation. In the context of the mathematics 

classroom, ‘learning’ may be taken to be the participation in the practice of the discourse of 

mathematics. Krummheuer (2011) has queried how the sensitizing notion (Blumer, 1954) of learning-

as-participation can be described or represented on an empirical level and he proposes a framework 

for this purpose. He widens the dyad ‘speaker/listener’ to multiple roles so as to account for the 

multiple individuals normally participating in a group conversation such as that of a classroom 

context (ibid, pp. 84-85). For participants who are listening (recipients), he proposes the following 

roles; the first two refer to direct participation, while the latter two to indirect participation: 

• Conversation partner (addressed by the speaker); 

• Co-hearer (unaddressed by the speaker); 

• Over-hearer (tolerated by the speaker); 

• Eavesdropper (excluded by the speaker). 



For participants who are speaking (producers), Krummheuer suggests these roles:  

• Author (responsible for the content and the formulation of an utterance); 

• Relayer (not responsible for either content or formulation; echoes the author); 

• Ghostee (takes over the identical formulation and uses it to try to express an original idea); 

• Spokesman (expresses the same idea with his or her own formulation). 

As Krummheuer points out, this model has the advantage of accounting for the process of moving 

from ‘legitimate peripheral participation’ (as evidenced by the roles of eavesdropper, over-hearer, co-

hearer and relayer) to ‘full participation’ (role of author), through the intermediate stages of 

spokesman and ghostee. Using this model, it is possible to interpret classroom interaction and 

participation, and hence learning, in a more specific way. Whereas Krummheuer (2011) used the 

model to interpret a small-group discussion, I apply it to a whole-class setting.  

Research context and method  

An ethnographic approach was considered suitable since I wished to describe the practices of an 

educational community. Since my focus was the details of a teaching/learning context, I considered 

the case study method to be appropriate (Yin, 2014). I approached a school where the Head of School 

was an acquaintance of mine, and she put me in touch with a Grade 1 teacher, whom I call Ms Jenny. 

Most of her children were 5 years old at the time of the study. The class comprised 22 children and 

exemplified a ‘superdiverse’ context (Barwell, 2016). There were nine children of whom both parents 

were Maltese; seven children had one parent Maltese and the other non-Maltese, namely Australian, 

Irish, Bulgarian, Serbian, South African, two Libyans. Five children’s parents came from  varying  

countries: Italy, Greece, Hungary, Ecuador, South Africa. One boy had a Finnish father and a Kenyan 

mother. All the non-Maltese children understood English with different levels of confidence; I am 

not in a position to know their exact language experiences through which they learnt English, but 

from the conversations I had with some of the children it transpired that those who had one Maltese 

parent used English with this parent. Some of the non-Maltese children understood some Maltese and 

could say a few words. The Maltese children spoke Maltese fluently and understood English, but their 

speaking proficiency varied. Ms Jenny’s class situation prompted her to use English as the medium 

of instruction. Some of the Maltese children used Maltese when communicating on a social level.  I 

did not hear any of the other languages during my time in the classroom, although I cannot exclude 

that the two Libyan children might have used Arabic to communicate outside the classroom.  Ms 

Jenny and I agreed on the topic to be taught: Subtraction. 9 one-hour lessons were given and these 

were video-recorded. The focus of this paper is on the 5 lessons on subtraction as separation or ‘take 

away’. Parental and the child’s own consent was sought for children to show up on the cameras. If 

either withheld consent, the child was placed out of camera view. I interviewed some children 

individually before the lessons, asking them about the languages they spoke; I also confirmed that 

Subtraction was going to be new to them as a school ‘topic’. Three days after the lessons ended, I 

spoke to the children again, asking what they recalled. Children were chosen on the basis of consent 

obtained from both themselves and their parents; six were interviewed prior to the lessons, seven 

after. The interviews were audio-recorded.  

I wished to present the children with mathematics/language and to see if, and how, they would 

appropriate the targeted discourse. The mathematical objectives of the lessons were: subtraction as 



separation using pictures, blocks and fingers; symbolization (5 – 2 = 3) and translating story problems 

into subtraction operations.The related language objectives included the following structures: making 

statements using specialist vocabulary with regard to items (“Five [blocks] take away one is four”), 

using the imperative (“Take away two!”), asking a mathematical question (“How many left?”), 

‘reading’ consicely symbolization (5 - 1 = 4 read as “five minus two equals three”), and formulating 

story problems orally (“ Ms Jenny has 5 cookies. She eats 2 cookies. How many are left?”). Resources 

included a story book, pictures, blocks and fingers. As suggested by Bresser et al (2009), I modelled 

sentence frames during whole-class discussion, then set paired tasks during which the children were 

encouraged to use similar language. Some pairs (based on consent) were recorded using an audio-

recorder. Individual worksheets were also set, of which photos were taken after the children 

completed them. In order to analyse the data, I studied the lesson, pair-work and interview recordings 

in detail, together with the completed worksheets. I focused especially on children’s contributions, 

now interpreting my original, general aim of getting children to use mathematical language in terms 

of Krummheuer’s framework.  

Teaching and learning subtraction as separation 

Classroom interaction is a complex acitivity, with participants’ roles interweaving. However, for the 

sake of presentation, I here tackle the roles separately. Names are pseudonyms. In the transcripts, the 

language is presented as stated by the children, and so in some cases may differ from standard English.  

Teacher as author, children as recipients and relayers 

In order to introduce the children to the new expressions, I first authored them myself within a whole-

class discussion. In these situations, the children took the roles of either conversation partners or co-

hearers, since I could not interact with all children simultaneously. In a typical ‘whole-class’ style of 

interaction, I sometimes drew on particular children (“This one’s for Andrea”) while at other times I 

selected children with raised hands, or allowed a chorus answer. 

The following is an illustration of how I introduced an expression and encouraged the children to 

relay it back. The conversation follows Ms Jenny’s reading of the story ‘Monster Musical Chairs’ 

(Murphy & Nash, 2000) during which I had used statements such as “Three monsters take away one 

monster leaves two monsters”, while showing up large number cards.  

MTF: (Refering to the monster pictures attached to the whiteboard). I’m going to say 

something important: “Six take away one leaves five”. (MTF simultaneously 

removes one card). Now I need Dragan to say “five take away one leaves 

four”.  

Dragan: 

(Serbian/ Maltese) 

(As MTF removes another card). Five take away one leaves four.  

(…) (A short while later with reference to three attached monster cards).  

David (Maltese) Take away … 

MTF: (Indicates the three cards attached to the whiteboard). First say how many 

there are. (Slowly) Three – take –away – one – leaves – two. 

David: (Saying it with me). Three take away one leaves two.  

Children: (Some children in the class say it with myself and David).  

MTF: I want to hear you say it. 

Children (chorus): Three take away one leaves two.  



For some children, relaying was not a trivial matter. For example, in the second lesson I introduced 

the question “How many left?” or “How many are left?” During this lesson, Lili (Hungarian) relayed 

this as “How many is?” but the following day I overheard her ask the question correctly to her task-

partner. Initial difficulty may be due to the fact that English might not be a child’s first language. Age 

may also have an impact on how quickly a child might pick up a new expression; these young children 

were still developing general language communication skills. Once a key phrase was practised a 

number of times, I encouraged children to offer their own examples, thus giving them the opportunity 

to act as ghostee or spokesman. 

Children as ghostees and spokesmen  

Taking the role of ghostee (identical formulation, original idea) first occured during class discussions. 

For example, in the second lesson I showed up picture cards, starting with six, decreasing to zero, 

each time asking a child to express what we had observed during the monster story. By this stage in 

the lesson, we were using both expressions take away leaves and take away is.   

MTF: What shall I do with the picture?  

Kylie:(Australian/Maltese) Take away!   

MTF:  So what shall I say? 

Kylie: Three take away one is two!  

Although Kylie’s idea was not ‘original’ as such, I still consider that Kylie had progressed a step 

ahead of simply repeating after me, or with me. By Lesson 3, the children had picked up a lot of 

confidence, sometimes using the formulation to ‘jump the gun’. For example, in one activity I was 

asking children to show up a certain number of fingers, then take away (put down) a number of them. 

I had previously set two examples, guiding them with questions. 

MTF: OK, another example. Seven fingers…  

Child 1 (unseen): Take away four!  

Sofia (Bulgarian/Maltese): It’s three!  

MTF: Listen carefully!  

Child 2 (unseen): Five! Five! 

Child 1 (unseen) No, four!  

Children (chorus): Seven take away four is/leaves three.  

Another context in which the children took the ghostee role was during a structured paired activity. 

For example, in the excerpt below Sofia and Lennie were using monster pictures.  

Sofia (Bulgarian / Maltese) (Puts out six pictures, removes one). Six take away one is five.  

Lennie (South African/Maltese) (Removes a picture). Take away / 

Sofia: (Interrupts). FIVE take away. 

Lennie: Five take away one is four.  

Sofia:  (Removes a picture). Four take away one is three.  

Lennie: (Removes a picture). Three take away one is two.  

It took some time for some children to get accustomed to stating the original number; as Lennie did, 

they might say “Take away two is three”. I drew their attention to stating the first number; this was 

important as a preparation for the standard symbolization 5 – 2 = 3 that was introduced in Lesson 4.  



It is not possible, nor necessary, to insist on identical formulations when working with mathematical 

discourse, since it would render the language-use artificial. Indeed, taking the role of spokesman 

(same idea, varying formulation) played a crucial part, since it allowed the children to express 

themselves freely and to draw on English as they knew it to express the mathematics at hand. This 

helped create an inclusive context, build up their confidence in English and mathematics, and allow 

me to gauge their understanding.  For example, during a paired activity with blocks, the children were 

required to give an instruction to their partner (use of imperative, e.g. “Show six blocks”), then ask 

“How many (are) left?” Some children asked the question differently, for example: “How much is 

there?” (Sofia, Bulgarian), “How much is there now?” (Andrea, Ecuadorian), “How many blocks 

there left?” (Shania, Maltese) and “How many is the answer?” (Ritienne, Maltese).  During the paired 

activities, Ms Jenny and I had monitored the children’s work, using the new expressions as we 

interacted with them and, through questioning, encouraged them to use the expressions themselves. 

Plenary sessions in which we reviewed a lesson also allowed the children to express themselves as 

they wished, while using the new expressions.  

MTF: What was that special word we were using today? 

Ian (Maltese): We were taking away.  

MTF: Can somebody remember what we were doing when we were playing 

teacher?  

Sven (Finnish/Kenyan) We was … we was …we was asking to show … to show …to show ten 

blocks.  

MTF: Good! We were asking our friend to show blocks. And then, Sven, what 

did we ask them to do? 

Sven:  To … to … to … to take away.  

MTF:  And then what did we ask our friend? … Luca? 

Luca (Italian): How many there left?  

MTF: Very good! How many are left? 

A number of the children had another opportunity to take the role of ghostee or spokesman during 

informal individual interviews I carried out with them. In this context, I asked  open questions like 

“Tell me what you remember”, prompting them to use the language – or similar - that we had focused 

on in the lessons.  Following are two examples. In relation to word problems, Dragan used the story 

problem formulation to offer an example about himself, while Mohammed articulated a story sum 

with varying formulation, drawing on his knowledge of English as best he could.  

Dragan  Dragan has five cookies and he ate three, and it’s two. 

MTF: Do you remember that question we were asking? 

Dragan: Yes. ‘How much are left?’ 

 

Mohammed: Ms Farrugia is, have a … like … eleven biscuits and he eats … em … six biscuits.   

Children as authors 

The role of ‘author’ is one that implies original input by the speaker and hence the role implies a 

certain autonomy. In the lessons on subtraction as ‘take away’ I did not recognize instances when 

children acted as authors in the sense of them coming up with novel input that could shape the 



discussion, or influence other chidlren’s learning of subtraction. I believe that the reason for this was 

the structured nature of the activities. Due to my intention to stress and develop specific mathematical 

language, the whole class conversations were shaped by myself. Furthemore, the paired activities had 

particular instructions to follow. Although children offered their own subtraction examples on the 

worksheets, including drawings of their choice, I would still say that they were following quite closely 

the structures I had taught them. Of course, the children did digress in their talk during the pair work 

and as they worked out the written examples on the sheet. However, this alternative talk tended to be 

social talk, such as “Look, my monster is green” or “Hey! Don’t take our blocks” and so on, as one 

might expect from children this age.  

Conclusion  

From a researcher perspective, my study served the purpose of supporting international research that 

highlights the benefits of giving explicit attention to academic/English language with non-English 

speakers. It provides an example of focusing on specific features of the register. My study also 

illustrates an attempt at addressing mathematical language in a plurilingual classroom, and an 

application of Krummheuer’s (2011) framework. From a teacher perspective, I concluded that the 

strategies I had planned had been effective in reaching my aim which was to enable the children to 

use features of mathematics discourse, namely specialist vocabulary, the imperative, asking 

questions, interpreting symbolization and the story problem genre. Thus I went some way in guiding 

a group of children with very different language backgrounds and differing proficiency levels of 

English to appropriate the ‘academic’ mathematical discourse and hence to increased participation in 

the discipline (Lave & Wenger, 1991). However, according to Krummheuer (2011), full participation 

in the practice is achieved through authorship. Due to the structured nature of the class activities, I 

cannot say that the children fulfilled the role of authors; it is likely that open-ended style activities 

are required to allow for authorship opportunities.  

In conclusion, I note that on one hand the explicit attention to language can help to set up a reciprocity 

of conversational English and mathematical discourse, with potential benefit for both aspects. This 

would seem to be an important teaching strategy for mixed-language groups. On the other hand, the 

attention to language in itself can be restricting unless further opportunities are provided for more 

open-ended tasks. In the latter tasks, one might hope that the language expressions learnt during 

structured activities might then be utilized as students offer novel ideas. This would result in students’ 

authouring by using the mathematics register - surely the ‘fullest’ verbal participation that one can 

expect from mathematics learners. Of course, appropriating mathematical discourse is not something 

that can be achieved over a few lessons, especially in the case of very young children learning 

mathematics in a second or foreign language. The next stage in my line of research is to explore how 

newly learnt language structures can be encouraged in a plurilingual classroom to author original 

contributions to the development of the mathematics at hand. 
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The paper reports an investigation about undergraduates’ argumentations to justify answers to 

elementary calculus problems involving the recognition of relationships among graphs, verbal texts 

and formulas. The examination of the texts produced over more than ten years highlights serious 

language difficulties and suggests that we cannot exclude that language is a key factor for the quality 

of arguments. The main goal of this study is to gain a better understanding of how language 

difficulties (depending on both competence and attitudes) affect argumentations.  

Keywords: Language, problem solving, register, argumentation. 

Introduction 

The paper focuses on how undergraduates justify their answers to elementary calculus problems 

involving relationships among graphs, verbal texts and formulas, in the frame of an introductory 

mathematics course delivered in Italian to biology freshman students. The course is short (48 hours 

of lectures and 24 hours of optional tutoring sessions) and taught by two instructors, one of whom is 

the author. It is usually attended by more than 400 students, coming from various regions of Italy and 

Eastern Europe. The students’ language competence is much varied. Due to the goals, the attendance, 

and the lack of time, I did not develop a standard course moving from the basic definitions of Calculus 

to get to theorems and applications, but focused instead on a few concepts such as graph symmetries 

and slope. Most of the tests administered as working material or examination papers require the 

linking of different representations of functions (symbolic expressions, graphs, verbal texts, tables of 

numbers). Through these activities participants are systematically asked to explain and justify their 

answers in writing, even informally. This requirement is aimed at discouraging guessing or rote 

learning and help the students to better understand the concepts involved. Morgan (1998) provides a 

description and discussion of the ‘writing-to-learn’ paradigm, and highlights the benefits of the use 

of writing as a means for learning. Very appropriately, she suggests (with the expression ‘learning-

to-write’) that nobody needs to assume that students of any age have achieved the level of linguistic 

competence required in order to produce texts adequate to their goals, and challenges the assumption, 

more or less implicit in a number of studies, that language naturally develops and there is no need for 

deliberate language teaching (Morgan, 1998, pp. 37-49).  

The scrutiny of the papers written by students over the years highlights serious difficulties with 

language and suggests that we cannot exclude at all that language competence is a key factor for the 

quality of arguments. If we admit that there is a link between language and thought, there is no reason 

at all to rule out the hypothesis that the quality of the texts a subject can produce or interpret could 

deeply affect the quality of her/his thinking, and thus of the arguments s/he can produce.  

An investigation of this topic requires dealing with the texts involved as objects, not only as means 

to develop a discourse within a given context. The focus should be on the organization of the texts, 

not just on the corresponding communication process.  



The main goal of my research is to get a better understanding of how language difficulties (depending 

on both competence and attitudes) affect the production of arguments by undergraduates. In this 

specific study I focus on problems involving graphs. 

Theoretical framework 

Research on argumentation has produced a large number of papers from a wide range of perspectives. 

Some researchers, such as Crawshay-Williams (1957) and van Eemeren et al. (1996), in different 

ways, have underlined the role of context in argumentation and the links between argumentation and 

language.  Crawshay-Williams (1957, p.3), for example, claims that his work on argumentation 

“enquires how we use language as an instrument of reason” and argues that “[i]t is only possible to 

determine whether an empirical statement is true or false if the context of the statement is known.” 

On the other hand, van Eemeren et al. (1996) relate the theory of argumentation to the pragmatic 

theory of speech acts (Austin, 1962), which takes into account not just the propositional content of a 

statement (i.e. the part of its meaning, based on vocabulary and grammar, that allows the receiver to 

identify the referents and possibly to establish whether the statement is true or false), but also the 

speech act (i.e., the fact of expressing a proposition in a specific context, which conveys also 

speaker’s (or writer’s) beliefs, attitudes and commitments, possibly influencing the hearer’s (or 

reader’s) ones. Toulmin’s framework (2003), on the contrary, although it is widely adopted in 

research on argumentation in the context of mathematics education, seemingly pays very little 

attention to language and context.  

As far as language is concerned, I adopt Halliday’s (2004) account of the relationship between 

scientific language and science and his Systemic Functional Linguistics (SFL) (Halliday, 1985, 2004; 

Leckie-Tarry, 1995; O’Halloran, 2005). Halliday, whose research is in the field of pragmatics started 

by Austin (1962), argues that there is no learning of science without some learning of its language 

(2004, p. 160). The adoption of the SFL framework is justified by the opportunity of focusing on the 

functions of language in mathematics education, where the needs for effective representations of 

concepts and their relationships and  algorithms is unavoidably at odds with those of effective 

communication. Multisemioticy is an important feature too, as the interplay among verbal, figural 

and symbolic representations is stronger in mathematics than in other fields. 

In order to analyze the protocols, I am using the idea of register as a linguistic variety related to use 

(Halliday & Hassan, 1990). An enlightening discussion on registers in an SFL framework has been 

provided by Leckie-Tarry (1995). Morgan (1998) and Ferrari (2004) have applied this idea to 

mathematical language. Any individual has at her/his disposal a range of registers that s/he uses 

according to circumstances. The most relaxed registers, used in spoken (but sometimes also written) 

everyday communication are classified as colloquial, while those adopted in written (but sometimes 

also spoken) communication among educated people, for example in institutional, educational, 

literary, research contexts are referred to as literate. 

Colloquial registers, in short, are characterized by their strong dependence on the context of situation 

(i.e., according to Leckie-Tarry, 1995, the space and time in which the exchange takes place, the 

participants…), which allows participants to negotiate meanings and makes it unnecessary to produce 

accurate and unambiguous statements from the beginning. Literate registers are less related to the 

context of situation. In colloquial registers the meaning of words is mainly taken from previous 



experience, and most often much precision is not required to achieve the goals of the exchange, 

whereas in literate ones words have precise meanings, based on definitions (the so called 

lexicalization). In colloquial registers syntax is customarily relaxed, while in literate ones it is tighter. 

In colloquial registers there is an extensive use of iconicity, i.e. the analogy between the form or 

organization of a representation and its meaning. Iconicity is opposed to arbitrariness and can involve 

factors such as order (the order of facts matches the sequence of the representations). In literate 

registers representations are less iconic and more conventional. As a consequence, the interpretation 

and production of texts and representations in colloquial registers are quite unstable, since they 

depend on factors difficult to control (how the subject is accustomed to use words, how s/he interprets 

images, the mental models s/he uses in place of the definitions, the personal experiences s/he tries to 

recall, …). In literate registers, the lesser dependence on the specific situation, the reference to defined 

meanings (thus more objective and verifiable) and the role of syntax (objective and verifiable too) 

make the interpretation and production of texts more stable. 

Even a quick analysis of what is described above should make it clear that most of the registers used 

in mathematical settings share the features of a literate register in an extreme way: in mathematical 

registers the interpretation of a text depends little on the context of situation in which it is produced. 

I am not referring to the processes of learning or communicating mathematics, but on the organization 

of mathematical texts, as they can be found in any mathematics textbook from primary to graduate 

schools. The dependence of mathematical language on the context of culture (any kind of systems of 

knowledge related to the participants and the topics of the exchange), on the contrary, is very strong 

(think of definitions, conventions, theorems…), as well as lexicalization and conventionality (there 

are not many other semantic domains where definitions play as important a role as in mathematics). 

The same holds for syntax: in a mathematical text, either symbolic or not, a minor variation (e.g., the 

displacement of a parenthesis or of a comma) can change its meaning. The interpretation of texts in 

mathematical registers is stable: in some cases it can be performed automatically. The use of 

colloquial registers is essential for learning as well: nobody could ever learn anything if s/he should 

use literate registers only. So, in learning mathematics the trouble is not the use of colloquial registers, 

but the failure to adopt literate ones when necessary. 

Methodology 

A large number of argumentative texts produced by freshman students to justify their answers to 

problems involving the interpretation of graphs, both in examinations and in tutoring sessions 

(including online ones) have been scrutinized. In this paper I take into consideration only texts 

produced for one specific examination. To understand the argumentations it is necessary to regard 

them related to the problem-solving context they are produced within, considering the solutions 

produced as well. This study is not aimed at testing a particular model but rather at understanding the 

difficulties of a relevant number of students with different backgrounds, cultures, attitudes, and levels 

of competence, also in order to improve our teaching and tutoring strategies. For these reasons I have 

used a large number of protocols taken from a real examination, as most often the weakest students 

are not willing to take part in other activities, such as special tutoring sessions. 

Some of the participants have been interviewed after the test. For each participant I tried to classify 

answers and errors, if any, such as: use of pseudo-rules or of mathematically inappropriate models, 

wrong reading of the data, miscalculations, and language errors. I have also classified the kind of text 



produced (basically, the register adopted, by means of the indicators suggested by Leckie-Tarry, 

1995) to see if and how linguistic competence might have affected the answers. In some of the 

excerpts both the original Italian text and an English translation are given. The kind of analysis I want 

to carry out does not allow me to refer to an English translation only, which, even if it may convey 

with fair approximation the ideational component of the text, unavoidably it cannot but fail in 

conveying other aspects of the text, such as register or improper uses. 

It is never easy to understand whether an error depends on the language (e.g., a proper idea wrongly 

expressed), on contents (e.g., a wrong idea truly expressed) or on both. For example, the (wrong) 

claim that function g below is decreasing in [0, 10] might depend on a poor understanding of the 

definition, or on the improper use of ‘decreasing’, or even on a wrong interpretation of the graph. 

This in turn might be affected by the everyday use of the same words. The analysis of cohesive 

devices (i.e., the linguistic resources used to link the parts of the text), as carried out by Alarcon and 

Morales (2001) is a classical way to deal with argumentation in a SFL setting. In the analysis of the 

protocols, I have applied two criteria: the appropriate use of cohesive devices (contrasted to improper 

use or no use at all) and the vocabulary (lexical vs colloquial use of words). 

The problem 

Here I focus on problems involving graphs, such as problems requiring to associate a formula to a 

graph, or a graph to a formula, or to link the graph of a function to the graph of its derivative. All the 

protocols (about 200) used in this study come from the following problem. 

Consider the graphs A, B, C, D drawn below 

and choose three of them which, in the 

interval displayed, do not correspond to the 

derivative of the function g drawn on the 

right.  

Justify your answer. 

g 

 

A)  

 

B) 

 

C)  

 

D) 

 

Table 1. The problem 

The problem is in negative form, as participants are required to identify three graphs that do not 

correspond to the derivative of the function g. It is manifest that in a problem of this sort it is not 
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possible, from the scrutiny of the graphs only, to decide that a graph does correspond to the derivative 

of a given function. On the other hand, it is possible, in many cases, to decide that a graph does not 

correspond to the derivative of a function. Considerations of this kind hold for a great deal of 

mathematical problems involving graphs. The negative wording of the problem has proved a source 

of trouble although it explicitly refers to the need for excluding three graphs. 

I have regarded as acceptable all answers excluding the three appropriate graphs with appropriate 

justifications, i.e. argumentations where the properties of g and of the graphs the answer is based on 

are explicitly mentioned. For example, a text like “g is increasing in (0, +), so its derivative must 

be positive in the same interval, so I exclude graph A, which is partly negative in the same interval”, 

has been considered a sufficient justification in order to rule out graph A, although the student has 

made no explicit reference to any theorem or rule. It is uncommon among freshman students to find 

explicit reference to some general property to justify an inferential step.  

Outcomes 

Although this is not a quantitative study, I often give some quantitative indication about the size of 

the groups adopting some behaviors. It might be interesting, from a teaching perspective, to know if 

a behavior is adopted by a small group of students or it is more general. 

Correct answers equipped with acceptable arguments usually range from 20 % to 40 %, according to 

the sample and the task. In this experiment correct answers have been a bit less than 25 %.  

Student A02 marks the graphs A, B, D and gives the following argument: 

“Non corrispondono, perché g è in positivo mentre A, B, C sono sia in positivo che in negativo.” 

[“Do not match, because g is in positive while A, B, C are both in positive and in negative.” ] 

The argument, which seems aimed at ruling out graphs A, B, C, is inconsistent with the marks on the 

diagram, which rule out graphs A, B, D. The argument adopted seems to fit graph D better than graph 

C, and one can imagine that the subject wrote ‘C’ in the argument by mistake. Errors of this kind are 

quite frequent. Second, the subject only deals with what s/he is looking at and makes no reference to 

mathematical properties connected to the problem, nor any attempt to link to each other the data s/he 

has mentioned. In other words, the argument is completely bounded within the context of situation, 

with no attempt to put it in a framework of knowledge, i.e., in a context of culture. Third, the text is 

inaccurate: the main verb has no subject, the expressions “in positivo”, “in negativo”, which are 

circumstantials of (spatial) location, are used in place of the more correct attributes (‘positivo’, 

‘negativo’) and the expression “sia in positivo che in negativo” is vague.   

Student A03 marks graphs B, C, D and produces the following argument: 

“in x>0 la fne della derivata dev’essere positiva quindi non è sicuramente la B, in x<0 la fne della 

derivata dev’essere negativa (decrescente) quindi non può essere la D e la C non è sempre 

crescente nell’intervallo (0,+). Penso sia il grafico a.”  

‘fne’ is an informal abbreviation for ‘funzione’ (function). In order to help reading, I translate it as 

the whole word. 



 [“in x>0 the {function} of the derivative must be positive so surely it is not B, in x<0 the 

{function} of the derivative must be negative (decreasing) so it cannot be D and C is not always 

increasing in the interval (0, +). I think it is graph a.”] 

In this text some connection is hinted at but not developed, the student states (in her/his way) that the 

derivative must be positive for x>0 and negative for x<0 but s/he does not explain why. S/he 

seemingly identifies “increasing” with “positive” and (explicitly) “decreasing” with “negative”, as 

s/he rules out graph B which is positive for x>0 but not increasing in most part of that interval. 

Moreover, s/he inconsistently does not rule out graph A, which is the only one with negative values 

for some x>0. The identification of “increasing” with “positive” and “decreasing” with “negative” 

may depend on poor understanding of the subject matter, but most likely it has linguistic roots, as this 

student seemingly makes no distinction between the words and most likely s/he refers to everyday-

life uses, according to which “positive trend” might mean “increasing trend”.  

Student A36 marks graphs A, B, C (with some erasures) and writes: 

 “La funzione tra [0, +[ f(x)>0 quindi la funzione è crescente quindi la B non è crescente. [erased 

words] funzione g(x) è tutta positiva da da ]-,0] è decrescente mentre da [0,+[ la funzione è 

crescente l’unico che cresce sempre di più è la D.” 

 [“The function between [0,+ [  f(x)>0 so the function is increasing so B is not increasing. [erased 

words] function g(x) is all positive from from ]-,0] is decreasing while from [0,+ "[ the function 

is increasing the only one that always increases is D.”] 

The linguistic quality of this text is very poor. There is a bad coordination between the verbal and 

symbolic parts, the given function is referred to as ‘f ’ instead of using its proper name ‘g’, the 

conjunction “quindi” [“so”] is used twice inappropriately, in the second occurrence to introduce some 

data taken from a graph. There are a number of erasures and repetitions, and some of the last clauses 

are linked neither by discourse markers nor by punctuation. 

Student A39 marks graphs A, C, D and writes: 

“Escludo la C perché nell’intervallo (10; 0), la funzione decresce perciò la sua derivata dovrà 

essere negativa. Escludo la D perché la funzione è pari mentre il grafico D è dispari. Escludo la A 

perché la funzione g è crescente nell’intervallo [0;10) e quindi il grafico A dovrebbe essere positivo 

mentre è negativo per x[0;3].” 

[“I rule out C because in the interval (10; 0) the function decreases so its derivative will be 

negative. I rule out D because the function is even whereas graph D is odd. I rule out A because 

function g is increasing in the interval [0; 10) and so graph A should be positive, whereas it is 

negative for x[0;3].” 

In this case the choice of graphs is the correct one. Most likely in the expression (10;0) the subject 

has forgotten to write the sign ‘-’ before ‘10’ (although other participants wrote reversed intervals 

too). The motivation to rule out D is inappropriate, for it would have been necessary to recall that the 

derivative of an even function, if any, is an odd function and that graph D does not correspond to an 

odd function but it is neither odd nor even). On the contrary, the subject proceeds by analogy (f even 

 f’ even), missing the classification of graph A: s/he claims it is odd. Maybe s/he means that it is 

not even, but is misguided by the meaning of odd/even in the frame of integers. 



Student A17 marks graphs A, C, D and writes: 

“Non corrispondono i grafici A-C-D. Possiamo escludere il grafico C perché per esempio 

nell’intervallo (-10;0), la nostra funzione g risulta decrescente mentre in quel tratto il grafico C 

risulta positivo (dovrebbe invece essere negativo). Possiamo escludere la A perché per esempio 

nell’intervallo (0;3), la funzione g risulta crescente mentre il grafico A in quell’intervallo è 

negativa anzi ché positiva. Escludiamo anche il grafico D perché nella funzione g la concavità è 

verso il basso tra (1;5) quindi nello stesso intervallo il grafico dovrebbe essere decrescente mentre 

la D è crescente.”  

[“Graphs A-C-D do not correspond. We can rule out graph C because, for example in the interval 

(-10; 0), our function g results decreasing while in that stretch graph C results positive (it should 

be negative instead). We can rule out A because, for example in the interval (0;3), function g 

results increasing while graph A in that interval is negative instead of being positive. We rule out 

graph D too because in function g the concavity is downwards between (1; 5) so in the same 

interval the graph should be decreasing, while D is increasing.”] 

This excerpt underlines the difference between those who can use language in a mathematical setting 

and those who cannot. The text of A17 is not perfect, but language for her/him is a tool good enough 

to understand the problem, find a solution and justify it. The text is explicitly organized with 

conjunctions and discourse markers (“while”, “so”, “for example”, “instead”) and each statement is 

equipped with its own domain of validity (“…in the interval (-10; 0) …”). The general properties the 

argument is based on are not explicitly mentioned, but the subject adds some remarks that highlight 

the connections between the parts of her/his argumentation and make it unambiguous (“… it should 

be negative …”, “… while D is increasing.”). Although the subject does not write down some general 

rule or property, s/he underlines the critical points of her/his argumentation and uses language 

(including grammar) to organize and clarify her/his answer. 

In the optional interviews performed in the week following the experiment, subjects A02, A03, A36 

and A39 could not reconstruct their thinking and explain their answers. This is a general behavior: a 

great number of students cannot reconstruct the meaning of the text they have produced, even if they 

have it before them and are given time to read it with no pressure.  

Discussion 

The protocols examined have been chosen as representatives of diffused patterns of argumentation. 

In particular, the lack or improper use of connectives and discourse markers (i.e., of cohesive devices) 

is a serious problem: the links between the clauses are not made explicit or are expressed in a vague 

and improper way; even if the subjects, while writing down, may have some nice idea in mind, the 

lack of an explicit and effective objectification through language, prevents them from reconstructing 

and developing it afterwards. Behaviors of this kind are common. 

Some students (such as A02) seem not to be able to recall the necessary pieces of knowledge and 

work on the data of the problem by creating pseudo-rules (e.g., g increasing/positive/even  g’ 

increasing/positive/even). Models of this kind are very robust. It is possible that these models are 

consequence of the practice of not interpreting the text of a word problem in order to reconstruct the 

problem situation, but to search for keywords that might suggest the proper. 



The difficulties mentioned above all increase the instability of the processes of interpretation and 

production of texts, which might explain some apparently inconsistent behaviors; an example is 

protocol A39: the student answers correctly and correctly rules out graphs A and C reasoning on the 

basis of known properties of functions; to rule out D as well, s/he properly focuses on the evenness 

of g, but, probably in the attempt to apply the pseudo-rule “g even  g’ even” claims that D is odd; 

a number of students (more than 30 % of the sample in this experiment) correctly rule out A and C 

but use wrong or inconsistent arguments to rule out D too; the fact that in order to rule out D some 

‘rule’ different from “g increasing  g’ positive” is required is enough to trouble the subjects and 

induce them to provide wrong answers. 

Although much research is needed to determine the exact role of language in argumentation 

processes, it seems to me that the outcomes of this study suggest that it cannot be disregarded at all, 

in spite of the fact that a number of current studies on argumentation do not take the role of language 

into account. On the other hand, SFL seems a promising framework to better understand students’ 

linguistic behaviors in a mathematical setting, disregarding neither the factors related to interpersonal 

communication nor those related to the specific features of mathematical language. 
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Both language and objects seem to play an important role in mathematics learning. In our 

research, we focus on their interplay: How do language and objects support students’ development 

of mathematical ideas? In order to develop a framework of ‘talking with objects’, we draw on three 

approaches. First, we adopt the idea from Bauersfeld that learning is a domain specific process. It 

is always bound to a very specific situation and context. Second, Aukerman’s approach of re-

contextualization supports our insight in the link between language and context. Third, Latour’s 

Actor-Network-Theory helps us to better understand, how concrete objects take part in the process 

of constructing social reality in mathematics lessons.  

Keywords: Language, objects, recontextualization, domains of subjective experience (DSE). 

Introduction 

Children are supposed to learn what a ‘number’ is or what we mean by ‘addition’. The challenge of 

mathematics learning is to construct abstract mental objects that can neither be touched nor seen. 

Even if we cannot see the mathematical objects themselves, there is a lot acting and handling of and 

with concrete objects to be observed in everyday mathematics classes: Children write, read, and 

work with different concrete objects like bead frames, hundred boards or Dienes blocks. And they 

speak: They ask questions, explain their ideas and discuss about different mathematical 

interpretations. Obviously, both objects and language play an important role, when students are 

learning mathematics. Children and teachers use physical representations of mathematical objects in 

order to clarify what they are talking about and what they are referring to. These physical objects 

help to coordinate children’s mathematical communication and their learning processes (Sfard, 

2008, p. 147). 

As mathematics educators, we see already quite clearly that language is an important aspect of 

mathematics learning. But how do objects come into play? And how do language and objects 

interact as means of representation? These questions lead our main research interest. In our research 

project, we intend to reconstruct mathematical learning processes with a special focus on the 

interplay of language and objects (Fetzer & Tiedemann, 2015). To begin with, we concentrate on 

primary school children who learn arithmetic in different German primary schools. We collect data 

in several schools so that we cover different social and cultural backgrounds and get an impression 

of our research topic that is as broad as actually possible.  

Theoretically, our study is based on two main assumptions. First, we assume, together with many 

other researchers, that mathematics learning is a social process (Bauersfeld, 1988; Jungwirth & 

Krummheuer, 2006; Miller, 1986). Children do not construct abstract mathematical objects without 

any suggestions from their environment, but rather in permanent exchange with it. In processes of 

social interaction and collective argumentation, mathematical objects are constructed, negotiated, 

and clarified. In this sense, children create abstract mathematical objects on the basis of social 



processes. But who are the players in these social processes? Usually, mathematics educators think 

of students and teachers as actors. However, concrete objects influence the ongoing interaction, too. 

And, in our opinion, it will mean missing important opportunities to support mathematics learning if 

we neglect them. Especially in primary classes, objects play an important role in the process of 

abstraction.  

Second, we conceptualize mathematical abstraction as a process of becoming aware of similarities 

in different experiences (Skemp, 1986). According to that assumption, children have to grasp the 

similarities in different representations, which they encounter in the context of arithmetic. To make 

this clear, we can consider children playing with little game figures. Four are sitting in a train and 

two more are getting on. What do these little figures have to do with the drawing of a number line, 

with six fingers of our hands, with the arithmetical task “4+2” written on a sheet of paper or with 

specific arrangements of didactical material in mathematics classrooms? (Compare Fig. 1) 

 

 

 

 

Figure 1: Different representations of 4+2  

In order to express what is similar in all those representations and to come to a social agreement on 

those similarities, children and teachers need language. It is a tool, which allows individuals to share 

their interpretations of reality with each other. They can express what they ‘see’ in a certain 

representation and can, in this way, develop a shared interpretation. Within that interplay of 

language and objects, children construct their concepts of addition or number. It is for that reason 

that children have to develop appropriate language skills in mathematics classes, i.e. that their 

language has to become suitable for describing similarities in different representations.    

We present the theoretical framework that we have developed so far for our research project. It 

consists of three parts. First, we refer to Bauersfeld’s (1988) framework of domains of subjective 

experience (DSE). He points out that learning is a domain-specific process, i.e. that children’s 

mathematical constructions are always bound to the situation in which they were developed. 

Second, we focus on the aspect of language and our fundamental assumption that every linguistic 

utterance, how concrete or abstract its content may be, always refers to a context (Aukerman, 2007). 

Third, there is the question of objects and the role that they may play in the process of mathematics 

learning. In this regard, we refer to Latour’s Actor Network theory (ANT) (2005) which offers a 

new perspective on objects and their contribution to mathematical communication.  

On domain-specific learning: Bauersfeld (1988) 

Bauersfeld’s (1988) approach of Domains of Subjective Experience (DSE) elaborates how 

individuals organize their construction of mathematical knowledge. He assumes that children do not 

organize their remembrance of experiences in a hierarchical way, but rather accumulatively in 

separate domains. Each experience is stored with reference to the very specific and complex 

situation in which it was made and, accordingly, in its own domain. These different domains of 



knowledge are called “domains of subjective experience (DSE)”. They include their own meaning, 

language, actions and objects. To illustrate this approach, Bauersfeld (1983, p. 3) reports from 

Ginsburg’s (1977) work about eight-year-old Alexandria. She is not able to solve the task “8:4=” 

which is written on a piece of paper, She only suggests 0 or 1 as possible solutions. But, 

surprisingly, she can solve another task without any apparent effort: “Imagine you have 5 dollars 

and there are four children. How many dollars will each child get?” In fact, this second task is more 

difficult from a mathematical point of view. So we might ask why Alexandria did not transfer the 

initial task “8:2=” to the money-world herself. Why did she not solve it with reference to the 

domain that is obviously much more familiar to her? Bauersfeld’s answer points to an important 

characteristic of DSEs: They are not linked automatically. Thus, from Alexandria’s point of view, 

two different DSEs are affected which are unconnected up to now. In the paper-world, you have to 

cope with mathematical signs that are written on a piece of paper. In the money-world, you have to 

cope with banknotes and coins and think about buying attractive goods. Language, actions, objects, 

but also interests, motivations and feelings are fundamentally different in both DSEs. For that 

reason, Bauersfeld (1983, p. 6) doubts fundamentally, whether Alexandria regards the number word 

‘eight’ which appears in both domains as the same at all.  

According to Bauersfeld, mathematics learning can be understood as a process of constructing, 

deepening and connecting DSEs. However, how can those separate domains be linked? How does 

mathematics learning proceed? Bauersfeld (1983, p. 31) describes that individuals cross the borders 

of a DSE by trying, creating and negotiating. In order to link two different DSEs, they have to build 

a third DSE that exclusively aims at comparing the two already existing ones. Solely in such 

comparative DSEs, it becomes reasonable to develop a comparative language. In fact, it is this 

comparative language that allows students to talk about similarities, which they ‘see’ in different 

representations. This means that all parts of a DSE, including language and objects, can help 

children to link DSEs and to get access to abstract mathematical objects. In the following paragraph, 

we focus on the language at first.   

On language and context: Aukerman (2007) 

Aukerman (2007) points out that it is quite misleading to talk about a ‘decontextualized’ language 

because no “text, and no spoken word, ever exists without a context” (p. 630). This approach puts 

the main emphasis on the content level of a linguistic utterance: Every utterance refers to a context, 

no matter whether this context is concrete or abstract, close or far, accessible to observation or only 

hypothetical. It is important to notice that Aukerman does not make any statement about the setting 

in which language is used or how language is used in it, but rather about the point of reference. 

Utterances in mathematics classes may be produced in many different ways, e.g. with gestures or 

not, with a parallel action or not, with pointing at something in the closer environment or not, etc., 

but they are all produced with the intention of talking about something. Subsequently, we always 

talk and listen to others with regard to a specific context. We think about a specific context and 

produce an utterance. We hear an utterance and interpret it against a background that we deem 

appropriate. Thus, no matter whether we are the ones who speak or the ones who listen, we relate 

every utterance to a context that we regard as adequate at that very moment. Aukerman (2007) 

refers to the process of connecting utterances with contexts as recontextualization. In the process of 

recontextualizing, speaker and listener have to agree to a certain extent on the context of their 



conversation: What are we talking about? Thus, when students are expected to talk about 

mathematical objects, they have to re-contextualize their language and match it with rather abstract 

contexts. Seen from that perspective, the question is no longer, whether a student is able to 

decontextualize his or her language, but the question is whether students and teachers succeed in 

finding a shared context: Do their recontextualizations fit together sufficiently? 

On objects as actors: Latour (2005) 

When students and teachers are negotiating a shared context for their constructions of DSEs, they 

can get help from concrete objects, which have a lot to offer. Objects as actors? This 

conceptualization appears to be unfamiliar at first sight. Nevertheless, we think that it can be very 

useful to adopt Latour’s (2005) sociological proposal for accepting objects as actors in the course of 

action. According to him, they participate in the emergence of social reality. 

Latour (2005) goes beyond the traditional understanding of the social, widens the perspective and 

redefines the notion of ‘the social’. He takes a closer look on who and what assembles under “the 

umbrella of society” (p. 2). As a consequence, he defines sociology as „the tracing of associations“ 

and thus “reassembles” the social (p. 5). In his view, the social refers to any kind of networking: 

humans with humans, but also humans with any kind of things. Heterogeneous elements that are not 

necessarily social themselves associate in different ways. According to Latour, all these different 

associations create social reality. Thus, in his Actor Network Theory (ANT), he extends the list of 

potential actors in the course of action fundamentally and accepts all sorts of actors: “Any thing that 

does modify a state of affairs by making a difference is an actor” (p. 71). Consequently, objects 

participate in the emergence of social reality, too. In this sense, Latour asks for a broader 

understanding of agency. “Objects too have agency” (p. 63). They are associable with one another, 

but only momentarily. To say it with Latour’s words, they “assemble” (p. 12) as actor entities in one 

moment and combine in new associations in the next one. Following Latour, there are no longer 

stable and pre-defined associations and actor entities.  

Again, following Latour (2005), objects participate in the emergence of classroom reality. In fact, 

this is true for all sorts of objects: Paper and pencil, as well as manipulatives or even the bottle of 

water on the table. Should we as researchers in mathematics education not focus on a certain kind of 

object, on didactical material? From a theoretical as well as from a methodological point of view, 

we clearly deny that restriction. Just imagine that the bottle was open, and would drop. Not only the 

table, but also the paper would get wet, the pencil might fall on the floor. This would surely 

influence any process of social interaction. “Any thing” (p. 71), a human or non-human actor, might 

become associated with other actors in the course of action, but only momentarily. The association 

might be dissolved the next minute. However, in that very moment these actors, no matter who and 

what they are, contribute to the ongoing process of social interaction.  

Looking through Latour’s sociological glasses, we can see clearly that concrete objects do play a 

role in the emergence of social reality. This appears to be especially true for manipulatives and other 

didactical material. They participate in the negotiation of a shared context and, in this way, offer 

help in the social process of constructing and connecting DSEs. However, how do they contribute? 

Earlier research revealed different modes of participation that objects might take or have in ongoing 

classroom interactions (Fetzer, 2013). Our current research on the interplay of language and objects 



goes one-step further. Now, we try to get hold of objects’ contributions on the content level. In our 

opinion, their most important contribution is to offer various contexts for re-contextualisation from 

which students and teachers may choose. A short example that we could observe in a second grade 

class might illustrate this variety of possible offers. The students and the teacher talk about the 

question what the diagonal might be on their hundred board. On that special hundred board 

(compare figure 2), the numbers from 1 to 100 are covered with red and blue pieces of paper.  

 

 

Figure 2: Hundred board covered with red and blue pieces of paper 

Here are some of the offers that the students accept and express in linguistic utterances - always in 

association with the hundred board in front of the classroom:  

1) “The diagonal runs from 10 to 91.”  

2) “The diagonal runs from one corner of the hundred board to the opposite one.” 

3) “The diagonal runs from one corner of a square to the opposite corner.” 

We see that the hundred board suggests a wide variety of contexts, which might be suitable for re-

contextualization. Most important to us is the fact that those offers range from “concrete” to 

“abstract”. Thus, on the one hand, objects support the opportunity to construct new DSEs because 

they make a very concrete offer. They are concrete in nature so that students can associate with them 

and refer to their rather concrete offer: The 10 is at the top right, the 91 is at the bottom left. On the 

other hand, they make offers that appear to be suitable for comparing. The hundred board has 

properties that other geometrical forms have as well. It is a square and in every square, “the diagonal 

runs from one corner […] to the opposite corner.” However, in order to grasp that similarity in 

different representations, you have to construct a DSE of a specific square at first and then a 

comparing DSE, which aims at comparing different geometrical forms. Those offers of objects may 

support the construction and connection of DSEs and may support the language development which 

goes along with it, too.  

Integrating the concepts: Talking with objects 

According to Bauersfeld (1988, p. 178), the subjective realization of a mathematical object remains 

always bound to the context of experience, i.e. to the objects and language used in the situation of 

construction. This approach gives us a clue that we will understand mathematics learning better, if 

we concentrate not only on language or on objects but on the interplay of both. How do language 



and objects interrelate in the process of mathematics learning? How can we talk with (the help of) 

objects? Aukerman’s (2007) approach of re-contextualization and Latour’s (2005) Actor Network 

Theory seem to be useful background theories to tackle these questions.  

According to Aukerman, every spoken word in mathematics classrooms refers to a context and is re-

contextualized by the recipient. In order to achieve a shared understanding, the interlocutors have to 

agree on the ‘right’ context. What can serve as a solid ground, which a linguistic utterance can be 

related to? At this point, objects come into play. According to Latour, humans and non-humans 

associate with one another and create social reality. In terms of mathematical learning processes, 

children and objects interact in the social process of learning. Objects make offers that students and 

teachers can accept and refer to in order to coordinate their mathematical communication. The 

“steely quality” (Latour, 2005, p. 67) is a solid ground that allows individuals to experience reality. 

Objects are not a mere tool in students’ hands that can easily be manipulated. Objects are 

participants in their own social right and contribute to the ongoing classroom interaction: Objects 

make offers and students ‘listen’ to those offers. Students talk to objects, and become associated 

with one another. At this point students ‘talk’ together with objects in a combined action.   

But how does that work? Objects are concrete in nature. Nevertheless, in their concreteness they 

prove to be not a limitation, but a chance for development of (mental) mathematical ideas. Indeed, 

objects offer a variety of possible contexts for re-contextualization ranging from concrete to 

abstract. Sometimes, objects may provide the context for very specific experiences. In these cases, 

objects can help to construct a new DSE or to deepen already existing DSEs. At this stage, students 

try to find words with which they can express the particularity of this specific context and to 

negotiate it with others. Language is probably the most important tool for such a negotiation: What 

do I ‘see’ in that object? What do you ‘see’? In a second step, students have to become aware of 

similarities in different experiences. They are in permanent exchange with their social environment. 

They listen to as well as talk to and with participating actors. In doing so, they construct new DSEs 

that aim at comparing already existing DSEs. Again, objects profoundly contribute. They offer a 

context for comparisons: What do I ‘see’ as the same in different objects (or in different actions 

with objects)? What do you ‘see’ as the same? Where are differences? Do we agree? In this sense, 

objects help not only to coordinate mathematical communication, but also to develop language more 

and more. Students are challenged to match their language with a concrete experience at first and 

with a comparison afterwards.  

On closer inspection, we see that objects are actors that students can talk to and talk with. In fact, 

objects contribute to the process of negotiating mathematical meaning. In most interactional 

situations, it is not only the child who is responsible for a linguistic utterance. Words are not the 

only means to negotiate mathematical meaning. Instead, students and objects often associate and 

convey a mathematical idea together. In these cases, the object actor takes over part of the act of re-

contextualization (Fetzer & Tiedemann, 2016). Students talk together with objects. The boundaries 

between language and objects almost seem to merge.  

Discussion 

The theoretical framework that we have sketched in this paper raises awareness of some aspects that 

are not new in mathematics classes, but that are new in our thinking about content-related language 



use. When students want to express their mathematical interpretation of reality, they are not 

restricted to the words they have at their disposal. Thus, they can accept one of many offers that the 

objects in their close environment make. In this process of assembling, the objects achieve two 

things. They offer their help, but at the same time, they challenge the children to move further in 

their mathematical development and in their improvement of content-related language use.  

For that reason, the framework does not only make us sensitive to the importance of objects in the 

process of language development, but it points in a direction that might be productive for our further 

research. We have not only to analyze objects that we use in mathematics classes, but we have to 

analyze children’s associations with them, too. Which offers do the children accept? Moreover, how 

do these offers support their language development in mathematics classes? These are the questions, 

which will lead our further steps in that project about the interplay of language and objects.    
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When learning mathematics, mistakes can serve as productive occasions if a mistake is followed by 

a process of negotiation and insight. This paper addresses the question of the extent to which the 

informal occasion of a “mistake” leads to productive interactions in inclusive mathematics 

classrooms. Within the context of the project LUIS-M video-based qualitative analysis of cooperative 

learning situations in inclusive classrooms are made with focus on formal and informal occasions 

for productive interaction. In the paper the negotiation processes which follow mistakes are 

exemplified and discussed with respect to opportunity for learning processes.  
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Introduction 

Learning mathematics requires interaction; cooperative learning leads to interaction. This is the hope 

which is associated with cooperative learning in teaching mathematics. Therein, learning is 

understood as a co-construction process in the context of social processes and/or interactions. As 

such, not only social learning objectives but also cognitive learning objectives are of importance in 

cooperative learning. From a mathematical-didactical point of view the epistemological learning 

processes based on the exchange of different interpretations are of interest (Steinbring, 2005). 

Cooperative forms of learning also gain in importance in the context of fostering teaching, both for 

children with and without (mathematical) learning weaknesses. Meta analyses in the elementary 

school area prove that cooperative forms of learning and peer-supported learning show stronger 

effects with respect to subject matter performance than traditional forms of teaching (Rohrbeck, 

Ginsburg-Block, Fantuzzo & Miller, 2003). However, the effects are dependent on both the 

composition of the pairs as well as the degree of structure of the cooperative learning environment. 

For the inclusive teaching of mathematics, the expectation being associated with cooperative learning 

environments is that children support and correct each other. Further it can be assumed that children 

with a lower learning performance develop their own interpretations due to the more elaborated 

interpretation of other children.  

This report focuses on the question of in which way children’s mistakes in cooperative learning 

settings of inclusive mathematics teaching can serve as an occasion for productive interactions. For 

this, transcribed interaction flows are analysed in the sense of a qualitative research paradigm, and 

theoretical insights are derived in an abductive process. However, before the research design and the 

results are presented, the essential theoretical foundations and empirical insights will be outlined.   



Theoretical and empirical starting points 

Cooperation and interaction in mathematics education 

When students learn mathematics, they can benefit from sharing their ideas with their peers, 

especially when their peers have a different point of view. Several studies mention that differences 

between students' explanations and procedures can increase mathematical understanding and create 

new insights (Pijls, Dekker, & van Hout-Wolters, 2007). However, not every interaction leads to new 

insight, the interaction must take place in a productive discourse. Dekker and Elshout-Mohr (1998) 

work out that verbalising, explaining, defending, asking and arguing are key activities for productive 

learning processes. Cooperative learning situations seem to be suitable to make such key activities 

come up. It is expected that children associate ideas, discuss solution possibilities and discover 

mistakes when they work in small groups.  

Especially, it seems to be productive to develop ideas collaboratively and to find a common way for 

problem solving. In these phases of cooperative learning a high frequency of communication can be 

observed and the interacting partners change within the group (Brandt & Tatsis, 2009). It can be 

assumed that the children show a high rate of key activities like verbalising, asking or arguing by 

sharing ideas. Therefore, the cooperative learning situation should be based on tasks and problems 

which allow a range of solution procedures, so that children need to verbalise and argue with their 

partner. This could be achieved when the problem is complex and the students do not have a routine 

which allows them to solve the problem easily (Dekker & Elshout-Mohr, 1998). Open problems, 

which allow solutions on different levels, can lead to many key activities as well.  

In an epistemological view Nührenbörger and Schwarzkopf (2015) mention that it is helpful to use 

tasks which create a “productive irritation” concerning the experiences of the children. While working 

on the tasks the children discover something surprising which then becomes an amazing phenomenon. 

As a consequence, the children may provide phenomena that they do not expect, so that “they have 

to reflect on the given structures and see the need to re-interpret the experienced mathematics behind 

the problem” Nührenbörger et al. (2015). Activities like »comparing« and »sorting« can help initiate 

such processes e.g. when children reason about the criteria for sorting (Häsel-Weide, 2015). Only if 

children feel the need or the pleasure to share ideas, mathematical communication takes place.  

In addition to the cooperation processes initiated through the cooperative learning technique, the tasks 

and the work assignment, mistakes can lead to interactions and discourse between children (Götze, 

2014; Häsel-Weide, 2016). Götze analysed interaction processes of children in so-called “math 

conferences”, where the children share and discuss their solutions. She points out, that a suggestion 

of a wrong solution can induce an exchange of arguments and a verbalisation of prior statements - as 

such key activities take place, that are initiated by the incorrect solution. In my own study regarding 

the replacement of persistent counting strategies, the children verbalised different interpretations of a 

structure initiated by mistakes. This interaction had a productive effect and enabled new insights for 

some children (Häsel-Weide, 2016). The expectation, furthermore, is that non-comprehension or non-

knowledge leads to questions and then, as a result, to explanations, and therefore moments of »gaps« 

and/or »helping« become productive.  



Cooperative mathematics learning in inclusive beginners' classes 

Inclusive teaching always is in between the poles of common ground and individualisation. It is 

necessary to take the individuality of each child into account, his/her competences and difficulties, 

and to foster it individually. At the same time, inclusive teaching has the objective of joint learning, 

i.e., an objective of participating in content, of the joint learning of mathematics that goes beyond 

[just] being a part of a class.  

In order for children to be able to work together on content, the learning environment must allow 

working on different levels. At the same time, a joint focusing on a core idea that can be worked on 

by all children and that is at the centre of the exchange is necessary. Concepts of cooperative learning 

furthermore recommend a significant methodological structuring as well as the creation of a positive 

dependency between the cooperating children, e.g. through role distribution, limiting of the material, 

or time allowances (Johnson, Johnson, & Holubec, 1994). As such, a field of tension exists between 

a limitation and a common focus for a successful outcome of cooperative processes and the enabling 

of working on an individual level. In addition, the mathematical competences and verbalising and 

presenting interpretations, as well as interpersonal competences such as a constructive dealing with 

conflicts that are necessary for the interaction and cooperation must first be learned.  

Objective and design of the study 

In project “Learning environments for inclusive mathematics teaching –LUIS-M”, learning 

environments were developed for the entry phase of elementary school and tested in six classes of the 

first and second school year (children age 6 to 8). The focus in each class is on a cooperative learning 

environment which is processed in partner work and accompanied by other offers for individual and 

cooperative learning. Thematically, the learning environments pick up the basic mathematical topics, 

which means in the first and second school year the presentation of numbers and operations. Children 

with different competences in mathematics are supposed to interact and cooperate with each other. 

Two objectives are being pursued by this: in the spirit of mathematical didactics as a design science 

(Wittmann, 1995), learning environments are developed for and with teachers and scientific insights 

are gained via the analysis of the learning processes of the children. We are interested to explore if 

and how children work together, which different levels of understanding can be reconstructed, and 

which occasions during the cooperative learning lead to a productive interaction. In this paper the 

following questions are discussed: 

How can aspects and moments causing a productive discourse be characterised? In what way do 

mistakes induce productive interactions? 

The teachers were asked to choose pairs with different competences in order to work together. Two 

pairs were video recorded in each of the six participating classes. Chosen for the video were pairs of 

children where one child shows low mathematical competences. The corresponding transcripts were 

interpreted by a group of researchers. The analysis was compared in an interactive way with empirical 

findings of other studies and theoretical approaches. As a result, insights about the communication of 

children in heterogeneous groups could be constructed. This procedure allows the development of 

new theoretical elements analysing individual cases.  



Analysis of episodes 

In the following two examples are presented and analysed where it was possible to reconstruct 

mistakes. Based on the interpretation of the examples, the theoretical conclusions are being worked 

out and subsequently presented, going past the examples. In this, analyses of additional scenes are 

included in the development of a theory.  

Case 1: Jana's incorrect interpretation of the dot-strip image  

The episode is from the second school year and was recorded during the introduction to the 

multiplication tables. The children work in a learning environment that aims at comprehension of 

multiplication as repetition of equal groups, and the connection between addition and multiplication. 

The children lay out dot images with strips of two, four, and eight dots and interpret them additively 

and multiplicatively. For each dot image only one type of strip may be used. The children work 

focused on each other, i.e., one child lays out a dot-strip image and the other child states the matching 

addition and/or multiplication task. These are jotted down and then sorted in a second step. In this 

process the children can already recognise first relationships between the tasks.  

In this scene, Kadir – in accordance with the assignment – lays out two strips of eight in the following 

dot-strip image. Jana is now required to state the task.  

1 Kadir: (lays out 2 strips of eight) 

2 Jana: (counts the dots individually). Sixteen.  

…. 

  Okay, sixteen times two. 

3 Kadir: (lays his head on table) 

4 Jana: (laughs) Sixty times two? 

5 Kadir:  Oh God! You can't read that. Five (points to the first five dots of the strip of 

eight) plus three (points to the last three dots of the strip of eight) two times 

the eight, oh God. 

6 Jana (notes down 2 · 8) 

In her first statement, Jana mentioned the total number of dots, “sixteen”, and the multiplication, 

“times two.” Since she determined “sixteen” dots by counting, she appears to link the number of dots 

with the operation in her phrasing. In this, she is phrasing a typical sequence of »number operation 

number«. Kadir – probably as a reaction to Jana's statement – lays his head on the table. Jana seems 

to interpret this as a sign that he considers her statement to be incorrect. She then corrects herself and 

states “sixty times two”. She does not change the structure of her statement, but rather the number.  

Jana is able to determine the number of dots correctly and seems to know the sentence structure of a 

multiplicative phrase. Besides, she shows a behaviour that is typical for children with mathematical 

learning difficulties: She determines the quantity by counting in ones, but she seems to have 

difficulties to find a fitting multiplicative expression and to distinguish between the number words 

sixteen (“sechszehn”) and sixty (“sechzig”) (Anghileri, 1989; Gaidoschik, 2015).  

Kadir's statement (5) makes it clear that he considers Jana's interpretation to be incorrect and 

furthermore shows that he is applying a different way of reading (“You can't read that”) the strips 

than Jana. As such, a disagreement exists between Jana’s interpretation and his own. Kadir now 

interprets the dot-strip image himself and in the process phrases a matching multiplicative 



interpretation. At first glance, this approach seems to be of little help. Kadir does not provide Jana 

with any indications how she can correct her interpretation, but rather solves the task himself. 

However, taking a closer look at his remark, it becomes apparent that he formulates two aspects that 

can be a learning opportunity for Jana in the spirit of co-construction.  

First, he explicates a structured way of grasping the number of dots on a strip. Jana has determined 

the total number by counting them in ones. Kadir points out to Jana the power of five in the strips, 

because he separates the dots in the five dots on the left hand side of the mark and the three dots on 

the right. So he explicates the part/whole structure 8=5+3. He demonstrates and verbalises an option 

of the structured grasping of the quantity. Through his gesture he additionally makes it clear that only 

the number of dots on one strip needs to be grasped since these are strips of equal magnitude. In the 

second part of his statement, Kadir formulates the multiplicative structure and phrases “two times the 

eight”. With the nominalisation, he emphasises the two elements “number of strips” (multiplier) and 

“number in each strip” (multiplicand).   

Therefore, at second glance, it becomes apparent that Kadir is not only providing the correct result, 

but that there are opportunities of insight for Jana located in his verbalisation and his gesture. The 

key activities of verbalisation, explaining, and pointing out, described as productive by Plijs et al. 

(2007), can be reconstructed in the case of Kadir. He shows an understanding of multiplication and 

an elaborated strategy in the grasping of the quantity. His statement is caused by Jana’s solution, 

which he recognises as being incorrect, and which he introduces in the interaction. To what extent 

Kadir's interpretations are picked up by Jana cannot be identified in this scene since Jana notes down 

the solution without it becoming apparent to what extent she is exclusively translating the 

verbalisation into a term or to what extent she can comprehend it with respect to the dot-strips.  

Case 2: Marie suspects a mistake in Milene's solution 

In the first school year, the children were given tasks to create “simple” subtraction problems with 

the subtrahends 1, 5 and 10. In this, the children freely select the minuend, by laying down 

corresponding dots in the field of twenty, draw an action card, »minus 1«, »minus 5«, or »minus 10«, 

solve the problem by removing the number of dots or mentally, determine the result and note down 

the problem on a card. After a while, the cards are sorted in accordance with self-selected criteria, 

which could be e.g. the minuend or the subtrahend or the size of the numbers. The relationships 

between the problems become apparent by sorting them, e.g. according to the minuend, the 

subtrahend, the difference or the size of numbers. So, on the one hand, the focus is on the basic topic 

of »simple subtraction problems«, on the other hand the structure between problems can be 

discovered and described. Both the activity of sorting, as well as the potential discoveries are suited 

to stimulate productive interactions. The step to find the problems can be worked on either 

individually by each child or the children work with distributed roles. In this case, one child specifies 

the minuend with dots while the other does the subtraction by taking away one, five or ten dots and 

notes down the term. Working while focused on each other allows for more cooperation between the 

children and for a direct reaction in case of erroneous solutions or questions, but also leads to a 

limitation of the individual level of processing.  

Marie and Milene are working on the assignment with distributed roles based on the division of 

labour, i.e. one pupil lays out the minuend on the field of dots and draws the card with the subtrahend 



(c.f. Figure 1); the other pupil finds the difference and notes down the task. Maria has already placed 

a strip of 10 and 3 chips on the field of twenty in the following way:  

 

Figure 1: Depiction of the assignment situation  

1 Milene:   (lifts away the third dot from the bottom row of the field of twenty)  

2 Marie: Now you have to guess how much that is  

3 Milene:  One, two. Twelve! (looks at Marie, puts the chip back onto its original spot 

on the field of twenty) So, and now I write down the assignment (takes a piece 

of paper and a pen) 

4 Marie:  (4sec) (shakes her head) You got this wrong, you misunderstood. 

5 Milene: (notes down the task 13-1=12 on the piece of paper) Thirteen minus one 

equals twelve. (places the piece of paper on the stack with the other tasks) 

6 Marie:  (5sec) (points with the finger to the dots) That equals thirteen (grabs Milene 

by the arm and points to the 3 dots in the bottom row of the field of twenty). 

That equals thirteen. 

7 Milene:  (lifts away the third dot from the bottom row slowly once more, directly looks 

at Marie, and nods) 

8 Marie Oh (turns away from the field of twenty). 

9 Milene:  Understood? 

Milene, in accordance with the action card, »minus 1«, takes one dot away from the field of twenty, 

holds it in her hand and states the correct difference (1 & 3). She then places the dot back onto the 

field of twenty so that thirteen dots lie on the field once again. Marie voices the suspicion that Milene 

has made a mistake (4) and phrases “That equals thirteen” (6) which probably traces back to the 

thirteen dots lying on the field. In this situation, there is disagreement between the children.  

Both pupils defend their interpretation in the further process: Marie grabs Milene's arm, maybe in 

order to be heard, repeats her interpretation, and points to the dots in the field of twenty. By taking 

away one dot, Milene seems to illustrate the operation »minus 1«, looks at Marie and nods and thus 

demonstrates that the difference of the task is twelve. The sequential carrying out of the actions 

corresponds to the process of subtraction so that Marie potentially recognises that the 13 dots 

represent the minuend, one dot was taken away correctly, and the difference of 12 dots was 

determined. However, due to the replacement of the dot (3) it was not the difference that was visible, 

but rather the minuend. Marie seems to be able – through the gesture of Milene (7) – to comprehend 

that the difference was determined correctly, nevertheless. Her statement “Oh” and her turning away 

from the task could be a sign of agreement and an acceptance of the result.  

The suspected mistake with respect to the solution of the subtraction task leads to the connection 

between quantity, change, and result being demonstrated on the material. The trigger of this 

elucidation was the dissent between the interpretation of the 13 dots that Milene considered to be the 

minuend whereas Marie saw the difference in the field of dots. Here, the supposed mistake leads to 

negotiation and defence of different interpretations. Both children show key activities, pointing out 



and verbalising their interpretations of the material. In this way, they appear to defend their respective 

point of view and to negotiate the correct interpretation.  

Interpretation and conclusion 

Both scenes exemplarily show that mistakes and suspected mistakes can cause verbalisations, 

demonstrations, and defensive actions. If (supposed) mistakes are recognised in the interaction, they 

appear to not only be corrected but key activities also take place in the negotiations (Table 1). The 

children utilise, for example, the material to illustrate something, or (re)phrase it so that other aspects 

become clear. In this way, (supposed) mistakes function as a trigger for a productive interaction 

process. Therefore, it does not seem to matter whether a mistake was actually made or if this was 

only suspected. The children not agreeing in their interpretation – meaning that there is dissent – is 

of central importance. In this, two cases could be distinguished. (1) One solution is incorrect and this 

is recognised by the partner child who in the context of the cooperation has therefore solved the task 

himself (correctly). (2) A correct solution is interpreted as incorrect by the partner child. Here too, 

the partner child must solve the task herself. Prerequisite is, in this case, that both partners solve the 

task and arrive at different results. 

 

 

 

 

 

 

Table 1: Productive interaction triggered by a mistake  

The activities in the negotiation are gestures and verbalisations which are utilised as justifications and 

defences. Properly formulated chains of reasoning are not observed in the inclusive beginners' classes. 

This could be because the children are not yet equipped with respective competencies or also because 

this does not correspond to the interaction of children among each other and requires a focusing and 

moderation by a teacher (Gellert & Steinbring, 2012). 

Regarding inclusive mathematics teaching, it can also be assumed that the cooperation of children is 

productively becoming an informal learning occasion through mutual helping and correcting. The 

analyses show that children in the first and second school year not only take corrective action but also 

display key activities in their correction which can lead to learning processes for themselves and also 

potentially for the partner children. This, however, requires that mistakes are recognised during the 

learning process. Yet, this prerequisite does in no way always exist, not even when pairs of children 

with different competences work together. On the one hand, the children are in part simultaneously 

busy with their own tasks, while on the other hand even in case of working focused on one another 

not all mistakes are being recognised and explored. As such, it is not sufficient to trust in informal 

occasions. Productive interaction should rather be stimulated through suitable activities and through 

phenomena yet to be discovered.  

  

Trigger Prerequisite 

Effect 

Occasion for 

negotiation 
Negotiation 

(supposed) incorrect 

statements or 

approaches are being 

verbalised 

recognising the 

(supposed) mistake in 

one's own / parallel 

solution of the task 

verbalising the 

irritation / non-

agreement 

explaining, defending, 

demonstrating the 

point(s) by one (both) 

child(ren) 
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The ways in which teachers and students interact about mathematics in lessons can be more powerful 

in influencing learning than the materials and resources that teachers use. Interactional patterns 

structure all interactions and there are many such patterns that occur frequently in mathematics 

lessons. This paper focuses on one such pattern, the funneling pattern, which is widely discussed in 

the literature. Three distinct examples described in the literature as a funneling pattern are examined 

in order to examine the different roles sequences of closed questions can have and the opportunities 

these patterns can provide or constrains to students in the learning of mathematics. 

Keywords: Interactional patterns, funneling, questioning. 

Introduction 

The aim of this paper is to contribute to the discussions around the roles different interactional patterns 

have in the teaching and learning of mathematics. The simplest, and most prevalent, pattern that is 

discussed widely in the mathematics education literature is the IRE pattern of teacher initiation, 

student response, and teacher evaluation (Mehan, 1979). Many authors describe this pattern as doing 

little to encourage students to reason, give explanations or articulate their thinking (e.g. Cazden, 1988; 

Nystrand, 1997). Yet the discussion has now moved on, with authors pointing out that it is not the 

IRE pattern itself that is the issue, but rather how it is used. This IRE pattern continues to dominate 

classroom interaction because it enables students to know when to speak, how to speak and about 

what to speak (Ingram, 2014; Wood, 1998). This pattern can be used by mathematics teachers to 

convey and establish different norms. It creates opportunities for students to communicate in 

classroom interaction, but it is largely teachers who can both constrain or enhance their students’ 

opportunities to communicate mathematics or to communicate mathematically.  

This paper focuses specifically on another interactional pattern called the ‘funneling’ pattern 

(Bauersfeld, 1980; Wood, 1998) that comprises of a series of IRE sequences. Four extracts that have 

many of the features of the ‘funneling’ pattern are discussed with a view to illustrating here that again 

it is not the pattern itself that focuses student thinking on “trying to figure out the response the teacher 

wants instead of thinking mathematically himself” (Wood, 1998, p. 172), but rather it is the way that 

it is used by the teacher that can affect student thinking. 

The funneling pattern 

The funneling pattern was initially described by Bauersfeld (1980, 1988) and consists of a series of 

teacher questions and student responses that has particular features. The sequence follows an incorrect 

answer from the student, or some other form of difficulty with the mathematics. The teacher uses 

“more precise, that is, narrower, questions” (Bauersfeld, 1988, p. 36) to lead the student to the correct 

answer. This narrowing effect of questions towards a particular correct answer (hence the term 

funneling) contrasts with sequences of questions that leads students step-by-step through a process 

(e.g. Herbel-Eisenmann, 2000), however both invite students to do little more than complete the 



teacher’s sentences (e.g. Franke et al., 2009). These different examples have led to further terms, such 

as leading questions (Franke et al., 2009), guiding questions (Moyer & Milewicz, 2002) and 

scaffolding (Wood, Bruner, & Ross, 1976), becoming associated with funneling. The distinction 

between these terms and the precise relationship with funneling is often not made but we believe it is 

an important one as we outline below. As a result, funneling has become used more broadly in the 

literature to describe any sequences of IRE patterns that lead students through a series of specific 

narrow questions, often only requiring short factual response from the students. 

Particular concerns have been raised about the implications of such funneling interactions. For 

example, Brousseau (1984) refers to the Topaze effect in which the sequence of ‘funneling’ questions 

disguise the mathematical knowledge that is being targeted by the interaction as a whole. Indeed such 

interactions in which students do not need think about mathematical relationships, patterns or 

structures in order to answer the teachers’ questions (Wood, 1998) the most frequently cited 

instantiations of ‘funneling’ patterns. Wood (1998) argues that in funneling patterns of interaction 

students are only responding to the surface linguistic patterns in order to respond appropriately to the 

teacher’s initiations. However, Temple and Doerr (2012) have shown how this aspect of the funneling 

pattern can be used by mathematics teachers to activate prior knowledge and offer them opportunities 

to talk about newly learned concepts. This indicates the possibility that the funneling pattern can have 

a variety of roles within the classroom, some of which support students’ learning and communication 

of mathematics. Wood also connects funneling to “certain beliefs about the nature of mathematics 

and the relationship between teacher and students” (p. 175) but we would suggest that it is not the 

pattern itself that indicates these beliefs, but how it is used by teachers. 

Data and methods 

The data used in this paper to illustrate the different functions of a funneling pattern of interaction 

comes from two sources. The first is transcripts from two videos of mathematics lessons collected as 

part of a larger project looking at the role and use of language in mathematics teaching and learning. 

Both lessons were from the same school, a small inner-city comprehensive secondary school with 

high levels of students in receipt of free school means and over 50% of the students with English as 

an additional language. The lessons are taught by two different teachers and the students are aged 11-

12 years old. The second source is transcripts from a published article (Drageset, 2015) focusing on 

categorizing language use in mathematics classrooms that also uses conversation analysis as its 

methodology. A conversation analytic approach is taken in the analysis of the transcripts, which is an 

approach that focuses on the identification of patterns of interaction. Conversation analysis (CA) 

looks specifically at what participants are doing in their turns at talk through a careful analysis of how 

the turn is designed, both in terms of its content but also in terms of how it is spoken, i.e. quickly, 

hesitantly, emphasizing particular words. A key feature of any analysis based on CA is the reflexivity 

of turns at talk. Each turn is designed in response to the turns that it follows and affects the turns that 

follow. This makes it a particularly useful approach for examining the relationship between teacher 

questions and student responses.  

The roles of funneling 

In this paper we will outline three distinct patterns of interactions described in the literature as 

funneling. The first is used by the teacher to make assumed knowledge publicly available. The second 



offers students the opportunity to use recently introduced vocabulary. The third involves two extracts 

that are used in combination to draw attention to structures within a sequence of mathematical 

interactions. 

Making assumed knowledge publicly available 

The funneling pattern of interaction does not occur very often in the lessons collected as part of the 

larger project, which contrasts with other studies looking at mathematics classrooms (e.g. Temple & 

Doerr, 2012; Franke et al. 2009). Yet using a conversation analytic approach in the analysis of this 

pattern reveals that each instance of the pattern is doing different things. For example, in the first 

lesson the students have discussed the meaning of some key words on the whiteboard associated with 

probability. The extract in Figure 1 follows this discussion and then is followed by an activity where 

students are tossing a coin twenty times and then combining the results. No connection is made 

between this interaction and the tasks that came before it or after it. 

 

Figure 1: Calculating the probability of getting an even number 

See Jefferson (2004) for details of the transcript conventions used here 

The teacher asks a series of questions requiring short factual answers, which are given by the students. 

These questions lead the students through a step-by-step process for calculating a probability. The 

fact that these responses are given hesitantly, as indicated by the pauses, ums and phrasing the 

response as a question, is ignored by the teacher. The sequence of questions focuses on the 

identification of the numerator and the denominator when identifying the probability and this is 

emphasized through the teacher’s choice of accepting the answer three sixths rather than the half, 

which is acknowledged but not treated as the answer to the probability of rolling an even number. 



The interaction ends with the teacher checking that the students are happy with this process and 

treating them as such by moving on to the next task. Yet there is little in the interaction to indicate 

that the students as a whole could calculate the probability themselves. This is a feature of the 

funneling pattern that Wood (1988) draws attention to: that it can give the impression of learning 

even though it is the teacher that has done the cognitive work. However, what the teacher has done 

through this interaction is explicitly to make the process public and has involved the students in this 

process (as opposed to just telling them how to calculate the probability). The ability to calculate the 

probability of an event is taken as assumed knowledge in the following task where the students have 

to calculate the relative frequency of getting a head when tossing a coin. So, whilst there is no 

evidence that the students are doing more than responding to the immediate initiations, the funneling 

pattern of questions and responses does make public knowledge that is needed later in the lesson. So 

the teacher’s questions are doing something other than just assessing whether students have the 

required knowledge. This is demonstrated further in other examples where incorrect responses are 

ignored such as the second student’s suggestion of larger in the second extract (Figure 2), which 

comes from a lesson focused on solving linear equations. 

Opportunities to use terminology 

The majority of the lesson on linear equations is spent with students working independently through 

a set of differentiated exercises. At the start of the lesson a student asks a question about the difference 

between an expression and an equation and the extract follows this question. Again, the teacher leads 

students through a series of closed questions requiring short factual responses from them. This 

example shows the teacher using questions that offer students opportunities to talk about newly 

learned concepts and new terminology in a similar way to the example offered by Temple and Doerr 

(2012). The questions serve to support the students in recalling processes and words introduced in 

previous lessons such as simplifying and collecting like terms. Each use of a technical word is 

connected to the specific example, 3x + x becoming 4x, and 3x + x = 4x being an expression is 

contrasted with 4x = 12 being an equation. Throughout the interaction student responses that do not 

fit with the use of the language the teacher is focusing on are ignored or built on by the teacher who 

turns them into a form that does fit. This sequence of questions again is doing other than assessing 

students’ knowledge. The questions are providing students with the opportunity to use mathematical 

terminology and hear it used in a mathematical way by the teacher. This sequence could be considered 

a form of scaffolding (Wood, Bruner & Ross, 1976) if the support the teacher is giving, through his 

questioning and phrasing of his responses, is withdrawn over time until the students are using the 

language in their own descriptions of their work on mathematical tasks. 

  



Figure 2: The difference between an expression and an equation 

Drawing attention to regularities 

The last two transcripts are taken from Drageset (2015) and have been coded as “closed progress 

details” which is one of the “main elements of funneling” (Drageset, 2014). In each extract the teacher 

takes a step-by-step approach in posing questions and students are only required to give short factual 

responses to the question asked immediately before: 

Teacher: How much is one of… one-fifth then of … of twenty-five? 

Student: Five. 

Teacher: It is five, yes. How much is two-fifths? 

Student: …ten. 



Teacher:  Then it becomes ten. How much is three-fifths 

Student:  Fifteen. 

Teacher: How much is four fifths? 

Students: Twenty. 

Teacher: And how much is five fifths: 

Students:  Twenty-five. 

Student: One whole. 

Teacher One whole, yes. Yes, good. Great. 

Extract 1: Extract 1 from Drageset (2015, p.260) 

Teacher:  Yes. So if I have thirty chips here and then divide them into six equal piles, then 

how many are there in each pile then? 

Student1: There are five (hold up five fingers). 

Teacher: Five. But how much is two-sixths of thirty, then? 

Student2: Ten. 

Teacher: Ten. How much is three-sixths? 

Student2: Fifteen. 

Teacher: And four sixths? 

Student2: Twenty-five. 

Student1: Twenty, twenty 

Teacher: and f…six sixths? 

Student 2: Thirty. 

Teacher: Yes. And… six sixths, how much do I have then? 

Student2: One whole. 

Teacher: One whole. And then, this time the entire quantity was? 

Student2: Thirty. 

Teacher: Thirty yes. 

Extract 2: Extract 5 from Drageset (2015, p. 265)  

Extracts 1 and 2 are not just narrowing sequences of questions, but are also specific, structured, and 

lead to a mathematical regularity within the sequence of questions itself. It is also the repetition of 

the pattern of interaction itself that offers students an opportunity to see the relationship between the 

fractions and the quantities. This is pointed to by the teacher in their penultimate turn with the phrase 

“and then, this time”. So, whilst the teacher does not explicitly talk about the meaning of ‘one whole’ 

the sequence of questions identifying each of the fractional parts goes in order, and stops when one 

whole is reached. The teacher does not ask what seven sixths is, and also does not stop at four sixths 



for example. In both extracts the total number, twenty-five and then thirty, is said alongside one 

whole. The sequence of closed questions is leading students through a process in a similar way to the 

example offered by Herbel-Eisenmann (2000, p. 182). However, it is also the repetition of the 

sequence that makes this process more explicit and affords students’ attention to be drawn to it. 

Conclusion 

In this paper we have explored three different interactional patterns referred to in the literature as a 

type of funneling pattern: one example of a narrowing pattern, one example of step-by-step pattern, 

and one example of connected step-by-step patterns. Each pattern includes a sequence of closed 

questions requiring short factual responses from the students. Each sequence is leading the students 

to a particular answer. However, we question whether the mathematical knowledge is always being 

disguised (c.f. Brousseau, 1984). Each pattern is doing something different to the other patterns and, 

in the final example the repetition of the pattern itself can be used to support the students’ thinking. 

We have shown the possibilities for how teachers can use these sequences of questions to make 

assumed knowledge publicly available for subsequent work, offer opportunities to use technical 

vocabulary, and perceive regularity in mathematical processes. Each of these functions is an 

important part of the teaching and learning of mathematics. Whilst in each of the examples offered it 

is the teacher who is controlling the content, in is possible to imagine situations where the teacher is 

using a similar sequence of closed questions about a student’s idea. The funneling pattern can and 

does have a role in the teaching and learning of mathematics but it is how it is used, rather than the 

structure of the pattern itself, that can offer or constrain opportunities for students to engage in 

mathematical thinking and communicating. 
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Many studies argue that dynamic features of the technological artifact Cabri may function as 

instruments of semiotic mediation. Our study is situated in this perspective and aims to analyze the 

impact of the artifact Cabri on the construction of the mathematical meaning. Using the theoretical 

approach of the semiotic mediation, a teaching experiment was designed with the aim of introducing 

the notion of trigonometric function as a covariation. Assuming that the use of a semiotic system in 

social interaction as the natural language contribute to the emergence of internal process (such as 

concept formation), this paper analyses the verbal signs elaborated and used by the students and the 

teacher in order to describe the evolution from students’ personal meanings to mathematically shared 

meanings of the trigonometric function cosine.  

Keywords: Verbal signs, semiotic mediation, covariation, collective discussion, Cabri.  

Introduction and research problem 

The notion of trigonometric function is related to three mathematical domains: trigonometry, algebra 

and function. Understanding the idea of a trigonometric function requires students to realise the 

relationship between the length of an arc and the measure of the angle that is subtended by the arc, 

the relationship between the real line and the unit circle, the covariation between a point moving on 

the unit circle and its projection on one of the axes, and the idea of the graph of a function (Khalloufi-

Mouha, 2009, Khalloufi-Mouha & Smida, 2012). 

From a historical perspective, the idea of the functional relationship between the real line and the unit 

circle is related to the notion of motion as a variation in the space and time. (Falcade, Laborde & 

Mariotti, 2007) So, this idea could be understood from a dynamic perspective, referring to the 

wrapping of a line around the unit circle and to the variation of a moving point. Many studies (e.g., 

Laborde, 1999; Laborde & Mariotti, 2002) claim that the key to understand the dynamic aspect of 

function is the notion of trajectory. According to Laborde (1999) the graph of a function could be 

considered as the trajectory of a moving point, representing the dependent variable according to the 

variation of a variable point on the axis of abscissas, so, the covariation of these two points becomes 

a relationship between two variations depending on time. Adopting a teaching approach based on the 

idea of covariation in the semantic field of space and time, Laborde et al. (2002) and Falcade (2006) 

assume that the teaching and learning of the notion of function should start in a dynamic environment. 

They claim that the use of Cabri allows access to the ideas of variation, functional relationship and 

covariation through the movement of a point on the screen. According to the Vygotskian (1978) 

perspective of semiotic mediation, Laborde et al. (2002) and Bartolini Bussi and Mariotti (2008) 

argue that some of Cabri’s features can be viewed as potential tools of semiotic mediation carrying 

mathematical meanings. Cabri’s tools can be thought as external signs referring to a specific 

mathematical meaning, and may become tools of semiotic mediation Laborde et al. (2002). 

Following these studies, we propose a teaching experiment integrating the technological artifact 

Cabri, aiming to introduce the trigonometric function cosine as covariation. 



Theoretical framework 

According to Vygotsky (1978), human intelligence is defined by the ability to use various types of 

tools with signs playing the role of mediators. Vygotsky distinguishes between tools (technical tools) 

and signs (psychological tools). Tools are externally oriented and aimed at controlling the process of 

nature. Signs are internally oriented and aimed at mastering the individual’s behavior and cognitive 

processes. Vygotsky claims that, through the process of internalization, a tool may be transformed in 

a sign, and then may function as a tool of semiotic mediation. Vygotskian theory supposes that the 

development of behavior and cognitive processes is the product of activities practiced in the social 

institutions of the culture in which the individual grows up. For Vygotsky, language is the most 

important semiotic mediator allowing the passage from the interpsychological level to the 

intrapsychological level. The theory of semiotic mediation (TSM), developed by Bartolini Bussi and 

Mariotti (see, for instance, Bartolini Bussi & Mariotti, 2008), is situated in the Vygotskian 

perspective. Two key notions support this theory, the zone of proximal development and the 

internalization. Vygotsky introduces the concept of the zone of proximal development as “the 

distance between the actual developmental level as determined by independent problem solving and 

the level of potential development as determined through problem solving under adult guidance or in 

collaboration with more capable peers” (Vygotsky, 1978, p.86). This concept models the learning 

process through social interaction. In fact, the collaboration between one individual, whose cognitive 

attitude has the potential to facilitate change, and another individual (or group) who intentionally 

cooperate to accomplish a task or to pursue a common aim may generate a possible development 

(Bartolini Bussi & Mariotti, 2008). The transposition of this concept in the school context is possible 

thanks to the intrinsic asymmetry of the relationship between students and teacher in terms of 

knowledge. Therefore, the teacher’s actions should be within this zone for achieving a didactic 

objective through the use of the signs and tools as semiotic mediators. In this zone of proximal 

development, cognitive development is modelled by the process of internalisation. 

According to the TSM, the social use of an artifact in the accomplishment of a task leads to the 

emergence of signs expressing students' personal meanings, i.e. “the conscious sense created by each 

individual to express the direction of his or her action” (Bartolini Bussi, 1998, p.69). The evolution 

from personal meanings towards mathematical meaning, i.e, what describes the properties of the 

concepts under scrutiny inside a system of theoretical knowledge (Bartolini Bussi, 1998, p. 81), is an 

educational aim that can be realized promoting the evolution of signs, expressing the relationship 

between artifact and tasks, into signs expressing the relationship between artifact and knowledge 

(Bartolini & Mariotti, 2008). The teacher can guide this evolution through collective discussions. 

Rationale for the teaching experiment 

Our teaching experiment aims at constructing the meaning of the cosine function and of its graph 

using the notion of covariation (Khalloufi-Mouha & Smida, 2012.) The experiment has four parts. 

The first two parts use the situation A rope on a wheel (Genevès, Laborde & Soury-Lavegne, 2005), 

which is a modelling situation in Cabri: a thread that can be wound around a wheel through the 

Dragging tool. The experiment involves description and prediction tasks intended to provide students 

with opportunities to realise that in the unit circle the length of an arc is equal to the measure (in 

radian) of the angle that it subtends. In addition, wrapping the thread on to the wheel aims to make 

students construct, for a given real x, the point M on the unit circle with the arc 𝐼�̂� = 𝑥. Thus, they 



could realise the functional relationship between the real line and the unit circle. Mathematically, this 

relation is interpreted by the existence of a surjective group homomorphism between the set of real 

numbers and the unit circle. Throughout these activities the role of the teacher is crucial. He has to 

establish strategies fostering the development of meanings of functional relationships and variation. 

The third and fourth parts of the experiment aim to analyse how the Dragging tool, the Measurement 

tool, and the Trace tool function as semiotic mediators for the ideas of variation, the functional 

relationship and covariation. The cosine function is introduced as a relationship between two 

variations depending on time, and its graph as the trajectory of a moving point.  

The teaching experiment involves different typology of activities aimed to develop different 

components of the complex semiotic process: working in pairs and collective discussions generally 

initiated and guided by the teacher. When working in pairs, students use the artifact to accomplish 

the given tasks. This type of activities promotes social exchange through the use of verbal signs (both 

oral and written), gestures, drawing... Consequently, this provides students with opportunities to 

construct personal meanings linked to the mathematical target concepts. Students’ personal meanings 

may evolve to the shared mathematical meanings through collective discussions. These discussions 

involve all students and allow the confrontation between their personal meanings and the 

mathematical meanings. These collective discussions may reach the status of mathematical 

discussions, in the sense of Bartolini Bussi (1996), and can also involve phases of institutionalization 

(Brousseau, 1998) and the introduction of new formal notations. The analysis of the verbal signs used 

by the students and the manner in which the teacher exploits them can highlight the evolution process 

from the students’ meanings towards mathematical meanings. According to the TSM, the status of 

the signs belonging to the different categories vary in the evolution process, they can be used as an 

index of the move from personal sense to mathematical meaning. (Bartolini Bussi & Mariotti, 2008). 

Methodology 

The sample of this study consisted of 16 students from a class of 2nd year (16-17 years) in a high 

school in Bizerte, Tunisia. The students were familiar with analytic trigonometry and they regularly 

used computer software in class. The teaching session was carried out in the computer laboratory. 

Students were grouped in pairs and asked to produce a shared written answer on a worksheet. The 

discussions within pairs and the collective discussions have been audio-recorded.  

The analysis is based on several kinds of data that were collected: protocols produced from the student 

working in pairs (audio-recording, texts, and drawings), audio-recordings of collective discussions 

and the teacher's and observer's notes. 

The impact of the use of Cabri on the construction of mathematical knowledge was analysed by 

identifying the development of the students’ and the teacher’s verbal signs related to the target 

mathematical concepts. We distinguish the two types of signs identified by Falcade (2006): simple 

signs and complex signs. Simple signs are "easily recognizable by representations of almost atomic 

type (words or specific formulations)" (p.202). For example, the word “circle” is a simple sign. 

Amongst the simple signs Falcade (2006) distinguishes three types, i.e. artifact-signs (arising directly 

from the use of the artifact, their meanings are personal and commonly implicit. The artifact-signs 

are strictly related to the use of the artifact to accomplish the task), mathematical-signs (referring to 

the culture of mathematics and constitute the goal of the semiotic mediation process.), and pivot-signs 

which play a pivotal role between the semantic and mathematical fields. “The characteristic of these 



signs is their shared polysemy, meaning that, in a classroom community, they may refer both to the 

activity with the artifact; in particular they may refer to specific instrumented actions, but also to 

natural language, and to the mathematical domain.” (Bartolini Bussi & Mariotti, 2008). 

The complex signs refer to relationships between families of relatively ‘simpler’ signs. For example, 

the sentence “the set of points that are equidistant from a given point” is a complex sign that refers to 

the mathematical-sign circle. Complex signs are subdivided into four categories: characterisations, 

definitions, interpretations and instantiations. Characterizations tend to highlight some characteristics 

that could be interpreted in mathematical terms. Nevertheless, characterizations are not real 

definitions because in the mind of the speaker the statement is not precise. A definition for an object 

provides a "boundary in words" which was until then unknown or little known. They are not 

definitions in the mathematical sense, but can be considered as being part of the process towards a 

mathematical definition. The interpretations concern explicit links between two families of signs 

which belong to two different semantic fields. Instantiations are signs which concern the 

establishment of an interpretative link between artifact-signs and mathematical-signs. Falcade (2006) 

elaborates that “Instantiations are of the same nature as the interpretations. However, the latter 

concern universal, while instantiations refer directly to the specific activity in Cabri” (p.210). 

In our analysis of the development of students’ and teacher’s verbal signs, all the relevant 

mathematical notions and all the different signs used were identified. The classification of Falcade 

allows us to analyse the development of students’ personal meanings. Every evolution from an 

artifact-sign to a pivot-sign will be interpreted as a step towards the construction of personal 

meanings. The use of complex signs of the type characterization or instantiation will be interpreted 

as an attachment to the artifact. The use of the complex sign interpretation will be interpreted as a 

step in the process of semiotic mediation. Finally, the complex sign definition will be interpreted as 

a step in the process of internalisation of a mathematical definition of the object. 

Findings and discussions 

The first two parts of the teaching experiment focus on the situation "a rope on the wheel".  

 

 

Figure 1: The situation A rope on the wheel 

 

From the first task, when working in pairs, students used a large number of artifact-signs related to 

the ideas of motion and numerical domain, such as "to unwind", "to turn", "to move", "to increase", 



and "to decrease". For some students, we identified initial pivot-signs related to variation such as "to 

change" and "to vary", and related to the meaning of functional relationship such as "depends on" and 

"being a function of". The pair discussions indicate that the use of the artifact facilitated students’ use 

of complex signs of the instantiation type: “If the length of the arc changes, the point N will change”, 

and of the interpretation type: “Then the length of the arc varies as a function of the angle”. These 

complex signs show the construction of personal meanings of the relationship between the length of 

an arc, the measure of the angle and the radius of the wheel. The collective discussions initiated by 

the teacher led to the use of these signs in the process of constructing mathematical meanings. The 

role of the teacher was crucial in the collective discussion. Taking into account individual 

contributions, the teacher engaged students through juxtaposing their personal meanings, and 

encouraged them to disregard the artifact and then to focus on the mathematical concepts. 

The second part of the experiment aimed at exploring the metaphor of the winding of the real line 

around the unit circle. During the working in pairs, we observed artifact-signs such as "put the point", 

"move the point", and pivot-signs as "length of the arc". This characterizes a first step related to the 

recognition of the numerical and geometric variation. Students used also mathematical-signs “For 

every x, we can construct a point” and interpretations of the functional relationship between the real 

line and the unit circle. This can be interpreted as a second step: the identification of the covariational 

relation at a perceptual level. During the collective discussion, the teacher used the rope as a semiotic 

mediator to introduce the idea of the functional relationship between the set of real numbers and the 

points of the unit circle. The collective discussion highlights the use of mathematical-signs such as 

“for every real x in ..”, “symmetry”, “absolute value” and “a function of”. In addition, we also observe 

an interpretation of the idea of the functional relationship: “For every positive real x we can construct 

a point on the unit circle”. It seems that students found themselves in a familiar mathematical 

environment and had no difficulties in generalising the use of the artifact. They were engaged 

spontaneously in the intended process of mathematical meaning construction. 

A definition of the cosine function 

The third part of the teaching experiment focused on the ways the Cabri-tools Dragging, Measurement 

and Trace function as semiotic mediators for the development of the definition of the cosine function 

as a covariation, (i.e. the relationship between two variations depending on time), and the construction 

of its graph as a trajectory of a moving point. 

Students were asked to construct a point N on the x-axis (1,0) with abscissa x. Using the Measurement 

tool, they should then construct the point M of the unit circle such that 𝐼�̂� = 𝑥. Finally they should 

construct the point K on the x-axis(1,0) with the same abscissa as M, and the point H on the y-axis 

(0,1) with the same ordinate as M. Using Dragging tool, students were asked (a) to describe the 

relationship between the points N, M, H and K when N is moving, (b) to determine the values taken 

by the abscissa of M when the point M is moving on the unit circle and (c) to identify the relationship 

between x and the abscissa of M. 



 

Figure 2: The figure related to the third part of the teaching experiment. 

The evolution of the verbal signs elaborated and used by the students and the teacher attest the 

existence of four steps towards the definition of the trigonometric function cosine. 

1st Step: Recognition of numerical and geometric variation 

The use of the artifact to accomplish the task promoted the emergence of verbal signs related to the 

idea of motion. The first step is characterised by an important use of atifact-signs stressing the 

attachment to the activity with the artifact. In fact, students used verbs of action as “to move”, “to 

vary”, “to turn”, “to change”.... and used expressions as “we draw the point M on the unit circle and 

we move it” or “we can choose different values for x...” 

2nd Step: Identification and recognition of covariation at a contextual level 

This step is characterized by the emergence of complex signs “interpretation” linking two variations. 

In these signs the reference to space and time was eliminated and we noticed the use of expressions 

related to the indirect variation and to the simultaneity of variations such as “When X varies then Y 

varies” or “If X varies then Y varies” 

3rd Step: Interpretation of covariation as a functional relationship. 

This step is characterized by the use of pivot-signs “depend on”, “a function of” and “relation 

between” to replace the expressions “When X varies then Y varies”. Students identify the functional 

relationship as a relation between two variations. This was interpreted as an evolution of students’ 

personal meanings related to the notion of function. 

In the collective discussion the teacher used the artifact to promote the emergence of the students’ 

simple and complex signs related to the ideas of functional relationship and covariation “T : Well. 

Now what is going to change if you move N?” The artifact is used as a semiotic mediator supporting 

the transition of signs expressing the artifact-tasks relationship into signs expressing the artifact-

knowledge relationship. As a result of the guidance of the teacher, students expressed mathematical-

signs such as “the function which associates M to N”, and others related to the idea of covariation. 

4th Step: The mathematical definition of the notion of cosine function 

When exploring the relationship between x and the abscissa of M through the use of Dragging, we 

observed students’ interpretation of the movement of point K as a variation of the abscissa of M and 

the description of the functional relationship between M and its abscissa. 

The use of mathematical-signs related to the meaning of the cosine function illustrates the 

development of personal meanings related to the mathematical meaning of the cosine function as 

covariation. The collective discussions, guided by the teacher, allowed for the construction of the 

accepted mathematical meaning, i.e. the mathematical definition of the cosine function. (Khalloufi-

Mouha, 2012) The main goal of the teacher’s actions in the collective discussion is managing the 



students’ discourse, in order to support them to move from the artifact and place them in a 

mathematical environment which allows the recognition of the cosine function. The discussion shows 

a large commitment of students to the process of meaning construction. By using many mathematical-

signs, they succeeded in linking their mathematical and physical knowledge. In this case, we can say 

that the artifact was a powerful resource for the construction of the mathematical meaning based on 

the activity with the artifact. 

Conclusion 

The epistemological importance of introducing the notion of trigonometric function as covariation to 

make the link between trigonometry and trigonometric functions led us to design and experiment a 

teaching sequence integrating the artifact Cabri. The analysis of the process of constructing the 

mathematical meaning of the cosine function, through the analysis of the verbal signs, allowed us to 

identify that this process begin by a first step related to the recognition of the numerical and geometric 

variation. This step is characterized by an important use of the artifact-signs and an attachment to the 

task with the artifact. The second step is the identification of the covariational relation at a perceptual 

level. The third step marks a mathematical interpretation of the activity with the artifact following the 

collective discussions orchestred by the teacher. The process is carried out following the interventions 

of the teacher, by the mathematical definition of the notion of cosine function. 

The teacher’s role is very important in the process of constructing mathematical meaning among 

students using a technological artifact. The teacher has to use the semiotic potentialities of Cabri and 

orchestrate the discussions in order to guide this process towards the construction of mathematical 

meaning. For this reason, further investigations into the role played by the teacher are required for a 

better description of the process of construction of mathematical meaning among students using a 

technological artifact. 

 

References 

Bartolini Bussi, M. (1996). Mathematical discussion and perspective drawing in primary school. 

Educational Studies in Mathematics, 31, 11−41. 

Bartolini Bussi, M., & Mariotti, M. (2008). Semiotic mediation in the mathematics classroom: 

Artifacts and signs after a Vygotskian perspective. In L. D. English, M. Bartolini Bussi, G. Jones, 

R. Lesh & D. Tirosh (Eds.), Handbook of international research in mathematics education (2nd 

revised edition, pp. 720−749). Mahwah, NJ: Lawrence Erlbaum. 

Brousseau, G. (1998). Théorie des situations didactiques. Grenoble: La Pensée Sauvage. 

Falcade, R., Laborde, C., & Mariotti, M.A. (2007). Approaching functions: Cabri tools as instruments 

of semiotic mediation. Educational Studies in Mathematics, 66, 317−333.  

Falcade, R. (2006). Théorie des Situations, médiation sémiotique et discussions collectives, dans des 

séquences d’enseignement avec Cabri-géomètre pour la construction des notions de fonction et 

graphe de fonction (PhD thesis). Université Joseph Fourier, Grenoble. 

Genevès B., Laborde C., Soury-Lavergne S. (2005). The room of transformations and functions with 

Cabri-geometry, L'Insegnamento della Matematica e delle Scienze Integrate, Numero Speciale, 

11−14. 



Khalloufi-Mouha, F. (2009). Etude du processus de construction du signifié de fonction 

trigonométrique chez des élèves de 2ème année section scientifique (PhD Thesis). Université de 

Tunis, Tunisia. 

Khalloufi-Mouha, F. (2012). Etude de l’évolution des pratiques d’un enseignant lors d’une séquence 

d’enseignement intégrant un artifact technologique. In J. L. Dorier, & S. Coutat (Eds.), Actes du 

colloque EMF 2012. Université de Genève 3-7 February 2012. 

Khalloufi-Mouha, F., & Smida, H. (2012). Constructing mathematical meaning of a trigonometric 

function through the use of an artifact. African Journal of Research in Mathematics, Science and 

Technology Education, 16(2), 207−224. 

Laborde, C. (1999). Core geometrical knowledge for using the modelling power of 

Geometry with Cabri-geometry. Teaching Mathematics and its Application, 18(4), 

166−171. 

Laborde, C., & Mariotti, M. (2002). Grounding the notion of function and graph in DGS, Actes du 

Congrès international Cabriworld 2, Montreal. 14-17 June 2001. 

Mariotti, M. (2002). Influence of technologies advances on students’ maths learning. In L. English, 

M. Bartolini Bussi, G. Jones, R. Lesh & D. Tirosh (Eds.), Handbook of international research in 

mathematics education (pp. 695−723). Hillsdale, NJ: Lawrence Erlbaum. 

Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. 

Cambridge, MA: Harvard University Press. 

 



 

DeafMath: Exploring the influence of sign language on mathematical 

conceptualization 
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Sign languages are performed in a modality other than spoken languages, using the entire body in a 

spatial-visual-somatic way. With reference to spoken language, performance of the language in 

terms of articulation, but also perception and interpretation, changes in the medium of sign 

language as a visual means of expression. Considering mathematical discourse and social 

interaction as an important factor in the learning of mathematics, this paper discusses theoretical 

approaches of a research program, currently underway, that aims at getting a better understanding 

of how the use of sign language may influence the learning of mathematics. From this a more 

profound basis shall be derived for developing didactical strategies responding to the special needs 

of deaf learners and understanding the role of bodily language in mathematical conceptualization. 

Keywords: Sign language, deaf learners, gestures, mathematical discourse and social interaction. 

Introduction 

Research in the area of Deaf studies and Deaf education points at the special challenges deaf 

students face when learning mathematics. Their lack of basic mathematical skills—deaf children 

lack several years on average behind hearing peers (Nunes, 2004; Traxler, 2000)—is considered to 

be mainly caused by social and linguistic aspects. 

Deaf children do not ‘pick up’ informal knowledge (Ginsberg, Klein, & Starkey, 1998) about 

mathematical concepts in early childhood as easily as hearing children do, due to growing up in an 

environment that is primarily aligned to auditive social experience (Nunes & Moreno, 1998). For 

example, everyday phrases of “mathematical conversation” (Gregory, 1998) just as ‘It is five to 

twelve’ or ‘Turn right in three quarters of a mile’ can provide a first contact to numbers that is not 

accessed ‘en passant’ by deaf children. Not necessarily growing up in a deaf community, they may 

also lack everyday interaction with peers that may initiate first instances of problem solving in 

playful situations, e.g. dividing a quantity in equal parts. Furthermore, deaf learners struggle with 

reading, understanding and processing written word problems (Hyde, Zevenbergen, & Power, 

2003).  Their challenges are partly explained by a decreased short term memory in serial recall of 

linguistic material, by a problematic comprehension of certain language structures like conditionals, 

comparatives, inferentials and lengthy passages (Rudner, 1978), and by the semantic understanding 

of the written language as a second language (Barham & Bishop, 1991; Traxler, 2000).  

Hence, and probably as no surprise, language is considered a main factor influencing the learning of 

mathematics for deaf learners. However, language has mostly been considered a problematic 

condition that impedes deaf students’ learning rather than investigated as an integral part of the 

learning process itself. As a spatial-visual-somatic language, the sign language used by the Deaf 

provides access to mathematical ideas different than that of spoken language. But what exactly does 

this mean for the learning of mathematics? And what can we learn from looking at how learning 

under these special conditions takes place?   



 

The approach presented takes into account the specificity of sign language to encounter the peculiar 

characteristics of mathematical discourse and social learning processes in the deaf classroom. 

Furthermore, I support the claim that the modality of language not only affects how mathematics is 

learned, but that it also influences how mathematical ideas become conceptualized by impacting the 

structure and process of thinking (Healy, 2015). This contribution therefore outlines theoretical 

approaches and possible implications of a new research program that aims at developing a better 

understanding of how mathematics is learned using the medium of sign language.   

Sign language(s) and gestures 

Sign languages are visual languages that are formed by several components such as the 

configuration, movement and orientation of the hands and their location in space, body posture, 

facial expression and the viseme (or ‘mouthing’: the movement of the mouth). These aspects shape 

what is considered the utterance in sign language and are, just as spoken language, more or less 

conventionalized. These conventions distinguish the manual expression from the gestures defined in 

the style of McNeill. While he defines co-speech gestures as “idiosyncratic spontaneous movements 

of the hands and arms accompanying speech” (McNeill, 1992, p. 37), I adapt this definition for an 

understanding of co-sign gestures as being ‘idiosyncratic spontaneous movements of the hands and 

arms’ accompanying the signed discourse. Signers use non-conventionalized gestures in addition to 

the signs and both types of gestural expression can hardly be distinguished (see also Healy, Ramos, 

Fernandes & Botelho Peixoto, 2016). Being performed in the same visual-gestural modality, signs 

and gestures are deeply intertwined in their use and in their interpretation, probably even more 

intertwined than in the case of spoken language.1 

Cognitive aspects of the influence of sign language on the learning of 

mathematics 

Embodied cognition 

Following the theory of embodied cognition, our (mathematical) thinking is deeply influenced by 

how we experience the world as physical beings (Lakoff & Núñez, 2000). How we act in and 

perceive the world structures our thinking and shapes to large extent our conceptual understanding: 

Human concepts and human language are not random or arbitrary; they are highly structured and 

limited, because of the limits and structure of the brain, the body, and the world. (Lakoff & 

Núñez, 2000, p. 1) 

A slightly more cautious claim is stated by Wilson and Foglia in the embodiment thesis:  

Many features of cognition are embodied in that they are deeply dependent upon characteristics 

of the physical body of an agent, such that the agent's beyond-the-brain body plays a significant 

                                                 
1 This also becomes a methodological issue. It is almost impossible to translate from sign language to written language, 

even if using lexemes for the notation. Gestures contribute naturally to the interpretation of the utterance such that the 

analytical distinction between which aspects are signed and which are gestured cannot be made as clear as analytical 

distinctions between the spoken and the gestured. Neither can be considered separately. 

 



 

causal role, or a physically constitutive role, in that agent's cognitive processing. (Wilson & 

Foglia, 2011, paragraph 3) 

More precisely, Wilson and Foglia distinguish three roles the body can play in cognition: It can 

constrain cognition, distribute cognitive processing and regulate cognitive activity (Wilson & 

Foglia, 2016, paragraph 3). In sum, “such determinate forms of the Embodiment Thesis can ascribe 

the body either a significant causal role, or a physically constitutive role, in cognition” (Wilson & 

Foglia, 2016, paragraph 3).  

However, the “body as constraint” is not to be understood with a merely negative connotation as 

one may get at first sight, taking into account two further implications provided by Wilson and 

Foglia (2016): 

 Some forms of cognition will be easier, and will come more naturally, because of an 

agent's bodily characteristics; likewise, some kinds of cognition will be difficult or even 

impossible because of the body that a cognitive agent has. 

 Cognitive variation is sometimes explained by an appeal to bodily variation. (paragraph 

3) 

This view on embodied cognition is coherent with the approach taken by Healy and colleagues who 

understand bodily organs as tools in the sense of Vygotsky, influencing structure and process of 

thinking (Healy, 2015). As instrumental tools, the sensory organs can be substituted among each 

other, which “is expected to cause a profound restructuration of the intellect” (p. 299).  

Such a substitution comes into play for deaf learners, where the lack of auditive perception becomes 

substituted by other sensory experiences. In the hearing classroom, information and ideas are shared 

to a large extent verbally while deaf students acquire information and interact by means of visual 

modes of expression, just as sign language. Following the theoretical approaches laid out, such a 

variation concerning the process of learning mathematics should alter cognitive structures and 

thinking processes, perhaps also leading to differences in conceptualization of mathematical ideas. 

Features of sign language 

Research in the field of Deaf Studies in fact indicates that deaf people ‘think differently’ (Grote, 

2010, 2013). Grote emphasizes that the modality of language—whether it is communicated in vocal 

language or in sign language—influences processes of conceptualization. She identifies two 

features of language modalities with such influences: Articulation and iconicity. 

While information is strung together sequentially and linearly in vocal language, sign language 

offers the possibility to represent different aspects of the utterance simultaneously. This can 

compensate for the greater time required by spatial articulation in sign language over that of verbal 

articulation (Bellugi & Fischer, 1972; Grote, 2013). However, sign language can represent only 

those concepts simultaneously that stand in a syntagmatic relationship, that is, concepts that consist 

of several aspects connected through linguistic contiguity. Signs that bundle these aspects by using 

a particular handshape to express additional information are sometimes called polycomponential 

signs (Grote, 2013), classifier predicates, or depicting verbs (Liddell, 2003). In contrast to this 

stand the representation of concepts from the same paradigm, e.g. concepts that are connected in 

hierarchy (see Fig. 1). 
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Fig. 1: Example for paradigmatic and syntagmatic relationships (following Grote 2013, p. 313) 

These paradigmatic (or ‘associative’ (Saussure, 1983)) relationships need to be articulated linearly, 

just as in verbal language (Grote, 2010, 2013). Grote (2010) claims that this may lead to a 

preference for communicating those ideas that stand in a syntagmatic relationship and gives 

empirical evidence that this preference may engender the establishment of a stronger link between 

these relations over paradigmatic ones. 

Furthermore, gestures often show a certain resemblance with what they signify; they evoke an 

iconic relation to its referential object. This relationship, however, needs to be established since it is 

not self-evident. Related to the process of conceptualisation, Grote claims that  

assuming that epistemic processes are processes inherently mediated by signs, the similarity 

that forms the relationship between icon and referential object is constituted actively. This 

means that in the process of iconisation, there is a focus on specific features of the semantic 

concept which probably become stronger linked and get an exposed position in the semantic 

net. (Grote, 2010, p. 312, translated by the author) 

When conducting verification tests, she found remarkably shorter reaction times for those pictures 

that showed the feature that was iconically reflected in the sign. This pointed to a stronger semantic 

link between this feature and the signed concept and provided evidence that “those features that are 

reflected in the iconic moment of sign language get a specific relevance for the whole semantic 

concept” (Grote, 2010, p. 316, translated by the author).  

So what might this mean for the learning of mathematics? 

Learning mathematics is not perceived as a purely cognitive phenomenon but can be understood as 

a social process in which individuals co-construct mathematical meaning and knowledge within the 

social interaction that is constituted by the use of signs. These signs can be of written, spoken, or 

gestural form or anything else that can be considered a semiotic sign, performed in any modality. In 

this sense—and taking into account the embodied approach outlined earlier—learning is understood 

“as a multimodal process” (Arzarello, 2006, p. 1), influenced by production and perception of signs 

within social interaction. The use of sign language plays part in both, production and perception.  

Based on this, possible issues that can arise are the following:  

 A preference of communicating syntagmatic relationships may lead to place special 

emphasis on these when carrying out social epistemic processes in social interaction and 

therefore, may lead to make syntagmatic relations conceived as being more important for the 

related mathematical concept. 



 

 Knowledge about which relations are ‘linked’ linearly and which simultaneously can 

influence teaching methods. While in the learning of deaf students there needs to be 

emphasis on developing paradigmatic inner-mathematical relations, the use of co-speech 

gestures may support strengthening syntagmatic links also in the regular classroom. 

Theoretical foundations for such an approach are provided by the results on gestural 

specification of the verbal utterance in processes of constructing mathematical knowledge in 

social interaction, as described in Krause (2016).  

 Providing ‘mathematical signs’ as nonverbal terms to students, it needs to be noted that the 

iconicity of the sign may lead to an exposed position of the aspects that become visually 

reflected in it. Oftentimes, official and conventionalized ‘mathematical signs’ do not exist or 

are not known so that a ‘suitable’ mathematical sign may develop hand in hand with the 

knowledge during the learning process in the mathematical classroom (see also Fernandes & 

Healy, 2014; Krause (2018)). To support the conceptualization of mathematical ideas, it is 

therefore important to take a closer look at which aspects of a mathematical idea are 

reflected iconically in a mathematical sign, and how meaning develops in the respective 

signs in a process of iconization while the ideas become encountered. Within this process, 

the iconicity of the gesture may inform about the signer’s current conceptionalization of the 

mathematical idea. This may be used for the purpose of assessment and fits the development 

of the ‘associated gestures’ found in hearing learners’ social processes of constructing 

mathematical processes (Krause, 2016). 

 Many mathematical concepts are shaped metaphorically so that the mathematical concepts 

are understood through something familiar or more illustrative (Lakoff & Núñez, 2000). 

These metaphors cannot be represented iconically in a direct way, the developing 

sign/gesture rather refers to an ‘underlying’ meaning (see again Fernandes & Healy, 2014). 

Gestures developed by deaf students while constructing mathematical knowledge in social 

interaction may therefore indicate possible approaches to these ideas and concepts. 

Knowledge about these approaches can also help in cases of learning mathematics in a 

second language since linguistic approaches to metaphors may not be accessible. 

The research program “DeafMath" 

These considerations motivate my research program in which I investigate the influence of sign 

language on the conceptualization of mathematical ideas, focusing on two main aims: 

 Contributing to the development and further elaboration of a theory on the role of the body 

in the conceptualization of mathematical ideas,  

 Providing theoretical foundations for developing didactical methods and strategies that 

involve the body in processes of teaching and learning. 

Furthermore, another goal lies in the development and evaluation of methodological approaches 

that take into account the specificity of the research setting when working with deaf children. The 

crucially different characteristics of sign language as a visual-gestural language, as well as the 

students’ difficulties with written language, demand an adaption of methods for collecting, 

preparing, and analysing data. This becomes especially important with respect to qualitative studies 

that follow interpretative and reconstructive methods since the holistic representation in sign 



 

language cannot be captured merely in written form that can only reflect linear and segmented 

language. A (more) suitable methodological approach might place a greater emphasis on the 

coordination of written transcripts, pictures, and videos for means of analysis, but also for the 

documentation of the results. 

Potential long-term goals with respect to implications on teaching methods and strategies concern 

the following aspects: 

 The identification of challenges that are specific to deaf students and countering them in 

their core: Is one challenge grounded in their understanding of (some) mathematical 

concepts as deviating due to the deviating modality of their language? 

 Understanding the inclusion of deaf learners and their way of communicating as actual 

surplus in the inclusive classroom. Results gained from these studies can point out how an 

actual inclusion of hearing-impaired students can enrich the entire classroom. 

 Using representational gestures in a goal-directed way as didactic means. In Krause (2016) I 

describe how the use of representational gestures can influence the collective formation of 

mathematical concepts in a beneficial way by its various representational functions. Results 

derived from the here described study may give insights in how these representational 

gestures may look like. 

This program therefore considers ‘barriers and chances’: While the different kind of communication 

may lead to specific challenges when learning mathematics, taking into account these differences 

entailed by the spatial-visual-somatic and embodied medium of sign language might help to 

“become better able to respond to their particular needs, but also build more robust understandings 

of the relationships between experience and cognition more generally” (Healy, 2015, p. 289). 
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Digitalization is a topic that is ubiquitous in everyday life. The technological revolution progresses 

with high pace. Technology/web/mobile companies all over the world are flourishing but primary 

schools (in Germany) do not follow the economy’s development and has not made computer science 

part of its curriculum yet. This is either due to technical equipment limitations or to the inability or 

insecurity of teachers to include technology and the underlying principles in their classroom. 

Furthermore, it is not officially integrated into the core curriculum which prohibits the 

implementation of a universal standard for computer science competences that have to be taught in 

primary schools. The paper will present the underlying project and the development of specific 

learning environments that are designed to nurture cooperation and interaction between participants 

to have a closer look at the in-between, where learning occurs. This will help to solidify the claim 

that computer science in primary school has a right to exist. 

Keywords: Computer science, interaction, mathematical competences, digitalization. 

Introduction 

Computer Science, digitalization or technology are only three out of many other terms concerning 

the digital age that ubiquitous in today’s society. Nearly every professional branch has to deal with 

technology and digitalization at some point. Employees have to learn how to deal with these digital 

structures mainly on their own, because they never experienced a fundamental education in computer 

science. Many schools in Germany offer Computer Science only as a subject in secondary school 

although coding is seen as the language of the 21st century. Whoever is able to “speak” a programming 

language will be understood all over the world. Many IT unicorn businesses have their roots in a 

teenager’s room or the parents’ garage. Often, these businesses came to be because exceptional skill 

and auto didactical training come together. The masses only seem to use the technology that emerges 

from these businesses without understanding the basic underlying structures that enable the creation 

of a product. No matter which idea came to be, it has almost certainly been realized through 

programming. The choice of programming language is rather secondary as they all follow the same 

basic rules. Children, from first grade onwards, know about digital technology and computers in 

different shapes and formats, but when they enter school, these digital tools often cease to exist. 

Therefore, a responsible use of these technologies and learning in computer science is not fostered in 

primary schools. Tablets, laptops, smartphones and gaming consoles are at least present once in every 

household. According to the KIM study, most families own more than one of these devices and use 

them more than once a week (e.g. the percentage of smartphone/laptop ownership is 97%). In fact, 

41% of children from 6-10 own a smartphone themselves. Children learn from an early age how to 

use e.g. tablets. The functions of these devices are often self-explanatory. The underlying structures, 

e.g. how is software developed, what rules does a computer follow or how to troubleshoot problems, 

are not that clear to most children although these structures are relatively similar across all digital 

devices, this also is true for most teachers, who did not grow up with technology and are now 

supposed use it in the classroom and teach its responsible use. Compared to mathematics this would 



be similar to learning specific calculations with specific numbers or materials but not understanding 

how to transfer and apply e.g. long division to other tasks. The paper does not aim to defy media 

competences and how they can be accomplished, it is rather a claim to go further and to embrace 

computer science itself into primary education and see where and when interaction and negotiation 

of meaning between children occurs and how it fosters the learning of computer science and 

mathematics competences. This would empower children to accomplish much more with their 

knowledge about media and their use (knowledge, they undoubtedly gained while growing up in a 

digital world). 

Status Quo: Media competences, a watered-down term 

Computer Science is a topic that is present in almost every secondary school, either as a mandatory 

or a facultative subject. Either way, the subject is taught by teachers, who have a higher education 

degree in computer science. To become a primary school teacher in Germany, as in many other 

countries, the selection of specific subjects is not necessary, as the primary teacher is trained to teach 

all subjects that are part of the primary school curriculum (although many universities offer the 

opportunity to choose a core subject (e.g. mathematics) that will give the student the ability to enjoy 

an even more focused education in this specific area. Computer Science as a subject is not present in 

either primary school or primary school teacher education. Future teachers rather can archieve 

something that is often called media certificate or media training. Mostly, this is integrated into the 

courses that are already taken at university. E.g. one course would include a topic like “use of digital 

media in geometry in primary school”. This is neither standardised, nor does it aim at specific 

competences. It is rather a subject specific realization of the use of technology for a certain topic. 

Today, most schools decide themselves how and when to use digital media and often one feels that it 

is mostly aimed at helping teachers to keep up with what children already know. If they decide to do 

so it is often done under the term of media competency. Krauthausen (2012) mentions that the term 

“media competences” is colorful and can be interpreted very differently according to specific 

interests. For some schools media competency means that the teacher uses e.g. an iPad, for others that 

the children learn how to use word processing software. Other projects try to foster the use of specific 

types of media such as podcasts to facilitate learning process for mathematics (cf. Schreiber, 2012). 

This is far away from being similar to what computer science would request children to learn. 

Computer science is considerably more than just knowing about the functions of a computer. It is 

learning about logic, about algorithms, about programming & robotics and (late-breaking) 

cryptography. Questions like: What is an algorithm? What is logic? What technology can I use to 

facilitate my work? can be answered by young children to improve their learning. But not only will 

the acquisition of such skills foster the expert knowledge, it will also nurture competences that can 

be interdisciplinary used. This is important, as we have to ask whether our traditional cultural 

competences are still sufficient in a more and more digitalized world or whether we need to teach 

computer science as well. Some projects try to accomplish this, e.g. Herper and Hinz (2009) through 

computer science education in primary school and Weigand (2009) with his project: “Algorithms in 

primary school” (title translated by the author). Weigand especially shows that to work on basic 

principles of computer science (in this case algorithms) a computer itself does not necessarily have 

to be available, as he uses pen and paper to work on algorithmic processes. Primary schools do not 

offer the subject of computer science and it will not be easy to implement it into the curriculum as an 

independent subject. To achieve this goal, a back door has to be found to sneak computer science into 



primary school. Then, once its benefits have become obvious the step from being part of another 

subject to being an independent subject is only a small one. The answer to the question what subject 

should be used to include computer science in its contents could not be answered more easily. 

Mathematics seems to be the ideal candidate, as competences in both subjects are similar right up to 

identical. We will now focus on these similarities in more detail. 

Competences in Mathematics and Computer Science 

The German core curriculum provides two types of competences for the subject of mathematics: the 

general mathematical competences and the content-related mathematical competences (KMK 

Bildungsstandards, 2005). General mathematical competences include arguing, problem solving, 

communicating, modelling and the presentation of mathematics. Although these competences will 

equally be taken into account, the main focus here will be placed onto the content-related 

mathematical competences, which are numbers and operations, space and shape, pattern and 

structures, sizes and measurement and data, frequency and probability. These content-related 

mathematical competences provide the framework for the contents of the learning environments. To 

justify these contents, a side by side comparisons of some chosen content-related mathematical 

competences and where to find them in computer science will be done. The mathematical 

competences will be presented as written down in the German core curriculum, then computer science 

content that also matches these competences will be provided. 

Mathematics Computer Science 

Understand the relationship 

between and the representation of 

numbers, Understand and master 

calculations 

Algorithms use calculations, Loops 

have to be counted, Sorting 

algorithms, Types of variables 

integer, float, double 

Table 1: Competences in Mathematics and CS: Numbers and Operations 

Mathematics Computer Science 

Spatial orientation Program robots, Define an area of 

movements,Plan with obstacles and 

predict motion sequences 

Table 2: Competences in Mathematics and CS: Space and Shape 

Mathematics Computer Science 

Recognize and characterize 

regularities 

Structure and plan algorithms, Plan 

processes and translate them into a 

programming language, logic, 

Sorting algorithms 

Table 3: Competences in Mathematics and CS: Pattern and structures 

  



 

Mathematics Computer Science 

Have the ability to imagine sizes, 

Have the ability to use sizes in 

specific situations 

Determine the step range of a robot, 

Determine run time 

Table 4: Competences in Mathematics and CS: Size and Measurement 

Mathematics Computer Science 

Understand the relationship 

between and the representation of 

numbers, Understand and master 

calculations 

Algorithms use calculations, Loops 

have to be counted, Sorting 

algorithms, Types of variables 

integer, float, double 

Table 5: Competences in Mathematics and CS: Data, Frequency and Probability  

(KMK Bildungsstandards, 2005) 

This selection of competences from the core curriculum shows that to each content related 

mathematical competence a related topic in computer science can easily be found. This is highly 

interesting, as it suggests that mathematical competences are similar to those that are required to 

perform tasks in computer science. Thus, mathematics can fulfil the requirements to integrate 

elements of computer science into its curriculum. To prove this claim, it would hardly be possible to 

modify the existing mathematical lessons to include this content. Rather, specific learning 

environments have been developed to show that learning computer science topics nurtures the 

competences that are necessary for both mathematics and computer science. 

The pilot project 

Partner school 

The search for partner schools was far from easy. Many schools were not interested. One school on 

the other hand was immediately willing to participate and upon further information managed to 

interest 19 children from grade four to take part in the project. As we did not expect such an 

overwhelmingly large number of participants from one single school, we cancelled all further efforts 

to acquire more schools and decided to work exclusively with the just one partner school. The school 

was very open to our project and supported us from day one. The first feedback suggests that all 

children are highly enthusiastic and motivated. A claim that we can only support after our first three 

weeks. In agreement with the school, we chose two time slots of 90 minutes in the afternoon twice a 

week (Tuesday and Thursday) over the course of six weeks. During the time slots the children worked 

on the learning environments in pairs (some tasks required two groups to come together to discuss) 

supervised by a student from the seminar or Peter Ludes. 

Learning environments 

To examine whether certain competences are used during working with tasks, specific learning 

environments have been developed that have a computer science topic as a core topic. The learning 



environments have been developed during one of Peter Ludes’ empirical seminars for future 

elementary school teachers. The students developed the first draft of the learning environments on 

their own and after a review process finalized them collectively during the seminar. The main topics 

are: logic (general and propositional), algorithms, cryptography and programming/robotics. The main 

challenge for the students was to develop learning environments with core topics that are not (yet) 

part of their actual studies, as computer science is not a topic that is taught in elementary school. 

Therefore, an extensive introduction into the field of computer science has been necessary.  

A second demand that had to be kept in mind during the development has been a focus on interaction. 

The tasks should be designed in a way that -at least partially- fosters interactional processes between 

the participants as we focus on learning through collective argumentation and participation 

(Krummheuer, 2011). The first learning environment focused on the topic of logic. The primary task 

always aims to get a first impression of what the participants already know (or think to know) about 

the concept. This very open question (e.g. What does logic mean? or When does a person have to 

think logically?) provides a wide variety of possible answers without any pressure for right or wrong. 

The supervising students are always advised to let the children speak freely as much as possible, 

unless a lively discussion does not occur, general questions or guidance is to be avoided. Although 

the content is important, the actual focus for this pilot project is not to survey content learning, but 

rather the learning that occurs between individuals whilst discussing and arguing about the specific 

topic. Learning in primary school is initially dialogical learning. That is, learning is seen as a 

dialogical process in contrast to learning as a monological process, which would be rooted in the 

individual (cf. Miller, 1986). The learning of mathematics can be seen as an increasing autonomous 

participation in collective argumentations that are produced and nurtured collectively by the group 

itself (Krummheuer, 1992; Voigt, 1995). This idea of learning can be transferred to the learning of 

basic competences in computer science. To build upon this concept, all ways of communication and 

interaction between the children has to be supported as much as possible. To ensure an efficient way 

to videotape the children working on the learning environments, we designed the environments to be 

worked on in pairs or groups of three, sometimes with a closing task, that included a larger group 

discussion in groups of up to six children. Working in smaller groups for us provides the advantage, 

that single children are not able to extract themselves from group tasks or discussions but rather 

encourage them to participate. Every learning environment is designed to cover three timeslots of 90 

minutes. Here, two sessions of 90 minutes are planned for the actual content-related activities and 

one session of 90 minutes reserved for documentation and evaluation of learning processes though 

tools like learning diaries, wikis and storyboards. Learning diaries can e.g. be used to recapitulate the 

learning process, correct misconceptions and enables the child to visualize what learning progress it 

has made. We chose the storyboard as an adequate tool for the programming/robotics learning 

environment. This environment will be realized with LEGO Mindstorms EV3 Educations sets. The 

main goal after developing and building the robot itself will be to program its specific actions. These 

actions should be planned beforehand because the children can choose from a variety of actions and 

sensors with endless combinations. For this task, a storyboard is the ideal candidate as it enables the 

children to structure their thoughts and plan the movements and sequences that the robot has to fulfil. 

It also makes trouble-shooting rather easy as the children can always compare their plan to the robot’s 

actual movements and actions. 



Analysis 

The analysis of the results of the work on the learning environments is based on methods of 

interpretive classroom research, such as interaction analysis. As we place much importance onto 

interaction, cooperation and discussions this method seems most appropriate to us. It helps to find 

more suitable tasks that help children to collaborate in a productive way. The negotiation of meaning 

is a key element that has to be focused (cf. Krummheuer, 1992). How does the negotiation of meaning 

in collective processes of argumentation occur and how can it be supported thought the task itself? 

According to our perception, learning does not occur inside the individual but during the interaction 

between individuals, whilst discussing, talking, arguing and also justifying the own answers and the 

answers of others (cf. Krummheuer, 1992). The underlying concept is founded on the ideas of the 

symbolic interactionism (cf. Blumer, 1969) that will allow us to examine learning as the increasing 

autonomous participation in collective argumentation in computer science discourse. Possibly this 

could lead to the definition of participation profiles (cf. Brandt, 2004) for different students, 

specifically tailored to the computer science classroom. This could not only benefit primary 

education, but also computer science classrooms in secondary schools. If a specialized and 

standardized computer science education in primary school was mandatory, secondary schools would 

have a contact point and a profound basis on which they could build and focus their curriculum. 

First impressions  

The first impressions of the pilot project are consistently positive. One major question during the 

development process was whether children could be unchallenged or overwhelmed with the tasks as 

they work with topics that are not being taught in primary school and are therefore unfamiliar. The 

individual knowledge of the children concerning this specific topic could therefore be developed very 

differently. The children engaged immediately with the tasks and lively discussions occurred. In the 

very beginning, a certain insecurity was noticeable. This was expected as the children naturally try to 

give correct answers. This was not possible as most questions are designed in a way that multiple 

answers and also very individual answers are possible. After the first sessions, the children got more 

and more used to the types of tasks and felt more comfortable when joining the discussions.  

Interestingly, mathematical discussions occurred very often, whether they were planned or not. One 

example where a rather simple question led to a lively discussion occurred during the learning 

environment: logic. The children had to decide whether a statement is right or wrong. One of the 

statements claimed: If something is round it is not pointy. Right or wrong? The children then engage 

into a discussion, where they have to decide what qualifies as being round: 

S1: If something is round it is not pointy\ [reads] 

 That does not have to be true\ 

S2:  (It is not\) [laughs]. 

S1:  That does not have to be true maybe it is so to say a pointy circle\ 

I:  How does a pointy circle work?\ 

S1:  So . wait (4) [draws into his folder] 

S2:  [looks into S1’s folder] 



S1:  Like this and so on and on \ [points at the drawing in his folder] 

S2 Yes, but if something is round [draws a circle into the air with his pen] so this here  

 [points at S1’s drawing] that is not round\ that is pointy\ 

S1:  Yes, it is roundly but fi it is round then you are right\ 

First, S1 states that he is not convinced that this statement is true and he tries to find a shape that is 

pointy and round. He therefore draws a shape that has corners but is not just one straight line, similar 

to a part of a polygon. S2 then looks at the drawing and defines the shape as pointy because it has 

corners. S1 then again discusses the word round and seeks for a better word to describe his drawing 

and proposes the word roundly for something that is not a straight line but follows the form of a circle 

part although it has corners. S1 and S2 clearly have a dissent in what qualifies as being round and 

then shift this disagreement into a consensus through the introduction of a new vocabulary. It is rather 

interesting that the S1 and S2 discuss to find a consensus and the questions remains, what would 

happen if they could not find one. Here, the material itself proposes a research question: How do 

consensus and dissent influence cooperative learning. Is learning through collective argumentations 

also possible on the basis of a dissent or does a consensus have to be reached in order to 

complete/move on with the task itself? The structures in cooperative learning opportunities could be 

fundamentally different if the necessity of reaching an agreement would not be mandatory. This 

question will be focused during further analysis as the concept of computer science learning 

environments provides a perfect frame: It has clear and visible connections to mathematics but is 

fundamentally new and different, so that children can learn a new topic in which they do not have 

prior knowledge to build on.  

Prospects 

The learning environments with the topics cryptography, algorithms, programming/robotics are also 

completed by now. The videos and writings of the children are being extensively analysed using 

methods of interpretive classroom analysis. The analysis will enable us to look at the negotiation 

processes in more detail and determine, where the learning of individual computer science concepts 

and understandings occurs and how meaning is negotiated during the task itself also in regard to 

cooperative learning and the underlying structures.  Through this, it will be possible to rework the 

learning environments to tailor them even more specifically to their purpose. The reworked learning 

environments will then be used in a more extensive main study to examine our claims and to 

strengthen the position of computer science as a key part of a profound and forward-thinking 

education that will not only benefit children’s abilities in this specific subject but also strengthen their 

mathematical competences 

References 

AKBSI - Arbeitskreis „Bildungsstandards" der Gesellschaft für Informatik (Eds.). (2008). 

Grundsätze und Standards für die Informatik in der Schule—Bildungsstandards Informatik für die 

Sekundarstufe 1. LOG IN, (28)150/151, Beilage. 

Blumer, H. (1969). Symbolic interactionism. Englewoods Cliffs, NH: Prentice-Hall. 

Brandt, B. (2004). Kinder als Lernende – Partizipationsspielräume und - profile im Klassenzimme: 
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On the nature of spatial metaphors: Dimensions of spatial metaphors 

and their use among fifth graders  

Angel Mizzi 

University of Duisburg-Essen, Faculty of Mathematics, Essen, Germany; angel.mizzi@uni-due.de  

This paper reports on a study about the use of spatial metaphors among students solving spatial 

tasks. The aim is to describe the nature of spatial metaphors and analyze the use of spatial 

metaphors under consideration of other factors, such as students’ language proficiency and spatial 

ability. Sixteen fifth grade students, chosen according to a theoretical sampling, were required to 

describe to other students how to build a pre-designed spatial object made up of building cubes. 

The data was analyzed and different dimensions of spatial metaphors were identified and described. 

Whereas the overall frequency of use of metaphors in spatial discourse does not differ substantially 

among different groups of students, findings show that the use of spatial metaphors might differ if 

one analyzes the functions and the conceptions of the underlying metaphors.  

Keywords: Language, metaphors, spatial ability, geometry. 

Introduction 

Metaphors and their role in shaping the teaching of mathematics has been an area of research in the 

domain of language and mathematics education for a long time (e.g. Lakoff & Núñez, 2000). 

Further research is required to show the individual use of metaphors among students learning 

mathematics. The aim of this paper is to show the nature and diversity of spatial metaphors by 

describing and illustrating the different dimensions involved when students use spatial metaphors to 

verbalize their spatial thinking. The use of the spatial metaphors among different students chosen 

according to background factors (language proficiency and spatial ability) will also be an object of 

discussion in this paper. Hence, the research questions of this paper are as follow: 

1. What are the different dimensions of metaphors used by students in their spatial discourse?  

2. Does the use of spatial metaphors differ significantly among students with different 

background factors (language proficiency and spatial ability)?   
 

Theoretical considerations 

Language in mathematics classroom 

Several researchers of language in mathematics education have pointed out the different planes of 

language which co-occur in the learning and teaching of mathematics. A bi-planar model about the 

use of language has been developed by Cummins (2000), who differs between Basic Interpersonal 

Communication Skills (BICS) and Cognitive Academic Language Proficiency (CALP). BICS 

describes the use of language in everyday-life context, for instance, in order to communicate with 

friends or family. In contrast, CALP refers to the language used for academic purposes, which 

includes a more complex syntax and specific vocabulary, used to describe abstract ideas, such as 

mathematical concepts. There are no clear-cut boundaries between BICS and CALP, since both can 



influence each other. Hence, both planes should be visualized as a continuum of language in the 

mathematics classroom, rather than as separate entities.    

Metaphors 

Metaphors play an important role in constructing mathematical discourse and are present in the 

language of mathematics. Lakoff and Núñez (2000) use the term conceptual metaphors, which are 

metaphors used to understand abstract ideas by referring to concrete objects or experiences. In their 

notion of metaphors, properties are transferred from the source object to a target object. If one 

considers the metaphor “container”, which is an object of everyday use, it can also be used to 

describe the notion of class in mathematical language. Therefore, certain characteristics are 

transferred from the source (“container”) to the target domain (“class”) (Lakoff & Núñez, 2000).     

Spatial ability and spatial language 

Along with language proficiency, spatial ability is another factor which plays an important role in 

mathematics performance (Büchter, 2011). From a psychological perspective, spatial ability or 

knowledge is considered to include all abilities needed to navigate through space, visualize objects 

from different angles, and recognize space and spatial characteristics and other abilities needed to 

solve spatial tasks (Gardner, 2006). The solving of spatial tasks requires several cognitive 

processes, such as perception of figure and ground, which is the ability to identify a figure in space, 

spatial relations, which is the ability of identifying the spatial relation between two spatial objects, 

and position in space, which deals with the identification of the object’s position in space under 

consideration of one’s own body (Maier, 1999).  

From a mathematics education perspective, spatial ability is incorporated in geometry teaching and 

is considered an important domain for successful acquisition of geometrical understanding. This is 

the case in Pinkernell’s (2003) spatial ability model, which consists of three main categories of 

abilities which play a major role in solving spatial tasks: spatial-visual operations, which concerns 

mental and real actions performed on spatial objects, geometrical thinking, which refers to the 

abilities of recognizing and describing spatial objects by referring to their geometrical properties, 

and visual abilities, which includes the abilities of constructing different forms of representations of 

spatial objects and being able to interpret them in space.  

When analyzing the notion of spatial language and the different ways of representing spatial 

objects, Mizzi (2016) states that spatial metaphors play an important role in shaping students’ 

language when describing the construction of spatial objects. Spatial language can be described as 

the language required for talking about spatial objects and their underlying spatial characteristics. 

An analysis of spatial language can reveal more about the students’ spatial thinking and their spatial 

concept images (Landau & Jackendoff, 1993).  

Conceptions of mathematical notions 

Sfard (1991) states that mathematical concepts have a dual nature – the structural and the 

operational conceptions. In the former, a mathematical concept is treated as an abstract object and is 

mostly likely to be conceived as a static entity. In the operational conception, the individual “speaks 

about processes, algorithms, and actions rather than about the objects” (Sfard, 1991, p. 4). Hence, 

mathematical objects can be perceived as objects with static properties, which should be denoted as 



static conception, or as a sequence of actions on the mathematical object, denoted as dynamic 

conception. An integration of both conceptions is considered to be important for concept formation 

in learning and teaching of mathematics.    

Methodology 

Task design 

In order to analyze spatial metaphors, a method is needed to investigate the interplay between 

language and spatial abilities, and to allow the verbalization of students’ spatial thinking. The 

reconstruction method, a data collection method in which two or more learners seated in a back-to-

back position communicate with each other to solve a task using learning manipulatives, was 

chosen. In this data collection method, one learner (the describer) is given a spatial object, designed 

by the researcher and he/she must describe to the second learner (the builder) how to build the same 

object, as in the following student instructions given by the researcher: 

In this experiment you [the describer] will be given an object made up of these building blocks, which can 

be put together. You must give him/her [the builder] instructions on how to build this object, so that 

he/she [the builder] can reconstruct the same object. The colour of the building blocks is not important 

and whilst you [the describer] are describing you can also touch and move the object as you like, but the 

object structure needs to remain unchanged. At the end, the objects’ structure must be identical.  

The above spatial task and instruction required an appropriate spatial object which should be 

described by the describer. In order to possibly obtain as many metaphors as possible, two spatial 

objects were used in the study. 

                                                                   

                                 Figure 1: Spatial object I            Figure 2: Spatial object II 

The criteria for spatial object design included three-dimensionality (a requirement to describe along 

three dimensions), breakdown (different possibilities of breaking down the object) and specific 

spatial relations between parts of the object. Both objects consisted of building cubes (see Figure 1 

and Figure 2), which were provided for the builder to build the described object.                                                                   

Data collection and analysis 

Thirty-two students attending the fifth grade were chosen to participate in this study. In order to 

consider different factors which might play a role in solving the task, a theoretical sampling was 

used for choosing the describing students based on two dichotomies (since the describers are 

considered to be the ones mostly contributing to the spatial discourse in the underlying spatial task): 

high vs. low language proficiency (LP+/LP-) and high vs. low spatial knowledge (SK+/SK-). The 

students’ language proficiency and their spatial knowledge were assessed using C-Tests and Pencil-

and-Paper tests (Büchter, 2011), respectively. These dichotomies were established after considering 

which factors could possibly influence the solving of spatial tasks, which created four sample 

groups, each consisting of four describers, as illustrated in Table 1.  



 LP+ LP- 

SK+ Group 1 (four students) Group 3 (four students) 

SK- Group 2 (four students) Group 4 (four students) 

Table 1: Theoretical sampling under consideration of two student’s background factors  

Sixteen other students were chosen to act as builders for the sixteen describers chosen according to 

the theoretical sampling. The describers were given the first spatial object (Figure 1) and the 

instructions were given by the researcher. The task was repeated by using the second spatial object 

(Figure 2). The students were video recorded and their discourses were transcribed for the data 

analysis. Based on an interpretative qualitative approach, the collected data was analyzed to 

establish categories for metaphors based on the theoretical considerations about language and 

spatial abilities. The frequency of the metaphors identified in the spatial description of both spatial 

objects was analyzed in terms of the students’ language proficiency and spatial knowledge. 

Results and discussion 

About the nature of spatial metaphors 

Spatial metaphors can be described as metaphors in terms of Lakoff and Núñez (2000), whereby 

target objects are spatial objects. The spatial metaphors used among students to describe the spatial 

objects in the reconstruction method can be characterized by three dimensions: the linguistic, the 

spatial and the conceptional. In the linguistic dimension, spatial metaphors are characterized by the 

use of everyday (E), letter-based (L) or mathematical (M) language. Everyday language denotes the 

use of language from everyday situations (based on BICS). Letter-based language is the use of 

symbols or letters from written language in spatial discourse. Mathematical language denotes the 

use of mathematical terms or concepts in spatial discourse, which are more likely to be acquired in 

mathematics classroom (based on CALP). Again, these three categories should not be considered as 

entirely separate, but rather as a movement along a continuum with two poles from “concrete” to 

“abstract” (E – L – M respectively) and vice versa (M – L – E).    

The spatial dimension of spatial metaphors involves the function which the metaphors serves from a 

spatial content perspective. The functions are: structure (ST), spatial position (SP) and spatial 

relations (SR). In the third dimension, conceptional, the spatial metaphors can either be of a static 

(S) or of a dynamic (D) nature regarding the conception of spatial objects. In Figure 3 spatial 

metaphors and their dimensions are represented in a three-dimensional coordinate system. 

 
Figure 3: Representation of spatial metaphors and their three dimensions 



In the following, I will give some examples of spatial metaphors which can be represented as 

different points in the coordinate system visualized in Figure 3. Consider the following transcript of 

a student during his/her description of spatial object I:   

Student A: “Do an L only with one, two, three, four, (…), six pieces. (…) And then do again 

one, two, (…), five, do five again, so that it looks like an L”.  

The spatial metaphor ‘L’ used by student A can be categorized as letter-based on the linguistic 

dimension of spatial metaphors, because the properties of a capital letter in the Latin alphabet 

(source domain) are transferred to the spatial object (target domain) (however, Student A does not 

mention “capital” in the reconstruction method). If one thinks of the distinction between everyday 

language and mathematical language as a continuum in terms of abstraction and of specific 

knowledge acquisition, the use of symbols from written language could conceivably be located in 

between, because symbols represent abstract thinking in terms of lines and distances between them, 

which are, nevertheless, used in everyday life. From a spatial meaning perspective, Student A uses 

the spatial metaphor to describe the structure of internal parts of the spatial object and can therefore 

be assigned to the rather static conception of the object in terms of the conceptional dimension. 

Therefore, Student A’s spatial metaphor ‘L’ can be assigned to the vertex (L, ST, S) in Figure 3. A 

more explicit trigger of use of letter-based spatial metaphor (‘H’) is given by the structure of spatial 

object II, which has proven students’ strong emphasis on spatial metaphors for describing spatial 

objects rather than on other spatial-geometrical characteristics, such as dimensions etc.      

The following transcript excerpt shows another example of the use of spatial metaphors when 

describing spatial object I:  

Student B: “And now do three steps at the other staircase which you have done. Place it in a way 

in front of you as if you would walk up (…) and then (…) and now take the other stairs which 

you have done now, and set it in the most front (…) in a way as if you would walk up at the front 

and then go down again the other staircase”.   

The first spatial metaphor used by Student B is ‘staircase’ and can be assigned to the everyday 

language to describe the structure of the spatial object and to the static conceptional dimension (E, 

ST, S). The next spatial metaphor used by Student B is ‘walking up or down on the stairs’, which is 

used to rather describe the spatial position of the object, so in which position the ‘staircase’ is in 

space under consideration of the subject’s own body. In contrast to spatial metaphor ‘staircase’, the 

student includes his body in the description to perform an imaginary action on the spatial object. 

Since the spatial metaphor of ‘walking up and down on the object’ consists of actions and 

processes, this metaphor can be described as having a dynamic conception, hence it can be assigned 

to the vertex (E, SP, D) in Figure 3.  

Another example of a spatial metaphor coded from the mathematical language in the linguistic 

dimension can be observed in the following transcript excerpt: 

Student C: “At the right. And then make this one to the foursome like a triangle to it (…)”.  

In the above utterances, Student C uses the spatial metaphor ‘triangle’, which conceivably 

originates from mathematical language, to describe spatial object I. Student C states that an internal 

part of the spatial object should be linked to another (the foursome) like a triangle, which indicates 



that the spatial metaphor ‘triangle’ primarily describes the spatial relation between both parts. The 

student seems to refer to a type of triangle (right-angled triangle), using its properties to describe the 

spatial relation between the two internal parts of spatial object I. Since the spatial relation of the two 

objects is rather fixed in this context, this particular spatial metaphor ‘triangle’ can be assigned to 

the vertex (M, SR, S). More examples of spatial metaphors can be found in Mizzi (2016).   

Use of spatial metaphors in spatial discourse 

Spatial metaphors are characteristic elements of spatial language and they are used very frequently 

among students in description of spatial objects, as can be observed in Figure 4.  

 

Figure 4: Frequency of use of spatial metaphors in students’ spatial discourse among the four groups 

At a first glance on Figure 4, one can see that the use of spatial metaphors in the students’ discourse 

has the largest variation among the four students in Group 4. However, on average (represented by 

the squared light grey dots in Figure 4), spatial metaphors tend to be used on average in 

approximately 36 % to 40 % of the total phrases of the spatial discourse by the students regardless 

of their assigned group. So the general use of spatial metaphors among the students do not differ 

significantly among the different four groups.  

Use of language and spatial metaphors in students’ spatial discourse 

The type of language used in spatial metaphors by students is worth looking at. The underlying 

hypothesis is that the use of the linguistic dimension of spatial metaphors differs among students 

with different language proficiency. Students with high language proficiency may use more spatial 

metaphors, since they may have more vocabulary (in mathematical language) at their disposal.   

 

Figure 5: Use of language and spatial metaphors by students’ language proficiency 

Figure 5 presents the different uses of language in spatial metaphors among students with low and 

high language proficiency. It shows that students with high language proficiency use slightly more 

spatial metaphors from everyday and mathematical language, and slightly less letter-based spatial 

metaphors than students with low language proficiency.  



Functions of spatial metaphors in students’ spatial discourse 

The next step is to analyze the functions of the used spatial metaphors among the different students. 

Figure 6 shows the number of spatial metaphors used in relation to the average students’ total 

number of phrases by their spatial functions: ST, SP, and SR.   

 

Figure 6: Frequency of the used spatial metaphors classified according to their function 

According to Figure 6, most of the spatial metaphors were commonly used to describe the structure 

of the spatial objects. On average, every metaphor with ST-function occurs in at least every third 

phrase of the student’s discourse. Students in Group 4 relatively used relatively less spatial 

metaphors to describe the spatial position of spatial objects. Moreover, one can notice the relatively 

higher use of spatial metaphors with SP function in comparison to SR, especially among students 

with high spatial knowledge (students in Groups 1 and 3). In contrast, spatial metaphors with SR 

function were very rare and if used they tend only to describe the spatial relations between two 

object parts after breaking down the spatial object in the description.  

Conceptions of spatial metaphors in students’ spatial discourse 

Consider the conceptions of the spatial metaphors used by the students, which were based on the 

theoretical framework of Sfard (1999). It is worth mentioning that although most utterances were 

action-based and therefore of a dynamic nature, spatial metaphors were analyzed as distinctive 

elements conveying an idea which is either of static or dynamic nature. The former tends to be more 

property defining or transferring, whereas the latter entails a movement in the spatial metaphor 

itself. Considering the conceptional nature of spatial metaphors used by the participants, one can 

conclude that most of the spatial metaphors used are predominantly static in nature, regardless of 

the two dichotomies in the theoretical sampling. The high occurrences of static and the low 

occurrences of dynamic spatial metaphors seem to be linked to the function of the underlying 

metaphors. Since most of the students used spatial metaphors to describe the structure of the spatial 

object (see Figure 6), the corresponding nature was static. Whereas, if more spatial metaphors were 

used to describe the spatial position of the spatial object, then there is a higher tendency of the 

spatial metaphor being dynamic. However, this does not imply that all the spatial metaphors of S 

and SP function are static or dynamic respectively, as the following transcript excerpt of Student D 

describing object I shows. 

Student D: “At first it not much far, and then forth and forth. And at the other edge as well, and 

then they meet each other at the top. It is almost four cubes to the top and four steps”. 

Student D uses the spatial metaphor of ‘meeting’ to describe the structure of the spatial object, 

which she has broken down in two parts (two ‘edges’). The metaphor ‘meeting’ is used to convey 

the convergence to one point of the structure of the object created by the two parts or ‘staircases’. 

Hence, this metaphor is of a dynamic nature and an example for the vertex (E, ST, D) in Figure 3.  



Conclusion 

This paper has offered an insight into the nature of spatial metaphors which fifth grade students use 

when describing particular spatial objects. The different dimensions of spatial metaphors reflect the 

integrated language and spatial content learning which is important in mathematics education 

research. The analysis of groups of students according to theoretical sampling shows that spatial 

metaphors are common features of spatial language. Regarding the function of spatial metaphors 

used, spatial metaphors were prevalently used to describe the structure of the spatial object. 

However, on average, students with high spatial knowledge tended to use more spatial metaphors to 

describe the spatial position of an object or its parts. In terms of conceptual dimension, most spatial 

metaphors used by the participants were of static nature, which is consistent with the finding that 

most spatial metaphors were used to describe the structure of the object. These findings about 

spatial metaphors reveal some characteristics about fifth grade students’ spatial thinking, i.e. the 

predominant role of associations from everyday-life and the preference of static conception of 

spatial concepts to master spatial tasks which require verbalization. These results provide an initial 

step toward understanding the under-researched relationship between spatial thinking and language.        
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Given the nature of investigating bilingual mathematics learners and learning environments, a key 

concern is how we can ensure that the rigor of our research is matched by the rigor of 

methodological frameworks and approaches employed. Our goal is to develop a theoretical 

framework and associated methodology and methods, in practice, in order to ascertain their 

suitability for investigating bilingual mathematics learners in an educational context. Moschkovich 

(2016) identified four key recommendations for conducting research on language: utilising 

interdisciplinary approaches, defining central constructs, building on existing methodologies, and 

recognizing central distinctions. Utilising Moschkovich’s framework, this paper provides an 

appraisal of the methodology and methods to be employed in a research project examining 

bilingual mathematics learners.  

Keywords: Methodology, methods, bilingualism, discourse, framework.  

Introduction 

Investigating mathematics and languages is a complex process. Therefore, the authors argue that 

there is a need to develop appropriate research methods in order to investigate language use and its 

impact on mathematics learning. In particular, we believe that the role of language(s) should be 

examined within mathematical activity and in situ (Barwell, 2016). This paper draws from the 

researchers’ current study, which explores the potential for developing a coherent and integrated 

interpretive theoretical framework to examine whether differences in languages, and their use, by 

bilingual mathematical learners have a differential impact upon cognitive mathematical processing, 

while recognizing the social aspects of learning. The project, entitled ‘M²EID: Mathematical Meta-

level developments in English and Irish language Discourses’, is a mixed-methods study, 

comprising video-recorded observations, questionnaires and cognitive interviews. The research 

project is being undertaken with first year, undergraduate students, who choose to study 

Mathematics through a bilingual approach (English and Irish) during their first year of 

undergraduate education at the National University of Ireland, Galway (NUI Galway). This option 

runs parallel to its English-medium counterpart, which typically receives a large intake (at least 150) 

of students. Four weekly lectures are provided in the Irish language with all terminology given 

bilingually. In addition, lecturers may opt to describe more complex concepts (such as limit of a 

function) bilingually. The lectures are supplemented by the provision of a weekly workshop in 

English in addition to an Irish-medium workshop. 

Given the nature of investigating bilingual mathematics learners and learning environments, a key 

concern of this paper is to describe and discuss how we can ensure that the rigor of our research is 



matched by the rigor of methodological frameworks and approaches employed. It is imperative to 

review epistemology and associated underlying assumptions in order to make meaningful the 

methodology and methods of the research being undertaken in a bilingual mathematics education 

context. Grix’s (2004) definitions of ‘method’ and ‘methodology’ are valuable for interpreting these 

constructs. A ‘method’ refers to the procedures or processes by which data is gathered; whereas, a 

‘methodology’ refers to both the theory applied to inform the research and the data analysis 

strategies employed as appropriate to the data collected (via the specific methods). While Grix’s 

definitions regulate our M2EID research study, this paper focuses on possible methodological 

constructs that can frame such practice-based and context-driven bilingual classroom research. 

Consequently, the purpose of our paper is to describe and discuss the M2EID research methodology 

and methods utilising Moschkovich’s (2016, p.1) recommended constructs for conducting research 

on language use and learning in mathematics. These are: (1) using interdisciplinary approaches, (2) 

defining central constructs, (3) building on existing methodologies, and (4) recognising central 

distinctions while avoiding dichotomies. The paper is structured in accordance with these four 

recommendations and outlines their application to the main research study (M2EID).   

Using interdisciplinary approaches 

Research on language and mathematics needs to consider interdisciplinary approaches in the 

development of methodology and methods and should be grounded in classroom discourse as well 

as language and bilingualism (Moschkovich, 2016). Therefore, this necessitates the development of 

integrative frameworks for examining, in situ, both the cognitive and social constructs of 

mathematics learning through and with languages.  

In terms of the mathematics as a composite register comprising content, languages (e.g. English and 

Irish) and shifts between everyday and subject-specific registers, the authors emphasise the social 

and interpersonal aspects of language use and bilingualism in mathematics. Such aspects include the 

use of modes and gestures for communicating understanding and in particular, engagement in the 

situated and sociocultural practices of mathematical Discourses (Gee, 1996; Moschkovich, 2002). 

Further, the M2EID study is aligned with the perspective that learning mathematics is essentially a 

discursive activity in which learners form and actively participate in a community of practice (Lave 

& Wenger, 1991; Lemke, 1990). Therefore, learners develop unique sets of mathematical practices 

and modes of communicating with each other using all of the social, cultural and cognitive 

resources available to them. Consequently, a democratic process of learning emerges through a 

continuous cycle of negotiations in relation to views, beliefs, knowledge and meaning making 

(Moschkovich, 2002).  So, by adopting this comprehensive sociocultural perspective of learning and 

language use in mathematics, this study requires an interdisciplinary approach to research within 

this educational field.  Based on the sociocultural nature of mathematical concepts and how we 

understand and communicate this nature, it is vital to consider how various disciplines contribute to 

mathematics education. In order to address the aims of this study we will draw on the principles of 

Discursive Psychology, Cognitive Psychology, Semiotics, Pedagogy and Anthropology to progress a 

unified approach to researching learning and language use within mathematics. Due to the multi-

ontological nature of this grounding framework for the M2EID research project, it is essential to 

develop a dynamic and multifaceted methodological approach to the research, data collection and 

analysis strategies, which this paper focuses upon.  Drawing on the body of relevant literature in this 



regard, the authors designed a methodology for investigating bilingual mathematics learners that is 

underpinned by Sfard’s (2008) commognitive framework for examining learning.  This framework, 

described later in this paper, is founded on the premise that thinking is a form of (interpersonal) 

communication, and that learning mathematics entails extending one’s discourse.   

Defining central constructs 

Moschkovich (2016) emphasises that research studies need to be clear and explicit in relation to the 

key constructs utilised. Considering the centrality of discourse to the commognitive approach, it is 

important therefore, that our perspective of discourse is outlined first. Discourses encompass more 

than verbal and written language and the use of technical language; discourses also involve 

communities, points of view, beliefs, values, and pieces of work (Gee, 1996). Accordingly, we 

perceive mathematics as a discourse and a complex form of communication (Sfard, 2012). Gee’s 

concept of Discourse will inform the examination of conceptual mathematical development of 

bilingual learners, linking both the cognitive and social aspects of language use.  

Equally difficult and demanding is the task of defining bilingualism and in particular defining 

whether a person is bilingual or not. To illustrate these concepts further we employ Grosjean’s 

(1999) model of a continuum of modes with monolingual and bilingual occupying opposite 

endpoints; this continuum reinforces an understanding of bilinguals using their languages 

independently and jointly depending on the context/purpose in which the language(s) is being 

employed. Appropriately then, we support a non-deficit view of bilingual learners, combining 

everyday and mathematical registers and view language(s) as a resource and a support for learning. 

Our research is particularly concerned with the role of bilingual students’ languages in mathematics 

teaching and learning. We consider mathematical language as a distinct ‘register’ within a natural 

language and each language will have its own distinct mathematics register, encompassing ways in 

which mathematical meaning is expressed in that language. Specifically, we are concerned with 

conceptual mathematical activity. This encompasses a knowledge of what it means to understand a 

concept and an appreciation of how such an understanding can be constructed by a student, thus 

providing a model of cognition for the concept (Asiala et al., 1996). Given that language influences 

thought and thinking and that each language will have its unique manner of constructing the 

concept, it is critical to develop an insight into the role and effect of bilingualism/languages on 

conceptual mathematical learning. In addition, language(s) facilitate the development of a student’s 

mathematics register and participation in discourse. Consequently, it is an essential instrument of 

thought and it is vital for understanding and combining experiences and for organising concepts 

(Vygotsky, 1962). We propose that there are differences ‘between linguistically distinct versions of 

“the same discourse”’ (Kim, Ferrini-Mundy & Sfard, 2012, p. 2) which correspondingly impact on 

mathematical learning. Therefore, it is the use of language as an instrument of thinking that is of 

importance, as well as its effect on cognitive processing.  

When examining bilingual mathematics learners, it is important to address the social use of 

language within the learning context, not just its role in cognition. As previously noted, 

Moschkovich (2012) emphasises the importance of learning being illustrated within the 

sociocultural practices of a certain setting. These practices involve a process of describing learners 

and communities and considering culture as a set of practices, which actively involve participants 



(Gutiérrez & Rogoff, 2003). Hence, bilingualism is described in terms of learners’ participation in 

and use of language(s) for different purposes and particularly in the context of mathematical 

discourse. Similarly, Moschkovich (2012) emphasises the importance of discerning between the 

conditions of learning and the processes for learning, and the importance of describing the 

curriculum, courses/programmes and teaching and learning approaches utilised that yield successful 

outcomes for different groups of learners.  

Due to the multifaceted process of investigating bilingual learners’ use of language in mathematics 

education, it is vital that an extensive research methodology is developed to facilitate examination 

of central constructs such as discourse, bilingualism, and language use.  

Building on existing methodologies 

Research examining the development of mathematical learning and its relation to language draws on 

multiple theoretical frameworks to support investigations and accordingly methodological 

approaches (Moschkovich, 2016). Adopting Sfard’s (2012) commognitive approach, data collection 

and analysis must adhere to its five methodological principles. These principles have been 

expounded upon to reflect our investigative framework and are 1) Operationality, 2) Completeness, 

3) Contextuality, 4) Alternating Perspectives and 5) Directness. First, Operationality refers to the 

provision of a balanced account of the process through the sharing of practical, unambiguous stories 

that emerge from the study. Second, Completeness of the research emphasizes that the unit of 

analysis must comprise the entire discourse related to the topic. The researchers extended this 

principle for M²EID to include the documentation of such discourses (plausible developmental 

trajectories) in both the English and Irish languages. Third is Contextuality, which encompasses the 

premise that all interaction can be characterized as a learning event. We extend this, in the given 

context, to the need to examine when and how bilingual students/researchers use their language(s) 

in interactions. The fourth principle is that of Alternating Perspectives and explains the 

interchangeability of the researcher’s insider/outsider methods of using words. This is intensified 

within a bilingual context because consideration must be given to both languages, their use within 

the given context as well as the possibility of significant differences between researcher and 

participant discourses. Fifth, the principle of Directness affirms that all descriptions of the study 

should commence with the specific raw data from the participants rather than the researcher’s 

interpretation of that data. The application of these distinctive methodological standards will 

provide unique insights into the processes of bilingual mathematics learning and potentially 

contribute to the development of an empirical research base to ensure rigor in examining whether 

differences in languages, and their use, by bilingual mathematical learners have a differential impact 

upon cognitive mathematical processing. 

Further to adopting Sfard’s approach, it is vital to consider that epistemological assumptions inform 

methodology, which subsequently engender the methods employed to collect data. Therefore, 

aligned with the interdisciplinary foundations of the M²EID research project, the following are the 

proposed methods to be utilised in the study in order to ensure that a robust methodological 

framework and approaches support our inquiry.  

1. Discourse models: This study will map the plausible developmental trajectories in both the 

English and Irish languages with respect to students’ learning in various mathematical topics 



–e.g. functions– as consistent with the NUI Galway undergraduate module. The purpose of 

discourse models is to examine how language nuances and use affect learning (Kim et al., 

2012).  

2. Videographic evidence: This study will identify and explore when and how bilingual 

learners at NUI Galway employ each language (English and Irish) when engaged in 

mathematical learning. Specifically, the research will examine the cognitive functions of 

code switching and language use within a natural educational context, while also providing 

for the social aspects of learning. Videography is an effective method of examining teaching 

and learning experiences in naturalistic contexts and the affordances of modern technologies 

provide opportunity to document, share and analyse cases of particular practice (Derry et al., 

2010). All lectures and tutorials relating to the bilingual mathematics module in NUI 

Galway will be recorded and analysed as appropriate.  

3. Questionnaire: The purpose of the first part of the questionnaire is to gather participants’ 

background data. The second part of the questionnaire will engage participants in discourses 

related to particular mathematical topics (linked to the developed discourse models) with the 

option of utilising English or Irish or both languages. The Cognitive Aspects of Survey 

Methodology (CASM) model will guide participants in an activity series involving thinking-

aloud their thought processes as they recall prior knowledge and experiences of 

mathematical discourses while answering the questions (Desimone & Carlson Le Floch, 

2004). The focus will rest on conceptual mathematical activity based upon a variety of 

constructs, both familiar (such as functions and their analysis) and new (such as logical 

form, equivalence relations and classes, and related number theoretic constructs). A primary 

mathematical objective of the first year module in NUI Galway is to facilitate and develop 

advanced mathematical thinking.  

4. Video-recorded Cognitive Interviews: Cognitive interview methods will be employed to 

explore respondents’ explanations of the answers in order to acquire comprehensive 

knowledge about how well respondents comprehend, appreciate or even misinterpret the 

specific mathematics concepts central to the study (Desimone & Carlson Le Floch, 2004). 

Participants will engage in paired discussion of mathematical tasks (the same as in the 

questionnaire) and justify their answers where appropriate.  

It is proposed that the combination of the above methods facilitates a progressive and incorporative 

investigation into the cognitive aspects of bilingual mathematics learning and to evaluate the impact 

of languages on mathematics learning in practice.  

Recognizing central distinctions while avoiding dichotomies 

With Sfard’s (2008) commognitive framework undergirding the approach, the following are key 

aspects of the methodological framework under investigation (Ní Ríordáin & McCluskey, 2015): 

 Discourse changes: If assuming the premise that mathematical learning involves initiation 

into the discourses of mathematics, then learning mathematics involves substantive 

discursive changes for learner. Sfard (2012, p. 3) distinguishes between two types of 

mathematical learning (change in discourse) as follows: object-level learning (expansion of 



what is known already and is mainly accumulative) and meta-level learning (change of 

meta-discursive rules and is a more radical and complex change). Within the proposed 

framework, development refers to a change in discourses. Accordingly, we refer to the 

development of students’ mathematical discourses as opposed to the development of the 

students themselves. 

 Sociocultural perspectives: Discourse is more than just language. We utilize Gee’s (1996, 

p. 131) work which refers to Discourse as incorporating both talk and non-talk modes of 

participation such as gestures and artifacts, as well as participation in a social group. The 

employment of this definition synchronises with the concepts of discourses inherent within 

the sociocultural and Community of Practice perspectives.  

 Community of practice: Within the framework, thinking can be defined as the activity of 

communicating with oneself. Accordingly, mathematical thinking can be viewed as a 

discourse, which in turn is a form of communication and involves being part of a 

mathematical community. Taking this view, the language or languages in which 

mathematics is being learned becomes an important issue for consideration.  

 Conceptual learning: Given that language influences thought and thinking (Vygotsky, 

1962) and that each language will have its own way of constructing the concept, insight into 

the role and effect of bilingualism/languages on conceptual mathematical learning is critical. 

We consider languages and registers as vital resources and skills for learning and language 

use in mathematics. Grosjean’s (1999) concept of a continuum of modes will be employed 

to trace bilinguals’ use of languages in situ.   

 Linguistic relativity hypothesis: It is the use of language as an instrument of thinking that 

is of importance, as well as its effect on cognitive processing. The linguistic relativity 

hypothesis proposes that the vocabulary and phraseology of a particular language influences 

the perceptions and thinking of speakers of that language (Whorf, 1956). Accordingly, each 

language (e.g. English or Irish) has a different cognitive system that influences concept 

formation and development. The study adopts the premise that a language influences, rather 

than determines, our mathematical thinking, and is cognisant of the impact of linguistic 

distinctions in a particular discourse on mathematics learning (Kim et al., 2012).  

 Meta-discourses: The proposed framework is primarily concerned with meta-level 

developments in mathematical discourses. Since our focus is on bilingual mathematics 

learners, it is important that an analysis of the language(s) in which the discourse is taking 

place is conducted. In particular, the successive meta-discourses relating to mathematical 

topics of interest will be documented and compared between languages. 

 In situ research: Since the development of discourses is essentially a product of collective 

human actions, the specific contexts must be acknowledged. Hence, learning and language 

use in mathematics will be analyzed within the social, cultural and cognitive practices of the 

particular learning context (Moschkovich, 2012).  



Conclusion   

Utilising Moschkovich’s framework, this paper has provided an appraisal of the methodology and 

methods to be employed in the M²EID project, which is concerned with examining bilingual 

mathematics learners in situ. We assume that methodology is inclusive of both theory and methods. 

Accordingly, it is of importance to outline the underlying theoretical assumptions relating to the 

M²EID project, as well as how we plan on documenting, describing and explaining these 

phenomena. Hence, a core consideration for our project is what data to collect and how to collect 

such data. Therefore, a key aim of the M2EID research project is to evaluate the proposed 

methodology and methods in practice in order to ascertain their suitability for investigating bilingual 

mathematical learners in an educational context. In particular, the project will evaluate whether 

differences in languages, and their use, by bilingual mathematical learners have a differential impact 

upon cognitive mathematical processing, when engaged in conceptual mathematical activity.  
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This paper is based on classroom observations from Norway with 7-8 years old children working 

on geometrical shapes. The intention is that the children shall classify different polygons according 

to their number of edges. The observations are part of a teaching sequence that is designed using 

principles from Brousseau’s Theory of Didactical Situations (TDS). From the teaching sequence we 

identify certain challenges in the children’s development of scientific terms and the observations 

allow us to conclude that these challenges to some extent are connected to specific semantic 

features of the Norwegian language. The use of TDS is instrumental in revealing the challenges that 

occurred and explaining what was changed to overcome them.  

Keywords: Register, language of nearness and distance, polygons, adidactical situation, milieu. 

Introduction 

This paper reports on a teaching sequence within the project Language Use and Development in the 

Mathematics Classroom (LaUDiM)—an intervention study carried out in collaboration between 

researchers at the Norwegian University of Science and Technology and two local primary schools 

in the period 2014-2018. The main objective of the project is to study pupils’ development and use 

of mathematical language in order to gain knowledge that will help the teachers to develop their 

teaching—aimed at pupils’ increased proficiency in expressing mathematical ideas, mathematical 

reasoning, arguing and justification. Teaching sequences are designed in collaboration between 

researchers and teachers, where the design is guided by principles from the theory of didactical 

situations (Brousseau, 1997).  

In this paper we study a teaching sequence at one of the project schools including pupils from 

Grade 2 (7-8 years old) and their teacher. The main aim of the teaching sequence—consisting of 

three sessions—is that the pupils shall develop their language use about polygons, with the specific 

aim that they shall be able to classify polygons based on seeing visual images and that they can 

discern different parts of a polygon (vertices and edges). The classroom observations (recorded on 

video) give insights into pupils’ evoked concept images (Tall & Vinner, 1981) of vertex and edge, 

and how discrepancy between these and the scientific definitions of them constrains the teacher’s 

goal of the first session. Further, we show how this is resolved by the teacher in the subsequent 

sessions.  

Theoretical framework 

According to Halliday a register is “a configuration of meanings that are typically associated with a 

particular configuration of field, mode and tenor” (1985, pp. 38-39). Halliday compares register to 

dialect and states that “dialects are saying the same thing in different ways, whereas registers are 

saying different things” (Halliday, p. 41). So changing between registers can mean that the same 



word gets a different meaning. The mathematical register is characterised by the property that 

words have very precise meanings and sometimes the same word may be used in the mathematical 

register and in the register of everyday language but with different meaning. This feature is 

language specific in the sense that for a given word it can be present in one language but when this 

word is translated to another language it may lead to one word in the everyday register and another 

word in the mathematical register.  

Koch and Oesterreicher (1985) make a distinction between language being conceptually oral or 

conceptually written. They refer to the first category as a language of nearness, where the 

interlocutors are in direct contact and can comment on each other’s utterances and directly refer to 

the given situation, for instance by using gestures. The second category they refer to as a language 

of distance, where the sender and the receiver are not necessarily in contact and the language 

therefore has to be more precise. The mathematical language is in its nature conceptually written 

because of the way it strives for precision and unambiguity. However, much of the communication 

in the mathematics classroom has many of the features characterising a conceptually oral language, 

a language of nearness. In particular, when working with young children the communication is 

characterised by dialogue, face-to-face interaction and a desire to avoid complexity, features 

characterising a language of nearness. However, one of the aims of schooling is to develop the 

mathematical language into a language characterised by greater precision, compactness, density of 

information, features characterising a language of distance Koch et al., 1985, p. 23. 

The theory of didactical situations in mathematics, TDS (Brousseau, 1997) is a scientific approach 

to the problems related to teaching and learning of mathematics, where the particularity of the 

knowledge taught plays a significant role. Its methodology—for a targeted piece of mathematical 

knowledge—is based on creating a situation with a problem to be solved, where the knowledge 

aimed at is the optimal solution to the given problem. In the following, based on Brousseau (1997), 

we explain some concepts of TDS that are relevant for our analysis.  

An adidactical situation is a situation in which the student takes a mathematical problem as his own 

and tries to solve it without the teacher’s guidance and without didactical reasoning (i.e., not trying 

to interpret the teacher’s intention with it). The milieu models the elements of the material and 

intellectual reality on which the students act when solving a problem—these elements are 

conditions for the students’ actions and reasoning. The milieu may comprise: the problem to be 

solved; material or symbolic tools provided (artefacts, informative texts, data, etc.); students’ prior 

knowledge; other students; and, arrangement of the classroom and rules for operating in the 

situation (determinative of who is supposed to interact with whom). The milieu of an adidactical 

situation is called an adidactical milieu. An appropriate adidactical milieu provides feedback to the 

students, whether their responses are adequate with respect to the knowledge at stake.  

After devolution, a phase where the teacher has (temporarily) transferred responsibility for solving 

the problem to the students, four situations (or phases) follow: Situations of action, formulation, and 

validation are (intentionally) adidactical situations, whereas the situation of institutionalisation is a 

didactical phase. The situation of action is where the students engage with the given problem on the 

basis of its inner logic, without the teacher’s intervention. The students construct a representation of 

the situation that serves as a “model” that guides them in their decisions. This model is an example 

of relationships between certain objects or rules that they have perceived as relevant in the situation. 



The situation of formulation is where the students’ formulations are useful in order to act indirectly 

on the (material) milieu—that is, to formulate a strategy enabling somebody else to operate on the 

milieu. In this situation the teacher’s role is to make different formulations “visible” in the 

classroom. The situation of validation is where the students attempt to explain some phenomenon or 

verify a conjecture. In this situation the teacher’s role is to act as a chair of a scientific debate and 

(ideally) intervene only to structure the debate and try to make the students use more precise 

mathematical notions. The situation of institutionalisation is where the teacher connects the 

knowledge built by the students—through adidactical interaction with the milieu—to the scholarly 

and decontextualised forms of knowledge aimed at by the institution.  

Methodical approach 

Each teaching sequence in the project starts with a planning session where teachers and researchers 

work together to plan the activities for two classroom sessions, and in particular set the learning 

goals for the classroom sessions. Activities and actions are planned according to the phases of TDS, 

devolution, action, formulation, validation, and institutionalisation (Brousseau, 1997). Some days 

later, the first classroom session takes place, immediately followed by a reflection session, where 

experiences from the first classroom session are discussed and adjustments are made for the second 

session, taking place yet a couple of days later. Researchers are also present in the classroom. 

Observations from all sessions (planning, classroom implementation and reflection) are recorded on 

video, and additional audio recording is used to secure the quality of the sound. In the classroom 

sessions selected pupils working in groups (2-3) are video recorded, as is the teacher in whole-class 

sessions. Tasks given to the pupils in the observed sessions and written material produced by the 

pupils are also data sources. After completing a cycle of planning, reflection and classroom 

sessions, teachers and researchers meet to watch parts of the video recordings from the classroom. 

This represents the first step in analysing data, where interesting sequences from the classroom are 

identified. In the planning session and the video session, teachers from both schools are present.  

This paper is based on a teaching sequence on geometrical shapes, consisting of three classroom 

sessions1. Data from the teaching sequence form the basis for answering the following research 

question: What conditions enable or hinder pupils’ opportunities to categorise polygons according 

to their number of edges? 

The utterances reproduced are excerpts from a transcript of the video recorded whole-class 

discussion in the second session. The camera faces the teacher at the board and it captures the 

dialogue between the teacher and the 14 pupils who are sitting in a semi-circle close to the board. 

Parts of the dialogue between teacher and pupils have been transcribed and translated from 

Norwegian into English. In cases where it is important for the analysis to emphasise the meaning of 

a particular word in Norwegian, the Norwegian word is included in square brackets in the transcript.  

Our analysis is based on ethnomethodological conversation analysis, focusing on the thematic 

development of an interaction rather than on its structural development (Holstein & Gubrium, 

2005). This gives the possibility to analyse the relationship between language and the figures with 

                                                 

1 The analysed teaching sequence consists of three sessions (instead of two which is common in the project). The third 

session involves pupils’ interaction with a milieu designed so as to give feedback in the devolved adidactical situation.  



their components while teachers and students negotiate mathematical meaning (Fetzer & 

Tiedemann, 2015).  

The teaching sequence analysed here is chosen because: (1) it illustrates how the phenomenon of 

words having different meanings in the mathematical and everyday registers constrains pupils’ 

conceptual development; and (2) it illustrates how an evolution of the milieu gives a rationale for 

using the target knowledge.  

Analysis of the teaching sequence 

First session—classification 

In the first session of the teaching sequence, pupils work in pairs on sheets of paper showing 12 

shapes, as presented in Figure 1 (one pupil has blue, the other has red figures). The task they get is 

that each pupil shall (individually) sort the figures into groups (cutting the individual figures from 

the sheet) and give a name to each group (ACTION). Then they are supposed to compare (in the 

pairs) how they have sorted the figures and agree on a way to sort them and also agree on a name 

for each group (FORMULATION). The final result from each group is a sheet of paper on which 

the pupils have glued on figures from the same group and with the text “These are <__> because 

<____>” and the pupils have filled in the blanks (VALIDATION). After the session the teacher 

collects the worksheets and she uses them as background for a whole-class discussion in the second 

session (INSTITUTIONALISATION).  

In Norwegian, polygons are named literally after the number of edges, using the 

standard Norwegian number words, so that a triangle is called a “three edge” 

(trekant), a quadrilateral is called a “four edge” (firkant), and similarly for the 

others. An accepted name for the generic concept polygon is ‘mangekant’ which 

literally means “many edge”. Learning names of polygons, and understanding the 

reason for the names, is therefore not considered to be a challenge for Norwegian 

students. 

Figure 1: Shapes to be classified 

This is in contrast to the situation in English where it is not obvious from the everyday language 

that for instance a pentagon is a shape with five edges. The teacher has seen from the collected 

worksheets that all groups have given names to the shapes based on the number of edges and they 

have written for instance “these are ‘five edges’ because they have five edges”.  However, from the 

discussion in pairs she has observed that even if all the pupils talk about edges (kanter), the way 

they point at the figures indicates that some counts the edges but others count the vertices. The 

Norwegian language has no precise scientific word for vertex, the word which is used is ‘hjørne’, 

which (also) means corner.  

Second session—the meanings of edge and corner 

In the institutionalisation phase the teacher asks pupils to come to the board and explain their 

reasoning. She has observed Oliver and Amelia counting the vertices and Thomas, Daniel and 

Sophie counting the edges. Among the figures is a quadrilateral with three acute angles and one 

reflex angle (Figure 2), where we have inserted the letter A for reference in the 

dialogue. Although Oliver and Amelia have grouped this among the quadrilaterals, 

A Figure 2: Non-convex quadrilateral 

 



Oliver expresses some doubt when he is called to the board to explain how he and Amelia have 

thought.  

 

Oliver: If we had pulled this out a little (pointing to vertex A with the reflex angle) it 

would have been a “four edge” [firkant]. 

Teacher: OK, but still you have grouped this among the “four edges”. 

Oliver:  One, two three, four (pointing to the vertices). 

Teacher:  So what is an edge? 

Oliver: That is the pointed parts [spissene]. 

When Thomas is called to the board he uses a rectangle as his example and clearly points to the 

edges, counting “one-two-three-four”.  

Teacher: What is the difference between what Oliver did and what Thomas did? 

Megan:  Thomas counted the lines [strekene] and Oliver counted the pointed parts 

[spissene]. 

Teacher:  So actually we did not quite agree on what an edge really is. 

The dialogue above reveals that there are different opinions among the pupils as to what the word 

‘kant’ means. All the pupils claim that they are counting the edges but when asked to explain what 

they have counted, Oliver points to the vertices and Thomas points to the edges. Megan makes the 

observation that the two boys have actually counted different parts of the polygon.  

The teacher has in many sessions talked about “what mathematicians do” and that they for instance 

decide and agree on what names to give to mathematical objects. At this stage the teacher says that 

now we have to agree on something—as the mathematicians do—so that we have a common 

understanding of what an edge is. The teacher has also observed that some pupils use the word 

‘hjørne’ and she draws their attention to this. One pupil, Jessica, says that they had talked about 

‘hjørne’ but they did not know what it was, so they had written ‘kanter’. The teacher asks the pupils 

to explain what a ‘hjørne’ is and encourages William to come to the board. 

William: That inside is a corner and those outside are edges. 

Teacher: Can you show us? 

William:  This is a corner (points to vertex A with the reflex angle in Figure 2) and that is an 

edge (points to one of the acute angles). 

Teacher:  But what about this (points to the rectangle)? 

Oliver: Edge, edge, edge, edge (points to each of the four vertices). 

Then the pupils continue to discuss the inner and the outer angle at a vertex, and that one is a 

‘hjørne’ and the other is a ‘kant’. Thomas says that “the corners are inside and the edges are 

outside” and Chloe agrees that the corner is inside but she refers to the outside as the “pointed 

parts” (spissene). William is making a distinction between the vertex at the reflex angle of the non-

convex quadrilateral (Figure 2), which he refers to as a ‘hjørne’, and the vertices at the acute angles, 

which he denotes by the word ‘kant’. Oliver, using the rectangle as his reference context, refers to 

all the vertices by the word ‘kant’.  



To get the pupils to agree on one name for the same object the teacher 

brings in a reference context from their everyday life, a mini-pitch. The 

picture in Figure 3 is shown on the whiteboard. Using this picture as the 

reference context, the teacher asks questions like “If I say that you 

should place yourself on the edge of the mini-pitch, where would you 

be standing?” or “…place yourself at the corner, where would you go?” 

Figure 3: The mini-pitch   

There is still some confusion among the pupils, so the teacher says that she will tell them “what the 

mathematicians have decided”. She holds up a rectangular sheet of paper (A4) and says:  

Teacher: Corner (vertex), that is where two sides meet. When we talk about edge, we can 

also call this the side-edge [sidekant], and where two edges meet, that is a corner 

(vertex). There is the corner (points to a vertex of the sheet). 

The last part of the session was completed at the mini-pitch in the schoolyard, where they played 

the game of the teacher telling where to go—by using the concepts of edge and corner—and the 

pupils went to a place which (supposedly) fulfilled the teacher’s command. 

The teacher’s reference to “work like mathematicians” and that this entails giving precise 

definitions indicates that she intends to introduce her pupils to the mathematical register. However, 

the communication is hindered by the fact that some of the words have different meanings in the 

mathematical register and the everyday register. In particular this is the case for the word ‘hjørne’ 

which can mean vertex (mathematical register) as well as corner (everyday register). In everyday 

language the corner is a spacious area, somewhere you can stand, but in mathematics it is a point, 

the intersection between two lines. The word ‘kant’ has the same connotation as English edge, and 

in everyday language this is used as something that is sharp. This may explain why ‘kant’ is used to 

denote both the side, or edge, and the vertex when it is approached from the outside.  

Third session—a milieu that affords feedback 

As a follow up, a game with 12 tiles was developed. On one side of the tile 

was depicted a polygon where the edges had one colour and the vertices were 

marked with another colour. On the reverse side was written “<name of 

shape> with <colour> edges” or “<name of shape> with <colour> vertices”. 

An example is shown in Figure 4. On the back of this was written “Pentagon 

(femkant) with blue edges”. 

Figure 4: Pentagon with blue edges 

This game was played in pairs of pupils both having the full set of tiles. One pupil reads the text and 

the other one is supposed to pick the correct shape. After picking he/she can turn the tile and read 

the text to see if the correct shape has been picked.  

Discussion 

The target knowledge of the teaching sequence was that the pupils should develop the scientific 

language for naming 2D shapes and become aware that these names are based on the number of 

edges in the shape. To know the difference between edges and corners (vertices) will then also be 



part of the target knowledge. A condition that hinders pupils’ opportunity to categorise polygons 

according to their number of edges, is the ambiguous use of the concept of edge. Many of the pupils 

thought that edge (‘kant’) referred to corner/vertex, and since the number of edges equals the 

number of vertices it gave meaning to classify polygons according to the number of corners.  

The material milieu in Session 1 did not have an adidactical potential for categorisation according 

to the number of edges, since it was possible to solve the task apparently correct, without the pupils 

having a common understanding of what is an edge and what is a corner/vertex. There was no 

feedback from the milieu that could have told them whether they used the desired concept to 

classify: In action they counted either edges or corners (which gave the same answer); in 

formulation they compared their categorisations (and if they had a figure that was categorised 

differently, they used either edges or corners as a basis for categorising jointly and agreeing); in 

validation, if they reasoned on the basis of different attributes (edges or corners), they concluded 

that it did not matter which attribute to use.  

During Session 1, the teacher realised that the pupils had other connotations of edge and corner/ 

vertex than the scientific ones. In institutionalisation (Session 2), the teacher let the different 

connotations be displayed, and—with reference to mathematicians—she introduced the scholarly 

meaning of the concepts, in the mathematical register. Further, she connected them to the pupils’ 

everyday register, through the mini-pitch context.   

Based on results from Sessions 1 and 2, the teacher designed a new material milieu (tiles) that has 

an adidactical potential (see Figure 4). The game will produce a win if the pupil uses the scholarly 

meaning of edge and corner, and a loss if not. Hence, the pupil will need the target knowledge to act 

on the milieu—a principle at the core of TDS’ instructional design. The evolution of the milieu 

described here is a condition that enables the pupils’ opportunity to categorise polygons according 

to their number of edges.  

The teacher’s desire to introduce precise mathematical terms also points to introducing a language 

of distance. However, the situation is such that the pupils are able to express themselves clearly 

using gestures together with oral language, thereby using a language of nearness. However, in the 

game with the tiles it is necessary to use a language of distance in order to pick the correct tile. 

Hence, the intended language development is stimulated by the activity’s adidactical potential. 

It has been observed earlier that Norwegian children focus on the vertices when naming polygons 

(Rønning, 2004) but the observations made in this paper show that they may use different words 

depending on whether they approach the vertex from the inside or from the outside. We have also 

seen that they may use different words within the same shape, as with the non-convex quadrilateral 

in Figure 2. This shape is also interesting in the sense that it is not really accepted by Oliver as a 

quadrilateral but it would have been if “we had pulled this [the vertex with the reflex angle] out a 

little”. We interpret this as Oliver’s inclination to distinguish between convex and non-convex 

polygons. In future learning of geometry, the concept of a convex polygon will be introduced and 

this example indicates that early exposition to non-convex shapes can be important for making 

pupils familiar with these shapes.  

Distinguishing between edges and vertices can also be seen to be important for future learning. For 

polygons, the number of edges is equal to the number of vertices so to name a polygon one may just 



as well count the number of vertices instead of the number of edges. However, for polyhedra the 

number of vertices, edges and faces are not the same, and the naming is based on the number of 

faces.  

The results presented here are relevant for mathematics teachers and teacher educators: They 

present challenges and affordances related to teaching of properties of polygons—with emphasis on 

language and characteristics of the milieu with which the pupils interact when solving a problem. 
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This article presents the analysis of the discourse of a novice teacher when he tries to clarify what 

the sign of a vector quantity is. The elements considered for the analysis are language (speech and 

gesturing) and reference system concept as mediators within the process of meaning-making. Our 

analysis shows the novice teacher has difficulties promoting the understanding of the (negative) sign 

of a vector quantity and its relationship with the convention used to solve problems of motion of 

objects. The results shown here are part of a wider ongoing research concerning discourse analysis 

and teaching practice in grade 11 of two teachers with different profiles, expert and novice, from the 

theoretical approach of semiotics–the theory of objectification.  

Keywords: Novice teacher, classroom communication, objectification theory, sign of a vector 

quantity, semiotic approach. 

Introduction 

From the discussion on the state of research in mathematics education which arose during the 10th 

International Congress on Mathematical Education (ICME-10), and as different works indicate (e.g., 

da Ponte & Chapman, 2006; Adler, 2000), there is growing attention to the teaching practices 

compared to what occurred in the past, when such practice was not a primary concern. Sfard (2005) 

states that it was particularly during the first decade of the 21st century when there was a decisive 

change towards the study of teachers' practices. From the works presented in the work group of 

mathematics and language in the past CERME9, and related with the interests of this research, it is 

of great importance to point out the interest on communication and interaction in the mathematics 

teaching and learning processes. In these processes, the use of gestures is included both in a 

communicative role and as a resource during teaching practice. Thus, we must highlight the works 

by Nachlieli and Tabach (2015), who show the elements of teaching practice that promote learning, 

and the work by Farsani (2015) on the role that deictic gestures play as a communicative tool. There 

are the works regarding the way in which meanings are produced in the classroom and the role of 

gestures as mediators of such process (e.g. Miranda, Radford & Guzmán, 2013). In this way we seek 

to contribute to the discussion on the relevance of interaction and communication on teaching and 

learning processes from an analysis perspective of semiotic orientation. 

Research problem 

Da Ponte and Chapman (2006) agree that, in the 90s, Vygotsky’s work came to prominence and 

evolved in a number of research lines with respect to teaching practices. Considering Vygotsky’s 

concept of semiotic mediation –defined as usage of means [artifacts and signs] by which the 

individual receives the action of social, cultural and historical factors, and acts upon them (Vygotsky, 

2009)–, Mariotti (2009) conducted a research with the aim of observing the teacher’s role and the use 



the teacher gives to artifacts in order to develop mathematical signs in the students during the 

teaching-learning processes. Mariotti considers that the teacher, playing the role of cultural mediator, 

is responsible for introducing specific terms and using his or her judgment to recognize what may be 

referred to as mathematical concepts. Morgan (2006) considers that: “An important starting point for 

a social semiotic perspective is the recognition that meaning making occurs in social context and 

language use is functional within those context.” (p. 220). In the same work, the author emphasizes 

the multimodal characteristic of communication in which, besides language, gestures and the use of 

other resources are found. In this sense, Arzarello, Paola, Robutti and Sabena (2009) highlight the 

dynamic process that takes place during the multimodal semiotic activity of the subjects. 

Then, the research firstly goes back to the interest on teacher’s practice (a novice teacher data are 

reported here), and additionally it considers the use of a sociocultural approach of semiotic orientation 

to observe teachers’ practices. Our objective is to analyze the teacher’s discourse at the moment when 

he talks about the sign of a vector quantity in a physics class, in which the use of language and gestures 

is essential during the process of meaning making and awareness. Therefore, we pay close attention 

to the semiotic means of objectification [language, gestures and signs] that the teacher uses and 

encourages in the interaction with the students. 

Conceptual framework 

The research is supported by the theory of objectification (Radford, 2014; 2008) that includes 

Vygotsky’s notion of semiotic mediation as well as the importance of the use of artifacts and gestures 

in the processes of knowledge production. Radford (2014) considers that the main objective of the 

theory of objectification (TO) is that of mathematics education as: “[A]s a political, social, historic 

and cultural effort with the aim of creating ethical and reflective individuals who take a critical 

position in mathematics practices historically and culturally constituted.” (Radford, 2014, p. 135–

136, free translation). Thus, this formation of the individual involves an analysis between being and 

knowing in which both of them are closely interrelated. The principle of labor or activity represents 

the fundamental principle of the TO (Radford, 2014). It is through labor that the individuals are 

developed and continuously transformed and that we find the Other and the world in its conceptual 

and material dimensions. Through labor we find the systems of ideas of culture (systems of scientific, 

legal, and artistic ideas, etc.) and cultural forms of being as well. Radford and Roth (2011) introduce 

the concept of joint action, which implies more than a spatial notion where the interaction takes place. 

It represents the place in which the students and the teacher think and act together in pursuit of a 

common goal. It is important to emphasize that from TO approach, what mediates is the activity. 

Where both students and teacher are immersed. However, artifacts and signs continue play a relevant 

role. They are also part of the activity and are defined as semiotic means of objectification; which 

are: “These objects, tools, linguistic devices, and signs that individuals intentionally use in social 

meaning-making process to achieve a stable form of awareness, to make apparent their intentions, 

and to carry out their actions to attain the goal of their activities” (Radford, 2003, p. 41). 

This approach also revisits the notion of consciousness as something concrete; it is a subjective 

reflection of the world. Then, any consideration regarding learning must also comprehend the field 

of consciousness in which the students’ thought and emotional orientations are included. 

Consciousness can be captured through its manifestations: discourse, gestures and all the other 

sensual actions. In order to recognize the forms of expression, action, and reflection, that are the 



mathematical objects, the student goes through a social and physical process of awareness, which is 

mediated, in turn, by the activity; and where the artifacts y signs both physical and psychological 

belong to this activity (Radford, 2014; 2008). Therefore, gestures and artifacts act as important 

elements of the activity and are essential to the reflection processes. In this way, in TO, knowing and 

individuals are produced in the classroom through labor or activity. One way of identifying how 

meanings of mathematical objects are produced is through language and gestures.   

Within the aim of this work, we include the teacher’s practice to seek to characterize how the novice 

teacher promotes the objectification of the sign of vector quantities. In other research works, the role 

of gestures and the character of artifacts and signs as mediators has been developed; Roth (2000) 

particularly points out the importance the use of gestures has in the relationship with speech and in 

the road towards the scientific language. Roth indicates that, in the absence of an appropriate scientific 

discourse, gestures help to explain and describe the phenomena among the students. Additionally, he 

stresses that, during the emergence of the [scientific] discourse, both the iconic and the deictic 

gestures precede the spoken words associated with them. For their part, Moreno-Armella and 

Sriraman (2010), consider that the access to [mathematical] objects is not direct, but through 

mediation. The way in which we interact with our environment and the rest of the people—for 

instance, through language—is part of our symbolic nature. They state that: “Only humans possess, 

(…) what can be termed explicit cognition that allows us to go from learning to knowledge. Explicit 

cognition is symbolic cognition. The symbol refers to something that, although arbitrary, is shared 

and agreed by a community.” (Moreno-Armella & Sriraman, 2010, p. 216). 

Method 

This is a qualitative research performed through a case study. The pilot study was carried out in a 

high-school (grade 11) from Mexico City. The participants were two teachers (expert and novice) 

who teach physics and who have over 20 years and 2 years of experience, respectively. This article 

reports the data collected from the novice teacher. The instrument to collect the data was non-

participant observation of the Physics I classes. In the classes, the teacher addressed mechanics topics, 

specifically, Newtonian dynamics. The teacher considered the concepts of force, displacement, and 

interpretation of Cartesian graphs. The classes lasted two hours (twice per week) and one hour (once 

per week). We observed 12 sessions and obtained 20 hours of recording. We used two cameras 

controlled by the researcher. One camera remained fixed and was directed to the board while the other 

was moved to focus on the interactions during the students’ participations. In addition, we used a 

voice recorder placed on the teacher to obtain audio recordings of the classes. After the data were 

collected, we watched the videos from the classes to identify moments when key concepts had been 

addressed. Once the moments (class segments-excerpts) were identified, we transcribed what 

occurred in those segments. Our analysis is based on those transcriptions. 

Analysis and discussion of results 

Below we present excerpts that show the discourse of a novice teacher who tries to clarify the purpose 

of using the sign in a vector quantity on a free fall problem. In its entirety, the teacher’s discourse 

lasts around 10 minutes. To carry out the analysis, we identified three main excerpts that deal with 

the teacher’s discourse regarding the concept of a vector quantity. The excerpt starts after a student 

[who does not take part in the dialog] goes to the board to write a response and uses the value of 



acceleration of gravity (“g”) with a positive sign (see Figure 1-Photo 2). It is two students (S1 and 

S2) have a question about the sign that the teacher’s explanation starts. The excerpts correspond to a 

class in Spanish, in such a way that a translation in English is presented, trying to maintain dialogues 

fidelity.  

Excerpt 1- Is gravity negative? 

S1: Teacher, is gravity negative? 

Teacher: It is negative. 

S2: Is it? 

Teacher: Gravity will always be negative, right? But in this case (…) I’d told you that 

acceleration was a vector, right? Then, for example, if you want to speak in, let’s 

say, a vector manner, you must express gravity with its negative. Because it will 

always point down [makes a gesture; see Figure 1-Photo 1], right? But in this case, 

if you place it like this, in a scalar manner (…) we’re only looking at the magnitude 

of the gravity. Which would be 9.8. I mean, gravity will always go down [A student 

says: “but not now”] on the axis and down. Let’s leave it at that for now [with the 

positive sign]. 

  

Figure 1: Photos of gestures used by the teacher to represent the sign of gravity in two moments 

(Photo 1-left; Photo 2-right). 

The intention of the teacher is that the students understand the sign of g; that is to say, the students 

have to be aware of the meaning of the sign of gravity. The teacher seeks to encourage this awareness 

through a speech in which he includes gestures. However, from this point it is evident there is no 

articulation between the teacher’s verbal arguments and his gestures. The teacher stressed that g “will 

always be negative.” However, the argument the teacher uses gesturally links g with the type of 

motion (free fall) and not with the mathematical relationships of the function of motion (position with 

respect to time). When he says “Because it will always point down”, the teacher does not explain that 

“down” —or “up”, given the case—depends on a frame of reference involving a starting point (origin) 

from which measurements and directions (orientations) are taken to obtain numerical values. That is, 

the set of conventions used is arbitrary.  

Excerpt 2- The system of reference 

S3: And if I did it using the minus nine point eight? [referring to g = –9.8m/s2]. 

Teacher: If you did it with the minus, that means that, what does it mean? That when you 

were talking about this problem… [He is interrupted by another student]. 

S1: But you said that it was if it was falling, then…  



Teacher: I’m telling you “g” will always be negative, right? [See Figure 2-Photo 1] Now, 

you will take a point of reference (…) [the teacher draws a system of coordinated 

axes; see Figure 2-Photo 2]. If you take a point of reference here. Here, it would be 

y [vertical], x [horizontal], right? Then, if you take the point of reference there, what 

is the value of this point? [pointing at the origin of the Cartesian system he drew] 

It is the origin, what is its value? [S1 answers: “zero, comma zero”] Right now, we 

are only acting on y, then the value will always be zero at x. Then, if this [the stone] 

is falling towards here [simulates the fall of the object with respect to the diagram; 

see Figure 2-Photo 3], that is why we have a negative value in y. Because y that 

goes down is negative. (…) Because the point of reference, we are up here [points 

at the origin of the Cartesian system] and we are measuring how the little ball falls 

down, but from my point of reference [makes a gesture using both hands; see 

Figure 2-Photo 4]. Which would be from the bridge. I won’t be measuring this in 

the water, right? Then, that’s why it is negative in this case [the distance (height)] 

and that’s why I’m telling you that this [acceleration of gravity] is negative. 

    

Figure 2: From left to right, photos of gestures used by the teacher to represent: the phenomenon 

(Photo 1), the system of reference (Photo 2), the motion of the object with respect to the system of 

reference (Photo 3), and the measurement of the distance (Photo 4). 

S1 goes back to the notion that the sign and the values obtained depend on the direction of the motion 

observed. Later, the teacher incorporates a conceptual resource he considers necessary to understand 

the sign of g, that is, the concept of system of reference. It is observed that the teacher determines it 

[system of reference] from the system of coordinated axes (Cartesian graph) and its usual directions 

(positive: up and to the right; and negative: down and to the left). At this point of his speech, the 

teacher mainly uses the mathematical concept of system of reference. His use of the language makes 

him focus on conveying the mathematical meaning of the problem while he uses gestures only when 

addressing the physics phenomenon. What is observed is that it considers mathematical thinking and 

physics separately. For instance, the teacher seems to use gestures to exemplify frames of reference 

oriented negatively down only. The meaning of his gestures only depends on the particular motion of 

the object (Photos 3 and 4). Thus, the teacher is explicit when he says: “That is why we have a 

negative value in y. Because y that goes down is negative.” Therefore, with respect to the language 

used by the teacher in this excerpt, it is unclear how students can be aware of the sign of g from the 

use of reference systems when the teacher includes the system of reference in his speech. 

Excerpt 3- Two signs for the same problem 

S3: But I still don’t understand the thing about gravity. 



Teacher: I’m telling you that, in this case, the acceleration is a vector. And if the acceleration 

is a vector, the acceleration of the gravity will also be a vector, ok? Then, this here 

[points out at the sign in Figure 2- Photo 1], the negative of the gravity is indicating 

where gravity is always directing to. Then, it would be something like this [draws 

an arrow pointing down on the board]. It will always be directed downwards. Now, 

this will always be [writes: “g = –9.8m/s2], this will never change. Now, if you do 

not want to express this to me [referring to the acceleration of gravity], then give 

me the scalar, I mean, give me the magnitude of your gravity. Then, if you give me 

the magnitude, it would only be this here [see Figure 3-Photo 1], yes? I mean, 

without the negative, 9.8. If you tell me where it is headed to, you’re giving me the 

direction [see Figure 3-Photo 2], which is downwards, really. And in that same 

way, to get the distance covered. If you tell me, are you going to say it in distance? 

Or are you going to say it in displacement? Displacement is supposed to be a vector, 

too. (…) Then, when you get the magnitude, it will always be a magnitude like this 

[covers the negative sign of the acceleration of gravity again], positive.  

 

   

Figure 3: Photos of gestures used by the teacher to represent: the magnitude of a vector (Photo1-left) 

and the direction of a vector (Photo2-center); additionally, a photo of the board (Photo 3-right) 

What S3 says at the beginning of the excerpt indicates that, so far, the “relativity of the sign” has not 

been understood and that it depends on the frame of reference used to analyze the physics 

phenomenon. The teacher goes on with the discourse, explaining that knowing the sign of a quantity 

means knowing the direction of the motion, and says: “the negative of the gravity is telling [us] where 

gravity is always directed to.” However, gravity does not go “upwards” or “downwards”, but to the 

core of Earth, which to our perception is “falling down”. The difficulties arise when trying to explain 

why. Then, the teacher focuses his attention on the magnitude of a vector (see Figure 3-Photo 1). 

Again, using a gesture, he hides the negative sign of g to refer to a probable positive value, yet he 

relates such value to a scalar quantity and not to the direction of the vector in a system of reference. 

The teacher implies that one can make reference to the two signs in one quantity in the same problem, 

which results in an ambiguity to the student.  

In teacher discourse, it is important to realize the use he makes of the board, it is noteworthy saying 

the teacher only writes numbers, symbols (Cartesian graph, vectors) and formulas, but fails to write 

a single word; and that creates a gap between his discourse (spoken language and gestures) and 

symbolic language. The students are used to writing down what information is on the board, without 

adding elements from the spoken language. Therefore, when they go back to check their notes, they 

can hardly remember the exact words the teacher used, instead, they only see abstract symbols. Thus, 

reconstructing both the discourse and the discussion that unfolded can be difficult for them. Thus, it 

would be convenient to carry out research aimed at an analysis of the use of resources by the teacher.  



Conclusions 

In this work, we observe the roles language and gestures play in a novice teacher’s discourse and the 

difficulties he faced when trying to stabilize awareness on the meaning of the sign of g. Then, the 

way in which the meanings of the mathematical concepts are displayed and understood involves the 

mobilization of gestures and signs. This is because gestures, artifacts, signs, and the process of 

meaning making in the classroom, have a semiotic nature. We observed the complexity and the 

importance of articulating language and other semiotic resources as gestures and concepts—system 

of reference—in the processes of meaning making. Particularly, we observed there was no 

satisfactory coordination between the teacher’s gestures and language. While the teacher consistently 

used gestures to point out the negative sign of the gravity when the object “falls down”, he was vague 

when trying to explain why the sign was negative from its vector character. Then, the teacher focused 

his language only on the mathematical characteristic of the problem, but he focused his gestures on 

the physics description of the problem. We observed, however, an attempt to coordinate language and 

gestures in the excerpt in which he includes the use of the concept of system of reference. It follows 

that determining the system of reference to solve a given problem in advance is essential. Therefore, 

the system of reference used as a semiotic resource may allow this articulation between the 

mathematical meaning and the physics motion of objects to be understood. And this motivates us to 

conduct further research on this line.  
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In Germany, as in other countries, language proficiency impacts the achievement in mathematics. 

Linguistic features may constitute possible obstacles for students solving word problems. This study 

explores the interplay of language proficiency and achievement in mathematics with tasks in which 

linguistic characteristics were varied experimentally. 640 10th grade students solved the tasks. An 

analysis of the shift in difficulty of linguistically varied tasks indicates an irregular scheme: Only 

tasks with extreme variation of linguistic aspects, for example many nominalizations, show a 

significant shift. Data collected from student interviews using the think-aloud method show that 

linguistic aspects can be obstacles and therefore have an impact on the solution process, even if 

these linguistic aspects may not have an impact on the results in the quantitative part of the study.  

Keywords: Language proficiency, difficulty level, item analysis, language obstacles, mathematics 

achievement. 

Language and mathematics 

Impact of language proficiency on mathematics achievement 

Research on the relationship between language and mathematics has a long tradition in Germany 

and internationally (Barwell et al., 2016; Maier & Schweiger, 1999). In Germany, research on 

differences in achievement in mathematics due to background factors is relatively new when 

compared to research in Anglophone countries. Internationally, the strong influence of language 

proficiency on mathematics achievement, especially for word-problems and tests that follow the 

literacy approach, has been an issue for decades (Abedi, 2006). International surveys, such as PISA, 

show that there is a strong connection between mathematics achievement and family background in 

Germany, especially regarding the socio-economic status and the first language (Gebhardt, Rauch, 

Mang, Sälzer, & Stanat, 2013). In a recent German study, Prediger and colleagues have identified 

that “language proficiency is the background factor with the strongest connection to mathematics 

achievement, among all social and linguistic background factors” (Prediger, Wilhelm, Büchter, 

Gürsoy, & Benholz, 2015, p. 77; see also Prediger, Wilhelm, Büchter, Gürsoy, & Benholz, 2013). 

Linguistic aspects causing difficulty in mathematics  

For English, Abedi and Lord (2001) showed that word problems with low linguistic complexity can 

reduce the achievement gap evoked by differences in students’ language proficiency. However, 

Martiniello (2008) reports that research about effects of linguistic features is inconsistent. For 

example, items with many polysemous words, pronouns or prepositions are difficult only in some 

grades and the number of subordinate clauses and passive-voice sentences had no significant 

effects. In her own study, she highlights complex sentence structures with embedded adverbial and 

relative clauses, long noun phrases and limited syntactic transparency on the syntactic level and 



 

unknown or polysemous words on a vocabulary level as linguistic features creating difficulties 

(Martiniello, 2008).  

For the German language context, there are only a few studies about linguistic obstacles. For 

example, noun phrases and the number of academic language words seem to be difficult. The 

identified obstacles of word problems in the study by Prediger et al. (2015) included prepositions, 

complex syntax and nominalizations. The obstacles did not only occur in the context of reading, but 

more often they were related to conceptual understanding. In this study the specific linguistic 

features which made the text complicated could not be isolated as they interacted with each other as 

well as with the mathematical content. With the experimental approach in our study, we strived to 

address this issue. For the specific context of the German language, we wanted to specify to what 

extent linguistic aspects could explain the achievement gap between students of higher and lower 

language proficiency by investigating the questions: 

Q1. What impact do different linguistic aspects have on the achievement in literacy-based tests? 

Q2. Which linguistic aspects are difficult for (lower language proficient) students? 

Research design and methods for the mixed-methods study 

Context of the study 

The mathematical tasks of the study were oriented towards the literacy-based high stakes exam 

“Zentrale Prüfungen am Ende der Klasse 10 (ZP10)” [central examinations at the end of 10th grade] 

of North-Rhine-Westphalia (NRW), the most populous federal state of Germany. The ZP10-exam is 

designed by QUA-LiS NRW, the “Qualitäts- und UnterstützungsAgentur – Landesinstitut für 

Schule NRW“ [Quality and support agency – Institute for school NRW] that supports the Ministry 

of Education and lifelong learning in NRW. The exam does not only assess mathematical 

competencies acquired in 10th grade, but also the competencies acquired during grade 5 to 10. For 

that reason, our tasks are required to illustrate different mathematical levels.  

Design for the quantitative part of the study 

The sample consists of 640 students from ten different comprehensive schools in the metropolitan 

area of Rhine-Ruhr. As independent variables, we collected information about students’ language 

proficiency, cognitive capabilities and family background (cf. Table 1). Another important variable 

was the linguistic variation in the tasks. The dependent variable was mathematics achievement. 

Language proficiency was measured using a standardized C-Test. Cognitive capabilities were 

measured by the extended standardized German adaption CFT-20R of culture fair intelligence tests. 

Information about family background (socio-economic status, immigrant status, languages spoken 

at home) was collected by questionnaire.  

The mathematics test was designed referring to the ZP10-tests. Members of QUA-LiS NRW 

assured that our test would be acceptable for the high-stakes exam. The 90 minutes long test 

contained the typical topics of ZP10 – functions, descriptive statistics and percentage calculation – 

which appear in the exam every year. These tasks were also chosen since the study of Prediger et al. 

(2015) revealed many language obstacles in tasks about these topics. These observations are 

supported by results of Martiniello (2008) who identified data analysis, statistics and probability as 

topics that were difficult for English learners with Spanish as native language in the US.  



 

The test was presented in three versions (A, B and C) with six identical anchor tasks (21 items) and 

six tasks with linguistic variation (13 items). The tasks with variation always existed in three 

different versions; the context and mathematical content remained unchanged at all times. In the 

initial version, we avoided difficult linguistic structures in the tasks, especially those structures that 

were varied in the other versions. Besides this initial version, the tasks were varied using two of the 

four linguistic features context vocabulary, verbs followed by prepositions or separable verbs, 

nominalization and density of the text, and reference structure, which were chosen out of possible 

linguistic obstacles in word problems reported in Prediger et al.’s study (2015). 

On the word level, we chose the criterion “context vocabulary”, which often causes problems but – 

in contrast to technical terms – can be changed without having influence on the mathematical 

content. Concerning the syntactical level, interviews in the study of Prediger et al. (2015) confirmed 

the linguistic supposition that it is difficult for students to connect information given in sentences 

with separated separable verbs or between a verb and its preposition. Since Uesseler, Runge and 

Redder (2013) also state that separable verbs influence the understanding negatively, we selected 

these two features as a variation-category. As mathematical texts are often very dense and their 

length and density play an important role in student’s understanding, the feature “density of the 

text” was chosen. This goes hand in hand with the feature “nominalization”, because a dense text 

implies (in German) the use of many nominalizations which have a negative effect on the 

understanding (Uesseler et al., 2013). Therefore, these two features form one variation-category on 

the text-level. As mathematical texts try to avoid repetitions, the reference structure is often unclear. 

This led to consideration of “reference structure” as another category on the text-level. An example 

of a varied task will be presented later.  

The groups of students sitting for the tests A, B or C were systematically formed based on the 

results from the C-Test and the CFT-20R. The variations were dispersed equally to the three 

versions of the test. There were no statistically significant differences between the groups 

concerning language proficiency, cognitive capabilities and mathematics achievement.  

For data analysis, different statistical analysis procedures were applied. We split the group in half 

depending on students’ results on the C-Test into groups of students with lower (C0) and higher 

(C1) language proficiency. The mathematical items were scaled using a Rasch model. An analysis 

of variance (univariate ANOVA) and a regression analysis were used to identify the background 

factors with the highest impact on mathematics achievement and to determine the explained 

variance. The shift in difficulty from the initial version of a word problem to its linguistic variation 

was determined by an analysis of the change of the WLE for these items on the Rasch scale.  

Design for the qualitative part of the study 

The purpose of this part of the study was to gain a deeper understanding of the quantitative results 

through a qualitative approach. For this reason, four tasks were presented to N=32 students with 

different levels of language proficiency from different comprehensive schools. The students were 

required to solve the designed tasks independently using the think-aloud method. Once the students 

solved the task, there was a discussion about the task between interviewer and student. All 

processes and discussions were videotaped, transcribed, and analyzed interpretatively with respect 

to whether the linguistic variations created difficulties for the students. 



 

Examples of linguistic variation of tasks 

An example of the linguistic variation of a particular task is represented in the translated initial 

version (1) and its variation “nominalization/dense structure” (2) of the task “Bathtub”.  

(1) A bathtub has one cold water tap and one hot water tap. The bathtub can be filled with 135 

liters of water. If both water taps are open, it takes 9 minutes until the bathtub is filled 

completely. If only the cold water tap is open, it takes 7.5 minutes more than with both water 

taps open. How much water runs out of the opened cold water tap per minute? Note your 

calculations. 

(2) A bathtub with one cold and one hot water tap can be filled with 135 liters of water. 

Opening both water taps, the filling of the bathtub takes 9 minutes; exclusively opening the 

cold water tap, it takes 7.5 minutes more than by opening both water taps. Which amount of 

water runs out of the opened cold water tap per minute? Note your calculations. 

The bolded words or phrases show the variations in the task for this article. The translation of the 

tasks can only give an idea of the linguistic aspects that have been changed during variation, 

because most characteristics are inherent to the German language and sentence structure. For 

example, if you try to nominalize “the cold water tap is open [der Kaltwasserhahn ist geöffnet]” into 

“opening the cold water tap [Öffnung des Kaltwasserhahns]”, in German, it implies the genitive 

case of “the cold water tap” tagged by an additive “s” at the end of the word [“Kaltwasserhahns”]. 

The variation of the items was not possible in every case, because of the structure of the German 

language. Sometimes it was impossible to use alternative formulations using the defined categories 

and employing them at positions in the text that are significant for the mathematical solution. The 

variations were limited due to the common use of language, the context and the linguistic 

realization of mathematical concepts. In addition, we had to accept the fact that variation of isolated 

linguistic aspects is almost impossible. In the German version of “If only the cold water tap is open 

[Wenn nur der Kaltwasserhahn geöffnet ist]”, we find the participle II of the verb “open [geöffnet]” 

(in the English sentence it has the function as an adjective) because of the use of passive voice “is 

open [ist geöffnet]”. This has to be nominalized. In the nominalized version, it is linguistically not 

possible to continue to use the familiar adverb “only [nur]” but necessary to use the less frequently 

used adjective “exclusively [ausschließlich]”, which imposes another possible lexical obstacle. 

Selected results 

Impact of background factors 

To check if linguistic features can explain the achievement gap due to different levels of language 

proficiency, we first analyzed the impact of background factors in our study. The results provide 

additional support for evidence of the impact of language proficiency on mathematics achievement. 

Students with higher intelligence or higher language proficiency, without immigrant status, and 

students who only speak German at home had statistically significant better results in the 

mathematics test (see Table 1, the number of the test persons varies because not all students gave 

the questioned information). 

Regression analysis shows that language proficiency and cognitive capabilities as isolated 

background factors have the highest impact on mathematics achievement. They both explain about 



 

15 % of the variance. The other background factors explain much less: Univariate variance analysis 

showed only low explanation potential of immigrant status (12 %), languages spoken at home (8 %) 

and socio-economic status (1 %). As language proficiency has such a high impact in our study, we 

investigated if it is possible to explain the achievement gap by the introduced linguistic obstacles. 

Background factor 
Specification of 

groups 

Distribution 

of groups 

Mean score 

(WLE), m(SD) 

Significant 

differences  

Students  10 schools n=640 -1.37 (1,16) - 

Version of 

mathematics test 

version A 

version B 

version C 

219 (34.2 %) 

214 (33.4 %) 

207 (32.3 %) 

-1.28 (1,16) 

-1.49 (1,14) 

-1.34 (1,16) 

- 

Socioeconomic status 

(SES) 
(n=626) 

low SES 

medium SES 

high SES 

187 (29.9%) 

174 (27.8%) 

265 (42.3%) 

-1.52 (1,12) 

-1.34 (1,17) 

-1.24 (1,16) 

high&low: 0.046 

Cognitive capabilities 

(CFT-20R) (n=577) 

lower scores 

higher scores 

289 (50.1%) 

288 (49.9%) 

-1.68 (1,13) 

-1.00 (1,09) 
< 0.001 

Immigrant status 
(n=568) 

  

  

1st generation 

2nd generation 

3rd generation 

no 

42 (7.4%) 

287(50.5%) 

56 (9.9%) 

183 (32.2%) 

-1.64 (1,12) 

-1.72 (1,07) 

-1.17 (1,09) 

-0.83 (1,09) 

2nd& 3rd:  0.007 

no & 1st: <0.001   

no & 2nd: <0.001  

Languages spoken at 

home (n=616) 

1: German + x 

2: no German 

3: only German 

269 (43.7%) 

106 (17.2%) 

241 (39.1%) 

-1.58 (1,17) 

-1.75 (0,95) 

-0.94 (1,08) 

2 & 3: < 0.001 

3 & 1: < 0.001 

Language proficiency 
(C-test, n=578) 

  

low proficient  

high proficient 

all C-tests 

289 (50.0 %) 

289 (50.0 %) 

578 (100 %) 

-1.76 (1,08) 

-0.94 (1,11) 

-1.35 (1,17) 

< 0.001 

 

Table 1: Distribution and differences among groups 

Shifts in difficulty due to linguistic variation 

All results for the different variations have been scaled in a Rasch model. Shifts in difficulty due to 

the linguistic variation were identified especially in Item 6 “Bathtub”. In the initial version, 69 % of 

the C1-students and 48 % of the C0-students solved the item correctly. This shows that the initial 

version was easy for C1-students and common for C0-students. In the nominalized version with 

dense structure, half of the C1-students solved the item correctly compared to only 37 % of the C0-

students. The varied version was common for C1-students and difficult for C0-students.  

Figure 1 depicts the shift in difficulty for the variations in comparison to the initial version. In 

comparison to the initial version, the denser text containing nominalizations became 0.6 WLE more 

difficult on the Rasch scale, comparable to three out of 34 correctly solved items in our study. Other 

items of this variation had no significant shift in difficulty (see Figure 1, left side). Students who 

only did tasks formulated like Item 2b would solve one item less correctly (0.2 WLE = 1 item); 

students who only had tasks formulated like Item 2a or 8a would solve the test basically the same. 

One explanation for the increasing difficulty of “Bathtub” is that this item is linguistically more 

difficult than others with the same linguistic variation, as the Flesch-Reading-Ease index shows. 

The variation “reference structure” equally evoked a shift of 0.6 WLE for Item 6 “Bathtub”. Other 

items with variation showed inconsistent shifts. Some items became more difficult, other items less 



 

difficult. A possible explanation is the higher relevance of mathematical content in contrast to 

language in particular items. For example, language has less effect in Item 8a, “What is the 

median?”. In this case it is more important that the concept of median has been taught in 

mathematics classroom. Similar irregular shifts are visible for the other variations. 

 

Figure 1: Shift in difficulty compared to initial version (in WLE) 

In summary, linguistic variations make word problems more difficult, when applied often and when 

the general difficulty for understanding the word problem (cf. Flesch-index) increases greatly 

because of the application of these variations. In these cases, we talk about “extreme variations”. 

Slight variations with only few modifications, which do not increase the difficulty for 

understanding, do not have statistically significant shifts. As the effect fluctuates substantially 

between different items, we can presume that the topic of a task is very important. 

Linguistic variations as source for mathematical difficulty 

The fact that the difficulty does not increase significantly for all items (with linguistic variation) 

does not imply that linguistic variation does not evoke obstacles for students, as our qualitative 

analysis highlights. Furthermore, we have observed that linguistic aspects do not create difficulty on 

their own, but in combination with other characteristics of the task as illustrated below. 

In addition to the quantitative data, 16 tenth grade students solved the item “Bathtub” in the version 

“nominalization/dense structure” during the interviews. In particular, students with lower language 

proficiency had difficulties in understanding the word “exclusively [ausschließlich]”, which had to 

be used due to the nominalization. While reading the text aloud, several students were puzzled by 

this word and explained they would never use it. This problem has already caused wrong solutions 

in the tests. One student wrote: “I do not understand the question. Does ‘exclusively opening the 

cold water tap’ mean that only the cold water tap is used?” He knew the correct meaning of 

“exclusively” but he was not sure about it. Probably, this was the reason he did not solve this item. 

The nominalization “Opening [Öffnung]” of “to open [öffnen]” and the following genitive case of 

“the cold water tap [der Kaltwasserhahn]” also caused understanding problems, as the genitive case 

of “cold water tap [Kaltwasserhahn]” finishes with an ‘s’ “[Kaltwasserhahns]” which in German is 

sometimes also a cue for plural of a word. In this case, the plural would be [Kaltwasserhähne]. 



 

Student: I was confused by the word “Kaltwasserhahns”. Does it mean two water taps or 

only one?  

Apart from the linguistic variation, we identified other difficulties in our interviews. In particular, 

students with lower language proficiency had problems in understanding the relation “more than” 

and made wrong calculations. One student thinking aloud said (after three minutes of task solving):  

Student: Ah, now I made a wrong calculation […] I thought that … the filling takes 7.5 

minutes, but it takes 7.5 minutes MORE. I have to do a new calculation. 

In the final discussion, many students could identify the relevant information “more than” and 

“exclusively opening the cold water tap” on their own or after a question from the interviewer. This 

shows that, even if there are difficulties in understanding the text, most of the students could solve 

the task if they had enough time and could verbalize their thoughts aloud. In contrast, in the tests, 

students often stopped solving a task because of uncertainty concerning their understanding. 

Conclusion and consequences 

Our outcome concerning Q1 is that linguistic variations had significant impact when the task varied 

in an extreme way. The fact that in German isolated variations have no overall significant impact 

evokes the hypothesis that they create difficulty in combination with each other or with other 

characteristics of the tasks. This hypothesis is supported by the qualitative results showing that not 

only the linguistic feature itself, such as nominalizations, but also the linguistic structures evoked by 

this feature, such as genitive cases, create difficulty. However, this has to be analyzed further. 

In the context of Q2, in German, nominalization/dense structure, academic words such as 

“exclusively [ausschließlich]” or genitive cases are obstacles for several students, especially those 

of lower language proficiency. This was, for example, prominent in the results of lower language 

proficient students for the item “Bathtub”. Students struggled in understanding these structures, 

which sometimes lead to not solving the task. When students had a lot of time and could speak out 

their thoughts, they reflected on these difficulties.  

Consequences of this study for test construction are that high stakes tests should try to avoid 

extremely difficult linguistic structures, e.g. due to the frequent use of nominalizations, to reduce 

the achievement gap. Our study also showed that linguistic difficulties cannot always be avoided 

because there are constraints in the language. A consequence for mathematics classrooms that has 

emerged from students’ ability to overcome linguistic difficulties by talking about them in our 

interviews, would be to explicitly address language issues and not to avoid linguistic difficulties. 

The fact that our results pertaining to the effects of linguistic variations cannot explain the 

achievement gap, entails further and deeper research on the interplay between language proficiency 

and mathematics achievement in order to determine the nature of this correlation. A hypothesis that 

came up in our study and will be investigated is that the selection of strategies by students and their 

processes of solving tasks differ according to their language proficiency. 
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Multilingual learners’ opportunities for productive engagement in a 

bilingual German-Turkish teaching intervention on fractions 
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A teaching intervention should provide learners with opportunities for productive engagement with 

mathematics. Teaching learning situations are organized in patterned ways along culturally shared 

expectations of how these situations unfold. However, in multilingual classrooms, expectations of 

language learning can compete with mathematical expectations. Drawing on positioning theory, I 

will reconstruct these expectations – storylines – in a bilingual Turkish-German teaching 

intervention, specifically for the case of two learners, Akasya and Ilknur. I will show how the teacher 

establishes two expectations, one of “deciding who has downloaded more gigabyte” and one of 

“giving a Turkish explanation”. After some effort on forming an explanation, Ilknur’s and Akasya’s 

shift their activities towards fulfilling the second expectation, which results in them being less agentic 

for the mathematics at hand. Instead, Ilknur and Akasya focus on the form of their explanation.  

Keywords: Mathematics education, multilingualism, positioning theory, agency.  

Introduction 

As learners construct mathematical knowledge by participating in social practices, they need to 

engage in interpretations and reflections on the meaning of mathematics, rather than being mere 

“receivers of predetermined knowledge” (Boaler & Greeno, 2000, p. 179). Productive engagement is 

an engagement in the classroom where learners are making each other understandable and where the 

students are responsible for the mathematics at hand, in ways that allow the learners to actively 

develop their interpretations of knowledge involved in a teaching-learning environment (Turner et 

al., 2013).  

Multilingual mathematics learners are especially at risk to not engage productively. For example, it 

has been documented that many multilinguals do not actively engage in classroom discussions 

because of the demand to speak in the language of instruction (Planas & Setati, 2009) or that a focus 

on correctness in the language of instruction excludes multilingual learners and interrupts the 

engagement with mathematics (Planas & Civil, 2015, p. 47). Such mechanisms of inclusion and 

exclusion from productive engagement can be understood with positioning theory, where individuals 

in a conversation dynamically take up specific roles – positionings – and act according to the duties 

and rights that come with these positionings. To make sense of their positionings and their rights and 

duties, learners relate to storylines, where storylines stem from culturally shared patterned ways in 

which conversations are organized (Wagner & Herbel-Eisenmann, 2009). For example, in a storyline 

where the teacher asks questions and evaluates students’ answers, the teacher is positioned to evaluate 

these answers. The learners are positioned with the duty to give answers, but also with the right to 

not contribute for a certain time. When the learners perceive this storyline as “I may be negatively 

evaluated”, they may refuse to contribute, and might be less productively engaged with mathematics. 

This study addresses two questions: How does the use of two languages in a bilingual teaching 

intervention influence the learners’ positionings, and how does this affect their productive 

engagement with mathematics? Accordingly, the paper presents the here employed theoretical 



framework of positioning theory; analyzes data from a bilingual Turkish-German teaching 

intervention on fractions, specifically the case of Ilknur and Akasya; and shows that by switching the 

understanding of the storyline of the intervention “giving a Turkish explanation” towards “giving an 

answer with the form of an explanation”, the learners are less agentic for the mathematics at hand. 

Positioning theory for investigating productive engagement in multilingual 

settings 

In a teaching-learning situation, teacher and students fluidly take up certain roles, similar to the roles 

actors take up in a stage play, where these fluid roles are called positionings. “Positioning […] is the 

discursive process whereby selves are located in conversations as observably and subjectively 

coherent participants in jointly produced storylines” (Davies & Harré, 1990, p. 48) The individual in 

a conversation will take up, resist or reframe positionings as it tries to be subjectively coherent in his 

or her actions. At the same time, the actions of the individuals become intelligible to the others as 

they assume that the individual’s actions are coherent with his or her position (Langenhove & Harré, 

1994, p. 362). The theoretical construct of positioning resonates with classical interactionist 

perspectives on classroom interaction in its assumption that learning, identities and even competence 

are a result of social interactions (e.g. Cobb & Bauersfeld, 1995). Positioning theory has been used 

in mathematics education to investigate classrooms in regard to issues of opportunities to participate. 

Storylines are jointly produced, they “stem from culturally shared repertoires” (nurse/patient; 

coach/athlete) (Wagner & Herbel-Eisenmann, 2009) and the culturally shared patterned ways in 

which conversations are organized. Different storylines provide learners with different means for 

productive engagement (Herbel-Eisenmann & Wagner, 2015). The use of more than one language 

reinforces these issues, because it brings more diverse storylines to the classroom – for example of 

the political value of languages or storylines of language learning – that might affect mathematics 

learning. Studies on multilingual mathematics learning from the perspective of positioning theory 

suggest which storylines might lead to productive engagement, and which not: in his research with 

Latino learners in the US, Domínguez (2011, p. 325) shows that students’ home language “figures as 

a language to discuss, argue, take risks, and learn with others, whereas English tends to be reserved 

for enacting more traditional schoolwork”. Storylines that allow learners to position themselves as 

mathematically competent while relating to everyday experiences tend to lead multilinguals to 

productive engagement (Moschkovich, 2002). Norén (2015) gives an example where multilingual 

students are productively engaged because the teacher establishes a storyline that allows for talking 

in non-formal ways and making use of out-of-school-experiences. On the other hand, multilingual 

students may position themselves and others based on storylines from previous classrooms where 

they have been positioned as less proficient language learners (cf. Civil & Planas, 2004).   

As storylines are a product of the individuals’ interpretations in a conversation, more than one 

storyline can coexist in a given situation. These different storylines mirror themselves in the different 

positionings that are on the one hand assigned, and on the other taken up by the individuals: while in 

a teaching learning situation the storyline of teacher/learner is jointly produced, the individuals in the 

conversation might have different notions of what this storyline is and how they are positioned in it. 

In this paper, I will analyze the storylines that are jointly produced and the notions the students have 

of this storyline. I investigate the question: How does a jointly produced storyline in a multilingual 

teaching intervention influence the students’ productive engagement, and hence, their agency?  



A bilingual teaching intervention on fractions 

The here presented case study is part of the research project MuM-Multi which investigates how to 

foster multilingual learners in the mathematics classroom. A multilingual Turkish-German teaching 

intervention on fractions was conceived. The teaching intervention builds on a previous project 

(Prediger & Wessel, 2013) in that it combines a conceptual learning trajectory with a language 

learning trajectory. Furthermore, it builds on the relating registers approach (Prediger, Clarkson & 

Bose, 2016). In this approach, the mathematical-technical-register, the academic-school-register and 

the everyday register are continually interlinked. For example, the multilingual students are asked to 

reflect on the Turkish way to express fractions as ‘5 de 3’ (‘5 therein 3’) (Turkish mathematical-

technical register) for which they are asked to employ the graphical representation of a fraction bar 

and the activated everyday contexts (sharing a bar of Baklava-cake). The relating registers approach 

serves as a heuristic tool for designing activities and learning opportunities in which the multilingual 

learners can access their multilingual resources for developing conceptual understanding of fractions.  

Each session of the teaching intervention starts with an everyday, out of school contexts that connect 

in culturally sensitive ways to the multilingual experiences of the learners. For example, the first task 

starts with a short story about a traditional Turkish figure, the “Nasrettin Hoca” and children sharing 

a Baklava with him in an unfair way. The following tasks in a teaching intervention are then anchored 

in the culturally sensitive out-of-school context, so that the students can relate to their everyday 

experiences while working on the mathematical tasks. During all sessions, the fraction bar is 

implemented as a central graphical representation. All worksheets are given in both Turkish and 

German, assigned by the teacher.  

41 multilingual students in grade 7 with low mathematics achievement and heterogeneous German 

and Turkish language proficiency participated in eleven small groups in the bilingual teaching 

intervention lasting five sessions of 90 minutes each. The intervention was conducted by four 

specifically trained bilingual Turkish-German teachers who were sensitized for specific affordances 

of teaching in multilingual settings, for example strategies of revoicing. However, the teachers were 

not aware of the specifics of positioning students in conversations.   

The eleven groups of the bilingual intervention were videotaped over the course of the intervention, 

and specific groups and sessions were selected for transcription based on considerations of key points 

in the learning trajectory that occur after the students got familiar with speaking Turkish (Sessions 2 

- 4). The video material was transcribed and, where necessary, translated into German. The data is 

analyzed qualitatively in a turn-by turn analysis of the learners reflective positionings and the teachers 

interactive positioning, that is, the positioning of learners themselves within a conversation 

(reflective) and the positioning of the learners by the teacher in the conversation (interactive) that 

affects how the learners position themselves (reflective). 

I illustrate the case of Akasya and Ilknur, as examples of students who successfully engage with 

mathematics in Turkish language in the last intervention session. I employ a positioning analysis that 

focuses on the students’ reflective positioning in reaction to the teachers’ interactive positioning in 

the unfolding mathematical conversation. By investigating the positionings the storylines of learners 

and teacher can be reconstructed. Productive engagement is analyzed with the construct of agency, 

according to which students are coded as productively engaged in moments when they are  



• influencing the direction of the discourse  

• asking for clarifications or clarifying  

• taking charge of ideas  

• establishing competence  

This analysis allows investigating in which storyline the students are highly productively engaged, 

and when less. The analyzed transcript belongs to the first task of the second teaching intervention 

(Figure 1), in which ordering fractions for different referent wholes is approached by the everyday 

context of downloading movies.  

 

Downloading movies 

Selin and Bleda are downloading two 

movies in the internet, with different 

sizes.  

– copying monster.mp4 to “movies” – 

– copying horsedream.mp4 to “movies” – 

a) Where has more GB (gigabyte) been 

downloaded  

b) Why is Selin's fraction bar longer even 

though she has downloaded fewer GB?  

Figure 1: First task of Session 2 of teaching intervention 

Analysis: Storyline of Turkish speaking and less productive engagement 

Two girls, Akasya and Ilknur, work on the first task in Session 2 of the intervention. Briefly, I will 

refer to another group of two students who work separately at another table on the same task. I will 

show here how the teacher changes and refines the storyline that guides his actions over the course 

of the task. As storylines are jointly produced, the students have to actualize their storylines in line 

with how they perceive this changed storyline. While Ilknur adapts her notion of the storyline to the 

newly established storyline of the teacher, Akasya seems to subsume this change under her notion of 

the storyline as “the teacher guides the discourse and will give the resolution of the task in the end”.  

Episode 1: The teacher changes the storyline 

The teacher introduces the subtask b) to the students, and with it, also changes the previous storyline 

of “deciding who has downloaded more”. The students have signaled, by hand signal, that they have 

a solution to subtask a). The teacher now establishes a storyline which is not centered on finding a 

solution anymore, but one where explanations in Turkish are valued.   

In the following transcript, the teacher comes to Ilknur and Akasya, after he talked to the other two 

students at another desk. His utterance marks the first change of the storyline:  

75 Teacher    [coming back to Akasya] Ben size  I have you, ehm, something wrong, no,  
  ehm yanlış, hayır hayır yanlış var  no, you don’t have to be afraid if it is  
  mı diye hiç korkmana gerek yok.  wrong. You just have to write down  



  Sen sadece düşünceni yazacaksın.  your idea.  
  Tamam? Yani siz Bleda kazandı  Okay? So, when you say that Bleda  
  diyorsanız Bleda kazandı yaz ve  has won, then write down that Bleda 
  neden kazandığını düşündüyünü  has won and justify why he has won.  
  yaz. Tamam?  Okay? 

The teacher metadiscursively addresses the rules of the conversation. In this way, he positions 

Akasya, and implicitly Ilknur, as competent regardless of the correctness of their solution, as long as 

she writes down her ideas, and justifies “who has won“. The students are explicitly positioned as 

explainer of their mathematical thinking in line with a storyline of “formulating a written explanation 

of your decision”. This is in contrast to the previous storyline of the teacher, where the students were 

asked to cooperatively decide whether Bleda or Selin has downloaded more.   

In the following utterance, sometime after the previous transcript but still in the beginning of the work 

on subtask b), the teacher gives a reason why the students need to explain their thinking:   

83 Teacher Aber das ist gut, weil dann lernt ihr  But that is good, because then you  
  auch. Dann könnt ihr euch auch  also learn. Then you also could think 
  überlegen, wie ihr das auf Türkisch  about how to write that in Turkish. 
  schreibt. Das ist eine gute Sache.  That is a good thing.  

The teacher asks the students to think about how to “write [their explanation] in Turkish”. Again, he 

makes the rules of the mathematical discourse explicit by valuing the Turkish language and adding 

“That [Turkish] is a good thing”, which he repeats in the next turns. Valuing the Turkish language is 

a recurring theme in this storyline (turns 69, 83, 85) and is tightly interlinked with working on subtask 

b). In summary, by explicitly positioning the students in these ways, the teacher establishes a storyline 

where students are required to explain their thinking in (written) Turkish, perhaps best described as 

“Solving subtask b means giving a Turkish explanation of your solution”.  This is a refinement of the 

new storyline. 

Episode 2: Ilknur takes over the teacher’s storyline 

Ilknur seems to adopt the storyline established by the teacher. She makes several attempts to explain 

why, from her standpoint, Bleda has downloaded more. Her choice of language, her pauses and by 

“ehm”, suggest that she specifically tries to explain her thinking in Turkish:  

86 Ilknur Çünkü o .. on gigabyte [...] Because he ... ten gigabyte 
88 Ilknur   ehm yaptı  um, he did  

Ilknur attempts an explanation in Turkish, positioning herself in a way that acknowledges the position 

offered by the teacher (see turn 75). At first, she seems to be uncomfortable with explicitly using only 

Turkish – previously she only spoke Turkish in a mixed German-Turkish mode with focus on German 

– which is indicated by the hesitant way in which she forms her explanation. All her following task-

related utterances after this turn are in Turkish (105, 108, 110), which suggests that she positions 

herself as Turkish speaker and that the storyline “giving a Turkish explanation” guides her actions.  

Episode 3: Students agency and potential for productive engagement 

In engaging in Turkish, the students Akasya and Ilknur do not appear as agents for the content of their 

explanation. Ilknur explicitly positions herself as less competent with the Turkish language: When 

discussing which language their worksheets should have, Ilknur explicitly wants German worksheets, 

and she positions herself as being more proficient in French than in Turkish (94). This is reinforced 

by Ilknur and Akasya’s expressing the amount of effort it takes them to form a Turkish explanation 



(see turns 86-88 and linguistic markers “Üfff“ (Boah), “Heh?“ in turns 106, 110). Above that, Ilknur 

and Akasya’s struggles also make them less competent in the eyes of the teacher. On the one hand, 

the teacher addresses those students who have already generated a Turkish explanation and positions 

them as competent by praising their solutions. Ilknur and Akasya, on the other hand, are addressed 

with “He şimdi kızlar (So, now, gals)” (turn 107) as a result of them not yet having generated a written 

explanation, this way positioning the students as being behind in the group. 

In the following episode, Ilknur and Akasya seem to explicitly give up on their position as Turkish 

mathematics learners, and take up a position where they are responsible for the form of their solution. 

It seems that they give up their position because of mathematical difficulties, not language difficulties. 

113 Akasya Aber zehn ist doch mehr.  But ten is still more. 

114 Ilknur Ist so. Ich weiß überhaupt  Its like that. I don’t know at all, wah  

  nicht, baah  

115 Akasya Ich schreib einfach was. I will just write something. 

When Ilknur and Akasya do not make progress in generating a Turkish explanation, they explicitly 

position themselves as learners who struggle with their task. This goes hand in hand with Ilknur 

switching back to German (turn 114). Akasya, in line with her storyline where the teacher guides the 

discourse, assumes that the teacher is likely to correct them in the end, so that only the form of their 

explanation matters, but not the content. It might be that in accordance with this storyline, Akasya 

and Ilknur will take up positionings where they exercise less agency for the mathematics at hand.  

In summary, over the course of working on subtask b), the students have less capacities to engage 

with the mathematical content of the task within the storyline “giving a Turkish explanation”. They 

position themselves as insecure and less Turkish proficient, while they receive no help from the 

teacher or their peers, but are instead positioned as being behind the group. As Ilknur and Akasya 

have not yet written down their explanations, and as the teacher was not present, their efforts are not 

valued. In this sense, turns 114 and 115 can be read as a way to reclaim their agency: Within the 

teacher’s storyline of generating a Turkish explanation, the students change their activities towards 

writing “something” that conforms with the form of an explanation, but give up improving the content 

of the explanation. This is consistent with Akasya’s take on the storyline - in which the teacher is the 

guide of the conversation and responsible for the content of the explanations - seems to be taken up. 

The potential for productive engagement, that is, the potential for becoming responsible for the 

mathematical content, diminished in subtask b) as Ilknur and Akasya did not engage with finding a 

mathematical explanation in the task, but instead reclaim their agency with producing a Turkish 

sentence that complies with the form of an explanation. The storyline of the teacher allows for this, 

as the teacher gave a loophole with saying that “you don’t have to be afraid if it is wrong” (turn 75). 

Discussion 

In order to be coherent with the teacher’s expectations of giving an explanation in Turkish, the 

students in the episodes try to form a Turkish explanation. This leads the students to focus solely on 

forming a correct Turkish sentence with adequate formal words, while the mathematics behind the 

explanation is not in focus anymore. As the students are not successful in forming a Turkish 

explanation, the students might take up a position of being less agentic for the content, resulting in 

less productive engagement with mathematics. It seems that the teacher, by asking for a Turkish 

explanation and by valuing the Turkish language, and the students, by taking over these positionings, 



jointly produce two foci: one on the mathematical content in Turkish and one on the form of a Turkish 

explanation. In shifting to the second focus, the students lose their focus on the content of the 

explanation – which interestingly goes hand in hand with a code-switch back to German. It may be 

that the two foci are a product of valuing Turkish without giving the students the support they seem 

to need for talking about the content of the task.  

Positioning theory and storyline analysis here proved to be a useful tool to reconstruct the 

participation of multilinguals and the opportunities for productive engagement and mathematics 

learning, especially in regard to the multilingual teaching-learning situation. However, it is an open 

question whether the students multilinguality is a resource for the students in regard of what the 

storylines tell us in this research. Data suggest that difficulties with mathematics led Akasya and 

Ilknur to move the focus of their activity away from the content of the explanation. Previously, 

however, Ilknur struggles with the Turkish language. It is an open question whether Turkish might 

have added to Ilknur’s mathematical difficulties in form of increasing cognitive-load, or if Ilknur is 

in a natural translanguaging mode where her choice of language is not relevant and where her 

difficulties would have remained if she had used German instead of Turkish.  
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In the paper we draw on the authority structures that were observed in preservice teachers’ talk while 

working with collaborating pairs of primary school pupils. We have found some interesting structures 

that emerged, especially when the preservice teachers had to consider the goals of their working 

sessions with the pupils, as conceived by them. Particularly, the preservice teachers switched to a 

more authoritative stance, usually when there was time pressure. 

Keywords: Authority, preservice teachers, pair work. 

Introduction 

In any learning environment when there are more than one participants present, various interactions 

take place. Among these, the verbal ones have been the focus of numerous studies in the last decades. 

Most – if not all – of these studies originate from linguistics; in one the first papers that explicitly 

refer to the relationship between language and mathematics we read that “the processes of learning 

and communication are closely inter-related and both present the investigator with problems of 

bewildering complexity.” (Austin & Howson, 1979, p. 162). Today, almost 40 years since that 

statement was made, researchers in mathematics education are still struggling to interpret the 

complexities of learning and communication. However, the main interests of research remain on how 

students learn (at the same time, what constitutes learning may be by itself the topic of investigation) 

and what (can) teachers do to enhance their students’ mathematical thinking. In our view, 

mathematical thinking relates to effectively participating in the mathematical classroom community 

(Yackel & Cobb, 1996). This in turn requires a particular distribution of authority in the classroom: 

the teacher is expected to “step back” from the official role and give room to the students to make 

conjectures, pose problems and generally think like mathematicians (Mason, Burton & Stacey, 2010).  

Based on the above assumptions, we designed our study with preservice mathematics teachers. We 

engaged them in a research-type activity: they were asked to find a mathematical problem and use it 

as a tool to enhance pupils’ creative thinking. Our main interest was in the ways these preservice 

teachers will manage the interactions and particularly their authority in order to achieve that aim. Our 

theoretical framework is presented in the next section, followed by our methodology. 

Theoretical framework 

Language use in the mathematics classroom – or, more generally in mathematics learning contexts – 

can convey various aspects of the interactions or the mental processes that occur. There are at least 

two ways that we can view and analyse language use: at an object level, we may focus on the 

mathematical register and its use among the students and the teacher. From a teacher education point 

of view, this can be also related to mathematical knowledge (Rowland & Ruthven, 2011). Then, if 

we move to a meta-level, we realise that “sense-making in school mathematics is not solely a matter 

of private interpretation within some absolute, secure reality of ‘real’ objects (‘people’ and the like); 

it is also one of linguistic enculturation, of initiation to discursive practice”. (Walkerdine, 1988, p. 



128, as cited in Rowland, 2000, p. 194). Mathematics learning is thus seen as a social process, 

regulated by rules and norms (Yackel & Cobb, 1996), in which the participants are continuously 

negotiating meaning by exercising their agency (Cobb et al., 2009). This requires a distribution of 

authority by the teacher. This is because verbal interactions between teachers and students are usually 

characterised by the teacher’s authoritative stance: the teacher represents the mathematicians’ 

community, thus s/he is an authority because of his/her content knowledge; at the same time, s/he is 

in authority, because of position (Wagner & Herbel-Eisenmann, 2014). Thus, depending on the 

didactical approach, the students may only have to follow the teacher’s guidance, or they may be 

given space to actively participate in the learning process. For the purpose of the present paper we 

adopt the following definition for authority: 

Authority concerns the degree to which students are given opportunities to be involved in decision 

making about the interpretation of tasks, the reasonableness of solution methods, and the 

legitimacy of solutions. Authority is therefore about “who’s in charge” in terms of making 

mathematical contributions. (Cobb et al., 2009, p. 44) 

The analysis of authority can be done by the use of positioning theory (van Langenhove & Harré, 

1999) as implemented by Wagner & Herbel-Eisenmann (2014). According to this, there are some 

pervasive “lexical bundles” (i.e. speech patterns) in classroom talk, which are related to participants’ 

positioning and authority. The main categories of these are: personal authority, discourse as authority, 

discursive inevitability, and personal latitude. Personal authority, which is the most common in the 

classrooms, relates to teacher’s own authority; in other words, the students are expected to follow 

(the authority of) their teacher. A characteristic case of personal authority is when the teacher says, 

e.g., “I want you to solve this equation for me”. Discourse as authority relates to the rules which must 

be followed in the interaction, “which come from outside personal relationships, [and] may be 

attributed to the discipline of mathematics (or perhaps school mathematics).” (Wagner & Herbel-

Eisenmann, 2014, p. 873) An example of discourse as authority is the utterance “We need to follow 

the multiplication rules”. Discursive inevitability relates to events or actions that are verbally 

presented as inevitable; as Wagner & Herbel-Eisenmann (2014) note: “there is no explicit reference 

to obligation, but rather a sense of predetermination” (p. 873) An example may be the utterance: “We 

are going to calculate the average of the given values”. Finally, personal latitude relates to the students 

making their own decisions during the interactions, thus exercising their own authority; this is related 

to conceptual agency (Cobb et al., 2009) and mainly expressed by students’ questions. 

The above are usually accompanied by other verbal strategies; speakers sometimes feel the need to 

convey other messages related to power or solidarity. Politeness strategies (Brown & Levinson, 1987) 

have been the focus of a number of studies, either solely (Tatsis & Rowland, 2006) or juxtaposed 

with authority structures’ analysis (Tatsis & Wagner, 2016); these studies stress the fact that students 

and teachers continuously interpret each other’s actions, in order to perform their own actions. 

Summing up, although various verbal patterns coexist in the mathematics classroom, there are 

situations in which particular patterns are prevalent – these patterns characterise the interactions and 

influence its outcome to a significant degree. Thus, in our study we were expecting to locate and 

identify such patterns in preservice teachers’ discussions with pupils. Our methods of analysis are 

described in the next section. 



Context of the study and methodology 

Our research was based on the work of six preservice teachers, at the third year of their studies in 

mathematics. They already had three weeks of practice in a primary school, during which they had 

taught for 18 hours per week. They had attended – among other courses in pedagogy, psychology, 

psychology of mathematical thinking, and didactics of mathematics – a course led by the second 

author of the paper in problem solving, during which they solved problems and analysed pupils’ 

solutions and discussions; they had also watched and analysed a video with a study that involved a 

pair of young children (see Maj-Tatsis & Tatsis, 2015). 

For the purpose of the present study, the preservice teachers were asked to find an interesting 

mathematical problem (the only clue given was it should offer the possibility for mathematical 

explorations) and give it to a pair of pupils from the class that they had already taught. The ages of 

the pupils varied from 10 to 12 years. There were no restrictions on how to choose the pair; this 

resulted in pupils from varying backgrounds and of various mathematical attainment. Other 

instructions provided to the preservice teachers were related to the distribution of their authority: they 

were asked to let the pupils talk and, generally to try not to impose their own way of thinking. The 

sessions lasted from 20 to 45 minutes and were videotaped. Then, the preservice teachers were asked 

to transcribe their sessions and analyse them, according to whether they had achieved their aim (as 

perceived by them) and the possible reasons or events that were responsible for that – including their 

own decisions and actions. 

For the purpose of the present paper, we mainly focused on preservice teachers’ transcribed 

discussions with the pupils; this data was complemented by their interviews given to the second 

author of the paper, after the completion of the sessions. Our analysis was a meta-level analysis 

(Rowland, 2000), since we focused on utterances related to the participants’ interactions and we 

searched for manifestations of authority structures. Following Wagner & Herbel-Eisenmann’s (2014) 

framework we located utterances or exchanges that accounted for personal authority, discourse as 

authority, discursive inevitability, and personal latitude. Particularly, personal authority “was 

identified by the presence of first- and second person pronouns together” (Wagner & Herbel-

Eisenmann, 2014, p. 873). Discourse as authority was identified by the presence of modal verbs such 

as “need to” and “have to”, which explicitly express a strong obligation; it was also identified by the 

use of “they”, which refers “to a non-specified entity or group who have potentially made decisions 

about the mathematics students encounter” (Wagner & Herbel-Eisenmann, 2014, p. 873). Discursive 

inevitability was identified by utterances like ‘you are going to’ and ‘it is going to’. Finally, personal 

latitude was mainly identified by the presence of questions by the pupils. These initial categories were 

then utilised in order to establish the various authority structures; these were not predetermined, but 

established during the course of the analysis. 

Additionally, we looked into other verbal phenomena, such as the use of personal pronouns, such as 

“we” and “you” (Rowland, 2000). During our analysis, there were instances when we had to “make 

a step back” into an object level analysis, by looking into the mathematical concepts and processes 

that were discussed and established during the interactions; this was deemed necessary in order to 

fully comprehend the participants’ actions and to study their effect on the authority distribution. 



Results 

As we mentioned in the previous section, our analysis focused on the verbal interactions of the 

preservice teachers with the pupils. We will firstly present the analysis of the interactions between 

Tomek and two grade 6 boys (12 years old). We present this case because it demonstrates in a clear 

way the authority structure which was the most prevailing among the cases we analysed. 

The case of Tomek: Problem posing that leads to generalisation 

The situation given to the pupils by Tomek included the following text:  

John is creating “chairs” by using chips: 

The text was followed by these drawings (Figure 1): 

 

Figure 1. The “chairs” made by chips. 

Below we read the initial discussion1 between Tomek and Pupil 1:  

1 Tomek:  OK, the task is simple: firstly, read it. Have you ever seen something like 

this?  

2 Pupil 1:  Hmm, no, but I know how to do it. 

3 Tomek:  OK, so now think up of some questions. What questions would you ask? 

[small break] Usually, there are ready questions, and here… 

Then, the pupils started working on making questions for the given situation. In turns 4-35, Tomek 

talked only four times, and among these only the next was related to the problem posing process: 

10 Tomek:  Just write your ideas. 

In the next turn there is the following exchange: 

35 Pupil 2: Do we have to answer every question? [which they have posed] 

36 Tomek: Hmm, later we will choose two questions which we will answer. 

37 Pupil 1: For example, what would be the sum of the second and the third figures? 

What would be the sum of the chips of the second and the third figures? 

38 Pupil 2: [He writes Pupil 1’s question to their worksheet] 

                                                 

1 All the discussions were translated from Polish by the second author of the paper. 



39 Tomek: You can always draw more figures. 

40 Pupil 1 or 2: Aha. 

41 Tomek: You are not limited to three [figures] only. 

Then, until turn 59 the two pupils are working without any intervention by Tomek; they are making 

figures and discussing on the pattern. Then they draw the fourth chair shown in Figure 1. 

60 Tomek: Are you sure about that chair? 

61 Pupil 1: Why not? 

62 Tomek: Calculate once again. 

The preservice teacher started his research by asking pupils to put questions to the presented situation. 

By such way of guiding the process he gave them the possibility to engage in problem posing by 

formulating their own questions. Although his request is an expression of discursive inevitability, it 

resulted in the pupils being interested in the task and eventually the authority was passed to the pupils 

(personal latitude). Up to turn 59 Tomek did give space to the pupils, by letting them discuss. By his 

question in turn 60 he exercised personal authority, he used direct formulation “are you sure?”, and 

then asked them to correct it (62). We may claim that it was a good moment for an intervention, since 

the pupils had made a mistake and this would result in an improper rule and generalisation. However, 

that could be done in a less explicit way, e.g. “how did you know how many chips should be in the 

fourth chair?”. After the boys corrected the mistake, Tomek gave them again space to work, in other 

words, he let them exercise their personal latitude.  

In turn 70 Tomek suggested: “So maybe let’s do the second question [which was formulated by the 

pupils and written at their worksheet: “How many chips will the next chair have?”] because I think it 

is the most interesting”. In this utterance we can find two different authority structures: personal 

latitude (inclusive imperative) and personal authority (“I think”). By that intervention Tomek directed 

the work of pupils into generalisation. But still the question was formulated by the pupils so it can be 

considered as an appraisal of their work. 

The next intervention of Tomek took place when the pupils put a false hypothesis: 

96 Pupil 1: So we can conclude from it [the number of chips in chairs 1, 2, 3 and 4 were 

calculated by the pupils as follows: 5, 9, 14, 17 – note that 14 is incorrect] 

that every figure increases by 4. So, the next figure will have 21. And so on. 

97 Tomek: So, for example, how many will be in the tenth chair? 

98 Pupil 1: 21 times 2 equals 42. Because it is times two. Because it is the fifth chair 

[number 21]. 

99 Tomek: Are you sure? 

100 Pupil 1: Yes, for sure. Yes, right? [calculating] 21 times 2 is 42, the tenth chair is that. 

So, it’s like that. 

101 Tomek: [movement by his head that it is wrong] 

102 Pupil 1: No?! But how, if it is… 

103 Tomek: Calculate precisely. 

In the above transcript we see that Pupil 1 has formulated the assumption that the number of chips 

increases proportionally to chair’s number, thus the number of chips of the tenth chair is double the 

number of chips of the fifth chair. This incorrect assumption was formulated despite Pupil 1’s correct 



observation that “every figure increases by 4 [chips]”. Tomek decided to resolve that situation by 

offering a counter-example, which falls into the discursive inevitability category: 

111 Tomek: So, in that case, chairs 2 and 4 should… so, the fourth should be twice bigger 

than the second.  

112 Pupil 1: Oh! That’s right. Something went wrong (…) 

It is obvious that Tomek’s intervention helped the students realise their false assumption. Generally, 

the previous excerpts demonstrate the prevailing authority structure in Tomek’s verbal actions: he 

mainly let the pupils exercise their personal latitude and he exercised his personal authority and 

discursive inevitability structures only at crucial moments (according to him, but also according to 

our interpretation). In other words, if he did not intervene at these moments, the pupils could have 

spent much time in explorations that would not lead to the desired generalisation. However, this 

authority structure changed significantly in the 16th minute of the session, when the person who was 

handling the video camera (who was Tomek’s colleague) informed him that it is the 16th minute (turn 

171). Tomek switched his behaviour to a more authoritative structure, by asking closed questions, 

prompting the pupils and generally drastically increasing his interventions. This is eloquently 

demonstrated in Tomek’s own account of his actions: 

Generally, making such a research was very tiring. Despite my earlier preparations I did not expect 

that it will go in such a way. I expected that they [pupils] will calculate chair x just by adding. And 

they started multiplying from the beginning. I made many mistakes, it could be conducted in a 

better way. Thankfully, the children liked it. Close to the end, more or less at the 14th minute, I 

started prompting them too much because I was afraid that I will not manage in time. Because of 

that [prompts] I limited their mental actions. 

Tomek’s case demonstrated how we performed our analysis over the six chosen cases. The following 

authority structures were identified: 

a) Structure 1: Personal latitude accompanied with mainly personal authority and discursive 

inevitability; followed by a blunt switch to personal authority, eventually accompanied with 

discursive inevitability. 

b) Structure 2: Personal latitude accompanied with mainly personal authority and less frequently 

with discursive inevitability. 

c) Structure 3: Personal authority. 

The above structures are presented according to their frequency; the first one was found in four cases, 

while the other two appeared in one case each. 

Conclusions 

Our study was inspired by studies on the authority structures that can be identified in the mathematics 

classroom (Wagner & Herbel-Eisenmann, 2014); we were interested to see whether similar structures 

would appear in preservice teachers’ talk. Our results have shown that the preservice teachers of our 

study initially had been less authoritative, thus allowing the pupils to work collaboratively and 

exercise their personal latitude. However, during the interaction, and due to some events, they 

switched into more authoritative structures. One of the basic reasons for that switch was the time 

pressure together with the obligation to fulfil the request of their educators. The interesting thing was 

though that all of them were aware of this switch, as it was expressed during their interviews. 



Following Cobb et al. (2009), we agree that the distribution of authority is closely linked to the ways 

that students exercise their agency in the mathematics classroom, including, as our study has shown, 

collaborative work. Thus, the teacher should be aware of that fact, in other words, s/he needs to know 

when it is time to exercise authority, and when s/he can deviate from the lesson plan; this is related 

to the notion of contingency as presented in Rowland, Huckstep and Thwaites’s (2005) “knowledge 

quartet” framework. Particularly, the teachers’ responses to students’ ideas as well as their ability to 

deviate from their agenda affect the knowledge construction in a significant way. These 

considerations should be discussed and analysed in pre- and in-service teachers’ training courses, 

preferably by involving teachers in self-monitoring with regards to the distribution of authority during 

their interactions with the students. 

In our study, the preservice teachers’ awareness of the nature and the effect of their own verbal actions 

was a clear result of their training courses. However, this did not stop them from exercising their 

personal authority at particular moments. Thus, there is still lots of work that needs to be done in the 

field of authority distribution by mathematics teachers in order to establish an active learning 

community in their classrooms. 

References 

Austin, J. L., & Howson, A. G. (1979). Language and mathematical education. Educational Studies 

in Mathematics, 10, 161−197. 

Brown, P., & Levinson, S. C. (1987). Politeness: Some universals in language usage. Cambridge, 

MA: Cambridge University Press. 

Cobb, P., Gresalfi, M. S., & Hodge, L. L. (2009). An interpretive scheme for analyzing the identities 

that students develop in mathematics classrooms. Journal for Research in Mathematics Education, 

40, 40−68. 

Maj-Tatsis, B., & Tatsis, K. (2015). Investigations in magic squares: A case study with two eight-

year-old girls. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Conference of the 

European Society for Research in Mathematics Education (pp. 1954−1960). Prague: Charles 

University and ERME, Prague. 

Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically (2nd ed). Harlow, UK: Pearson 

Education. 

Pickering, A. (1995). The mangle of practice: Time, agency and science. Chicago: University of 

Chicago. 

Rowland, T. (2000). The pragmatics of mathematics education: Vagueness in mathematical 

discourse. London: Falmer Press. 

Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject 

knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher 

Education, 8, 255−281. 

Rowland, T., & Ruthven, K. (Eds.). (2011). Mathematical knowledge in teaching. London: Springer. 

Tatsis, K., & Rowland, T. (2006). Vague language in Greek and English mathematical talk: A 

variation study in face-work. In J. Novotná, H. Moraová, M. Krátká, & N. Stehliková (Eds.), 



Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics 

Education (Vol. 5, pp. 257−264). Prague: Charles University. 

Tatsis, K., & Wagner, D. (2016, July). Authority and politeness: Juxtaposed analyses of mathematics 

teaching episodes. Paper presented at the 13th International Congress on Mathematical Education 

(ICME-13), Hamburg, Germany. 

van Langenhove, L., & Harré, R. (1999). Introducing positioning theory. In R. Harré & L. van 

Lagenhove (Eds.), Positioning theory: Moral contexts of intentional action (pp. 14−31). Oxford: 

Blackwell. 

Wagner, D., & Herbel-Eisenmann, B. (2014). Identifying authority structures in mathematics 

classroom discourse: A case of a teacher’s early experience in a new context. ZDM, 46, 871−882. 

Walkerdine, V. (1988). The mastery of reason: Cognitive development and the production of 

rationality. London: Routledge. 

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in 

mathematics. Journal for Research in Mathematics Education, 27, 458−477. 



How do students develop lexical means for understanding the concept 

of relative frequency? Empirical insights on the basis of trace analyses 

Lena Wessel 

TU Dortmund University, Germany; lena.wessel@math.tu-dortmund.de 

In order to enhance students’ proficiency in the academic language, building up more formal 

language on the basis of individual and everyday language is claimed as a fruitful approach. 

However, there is little empirical research on how students adopt and develop lexical means of the 

academic language. This paper addresses this field of research for the case of concept-specific lexical 

means for relative frequencies by presenting the applied design principles for learning opportunities 

as well as empirical insights into initiated concept- and language development processes. 

Keywords: Academic language, relative frequency, scaffolding, design research, trace analysis. 

Introduction 

Due to the cognitive and epistemic function of language, the academic language can be challenging 

for many students (Schleppegrell, 2004). These challenges are also relevant for mathematical 

learning, as shown in various empirical studies. Thus, studies in mathematics education concentrate 

on designing and researching learning environments that integrate mathematics and language learning 

(Prediger & Wessel, 2013; Prediger & Pöhler, 2015).  

For the field of understanding relative frequencies, the presented study relies on analyses of design 

experiments in small group settings focusing on one lesson within the larger intervention study of the 

DFG project MUM-MESUT (Grant PR 662/14-1 to S. Prediger). Detailed analyses of students’ 

conceptual development and language development against the background of intertwined conceptual 

and lexical-discursive learning opportunities serve to structure the relevant lexical means and give 

insights into how students become proficient in the academic language for relative frequency. 

Theoretical background: Design principles for learning opportunities 

Academic language proficiency has repeatedly been shown to influence achievement in mathematics 

and this general finding also applies for the mathematical topic of understanding fractions (Wessel, 

2015). As a consequence, some current design research studies focus on developing and investigating 

content- and language integrated instructional approaches for fostering students with low language 

proficiency (Prediger & Wessel, 2013). The following paragraphs deal with the major design 

principles that were implemented in the presented design research study.   

Design principle “Macro-scaffolding”. The general structure of intended lexical learning trajectories 

is well described in the principles of macro-scaffolding, namely from students’ everyday resources 

to academic and formal technical registers (Gibbons, 2002). However, its topic-specific realization is 

still an urgent need of research, as well as explorations of students’ individual learning pathways 

(Prediger & Wessel, 2013). Previous research shows the relevance of phrases and syntactical 

constructions needed to express the meanings of a mathematical concept in view, which is also 

relevant for understanding the concept of fraction (ibid). Wessel (2015, p. 327) shows the importance 

of understanding how macro-scaffolding and interactional moves on the micro level relate to each 

other for moving students beyond their zone of proximal development. Here, the principle of macro-



scaffolding by coordinating conceptual learning opportunities with well-structured language learning 

opportunities on the lexical level is applied. 

Design principle “Pushing students’ output by realizing discursive practices”. Given the 

sociocultural perspective on the learning of mathematics as participating in mathematical practices, 

mathematical activity is to a great extent mediated by language and interaction. In the context of 

mathematics learning of English language learners (ELLs) and with a perspective on extending 

academic language proficiency, Moschkovich (2013) stresses the relation between the lexical and 

discursive level of language: “The question is not whether students who are ELLs should learn 

vocabulary, but rather how instruction can best support students to learn vocabulary as they actively 

engage in mathematical reasoning about important mathematical topics” (Moschkovich, 2013, p. 46). 

This theoretical assumption leads to an extension of the design principle so that we use the principle 

of macro-scaffolding by coordinating conceptual learning opportunities with well-structured 

language learning opportunities on the lexical level in addition to rich demands and language 

initiation on the discursive level. 

Design principle “Relating registers”. Pushing the students’ output and applying scaffolding 

strategies can be supported by the design principle of relating registers, according to which the 

graphical, the symbolic and the different verbal registers (everyday, academic, and technical register) 

are related systematically to achieve conceptual understanding (Prediger, Clarkson & Bose, 2016). 

For the lessons of the presented intervention, activities of relating registers have been realized with 

the fraction bar and bar board as a prominent graphical representation. In order to activate students’ 

individual and everyday language resources, typical contexts of downloads, fair share and soccer 

competitions have been implemented (for detail see Prediger & Wessel, 2013). 

In their combination, the formulated design principles allow to integrate theoretical aspects on 

developing learning opportunities on the conceptual, lexical and discursive level. However, while the 

integrated analysis of initiated learning processes on conceptual and discursive levels are well-

established in mathematics education research, only rarely empirical studies reconstruct lexical 

learning processes (exceptions e.g. Prediger & Pöhler, 2015, for the field of percentages). That is why 

Schleppegrell (2010, p. 107) demands more respective research which goes beyond analyzing short 

interactional sequences: “More research is needed that takes a developmental approach (…). We need 

rich studies of how language and ways of talking about mathematics evolve over a unit of study, 

focusing on more than brief interactional episodes and fragments of dialogue”. The presented study 

aims at minimizing this research gap for the field of relative frequency. 

Research questions  

On the basis of the theoretical background and the research gaps listed above, the developmental 

work and analyses of the learning processes are guided by the following two questions: 

1) On the level of design outcome: How can conceptual and lexical-discursive learning 

opportunities for understanding relative frequency be intertwined and designed in a sequence 

of rich mathematical activities? 

2) On the level of initiated learning processes: Which lexical means do students activate and 

how are those lexical means intertwined with individual conceptual development when 

working on the learning opportunities towards relative frequency? 



Methodological framework and research context 

The research was conducted in the methodological framework of topic-specific didactical design 

research (Prediger & Zwetzschler, 2013) in which the analysis of teaching-learning processes takes 

place in carefully designed teaching experiments. The design outcome, namely the consolidated 

intertwinement of conceptual and lexical-discursive learning opportunities, is next described.  

Design outcome: Learning opportunities towards relative frequency (research question 1) 

In order to combine conceptual, lexical and discursive learning opportunities according to the design 

principles described above, the larger intervention with five lessons for fostering conceptual 

understanding of students with diverse language proficiency in the language of instruction aiming at 

enhancing understanding of fractions was designed. For answering research question 1 the designed 

learning opportunities towards relative frequency as a design outcome are presented in the following 

section. 

The intended conceptual learning opportunities were adapted from Prediger (2013). It starts with 

students’ individual approaches and everyday experiences to compare three groups with different 

relative frequencies in the context of a soccer competition (see Table 1, Task 5). It then proceeds to 

constructing meaning of the given relative frequencies by introducing the bar board (Task 6). At this 

point, students’ informal strategies for comparison are elaborated by focusing the need for normed 

referent wholes (here fraction bars of normed length) and the necessity of including every group’s 

number of shots (not only number of strikes) to refine the concept of relative frequency which finally 

aims at the flexible use of relating number of shots and number of strikes.  

The intended lexical-discursive learning opportunities focus on the vocabulary required for the con-

ceptual learning process of thinking in relative frequency which is mainly the prepositional “of- or 

thereof construction” (“to score … of … shots”, “… shots, thereof …”) (see Table 1), which can be 

conceptualized from the so-called ‘basic meaning-related vocabulary’ (Wessel, 2015). Students are 

asked to give reasons in the setting of discussing ways of fair or unfair strategies to rank the three 

groups. It starts from students’ individual resources as well as with offering the relevant “of-

construction” already in Task 5. 

Conceptual learning 

opportunities 

Tasks and mediator bar board Lexical-discursive learning 

opportunities 

Initiation of individual 

approaches for comparing 

relative frequency 

conceptualized as strike 

rates in soccer competition 

5. Who scored best? 
In class 7c three groups took part in a soccer 

competition. 

The group of boys scored 4 of 5 shots.  

The group of girls scored 8 of 10 shots.  

The group of teachers shot 20 times and didn‘t score 4 

times. 

a) Who won the competition? Write your 

answer on a card.   

b) Put your cards in the middle of the table. Do 

you agree? Give reasons for your answer. 

Initiation of discussing 

individual approaches and 

giving reasons  

Introduction of lexical 

means “to score / not score 

… of … shots”  

 

Investigation of individual 

hypotheses in the bar 

board: 

Comparing with fraction 

bars of normed length 

6. Who scored best? 
Use the bar board in order to commonly find out 

whether one group scored better. 

The boys have already been marked. Add the results 

of the girls and the teachers as well as the speech 

bubbles.  

Reflecting and discussing 

fitting of fraction bars and 

groups (“This bar fits to the 

boys because …”) 



Necessity of including 

number of shots (not only 

number of strikes) to 

refine concept of relative 

frequency 

 

 

Activating lexical means for 

marking strike rates in the 

bar board focusing number 

of shots as a referent whole, 

number of strikes and strike 

rate 

Systematize and deepen 

understanding by giving 

reasons for all groups 

scoring equally well 

7. And the winner is... 

In the bar board you have found out how well the 

different teams scored.  

Which group won the competition? 

Give reasons for your answer. 
 

Written reasoning on 

equivalence of relative 

frequency in the three groups 

Applying introduced lexical 

means  

Table 1: Conceptual and lexical-discursive learning opportunities (not necessarily strictly sequenced) 

The tasks in Table 1 illustrate how conceptual and lexical-discursive aspects are intertwined. On the 

discursive level, students are encouraged to verbalize and discuss their own ideas and structures. The 

vocabulary for these discussions is bound to the bar board as well as the context of the scoring 

situation, which always allows students to relate the vocabulary to its meaning. In Task 7 the students 

are free to note their reasons either with reference to the bar board, to the context or to the formal 

level of expanding and reducing fractions.  

Methods for data gathering and selection: Design experiments  

Design experiments were conducted and video-taped within the larger research project MuM-

MESUT with N = 343 mathematically low-achieving mono- and multilingual students in grade 7. For 

the detailed analyses in this paper, a group of three students was selected according to their German 

language proficiency (measured with a German C-test) and language background (mono- or multi-

lingual, operationalized by “speaks at least one other language than German with a parent or 

grandparent”), with the aim to have a linguistically heterogeneous sub-sample for conducting case 

analyses (in total the below presented method of analysis was applied in detail to n=16 students). Due 

to the larger study, we can also draw on fraction test scores of the students (Wessel, 2015).  

Methods of data analysis for reconstructing conceptual and lexical development 

In order to qualitatively reconstruct the students’ lexical pathways and how their lexical means relate 

to the initiated discourse and individual concept development (research question 2), the following 

three steps were applied: 

Step 1. Conceptual analysis. For reconstructing the students’ conceptual development, strategies for 

comparing the given three groups of girls, boys and teachers and steps on the pathway to understand 

the concept of relative frequency have been identiefied by analysing transcripts and video data.  

Step 2. Trace analysis. Concept-specific lexical means (words and phrases) which the students 

activated were inventoried and coded whether the students used them in oral or written language and 

whether they self-initiated the use or whether they adopted them from the material, the teacher or 

another student (for detail of the method “trace analysis” see Prediger & Pöhler, 2015). In this paper 

the focus is on oral language. 

This bar fits 

to the boys 

because 

………………………

………………………

……………………….

.……………………… 

 

………………………. 



Step 3. Relating conceptual development and language. On the basis of step 1 and 2, the results of 

conceptual and language analysis were related and contrasted to reconstruct prototypical learning 

pathways and critical steps on the pathway under the perspective of different language backgrounds. 

Empirical insights into the initiated conceptual and language learning processes 

On the level of initiated learning processes, research question 2 asks for lexical means that students 

activate and how these lexical means are intertwined with individual conceptual development. By 

contrasting the inventory of lexical means of two students the first part of the research question is 

addressed in the next paragraph.  

Concept-specific language production: Qualitative overview and comparsion 

Makbule and Kiran (working in a group of three together with Vehbiya) are multilingual learners in 

year 7 of a German secondary school. In a German C-test Makbule’s score is at percentile rank 37 

and Kiran’s at 84. In the fraction test Makbule’s score is at percentile rank 7 and Kiran’s at 15 

(percentile ranks for both tests for full sample of N=1124 seventh graders). While Kiran is the more 

language proficient student according to the C-test results, Kiran and Makbule started at comparable 

low levels of fraction proficiency. 

In Table 2 the actual orally activated concept-specific lexical means in the analyzed transcript (23.46 

minutes of video data) of Kiran and Makbule are contrasted. While Makbule activates 26 different 

concept-specific lexical means in the course of the process and 76 in total, Kiran activates 15 different 

concept-specific lexical means and 21 in total. As Makbule generally talks the most in this lesson, 

relating these numbers to each student’s individual rate of participation will be a further step in the 

data analysis.    

It becomes apparent that Kiran uses all lexical means correctly, which fits to his high percentile rank 

in the German C-test and which is not always the case for Makbule. Also, while Makbule uses many 

of the lexical means various times (which leads to the high number of lexical means in total), the list 

of Kiran can give a hint at the possibly sufficient language for working on the given tasks and 

developing the concept of relative frequency. 

Makbule  Kiran 

Concept-specific lexical means in oral language production in chronological order of first use in process, 

(frequency in brackets, semantically not correct lexical means in italics) 

#14 best (1) 

#15 won (5) 

#25 because (9) 

#25 had … shots (4) 

#25 did not score … times (3) 

#25 scored (2) 

#58 scored ... times (3) 

#76 … of … (1) 

#95 bar (13) 

#101 ... times shots (1) 

#101 shoot … times (2) 

#103 took … shots and scored  

… of them (1) 

#125 tie (1) 

#141 similar (2) 

#143 stripe (9) 

#151 similar won (1) 

#151 this big (1) 

#151 to divide in the 

middle (1) 

#151 divide small (1) 

#153 shoot similar (1) 

#180 similarly big (2) 

#180 normal big (4) 

#180 separated in the 

middle (5) 

#186 separated (1) 

#188 line (1) 

#188 the same (1) 

#26 had … shots (2) 

#26 did not score (1) 

#28 score (2) 

#34 won (2) 

#60 fraction (2) 

#67 took … shots and 

scored  … of them (1) 

#104 score … times (1) 

#124 tie (1) 

#128 the same (1) 

#175 bar (3) 

#175 fits to (1) 

#175 because (1) 

#175 as good as (1) 

#177 as long as (1) 

#182 divided in the 

middle (1)  

Table 2: Variety of concept-specific lexical means in comparison 



However, the transcript analysis of Makbule’s conceptual development indicates that the additional 

lexical means like “to divide in the middle”, “normal big” and “separated in the middle” in Makbule’s 

inventory are of great importance for her learning process towards understanding the idea of 

expanding fractions as refining the structure in the fraction bar. As a first conclusion, the comparison 

of the results from Makbule and Kiran shows that the question of the required language seems to vary 

between the students and demands further analyses of different cases. 

Makbule’s process of adopting concept-specific lexical means when relating registers 

As a conceptually relevant step in the learning process, it is important to move from the strategy of 

comparing the three groups’ results (girls, boys and teachers) on the basis of the absolute number of 

strikes to experiencing the necessity of and applying the concept of relative frequency as a fair 

strategy for comparison (Prediger, 2013). How this pathway can be related to the activated and 

required lexical means becomes apparent in the following two excerpts taken from the corresponding 

learning process initiated by Task 6. The transcripts were translated from German and shortened to 

relevant utterances of Makbule which are needed for tracing those concept-related language means 

in focus (// indicates interruption).  

When answering Task 5 (see Table 1), Makbule focuses on the three groups’ absolute numbers of 

strikes and claims that the teachers won the competition. When working on Task 6, the following 

process was initiated by reflecting on why the chosen fraction bar of fifths fits to the boys group: 

Excerpt I: Kiran stresses the idea of relative thinking  

56 Teacher: So why does this fraction bar fit to the boys, the one that is marked? 

58 Makbule: Because they, because they took yes, ehm, five shots and have only scored 

four times. 

59 Teacher: And why does the fraction bar fit? 

61 Makbule: Because it’s four fifths. 

66 Makbule: Because they// 

67 Kiran: //took five shots and scored four of them. 

On the lexical level, Makbule uses the coordination “and” to relate the number of shots and the 

number of strikes to each other (#58). As the teacher again asks why the fraction bar fits, Makbule 

focuses on the representation of rates as fractions, namely “four fifths” (#61). When starting an 

additional explanation (“Because they”, #66) she is interrupted by Kiran, who finishes the sentence 

with “took five shots and scored four of them” (#67). This utterance in #67 is assumed to be a relevant 

trigger for the following discourse in the group, which becomes clear in the next excerpt. 

Excerpt II: Makbule adopts Kiran’s “of them” construction  

70 Makbule: reads her written answer: because they took five shots and scored only four 

of them. 

73 Teacher: So now the girls and the teachers. Where do we mark them?  

74 Vehbiya: The girls in the bar of tens. 

75  Kiran: Eight tens. 

76 Makbule: so 8 of, 8 of 10. 

99 Makbule: Because they took ten shots and have scored eight times.  



101 Makbule: So they have yes, ehm, they had 20 times to shoot, so could shoot 20 times. 

And they only, so they had, so they didn’t score four of them. 

In #70 Makbule reads out her written answer in the speech bubble next to the bar of fifths. She adopts 

Kiran’s mathematically more adequate construction for the relation of shots and strikes by using the 

prepositional sentence structure (“take … shots and score ... of them”). Further in the process, 

Makbule also adopts the “of-construction”, which had been introduced by the material in Task 5, in 

order to reason the fitting of the bar of tens to the results of the girls (#76). Considering Kiran’s 

utterance of the fraction in #75, it can be assumed that Makbule purposefully links the fraction with 

its meaning-related conceptualization “8 of 10”. In #99 and #101, when reasoning the fitting of the 

bar of tens and bar of twentieths, she once again uses the coordination “and” as well as the 

prepositional “of-structure”. However, in her written products she constantly applies the 

mathematically preferred “of-structure”. Thus, it can be assumed that thinking relatively as well as 

having lexical constructions for expressing relative frequency meaningfully anchored in her mental 

lexicon was successfully achieved for Makbule. It is assumed that Kiran’s introduction of the sentence 

structure “take … shots and score ... of them” was supportive for Makbule’s conceptual and lexical 

learning pathway. 

Conclusion 

To summarize, the empirical insights show how rich and demanding discourse practices can be 

initiated in small group settings by means of the design principles of macro-scaffolding and relating 

registers. The dual focus of the applied macro-scaffolding on the conceptual learning opportunities 

intertwined with language learning opportunities on the lexical level has to be emphasized as this 

builds the basis for the analysis of the initiated lexical learning processes. On the developmental level 

the presented design outcome thus helps to answer the question of how instruction can support 

students to learn vocabulary as they engage in mathematical reasoning (Moschkovich, 2013), here 

with a focus on relative frequencies. Moreover, the case of Makbule implies that offering and relating 

various mathematically intended lexical constructions could be supportive for becoming more 

proficient in the formal language of schooling. This can be implemented more prominently in the 

material by activities of reflecting and discussing concept-specific lexical means, which again would 

be an intertwined conceptual and lexical-discursive learning opportunity. 

So far, analyses of learning processes on the lexical level are quite rare in mathematics education 

research. Applying the method of trace analysis (Prediger & Pöhler, 2015) reveals details of students’ 

language production and development on the lexical level. For Makbule and Kiran differences with 

respect to which and how concept-specific lexical means have been activated and adopted became 

apparent. However, further insights into the processes of the other groups are necessary to ensure the 

first empirical results and formulated hypotheses. 
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The transition from the difference quotient to the derivative is a step from the algebraic to the 

analytic concept formation. The aim of this article is to analyze the conceptions of this transition 

that can be traced in preservice teachers’ imaginary dialogues, a form of mathematical writing. 
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Introduction 

An often formulated critique of the teaching of analysis in school is that syntactical calculus is used 

too early and there is a need for more content-related understanding of central concepts (cf. e.g. 

Hahn & Prediger, 2008). Therefore, there is a need to sensitize preservice teachers to this issue and 

strengthen their own understanding of analytical concepts.  

The course “Didaktik der Analysis” at the Alpen-Adria-Universität Klagenfurt in 2015/2016 

addressed this purpose. The preservice teachers often reflected on central concepts of elementary 

analysis, their relations and their meaning for classroom teaching. The reflections were written 

down as imaginary dialogues, a form of mathematical writing where a single student composes a 

written dialogue between two protagonists who discuss a mathematical task or question (Wille, 

2008). This article focuses on one reflection task that addresses the transition from the difference 

quotient to the derivative. The preservice teachers’ imaginary dialogues will be analyzed in order to 

determine their conceptions of this transition. 

Theoretical framework and research questions 

Within Anna Sfard’s theory of commognition (Sfard, 2008) thinking is seen as self-communication, 

an individualized version of (interpersonal) communication. The term commognition is used for 

both, the processes of thinking and communication, which are considered as two “manifestations of 

the same phenomenon” (p. 296). In commognitive research the discourses are precisely the main 

unit of analysis (cf. p. 276). Discourses are different types of commognition that “draw some 

individuals together while excluding some others” (p. 91). Sfard names as a precondition for 

learning the “recursivity of linguistic commognition” (Sfard, 2008, p. 116). An example of 

recursivity is communicating-on-communicating, such as “reports on what somebody else has said, 

remarks on her own thoughts, or reflects on other interlocutors and their communicative actions" (p. 

103). The recursivity allows for a look from the outside in order to reflect, abstract and reason.  

Conceptions of central concepts of elementary analysis have been described in various studies (e.g. 

Thompson & Thompson, 1994; Hahn & Prediger, 2008; Roh, 2008; Greefrath, Oldenburg, Siller, 

Ulm & Weigand, 2016). Danckwerts and Vogel (2006) list interpretations of the difference quotient 

and the derivative in overview tables (p. 57 and p. 85). Figure 1 shows an adapted and translated 

version of these tables. 



 

Figure 1: the transition from the difference quotient to the derivative 

Here, the vertical dashed line denotes the transition from the algebraic to the analytic concept 

formation, which is, according to Danckwerts and Vogel, particularly difficult to realize in the 

mathematics classroom (p. 85).  

In the author’s view, this is why it is particularly important for the preservice teachers to develop a 

profound understanding of this transition from various perspectives. Therefore, the focus of this 

paper is not on a single analytical concept, but on the whole figure, in particular on the arrows going 

from left to right in Figure 1. Thus, the focus is on the conceptions of the transition from the 

difference quotient to the derivative that can be traced in the preservice-teachers’ imaginary 

dialogues. The main question is: What are the aspects of the preservice teachers’ conceptions of the 

transition from the algebraic to the analytic concept formation? 

In the light of the framework of commognition, in order to initiate preservice teachers’ reflection 

processes and investigate their conceptions of elementary analytical concepts and relations, a form 

of communication seems appropriate that allows for a “look from the outside”. Imaginary dialogues, 

where one person writes what two protagonists are discussing, is such a form of communicating-on-

communicating. Furthermore, imaginary dialogues are written works of a single student (or 

preservice teacher), but they consist of written oral dialogues. Therefore, imaginary dialogues 

display characteristics of both, written and spoken language (cf. Wille, 2017). In particular, the 

processuality of spoken language comes into play and students tend to write how they understand 

something instead of only what. Therefore, imaginary dialogues are one appropriate method to 

approach research questions that concern a transition process. Another reason is practicability: by 

using imaginary dialogues it is possible to receive reflections of each student of a course several 

times within the semester, which – although they are written – contain attributes of oral language. 

Moreover, the lecturer can react to the reflections within the course.  

Method 

Altogether 40 preservice teachers participated in two parallel courses “Didaktik der Analysis” at the 

Alpen-Adria-Universität Klagenfurt in Austria in the winter term 2015/2016. The content of the 

course was oriented on the book “Analysis verständlich unterrichten” (translation: teaching analysis 

comprehensibly) by Danckwerts and Vogel (2006). Five times within the course lectures, exercises, 

and reflections alternated. As reflection tasks the preservice teachers were given written initial 

dialogues that each of them had to continue in the form of an imaginary dialogue. In the following, 



the second reflection task, the transition from the difference quotient to the derivative is in the 

focus. The initial dialogue given to the preservice teachers was the following: 

 

Figure 2: Initial dialogue task (the original German text was translated by the author)1  

Of all participants, 30 preservice teachers wrote an imaginary dialogue by continuing the initial 

dialogue above. These written texts serve as the data material for the analysis. In the following the 

research questions that will be addressed are how the preservice teachers describe the transition 

from the algebraic to the analytic concept formation, and in particular, what the aspects of their 

conceptions of the transition are. The percentages named below are meant only as informative 

“mini-statistics”, because of the small number of participants. Within the data analysis categories of 

aspects were built inductively. In a second step these aspects were categorized two perspectives. For 

a discussion regarding the depth of the preservice teachers’ reflections, see Wille (2016). 

Findings 

Within the imaginary dialogues of the preservice teachers several aspects of the previous named 

transition can be detected. In what followed they will be explained and exemplified (all examples 

were originally written in German and translated by the author). 

A1: The calculus aspect – describing the calculation of concepts with formulas 

Eleven preservice teachers (31.4%) described with formulas how to calculate concepts from the left 

or right side of the transition. For example, a preservice teacher, Lydia, describes in her imaginary 

dialogue how the difference quotient and the derivative can be calculated with the help of formulas: 

“The next step is to build the difference quotient. As the numerator you calculate: 0( ) ( )f x f x  

and as the denominator  x  – 0x . The result is the relative change in the time span from 0x to x . 

The relative change is also denoted by rate of change. 

                                                 

1 “schwupp” in the sense of “voilà” 



And now the derivative comes into play. You build
0( )f x . Now,

0( )f x  is the limit ( x   

approaches 0x ) of the rate of change. The result is the momentary or local rate of change at the 

time of 0x .” 

In a similar way Paul writes about the calculation of the rate of change: 

“Okay. Now, we can determine the rate of change by a formula. The formula you can find in your 

documents, of course.” 

Or Maria writes about the momentary rate of change: 

“Now, we reached the last step. The momentary rate of change at the time of 0x . That is the first 

derivative, thus,
0( )f x

0

lim
x x

 0

0

( ) ( )f x f x

x x




.” 

This aspect – i.e. describing the calculation of concepts with formulas – will be denoted as calculus 

aspect (A1), similarly to the calculus aspect of variables (cf. Malle 1993). 

A2: The concept identification aspect – different concepts are identified 

In the writings of Lydia and Maria another aspect becomes apparent: They are identifying concepts 

by their language use. Lydia identifies the concepts “difference quotient”, “relative change”, and 

“rate of change”. Afterwards she identifies the concepts “derivative” and “momentary or local rate 

of change”. Similarly, Maria identifies the concepts “momentary rate of change” and “first 

derivative”. Altogether 16 preservice teachers (45.7%) identify concepts likewise. 

Identifying different concepts is denoted as the concept identification aspect (A2). 

A3: The limit aspect – the right side of the transition is described as a limit 

17 preservice teachers (48.6%) describe concepts of the right-hand side as a limit, sometimes with 

mentioning a process of approaching (see aspect A4), sometimes as a “finished product”2. The first 

case (including the description of a process of approaching) appears in Elena’s imaginary dialogue: 

“S1: I see. Now, I understand it and now it is clear for me why one writes  . 

While letting ∆ x  tend towards 0, or x  towards 0x , respectively, while choosing the interval 

steadily smaller (note: here she crosses out “choosing it that small to be almost 0”) one obtains 

the local rate of change, thus, the momentary speed at a certain point of time, if one brings the 

limit into play at this point.3”  

Likewise, the process of building a limit is expressed by Jan: “Thus, the secant becomes, so to 

speak, a tangent by building a limit.” In contrast, as a “finished product” the limit is used in the 

following writing: “And in step 3 the tangent slope will be calculated as a limit.” 

Describing the right side of the transition as a limit is denoted as the limit aspect (A3). 

                                                 

2 For distinguishing mathematics as a product with mathematics as a process (Danckwerts & Vogel, 2006) or concerning 

the duality of processes and objects (Sfard, 1991). 

3 The German original text is: “wenn man an dieser Stelle den Grenzwert ins Rennen führt”. 



A4: The approach aspect – the transition is described as a process of approaching  

More than the half of the preservice teachers, 20 (57.1%) described the transition as a process of 

approaching. This can be seen for example in Elena’s imaginary dialogue above (“While letting ∆ x  

tend towards 0, or x  towards 0x , respectively, while choosing the interval steadily smaller”, see 

aspect A3) or in Patrick’s imaginary dialogue below (“we let the secant become shorter and shorter 

until it vanishes completely for 0x x ”, see aspect A6).  

This aspect – i.e. describing the transition as a process of approaching – will be denoted as the 

approach aspect (A4). It is not a subaspect of A3, because there are students who describe a process 

of approaching without describing the right side of the transition as a limit and the other way round. 

A5: The distinction aspect – distinctions between the left-hand side and the right-hand side of 

the transition are described 

17 preservice teachers (48.6%) described various distinctions between the left-hand side and the 

right-hand side of the transition. For example, the distinction of having first 0x x and then 0x x  is 

described as follows: 

S2:  Think about it: You let x  come closer and closer to 0x . What will happen then? 

S1:   They are equal eventually. 

In another two examples the distinction between having a secant at first and then a tangent is 

described and additionally, having first two points and then only one on the function graph: 

“From the secant it arises a tangent that does not intersect the function any longer, but touches it 

now in one point.” 

“(...) you don't want to have the slope of the secant between two points, but the slope of the 

tangent in only one point.” 

Finally, the distinction of having at first two points in time (in order to measure speed) and then one, 

a preservice teacher describes with these words: 

“(...) we see that the secant expresses time intervals and we calculated within those the average 

rate of change4. The point P that we approach, is therefore the momentary rate of change at a 

certain point of time.” 

This aspect – i.e. describing distinctions between the left-hand side and the right-hand side of the 

transition – will be denoted as the distinction aspect (A5). 

A6: The problem aspect – distinctions are considered problematic 

Out of the 17 preservice teachers who described distinctions between the left-hand side and the 

right-hand side of the transition, 10 preservice teachers (28.6%) considered these distinctions as 

problematic (in their language use). For example, Patrick uses phrases like “we claim that it would 

be a smart result” or the adjective “mysterious”:  

                                                 

4 Original German text: “sehen wir, dass die Sekanten die Zeitintervalle ausdrücken und wir in diesen die mittlere 

Änderungsrate berechnen.” 



“S2: (...) Now, we have 2 problems, for one thing we begin our observation with 0x x , but 

afterwards we set 0x x  and claim that it would be a smart result. Secondly, we let the secant 

become shorter and shorter until it vanishes completely for 0x x , but we claim that it became 

that way an infinitely long tangent (...) that is a somehow very mysterious and at least not 

illustrative (...)”5  

Another preservice teacher let one protagonist face the impossibility of covering a distance at a 

point of time. 

S2:  How many seconds or minutes, respectively, had passed at the point of time?  

S1:  Well, none, that is why one names it POINT of time. 

S2:  And how can you cover a distance in 0 seconds? 

S1:  That was mean! Okay, nearly no time had passed, or rather so little time that it 

makes no difference. 

This subaspect of A5 – i.e. considering the described distinctions problematic – will be denoted as 

the problem aspect (A6). 

One could go more into depth at this point to differentiate the conceptions of the preservice 

teachers. For example, it is interesting to see which words are used to describe the process of 

approaching. But this would exceed the size of this article and therefore is left for a further and 

more detailed analysis. Similarly, misunderstandings that occurred in the imaginary dialogues 

cannot be addressed here, because of the length of the article. Instead, the detected aspects shall be 

compared and evaluated. Table 1 gives an overview of the aspects discussed above: 

A1 calculus aspect the calculation of concepts is described with formulas 

A2 concept identification aspect different concepts are identified 

A3 limit aspect the right side of the transition is described as a limit 

A4 approach aspect the transition is described as a process of approaching   

A5 distinction aspect distinctions between the left-hand side and the right-hand 

side of the transition are described 

A6 problem aspect (a subaspect 

of A5) 

distinctions are considered problematic 

Table 1: aspects of the preservice teachers’ conceptions 

Discussion – vertical and horizontal perspectives  

The aspects of the preservice teachers’ conceptions detected above indicate two perspectives, a 

vertical and horizontal perspective regarding Figure 1. The aspects A1 to A2 are oriented vertically, 

                                                 

5 This argument already goes back to Newton’s academic teacher Isaac Barrow (1630-1677) (Danckwerts & Vogel, 

2006, p. 48). 



meaning that concepts or formulas are vertically linked (A1) or different concepts are identified 

either on the left-hand side or on the right-hand side (A2). Additionally, aspect A3, i.e. describing a 

limit, is oriented vertically, if the limit is seen without regarding the process of approaching. In 

contrast, the aspects A4 and A5 have a horizontal perspective, as does A6 as a subaspect of A5. The 

left-hand side of Figure 1 is linked with the right-hand side, when the transition is described as a 

process of approaching (A4), when describing distinctions between the left-hand side and the right-

hand side of the transition (A5), or when considering those distinctions problematic (A6). 

In the author’s opinion, those texts that display the aspects A4 to A6 show a content-related 

understanding by the preservice teachers. In particular, when omitting the aspects A4 to A6, the 

understanding of the transition seems reduced to a temporal “and then” in the sense of: “first you 

calculate this and then you calculate that”. Regarding the reflection depth of the imaginary dialogues 

(Wille, 2016), exactly those preservice teachers whose imaginary dialogues did not indicate 

horizontal-oriented aspects (31.4% of the participants) displayed the shallowest reflection depth.  

In the course “Didaktik der Analysis” with the help of the imaginary dialogues, it was possible to 

react to imaginary dialogues, aspect diversity and misunderstandings during the semester. 

Additionally, some participants themselves regarded the time exposure negative, but mostly they 

perceived the writing of the imaginary dialogue positive as one preservice teacher wrote in a 

comment: “It was positive that first, while writing the reflection, it became really clear whether a 

topic was understood or not.”  

In summary, the method of imaginary dialogues turned out to be helpful to detect different aspects 

of the conceptions regarding the transition from the difference quotient to the derivative. In the 

author’s opinion, a profound understanding of preservice teachers should display various 

perspectives, horizontal and vertical, in order to be able to address the diversity of the students’ 

conceptions later in class.  
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What is the role of the implicit in teaching and learning functions? Functions are a central topic in 

mathematics classrooms in Germany. The mathematical concept of a function is typically 

represented by graphs, tables of data, algebraic expressions or by verbal descriptions. Formal 

definitions of functions only play a minor role in school mathematics. This is one reason why the 

mathematical content of what a function is, remains implicit when teachers and students talk about 

functions. Another reason for being implicit about functions in classroom conversation is inherent 

in the structure of language: in many utterances the implied meaning differs from the literal 

meaning. I use Swan’s (1982) model of translation skills and Grice’s (1975) concept of implicatures 

in order to analyse videotaped classroom conversation in a unit on functions. In this paper, I sketch 

the concept of implicitness in mathematics lessons. 

Keywords: Functions, classroom conversation, discourse analysis, implicit meaning, implicature. 

Introduction 

In my research on the implicit in classroom conversation about functions I seek to describe the 

discourse of learners and teachers in order to reveal the hidden, the unsaid, the implied meaning that 

has to be decoded to create and follow lessons sensibly. I want to characterize the interplay between 

the implicit in the mathematical object and the implicit in language when talking about functions. 

My research questions are: How are functions brought up in classroom conversation? And: What is 

the role of the implicit in classroom conversation in a unit on functions? 

It is common sense that language is important for all school subjects. Mathematics is no exception 

(see for example Meyer & Prediger, 2012) – it is needed to get access to mathematical matters and 

to express mathematical concepts. Participating in classroom conversation and getting access to the 

mathematical content of mathematics lessons can become difficult for the participants on different 

levels. Apart from obstacles that are immanent in mathematical concepts there may be vocabulary or 

grammar difficulties, difficulties in the semantics as well as difficulties in a pragmatic sense when 

learning new contents. In my work, I focus on a pragmalinguistic perspective on classroom 

conversation about functions. This perspective takes into consideration that not only words or 

sentences are meaningful when talking but also the context of an utterance. Looking at language that 

way promises to reveal an unsaid meaning that can be found between the lines. The idea of making 

the unsaid or the unsayable come to the surface by analyzing the classroom discourse seems 

conveniently suitable to approach the processes in mathematics classrooms when abstract objects 

like functions are tried to be made accessible. 

Didactical analysis 

In order to link my language analysis to the mathematical content, I analyze the lessons and 

especially the classroom conversation on a didactical level at first. I seek to figure out what is 

presumably intended to be taught and learned about functions when working on different tasks and 

when talking about them. 



The mathematical object function is very abstract. Looking at the historical development, the 

understanding of what a function is demonstrates how much functions are attached to their 

representations (Malle, 1996). Till today in German classrooms functions are a central topic in the 

curriculum where traditionally the representations like algebraic expressions, graphs, tables of data 

and (realistic) situations of functional dependencies play an important role. Swan (1982) developed 

a model to describe the different activities, the so-called translation skills that have to be performed 

when transforming one representation into another. In my work, I categorize the classroom activities 

into sequences according to those translation skills. I focus especially on the skills that afford 

translating a representation of a function from or into situations that are generally closely linked to 

verbal descriptions. The activities when a representation is transformed from a situation can be 

summarized as modeling skills and activities when a representation is transformed into a situation 

can be summarized as interpretation skills. 

Furthermore, different aspects of a function can become central in different tasks: you can classify 

the thinking about function into the following categories (Vollrath, 1989): functional dependency as 

a point wise relation, functional dependency as a dynamic process and functions viewed as objects 

or as a whole. The point wise relation takes into consideration that one independent element of a set 

gets mapped to one dependent element of a set, the dynamic process stands for the change that is 

produced in the dependent values when changing the independent values and functions as objects 

look at the given or produced correlation as a whole. Each activity or rather each translation skill 

can be performed on all of these three levels and form the second dimension for the didactical 

analysis of the lessons in my investigation. 

In The example, I demonstrate how I work with this analysis in combination with the linguistic 

analysis in order to get a description of the implicit in the classroom conversation on functions. 

Linguistic analysis 

For the linguistic analysis, I use Grice’s theory of conversation (Grice, 1975) as the background 

theory. Central in his theory are so-called implicatures – very generally speaking an implicature is 

existent when something that is literally said by an utterance differs from what is meant by that 

utterance. An implicature analysis, as for example suggested by Hagemann (2014), reveals the 

implicit and what is likely to be meant and understood by the participants. Pimm (1994) claims that 

Grice’s implicatures are also relevant in classroom discourse and Rowland (2002) presents analysis 

of students’ utterances in mathematics discourse using Grice’s ideas as a starting point for his 

theoretical framework. 

Grice’s concept of implicatures is based on the cooperation principle: 

Make your conversational contribution such as is required, at the stage at which it occurs, by the 

accepted purpose or direction of the talk exchange in which you are engaged (Grice, 1975, p. 45). 

Under this assumption nothing that is uttered by a participant of a conversation is assumed to be 

meaningless and the speaker of the utterance supposes that the conversation partners can decode the 

utterance meaning. The cooperative principle is formulated very general and leads to more specific 

aspects about how understanding is produced in conversation. These aspects are the so-called 



conversational maxims. Grice formulates twelve maxims1 that are categorized into the maxims of 

quantity, quality, relation and manner. Whenever one of the maxims is violated this is a hint at the 

actual meaning of an utterance. While talking the flouting of maxims is an intuitive process that 

leads to understand an utterance in a specific way. An implicature analysis explains how a particular 

intuition is evoked. The following example illustrates the formation of an implicature by infringing 

the maxim of relation be relevant: The setting of the following conversation between two students is 

a lesson at school. The students are supposed to write down a solution to a textbook task. 

(1) A: I do not have a pencil. 

 B: My pencil case is on the table over there. 

In example (1) A implicates that she or he needs a pencil and B implicates that A can find one in the 

pencil case on the table. Both utterances only indirectly hint at the presumably intended meaning. 

The literal meaning is simply that one student does not have a pencil and that there is a pencil case 

on the table. The literal meaning is not very likely to be the intended meaning as this meaning 

would not be relevant in the given context. 

To confirm the presence of a conversational implicature in Grice’s sense implicatures need to have 

two characteristics – non-detachability and cancelability. These attributes can be tested as follows 

(Korta, 1997): the implicature is non-detachable if you find synonym ways of saying the utterance 

without changing the implicature. In example (1) you could change A’s utterance into “I do not hold 

a pencil.” The implicature then remains that A needs a pencil. And the implicature is cancelable if 

you can neglect the implicature without producing a conflict with the literal meaning. For A in 

example (1) it is possible to say: “I do not have a pencil, but I do not mean that I need one. In fact, I 

do not want to write something down.” 

Both utterances in (1) could have been expressed explicitly, for instance by the following exchange: 

(2) A: Please lend me a pencil. 

 B: You can use one of my pencils – take one out of my pencil case on the table. 

In this case, the literal meaning and the intended meaning coincide and no implicature is used in this 

excerpt. 

Hagemann (2014) formulates an implicature analysis that refers to Grice’s theory of conversation. It 

follows three steps, which I also use for my analysis: Firstly, contextual elements such as 

disambiguation and referent assignment have to be determined. Secondly, suspected implicatures 

have to be tested on cancelability and detachability. Thirdly, a sequence analysis confirms what 

implicatures are most likely. In example (1) the implicature could be as already suggested above “I 

need a pencil”, but it could also be “I cannot (and I do not want to) write down my solution to the 

textbook task”. The answer of B allows both possible implicatures, but depending on further 

reactions that may follow this little conversation it can be that one or the other is more plausible. In 

other words: in the third step you look at what happened before and after the utterance to find out 

what is most likely intended and understood.  

                                                 

1 Grice’s (1975) maxims of conversation: make your contribution as informative as is required, do not make your 

contribution more informative than is required, try to make your contribution one that is true, do not say what you 

believe to be false, do not say that for which your lack adequate evidence, be relevant, be perspicuous, avoid obscurity 

of expression, avoid ambiguity, be brief, be orderly.  



The example 

In the following paragraph, I want to demonstrate how I analyze sequences of lessons in order to 

give a detailed description of what remains implicit in classroom conversation on functions. 

The setting of the discussion 

Participants in the presented classroom conversation are the members of a course in secondary 

school with 29 students and their mathematics teacher. The students are in the 11th grade on a high 

level, preparing for the last two school years in order to get the Abitur2. The classroom is equipped 

with a black board that is used frequently during lessons by the teacher as well as by the students. 

Tasks are generally handed in in written form on worksheets. The teaching methods and the social 

forms vary depending on the task. The researcher participates during the lessons only as an observer 

and does not interfere. The lessons are designed by the teacher without any collaboration with the 

researcher in order to observe lessons as close as possible to usual lessons. 

The task – Walking functions 

The task walking functions and the excerpts of the conversation on that task are taken from the first 

lesson in a unit on functions in the course introduced above. 

 

 

Figure 1: The task – walking functions 

The task walking functions requires transforming a graphic representation of a function into a 

suitable realistic situation. That means given graphs have to be interpreted. In the setting when a 

group presents its movements also the reverse is required for the observers: movements have to be 

referred to graphs. In this task interpretation skills are in the focus while modeling skills only come 

                                                 

2 The Abitur is the highest graduation in the German school system that forms the general qualification for university 

entrance. 

 



up to a lesser extend. The transformation of a graph into a movement demands to have a view on the 

function as a whole and not only on a certain point of the underlying function. In the example above 

(see Figure 1), the meaning of straight lines, the meaning of the intersections between the graphs 

with the ordinate as well as meaning of the parallelism of the graphs must be considered. Also the 

change of distance to the chair in relation to the change of time has to be taken into account. 

When having two representations of a function, it is not immediately obvious that those two 

representations stand for the same function. In this example it can only be seen implicitly by making 

clear what certain characteristics of a graph mean in the context of the movement in relation to the 

chair. The second part of the task asks to give an explanation why the group decided on their 

specific movement. It is asked to make the relation between two representations explicit. 

In my analysis of the classroom situation I seek to reconstruct what is made explicit and what 

remains implicit when an accepted interpretation of the translation from graph into a situation is 

debated. 

The conversation about the task 

During the lesson the students worked in groups of three on the task walking functions for about 15 

minutes. After working on the task in the groups, three different presentations of movements and 

explanations were performed. All three groups had different ideas: 

In the first group, two students started their movement a few meters away from the chair and walked 

constantly to the chair. One of them stopped at the chair, the other one stopped at the same time but 

at some distance to the chair. Their explanation was the following: “Well, we did it that way- well, 

Paula was the one and Paula started to walk a little earlier because the graph does not start at the 

zero point. And then Luna came along and then they walked in parallel because they run parallel.”3 

In the second group, two girls both started in line with the chair and walked vertically to that 

imaginary line away from the chair keeping the same distance between them. They commented on 

their movement. A: “Well, not the way that we walk apart, but parallel. But it goes (up) then.” B: 

“[… ] Because we thought that the x-axis is sort of the position of the chair.”4 

In the third group, two students walked one after another constantly away from the chair. They 

started and stopped their movement at the same time and explained: “Well, firstly they did not start 

at the same point because ehm well you have you see on the y-axis that someone starts further 

                                                 

3 Translated from the German transcript by me. Original: “Also, wir haben die so gemacht weil- also Paula war die eins 

und Paula ist ein bisschen früher losgelaufen, weil der Graph ja nicht im Nullpunkt startet. Und dann ist Luna 

mitgekommen und dann sind die parallel gelaufen, weil die parallel verlaufen.” 

4 Translated from the German transcript by me. Original: A: “Also so halt nicht, dass wir auseinanderlaufen, sondern 

parallel. Aber es geht dann (hoch).“  B: Weil wir gedacht haben, dass ja die x-Achse sozusagen die Positon vom Stuhl 

ist. Dann geht das ja davon weg.” 



ahead, well that he is further away from the chair. […] And they walked at the same speed because 

the graphs run quasi parallel against each other.”5 

In the sequence outlined above the students discuss different aspects of the functions in the task. At 

that point it is not clear which movements and explanations are accepted as a correct translation 

from the graphic representation into the movement. Subsequently to the presentations, a classroom 

conversation starts and it is clarified what is considered to be a correct solution to the task. At the 

end of the discussion, the third group is considered to have presented the best matching movement. 

In the following paragraph, I try to reconstruct the process to come to this conclusion and thereby I 

focus on what remains implicit. The expressions in curly brackets are my interpretation of the 

intended meaning or rather the implicatures of the utterances. 

Finding a suitable movement for the graphs in Figure 1 is not distinct and the different presentations 

show that the students pick out some characteristics of the graphs and refer them to the movement.  

All three groups relate the parallelism of the graphs. The first states: “[…] they [the girls] walked in 

parallel because they [the graphs] run parallel.” Presumably they implicate “they [the two girls] 

walked in parallel because {that is the meaning when} they [the graphs] run parallel.” The second 

group also points out that walking in parallel is the correct transformation: “Well, not the way that 

we [the two presenting girls] walk apart {by mistake}, but parallel.” The third group is the first that 

relates walking at the same speed to the parallel running graphs: “And they [the two presenting 

students] walked at the same speed because {that is what is meant when} the graphs run quasi 

parallel against each other.” In all three explanations they mention different characteristics of the 

functions apart from the parallelism. That is a hint that they see the function as a whole even though 

not entirely as they miss mentioning some of the functions’ relevant characteristics that could be 

observed in the graphic and situational representation. By their performances and their utterances, 

the groups made clear what they assume to be the correct relation between the representations. They 

claim this connection without making explicit why that relation is supposed to be correct. 

After these three presentations the teacher asks several questions: “What is the origin of the 

coordinate system? What is on the x-axis? What is the y-axis? And what does parallel mean?”6 The 

teacher seems to pick out the characteristic of the functions she considers to be relevant in this task. 

When looking at the conversation after these questions you can identify the implicatures: “What is 

{the meaning of} the origin of the coordinate system {in relation to the situation}? What is {the 

meaning of} the x-axis {in relation to the situation}? What is {the meaning of} the y-axis {in 

relation to the situation}? And what does parallel mean {in this context}?” She implicitly focuses 

the conversation on the relations between the representations. The relations between the 

representations are discussed for about four minutes. Then the teacher also brings a new possible 

                                                 

5 Translated from the German transcript by me. Original: “Also erstmal, ähm, sind die Beiden nicht vom gleichen Punkt 

gestartet, weil ähm, ja weil hat man halt auf der y-Achse sieht, dass jemand weiter vorne startet, also dass er weiter vom 

Stuhl entfernt ist. Und dann halt so bald neben dem Stuhl. und die sind beide gleich schnell gelaufen, weil die ehm 

Graphen halt quasi parallel aneinander laufen.” 

6 Translated from the German transcript by me. Original: “Was ist der Ursprung des Koordinatensystems? Was ist auf 

der x-Achse? Was ist auf der y-Achse? Und was heißt das mit dem Parallel?” 



relation not mentioned before into the discussion: “The graphs go up. That means you walk away 

from the chair. But it [the movement] is getting faster because {that is meant when} it [the graph] 

goes up. What do you think of this argument?”7 This utterance brings the students to see the rising 

of the graph as the speed of the movement and finally to declare that the movements of group three 

are best matching to the graphs. At no point in the discussion the parallel graphs are related to 

movements with the same speed again as suggested by group three at the beginning. Although the 

parallelism is brought into discussion several times the relation between the parallel graphs and the 

movements with the same speed remains implicit till the end of the conversation sequence about the 

task walking functions. 

Conclusion and discussion 

Such a dense description of the activities in the classroom with the focus on the implicit has the aim 

to make the implicit accessible. It can be seen as an objectification of the assumptions and 

normative demands that resonate subliminally in the lessons. In the presented classroom 

conversation, the convention that parallel running lines in a path-time diagram stand for movement 

at the same speed is initiated. This relation between the two representations is declared correct by 

employing many implicit relations and implicatures. This shows that decoding the implicit in the 

classroom conversation is relevant. An analysis as demonstrated above can help to understand the 

demands on teachers and students in the classroom to create and follow lessons sensibly. 

This analysis of the episode in this paper is just the beginning of my research, my starting point of 

looking at mathematics lessons with a specific lens – with a lens, which seeks to make invisible 

demands in mathematics discourse visible. Comparing the analyses of different situations with a 

similar mathematical content can reveal how the implicit is used in mathematics classroom 

systematically and give insight into the role of the implicit in teaching and learning of functions. 

With the help of these analyses I want to develop a local theory on implicitness in classroom talk on 

functions that links Grice’s vast theory of implicatures to the mathematical topic of functions in 

mathematics classrooms. Whether the evolving theory holds will not be part of this research, but 

should be probed by using it for broader classroom observations for example.  

Didactical implicatures for mathematics lessons deriving from insights in the meaning of the 

implicit cannot be given at this point of my research. Only as a final result of further analyses ideas 

for teaching and learning may be devised. For now, I can conclude that implicatures play a role in 

classroom conversation on functions and that I am curious about finding out more about the 

relevance of the implicit in mathematical classroom conversation. 
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Despite the digital revolution much of the mathematics practiced in schools is still tightly bound to 

two-dimensional texts. This emphasis on text is neither surprising, nor inadequate, since mathematics 

has developed through a long history with the use of written text, consisting of natural language, 

mathematical notation and images. Natural language is our native language consisting of letters and 

words (see e.g., www.oed.com). Different features of the mathematics text are also important in 

written tests, since reading the text is part of the assessment. If the text is hard to read, that difficulty 

can be relevant as part of assessing the communicative competence in mathematics. Crucial is, 

however, whether potentially difficult textual features are part of what the assessment aims at. This 

issue is investigated in the current study, using a synthesis of statistical results and qualitative analyses 

of task text. 

A critical question is where to draw the line between necessary and unnecessary reading demand and 

how to judge which textual features are irrelevant and therefore should be avoided in mathematics 

assessments. In the current study this aspect of reading demand is addressed through a small meta-

analysis of four studies where different textual aspects in task text are analyzed in relation to task 

difficulty and task reading demand. The theoretical starting point for the current research is an 

understanding of language as an essential part of mathematics. It has been argued theoretically that 

the understanding of a mathematical object develops as the student develops her or his discourse on 

that object (see e.g., Sfard, 2008). An understanding of mathematics discourse as part of what 

mathematics is, is in line with the theoretical interpretation of the statistical measure for demand on 

reading ability (DRA) used in the studies included in the meta-analysis conducted in the current study. 

DRA is a measure of the unnecessary reading demand in a mathematics task, and within this 

interpretation lays also an assumption of a kind of reading demand that is relevant in mathematics 

tasks (see also Dyrvold, Bergqvist, & Österholm, 2015). The purpose of the study is to contribute to 

the knowledge about which textual features in tasks are demanding and whether that difficulty is a 

mathematics relevant difficulty. The research questions are: i) what conclusions can be drawn 

regarding reading demand in mathematics tasks in relation to textual features?, and ii) how can the 

conclusions based on statistical analyses be interpreted in relation to a qualitative analysis of 

mathematics task text with a high reading demand? 

The study consists of a meta-analysis and a qualitative analysis of tasks that stand out in the 

quantitative analysis. Only four studies are included in the meta-analysis but even such a small meta-

analysis do contribute to the development of knowledge since the analysis enables conclusions to be 

drawn that would not be possible to draw with-out such an analysis. The qualitative analysis has a 

systemic functional perspective (Halliday & Matthiessen, 2014) and includes also images and 

mathematical notation. 

http://www.oed.com/


The meta-analysis focuses on textual features in relation to two quantitative measures; task demand 

on reading ability (DRA) and task difficulty. Results in relation to those variables (difficulty and 

DRA) are relevant to interpret together since they represent different aspects of how a task can be 

demanding. The measure DRA is obtained through a principal component analysis (PCA) on students’ 

results on PISA reading and mathematics tasks. The result of the PCA is several components that 

explain different parts of the results on the tasks. The components are statistically disjoint, and 

therefore the DRA represents demand on a reading ability that is not part of a mathematical ability 

(see also Dyrvold et al., 2015). Through the analysis, every PISA mathematics task obtains a loading 

value on that component, a value interpreted as the tasks DRA.  

The results reveal several features of the natural language that distinguishes tasks with a high DRA, 

but also that the images are more tightly integrated with the sentences in tasks that have a low DRA 

but are difficult to solve. For tasks with high DRA, the sentences are knitted together through the 

Themes (the topic of the sentence) and Rhemes (what is presented in relation to the theme) something 

that is not as pronounced in task with low DRA (Theme and Rheme are explained by e.g., Halliday 

and Matthiessen, 2014). One example of that can be found in the following sentences. The Themes 

are underlined. “The sculpture is a half circle with the radius 2m. The half circle is inscribed in a 

square.” Those sentences represent a linear progression since the Rheme of the first sentence becomes 

the Theme of the next sentence.  

The results from the meta-analysis reveal other features than the natural language (words and letters) 

that are related to difficulty but not to DRA. Tasks with high DRA and tasks with low DRA are alike 

when it comes to presence of natural language, images, and symbols but for tasks with a low DRA 

there are more references within natural language and between natural language and images or 

symbols. In summary, the textual analyses reveal features of the text in tasks with high DRA that 

enlighten what the high reading demand may stem from, since the textual analyses indicate that the 

progression between Themes and Rhemes can be a distinguishing feature for tasks with high DRA, 

whereas references to images may not play such a role.  
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Recent studies on adult literacy and numeracy raised several key issues some of which are (a) over 

the last 20 years there has not been significant improvement in adult literacy and numeracy in 

Canada; (b) regions within Canada will not have enough post-secondary graduates with sufficient 

literacy skills to fill the jobs created by the Canadian economy; (c) declining numeracy may be due 

to gender discrimination and skill mismatch in the workplace which in turn, contributes to the 

shrinking pool of skilled labour; and (d) currently, there are no existing numeracy programs for non-

STEM students at the postsecondary level to address the issue of innumeracy or risk illiteracy 

(OECD, 2013). Like statistical literacy, risk literacy requires familiarity and comprehension of the 

statistical and risk lexicon that is often confused and/or misused in the public sphere. Bolton (2010) 

remarks that published statistics are inappropriately used when they are presented without context, 

use confusing terminology, and misuse or use ambiguous terms. He adds further that, the concept of 

uncertainty is often “lost, forgotten or ignored by authors” creating misleading and/or inaccurate 

estimates that do not reflect the entire scenario.  

Theoretical framework 

Mathematical instruction and comprehension of abstract concepts such as risk, are executed through 

language and use conceptual metaphor. Language clarifies meaning, making meaning more precise, 

and executes an operative (process) role in thinking. According to Jurdak, Vithal, de Freitas, Gates, 

and Kollosche (2016), any level of mathematics instruction is mediated through language. Nunez 

(2007) explains that, mathematics is predominantly metaphorical and to make abstract mathematical 

concepts concrete requires the use of conceptual metaphors which are language and cognitive 

devices. He defines a conceptual metaphor, as a “cognitive mechanism that allows us to reason 

about one kind of thing as if it were another”, more specifically it is a “grounded, inference-

preserving, cross-domain mapping, neural mechanism that allows us to use the inferential structure 

of one conceptual domain (e.g. geometry) to reason about another (e.g. arithmetic)” (pp .4-6). The 

instructional resource examines language and conceptual metaphors used in risk instruction focused 

on developing skills in decoding and understanding publicized risk in legal, social, financial or 

medical contexts. 

Methods and findings 

The methodology of this study was guided by McTighe and Thomas (2003), Understanding By 

Design (UbD) framework for curriculum planning and design that is to (a) identify the desired skills 

or outcomes required (b) determine the assessment evidence and (c) plan the experience or 

instruction. The content of the instructional resource comes from the results of literature review and 

web research, information interviews, document analysis, government publications, curriculum 

documents, expert critique and informal information gathering from practitioners in the field. 

Cumulative and summative assessment rubrics in the resource were developed based on Facione 



(2011) critical thinking assessment. A small group of independent reviewers examined a lesson on 

risk and were asked to provide independent written feedback to the lesson questionnaire. The 

resource was further revised with respect to its structure, content and recommended instructional 

methodology and reviewer feedback was included in the pilot lesson. 

Reviewers commented that the instructional resource was relevant, well-constructed, and raised 

awareness of risk miscommunication. Respondents agreed the lesson had a logical flow, 

demonstrated progression and that the background information was indeed necessary to provide 

context, to follow presented arguments, and to comprehend and make sense of data. All respondents 

agreed with the type and appropriateness of the lessons assessment also remarking that the self-

assessment was very important to verify their own understanding. The findings from this 

development study confirmed that basic risk comprehension can be achieved by rephrasing risk and 

expressing probability as a natural frequency within a specified context. 
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The state funded project ‘Professional teaching practice to promote subject-related learning under 

changing social conditions’ (ProfaLe) aims at improving teacher education at the University of 

Hamburg at various levels: One objective is to sensitize future mathematics teachers to language 

difficulties in mathematical learning processes and tasks as well as to promote professional 

competence in helping students to tackle possible learning barriers based on language difficulties. For 

this purpose, courses, which integrate aspects of language learning into mathematics education, are 

going to be developed and their effects will be evaluated in an ongoing PhD study using video-

vignettes and interviews.  

International large-scale studies like PISA and TIMSS and other studies have repeatedly shown that 

a connection between the first language, language proficiency and the mathematical performance of 

students exists. Especially skills referring to a language register described by Gogolin (2009) as 

academic language (so-called ‘Bildungssprache’) have proven to be vital for educational success. In 

mathematics classes different language registers are needed and used: everyday language, 

‘Bildungssprache’ and mathematical language. Halliday defines register as “a variety according to 

use; a register is what you speak at the time, depending on what you are and the nature of the activity 

in which the language is functioning” (Halliday, 1978, p. 31). Consequently there is no translation 

from one register into another without shifts in meaning and function, but it is often not possible to 

make a clear separation between the registers. The concept of ‘Bildungssprache’ refers to the ability 

to employ language skills in order to access knowledge and participation in education discourse 

(Gogolin, 2009). Language in mathematics teaching and learning has not only a communicative, but 

also a cognitive function (Maier & Schweiger, 1999) and is for instance very important for developing 

mathematical concepts. Although teachers should promote language skills according to the German 

national standards, language is seldom addressed explicitly in ordinary classroom activities (Schütte 

& Kaiser, 2011) and future mathematics teachers at the University of Hamburg are currently not 

obliged to attend courses focussing on the subject-specific role of language in teaching and learning. 

For this reason, elements of inclusive language teaching are going to be developed, tested and 

implemented into two consecutive courses at the master studies in mathematics teacher education.  

The first course refers completely to the role of language in teaching and learning mathematics and 

offers opportunities to learn about linguistically diverse students from the perspective of intercultural 

education, applied linguistics and language teaching. The second course accompanies the school 

internship and, therefore, is more general about mathematics education and pedagogical aspects such 

as classroom management, nevertheless continuously considering language and its learning. The 

future mathematics teachers will be enabled to recognise different registers and related to that 

potential language barriers in written mathematics texts as well as in text-production tasks. For that 



aim future teachers analyse mathematical tasks and text-vignettes as well as video-vignettes 

displaying mathematical solving processes of students. The future teachers will be familiarised with 

the approach of Scaffolding (Gibbons, 2002), which has proven to be effective for language-based 

learning difficulties and plan lessons or parts of it combining language and mathematics learning. In 

the second course the future teachers are developing even more awareness of the role of language by 

reflecting their own or joint classroom observations i.a. in the accompanying course at the university.  

The ongoing PhD project aims at examining the changes concerning noticing and beliefs of the future 

teachers. The main research question is: to what extent can relations be reconstructed concerning the 

awareness of the role of language in mathematics teaching before and after an intervention? Before 

and after every of the two courses semi-structured interviews will examine which beliefs about the 

relationship between language and mathematics teaching the future teacher hold and how these beliefs 

may change. Based on the situated approach for measuring competencies by Blömeke, Gustafsson 

and Shavelson (2015) and the concept of noticing (Sherin, Jacobs & Philipp, 2011) the project 

presented here aims at coming closer to the measurement of the performance of the future teachers 

by evaluating situation-specific skills with a video-vignette. Interviews (pre-and-post) based on a 

video-vignette will provide data which linguistic aspects of teaching and learning mathematics future 

teacher notice, how they would decide to react in a specific situation and how this may change due 

the two courses. All data will be analysed by qualitative text analysis (Kuckartz, 2014).  
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Teaching and learning mathematics is based on the use of language: for introducing and defining 

new mathematical objects, discussing different ways of calculating, documenting the results of a 

proof or explaining how to handle teaching materials, different representations are used, but almost 

always accompanied by language. Language as a medium and an aim of mathematics lessons at 

school is a well-known object of didactic research. In the last years one can observe a focus on 

differentiations and transitions between different languages (or registers of one language) used in 

mathematics (Duval, 2006) or questions of teaching in multilingual classrooms (Ahrenholz, 2010; 

Prediger, Clarkson & Bose, 2016). On the other side, the professional knowledge of teachers, and 

questions on how this can be developed in pre-service and in-service lessons gained considerable 

interest. Beside others “Explaining” was recognized as an important factor of effective instruction 

(Kunter et al., 2013; Vogt, 2009). Bringing this together, the question is, which language-related 

competencies a teacher has to have as part of his professional knowledge and when, where and how 

he can achieve this. Therefore, several universities in Germany designed and developed exemplary 

trails in preservice teacher-studies in the last years. In most of the cases these are extra, but 

obligatory courses on “German as second language”. Another approach is followed for example by 

a project called “Umbrüche gestalten – Sprachen bilden Niedersachsen” (languages educate Lower 

Saxony) (http://www.sprachen-bilden-niedersachsen.de/index.php/projekt.html) of all universities 

with teacher education in Lower Saxony. 

A “Language Curriculum” (SuM_MaSt) 

Following the approach of the project “Umbrüche gestalten” we developed a pre-service “language 

curriculum” for teachers of mathematics (based on experiences of the implementation of language 

studies in teacher studies mentioned above) following four assumptions for learning opportunities 

(used to guide the curriculum):  Learning tasks should: 

(a) be spread from the beginning to the end of the academic studies, like a vertical spiral 

curriculum, 

(b) be integrated in mathematical lessons, for the technical language of mathematics is best learned 

by doing mathematics; certainly, there are also a couple of explicit language-related courses, 

(c) evoke an active and reflective handling with language in learning situations and be applied and 

tested in authentic situations,  

(d) include individual feedback and allow some comparative measurements.   

And in addition: It should be transferable to other designs of academic studies for teachers at other 

universities and to other subjects. 

mailto:rauf@imai


Among the language and language learning competencies are the ability to use the language of 

mathematics and some of the other languages used in schools (e.g. colloquial language or 

“Bildungssprache”). This needs to be done adequately to learners and learning situations. After 

some pre-studies the design based research project SuM-MaSt started fully 2016 at the University 

of Hildesheim. Around 20 learning task were implemented: 

 tasks integrated in mathematical lectures, for example using different registers and

representations while explaining main topics, verbalize formulas and write down

explanations for pupils, deal with historical sources in the original language

(feedback/evaluation (qual.): correctness of the mathematical content and adequacy of

language)

 explicit courses about “Language and Mathematics” contenting representations of

mathematical objects and concept building, communication and argumentation, language

sensitive teaching material; (feedback/evaluation: analysis of the results during the lessons)

 theoretical inputs in lectures, for example “Explaining” in the lecture “arithmetic”

(feedback/evaluation (qual.): describing the development of linguistic competencies)

 practical exercises in schools.

Beside further designing, implementing and evaluating of language-focused tasks in the mathematic 

curriculum in the next terms we will take first steps to a transfer of these tasks to other subjects, 

beginning with the natural sciences.  
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Scope and focus 

Thematic working group 10 is interested in discussing diversity and mathematics education within 

the realms of the societal, the cultural, and the political. In the work of the group, mathematics 

education is assumed to refer to more than the encounter between an individual and a mathematical 

object and is considered to occur in wider contexts than just classroom settings. The group is 

specifically interested in discussing research that addresses how diversity affects students´ 

possibilities to learn in mathematics education. Diversity also occurs in relationship to who is doing 

the research and who is being researched, posing methodological issues of an ethical nature. Hence, 

multiple diversities intersect, and in so doing pose challenges to intended and actual learning and 

teaching practices in their multiple forms. 

Organisation of TWG 10’s work 

In the seminars during CERME10, papers were presented in a similar way to what had occurred 

previously, in that the authors did not present their own paper. Instead each paper was presented by 

another author giving a description of the main ideas from the perspectives adopted in the paper. 

The author(s) then had a few minutes to add to or comment on the presentation, with the possibility 

of pointing out or emphasising important aspects. In the end of each session, there was time for 

discussing the presented papers. These discussions firstly occurred in small groups and then were 

shared in the whole group. A poster session with 5 posters was held, in addition to the general 

CERME poster session. Here each author had 3 minutes to describe the content of their poster. The 

poster authors then positioned themselves next to their respective posters to engage in discussions 

with group members. 

The papers discussed 

Below are the papers presented during our sessions with the respective presenter(s).  

Papers and authors Presenter 

How Sámi teachers development of a teaching unit influences their 

self-determination by Anne Birgitte Fyhn, Tamsin Meaney, Kristine 

Nystad, Ylva Jannok Nutti 

Anette Bagger 

Importance and possibility of integrating gender competence as a 

key qualification in mathematics teacher education by Anina 

Mischau, Katja Eilerts 

Helena Roos 

Cultural diversity as a resource or an obstacle for teaching practices Tamsin Meaney 



in multicultural milieu: Experience of a training course for Italian 

teachers about Chinese Shuxue by Benedetto Di Paola, Giovanni 

Giuseppe Nicosia 

Table 1: Session 1.  

 

Integrating critical theory and practice in mathematics education by 

David Swanson, Laura Black 

David Kollosche 

Incepted neoliberal dreams in school mathematics and the Chilean 

experience by Melissa Andrade-Melina 

Anne Birgitte Fyhn 

Towards cultural responsiveness in mathematics education by 

Swapna Mukhopadhyay, Brian Greer 

Hilary Povey 

Content-related and social participation in inclusive mathematics 

education by Judith Jung, Marcus Schütte 

Colin Jackson 

Social class and "ability" grouping in mathematics in English 

secondary schools: A review by Colin Jackson 

Sabrina Bobsin 

Salazar 

Table 2: Session 2 

 

Subjective theories of teachers in dealing with heterogeneity by 

Elisa Bitterlich, Judith Jung, Marcus Schütte 

Benedetto di Paola 

"No, it just didn't work": A teacher's reflections on all-attainment 

teaching by Colin Jackson, Hilary Povey 

Javier Díez-Palomar 

The socio-politics of teacher explanation in mathematics education 

by David Kollosche 

Elisa Bitterlich 

Diversity in an inclusive mathematics classroom by Helena Roos John Keogh 

“It is only a test”: Social aspects of displaying knowledge in 

mathematics for Second Language Learners (SLL) by Anette Bagger 

Melissa Andrade-

Melina 

Table 3: Session 3 

 

Polish parents and mathematics education in Swedish preschools by 

Dorota Lembrér 

Judith Jung 

(Wanting to do) Ethical research in a shifting context by Andrea 

Eikset, Trude Fosse, Troels Lange, Johan Lie, Magni E. H. Lossius, 

Tamsin Meaney, Elena Severin 

David Swanson 

Mathematics at the enterprise: Industry, university and school 

working together to facilitate learning by Hans Kristian Nilsen, 

Brian Greer 



Anne Vegusdal 

The context of workplaces as part of mathematics education in 

vocational studies: Institutional norms and (lack of) authenticity by 

Lisa Björklund Boistrup, John Keogh 

Alex Montecino 

Table 4: Session 4 

School mathematics education through the eyes of students in 

Ghana: Extrinsic and intrinsic valuing by Wee Tiong Seah, Ernest 

Kofi Davis, Monica E. Carr 

Anina Mischau 

Teaching practices in a mathematics classroom and their connection 

to race and racism in the United States by Sabrina Bobsin Salazar 

Dorota Lembrér 

Exploring Roma learning Mathematics: A sociomathematical view 

by Javier Diez-Palomar 

Wee Tiong Seah 

The mathematics teacher’s quasi-Darwinism. Problematizing the 

mathematics education research by Alex Montecino 

Hans Kristian Nilsen 

Table 5: Session 5 

Themes discussed in the TWG 

As at previous CERMEs, TWG10 discussed political aspects of mathematics education intensively. 

One way of addressing political aspects of diversity in mathematics education is by assuming 

research as always, in one way or another, constituting political acts. This assumption rejects a naive 

idea of research as politically neutral, providing objective data that is used to rationally guide policy. 

An example is Fyhn, Meaney, Nystad and Nutti (this volume) who address cultural responsive 

teaching of mathematics in relation to Indigenous (Sámi) teachers’ self-determination. The 

acknowledgement of the political nature of research constitutes a recognition of how the issues we 

write and talk about as researchers are inextricably political and framed by world-views. Political 

aspects also concern how the broader political context of mathematics education, as it is performed 

in a variety of contexts, affects the teaching and learning of mathematics. Two papers looked at the 

intersection of school and workplace and the impact of mathematics education (Nilsen & Vegusdal, 

Boistrup & Keogh). Kollosche (this volume) discusses the role of teacher explanation for student 

passivity, also in relation to the discipline of mathematics. Another example of addressing political 

aspects derives from Sweden, where Bagger (this volume) addresses the effects from national 

testing on students “in special need”. Political aspects present in TWG10 also concern how diversity 

among learners may have consequences in terms of unequal access to the learning of mathematics. 

This research may include critical investigations of the impact of socio-economic or cultural 

backgrounds, as well as other background factors, as grounds for unequal mathematics education, 

because of a sorting of students so they receive different learning opportunities (e.g. Salazar, this 

volume). A tension here is previously presented research to the group which confronts “the official 

discourse, which posits inclusion and equity as fundamental goals of mathematics education” 

(Straehler-Pohl & Pais, 2013, p. 1792, see also Valero, 2013). There are more recent papers 



addressing ways of overcoming such tensions in research through collaboration between researchers 

adopting complementary perspectives, with teachers and students (Black & Swanson, this volume), 

hearing the voice of parents (Lembrér, this volume) or bringing individuals’ voices to the 

discussion, highlighting potential opportunities to overcome such tensions (Díez-Palomar, this 

volume). Still, the work in the TWG, with its developments and tensions, can be viewed as 

constituting part of a resistance to a rampant global homogenization that is central to the neoliberal 

agenda, which stands in ideological opposition to the group’s commitment to valorizing diversity 

(Mukhopadhyay & Greer, this volume).  

The ethics of doing research, in relation to diversity of various forms, has been addressed in the 

TWG (e.g. Eikset et al., this volume). The TWG is united in a strive for social justice, inclusivity 

and variety. Consequences of an engagement in ethical considerations is reflexivity in research, 

where also the researcher’s acts are critically observed (Montecino, this volume). Ethics also 

includes the impact of our actions within the context in which we are conducting our research and 

many addressed that we must pay attention to the consequences of our research on the end-users’ 

(students, teachers, families, etc.) opportunities to improve their chances to learn mathematics 

and/or to legitimize their own social and cultural knowledge about mathematics (Mukhopadhyay & 

Greer, this volume). Diversity as a concept, and the connotations hereof, were problematized in the 

TWG (e.g. Roos, this volume). One aspect here is that diversity as a concept may assume a norm 

that there is something normal from which, for example, diverse students deviate, while “diversity” 

instead should be viewed as the norm itself. A connected matter here are words that mean 

something similar to diversity, but perhaps with other connotations; difference, heterogeneity, 

multiplicity, variety, and connected words: democracy, inclusion/exclusion, segregation/integration, 

empowerment. With an interest in the broader context of settings for mathematics education, the 

political times of today with neoliberal agendas affecting the framing of mathematics education, has 

been part of the work of the group during the last CERMEs (e.g. Andrade-Melina, this volume). 

Aspects here are political decisions governing towards mathematics education to be effective and 

market based, which are forces where diversity among students may be disturbing, rather than part 

of the responsibility of the system. We expect such issues to be elaborated more during future 

meetings, while also addressing the roles of mathematics education in times where populistic policy 

making is becoming more common. 

References, which are not found in this volume 

Straehler-Pohl, H., & Pais, A. (2014). To participate or not to participate? That is not the question. 

In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of the 

European Society for Research in Mathematics Education (pp. 1794-1803). Ankara: Middle East 

Technical University and ERME. 

Valero, P. (2013, January). Mathematics for all and the promise of a bright future. In B. Ubuz, Ç. 
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This work aims at portraying a rhizome of circulating naturalized truths about who citizens should 

be and how they should act within neoliberal governmentality. It does this by a historization of an 

incepted belief entangled in diverse social spheres. It unfolds how the ideas of human capital and 

welfare become a top right in mathematics education. The ‘Chilean experience’ is used as an example 

to construct a rhizomatic historization of events, strategies and technics of government that enabled 

the inception of neoliberal dreams into school mathematics. 
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Introduction 

An idea. Resilient... Highly contagious. Once an idea has taken hold of the brain it’s almost 

impossible to eradicate. An idea that is fully formed—fully understood—that sticks; right in there, 

somewhere (Dominic Cobb, Inception). 

It is intriguing how highly perceived the Chilean models are—economy, education or health 

systems—to other countries. According to Taylor (2003), Chilean systems have been taken as models 

‘worthy of emulation’. Is Chile doing something marvellous? The country has been seen as an 

example of organization and ‘proper’ policies for economic progress and welfare (Silva, 1993). Its 

policies are considered as trendsetters among privatized pension systems (see Mesa-Lago, 2012), 

among health care reforms (see Bruce, 2000), and it was one of the first countries implementing 

neoliberalism as a framework in education (Aravena & Quiroga, 2016). The results in PISA, 

particularly in mathematics literacy, have progressively increased over the years—2000 (384); 2006 

(411); 2009 (421); 2012 (423). And so, Chile has risen to be seen as one of the most developed 

countries in Latin America (Gregorutti, Espinoza, González, & Loyola, 2016). Chile is considered, 

by the World Bank’s annual reports on development, the proven example of the benefits embedded 

in ‘conforming’ to a neoliberal approach to social policy.  

[Chile] is often viewed as a trendsetter in introducing fundamental and far-reaching neoliberal 

reforms […] the Chilean example as been heralded as proof of the success to be gained from an 

uncompromising commitment to neoliberal policy prescription (Taylor, 2003, pp. 21-22) 

But… it is not all sunshine and roses! By building on Foucault’s work, this paper aims at portraying 

how neoliberal discourses about mathematics education have been (re)produced and how they have 

circulated amongst diverse spheres of human interaction, (re)shaping citizen ways of being and acting 

in the world. It does this by taking “a critical attitude towards those things that are given to our present 

experience as if they were timeless, natural, unquestionable” (Rose, 1999, p. 20). This paper deploys 

a historization of the present of entangled historical events, strategies and techniques that made 

possible to incept the neoliberalism into school mathematics in Chile. This narration is not a critique 

about the implementation of educational policies in Chile; rather it is the tracing of naturalized truths 

in mathematics education as an assemblage of diverse governmentality techniques (Foucault, 1991). 



These naturalized truths are traced in five moments. First, regarding the introduction of neoliberalism 

as a set of political movements. Second, regarding neoliberalism as a system of reason for economic 

improvement. Third, regarding the specific type of citizen that the new economy requires, a consumer 

of goods. Fourth, regarding the productive subject of schooling for the market, a competitive subject. 

And finally, regarding how school mathematics becomes the vehicle to shape the desired subject for 

economic growth.  

The plot of the movie “Inception” inspires the style of writing of this paper. In this movie a series of 

dreams are unfolded. Each dream should be understood as a new and deeper dream occurring inside 

the previous one. The dreams do not follow a chronological arrangement. It is not a lineal story; it is 

a rhizomatic construction. A rhizomatic network allows a non-hierarchical multiplicity of entryways, 

of dimensions, lines; it has no beginning or end, but always a middle: “The rhizome is altogether 

different, a map and not a tracing […] The map is open and connectable in all of its dimensions; it is 

detachable, reversible, susceptible to constant modification” (Deleuze & Guattari, 1987, p. 12). 

Hence, all dreams are connected not as a sequence of events, but as continuities and discontinuities. 

All narrations are entangled, even in different times, even in different spaces, and even in different 

voices. The paper is written in this form in alignment with Foucault’s rejection of causality.  

We consider the understanding of the way one event succeeds another as a specifically historical 

issue, and yet we do not consider as an historical issue one which in fact equally so: understanding 

how two events can be contemporaneous […] History is quite frequently considered as the 

privileged site of causality […] But we have to rid ourselves of the prejudice that history without 

causality would no longer be history. (Foucault, 1999, p. 92)  

First dream: The Cold War and the neoliberal revolution 

It is the late 60s, in a country apparently far from the War, but close enough to be in the spotlight. 

There is the danger of it becoming the first socialist nation in South America, and this is threatening 

for the US. Silent voices were saying: “under no circumstances should Allende be elected!” But, he 

was… Salvador Allende became the first democratically elected socialist president in the Western 

hemisphere. What a revolutionary! Fighting for the people! Chile has begun to increase its role in the 

provision of social services. 

By subsidising the reproduction of the labour force through allocating resources to the 

development of state systems of health, education, housing, staple-food subsidies and social 

insurance, universalistic social policies tended to reinforce the purchasing power of wages thereby 

expanding domestic markets for industrial goods. (Taylor, 2003, p. 23) 

Something is starting to go extremely wrong in Chile. Suddenly there commenced a crisis that led to 

most of the population clambering for improvement. The, so-called, socialist experiment “united 

capitalists, landowners, the middle classes, and their political party allies against labor, peasants, and 

leftist part” (Silva, 1993, p. 535). Apparently the US government, also pressuring the World Bank 

and the Inter-American Development Bank to do the same, minimized the aid they provided to 

Chile… And so, Chilean foreign reserves plunged from $400 to $13 million in one year (Moreno, 

2008). Discontent people wanting the president out are growing in number. It is socialism versus 

capitalism… “$7 million channelled to anti-Allende groups”, according to a report of the US senate 

(Moreno, 2008, p. 93). And he was overthrown on September 11th 1973, by the military force 



commanded by General Pinochet. Now, neoliberal ideas are being forced into Chilean minds that are 

afraid all the time, afraid for their lives, afraid to raise their voices. Meanwhile, those in favour of the 

new regime are enjoying the pleasures of the new order (Salazar, 2003).  

Second dream: The Chilean experiment, Friedman and the School of Chicago 

The year is 1950; the place, Chicago. Milton Friedman is developing a new approach to economy 

theory. This new theory is in opposition to socially conscious economies, which have been prominent 

in Western governments after 1929. Friedman believes that “economic benefit could best be 

optimized if the individual has the autonomy to pursue his or her own self-interest” (Moreno, 2008, 

p. 92). This new theory was the hope for a group of technocrats that moved to Chicago, the “Chicago 

Boys” (García & Wells, 1983). In the 70s, Pinochet decides to leave the economical management of 

Chile on the hands and knowledge of the Chicago Boys. This is going to be the first time that a group 

of Friedman has “an opportunity to influence governmental policy and put their theories into practices 

[…] They already have a complete programme aiming to re-structure the economy and to reverse 

Allende’s social reforms” (Moreno, 2008, p. 94). The military regime and the Chicago boys 

established neoliberal economic and social policies here (Salazar, 2003). “[T]he market supplanted 

state intervention in the economy, except in labor relation” (Silva, 1993, p. 527). 

Within the first six years of dictatorship, the ‘shock therapy’ was the only approach to curb social 

policy and state expenditure (Huber, 1996). Chilean reform “has been led by both the advocates of 

monetarism, located principally in US institutions and universities, and by the Chilean reformers 

themselves” (Taylor, 2003, p. 22). Neoliberal ideas were taken as a sort of ‘second independence’ 

and, also, an entrance to the first world of developed countries (Salazar, Mancilla, & Durán, 2014).  

Third dream: Consumerism as the ever-growing economy  

Here, in this place of earth, everything could be marketed, everything could be sold, and most people 

would feel the urge to buy it. Health and education are, by constitution, social rights to every citizen. 

But here, those basic social rights fade into consumer goods. Public and private enterprises competing 

with each other, providing services for customers willing to pay for them, after all it is their choice 

(Taylor, 2003). Parents have the opportunity to choose freely the type of school—municipal, 

subsidized private or fee-paying private schools—and the type of education they want for their 

children (Mizala & Romaguera, 2000). Free choice… if they can afford it!  

Public against private institutions… In a place where private institutions have the right to charge in 

excess to ensure better and better quality. Private schools enjoy, without any guilt, “having greater 

resources, enabling a stronger quality of education to be taught, and thereby reinforcing the desire of 

parents with available income to send their children to such schools” (Taylor, 2003, p. 34). After all, 

the more you pay the better you get; the less you pay the worst you obtained. In a time and place 

where education policies are transformed into economic policies of education (Castiglioni, 2001). 

Fourth dream: Competitiveness in schools, education and freedom of choice 

After the introduction of ‘welfare’ as a method to increase efficiency, “the element of competition 

and the response of enterprises to public desires as indicated by market forces were suggested to 

create an optimal allocation of resources throughout welfare provision” (Taylor, 2003, p. 26). The 

reform of the 80s, under the military regime, changed Chilean education system. Decentralization 



was key to encourage private providers to enter the market (Mizala & Romaguera, 2000). And there 

was more, so much more than that. This reform involved a reformulation of the interplay between 

state and schools, a voucher system that indirectly funded schools by assigning the resources to 

students (Parry, 1997). This measurement left schools receiving financial aid depending “on the 

number of students that they could attract […]. If schools were unable to compete in this new 

marketplace environment, they would be allowed to fail and face dissolution” (Taylor, 2003, p. 33). 

A highly competitive system generated by an educational market and by the policies aiming at 

improving the quality of education (Mizala & Romaguera, 2000) was shaped. And so, state 

accountability systems were able to reward and/or punish schools by allocating resources regarding 

the performance of each school (Elacqua, Martínez, Sontos, & Urbina, 2012). A system in which, 

schools, teachers, students are constantly competing and being assessed. 

Fifth dream: The sky is the limit! Mathematics to the people 

Welfare and mathematics, always hand by hand. Here, mathematics has been granted with a great 

importance and status. In the 60s, logic was taken as the foundation of every science, reasoning 

accurately and rigorously was the core of any argumentation and of critical thinking (Diaz & Giudici, 

1970). Mathematics was the one that helped to develop reasoning and logical thinking and reading 

proficiency was thought as a tool to better understand mathematical instructions (Ministerio de 

Educación & CPEIP, 1967). In the 80s, the military regime reformed the curriculum and school 

textbooks to reflect the regime’s doctrine: “education was recast to promote studies functional to the 

new productive structures of Chilean society, whereas traditional arts and humanities studies were 

discouraged” (Taylor, 2003, p. 32). It was indispensable to embody in individuals certain knowledge 

skills—mathematical knowledge—, and attributes to facilitate the creation of personal, social and 

economic well-being (OECD, 2001). Economic growth was about human capital. 

National assessment started to be taken as the key to achieve economic progress, on the one side, to 

test current policy changes, on the other, as a mean to set standards. And so, competitiveness and 

accountability, within school mathematics testing, led to higher performances, higher incomes, higher 

social mobility and welfare (OECD, 2014). Nowadays, by knowing students’ numeracy proficiency 

in PISA it is possible to predict, amongst many others, their likelihood of being employed or to 

calculate how different their hourly earnings would be (OECD, 2015). And so, the promised state of 

welfare is side by side with mathematics proficiency. Mathematics is now the key for a brighter future, 

all students have to do is to be good at math and the sky will be their only limit! [End of dream 5] 

The standardized test SIMCE has been a key element to promote competitiveness and pressure to the 

system. Since its results are publicly published, it becomes an objective indicator to assess school 

performances (Mizala & Romaguera, 2000, p. 393). It also enables parents, as consumers, to demand 

better services for their children (Meckes & Carrasco, 2010), for students to be successful and 

entrepreneurs. [End of dream 4] 

School mathematics is now an investment! Reforms have shaped education into a capitalist 

marketplace, by promoting entrepreneurial profit-minded investment and by remodeling education to 

consolidate the productive structures of economy (Taylor, 2003). [End of dream 3] 

And the so-called ‘economic miracle’, product of the economic growth in the late 70s, helped raising 

the prestige of neoliberalism “under the banner of ‘the Chilean model’” (Taylor, 2003, p. 25). By 



now, Chile has become famous for its neoliberal restructuring followed under General Pinochet 

(Silva, 1993; Aravena & Quiroga, 2016). [End of dream 2] 

This is it! Chile is no longer an underdeveloped country (Salazar et al., 2014). Chile is now part of 

the first world, the “tiger” of Latin America (Teichman, 2016). [End of dream 1] 

Incepted neoliberalism 

You create the world of the dream. You bring the subject into that dream and they fill it with their 

subconscious (Dominic Cobb, Inception) 

From a Foucaultian perspective, conduct is governed through diverse techniques, strategies, and 

devices (Foucault, 1991), within a space of government that “is always shaped and intersected by 

other discourses” (Rose, 1999, p. 22). In doing so, each individual conducts him/herself by 

(re)shaping his/her own modes of being and acting in a space of ‘regulated freedom’ and under a 

promised state of welfare. In this sense, “people are governed by and through their own interests” 

(Cotoi, 2011, p. 113). This is precisely the idea behind the ‘inception’ of a neoliberal mentality. A set 

of naturalized truths circulating amongst diverse times and places, knitting a web to govern the self 

and to regulate habits and desires of cultural and historical subjects through school mathematics. 

These discourses help governing productive citizens, in the sense that intend to insert subjects in 

regulatory practices that (re)shape their conduct “without interdicting their formal freedom to conduct 

their lives as they see fit” (Rose, 1999, p. 23). Reforms, according to Dussel (2003, p. 94), “have to 

be understood as part of government technologies that intend to shape the way people are to act, think, 

and feel about the world, that combine the old and the new in unique ways”.  

One possible narrative to understand the success of neoliberalism in Chile could be grasped through 

the articulation of certain discourses about consumerism and competiveness. SIMCE in mathematics, 

for example, became the first step of knowledge consumerism and of a marketable education/society. 

SIMCE’s results are publically published in national newspapers and widely discussed through other 

means of public communication, so parents and society could judge schools by their performance in 

standardized tests. ‘Judge’ in the sense of deciding which school is the best option for their children’s 

future. This marketing of schools and teachers leads to the most utopian non-sense practices. For 

example, within the belief that welfare is only achieved by a high quality education, parents, in order 

for their children to be enrolled in those schools with “higher quality”—with good scores in national 

tests—are willing to stay all night in line, outside a school, to submit the admission application. Figure 

1 shows a Chilean newspaper, Las Últimas Noticias, reporting the news: “Parents slept on the street 

under -3,6o Celsius because of enrolment. They are trying to enroll their children in pre-school for 

next year in Santa María School in Osorno”. One of the parents, who waited in line for 12 hours said: 

“It is demeaning but what else can we do. This school is good and affordable. I have three kids and 

they all need to study”. 



 

Figure 1: News about parents staying all night outside a school 

These discourses are not isolated from the ones of school mathematics. The importance that 

mathematic literacy has within OECD’s indicators help move research to be about how to improve 

students’ performances in mathematics. For example, in order to be successful in SIMCE, students 

should not be allowed to miss classes. If students are “absent 9 days during the school year (the 

sample average of absences) reduced performance by at least 23% of the standard deviation of the 

score on the SIMCE mathematics test” (Paredes & Ugarte, 2011, p. 199). Welfare can also be 

measured in relation to students’ performances in national tests, by correlating SIMCE scores in 

mathematics to predict a student’s future income (Bharadwaj. Giorgi, Hansen, & Neilson, 2012). 

The Chilean Ministry of Education released the “Learning standards” in school mathematics to help 

teachers evaluate “what students should know and are able to do for displaying, in national tests, 

appropriate levels of achievement” (MINEDUC, 2013, p. 4, my translation). These learning standards 

categorized students in three levels of achievement that, at the same time, predict their future outcome 

in SIMCE in mathematics. So, if students do not want to be label at the lowest level, they have to 

engage in regulatory school practices, they have to compete with their classmates and with 

themselves. In this fashion, SIMCE in mathematics also operates as a technique to generate ‘self-

entrepreneurs’, “individuals that self-regulate, self-direct and are continuously in a process of 

redefining their competences” (Cotoi, 2011, p. 116).  

As portrayed within the dreams, Chilean neoliberalism have been (re)producing discourses that 

circulate within diverse time and places in order to obtain economic growth, progress and welfare 

through school mathematics. School mathematics, since it was thought to shape productive citizens, 

was taken as the key for Chile to become a developed country. Mathematics needed to be a good that 

people wanted and were willing to consume. With marketable school mathematics, whomever 

wanting to achieve welfare would have to pay for higher quality. And, therefore, Chilean economy 

should increase. This would not have occurred without the dictatorship and Friedman thoughts: 

Economy would be best optimized if people have the freedom to pursue their own self-interest. 
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“It is only a test” – social aspects of displaying knowledge in 

mathematics for second language learners 
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This article discusses social dimensions connected to assessment in mathematics for second language 

learners in Sweden. The data consist of two semi-structured interviews with students in the ninth 

grade of compulsory school. Foucault’s thinking on discourse and positioning was advocated as a 

frame for analysis. The units for analysis were students’ statements about caring and the other in 

connection to the display of knowledge in mathematics. Results show that caring of and for others 

are important resources in managing assessment and believing in the future. 

Keywords: Second language learner, assessment in mathematics, opportunity to display knowledge. 

Introduction of the problem area  

Measures of achievement are often situated as measures of quality in education (Lundahl & Tveit, 

2014) that promote striving towards high quality, yet also threaten equity at times (Llewellyn & 

Mendick, 2011). An example of this are recent educational reforms including earlier and extended 

testing in Sweden (Regeringen, 2006). These reforms have led to an enhanced focus on the measures 

of knowledge, while at the same time school agencies generate reports on inequalities in the measured 

knowledge and grades in mathematics between schools and groups of students. Differences are 

connected to gender, class and ethnicity (e.g., Skolverket, 2015). Achievement in national tests is 

central in grading as the results of the national tests in mathematics often are used to indicate students’ 

grades (Skolverket, 2016). Not having an approved grade in mathematics at grade nine in Sweden 

means that a student does not have access to public programs at the upper secondary school in the 

following year. The opportunity to display knowledge then becomes a critical point of departure for 

the individual’s possibilities for positive development and positioning in mathematics. This turns the 

assessment grade in mathematics into a gatekeeper to get access to higher education, and is a 

gatekeeper that keeps out second language learners (SLL) more often. 

This portrayal of circumstances alludes to societal, historical, social and political discourses 

influencing an individual’s mathematical development and life-choices by making some positions 

available and other positions not available. Researchers are currently engaged in issues of for whom 

education functions and thereby which students can have access to success in education and life (Au, 

2008; Peters & Oliver, 2009). The focus on disadvantaged groups of students then affords new ways 

of understanding and approaching mathematics education (Gutiérrez, 2013). Alternative ways of 

relating to and understanding assessment are needed and in this, listening to the students as opposed 

to only labelling them, are of core importance (Hodgen & Marks, 2009). Research that is paying 

attention to students’ stories also contributes to knowledge about the lived and social dimensions of 

assessment that needs to be paid attention to according to Black and Wiliam (2010).  

In this article, I strive to recognize and study the production of (in)equity in connection to grading 

and national assessment in mathematics. I highlight aspects that might be foreseen in the general 

debate and work in the area of mathematics education. Through this, I contribute to the identification 

of possible resources that could promote paths for increased equity. In regard to the concept of equity, 
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I draw on Boaler’s (2006) concept of relational equity. In a school where participants (do not) learn 

to respect differences and each other in the mathematics classroom, relational equity is (not) lived 

and taught. This understanding can be applied on both the micro-, meso- and macro-levels of 

education and opens up studying equity beyond the gap-gazing of diverse achievement levels in 

mathematics (e.g., Gutiérrez, 2008; Rodrigues, 2001) something that actually might counteract equity 

and hold disadvantaged groups of students behind (Gutiérrez & Dixon-Román, 2011). Following 

from this point of departure, resources for producing equity are to be found in lived, diverse, relational 

and social aspects in the process of assessment and displaying knowledge. I contribute to the 

identification of some of these resources through the study of social and relational aspects connected 

to assessment and the opportunity to display knowledge in mathematics for SLL. In this paper, I 

specifically contribute to the act of listening to and exploring experiences of students within 

subordinated groups by highlighting experiences of SLL in connection to displaying knowledge in 

mathematics. The purpose of this paper is to contribute to knowledge about social dimensions of 

displaying knowledge for SLL in mathematics and how this can be related to future prospects 

connected to the subject. The investigation examines three research questions: Q1) How do 

statements about the other and caring appear in talk of displaying of knowledge? Q2) How do 

statements about the other and caring appear in talk of future prospects connected to the subject? Q3) 

What discourses are activated and what positions are available in the students’ talk? Here, caring 

refers to both care for oneself and for/from others. 

Theoretical framework 

A statement works as a mediator of knowledge and truth that exists in a field of power-relations and 

is embedded in discursive formations with other statements (McIlvenny, Klausen & Lindegaard, 

2016). Discourses are understood as governing and positioning individuals through power and 

knowledge (Foucault, 1994), and positioning is understood as “the discursive process whereby selves 

are located in conversations as observably and subjectively coherent participants in jointly produced 

story lines” (Davies & Harré, 2001, p. 264). Therefore, analysing students’ statements will reveal 

discourses that are activated in connection to the display of knowledge and assessment in 

mathematics. In order to capture social aspects of displaying knowledge in mathematics, the role of 

others and caring for/by others are used in this project (Black, Solomon, & Radovic, 2015). Black et 

al. (2015) have shown that these phenomena may be powerful cultural resources in shaping a positive 

identity in mathematics. Black et al. (2015) have drawn on Bakhtin. Instead, I use the concepts as 

signal-words, which reveal the representation of a social and lived aspect of displaying knowledge in 

mathematics. 

Method and selection  

This paper presents the analysis of two interviews with SLLs. Their names are fictional. Amina and 

Ahmed are 15 years old and have both struggled with their learning in mathematics since third grade. 

They did not pass several of the goals in mathematics in their third and sixth years and have had 

special support during this time. Amina achieved the lowest passing grade (E) in her ninth grade and 

was given support in the form of special instruction. In the ninth grade, Ahmed did not receive any 

special support or adaptions in mathematics and got a D, which is the average grade. The data were 

collected right before the final choice of program to the upper secondary school was made and the 

final grade in compulsory school was given. Amina and Ahmed had just finished their last national 



tests in mathematics. Interviews conducted on this occasion were assumed to contribute to a 

concentration of their experiences of displaying knowledge and assessment. This selection of students 

is meant to bring specific questions concerning assessment in mathematics for SLLs into the forefront.  

The interviews were semi-structured. This approach was used to promote the student’s possibilities 

to talk freely and to display as much of their understanding and experience as possible (Kvale & 

Brinkman, 2014). The students could talk about anything they chose in the areas of support, 

assessment, national tests, grades, mathematics and the future. For the most part, I asked open-ended 

questions to follow each theme. Questions were, for example: why do you take these tests; what did 

you think/feel; did you talk about it to anyone and how; was it possible to get help; if so, how? These 

open-ended questions were followed up with more specific questions connected to what the 

participant had expressed, in order to get as good an understanding of and rich information about their 

experiences as possible. The positions and activated discourses were constructed through analysing 

statements about caring and the other in the context of displaying knowledge in mathematics. Key 

markers in students’ talk were statements involving others as for example peers, friends, family and 

school-staff and statements regarding caring about or being cared for by others. These statements also 

had to relate to assessment and/or displaying knowledge in mathematics. An interpretative reading of 

statements was done back and forth in order to identify the discourses and positions involved. For 

this purpose, an adaption of Foucault’s (2011) description on how to find discursive formations was 

used: 1) First, statements regarding caring and others were identified. 2) Secondly, the form of these 

statements was described. 3) Thereafter, the relations between these statements were described and 

the correlations and contradictions between these statements were explored. 4) Then, the statements 

were grouped and the correlations and contradictions between these groups were explored. 5) In the 

final step of the analysis, the discourses were construed. 

Ahmed and Amina: Interview data  

The interview data connected to the first two research questions are presented here. This presentation 

derives from the first four steps of the analysis. Overall, these statements concerned family or peers, 

and notably teachers were not mentioned at all in connection to statements concerning caring and the 

other. 

Statements about the other and caring in talk of displaying of knowledge  

The students talked about care of and from others primarily in relation to peers and as peers as a point 

of reference for the achievement or possibilities to succeed. Ahmed mentions that the girls talked 

about when the tests were, and, in a way, that could make each other nervous: “The girls are like: it 

is mathematics (national test) tomorrow, tomorrow! They mentioned it several times” (transcript 

005). But he was not nervous himself but rather preferred to take it all in time and put the test into a 

larger context of living: “If I make it, I make it... There is no point in worrying, life will continue 

anyway” (transcript 005). Even if he was at ease, he expressed concern about a friend who did not 

manage Swedish well enough in relation to the support given and the construction of the tests. The 

friend was very good in mathematics in his homeland but after coming to Sweden he almost did not 

pass: “He is not so good at Swedish so he thought it was a Swedish word he asked for help with. The 

teacher could not do anything but read it aloud again. In his homeland, he had like a high grade and 

here he barely passed” (transcript 005). Ahmed talks about care of himself in relation to effort and 



outcome on the tests: he is at peace himself with not being able to solve all the tasks, since they are 

constructed for all levels of difficulty. This circumstance also makes it hard for him to know if he 

passed the test, “I might think it is hard but I am on an E, the ones being on an A may not think it is 

so difficult. So, I would say it was ok, even if it was hard for me” (transcript 005). In this way, Ahmed 

refers to peers as a point of reference. Ahmed says that he made a deliberate choice not to study before 

the test: “I have myself to blame if it went bad, I accept my choices” (transcript 005). Amina talks 

about care of herself in relation to her knowledge in the subject, her effort and grades. She thinks 

mathematics is hard but does not think the grades reflect her experience of the subject as interesting 

and of herself as someone who is interested, learns and works hard: “I think math is easy, or easy, it 

is hard but I think it’s fun. What comes out shows in the grade… I put a lot of effort in math but I do 

not get good results. It does not show in the grade. It makes me feel disappointed, but at the same 

time it challenges me” (transcript 002).  

Statements about the other and caring in talk of future prospects 

The students’ statements regarding the future prospects are often connected to the family’s care about 

them. Both students expressed that parents and relatives had high expectations and beliefs in them 

and their engagement in mathematics. Amina connects the big expectations she has for herself to her 

parents’ expectations: “I think my expectations come from mum and dad, they expect big things from 

me” (transcript, 002). The family stressed that they should do what they could to enter upper 

secondary school. For example, if Ahmed did not get the lowest approved grade, the family would 

encourage him and not let him give up: “They would be grumpy with me and they would think that I 

should go back and keep on fighting and not stop” (transcript 005). In particular, Ahmed’s brothers 

had given him advice on how he should choose a program at the gymnasium in relation to 

mathematics and also had given him a good trust in upper secondary school, the mathematics involved 

in the program he chose and the teachers: “I have lots of expectations since I have a family from 

whom I have taken like a lot of advice. All have said very good things about the school and the one 

(brother) who studied construction has said a lot of good things about a teacher working there” 

(transcript 005). He also compared and talked about his siblings and how they succeeded and what 

they had done in their time at the upper secondary school: “You know, my brother, he says that there 

are three days of practice a week and that you get to learn a lot out in the field. Three weeks before 

finishing school he was offered an employment… He is 19 and he has a job” (transcript 005). 

Motivation was in this way connected to talk about parents’ and relatives’ anticipation of and belief 

in them and their engagement in mathematics. Although Ahmed could feel that they nagged at him, 

he understood and appreciated the advice to put effort into the learning in mathematics: “I understand 

their arguments and so and I really appreciate that they help me there and I understand the point. It 

seems to be important to get a grade in math” (transcript 005). 

Statements about the other and caring in talk of future prospects  

Care about themselves in connection to the future were expressed in relation to belief, struggle, 

worries and seriousness. Ahmed worried about the test a great deal afterwards, if some of the harder 

tasks would deprive him of his grade, his time in the upper secondary school and stop his journey in 

life and companionship with friends: “This is life, this is it. I would be very disappointed if I did not 

pass. Then I will miss a whole year… I do not want to wait a whole life for life to continue” (transcript 

005). The students meant that future choices may be limited depending on their knowledge, which 



made them both choose a program at the upper secondary school with a low level of mathematics. 

Statements about expressing care for others concerned peers and primarily gatekeeping functions in 

the assessment in mathematics, but also their own learning in positive anticipation regarding their 

ability to develop. Amina talks about her peers as participants in discussions about the grades, 

something that has been intensified over time as it is connected to mathematics as the gatekeeper to 

the upper secondary school: “We did not talk as much about it (earlier) but more later. That it is the 

grades that decide if we get into upper secondary school” (transcript 002). Here, Ahmed points 

towards the gatekeeping function in the national assessment of mathematics, which is worrying: “If 

you fail in math, then you are done… That is why I have been lying awake at night and thought about 

the test” (transcript 005). Both students anticipate that math will be hard in the upper secondary school 

but they are confident that they will learn. Amina says she is eager and ready to take on the challenge: 

“I am going to study at the upper secondary school and I have to be prepared that mathematics is the 

hard thing. I am very excited” (transcript 002). Both Amina and Ahmed are very confident that they 

can learn the mathematics they need when they finally begin the upper secondary school. Ahmed for 

example states “but I think that when I finally go to the construction program I will learn it, how to 

count with area and stuff” (transcript 005).   

Analysis 

The analysis answers the third research question and explores the discourses that are activated and 

the positions available. A discourse on managing assessment (connected to statements about peers), 

a discourse on progress (connected to statements about family), a discourse on future challenges in 

mathematics (connected to care about oneself) and a discourse on fairness (connected to care about 

oneself), were construed from the analyses of statements connected with caring and the other in 

connection to displaying knowledge and mathematics. The activated discourses led to some available 

positions for the students.  

The discourse on managing assessment concerns support, comparison and monitoring of support, 

grades and tests. Ahmed talked more about his peers and talked overall more than Amina. Amina 

referred to peers as a help in focusing on the grades and Ahmed expressed care for others. He then 

positioned both himself and his peers as disadvantaged test-takers due to language and the settings 

and construction of the national test. He also positioned girls as more nervous in their monitoring of 

test occasions.  

The discourse on progress circles about responsibility, advice and expectations stemming from the 

families. Expectations were then blended with demands on focus and progress. Hard working and 

you can if you want to were positions connected to the family discourse. These positions had 

connotations of personal responsibility, achievement and future prospects.  

The discourse on future challenges in mathematics held statements in which caring about oneself was 

connected to a position in which limitations in knowledge blended with striving to learn and the 

outcome that learning was to be conquered.  

The discourse on fairness connects the student’s individual responsibility, effort and knowledge to 

the achievement and assessment in mathematics. If the effort is made, the knowledge should be 

retrieved and following from that, the grades should be accordingly high or low. In the discourse on 

future challenges in mathematics both students positioned themselves as capable of trying and 



working on improving, although within certain limits. A position of struggling while learning was 

identified, this position is possible to connect to the hard-working and you-can-if-you-want-to 

positions in various combinations. In the discourse on fairness, a position of choosing your 

achievement was shown in Ahmed’s talk as he chose not to study and accepted the consequences. 

Amina also spoke out from a discourse of fairness as she questions the grade, and that the hard work 

should have been seen in the grade. At the same time, she capitulates and says that it is hard for her 

to learn and remember for example the methods to use – so the grade may be fair after all. This could 

be described as a position of being unable to succeed. 

Discussion 

The semi-structured interviews contributed to a trustful and open climate for conversation. This made 

it possible for the two students to display important social dimensions of displaying knowledge and 

learning mathematics. One example of this was when Ahmed talked about how his brothers and 

family supported him: “I took their advice… It seems to be important to get a grade in math” 

(transcript 005). This happened on an occasion when he was actually skipping school for a day and 

hanging out with his brothers. This occasion proved to be an important moment in his positioning as 

a mathematics learner. The main concepts in the analysis were statements about the other and caring 

(also see Black et al., 2015. In many ways, it is possible to assume that there are many differences 

between Roz, the adult mathematician in Black et. al.’s (2015 study and the two students in this study 

when it comes to opportunities to learn and display knowledge. What they have in common is that 

the female mathematician and immigrant students are groups both governed by different types of 

gatekeeping functions in their access to the subject. Interestingly, the same socio-cultural resources 

as found in Black et. al.’s (2015 study, seem to work well in illuminating prerequisites for a positive 

development of identity in mathematics among students that have struggled with their learning. The 

statements about assessment in mathematics and the future were in many ways a narrative drawing 

on the community of the family and the peers. This could be a sign that relations outside school, in 

families or between peers, are important resources in the building of a positive identity in and a 

relation to the subject mathematics.  

Both students in this study were willing to learn and develop their skills in mathematics, although 

they knew that they were in some way limited because of their lack of knowledge at some times. 

Although struggling with mathematics, they still had a positive way of approaching the subject, which 

is not always the case for students in need of support in mathematics after nine years in school. The 

families’ expectations and talk with their children about the future and the role of mathematics in it 

may have contributed to a discourse about struggling when learning. This discourse could contribute 

to a positive identity in mathematics rather than devaluing the struggling student as a learner in 

mathematics. This research contributes to knowledge about the social dimensions of testing for SLL. 

Social and lived dimensions of assessment may get lost in translation if the measures on achievement 

are interpreted without taking the social, cultural, political and relational contexts into account. 

Conclusions from assessment that mainly focuses scores and levels of achievement might reveal 

differences and tendencies of segregation or lack of knowledge but without affording means to 

counteract these inequalities. Therefore, more research in the socio-political area of mathematics 

education is needed. This paper joins the socio-political research in mathematics education as I 

contribute to knowledge about social dimensions of displaying knowledge in mathematics for 



disadvantaged groups of students. The aim was to identify valuable resources in providing access to 

and success in mathematics for all students. I also emphasise an alternative way of understanding 

assessment beyond measures of knowledge and quality, namely as a means of promoting social and 

relational aspects of becoming more mathematically able. Since, as the students’ statements revealed, 

it is (not) only a test of knowledge but also an occasion of caring about oneself, caring for others, and 

being cared about by others. 
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Subjective theories of teachers in dealing with heterogeneity 
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This article presents initial results of a research project which investigates subjective theories and 

typical action strategies of teachers and student teachers in dealing with heterogeneity in school 

with a focus on the subject mathematics. These results are ultimately intended to contribute to the 

development of future teaching approaches. To reconstruct subjective theories of teachers and 

student teachers, group discussions were carried out. The initial results show the aspects of 

heterogeneity the participants deem important and the possible actions they discern for coping with 

pupil diversity.  

Keywords: Diversity, heterogeneous grouping, teacher beliefs, group discussion.  

Fundamental theoretical considerations 

The fact that children and young people often differ in terms of their needs and preconditions for 

learning, and that this heterogeneity of learners sometimes presents teachers with significant 

challenges, are not new phenomena (Trautmann & Wischer, 2011). The heterogeneity of learners 

relates to different dimensions, such as cognitive performance, age, gender, linguistic-cultural 

background, social class and many more (Hinz, 1993). In accordance with current political 

discourses and social developments, these different dimensions are given unequal attention in 

pedagogical discussions. The impetus for a renewed focus on heterogeneity in Germany was 

provided by the results of international comparison studies (in particular PISA, 2000), which 

highlighted especially the sizeable differentiation in pupil achievement, the alarmingly high number 

of very-low-achieving pupils, and a close relationship between social background and academic 

success (Trautmann & Wischer, 2011). The UN-Convention on the Rights of Persons with 

Disabilities, which came into force in Germany in 2009, made the inclusive schooling of children 

with and without disabilities the subject of renewed debate. In addition, the phenomenon of 

increased linguistic-cultural differences among learners has come into focus in the last two years by 

the increased number of refugees entering Germany. For most student and practising teachers the 

heterogeneity of learners represents an important problem area in planning and teaching lessons 

which seems to be complex and fundamental. Askew (2015) expounds that the teacher’s ways of 

thinking and talking about heterogeneity impact how they react to the differences that learners bring 

to the mathematics classroom. The following questions arise: “Why have so many, essentially well-

founded pedagogical ideas not been realised? What prevents teachers from seeing heterogeneity as 

enriching, and dealing with it productively?” (Trautmann & Wischer, p. 9, translated by the 

authors). In order to answer these questions and create concepts for future seminars, not only a 

scientific reflection of this topic is supposed to be considered. Especially the perspective of those 

facing heterogeneity daily in their pedagogical work is to be included by analysing their subjective 

theories about heterogeneity, too.  

In the framework of the Germany-wide “Qualitätsoffensive” for the improvement of teacher 



training, the project “Synergistic teacher education in an excellent framework”1 at the TU Dresden 

includes the sub-study “Heterogenität in der Lehrerbildung von Anfang an” (Heterogeneity in 

teacher training from the start). Based on qualitative questionnaires, group discussions, and 

participatory observations of everyday teaching in schools, subjective theories2 and predominating 

patterns of action among teachers and student teachers will be surveyed in different kinds of school. 

On the basis of the survey results, the project intends to develop concepts for teaching events to 

make student teachers sensitive to the different facets of heterogeneity.  

The concept of ‘Heterogenität’ (heterogeneity) is defined in various ways in the relevant German-

language scientific literature, and indeed is often used without specific definition. A number of 

terms are used synonymously, ranging from ‘Vielfalt’ (plurality) to ‘Unterschiedlichkeit’ 

(difference), ‘Unbestimmbarkeit’ (indeterminableness) and ‘Beliebigkeit’ (arbitrariness), or English 

words like ‘diversity’3. In many scientific articles, the focus is placed on only one aspect of 

heterogeneity (such as language, culture, gender, or disability), and the relevant definitions insinuate 

a polarisation between ‘normal people’ and ‘the others’. However, authors like Prengel (2006) and 

Krüger-Potratz (2011) articulate a different understanding of the concept of heterogeneity. We share 

this understanding of the concept of heterogeneity, which finds placing the focus on a few 

‘dominant’ characteristics to be a reductive approach (Krüger-Potratz, 2011). 

Diversity education is based on the ‘indeterminability of people’; it is therefore unable to 

diagnose ‘what somebody is’ or ‘what shall become of somebody’. It [diversity education] 

opposes all reification in forms of definitions of what a girl is, or a boy, a behavioural deviant, a 

Turkish woman… If people must be characterised, then this must be based on their dynamic 

development and the context of their environment. (Prengel, 2006, p. 191, translated by the 

authors) 

To analyse teachers’ subjective theories, and to develop concepts for teaching events that are based 

on the teachers’ views, against our understanding of the concept it nevertheless appears sensible to 

establish a theoretical categorisation of some of the individual facets of heterogeneity. Some of the 

existing studies on ‘beliefs’, as well as on teachers’ implicit or subjective theories about 

heterogeneous contexts in school, show a focus on selected individual aspects of heterogeneity in 

this way. On the aspect ‘heterogeneity’, in an interview study on belief systems of primary-school 

                                                 

1 This project is part of the “Qualitätsoffensive Lehrerbildung”, a joint initiative of the Federal Government and the 

Länder which aims to improve the quality of teacher training. The programme is funded by the Federal Ministry of 

Education and Research. 

2 In the literature, concepts such as subjective theories, implicit theories, or naive theories, as well as teachers’ ideas and 

attitudes, or “beliefs”, are sometimes used synonymously in accentuating different aspects, and cannot be clearly 

differentiated (Törner, 2002). In this paper, we will discuss teachers’ subjective theories based on Heymann’s (1982, p. 

146, translated by the authors) understanding of “the totality of knowledge elements and orientations affecting teachers’ 

actions in the conducting of lessons”. 

3 While in the English speaking area, the Term „diversity“ is preferred and well-known, in Germany many publications 

tend to use only “heterogeneity”. But in some more actual publications we can see that “diversity” is more and more a 

common term for describing the plurality of pupils. 



teachers working with children with special educational needs concerning cognitive development, 

Korff (2014) identifies a central challenge for didactic activity in mathematics teaching in the 

establishing of links between different approaches and varying levels of representation. On the 

aspects of gender and ethnicity, the ProLEG study4 addresses the question of how ethnic-cultural 

and gender-related perceptions influence teachers’ educational activity (Winheller, Müller, 

Hüpping, Rendtorff & Büker, 2012). The results show that the respondents overwhelmingly see 

questions of children’s gender as unimportant and considered themselves to be sufficiently 

competent in this area. In relation to ideas about ethnicity, the respondents attached equally low 

importance to ‘Intercultural Education’.  

Topics such as ‘Individual Support’, ‘Social Learning’, and ‘Inclusivity’ are given primary 

importance, while culturally sensitive approaches have the lowest priority, followed by ‘gender-

aware education’. (Winheller et al., 2012, p. 10, translated by the authors) 

However, Zobrist’s (2012) investigation attempts to approach heterogeneity from a broad 

perspective, without restriction to particular aspects of the concept. Using semi-structured 

interviews and ‘simulated recall’ in addition to teaching observation, the author attempts to produce 

a comprehensive view of the ways teachers deal with heterogeneity in mathematics teaching in 

secondary school. The results show that teachers tend to define heterogeneity especially in terms of 

different preconditions for learning and different kinds of social behaviour. Furthermore, special 

educational needs assessment is seen as highly relevant in dealing with diversity, but personal 

competences in this area are considered inadequate. Schönknecht and de Boer (2008) point out that 

in describing heterogeneity student teachers often seem influenced by an idea of polarisations and 

dichotomisations, as well as a limited perspective focusing on supposed ‘problem children’. Also in 

relation to perspectives on the dimensions of heterogeneity, little differentiation is evident, with the 

use of a number of generalising (stereo)types (e.g. ‘normal’ and migrant children). They summarise: 

Thus, addressing the construction of normality contributes to dealing with heterogeneity and 

difference, and can be a significant building block towards realising equality of opportunity in 

school. (Schönknecht & de Boer, 2008, p. 258, translated by the authors) 

Regarding to Garmon (2004), both dispositional factors (like openness to diversity as well as 

receptiveness to others’ arguments and ideas, self-awareness and self-reflectiveness, and 

commitment to social justice) and experiential factors (like intercultural experiences, support group 

experiences with individuals who encourage another person’s growth and educational experiences) 

influence teachers’ attitudes towards diversity.  

Method 

In order to gain a first impression of student teachers’ ideas about the concept of ‘heterogeneity’ in 

the school context and to discover how they encounter diversity among children, a qualitative 

questionnaire with three questions requiring written answers was distributed to around 80 student 
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Grundschule” (Professionalisation of Teachers for a Considered Relationship with Ethnicity and Gender in Primary 
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teachers training to teach mathematics. The students answered the following questions in their own 

words in running text or bullet points: What does the word ‘heterogeneity’ make you think about in 

the school context? To what extent have you addressed this topic (in your studies)? To what extent 

do you feel prepared to deal with heterogeneity in the school context?  

In addition, we held group discussions with student teachers5 on the topic of ‘heterogeneity’. The 

group discussions were video recorded and transcribed and evaluated using the documentary 

method (Bohnsack, 2010). Group discussions can help to identify and analyse the implicit or tacit 

knowledge of the participants while they talk about a specific topic (e.g. heterogeneity). Between 

three and seven participants talked about a given topic for around 60 minutes. They have some 

special experiences in common or commonalities in their history of socialisation, thus sharing a 

“conjunctive space of experience” (Mannheim, 1982). The momentum of the discussion process, 

uninterrupted by the researcher, is important to discover these conjunctive spaces of experience, 

which become visible through “focusing metaphors” in which the group adjusts itself to those 

specific topics that are most relevant in their common experience (Bohnsack, 2010).  

Concerning group discussions, the immanent meaning comprises that stock of knowledge which 

is made explicit by the participants themselves. This has to be distinguished from knowledge of 

experience, which is so much taken for granted by the participants that it must not and often 

cannot be made explicit by themselves. The participants understand each other because they hold 

common knowledge without any need to explicate it for each other. (Bohnsack, 2010, p.103)  

Results 

For reasons of space, this article will highlight a few clear results of the qualitative questionnaires as 

well as extracts from the overall transcript of the group discussions with teacher students. 

Qualitative questionnaire 

The students gave highly diverse answers to the question “What does the word ‘heterogeneity’ make 

you think about in the school context?” While one respondent (female, 23 years, fourth semester) 

answers only with a few key words (“diversity, differentiation, boys and girls, high-achieving, low-

achieving”), other students give more complex answers, making clear their awareness of the 

unbounded, indefinable nature of the concept:  

Every class is different (age, background, etc.). Every child therefore has different preconditions 

for learning, which one should include in the teaching. Differentiation is important (natural 

differentiation, internal differentiation, external differentiation). The application of learning 

environments to enable different approaches (with different difficulties/materials, etc.). (female, 

21 years, sixth semester).  

This student’s response also suggests how she would deal with diversity among children and where 

she thinks particular emphasis should be placed. On the question of how well prepared the students 

                                                 

5 Student teachers in this way includes teachers who have finished their university degree and are now in training for one 

or two years before receiving their final teaching license and students who want to become a teacher and who still have 

lessons in university. 



feel to deal with heterogeneity in the school context, the majority of responses are sobering. Most of 

the students complain about a lack of practical experience, stating that although the university 

education in many respects provides a lot of theory, there are few opportunities to reflect upon the 

ideas and to try them out in practice. Furthermore, it is criticised that not enough attention is paid to 

the topic of heterogeneity (overall) in the study course; it is often covered quickly as a “marginal 

topic”, but not “dealt with in depth” (female, 22 years, fourth semester). On the basis of their 

experiences in the course of their studies, several of the students differentiate between the different 

teaching subjects; for example, one female student (21 years, sixth semester) remarks: “I feel better 

prepared in maths than in German. For example, by the ‘(Maths) Learning Under Conditions of 

Heterogeneity’ course”. 

Extracts from the group discussions 

The participants in the group discussions presented below were student teachers in training for 

primary-school and high school with the subject mathematics. The students are in the middle to last 

phase of their studies or have finished their university degree and are in training before receiving the 

final teaching license, meaning that all have already completed placements in schools. During the 

60-minute discussion on the topic “What experience do you already have of diversity respectively 

heterogeneity among children in school and in teaching?” it becomes clear that those facets of 

heterogeneity that are dominant in the social discourse, such as native language, disability, social 

status, achievement and migration background also dominate the students’ discussions.  

After a group of five female teacher students for primary school have talked about topics such as 

German as a foreign language and the meaning of academic language, one of the participants turns 

to the topic of inclusivity and the schooling of children with special educational needs in regular 

teaching. The following extract is a part of the discussion that develops on this point. The following 

transcript extract (the original version is in German) shows how the students encounter diversity 

among children, the challenges and opportunities they see in such diversity, and what experiences 

they have already gained in dealing with it. 

Tina:  I also think it’s very important how children gain another view of what is actually 

normal. A person sitting in a wheel chair is just as normal and can also move 

around. And that simply this acceptance and tolerance can develop amongst each 

other. That you simply know how to deal with the person and that it becomes 

natural from an early age on. 

Bianca:  I think this is also easier for children. I also always like that about children that 

they very openly go to other children who are a little bit different. I also think that 

this should be encouraged but it is also a fact that there are also mentally disabled 

children. I don’t know if they are also affected by inclusion? 

Sarah:  Yes. 

Bianca:  Well, I think that is difficult. Well, I was at a school for children with special 

needs and sat in on classes and I thought it was really bad. 

Sarah: Well, otherwise, in front of the same class plus children with special needs that is 

not possible, I think. Then also structurally things would have to be changed. 



Diana:  Well, for all of us it is a challenge to stand in front of a class after finishing our 

studies. Even if they are top-performing and are all a relatively homogenous 

group.  

Tina:  But you will never have this homogeneous group (smiles and shakes her head). 

Diana:  (nods) Yes. You also don’t have that in society. The whole society is extremely 

heterogeneous. 

Extracts from a discussion between four female student teachers for high school shows a similar 

view on heterogeneity, however with a greater focus to specific problems of the subject 

mathematics.  

Wiebke:  The heterogeneity of the teachers also effects the lessons and what the children 

learn in the end. Therefore, also the teacher’s competence of explaining.  

Nathalie:  (Laughs) Yes, especially in mathematics. 

Tamara:  And I also think what attitudes the teacher has towards heterogeneity. Meaning, is 

my attitude that I take everyone along or do I only take the top 50 percent along? 

Or drastically said, what is my opinion about somebody from a migrant 

background? That also plays a huge role. 

Vera:  Yes, that’s true. 

Wiebke:  I mean, at the university this is addressed but how I should really deal with it … It 

is nice to say that you need difficult tasks for those who are good and easy ones 

for those who are not so good at it. Yes, but in the end, all of them take the same 

test and are marked according to the same grading system. 

A third extract is from a group discussion of four female primary-school student teachers which 

have already been in training at school for a few months. This brief passage of the discussion shows 

that student teachers who are already teaching in school seem to be more aware that there are 

differences between the theory they have learned in university courses and the dealing with 

heterogeneity in real life. Additionally, they critique some aspects of the education in university. 

Linda:  The only option is individualized teaching, if you want to give every single child 

the chance to take part in the lesson and to have fun.  

Beate:  And you have to accomplish this without straining oneself.  

Isabel:  Exactly! And I would like to know, how that can work (laughs). How can I 

differentiate without constantly feeling stressed at home?  

Linda:  Well, when I was at university, I often thought, „Bla, bla, heterogeneity, 

differentiating. How can this work?“ They [the university teacher educators] 

always treated this like a big cloud but they never told us specifically. And then, in 

school, you think, “Well, how does this work?” And only through experienced 

teachers you understand “Oh, this is how you can approach this!” And it doesn’t 

always have to be three different worksheets. A more open form can work as well. 



But I think that in university it was something which existed somewhere up high 

in the universe but which cannot be implemented.  

Denise:  In my point of view, such opened instruction was seen [in university] as a kind of 

sanctuary and I always thought, „No. I can’t do it. I somehow am not able to do it 

at all!“ Because it is a Utopia to do this. But in the end, it is somehow possible 

and [at university] one should have used that as a starting point. Even though we 

heard keywords like “weekly schedule work”, we never spoke about this in depth. 

It was more like scratching the surface. 

Isabel:  Then we received lots of academic texts about this which we were supposed to 

read. Afterwards I knew as much as beforehand because the time to really 

understand the content was too short. This was easier with conversations. But I did 

not have a concrete plan either.  

Beate:  But now, in the courses for trainee teachers, we recognized that we all open our 

lessons. We do not carry out frontal teaching as we always imagined. That’s why 

it is helpful to have somebody with experience, who has stood in front of children 

for many years and who was able to teach this to us in a normal way.  

It becomes clear during the group discussions that the students are aware of the problem of how to 

judge children fairly despite potentially enormous diversity. They principally discuss the questions 

of how fairness can and should look in the school context, how it can be realised, and which 

obstacles and problems can exist in its realisation. They argue that differences play a secondary role 

for children and that “it is easier for children” to accept and tolerate each other because they are “a 

lot more open in that”. The participating students seem to agree that it is important to develop a 

broader perspective of what is ‘normal’ as early as possible. At the same time, they consider it to be 

difficult to hold collective lessons for ‘normal’ children and children with the need for special 

education, especially when there is only one teacher in class. Furthermore, they are aware that there 

is a dilemma between the need to differentiate in school and the society being extremely 

heterogeneous. While in a school context, every child is supposed to receive the best possible 

support suitable for its own needs, in society, diversity is nearly never considered or discussed.  

Perspective 

The results collected so far already provide initial insights into student teachers’ subjective theories 

and guiding ideas on heterogeneity in the school context. Further group discussions will be carried 

out in the near future, and questionnaires distributed. The framework will be expanded to include 

practising mathematics teachers in different kinds of school in Saxony. Thus, data on teachers’ and 

student teachers’ subjective theories on diversity in pupil populations will be available for 

comparison. Consequently, individual teachers who participated in the group discussion will be 

selected to receive classroom visits. Through participatory observation we hope to be able to 

undertake a comparison between the collective opinion emerging in the group discussion and the 

models of activity that are actually applied by teachers for dealing with diversity. All these data will 

ultimately serve the development of concepts for events for student teachers with the aim of making 

them more sensitive to heterogeneity and more prepared to deal with it.  
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Teaching practices in a mathematics classroom and their connection to 

race and racism in the United States 
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In this paper I introduce critical realism to investigate the relationship between a mathematics 

classroom and the broader social context in which it is inserted. To ground the new approach, I focus 

on race and racism, and use critical race theory to guide the use of critical realism in this 

investigation. This is a report in an ongoing study about the work of teaching and social change with 

respect to race and racism in the United States. Data comes from a laboratory mathematics 

classroom held every summer by a large research university in the United States. Although more 

analysis is still necessary, initial results reveal how broader social context can influence and be 

influenced by broader structures of race and racism. Moreover, the framework shows potential to 

illuminate the relationship between classroom interactions and social systems of inequality. 

Keywords: Racism, teaching practices, critical race theory, critical realism. 

The problem 

This study starts from a perspective that education and schooling play a role in our society that can 

serve both to sustain and reproduce dominant social structures or to challenge them and promote 

change (Freire, 2015). It is generally accepted that our social world is unequal and unjust, and under 

such a view, education is frequently seen as a source of and/or a solution to social inequalities. It is 

therefore important to educational research, mathematics education research in particular, to better 

understand the relationships between educational and schooling practices and the broader social 

context they are situated in. 

In this study, I want to zoom in on classroom practices and investigate how mathematics classroom 

practices can reproduce or challenge macro social systems of inequalities, which I understand as 

social structures that privilege certain social groups over others. Racism in the United States is for 

example generally characterized by a set of social privileges rather than by individual acts of hate or 

prejudice (Bonilla-Silva, 2006). Even though individuals being overtly racist still exist, I am referring 

to a different problem, in which Whites enjoy better social opportunities only because they are White, 

such as African Americans being incarcerated in disproportionately higher rates than Whites (Barish, 

DuVernay, & Averick, 2016), and Latinxs having disproportionately fewer opportunities to obtain 

higher educational levels in comparison to Whites (Yosso, 2006). 

The main purpose of this paper is to report the application of critical realism in an ongoing study to 

offer new possibilities to understand the relationship between classroom interactions and the broader 

social context they are inserted in. I am particularly investigating race and racism in this first 

exploratory study, because it brings interesting dynamics between local social situations and broader 

social institutions. Such dynamics come from the fact that racism is deeply ingrained in American 

society (Ladson-Billings, 1999). I hope that a critical realist lens can help to illuminate how racism 

occurs within classroom interactions, specifically I want to investigate how racism can be challenged 

or disrupted in mathematics classrooms through teaching practices. In this study, I am particularly 

trying to answer the research question: How can the critical realist concept of norm circles help us 



better understand how teaching practices in a mathematics classroom (can) challenge and/or disrupt 

structural racism? In this paper, I will present the framework, describing a few core concepts of 

critical realism and critical theory and discussing how these two theories can be combined to better 

explain the connection between classroom teaching practices and structural racism, and then I will 

illustrate the use of the framework with initial findings. 

Conceptual framework 

Mathematics education research has focused its interest on the social and political dimensions of 

mathematics and education for quite a while now. To better understand such dimensions, some 

researchers are now foregrounding power relationships in research and using a variety of critical 

perspectives and methods in what has been called a sociopolitical turn (Gutiérrez, 2013). In her 

argument, Gutiérrez (2013) describe some of the theories used by critical scholars to address power 

relationships in society. Critical realism is not directly indicated in her article, but it is a possible 

sociopolitical theory. Critical realism is a philosophy of science originated out of the need for better 

theories to understand the social world; in particular, critical realism explores power relationships in 

the social world. Specifically the focus of this study, critical realism proposes a new approach that 

can illuminate the relationship between social structures and micro social interactions by elaborating 

an analytical mechanism that focuses on the interaction between individual agency and social 

structure (Elder-Vass, 2010). Such a mechanism has its foundation in the critical realist concept of 

emergence and is operationalized in terms of norm circles. These theoretical constructs however, are 

not tied to any specific method to conduct research though under a Critical Realist approach. What I 

expect in this study is that Critical Race Theory can provide theory and methods to investigate the 

relationship between mathematics instructional practices and racism, and that Critical Realism can 

complement CRT supporting the explanation of mechanisms of (re)production and disruption of 

racism. 

Critical realism 

The basic premise of critical realism is that the world is made by real things that have real causal 

powers (Bhaskar, 2008). Phenomena are interpreted as outcomes of causal powers of such real things. 

At a first glance these ideas look very similar to positivist ideas, but they are not. In positivism 

phenomena can be completely determined by scientific laws, whereas in critical realism, phenomena 

are only influenced by scientific laws. The main idea is that these laws impose constrains and prevent 

possibilities otherwise available, describing a tendency rather than a certain outcome. The example 

cited by Bhaskar (2008) is that the path of his pen does not violate any law of physics, nevertheless 

it is also not determined by such laws (p. 95). There is a limitation of what a pen can do that is 

described by the laws of physics, yet such laws do not determine what is being traced by the pen. 

What is important in these basic ideas is that the world, which includes the social world, is made by 

real things; and that scientific laws, even social laws, describe tendencies rather than determination. 

One concept that is central for critical realism and that will be very relevant for this study is the 

concept of emergence. Here, I am particularly adopting the compositional version of emergence as 

described by Elder-Vass (2010). In this version, the real things in the world can be combined in a 

way that, because of their structure and not only its individual properties put together, a new thing 

emerges in the world. Elder-Vass (2010) also refers to this new thing as an ‘entity’ or whole, and it 



possesses “properties or capabilities that are not possessed by its parts” (p. 4). The idea is that the 

whole is not just the sum of its parts, but it is something else, with a new causal power that is, of 

course, derived from the individual properties of its parts, but not only this, the way the parts interact 

and relate with each other is also responsible for the emergence of the new thing.  

The concept of emergence is what forms the layered or laminated view of the world under the critical 

realist perspective. A particular whole is said to be in a higher level or layer than its parts. The same 

whole, however, can be a part of another emergent structure; in this case the whole is in a lower level 

than the new emergent structure. In our social world, an individual can be interpreted as the lowest 

level, and the whole society as the highest level, with many intermediate levels in between, such as 

social institutions. The immediate higher level to an individual is, in Elder-Vass’ (2010) definition, a 

norm circle. The norm circle is defined by the group of individuals who hold a normative belief of 

endorsing a social practice. By endorsing, he means that each individual in the norm circle acts to 

reinforce the norm and discourage behavior that does not conform to the norm. Elder-Vass (2010) 

argues that the shared endorsement of a norm 

when combined with these sorts of parts, provide a generative mechanism that gives the norm 

circle an emergent property or causal power: the tendency to increase conformity by its members 

to the norm. The property is the institution and the causal power is the capability that the group 

has to affect the behaviour of individuals. That causal power is implemented through the members 

of the group, although it is a power of the group, and when its members act in support of the norm, 

it is the group (as well as the member concerned) that acts. (p. 124) 

With this argument, Elder-Vass (2010) is explaining why the norm circle is actually an emergent 

structure rather than only a group of people. He is explicitly pointing out what is the new causal power 

by showing the tendency it describes: to increase conformity to the norm. 

Particularly relevant for this study is how agency is viewed in this critical realist account of the social 

world in which the social wholes with causal powers are norm circles. It is important to consider that 

causal power in critical realism describe tendencies, so the fact that a norm circle enforces compliance 

with a particular norm indicates that someone in this norm circle will have the tendency to act in 

conformity to such norm, but this is not determined. With respect to the focus of this study, race and 

racism, and the guiding provided by critical race theory, a central aspect of this investigation will be, 

in a context of racialized circumstances, the situation of an individual being in different and 

conflicting norm circles, i.e. individuals that are part of norm circles that enforce opposite norms, and 

how the study of this conflicting positions can reveal routes for social change. 

Critical race theory 

Critical race theory is a theoretical framework for research that foregrounds race, racism, and 

racialized experiences. Critical race scholars ground their argument in the idea that racism is a social 

construction and is different than individual prejudice. Gloria Ladson-Billings (1999) reports that 

race is a complex social construct that goes beyond the color of skin, citizenship, and individual acts 

of prejudice, forming what can be called a system of racial inequality usually hidden under a 

colorblind discourse (Bonilla-Silva, 2006). To overt the practices of colorblind racism, critical race 

scholars anchor their work on five tenets: permanence of racism, Whiteness as property, interest 

convergence, critique of liberalism, and counter-storytelling (DeCuir & Dixson, 2004). I will briefly 



describe three of these tenets because they will be more salient to the preliminary results to be 

presented later on this paper. 

Whiteness as property refers to the idea that that Whiteness can be viewed as a set of social 

(privileged) possessions, that can operate similarly to property in a capitalist society. In the context 

of education, Whites have some sort of control of what is valuable knowledge and who gets access 

to it, which can be interpreted as a kind of intellectual property. Critique of liberalism is a direct 

critique to liberal economic-based ways of understanding and living in the world, grounded in free-

market ideologies, under which people believe that best outcome for all is achieved when there is no 

external regulation of the market. Meritocratic and individualist discourses are frequently associated 

with liberalist discourses (Solomona, Portelli, Daniel, & Campbell, 2005). Counter-storytelling is the 

main methodological strategy used by critical race scholars to challenge inequality and White 

privilege. One important aspect of counter-storytelling is the double-consciousness or angled vision 

attributed to individuals living in the margins of society (Anzaldúa, 1999) that is going to be one of 

connections between critical race theory and critical realism. 

Before I discuss the issue of marginality in society in light of critical realism and critical race theory, 

I will briefly elaborate in another connection between the two theories. Such connection will not be 

the focus of this study, yet it is necessary to understand why the two theories are compatible and 

suited to be thought together. Ladson-Billings (1999) says that racism describes a norm in current 

American society and “because it is so enmeshed in the fabric of our social order, it appears both 

normal and natural to people in this culture” (p. 12). This idea is the gist of permanence of racism. 

So, in a critical realist account of it, there must be a norm circle enforcing and endorsing racist 

practices. To present one example of a norm in this circle, I will need to unpack the idea of discourse 

within the critical realist framework. 

Dave Elder-Vass (2012) elaborates on the concept of discourse as discussed by Michel Foucault 

(1969). He emphasizes the idea that Foucault is concerned with the content of what we express using 

language norms. Moreover, he refers to Foucault asserting that there are normative practices that 

dictate what we can say and what we should not say, and, in some way, they also dictate how we 

should act. Elder-Vass (2012) constructs a realist ontology explaining how discourse in this sense can 

have causal powers. He argues that discourse is shaped by the normative rules enforced by members 

of a discursive circle through the discourse such members produce. Discourse, therefore, is the means 

to what the causal power of a discursive circle exerts causal effect. 

With this idea of discourse, I will point the emergence of a racist norm circle to the slavery system in 

the colonial period. As an example of a racist norm originated in the colonial United States, I point 

to the normative discourse that says “African American are less than Whites”. Specifically in 

educational contexts, such a discourse is reported in the autobiography of the former slave Frederick 

Douglass (1892) as a way to justify slavery. Once the norm circle reinforcing this discourse had 

emerged, it started to operate downwards, constraining the individuals in the circle to act accordingly. 

The way the discourse is reinforced has changed throughout time. For example, in the beginning of 

20th century, IQ tests (Karier, 1986) helped to disseminate the idea that Blacks were less intelligent 

than Whites; and recent research reports such as Robert Berry (2008) reveals that African American 

boys are more likely to be placed in lower track courses in mathematics, in comparison to their White 

peers, as they advance their studies. 



Critical race scholars ground their argument in this kind of normative racism in opposition to 

individual and overt prejudice. Theoretically, they understand this kind of racism as a social 

construction that brings real consequences to people of color (Chapman, 2013). This view gains a 

total new meaning under a critical realist perspective: Social constructions are real and have real 

causal powers. 

Now, focusing on norm circles and searching for routes for social change, I will discuss the double-

consciousness or angled-vision usually explored through counter-storytelling by critical race theory 

(Anzaldúa, 1999). This is usually a characteristic attributed to individuals that live in the margins of 

society. This place is viewed as a space of conflict of identity, a space of belonging and not belonging 

at the same time (Anzaldúa, 1999). In a critical realist perspective, I interpret the angle vision as a 

product of participating in conflicting norm circles. It is at this conflicting space that critical realism 

leaves room for human agency to act in a way that might not conform to a social norm. Elder-Vass 

(2012) discusses that when an individual participates in two or more conflicting norm circles, the 

outcome in terms of individual behavior can be very poorly predicted in the sense that the individual 

can decide for either norm, or can even create an innovative action to escape the ambiguous situation: 

In contexts of complex normative intersectionality, skilled social performances depend upon the 

possession by the individual of a sophisticated practical consciousness of the diversity, 

applicability and extent of the normative circles in which they are embedded, and indeed of others 

to which they are exposed, even though they may not be parts of them. Whether or not they are 

able to articulate this consciousness discursively, members of such societies depend upon it 

whenever they act. (Elder-Vass, 2010, p. 133) 

My idea in this study is to explore the norm circles with respect to race and racism that exist in a 

mathematics classroom environment. Particularly I want to investigate what are the norm circles the 

teacher participates in, what are norm circles created in the context of the classroom interaction, and 

how particular teaching moves are interpreted in light of agency within complex normative 

intersectionality. 

Methods 

I am conducting my research as a secondary case study on a summer program held by a large research 

university in the United States, in which an experienced teacher publicly teaches lessons to a group 

of elementary students. This summer program serves different purposes: one is to be a site of learning 

for practicing teachers and teacher educators, because of the nature of the public teaching and the 

professional development sessions that follows it; another is to be a site of research for both student 

learning and teaching practices. 

The student body of the laboratory is composed by a sampling of students from one school district in 

the Midwest United States. It is made to represent the demographic distribution of this district. Its 

composition counts with students of different ethnicities, but mostly are African American; all (or 

most) students come from low-income households; the students have different levels of English 

proficiency; and their mathematical proficiency is homogenously low. 

Because the EML is a site of research for student learning and teaching practices, different types of 

data are collected by the research team organizing the EML. The data set includes video records of 

instruction, video records of pre-brief and de-brief meetings with learning teachers, copies of students 



notebooks, pictures of classroom records such as charts, lesson plans, etc. Since I am analyzing data 

already collected, I did not engage in a relationship with the participants. I am observing and 

respecting their voices the best way I can by triangulating different sources of data. The data corpus 

is composed by video records of classroom interaction (approximately 2.5 hours per day across 10 

days), detailed lesson plans for each class, copies of student work (notebooks, homework, and 

assessments), and photos of every collective record produced in classroom (such as charts and white 

board records). The high quality documentation of the laboratory classes allows detailed observation 

of classroom interaction that are usually not possible in regular school settings. Also, the composition 

of the student body, the qualification and experience of the teacher, and the laboratory setting provide 

a fruitful environment for the existence of multiple norm circles operating in this same space, which 

is important for this research. 

I am following an analytic induction approach (Erickson, 1986) to code and interpret the data. The 

videos are being watched with a focus on interactions that involve students of color. Written records 

similar to fieldnotes are produced and used to identify episodes. Each episode is then re-watched; 

better-detailed descriptions are produced and interpreted according to the conceptual framework. In 

the next section I will illustrate how the episodes are interpreted in light of the conceptual framework. 

I will focus particularly on episodes that feature three Black girls. 

Illustrating the framework 

The initial analysis was focused on the interactions involving three Black girls, and findings show 

they can engage in mathematics discussions, and are interested in learning mathematics. These 

findings firstly challenge the idea that girls, specifically Black girls, are not suited for mathematics. 

In one example, one Black girl is behaving in a way that could have been interpreted as if she was 

not listening to what the teacher was discussing about the conditions of a problem they were about to 

work on. She was not looking to the teacher at the board and she was not quiet in her seat, but she 

promptly raised her hand when the teacher asked for a “wrong answer”. She correctly shared a 

solution to the problem that violated one of the conditions, making it a wrong answer. This example 

reveals a Black girl accessing mathematical content, usually a White intellectual property (Moses, & 

Cobb, 2001). This girl, however, was only accessing such content because the teacher ignored her 

apparently disruptive behavior and believed in her raised hand. The calling of the student to share her 

answer was a choice of the teacher; she had other students with raised hands to call at that moment, 

still she decided to call on that Black girl. She was at that particular moment deciding her action based 

in different norm circles, one that told her the student was not paying attention to the lesson, and 

another that told her the student knew something and wanted to share with the class. 

Initial findings also reveal that the teacher consistently engages in what Boaler (2008) calls assigning 

competence. This means that the teacher calls a student to publicly share an answer to a problem to 

raise their mathematical status among their peers. To do that, the teacher specifically points to an 

aspect of the proposed solution and indicates why that aspect is mathematically relevant. In one 

example, the teacher called on a Black girl to share how she had recorded an answer to a mathematics 

problem in her notebook. The teacher focused in how she wrote the answer using complete sentences, 

and that writing complete sentences foster writing clearly and is an important mathematical practice. 

This girl was not positioned as a competent mathematics learner or doer, other students in class 

frequently did not listen to what she was publicly sharing. In this example, the teacher had to intervene 



so all students were actively listening while she was showing her notebook. The students were also 

asked to comment what was good in her answer. With this move, the teacher raised her status as a 

mathematics learner and doer among her peers. The teacher was actively pushing back some kind of 

liberalist practice in classroom. In a liberalist practice, the teacher might pursue a meritocratic ideal 

and let the classroom “regulate itself”, without intervening in the social relationships being 

(re)produced there. By raising the mathematical status of some students, in particular two Black girls, 

the teacher might be changing the power relationships being established among students, which can 

promote some sort of local socio-mathematical justice. By consistently engaging in assigning 

competence, this teacher is actively challenging liberalist norm circles. 

Concluding comments 

The implementation of this new framework still brings methodological challenges. As it stands, the 

framework shows potential to illuminate the relationship between mathematics classroom practices 

and the broader context they are inserted in. The theoretical articulation of critical race theory and 

critical realism can help to refine both theories, providing methodological tools to apply critical 

realism in empirical research, and providing new analytical tools to understand how racism can be 

challenged. Particularly, the first example showed how the concept of norm circles was helpful to 

interpret a teacher action that counter racist discourses, and the second example show how a teaching 

practice can be used to counter liberalist practices that promote racism. I expect that such initial results 

can be elaborated with the further development of this study, providing more refined analysis. Finally, 

I expect that this study, when completed, can provide a more detailed description of classroom 

interactions in light of the social context they are inserted in. 
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This paper presents an analysis of institutional norms and the authenticity of out-of-school contexts 

that are reflected in a film about mathematics teaching in a comprehensive in-service vocational 

studies programme. The analysis was performed through the lenses of a theoretical framework of 

learning in different contexts and an empirically derived framework of mathematics as part of 

workplace complexity. The comprehensive in-service programme, which is available on internet, 

aims to improve mathematics teaching and learning, nationwide in Sweden. Through our analysis, 

we highlight a dissonance between the pedagogical approach displayed in the film, and how its 

authenticity may be compromised from the perspectives of our analytical frameworks. 
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Introduction 

A key assumption in this paper is that school, as an institution, has much to learn from workplaces. 

We adopt the view where mathematical notions are not only applied at workplaces but also are 

developed in workplaces (Wedege, 2013). One argument presented is that the context of any 

workplace stands in stark contrast to a formal mathematics classroom, where calling on authentic 

everyday experience may inhibit school mathematical sense-making (Gellert & Jablonka, 2009). 

Simultaneously, the performance of different jobs may be underpinned by the similar mathematics 

concepts as in the school context, but often interwoven in complex activities. The difference is not 

only in the type of work done, but in the sophistication of their contexts, such that unproblematic 

transfer of knowledge and skills may be highly unlikely. From an educational perspective it is rather 

about recontextualisation (Bernstein, 2000, see also FitzSimons & Boistrup, 2017). Through 

recontextualisation, a practice (for example mathematics) is transformed, rather than transferred, to 

an education context. In support of professional development for mathematics teachers in vocational 

programs in upper secondary school, Skolverket (Sweden’s Education Authority), produced, among 

articles and the like, a number of short films, each demonstrating ways of teaching and, in the case 

of this paper, taking relations between contexts of school mathematics and workplaces into account. 

Our contribution is concerned with how the institutional norms present in one such film may restrict 

authentic meeting points between workplace mathematics and school mathematics, and the possible 

implications for such a film. Our research question was: “What institutional norms may be 

construed through analysis of such a film, and what are the implications for vocational students of 

mathematics as part of their future work?” Through a description of our analysis, we highlight the 

dissonance between the pedagogical approach displayed in the film and how its authenticity may be 

compromised from the perspectives of our analytical frameworks. 



Literature on mathematics: In work and in school  

That the mathematics knowledge, skills and competence that underpin work may be denied, or 

dismissed as common sense may be a testament to its invisibility rather than its absence from the 

workplace (Boistrup & Gustafsson, 2014; Keogh, Maguire, & O'Donoghue, 2014; Williams & 

Wake, 2007). Mathematics may be something that workers use to solve problems or manage 

mathematics-containing situations, and may be observable as numerate behaviour (e.g. Gal, van 

Groensteijn, Manly, Schmitt, & Tout, 2003). In contrast, school mathematics is topic-specific, 

determined by curriculum, shaped by prescribed text, built on layers of escalating complicatedness, 

taught to the rhythm of the semester, and formally assessed as a passepartout to the next level of 

complicatedness. Whether its transferability is enabled by the context in which it is learned or 

contained by it, is disputed (Evans, 2000; FitzSimons & Wedege, 2007). The introduction of ‘real-

world’ mathematics to the classroom offers the prospect of easing the transformation from formal 

mathematics learning to its application in work situations . Nevertheless, it is often constrained and 

reduced to mathematics word-problems surrounded by ‘real world’ conceits, that may be 

“inauthentic... fragmented, static bits of tasks.. that are neither contextualized nor intellectually 

challenging” (Wiggins, 1989, p. 711).  

In Keogh, Maguire, and O'Donoghue (2016), a Workplace Context Complexity Protocol (WCCP) is 

presented. It identifies workplace competence, in relation to mathematics, as being shaped by 

strands such as familiarity and stressors. The ability to capture and calibrate the features of many 

workplaces, informed by the students, may enable teachers to build a platform to establish authentic, 

credible and familiar workplace contexts in which to set and explain mathematics as part of 

workplace complexity. In Boistrup (2016), a case of a nursing aide is presented drawing on different 

sociological frameworks, indicating connected notions as in Keogh et al. (2016). In the analysis of 

the study presented in this paper, we drew on findings from these two studies. 

Analytical framework 

Selander (2008) presents a design theoretical perspective of learning when he explains how learning 

may take place in relation to its communicative constituents and associated processes, and where the 

design of a setting affects possible learning. This perspective is underpinned by Institutional Theory 

(e.g. Douglas, 1986), which emphasizes how society is surrounded by institutions which condition 

the actions that are possible to take. The perspective is similarly influenced by multimodal social 

semiotics as described by Van Leeuwen (2005) and others, where emphasis is put on the ways in 

which communicative resources are used, such as speech, artefacts, gestures displays and the like, 

and the roles they might occupy in the setting. From this perspective, learning is considered to take 

place in all kinds of settings, for example, the situation as reflected by the learning required to buy a 

bus ticket in an unfamiliar city. It could also encapsulate a workplace, where, typically, the main 

institutional norm is to “get the job done”, part of which includes some learning.  

 

 

 



Selander (2008) also specifies this theory in terms of a formal setting of learning, such as a 

mathematics lesson. In this paper we draw on the following selection of facets of this theory, 

highlighted in italics: 

 We analysed the institutional framing of the lesson of the film, and the purpose of the 

chosen curriculum. We also paid attention to the learning resources that were present. 

 We analysed the social interaction between teacher and students in terms of displayed 

interest in the communication, informal assessment acts and teacher interventions. 

 We analysed how, and through which communicational resources (e.g. speech and hand 

gestures), teacher and students presented the processes undertaken during a problem solving 

activity. In addition, we analysed how, and with what focus, students were meta-reflecting, 

i.e. reflecting on their own actions. 

In the analysis, we adopted the WCCP protocol by Keogh et al. (2016), using attributes from the 

strands comprising the model, e. g., accountability, clarity, familiarity, stressors and volatility, to 

capture the matrix of factors that are thought to define, enable and constrain performance in work.  

Methodology: Case study and analysis 

This is a case study (Yin, 1984) wherein the primary data source is a film that is part of a ‘module’ 

on mathematics in vocational studies, upper secondary level, within a larger nationwide in-service 

program. The vocation of the students participating in the film is not made clear. However, as the 

context is introduced by the teacher as being concerned with a patient and her medication, we found 

it reasonable to infer that the students in the film are prospective nursing aides. We do not seek to 

analyse what the teacher is saying and doing per se, but rather to examine the messages being 

projected by the Swedish Agency for Education to teachers, albeit through the medium of an 

abridged video provided for teachers in the agency’s official website. Secondary data, analysed for 

interpreting the film’s message from its institutional context, stem from a discussion template to 

guide  teachers’ in discussing the film, an interview with a home-caring nurse, potential parts of the 

module where the vocation of home-caring nursing aides are described, and the national syllabus for 

mathematics in upper secondary school, vocational studies (Skolverket, 2013). 

The design theoretical perspective of learning was used in the analysis of the different processes in 

the film, which helped both in describing the lesson, and in the construal of institutional norms as 

reflected through the filmed lesson. The theory offers a framework with which to analyse learning 

with a particular focus on instances of institutional norms that are ‘there’ from the ‘beginning’, 

shaping, and perhaps containing the possible setting and learning activity. The perspective does not 

focus, specifically, on the content being taught and learnt. In our analysis we coordinated the design 

theoretical perspective with the framework by Keogh et al. (2016) in order to address how the 

teaching objective being illustrated, e.g. relations between workplace mathematics and general 

mathematics, is presented. 

We transcribed the film multi-modally (Van Leeuwen, 2005), documenting what was being said and 

done, by whom, and identifying the artefacts that were being used and how. In the first step of 

analysis we both analysed the data through the two different frameworks i.e. Selander’s perspective 

and Keogh’s WCCP (Selander, 2008; and Keogh et al., 2016) separately. In this analysis, we 



compared the transcript of the film with the concepts of the frameworks and with the secondary set 

of data. In a second step of analysis, we focused specifically on institutional norms while building 

on the findings from the previous analysis. The kind of institutional norms that we construed 

concerned relations between school mathematics and workplace mathematics. In this paper, we  

account for our analysis of the teacher’s introduction and our analysis of the first student’s 

contribution and whole class discussion.  

Analysis and findings: A mathematics lesson claiming to draw on workplace 

‘reality’ 

This section describes our first step (description and analysis) and second step (construal of 

institutional norms) of analysis while indicating elements in the analytical frameworks using italics. 

Description and analysis of film title and the teacher’s introduction 

The purpose of curriculum, in this case the topic claimed by the title of the film, is to go from the 

particular workplace mathematics to general mathematics. One central learning resource in the 

lesson is a screen at the front of the classroom where the teacher’s computer is mirrored. In the 

beginning there is a picture of, and a short text about, a patient, called “an Irma” by the teacher. The 

problem is presented in writing as follows: 

Irma who is 90 years old has high blood pressure. In order to lower the blood pressure, Irma 

takes medicine with the active substance bendroflumetiazide. She has been prescribed 15 mg, 

which she should take each morning. 

Each morning, she should take 9 pills in total. Help Irma to fill the ‘dosett’ [a dosage unit]: 

HOW MANY PILLS OF EACH KIND SHOULD SHE TAKE? 

The teacher checks with the students whether they are familiar with the active substance (social 

interaction).  The students do not respond to this, and there is no sign of communicated interest in 

the topic from the students. There is more evidence of engagement when the teacher asks them to 

say the name of the dosage unit. There is not much assessment communicated to the students in this 

first part.  

When we analysed the data with the WCCP framework (Keogh et al., 2016) one main point to 

consider was familiarity. The familiarity strand of the framework refers to how specific an activity is 

and to what extent the activity is a regular or irregular occurrence. In our interpretation, the context 

in which the problem is set is totally unfamiliar with regard to the students’ future vocation, 

especially in connection to potential accountability. Firstly, it is not a nursing aide’s responsibility 

to distribute pills into dosage units. Secondly, it is not feasible to restrict the patient to an exact 

number of different types of pills. This kind of decision making is not authentic. Thirdly, the way 

the teacher in the film begins his introductions, by referring to the picture of the patient as “an 

Irma”, is not interpreted as reflecting any familiarity. This way of objectifying patients is not 

authentic from the perspective of a nursing and caring workplace (see also Boistrup, 2016). 

Institutional norms construed from the title of the film and the teacher’s introduction 

The institutional norms that frame the setting of the lesson are construed from the title of the film 

and from how the teacher introduces the work. One institutional norm is construed as (1) “It is 



important to introduce general mathematical methods based on particular workplace problems”. The 

basis for this construal is the title of the film, which is presented at the agency’s website where 

teachers are invited to find and use the film. A second institutional norm is construed as (2) “It is 

important to find mathematics in the context of the students’ future vocations and build on that”. 

This norm is construed from the teacher’s way of starting the lesson with the patient, Irma, where he 

describes the problem with her pills. This norm is part of the institutional framing also, since it is 

stated in the national syllabus that mathematics in vocational upper secondary school should be 

strongly influenced by the future vocations of the students (Skolverket, 2013). A third institutional 

norm is construed as (3) “It is not really important to secure the authenticity of contextualized 

tasks”. The basis for this is described above in relation to Keogh et al. (2016) and Boistrup (2016), 

where it is clear that this is an example of un-familiarity with a workplace context, rather than a 

lesson where the mathematics teacher is making an effort to acknowledge the context of future 

workplaces of the students. 

Description and analysis of first student and whole class discussion 

After the introduction the teacher starts a new sequence (teacher intervention), where he invites the 

students to discuss, in pairs (social interaction), possible solutions to the problem. At this point, the 

teacher is still standing at the front of the classroom, looking at the students. The students are 

looking to their front. The teacher repeats the problem and tells the students to discuss it for 30 

seconds. The resources the students are offered to use are speech, writing, and calculators etc.   

The teacher intervenes and initiates a whole class session. The teacher asks a student to present how 

she solved the problem. The student represents her previous solving of the problem with resources 

as speech and gaze when presenting her solution to the teacher and the class. Her first meta-

reflection occurs when she says that her answer may not be correct. She then presents that she 

doubled the pill with 1.25 mg substance, to make 2.50 mg comprising 2 pills. She then added one of 

the 2.50 mg pills, to make 5 mg comprising 3 pills. She then took this times 3 which makes 15 mg 

and 9 pills, as required in the problem. In the film there is no further discussion. Instead the teacher 

intervenes telling the class, while pointing at the screen, “The method that Jasmine mentioned here 

is building on those numbers being easy”. He elaborates for 10 seconds on this and continues, “but 

there is a general method. And this we call a system of equations, i.e. to set up a system of 

equations.” This can be viewed as feedback, which constitutes an implicit assessment. 

When analysing with the framework by Keogh et al. (2016) one point was again familiarity. The 

student in focus solves the problem in a way that could be the case for a nursing aide (Boistrup, 

2016). (Here, briefly, we assume that the problem is authentic.) Accountability attributes are present 

in her reasoning, for example she takes the initiative and she uses the concreteness that suits this 

particular situation. The teacher stresses theoretical concepts and abstract thinking while stressing 

that the student’s method only works with “easy numbers”. 

Institutional norms construed from first student and whole class discussion 

The instance of the first norm regarding the high relevance of introducing general mathematical 

methods, is construed as present in the end of the sequence described. Implicitly, we regard the third 

norm, i.e. the lack of relevance to secure authenticity, to be apparent in the sequence. The teacher 

indicates that the student’s solution is not good enough since the method would not work well with 



other numbers. However, it was taken for granted that a problem with a certain number of pills was 

relevant in the presumed context. We also construed a fourth institutional norm: (4) “All relevant 

power and knowledge resides with the teacher”. The basis for this construal derives from the way 

that the teacher assessed the student’s answer, seemingly dismissing her practical and correct 

solution to the problem as posed. In addition, the teacher did not allow much opportunity for the 

students to meta-reflect and discuss during the whole class session.  

Conclusions and discussion 

The findings derive from our analysis of a filmed lesson, which is part of a library of resource 

material for in-service training for mathematics teachers. Authenticity is key from the vocational 

mathematics learner’s point of view. In summary, we conclude that the workplace context presented 

in the instructional video is transparently contrived, dehumanised and shaped by an unrealistic aim, 

e.g. that a patient should be required to take exactly 9 pills. Furthermore, it is not the nursing aid’s 

job to decide medication. That this description of the setting is patently false to the students, risks 

discrediting the underlying content and, ultimately, may undermine the intended learning outcome.  

In the film, a teacher introduces how vocational students can use a system of equations when 

solving problems in their future work as nursing aides. From our analysis and findings, we conclude 

that the film depicts a mathematics lesson where little time is spent on student interaction and 

student meta-reflection. The teacher is the most active person who intervenes most often. The 

overarching content promotes the benefits of solving workplace problems with formal school 

mathematics. Our analysis and findings reveal that the claimed workplace context, in fact, is not 

authentic to any significant extent. Nothing of the workplace complexity, shown in previous 

research (e.g. Keogh et al., 2016), is present and the teacher does not use the students’ knowledge 

about the work as nursing aide as a help to achieve authenticity. 

We view the construed institutional norms as a series of essential messages (from the National 

agency to mathematics teachers), that can be interpreted from the film as: 

1. It is important to introduce general mathematical methods based on particular workplace 

problems 

2. It is important to find mathematics in the context of the students’ future vocations and build 

on that 

3. It is not really important to secure the authenticity of contextualized tasks 

4. All relevant power and knowledge resides with the teacher. 

To a large extent the construed institutional norms coincide with a typical school mathematical 

discourse as described in Gellert and Jablonka (2009). Looking at the first norm, we argue that it is 

important not to exclude vocational students from general mathematical methods, but whether it is 

always important to build on workplace problems or not may be disputed. If it is essential to 

acknowledge the complexities of mathematics in work, as described in the first sections of the 

paper, it may be more suitable to introduce systems of equations intra-mathematically rather than 

drawing on inauthentic problems. The inherent risk of inauthentic contexts is it may serve to 

undermine rather than support the learning outcome. Regarding the second norm, there are a number 

of studies (e.g. FitzSimons & Wedege, 2007) revealing that in order to secure the authenticity of 

workplace mathematics, a way forward is enabled by cooperation between the stakeholders, 



including mathematics teachers, vocational students, and workplaces. Such projects may create 

opportunities to find relevant pathways from workplace problems and ways to solve them with 

general mathematical methods. 

The primary data source of our analysis was a filmed example for a module on mathematics in 

vocational studies within a larger nationwide in-service program. The film is used in this study as a 

starting point for a discussion. Our analysis acknowledges that there is not much in the module, as a 

whole, that reflects a balanced account of the work done by nursing aides. Hence, we find it hard to 

see that a teacher-discussion based on this film alone, without, for example, alternative films for 

comparison and contrast, would challenge a school mathematical discourse, where out-of-school 

contexts are not meant to be taken as ‘real’ (cf. Gellert & Jablonka, 2009). Rather, we see a risk that 

a film like this perpetuates existing institutional norms. We concur that much more work is needed 

in the future, both in terms of professional development and research, to enable and facilitate mutual 

learning opportunities between school practice and workplace practices. In such work, our use of the 

design theoretical perspective of learning (Selander, 2008) may be of use in the analytical 

description of mathematics lessons with an interest in institutional norms, teacher interventions, 

communication and roles of modes. In addition, the framework is useful for comparisons within and 

between workplaces since the perspective also includes informal and semiformal settings, such as 

workplaces. Additionally the WCCP framework (Keogh et al., 2016) may be useful for identifying 

authentic mathematics with reference to the complexities of workplaces with an interest in the 

factors that define, enable and constrain performance in work. 
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Exploring Roma learning mathematics: A socio-mathematical view 
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In this paper, I discuss six case studies of Roma people who have overcome inequalities to learn 

mathematics. I explore which elements may explain their success, as well as which ones appear to be 

barriers that makes learning more difficult for students belonging to an ethnic minority. I draw on 

their testimonies using a qualitative methodological approach. The analysis of the data reveals that 

social representations about Roma have a major impact on these six Roma people attitudes and 

beliefs towards mathematics and schooling, which also affects their strategies to learn mathematics. 

The six narratives that I discuss in this paper suggest that success happens when Roma children are 

not segregated from the mainstream, but receive the same mathematics curricula as their peers.  

Keywords: Roma, mathematics learning, successful learning trajectories. SLT. 

Roma within the literature on mathematics education 

In the field of mathematics education there are few studies about how Roma children perform in 

mathematics (Chronaki 2005, 2008; Stathopoulou & Kalabasis, 2007). Stathopoulou and Kalabasis 

(2007) analyse the relation between Romanó (Roma language) and the learning of mathematics in 

Greece. According to them, language is a form of cultural identity for Greek Roma children, and they 

use it to resist the homogeneous discourse of the school. Stathopoulou and Kalabasis define the 

academic Roma culture as an “oral” culture, which they use to justify reputing the claim about a “lack 

of written Roma language”. Starting from this statement, they argue that Roma children are proficient 

at oral calculation methods connected to their cultural roots, because Roma culture is mainly based 

on oral tradition.  

Chronaki (2008) suggests introducing hybrid practices1 as a way to break with the hegemonic 

discourse of the school (Matusov, 2009). Drawing on Bakhtin’s (2010) concept of polyphony, 

Chronaki argue that we need to develop dialogic practices to include the voices of all students in the 

classroom, including students from minority groups, not only the ones who share the monologist 

hegemonic discourse. 

There is a lack of scientific literature on the type of actions performed by Roma children that appear 

to be successful in terms of achieving academic success and developing, what I call, successful 

learning trajectories (SLTs). Drawing on previous research (Flecha, 2014), I define SLTs as the set 

of practices and interactions conducted by an individual to pass his/her exams, successfully obtaining 

his/her school certificate(s). I use the “grading of a test, exam or any other assessment procedure” as 

indicator of success, for the lack of a better indicator of “learning.” According to the European 

                                                 

1 Hybrid practices has been used in linguistic and cultural studies to characterize situations within the school (or the 

classroom) in which participants draw on different social and cultural backgrounds (Gutierrez, Baquedano-López & 

Tejada, 1999). It includes formal practices (school like practices) and practices related to what Luis Moll calls funds of 

knowledge (Gonzalez, Moll and Amanti, 2006). Chronaki (2008) uses the term in that sense, in the context of Roma 

culture.  



authorities in education, the minimum level of education expected for everyone is compulsory 

education (goals of the Horizon 2020 Program), generally up to age 162. For this reason, “early 

leaving” and “dropping out” of compulsory education is considered “failing” in this approach.  

Methodology 

This study was part of a larger research project investigating the response of individuals from ethnic 

minorities to overcome the social inequalities they face in the formal educative system when learning 

mathematics. This research interest emerged in the frame of analysing how children at risk of facing 

these inequalities can find their way to gain successful scores at school. The data was collected in 

Barcelona and its metropolitan area. When conducting this study, I realized that Roma people 

developing SLT (in mathematics) made use of strong support from their relatives. In order to better 

understand their process of learning, I decided to conduct a series of interviews with six Roma 

individuals, previously identified as “successful cases” in the sense that all of them had obtained good 

grades in mathematics during their academic trajectories (until the last course taken) (see table 1).  

Pseudonym Year of birth Academic trajectory Current situation 

Federico 1984 University degree PhD candidate 

Joana 1990 University degree PhD candidate 

Joaquim 1988 Elementary degree Access > 25 years old 

José 1979 VET degree Access > 25 years old 

Antonio 1978 Secondary degree Access > 25 years old 

Aroa 1996 Upper secondary degree Working  

Table 1: Description of the participants in the study 

To collect the data, I used personal interviews, an instrument with questions oriented to identify the 

elements that explain participants’ success in learning mathematics, according to their personal 

(subjective) point of view. Drawing on Chase (2005),  

Contemporary narrative inquiry can be characterized as an amalgam of interdisciplinary analytic 

lenses, diverse disciplinary approaches, and both traditional and innovative methods –all revolving 

around an interest in biographical particulars as narrated by the one who lives them. (p. 651) 

This method of inquiry is rooted in previous work, of researchers such as Thomas and Znaniecki 

(1918/1927), Garfinkel (1967) and Mills (1959). It involves collecting the testimonies of participating 

people using a number of instruments of data collection, including life stories, self-reports, oral 

biographical memoires, testimonies, in-depth interviews, recorded narratives and life review 

(Mertens, 2009). This method of inquiry starts from an epistemological approach of individuals as 

primary sense-making agents (Giddens, 1991; Riley & Hawe, 2005). Personal narratives allow us to 

see first hand the interpretations made by the protagonists of their own life experiences. As Bruner 

(1990) claimed, we understand our world through the lenses of personal narratives. In addition, we 

also make meaning (and even build meaning) through those narratives. This type of method (inquiry) 

                                                 

2 Almost in one of three European countries “compulsory education” goes up to 16 years old. For more information, see: 

http://eacea.ec.europa.eu/education/eurydice/documents/facts_and_figures/compulsory_education_EN.pdf  

http://eacea.ec.europa.eu/education/eurydice/documents/facts_and_figures/compulsory_education_EN.pdf


led me to include the voices of the participants within the wider study. All information was transcribed 

for further analysis. 

I selected six participants for the purposes of this paper. All met the requirement of having developed 

a SLT. As we can see in table 1, two of them are now enrolled in PhD programs. Three more, Joaquim, 

José and Antonio, are preparing to access university degrees, through the exams set up by the 

Government for people over the age of 25. Finally, Aroa is a girl (the youngest one in the group) who 

after finalizing her studies in the high school, decided to start working.  

In order to analyse the data, I used narrative and discourse analysis (Mertens, 2009), drawing on a 

communicative methodological approach (Aubert 2015, Sánchez, Yuste, de Botton, & Kostic, 2013). 

This approach focuses on the analysis and interpretation of the discourse from the dialogue with the 

participants, using validity claims (Habermas, 1984). The interpretation is organized in two different 

dimensions of analysis: transformative and exclusionary. Transformative dimension includes all 

aspects that will enable the subject of the study to answer positively to the research question. 

Exclusionary dimension has the opposite meaning: it includes all aspects that will avoid (or make 

more difficult) answering the research question. For the study reported in this paper, the 

transformative dimension includes all aspects leading the participant to achieve a SLT, whereas the 

exclusionary dimension refers to all aspects making difficult (or even avoiding) the subject to achieve 

a SLT. 
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* Transformative dimension 

** Exclusionary dimension 

Table 2: Coding categories for data analysis 

Interviewers and interviewees established a dialogue to explore the data collected, which allowed us 

to identify meaningful topics regarding interviewees’ learning trajectories. In a subsequent interview, 

I asked them to further clarify those topics. Drawing on this dialogue I elaborated a key to codify all 

data collected (see table 2).  

The categories (codes) emerging from the discussions include: attitudes, beliefs, content, strategies 

and social representations. The first two concepts were defined in McLeod’s (1992) terms. Content 

is referring to the mathematics itself (the curriculum). Strategies are defined in Maehr’s (1983) terms 



(see also Ames & Archer, 1988). Social representations correspond to the Moscovici’s (1981) 

definition. 

Discussion 

Next I provide first an inductive analysis of the data collected through the interviews. Then I try to 

create a tentative model to make sense all the relevant variables identified by the participants in the 

study, explaining their ‘learning process’.  

First step: Inductive analysis 

Federico provides a good example illustrating the type of answers obtained from all six Roma 

interviewed. He claims:  

In my case, the key aspects were, one I was passionate [about mathematics] and I really like 

science, so my motivation was somehow ‘natural’, or ‘intrinsic’. In addition, my teachers of 

mathematics and biology used to give me extra homework. I remember that in 4th grade - ESO 

[secondary education – middle school] I used to solve problems of 1st grade - Bachillerato 

[secondary – high school], and this was very motivating for me. It was the opposite in Catalan or 

English, teachers used to reduce my tasks so I could pass them [with no work]. Not the case for 

Spanish: I also used to get difficult homework to do in the classroom or at home. (Federico) 

In his words, we can see that aspects particularly positive in his academic career include effort, a 

challenging curriculum, a personal motivation (passion) for some of the academic topics (such as 

mathematics or biology), whereas no enthusiasm at all is devoted toward other ones (Catalan or 

English). From a very tentative entry point, we can infer here that ‘motivation’ is, somehow, 

connected to ‘grading’ (as learning ‘indicator’), given that Federico (for example) got excellent 

grading in mathematics and biology and, in fact, he started ‘biology’ for his minor at the university. 

But he also declares that his family (specially his mom), took a relevant part in his learning process.  

In an informal way, my mom taught me mathematics in the kitchen, or when shopping. Topics like 

volume, arithmetic, counting, prices, change, […] My dad, as he was in the construction sector, 

taught me how to calculate budgets, how to calculate the price for square meters, how much does 

it cost the staff, rates. (Federico) 

He and Aroa, Antonio, José, Joaquim and Joana as well, explain that their good grades in mathematics 

were consequence, mainly, of their family involvement. Their parents were the ones teaching them 

to develop mental calculation skills, estimation skills, etc., which were highly valued in the school 

framework. Stathopoulou and Kalabasis (2007) also provide clear examples in the case of Greek 

Roma, confirming this finding. However, this is not a main strategy for learning mathematics for any 

of our six cases. What they claim is that in order to obtain good grades in mathematics, they basically 

had to study hard, to put a lot of effort, using academic strategies to better learn: outlines, summaries, 

use of key words, or other mnemonic strategies, practice, problem solving, homework every day, etc.  

However, drawing on the data that I collected, it seems that certain social contexts could become 

sometimes a barrier limiting the opportunities of some Roma individuals to successfully perform in 

their grades. Joana, for instance, felt isolated from the ‘Roma world’, whereas Joaquim resists and 

rejects school because “[school] it is not Roma”. Teachers are crucial. According to Federico, some 

teachers really do not help Roma students because they feel that Roma are not interested in education. 



Joana holds a similar view. She explains how for many of her Roma friends teaching was just a matter 

of “being happy attending the school”, rather than “being a place for expand their learning”. 

According to Joana, that was the consequence of some teachers’ prejudices against Roma children: 

Not always, but in some cases, yes. It was not the case with me; my teachers always encouraged 

me to continue studying. But most of the times they did not identify me as Roma, and I have come 

to hear some pejorative comments towards my people from my teachers. In the classroom, I never 

had so many Roma peers. But I know other Roma girls who explain to me that, in their high 

schools, teachers, instead of teaching them the lesson, they lead them to see the telenovela [soap 

operas on TV]. I guess that it is the easiest solution and they think that doing so, the girls would 

be happy of attending the school every day. But I think that it is the opposite in fact, because the 

girls and their families know that they are not learning anything, so attending the school is useless. 

If things are like that, then they can stay at home and see the telenovela over there. (Joana) 

Looking at the testimonies of the six individuals interviewed, what they highlight as the most 

exclusionary factor is segregation, the separation of Roma students from the mainstream. This is due 

either to stigmatization from some teachers, or because genuine wishes of some teachers to better 

help them, hence they use “separation into homogeneous small groups” as a way to ‘concentrate’ 

additional support. However, according to Federico and Joana, those efforts are useless, since taking 

Roma children away from the mainstream does not help them to better learn mathematics, but the 

opposite; this practice leads the Roma students to be labelled by their peers and teachers, creating a 

stigmatized social representation about Roma. Therefore, this process somehow “announces” the 

academic performance of Roma children even before they conduct the tests. It is like a “self-fulfilling 

prophecy”. This perverse effect has been proved many times in the field of mathematics education 

research with children from vulnerable groups (Secada, Fennema, & Byrd-Adajian, 1995; de Abreu, 

Bishop, & Presmeg, 2001). When the school creates ability groups to segregate vulnerable groups 

children from the mainstream, creating low level groups, or designing segregated paths tracking, the 

consequence is that these children fail. 

Second step: Creating a model of analysis 

Drawing on the analysis of these testimonies, after coding them with the qualitative software package 

Atlas.ti, I produced a tentative model to describe SLT. I called this scheme Learning Core Matrix 

(LCM), as in figure 1, drawing on the variables identified by McLeod (1992), Maehr (1983) and 

Moscovici (1981), as reported earlier in this paper. The sum of all these components forms what I 

call LCM. I use this scheme to understand how every SLT works. On the subjective level of analysis, 

personal attitudes are shaped by social representation of being Roma. Social representations include 

values, ideas, metaphors, and beliefs (in the sense of Moscovici’s notion) related to learn mathematics 

being Roma. Strategies refer to the practices that individuals (Roma students, teachers, etc.) perform 

to teach, learn, resist or avoid mathematics. Attitudes include positive or negative evaluation of 

people, objects, events, activities, ideas, etc. in the frame of teaching and learning mathematics.  



 

Figure 1: Components of the Learning Core Matrix (LCM) associated to a SLT 

Beliefs include personal mental states regarding people, objects, events, activities, ideas, etc. Finally, 

contents refer to the mathematics curricula. According to the data collected, it seems that a ‘positive’ 

social representation of Roma may explain why some teachers do not segregate Roma addressing 

them to low-achievement groups with poor content (in mathematics), whereas other teachers holding 

‘negative’ social representations about Roma use segregation strategies with them, lowering the 

curriculum, for instance. It is also the case that the same teacher may also project good expectation 

in one particular Roma student, whereas segregating other ones. Having a positive or negative social 

representation depends on the teacher attitude towards Roma identity, which is closely interlinked to 

teachers’ personal beliefs. From the student point of view, the model works accordingly: confidence 

in the school (positive belief) is attached to a positive attitude in the classroom, as well as to the use 

of a variety of strategies to learn mathematics (such as prepare exams some days ahead, do homework, 

look for extra work, etc.). This is associated to a teacher’s positive social representation of Roma as 

successful learner (in mathematics), as well. The individuals who show positive components in this 

LCM use to hold SLTs more likely than the ones who, at some point of their lives, had a (mainly) 

negative LCM.   

Conclusion 

The six narratives I have discussed here suggest that success happens (or is more likely to happen) 

when they have had positive LCMs. When all of the five components of the LCM (or most of them) 

are positive, then it is more likely that an individual would develop a SLT. On the contrary, when the 

negative component is prevailing, then is hard to see SLT as a result. Joaquim, for instance, at some 

point of his life dropped out the school because he was feeling resistance against the school institution. 

According to him the main reason to explain such attitude was his negative social representation of 

“school” as something alien to his identity. This feeling could be, somehow, the result of being 

segregated by certain teachers holding negative expectations towards Roma students.  

The role of the family plays a crucial role to overcome the difficulties and barriers that some Roma 

students face along their school trajectories. A significant amount of these barriers is connected to 

prejudice and negative social representations about Roma. Family may be a resource. However, 



sometimes this is not true because the members of the family did not have any opportunities or 

possibilities to study themselves. For this reason, they cannot become ‘resources’ to help their 

children to solve their mathematics assignments. But, according to Hoover-Dempsey et al. (2005), 

the families can look for further resources to reinforce their children’s learning. Recent studies 

suggest that family engagement in the school has major impact on learning than just appointing family 

members in the school to ‘report’ on children’s behaviour (Díez-Palomar, Santos, & Alvarez 2013).  

LCM may have the potential to explain both Roma’s SLTs or the failure of many Roma children in 

the school, as narrated by Joana, Federico, Joaquim and the rest of their peers. In their narratives, they 

explain how many of their Roma peers used to be re-allocated to low-level classrooms, how teachers 

use to decide to lower the grades for them, cutting down on the curriculum, or asking them to do 

naive work (like painting) rather than problem solving or other high-mathematics-oriented tasks. 

However, examples like the narratives by Federico or Joana may help us to understand how holding 

a positive identity connected to showing positive attitudes in the school, using different strategies to 

overcome the difficulties related to mathematics itself (epistemological, ontological, etc.), combined 

with high quality curricula and classroom organization, may end in the development of SLTs.  

The model that I presented here is not generalizable. We need further quantitative studies to either 

accept or reject this approach. This would be the next step in the near future.  
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This paper describes the features of ethical research and how we attempted to undertake this kind of 

research. Our contention is that the aim of ethical research should be to produce action for change. 

Our understandings of ethical research led us to pause our negotiations for setting up two new 

projects, in kindergartens in Norway. By taking seriously our potential collaborators’ concerns, we 

were alerted to how kindergartens were simultaneously seen as both the cause and the salvation for 

several issues. In media discussions, which often originated with the Minister for Education, there 

was a perception that there was a need for more learning, particularly of mathematics and language, 

to overcome difficulties that children, especially immigrant children, may have when they begin 

school. These discussions were often contradictory with kindergartens being placed in an invidious 

position of navigating these discussions for their work with children. 
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Ethical research 

In August 2016, we were in the early stages of setting up two projects involving dialogue between 

ourselves, as mathematics education researchers, and the parents and teachers of multilingual children 

in kindergartens in Norway. As described in the next section, our initial discussions with an 

organisation about one project made us stop and reconsider what we wanted to do and why. To do 

this, we clarified our ideas about the kind of research, ethical research, which we wanted to undertake. 

In this paper, we discuss how implementing its principles resulted in us investigating the shifting 

landscape of priorities in Norwegian kindergarten policies. 

Our definition of ethical research includes a number of aspects, some of which are inspired by critical 

research. Critical research has a social justice aim and as such requires researchers to be comfortable 

with the ambiguity connected to working against oppression. Proposing bricolage as way of 

conceiving the range of research methodologies needed for conducting critical research, Kincheloe, 

McLaren, and Steinberg (2011) stated that “comfortable with the ambiguity, bricoleurs as critical 

researchers work to alleviate human suffering and injustice even though they possess no final 

blueprint alerting them as to how oppression takes place” (p. 173). We consider that ethical research 

involves more than evoking sympathy for participants. Like Harris (2013), we want to work with 

participants to produce “action for change” (p. 87). Nevertheless, we are aware that concerns about 

misinterpreting interactions and situations have led some researchers to withdraw from “action for 

change” research in case it produces undesirable outcomes, due to a lack of knowledge about the 

context in which they worked (Sultana, 2007). 

Thus, we consider that to design research that would produce action for change, academic researchers 

need to negotiate the research process with participants (Potts & Brown, 2005). In accepting this 

requirement, we recognise that this may make us uncomfortable. Operationalising social justice as 

action for change means we must live with ambiguity associated with how data should be collected 

and analysed. Our uncomfortableness with this ambiguity is likely due to preconceptions that research 



should provide definitive responses to issues; a reflection of the discourses that surround us as 

academics. It is also due to how we operate within the power relationships connected to being 

researchers, who tell the stories of participants (Etherington, 2007; Harris, 2013). Ethical research 

requires us to interrogate these power relationships and not assume we know the truth. 

Therefore, reflecting on our decision-making in the research, both with and without our participants, 

is an important component in ethical research. Reflexivity has been promoted as important in that it 

makes transparent any dilemmas in the research. 

Reflexivity is … an ability to notice our responses to the world around us, to stories, and to other 

people and events, and to use that knowledge to inform and direct our actions, communications, 

and understandings (Rennie, 1998; Wosket, 1999). When we extend that skill [reflexivity] into the 

practice of reflexive research, we need to be aware of the personal, social, and cultural contexts in 

which we (and others) live and work and to understand how these affect our conduct, 

interpretations, and representations of research stories. (Etherington, 2007, p. 601)  

In summary, ethical research is connected to action for change, but to achieve it we need to negotiate 

with participants what the research should be and how it should be conducted. This requires us to 

have a rich understanding of the context surrounding the site of the research. We must also accept 

uncertainty and be reflexive about our roles so that the power imbalance in our relationship with 

participants does not result in a covert control. We have a responsibility as researchers to find out 

about the relevant contexts and not just expect our collaborators to be the ones to inform us. We must 

also be aware that the negotiation can result in the research being “productive failure” (Harris, 2013, 

p. 89), rather than the change that we jointly want to work for. 

Unease and the project proposal 

In the negotiation of new projects with organisations that we had not previously worked with, our 

understandings of ethical research made us pause when some unease was shown. In the projects, we 

wanted to work with kindergartens teachers and parents of multilingual children. In one project, we 

hope to develop and trial playful mathematical apps that would encourage children to discuss them 

with kindergarten teachers in Norwegian and with their families in their shared languages. The change 

that we want to produce through having children engage with the apps is for them to develop both 

their Norwegian and home language(s) for discussing mathematical ideas. 

However, in the initial meeting, the complexity, connected to combining ICT, through mathematical 

apps, with the development of children’s mathematical register in more than one language as well as 

a request to involve immigrant parents, seemed to overwhelm those we talked to. The response was 

positive in that they felt the kindergartens would want to participate, but there was a constant stream 

of questions about what would happen and what the teachers would have to do. Although we tried to 

explain our aim of negotiating the project with the teachers and the parents, there was unease about 

why we did not have a clear plan for what we wanted (the teachers) to do. This unease made us reflect 

on the context of kindergartens in Norway, to determine what might provoke a need for certainty. 

Our reflection indicated that the projects came at a time when those working with kindergartens face 

much uncertainty and it became important to identify the features of the shifting landscape which 

affect kindergartens teachers’ work. We considered that an increased awareness of this landscape 



would support us to be more respectful of the circumstances and improve our possibilities to negotiate 

with kindergarten teachers and parents about how the projects should be implemented.  

The shifting landscape 

In this section, we present our understandings of some of the features of the shifting landscape 

including discussions about changing the role of kindergartens as one of preparing children for school, 

through supporting children to learn better mathematics and Norwegian and by incorporating ICT 

into children’s play. Each issue has been the subject of much debate over the last few years. Our 

investigation indicated that in discussions about kindergartens, teachers were often positioned both 

as responsible for the problems and simultaneously also the solvers of the very same problems. 

Changes to curricula philosophy for early childhood 

In Scandinavian kindergarten curricula, the focus has traditionally been on the whole child, 

emphasising their integration into society (Bennett, 2005). A revision of the Norwegian curriculum 

for kindergartens, the so-called Framework Plan (Kunnskapsdepartementet, 2011), that sets out their 

responsibilities has been ongoing for some years. However, in 2016 the Minister for Education 

rejected the draft, which followed the philosophy of play-based learning, proposed by contracted 

early childhood professionals. In particular, this delay to revising the Framework Plan seemed to 

result in our potential collaborators being uncertain and frustrated. However, the Minister had decided 

that his department would write the Framework Plan (Kunnskapsdepartementet, 2016a; Støbakk, 

2016) in line with a white paper that he had commissioned about providing “better content” in 

kindergarten (Kunnskapsdepartementet, 2016b). Although this suggestion has received significant 

criticism from those working in the field, the Minister continues to talk about kindergartens needing 

to prepare children for school. As noted in some of the critiques (Bae, 2016), play – although in the 

title of the white paper (Kunnskapsdepartementet, 2016b) – is almost completely missing from the 

discussion with the attention being on what children are to “learn”. This indicates a deliberate change 

to situating kindergartens’ primary role as preparing children for school. This interpretation was 

reinforced with the revelation that Norway was to participate in the first round of PISA tests for 5 

year olds starting in 2017/2018 (Moss et al., 2016). In Norway, five year olds attend kindergartens 

and comparing them on international tests will emphasise the importance of school knowledge. 

Mathematics will be one of the knowledge areas assessed in these International Early Learning 

Studies (Moss et al., 2016).  

Mathematics and the “realfag” strategy 

In a series of initiatives contributing to shifting the focus of kindergarten away from the social policy 

pedagogical tradition (Bennett, 2005), another report, specifically about improving mathematics and 

science subjects, “realfag”, in kindergartens and schools, was commissioned by the Minister and 

released in August 2015 (Kunnskapsdepartementet, 2015). The Minister in justifying and promoting 

this policy had linked Norway’s future financial well-being to a need for more focus on mathematics 

in kindergartens (Lange & Meaney, 2016). This prompted discussion about whether moving more 

towards a “readiness for school tradition” and away from the “social policy pedagogical tradition” is 

appropriate for Norwegian kindergartens. Like the white paper about better content in kindergartens 

(Kunnskapsdepartementet, 2016b), this report and its recommendations have been criticised by those 

working in the field even before it was published (see for example, Pettersvold & Østrem, 2014; 



Schaanning, 2015). A question arises about what improving the content in kindergarten means when 

the current Framework Plan (Kunnskapsdepartementet, 2011) already contains goals for providing 

mathematical learning opportunities to children (Digranes, 2014). The implication was that 

kindergarten teachers were not doing enough to support children to learn the necessary mathematics 

knowledge for school. For kindergarten teachers and the administrative leadership, there remains 

uncertainty about how to implement the “realfag” strategy while they wait for the Framework Plan to 

be finalised. Although the outcomes are clearly connected to “improvement”, perhaps assessed 

through tests of 5 year-olds, the lack of information for kindergartens about how to work with this 

report remains a source of frustration.  

Multilingual children in Norwegian kindergartens 

Alongside discussions about the role of mathematics within kindergartens, there have also been 

discussions about the children needing to learn “good” Norwegian language. These discussions are 

diverse and in some ways contradictory. Some of them refer to the white paper on better content in 

kindergarten (Kunnskapsdepartementet, 2016b), which includes the push by the Minister to introduce 

mandatory language testing of kindergarten children, such as in Fladberg (2015), and to the legislate 

requirements for Norwegian language skills of employees in kindergarten as noted by Haugsvær 

(2016). The Minister’s justification for the testing was that a significant proportion of children begin 

school without good Norwegian skills (Svarstad, 2015). Although the suggestion for mandatory 

language testing was rejected by the parliament in June 2016, uncertainty about how kindergartens 

should work with children’s language development remains (Fyen, 2016; Schaanning, 2016).  

Connected to these discussions, although often implicitly, is the issue of immigrant children and their 

learning of Norwegian so that they would be ready for school (Redaksjonen, 2016). Children who 

have another language than Norwegian as their home language are given the same tests as those who 

have Norwegian as their home language. Unsurprisingly perhaps, the results generally indicate that 

multilingual children are not as competent as children who speak Norwegian at home. However, in 

this debate, the kind of language development seems to be implicitly about ensuring conversational 

language. Language to discuss mathematics is not specifically mentioned either in discussions about 

more mathematics in kindergartens or in discussions about improving language development. 

Linked to the issue of multilingual children’s Norwegian language skills is a long running debate 

about family payments that parents can use for children to attend kindergarten or to look after them 

at home (Rosa, 2007). Recently, attendance by immigrant children in kindergartens has increased 

(Barne-‚ ungdoms- og familiedirektoratet, 2016), providing them with increased opportunities to 

learn Norwegian. The discussion about insufficient Norwegian for school has been linked to children 

who are kept at home during the kindergarten years, although the Minister rarely acknowledges this. 

Still, there is some evidence that children may not be learning conversational Norwegian while in 

kindergartens. The responsibility for improving the situation lies with the municipalities which 

oversee kindergartens.  

At the same time, there also has been criticism about the lack of effort by kindergartens to achieve 

the Framework Plan’s (Kunnskapsdepartementet, 2011) requirement to develop all of the children’s 

languages (Sundby, 2016). Nevertheless, it is acknowledged that it is difficult for kindergarten staff 

to do this if they are not be fluent in these other languages (Otterstad, 2016). Again, kindergartens are 



situated as being responsible for not doing enough but with no clear pathway for how they could 

improve their possibilities for supporting children’s home language skills. There is no discussion 

about using home languages for discussing mathematics. 

ICT and kindergartens 

ICT is an area that children in kindergarten are also supposed to have experiences with, according to 

the Framework Plan (Kunnskapsdepartementet, 2011). Yet the discussion about whether or how to 

incorporate ICT in kindergartens continues to circulate, partly because of the constant changing of 

hardware and software. For example, the rapid increase in the use of touch-screen devices by children 

at home (Hardersen & Guðmundsdóttir, 2012) has not been matched by their use in kindergartens 

(Bølgan, 2012). As well, research in information literacy skills connected to ICT has shown that older 

students who speak other home languages than Norwegian are likely to have less of these skills than 

those who speak Norwegian at home (Hatlevik & Guðmundsdóttir, 2013). 

In seeming contradiction to the Framework Plan’s requirements, the Minister has been critical of the 

unbridled enthusiasm for ICT in kindergartens and schools, suggesting that there is limited research 

evidence to show that ICT contributes to children’s learning (Todal, 2015). During a visit to a 

kindergarten, he described his fondness for paper books over digital ones (Ruud, 2016). For 

kindergartens deciding how to use ICT with children, there are mixed messages about if and how 

they should integrate ICT into possible learning opportunities for children. 

What did we learn from mapping the landscape? 

Although as researchers we were aware of the debates raging around kindergartens, it was not until 

we investigated them that we understood how they may be affecting the possibilities our potential 

collaborators saw for negotiating with us. As teacher educators, we also face major changes to our 

working environment, initiated by the Minister of Education. However, our standing as academics, 

which provides us with recognition and discussions beyond our immediate working environment, 

perhaps made us blasé about the impact that uncertainty had on kindergartens’ perceptions of what 

they could do. Kindergarten staff, even though many have a Bachelor degree, are often not given the 

same status as those working in universities or even schools by the general public. By investigating 

what was being discussed and in what ways, we better understand the uncertainty that kindergarten 

staff saw in how we presented the potential project to them. 

The debates, around kindergartens and what their focus should be, situate kindergarten teachers and 

administrative leaders as being both responsible for the problems and also their solutions. As 

discussed in the previous section, kindergarten staff were being presented in the media debates as not 

preparing children well enough for school. Official reports situated them as not developing the 

children’s, especially multilingual children’s, language(s). They were also not providing children 

with the mathematical understandings that they needed to be successful at school and this was 

endangering Norway’s economic well-being. Within these debates, kindergarten staff were 

positioned as not being competent, with kindergarten assistants’ Norwegian language skills needing 

to be tested. 

Simultaneously, the debates constantly shifted and changed, providing contradictions and no clear 

guidelines about what kindergarten staff should focus on and how they should implement any of the 

reports. Instead, they may have felt their competence was further being tested by whether they could 



work out appropriate solutions to these issues. Having been judged as contributing to the problems, 

they are now being judged on whether they could become the kindergartens’ saviours through finding 

solutions to those exact same problems. Being the focus of so much media attention, with limited 

possibilities for responding and positioning their work in positive ways, may have affected their 

willingness to engage with us, as outside researchers. It is not surprising that they seemed to want a 

specific plan for their participation in the proposed projects. Following someone else’s plan not only 

would allow them to show they were working on solving the issues, but if the plan did not work then 

we would be responsible.  

Yet ethical research demands that we negotiate with kindergarten staff and parents if action for change 

is to be achieved. Our investigations showed us that we needed to accept their concerns as genuine 

and be mindful about how we situated them in our negotiations. Recognising this shifting landscape 

provided some indication about how we could be respectful of their contexts. Still there remains 

significant ambiguity for us on how to conduct, not just the negotiation, but also the project itself.  

References 

Bae, B. (2016, June 19). Et godt lekemiljø er usynlig i den nye stortingsmeldingen om barnehager [A 

good play environment is invisible in the new White Paper on kindergartens]. Utdanningsnytt.no. 

Retrieved from https://www.utdanningsnytt.no/debatt/2016/juni/et-godt-lekemiljo-er-usynlig-i-

den-nye-stortingsmeldingen-om-barnehager/ 

Barne-‚ ungdoms- og familiedirektoratet. (2016). Barn med minoritetsbakgrunn [Children with 

minority background].  Retrieved from 

https://www.bufdir.no/Statistikk_og_analyse/Oppvekst/Barnehage_og_skole/Barn_med_minorit

etsbakgrunn/ 

Bennett, J. (2005). Curriculum issues in national policy-making. European Early Childhood 

Education Research Journal, 13(2), 5–23. doi: 10.1080/13502930585209641. 

Bølgan, N. (2012). From it to tablet: Current use and future needs in kindergartens. Nordic Journal 

of Digital Literacy, 7(3), 154–171.  

Digranes, T. (2014, August 7). Kunnskapsløst av kunnskapsministeren [Lack of knowledge by the 

Minister of education]. At Torbjørn Røe Isaksen vet så lite om barnehagens innhold, er svært 

overraskende. Bergens Tidende. Retrieved from 

http://www.bt.no/meninger/debatt/Kunnskapslost-av-kunnskapsministeren-3172003.html 

Etherington, K. (2007). Ethical research in reflexive relationships. Qualitative inquiry, 13(5), 599-

616. doi: 10.1177/1077800407301175. 

Fladberg, K. L. (2015, September 16). Opplever tvang og mistillit [Experience force and mistrust]. 

Dagsavisen. Retrieved from http://www.dagsavisen.no/oslo/opplever-tvang-og-mistillit-1.395567 

Fyen, S. (2016, June 9). Feirer seieren [Celebrating the victory]. Dagsavisen, p. 13. Retrieved from 

http://www.dagsavisen.no 

Hardersen, B., & Guðmundsdóttir, G. B. (2012). The digital universe of young children. Nordic 

Journal of Digital Literacy, 7(3), 221–226.  

https://www.utdanningsnytt.no/debatt/2016/juni/et-godt-lekemiljo-er-usynlig-i-den-nye-stortingsmeldingen-om-barnehager/
https://www.utdanningsnytt.no/debatt/2016/juni/et-godt-lekemiljo-er-usynlig-i-den-nye-stortingsmeldingen-om-barnehager/
https://www.bufdir.no/Statistikk_og_analyse/Oppvekst/Barnehage_og_skole/Barn_med_minoritetsbakgrunn/
https://www.bufdir.no/Statistikk_og_analyse/Oppvekst/Barnehage_og_skole/Barn_med_minoritetsbakgrunn/
http://www.bt.no/meninger/debatt/Kunnskapslost-av-kunnskapsministeren-3172003.html
http://www.dagsavisen.no/innenriks/feirer-seieren-1.736073


Harris, A. (2013). In transit/ion: Sudanese students’ resettlement, pedagogy and material conditions. 

Journal of Pedagogy / Pedagogický casopis, 4(1). doi: 10.2478/jped-2013-0005. 

Hatlevik, O. E., & Guðmundsdóttir, G. B. (2013). An emerging digital divide in urban school 

children’s information literacy: Challenging equity in the Norwegian school system. First 

Monday, 18(4). doi: 10.5210/fm.v18i4.4232. 

Haugsvær, N. (2016, February 2). Dette er ikke veien å gå [This is no way to go]. Aftenposten, p. 15. 

Kincheloe, J. L., McLaren, P., & Steinberg, S. R. (2011). Critical pedagogy and qualitative research: 

Moving to the bricolage. In N. K. Denzin & Y. S. Lincoln (Eds.), The SAGE handbook of 

qualitative research (4 ed., pp. 163–177). Thousand Oaks, CA: Sage Publications. 

Kunnskapsdepartementet. (2011). Framework plan for the content and tasks of kindergarten. Oslo: 

The Norwegian Ministry of Education and Research.  

Kunnskapsdepartementet. (2015). Tett på realfag: Nasjonal strategi for realfag i barnehagen og 

grunnopplæringen (2015-2019) [Close up with mathematics and science: National strategy for 

science in kindergarten and compulsory education (2015-2019)]. Oslo: Kunnskapsdepartementet.  

Kunnskapsdepartementet. (2016a, June 6). Arbeidet med ny rammeplan for barnehage [The work 

with new framework plan for kindergarten]. Retrieved from 

https://www.regjeringen.no/no/tema/familie-og-barn/barnehager/artikler/arbeidet-med-ny-

rammeplan-for-barnehage/id2482009/ 

Kunnskapsdepartementet. (2016b, March 11). Tid for lek og læring: Bedre innhold i barnehagen 

[Time for play and learning: Better content in kindergarten]. Retrieved from 

https://www.regjeringen.no/no/dokumenter/meld.-st.-19-20152016/id2479078/ 

Lange, T., & Meaney, T. (2016, July). The production of “common sense” in the media about more 

mathematics in early childhood education. Paper presented at 13th International Congress on 

Mathematical Education, Hamburg, Germany. 

Moss, P., Dahlberg, G., Grieshaber, S., Mantovani, S., May, H., Pence, A., Rayna, S., Swadener, B. 

B., & Vandenbroeck, M. (2016). The Organisation for Economic Co-operation and Developments 

International Early Learning Study: Opening for debate and contestation. Contemporary Issues in 

Early Childhood, 17(3), 343–351. doi: 10.1177/1463949116661126. 

Otterstad, A. M. (2016, April 6). Fellesskap forsvinner fra barnehagen [Community disappears from 

the kindergarten]. Khrono. Retrieved from http://www.khrono.no/debatt/skape-barnehagelaerere-

som-instruktorer-og-barna-som-passive-tilhorere 

Pettersvold, M., & Østrem, S. (2014, February 11). Problembarnehagen [The problem kindergarten]. 

Klassekampen, p. 12. 

Potts, K., & Brown, L. (2005). Becoming an anti-oppressive researcher. In L. Brown & S. Strega 

(Eds.), Research as resistance: Critical, indigenous and anti-oppressive approaches (pp. 255–

286). Toronto: Canadian Scholar’s Press. 

https://www.regjeringen.no/no/tema/familie-og-barn/barnehager/artikler/arbeidet-med-ny-rammeplan-for-barnehage/id2482009/
https://www.regjeringen.no/no/tema/familie-og-barn/barnehager/artikler/arbeidet-med-ny-rammeplan-for-barnehage/id2482009/
https://www.regjeringen.no/no/dokumenter/meld.-st.-19-20152016/id2479078/
http://www.khrono.no/debatt/skape-barnehagelaerere-som-instruktorer-og-barna-som-passive-tilhorere
http://www.khrono.no/debatt/skape-barnehagelaerere-som-instruktorer-og-barna-som-passive-tilhorere


Redaksjonen. (2016, May 2). Utvidelse av ordningen med gratis kjernetid i barnehage [Expansion 

of free access to kindergarten]. barnehage.no. Retrieved from 

http://barnehage.no/okonomi/2016/05/utvidelse-av-ordningen-med-gratis-kjernetid-i-barnehage/ 

Rosa, I. D. (2007, July 20). Vil ha barnehagetvang for innvandrere [Will have compulsory 

kindergarten for immigrants]. VG. Retrieved from http://www.vg.no/nyheter/innenriks/vil-ha-

barnehagetvang-for-innvandrere/a/153129/ 

Ruud, M. (2016, March 1). Røe Isaksen på sjarmbesøk på Barnehagedagen [Røe Isaksen on charm 

visit on Kindergarten Day]. Utdanningsnytt.no. Retrieved from 

https://www.utdanningsnytt.no/nyheter/2016/mars/torbjorn-troller-og-tuller/ 

Schaanning, E. (2015). Hvis skolematematikken ikke fantes [If school mathematics would not 

exist]. Arr – idéhistorisk tidsskrift, (4). 

Schaanning, E. (2016, June 29). Den store skolefiseringen [The big schoolification]. Klassekampen, 

p. 15. 

Støbakk, T. (2016, April 16). Barnehageeksperter kritiserer kunnskapsminister Isaksens bruk av 

forskning [Kindergarten experts criticise Minister for Education Isaksen's use of research]. 

Dagbladet. Retrieved from 

http://www.dagbladet.no/2016/04/17/nyheter/innenriks/politikk/utdanning/43885433/ 

Sultana, F. (2007). Reflexivity, positionality and participatory ethics: Negotiating fieldwork 

dilemmas in international research. ACME: An International E-Journal for Critical Geographies, 

6(3), 374–385.  

Sundby, C. (2016, May 27). Minoritetsspråklige barn må få støtte til å utvikle morsmålet. [Minority 

language-speaking children must get support to develop their mother tongue]. Utdanningsnytt.no. 

Retrieved from https://www.utdanningsnytt.no/debatt/2016/mai/minoritetsspraklige-barn-ma-fa-

stotte-til-a-utvikle-morsmalet/ 

Svarstad, J. (2015, June 5). Røe Isaksen vil satse på språk og realfag i barnehagene [Røe Isaksen will 

advocate for language and science in kindergarten]. Aftenposten. Retrieved from 

http://www.aftenposten.no/norge/Roe-Isaksen-vil-satse-pa-sprak-og-realfag-i-barnehagene-

38086b.html 

Todal, P. A. (2015, February 20). «Ein stor og naiv entusiasme» [“A big and naïve enthusiasm”]. Dag 

og Tid. Retrieved from http://www.dagogtid.no/ein-stor-og-naiv-entusiasme/ 

 

http://barnehage.no/okonomi/2016/05/utvidelse-av-ordningen-med-gratis-kjernetid-i-barnehage/
http://www.vg.no/nyheter/innenriks/vil-ha-barnehagetvang-for-innvandrere/a/153129/
http://www.vg.no/nyheter/innenriks/vil-ha-barnehagetvang-for-innvandrere/a/153129/
https://www.utdanningsnytt.no/nyheter/2016/mars/torbjorn-troller-og-tuller/
http://www.dagbladet.no/2016/04/17/nyheter/innenriks/politikk/utdanning/43885433/
https://www.utdanningsnytt.no/debatt/2016/mai/minoritetsspraklige-barn-ma-fa-stotte-til-a-utvikle-morsmalet/
https://www.utdanningsnytt.no/debatt/2016/mai/minoritetsspraklige-barn-ma-fa-stotte-til-a-utvikle-morsmalet/
http://www.aftenposten.no/norge/Roe-Isaksen-vil-satse-pa-sprak-og-realfag-i-barnehagene-38086b.html
http://www.aftenposten.no/norge/Roe-Isaksen-vil-satse-pa-sprak-og-realfag-i-barnehagene-38086b.html
http://www.dagogtid.no/ein-stor-og-naiv-entusiasme/


How Sámi teachers’ development of a teaching unit influences their 

self-determination  

Anne Birgitte Fyhn1, Tamsin Meaney2, Kristine Nystad3 and Ylva Jannok Nutti4 

1UiT- The Arctic University of Norway, Department of Education, Norway; anne.fyhn@uit.no 

2Bergen University College, Norway; Tamsin.Jillian.Meaney@hib.no 

3University of Oslo, Institute of Health and Society, Norway; kristine.nystad@gmail.com 

4Sámi University of Applied Sciences, Guovdageaidnu, Norway; Ylva.Jannok.Nutti@samiskhs.no 

Five teachers from a Sámi lower secondary school participated in two workshops on culturally-

responsive mathematics teaching. During the first workshop, the teachers chose to focus on 

developing a unit about lávvu, the Sámi tent, to be taught between workshops. Their experiences are 

analysed with respect to Self-Determination Theory, which claims that all humans have a basic need 

for autonomy, competence and relatedness to others. The analysis of teachers’ written notes reveals 

that the need for autonomy appeared as a need for inspiration and for courage. The need for 

competence concerned relating mathematics teaching to the two community resilience factors i) Sámi 

language competence and ii) traditional ecological knowledge. The need for relatedness to others 

was linked to Indigenous peoples, other teachers at their school, and teachers at other Sámi schools.  

Keywords: Sámi, teacher, self-determination, indigenous, culturally-responsive teaching. 

Introduction 

This paper explores teachers’ perspectives on culturally-responsive mathematics as it is imagined and 

utilized in the design and implementation of a teaching unit on the Sámi1 tent, lávvu. This artefact, its 

design and its building, carries important connections to the Sámi people’s intangible cultural heritage 

by embodying cultural traditions and ceremonies as well as rules for behaviour. To many 

Scandinavians, however, the lávvu is merely a tent; a cone-like building made with some poles that 

are covered by cloth. In modern Sámi societies, traditional knowledge of lávvu is not necessarily 

widespread as people use modern, factory-made lávvut with metal poles. Reindeer herding families 

use lávvu regularly and often are more familiar with traditional knowledge about lávvu than other 

Sámi. The younger Sámi generation consists of a variety of people with different interests.  

Guovdageainnu nuoraidskuvla is the lower secondary school in the village Guovdageaidnu, 

Kautokeino, in Norway. North Sámi is mother tongue of more than 90 % of the students and it is the 

school’s official language. The teaching is translated into Norwegian by an assistant teacher for 

students who do not understand Sámi well. The school follows the Sámi curriculum, which is 

equivalent to the national one. The school’s teachers realised that reahpen, the north Sámi word for 

the smoke hole in the lávvu’s top, was considered a strange word by many grade 10 students. In order 

to increase students’ cultural and mathematical knowledge, the teachers developed a culturally-

responsive teaching unit about lávvu. The teaching unit was carried out in the period between two 

                                                 

1 The Sámi are an Indigenous people of the Arctic. They live in the northern parts of Norway, Sweden and Finland and 

on the Kola Peninsula in Russia. The Sámi is a heterogeneous group of people with different occupations.  
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workshops about culturally-responsive mathematics teaching. At the first workshop, the teachers 

planned the teaching, and, at the second workshop, they presented the outcomes. We consider this 

work to contribute to this group’s self-determination as an Indigenous group. 

Smith (1999/2006) highlights the importance of self-determination for Indigenous people, by 

describing it as the aim of a non-linear developmental process that departs from survival and recovery. 

We consider that self-determination is important in understanding Indigenous mathematics teachers’ 

motivations for developing and implementing culturally-responsive teaching. Previous research about 

teachers’ reflections about Sámifization of school mathematics identifies several important issues. 

Jannok Nutti (2013) noted teachers’ ability, drive and possibility, while Fyhn, Jannok Nutti, Nystad, 

Sara Eira and Hætta (2016b) describe relations between teachers’ autonomy and their development. 

Fyhn, Jannok Nutti, Sara Eira, Børresen, Sandvik, and Hætta (2015) point to the importance of 

including teachers from other subjects, when the context for the teaching is related to their area. 

According to Kirmayer, Sehdev, Whitley, Dandenau, and Isaac (2009), self-determination also relates 

to resilience, as general discussions of identity tend to underemphasize the role of social action or 

collective agency in the production of well-being. Nystad, Spein, and Ingstad (2014) investigated a 

Sámi society in Northern Norway and identified community resilience factors including Sámi 

language competence, use of recreational and natural resources, and traditional ecological knowledge, 

such as reindeer-husbandry-related activities. These cultural factors appear to strengthen adolescents’ 

ethnic identity and pride. Knowledge about lávvu and skills in how to raise a traditional lávvu are 

examples of traditional ecological knowledge in Sámi societies. Kirmayer et al. (2009) point out that 

resilience has a collective as well as an individual dimension. 

Self-determination theory has provided empirical support for the proposition that all human beings 

have fundamental psychological needs to be competent, autonomous and related to others (Deci & 

Ryan, 2012). Autonomy refers to the perceived origin or source of one’s own behaviour; it concerns 

acting from interest and integrated values. Relatedness is the psychological sense of being with others 

in a secure community. Autonomy is emphasized in traditional Sámi child rearing (Hoёm, 1976; Balto, 

2005) and Balto (2005) highlights autonomy as a Sámi value. Relatedness to others is connected to 

holistically sharing and developing knowledge and so it is also considered an Indigenous value. The 

theoretical framework is constituted by the three categories competent, autonomous and related to 

others. Following Glaser (2001), we identified subcategories connected to each category by 

comparing incidents and named them using the teachers’ own words. In this paper, we analyse five 

teachers’ expectations and experiences of the two workshops. Our research question is, how does 

teachers’ self-determination appear in their workshop notes? 

Culturally-responsive teaching  

Before discussing the workshops, we briefly describe culturally-responsive teaching which was the 

inspiration for the workshops. Gay (2013) described culturally-responsive teaching as “using the 

cultural knowledge, prior experiences, frames of reference, and performance styles of ethnically 

diverse students to make learning encounters more relevant to and effective for them” (pp. 49-50). 

Gay suggests that as part of culturally-responsive teaching, teachers conduct their own analyses of 

textbooks, the Internet and other sources. The investigation should include how different knowledge 

sources affect teaching and learning and reconstruct or replace existing presentations of issues and 

situations in the various resources with cultural knowledge and insights. This approach is in alignment 



with Smith’s (1999/2006) description of self-determination. Gay (2013) considered that 

interdisciplinary work with teachers of other subjects supported collaboration and provided different 

insights. Nevertheless, implementing culturally-responsive mathematics teaching needs to be done 

with care so that cultural artefacts are not simplified, to the detriment of both the culture and the 

mathematics. An example of simplification is to claim that the tipi, which is similar to the Sámi’s 

lávvu, is a cone:  

That is surely wrong; the tipi is not a cone. Just look at a tipi with open eyes. It bulges here, sinks 

in there, has holes for people and smoke and bugs to pass, a floor made of dirt and grass, various 

smells and sounds and textures. There is a body of tradition and ceremony attached to the tipi, 

which is completely different from and rivals that of the cone. (Doolittle, 2006, p. 20)  

According to Doolittle, there is a risk that Indigenous students who are presented with such 

oversimplifications feel that their culture has been appropriated by a powerful force for the purpose 

of leading them away from their culture. Thus, a teaching unit about lávvu has to respect the tradition 

and ceremony attached to it. Traditionally, a lávvu consists of two cloths that are wrapped around a 

set of poles and is a place for sleeping, working, relaxing, storytelling and even more (Nergård, 2006). 

It is easy to set up and take down and its permanent material, cloth and skins are transported when 

the family moves between living places. Other materials are gathered from the area where the lávvu 

is placed, making it local as well as mobile. There are rules for where to sit in the lávvu for parents, 

grown up children, workers and smaller children. In the old days, the innermost area was sacred and 

only the bear hunter returning from a successful hunt was allowed there (Petterson, 1905/1979). He 

entered from the back bringing the bear meat with him. Nowadays, people sleep anywhere and in 

modern lávvu, the floor is covered with carpets and stoves are used for cooking. Still, the tangible 

and the intangible cultural heritage remain important. 

The workshops 

Teachers from two Sámi schools participated in two two-day workshops, with six months in between. 

The workshop participants were a) teachers from the three subjects Sámi language, mathematics and 

duodji, Sámi handicraft at Guovdageainnu nuoraidskuvla, b) all teachers for grades 1-10 from a small 

Sámi school in another municipality, and c) some pre-service teachers from Sámi University College, 

who had a practicum at Guovdageainnu nuoraidskuvla. The teachers joined the workshops so they 

could contribute to the further development of culturally-responsive teaching in their schools. 

Guovdageainnu nuoraidskuvla had already started developing culturally-responsive mathematics 

teaching (Fyhn et al., 2015; Fyhn et al., 2016b) and the principal is one of the mathematics teachers. 

The two workshops included lectures and school-based group work. The group work was about the 

culturally-responsive mathematics teaching done in the period between the workshops. At the first 

workshop, the mathematics teachers who participated in the earlier project (Fyhn et al., 2015) 

presented their work. In addition, researchers presented theoretical perspectives connected to 

Indigenous mathematics education, mainly through examples from Sámi and Māori classrooms. The 

second workshop continued with theoretical perspectives and included an online lecture with two 

Indigenous mathematics teachers and researchers from New Zealand. At the first workshop, each 

school chose a theme for the culturally-responsive mathematics teaching and started the planning. 

The schools presented the results of their culturally-responsive mathematics teaching at the second 

workshop. Guodvageainnu nuoraidskuvla focused on lávvu and eight teachers from this school co-



authored a paper about their work (Fyhn, Sara Eira, Hætta, Juuso, Skum, Hætta, Sabbasen, Eira and 

Siri, 2016a). 

The teaching unit about lávvu  

During workshop one, the Sámi language teachers suggested to focus on lávvu, because many 

students did not know the names of central parts of the lávvu. The mathematics teachers agreed that 

lávvu would provide possibilities for teaching mathematics, among other things by having the 

students make a small lávvu model. Students could discuss different aspects of mathematics related 

to lávvu. Consistent with cultural symmetry (Trinick, Meaney, & Fairhall, 2016), the teachers 

designed the teaching unit so that it started with a history section that discussed lávvu and goahti 

(another common Sámi housing) and central concepts regarding these. The teachers highlighted the 

different parts of the lávvu construction and how each part functioned. Each part was connected to 

specific traditions and the students had to learn the North Sámi words for them. In this way, the 

teaching valorised the local culture, as recommended by Trinick et al. (2016) and Doolittle (2006).  

The mathematical aspects of the unit focused on the three válddahat, the structural poles, the location 

of árran, the fireplace, and the size of the floor. The válddahat have a Y-shape in one end and are the 

first three poles raised. This triangular construction is common for Sámi frameworks; as constructions 

made by three sticks are stable and reliable (Fyhn et al., 2016a). Locating the árran can be done 

through eye estimation, which includes trial and error for those who are not skilled. Árran may also 

be located just below a skerttet, a special iron hook that hangs in a chain from the top of the lávvu.  

Locating árran can be connected respectively to a numerical approach or a geometrical approach, 

with both providing appropriate answers. The size of the floor depends on how many people are to 

stay in the lávvu; the steeper the walls are, the smaller the floor’s area. In earlier times, people could 

determine from a distance how many people lived in a lávvu, based on the angle between the wall 

and the ground. The lávvu floor is covered with layers of duorggat, twigs in appropriate length that 

are cut from willow or birch. Eye measuring is used to estimate the amount of duorggat needed. The 

students used a trial and error approach to determine this, while skilled people fetch the correct 

amount first time.  

The students raised a lávvu near the school. The teachers focused the students’ attention on the three 

válddahat. The students also made a mini lávvu, which became a gift that the students enjoyed giving 

to an old people’s home. The model’s scale was 1:8. Afterwards the teachers regretted that they had 

chosen this scale, because the task would have required more mathematics if the students had to 

decide the scale themselves. Still the model proved mathematically challenging for the students, who 

had to choose materials and decide how to make everything in correct proportions. 

Method 

Five teachers from Guovdageainnu nuoraidskuvla participated in both workshops and their responses 

to the workshop are analysed in this paper. They work in a school where North Sámi is main language 

and were educated as Sámi teachers. The five teachers Bigga, Duiri, Vide, Sire and Aile are north 

Sámi native speakers and experienced teachers who teach two, three or four subjects each. Two of 

them teach duodji, four of them teach mathematics, and four teach Sámi language. The work between 

the workshops contributed to strong cooperation between the teachers in these three subjects. Sámi 

language and duodji are subjects that, among other things, aim to strengthen the students’ cultural 



identity. At the bequest of the researchers, the participants wrote about their expectations and 

experiences of the workshops at the beginning and end of each day. Fyhn et al. (2016b) studied 

relations between teachers’ autonomy and their development of a culturally responsive mathematics 

exam. In this study, we chose to focus on more aspects of self-determination. In alignment with self-

determination theory (Deci and Ryan, 2012), we analysed the teachers’ writings in regard to a) being 

competent, b) being autonomous and c) being related to others. Designing and implementing a 

culturally-responsive teaching unit about lávvu requires the teachers to have the necessary 

competence about how to integrate cultural knowledge with mathematics teaching; this is an example 

of what Kirmayer et al. (2009) call community resilience. As well, the teachers need a capacity for 

and a desire to experience autonomy; that the work is regulated by themselves and that their integrity 

is kept through the work. When teachers from one school work together as a group, they are related 

to others and not alone in facing possible resistance or other difficulties in implementing a culturally-

responsive teaching unit. 

The teachers’ experiences of self-determination during the workshops 

The teachers’ expectations and experiences are analysed with respect to the three issues autonomy, 

competence and relatedness to others (see Table 1). Competence was identified as the ability to 

include two community resilience factors i) Sámi language competence and ii) traditional ecological 

knowledge in the teaching of mathematics. Relatedness to others could be separated into three 

categories, relatedness to other teachers at their school, relatedness to teachers at other Sámi schools 

and relatedness to (teachers from) other Indigenous peoples. Before the workshops, the teachers’ 

expectations mainly concerned their individual autonomy and competence, but during the workshops, 

most of their discussions of their experiences focused on relatedness to others. The analysis of the 

written notes reveals the teachers’ need for autonomy manifested itself as a need for encouragement 

and for ideas or inspiration. These findings are in line with Fyhn et al (2016b).  

Autonomy Competence Relatedness to others 

Inspiration/ideas from others  

Becoming encouraged 

Awareness about competence 

Include resilience factors:  

a) Sámi language and  

b) traditional ecological 

knowledge in mathematics 

teaching 

Other teachers at their school 

Teachers at other Sámi 

schools 

Other Indigenous peoples 

Table 1: Framework 

The first morning, the teachers expressed their expectations towards the workshops. Sire and Aile 

referred to a need for supported autonomy, “I hope that I dare to do more interdisciplinary work”, 

(Sire, expectation notes, March 2, 2015) and “Hope it motivates to more interdisciplinary work”, 

(Aile, expectation notes, March 2, 2015). Vide, Aile and Duiri expected to hear about experiences 

with including resilience factors in mathematics teaching, “to get some ideas and hear about some 

experiences with culture-based mathematics”, (Duiri, expectation notes, March 2, 2015). Aile 

expected ideas about how to connect different subjects, and Vide (expectation notes, March 2, 2015) 

wrote “To get input from other teachers about how to integrate more subjects in an interdisciplinary 

work where all subjects feel included”. The teachers’ references to interdisciplinary work are in line 

with Gay (2013), who points out that interdisciplinary work leads to collaboration, plus expectations 



about knowledge. Interdisciplinary work in this setting means mathematics that treats Sámi traditional 

knowledge with dignity and respect. Nystad et al. (2013) identified traditional knowledge as a 

community resilience factor. Ability to integrate resilience factors was among Bigga and Sire’s 

expectations. Bigga (expectation notes, March 2, 2015) expected to “be able to base more of the 

subject mathematics on culture”.  

In the experience notes, four of the teachers explicitly referred to a lecture about other Indigenous 

people, “We have learned about others’ challenges, Indigenous thinking and perspectives”, (Duiri, 

experience notes, March 2, 2015). This is categorized as relatedness to other Indigenous peoples, “we 

have learned that other Indigenous peoples have many things similar to us, the same challenges”, 

(Sire, experience notes, March 3, 2015). Four of the five teachers had experiences that concerned 

their relatedness to other teachers at their school, like “the final part with concrete reflections and 

discussion/talk about duodji/mathematics at our school was very useful.”, (Bigga, experience notes, 

March 2, 2015) and “good to focus on culturally based mathematics again, so that we can coordinate 

it in our school’s plans”, (Vide, experience notes, March 2, 2015). The second day of workshop one, 

the notes mainly concerned relatedness to other teachers at their school and to other Indigenous 

peoples, “the group work constitutes a basis for further work at our school. Informative to see that 

other Indigenous people have similar thoughts about this work. We see that they have similar 

challenges” (Aile, Sire, Duiri and Vide, experience notes, March 3, 2015). Bigga also noted that she 

experienced relatedness to teachers at the other Sámi school.   

None of the teachers referred directly to being competent, but three of them made implicit references 

to this: “Alan Bishop’s six fundamental activities makes us teachers more aware of our actions, 

teaching and thoughts about mathematics and language”, (Duiri, experience notes, March 3, 2016), 

“I become more aware of my solid knowledge about Sámi culture. I can base more of my teaching 

on this knowledge… The theoretical part was more useful this time” (Sire, experience notes, March 

2, 2016). Three of the teachers referred to supported autonomy, which was caused by the increased 

awareness about their competence and the fellow teachers’ positive attitude and contributions to the 

workshop. These are examples of overlap between the basic needs autonomy and competence; the 

three basic needs do not constitute distinct categories.  

The analysis of the second workshop’s experiences mainly reveal competence and relatedness to 

others. Four teachers pointed at competence, Aile wrote, “the lecture about language and mathematics 

was very interesting, because I could see relations between Sámi language and mathematics”, 

(experience notes, October 21, 2015). “I become more and more conscious about my own solid 

knowledge in Sámi culture, I can use this in my teaching”, (Sire, experience notes, October 21, 2015). 

All five teachers pointed to the importance of relatedness to others. “The sessions where each school 

worked together, was very developing for us… The sharing of experiences was useful, between 

schools as well as within each school” (Vide, experience notes, October 21, 2015). Sire wrote, “It has 

been informative to learn about the international, and gives a wider spectre to think about other 

people’s situations”. The teachers had to start the last day one and a quarter hours earlier, in order to 

have a Skype meeting with two Māori mathematics teachers/researchers in New Zealand. The Skype 

meeting took place the day after the workshops’ final conference dinner and the early morning 

attendance confirmed the participants’ commitment to talking with the Māori teachers/researchers. 

They really looked forward to this meeting. The analysis reveals that three of the teachers experienced 



relatedness to other Indigenous people from the Skype meeting: “This day has been useful in many 

ways … what Uenuku [Fairhall] said about the importance of how you teach mathematics … throw 

away the textbooks and teach mathematics at theme level :-)”, (Aile, experience notes, October 21, 

2015).  

Conclusion 

The teachers expected increased competence and supported autonomy when they joined the 

workshops. They had no expectations regarding relatedness to others, but this seemed to become their 

most characteristic way of describing their experience. The analysis of the teachers’ needs for 

autonomy, competence and relatedness to others identified the ways in which these needs appeared. 

Subtypes of the three needs revealed information about the important factors that the teachers 

considered that they needed to succeed in developing their self-determination. Regarding autonomy, 

the teachers expected and experienced inspiration and being encouraged. They experienced 

competence in regard to relating mathematics teaching to the two community resilience factors i) 

Sámi language competence and ii) traditional ecological knowledge. Relatedness to others was linked 

to: Indigenous peoples; other teachers at their school; and teachers at other Sámi schools. The 

teachers’ notes also revealed that they would have benefitted from group work related to the 

introduced theory, but this was not fulfilled. They wanted and expected to learn more about how to 

integrate culture in their mathematics teaching; culturally responsive mathematics teaching.  

The use of self-determination theory as a methodology for understanding teachers’ perceptions about 

culturally-responsive mathematics teaching reveals that the teachers’ development is influenced by 

several cooperating factors; inspiration and encouragement, working with theory and experiencing 

relatedness to other Sámi teachers as well as to other Indigenous people. Future workshops need to 

link culturally responsive mathematics teaching more closely to teachers’ group work. 
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In an age where neoliberalism reigns, the predominance of ‘ability’ grouping as an organizational 

strategy in mathematics classrooms in England is now virtually unchallenged: it is seen as natural 

and ‘common-sense’ by the population at large and by the vast majority of mathematics teachers. 

This is despite the large volume of research which shows it has no effect on attainment overall but 

has a deleterious effect on the well-being of many children. ‘Ability’ grouping is a social justice issue 

as it always disadvantages someone. In this review, I examine how it continues to disadvantage 

working-class children in England. 

Keywords: Ability, ability grouping, all-attainment. 

Preamble: Class, schooling and the legitimation of inequality in a neoliberal age 

Why does education, “increasingly positioned as the new panacea for the masses”, lead to the majority 

of working-class students feeling “a sense of educational worthlessness?” (Reay, 2006, pp. 296–297). 

To answer this question we must first understand that since the mid-seventies, particularly in the UK 

and the USA, neoliberalism has been the dominant governmental discourse. Neoliberalism is a 

political ideology that seeks to reduce and limit the role of government in all areas including in the 

public sector, believing that markets result in greater efficiency and “inequality is a result of 

individuals’ inadequacy” (Hursh, 2005, p. 4). Neoliberalism has appropriated the desire to want to 

“get on” translating it into “aspiration”, a device that disguises the social and economic barriers that 

hinder the working class from doing so, shifting the responsibility for “people’s opportunity to 

succeed or fail from the state onto individuals” while replacing “political concepts such as class, 

democracy, exploitation, solidarity, justice, dignity and rights” (Tyler & Bennett, 2015, p. 6). Thus 

students, lacking an alternative, come to accept as natural the unequal way that society is structured. 

This process, termed the legitimation of inequality by Bowles and Gintis (1976), leads those at both 

the top and bottom of society “to see themselves as largely responsible for their own places in it”. 

Reay (2006) sees class as  

everywhere and nowhere, denied yet continually enacted […] while the privileged, for the most 

part, continue to […] ignore its relevance to lived experience. (p. 290) 

The education system currently works in favour of the middle classes and is underpinned by their 

values (Zevenbergen, 2001). Reay (2006) says working-class students are frequently positioned as 

inadequate learners with inadequate cultural backgrounds: she says ‘ability’ grouping is used to “fix 

failure in the working classes while simultaneously fixing them in devalued educational spaces”, 

making some students “feel stupid” (p. 298). It is ‘ability’ grouping which is the focus of this paper.  

Introduction 

In England, only around the top 60% (Ofsted, 2012) achieve a ‘pass’ grade at age 16. Working-class 

students are significantly over-represented in the other 40% (Gillborn & Youdell, 2000). Further, 

only 24% of white working-class boys on free school meals gain five good GCSEs (the public 



examination at 16) including mathematics (Wigmore, 2016). This matters not least because, 

intentionally or otherwise, mathematics is used as a filter to many vocations and academic institutions 

(e.g., Stinson, 2004). One major barrier to achievement is putting students into ‘ability’ groups.  

The aim of the study on which this paper is based was to explore the available research on ‘ability’ 

grouping and included reports on overall attainment and personal and social outcomes. In the main, 

the study focussed on research and reviews of research undertaken since the start of the eighties 

although important research studies from earlier periods were also included. The review included 

both quantitative and qualitative studies. The review was initially conducted using Google Scholar 

and the British Education Index database. The references of relevant articles were then scrutinised 

systematically for further pertinent references which were similarly scrutinised and followed up. The 

arguments and conclusions presented in this paper draw on the whole study; limitations of space mean 

that only a minority of sources can be cited. 

Research on ‘ability’ grouping indicates that it has little, if any effect, on attainment overall but has 

long term detrimental effects in terms of personal and social outcomes (Nunes, Bryant, Sylva, & 

Barros, 2009; Boaler, 2005). Moreover, the social effects of ‘ability’ grouping “exact a social price, 

as ability levels largely overlap with socioeconomic differences” (Cahan, Linchevski, Ygra, & 

Danzinger, 1996, p. 30): It is inequitable and needs to be challenged. As Slavin (1990) argues, 

‘ability’ grouping can be seen as an affront to basic ideas of democracy. ‘Ability’ grouping is a social 

justice issue because it always disadvantages somebody; and in England, amongst others, it 

disadvantages working-class children: this is what I explore here in the context of secondary 

mathematics. 

Class and ‘ability’ 

On arrival in secondary school, many middle-class children are already academically more advanced 

than working-class children as their education-conscious middle-class parents will have endeavoured 

to ensure their children have secured a place in the best performing junior schools (Lacey, 1970, p. 

35). In addition, teachers' beliefs frequently lead to lower expectations of working-class children 

(Zevenbergen, 2003). Working-class students lack the social and cultural capital that the middle 

classes possess. This difference in capital legitimates the failure of working-class students with 

middle-class students’ success being seen as the result of hard work or natural ‘ability’ rather than 

class-based inequalities (Bourdieu, 1992). Hence many working-class children start school at a 

disadvantage compared to many of their middle-class peers as they are less well equipped with the 

tools necessary to do well in school. One pattern of response to this is that of rebelling against a 

system that predisposes them to do badly, committing themselves to behaviour patterns which means 

that their work will stay poor (Lacey, 1970, p. 58).  

One important effect of grouping by ‘ability’ is that middle-class children have minimal contact with 

those working-class children who are less well behaved (Ireson, Clark, and Hallam, 2002). Students 

who lack the social knowledge for what is seen to be appropriate behaviour (Zevenbergen, 2003) by 

teachers will tend to populate the lowest sets. Those who do succeed in making it into the higher 

‘ability’ groups soon discover that to succeed in school they must conform to the accepted middle-

class behaviour norms; failure to do so causes a descent into the lower attaining groups. Thus there 

is a self-correcting mechanism for dealing with children who do not conform. 



Underlying the issue of ‘ability’ are issues of power and culture and hence whose ways of knowing 

are dominant. ‘Ability’ grouping is not a neutral disembodied organisational practice. ‘Common 

sense’ conceptions of ‘ability’ and intelligence are at the heart of schooling and the ‘ability’ discourse 

is part of an ideological battle defining children with lower socio-economic status (SES) as being 

expendable (Oakes, Wells, Jones, & Datnow, 1997): Attainment grouping serves purposes in schools 

other than that of teaching and learning. Schooling is designed to reproduce the current social, 

political and economic systems rather than to provide a meritocratic route to success in adult life 

(Oakes, 2005). Further the performativity regimes (Ball, 2003) imposed on schooling have created a 

climate whereby failing to conform to prevailing discourses carries huge risks to schools and to 

individual teachers. ‘Ability’ grouping measured by some form of assessment is seen as risk free and, 

in mathematics, is virtually unquestioned (Hallam and Ireson, 2003). 

Contemporary English society assumes that middle-class values are superior to working-class values 

and hence the working classes need to ‘aspire’ to join the middle classes (Jones, 2011). The values 

that working-class children bring to school are neither recognised nor valued by schools while the 

abilities they bring to school are ignored at best and indeed are thought to be detrimental to a good 

education (Delpit, 2006). This feeds into the informal judgements about intellectual ‘worth’ noted 

above. In addition, in general, working-class students will not understand the mechanisms required 

to succeed in the curriculum as they will not have the cultural capital to ‘play the game’ that is 

involved in the learning of mathematics (Bourdieu & Passeron, 1990). 

Student attainment and the idea of ‘ability’ 

‘Ability’ is currently used as a proxy for intelligence (Wilkinson & Penney, 2014) and ideas that 

would normally be discarded are taken as ‘common sense’ when the discourse is about ‘ability’ rather 

than intelligence. Viewing ‘ability’ as innate has been a long established presumption, held to be true 

by the general population and by many teachers (Marks, 2016). This ‘common sense’ view leads 

directly to putting children in groups of the same predetermined ‘ability’ in order to teach them 

effectively (Francis et al., 2016). For many children this approach is damaging academically and 

socially; it is damaging nationally and is contrary to the stated aim of raising overall attainment. 

Dweck (2000) has challenged this view of fixed ability, showing that a belief in growth mindsets, 

that progress is in large part down to effort and is not restricted to those with ‘ability’, enables students 

to make more progress and achieve higher. Grouping students heterogeneously is supported by a very 

large body of research which indicates that it improves educational outcomes (e.g., OECD, 2013). 

Despite this the current climate is unfavourable to all-attainment teaching. Indeed, it is often viewed 

as inimical to good teaching. The pressure on schools to conform to this view coupled with the 

tendency of teachers to replicate how they have been taught ensures that ‘ability’ grouping is almost 

universal in mathematics classrooms in England in contrast to much of the rest of the world.  

‘Ability’ grouping sends a clear message that only some can do mathematics and that this is due to 

some type of ‘natural ability’ (Marks, 2016), a message some children (currently about a third) receive 

as early as age 4. Early research reviews (e.g., Sukhnandan & Lee, 1998) found that studies on 

‘ability’ grouping produced few conclusive or consistent findings but recent research (OECD, 2013) 

indicates that where students are highly stratified, as in the case of setting, there is a wider range of 

achievement than when they are taught in heterogeneous groups. Hoffer (1992) reports that “the 



conditions under which [‘ability’] grouping benefits all students (or at least helps some and does not 

hurt any) do not generally exist” (p. 223).  

Comparisons between countries may be misleading and in analysing the effects of ‘ability’ grouping 

it can be difficult to separate out factors. Nevertheless, research carried out in England and in the 

USA does show significant similarities: in the USA students in high tracks gain more than students 

in lower tracks (Slavin, 1990) while, in England, there is a consistent tendency for children of all 

‘ability’ levels who are placed in lower sets to attain less than if they had been in heterogeneous 

groups (Bartholomew, 2001). A consensus is emerging that, whilst not necessarily raising the level 

of outcome for higher attainers, all-attainment teaching does not significantly supress it (Francis et 

al., 2016). 

Allocation of children to ‘ability’ groups 

Early grouping by ‘ability’ has long-term implications for children’s educational opportunities 

(Boaler, 2005). Once a child is placed in a particular group it is very difficult to change because of 

differences in curriculum content and the pace of teaching (Wilkinson & Penney, 2014). The 

allocation of children to ‘ability’ groups is claimed to be objective with children being allocated on 

the basis of their prior performance; the process is portrayed as highly refined with children accurately 

allocated. However, in English secondary schools, although perceived ‘ability’ is found to be the 

main predictor of set, it is a relatively poor one. Schools have multiple reasons for the allocations, 

many informal and based on insubstantial evidence. Children with higher SES and/or ambitious 

middle-class parents are more likely to be assigned to higher sets. Children seen as disruptive or 

poorly behaved, the perception of which is linked to class (Bartholomew, 2001), are more likely to 

be in bottom sets (Muijs & Dunne, 2010). Boaler, Wiliam, and Brown (2000) found that working-

class students in the UK tended to be placed in a lower group than would be expected on the basis of 

their attainment alone as a result of the school’s desire not to alienate the most powerful (and highly 

valued) constituencies of parents (p. 130), a pattern also found in schools in the USA (Oakes, 2005). 

‘Ability’: Beliefs and practices of teachers 

In Britain, many teachers are philosophically opposed to mixed ‘ability’ and even where children are 

in mixed ‘ability’ classes the teachers practice in-class grouping (Marks, 2016). Oakes (2005) 

suggests that people unquestioningly continue the practice of ‘ability’ grouping because it is seen as 

being part of the ‘natural’ order of schools (p. 191). Lacey (1970) reports that the teachers gave the 

following reasons as justification for the introduction of streaming in Hightown grammar: It would 

make the teaching 

more efficient and […] facilitate the learning process for all […] [working in] the best interests of 

the individual pupil, even when relegating him to the bottom stream. [If he remained in the same 

group he would] either hold them up [higher attaining pupils] or […] become demoralised, and 

fall further behind. […] He would be able to proceed at a more suitable pace […]. (pp. 74–75) 

Oakes (2005) evidences that the assumptions on which ‘ability’ grouping is based are unjustified, 

while teachers’ perception that “teaching is easier when students are grouped homogeneously” may 

be because this is the classroom organisation they are used to. If they embraced the use of different 

organisational structures where the students cooperate they might similarly find teaching is easier in 

heterogeneous classes. Moreover, she says “these [classroom] differences are institutionally created 



and perpetuated by tracking” (p. 194). Most of the benefits of ‘ability’ grouping are benefits for 

teachers and schools whereas most of the disadvantages concern the negative effect on students 

(Hallam and Ireson, 2003). Teachers treat children differently depending on their conception of their 

‘ability’ (Bartholomew, 2001). Low attainers and high attainers who produce work of a similar 

standard find their work viewed quite differently (Marks, 2016). Higher attainers are constructed as 

well motivated, hardworking, well behaved and capable of independent working and thought whereas 

low attainers are constructed as poorly motivated, badly behaved (Wilkinson & Penney, 2013), 

incapable of independent working and thought and in need of repetitive tasks which require lots of 

practice (Watson & De Geest, 2005). In addition to this, there is a tendency for teachers assigned to 

high ‘ability’ groups to be both more competent and more motivated. 

Hence the set a pupil is in can be crucial to their attainment. Students in top sets are expected to work 

faster covering work in more depth while pupils in low sets have a reduced curriculum where there 

is less discussion, more repetition and more structured work including merely copying off the board 

(e.g., Boaler et al., 2000) with lower attainers being deprived of role models of more successful 

learners (Hornby & Witte, 2014). Lower attainers find it more difficult to acquire ‘basic’ knowledge 

in sets compared to non-setted groups (Fuligni, Eccles, & Barber, 1995) while high level content may 

only be made available to high attainers (Cahan et al., 1996). Lower expectations of low attainers are 

communicated through a number of mechanisms. They are given easier work which they frequently 

repeat and the work they are given is broken down in smaller steps so they cannot make for themselves 

the connections needed to understand the mathematics they are doing. Their teachers talk about them 

differently and talk to them differently. They are described as being incapable of concentrating and 

teachers adopt a more authoritarian mode of talking to them (Watson & De Geest, 2005). Moreover, 

behaviour is constructed very differently in high attaining and low attaining groups. Bartholomew 

(2001) and Marks (2016), for example, report that teachers’ focus on learning in high attaining groups 

while in low attaining groups they focus on behaviour.  

‘Ability’ grouping: Concluding remarks 

Four main conclusions emerge from the literature review. Summing up: 

1. ‘Ability’ grouping remains a class issue as working-class students are disproportionately placed 

in lower sets (Bartholomew, 2001) becoming demotivated and underachieving as a result. The 

preponderance of middle-class children in the upper sets show that grouping by ‘ability’ favours 

the middle class. In a socially just world all students would have the opportunity to attain equally, 

unrestrained by external factors such as perceived ‘ability’. It is the case that when children from 

the working class have the same opportunities as middle-class children they can attain as highly 

(Boaler, 2005) though lower attaining students may need additional support so they can reach the 

higher expectations (Rubin & Nogura, 2004). 

2. The beliefs and practices of teachers may be key to improving the outcomes for working-class 

students. They need training in order to teach all-attainment classes effectively. Teachers who hold 

conventional conceptions of ‘ability’ and intelligence may be the greatest obstacles to reform as 

they actively resist changes to the curriculum. Their beliefs can lead to resistance to change 

(Hynds, 2010) and they may enlist the support of parents who are part of the dominant class and 

who fear change will disadvantage their children (Oakes et al., 1997). 



3. If ‘ability’ grouping worked as its supporters claim it works, then social class would be of no 

import, a child’s behaviour would be irrelevant and each child would be able to develop 

appropriately. Allocation to ‘ability’ groups would be commensurate with students’ current 

attainment and they would be constantly monitored and re-assigned to the correct group 

throughout their school careers with a mix of working-class and middle-class children reflecting 

the profile of the intake. However, as well as middle-class children having more economic capital 

they also have more cultural and social capital than working-class children. Middle-class 

children’s understanding of the rules of the game that is school is much more profound and they 

can use the rules much better to their advantage. 

4. ‘Common sense’ conceptions of ‘ability’ are at the heart of schooling. A technicist approach to 

reform will not work as it assumes resistance to changing ‘ability’ grouping is rational. ‘Ability’ 

grouping is an ideological battlefield. Teachers in the main are, unsurprisingly, convinced by the 

powerful dominant discourse of individualisation accompanied by a natural ordering produced by 

‘ability’. Alongside, powerful high-SES parents use issues of intelligence, ‘ability’ and merit to 

exercise power and control enabling them to secure high ‘ability’ groups for their often less than 

qualified children. A wholescale restructuring of school expectations and culture is required 

(Oakes et al., 1997) in order to succeed in providing a more just experience for working-class 

students in secondary mathematics classes in England. 
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In the 1980s, the WHO presented a differentiated model of disability. The central feature of disability 

according to this model is not the impairment but the resulting limitation in social participation. The 

UN Convention on the Rights of Persons with Disabilities (CRPD) goes a step further by demanding 

that persons with disabilities must have access to an inclusive school education together with persons 

without disabilities. From our point of view, not only social but also content-related participation is 

important for an inclusive school education. The following theoretical paper seeks to explore a 

theoretically grounded concept of participation in mathematics classes for a planned exploration of 

how these forms of participation are implemented in inclusive mathematics education in Germany. 

Keywords: Inclusion, student participation, interaction. 

Introduction 

In Germany, most children first attend primary school from the age of five or six to nine or ten and 

are then separated by a supposedly achievement-based selection process into different school forms. 

This is a system that has long been criticised in several respects (Muñoz, 2007). Furthermore, from 

the mid-18th century a parallel branch of schooling for children with special educational needs was 

established alongside primary school and the four types of secondary school. The special needs school 

system continued developing into the 2000s, with different schools specialising in particular needs, 

e.g. social-emotional development, learning, language, vision, hearing, or mental development. In the 

2009 school year in Germany, a total of 483,267 pupils with special educational needs went to school. 

Of these, 387,792 (80.24%) were schooled at special needs schools and 95,475 (19.76%) in regular 

schools (Sekretariat der Ständigen Konferenz der Kultusminister der Länder, 2016a). 

With the EU’s ratification of the UN Convention on the Rights of Persons with Disabilities, this praxis 

of the separated school system came under renewed criticism and also its legality came into question. 

The UN Convention requires that persons with disabilities should not be excluded from the general 

educational system because of their disability (CRPD, 2007, article 24). This legal right surpasses the 

mere freedom of choice to attend a regular school. According to the UN Convention, adequate 

arrangements have to be made within regular schools in order to ensure the educational success of 

each individual. Though the ratification of the Convention potentially necessitated little change in 

other countries, in Germany it opened a political and social discussion on structural changes to the 

school system. Since 2009, a policy of inclusion  in the sense of integrative schooling of pupils with 

special educational needs in the regular school system  has been implemented in the German states. 

Thus, in the 2015/16 school year, 322,518 (62.34%) out of the 517,384 pupils with special educational 

needs attended a special needs school and 194,866 (37.66%) a regular school. The ratification of the 

convention therefore appears to have led to a thorough implementation process, as the number of 

children with special educational needs in regular schools has doubled in only six years. However, 

looking at the figures on the background of demographic developments, which have seen a reduction 

in pupil numbers, the proportion of pupils with special educational needs in the total number of pupils 



in Germany clearly rose between 2009 (6.17% of all pupils between Years 1 and 10) and the 2015/16 

school year (7.1%). Thus, the proportion of pupils with special educational needs who are taught at 

special needs schools has barely fallen. Above all, children who were attending regular schools in 

any case are now more commonly being given special educational needs status (Sekretariat der 

Ständigen Konferenz der Kultusminister der Länder, 2016a, 2016b; Klemm, 2013). 

So, it seems there is still a long way to go to achieve a school system that can be described as inclusive. 

We follow Katzenbach (2012) in holding that there is little difference between the terms integrative 

and inclusive in school life. However, there are some clear conceptual differences: the idea of 

integration depends on a categorisation of people. There are “normal” people and “the others”, the 

non-disabled and the disabled who need to be brought together. The concept of inclusion, however, 

is based on the premise of diversity. Disability is only one characteristic among many, and school is 

a place where people with extremely different characteristics intermingle. Following UNESCO’s 

(2005) understanding of the concept, inclusion can be understood as an ongoing process to find better 

ways of responding to diversity.  

Towards providing an empirical base for this process of changing a traditionally strongly separated 

school system such as that in Germany, in respect to content-related  here mathematical  learning 

conditions, this paper discusses some theoretical considerations on mathematical learning and 

learning under inclusive conditions, and synergises these for a planned research project. According 

to Prediger, Bikner-Ahsbahs and Arzarello (2008), different networking strategies can be used to 

connect theories. The first strategy they mention, “having an understanding of the different theories”, 

can be seen as the starting point for all other strategies, allowing them to be compared, combined or 

integrated in a further step. Therefore, in a first step we will present specific theories for mathematical 

learning and inclusion theories separately before we coordinate them with each other. This can be 

done because the theoretical concepts have consistent assumptions. The coordination creates a 

conceptual framework that helps in identifying the students’ participation in inclusive settings and 

learning in mathematics. 

Mathematics learning from an interactionistic perspective 

For our understanding of content-related learning in school we refer to Miller’s (1986) antagonistic 

differentiation between the research traditions of genetic interactionism and genetic individualism 

(Schütte & Krummheuer 2012). However, this is with the goal of bringing the two positions closer 

together. According to Miller (1986, p. 17), learning can either be anchored in the individual as a 

process of monologue, in the sense of genetic individualism1, or be understood as a process of 

dialogue between individuals, in the sense of genetic interactionism2. Miller considers genetic 

interactionism, in contrast to genetic individualism, to have a more convincing empirical and 

theoretical base, at least in relation to learning processes in the early development of individuals, 

                                           

1 Genetic individualism is in the tradition of the later Piaget and Kohlberg (Miller, 1986, pp. 15 ff.). 

2 Genetic interactionism draws from the basic assumptions of sociological and psychological studies such as those of 

Durkheim, Mead, the early Piaget and Vygotski. These studies see social cooperation or interaction as fundamental to 

individual learning processes (Miller, 1986, pp. 15 ff.). 



which he considers “fundamental”3. Above all, in primary school, where young learners come 

together, Miller sees learning processes taking place which are primarily collective and based on 

dialogue. Miller (1986, p. 223) describes individualised learning processes as “autonomous learning” 

and attributes them to the later development of the individual, locating these processes in moments 

of reflexive consolidation of things originally learned collectively. From a social-constructivist 

perspective, learning cannot be seen as a primarily internal cognitive restructuring process. Rather, it 

is a dualistic process which takes place both within the individual, in the sense of cognitive 

restructuring, and within interaction processes in which the person participates, which go before these 

restructurings (Sfard, 2008). 

This kind of sociological or social-constructivist consideration of learning processes has in recent 

years gained increasing influence in the theoretical design of content-related learning, and has been 

taken up and further developed in mathematics education research (Lerman, 2000). Both nationally 

and internationally, mathematics has increasingly come to be seen as a cultural tool, constructed and 

mediated through language (Schütte, 2014). Since the mid-1980s interactionistic approaches of 

interpretive (classroom) research in mathematics education have engaged with the sociologically 

based social-constructivist perspective on learning processes (e. g. Bauersfeld, 1988; Krummheuer, 

1992) using theories of symbolic interactionism (Blumer, 1969). With this kind of basic theoretical 

understanding of content-related learning the concept of collective argumentations gains central 

significance in the analysis of mathematical learning processes. According to Krummheuer and 

Brandt (2001), pupils are usually engaged in interaction processes in the classroom conversation, 

producing an argumentation in the totality of their actions. In this way, participation in a collective 

argumentation concerning statements about (mathematical) content, terms and/or methods creates the 

basic conditions for learning opportunities. This interplay of individual and social constituents is 

difficult to describe. If participation in collective argumentation provides orientation and 

convergence, then learning success can be seen as the improved coordination between individual 

attributions of meaning and the results of the interactive negotiation of meaning in the respective 

group. On an interactional level, this is manifested in an increasing adaption of the (verbal) acts of 

the learners to argumentations established collectively over the course of several interactional 

situations. The coordination of an individual’s interpretations and actions can be reconstructed 

empirically as the increasingly autonomous adoption of steps of action within the collective 

argumentation. The learning of mathematics can thus be described as the “progress” of participation 

in mathematical collective argumentations. This idea of learning through participation can be linked 

back to the notion of equal opportunities for participation in educational institutions, according to the 

Convention on the Rights of Persons with Disabilities. Thus, the following will seek to explain how 

participation in learning processes in school can be understood from an inclusive-educational 

perspective.  

Increasing participation as a goal of inclusion 

Among the goals that are being set by the increasing implementation of the inclusion concept in 

                                           

3 
These kinds of learning processes concern the development of “rationality, or rational knowledge structures” (Miller, 

1986, p. 15). 



teaching, ignoring for a moment the thoughts outlined above on the different understandings of the 

learning of mathematics, it can be noticed that providing all pupils with equal opportunities for 

participation in learning processes occupies a central position. This reflects UNESCO’s principle 

whereby  

Inclusion is seen as a process of addressing and responding to the diversity of needs of all learners 

through increasing participation in learning, cultures and communities, and reducing exclusion 

within and from education. (UNESCO, 2005, p. 13)  

This principle, formulated in the framework of the UNESCO “Guidelines for Inclusion”, is reflected 

in the UN Convention on the Rights of Persons with Disabilities (CRPD), ratified by Germany in 

2007. The Convention states:  

Persons with disabilities are not excluded from the general education system on the basis of 

disability. Persons with disabilities can access an inclusive, quality and free primary education and 

secondary education on an equal basis with others in the communities in which they live. (CRPD, 

2007, article 24) 

In addition, the Convention asserts that children/persons with disabilities should be supported within 

general education, according to their needs, to best progress their education. A “full and equal 

participation in education” (CRPD, 2007, article 24) should be made possible for them. Some years 

previously, Booth and Ainscow (2002) already published an “Index of Inclusion”, which is intended 

as a tool to support an inclusive school development and contains a detailed description of how 

barriers to learning and participation for all learners can be dismantled. Here, too, the goal of a 

“greater participation of students in the cultures, curricula and communities of their schools” is cited 

(Booth & Ainscow, 2002, p. 2). In summary, according to the mentioned literature inclusion can be 

understood as an unending process of increasing learning and participation for all students (Booth & 

Ainscow, 2002; UNESCO, 2005)  and thus also as an ideal, which will never be fully realised but 

is already applied with the start of the process of increasing participation. However, it seems 

necessary to clarify at this point what is understood by full and equal opportunities of participation. 

Therefore, in the following the concept of participation in learning processes is developed. According 

to Booth and Ainscow (2002, p.3), participation can be understood as “learning alongside and in 

collaboration with others in shared learning experiences”. They see participation as demanding active 

involvement in learning processes and the opportunity to express one’s own learning experiences. 

Adopting a broader definition developed to consider social structures, according to the German 

sociologist Bartelheimer (2008) five requirements can be distinguished for a sufficiently defined term 

of participation. These five requirements for a general social concept of participation can be 

transposed onto teaching processes in the classroom as follows. First, Bartelheimer states that 

participation is only to be understood as historically relative. Transposed onto the school situation, 

participation in processes that enable learning is to be understood only in relation to the given 

education system and fundamental features of the educational processes and paths that currently 

predominate. Secondly, participation is multidimensional and there are always different forms of 

participation. One approach to consider participation in teaching processes in various dimensions is 

provides by Roos (2014), who distinguishes a spatial, social and didactical/content-related dimension. 

Thirdly, participation does not describe a simple in or out; rather, there are always gradations of 



unequal participation. Furthermore, participation appears as a dynamic concept, rather than a 

condition at a given moment. Lastly, Bartelheimer (2008) emphasises that participation is active, that 

is, it is striven for and realised through action and in social relationships. Summarising the last three 

points of Bartelheimer’s participation concept for teaching processes, an exclusively quantitative 

description, that is, a definition of participation in the sense of “takes part/does not take part”, appears 

inadequate. As far as possible then, the description of participation must be considered qualitatively 

over a longer time-frame, and might only be valid for the respective participating individuals within 

this time-frame, since this is a question of a dynamic concept that is constantly changing.  

The underlying research project is concerned with describing scenarios from the process of 

progressing inclusion in German schools, and on this basis to design steps to further this process. To 

enable a description of this process the concept of participation in inclusive mathematics learning 

needs to be rendered more precisely, in order to open it to empirical description and analysis. For this 

purpose, in the next section the theoretical understanding of mathematics learning and the theoretical 

conception of participation in inclusive discourse, discussed individually above, are brought together.  

A theoretical concept of participation in mathematics education  

With the goal of describing the process of inclusion in mathematics learning in German schools using 

a participation-theoretical model, we take the above theoretical considerations on inclusion as a 

starting point and link these to our essential theoretical assumptions on mathematical learning. Taking 

Bartelheimer (2001) into account, it seems important to adopt a longer-term perspective on 

participation (cf. also Brandt, 2004). Although Krummheuer and Brandt (2001) go so far as to attempt 

an interactionistic theory of participation in mathematical learning, focusing also on individual 

learning using their system of categories, content-related learning and individual cognitive 

restructuring unfortunately seem to fall out of focus. Yet, our research is also and especially guided 

by looking at content-related learning. In this context, we are not trying to leave the basic 

interactionistic orientation. Instead we are trying to connect the ideas of learning and participation 

within interaction with individual learning. From an inclusion-theoretical perspective, realising 

inclusive teaching is a question of increasing participation. In order to make this useful for empirical 

investigations, Bartelheimer’s (2008) more general participation-theoretical model is taken as a basis 

and combined with the participation-theoretical understanding of mathematics learning (e.g. 

Krummheuer, 1992; Sfard, 2008). To be able to describe participation in inclusive mathematics 

learning in Bartelheimer’s perspective, one has to view it in relation to its historical context. The 

image of mathematics learning for all learners is taken to represent present conditions. Whereas at 

the end of the 1970s, national and international research on mathematics in primary schools was still 

focusing above all on the learning of skills and isolated concepts of a ‘complete mathematics’, with 

an emphasis on arithmetic, a shift took place around the mid-1980s. A new understanding of 

mathematical learning developed. According to this, children in school not only needed to acquire 

mathematical skills, but also to discover and understand the mathematical concepts behind them, and 

to argue and communicate with teachers and classmates using these concepts in order to ultimately 

be able to autonomously give reasoning for mathematical actions (Boyd & Bargerhuff, 2009). 

However, in adopting an orientation towards this image of mathematics learning we nevertheless 

acknowledge that it is (still) controversial for learners with special educational needs in special needs 

schools. The above-described changes in the understanding of mathematics learning can certainly be 



seen also in the area of special needs education in mathematics (Sullivan, 2015). But these changes 

are the subject of heated debate and are taking place in the context of a (tried and tested) teaching 

tradition which is characterised by a reduction of learning content, an isolation of difficulties and a 

“small-steps” approach with specified solutions to problems (Boyd & Bargerhuff, 2009). In addition, 

Bartelheimer describes participation as an active process. Participation is pursued and achieved 

through social action and within social relationships. Therefore, it is observable in everyday 

mathematics teaching as active participation in classroom interactions. Bartelheimer also describes 

participation as multidimensional, which we have linked to Roos’ (2014) spatial, social and 

didactical/content-related dimensions in the above theoretical section on inclusion. The spatial 

dimension of participation, according to Roos, relates fundamentally to how much time a student is 

spending in the same room as his or her classmates. However, in our perspective it also relates to the 

spatial configuration during time spent learning together in the mathematics classroom, for example 

in rotating through different tasks or group work. The social dimension focuses on social relationships 

(with fellow pupils, teachers and pedagogical staff) which emerge in mathematics teaching and which 

mediate to a great extent an increasingly autonomous participation in collective argumentations. The 

third dimension addresses participation in didactical/content-related negotiation. Didactical inclusion 

relates to pupils’ participation in subject teaching, focusing on their engagement with the teaching 

approach and content, as well as any explanations or material supplied by teachers to support the 

learning process. For the purposes of analysis of didactical/content-related participation, the 

approaches developed in mathematics education for determining participation in collective 

argumentations (Krummheuer & Brandt, 2001) can be made use of. With reference to Goffmann 

(1981), Krummheuer and Brandt (2001) distinguish two types of involvement in a lesson: the active, 

verbally productive act, and the passive, receptive non-verbal act. The aim is to identify the type of 

authenticity, originality and responsibility of speakers, and to identify for recipients the type of non-

active participation. This means that mathematical learning through active participation can be 

distinguished from learning through non-active participation, which explains “quiet” yet successful 

pupils. Learning situations become beneficial for learning, according to Krummheuer and Brandt 

(2001), when children participate increasingly in ways which permit a shifting from minor 

responsibility for content and form towards greater responsibility. In this way, participation in a 

collective argumentation concerning statements about (mathematical) content, terms and/or methods 

creates the basic conditions for mathematical learning opportunities in inclusive learning settings. 

Since this model remains more of a formal analysis of the content-related negotiation in the 

conversation, it will be complemented by the curricular concept of mathematical activities, developed 

by Bishop (1988), in order to approach also the mathematical content of the activity children 

participate in. Bishop (1988) differentiates six activities  counting, locating, measuring, designing, 

playing, explaining  which are used for the analysis of moments of subject-specific mathematical 

participation, following Brandt (in press) and Johannson (2015). In addition, Bartelheimer (2008) 

focuses on the principal dynamic, i.e. the changeability of participation over time, and the 

impossibility of a dichotomous categorisation of inside and outside, participation and non-

participation. These considerations are in tune with an interactive understanding of mathematics 

learning and are taken into account within the research project by the theories and methodologies 

being used. This theoretical conception of participation will be used to address the empirical aspect; 

the theoretical conception will be further developed through the interrelationship between theory and 



praxis, with the goal of enabling a description of participation processes in inclusive mathematics. 

This is while acknowledging that the goal of inclusion, which has the principle of egalitarian 

difference (Prengel, 2006) at its base, cannot be for all children to participate actively in class in the 

same way. The barriers to participation should be reduced for all children, and they should be given 

the opportunity for participation according to their abilities, so that they move forward in their 

mathematical learning process.  
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Despite efforts for a more student-centred teaching in mathematics education, data from interviewed 

German students suggest that teacher explanation is the most dominant form of introducing new 

knowledge and skills. From a Foucaultian standpoint and on the basis of the interview data, it is 

firstly argued that explanation belongs to an institutionalisation of mathematics education in which 

explanatory power is reserved for the teacher, leaving students with a passive role both towards 

learning and towards questioning mathematics as a discipline. It is secondly argued that such an 

organisation of teaching might be functional in identifying well-disciplined and fast-learning students 

through their achievements in mathematics. Thirdly, the point is made that the ignorance of research 

concerning the socio-political role of explanation is effective in the conservation of the socio-political 

functions of school mathematics. 

Keywords: Mathematics instruction, theory practice relationship, teaching styles, student interview. 

The role of explanation in pedagogical theory and practice 

Under ‘explanation’ I understand the verbal and embodied communication of knowledge and skills 

from one person to another with the purpose of enabling the other to do something which the first 

person is already capable of. This understanding of the term is narrow, as in a wider sense, for 

example, explanatory texts, recorded speeches, videos and other media, where experts explain 

something to an anonymous audience, might be considered explanation as well. This paper has an 

even narrower focus on the explanations which mathematics teachers provide for their students, and 

it is mainly based on the situation in German schools and in the German research community. 

Historically, explanation by the teacher had been a method central to any school teaching (Tenorth, 

1988/2000). For example, the German philosopher Johann F. Herbart (1806/1897) developed a 

teaching methodology based on explanation, exercise, application and abstraction. Its popularity 

among both educational theorists and practitioners of the 19th century elucidates the traditional 

importance of explanation within the pedagogical discourse. The discussions around Herbart’s 

pedagogy also stand exemplarily for the problems that modern pedagogy has developed with 

explanation. Claiming to follow Herbart’s tradition, a group of educators, now referred to as the 

Herbartians, reduced Herbart’s pedagogy to its methodological aspects and developed a strict 

teaching plan which was dominated by teacher presentations and copying by the student. The 

consequent critique of the Herbartian approach at the turn of the 20th century circled around the 

problems of the passive and obedient role of the learner, especially on the devastating effects on 

learning outcomes and democratic agency. Especially writers in the tradition of German 

Reformpädagogik such as Johannes Kühnel (1916/1950) considered the passivity that learners were 

introduced to as expressions and requirements of the civil obedience in the German Empire which 

allowed for the economic misery of the masses and the outbreak of the First World War in the first 

place. Ausubel (1968) argues that the fight against this passivity in learning has fuelled not only 

Reformpädagogik but many alternative pedagogical agendas up to that of discovery learning in his 

times, and that, over time, explanation has been increasingly denounced as a teaching method which 



supports despotism, ignores the individuality of learners and denies them the benefits of self-regulated 

learning. Explanation, suspected to conflict with the aims of liberal education, has gained a negative 

connotation. 

We run the risk that the condemnation of teacher explanation blocks the discussion of very different 

roles that explanation might have in teaching, reaching, for example, from introductory explanations 

followed by exercises over formalising explanations in the course of individual or collective 

explorations to summarising explanations at the end of learning activities, from whole-class talks to 

individual conversations, from short inputs to extensive presentations and so on. Recent 

developments in educational research however aim at a rehabilitation of explanation. Kathrin 

Krammer (2016, p. 76; all German quotes translated by D. K.) remarks in a teacher journal’s special 

issue on “teaching”: 

Many reform initiatives in the area of classroom development aim at the expansion and high-

quality arrangement of self-regulated learning. Which meaning is yet assigned to teacher-centred, 

instructive phases – do they disappear, are they preserved, or are they rediscovered and altered?  

In mathematics education research and educational policy, explanation as a teaching method is not a 

central field of study. The federal German educational standards for mathematics education in the 

grades 5 to 10 (KMK, 2003) may serve as an influential example of the discourse of educational 

policy. There, “explanation” is not mentioned once, nor are any other activities of the teacher. Instead, 

it is demanded that mathematics education provides “competences which students acquire in active 

involvement with manifold mathematical contents” and that it aims at “self-regulated learning” (p. 6). 

In the German academic discourse, recent introductions to mathematics education for prospective 

teachers (e.g., Bruder, Hefendehl-Hebeker, Schmidt-Thieme, & Weigand, 2015; Reiss & Hammer, 

2013) do not even address how to explain knowledge and skills to students, and the only German 

book on teaching methods for mathematics education (Barzel, Büchter, & Leuders, 2007) presents 

30 different methods but does not cover teacher explanations. The only recent studies in the German 

field discuss explanation from an epistemological (Wörn, 2014) and discursive (Erath, 2016) 

perspective, but could not be included in this study due to a lack of access to the publications. 

The marginal position of explanation in mathematics education research and educational policy is 

confronted by the dominance of explanation as reported in empirical studies. The TIMSS video study 

(Stigler & Hiebert, 1999) compared the national teaching “scripts” of the USA, Germany and Japan, 

showing that both in the USA and in Germany, teachers usually introduce new knowledge by 

explanation. Recent empirical data, which will be presented here, propose that, at least in Germany, 

the situation has not changed. Despite continuing efforts in mathematics education research and 

educational policy to change the classroom culture towards forms where the teacher and her 

explanations play a less central role, interviewed 9th grade students from a variety of German schools 

report consistently that new contents are usually introduced by teacher explanations. Thereby, teacher 

explanations are not only political as they tend to establish distinct hierarchies concerning the 

distribution of knowledge, they are also political due to the tension between their dominance in school 

and their taboo in research, resulting in a structurally fostered unpreparedness of prospective teachers 

and a lack of support by research on this form of teaching. In this contribution, these issues are studied 

through an analysis of the subjectivities which students express in relation to teacher explanations in 

the mathematics classroom. The leading question is what role explanation plays in the development 



of the students’ subjectivities and where the socio-political dimensions of these forms of subjectivity 

may lie. 

The student perspective 

As part of  a research seminar at the Universität Potsdam in 2016, master students orally interviewed 

23 students from grade 8 to 10 in regular public schools in and around Berlin. The interviews were 

conducted in school rooms in private, recorded and transcribed. All students but two, who went to 

the same class, attended different schools. The semi-structured interviews focussed on the students’ 

relationships to mathematics and included the prompt “Describe what a typical maths lesson looks 

like!” and question “How content are you with your maths teacher?”, which appeared in the interview 

as items 2 and 3 of 12 stimuli in total. These item triggered answers which mentioned teacher 

explanations. Although explanation was not a topic that was explicitly addressed in the stimuli, we 

found it surprising that all students reported that their teachers usually explain new topics to the class. 

Only four students stated that other ways of introducing new topics, such as solving problems 

individually, in small groups or in whole-class conversations, were frequent, but in all cases these 

approaches were said to be followed by teacher explanations as well. We were also surprised that 19 

students associated their confidence in their teachers with their qualities in explaining. 

For my argument, it will prove important to discuss the ontological status of the students’ reports and 

the epistemological approach taken in the analysis of the data. Here, I want to apply a Foucaultian 

view (Foucault, 1982, 1978/1991, 2011) to understand mathematics education as a disciplinary 

institution where teachers apply certain techniques for the conduct of the self and others in order to 

produce the expected behaviour in students, and where students, for their part, develop and enact 

certain technologies of the self in order to cope with these demands. The reports of school experiences 

and relations to mathematics cannot be understood as an objective account presented in a 

depersonalised language, but belong to distinct discourses around school mathematics, which are 

shaped by a shared knowledge of the actors. These discourses comprise values, interpretations and 

supposed truths whose paramount function is not to provide academic insights into any objectivity of 

the mathematics classroom, but to allow each individual to weave her experiences and relations into 

a meaningful web of explanations. Under these circumstances, each student’s report should not be 

read as a mere account of a real experience, but as the expression of a permanent struggle to articulate 

experiences and relations which, from our point of view, are usually scarcely verbalised.  

Given the incidental manner in which the topic of teacher explanation was touched in the interviews 

and the consequently low data base, this contribution will have to limit itself to the presentation, 

interpretation and discussion of a selected set of themes, and for that I chose to discuss the relations 

between teacher explanation, power relations in the classroom and the subjectivity of the learner. 

Explanation and power relations 

The central role which teacher explanation plays in all of the 23 interviews does not only provide 

insights in the unbroken dominance of a teaching method which large initiatives of pedagogues have 

fought against for decades, but first of all documents how students integrate the teacher into their 

narratives of success and failure in learning. Rebecca (all names changed while still indicating the 

original gender), a high-achieving 10th grader, describes her teacher as “really good”, “the absolute 

burner”, who “puts it across really well”, “tries to adjust and can explain really well”, and holds these 



attributes responsible for the learning success of her and her classmates. On the downside, the 

teacher’s explanation qualities are also considered the source of serious complication and failure: 

Interviewer: And how content are you with your maths teacher generally? 

Ingo: Huh, I would say it could be better. Well, I find, some things he doesn’t explain 

well at all. Then at home, I have to sit down and look in my book. Yeah, he does 

not really explain it. So, when I hear what other classes tell, they have better 

teachers, they all understand. 

Interviewer: Is there something you’d like to change in your mathematics classes? […] 

Ingo: [If I were the teacher] I’d adapt myself to my students much more than my current 

maths teacher does. So, I’d go to them and ask if there’s anything they don’t 

understand, I’d do difficult exercises with them, those you need for exams […]. 

Apparently, students such as the 9th grader Ingo find their learning troubled by insufficient 

explanation. They also show awareness that the quality of explanation varies from teacher to teacher. 

Rebecca and Ingo follow a narrative in which their learning and achievement depend directly on the 

quality of their teachers’ explanations. Ingo is not content when his teacher leaves him with difficult 

exercises after having explained the easy ones; he demands series of explanations which also cover 

the most difficult tasks. Simon, also a 9th grader, is even more explicit concerning these demands: 

Simon: The teacher should, when he comes to the students, when he sees from the front that 

students have problems, then he should go to the students or the students to him and 

ask. The teacher should try to explain as simple as possible, so easy, perfectly easy, 

so that the student understands very quickly, so that he can go on with the exercises. 

Patrick, another 9th grader, says that he was “actually very content” with his teacher, who “can explain 

well, so that we actually all understand”, but later he adds that the difficulty of the contents has been 

increasing since primary school: 

Patrick: I believe that what he does is actually really good, our teacher, but we, with us it’s 

simply, no idea, that we simply don’t understand when he tells something. And in 

front, well, there are a few of our students who understand and try to somehow 

explain it to the others, but that doesn’t help either. 

The position that teacher explanations hold in the narratives of the students has specific consequences 

for the power relations between teachers and learners. The dependency of Rebecca’s and Ingo’s 

learning on the quality of teacher explanation documents the monopoly of expertise which lies with 

the teacher. Especially, the students do not report any other promising sources for understanding such 

as textbook study, collaborative work or learning videos. In Patrick’s case, the students of his class 

apparently attempted to support each other, but failed. Indeed, in the narratives the teacher is 

presented as the only agent the students can turn to in their struggle to understand. This narrative puts 

the teacher in the position of an exclusive ‘knower’ without whose expertise and goodwill no learning 

is possible, and thus it releases the students into passivity. The student, whose only hope is to be 

presented an understandable explanation, cannot do anything but wait for that explanation. Ingo’s and 

Simon’s cries for ever better explanations show the lack of alternatives they see. 



From the perspective of traditional critique as brought forward already by the Reformpädagogik, we 

could argue that these experiences simply give empirical evidence that the traditional teaching 

methodology of explaining and exercising leads to passive and obedient students who are denied the 

flexibility and effectiveness of self-regulated learning and socialised into passive and obedient social 

agents. From the perspective of Foucauldian governmentality, we could add that the institution of 

mathematics education is successful both in channelling the conduct of the students into a form where 

their learning is totally dependent on the teacher, and in establishing a discourse in which this 

organisation of the learning of mathematics is considered inevitable. Here, it is interesting to note that 

both teachers and learners are constantly reproducing this organisation and narrative. At this point it 

is only possible to guess where the motivation for this behaviour come from: While the teacher may 

be led by the will to be the social centrepoint of the classroom collective, channelling all power on 

herself, the students might eventually enjoy their passivity. Ingo’s reluctance to “have to sit down and 

look in my book” indicates that students may indeed resist to take a more active position in their 

learning. This resistance is connected to a constantly reinforced economy of learning in which students 

aim to “go on with the exercises” and pass “exams” with as little effort as possible. 

Apart from the traditional critique of teacher explanation focussing on its consequences for learning 

and democratic agency, the exclusiveness of approaching mathematics through the teacher leads to a 

specific relation to the discipline of mathematics itself. In the reports of the students, mathematics is 

not presented as a discipline which can be approached and understood individually, but as a discipline 

whose understanding depends on the support of experts. The presentation of mathematics as a 

discipline which is only mastered by experts and cannot be fully understood by laymen, despite all 

efforts of specially trained teachers, adds to the construction of mathematics as an obscure, elitist and 

indisputable discourse which may be used as a tool of power throughout our society. Mechanisms 

leading to this image of mathematics have been identified before (Dowling, 1998; Skovsmose, 2005; 

Kollosche 2014), but to my knowledge they had not yet been associated with distinct styles of 

teaching. 

Subjectivities of listening 

Changing the focus from the teacher to the learner opens up a wide field of experiences of receiving 

explanations. Christian, a 9th grader, excels in some subjects but has problems in mathematics: 

Interviewer: What do you think is different in maths; what’s the reason you don’t like it that much? 

Christian: Well, I’ve never liked maths. Maths was never what I was good at, I always had my 

difficulties there. Though my parents think I’m somewhat lazy, which is true for 

the most part, it also gets more and more difficult and I seldom keep up with it, also 

because the teacher is bad at explaining. 

Interviewer: How does a typical maths lesson look like at your place? Can you describe it? 

Christian: Yeah well, the teacher comes in. Consequently, it’s noisy of course, because she 

can’t assert herself. In between, you’re also getting distracted, and I’m no different, 

I admit I’m also getting distracted, doesn’t let you work well, doesn’t let you pay 

attention. […] Everything depends on paying attention deliberately. 



It may be argued that it is the teacher’s task to establish the quiet environment necessary for the 

students’ understanding of any teacher explanation. But apart from the fact that such a narrative 

reproduces the active role of the teacher (who has to tame the students) and the passive role of the 

students (who have to be tamed), this narratives does not consider the subjectivities necessary to 

follow this form of teaching. “Paying attention deliberately” is a technique which students have to 

master, not only to follow teacher explanation individually, but to establish a fruitful learning 

environment in the classroom in the first place. Consequently, mathematics courses which build on 

teacher explanation give advantages to self-disciplined learners, especially when grouped together in 

socially segregated schools. The privileged school marks, which such advantages may result in, may 

then be taken as indicators for the self-discipline of an individual. In this sense, the pervasiveness of 

teacher explanation in mathematics education may have an underestimated economic function. 

Yet of course, concentrated listening does not guaranty understanding. Students also have to be able 

to understand the presented contents in the pace in which the ideas are presented. Anna, a 9th grader, 

claims that her teacher’s explanations are too fast for her to understand: 

Anna: […] And I just find maths difficult, I don’t understand it that fast. And of course, 

she [the teacher] does not have the patience for so many students to explain that to 

everybody separately. And some are simply faster in understanding concerning 

maths exercises, and I need a little longer and don’t understand that fast. 

Interviewer: […] If your teacher realises that several students put up their hands, will she then 

explain it again for all of you? 

Anna:  She is somewhat strange in this respect. She just says that she explains in a way that 

we all have to understand, and then we have to cope with the exercises somehow. 

Anna realises that structural constraints in the organising of her teacher’s approach hinder her to offer 

every student an understandable explanation. But instead of questioning the methodology of teaching 

altogether, some teachers succeed in hiding the problem. In Anna’s case, the teacher’s imperative that 

the students “have to understand” leaves the problem with the students, who do not seem to know 

how to cope with it. In the case of Emma, an 8th grader, the teacher asks the students to put up their 

hands if something is unclear, but “as we just know that she somehow cannot explain it properly”, 

nobody would put up a hand. 

In contrast to that, 9th grader Laura explains that her mathematics teacher has successfully taught her 

to indeed raise questions if something is unclear: 

Laura: I had her in the fifth, sixth and seventh [grade]. I liked her. She was my favourite 

teacher. She’s retired now. She has taught me to raise questions again and again, 

and that’s it. Or to become more self-confident, because you don’t know the others, 

you don’t know the teachers. You still have some respect for them. […] 

Interview: What do you believe the teacher could do against it [students not daring to ask]? 

Laura: Oh god, that’s difficult. He could pose questions, answer questions. But some don’t 

really dare to ask. They have their private afternoon lessons, but actually this is also 

like a teacher. I think it’s this collective. In class, you always have a position to 

fulfil. You are either the cool one or the somewhat quiet one or the class clown. 



[…] You also notice that when fewer students are in class, the class is quieter and 

can work better. I believe, this also depends on the fact that you do not have to 

prove yourself and that you can rather concentrate on your stuff. 

Laura’s story documents that there are slight variations in the forms in which teacher teach through 

explanation, and that these variations can have severe consequences. In opposition to Emma’s report 

of her classmates not asking in order to avoid further explanation, Laura has learned to demand further 

explanation if she is not confident with the explanation presented. Thus, her teacher enabled her to 

take a more active part in her learning and to add elements of conversation to teacher explanations. 

In addition to that, Laura outlines a sociological explanation for problems with explanatory phases. 

Exposed to the whole class, students may have an intense urge to fulfil their social role within the 

learning group, and that role might hinder them to engage in a lively discussion on mathematical 

contents. 

Discussion 

The findings presented first of all shed light upon black spots in mathematics education research. 

Firstly, the prevalence of teacher explanation shows that decades of academic and political initiatives 

aiming at changes in teaching and learning arrangements have hardly affected the reality of the 

mathematics classroom. Although several nation-wide and regional projects have focussed on 

introducing learning environments focusing on active learning in Germany, teacher explanations are 

still reported to be dominant in the mathematics classroom. Considering the apparent ineffectiveness 

of previous interventions, it would be useful to dedicate more research to the understanding of the 

didactical and social role of teacher explanation before any new interventions are planned. Secondly, 

in light of the central role of teacher explanation in the mathematics classroom, the marginality of the 

topic in mathematics education research leads to blind spots in our understanding of teaching practice. 

Especially the socio-political dimensions of teacher explanation, which might prove antagonistic to 

pedagogical ideals and nevertheless functional in a systemic sense of society, deserve further study. 

Deeper insights could lead the way to a teaching practice which incorporates teacher explanation 

without constructing the student as a passive subject to mathematics. Apart from that, it may be wise 

to critically prepare prospective teachers for the role that they apparently assume anyway, namely 

that of the explaining authority. 

Further research should also focus on the psychology and the socio-politics of teacher explanation. 

Firstly, why would teachers contribute to the narrative that it would be possible to allow a large 

proportion of the students an understanding through central explanation, while counter-arguments are 

obvious in teaching practice and have been discussed in literature for decades? Why would students 

contribute to that narrative against all obstacles they experience in their learning and in spite of the 

passive role they have to assume in this learning arrangement? And secondly, how does teaching 

through explanation contribute to the narrative that the understanding and mastery of mathematics is 

reserved to higher authorities, who can share their knowledge and skills to the extent they wish and 

whose expertise has to be trusted in due to the lack of approachable alternatives?  
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This paper describes the results of a survey of Polish immigrant parents’ views on mathematics 

education in preschool. In alignment with the Swedish preschool curriculum, the results show that 

parents viewed learning as being connected to play. The parents to a large extent see similar 

frequency of mathematical activities occurring at preschool and at home. Parents often commented 

on children’s involvement in collaboration when playing. Swedish preschools’ pedagogical 

practices about learning through play seem to have been adopted by parents. The findings suggest 

that parents, like children, can be socialized into the norms and values of Swedish preschools 

through their children’s attendance of them. 

Keywords: Immigrant parents, mathematics, preschool, socialization. 

Introduction 

Mathematics education, as a part of everyday life, is embedded within a variety of settings. These 

settings include institutions, such as schools and preschools, but also homes. Within each setting, 

there are structures and expectations which contribute to the development of norms and values 

(James, Jenks, & Prout, 1998). Therefore, Swedish preschool as being framed by institutional norms 

and values (Skolverket, 2011), must also be considered as shaping society’s understandings about 

the world of children and their families. As James et al. (1998) state: “Childhood diversity considers 

the infinite variety of the social context in which children live, leading to a deconstruction of 

childhood’s conventional, singular and reductive form” (p. 34). As a consequence of migration, 

culturally diverse societies can represent different views of what kind of childhood is available and 

thus the learning that children should receive in Swedish preschools. Therefore, newcomers’ 

perspectives on mathematics education in preschool can contribute to a better understanding of the 

variety of children’s childhoods, when those views are recognized as legitimate. As part of a wider 

project investigating this topic, I aim in this paper to provide insights into Polish parents’ views 

about mathematics in Swedish preschools. In 2012 Polish immigrants were the third largest group 

of immigrants in Sweden (Statistics Sweden, 2012), yet their views on education have rarely been 

investigated. My research question is: How do Polish parents view mathematics activities in 

Swedish preschool and at home? 

Socialization and parents’ views on mathematics education 

The theoretical framework for this study is socialisation, through which people who inhabit a 

society create it (James et al., 1998). Socialisation processes have two components, the production 

and reproduction of (1) norms and values and (2) skills and knowledge. Socialisation processes 

situate society members as needing to acquire relevant knowledge to sustain society over time and 

involve reproducing culture from one generation to another. As well, as the milieu in which a 

society operates changes, a need arises to produce new ideas and culture. Ebrahim (2011) stressed 

that social interactions contribute to the production and reproduction of rules and structures within a 

society. 



Children acquire the understanding, skills and awareness of different mathematical concepts, 

through their experiences outside educational institutions (see for example, Brenner, 1998). This 

provides opportunities for children’s own experiences to be the basis for developing their 

mathematical thinking in preschools (Lembrér & Meaney, 2015). In the Swedish preschool 

curriculum (Skolverket, 2011) four goals are related to mathematics: one is connected to content; 

while three require preschools to provide opportunities for children to develop mathematics skills, 

abilities and concepts. It also suggests that children should use their interests and experiences when 

acquiring mathematical knowledge and skills in preschool.  

However, the institutional values and norms of Swedish preschools may constrain immigrant 

parents from being able to recognize experiences from their country of origin as being valued in the 

new setting (Lunneblad, & Johansson, 2012). This may have long term implications for families’ 

involvement with educational institutions in new countries. For example, Giovannini and Vezzali 

(2011) focused on how contact between teachers and immigrant parents affected children in 

elementary schools. They found that parents’ views about their role in the relationship with school 

can define boundaries of that role. The education institution has a role in changing those boundaries. 

In Goodall and Montgomery’s (2014) study, parents’ reflective involvement in their relationship 

with schools was strengthened by an acknowledgement of their contribution to children’s learning. 

Yet language differences may impede these possibilities. Civil, Bratton and Quintos (2005) 

suggested that the dominant language spoken in school, can affect children’s interest in identifying 

with their home language. As a result, children can have difficulties talking with their parents about 

their school work. 

With an increase in immigration, there can be challenges around gaining the active participation of 

immigrant parents into the education system. Kaur (2010) suggested: “creating strong links between 

families and early childhood settings extends children’s learning, fosters a sense of community and 

acknowledges the expertise of families” (p. 53). It has been found that when refugee and immigrant 

parents are included in education systems, there are academic benefits for their children (Krasteva, 

2013). Yet, Whyte and Karabon (2016) found that relationships between home and school are often 

built on one–way communication, with information going from school to home. This creates 

boundaries between families and school. Wager and Whyte (2013) investigated how preschool 

teachers valued children’s home experiences of mathematics. They found that preschool teachers act 

in two different ways to children’s home mathematical experiences. The first involved only 

recognizing activities already familiar to the preschool teachers. In this way existing norms and 

values are recreated. The second integrates children’s home experiences into new activities, 

providing opportunities to create new norms and values. Wager and Whyte’s study raises a question 

about whose ideas are used in mathematical activities, also how these ideas are recognized as 

valuable. Understandings about socialization indicate that institutions need knowledge of immigrant 

parents’ norms and values. Otherwise, opportunities offered by institutional settings and 

arrangements focus on integrating into the existing Swedish societal norms and values and not 

considering possibilities for creating new norms and values to match the changing milieu. 

Preschools have the opportunity be influenced by parental views, which could contribute to 

widening the variety of mathematics activities that can be based on children’s own interests. 



Method 

The data were collected through a digital survey, consisting of 16 questions in August, 2016. The 

survey was provided in Polish and Swedish. Participants were identified through a snowballing 

approach (Cohen, Manion, & Morrison, 2000). First a Polish organization and an internet forum for 

Polish citizens living in Sweden were provided with a link to an anonymous online questionnaire. 

People who completed the digital survey were then asked to share the link with others. All 

participants had a Polish linguistic and cultural background and were immigrants to Sweden. They 

had children who had attended preschool in Poland and/or in Sweden. The participants were a 

convenience sample and cannot be considered representative of the population of Polish parents in 

Sweden. As such, the survey results can provide information (Coyne, 1997), which can be 

investigated in more in-depth studies at a later date. At the time of the survey, the participants had 

lived in Sweden between 2 and 19 years. 31 participants responded to the survey (1 male, 30 

females), aged between 22 and 47 years. Participants were described in the study as: P1–P31.  

The survey’s questions were divided in three parts. The first part consisted of demographic 

information: gender; age; number of years living in Sweden; if participants’ children attended 

preschool in Sweden (30 did, 1 did not); and if participants themselves had attended preschools in 

Poland (23 did, 8 did not). In the second set of questions, participants were asked to describe their 

experiences of learning mathematics, including their experiences of learning mathematics in 

preschools in Poland (Question 6). Question 7 asked about the experiences of both themselves and 

their children. Questions 8 and 9 asked about situations in which children could learn mathematics 

at home and at preschool in Sweden. The next question was about possible mathematical situations, 

in Polish preschools. However, only one participant had children attending preschool in Poland so 

this data were excluded from the analysis. The third part used multiple-choice questions (Questions 

11 and 12) to investigate parents’ perspectives of mathematics activities. Five activities were 

suggested as occurring at preschool and at home and these were based on what had been found in 

research by Bottle (1999) of observations, at home and outside home. In Bottle’s research, parents 

talked about mathematics activities such as: number and counting; doing puzzles; making towers; 

putting things in and taking them out again and things like full, empty and half full. The multiple-

choice responses in the questions about parents’ perceptions of mathematical activities were: 

counting rhymes; jigsaw puzzles; counting things; playing with sand and water; and building with 

blocks. Participants were also asked to express what was important for them based on their own 

experiences of mathematics (Questions 6, 13 & 16) and to describe the importance they attached to 

their children learning language and mathematics (Questions 14 & 15). The final question was 

open-ended and provided parents with a possibility to share something about their children’s 

learning of mathematics with teachers in preschools. 

Two analyses of collected data were done. The initial quantitative analysis was of parents’ views 

about mathematics activities at home and at preschool. The second, qualitative analysis used the 

socialisation components of production and reproduction of societal norms and values (James et al., 

1998), to understand parents’ views about mathematics in preschool. By analyzing the parents’ 

responses, it was possible to identify the norms and values that parents held about mathematics in 

kindergarten and consider how these were related to production and reproduction. 



Quantitative analysis 

Asking about particular activities was seen as a way of concretizing what could be considered 

mathematics for the parents. The questions were “Which of these things do you do at home, which 

you think might help children learn mathematics?” and “Which of these things do your children do 

at preschool, which you think might help them learn mathematics?”. The parents could provide 

more than one answer. 

 

Figure 1: Frequency of home or preschool activities 

Figure 1 shows which activities been chosen by parents as being present at home and at preschool. 

From most parents’ perspective, the children engaged in similar types of activities at home and at 

preschool which would contribute to them learning mathematics. For example, 27 out of 31 

participants considered that Activity C: counting things, was something that parents considered 

children would do at preschool and home and would support their learning of mathematics.  

The only significant difference between perceptions of what kind of mathematics activities are 

present at preschool and home was for activity D: playing with sand and water. Parents did not 

chose this activity, as something their children engaged in at home. Although more research on this 

is needed, a simple explanation may be that they did not have the facilities at home for it. Similarly, 

none of the participants, when they responded to question about describing their own ideas about 

how and when children learn mathematics, suggested playing with sand and water. 

Qualitative analysis 

In this section, I describe parents’ views about mathematics education for their children, as 

expressed in the survey. Analysis highlights why parents considered it is important for children to 

engage in mathematics activities in preschool and at home. The focus is on parents’ perceptions of 

the institutional norms and values in Swedish preschool through their responses to the survey 

questions. 

Parents’ experiences, from their children attending Swedish preschool, seemed to have shaped their 

views about mathematics activities. This is clear in statements, such as the one made by P2, where 

mathematical experiences seemed to be transferred from preschool to home. 



P2: Children learn basic shapes while playing. Shapes are used in different situations 

and aspects. My child comes home and continues asking us about different shapes 

"which is a shape of"? (in relation to various everyday objects). 

It would seem that P2 in this statement is reproducing the norms and values about the importance of 

children knowing about shapes and about learning through play. Learning through play situates 

children as being active participants in the socialisation processes. It is unclear whether P2 had the 

same set of norms and values before her contact with Swedish preschools, but it is possible to claim 

that they are in alignment with the Swedish preschool curriculum (Skolverket, 2011).  

The parents’ reflections of their experiences from the institutional practices of the preschool in 

Poland, were evident in some of their answers. For example, P11 referred to ways of learning in 

preschool by saying: 

P11: They (her children) attended (Polish preschools) and learnt exactly the same ways 

as I did at their age. 

P11’s perception was that Polish preschools had not changed in the generation since she had 

attended preschool. This suggests that she did not see Polish preschools as sites for producing new 

norms and values, just of reproducing the same ones across time. 

The milieu in Swedish preschool was seen as a source of knowledge and learning of mathematics 

for children. 

P21: It seems to me that the Swedish preschool have a big focus on mathematics. There 

is always enough mathematical activities, children usually have access to lots of 

toys/games which also are developing their mathematical skills. 

The emphasis on preschool materials focusing on mathematics is viewed positively. P21 highlighted 

the mathematics that could be learnt through playing with toys at preschool. Opportunities for 

learning mathematics are in the environment and children have the possibility to explore them, as 

active agents reproducing societally-valued understandings about mathematics. However, it is 

unclear what the responsibility of a preschool teacher is, apart from making activities and toys 

available to children. It is unclear how the children learnt that what they are doing is mathematics. 

P28 made reference to how everyday situations could support children’s curiosity. Like many of the 

parents, points such as these were linked to the importance of children playing. The norm of 

Swedish preschool is for children to play and interact together. Play is considered as a stimulus for 

learning in interactions. Children’s own knowledge can initiate interaction in play and, as Ebrahim 

(2011) stated, children can bring in imaginary characters during play. In this way, children produce 

and reproduce knowledge and understanding about their lives. 

P28:  Children learn through play with toys and friends in everyday situations. Children 

should be allowed to use their curiosity and discover new things so they can learn 

more easily. 

A particular aspect of play that parents highlighted was that children could make their own 

decisions, situating them as active participant in the socialisation process. P13 expressed how much 

she valued this aspect of Swedish preschools. 



P13: I like it here (in Sweden), that children have a lot of freedom in choosing and 

directing their play activities. 

Responses such as this are in alignment with values expressed within the institutional practices of 

preschool (Skolverket, 2011). Children being active participants in activities, which they design or 

adapt, seems to be a shared value in Swedish society about what is normal for childhood. Children 

are socialised into this shared norm while engaging in these activities. 

Parents’ views of how children should learn mathematics through play is in alignment with the 

Swedish preschool curriculum (Skolverket, 2011). Parents mentioned play explicitly as an approach 

which was beneficial for learning generally, including the learning of mathematics. 

P29: In preschool, play is the main form of learning. Children are enthusiastic and learn 

about the world around them through play. They should receive many interesting 

incentives in order to actively gain knowledge about the world in general, as well 

the mathematical world. 

In responding to the final open-ended question in which they could share something about their 

children’s learning of mathematics, the parents highlighted the importance of mathematics in 

everyday activities, such as: counting things; classifying objects; doing arithmetic; recognizing 

numerical symbols; building with Duplo. P30 reported that children gained a better understanding 

of mathematics while playing, but seemed to equate counting with mathematics. 

P30: Through play children learn to count and get to know the numbers. I think that 

play is a good way to learn mathematics. 

Counting objects during play, can be about making sense of existing knowledge. Awareness of this 

knowledge (counting) involves an active process of interpretation of this activity as mathematical. 

Similarly, P11 referred to everyday activities and emphasizing the value of learning mathematical 

terms and problem solving. 

P11: Learning mathematics, vocabulary and mathematical concepts is necessary for 

children. They develop their abstract thinking, analyzing, reasoning and decision-

making processes. 

P11 emphasises what children need to learn, and why that is important. This indicates what this 

parent considers to be the valuable knowledge that children need to reproduce. What is interesting is 

that these practices reflect the goals and guideline in the curriculum, “develop their ability to 

distinguish, express, examine and use mathematical concepts and their interrelationships; develop 

their mathematical skill in putting forward and following reasoning” (Skolverket, 2011, p. 10). As 

in the first example in the results, it is unclear if this parent held these views of mathematics before 

coming to Sweden, but the fact that they are so closely aligned indicates that more research is 

needed to investigate this further.  

These parents viewed play as a vehicle for learning and children’s participation in mathematics 

activities as an active form of play. This is in alignment with the Swedish preschool curriculum 

(Skolverket, 2016), which state that play should be a stimulus for children learning and 

development. By expressing children’s possibilities to make choices and decisions, parents show 

that they accept that children should be active participants in the socialisation processes. They also 



had expectations that their children would have opportunities to engage in a variety of mathematics 

activities. They exemplify activities that promote the learning of knowledge of mathematics which 

is socially-valued. Within this perspective, socialisation appears as a process of recreating 

knowledge. 

Conclusion 

In this paper, I have presented the views of a set of Polish parents about the mathematics activities 

their children engage in at Swedish preschools. The findings suggest that, in alignment with 

thewedish preschool curriculum (Skolverket, 2011), the parents emphasized that young children’s 

engagement in mathematical tasks in preschools should focus on learning through play. However, 

whether the parents’ views had changed since they arrived in Sweden is unclear. It is also unclear if 

this group of parents can be seen as representatives of Polish parents in general, living in Sweden. 

Therefore, more research is needed to investigate if and how parents’ views of mathematics in 

preschools are before and how opinions change once their children begin preschool in Sweden.  

We need to gain a better understanding of how immigrant parents align with the pedagogical 

structures in the new country of resident. Much of the research based on work with immigrants’ 

families (e.g. Civil et al., 2005; Giovannini & Vezzali, 2011), show gaps and struggles with parent’s 

involvement with educational institutions. The group of Polish parents in this study show the 

opposite. This article gives a very brief indication of what is the potential for the group of 

immigrants from Poland. Their views are interrelated with their children attending preschool. They 

seem to interpret and adopt the Swedish preschool norms and values, through their children 

participation in preschool.  

The educational structure, in which both children and parents adopt the norms and values of the 

society in their present country of residence, can be seen through processes of socialisation. Parents 

become learners of educational and pedagogical practices by using their experiences to recognize 

and work towards an understanding of the present. Socialisation is a complex and dynamic process 

with range of interconnected aspects operating simultaneously. Thus, more research is needed to 

understand the complexity of this process. 
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This paper discusses the configuration of a quasi-Darwinian view of mathematics teachers, where 

the survival of the fittest is the cornerstone of a network of practices and discourses. It aims to 

contribute to the problematization of how mathematics education research and its discourses have 

effects of power in the fabrication of mathematics teachers’ subjectivities, by unpacking naturalized 

truths of research – truths regarding a productive and successful mathematics teacher. It deploys a 

Foucault-inspired discourse analysis, and it argues how the research on the mathematics teacher 

becomes a practice that governs mathematics teacher’s subjectivities through the enunciation of the 

desire subject, a productive, successful and effective teacher. 

Keywords: The mathematics teacher, effects of power, quasi-Darwinism. 

Introduction 

Providing quality mathematics education has been a concern within the mathematics education 

community, research on education and international agencies. It is argued that the quality of 

education and the development of mathematical knowledge is essential for society and social 

development (Gellert, Hernández, & Chapman, 2013; OECD, 2010b). The idea is circulating that 

success in school mathematics is a prerequisite for personal and social success. Nowadays, it is 

considered that mathematics is a powerful mean to understand and control one’s social and physical 

reality (OECD, 2010a), by being a tool and skill that helps people to undertake diverse tasks and 

problems of everyday life, and of their contexts (OECD, 2014b). However, according to OECD 

(2014a), modern societies valorize individuals not for what they know, but for what they can do 

with what they know, in other words, by their mathematical literacy: 

Mathematical literacy is an individual’s capacity to formulate, employ, and interpret mathematics 

in a variety of contexts. It includes reasoning mathematically and using mathematical concepts, 

procedures, facts, and tools to describe, explain, and predict phenomena. (OECD, 2010b, p. 4)  

Research in the field of mathematics education is seeking to modify reality – in the frame of social 

changes – through its findings, proposing rationalities, knowledge, and ways of improving 

education practices – for ensuring the quality of teaching and learning of mathematics. Furthermore, 

OECD (2014a) stated that “[h]igher educational achievement benefits both individuals and society, 

not only financially, but in the well-being with which it is also associated, such as better health 

outcomes and more civically engaged societies” (p. 104). In this fashion, the mathematics teachers 

become relevant, since they are considered as a central element in the establishment of quality 

education (Jong & Hodges, 2015; Luschei & Chudgar, 2015; OECD, 2005, 2014b). Several studies 

have argued on the relation between the quality of the mathematics teacher and the shaping of 

successful students (cf. Castro-Rodríguez, Pitta-Pantazi, Rico, & Gómez, 2016; da Ponte & 

Chapman, 2008; Hemmi & Ryve, 2015). Also, it is argued that the teacher is open to policy 



influences, whereas factors regarding students and the classroom context are not open to the same 

policy influences, at least in the short run (OECD, 2005).  

All the aforementioned, the circulating discourses around ‘success’ in mathematics, are positioning 

a way of thinking and understanding mathematics education through the configuration of valid 

methods of doing research and of arguing about the diverse issues involved in the teaching and 

learning of the mathematics. For example, “[a]ll research is built around a set of assumptions about 

the world and how it should be understood and studied” (Jablonka, Wagner, & Walshaw, 2013, p. 

41). Thus, this paper problematizes mathematics education research and its effects of power on 

teachers’ subjectivities and fabrication. A discourse analysis, inspired by Foucault’s ideas, is 

deployed to unpack the naturalized truths and discursive formations about the effective and 

competitive mathematics teacher.  

Movements to examine the mathematics teacher as a discourse formation  

According to Pais and Valero (2012), mathematics education research produces languages and tools 

that shape what researchers see and say in the world of education and of mathematics education. 

Mathematics research as a field of inquiry is not an innocent or a neutral activity (Halai, Muzaffar, 

& Valero, 2016); it has been considered a “social institution which is inseparably linked to power” 

(Jurdak, Vithal, de Freitas, Gates, & Kollosche, 2016, p. 10). In this fashion, mathematics 

education, and also its practices, is considered to be political because it operates within 

governmentality techniques. Hence, by building on these techniques of government, this paper aims 

to understand how mathematics education research fabricates the mathematics teacher’s subjectivity 

through regulatory practices embedded within naturalized truths. In other words, it addresses how 

research sees and talks about the mathematics teacher, by establishing regimes of power/knowledge. 

According to Foucault (1972), “[w]e shall call discourse a group of statements in so far as they 

belong to the same discursive formation” (p. 117). Hence, discourse as a group of statements, 

provides a particular language and knowledge, assembling regimes of truths. Circulating discourses 

describe rules and enunciations of a particular body of knowledge from specific spatiotemporal 

conditions (Arribas-Ayllon & Walkerdine, 2008). This paper deploys a “research on research” (Pais 

& Valero, 2012) strategy built on Foucault’s discourse analysis. This analytical strategy helps to 

unpack naturalized truths within research, that seek to generate a productive and successful 

mathematics teacher, and, at the same time, to trace the power effects on the fabrication of 

mathematics teachers’ subjectivities. So, by problematizing the discourses, it is possible to 

understand research as a practice that governs subjectivities through the enunciation of the desired 

subject.  

First, repeated statements about the ‘must be’ of the mathematics teacher are identified. Second, 

these statements are analyzed to trace their knowledge/power relationships, and their continuities 

and discontinuities amongst each other. It does this by analyzing published studies about teaching 

and learning of mathematics. The empirical materials consist of research about mathematics 

teachers released within the last four years of three journals: Journal of Mathematics Teacher 

Education, ZDM Mathematics Education, and Educational Studies in Mathematics.  

Finally, it problematizes how research and its discourses have effects of power in the fabrication of 

mathematics teachers’ subjectivities. It does this by portraying how certain rationality is circulating 



within research in mathematics education. As will be described, such rationality promotes a quasi-

Darwinism, in which the survival of the fittest and the idea of evolution are the cornerstone of a 

network of practices and discourses. 

The mathematics teacher research and the survival of the fittest 

In navigating through the discourses that are circulating about the mathematics teacher, amongst the 

materials analyzed, it is possible to identify some enunciations that are continuously repeated. By 

following a Foucaultian chain of thought, these particular enunciations constitute statements about 

how mathematics teachers are supposed to act and be within their practices, their ‘must be’. Such 

statements respond to concerns raised by research in the field of mathematics education. For 

example, who is taken as valid for arguing about mathematics teachers, what does a mathematics 

teacher ought to do, and how to seek for the improvement of the teaching and learning of school 

mathematics. From the analysis, some discourses about the ‘must be’ of the mathematics teacher are 

configured as truths. These truths are advertised as desired features that teachers should have if they 

want to perform successfully, namely: a high knowledge (Fauskanger, 2015), an updated repertoire 

of techniques (Subramaniam, 2014), and a personality consistent with their practices – personal 

aspects such as beliefs or attitudes (Jacobson & Izsák, 2015).   

These discourses are naturalized under a competition and comparison system of reason. 

International standardized testing – PISA and TIMMS –, and its reports are examples of how 

competition and comparison become part of society, by shaping social discussions, decisions, 

efforts, and initiatives. At the same time, through those tests’ outcomes, diverse countries could 

monitor themselves to improve the weakest areas, since “[a]ll countries are seeking to improve their 

schools, and to respond better to higher social and economic expectations” (OECD, 2005). In this 

fashion, a variety of studies, that seek to improve the teaching of mathematics (see Boston, 2013; 

Lewis, 2016; Pang, 2016), are aimed to identify how mathematics teachers could achieve a 

successful practice by analyzing their students’ achievement on national and international tests. But, 

as discussed elsewhere, what is taken, by research, as a successful practice leads to a system in 

which teachers compete against others teachers, against what is considered as a desired teacher, and, 

also, against themselves (Montecino & Valero, 2016). So, research discourse is raising comparison 

as a mean for knowing the characteristics of competent and effective teacher – the fittest teacher –, 

effective practices or successful experiences. Within these discourses, it is possible to see 

statements such as: 

By comparing and contrasting the practices of LS [Lesson Study] in mathematics in different 

countries, it will be possible to explicate the local theories of teaching and learning of 

mathematics, highlight educational values in each culture, and understand why and how these 

values support certain teacher development processes that are unique to the culture. (Huang & 

Shimizu, 2016, p. 394) 

In the unpacking of naturalized truths of the analyzed materials, it is possible to see that some 

statements highlight mathematics teachers’ deficits and flaws. These statements pay attention to 

what teachers need to improve in their lessons for increasing students’ achievement (Spitzer, 

Phelps, Beyers, Johnson, & Sieminski, 2011). On one hand, by emphasizing that teachers need to 

achieve a higher expertise on school mathematical topics (e.g. Karakok, Soto-Johnson, & Dyben, 



2015; Magiera, van den Kieboom, & Moyer, 2013). On the other hand, by focusing on the need for 

developing more effective teacher’s practices (see Lee & Kim, 2016). This type of research 

acknowledges that mathematics teachers have a ‘responsibility’ for students’ performances and, 

therefore, teachers ought to be highly trained. Alongside the statements about what needs to be 

improved, other statements exist that pay attention to what teachers lack, in other words, to skills 

that teachers are required to develop to reach what those studies perceive as ‘successful professional 

development’: on the one hand, studies regarding teachers’ belief system (e.g. Conner, Edenfield, 

Gleason, & Ersoz, 2011; Cross Francis, 2015); on the other hand, studies regarding teachers’ 

attitudes (e.g. Hannigan, Gill, & Leavy, 2013; Jong & Hodges, 2015).  

According to some research, “[h]ow teachers perceive and adapt their roles will have great impact 

on overall classroom interactions, such as the teachers’ questioning strategies or feedback patterns” 

(Lee & Kim, 2016, p. 366). This implies that teachers’ decisions have an impact on students since it 

is believed that students’ intellectual autonomy could be favored by teachers’ practices (Goldsmith, 

Doerr, & Lewis, 2014). And so, the decisions made by the mathematics teacher have a high impact 

not only on students but also on their learning (Stockero & Zoest, 2013). This type of research 

shows that mathematics teachers should be constantly seeking to improve their professional 

development, practices, knowledge and skills not only for themselves but also for the sake of their 

students (Afamasaga-Fuata’i & Sooaemalelagi, 2014). Since professional development has been 

understood as a form of lifelong learning in which mathematics teachers are responsible for their 

own development and achievements, these types of statements, from a Foucaultian approach, are 

tracing the ways in which the mathematics teacher should become an effective and competitive 

teacher, through processes of self–regulation.  

According to these studies, teachers should aim at improving, by themselves, diverse personal and 

technical aspects. Such aspects are supposed to encourage the development of a more effective and 

competent teacher, by recognizing their own deficits and flaws with the goal of overcoming them. 

This naturalized truth resonates not only within research but also amongst other discourses on 

education. For example, OECD (2012) states that effective teachers are a key to close achievement 

gaps between advantaged and disadvantaged students. And, therefore, the aim should be to (re)train 

and (re)shape teachers to become the desired effective teacher. In this regard, research is tracing a 

sort of ‘evolutionary line’ for mathematics teachers, in which at the end of the line rests the desired 

mathematic teacher. Teachers should evolve when they achieve the desired levels of knowledge and 

skills established by society, becoming the productive, successful and effective teacher. However, 

these desired levels are in constant movement, being redefined by new social interests, concerns, 

desires and demands as well as new mathematical knowledge that the modern citizen should have. 

This means that mathematics teachers have to govern themselves into a constant process of change, 

of (re)training and (re)shaping. As Deleuze (1992) asserts, currently nothing is considered to be 

finished; all is in a constant becoming. 

The idea of the ‘evolutionary line’ helps to tell the narrative of the becoming of the mathematics 

teacher as the survival of the fittest, since research in the field highlights the features of the ‘fittest 

subject’. This portrays that the survival of the fittest – the desired mathematics teacher – involves 

practices of self-regulation, but also of competition against other teachers, practices that could lead 

to the exclusion of certain teachers labeled as ‘inferior subject’, unproductive, unsuccessful, and 



inefficient. For example, Lee and Kim (2016) have argued that mathematics teacher training 

programs “should include more specific investment in the effective use of classroom dialogue for 

learning” (p. 378), a ‘fittest subject’ should evolve in an effective classroom communicator whereas 

the ‘inferior subject’ will not evolve as a classroom communicator, and, will therefore be taken as 

ineffective. Consequently, the survival of the fittest governs the self and conducts mathematics 

teachers’ practices towards the desire to evolve, (re)shaping the research about mathematics 

teachers within a system of reason rooted in a quasi-Darwinism, since it traces the paths for teachers 

to increase their abilities to survive, compete and evolve. 

Quasi-Darwinism of mathematics education research and its effects of power 

The analysis deployed has pointed to the existence of statements on the desired mathematics 

teacher, a self-regulated and evolved subject. These statements have been (re)producing certain 

truths about who the effective teacher is. For example, mathematics teachers should perceive 

themselves as responsible for others – i.e., their students’ performances –, as promoters of social 

change – i.e., by closing achievement gaps –, and also, as responsible for themselves – i.e., tracing 

their professional development and learning the best possible way. These statements are building a 

quasi-Darwinian view of mathematics teachers; an ‘evolutionary line’ that is embedded within the 

above discourses and shapes the fabrication of the fittest subject.  

The quasi-Darwinism (re)shapes mathematics teachers’ ways of being and acting at a particular time 

and place, through discourses that are produced and reproduced under certain regimes of 

power/knowledge (Foucault, 1982). The naturalized truths are constituted, on the one hand, within a 

particular regime of knowledge, which delineates who is the one to discuss about the mathematics 

teacher and how, and in what way the knowledge regarding the teacher should be generated. On the 

other hand, within a regime of power which defines what understanding is meaningful to be studied 

– what discourses are taken valid regarding certain issues or aspect of the mathematics teacher – and 

which practices, knowledge and techniques should be targeted. Therefore, a quasi-Darwinian view 

(re)produces what the mathematics teacher should be – the becoming – towards the development of 

the ‘human capital’ (OECD, 2001). Human capital voices the value that subjects have in correlation 

with their knowledge, skills, education and preparation for the future, which translates into personal, 

social and economic well-being. Alongside, a quasi-Darwinian view (re)shapes a discourse aimed at 

optimizing the becoming of the teacher. Moreover, the research on mathematics teachers seeks to 

minimize all aspects that could lead to an ‘inferior subject’. In order to be the fittest, teachers should 

engage in practices that turn them into accountable and measurable agents. 

In this regard, it is possible to state that research in the field of mathematics education becomes a 

technology of the self (Foucault, 1997) that regulates mathematics teachers’ conducts towards the 

shaping of the desired mathematics teacher. By promoting ‘cultural thesis’ (Popkewitz, 2008) about 

the desired mathematics teacher, the analyzed research has effects of power on teachers 

subjectivities, meaning how mathematics teachers understand themselves and their becoming. Only 

the ‘fittest subject’ is the one able to develop the skills and knowledge that society demands and 

requires, is the only one who can evolve in a ‘superior subject’; subjects able to adapt themselves to 

the new social and professional demands. In other words, teachers are to evolve in subjects that 



have the tools, skills, and knowledge to survive to all social changes and challenges; becoming a 

successful, effective, competent and fittest subject. 

Thus, within the circulating discourses is configured a narrative in which if the mathematics teacher 

does not adapt or evolve, he/she is excluded or labeled as deficient. The teacher who survives 

through social changes and challenges is neither the knowledgeable teacher, nor the successful 

teacher, nor the most intelligent teacher; rather he/she is the most adaptable to change. 
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We describe ongoing work on the Culturally Responsive Elementary Mathematics Education 

(CREME) project, in which we work with teachers and students in two schools with contrasting 

student populations and communities. We present core principles of our emergent theoretical 

framework as we partner with the teachers and students to realize (in both senses of ‘understand’ 

and ‘make happen’) what culturally responsive elementary mathematics education might be. The 

backdrop for this activity is the educational/political arena within the United State, in particular in 

Oregon where we work, and in the schools themselves. We outline future development of CREME, 

and end with what we see as the implications of our experience with CREME for the ethical and 

political responsibilities of educational researchers. 

Keywords: Culturally responsive, mathematics education, multiculturalism, educational politics, 

assessment. 

Introduction 

As an extension of the paper presented at CERME9 (Mukhopadhyay & Greer, 2015) we describe 

our continuing work on the Culturally Responsive Elementary Mathematics Education (CREME) 

project, at the core of which is a long-term exercise in teacher development, embedded in the 

schools and their communities.  

We are not doing research in the narrow sense of stating research hypotheses, gathering data, 

conducting analysis. On the one hand, the paper provides a “thick description” (Geertz, 1973, pp. 5-

6) of the evolution of a community of practice (Lave & Wenger, 1998), and, on the other, describes 

an effort to actualize a conception of culturally responsive elementary mathematics education 

(Greer, Mukhopadhyay, Powell, & Nelson-Barber, 2009) in a particular environment. As such, it 

can be characterized as raw material contributing to an emerging theory, elements of which we 

describe. As a development from the CERME9 paper, we devote more attention to educational 

politics within the United States, in particular the state of Oregon, making the argument that 

research cannot be considered politically neutral, and we raise meta-theoretical issues about the 

ethical and political responsibilities of researchers. 

Principles and values of CREME 

CREME is very much work-in-progress, but many influences are clear. Within mathematics 

specifically, we acknowledge Critical Mathematics Education (albeit fuzzily defined), and 

Ethnomathematics as major inspirations. Within critical education more broadly, we have worked to 

establish the centrality of mathematics (not always recognized) within multicultural and 

intercultural education (e.g., Greer & Mukhopadhyay, 2015). 

Of particular relevance is the concept of “Funds of Knowledge” (Gonzalez, Moll, & Amanti, 2005) 

which is “based on a simple premise: People are competent, they have knowledge, and their life 



experiences have given them that knowledge” (Gonzalez et al., 2005, p. ix). As an example, we 

studied Sandoval-Taylor’s (2005) account of her development of a curriculum module for a second 

grade bilingual class composed mainly of Native American and Hispanic students, on the theme of 

local building construction. We later had the opportunity to talk about this work with her when she 

visited our class. 

More recently, a related concept termed “Funds of Identity” has been developed (Esteban-Guitart & 

Moll, 2014), introduced by the authors thus (p. 31): 

We use the term funds of identity to refer to the historically accumulated, culturally developed, 

and socially distributed resources that are essential for a person's self-definition, self-expression, 

and self-understanding. Funds of knowledge – bodies of knowledge and skills that are essential 

for the well-being [sic] of an entire household – become funds of identity when people actively 

use them to define themselves. 

This statement provides a concise rationale for the emphasis we put on identity work in CREME 

and in this paper.  

From the above, it will be appreciated that CREME, both in terms of the development of a 

theoretical framework and as a form of political activism, is very much work-in-progress, guided by 

beliefs and values, such as a commitment to asset pedagogy and to valorizing diversity in all its 

forms (Mukhopadhyay & Greer, 2015). The very different natures of the two schools described 

below is illustrative of the diversity pointed out by Skovsmose (2012), relating not only to ethnicity, 

class, language, forms of life, and so on, but also to: variety of sites for learning mathematics (in 

contrast to the stereotype of the prototype mathematics classroom (p. 345); variety of forms of 

mathematics in action; variety of educational possibilities. The two schools represent two examples 

of the demographic and sociopolitical variety in schools within the US and, mutatis mutandis, 

anywhere else. Accordingly, the concept of culturally responsive mathematics education (Greer et 

al., 2009) must be adapted to the particular contexts of schools and communities. In the case of 

School A, one major focus of our work is support of cultural identity for the children who are recent 

immigrants, often as refugees. We have become acutely aware of the tensions for immigrants 

between the pressing issues of adapting to a new society and the practicalities of day-to-day 

existence, and the maintenance of cultural identity. (Other kinds of tensions for non-dominant 

groups in relation to dominant groups were discussed in Mukhopadhyay and Greer, 2015). In 

School B, two important aims are to enable the children who are White to become more aware of 

cultural diversity, and to model the use of mathematics as a tool for addressing issues of social 

justice. These contrasting foci are illustrated in activities being carried out at the two schools, as 

discussed below. 

National political background  

In Mukhopadhyay and Greer (2015), we sketched the political landscape for mathematics education 

globally and within the United States. No matter where you are, developments within the US are 

likely relevant because of the extent to which they directly or indirectly influence what is happening 

in your country. One point of this paper, accordingly, is to offer an example of how mathematics 

education and realpolitik interact within a particular context. Readers will recognize parallels with 

what is going on in their own contexts. 



The importance of demographic changes within the United States is made clear by the fact that 

White children (as officially defined) now constitute less than 50% of the school population – while 

it is still the case that about 80% of the teachers are White. The legislation called No Child Left 

Behind that was passed in 2001 did address diversity among students in that it required the reporting 

of performance on standardized tests broken down by ethnicity, a major change welcomed by, for 

example, African-American organizations as a means to identify and then address inequity. 

However, the subsequent information on differences in standardized test scores (generally referred 

to as “achievement gaps”, a term that connotes a blatantly deficit model) was instead used to label 

schools, teachers, and students as “failing” without providing resources to reduce the differences; 

instead, the data provided fodder for denigration of teachers and the furtherance of privatization 

(encrypted as “choice”). Now NCLB were has been replaced by the Every Student Succeeds Act 

(ESSA), a change that can be characterized as rebranding (Karp, 2016), with the continuing 

requirement to administer standardized tests to all students each year from Grade 3 to Grade 8. At 

the same time, there is a growing national movement against the excessive, inappropriate, and 

expensive use of standardized testing (Hagopian, 2014).  

An overwhelming political fact is the increase in wealth and income inequality over recent decades 

in the United States and many other countries (OXFAM, 2017; Piketty, 2014). Education, far from 

the conception that it should act as a force to reduce such inequality through offering something like 

equality of opportunity, is now acting as an accelerator, as has been clearly shown in the United 

States by the statistical analysis carried out by Reordan (2011). In the period 1979-2009, the gap in 

academic achievement (as conventionally measured) between poor and rich children grew by about 

40%. 

For many reasons, the election of Donald Trump as president magnifies all of these issues, 

particularly given his choice as Secretary for Education of a billionaire supporter of the privatization 

of schools. All indications are that education will become, to an even greater extent, a driver of 

economic inequality and a generator of corporate wealth.  

Local political background  

One potentially positive aspect of ESSA is that it grants more power to states to make decisions. It 

remains to be seen whether this degree of autonomy will be sufficient to counteract federal policy 

under the new president. 

In 2014, the Oregon Department of Education (ODE) issued a call for proposals for the Culturally 

Responsive Pedagogy and Practices Grant whose stated mission was to work towards formation of 

a culturally responsive teaching force in the state. CREME was the only project funded within this 

initiative focused on mathematics.  

In June 2015, an extremely progressive and constructive statement on assessment, titled A new path 

for Oregon was published (Oregon Education Investment Board, Oregon Education Association, & 

Oregon Department of Education, 2015). This document represents the work of a very broad 

coalition that worked together over an extended period of time and consulted widely with teachers 

and others. It clearly shows the influence of Stiggins (2014), who acted as consultant.  



From our perspective, A new path for Oregon is particularly notable in the attention it pays to 

“culturally responsive assessment”. It is stated unequivocally (p. 8) that: 

A successful system of assessment should not simply highlight problems or generalize about 

groups; nor should it ignore conditions that influence performance. Instead, a successful system 

of assessment recognizes the myriad strengths of various learners within their respective 

communities and within the collaborative nature of the classroom. In addition, such a system is 

culturally responsive, and implemented by teachers who are assessment literate. (Emphasis 

added). 

As just indicated, the report also highlights the concept of “assessment literacy”, not just for 

teachers and students, but also for families, community members, educational officials and policy-

makers, and – perhaps most importantly of all – politicians. The Oregon Education Association 

(teachers' union) is actively leading further efforts to develop quality assessment, and we anticipate 

working with them and other important actors in exposing and undoing the negative effects of 

excessive standardized testing, and in developing culturally responsive assessment. Mathematics is 

of particular importance in these efforts, given the prominence that it is accorded within 

standardized testing. 

At the time of writing, a bill is being promoted in the Oregon Senate that would require educational 

state agencies to ensure that educators are providing culturally responsive education. 

CREME schools, students, and teachers  

The project is based in two urban schools in Portland, Oregon. Though less than three miles apart, 

the schools are contrasting in many respects. One (which will be referred to as School A) serves a 

very diverse population of children speaking more that twenty languages at home, many of whom 

are recent immigrants and came to the US as refugees, with indications that many have experienced 

trauma (Sottile, 2015). The other school (School B) is a public charter school within the Portland 

Public Schools system. Unlike many charter schools that are corporate, this school adheres to the 

original concept of charter schools as test beds of alternative approaches to education. It is based on 

a progressive set of principles such as constructivism and democratic education and serves mainly 

White children, not particularly affluent. 

School A is required to follow the prescribed textbooks and other instructional materials adopted by 

the district, and adhere to strict testing requirements. As a result, as CREME teachers have testified, 

there is excessive emphasis on test preparation. Although the children are smart and creative, as 

evidenced in many of their open-ended projects, their performances in tests do not reflect that. And 

although the teachers from School A are kind, caring, and full of creative ideas they are compelled 

to follow the curriculum and testing regime thrust upon them.  

For School B, not only is the demographic different, the curriculum and pedagogy are also in stark 

contrast. The teachers have intellectual freedom in designing their curricula, with minimal emphasis 

on performance on standardized tests. The teachers design and develop project-based curriculum 

spanning weeks at a time. Thus, while the students were learning how to respond to standardized 

test items in School A, their peers in School B were learning about election and democracy in a 

national program called Every Kid Votes 2016 (https://www.studiesweekly.com). 



The participating teachers contribute to the richness of diversity of the project. They differ 

ethnically and linguistically, and in years of teaching experience. CREME is a teacher development 

project that differs in major respects from many endeavors labeled as such. It is not formulated as a 

group of researchers/academics proscribing, as experts, curricular content or teaching styles for 

teachers to follow. Rather, over two years and continuing, it is a collaboration founded on mutual 

respect wherein the mathematics educators propose ideas to the teachers, while the teachers and 

their students educate the academics about the realities of the circumstances in which they are 

teaching and learning. In the slow and organic development towards the idea of teachers as 

intellectuals, the teachers have had the opportunity to interact face-to-face and electronically with 

the advisors for the project, Marta Civil, Geneva Gay, and Danny Martin, and other scholar 

activists. And they are beginning to attend and present at conferences and to write papers. 

What happens in CREME 

We present here some examples of activities that we have collectively carried out (see Ford et al., 

(in press) for more details). 

In School A, a very simple exercise with powerful effect has been to ask children to record, on 

paper and audio, numbers from 1 to 20 in their home language. Ongoing discussion was related to 

the large world map that hung in the room: In which part of the world is this language spoken? 

Where else is this language spoken? The list of languages spoken at home was long: Arabic, 

Bulgarian, English, Fulani, Kirundi, Korean, Oromo, Portuguese, Russian, Spanish, Sudanese, 

Swahili. (For a similar activity in Greece, see Chronaki, Mountzouri, Zaharaki, & Planas, 2016).  

As a more general approach to identity work within an asset pedagogy, the children at both schools 

record, on strips of paper, lists of what they can do, including but not confined to school 

achievements. These lists are place in ‘talismans’, old medicine bottles that are decorated by the 

children. Recently, all the children and their teachers wrote autobiographical poems based on the 

prompt “I am from”, and drew self-portraits. A compilation has now been published as “We are 

from”, and the book was launched in the library at School A with children reading their poems and 

the self-portraits on display. 

Another aspect of identity that we work on is that of being a potential college student. In School A, 

in particular, students tend not to have a clear notion of what college is like. Accordingly, we have 

organized field trips for students to Portland State University, during which children interacted with 

students and faculty in Architecture, Engineering, and Earth Sciences. 

In School B, an example of teaching to make students aware of other cultures is that the teacher, 

having covered a standard account of the Lewis and Clark Expedition of 1804-1806 that opened up 

the West to colonizers, then presented an account from the perspective of the Native Americans. We 

have also connected teachers, through visits to the Portland Art Museum, to Native American 

artifacts that illustrate the richness of design that serves as a context for the study of geometrical 

concepts, in particular symmetry. 

School B has a tradition of working through Storyline projects, an approach in which students, 

together with their teacher, explore a theme in depth through creating characters within that theme. 

Koopman (in press) describes such a project that began by students looking at the labels on their t-



shirts to see where they were made. The places were recorded with pins on a world map. Koopman 

reports that looking at the concentrations of pins in particular areas came as a revelation even to 

him. From there, the class collectively did extensive research about factories in the early 1900s 

where t-shirts were originally made. They used extensive arithmetic in calculating, based on 

historical data such as the prices of groceries and payscales at that time, the cost of living of a 

family in relation to the pay. They took on roles of workers and factory owner, and acted out 

situations of conflict. Koopman (in press) related the conflicts enacted by the students to his own 

experiences during a teacher strike when he was coerced by the school district to substitute for 

striking teachers. Later the principal of the school joined in the activity. The project culminated with 

research into contemporary conditions for workers in sweatshops in countries such as Bangladesh. 

Another such project involved students building models of food carts (for which Portland is 

famous). Students created characters for the cart owners and operators, and devised detailed 

business models. They filled in actual forms relating to hygiene requirements, for example, for these 

simulated businesses. The teacher posted reviews on Yelp. 

In these and similar projects, a great deal of arithmetic was done in context, illustrating how, in 

elementary school, students may: 

(a) Be introduced to the conception of mathematics as a tool for interrogating sociopolitical issues, 

thus appreciating at an early age a sense of agency that will stand them in good stead as citizens. 

(b) Consolidate computational and planning skills in complex contexts that afford relevance, 

interest, and motivation. 

(c) Learn and practice mathematics integrated with other school subjects (science, obviously, but 

also art, social studies, language arts) – something that elementary teachers are in the best position 

to do. 

Future of CREME 

At the time of writing, we have submitted proposals for further funding to continue CREME, but it 

is a measure of the group solidarity that the teachers are keen to keep the project going even without 

funding. As we continue, we plan to pay more attention to explicit mathematical content, always 

within the framework of culturally responsive pedagogy (see Ford et al. (in press) for more details). 

We also plan to explore and expose cultural biases in assessment, including the more subtle ways in 

which they are manifested. In light of the extremely encouraging political developments within the 

state, we are developing links with important actors within educational politics in Oregon. And we 

will continue to foster identity, agency, and autonomy in the CREME teachers, and to help them 

develop into mentors of new teachers joining the project. 

Final comments: Ethical and political responsibilities of researchers  

The naive conception of research and researchers as politically neutral, providing systematic 

objective evidence for the guidance of state educational policy, if ever viable, is certainly not 

sustainable in the circumstances that pertain in the United States, as a neoliberal agenda is pursued – 

as, in the face of global corporatization and economization, is happening in many parts of the world 

(Spring, 2015). The experiences described in this paper makes clear that as educators we are 



confronting issues of ethnic and cultural diversity, inequity, massive social engineering through the 

mechanisms of mass testing, the characterization of education as a market with huge profits to be 

made, the use of education as a means to maintain and even exacerbate economic inequality. The 

role of mathematics in all of these issues is particularly important, and we hold to a vision of 

mathematics education as providing people with tools for understanding and acting upon issues 

important in their lives and those of their families and communities. Along with mathematicians and 

mathematics teachers (D’Ambrosio, 2009), mathematics education researchers cannot absolve 

themselves from ethical and political responsibilities.  
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Based on a pilot study, this paper reflects upon how the industry, university and school can work 

together to facilitate learning of mathematics. Through a project called MathEUS (Mathematics at 

the Enterprise, University and School) a modern energy recovery enterprise, Returkraft, the 

University of Agder and a school collaborated to offer pupils (in 8th and 9th grade) an opportunity to 

engage with mathematics contextualized at an enterprise. Through comparing the 2015 edition with 

our re-design in 2016, we discuss the outcome of the project. In particular, we focus on the factors 

necessary for such a project to succeed. Findings suggest that mathematics contextualized at an 

enterprise as an isolated event has limited value. Further, findings seem to indicate that working 

together with the enterprise over time, by including a pre-project, strengthens pupils’ experience of 

mathematics as a relevant subject. 

Keywords: Diversity, relevance, authenticity, out-of-school contexts, enterprise. 

Introduction 

Diversity in mathematics education relates to political, cultural and linguistic aspects. In this paper, 

the issue of diversity will be addressed in terms of different sites where mathematics education 

potentially could take place. Meaney and Lange (2013) emphasize the importance of transitions 

between different contexts and that such transitions “can be a fairly minor issue for learners if they 

perceive similarities in what knowledge is valued and how learners and others should interact together 

and with the mathematical content” (p. 169).  Throughout the decades, a growing body of research 

has been carried out, focusing on the learning of mathematics in different contexts (Masinglia, 

Davidenko, & Prus-Wisniowska, 1996). By linking mathematical tasks to an enterprise, we hope that 

the pupils experience mathematics as important, also outside the classroom, and in turn this influences 

their motivation for learning mathematics at school. In Norway, there has been an increased focus on 

how mathematics could be taught in ways that is perceived by pupils as relevant and more related to 

their own reality and experiences (Det Kongelige Kunnskapsdepartement, 2011). Diversity in 

teaching methods and arenas of learning has been important issues in this debate (Norges offentlige 

utredninger 2015, p. 8). Pupils in Norway are mixed together heterogeneously until grade 10 and with 

the curriculum focus being academic, offering pupils few perspectives on, for example, vocational 

and professional practice. In the attempt to diversify such experiences, we found that the processes 

going on at the energy recovery enterprise, Returkraft, bear the potential of visualizing mathematics 

at a working place. Further, Mathematics at the Enterprise, University and School (MathEUS), in 

some sense should be regarded as a response to the identified need of moving the teaching of 

mathematics in a more practical and vocationally-oriented direction. The last two years (2015 and 

2016) funding from Regional Research Fund Agder enabled research to be carried out on the 
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MathEUS project. In this paper, we pose the following research questions: 1) Which factors are of 

importance in the collaboration between school and industry for the pupils to experience the 

mathematics involved as relevant and authentic? 2) What might prevent the pupils for experiencing 

the project as relevant and authentic? Our discussions focus on the differences in outcome between 

the first year and the redesigned project run in the second year.  

Theoretical background 

The idea that learning is situated within a certain context and practice was in many ways coined by 

Lave and Wenger (1991) and in mathematics education, research has shown that the environment in 

which activities takes place is of great importance for the outcome (Nunes, Schliemann, & Carraher, 

1993). In the MathEUS project, mathematics is contextualized and linked to the activities at an energy 

recovery enterprise, Returkraft. Situated in this case alludes both to the physical environment at 

Returkraft (which surrounded the pupils while they were doing their activities) and to the 

mathematical content, which was consequently linked to the enterprise. By establishing this link 

between content and context, it is our aim that the mathematical tasks and activities provided appear 

more relevant and authentic to the pupils. When applying the concept of relevance, we draw on the 

work of Hernandez-Martinez and Vos (submitted) where the main point is that “it involves a judgment 

of value that is made by a person involved in the activity” (p. 26) and that the “judgment is connected 

to the motive or object that drives the activity” (p. 26). Nyabanyaba (1999) and Dalby (2014) point 

to the complexity of the relevance concept in mathematics by listing a number of different ways 

mathematics could be conceived of “relevant”, depending on contextual, content-related and affective 

factors. Authentic has to do with the nature of the activity and has several somewhat distinct 

definitions. In the case of MathEUS, we find the definition from Gulikers, Bastiaens and Martens 

(2005) to be useful, “An authentic learning environment provides a context that reflects the way 

knowledge and skills will be used in real life” (p. 509). Here both the contextual aspect and the use 

value are emphasized, which is fully in line with the purpose of the MathEUS project. To achieve the 

goal of authentic tasks, considered relevant to the pupils, we aimed also to overcome some of the 

typical challenges that guided tours of enterprises often entail. Recent research, both national and 

international, shows that the “classical” excursion day, where pupils use a day to visit an enterprise 

in terms of a guided tour, is often disconnected to what they normally do at school and leads to some 

didactical challenges. The pupils easily become passive, engaging in artificial and low-quality tasks 

(like memorizing and duplicating information posters) due to the lack of preparatory and follow-up 

work (DeWitt & Storksdieck, 2008; Remmen & Frøyland, 2014).  

Methods 

In 2015, two schools were participating, each with one secondary class of 9th grade pupils (14-15 

years old).  

The implementation of the MathEUS project 

The schools’ visiting day at Returkraft took place in March on two different days, one day for each 

class. Before the day of visit, student teachers completing a master degree at the university had 

designed and prepared mathematical tasks for the pupils. After a guided tour at Returkraft, the student 

teachers constructed the tasks over a period of two weeks, and during this period staff from Returkraft 

was available for helping them with information concerning the enterprise. Teachers from the 



participating schools were also available for commenting on their suggestions. The premises for these 

tasks were that they should in some way be linked to the enterprise at Returkraft. These tasks were 

given to the pupils on their day of visit, and they were given approximately two hours to work with 

the tasks in groups of four to six pupils. The tasks were solved in a ‘classroom’ at Returkraft. 

Following an evaluation of MathEUS as it had been carried out in 2015, we decided to make some 

changes in an attempt to improve the project (see also the section “results and discussion”). We 

wanted to strengthen the quality of the tasks so that the pupils experience them as more relevant. In 

addition we wanted the pupils’ experience with Returkraft and the mathematics they engaged with to 

be more than just an isolated event. Aiming towards this, we invited the class to take part in a pre-

project (lasting for six weeks), with a representative for Returkraft coming to their class early in the 

semester to initiate the following assignment: “How can we improve peoples’ habits, when it comes 

to sorting their garbage for recycling?” To solve this assignment, the pupils developed questionnaires 

and went out to different geographical locations to interview people about their sorting habits. Due 

to the lack of responses during oral interviews the pupils posted the questionnaires on social media, 

and the number of response escalated rapidly. Their empirical data were treated in spread sheets, 

resulting in different diagrams, and the results were presented at the university in front of an audience 

consisting of both the student teachers and employees from Returkraft. In turn, this pre-project served 

as an important source for the student teachers when they designed the tasks for the pupils. In 2016, 

one secondary class of 8th grade pupils (13-14 years old) participate in the project. 

Methods and data collection 

We (the authors of this paper) were responsible for carrying out research and at the same time we 

planned the implementation of the project together with the participating schools and employees from 

Returkraft. We also provided the framework conditions for the student teachers’ elaborations of the 

tasks. The pupils, the student teachers, the teachers (at the participating schools) and the employees 

at Returkraft all served as informants for our research. In this paper, we mainly focus on data from 

the pupils. Conducting research at the same time as we are responsible for carrying out the project 

situates us within the domain of action research. Bryman (2012) describes this as “an approach in 

which the action researcher and client collaborate in the diagnosis of a problem and in the 

development of a solution based on the diagnosis” (p. 709). We conceive of this definition to be in 

line with our agenda, where we use data from our experiences to discuss, develop and improve the 

forthcoming editions of the project.  

To measure parts of the outcome of the MathEUS project, we developed a web-based questionnaire 

which the pupils should answer after the project was carried out. Except from minor changes and 

some reformulations, we used the same questionnaires both years of research, for the sake of 

comparison. The questions were mainly statements that the pupils were asked to scale from 1 to 6, 

based on their “degree of agreement” and in total there was 34 statements to be evaluated. Mainly 

these statements aimed to inform our research questions mentioned earlier in terms of measuring the 

pupils’ own experience of their learning outcome, their motivation and beliefs and whether they 

consider the project meaningful and relevant. In addition, some open ended questions were posed 

where the pupils had the possibility to comment on these aspects. Since two school classes were 

involved in 2015, and just one in 2016, the sample size varied and in 2015 there was 44 respondents 

to the questionnaires, while 23 responded in 2016. But in 2016 we collected some additional data by 



including a semi-structured interview with three of the pupils. These pupils were randomly selected 

among those who volunteered when we visited the class. In this interview, we went deeper into the 

pupils’ own experiences related to the project, and to the content of the tasks and activities provided 

for them by the student teachers. Both in 2015 and in 2016, interviews involving representatives from 

the three collaborators (the enterprise, the university and the schools) were conducted, mainly 

focusing on the outcome of the project. Both years we made observations and voice recorded all the 

group work sessions at Returkraft. As part of our research, we also conducted interviews with some 

of the student teachers responsible for designing the tasks.  

Results and discussion 

Since the scale on our questionnaires ranges from 1 to 6, we sort the results in two halves for the sake 

of overview. The “low achieving” half ranges from 1 to 3 and the “high achieving” half ranges from 

4 to 6. Figure one gives an overview of some of the questions we consider as most significant.  

 

Figure 1: Pupils scaling (in per cent) in 2015 compared to 2016 

One can observe from the first columns in the diagrams (1a) that the majority of the pupils both years 

felt that they understood the mathematics being taught. About half the pupils felt that they discovered 

new aspects of mathematics in the 2016 edition of MathEUS, a slight improvement compared to 2015 

(1b). An improvement related to the experience of mathematics used in a real-life setting is visible 

(1c), while the experience of mathematics as being meaningful is almost unchanged (1d). Finally, 

there is a clear improvement on almost 20 per cent related to the appreciation of mathematics as a 

consequence of the MathEUS project (1e). Since the number of pupils forming the basis of these 

results is limited and varying one should be careful to draw strong conclusions only from this data 

set. But since statements in the questionnaires consequently were higher rated in 2016 compared to 

the year before, a positive trend could be suggested. In addition to the scaling of different statements, 

there was also a possibility for the pupils to add comments and give some additional justifications for 

their scaling. In 2015, about half the pupils wrote critical comments, especially related to the question 

of whether or whether not their expectations had been fulfilled. “I thought they would try to make 

this fun”, “it was extremely boring, tiring and difficult maths” and “I thought we would learn more. 

The tasks were just like a typical maths tests”, serve as examples of such comments. Despite that 43 

out of 44 pupils in 2015 expressed themselves positively about learning mathematics at a working 

place, about half of the pupils responded in negative terms related to the question about the fulfilment 

of expectations, in line with the previous quotations. These comments mainly implied that a negative 

experience with the content of the tasks. Even though the tasks were designed with the purpose of 

being relevant, in terms of creating a link between school mathematics and the enterprise, the pupils 

did not seem to perceive this the same way. Dalby (2014) emphasizes that even though a realistic 



context is provided, the impact on pupils can vary since “the context itself is often no more than a 

metaphor to illustrate an aspect of pure mathematics rather than authentic use of a scenario as a source 

of mathematics” (p. 90). In the aftermath of MathEUS in 2015, we saw that several of the student-

designed tasks could represent examples of contextualized tasks, but with little authenticity.  

 

Excerpt 1: Excerpt from task, 2015 

The task above serves as an example of a task where the context was reduced to serve only as a 

metaphor, rather than an authentic use of Returkraft as a source of mathematics.   

When revising MathEUS 2015, we wanted to improve especially on two aspects: 1) Make the content 

of the tasks more relevant and authentic for the pupils and 2) Engage the involved pupils and student 

teachers earlier in the process, so that the visit to Returkraft became something more than just an 

isolated event. In this process, we build on DeWitt and Storksdieck’s (2008) “boarder visions on 

field-trips” (p. 181) and their research-based conclusions that field trips and out-of-school context 

ought to be embedded in teaching, more holistically. Even though their focus was on natural sciences, 

we found these ideas to be relevant for mathematics and in the 2016 edition of MathEUS we included 

a pre-project (as described in the “methods” section). Due to the pre-project, the student teachers 

designed tasks were also used earlier in the process. 

From the web-based questionnaires, illustrated in figure 1, there are some indications that pupils’ 

experiences in general were more positive in 2016 compared to 2015. Interviews with some of the 

pupils, also involved statements that could be interpreted as having to do with relevance and 

authenticity. 

Interviewer: Earlier in the interview, you said something about “mathematics in practice”…was 

this something which characterized the tasks at Returkraft, or did you feel that you 

just as well could have done this at school? 

 […] 

Pupil: Since we had been to Returkraft and the content was about Returkraft, and the 

numbers used were the same as we had learned about…the numbers weren’t just 

made up, in a way. 

This pupil emphasizes the experience of working with “real” tasks, in terms of pointing to a close 

connection between the context and the content of the tasks. Since the student teachers had followed 

their pre-project and had access to all their results and data, they were also able to build on pupils’ 

own data from the pre-project when designing the tasks, and in this case provided a more authentic 

context. 



       

Excerpt 2: Excerpt from task, 2016 

By using numbers from the pupils own pre-project, this task illustrates how one student teacher 

applied these data to discuss statistical issues. Based on observations from the pupils engaging with 

this task, we see this as an example of successfully creating a link between the context and the 

mathematics involved. Pupils judged this as “relevant” since an authentic connection between the 

mathematics involved and the context is provided in terms of linking the task to something familiar, 

namely their pre-project. 

From this relatively brief analysis, we suggest that pupils’ experience of relevance, and the 

authenticity of tasks provided in an out-of-school context not only depends on the tasks themselves, 

but also on the pupils’ possibilities to relate to the content. For the context to “reflect the way 

knowledge and skills will be used in real life” (Gulikers et al., 2015, p. 509) a preparatory phase, were 

pupils are offered the possibility to become familiar with the context seemed to be advantageous. 

Conclusions 

Providing out-of-school contexts like excursions and field trips are, unfortunately, often being carried 

out as isolated, stand-alone events (DeWitt & Storksdieck, 2008; Remmen & Frøyland, 2014). There 

are few reasons to believe that this is different in mathematics. Our findings tend to show that if 

mathematics in out-of-school contexts is treated like stand-alone activities, the outcome when it 

comes to authenticity and pupils’ experiences of relevance is limited. Pupils’ experience of relevance 

changed in a positive way when a preparatory phase in terms of a pre-project was implemented. 

Nyabanyaba (1999) argues that pupils and teachers’ conceptions of relevance often differ. In line with 

this, we suggest that even though mathematics in out-of-school contexts through excursions days at 

enterprises as stand-alone activities is carried out with good intentions from teachers, such activities 

ought to be more substantiated in teaching. Authenticity entails reflection on knowledge and how it 

could be used in real life (Gulikers et al. 2015) and for such a reflection to happen, Meaney and Lange 

(2013) point to the necessity of being able to make transitions between these different contexts. From 

our experience a pre-project substantiates the out-of-school context and better prepare the pupils for 

the subsequent visit to the enterprise. Hence, the connection between the mathematical content and 

the context provided are perceived by pupils as more relevant. “Making connections between 

mathematics and life that appear authentic and convincing for students” (Dalby, 2014, p. 91) serves 

as core criteria in the question of relevance and learning, also when it comes to the subject of 

mathematics.  



Implications and possibilities 

From a societal and political perspective, this paper addresses issues concerning the contextual nature 

of mathematics teaching and learning. One aspect is the pupils’ outcome of experiencing mathematics 

in an out-of-school setting, but in a boarder perspective, MathEUS also contributes to strengthen the 

bond between school and industry, which according to Sjaastad (2013), is “too weak” (p. 16).   

The results and reflections in the wake of the two previous editions of MathEUS serve as a basis for 

further developing our collaboration strategies. We found that by involving the enterprise at an early 

stage, pupils to a larger extent were able to make connections between the context and the 

mathematical content. The pre-project also entailed interdisciplinary activities, where mathematics 

became an important contributor and ICT was applied by the pupils as a crucial tool in the process of 

visualizing their findings. The interplay between mathematics and natural sciences in particular 

played a significant role in the pupils’ activities, both during the pre-project and at their visiting day 

at Returkraft. The topic concerning recycling of garbage also links our project to local and global 

environmental issues. People’s attitudes towards recycling of garbage, were a valuable outcome also 

for the enterprise, as Returkraft aims to reach out to the public with messages concerning the 

importance of such issues. These are all, from our point of view, valuable synergistic effects worth 

looking deeper into. Task-design is a topic of research on its own, and the process of developing tasks 

and activities within this particular context could also be worth mentioning as potential, forthcoming 

research.     
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“No, it just didn’t work”: A teacher‘s reflections on all-attainment 

teaching 
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Setting – the practice by which learners are allocated to different classes on the basis of perceived 

ability – is a social justice issue. Despite overwhelming evidence that, overall, setting is 

educationally harmful and in discriminatory ways, the practice is almost universal in English 

secondary mathematics classrooms. To gain insight into this apparent contradiction, we offer the 

story of a single teacher‘s ultimate rejection of all-attainment teaching. 
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Introduction 

In this paper we begin by arguing that setting by ‘ability’ is a social justice issue. Despite 

overwhelming evidence that, overall, setting is educationally harmful and in discriminatory ways, 

the practice is almost universal in English secondary mathematics classrooms. In order to 

understand this apparent contradiction, we offer the story of a single teacher who, early in his 

teaching career, embraced all-attainment teaching1; continued to think in fixed ability ways and 

therefore supposed that there should be differential teaching for different levels of ‘ability’; found 

himself overwhelmed by such a task; and finally abandoned all-attainment teaching because “it just 

didn’t work”. We conclude with a brief discussion. 

Setting and ‘ability’ thinking2 

English education in terms of both policy and practice currently takes for granted hereditarian 

assumptions; and a discourse of ability is used very widely to place children in sets for mathematics 

in secondary schools (Wilkinson & Penney, 2014). The belief in fixed amounts of ‘ability’ and the 

consequent grouping of children according to how much they are perceived to ‘have’ is taken as 

natural and common sense (Francis et al., 2016). The idea that ability is a given and that only some 

students can be high achievers discourages many students (Boaler, 2005) and communicates and 

reinforces damaging fixed mindset beliefs (Boaler, 2013). 

In almost all instances the methods used to allocate children to sets are claimed to be objective and 

based solely on their prior performance. However, in practice, in English secondary schools prior 

attainment is found to be a relatively poor predictor of set. A wide range of social factors come into 

play which privileges those with greater cultural power and systematically disadvantage others 

                                                 

1 We use the vocabulary of “all attainment” rather than the more common “mixed ability” to avoid endorsing so-called 

“ability thinking” (see, for example, Boylan & Povey, 2014). 

2 In this section, we draw substantially on Jackson (2017).  



(Muijs & Dunne, 2010; Bartholomew, 2003; Hallam & Parsons, 2013; Ireson, Clark, & Hallam, 

2002; Macqueen, 2013; Wilkinson & Penney, 2014). 

Teachers’ expectations of children in lower sets tend to be low and these pupils are usually offered a 

restricted, narrow and instrumental curriculum which further inhibits performance. They are 

constructed as poorly motivated, badly behaved and incapable of independent working and 

independent thought and therefore in need of repetitive tasks which require lots of practice (De 

Geest & Watson, 2004). In contrast, those in the top set are constructed as well motivated, 

hardworking, well behaved and capable of independent working and independent thought and are 

given a more demanding curriculum and much richer opportunities to succeed (Bartholomew, 

2003). Thus setting and ability thinking construct that to which they claim to be responding. 

While ‘ability’ grouping has been shown to have little consistent effect on attainment (Francis et al., 

2016), it is known that it has detrimental effects in terms of personal and social outcomes (Nunes, 

Bryant, Sylva, & Barros, 2009). The effect of setting continues into adulthood resulting in more 

limited horizons and stunting life opportunities (Boaler, 2005). Thus, as Slavin (1990) argues, 

‘ability’ grouping can be seen as an affront to basic ideas of democracy. Involved here are issues of 

power and culture: ‘ability’ grouping is not just a neutral organisational practice. Oakes, Wells, 

Jones, and Datnow (1997) maintain that common sense conceptions of ability and intelligence are at 

the heart of schooling and, in regimes where neoliberalism holds sway, the ability discourse is part 

of an ideological battle defining children from lower social and economic status groups as 

expendable (Oakes, 2005). Further, the performativity regimes (Ball, 2003; Povey, Adams, & 

Everley, 2016) imposed on schooling have created a climate whereby failing to conform to the 

common sense view of the world carries huge risks to schools and to individual teachers; and 

grouping children by ‘ability’ as measured through some form of assessment, endorsed by policy 

makers, is seen as risk free. 

A technicist approach to reform will therefore not work as it assumes resistance to changing 

‘ability’ grouping is simply a rational choice by relatively free agents. We offer here a story of a 

single teacher, Jim, and his changing relationship to setting. (Pseudonyms are used throughout and 

some details have been changed to protect participant anonymity.) Before doing so, we consider 

very briefly the role of storying in the construction of knowledge. 

Telling stories 

We are telling this story about Jim, much of it in his own words, because we believe that stories 

help us understand more about the world. There is an “unavoidable moral urgency” (Clough, 2002) 

in stories which fits our purpose in this paper. Jerome Bruner (1986) wrote about two different 

kinds of knowledge: paradigmatic knowledge and narrative knowledge. Whilst the former is 

expressed through logical propositions, the latter is expressed through stories. He argues that it is 

characteristically human to think in stories and that they provide us with a way to make sense of 

experience. Stories imply, and attempt to lay bare, intentional states, that is, to offer insights into 

why we do what we do. 

In constructing this story, it is, of course, our categories, concepts, constructs and so on which frame 

and shape the work. However, we have tried to stay as faithful as we can to Jim’s own 

constructions, accounts and perspectives as far as we have been able to elicit and hear them. We 



have also tried to offer sufficient detail to allow others to test out the trustworthiness or otherwise of 

the account and to judge, for example, whether the intentions suggested make sense. 

Jim’s story - or our story about Jim 

Jim is a highly committed, very hard working teacher who has the interests of his students very 

much in the forefront of his thinking. On a personal level, he is open and his stance towards visitors 

to his school and department is always one of welcome. He has kept in touch with the university 

where he completed his initial teacher education and continues to work frequently and supportively 

with its current students. He agreed to be interviewed (with a close colleague). The interviews were 

recorded and transcribed. Working with the transcripts in variety of ways, we began to be compelled 

by Jim’s story as honest, contradictory and telling about teachers’ relationships to the issues of 

setting; we tell a version of this story below. 

Jim’s final teaching practice at McVee High had not been a happy one. He had clear ideas about 

how mathematics should be taught and wanted to create his own lessons and his own resources. He 

wanted the scope to try out different and novel approaches and to avoid the routine use of an 

indifferent textbook. 

I don’t know what I was expecting. I didn’t really enjoy working at that school at all and I was 

really glad to leave. The head of department didn’t like me. He didn’t like my teaching … He’d 

get a face on if I wanted to move the tables around, even just move them anywhere. He just 

wanted them where they were and if I didn’t want to use a textbook he would have a face on 

about that as well. Like “Why are you not using that page?” – “Because I’ve made this instead”. 

He didn’t like that. It was Lock Maths and all you did was you started on page one and the 

scheme of work was just … go through the book. And if you didn’t go through the book, then 

you were an idiot apparently. But that was how it was and it was just a waste … I didn’t practice 

being a teacher at all. You’d practise administering “Do page 12.” 

Part of the way through Jim’s initial teacher education course, his tutor, Barry, left in order to take 

up the post of head of mathematics at Broadbent School. Broadbent serves a large, white working 

class, social housing estate in an ex-industrial town with overall attainment below the national 

average. The mathematics department had had a chequered past and when Barry was appointed 

there were vacancies in the department. Barry and Jim kept in touch and Barry approached Jim to 

ask him to come and have a look round the school with a view to starting his teaching career there. 

After the visit Jim was offered a post at Broadbent School as a newly qualified teacher and accepted 

the offer. 

I didn’t want to work in a posh school. I didn’t want to do that … Like Our Lady’s where the 

kids are all little robots. I didn’t want to work there. I wanted to work in a bit more challenging 

area and I already knew Barry as well … I’d always said that I would start my career in a more 

challenging school and probably end in an easier school because I just wouldn’t have the 

energy… 

Broadbent offered Jim six week’s work in the second half of the summer term preceding his 

permanent appointment in September so he could get to know the school and the pupils a little. It is 

clear that Jim was already confident about his mathematics teaching and keen to begin practising. 



It was intended I think that we were supposed to come and like just have a look about and 

observe and stuff, but I couldn’t do that in the end because I was spending most of my time with 

a woman called Marion, who’d got a full-time maths timetable but she had no real maths 

qualification at all. She was an art teacher and I was just watching her teach all these lessons and 

just thought “I can’t really let her do it because she’s doing it wrong.”  So I just ended up 

teaching for six weeks … I just said “I’ll do them for you and you can go and do something else.” 

… She couldn’t teach them. She was just teaching them drawing. They were drawing things and 

she would let them sit there and do nothing while she would like paint portraits of them and I 

was like no, we can’t be having that. 

Jim had wanted to be a secondary mathematics teacher for longer than he could remember and he 

looked inward to his own thoughts and backwards to his own experiences as a school pupil to frame 

and understand his practice. For him, Broadbent offered the freedom to develop in his own way as a 

practitioner, a freedom he highly valued, and one which was “quite liberating actually”. 

I didn’t enjoy going to university at all. I didn’t even want to do anything there. I just hated the 

whole experience. And I didn’t like going to college, didn’t like doing my [school exams]. I just 

wanted to be a maths teacher and I just wanted to get there, so it was quite nice to get there and 

have your own classroom and then actually start teaching. I’d wanted to be a maths teacher since 

I was [a child]. So everything just seemed like in the way of trying to get there … 

Thus, Jim did not respond to and make use of the mathematics education approaches and 

understandings offered to him by his university tutors during his initial teacher education. At a 

slightly later date, when offered a professional development opportunity linked to a local university, 

he asserted with confidence that he had “never read a book”. This seemed important to him in 

constructing his way of describing himself in the world. 

He had a complex and contradictory relationship to his school experiences of mathematics. 

All my maths teachers had been rubbish. Every last one … I wasn’t really taught maths because I 

always followed the … [resource based] scheme of work … never did a teacher really stand at 

the front and say “This is how you do this.” 

Despite this, Jim had kept all his mathematics books from school “because I knew I was going to be 

a teacher” and he remembered working together as a whole class on investigations, material which 

he was continuing to use at Broadbent. Not only that, at school he had “just really enjoyed maths 

and always have”. In the context of this paper, two things stand out about Jim’s account of his 

school experiences. First, he had been taught in all-attainment groups using an individualised 

scheme and, despite his assertion that all his teachers were “rubbish”, he said that “everybody did 

well because you had appropriate tasks”. This “completely differentiated” approach seemed 

fundamentally to inform his thinking about all-attainment teaching. Second, he spoke about himself 

as having a fixed level of mathematical ability and he linked his understanding of his own 

competence as a mathematician entirely to external markers. 



I’ve never been like really good at it, but I just really enjoy doing it. I mean I only got a level 5 in 

my primary school SATs and I got a level 7 in my secondary school SATs and I got a B at 

GCSE. I got an E at A Level … 3 

This was echoed in the way Jim talked about the Broadbent pupils. Throughout the interview, the 

pupils were referred to by Jim in a variety of ways all of which seemed predicated on fixed ability 

thinking: “lower foundation type students”; “the very brightest students”; “ten kids that should 

definitely do high maths”; “their [SES] data … regardless of social context that is the grade they 

should get based on [results from primary school] … regardless of whether their mum’s on drugs or 

they’re on free school meals”. 

Coinciding with Jim’s arrival at Broadbent, Barry introduced all-attainment teaching for the first 

year classes. 

We all knew what Barry was about … it’s not like he kind of hides it under a bushel. He would 

say in meetings what was his kind of pedagogy and what he wanted to achieve. 

But this claim seems to have related to using a more open and problem-solving approach rather than 

providing any sort of challenge to fixed ability thinking. Barry prepared packs of materials which 

were full of ideas that offered a more investigatory approach than the one with which the teachers 

were familiar organised around broad topics. When asked for an example, Jim said 

… the first half term … you would do a unit on triangles and you’d do a unit on cubes … and 

you could do them in whichever order you wanted to. [But] you didn’t have to use any of it. You 

could use none of it, some of it, all of it, your own stuff … Some of the resources I didn’t like so 

I didn’t use them … [I used] a combination. We had textbooks, so sometimes I’d use those, 

sometimes I’d make my own and sometimes they’d do it off the board and sometimes … just 

find something on the internet and re-purpose something if you like. 

Towards the end of the year, Barry asked his department if they would like to continue working in 

this way with the pupils during the following school year, thus extending his all-attainment project 

into the first two years of the school. 

Did we want to continue the kind of thematic approach? Did we want to continue the mixed 

ability approach? And we all said yes. We enjoyed it. We enjoyed doing it, so we said yeah. 

However, for Jim, teaching all-attainment groups was synonymous with providing differentiated 

materials. On occasions he was able to make this work effectively for him and his class: 

If you really wanted to differentiate, particularly when we used to teach mixed ability and we 

were doing fractions … I just had the [levels of difficulty] on the board and they would just pick 

whichever one they wanted … most people just try and go for the one that’s quite challenging. 

Some of them knew that there was no point in trying the level 8 one because they were a level 4 

                                                 

3 These are all public examinations in the English school system. The curriculum and the associated SATs were 

structured into levels. Jim’s results are mostly above average but not excellent. The final school leaving mathematics 

grade is lower than average for those who take the examination. 



kid or something, but they didn’t go for the easy option. They went for an appropriate level one 

and I think they quite enjoyed it. They liked it … and I think they liked having the choice as well. 

But overall the task of trying to provide differentiated materials across the attainment range, rather 

than adopting a fundamental pedagogy for attainment for all, proved overwhelming and undoable. 

My experience of [the second year groups] was at that point the difference between the highest 

and the lowest had increased dramatically and it was becoming a strain … They’d all made 

progress, but the higher ones had made more progress and so I was having to differentiate more 

and then do the same for my new first years … it was becoming very fraught and time consuming 

and I wasn’t doing it as good as I could have… No, I wasn’t teaching as well as I should have 

been teaching because I was spending too much time doing too much differentiation … I just 

couldn’t do it effectively … there was just so much planning and I was kind of making do I think. 

Jim did not give up easily and shortly afterwards when Barry had moved on and Jim was given 

responsibility for the department, he even extended the all-attainment teaching to a third year. 

However, and unsurprisingly, this did not last. 

The kids bottomed out, teachers were over stressed, over worked. I don’t understand why I did it 

in the first place … I mean I can look back now and think “You stupid idiot!” I obviously already 

knew that it was really difficult to differentiate across two different year groups and it was a lot 

of planning, so I don’t understand why I did it. 

It is interesting to follow how Jim justified and explained the policy reversal when looking back 

several years later. The initial cohort of students who had had two years of all-attainment teaching – 

and experienced all the initial commitment and enthusiasm – had done remarkably well in both the 

high stakes, external tests they took, one at the end of their third year and one at the end of their 

fifth. The following year group was a much more challenging cohort and were problematic 

throughout the school. But the difficulties Jim and the department experienced were not seen in this 

light. Rather, they became the basis for a rejection of an all-attainment approach. And we see again 

the role that all-attainment teaching as individual differentiation played in making life impossible. 

It just didn’t work. The kids weren’t getting the grades or the marks or the levels, whatever, and 

behaviour was awful. No, it just didn’t work ... you could physically see that there was more 

stress on teachers’ faces because not only were you having to deal with challenging behaviour, 

but you were trying to deal with trying to get X to get a level 8 and Y to try and count up to 5 in 

the same class and it was too hard. It was too hard and it didn’t work. It failed. Everybody was 

more than happy [to go back to setting] … The year after we taught just setted by ability and they 

got much higher results. 

Jim is now firmly of the opinion that, at least in a school like Broadbent, there is no place for all-

attainment teaching: 

I would just set them. I’m definitely now not a mixed ability fan in a challenging school. It’s just 

too much. 



Discussion 

Our aims in this paper are modest. We do not expect stories like this to have any traction with 

policy makers and we very much welcome alternative approaches that may have the “requisite 

symbolic power” (Francis et al., 2016, p. 13) to do so. Here our purposes are rather different. Our 

intention has been to tell a story of a single teacher which illustrates how “powerful discursive 

productions of the ‘obvious’, ‘real’, and ‘natural’” (Francis et al., 2016, p. 10) work in practice to 

shape this teacher’s thinking about ability. Jim is striving to make sense within this discursive 

framework. He conceives the pupils as simply being such and such a level person in mathematics 

and so inherently needing a differentiated approach to learning: the pupil’s essence determines 

within fairly narrow limits what she or he can do. With such a view, offering a more open 

curriculum in which the unpredictable is expected makes no sense and the task of all attainment 

teaching becomes simply unmanageable: Jim is led to validate practices with respect to pupil 

grouping that reinforce inequalities despite the honourable intentions to do otherwise. 

If fixed hierarchies exist - of who can understand and achieve what in mathematics - and there is a 

predicted and predictable limit to what can be expected from any particular individual, as current 

policy technologies insist, then the possibility of creating a pedagogy where all can succeed, and 

where success is attributed to the learning community rather than to individuals, is precluded: 

the production of hierarchies of ability via a discourse of ‘natural order’ acts as a technology of 

privilege, and renders alternative accounts (including research evidence) unintelligible. (Francis 

et al., 2016, p. 12) 

Knowledge, discursive practices and both deep and espoused beliefs all interact in complex and 

layered ways in shaping how we think and what we do. A two-fold argument follows from Jim’s 

story. First, changing practice alone is unlikely to engender ways of being in the world that 

challenge established ‘natural’ hierarchies. Second, there is a need for research-informed, counter-

hegemonic knowledge and understandings to be foregrounded, alongside curriculum innovation and 

the re-imagining of pedagogy, if the dominant and unjust practices of grouping by ‘ability’ are to be 

effectively countered in the countries in which they currently prevail. 
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This paper reports on a study exploring inclusion in mathematics education from a student 

perspective. The theoretical and analytical approach in the study is discourse analysis. The results 

presented in this paper are based on 8 interviews with students from lower secondary school and 4 

observations of mathematics lessons. The teachers describe the students as students in special needs 

in mathematics (SEM). The results show that, from a student perspective, the teaching and learning 

of mathematics in an inclusive classroom is complex and diverse. At the same time, as these 

students are similar in that they are SEM-students, they are different when it comes to how they 

themselves want to be included in the mathematics. These differences regard both the organization 

and the content. Thus, diversity among students demands diversity in the mathematics education.  

Keywords: Inclusion, diversity, equality, access to mathematics. 

Introduction 

A growing body of research in mathematics education is focusing on access and equity. This can be 

seen in some of the research books that have been published in recent years, for instance Diversity 

in mathematics education: Towards inclusive practices (Bishop, Tan & Barkatsas, 2015), Towards 

equity in mathematics education (Forgasz & Rivera, 2012), and Mathematical literacy: Developing 

identities of inclusion (Solomon, 2009). In addition to this, at school-level, the issue of the need to 

meet every student’s needs in the mathematics classroom according to the preconditions and needs 

of each and every one has been recognized (Roos, 2015). This task, to be able to meet all students’ 

needs and create opportunities to learn, is not at all an easy task. Some teachers even say that it is 

impossible to meet every student’s needs in an inclusive classroom because of the diversity. On the 

other hand, one could look upon teaching diversity as Frederickson and Cline (2009) do, claiming 

that teaching is interesting because of the diversity among students, but it is only possible because 

of the similarities among students. This implies that even if there is diversity among students in our 

mathematics classroom the teaching does not have to be different for each and every student, but by 

being aware of the diversity as a teacher you can develop a sensitivity towards equality in the 

teaching. In that sense, you put the students’ needs at the forefront in the explanations and tasks 

given.  

In mathematics education one of the motivations to strive for inclusion and access to mathematics 

for all is that it is a human right to know mathematics to achieve participation in society 

(D’Ambrosio, 2010). Most often inclusion is discussed and researched from this ideological 

perspective even though it is often used as a method in schools. Hence, there is a need for studies 

investigating inclusion in practice, which this research aims at. This leads to the research questions 

of this paper, which are: how do students experience an inclusive mathematics classroom and when 

do they express having optimal opportunities to learn mathematics?  



Diversity and Inclusion 

What does diversity and inclusion in mathematics mean? It seems that when scholars talk about 

diversity in mathematics, they almost always speak of inclusion in the same breath (e.g., Bishop, 

Tan & Barkatsas, 2015), indicating the two notions are closely related. When investigating further, 

inclusion, if used as a tool in classrooms, can be seen as a way of meeting diversity, supporting all 

learners within a local community (Booth, Nes and Strømstad, 2004). Diversity on the other hand is 

not often defined, but used together with gender and culture (e.g., Forgasz & Rivera, 2012). It is 

also used together with specific subject area in mathematics and students’ performances within this 

area (e.g., Hopkins & de Villiers, 2015); hence diversity is here connected to some kind of ability in 

mathematics. Accordingly, diversity can be connected to different things. In this paper diversity is 

connected to inclusion on the level of optimising students’ performance in mathematics.  

An inclusive classroom is in this paper defined as a classroom that is not grouped by ability but 

instead as a classroom in which students struggling with mathematics as well as students in need of 

more challenges in mathematics are taught working with similar tasks and the same mathematical 

content. Hence, diversity from an ability perspective is prioritized. This puts demands on the 

teacher, being aware of the diversity (Solomon, 2009), to have equitable instructional quality. This 

quality can be seen in the teachers’ mathematical knowledge and their preparation for the teaching 

of mathematics as well as their beliefs about and skills in teaching diverse students (Allexsaht-

Snider & Hart, 2001). So, in having equitable instructional quality, students’ opportunities to learn 

mathematics might increase. But according to Rousseau and Powell (2005), there are factors that 

can work as barriers for increased opportunities to learn mathematics: large class sizes, high-stake-

standardized tests, absenteeism and mobility of students and a lack of a high-quality curriculum. All 

these issues arise from a teaching or organisational perspective. Hence, it becomes important to also 

listen to the students’ voices, enabling teachers to understand processes of exclusion and inclusion 

in the mathematics classroom like Solomon (2009) highlights. 

One important issue arising when talking about the ability of individuals is labelling. There are 

many teachers that claim that in order to be able to meet the diversity of students they have to 

“label” them in some way. Though, Askew (2015) claims that meeting diversity does not imply that 

we have to label the students, because labelling might perpetuate exclusion instead of promoting 

inclusion. One way to meet diversity and create an inclusive classroom is to support cooperative 

learning (Askew, 2015) by building a sense of belonging and safety where diversity is valued (Reid 

& Valle, 2004). This implies that the teacher and the pedagogy the teacher uses in the classroom are 

really important to create this learning community. Then, as Liasidou (2012) points out, pedagogy is 

an important dimension of inclusion. All this implies that diversity and inclusion are intertwined, 

and if striving for inclusion one has to respect diversity (Booth, Nes & Strømstad, 2004). 

Accordingly, in this study the objective is to investigate diverse students’ experience of an inclusive 

mathematics classroom. 

The current study 

The focus in this research is on students in special educational needs in mathematics (SEM-

students). Special educational needs are here defined as a need of another teaching then the regular 

mathematics teaching. This is not unproblematic, since it signals a labelling of students in the 



research. To be vigilant in terms of that issue, the teachers in the study have made the selection of 

students. In this research, inclusion in mathematics is investigated from two different SEM-

directions: students struggling with mathematics, and students in need of more challenges in 

mathematics. This kind of selection is information-oriented and used to “obtain information on 

unusual cases which can be especially problematic or especially good in a more closely defined 

sense” (Flyvbjerg, 2006, p. 230).   

An ethnographic approach is used, meaning the researcher participates directly in the social setting 

collecting data without meaning being imposed on the participants (Brewer, 2004). The 

ethnographic approach also offers in-depth study (Hammersley & Atkinson, 2007), which can be 

used to follow a process in a particular case, such as to be included in mathematics teaching and 

learning. An ethnographic study usually investigates people’s actions and accounts in an everyday 

context. In this study, a Swedish lower secondary school (students are 13 to 16 years old) that sets 

out to work inclusively is observed. That is, the school strives to have all students in the classroom, 

even the students assumed to be in special educational need of any kind. To be able to meet all 

students’ needs, they strive to have at least two teachers in the classroom for each lesson. The 

school is an urban school with about 500 students, located in the outskirts of the city. 

One grade 7 and one grade 8 class were observed. The mathematics teachers in a discussion with the 

researcher selected the classes and the students. Grade 7 was selected based on the criteria that 

working inclusively might be new for them. Grade 8 was selected since they have been working 

inclusively for a year. Students from grade 8 and grade 7 that struggled with mathematics as well as 

students that needed more challenges were chosen and interviewed several times. Ethical 

considerations were made both before and during the process. Both the students and their guardians 

gave written consent. As a researcher, I reflected on what ways I affected the students and the 

research. Another aspect was that the students in the classes would be able to handle a researcher in 

the classroom.  

Methodology 

The approach used in this research is Discourse Analysis (DA) and the data consists of observations 

from two classes.  

Discourse Analysis 

Discourse Analysis is chosen as approach because of the power of DA to focus on language in 

interaction and language above or beyond the sentences (Gee, 2014a) and its explanatory power of 

social contexts and meaning making. The focus of DA is on language and text, what we actually can 

see, hear and read. In this study, ethnography was applied together with DA in order to make 

students’ expressions of mathematics teaching and learning visible. DA and the ethnographic 

approach complement each other in this research; DA provides theoretical and analytical notions, 

while ethnography provides a way to conduct research.  

In this paper, DA is used from the perspective of Gee (2014a, 2014b), since this focus is descriptive 

and I intend to describe how students want to participate in an inclusive mathematics classroom to 

be able to have optimal opportunities to learn. From Gee’s perspective, DA covers all forms of 

interaction, both spoken and written, and he provides a toolkit for analysing this interaction. These 



tools put focus on the communication and ask questions of the text. Hence, in this research, the 

toolkit is used as a methodological tool.  

Gee (2014a, 2014b) also provides theoretical notions, such as big and small discourses (henceforth 

referred to as Discourse with capital D and discourse with lowercase d), where Discourse is looking 

at a wider context, social and political. Discourses are always embedded in many various social 

institutions at the same time, involving various sorts of properties and objects. For example, a 

Discourse can be “assessment in mathematics.” Discourses are always language plus “other stuff” 

(Gee, 2014a, p. 52). This other stuff compromises actions, interactions, values, beliefs, symbols, 

objects, tools and places. Small d discourse is focused on language in use, what stretches of 

languages we can see in the conversations or stories we investigate (Gee, 2014a). In this research, 

big and small discourses will be the theoretical perspective. Hence, DA is used both as a theory and 

a tool and provides a set of methodological and theoretical lenses. 

Procedure 

During one semester (January to June 2016) I observed the two classes at the chosen lower 

secondary school. I was present at least one mathematics lesson each week for each class doing 

observations. After observations, I conducted interviews with the selected students. Since I had both 

ethical and organisational issues to take into consideration, the interviews were done when the 

students wanted to and had time, and the teachers allowed it (they did not want me to interview 

them when they had their ordinary lessons). The interviews took place in a room next to the 

classroom when the students had “class time” once a week. The interviews were based on the close 

in time observations; hence, they were situated and narrative. I asked questions about situations and 

tasks and showed photos of tasks on the blackboard. We also looked at tasks in their textbooks. The 

first and the last interview were based on a questionnaire about their mathematics education.  

Data analysis 

In this paper, eight interviews and four observations have been used in the analysis, two interviews 

with a student in grade 7 named Billy and two interviews each with three students in grade 8, 

Edward, Ronaldo and Jeff. The teachers perceive Ronaldo and Jeff as students in struggle with 

mathematics and Billy and Edward as students in need of more challenges in mathematics. In the 

interviews the students got questions about what they wanted from the teaching in mathematics, 

how they learned mathematics best and also got questions arising from the previous mathematics 

lesson, which were the four observed lessons. The observations were used as contextualisation for 

the interviews as well as for supporting identification of big Discourses. When analysing the data by 

asking questions to the text, both small and big discourses appeared. That is, while examining the 

text, I used Gee’s toolkit by asking specific questions. Depending on the type of text, different 

questions were asked. For example, when using the subject tool, I asked, “What are they talking 

about here, and why?” When using the deictic tool, I asked, “What is pointed out in the text, and 

what is the listener assumed to already know?” When applying the fill-in tool, I asked, “What needs 

to be filled in to achieve clarity? What is not being said overtly, but is assumed to be known or 

inferable?” Then, stretches of language(s) appeared when finding answers to the questions, which 

signalled for small discourses. When adding analysis of the data from the observations, such as text 

on the blackboard and the actions of the teachers, big Discourses could be identified.  



Result and analysis 

In the analysed data, three themes, or using Gee’s (2014b) terminology, three “stretches of 

languages” emerged. The first theme was about how students wanted to participate from an 

organisational perspective. The second theme was about tasks they did or did not like and the third 

theme was how the student wants a mathematics lesson to be like for an optimal learning 

opportunity. 

Organisational aspects 

In the interviews, stretches of languages about organisational aspects were showing. In the first 

interview Ronaldo says, “We are starting to go outside [the classroom] into small groups, like we 

did not do before, and it feels much better now. I am concentrating a lot better [in a small group] 

and like that.” He also explained why it felt better to be in a small group: “It feels better actually, 

you get peace and quiet and then… like me… if they talk a little there [inside the classroom] I lose 

concentration right away and listen to what they [the other students] are saying; when it’s smaller 

groups I am able to concentrate better and learn more.” In Jeff’s first interview he also highlights the 

possibility of being able to go outside the classroom: “… if it’s a test or something I would rather be 

outside [the classroom] since I am more focused then.” Edward also talks about the organisation, 

but within the classroom when he is discussing cooperation. “It is not very easy, since I have often 

come a long way, so I always explain to them, it never gets to a discussion for me… I mean, with 

somebody else, that we discuss and so on […].” When the researcher asks Edward if it is hard to 

discuss with everybody he says, “It depends on whom I am sitting next to.” He also expresses that 

he does not sit next to someone who can challenge him, and says that he would like to do that more. 

“I think I would get more out of it.”  

Tasks 

Other stretches of languages showed talk about tasks. Billy explicitly talks about his need of more 

challenging tasks in the classroom. “I like those [tasks] which are harder, those that challenge you.” 

“[I would like to have] more challenges […] at the lessons.” He explicitly talks about problem 

solving tasks as something challenging: “I like it when we have problem solving. You get to think 

for yourself and then talk to friends [about it].” Ronaldo also talks about problem solving but in a 

rather different way. “I hate problem solving tasks more than anything! I just cannot do it.” He also 

describes why he does not like it: “It is hard with reading comprehension and like that, and to 

connect it with like the task and the text, it gets too much. It is often that kind of task I fail at on the 

tests.” Jeff talks about tasks that he likes. These are tasks he knows “how to calculate and tasks that 

I understand.” He mentions geometry tasks as tasks he likes. The type of tasks Edward likes the 

most is Algebra tasks. “To be able to find out all the variables, it is fun to figure out what it is.” 

Here we can notice a difference to how Ronaldo thinks about algebra tasks when he states that he 

thinks that it is hard with “like all this with X and Y and everything … it is terrible.”  

A good mathematics lesson 

A third stretch of language is the talk about what the students want from a mathematics lesson in 

order to be able to learn mathematics the best. Jeff states that what is most important for him in a 

mathematics lesson is “if they [the mathematics teachers] explain good … and thorough, if they 

write step by step.” He also says if he knows what to do it “feels good, I know what to do and I get 



on with it right away.” Meaning, for him the thoroughness and structure in the instructions is 

important. Ronaldo likes to have a lesson when you “first work a little [by yourself] and then some 

‘going through’1 and then you work a little by yourself and then you do some group work with those 

you sit with […]. It is more fun when you are in a group and cooperate.” Edward on the other hand 

thinks that it is hard to cooperate and “extremely hard to get something from the others in the class.” 

Instead, he like lessons “with variation so that you don’t get tired.” He also likes “a going through 

or something like that, gladly a game or something. You should [also] count a little by yourself I 

think.” Billy thinks that the lessons are best “when you get to explain to others [students] how you 

have done it.” He likes when “we have like problem solving.” He also stresses that he wants “more 

challenges at the lessons.”  

Identified discourses and Discourse 

The three themes appearing in the data – organisational aspects, tasks and a good mathematics 

lesson – can be interpreted as small discourses (Gee, 2014a) in the students’ talk of their 

mathematics education. There are aspects in this talk from the different students that overlap, such 

as wanting to be in a small group sometimes, which both Jeff and Ronaldo stressed. Another aspect 

that overlaps is collaboration. Both Billy and Ronaldo highlighted collaboration, but Edward on the 

other hand felt that his peers did not challenge him in the discussions, but he said that he thought he 

would get more out of it (meaning the discussions) if he sat by a peer that had the possibility to 

challenge him. There are aspects that diverge, such as what type of task they want to have. Billy 

says he wants more problem solving and Ronaldo “hates” problem solving. Edward likes algebra 

tasks and Jeff likes geometry; hence there was no consensus on types of tasks or mathematical 

content they prefer. Another aspect that appears in the students’ talk was the organisation of the 

lesson. To attend a structured lesson, with both explanations by the teacher and work by yourself or 

together with others seemed to fit them all. Jeff is more explicit about his wishes for structured 

lessons, indicating a need of structure to explain what to do. Even though all these small discourses 

contain diversities, they together indicate a big Discourse. When looking at the observation notes 

from the lessons you can identify support to this big Discourse, in terms of talking about tasks, 

organisational aspects such as “talk to your neighbour” or when the special teacher attending the 

classroom walks outside the classroom with some students; also, the type of task being addressed at 

the blackboard, and the way the teachers structure the explanations at the blackboard and the talk of 

what to include in an explanation. This big Discourse can be named “mathematics in school”: what 

mathematics in school is or means for the students and what they want from the mathematics to be 

able to learn best. 

Summary of results 

The result shows both overlapping and diverging issues regarding how students experience an 

inclusive mathematics classroom and having optimal opportunities to learn mathematics. Regarding 

organisational aspects, Jeff and Ronaldo stressed the need of being in a small group outside the 

classroom from time to time even though the school promotes physical inclusion, and Billy and 

Edward highlighted collaboration in order to have opportunities to learn. Diverging aspects are type 

                                                 

1 Going through is “genomgång” in Swedish, which is when the teacher is explaining something on the blackboard.   



of tasks; for example, where Billy wants challenging tasks in the form of problem solving, Ronaldo 

hates problem solving. How the students want a mathematics lesson both diverges and overlaps: 

thoroughness and structure in the instruction; work a little by yourself and then in a group; lessons 

with variation and explain to others were expressed as good ways of learning. 

Discussion 

A diverse picture of how students want to participate in an inclusive mathematics classroom to be 

able to get optimal learning opportunities appears in this research. Although this is not unexpected, 

it is important to highlight this diversity and address the question of how the organisation and the 

education can support this diversity in order for students to be included in mathematics. This is not 

just only spatially included, but is also included in the teaching and learning of mathematics. The 

diversity of how students want to participate in the mathematics classroom that appears in this 

research stresses the need for diversity in mathematics education at school. One thing that is striking 

is that students expressed a need of being in a small group outside the classroom from time to time. 

The school promotes physical inclusion, and it did not seem to always benefit these students. You 

might say that diversity among students demands diversity in mathematics education. But, as 

Fredickson and Cline (2009) stress, even though students are different, teaching is only possible 

because students are similar in some ways. This research supports this, because even if the results 

showed diversity among the students (both within and between students that are perceived as 

students in need of more challenges in mathematics and students that are perceived as struggling 

students in mathematics), the results also showed similarities between the students. These 

similarities are something the teaching can take advantage of, in the organisation and planning of 

the mathematics education in order to get equitable instructional quality. However, barrier factors 

such as large class sizes, high-stake-standardized tests (Rousseau and Powell, 2005), etc. can be 

prohibitive to the work of equitable instructional quality. If the organisation is responsive to the 

diversity among students and is aware of barrier factors it might be dynamic and adjust accordingly 

to improve access to mathematics and an increased inclusion in mathematics.  
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1256 students from 18 primary and secondary public schools across urban and rural settings in the 

Cape Coast Metropolis of Ghana responded to the “What I Find Important (in my mathematics 

learning)” questionnaire. The data analysed suggested that students in Ghana valued in their 

mathematics learning: achievement, relevance, fluency, authority, ICT, versatility, learning 

environment, strategies, feedback, communication, fun, connections, engagement, applications, and 

accuracy. The students’ embracing of these attributes is explained by reflecting on the societal and 

pedagogical norms in Ghana. When compared to high performing economies in East Asia, it was 

found that most of the Ghanaian attributes represent extrinsic (versus intrinsic) valuing. 

Implications and suggestions for policy-making and for classroom teachers are provided.  

Keywords: Values, Ghana, extrinsic/intrinsic valuing, East Asia, WIFI. 

Mathematics education in Ghana 

Students value attributes of mathematics learning (e.g. practice and understanding) differently, with 

implications for the quality of mathematics learning that takes place (Matthews, 2001). The extent 

to which a student values understanding, for instance, may influence how relational understanding 

may be preferred over instrumental understanding, the extent to which the development of 

algorithms is important, and indeed, the extent to which s/he is interested – and perseveres – in 

knowing how these algorithms or formulae came about. In other words, what and how much an 

attribute of (mathematics) learning and teaching is valued influences a student’s development and/or 

application of cognitive knowledge and skills, as well as the maintenance of affective states.  

Drawing from relevant seminal literature, Smith and Schwartz (1997) have argued that, while values 

are abstract concepts, they are not so abstract that they cannot motivate behavior. The ability to 

identify, review and facilitate/modify what students value in their mathematics learning should 

optimise the cognitive and affective-based pedagogical strategies that support learning.  

This paper reports on Ghana’s participation in a 19-country study on what students valued in their 

mathematics learning experiences. Focussing on this West African country, and analysing and 

interpreting the data collected there, was aimed at achieving an understanding of the Ghanaian 

mathematics education system, both in its own right and also through comparisons with other 

countries. This is especially significant, since Ghanaian students’ mathematics performance has 

been low by global standards (Enu, Agyman & Nkum, 2015). For example, in the TIMSS 2011, 

Ghanaian eighth grade students ranked last amongst 45 participating countries in mathematics 

achievement (Mullis, Martin, Foy, & Arora, 2012).  

Ghanaian students’ transitions between school and out-of-school mathematics have not been 

without its issues. In the home context, the units of measurement of money and of capacity are 

different from the metric ones being taught in schools. The schools’ language of instruction from 



Grades 4 and above is also different from the languages used by students at home and outside in 

public. A further complexity when considering school mathematics education in the Ghanaian 

context is in the way students there experienced fractions differently in school and in out-of-school 

contexts. For example, 

the majority of the students were able to identify half in the out-of-school activity perhaps due to 

that fact that it is the only unit fraction that has local name (fã). However “fã” does not mean 

equal halves, it means about mid point. Thus three-fifths may also be categorised as “fã”. 

Students’ difficulty in naming the other units fractions may be due to the fact that in out-of-

school setting they do not differentiate unit fractions. Thus with the exception of half which 

could mean about midpoint all the fraction are described as less than whole (sin). (Davis, Seah, 

& Bishop, 2009, p. 69) 

Values in Mathematics Education 

Values are “the principles and fundamental convictions which act as general guides to behaviour, 

the standards by which particular actions are judged as good or desirable” (Halstead & Taylor, 2000, 

p. 169). Essentially, then, values reflect what we think are important to us, and are thus distinct from 

beliefs, which reflect what we think are correct. Values can be viewed as a form of culturally-based 

tools with which we mediate our actions and behaviour in the learning process. 

In the field of mathematics education, we adopted Seah and Andersson’s (2015) definition that 

values are the convictions which an individual has internalised as being the things of importance 

and worth […]. Valuing provides the individual with the will and determination to maintain any 

course of action chosen in the learning and teaching of mathematics. They regulate the ways in 

which a learner’s/teacher’s cognitive skills and emotional dispositions are aligned to 

learning/teaching in any given educational context. (p. 169) 

What are valued by the individual, as these are shaped and refined by life’s experiences (including 

classroom learning experiences), impact on subsequent decisions and actions. They do so by 

affecting the ways the individual reasons and feels about the task or problem at hand. As the quote 

above suggests, this volitional force can be quite powerful, manifesting themselves in the form of 

will and determination.  

When the individual interacts with others (e.g. teachers interacting with their students in the 

classroom), it is inevitable that there would be differences in what each person values. Such 

differences can potentially lead to conflicts, and one or more of the people involved will seek to 

negotiate and resolve these differences, achieving a level of cognitive harmony that is acceptable by 

most if not all involved. 

In terms of the types of attributes of mathematics learning and teaching valued, Bishop (1996) had 

categorised these into mathematical values (i.e. regarding the mathematics discipline), mathematics 

educational values (i.e. regarding the pedagogy of mathematics), and general educational values (i.e. 

regarding the moral and civic virtues). Earlier, Bishop (1988) had conceptualised 3 pairs of 

complementary mathematical values, namely, rationalism and objectism, control and progress, and 

openness and mystery. 



Prior to 2010, research of values and valuing in mathematics education had focussed on small-scale 

studies of what teachers valued (e.g. Chin & Lin, 2000). The setting up of the Third Wave Project in 

2008 not only brought together a group of researchers internationally to support – and collaborate 

with – one another on research studies into valuing, but it also shifted attention to the examination 

of what students value in their mathematics learning (e.g. Seah & Wong, 2012). 

On the other hand, much research related to PISA and TIMSS had been conducted by or with 

education systems which have performed relatively well in these tests, with relatively little research 

attention paid to mathematics education systems at the other end of the performance spectrum. Yet, 

the experiences of these countries can also serve as an important reflection on what (else) contribute 

to effective mathematics learning. As such, a study named “What I Find Important (in mathematics 

learning)” (WIFI) was designed to investigate what students in 18 different economies value when 

they were studying mathematics, Ghana being one of these economies. This paper reports on the 

Ghanaian data of the WIFI study, and how the findings address two of the research questions posed 

to guide the Ghanaian study, namely: 

1. What did school students in Ghana find important when learning mathematics? 

2. How might the valuing amongst the Ghanaian students be similar to or different from what their 

peers elsewhere in the world valued? 

Methodology 

The first research question suggested a need to ‘map the scene’ for Ghana (and indeed, for the other 

participating economies too). As such, the questionnaire survey method was adopted. The validated 

WIFI questionnaire has four sections. A Likert-type scoring format was used for the first 64 items in 

Section A, in which students were asked to indicate how important mathematics pedagogical 

activities such as small-group discussions (item 3), connecting mathematics to real-life (item 12), 

and mathematics homework (item 57) were to them. A five-point scoring system was used, ranging 

from absolutely important (1 point) to absolutely unimportant (5 points). Section B consisted of 10 

continua dimensions, each related to two bipolar statements and respondents were asked to indicate 

along the continuum the extent to which their valuing leans towards one of the two statements. 

Section C consisted of four scenario-stimulated items; and Section D items asked for students’ 

demographic data. The English language version of the WIFI questionnaire was administered, 

English being the medium of instruction in Ghana. In this paper, only the responses to Section A 

will be presented. 

Student participants were sourced from public schools at the primary, junior high and senior high 

levels in the Cape Coast Metropolis of Ghana. Stratified random sampling procedure was used to 

select students from a mix of schools, by achievement levels and by rural versus urban settings. In 

all, 1256 research participants comprising 414 primary four, five and six pupils, 426 junior high 

school pupils and 416 senior high school students from 18 schools participated in the study. 

In line with the data analysis conducted by the other 18 participating economies, a Principal 

Component Analysis (PCA) was performed. 



Results 

The data gathered from the 64 Likert-scale items of the WIFI questionnaire was cleaned prior to 

data analysis. They were first analysed to identify any missing values. The eleven missing responses 

identified out of the total possible 80,384 (i.e. 64 X 1256) was acceptable, and each of these was 

replaced with the value “9”. 

The Kaiser-Meyer-Olkin (KMO) (Kaiser, 1970) measure of sampling adequacy was 0.947 and 

Bartlett’s test of sphericity (BTS) (Bartlett, 1950) was significant at the 0.001 level and so, 

factorability of the correlation matrix was assumed, which demonstrated that the identity matrix 

instrument was reliable and confirmed the usefulness of the principal component analysis. 

Principal component analysis 

A principal component analysis (PCA) with a varimax rotation and Kaiser normalization was used 

to examine the questionnaire items. The significance level was set at 0.05, while a cut-off criterion 

for component loadings of 0.45 was used in interpreting the solutions. Items that did not meet the 

criteria were eliminated. According to the cut-off criterion, 23 items were removed from the original 

64. The analysis yielded 15 components with eigenvalues greater than one, which accounted for 

52.73 % of the total variance. Each component can be considered to be an attribute that were valued 

by the students in Ghana, with the relevant questionnaire items regarded as describing the 

characteristics of the attribute. Accordingly, the three researchers discussed and agreed on the value 

labels for the 15 components based on the nature of the corresponding items. 

The first component consisted of 17 items that together accounted for 13.31% of the total variance. 

Questionnaire items included in this component included “doing a lot of mathematics work” (item 

37), “knowing the steps of the solution” (item 56), “knowing which formula to use” (item 58), and 

“understanding why my solution is incorrect or correct” (item 63). Guided by our Ghanaian 

collaborator’s recommendation, we subsequently labelled this component as achievement. 

The second component is made up of 6 items which together accounted for 6.64% of the total 

variance. The questionnaire items included ”stories about mathematicians” (item 61), ”explaining 

where rules / formulae came from” (item 40), ”mystery of mathematics” (item 60), ”stories about 

recent developments in mathematics” (item 18), and ”using concrete materials to understand 

mathematics” (item 48). Given these items, we propose to name this component as relevance. 

The third component is made up of 2 items which together accounted for 4.35% of the total 

variance. The questionnaire items were ”explaining my solutions to the class” (item 19) and 

”practicing how to use maths formulae” (item 13). So, we named this component as fluency. 

The fourth component is made up of 3 items which together accounted for 3.40% of the total 

variance. The questionnaire items were ”learning maths with computer” (item 23), ”learning maths 

with internet” (item 24) and ”explaining by the teacher” (item 5). It was named authority. 

The fifth component is made up of 2 items which together accounted for 3.04% of the total 

variance. The questionnaire items were ”using calculator to check the answer” (item 22) and ”using 

calculator to calculate” (item 4). Given these items, we named this component ICT. 



The sixth component is made up of 2 items which together accounted for 2.75% of the total 

variance. The questionnaire items were ”looking for different possible answers” (item 16) and 

”being lucky at getting the correct answer” (item 27). We named this component versatility. 

The seventh component is made up of one item which accounted for 2.69% of the total variance, it 

being ”mathematics debate” (item 9). It has been named learning environment. 

The eighth component is made up of 2 items which together accounted for 2.69% of the total 

variance. The questionnaire items were ”shortcuts to solving mathematics problems” (item 55) and 

”given a formula to use” (item 38). Given these items, we named this component strategies. 

The ninth component is made up of one item which accounted for 2.50% of the total variance. The 

questionnaire item was ”investigation” (item 1). We interpreted this component as feedback. 

The tenth component is made up of one item which accounted for 2.22% of the total variance, 

which was ”outdoor mathematics activities” (item 34). We named this component communication. 

The eleventh component is made up of one item which accounted for 2.00% of the total variance. 

The questionnaire item was ”mathematics games” (item 25). It was given the label fun. 

The twelfth component is made up of one item which accounted for 1.92% of the total variance: 

”relationship between maths concepts” (item 26). We named this component connections. 

The thirteenth component is made up of one item which accounted for 1.80% of the total variance: 

”stories about mathematics” (item 25). We named this component engagement. 

The fourteenth component is made up of one item which accounted for 1.77% of the total variance: 

”looking out for mathematics in real life” (item 39). We named it applications. 

The fifteenth component is made up of one item which accounted for 1.66% of the total variance: 

”getting the right answer” (item 50). Given this item, we named this component accuracy. 

Discussion 

1256 primary and secondary school students from 18 public schools located in both urban and rural 

areas of the Cape Coast Metropolis had responded to the WIFI questionnaire, thus allowing us to 

map the attributes of mathematics pedagogy that were valued by these students. The PCA has led to 

the identification of 15 attributes which the students valued in their mathematics learning in 

Ghanaian schools, explaining 52.73% of the total variance. These attributes are achievement, 

relevance, fluency, authority, ICT, versatility, learning environment, strategies, feedback, 

communication, fun, connections, engagement, applications, accuracy. 

Most of the students in Ghanaian schools come from a farming background, where all available 

helping hands are needed on the farms especially during the harvesting periods. That the 

respondents of the WIFI questionnaire were still in school might explain why achievement was so 

highly valued by these students. For them and their families, it is thus not surprising that relevance, 

applications, engagement and connections of what is taught at school in relation to the knowledge 

and skills that are needed at home and in the farms are valued. Given the frequent use of expository 

teaching in schools (Enu et al., 2015), the students have probably learnt to value authority, fluency 

and accuracy. Yet, this dominant teaching style is not likely to meet the expectations of students 



and their families if they have chosen to continue staying in school. Novel and effective learning 

styles will be important, and these are likely to involve the valuing of ICT, versatility, learning 

environment, strategies, feedback, communication and fun. 

These 15 values may be compared with the attributes of mathematics learning that students in high 

performing PISA2012 economies which took part in the WIFI study valued (e.g. Zhang et al., 2016). 

Students in these high performing economies (all of whom are East Asian, since Finland did not 

participate in the WIFI study) valued connections, understanding, communication and recall. 

Though students in Ghana also valued connections and communication, they were less valued than 

at least 9 other attributes, such as achievement, relevance and fluency.  

This distinction above had invoked in us the notions of intrinsic and extrinsic motivations. 

Emerging from the analysis we were reminded of Ryan and Deci’s (2000) assertion that 

“intrinsically motivated behaviors […] are performed out of interest […] [whereas] extrinsically 

motivated behaviors […] are executed because they are instrumental to some separable 

consequence” (p. 65). In the context of our data here, we can interpret the top performing East Asian 

economies’ valuing as being intrinsic to mathematics itself (connections and understanding, for 

examples, deepen the students’ mathematics knowledge), and that the top values that were held by 

the students in Ghana to be more extrinsic to the mathematics discipline. Although achievement, 

relevance, fluency and authority were also attributes of mathematics learning and teaching, they 

were not so much about what was important about mathematics, but rather, what was important 

about what can be done with mathematics.  

The contrast thus seems to be that of extrinsic versus intrinsic valuing. The top performing East 

Asian economies are located in places where mathematics study has traditionally been taken up for 

its own sake, and where problem solving and the study of proofs are regarded as tasks that maintain 

one’s mental agility. Against this sort of tradition, then, it would not be surprising that East Asian 

students appreciated the structure and form of the discipline, and grew to value aspects of 

mathematics which reflect the nature of the discipline. On the other hand, education systems such as 

Ghana’s might emphasise the utility function of the mathematics discipline, perhaps to satisfy the 

needs of local economies. Thus, the aspects of mathematics learning that are regarded as important 

would reflect this utility function and extrinsic valuing. 

Given the large sampling size in this Ghanaian study, the findings above raised the question of the 

extent to which Ghanaian students’ extrinsic valuing of mathematics and mathematics pedagogy 

might affect their mathematics performance. At the same time, how might the students’ intrinsic 

valuing in places such as Shanghai, Hong Kong, Korea and Singapore be related to the high level of 

mathematics performance shown in TIMSS and PISA? To what extent might the attributes of 

mathematics education valued in the international assessment exercises be aligned with intrinsic 

valuing associated with the East Asian students? 

Conclusion 

Primary and secondary public-school students across both urban and rural settings in the Cape Coast 

Metropolis of Ghana valued achievement, relevance, fluency, authority, ICT, versatility, learning 

environment, strategies, feedback, communication, fun, connections, engagement, applications, and 

accuracy in mathematics learning. Comparing these against what students in high performing East 



Asian countries valued, we propose that many of the attributes that were valued by Ghanaian 

students represented extrinsic valuing (versus intrinsic valuing in East Asia). Might the Ghanaian 

students’ valuing of extrinsic attributes in part explain their relatively poorer performance in 

mathematics? Further analysis is being carried out, such as to investigate how the valuing differed 

according to student gender and school locations. 

These and other related questions will be especially meaningful for Ghanaian policy-makers to 

consider. If extrinsic/intrinsic valuing is indeed a key variable of mathematical performance and 

achievement, the inculcation of intrinsic valuing amongst students would require strong and 

determined leadership at all levels of the society to model these values across the intended, 

implemented and attained curricula. In the meantime, the classroom teacher can be more mindful 

about espousing the intrinsic valuing of mathematics education. For example, teachers often do not 

sound very convincing to students that the content taught in class can be applied in life. Instead, it 

may be worthwhile for teachers to explain how the experience of learning mathematics might instill 

in students such attributes as rationalism. openness (see Bishop, 1988) and/or understanding. These 

are the very things which can be applied in life. 

This knowledge should also be valuable to overseas (including European) researchers/experts who 

are involved with development work in Ghana, such as the British government’s Transforming 

Teacher Education and Learning Project. Not only does it lead to a greater understanding of the 

local context, understanding what Ghanaian students value can also develop meaningful 

perspectives upon which culturally-appropriate and effective programs are designed and delivered.  
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Recent years have seen many valid and important critiques of mathematics, mathematics education 

and mathematics education research (M, ME & MER). However, we also discern in some of these 

critiques a tendency toward one-sidedness and passivity. Unrelenting stress on the negatives of M, 

ME and MER can lead to a dismissal of the possibility of improving ME and a dismissal of those 

who attempt to do so. The separation of critical theory from critical practice which follows is then 

in danger of rendering critique sterile, becoming a mere pseudo-radicalism. As an alternative, we 

explore here the mutual relation between critical pedagogy and critiques of society, and the 

relationship between reform and more radical change, in wider society and ME. We argue that this 

analysis encourages a stress on joint activity, between individuals and organisations with a wide 

range of perspectives on what change is needed, to tackle the problems a critical perspective raises.  

Keywords: Critical mathematics education, theory and practice. 

Introduction 

A growing body of research in mathematics education has explored critically the socio-political 

function of school mathematics in terms of its role in the mobilisation and production of capitalism 

(e.g., Kollosche, 2014; Pais, 2013, 2014; Swanson, 2016; Williams, 2012) leading to the 

reproduction of inequalities in education along the lines of social class, gender and ethnicity (e.g., 

Jorgensen & Niesche, 2008; Solomon, 2008; Black, 2004; Noyes, 2007). This work suggests that 

school mathematics (and associated qualifications) serves as a ‘gatekeeper’ in that it enables society 

and its dominant institutions (e.g., universities, employers etc.) to select and sort individuals under 

the rationale that ‘mathematical ability’ is a valued source of human capital. This critique is highly 

relevant to the current situation of mathematics education in England, where a new, more 

challenging curriculum has come into play since 2014 which serves to further substantiate the elitist 

position of mathematics in schools. At the same time, there is widespread concern in policy and in 

the mathematics education research community about achievement gaps (i.e. between rich and poor, 

or the most and least deprived) – a concern which has been said to further produce social 

inequalities – Gutiérrez (2008) refers to this as “gap gazing”.  

Whilst such critiques of mathematics and mathematics education are important and necessary to 

challenge dominant ideologies (including those pertaining to education more broadly), at the same 

time, we argue, there is a need to propose an ideologically grounded alternative. This paper presents 

a case for an alternative way forward by first looking at the potential mutual relation between 

critical pedagogy and critiques of society. We then examine the relationship between reform (i.e. 

improvement whilst remaining within the same overall framework) and more radical change, in 

terms of wider society, education and mathematics education. What follows from this exploration, 

we argue, is the need for activity which tackles the problems a critical perspective raises. In 



particular, it suggests joint activity between those with a wide range of perspectives on what, and 

how far, things need to change. We then look briefly at the Stand Up for Education campaign in the 

UK, which brings together trade unionists, teachers, academics and parents, to show that what we 

outline here is not a purely abstract or ideal position. Spaces for the much required interrelation of 

critical theory and research with practice can and do exist, and we conclude by discussing why that 

matters for critical researchers. 

What might a critical perspective on education look like? 

We begin by looking at the relationship between critiques of education or society and critical 

mathematics pedagogy1. Arguably the most radical perspective here is to imagine and work towards 

a society beyond capitalism (e.g. Bowles & Gintis 1976; Counts, 1978; Freire, 2005) i.e. a change 

that involves a complete transformation of society. Discussions of what form education would take 

in such a society face certain limitations however. For instance, if we assume, as we should, that 

moving beyond capitalism entails the democratic collective control of society by the majority, then 

we who are so shaped by, and operate in, capitalist society are not best placed to either decide or 

predict what may happen. Nevertheless, we can speculate on how an alternative future education 

might work by taking the reverse of the features of capitalist education which are seen to lead to 

negative consequences today, for example the individual-competitive exam system which produces 

‘losers’ who internalise their failure as objective qualities of themselves (for others, see Swanson, 

2016). Then, we can combine these with the aspects of education that others have fought for (e.g. in 

school student strikes against corporal punishment, oppressive uniform policies or privatisation, see 

Lavalette & Cunningham, 2016) and at times, implemented (e.g., the banning of homework and 

exams in revolutionary Russia, see Karp, 2012).  

Among the features we might expect to see are i) democratic collective control of education by 

teachers, students and other education workers, within the wider framework of its democratic 

shaping for society’s needs; ii) much greater control by individuals over their own learning within 

that, but with an emphasis on social rather than individually competitive learning; iii) an end to 

exams and their production and reproduction of societal inequalities; iv) an equivalent end to the 

performativity culture of continual measurement to judge teachers and other education workers, v) 

an increase in societal resources (such that, for example, class sizes reduce to the levels seen only 

within private education in this society), and vi) a closer integration of education with wider life, 

reducing both the formal detachment of schooling from the world outside, and the artificial 

separation of subjects from one another. 

The perspective above can loosely be termed the revolutionary perspective in education. We would 

define reformist perspectives, and these are far more common than revolutionary perspectives2, as 

                                                 

1 We use pedagogy here and throughout to mean teaching and learning combined due to the lack of an adequate single 

word in English. 

2 This is true even when reformist political organisations are weak or non-existent. However recent years have seen an 

important revival in reformist organisation with new parties such as Podemos in Spain, or around individuals in existing 

organisations, such as Corbyn in the UK and Sanders in the U.S. 



those which may agree with some, many or even all of the elements above but which are accepting 

of greater limits as to how much things can change, for example limiting the possible changes to 

within one classroom, or to what is possible within capitalism. Although this covers an enormous 

range of possible beliefs (e.g., the free schools movement in the U.S., see Miller, 2002, or on a 

small scale, Boaler’s work on reform pedagogy in the US, Boaler & Staples, 2008) and in Australia 

(Sullivan, Jorgensen, Boaler, & Lerman, 2013), in general we view such perspectives as radical and 

important. Fighting for fewer exams or less influence of exams on education clearly overlaps with 

fighting for no exams. We explore the general relationship between reform and revolution in a later 

section, but first we look at the relationship between the radical perspectives discussed so far and a 

particular type of reform, that of improving mathematics pedagogy. 

The relationship between critical mathematics pedagogy and (active) critiques 

of society  

We can see within critical mathematics pedagogy (in the broad sense of the term critical) parallels 

of many of the more general demands of radical educationalists. For example, we see pedagogies 

which aim to promote: a more active role for students in learning through open problem solving 

(e.g. Barron et al. 1998); teaching for understanding rather than for grades (e.g., Schoenfeld, 1988); 

an emphasis on dialogue and social learning (e.g., Lerman, 1996); and a more meaningful 

mathematics connected to the world outside of school and student experiences and concerns (e.g., 

Gainsburg, 2008). In doing this, pedagogy acts to counter some of the worst effects of capitalist 

education, even if it cannot overcome them fully. Here we argue, perhaps contra to some 

perspectives in critical MER, that it is worthwhile to subvert spaces, such as the classroom, as much 

as one can in these directions. Various forms of critical mathematics education which attempt to 

provide curricula and pedagogies which offer ‘use value’ to low status, disadvantaged or ‘poor’ 

learners and communities (e.g., Skovsmose & Greer, 2012; Gutstein, 2006) have much to offer. 

They can potentially challenge the ‘gatekeeper’ role of mathematics described above and can maybe 

transform the function of education, that is, rather than the learner serving the school/education 

system, education can begin to serve the community/learner (Williams & Choudry, 2016). Perhaps 

more importantly, attempts at developing critical thinking within the mathematics classroom have 

the potential to be generalised and transferred to other aspects of life, for example, to a pupil’s 

future life in the workplace (see Black et al., 2010). The experience of critical thinking, of 

challenging everything, of weighing up arguments can assist in developing the confidence to do so 

elsewhere. 

The possible connections between critical pedagogies and critical perspectives on society can work 

in the other direction too. The real limitations which schooling imposes on such pedagogy means 

that it is difficult to sustain critical educational activity if it is solely limited to the individual 

classroom. Teachers attempting to develop or sustain attempts within their classroom will come up 

against obstacles. For example, a head of department on a professional development course led by 

one of the authors was instructed by management to reverse pedagogical changes because students 

were now talking too much in class. However, arguably, the experience of these obstacles can make 

teachers open to looking beyond their immediate situation to help them achieve the changes they 

want. If teachers are connected to networks which challenge how schooling is generally organised 

and which also show sympathy for progressive forms of pedagogy, they may potentially move 



towards engaging in critical activity outside the classroom, whether still directly related to pedagogy 

or beyond that. Such networks can also give teachers the confidence to persist with their efforts in 

their own classroom. (e.g., Volosinov, 1976, on the relationship between an individual’s critical 

ideas and collective agency in such circumstances). 

Taken together these points mean: Firstly, that it is in the interests of those who are critical of 

society to encourage meaningful activity in the classroom and to work alongside others who wish to 

do this, and, secondly, it is in the interests of those who want more meaningful activity in the 

classroom to work with those who have a critical perspective on society, precisely because they 

bring an understanding of the obstacles, and, usually, experience in organising networks to 

overcome these obstacles. A central task therefore for those who are critical of society and who 

work within mathematics education, is to help create, develop and shape organisational forms which 

encompass both these components.  

Reform, revolution and the united front 

The relationship between the particular reform, of developing more meaningful pedagogy in a 

classroom, and wider social struggles, rehearses similar arguments to that which can be made about 

the general relationship of reform to revolution. In general, reform and revolution are clearly 

different perspectives. As Luxemburg (1986) puts it: 

[T]hose who pronounce themselves in favour of the method of legislative reform in place of, and 

in contrast to, the conquest of political power and social revolution, do not really choose a more 

tranquil, calmer and slower road to the same goal, but a different goal. Instead of taking a stand 

for the establishment of a new society, they take a stand for the minor modification of the old 

society. (p. 56) 

However, many of the elements key to a revolutionary strategy— for example, maximising active 

involvement and democratic control of movements; overcoming the division between purely 

economic and political struggles; attempting to connect up and generalise different struggles; 

developing an understanding of the interrelated nature of societal problems; and an emphasis that 

change comes from below, are not necessarily alien to those holding reformist ideas when they are 

engaged in struggles for particular demands (see, e.g., an account of the 2012 Chicago teachers’ 

strike in Gutstein & Lipman, 2013). At the same time, revolutionaries are also in favour of reforms. 

First because they improve immediate circumstances, but also because it is through the struggle for 

reforms that people develop the consciousness and confidence required to transform society: “The 

struggle for reforms is its means; the social revolution, its goal” (Luxemburg, 1986, p. 5). This 

overlap in immediate situational objectives, and the potentially shared belief in activity to achieve 

them, can provide a basis for joint activity. 

This joint activity between those who seek reform and those who aim for more fundamental change 

is central to a revolutionary approach and is termed the united front strategy. The strategy was 

explicitly formulated by the third congress of the communist international in 1922 as capitalism 

restabilised following the revolutionary wave around the end of the First World War. However, it 

has its roots in earlier practice. For example, during the Russian revolution of 1917, the unity of 

revolutionaries and reformists in repulsing Kornilov’s attempted coup was central to the 



development of the revolution, and the key organisational form of the revolution, workers councils 

or soviets, can be viewed similarly as a united front (see Trotsky, 1989).  

For revolutionaries, there are two key aims of the united front strategy. The first is simply to 

increase the likelihood of success of the particular struggle through uniting the maximum number of 

people and organizations. Secondly, it aims to convince those involved in reform activity of the 

need for more radical change through i) joint experience of the benefits of revolutionary methods, ii) 

joint frustration at the limitations of reformist strategies, and iii) exposure to revolutionary ideas in 

ongoing dialogue. For these strategies to work, the unity and dialogue must be genuine of course, 

with the possibility of reformists winning revolutionaries to their strategy instead (see Trotsky, 

1989). Although often from an alternative perspective, many with a reformist outlook on change 

equally see the importance of working together with others who hold different ideas to help achieve 

particular aims. 

Implications for critical mathematics educators 

Taken together, the arguments outlined so far imply the need for forms of organization which bring 

together various groups in mathematics education such as teachers, teacher educators, critical 

academics, parents, students and other education workers in common activity (a united front). This 

includes those who are particularly concerned with teaching and learning and those who are trade 

unionists; those who want to transform the world completely and those who just want to make 

things a little better. Through such activity radical mathematics educators can both assist in 

improving immediate circumstances in schools, classrooms etc., and also increase the numbers of 

those who see the necessity of more radical change (e.g., Gutstein & Lipman, 2013). We speculate 

that such an organization in relation to mathematics education is more likely to arise as part of, or 

emerging through, more general forms developed for the field of education as a whole. To illustrate 

that organisational forms such as this can exist, we now briefly describe the emergence of a 

network, local to the authors, which brings together the various forces described above.  

Stand up for Education 

The Stand up for Education campaign by National union of teachers (NUT) (2014) first emerged as 

a campaign launched by the National Union of Teachers (the largest teaching union in the UK), in 

the build up to the 2015 UK general election, to influence educational policy discussions and 

mobilise NUT members and others. Through that campaign, a network of academics supportive of 

the NUT’s aims was formed called Reclaiming Schools. Together Reclaiming Schools and the NUT 

jointly published a collection of short articles from academics and researchers in support of the 

campaign (see NUT, 2015). The Reclaiming Schools network continued, with a website devoted to 

putting research in accessible form for teachers and others campaigning to improve education, and 

with occasional meetings in local areas which bring academics and teacher activists together and 

promote the website’s activities. At one such meeting in Manchester, partly inspired by recent 

parent campaigns to remove their children from standardised testing (the Let Our Kids be Kids 

campaign, see https://letthekidsbekids.wordpress.com), the idea emerged for a local conference to 

be held which could pull together wider forces. NUT activists organised a follow up meeting, which 

included some parent groups and academics, to plan the conference. The primary aim of the 

conference was to share and develop understandings of key issues affecting schooling; to develop 



and expand the different networks involved (parents, teachers, teacher educators and other 

academics), and to bring those networks together to promote mutual activity and campaigning. The 

conference (see https://www.facebook.com/standupforeducationmcr) united precisely the range of 

people that this paper has outlined, and, importantly, it discussed questions of organised activity, 

political issues and pedagogy. In future work we will discuss this movement in more detail, and in 

particular explore its potential in relation to critical mathematics pedagogy in particular. But we 

describe it briefly here to show that such networks can and do exist and are not merely an abstract 

desire of the authors.  

Critical theory and critical practice 

So far we have argued that i) critiques of ME and MER also require ideologically grounded 

alternatives; ii) both ‘revolutionary’ and ‘reformist’ alternatives exist; iii) critical pedagogy in 

mathematics (a particular reform) can be an integral part of both perspectives; and iv) this inter-

relationship between reform and revolution is a general one. These last two together entail v) the 

importance, and possibility, of united front activity and organization within the field of mathematics 

education for all those who are to any extent critical of how things currently are, whether their initial 

motivation is teacher wages and conditions, less stressful exams for children, or more meaningful 

activity in the classroom.  

We conclude with the particular relevance of the above for critical mathematics educational 

researchers. Marx argued that “Practice without theory is blind. Theory without practice is sterile”, 

and this point is relevant for those who wish to criticise the world of mathematics education without 

attempting to change it. Arguably though, theory and practice always form an interrelated unity. No 

practice is uninformed by theory, (it may be unconscious of course). And no theory is unshaped by 

practice. The question for educational researchers is which practice shapes their theory – academic 

practice with its demands of publication and superficial novelty, or genuine critical practice and the 

needs of those trying to transform education. Critical theory detached from critical practice may 

provide useful insights, but ultimately its quality and usefulness will suffer from the separation. 

Uniting critical theory and critical practice, on the other hand, can enrich theory and research, and 

contribute to the development of the critical practice which can transform education. 
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Introduction 

This contribution, examining the increasing presence at school of East-Asian students and the 

related didactical complexity rising from the contemporary presence of Western and non Western 

cultural heritages, presents an experience of a training course for teachers (from Pre-Primary to 

Secondary school grades) about the didactical problematic of teaching in a multicultural context (in 

particular with Chinese students).  

Diversity as resource 

According to Bishop’s perspective, the notion of ‘Multicultural Classroom’ has to be interrelated as 

the place where a variety of cultures come together and mixes, creating hybrid identities, 

epistemological and linguistic conflicts (real or potential), and a range of ways of valuing or 

devaluing mathematics as an academic subject (Bishop, 1988). In this sense, in many cases, working 

in a multicultural context is seen by teachers as an obstacle! How to manage it? How to teach with 

different cultures and language’s students? These questions, for example, are often posed by 

western teachers of Chinese students. Their cultural reference system is in fact completely different 

from the western one (Bartolini Bussi, Di Paola, Martignone, Mellone, & Ramploud, 2016; 

Spagnolo & Di Paola, 2010) in language (as structure and as function in life), norms and social 

values and political references (Jullien, 2006). In the last ten years, researchers from all over the 

world have developed an ever increasing amount of work on the ‘comparison’ of student’s 

performance in mathematics (Di Paola, Battaglia, & Fazio, 2016), especially between American and 

far-eastern countries’ pupils such as Chinese, Japanese, and Korean ones (Leung, 2001). However, 

in Italy there is little research on this subject and all of them are aimed to deeply study the 

complexity of teaching/learning activities related to different cognitive processes emerging from 

different students’ cultural references (Chinese in particular) in classrooms, assuming diversity as a 

resource for learning (Bartolini Bussi, Sun, & Ramploud, 2013; Spagnolo & Di Paola, 2010). A 

small amount of this research is focused of the training teacher.   

A training teaching course as a need for mathematics multicultural classrooms   

Following these assumptions, working in conjunction with other colleagues from East and West of 

CTRAS (Classroom Teaching for All Students Research Working Group), we designed a training 60 

hours long course for Italian teachers (from Pre-Primary to Secondary school grades) which we 

implemented during the month of June 2016. It was organised almost entirely in small working 

groups, using activities with teachers and educators of different school grades (each one of them 



chose independently to attend the training course). Aiming to analyse how diversity is seen through 

the trainees’ eyes and trying to answer the research question posed before, we discussed with them 

some theoretical aspects related to their own epistemologies of the discipline. We then showed 

some experimental research conducted in Italian and Chinese classrooms, some Chinese textbooks 

strongly different from the Italian ones and finally some videotapes of some well implemented 

Italian teaching practices in multicultural contexts with Chinese students (K-12). According to our 

aim we discussed with trainees about the analogies and the differences coming out form these 

videotapes about the teaching/learning mathematic (Shuxue) in the two cultures. At the same time 

we tried to reflect with them on the possibility to ‘use’ this new knowledge to ‘transform’ the 

presence in classroom of ‘other’ cultures from an obstacle to a resource. All the proposed activities 

were videotaped and later carefully analysed. We can briefly say that the stimuli we offered 

permitted trainees to reflect on the complex situation of the simultaneous presence of Chinese and 

Italian students in their classrooms and to promote the desirable process of connecting different 

types of students solving strategies emerging from cultures. 
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Finding reflections of Fröbel’s ideas in Scandinavian ECEC 

My research project is about how Friedrich Fröbel and his ideas have been used across time and 

place to present different perspectives about mathematics in early childhood education and care 

(ECEC). Fröbel continues to have an important role in discussions about ECEC in Scandinavia, and 

is often referred to when people talk about ECEC. In his writings, he discussed the inclusion of 

mathematics, through activities connected to his ‘gifts’ (Balke, 1995). In my project, I will identify 

how adaptions of his ideas (that I refer to as reflections) have been used to support ideological 

discussion about mathematics in kindergarten. 

May (2016) used the metaphor of a swinging pendulum between two poles, to describe the history 

of early childhood education policy and pedagogy:  

Broadly the ‘poles’ characterise contesting paradigms of childhood: the child as nature whose 

holistic development is a natural process and who learns through play and discovery – 

construction. The child as a reproducer of knowledge, who as an empty vessel is filled with 

agreed knowledge, skills and cultural values – instruction. (p. 20)  

Over time, this pendulum swings between the two sides, construction and instruction, because of 

economic, political or professional factors (May, 2016). Meaney (2014) highlights how different 

ideologies affect what content, such as mathematics, in kindergartens could be. “In the last 15 years, 

the focus of early childhood centres on supporting children to learn through play has been replaced 

in some countries by a more formal preparation for school” (Meaney, 2014, p. 1007). By analysing 

how key elements from Fröbel’s theories, for example his ‘gifts’ or views of mathematical 

pedagogy, are reflected in discussions about ECEC I will be able to discuss where proponents of the 

reflections are situated on the pendulum swing. Identifying how Fröbel’s ideas have been used in 

different ways in the past and across countries will provide understandings about how rhetorical 

devices are used to promote ideologies.  

An example is how the Norwegian minister of education and research, Torbjørn Røe Isaksen, used 

Fröbel explicitly in a public debate in a Norwegian newspaper (Isaksen, 2014). Lange and Meaney 

(2016) argue that Isaksen uses Fröbel to promote mathematics in kindergarten as a common sense 

understanding which has always been a part of kindergarten. Thus, Isaksen uses a reflection of 

Fröbel and his mathematical ‘gifts’ to argue that having more mathematics in ECEC is a 

continuation of an existing tradition. By doing this, he tries to influence the trajectory of the 

swinging pendulum so that it swings more towards the pole of instruction and away from current 

kindergarten policy, which has been swinging more towards the constructive approach (Lange & 

Meaney, 2016).   



 

Another example is from Sweden at the end of the nineteenth century, from a magazine for women 

about their home life. In this example, Fröbel is on one hand, used to argue for readiness for school 

and working life but on the other hand his toy gifts can make the child able to bring gifts to their 

family (Cristel, 1892). The author of the article reflects Fröbel, his gifts and view of mathematics, 

into the article in a different way than Isaksen did in 2014. Cristel (1892) argues that families can 

purchase the boxes of gifts “and in that way let the ideas of this high-minded pedagogue into their 

home” (p. 244, own translation). This again creates a different trajectory for the pendulum.  The 

purpose of the gifts is presented here as a way of bringing the child closer to their family, and 

making them able to produce something by their own desire in their own lives. The pendulum here 

swings more towards the constructive pole.  

The aim of my project is to look for reflections of Fröbel in Scandinavian kindergarten history and 

to identify how these reflections have been used to create momentum for the pendulum that swings 

in different directions. By studying the relationship between production, form and reception of a 

discourse, I can investigate the myriad of effects around the discourse in question (Fairclough, 

2003). Initial investigations suggest that Fröbel is reflected in different ways, in order to argue for 

different agendas about how and why we should do mathematics in ECEC. As a mirror can reflect 

an image that is distorted or mostly correct, the reflections of Fröbel are more or less representative 

of his original views. However, this project is not about judging how valid the different reflections 

are. Rather by critically analysing the discourses on Fröbel and his ideas, I can identify factors that 

affect the paradigm shifts about mathematics in kindergarten.  
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Background 

In Saxony, predominantly in rural areas, social and political challenges are being posed by a declin-

ing number of pupils. To prevent especially younger pupils from having to travel long distances to 

school, organisational and curricular alterations are being considered. One suggestion is the merging 

of grades to establish multigraded classes. Multigrade education is also being discussed for its peda-

gogical advantages; for example, it can make the first phase of primary school more flexible by al-

lowing pupils to remain within the same multigraded class for either one, two or three years. How-

ever, even in learning groups which are homogeneous in age, the differences between pupils’ pre-

conditions for learning can be up to four years (Hirt & Wälti, 2008). Yet, when making learning 

groups heterogeneous in age, the diversity of learning preconditions increases, and with it also the 

necessity for differentiation through diverse tasks with various levels of difficulty. For a subject like 

mathematics, which is strongly guided by a systematic course, this often means extremely individu-

alised and separated learning (Nührenbörger, 2007). However, interaction is seen as foundational 

constituent of learning in early years (Miller, 1986; Schütte, 2009) and should not be neglected. 

More specifically, for mathematical learning to occur it is of great importance for the pupils to par-

ticipate increasingly in collective reasoning within classroom interaction (Krummheuer, 2011). To 

enable individualised learning to take place in cooperation with others, substantial learning envi-

ronments hold great potential both for mathematics education in general and specifically in multi-

grade mathematics education because they offer the opportunity for natural differentiation, which 

means that learners all work on the same task and the differentiation is not predetermined by the 

teacher but chosen by the pupils themselves (Scherer, 2013). The possibility for students to learn 

with and from others by communicating and helping each other is also seen as one of the pedagogi-

cal arguments for purposeful mixed-age grouping (Wagener, 2014).  

Project 

The question this research project wants to address is how collaborative learning takes place in mul-

tigrade mathematics education at primary level. Therefore, firstly student teachers at the TU Dres-

den are asked about their experiences with multigrade education by using a questionnaire. Then, an 

interview study with individual teachers who teach in multigraded classes in Saxony will be con-

ducted in order to identify their attitudes and concepts concerning multigrade mathematics educa-

tion. Based on these empirical results, concepts and learning environments for multigraded learning 

within mathematics education for grades 1–6 will be developed in cooperation with teachers and 

student teachers in order to prepare them for the future challenges they will face when teaching 

mathematics in multigraded classes. Later these learning environments will be applied with pupils 



in practice to test the suitability of the tasks. The collaborative processes the pupils use to solve the 

tasks will be filmed, transcribed and then analysed from an interactionist perspective (Krummheuer, 

2011) to reconstruct constituent characteristics of successful multigrade mathematics education. 

This process will be accompanied by the development of seminars for student teacher concerning 

collaborative learning in multigrade mathematics education.  

Initial results 

The initial results of a questionnaire with student teachers at the TU Dresden show that less then 

40% have experienced multigrade education in some form (e.g. during an internship, while being a 

student themselves). Even though they are all able to reflect about possible advantages and disad-

vantages of multigrade education, many of them say that they would feel overwhelmed, unsure or 

not prepared to teach in a multigraded class during their traineeship. These results need to be as-

sessed in more detail but they emphasize the necessity of training teachers more specifically for 

multigrade education. 
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Language as a resource 

We have recently begun a project where we assume that digital games/apps have the possibilities to 

utilise family and kindergarten language resources to support multilingual children’s development of 

mathematical registers. In so doing, we adopt the perspective of “language as a resource” in which 

languages act as pedagogical resources in the learning of mathematics (Planas & Civil, 2013). 

Developing children’s fluency in their home language as well as Norwegian is an aim of the 

Norwegian Framework Plan, the early childhood curriculum (Kunnskapsdepartementet, 2011). 

Research suggests that in regard to learning and using content knowledge such as mathematics, 

multilingual children benefit from developing both their home language(s) and the majority language 

for discussing abstract ideas (May, Hill, & Tiakiwai, 2004). However, when children speak a different 

language at home to the one in their kindergarten, it is difficult for teachers who do not speak the 

children’s other languages to know how to provide support for developing the home language. Parents 

on the other hand have the language resources for developing the mathematics register in the 

children’s home languages, although their contribution to their children’s engagement with 

mathematics is often under-rated (Civil, Bratton, & Quintos, 2005).  

Digital games as prompts for mathematical language learning at home 

There is little research about using apps/games to prompt dialogue about mathematics among young 

children, however what there is suggests that affordances of digital games/apps can promote 

discussions (Lange & Meaney, 2013; Lembrér & Meaney, 2016; Palmér & Ebbelind, 2013). 

Plowman, Stephen, and McPake (2010) found that children’s engagement with digital tools at home 

were richer than those in kindergartens, partly because the children asked more questions and could 

learn from watching other family members using the devices.  

In order to find out what digital games/apps were being used in multilingual families and to gain some 

understanding from parents of multilingual children (aged 1-5 years) about what they considered to 

be the mathematical register demands and affordances of the apps/games, we set up an online survey, 

using a snowballing sampling method. The survey had 8 questions that asked about the age of the 

children, the languages that they spoke and the digital games/apps that they played with.  

56 parents identified the features of the digital games/apps that made them attractive to their 74  

children and what they would include in a digital game/app if they were designing one. The features 

of the digital games that the parents would include were not the same ones as they recognised that 

their children valued. Digital games were recognised as providing children with opportunities to use 

aspects of the mathematics register. Although puzzles was frequently cited as a digital game that the 

children played, this did not seem to result in the features of shapes being discussed to the same 



degree as other mathematical ideas (about half the number of parents considered their children talked 

about this as compared with attributes for classifying things).  

The parents identified that being successful or being surprised prompted children to talk about the 

digital game. Having features in new digital games which would produce such feelings in children 

appears likely to develop discussion with adults about mathematical ideas. As the language of the 

game can influence the children’s use of language, it seems best not to include any language so as not 

to restrict the choice of language. 
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Background 

Compared to boys, a small number of girls study higher mathematics optional course in Bangladeshi 

rural secondary madrasas beyond the requirement of compulsory mathematics. The overall 

participation rate of girls in higher mathematics is also low when compared to other optional subjects.  

Research questions  

1. How do Bangladeshi rural secondary madrasas influence children’s participation or non-

participation in higher mathematics optional course? 

2. How do these influences vary with respect to children’s gender?  

Research design  

Quantitative data have been collected from 500 children of grades 9 and 10 across eighteen rural 

madrasas using a Bangla translated version of the Fennema-Sherman Mathematics Attitudes Scales 

(Fennema & Sherman, 1976). Qualitative data have been collected from three case studies using focus 

group discussions with fifty children and semi-structured interviews with three principals, five math 

teachers and fifteen parents. Nine mathematics lessons have also been observed to capture teacher-

student interactions and their engagement. Purposive sampling process, rather than recruiting a 

representative sample, was used in order to reflect the aspect of diversity in the population and to 

carry out comparisons among different groups.     

Conceptual framework 

Following conceptual framework is adapted from Ker (2016) to present multiple levels of factors for 

mathematics participation and achievement (in Table 1). Selection of most of the factors is based on 

the suggestions from educational effectiveness literature. From the economic point of view, 

educational effectiveness is a production process of schools or madrasas, which is a transformation 

of inputs to outputs. The inputs include school resources, students’ characteristics and instructional 

hours. The process includes school factors, teacher factors and student factors as shown in Table 1. 

The outputs can be measured by the number of children participating in higher mathematics course 

and their achievement in the subject. Therefore, madrasa and classroom characteristics, student's 

background and home environmental support, time allocated for each subject, and teacher’s 

instruction to engage the students are very crucial to achieve the popularity of an academic course 

like higher mathematics.  

  



Table 1: A multilevel conceptual framework for mathematics participation (and achievement) 

School 

level 

→ 

School climate 
-School academic 

climate 

-School discipline & 
Safety 

School Resources/ Instructional 

Hours 
-Instruction affected by math 

resource shortage 
-Total instructional hours per 

week/year 

-Computer availability 
-School composition by student 

background 

  

Teacher 

level 
→ 

Teacher Preparation 
-Years of teaching 
experience 

-Career satisfaction 

-Confidence in 
teaching maths 

Instruction 
-Collaboration to improve teaching 
-Instructions to engage students  

-Math instructional hours per week 

Climate/Facility 
-Emphasis on academic 
success 

-Safe and orderly school 

-Working conditions 

 

Student 

level 
→ 

Student Background 
-Gender 
-Parents’ highest 

education level 

-Parents’ profession 

Environmental support 
-Home educational resources 
-Number of home study support 

Student’s school 

experience 
-Students engage in 

math lesson 

-Students bullied at 
school 

Motivation/ Attitude 
-Students like learning maths 
-Students value learning maths 

-Student’s confidence in maths 

Themes identified in preliminary analysis   

 There is a shortage of good professionally committed teachers for higher mathematics. Most 

of the mathematics teachers are engaged with private tuition as an extra earning source. 

Children have no other option than taking private tuition as the support from madrasa for both 

general and higher mathematics is inadequate. 

 Parents' religious belief is one of the reasons for sending their children to madrasas instead of 

usual schools. Parents wish some of their children to become an Imam, a teacher in a madrasa 

or an Islamic scholar. They want their daughters to learn Quran reading and hadith, pray Salah 

regularly and get married with a man of their choice as soon as possible. In doing so, studying 

higher mathematics is not in their priority list as their daughters and even sons can pass other 

subjects easily.   

 Children seem to have confusions and frustrations about the value of their madrasa education 

compared to the education from general schools as there are local discourses that government 

is less interested about their madrasa qualifications. 
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Background 

The relation between culture and mathematics education has been evident since long but taking 

advantage of pupils’ cultural identity to increase students’ engagement has not been focused much in 

Norway. Culture is closely interwoven with children’s routine. It can provide a gateway to connect 

mathematics and science education to their daily life experiences. Culture, in this project, is not 

mainly or only centered towards pupils’ ethnicity but will employ their personal cultural identity 

(interests, leisure activities, hobbies etc.) as a stimulating source for designing the teaching activities. 

Due to increased immigration, many different cultures have been introduced in Norwegian schools. 

Students having various cultural backgrounds may feel alienated in classroom activities and find it 

difficult to follow current classroom teaching. School leaders in Norway are also familiar with these 

increasing hetrogenous cultural issues and thus have began accepting and implementing culturally-

relevant changes in their respective school systems (Jacobson, Johnson, Ylimaki, & Jacobson, 2013). 

The LOCUMS (Local Cultures for Understanding Mathematics and Science) project aims at finding 

out how students’ engagement in mathematics and science gets affected when they themselves are 

asked to influence the starting point of teaching-learning process. Initiating their education process 

by first asking the students to provide relavant input about their own culture, for example, likes, 

interests and leisure activites to the teachers and researchers, they are assumed to get an autonomy, 

control and a part of responsibility of what they want to learn. Their desires will plausibly serve as an 

inspiration to the educators for designing the teaching-learning activities, and also as a possibility for 

the pupils to bring forward their own cultural identity in the class. Ascribed to the fact that 

commencement of teaching-learning situation would be derived by students’ interests and activities 

they want to learn more about, we consciously use the term culturally-inspired mathematics and 

science education to describe the attention of this project. This notion allows us to bring in culturally-

responsive mathematics and science teaching in the form of interactive cooperation between teacher 

and students in Norwegian multicultural classrooms.  

Theoretical framework 

The aim of my project is to study changes happening in the knowledge gaining process of pupils as a 

result of engaging them in culturally-inspired activities surrounded by intercultural context (students 

work in groups). Therefore, we find socio-cultural and cultural-historical activity theories to be 

relevant. In addition, we will draw on research related to ethnomathematics, culturally-relevant 

pedagogy and instruction (Ladson-Billings, 1994; Rajagopal, 2011), and culturally-responsive 

teaching (Gay, 2010), as they suggest an educational approach that advocates valuing students’ 

cultural background and prior experiences in the same way as socio-cultural theory. These themes 

favor cherishing cultural diversity present in the class to enrich the socio-cultural surroundings of 



diverse students so that they can learn effectively. Nevertheless, it does not mean that the teacher 

should teach in a “black” or “asian” way, but the level of educational activities should be reachable 

from and meaningful for students’ personal level of understanding. Simultaneously, involving their 

interests in planning the lessons can motivate them to learn using their own culture. Therefore, we 

belive that this literature would enrich and facilitate our project to enhance the learning experiences 

of diverse children in Norwegian classrooms. 

Methodology 

Being a problem driven pragmatic and empirical research, the aims to be fulfilled during the course 

of this project are justified by using a combination of design-based and action-based research 

methodology. The first student projects were designed and finalised with the cooperation of teachers, 

school leaders and students and, as the participators would be the practitioners as well, it shapes itself 

as action research. An iterative design cycle (3 repetitions) would be employed for each of the three 

planned student projects we plan to work out throughout the project. Until now, we have collected 

data from the first iteration of our initial student project. 

Plan of action 

Some of the classroom interventions are planned to be executed in a multicultural school in 

Trondheim. In the first trial, pupils’ input on their aspirations was collected through questionnaires. 

Accordingly, teachers and researchers planned and implemented the new teaching-learning strategies. 

The classroom activities were audio and video recorded. Teachers and researchers will now review, 

analyze and reflect those recordings to find and correct up eventual shortcomings in the first attempt. 

Further, two following iterations would adopt similar pattern as the first one and each part of data 

collected would be observed both before and after each student project to capture the changes in 

students’ engagement, participation and learning. Data analysis will be carried out in the light of 

socio-cultural and activity theories. 
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Introduction 

The debate on visual culture raises questions that have been stressed in the educational research, such 

as the role of the image in the process of subject-formation and the visuality as a form of knowledge. 

Visual Culture is an interdisciplinary field that combines arts, philosophy, anthropology, and cultural 

studies. The main point of this field is the question of visuality, which means focusing on the 

relationship between the seen and the seer. In short, the target of Visual Culture Studies is not an 

object at all, but it “consists of things we can see or whose existence is motivated by their visibility; 

things that have a particular visuality or visual quality that addresses the social constituencies 

interacting with them” (Bal, 2003). Thus, the term of visuality has become an important keyword for 

this field (Mirzoeff, 2006), because it refers to the vision and visuality are both socially and 

historically constructed.  

With regards to mathematics education research, Flores (2012) has proposed this perspective of 

visuality to investigate how images, particularly paintings, affect and are affected by Cartesian 

perspectivalism visual practices, as well as to grasp the fabrication of a certain mathematical 

rationality to look and to think within the realms of culture. The author has considered  

the term ‘visuality’ instead of ‘visualization’, because the former leads to a deconstruction of the 

founding principles of sense of vision and perception. In contrast, visualization is understood as a 

process of construction and transformation of mental images, whereas visuality is the sum of 

discourses that inform how we see. Thus, while the latter is concerned with learning geometry’s 

concepts and visual skills, visuality discusses visual practices in the context of history and culture. 

(p. 7060).  

Thus, at stake is a kind of mathematical thinking presents in contemporary school practices and that 

is provoked notably itself through images of arts (Flores, 2016).  

Going through infinity 

In response to this, we have been examining historically the artistic practices of infinity considering, 

particularly, those involving the discussions of perspective in renaissance painting. Furthermore, we 

have analysed modern paintings exhibiting characteristics of a classical system of visuality, which 

means using concepts of harmony, symmetry, parallelism and perspective. On a whole, we have 

found not only that our way of looking is shaped within an already built field of techniques and 

discourses, but also that mathematics ideas play an important role in the constitution of how we think. 
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Being in the diversity 

In the methodological path of cartography, Schuck (2015) has developed an intervention plan with 

alcohol and drugs dependents in treatment on a Psychosocial Care Center in Florianópolis, Brazil, in 

2014. Four workshops were conducted and each one was centered on images suggesting the infinity 

idea. By focusing on discourse analyses, interpreting multi-faceted narrative, looks and affections by 

the subjects involved, it was possible to highlight the effects of looking at infinity rather than ‘truth’ 

per se. For instance, seen from the perspective of the people involved, the ways of looking at infinity 

deal with reflections situated between the mystical and the emotional experiences such as 

nothingness, emptiness, freedom. In this regard, we call attention to two points: “mathematical mind-

set” is not the sole result of a schooling regime; and subject’s visual subjectivities emerge in the 

entanglement of the individual in discursive formations. In order to discuss this, we, in the poster, 

displayed some information concerning on the visualization and visuality, the cartography as research 

methodology, the workshops itself, and the discourses about infinity staged by the people involved 

in the intervention mentioned above.   

Following Foucault’s assumptions, we consider that by a better understanding of how a certain kind 

of mathematical visualization has been constituted within the sociocultural practices might contribute 

not only teacher education but also mathematics learning practices. In sum, we bring under our 

attention that both mathematical rationality and visualization are staged and configured within the 

diverse sociocultural practices.  
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TWG11: Comparative studies in mathematics 

education 



Introduction to the papers of TWG11:  

Comparative studies in mathematics education 

Paul Andrews, Eva Jablonka, Miroslawa Sajka and Constantinos Xenofontos 

As with earlier CERMEs, TWG 11 adopted an eclectic perspective in its interpretation of comparison 

as referring to any study that documents, analyses, contrasts or juxtaposes cross-cultural or cross-

contextual similarities and differences across all aspects and levels of mathematics education. In this 

way the TWG aimed to encourage critical but supportive discussions around a number of 

predetermined and emergent themes. 

A recurrent but very productive aspect of this working group has been the relatively small number of 

paper presentations. This year ten papers and three posters created space not only for colleagues to 

share their research in detail but allowed participants to engage in lengthy and inclusive discussions 

on the nature of comparative mathematics education research and the means by which it can be 

meaningfully and rigorously undertaken. As is shown below, the different paper contributions fell 

naturally into four themes, each reflecting significant substantive and methodological variation.  

Firstly, two papers, with very different foci and methodological conceptualisations, framed a 

discussion on the importance of identifying an appropriate unit of analysis. This issue, while of 

importance in all research, is particularly foregrounded in comparative research. One of the two 

papers, Sajka’s eye-tracking examination of different response groups’ visual attention to the 

statement of a mathematical problem showed that such groups respond in culturally conditioned 

ways. The second of these two papers, Clarke, Mesiti, Cao and Novotna’s study of the culturally-

located variation in the vocabulary of the typical school mathematics classroom, foregrounded the 

importance of understanding that much mathematic didactics vocabulary may be culturally unique. 

Importantly, both studies exposed hitherto unconsidered demands with respect to what is actually 

being analysed. 

A second theme could be found in the three papers construed as having a tacit focus on beliefs. Firstly, 

Andrews and Xenofontos presented a quantitative analysis of Cypriot and Greek initial teacher 

education students’ understanding of a hypothetical solution to a non-arithmetical linear equation. 

They found considerable emphases on rote solution methods although Cypriot students were more 

articulate on the matter than their Greek colleague. Secondly, Koljonen’s case study of one Swedish 

teacher’s deployment of the teacher guide associated with a translated Finnish textbook showed how 

teachers’ responses to such materials, irrespective of any instructional material they contain, are 

interpreted by culturally-determined expectations of what is appropriate. Thirdly, Nosrati and 

Andrews interviewed Norwegian and Swedish upper secondary students about their experiences of 

school mathematics and found a dominant perception that the purpose of school mathematics is to 

prepare students for a successful economic engagement with the world. All three studies highlighted 

well the extent to which mathematics classroom participants’ perspectives are informed by culturally-

located beliefs. 

A third theme, also reflected in three papers, concerned mathematics teacher knowledge. In the first 

of these, Kingji-Kastrati, Sajka and Vula used an extant test to examine Kosovar and Polish teacher 

education students’ knowledge of fractions. In the second, Tchoshanov, Quinones, Shakirova, 



Ibragimova and Shakirova used a battery of TIMSS-derived test items to examine differences in US 

and Russian lower secondary teachers’ content knowledge. Both studies highlighted substantial 

differences in the content knowledge of the groups under scrutiny. Finally, Xeonfontos and Andrews 

examined Cypriot and Greek students’ didactical explanations of the same hypothetical solution to a 

non-arithmetical linear equation as discussed above. In this case, Cypriot students’ explanations were 

more didactically robust than their Greek colleagues. All three papers confirmed the extent to which 

mathematics content knowledge is a not the culturally independent body of knowledge assumed by 

international studies of student knowledge. 

The fourth theme drew on two papers framed by the anthropological theory of didactics (ATD). 

Firstly, Modeste and Rafalska’s drew on ATD’s of didactical transposition, or the transformation of 

academic knowledge to that knowledge taught, to highlight differences and similarities in the 

presentation of algorithmics in the curriculum materials of Ukraine and France. Secondly, Asami-

Johansson, Attorps and Laine exploited ATD’s concept of praxeology, which provides the methods 

for solving a domain of problems (praxis) and a structure (logos) on the discourse those methods, to 

compare the practices of case study teacher educators in Japan, Finland and Sweden. The two studies, 

in addition to highlighting substantial differences between the cultural groups under scrutiny, showed 

how different elements of ATD can be productively employed in cross-cultural studies. 

Finally, three posters, each with different foci and methodologies, were presented.  Haara, Bolstad 

and Jenssen, as preparation for a later Norwegian study, presented a research review on mathematical 

literacy in school. Istúriz, González-Ruiz, Diego-Mantecón, Recio, Búa, Blanco, González and Polo 

reported on an Erasmus project in which students in different countries develop activities to integrate 

art into STEM activities. Finally, Tesfamicael, Botten and Lundeby presented a comparative analysis 

of Norwegian and Ethiopian textbooks presentation of relations and functions. 

Overall, the papers and posters presented to the group reflected not only cultural diversity but also 

methodological pluralism. For example, studies included those that were informed by a priori 

theoretical assertions and those that were not. There were equal numbers of qualitative and 

quantitative studies focused on a range of aspects of children’s and teacher education students’ 

learning of mathematics. All studies confirmed the extent to which mathematics and its teaching and 

learning are culturally normative. 



Beginning teachers’ perspectives on linear equations: A pilot 

quantitative comparison of Greek and Cypriot students 

Paul Andrews1 and Constantinos Xenofontos2 

1Stockholm University, Sweden; paul.andrews@mnd.su.se 

 2University of Nicosia, Cyprus; xenofontos.c@unic.ac.cy 

In this paper we examine aspects of beginning primary teachers’ understanding of linear equations. 

First-year teacher education students on a programme in Cyprus (12 Greek and 21 Cypriot) were 

shown a solution to the equation x + 5 = 4x – 1 comprising four rows of mathematically correct 

algebra but no commentary. They were asked to explain, in writing, the solution to α friend who 

had missed the lesson in which such equation solving processes had been taught. Analyses found 

almost all students, irrespective of nationality, writing about knowns and unknowns before offering 

a ‘change the side and change the sign’ rule. However, a major difference was that Cypriot 

students’ accounts typically included an objective for the equation solving process, which the Greek 

students’ did not. 

Keywords: Linear equations, comparative research, Cyprus, Greece, teacher education. 

Introduction 

The topic of linear equations occupies an important position in students’ learning. It “stands on the 

border between mathematics as concrete and inductive and mathematics as abstract and deductive”, 

offering “one of the first authentic opportunities for them to connect their understanding of 

arithmetic to the symbolism of mathematics” (Andrews & Sayers, 2012, p.476). Yet, it is a difficult 

topic to teach well, because when learning arithmetic, learners typically come to see the equals sign 

as an instruction to operate (Kaput et al., 2007). This operational perspective (McNeil & Alibali, 

2005) creates few problems with respect to arithmetical equations, with the unknown in one 

expression, because it supports a process of operation reversal (Herscovics & Linchevski, 1994; 

Kieran, 1992). However, non-arithmetical equations - the unknown in both expressions - requires a 

relational (Kieran, 1992) understanding of the equals sign as an assertion of equality between two 

expressions (Alibali et al., 2007; Filloy & Rojano, 1989) in order that they can operate on the 

unknown as an entity. In short, students find equation solving problematic because operational 

perspectives on expressions like 3x+1 prevent their being construed as objects subject to, in 

relational terms, operations themselves (Kieran, 2004). Furthermore, to compound students’ 

difficulties, teachers’ practices frequently collude in the maintenance of an operational perspective 

on the equals sign (Haimes, 1996; Harel et al., 2008; Stephens, 2008), highlighting a need to 

evaluate the equations-related understandings that beginning teachers bring to their courses. This 

reflects the aim of this pilot study and an atypical approach, which is described below. 

Perspectives on the teaching and learning of linear equations 

Typically, research on equation solving has focused on approaches to the solution of non-

arithmetical equations, not least because their solution poses few conceptual difficulties. In this 

respect, the most widely criticised is redistribution, a rote-learned, change the side, change the sign 

procedure (Nogueira de Lima & Tall, 2008), focused on transposing the equation so that the 



unknown finishes on the left-hand side and a value on the right (Filloy & Rojano, 1989). The 

unknown’s arbitrary leftwards movement perpetuates operational conceptions of the equals sign and 

fails to support students’ understanding that such movement does not change the equation’s equality 

(Capraro & Joffrion, 2006). Other approaches, like trial and improvement, support an understanding 

of the relational nature of the equals sign and the role of the unknown in context (Knuth et al., 

2005). However, while it may be an appropriate initial strategy in a teaching sequence, it is 

inefficient and does not support the learning of general equation solving strategies (Filloy & Rojano, 

1989). Other approaches(see Dickinson and Eade, 2004; Fong & Chong, 1995), present the equation 

as two rows of mathematical objects, one laid on top of the other, as in the representation of 2x + 10 

= 4x + 2 shown in Figure 1. Here, the authors claim, students can see easily how it reduces to 2x + 2 

= 10; an equation is amenable to an operation reversal procedure. 

 

Figure 1: A representation of 2x+ 10 = 4x + 2 

However, while such approaches be procedurally helpful and support students’ understanding of 

equations as manipulable objects, they may hinder students’ understanding of the invariance of the 

solution. Moreover, despite Dickinson and Eade’s (2004) optimistic arguments otherwise, they 

remain problematic with respect to negative coefficients (Marschall & Andrews, 2015). 

Finally, in studies of teachers’ unprompted approaches to equation solving, the balance scale has 

been the most widely reported, being the approach of choice in case studies from, for example, 

Canada (Haimes, 1996), Finland, Flanders and Hungary (Andrews & Sayers, 2012), New Zealand 

(Anthony & Burgess, 2014) and Poland (Marschall & Andrews, 2015). Here the solver manipulates, 

through addition or subtraction, weights on scale pans, while keeping the scales in balance. Its 

advocates argue that it helps students see the equation as a whole and not an instruction to operate 

(Warren & Cooper, 2005). Moreover, it supports an understanding of the need to do the same to 

both sides (Anthony & Burgess, 2014) and underpins the symbolic foundations of later algebraic 

formalisms (Andrews, 2003). Systematic attempts to evaluate the balance’s efficacy have shown 

that it helps students to understand the principles of equations, solve non-arithmetical equations 

with understanding, particularly from the perspective of doing the same thing to both sides (Araya et 

al., 2010; Warren & Cooper, 2005) and facilitates students’ acquisition of an appropriate vocabulary 

(Vlassis, 2002). Its critics argue that it cannot represent negatives in anything but a contrived way 

(Pirie & Martin, 1997), a criticism supported studies showing teachers simulating the tying of 

helium filled balloons to scales to counter the weight of objects in the scale pans (Anthony & 

Burgess, 2014). 

In this paper we explore how students following an initial primary teacher education programme in 

Cyprus construe non-arithmetical linear equations. Due to Greek being the language of instruction, 

the programme includes both Cypriot and a high proportion of Greek students. 

Methods 

Shortly after the start of their course and before they had been exposed to university mathematics 

teaching, students were shown a solution to the equation x + 5 = 4x – 1 and asked to write a short 



account of how they would explain it to someone who had missed the lesson in which it was 

introduced. The solution, with no additional narrative, was presented as follows 

x + 5 = 4x – 1 

      5 = 3x – 1 

      6 = 3x 

      2 = x 

A non-arithmetical equation was used for several reasons. Firstly, it could not be solved by means of 

a reversal of operations. Secondly, it should expose, in ways that an arithmetical equation could not, 

the underlying equations-related conceptions students bring to their courses. Thirdly, it would 

uncover the extent and depth of their equations-related procedural knowledge as, at each step, they 

would need not only to interpret and explain the solver’s hidden thinking but decide what would 

need to be made explicit to the unknown learner. It was believed that this would be a more effective 

means of uncovering students’ familiarity and understanding of the topic than a conventional test 

item and expose any pedagogical predisposition they bring to their course, as a result of their 

previous schooling. 

Analysis 

Students’ transcripts were subjected to a constant comparison analysis (Fram, 2013), whereby a 

transcript was read and re-read to identify different equations-related understandings. This was 

followed by the next transcript being read and re-read in order to find further evidence of the 

original codes and any new ones not seen in the first. If new categories were found then the earlier 

transcript was re-read in case they had been previously missed. This process continued for all 33 

transcripts, a number typically thought sufficient to achieve categorical saturation, and yielded seven 

categories of understanding, which can be seen in Table 1.  

With respect to demonstrating the emergence of these categories, we turn to Ekaterini, a female 

Cypriot student, who wrote that 

To solve this exercise we have to first set apart the known from the unknown numbers. The 

known numbers are the ones that don’t include a letter, as for example, 5 and -1. Unknown 

numbers are the letters or the numbers that are accompanied by a letter, for example, 4x and x. 

Ekaterini’s comment about separating the known from the unknown implies an implicit objective 

for equation solving; in essence, solving an equation entails precisely that. In the same sentence can 

also be seen evidence of her awareness of the unknown and its role in equation solving. In the 

second and third sentences she goes further and defines an unknown. She then wrote (her 

parentheses): 

To separate the two, the known numbers should be on one side of the equation, for example, on 

the left side, as we solved it in the class, while the unknown numbers should be on the other side. 

Later, I added 5 + 1 (whose sign has changed because it moved to the other side of the equation) 

and subtracted 4x – x (again the sign changed because x has moved to the other side of the 

equation and when there is x or y alone this means 1x or 1y). Finally, I reached 6=3x and so I 

divided 6 by 3 so that x is equal to 2. 



Throughout this paragraph runs a rote procedure for equation solving invoking two simple 

instructions. The first is that knowns must be moved to one side of the equation and unknowns to 

the other. The second is that when an object moves from one side of an equation to the other its sign 

changes. Finally, having achieved this objective, an understanding of the role of inverse operations 

is invoked to divide the total of the knowns by the coefficient of the unknowns. Within this 

procedure, as with many of the students’ suggestions, is evidence of flexibility in that it does not 

matter to which side of the equation which type of object travels, implying that it may be a matter of 

convenience.  

Articulating an awareness of the unknown 31 

Defining what is meant by an unknown 15 

Offering an implicit objective for equation solving 18 

Offering an explicit objective for equation solving 1 

Offering a rote procedure for equation solving 29 

Articulating an understanding of the role of inverse operations 26 

Offering an unspecified process for equation solving 4 

Table 1: The seven categories of understanding elicited from the data 

With respect to the remaining two categories, only one student offered an explicit objective for 

equation solving. In this case, Irene, a Cypriot female, wrote that the “question in this equation is to 

find ‘x’ and what value it has”. Finally, four students wrote of an unspecified procedure. For 

example, Moira, a Greek female wrote, “I would tell the student that we separate the known from 

the unknown numbers and then make the calculations”. From her comment we inferred three 

perspectives on equation solving; an implicit objective tied to separating the known from the 

unknown, an awareness of the unknown and an unspecified procedure. The seven categories of 

response, along with their respective frequencies, can be seen in Table 1. 

Results 

The figures of Tables 2 and 3 show which of the seven categories identified by the constant 

comparison analysis were found in the accounts of the Greek and Cypriot students respectively. 

From these can be inferred both similarities and differences. With respect to the former, several 

similarities were identified. Firstly, with a single exception in each country, students’ explanations 

showed an explicit awareness of the unknown. Secondly, a very high proportion of students from 

both countries - only four students did not - offered a rote procedure for solving the equation and of 

these, all focused on the mantra, change the side change the sign. Thirdly, only five students did not 

write in ways indicative of their understanding inverse operations, although this was typically seen 

with respect to explaining how the solution is reached from the point where 6=3x, as in Chloe’s 

comment that “after reaching 6=3x, we divided 6 by 3 so that x will be by itself”. Fourthly, around 

half of all students in each group defined what they meant by an unknown 



.  

 Greek student A B C D E F G H I J K L 12 

Aware of unknowns 1 1 1 1 1 1 1 1 1  1 1 11 

Defines unknowns  1   1 1   1  1 1 6 

Implicit objectives      1     1  2 

Rote procedure 1 1 1  1 1   1 1 1 1 9 

Inverse operations  1 1  1 1 1   1  1 7 

Unspecified process    1   1 1     3 

Explicit objectives             0 

 2 4 3 2 4 5 3 2 3 2 4 4 3.17 

Table 2: Distribution of Greek students’ equations-related insights 

With respect to differences, only two Greek students offered any sense of objective, albeit implicit, 

for the equation solving process compared with 17 of the Cypriot, of which only one, student F, 

offered an explicit goal. 

Cypriot student A B C D E F G H I J K L M N O P Q R S T U 21 

Aware of 

unknowns 
1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 20 

Defines unknowns 1  1 1    1       1 1 1  1  1 9 

Implicit objectives 1 1 1 1    1 1  1 1 1 1 1  1 1 1 1 1 16 

Rote procedure 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 

Inverse operations 1 1  1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 19 

Unspecified 

process 
   1                  1 

Explicit objectives      1                1 

 5 4 4 5 3 4 3 5 3 3 4 3 4 4 5 4 5 4 5 4 5 4.1 

Table 3: Distribution of Cypriot students’ equations-related insights 

The figures of Tables 2 and 3 show also that Greek students’ data yielded fewer codes per student, 

3.17, than their Cypriot counterparts mean of 4.10. Indeed, at the upper end of the spectrum the 

accounts of seven Cypriot students, A, D, H, O, Q, S and U, yielded five categories of response, 

compared with that of just one, F, Greek student. At the lower end, the accounts of four Greek 

students, A, D, H and J, yielded only two categories each, compared with zero Cypriot students. 

These differences were statistically significant in two ways. Firstly, a t-test showed differences in 

the mean number of codes were unlikely to be due to chance (t = 2.95, p = 0.006). Secondly, a chi-

square test performed on the data in Table 4 confirmed that variation in the number of codes yielded 

by each of the Greek students and Cypriot students respectively were unlikely to be due to chance 

(χ2 = 9.15, df = 3, p = 0.027). This difference in the codes, we argue is likely to be a consequence of 

differences in how the two systems introduced their students to linear equations; a possibility 

warranted by, for example, evidence that Cypriot students tended to specify objectives in their 

accounts in ways that their Greek colleagues typically did not. Finally, of the eight students whose 

accounts yielded five codes, seven yielded the same five. That is, they indicated an awareness of and 

defined the unknown; they offered implicit objectives and a rote procedure alongside an awareness 

of inverse operations related to division. In short, the most complete responses were typically the 

same. 



 

Number of codes per student 

 

 

2 3 4 5 

 Greek 4 3 4 1 12 

Cypriot 0 5 9 7 21 

 

4 8 13 8 33 

Table 5: Distribution of total number of codes per student per country 

Discussion 

The aim of this pilot study, the quantitative analyses for which are presented in this paper, was to 

explore the equations-related understanding primary teacher education students bring to their 

courses and, in so doing, evaluate the effectiveness of a simple to implement tool for later 

comparative use. In this instance comparison was made possible by the fact that courses in Cyprus 

are taught in Greek, making them accessible to Greek students. The results are methodologically 

encouraging but, acknowledging the fact that all respondents were prospective teachers, 

mathematically worrying, albeit with some qualifying strengths. 

Methodological encouragement stems from the evidence that students responded positively to the 

invitation and produced written accounts sufficient to expose their perspectives on or conceptions of 

linear equations. It was also encouraging that the tool was able to discriminate between the two 

cultural groups in its highlighting similarities and differences in students’ accounts that, we infer, 

reflect systemic differences in the ways in which linear equations had been experienced by these 

two sets of students as learners of school mathematics. In short, the tool proved fit-for-purpose. 

The mathematical disappointment derives in part from the lack of any evidence of students holding 

a relational (Kieran, 1992) conception of the equals sign, in that nothing said by any student 

indicated an understanding of the equals sign as an assertion of equality between two expressions 

(Alibali et al., 2007; Filloy & Rojano, 1989). Mathematical disappointment also derives from the 

very high proportion of students in both countries who seemed to construe equation solving as a rote 

process of ‘change the side and change the sign’. That is, the majority of students appeared to have a 

procedural rather than a conceptual perspective on equations in which symbols are moved around 

“with a kind of additional ‘magic’ to get the correct solution” (Nogueira de Lima & Tall, 2008, p.4). 

Indeed, even those students whose accounts yielded the most categories of response presented 

procedural perspectives with implicit objectives and rote procedures. However, in contrast with 

international research showing the balance as teachers’ preferred representation (Andrews & Sayers, 

2012; Anthony & Burgess, 2014; Haimes, 1996; Marschall & Andrews, 2015), no reference to the 

balance was made by any student. Indeed, with the exception of their implicit awareness of inverse 

operations, which we discuss below, nothing written by any student indicated a narrative based on 

performing the same action to both sides of the equation. 

Despite the negatives, there were some interesting positives. The majority of students, particularly 

the Cypriot, indicated an awareness of the role of inverse operations. In every case this occurred at 

the point in the solution where the step connecting 6=3x to 2 = x was discussed. Here, students 

indicated, albeit implicitly, an awareness that division was the inverse operation to invoke, insights 

that seem to confound the mechanical procedure of ‘change the side, change the sign’. Also, despite 

the highly procedural nature of their accounts, only two students, one from each country, did not 



demonstrate an awareness of the unknown. That is, students not only used an appropriate 

vocabulary but were generally aware of the function of the unknown in the equation solving 

process. Indeed, around half of all students from both groups offered a definition, typically 

implicitly, of the unknown, as in Carissa’s account in which she wrote, “I separated the known from 

the unknown numbers. Unknown x + 5 (known) = unknown 4x -1 (known)”. 

Finally, Cypriot students’ accounts yielded more response categories than their Greek colleagues, 

typically due to their tendency to offer objectives, again implicit, which their Greek colleagues did 

not. We speculate that such a difference may reflect cultural teaching norms; while the evidence of 

these students’ accounts indicates the outcome of procedural teaching this particular finding 

suggests that Cypriot teachers may warrant their procedural approaches to a topic in ways that their 

Greek colleagues may not. In sum, the responses from both sets of students indicated deep-set 

procedural perspectives on linear equations. It was clear that they had understood the task in that all 

their explanations were valid but, with both the Cypriot and the Greek curricula advocating that 

students learn a relational mathematics, the implications of this study for teacher education are 

profound. 
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In this study, we have observed three different teacher educators’ lessons, concerning area 

determination of polygons in primary school teacher training courses in Japan, Finland and 

Sweden. The aim of this paper is to investigate the main elements of the lessons and to compare the 

differences between the countries. We focus on how the teacher educators relate the didactic 

construction of the lessons for prospective teachers to the school mathematical and didactical 

organisations by applying Chevallard’s anthropological theory of the didactic (ATD). The analysis 

shows how the curricula and the different traditions of teaching practice in each country influence 

the mathematical and didactical construction of the lessons. 

Keywords: Teacher education, anthropological theory of the didactic, praxeologies, Japan, 

Finland, Sweden. 

Introduction 

The notion of didactic divide is introduced by Bergsten and Grevholm (2004) to illuminate the 

problematics within the teacher education in Sweden. They refer to Kilpatrick, Swafford and Findell 

(2001) stating that teacher education needs to provide opportunities for prospective teachers to 

connect different kind of knowledge, and if such connection is not realized, one may say there is a 

didactic divide between disciplinary and pedagogical knowledge of mathematics. Bergsten and 

Grevholm also illustrate the point of issue in teacher education citing Ball and Bass’s argument; 

“teacher education across the 20th century has consistently been severed by a persistent divide 

between subject matter knowledge and pedagogy”, a gap that “fragments teacher education by 

fragmenting teaching” (Ball and Bass, 2000 in Bergsten and Grevholm, 2004,  pp. 125-126).  

As an attempt to elucidate the phenomenon above within the teacher education in Sweden, we 

studied the lesson structures of mathematics education at the primary school teacher education 

programs, using a comparative study. For comparison, we chose Finland which had significantly 

high result in mathematical literacy among Scandinavian countries (OECD, 2013); and Japan, 

where teaching culture in mathematics seems to be more shared, compared to the US and Europe 

(Winsløw, 2012).  

The aim of this study is to investigate and compare lessons of three countries’ teacher education 

programs, type of teaching methods courses concerning area determination for teaching in school. 

Theoretical framework and research questions 

Chevallard proposed to study the mathematical knowledge in an institutional context; learning 

mathematics is extended to any other human activity and gives rise to the anthropological theory of 



the didactic (ATD). There, mathematics learning is modelled as the construction of praxeologies 

(Bosch & Gascón, 2007) within social institutions. A praxeology provides both methods for the 

solution of a domain of problems (praxis) and a structure (the logos) for the discourse regarding the 

methods and their relations to broader settings. Hence the praxis part includes types of tasks (T) and 

a technique (τ) to solve the task type and the logos part includes a technology (ө) which justifies the 

techniques and a theory (Θ), which further justifies the technology. The form of a praxeology is 

determined by a mutual interaction of a mathematical organisation (MO) and a didactical 

organisation (DO). The MO describes mathematical activities of the praxeology, and the DO 

describes the activities to support the learning or teaching of the MO.  

In the case of lessons of a teaching methods course in teacher education, types of tasks of the DO 

are usually to make prospective teachers (PTs) to learn the content knowledge and its teaching 

approaches. Teacher educators’ DOs promote the PTs to learn how to construct the praxeologies 

(the MO and DO) of their future lessons. We call the didactical praxeology of teacher education as 

the DOTE and school mathematical and didactical praxeologies encapsulated under the DOTE as 

MOSCH and DOSCH.  

DOTE 

↕ 

  (MOSCH ↔ DOSCH)            

The praxeologies (MOSCH ↔ DOSCH) demonstrated in the lessons are thus encapsulated in the 

teacher educators’ DOTE. 

To realize the aim of this paper, we addressed three research questions: 1.What are the main 

elements of each teacher educator’s didactical praxeologies in their lessons? In particular, (how) do 

they relate the didactic praxeologies of the lessons to school mathematical and didactical 

praxeologies relation to the area determination?  2. What are the main differences between the three 

lessons, concerning the research question 1? 3. What could be the wider explanations for those 

differences?   

In order to find out the answers to the research questions 1 and 2, it was necessary to identify the 

components of both the praxis and logos of the school praxeology (MOSCH ↔ DOSCH) presented in 

the lessons. Subsequently, we describe how the teacher educators’ DOTEs encapsulate the (MOSCH 

↔ DOSCH) in their lessons.  

To identify mainly the praxis part of the DOTE and the part of the encapsulated school praxeologies, 

video recordings were made; “Quantity and Measurement” by Mr. Matsui (Japan, with 53 PTs), 

“Area of Polygons” by Mrs. Laine (Finland, with 34 PTs) and “Area and Perimeter” by Mrs. 

Nilsson (Sweden, with 20 PTs). The teacher educator in Finland is the third author of this paper. 

The names of the educators in Japan and Sweden are pseudonyms. 

The questionnaire consists of eight questions and we consider that some of the questions may 

support to identify different components of the DOTE and (MOSCH ↔ DOSCH). For instance, Q1: 

“What do you intend the prospective teachers (PTs) to learn on this content (e.g. area of polygons)?” 

is related to identify the components of the logos part of the MOSCH and what is prioritized in the 

DOTE. Also, Q4: “Which kind of difficulties connected with teaching the content” and Question as 



Q7: “What are your teaching procedures and particular reasons for using these to engage your 

teaching?” gives an indication to identify the technology (ө) and the theory (Θ) of the DOTE. 

Studying the answers to those questions is also relevant to the research question 3, since the Q4 and 

Q 7 particularly may give us the picture of what kind of conditions and constraints in each context 

form the praxeologies in each country.  

Further, we studied each country’s curricula and textbooks concerning the chapter of measurement 

to reinforce the investigation concerning the research question 3. We selected the chapters 

concerning measurement, since the lessons in all three countries more or less deal with the 

introducing the area determination of rectangles using arbitrary objects 

Results and analysis 

Curriculum concerning measurement in each country  

In the Japanese guideline for the curriculum for grades one to six (MEXT, 2008), the determination 

of length, area and volume is described in an own chapter Quantity and Measurements, between the 

chapters of Arithmetic and Geometry. The contents for each grade are described in detail with 

concrete teaching proposals. As guidelines for teaching methods, it is stressed to build on pupils’ 

previously learned knowledge and their various ways of solving problems. The introduction of the 

chapter consists of four phases; direct comparison, indirect comparison, comparison using arbitrary 

objects, comparison using standard units. This order is clearly followed by Japanese textbooks 

(Miyakawa, 2010). 

The content regarding quantities, units and measurement are shortly described in the chapter 

Geometry and Measurements in the Finnish curriculum (Finnish National Agency for Education, 

2014) and in the chapter Geometry in the Swedish curriculum (Skolverket, 2011). These curricula 

do not give any practical guidelines for teaching the contents. In Sweden, textbooks are not 

controlled by the ministry. The presentations of those contents in the textbooks for grades 1-3 are 

often placed in sections covering Arithmetic (e.g. Brorsson, 2013), although the Swedish curriculum 

introduces them in Geometry. Unlike the Japanese curriculum, the four phases of the introduction of 

the concept of measurements are not known in Sweden, some textbooks introduce direct 

comparison and comparison using standard units at the same time (ibid.). Also, the problem that 

corresponds to the indirect comparison is not addressed in most textbooks1. Comparing these two 

contexts, we might state that the Japanese curriculum does not give much space for different 

interpretations of its contents. It provides a suggestion of a uniform teaching approach for textbook 

authors and the users. We assume the reason that many Swedish textbook authors locate the section 

of measurements in the domain of arithmetic, is to enable a natural connection between area 

calculations and the basic arithmetical operations. It indicates that different textbooks provide 

different teaching approaches in Sweden.  

Lesson observation “Quantity and Measurement” in Japan 

Mr. Matsui is the lecturer of the course “Arithmetic Education” in a state university located in the 

middle part of Japan. He has worked as a mathematics teacher in lower secondary school for 14 

                                                 
1 We have not completed the investigation of Finnish textbooks yet. 



years and as teacher educator at universities for 12 years. He explains the four phases in the process 

of pupils learning about measurement by referring to the curriculum guidelines and clarifies those 

different comparison methods for the class. Thereafter, he discusses how the above mentioned four 

phases are treated in digital textbooks for grades one to five. The second half of the class is spent to 

experience the structured problem solving approach. This approach emphasises learner’s active 

participation in mathematical activities, challenging problems and collective reflections (Stigler & 

Hiebert, 1999). Mr. Matsui lets the PTs find out several different methods for the determination of 

the area of parallelograms aiming to teach pupils of grade five. Four PTs draw pictures and explain 

their different solutions on the blackboard (see Figure 1). Mr. Matsui points out the different kinds 

of “shifts” used by the PTs, and categorises them in: using the sum of the squares (Figure 1 in the 

middle), “parallel translation” (top left), “rotation” (bottom left), “same area transformation” (top 

left and bottom left) and “double area transformation” (top right). Then, he explains the formula for 

the area of parallelogram as height times length since the geometric transformations shows that the 

width (or height) and length of the parallelograms corresponds to those of rectangles. In the same 

way, he gives a final problem to find out methods for determining the area of trapezoids, using same 

didactical approach, and concludes the formula for the area of trapezoid; (a + b) h/2. 

 

Figure 1: The solutions of the prospective teachers 

Findings: The (T) of the DOTE in this episode is to let the PTs experience what the MOSCH and the 

DOSCH of “determination of area of a parallelogram and trapezoid” can look like. There, (T) of the 

DOSCH is to encourage the pupils to find out different solving methods of determination of area of a 

parallelogram and trapezoid to lead to establish the formula. To anticipate how pupils in grade five 

would solve area determination, Mr. Matsui makes the PTs participate in an exemplary lesson using 

the structured problem solving approach. He let them follow up one of the (τ) of the DOSCH ‒ 

whole-class discussions, where the (ө) of the DOSCH ‒ applying the statement of pupils’ previous 

experienced MOSCHs – is demonstrated. Those components of the DOSCH promote to construct a 

praxeology where several local MOSCHs from the previous to the forthcoming grades are connected. 

The Guidelines is both the technique (τ) and  the technology (ө) of the DOTE, since it suggests 

different kind of fundamental didactical approaches; e.g. using pupils’ previous knowledge from 

grades one to six, and the use of  divers didactical terms of the measurements (direct, indirect, 

arbitrary comparisons, standard units) and area determination (e.g. “same area transformation”). 

Lesson observation “Area of Polygons” in Finland 

The observed lesson is a workshop using manipulatives in the course “Didactics of Mathematics” 

for prospective teachers for grades one to six in a state university located in southern Finland. Mrs. 

Laine, the lecturer of the course, has worked as mathematics teacher in primary and lower secondary 

school for 5 years, thereafter, as teacher educator for 16 years. Previously she explained 



classification of mathematical figures (e.g. set of squares belong to set of rectangles, and set of 

rectangles belong to set of parallelograms…), line symmetry and rotational symmetry, perimeter and 

the area of polygons, property of circle, concept of scale. Today, the PTs move between six different 

tables to work practically with above mentioned concepts. The PTs work in groups using a 

compendium giving them instructions how to demonstrate those mathematical concepts practically 

for pupils. The compendium is written by Mrs. Laine and she also moves between the tables to give 

advices to the PTs on to how solve the tasks the compendium suggests. In this paper, we focus on 

the workshops “Area of Polygons” and “Area and perimeter”.  

In accordance with the description in the compendium, one PT in a group plays the “teacher role”. 

As it is prescribed in the compendium, the “teacher” explains how to calculate the area of rectangles 

by using grid paper with squares of 1cm2. PT1 reads the text in the compendium and explains that 

the sum of the squares is equal to the area of the rectangle. In the compendium, it is emphasised that 

teachers shall promote pupils to use an inductive way of working/learning. It means, letting pupils 

experience how to calculate the area of different types of rectangles, and have them find out the 

formula “height times length”. The next task is to find out the formula for the area of a 

parallelogram. The compendium describes the method of parallel translation (however, these 

didactical terms like parallel translation and same area transformation were not observed in the 

lesson) and explains that the same formula as for rectangles can be applied. PT2 explains this 

method by drawing the figures for their colleagues. In the same way, the PTs explain to each other 

the method of area determination of triangles, by reflecting the instruction in the compendium: 

“make a parallelogram by drawing two similar triangles and let pupils notice that area of the one of 

the triangle is the area of the half parallelogram”.  

The next task “Area and perimeter” is to make different kinds of quadrangles with area 12 cm2. Ms. 

Laine encourages the PTs to make even irregular quadrangles with the same area. The PTs test to 

make several different shapes of quadrangles and eventually notice that the perimeter do not need to 

be the same even the area is same. Ms. Laine then asks the group that how a figure does look like in 

order to have big perimeter. PT3 makes a long slim rectangle and shows it to others. Then PT4 

wonders and asks Mrs. Laine, “why does it work in that way? Are there any rules to be able to 

describe?” then Mrs. Laine answers, “it has to do with the inductive way of working in lower 

grades. We can derive understanding toward this phenomenon by working with many single cases in 

the lower grades. That is good enough on these levels (lower grades)”. 

Findings: In the first episode, the task (T) of the DOTE is to let the prospective teachers learn 

“inductive way of teaching/learning” to make school pupils find out the formula of area of a 

rectangle. There, the description from the compendium with exercises (workshop) and role-play are 

the DOTE (τ) to let the PTs to experience the praxeology of the school lessons (MOSCH ↔ DOSCH). 

Using the compendium and the statement of (not mathematical) induction is the DOTE (ө) to justify 

the praxis of the DOTE. The compendium describes directly (MOSCH ↔ DOSCH) where e.g. the 

MOSCH (τ) is figures, counting of the grids and multiplication, also the (ө) are standard units and 

commutative property of multiplication. Consequently, the DOSCH (τ) is to let pupils try to count 

different kind of rectangles’ area to find out the formula by their own. Here, the use of the inductive 

way of thinking is an essential element of the didactic technology of both the DOTE and DOSCH 

about the teaching of concept of area determination. 



In the last episode, PT4 wants to know the theory level of the MOSCH regarding the area and 

perimeter. However, Mrs. Laine’s DOTE (τ) consistently aims to inform the prospective teachers the 

(ө) of the DOSCH –“derive the understanding toward this phenomenon through many single cases” 

and do not aim to create a technological discourse of the MOSCH.  

Lesson observation “Area and Perimeter” in Sweden 

The course Mathematics and Learning for Primary School, Grades 4-6 Teachers II, Geometry, in a 

state university located in middle of Sweden, treats the knowledge in mathematics and mathematical 

education in relation to the current Swedish curriculum. The lecturer Mrs. Nilsson has worked as a 

mathematics teacher in grades 4-7 in 13 years and as teacher educator in 12 years. To begin with the 

lesson, she asks the PTs to write down what are their “own perceptions of the area”. Then she gives 

five group-exercises concerning area and perimeter. The sixth exercise consists of determining the 

area of different polygons by using Geo-board. Mrs. Nilsson demonstrates a method for area-

determination of an isosceles triangle by using a rubber band around the triangle. She divides the 

rectangle into two squares which are in turn divided into two halves. Half of the area of the squares 

is subtracted from the each side. Now, the PTs ponder the method for area-determination of another 

isosceles triangle in groups.  

 

       2a    2b       2c   

 

Figure 2a: an isosceles triangle. 2b: with an auxiliary line. 2c: PT6’s figure 

Mrs. Nilsson then demonstrates PT5’s solution where the same method is applied as the one she 

explained. (See Figures 2a & 2b). 4 – 1 – 1 – ½ = 1½ (area units). Then PT6 asks if he can apply the 

formula of the area determination for a triangle. He explains; first, dividing the original triangle into 

two triangles with the base of 1.5 length units (see Figure 2c), and then adding the area of the two 

triangles. This gives the area, (1.5 ∙ 1)/2 + (1.5 ∙ 1)/2 = 0.75 + 0.75 = 1.5 (area units). Some of the 

PTs express that they do not grasp directly how it works. Then Mrs. Nilsson comments “one (a 

pupil) can understand (this method) if he/she has more mathematical skills”. 

Findings: The (T) of the DOTE is making the PTs to learn a teaching method regarding area 

determination of isosceles triangles with manipulatives, where the MOSCH (τ) is the division of 

figures and subtraction of area. However, the DOTE (τ) and DOSCH (τ) – using Geo-board – ensures 

actually several another mathematical techniques than Mrs. Nilsson has planned to apply. This 

caused a breaking of a didactical contract (Brousseau, 1999) when the PT6 proposed another 

technique. Mrs. Nilsson’s intention was to train the PTs’ algorithmic skills with one technique. She 

let PT6 explain his alternative technique, nevertheless, did not validate it. Her intention was not to 

discuss the viability of different mathematical techniques for the grade five class but to establish a 

certain technique which is possible for all prospective teachers to manage. The didactic theory of the 

DOTE is difficult to identify from the observation.  

The summarized answers to the questionnaires  

Mr. Matsui states that the PTs should learn area of polygons can be determined in various ways by 

using pupil’s previously learned knowledge. He stresses also that the prospective teachers should be 



able to use some mathematical terms; the terms describe the various methods for area 

determination. He mentions also that the PTs should know the flow of the problem solving closely. 

Ms. Laine’s intention in this lesson is, each method of area determination of polygons area is related 

to each other; the area of parallelogram is based on rectangles, and the area of triangles is based on 

parallelograms. She emphasizes the importance of the application of inductive ways of working to 

find a general result, by examining a number of specific examples. She describes her PTs’ 

fragmental knowledge of the formulas for area determination.  During her lesson, she often 

discusses pupils’ misconceptions of area and perimeter to let the PTs realise their own 

misconceptions of this content.  

Mrs. Nilsson remarks her PTs’ difficulties and limitations concerning geometrical figures. Some of 

them have learnt formula for area determination superficially and sometimes incorrectly. Also their 

perception, “geometry is a difficult subject” blocks their learning process. Furthermore, the PTs 

have not developed mathematical terms that allow them to explain their solutions. To deal with 

these difficulties, she uses manipulatives to give them concrete ideas of different mathematical 

concepts and train to establish their own interpretation of the concepts. To train their mathematical 

communication skills, she uses group discussions with workshops.   

Final discussion 

The detailed Japanese curriculum with sufficient specifications about the teaching approach, the 

tradition of the structured problem solving and the textbooks adopting the same teaching approaches 

‒ all these factors contribute to give practical hints about how to design the lessons with 

epistemologically connected praxeologies to a Japanese teacher educator. It becomes explicit for the 

prospective teachers how to construct mathematics lessons in which alternative techniques are 

assessed and a technological discourse is taking place. Also, as it is described in Mr. Matsui’s 

answer to the questionnaire, a didactical terminology that describes mathematical techniques such as 

“same area transformation” is collectively used. It leads to the knowledge of the MOSCH ↔ DOSCH 

being institutionalized in the community of teacher educators and prospective teachers.  

In Finland, the explicit didactical theory of the DOTE (the compendium applying the inductive way 

of thinking) supports the PTs to learn the knowledge of the MOSCH ↔ DOSCH. However, the 

analysis from the lesson observation indicates a limitation of the compendium as the (ө) of the 

DOTE to mediate the theory level of the MOSCH ↔ DOSCH. Even though the prospective teachers are 

interested in learning more about the theory level of the MO, the workshop with the compendium 

lacks a function to give them a space for the discussions to institutionalize the theory block of the 

praxeology. According to the questionnaire, Mrs. Laine’s DOTE aims to stimulate prospective 

teachers’ cognitive learning. Hence we might state that the institutional conditions which forms her 

DOTE are actually originated from a pedagogical level. Thus the compendium gives single 

techniques in the MOSCH to let the PTs to visit the praxeology of the school lessons.  

In the case of Sweden, a didactical theory of the DOTE is not clearly distinguished neither from the 

observation nor the results from the questionnaire. The lack of shared knowledge of the DOTE 

indicates that praxis part of the DOTE – presentation of how to construct the MOSCH ↔ DOSCH is 

individually designed by teacher educators in Sweden. The result from the questionnaire shows that 

Mrs. Nilsson’s focus is definitely on the pedagogy. The PTs’ fragmented mathematical knowledge 



and their anxiety for applying mathematics strongly influence her teaching strategies. Similarly to 

the Finnish case, neither the Swedish curriculum nor the customs of the lessons with manipulatives 

help the teacher educators to encapsulate the lesson sequences with complex praxeologies.  

References 

Bergsten, C. & Grevholm, B. (2004). The didactic divide and the education of teachers of 

mathematics in Sweden. Nordic Studies in Mathematics Education 2, 123–144. 

Bosch, M., Gascón, J. (2006). Twenty-five years of didactic transposition. ICMI Bulletin 58, 51–64. 

Brorsson, Å. (2013). Prima Matematik 1A/1B. Malmö, Sweden: Gleerups. 

Brousseau, G. (1999). Theory of didactical situations in mathematics 1970-1990 (N. Balacheff, M. 

Cooper, R. Sutherland & V. Warfield, Eds & Trans). Dordrecht & London: Kluwer Academic 

Publishers. 

Finnish National Agency for Education (2014). National Core Curriculum for Basic Education 

2014. Tampere: Finnish National Board for Education. 

Miyakawa, T. (2010). Introducing the unit with comparison: Difference and construction of units. 

Journal of Japan Society of Mathematical Education, 92(11) 72‒73. 

OECD (2013). Pisa 2012 Result: Ready to learn (Vol. 3): Students’ engagement, drive and self-

beliefs. Retrieved July 14, 2016 from http://www.oecd-ilibrary.org/education/pisa-2012-results-

ready-to-learn-volume-iii_9789264201170-en 

Skolverket (2011). Curriculum for the compulsory school, preschool class and the recreation center 

2011. Stockholm: Skolverket. 

Stigler, J., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for 

improving education in the classroom. New York: The free press.   

Winsløw, C. (2012). A comparative perspective on teacher collaboration: The case of lesson study 

in Japan and of multidisciplinary teaching in Denmark. In G. Gueudet, B. Pepin, & L. Trouche 

(Eds.), ‘Lived’ Resources, Mathematics Teacher Education 7, doi: 10.1007/978-94-007-1966-

8_15. Springer. 



The lexicon project: Examining the consequences for international 

comparative research of pedagogical naming systems from different 

cultures  

David Clarke1, Carmel Mesiti2, Yiming Cao3, & Jarmila Novotna4 

1University of Melbourne, Australia; d.clarke@unimelb.edu.au 

2University of Melbourne, Australia; cmesiti@unimelb.edu.au 

3Beijing Normal University, China; caoym@bnu.edu.cn 

4Charles University, Prague, Czech Republic; jarmila.novotna@pedf.cuni.cz 

Use of English as the international language of educational research can mask the nuanced meanings 

of constructs that researchers working in languages other than English originally employed in 

framing their practice and their theories. Cross-cultural comparisons are framed in terms of 

constructs expressed in the language of publication, usually English. Attention has been drawn to the 

significance of the resulting validity-comparability compromise (Clarke, 2013). The Lexicon Project 

investigates the pedagogical naming systems used by educators in nine countries (eight languages). 

Drawing on examples from the Australian, Chinese and Czech lexicons, this paper outlines the 

project’s research design and addresses the implications of distinctive lexical features for 

comparative classroom research between communities employing different lexicons to describe the 

phenomena of middle school mathematics classrooms. 

Keywords: Professional language, mathematics education, international comparison. 

Introduction 

The Lexicon Project involves research teams from Australia, Chile, China, Czech Republic, Finland, 

France, Germany, Japan and the USA. The project aims to document the naming systems (lexicons) 

employed by different communities speaking different languages to describe the phenomena of the 

mathematics classroom. Such lexicons consist of words of locally agreed meaning in a single 

language that collectively accord to lexical norms and conventions characteristic of the language 

community (mathematics educators) of the particular country. 

The theoretical position adopted by this project is that our experience of the world, our engagement in 

socio-cultural practices, and our reflection on those experiences and practices are mediated and 

shaped by available language. The Sapir-Whorf hypothesis suggests that our lived experience is 

mediated significantly by our capacity to name and categorize our world. 

We see and hear . . . very largely as we do because the language habits of our community 

predispose certain choices of interpretation (Sapir, 1949, p. 162). 

Marton and Tsui (2004) suggest that categories “not only express the social structure but also create 

the need for people to conform to the behavior associated with these categories” (p. 28). In this project 

we examine this normative role of language in relation to classroom practice and research. 

While a professional language of teaching practice seems lacking in the USA (Lampert, 2000), such a 

language seems to be well-established among educators in China and Japan (Fan et al., 2004; 



Fernandez & Yoshida, 2004). Our interactions with classroom settings, whether as learners, teachers, 

or researchers, are significantly mediated by our capacity to name what we see and experience (Clarke 

et al., 2016). Speakers of one language have access to terms, and therefore to perceptive possibilities, 

that may not be available to speakers of another language. This has implications for international 

comparative research. 

Any claim that researchers speaking different languages are analyzing “the same classroom,” even 

when working from the same video records, can be usefully contested. In two published translations 

of Vygotsky, we find the Russian term, “obuchenie,” represented as “instruction” in one translation 

and “learning” in another. This is not merely a problem of mistranslation. The term refers to an 

activity in which teachers and students are jointly participant for which there is no equivalent term in 

English. The term offers a conceptualisation of classroom practice with profound implications for the 

theorization of classroom teaching/learning. Recognition of these implications is not afforded in 

English. Educational research increasingly employs English as the primary language through which 

theory is developed and disseminated. It is essential to recognise the constructs that other cultures 

have employed in conceptualising their practice and examine the consequences for research and for 

theory of those distinctive terms (and the designated constructs) that might otherwise be ignored by an 

international community restricted to communication in English. 

Research design 

In the Lexicon Project, local teams of researchers and experienced teachers in all nine countries 

viewed a common set of video records of one eighth-grade mathematics lesson from each 

participating country. Specific lessons were selected by each country team for the diversity of 

activities displayed rather than for their representativeness. The purpose of this activity was to 

stimulate identification of those terms in the local language of each team that constituted the national 

pedagogical lexicon with respect to the teaching of middle school mathematics (ages 11 to 14). It is 

via the medium of these terms that teachers plan, engage with, discuss, and reflect upon the 

mathematics classroom. It was assumed that the vocabulary available to researchers in each country 

included most terms employed by teachers, but that the researchers’ vocabulary would include other 

terms not necessarily locally derived, being translations or literal appropriations of terms generated by 

other educational communities. For that reason, because of the focus on the local language, it was the 

teachers’ lexicon that was the principal focus of investigation in each country. 

The key prompt used by all teams was: “What do you see that you can name?” Once a term was 

identified and endorsed by the local team, a consensus description was constructed of the specific 

classroom phenomenon to which the term referred and examples and non-examples identified to 

maximize effective communication of the term’s meaning and classroom referent. These 

descriptions, examples and non-examples were crucial to the communication between teams of the 

meanings of terms that originated in the local (predominantly non-English) language.  

But teams were not restricted to only those phenomena visible in the video material. For example, 

where observation of one type of classroom activity reminded the observer/s of another activity type 

not evident in any of the video material, that term was included in the lexicon, together with a 

description, examples and non-examples. It was anticipated that these terms would describe 

classroom practices, both structures (such as organizational patterns or activity sequences) as well as 



specific activities observable in the middle school mathematics classroom. The function of the video 

material was fundamentally catalytic, stimulating recall of the names of classroom phenomena 

present and absent in the classrooms filmed. However, the video material also assisted 

communication within and between the different teams, clarifying the meaning of terms. 

Local team consensus was required for the inclusion of a term in the lexicon and in problematic cases 

authority was accorded to classroom experience and the team members’ capacity to argue that the 

term was in current use by teachers. The essential point was to record single words or short phrases 

that were consistently and widely used by teachers within that country with a consistent and agreed 

meaning. Subsequently, a process of local and then national validation was pursued to refine and 

ratify each lexicon. The means by which this validation process was undertaken varied from country 

to country, but basically involved inviting a national cross section of mathematics educators to 

comment on the adequacy, accuracy, and clarity of the constructed lexicon for that country.  

Of course, such lexicons are continually evolving and a process of regular updating is anticipated. The 

international project team takes particular interest in the studying the connections between terms 

within a given lexicon and the consequent clusters of related terms that provide the structure for each 

country’s lexicon. Both teachers and researchers were involved in the identification of these 

connections. The Chinese example below illustrates one approach to the identification of such 

structures. Comparison of the emphases evident within each country’s lexicon reveals distinctive 

features of the different countries’ mathematics pedagogy and priorities of classroom practice. 

Lexicon selection for the purposes of comparison and contrast 

In this paper, one English speaking and two non-English speaking communities have been chosen to 

provide contrasting examples of the language that educators in Australia, China and the Czech 

Republic employ to describe the objects and events of the middle school mathematics classrooms in 

their countries. Structural aspects of the lexicons suggest underlying pedagogical principles or 

associations that shape the ways in which middle school mathematics teachers function and interact 

within the mathematics classrooms of that country. The lexicons also offer insight into the language 

available to researchers in each country, by which they study, classify, analyze, conjecture and 

theorize about the practices and the affordances of the mathematics classrooms of their country. 

The project identified both similarities and differences in the national lexicons, revealing significant 

differences in the way teachers and researchers from each country perceive the classrooms that are the 

focus of their professional activity. These differences raise the question of the extent to which the 

international community of mathematics teachers and researchers can meaningfully and productively 

share the wisdom of long-established pedagogical traditions of practice, where these are encrypted in 

the naming systems by which each community identifies those classroom activities that it considers to 

be significant. Discussion is provided of: (i) the implications for comparison of the lexicons, and (ii) 

the implications of the lexicons for other comparative classroom research. These two purposes are 

conceptually distinct but connected. 

In this paper, English is used to describe the content and structure of both the Chinese and Czech 

lexicons. This reflects the underlying purpose and challenge of the Lexicon Project: to identify and 

make accessible to the international community the pedagogical principles and distinctions encrypted 

in different lexicons. Examples from the original language are cited for purposes of clarification. For 



example, some terms can be approximated in English (e.g., “Teacher Feedback” adequately names 教

师反馈 which is “jiào shī fǎn kuì” in Chinese pinyin1) but there are those that have no simple 

equivalent English term or phrase but can only be represented in pinyin and an extended English 

description (e.g., 课堂生成 which in pinyin is “kè táng shēng chéng” and which refers to “when the 

teacher makes full instructional use of an unexpected event beyond the intended plan for the lesson”). 

Similarly, the Czech term “S cílem objevit” (literally, “with the aim to discover”) refers to the 

occasion when “by solving the problem students discover something new.” Examples are used, if 

needed, in the discussion that follows. The three lexicons: Australian, Chinese and Czech are used to 

illustrate respectively the methodological processes of Lexicon Identification, Structure and 

Interpretation. 

The Australian lexicon: Generic rather than discipline-specific terms 

The Australian National Lexicon consists of 63 terms that are familiar and in widespread use (e.g., 

Assigning Homework, Rephrasing, Worked Example). A description was constructed for each term, 

together with both examples and non-examples of the use of the term. Because of the role of video in 

stimulating the recognition of terms, many terms can also be illustrated with video examples.  

In consultation with practicing teachers, the lexical items were organized in five categories: 

Administration (8 terms); Assessment (11 terms); Classroom Management (6 terms), Learning 

Strategies (27 terms) and Teaching Strategies (50 terms). A lexical item appeared in more than one 

category if the Australian team decided on the basis of teacher advice that there was a strong 

association with each category. 

One feature of the Australian National Lexicon is that none of the 63 terms identifies a practice unique 

to the mathematics classroom. The terms all refer to general pedagogical practices. Also worthy of 

note is the prevalence of ‘gerunds’ (a verb form that also functions as a noun; “teaching” and 

“learning” are relevant examples) in the Australian National Lexicon. This duality provides both 

advantage and disadvantage: “learning” as a noun is explicitly the product of the activity of “learning” 

in a way that objectified “knowledge” is not, but this duality can also result in less precise 

communication due to the inherent ambiguity over what is being referred to: process or product. The 

duality of simultaneously invoking both object and activity is not available in some languages, 

highlighting the affordances of particular languages and the difficulties of translation.  

The generic character of the Australian Lexicon content suggests that the lexicon might also be 

applicable to other school settings besides the mathematics classroom. 

Integrating forms of connection to structure the Chinese lexicon 

In the Chinese Lexicon, 126 terms were identified as being used by Chinese middle school 

mathematics teachers in describing their classrooms. Within the lexicon, every term is related to some 

other terms, which makes the teacher’s language an organic entirety. The challenge for the Chinese 

                                                 

1 Pinyin is a phonetic rendering of Chinese characters using the Latin alphabet employed in English and four basic tonal 

annotations. 



team was to clarify the structure of teacher’s pedagogical language as encompassed in these 126 terms. 

A two-step process was employed by the Chinese team to do this. 

Step One: Three types of connections were identified between lexical items: Hierarchical, 

Coincident and Sequential. 

Hierarchical 

Level One: In the first level, the terms can be divided according to whether the term referred to 

Teachers, Students or to Teacher-student Interactions.  

Level Two: Terms within the category “Teachers” could be divided into: Classroom Management, 

Demonstration, Questioning, Feedback, Summarizing, Explanation, and Tutoring.  

The category “Students” included: Classroom Management, Demonstration, Questioning, Feedback, 

Summarizing, Doing Exercise, Collaborative Studying, Self-learning and Listening.  

The category “Teacher-student Interaction” had no sub-structure at this level.  

Level Three (only one example can be shown for reasons of space): “Classroom Management” 

included: Teaching Affairs Management and Order Management.  

Apart from the hierarchical links, it was clear that some activities can happen at the same time while 

others occur in a sequence. This provided two additional mechanisms for the clustering of terms. 

Coincident 

This category refers to terms used in a teacher’s pedagogical language that refer to activities that can 

happen at the same time. For example, Group Report and Student Listening — when a group is 

reporting their findings or answers, the other students must be listening carefully in the class. 

Sequential 

Teacher Questioning and Student Answering are an example of a pair of tasks that are intrinsically 

sequential — when the teacher asks a question of the class, this action is typically followed by an 

individual answering or the class answering together.  

Step Two: Using the three types of connections, it was possible to organize the terms in the Chinese 

Lexicon into a structured array. Experienced teachers were recruited from high achieving schools in 

different parts of China to identify the connections. In this way, regional variations in interpretation 

and association could be identified. This illustrates the value of the lexicon in helping to identify 

regional pedagogical variations in a country as large as China, while also highlighting common 

pedagogical elements. 

Differences between professional language communities: Teachers and 

researchers in the Czech Republic 

As for all the country lexicons, the Czech lexicon does more than simply describe the current 

pedagogical vocabulary of practising Czech mathematics teachers. It should also be considered as a 

way to understand the Czech “culture of education” by providing examples that illustrate how it is 

possible to think about education. The use of pedagogical terms varies according to the groups of 

users (authors in different fields of pedagogy, teachers, etc.). One purpose of the Czech lexicon at the 

national level is to provide teacher education with a tool for triggering and framing discussion among 

pre-service students and practising teachers to facilitate better understanding of lesson structure and 

classroom practice. 



The terms of the Czech Lexicon were classified using the following categories: Classroom 

Management; Introductory Communication; Explanation of New Topic; Revision of Previously 

Taught Topic; Solving of a Problem; Checking Individual Work; Institutionalisation; Summary; 

Non-mathematical Social Interaction; Assessment; Concluding the Lesson; Individual Consultation 

with a Pupil. The Czech lexicon is highly stratified. There are several sub-categories in each of these 

themes. One distinctive feature is the prevalence of student-oriented terms that reflect the importance 

attached within Czech education to the teacher-student relationship. For example, “shrnují na pokyn 

učitele” (student invited to recapitulate teacher’s instruction) and “vysvětlují na pokyn učitele” 

(student invited to explain teacher’s instruction) are distinctively student actions. 

When constructing the Czech lexicon, the research team identified particular characteristics. One 

characteristic concerned the difference between how the language was used and understood by 

different target groups. Practising teachers used few technical pedagogical terms and communicated 

mostly using words from the language of everyday life. Pre- and in-service teachers were more likely 

to make use of terms drawn from their lessons on mathematical didactics. For example, “Heuristický 

rozhovor” is an academic term meaning “heuristic dialogue,” but a practising teacher would be more 

likely to say, “řízená diskuse” meaning “guided discussion” to refer to the same classroom 

phenomenon. The Czech team’s concern was how to combine the two ways of using the Czech 

lexicon – as a tool describing the structure of Czech lessons and highlighting important parts of 

lessons and as a tool to facilitate discussion between different groups. This dilemma is accentuated by 

the relative paucity of Czech technical terms not only in the domain of didactics of mathematics but 

also in pedagogy. The Czech example illustrates the different uses of the lexicon for teachers, 

student-teachers and educational researchers and identifies the potential for the Czech lexicon to 

serve as a catalytic focus for discussion between these different communities. 

Discussion: Implications for comparison 

The key steps in lexicon construction of Identification, Structure and Interpretation have been 

illustrated with examples from the Australian, Chinese and Czech lexicons respectively. Each step 

offers insights into the pedagogical history encrypted in each lexicon and the potential value of the 

lexicon to the teaching and research communities in each country. In this section, we explore the 

question of comparison. Two forms of comparison warrant discussion: within-project comparison of 

the separate lexicons for the purpose of gaining insight into the pedagogical principles of each 

language community encrypted in the professional lexicon of middle school mathematics teachers; 

and, second, the broader implications for international comparative classroom research of the 

documented differences in how the phenomena of the middle school mathematics classroom are 

conceptualized within each language community. Each of these is discussed separately below. 

Comparing lexicons: Constructs as boundary objects 

The primary consideration in making comparison between any two lexicons is the mediating 

construct that forms the basis of comparison (Clarke, 2015). For example, comparison might be made 

between the agency accorded in one lexicon to the teacher or to the students. That is, what proportion 

of lexical terms refer to teacher actions and what to student actions (cf “Level One” in the Chinese 

lexicon), and what is the nature of the actions in each case: initiating or reactive (for example). The 

Australian lexicon makes a comparable distinction between Teaching Strategies and Learning 



Strategies. In this case, “agency” provides the boundary object by which the two lexicons might be 

compared. Clearly, “agency” need not be a term situated in either lexicon. Instead, it represents an 

organizing construct with comparable conceptual legitimacy within each lexicon. As such, it 

constitutes an acceptable boundary object for the purposes of comparison of the lexicons. Other 

boundary objects might name categories of lexical items, such as: assessment or management. The 

requirement for legitimate comparison would be that the organizing construct (say, assessment) has 

local validity within each lexicon as designating a cluster of lexical terms and cross-lexicon validity in 

characterizing conceptually the same shared attribute for each lexical cluster being compared. 

Comparison of the Australian and Czech lexicons is possible on this basis, with respect to either of the 

mediating constructs: agency or assessment. 

Comparative research: Validity-comparability compromise 

The documentation of the separate lexicons has the potential to heighten the legitimacy of 

comparative classroom research being undertaken across two communities. For example, application 

of a measure of participation to the comparative analysis of classroom data from two countries is 

problematic, unless it can be demonstrated that “participation” has the same cultural relevance within 

the pedagogical practices of each community. However, if participation is treated not as the basis for 

an imposed metric, but as a boundary object, then the question can be asked, “What forms of 

participation are legitimized within the lexicons of the two countries whose classrooms are being 

compared?” Analysis of the separate lexicons to identify those terms that characterize forms of 

participation in classroom practices would reveal both similar and different types of participatory 

activity. For example, choral response has been documented as a frequent form of participatory 

activity in mathematics classrooms in China and Korea, but not in classrooms in Australia and Japan. 

Reciprocally, student-student talk is a common form of participatory activity in mathematics 

classrooms in Australia and Japan but not in China and Korea (Clarke, Xu & Wan, 2013). Any 

comparison of student participation in classroom activity in these four countries can be undertaken 

with much greater validity, where attention is given to important distinctions between forms of 

participation as these are facilitated and named by teachers in each of the countries whose classroom 

practices are being compared. Utilization of the lexicons from each country to identify legitimate 

points of comparison would heighten both validity and comparability (Clarke, 2013). 

Conclusion 

The construction of national lexicons representing the naming systems employed by educators using 

different languages to “name what they see” in the middle school mathematics classroom represents 

the starting point for the deconstruction of pedagogical histories and norms of practice enshrined in 

the languages by which classroom phenomena are described, studied and theorized in different 

countries. The documentation of these lexicons has significant practical value to each participating 

community and to the international community of mathematics education practitioners and teacher 

educators. The focus of this paper, however, has been on the implications of such lexicons for the 

legitimacy of international comparative research and on the use of any named construct as a boundary 

object for the purposes of comparative research analyses. It is intended that the lexicons serve as tools 

to interrogate, enhance and advance comparative classroom research internationally. 
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The aim of this study was to examine Kosovar and Polish pre-service teachers’ knowledge of 

fractions. Thirty-three Kosovar and thirty-five Polish pre-service teachers participated in the study. 

They were asked to complete a fractions knowledge test, which was adapted from Cramer, Post, 

and del Mas’s (2002) study. The results identified substantial differences between Kosovar and 

Polish pre-service teachers’ knowledge of fractions. The differences between these two groups of 

preservice teachers’ knowledge of fractions appeared to be a consequence of the number of courses 

related to mathematics, the number of hours of lectures in mathematics during their studies and the 

structures of the programmes in both universities. 

Keywords: Pre-service teachers, fractions, mathematical knowledge. 

Introduction 

Fractions present one of the most important and, at the same time, most complex mathematical 

concepts of the elementary school curriculum (Behr, Post, Harel, & Lesh, 1993; Charalambous & 

Pitta-Pantazi, 2007) with applications to many other areas of mathematics. Researchers 

internationally have shown that in the context of primary school education, fractions are one of the 

most problematic concepts for both pupils and teachers (Cramer, Behr, Post & Lesh, 1997; 

Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981). The NCTM (2000) points out that secondary 

school students should possess an in-depth knowledge of fractions and be able to use them 

appropriately in the process of problem solving. Misconceptions that students have about fractions, 

both in terms of fractions (as numbers) and how to operate with fractions, relate particularly to the 

way fractions are represented and how they are taught (Barmby, Harries, Higgins, & Suggate, 2009). 

These difficulties begin in elementary school (Empson & Levi, 2011; Moss & Case, 1999), continue 

through secondary school (Smith, 2002) and high school and very often even at the level of higher 

education (Orpwood, Schollen, Leek, Marinelli-Henriques, & Assiri, 2011).  

There are few doubts that a deep understanding of fractions, both conceptually and procedurally, 

and the skills to solve word problems with fractions are necessary for mathematics teachers to teach 

effectively. They should not only experts from the point of view of mathematical content knowledge 

but they also need to know how to teach this content, considering their position as experts from a 

pedagogical content knowledge point of view.  

However, many studies have shown that teachers also have difficulties in understanding fractions 

and operations with them (Ball, 1990) and have stressed that teachers’ knowledge was not 

satisfactory (Charalambous & Pitta-Pantazi, 2007; Lin, Becker, Byun, & Ko, 2013). Therefore, 



closer attention must be paid to the future teachers, in order to help them improve children’s 

procedural and conceptual knowledge generally and fractions specifically. Such gaps in knowledge 

directly influence the learning of fractions by students (Charalambous & Hill, 2012; Hill, Rowan, & 

Ball, 2005). When working with fractions they encounter difficulties with respect to both teaching 

and explaining them, which poses a constant challenge for the teaching community of mathematical 

education. Therefore, it is important to pay closer attention to the subject matter knowledge of pre-

service teachers (Wilson, 2010), as well as pre-service teachers training concerning the issue. In this 

study, therefore, we focus on Kosovar and Polish pre-service teachers’ knowledge of fractions. We 

tested their conceptual and procedural knowledge of fractions, and their ability to explain their 

solution strategies to a variety of tasks, both standard and word problem. 

Theoretical background of the study 

The concept of fractions has been examined and discussed by many authors. Many of them have 

identified and discussed different ways of presenting the fractions (Behr et al., 1993; Kieren, 1976). 

Different theoretical models have been proposed for understanding of fractions (Behr et al, 1993; 

Charalambous & Pitta-Pantazi, 2007). Kieren (1976) was the first to propose that fractions should 

not appear only as a single concept model, recommending that they should be conceptualized as a 

set of interrelated sub-constructs: part-whole, ratio, operator, quotient, and measure. The 

presentation of fractions as part of a whole refers to division of an amount or a group of discrete 

objects into equal parts and comparing these pieces with the total value of quantity (Vula et. al., 

2015). The ratio sub-construct represents the interconnection between two quantities and usually 

appears as a:b or a/b. This way of presenting the fractions expresses a relationship between the two 

quantities. The operator is a function that transforms segments, figures or numbers (Behr et al., 

1993). Fractions as a quotient appear as a result of division of two integers and measure construct 

identifies fractions as numbers or associating fractions with the measure assigned to some interval 

(Kieren, 1976). To be able to teach fractions successfully, teachers require a comprehensive 

understanding of these different conceptualizations, the interconnection between them and a battery 

of teaching approaches (Behr et al., 1993). 

Purpose and research questions 

The main purpose of the research was to compare Kosovar and Polish pre-service elementary 

teacher’s knowledge of fractions. In so doing the study aimed to (a) assess and compare pre-service 

teacher’s knowledge of the different fractions’ concepts and their didactical representations and (b) 

analyze the ways in which pre-service teachers from both countries explain their rationale for a 

procedure. 

1. What are the main differences between Kosovar and Polish pre-service teacher’s knowledge 

of fractions? 

2. Are there differences in strategies used by Kosovar and Polish pre-service teachers?  



Method 

Participants 

The data were collected from 68 pre-service elementary teachers from the University of Pristina in 

Kosovo (N=33) and the Pedagogical University of Cracow in Poland (N=35). In Kosovo, 

elementary school teachers for grades 1-5 are generalist teachers. Consequently, all pre-service 

elementary teachers are trained in all school subjects, including mathematics. The elementary 

Bachelor’s degree program is a 4-year qualification. Three courses of elementary mathematics are 

taught in the first and second year of study (in total 514 hours) and the course on teaching 

mathematics (in total 178 hour) is taught in the last year of the study program.  

Teachers in Poland are generalist only for grades 1-3 of elementary school, and to teach for the next 

three grades they must specialize in a chosen subject. In order to teach mathematics from grades 4 

through 6 they should achieve Bachelor’s degree in mathematics with a teaching specialization (3 

years). They attend many theoretical courses in pure mathematics (in total 1239 hours) as well as 

courses designed for the teaching specialization (in total 893 hours) and others. Although, there is 

no subject like elementary mathematics, its main themes are discussed and practiced within the 

course named Didactics of Mathematics.  

Procedure 

Participants were asked to complete the fractions’ knowledge test, developed and administrated to 

measure their performance of fractions’ knowledge. The items of the test were used in previous 

studies (Cramer et. al. 2002; Charalambous and Pitta-Pantazi 2007; Lin, et al. 2013). The test was 

divided in three subsets of tasks and time for its completion was not limited. 

Methodology 

The first subset of tasks, drawing on Kieren’s (1976) model, includes fraction-related problems 

focused on pre-service teachers understanding of fractions as parts of a part-whole (tasks 1-2), ratio 

(task 3), quotient (task 4), operator (task 5) and measure (tasks 6-7). The second subset addresses 

how pre-service teachers explain the process of solving fractions problems. The third subset focused 

on fractions-related word problems and analyzed according to Vula’s (2006) model. 

Results 

First research question: What are the main differences between Kosovar and Polish pre-service 

teacher’s knowledge of fractions? 

Figure 1 shows the success rates, as percentages, of the two groups of pre-service teachers on each 

of task, with the Kosovar results being shown in the left-hand column and the Polish results in the 

right-hand column for each task. It can be seen, for example, that 100% of the Polish participants 

solved task 5 correctly (all with justification), while only 60.61% of the Kosovo participants solved 

this task correctly (although only 14 gave the justification). We also found notable differences on 

tasks 11, 13, 14. More than 60% of the Kosovar pre-service teachers failed to solve task 11, while 

66% of the Polish participants solved it correctly. Similar differences were identified on tasks 13 

and 14. In particular, the most significant differences were found with respect to tasks 7 (measure) 



and 15 (solving word problem with 3 steps). While more than half of all Polish students solved 

them correctly, 65.70% and 54.30% respectively, not one Kosovar students solved either. 

Figure 1: General success rate results 

Second research question: Are there differences in strategies used by Kosovar and Polish pre-service 

teachers?  

The figures of Table 1 show the number of participants who answered the different tasks correctly 

with justification, without justification or incorrectly. 

 

Table 1: Number of answers in both groups respectively in pairs (Kosovo, Poland) 

The majority of participants from both countries provided the correct answer to task 1, although 8 

students from Kosovo (Figure 2) and 4 from Poland (Figure 3) provided incorrect answers when 

asked to present a fraction as a part of an ‘irregular’ unit, assuming that the ‘whole’ would be a 

circle (the examples presented are chosen randomly). 

 

Figure 2: Task 1 sample answer, Kosovo 

Kind of answer 

(Kosovo; Poland) 

Whole-

part 

 

(Task 1) 

Whole-

part 

discrete 

(Task 2) 

Ratio 

 

 

(Task 3) 

Quotient 

 

 

(Task 4) 

Operator 

 

 

(Task 5) 

Measure 

 

 

(Task 6) 

Measure 

 

 

(Task 7) 

Correct with justification (15; 28) (26;30) (23; 34) (31; 34) (14; 35) (23; 34) (0, 23) 

Without justification (10; 3) (4; 4) (6; 0) (0; 0) (12; 0) - (0, 0) 

Incorrect  (8; 4) (3; 1) (4; 1) (2; 1) (7; 0) (10; 1) (33, 12) 



 

Figure 3: Task 1 sample answer, Poland 

For solving task 4 (quotient), different strategies were used by Kosovar and Polish pre-service 

teachers. Almost all Kosovar participants who completed the task correctly, converted fractions to 

decimal numbers or used “butterfly method” (cross multiplication) and explained which fraction is 

bigger. The Figure 4 provides an example how 1 student used two strategies for solving the task. In 

the first part it is shown the cross multiplication strategy and then explained why the second fraction 

is bigger. The second strategy used by this student is by converting fractions to decimal numbers. 

 

Figure 4: Task 4 sample answer, Kosovo 

The majority of Polish participants, 27 people, found a correct solution using the strategy of 

transferring given fractions into a common counter (3 people, common counter: 30) or common 

denominator (24 people), which was 126 (12 people) or 63 (11 people) and one person only 

described the method (without calculation). The second strategy used by 6 people was comparing 

the given fractions to ½ and noticing that the first is smaller and the second bigger than ½. Only two 

people used the method of solving the task by converting fractions to decimal numbers, and one of 

them only described the method but did not apply this (getting 0 points for that task). 

Strategies in 
group 

Common 
denominator 

Estimation 
(decimals) 

Estimation 
(comparing to ½) 

Kosovo 2 24 0 

Poland 33 3 1 

Table 2: Distribution between strategies used 

For solving task 5 three strategies were used from participants: strategy of common denominator, 

estimation strategy in the form of decimals and strategy of the comparison to half. Two participants 

from Kosovo and the great majority of 33 participants from Poland solved the task using a common 



denominator strategy, while 24 participants from Kosovo and 3 participants from Poland used an 

estimation strategy in the form of decimals. Table 2 shows the distribution of the strategies used by 

both groups. Two Polish participants used two strategies, providing apart from common 

denominator the estimation strategy - one in decimal form and the other comparing to ½.  

While in Poland only 2 students did not answer task 7, all of Kosovo students failed to solve given 

task (Figure 5). 23 Polish students calculated the distance between adjacent points marked on the 

number line (Figure 6). 

 

Figure 5: Task 7 sample answer, Kosovo 

 

Figure 6: Task 7 sample answer, Poland 

Discussion 

The purpose of this study was to (a) assess and compare Kosovar and Polish pre-service teacher’s 

knowledge of fractions and their representations and (b) analyze how they explain the process of 

solving fractions. To answer these questions, we analyzed test tasks completed by pre-service 

teachers from the two countries. In so doing, we identified substantial differences between Kosovar 

and Polish pre-service teachers’ knowledge of fractions, with Polish students being more 

procedurally successful on every task and typically able to offer better explanations. These 

differences were found across all fraction conceptualizations as discussed by Kieren (1976). 

There may to be several reasons for these differences. For example, the number of hours that 

students receive in mathematics courses and teaching methods in mathematics are much higher in 

Poland than in Kosovo. Also, because pre-service teachers in Kosovo are being trained to be 

generalist teachers from grade 1 to 5, they may not receive sufficient hours dedicated to 

mathematics and didactics in order to fulfill their needs for mathematics knowledge of pre-service 

teachers (Wilson, 2010). In addition, differences in the curricula and the ways in which fractions are 

represented in elementary mathematics textbooks (Vula et al., 2015), both sources on which pre-

service teachers draw during teaching practice, and their own previous learning as school students 



may also explain why Kosovar students performed less satisfactorily than their Polish colleagues. 

Therefore, the findings of this study should act as a springboard for further research into and 

discussion of how elementary teachers are prepared for their professional responsibilities. In this 

respect we argue that it is important for the instructors of pre-service teachers’ mathematics courses 

to provide adequate opportunities for their students to develop a knowledge of fractions that better 

prepares them for their future roles as teachers of children.  

In light of the above, our future aims are to investigate further not only Kosovar and Polish pre-

service teachers’ knowledge of fractions but also those of pre-service elementary teachers in other 

European countries. 
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A common perception in Sweden is that the best teachers do not rely on ready-made teaching 

materials. The position taken in this paper, building on socio-cultural theory, assumes that teacher 

materials can support teachers. Although there is an emerging body of research focusing on teachers’ 

use of teaching materials, cross-cultural studies on this are scarce. The current study addresses this 

gap by offering unique insight into how a Swedish teacher makes use of teaching materials originally 

from Finland but slightly adapted to the Swedish context. Based on teacher interviews and classroom 

observations, I studied how the teacher planned for and enacted lessons. Findings indicate that she 

fits the material to her pre-existing practice and, thus, does not follow the material’s original 

intentions. The results are compared with previous results on materials and their use, and finally 

some implications for Swedish mathematics education are presented.  

Keywords: Cultural scripts, educational context, primary school, teaching materials, telling case. 

Introduction  

Finland is known as a country with good learning outcomes in mathematics (e.g. OECD, 2013). 

Furthermore, since the 1980s the country has had a tradition of producing exhaustive teacher guides 

(TGs) in collaboration with teachers, teacher educators and other experts (Niemi, 2012). These two 

factors have likely increased the interest in applying commercially produced Finnish teaching 

materials, such as textbooks and TGs, in Sweden as well as other countries, such as Italy. Applying 

new teaching material from Finland in Sweden could be achievable, as there are many similarities 

between the school systems in the two countries – for instance, the inclusive nine-year compulsory 

basic education with no special tracking, and the national core curriculum that provides an overall 

outline for school education. In addition, primary school teachers in both countries often teach all 

subjects, and are free to choose which teaching materials to use. There are also differences between 

the countries’ educational systems; e.g., Swedish teachers at primary school level are seldom subject 

specialists while Finnish teachers are well educated, but also the widespread negative talk in Sweden 

concerning the use of ready-made teaching materials (Bergqvist et al., 2010), which does not occur 

in Finland. Swedish teachers’ orientation toward ready-made teaching materials most certainly affects 

how they engage with and use them (cf. Stein, Remillard & Smith, 2007). 

Swedish teachers seldom use TGs in planning and enacting mathematical instruction (Jablonka & 

Johansson, 2010). Instead, they rely mostly on the student textbook as their main source, a common 

feature of teachers in many parts of the world (Remillard, 2005; Stein et al., 2007). Also, Swedish 

compulsory school teachers have for the last two decades often organized individualized teaching, 

whereby students work individually in different areas and at their own pace (Bergqvist et al., 2010; 

Remillard, Van Steenbrugge & Bergqvist, 2016). The fact that students are taught largely according 

to the structure of their textbook has also resulted in less variation in teaching (Jablonka & Johansson, 

2010). However, Finnish teachers, especially primary school teachers in mathematics, trust and use 



commercially produced TGs extensively, and there are indications that Finnish teachers often 

organize whole-class teaching and use teaching methods other than individual seatwork. This has 

consequently led to a classroom practice that is different from the Swedish one (Jablonka & 

Johansson, 2010; Pehkonen, Ahtee & Lavonen, 2007). While there is growing interest in adopting 

and implementing mathematics materials in a new educational context, we know little about how 

imported mathematics materials are used or how they may influence classroom practice.  

Therefore, in this paper I aim to investigate the interplay between a Swedish teacher and the written 

curriculum as represented in the suggested lesson plans in a TG – Favorit Matematik (FM), originally 

from Finland. Moreover, I intend to show how this interplay may impact on enacted teaching. 

Teaching is viewed as a cultural activity, and cultural activities are represented in cultural scripts (cf. 

Stigler & Hiebert, 1999) and are consistent with the stable web of beliefs and assumptions within a 

cultural group. Scripts provide a background for interpreting behaviors; however, they do not 

describe, determine or predict the behavior of individual teachers (Stigler & Hiebert, 1999). Both 

teacher and teaching materials are significant participants and are situated in a socio-cultural context, 

a specific educational context. Through this, they both play a role in mediating that interplay, which 

is shaped by historical, social and cultural factors (Brown, 2009; Remillard, 2005). Since cultural 

scripts are deeply rooted in practices and are hard to see from within a given culture, I opted for a 

case study approach, allowing for a deep analysis. I therefore anticipate that a study on the use of 

teaching material from one culture by a teacher from another culture will advance our understanding 

of the cultural scripts in both cultures, and of the participatory relationship between teacher and 

teaching material.  

I have previously analyzed TGs from four Finnish textbook series in mathematics, and found that 

their structure, form and content were relatively homogeneous (Koljonen, 2014). In Koljonen, Ryve 

and Hemmi (under review), we captured what kind of mathematics classroom the Finnish guides 

promote. Recurrent cultural scripts of the classroom practices were found, comprising: keeping the 

class around a specific topic; keeping the teachers and students active; clear lesson goals are vital 

features; different recurrent activities; concrete material; and embedded differentiation. Due to these 

findings and the different classroom practices in Sweden and Finland, it is of interest to investigate a 

Swedish teacher’s interplay with Finnish teaching material as a way to compare the written and the 

enacted curricula grounded in two different cultural platforms. The research questions guiding this 

study are: 1) How does a Swedish primary school teacher, locally regarded as competent, interact 

with a Finnish teacher guide while planning and implementing teaching? 2) How does this interaction 

influence the classroom practice?  

Methodology 

This study is part of a larger cross-cultural project examining the interplay between Swedish and 

Finnish teachers using the same mathematics teaching materials. The data for this project are 

comprised of semi-structured interviews with four primary mathematics teachers from each country. 

The interview questions cover seven themes: teacher’s education; teacher’s experience; school 

settings; classroom culture; beliefs about mathematics and its teaching; TGs; and planning of lessons. 

Additionally, three consecutive mathematics lessons per teacher were videotaped. When videotaping 

during the lessons, I used two cameras: one teacher camera that captured the teacher’s actions and 

talk, and one whole-class camera focused on the students’ actions and talk. I conducted and 



transcribed the audio-recorded interviews (50-110 minutes) and the videotaped lessons (40-60 

minutes). FM (Asikainen, Nyrhinen, Rokka & Vehmas, 2015) includes references to the Swedish 

national core curriculum (Lgr 11), but does not describe how the lesson goals actually serve to prepare 

students to meet the curriculum goals. Earlier studies (Koljonen, 2014) revealed that FM lacks 

educative support (cf. Brown, 2009) for teachers as well. For example, the rationales behind its 

suggested lesson activities are rarely explicitly discussed, which is a critical component in teacher 

learning. Each lesson (4 pages) in FM has a similar structure, both visually and content-related; for 

instance, clear recurrent headings located in the same place on every page, and a variety of optional 

activities presented for each lesson. The activities are all linked to the central content and the lesson 

objectives, from which the teacher is to choose appropriate activities for their practice.  

As a starting point in the larger cross-cultural project, I selected one of the Swedish teachers, Cecilia 

(fictitious name), to exemplify a single case as this approach offers possibilities for deeper theoretical 

insights that would otherwise go unseen (Andrews, In press). Cecilia graduated in 2010 as a 

compulsory school teacher (F-6), and was prepared to teach all other subjects besides mathematics as 

well. Thus, she is not a mathematical subject specialist. However, one of the criteria for selecting the 

teachers was that they were regarded as locally competent (cf. Clarke, 2006). Among the other 

teachers, Cecilia is recognized and esteemed for her locally defined ‘teaching competence’ and has 

been nominated by the school’s principal and the municipality and is thus regarded as a local subject 

specialist. At the time this study was conducted, Cecilia was in her third year of teaching with FM. 

She teaches children in Grade 3; her 24 students come from a constrained socio-economic area, with 

mostly non-native speaking families. Cecilia volunteered to participate, knowing the study was on 

FM and its use.  

Data analysis 

Teaching is viewed as a cultural activity (Stigler & Hiebert, 1999) and a design activity, whereby 

teachers craft instruction, and do so with different degrees of artifact appropriation: offloading, 

adapting and improvising (Brown, 2009). Cecilia’s interaction with TGs is characterized through 

these three analytical constructs. Offloading emerges when a teacher follows material and assigns a 

great degree of authority to the teaching material. That is, the agency for the delivery of content lies 

in the material. Adapting, on the other hand, occurs when a teacher reflects when elaborating with the 

material. Here the agency is embedded in both the material and the teacher. Improvising, finally, 

relates to when a teacher does not closely follow the material. That is, the agency lies with the teacher 

as she relies on her own strategies for instruction, with minimal reliance on the material. The 

relationship is further characterized as participatory or non-participatory (cf. Remillard, 2005). When 

the teacher regularly and deliberately uses the material, and also looks at it critically, this provides an 

intimacy between teacher and material and is thus categorized as a participatory relationship. 

Meanwhile, if the teacher’s use of the material is more tacit and sporadic, it will lack intimacy and is 

thus categorized as a non-participatory relationship. My intention is to characterize Cecilia’s 

interaction with the material in use (FM) and to compare the written curriculum in FM and Cecilia’s 

enacted curriculum. I do not intend to evaluate which degree of interaction (offloading, adapting or 

improvising) or the relationship (participatory or not) is better than the other. However, I 

acknowledge that comparison and evaluation are intertwined (cf. Jablonka, 2015). Below, I present 



Cecilia as the telling case through some merged snapshots of from both interview and classroom 

recordings.  

The telling case of Cecilia 

During her interview Cecilia said that it is a waste of time making a written plan, because “if a lot of 

the students don’t understand today’s lesson, we would have to repeat it tomorrow and then my 

intended plan would crash if I’d written it down” (Cecilia, 9 Nov 2015). On the one hand, such 

comments indicate that Cecilia, as a locally competent teacher, trusts her ability to deliver the 

mathematical content with appropriate strategies for instruction. On the other hand, it can also be due 

to a lack of time that she does not write her plans, as she stressed that the ongoing national professional 

development program, Matematiklyftet, takes time away from all the things she has to do. Cecilia 

stated that she starts her planning for the introduction phase not by using the TG but the student 

textbook:  

I turn to the current page in the textbook and see that the next passage is about multiplication by 

9. Immediately, I have an idea about which strategies I want the students to know, and notice that 

the book is using the same strategy as me... but I prefer to create my own [instructions] using my 

own language. (Cecilia, 9 Nov 2015)  

Cecilia’s prospective mental plan is partially consistent with the textbook’s plan. However, here the 

agency stays with Cecilia, since she claims to have her own mental plan. Her use of and interaction 

with the textbook could be understood through the Swedish teachers’ context, in which they are not 

accustomed to using TGs in planning and teaching. In addition, the minimal support provided for 

how TGs may be used may compel Swedish teachers to turn to the textbooks instead. This and several 

other similar excerpts led me to infer that Cecilia is influenced by Swedish culture, as she states that 

she “prefers to create her own instructions”, reflecting a generally held perception of Swedish teacher 

competence. During the interview, Cecilia mentioned, due to lack of time, that she occasionally 

glances at the TG to get a skeleton plan for the lesson. She then looks at its “introduction box”, which 

suggests how to introduce the lesson’s topic on the board. Hence, from the interview I infer that she 

perceives the material as worth having in the classroom but not necessary for planning. I infer that 

she improvises when planning, and that the agency lies with her. I further infer that she has a more 

tacit than close relationship with the material, especially since she seldom uses the TG and hardly 

ever reflects on the material or its impact on the context. 

The video data reveal that, while mobilizing the teaching, Cecilia sequenced her lessons into four 

distinct episodes. The allocated lesson time of her lessons consists of: the introduction phase, taking 

approximately 22% (~10 min) of the lesson time; what to work on in the student textbook; the 

students’ individual seatwork, taking approximately 56% (~25 min) of the lesson time; and the 

closure of the lesson. Cecilia always starts her lessons by showing a strategy or method in the 

introduction phase that is applicable to that day’s pages in the student textbook, and by referring to 

textbook: “Hey, listen! Last Thursday we went over page 90 in the textbook, as we used these hands 

[pointing to the cut-out hands in fabric on the blackboard] as one strategy for multiplying by 9. Today 

we’ll revise it” (Cecilia’s L1, 9 Nov 2015). Here, Cecilia is simultaneously showing the textbook 

pages they have been working with. This revision is not included in the TG’s suggested lesson plan, 

and no elaboration or reflection is revealed. But this could also be due to the evaluation at the last 



lesson closure. Hence, I infer that Cecilia is improvising. Nevertheless, the video data frequently 

show that the delivery of the content is based on the material, as she offloads the agency to the 

textbook as she follows the textbook pages, lesson by lesson. Cecilia is very firm during the interview 

that the cut-out fingers she refers to are not from the TG but were instead an idea that simply came to 

her. During Lesson 1, she first shows two examples of the old strategy before introducing a new 

strategy for multiplying by 9: “Hey guys, listen! At the top of page 91, it says ‘Multiply and write in 

the table’… This is a different strategy… So, let’s try this too! Ehh, they want us to think like this... 

Can you give me a multiplication from the 9 table, Ali?” (Cecilia’s L1, 9 Nov 2015). This extract 

illustrates Cecilia turning to a rather close offloading to the student textbook – especially when she 

says they want us to think like this. The textbook lacks a description of how to deal with this task, and 

the fact that Cecilia does not explain to the students how “to think” indicates that she has not 

elaborated on this task beforehand. I infer that she shows this task since it is included on that day’s 

lesson pages in order to prepare the students for their individual seatwork. However, the TG offers 

some explanation, and recommends that they fill in this table together in the whole-class setting, 

which Cecilia has missed since she does not read the TG carefully or regularly. This displays that her 

relationship with the TG is rather tacit. The video data further reveal that after the introduction Cecilia 

always tells the students which pages to work with during the individual seatwork. She does this 

through the material’s website and the SmartBoard, where she shows the students the pages. She also 

writes the pages on the whiteboard. This procedure is not stated in the material, which confirms that 

Cecilia is improvising and maintaining the agency. The following is an example of how she 

transitions the students into their individual textbook work: “I think most of you managed to do both 

pages 90 and 91, and possibly also 92 or 93. On page 94 it says ‘We rehearse’, and these two pages 

are the goal of today’s lesson” (Cecilia’s L1, 9 Nov 2015). This extract additionally confirms that 

Cecilia is closely offloading to the textbook, as she assigns a great degree of authority to it. At no 

time does she present the lesson objectives, which are clearly visible in the TG. Instead, she mentions 

that the lesson goal is to do pages 94 and 95. Neither does she use the different recurrent activities or 

concrete materials included in the TG during any of these lessons. 

The video data further reveal that, during the individual seatwork, some students are working on other 

pages than the ones Cecilia had announced before they started working individually, and some are 

even working in a textbook for Grade 2. This is not in line with the material’s intention, as it offers 

embedded differentiation instead. As shown in the video data, Cecilia always closes the lessons with 

a blind evaluation to determine whether she can move on or if rehearsal is necessary.   

Now, close your eyes and answer YES to my question by raising your hand. If your answer to my 

question is NO … leave your hand on the table […] ‘I feel confident about the strategy of using 

my fingers to multiply by 9’ Okay, those of you who have your hands up can put them down. ‘I 

still think it feels a little hard to use this strategy, using my fingers to multiply by 9’ Thanks! ... ‘I 

feel pleased with what I did during the mathematics lesson today’ Great! (Cecilia’s L1, 9 Nov 

2015) 

This extract confirms that Cecilia does not just say she wants all her students to be on track but that 

she also checks this before ending the lesson. In so doing, she is checking their understanding of the 

“old” strategy for multiplying by 9, but not whether they understand the “new” strategy she has 

introduced, or the objectives displayed in the guide. Two of the questions are related to the 



mathematics, whereas the last is connected to students’ individual seatwork. There is no support in 

the material for how to end the lessons, so Cecilia trusts to experience and improvises the  evaluation. 

Hence, from the video data I deem that she uses the textbook for support for the students’ individual 

seatwork but not for her actions or events when mobilizing the teaching. The video data show that 

Cecilia improvises, but does not critically reflect on the material or its impact on the educational 

context, or make any changes in relation to the material. In addition, at several points, the interview 

and video data show collectively that Cecilia largely offloads the agency to the textbook and uses it 

on an ad hoc basis. Cecilia’s use of the TG is minimal. Thus, this settles her weak interaction with 

the material; i.e., having a non-participatory relationship with it. 

Discussion and conclusion 

In this paper, I present the telling case of Cecilia, a Swedish teacher, locally regarded as competent. 

The aim is to reveal her interaction with an imported TG from Finland when placed in her specific 

context. Thus, the material is sited in a new educational context. In the analysis I compare the written 

Finnish TG with Cecilia’s actual classroom practice. The analysis is therefore combined with in-depth 

descriptions and snapshots of events, and is thus in line with the telling case (cf. Andrews, In press) 

as an attempt to make visible how she interacts with the Finnish material and how this interaction 

may have affected her classroom practice.  

First, how does Cecilia interact with the Finnish material? My analysis revealed that Cecilia uses the 

student textbook when teaching, and that she offloads agency to the textbook. This interaction is 

categorized as non-participatory since it lacks intimacy. Her interaction with the TG is even weaker, 

and more sporadic and tacit than with the textbook, and is thus also non-participatory. When she trusts 

in her own knowledge and experience, improvising occurs, especially in regard to the repetition at 

the beginning of the introduction phase and the closure of the lesson with the blind evaluation. No 

adaptation was observed, since no equally embedded agency was found. Cecilia says she creates her 

lesson plans mentally. However, her focus is not on the entire lesson, since she only prepares the 

introduction phase. Even though she has chosen FM due to her judgment of its overall good quality, 

she does not seek support for teacher learning or to enhance the variety in her lessons through its 

recurrent activities. Second, is Cecilia’s classroom practice affected by her interaction with the 

Finnish material? My analysis revealed that Cecilia’s enacted classroom practice mirrors the “typical 

Swedish” practice, with short introductions and then individual seatwork most of the time (cf., e.g., 

Remillard et al., 2016). Cecilia does not keep the students together around a specific mathematical 

topic by using the embedded differentiation, and no concrete materials are used during these three 

lessons. No objectives are stated, either. These are all important parts of the cultural scripts found in 

Finnish TGs (Koljonen et al., under review). Thus, Cecilia’s classroom practice is in contrast to those 

promoted by the Finnish TG. I deem that Cecilia’s practice is marginally affected by her relationship 

with the material. This may be because it does not offer enough support for how to use it, or explain 

its intentions, therefore forcing Cecilia to follow the common norms of Swedish classroom practice; 

as well as the fact that it is challenging for teachers to change their teaching (Stein et al., 2007; Stigler 

& Hiebert, 1999). Further studies are needed to capture the essence of the Swedish classroom practice 

when using imported material.  

My conclusion is that the use of the originally Finnish material has not had the intended impact on 

the practices as promoted by the guides. Instead, Cecilia uses and confirms her preexisting culture 



rather than the intended one as in the Finnish TG (cf. Davis, Janssen & Van Driel, 2016; Stein et al., 

2007; Stigler & Hiebert, 1999). One possible implication of this is that it may be hard to implement 

material from other educational contexts, even if it is quite similar and is assumed to change or even 

improve the quality of teaching. Yet without targeted support for how to use new material it is hard, 

even if a teacher is regarded as competent, to independently conduct changed or improved teaching 

and simultaneously maintain or gain pedagogical autonomy. This is especially important since the 

Finnish material lacks educative support and, thus, is not regarded as educative material (Hemmi, 

Krzywacki & Koljonen, 2017; Koljonen, 2014). I argue that this requires that teacher materials be 

included in professional development programs, as previously argued for by Ball and Cohen (1996), 

in order to proficiently convey and highlight the principles of the materials and adjust them to the 

new context that is underpinned by the social and cultural practice. It remains to be seen whether 

subsequent case studies of the other teachers in the larger project reveal whether the above-mentioned 

tentative conclusions hold for the larger data set.  

References  

Andrews, P. (In press). Is the ‘telling case’ a methodological myth? International Journal of Social 

Research Methodology. doi:10.1080/13645579.2016.1198165. 

Asikainen, K., Nyrhinen, K., Rokka, P., & Vehmas, P. (2015). Favorit matematik 3A 

Lärarhandledning. Lund, Sweden: Studentlitteratur. Translator: Cilla Heinonen.  

Ball, D.L., & Cohen, D.K. (1996). Reform by the book: What is-or might be-the role of curriculum 

materials in teacher learning and instructional reform? Educational Researcher, 25(9), 6–8, 14. 

Bergqvist, E., Bergqvist, T., Boesen, J., Helenius, O., Lithner, J., Palm, T., & Palmberg, B. (2010). 

Matematikutbildningens mål och undervisningens ändamålsenlighet. Göteborg, Sweden: NCM, 

Göteborgs Universitet.  

Brown, M. (2009). The teacher – tool relationship. Theorizing the design and use of curriculum 

materials. In J. Remillard, B. Herbel-Eisenmann, & G. Lloyd (Eds.), Mathematics teachers at 

work. Connecting curriculum materials and classroom instruction (pp. 17–36). New York, US: 

Routledge.  

Clarke, D.J. (2006).The LPS research design. In D.J. Clarke, C. Keitel, & Y. Shimizu (Eds.), 

Mathematics classrooms in twelve countries (pp. 15–29). Rotterdam, The Netherlands: Sense 

Publication. 

Davis, E.A., Janssen, F.J.J.M, & Van Driel, J.H. (2016). Teachers and science curriculum materials: 

Where we are and where we need to go. Studies in science education, 52(2), 127–160. 

Hemmi, K., Krzywacki, H., & Koljonen, T. (2017). Investigating Finnish teacher guides as a resource 

for mathematics teaching. Scandinavian Journal of Educational Research, 

doi:10.1080/00313831.2017.1307278 

 Jablonka, E. (2015). Why look into mathematics classrooms? Rationales for comparative classroom 

studies in mathematics education. In K. Krainer, & N. Vondrova (Eds.), Proceedings of the Ninth 

European Conference on Research in Mathematics Education (pp. 1724–1730). Prague, Czech 

Republic: Charles University in Prague, Faculty of Education and ERME. 



Jablonka, E., & Johansson, M. (2010). Using texts and tasks: Swedish studies on mathematics 

textbooks. In B. Sriraman, C. Bergsten, S. Goodchild, G. Palsdottir, B. Dahl, B.D. Söndergaard & 

L. Haapasalo (Eds.), The first sourcebook on Nordic research in mathematics education (pp. 363–

372). Charlotte, NC, US:  Information Age Publishing. 

Koljonen, T. (2014). Finnish teacher guides in mathematics – Resources for primary school teachers 

in designing teaching. (Licentiate thesis, Malardalen University, 2014:178). Västerås, Sweden: 

Malardalen Studies in Educational Sciences. 

Koljonen, T., Ryve, A., & Hemmi, K. (under review). The cultural script of Finnish primary teaching 

- An analysis of dominating mathematics teacher guides. 

Niemi, H. (2012). The societal factors contributing to education and schooling in Finland. In H. 

Niemi, A. Toom & A. Kallioniemi. (Eds.), Miracle of education: The principles and practices of 

teaching and learning in Finnish schools (pp. 19−38). Rotterdam, The Netherlands: Sense 

Publishers. 

OECD. (2013). PISA 2012 results in focus. What 15-year-olds know and what they can do with what 

they know. Available on: www.oecd.org/pisa. 

Pehkonen, E., Ahtee, M., & Lavonen, J. (Eds.). (2007). How Finns Learn Mathematics and Science. 

Rotterdam, The Netherlands: Sense Publishers.  

Remillard, J.T. (2005). Examining key concepts in research on teachers’ use of mathematics 

curricula. Review of Educational Research, 75(2), 211–246.  

Remillard, J.T., Van Steenbrugge, H., & Bergqvist, T. (2016). A cross-cultural analysis of the voice 

of six teacher’s guides from three cultural contexts. Paper presented at the AERA annual meeting, 

Washington, DC, US. 

Stein, M.K., Remillard, J., & Smith, M. (2007). How curriculum influences students learning. In F.K. 

Lester (Ed.), Second handbook of research in mathematics teaching and learning (pp. 319–369). 

Charlotte, NC, US: Information Age.  

Stigler, J., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving 

education in the classroom. New York, US: The Free Press. 



Algorithmics in secondary school: A comparative study between 

Ukraine And France 

Simon Modeste¹ and Maryna Rafalska² 

¹Université de Montpellier, IMAG – UMR CNRS 5149;  simon.modeste@umontpellier.fr 

²National Pedagogical Dragomanov University; m.v.rafalska@npu.edu.ua 

This article is focused on the teaching and learning of Algorithmics, a discipline at the intersection 

of Informatics and Mathematics. We focus on the didactic transposition of Algorithmics in 

secondary school in France and Ukraine. Based on epistemological and didactical frameworks, we 

identify the general characteristics of the approaches in the two countries, taking into account the 

organization of the content and the national contexts (in the course of Mathematics in France and 

in the course of Informatics in Ukraine). Our results give perspectives on understanding the place 

that Algorithmics can hold in the teaching and learning of Mathematics and Informatics. 

Keywords: Algorithm, algorithmics, didactic transposition, curricula comparison, France, Ukraine. 

Introduction 

Mathematics and Informatics1, as disciplines, have strong links. On one hand, Mathematics gives 

theoretical basis and instruments to Informatics, and on the other hand, Informatics enriches 

Mathematics with new objects and problems, and brought some changes in the mathematical 

activity. Many disciplines (Discrete Mathematics, Algorithmics, etc.) developed at their interface. 

Nowadays, there is an international movement towards including Informatics and these subjects in 

secondary education. Algorithmics is more and more present in secondary school in many countries. 

It can be involved in programs of Mathematics (as in France) or Informatics (as in Ukraine). This 

situation questions the goals of teaching and learning Algorithmics in secondary school, the 

contents of the curricula as well as the approaches and activities proposed to pupils. To contribute to 

the study of these issues, we propose a comparative study regarding the concept of algorithm and 

the contents of Algorithmics in secondary school in France and Ukraine. 

Algorithm is a central notion in Mathematics and Informatics. Algorithm in “classic” Mathematics 

is generally used with the meaning of a general effective procedure for solving problems. Since the 

origins of Mathematics, algorithms have been designed and used for solving problems (arithmetic 

operations with decimal numbers, solving equations, etc.). The use of computers and programming 

languages brought a new point of view on the notion of algorithm referring to the formalization of 

procedures, the automation of computations and the problem of data treatment. In this context, the 

notions of finiteness, iteration and recurrence play an important role (Chabert, 1999, pp. 6–7). 

As a reference, we retained the following definition of an algorithm given by Modeste (2012, p. 25) 

and based on the academic literature on the subject: “a procedure for solving a problem which, in a 

finite number of constructive, effective, not ambiguous steps, gives a result for any instance of the 

                                                 
1 We will use the term “Informatics”, a more faithful translation from the French and Ukrainian than Computer 

Science. 



problem”. We will delimit the discipline Algorithmics as the field that deals with algorithms, the 

problems they can solve, their design, their use, their analysis and their comparison.  

Research questions, theoretical framework and methodology 

To formalize our problematic, we have formulated the following research questions: 

 What is the place of Algorithmics in secondary school in France and Ukraine? 

 In what way the learning contents related to Algorithmics are organized? 

 What types of activities in Algorithmics are proposed to pupils in both countries? 

 What common points and differences appear? How can they be interpreted? 

Our study is based on the concept of didactic transposition (Chevallard, 1985) developed in the 

Anthropological Theory of the Didactic (Bosch & Gascón, 2014). The didactic transposition 

describes the processes of transformation between academic knowledge, the knowledge to be taught 

and the taught knowledge. It takes a step back from the curriculum and the content actually taught, 

to understand the role and the influence of the different institutions involved in these processes. 

In order to analyse the content devoted to Algorithmics in the curricula, to measure their distance to 

the academic knowledge, and to develop our comparative study, we lean on an epistemological 

framework, in accordance with a classical methodology in Didactics of Sciences and Mathematics 

(Artigue, 1990). Concerning the concept of algorithm and Algorithmics we used the epistemological 

framework developed by Modeste (2012; Modeste & Ouvrier-Buffet, 2011). The epistemological 

model distinguishes five fundamental aspects of the concept of algorithm: problem aspect (the fact 

that an algorithm is a tool to solve all instances of a problem, the notions of input and output); 

effectiveness aspect (all elements referring to the fact that an algorithm solves problems effectively: 

the notion of operator; the finiteness of instructions and executions, etc.); complexity aspect (all 

elements referring to the notion of complexity of algorithms and problems); proof aspect (referring 

to the links between algorithm and proof); theoretical models aspect (referring to the theoretical 

works in Logic and Informatics concerning the concept of algorithm). Among these aspects, 

problem and effectiveness refer to algorithm as a tool, whereas proof, complexity and theoretical 

models refer to algorithm as an object. This tool-object dialectic of the concept of algorithm will be 

useful to understand the points of view in different institutions. 

In this study, we analysed the official instructions, the official resources for teachers and particular 

textbooks (we focused on the knowledge to be taught, but our analysis of textbooks also informs 

about the taught knowledge). For this purpose (addressing the didactic transposition in a given 

institution), it is not sufficient to study the discourse about algorithms: it is essential to examine the 

algorithms selected by the institution, their representations and the activities involving these 

algorithms: this can reveal differences (and even contradictions) with the general discourse. To do 

this, for each resource, we answered to the following questions: 

 What kind of definition of algorithm is proposed? 

 What algorithms (or types of algorithms) have been selected? 

 What representations of algorithm are used? 

 What tasks (or types of tasks) in Algorithmics are proposed? 

Answering these questions brings elements that permit to address our principal question: 

 What aspects of algorithm are presented (according to the five fundamental aspects)? Do 

this aspect relate to algorithm as a tool or as an object? 



Our corpus of resources is described in Table 1. In the following, we present the results of our 

analyses and the answers to the research questions. As we cannot provide all details in this paper, 

we present only the main results of the comparison. Before that, it is necessary to give an overview 

of the situation in France and Ukraine, regarding the teaching of Algorithmics. 

Resources France Ukraine 

Official 

instructions 

and 

documents 

Official program of Mathematics for middle 

school; Official curricula of Mathematics for high 

school: grade 10, grades 11 and 12 (all paths); 

Official accompanying resources in Algorithmics 

for grade 10; Official program for the ISN option. 

Official program of Informatics for middle school 

(5-9 grades); Official programs of Informatics for 

high school (grades 10 and 11): standard, academic, 

professional and advanced levels. 

Textbooks 

Three collections of Mathematics textbooks 

(Indice, Bordas ; Math'x, Didier ; Transmath, 

Nathan) for grades 10, 11 and 12 (scientific, 

economic and humanities paths) ; Textbooks for 

middle school are not available yet. 

One collection of textbooks in Informatics (Ryvkind 

J.Ya. et al., 2011) for grade 11, standard and 

academic levels, part 'Algorithmics'; two collections 

of textbooks in Informatics (Morze N.V. et al., 

2014, 2015, Ryvkind J.Ya. et al., 2014, 2015) for 

grades 6 and 7, part 'Algorithmics'. 

Table 1: Analysed resources. 

Presentation of the contexts and evolutions of curricula in Ukraine and France 

Situation in Ukraine (organization, history and recent evolutions) 

The Ukrainian school system consists of primary school (grades 1-4, age of pupils – 6-9 years), 

middle school (grades 5-9, 10-15 years) and high school (grades 10-11, 16-17 years). In high school 

pupils make a choice between general or professional-oriented paths. Informatics has been taught 

since 1985 in secondary school in USSR. From the beginning, Algorithmics was a part of it. At that 

time, the course was mainly dedicated to writing algorithms in pseudo-code and executing them 

manually. Only two programming languages were used: Rapira (especially elaborated in USSR for 

teaching) and Basic. The major part of the first manual of Informatics in USSR is devoted to solving 

algorithmic problems. An algorithm is defined as “a clear and precise instruction destined to an 

operator to carry out a sequence of actions in order to reach a goal or solve a problem”. In this 

manual, the notion of operator plays a central role. It is also underlined that an operator executes an 

algorithm formally, i.e. it can carry out operations one by one in defined order without 

understanding the goal. A scheme for solving a problem with a computer is presented:  in brief, it 

consists of modelling the problem, constructing an algorithm, writing it in a programming language, 

executing it, and analysing the results. Many tasks require constructing algorithms for solving 

mathematical and physical problems with a computer, such as Horners' method or the 

approximation of the area under the graph of a positive function. 

Since 1985, Informatics has always been a mandatory subject in high school. In the programs 

published in 2008, Informatics can be taught at the following levels: standard (for general and 

humanitarian paths), academic (for science path), professional and advanced (for informatics and 

mathematics paths). The difference is the number of hours of Informatics per week (between 1 and 



5) and the contents. As a part of the subject, Algorithmics is studied at every level with a total 

amount of hours that varies a lot: Standard (5), Academic (28), Professional (175), Advanced (191). 

In 2013, Informatics also became a mandatory subject in primary (from grade 2) and middle school. 

Thus, at the moment, Algorithmics is also present in middle school (from grade 6). 

Situation in France (organization, history and recent evolutions) 

The secondary French school system consists of middle school (collège, grades 6-9, 11-15 years) 

and high school (lycée, grades 10-12, 16-18 years). In high school, professional, technical and 

general orientations are proposed, and the general orientation is divided into humanities, economic 

and scientific paths2. In this study, we will concentrate on the general orientation. Recently, many 

reforms happened in the French curricula, the last one was in 2016 and concerned middle school. 

Gueudet, Bueno-Ravel, Modeste and Trouche (to appear) give more details about the evolution of 

French mathematics curricula, including Algorithmics. Informatics appeared for the first time in the 

French curricula in the 1980's (Baron & Bruillard, 2011), with an introduction to Programming and 

Algorithmics in high school. It disappeared in the 1990's, replaced by the use of computer tools and 

new technologies. Recently, Informatics came back in secondary school. In 2012, an optional course 

was created in grade 12 in the scientific path (ISN: “Informatics and digital sciences”, 2h/week), and 

in 2015, an optional course appeared in grade 10 (“Informatics and Digital Creation”, 1h30/week). 

Starting from 2016, Informatics will also be taught in middle school (principally in grades 7-9) in 

the mathematics and technology classes. Few years before that (from 2009 for grade 10 to 2012 for 

grade 12), some contents of Algorithmics were introduced in the curricula of Mathematics in high 

school (Modeste & Ouvrier-Buffet, 2011). 

Comparison at high school level (grades 10-12, ages 15-18) 

Algorithmics in high school in Ukraine 

Through all grades and levels, a common approach to Algorithmics can be identified. It includes the 

presentation of the steps for solving problems using a computer and the role of algorithms in this 

process, distinguishing algorithms from programs, with an emphasis on the notion of operator. The 

activities involve various representations of algorithms (common language, flowchart and program). 

In the analysed textbooks the term algorithm is defined as a finite sequence of instructions that 

determines what operations and in which order to carry out for obtaining a goal. In this definition, as 

well as in the description of the properties of an algorithm (discreteness, certitude, feasibility, 

finiteness, effectiveness) given explicitly at all levels, we can identify the aspect effectiveness. The 

problem aspect is expressed in the property of “generality” of an algorithm, which says that an 

algorithm applies to a set of similar problems, which have the same question and solving procedure 

and differs only by the values of initial data. At the same time, the specific term “instance 

algorithm” is used in the textbooks to define an algorithm that solves only one case of a problem. 

Most part of the proposed instance algorithms are: algorithms of daily life (e.g., preparing meal), 

algorithms from others disciplines (e.g., geometrical constructions), algorithms implementing a 

                                                 
2 For details about French system: http://eduscol.education.fr/cid66998/eduscol-the-portal-for-education-

players.html 

http://eduscol.education.fr/cid66998/eduscol-the-portal-for-education-players.html
http://eduscol.education.fr/cid66998/eduscol-the-portal-for-education-players.html


strategy (e.g., the wolf, goat, and cabbage problem). The expected competence is to represent the 

solution of a problem in an algorithmic way (as a sequence of instructions) rather than to solve it. 

At standard level, many tasks concern the construction of algorithms for a given operator. The 

activity is centred on identifying the system of commands of an operator and writing an algorithm 

using only these commands. Although, most of the problems are quite easy and the goal of the tasks 

is to find the best strategy and present it in the required form. This concerns principally instance 

algorithms and refers to the effectiveness aspect. Generic algorithms (algorithms with many 

instances) mostly relate to solving mathematical problems (solving equations, evaluating the area of 

a polygons.) and computations (evaluation of simple expression). Pupils construct algorithms, 

describe them in the requested form (principally flowcharts) and execute them manually.  

At academic level, Algorithmics is based on Delphi, an object-oriented programming language:  

pupils get accustomed to Algorithmics by learning the instructions of Delphi. 65% of the tasks are 

about writing programs, executing and modifying them, 19% of tasks are devoted to object-oriented 

programming. Algorithms are mostly verified by testing the programs. Generic algorithms are more 

present than instance algorithms. Most of them concern computations (e.g., evaluation of simple 

expressions) (33 %) and solving mathematical problems (e.g., solving equations, primality test) 

(31%). A bit less tasks concern the computation of sequences, products, sums (11%) and data 

treatment (e.g., sorting, searching in an array) (17 %). The textbook includes many tasks where an 

algorithm is only used for formulating a procedure before programming it. One can also found tasks 

where algorithms plays the role of tool for problem solving (e.g., finding the divisors of an integer). 

In this case, the focus is more on the construction of algorithms than on writing and debugging 

programs. Although we found many generic algorithms, only the effectiveness and problem aspects 

are strongly present. The complexity aspect is only evoked concerning the binary search algorithm. 

At professional and advanced levels, an algorithm is presented not only as tool but also as an 

object. At professional level we found many “rich” algorithms, such as recursive algorithms, 

algorithms on graphs, algorithms of treatment of stacks and lists, etc. Expected competences for 

pupils are not only to understand some algorithms and write programs, but also to analyse 

algorithms’ efficiency and compare them. The complexity aspect is also evoked. At advanced level 

the theoretical models aspect is present (e.g., NP-complete problems). Expected competences 

concern the abilities to choose an algorithm appropriate to a problem, to compare algorithms 

according to their complexity, to analyse and compare algorithms. Algorithm is present as an object. 

Algorithmics in high school in France 

Programs of Mathematics for high school, for all levels, contain the same Algorithmics part, with 

a list of expectations for the end of high school: pupils must be able to “describe algorithms in 

natural and symbolic languages”, to “carry out some of them using a spreadsheet or a small program 

written in a calculator or a software” and “interpret more complex algorithms”. It is mentioned that 

“algorithmics has a natural place in all the mathematical subjects”. Pupils must learn elementary 

instructions, conditional instructions and loops. At each level, few specific algorithms are 

mandatory, e.g. plotting a curve (grade 10); solving equations of the type f(x)=0; simulating random 

experiments (grade 12, scientific path). Most of the algorithms in the programs deal with sequences, 

numerical methods and simulations in probability and statistics. Algebra and geometry are just 



mentioned as fields for algorithmic activities. Discrete Mathematics have a very little presence. The 

priority seems to be given to the implementation of algorithms in a programming language. 

The accompanying resource for grade 10 – that seems to have driven the approach to 

Algorithmics in high school (Modeste, 2012) – does not define the term algorithm, and does not 

even distinguish it from the term program. The activities are focused on language and rigorous 

expression of operations, and often aim at writing programs. It results in a confusion between   

program and algorithm that indicates a focus on the effectiveness aspect. A specific language to 

describe algorithms is implicitly developed, mixing pseudo-code and technical programming 

constraints – that we called paper-program (Modeste, 2012). Many instance algorithms are present, 

which confirms a confusion between writing algorithms and describing step-by-step operations. 

In the studied textbooks for all levels, we can see the strong influence of this accompanying 

resource. Most algorithms are described as “paper-programs” before being implemented (generally 

as immediate translation). Many exercises deal with interpreting, writing or translating algorithms in 

a given language. Algorithm is only shown as a tool, even the problem aspect has little presence. In 

the program for the ISN option, the approach differs. The program explicitly defines the notion of 

algorithm and mentions that it must be distinguished from the notion of program. Algorithmics is 

presented as a branch of Informatics and algorithms are not restricted to programming. The concept 

of algorithm appears as a tool and as an object (complexity and proof aspects are present). 

Comparison in high school 

In Ukraine as in France, the effectiveness aspect is central. In all levels, algorithm is used as a tool, 

but the problem aspect is more developed in Ukraine. Algorithm is treated as an object only at 

professional and advanced levels in Ukraine, and in the ISN option in France. We could have 

expected them to appear in the French scientific paths but it is not the case. In Ukraine, the approach 

to Algorithmics seems to be guided by the development of algorithmic thinking whereas in France 

the focus is on the programming and language skills. It appears clearly in the texbooks: in Ukraine, 

the concept of algorithm is defined and a list of its properties is given, whereas, in France, an 

algorithm is defined by the language that describe it. Although in France, Algorithmics is taught in 

the Mathematics class, the focus on programming seems to be stronger than in Ukraine for standard 

level, where programming is not required and the focus is on  elementary algorithmic thinking. In 

Ukraine, two features can be highlighted, probably inherited from historical context of teaching of 

Informatics in USSR: significant role of the scheme of problem solving (presumably influenced by 

the problem-solving theories) and the emphasis put on the notion of operator. In France, in 

Mathematics, algorithms are used to solve mathematical problems and are considered as a mean to 

deal with the mathematical concepts. The important presence of programs for simulations in 

probability or for embodying properties of mathematical objects attests to this point of view. The 

approach developed in ISN, in France, is close to the approach proposed at professional and 

advanced levels in Ukraine. They involve advanced concepts and aim at developing advanced 

algorithmic thinking, but we suspect a difference between the programs and the taught knowledge. 



Comparison at middle school level (grades 6-9, ages 11-15) 

Algorithmics in middle school in Ukraine 

In the programs for grades 6 and 7, the part devoted to Algorithmics is similar to the program for 

standard level of high school. Although the program declares programming as one of the pupils’ 

activities, it does not specify any programming language to use. In the textbooks for grades 6 and 7, 

an algorithm is defined as a finite sequence of instructions to be carried out for solving a problem. 

As we can see, in the given definition the effectiveness and problem aspects are on the first plan. At 

the same time, the fact that an algorithm solves all instances of a problem is not presented. The main 

part of proposed problems concerns the construction of instance algorithms for different operators. 

Both textbooks propose to program in Scratch. Pupils' activity is focused on developing programs 

and projects, using this programming environment. In grades 8 and 9, the Algorithmics part of the 

program is devoted to object-oriented programming. In grade 8, the notion of variable and different 

types of data are introduced. In grade 9, search algorithms in arrays are studied. The expected 

competences of pupils refer mostly to writing, modifying and debugging programs. The aspects 

related to algorithm as an object are not present.  

Algorithmics in middle school in France 

In 2016, Informatics appeared in middle school. Algorithmics contents essentially appeared in the 

Mathematics course, in the cycle 4 (grades 7-9), in the theme “Algorithmics and Programming”. 

Textbooks for this reform were not available at the time of the study, so we only analysed the 

programs. One general competence guides the program: “write, elaborate and execute a simple 

program”. Then, more specific competences are listed (decomposing a problem into sub-problems, 

designing a program to solve a problem; writing programs driven by events; and writing parallel 

programs)  and contents are specified: notions of algorithm and program; variables in Informatics; 

event-driven action, sequence of instructions, loops, conditional instructions; exchanged messages 

between objects. These contents are strongly oriented towards programming and, even if it is not 

declared, the software Scratch must be used to teach these notions. The chosen approach implies 

developing projects and games (in order to develop pupils' reasoning) and does not focus only on 

mathematical concepts. Effectiveness aspect of algorithm is present and problem aspect is more 

notable than in the high school curricula. Contrary to the approach proposed in Mathematics in high 

school, Algorithmics is introduced by programming (independently from mathematical contents). 

Comparison in middle school 

In France and in Ukraine, in middle school, algorithm is presented as a tool. The effectiveness aspect 

is dominant. Although the problem aspect is mentioned, the role of algorithms for problem solving 

and the place for generic algorithms are not clear. At this level, the complexity and proof aspects  are 

not proposed. Contrary to the curricula for high school, there are more similarities between the two 

curricula for middle school. Particularly, the notions of algorithm and program are distinguished; 

the introduction to Algorithmics includes event-driven programming in Scratch, and objects and 

variables are introduced later. The approach is based on solving concrete problems and developing 

projects in Informatics and in other disciplines. This could be explained by the influence of an 

international movement towards the teaching of Informatics in primary and middle school. 

Nevertheless, there are also important differences. In France, the most part of the proposed projects 



are in Mathematics (maybe because it will be taught by Mathematics teachers, not well trained yet 

in Informatics), and there is a strong focus on programming (in a different way from high school). In 

Ukraine, the notion of operator is still highlighted, representations of algorithms with schemes and 

flowcharts are requested and many examples of algorithms are taken from everyday life. This is 

directly inherited from the didactic transposition proposed in the 1980's and today in high school. 

Conclusions and perspectives 

On the one hand, this comparative analysis of the didactic transposition of the concept of algorithm 

and Algorithmics in secondary school in France and Ukraine brings out differences that reveal the 

impact of institutions, traditions and historical contexts on the curricula. The comparison of two 

contexts where Algorithmics is not a part of the same course (Mathematics versus Informatics) 

shows the influence of these disciplines on the contents, on the points of view on Algorithmics and 

on the algorithmic activity. On the other hand, in the two countries, we see general orientations in 

middle school that seem to be part of an international movement towards the teaching and learning 

of Informatics. This study contributes to understand and improve curricula, by taking into account 

the points of view of Mathematics and Informatics on Algorithmics. It gives perspectives to study 

the development of algorithmic thinking, and the teaching and learning of Algorithmics' concepts. 
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In this paper we investigate Norwegian and Swedish upper secondary students’ perspectives on the 

purpose of school mathematics. Students were group interviewed in various schools in both Norway 

and Sweden and the video recordings of those interviews fully transcribed. In each country 

transcriptions were subjected to a constant comparison analytical process that, coincidentally, 

yielded the same two dominant themes that we report here. Firstly, all students spoke about how 

learning mathematics facilitates being able to manage shopping, personal finances and other 

functional aspects of the real-world. Secondly, students spoke about how learning mathematics 

would facilitate their getting a job, including some Swedish students who saw mathematical success 

as a high status qualification preferred by employers.  
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Introduction 

Despite evidence that large scale assessments of mathematics achievement like the Organisation for 

Economic Cooperation and Development’s (OECD) Programme of International Student 

Assessment (PISA) have prompted curricular changes in many OECD member countries 

(Breakspear, 2012), the nature of school mathematics is not an unproblematic given and varies 

considerably cross-culturally (Andrews, 2016). Indeed, all curricula, which are based on a culture’s 

conception of an ideal person (Cummings, 1999), are rooted in substantially more than what can be 

inferred from official documents. Consequently, the ways in which teachers conceptualise and 

present mathematics varies from one cultural context to another, inevitably influencing the beliefs 

that students form about mathematics and its purpose (Cobb, 1985). 

Students’ beliefs about mathematics and its teaching have been the focus of much research for more 

than four decades, following Erlwanger's (1973) case study of Benny, a twelve year-old student who 

had come to see mathematics as invented rules, each for a particular type of problem, that work like 

magic. Benny’s beliefs about mathematics effectively laid the ground for the field, not only from the 

perspective of what students believe about mathematics and its teaching but also the ways in which 

teachers’ beliefs and practices are implicated in the construction of such beliefs. In short, the 

significance of this work draws on the premise that students’ beliefs are informed by, and inform 

how they respond to, their mathematics-related learning opportunities (Erlwanger, 1973; Callejo and 

Vila 2009). In this regard, “beliefs constitute, for the believer, current knowledge about the world” 

(Cobb, 1986, p.4).  

Over the succeeding years, research into students’ mathematics-related beliefs has addressed a 

variety of themes, which have been well summarised by Op ‘t Eynde and his colleagues (Op ‘t 

Eynde et al., 2002; 2006), which they present under three broad headings; beliefs about mathematics 



education, beliefs about the self as a mathematician and beliefs about the mathematics class context. 

Within these three broad headings, which space prevents us from discussing in depth, are located 

most aspects of mainstream beliefs-related research. However, a strand that has received less 

explicit attention the literature, particularly in the Scandinavian context, has been the beliefs 

students hold about why they are compelled to learn mathematics for so many years.  

The purpose of school mathematics 

In general terms, the reasons why children spend so many years studying mathematics are not 

always clear, although typically they seem to be tied to ensuring either the social, economic and 

political mobility of the individual citizen or the nation’s economic growth through preparing the 

next generation of employees (Schoenfeld & Pearson, 2009). Such perspectives are philosophically 

rooted in either personal emancipation or the reproduction of the existing social order respectively. 

That being said, while much philosophical research has addressed the general aims of education, 

“very little sustained work of this kind appears to have been carried out in mathematics education”, 

to the extent that “there is sufficient disagreement, lack of clarity and modesty to warrant further 

enquiry” (Huckstep, 2000, p. 8). It is on this that we next focus, confirming Huckstep’s concerns. 

Various scholars have considered the purpose of school mathematics. For example, Niss (1996) 

discusses the justification and the goals of mathematics education from both theoretical and 

historical perspectives. Davis (2001) adopts a largely philosophical standpoint in suggesting three 

distinct purposes, which he describes as the teacherly, the rhetorical and the hermeneutic. The 

teacherly purpose for teaching mathematics derives from a set of largely forgotten reasons tied to 

the belief that “knowledge of mathematics is necessary for every citizen of today's world” (p. 18). 

The rhetorical purpose derives from an “explanatory fantasy that is currently preferred to organize 

and structure experience” (p. 19). The hermeneutic purpose lies in beliefs that “there are moral and 

ethical imperatives that operate in the human and in the more-than-human realms” (p. 21). In a 

slightly more prosaic manner, Noyes (2007) writes of six broad purposes; mathematics for the 

academy, for employment, for general education, for citizenship, for the information age and, 

finally, critical mathematics education. Ernest (2016), in a not unrelated manner, describes seven 

purposes; functional numeracy, work-related knowledge, advanced specialist knowledge, problem 

posing and solving, mathematical confidence, social empowerment through mathematics and, 

finally, appreciation of mathematics itself. Finally, Watson (2004), in a manner that seems to 

summarise both Ernest and Noyes and mirror Davis (2001), proposes three broad purposes; 

mathematics as a set of useful skills and procedures, a support for the burgeoning mathematics-

related professional, and a tool that facilitates successful societal participation. In sum, as Huckstep 

(2000) indicated, mathematics is taught for various reasons tied to cultural norms and values. 

Interestingly, despite research discussing the purpose of mathematics from an outsider perspective, 

few studies have engaged with the insider; what do recipients of mathematics teaching think is the 

purpose of what they are taught? In this respect, it is salient to note that Brown, McNamara, Hanley 

and Jones (1999), when investigating beginning primary teachers’ understanding of mathematics 

and its teaching, found that “a sense of bafflement about the purpose of school mathematics 

permeated many accounts” (Brown et al., 1999, p. 305). That is, these students had completed 

school and still had no idea as to the purpose of school mathematics. In the light of such uncertainty 

and acknowledging the lack of research in the field, particularly in the context of Scandinavia, we 



examine the beliefs about the purpose of school mathematics of both Norwegian and Swedish upper 

secondary students. As in Brown et al.’s (1999) study, these students are close to the end of their 

school careers and should have formed clear ideas as to the purpose of mathematics. 

The study and its methods 

The data on which this paper is based derive from a comparative interview study of upper secondary 

students in Norway and Sweden. In broad terms the study set out to explore students’ perspectives 

on their many years of school mathematics. Students were interviewed in pairs or threes, and the 

interviews were structured around the following four questions, with follow-up questions where 

appropriate: 

1. How would you describe a typical mathematics lesson at school? 

2. What do you think is the purpose of compulsory school mathematics? 

3. What do you think mathematics as a subject has to offer to those who engage with it? 

4. If you could say something about the nature of mathematics education to those in charge of 

the educational system, what would it be? 

It is the answers to question 2 that we will be focusing on in this paper. 

The Norwegian data derived from 17 interviews involving 42 students from three schools. Two 

schools, one in Oslo and one in Trondheim, were high-achieving academic schools, while the third 

was a relatively low-achieving vocational school in Oslo. The Swedish data derived from 18 

interviews involving 50 students from four schools. These schools, from various parts of 

Stockholm, all offered a range of vocational and academic tracks. Consequently, we make no claims 

about schools’ representativeness nor do we seek to generalise. All participants were fully aware of 

the purpose of the research and of their rights to withdrawal.  

Interviews, undertaken at a time chosen by the students, were video recorded on laptop computers, a 

decision justified in four ways. Firstly, video, especially when participants talk over each other, 

simplifies transcriptions. Secondly, video captures non-verbal communication. Thirdly, due to their 

classroom ubiquity, laptops were expected to create less disruption than tripod-mounted video 

cameras. Fourthly, laptops record data directly to their hard-drives, simplifying data storage and 

analysis. All interviews were transcribed and, in each country, subjected to a constant comparison 

analysis whereby each transcript was read and categories of response identified. With each new 

category, previously read episodes were re-read to determine whether the new category applied to 

them also. The two data sets were analysed separately to ensure the cultural integrity of the findings. 

Results 

The data from both countries yielded a variety of themes. However, two closely related themes 

dominated the analyses in both contexts and it is these we turn to in this paper. These were related 

to being able to function in the real world and getting a job, and were present in every single 

interview in one form or other. Below we give a more detailed description of the two themes as well 

as exemplifying interview extracts from both academic (A) and vocational (V) students. Other 



themes, relating to mental training, appreciation, and uselessness were also present in the data 

(though much less so). However, it is beyond the scope of this paper to discuss those here. 

Mathematics enables one to function in the real world: Norway 

A large number of students emphasised the importance of mathematics in daily life, which typically 

seemed to consist of going to the supermarket or calculating one’s salary and taxes. In respect of the 

former, Line’s (A) comment was typical; “maths is a lot about everyday life… you wouldn´t be able 

to go to the store and buy goods if you didn´t have some maths”. Similarly, Robin (V) commented 

that “when you are going to buy food and stuff, you need to know how much things cost and stuff”. 

With respect to both shopping and income, Tania’s (A) comments were not atypical. She said that  

You need it in daily life and… you´re in the shop, you want to buy something, and then you must 

add… sum the price of the things you buy and stuff… like if you work, and if you want to know 

how much you earn and you want to know your net income... if you know it yourself you can 

double check if the person who does it has done it right and stuff. 

While Ruben (V) added that “you can calculate numbers and stuff… it helps you on in life... if you 

work you can calculate your salary and stuff”, before adding that “there is a lot of maths that you 

don´t need, but you need at least a part of it”. Others offered less specific statements regarding 

‘daily life’. For example, Amalie (A) commented that she hadn’t “thought that much about it” 

before adding that “you do at least have to know some maths… like in daily life, then maths is 

useful”. Interestingly, she then offered the observation that “when we are at high-school level then I 

don´t exactly think that all the maths I learn will be useful”. 

In sum, the Norwegian students were confident that knowing mathematics would support their 

functioning in the real world, although there were occasions when the manner of this support was 

vague and imprecise. It was also interesting to see Amalie’s and Ruben’s comments that while 

mathematics was a real-world support, much of what they learned was unnecessary in this respect. 

Mathematics enables one to function in the real world: Sweden 

In every Swedish interview students spoke about how they saw mathematics as preparing them to 

face a world beyond school, mathematics as supporting their real-world functionality. Within this 

utilitarian strand two major themes were identified. The first concerned personal finance and the 

management of money. Here, almost all students spoke about understanding interest, as with 

Jacob’s (V) comment that “percentages in terms of interest and loans and things like… that's very 

good to know because you might not really figure out in your head how much you can spend”. In 

similar vein Pedram (A) said that “amortization…, interest rates, interest costs, to be able to figure it 

out, it is important”. Others spoke more generally about the management of personal finances. For 

example, Mark (V) commented about the need to manage “larger sums, as well as your salary”, 

while Kenneth, in the same vocational track interview, added that “it becomes much easier to make 

financial plans… if one has several years of mathematics”. Finally, several students spoke of the 

need to avoid overextension, as in Göte’s (A) concerns with respect to “SMS loans and stuff, there 

are many who do not know how much you lose there” and Omar’s (A) worries that “there are too 

many adults today who do not really understand interest and how it works”. 



The second major theme relating to being able to function in the real world related to the mundane 

world of everyday shopping. Comments typical of others were like those of Alice (A), who said that 

“it's something you use in everyday life, it’s typical when you go shopping, it's just the basics”, or 

Mark (V), who said that “it's always good to have a base in maths. So, if you go shopping and have 

a hundred, then you cannot buy for more than a hundred”. Others offered a slightly different 

perspective. For example, Hanna (A) raised the overall mathematical expectation of such 

transactions by commenting that “if you've gone shopping and there is a discount and know how to 

do that or how to pay what you're gonna pay in. It is like useful to use maths like this”, while André 

(V) added that “you always look at the prices and compare them to the prices in another store”.  

Knowing mathematics enables one to get a job: Norway  

A number of students spoke about how they saw their learning of mathematics in relation to their 

future careers. In most cases students spoke hypothetically as few seemed to have considered their 

own particular career aspirations. For example, Sarah (A) said that 

I think that maybe we need to spend as much time on maths as we do because we don´t know 

who ends up as engineers or who maybe works with something that you maybe don´t need a 

lot of maths for... you can´t know in advance, so everyone has to learn everything... so that 

you can be what you want.  

In similar vein, Kristine (A) commented, after acknowledging “that is a bit of a difficult question”, 

that 

it depends a lot on what you plan to do after high school... if you have planned to take a fairly 

high education then it is clear that there is a lot of maths; if you, for example, are going to be a 

chemist or a physicist or... medical studies too... or generally medicine, if you are to calculate 

dosages for a pain killer it is a bit bad to get a really huge dose… but if you plan to work at 

Mc Donalds for example, then it is not so important. 

The comments of both students indicate an understanding that different professions will require 

different levels of mathematical competence. However, neither of them sees mathematics as an 

important component of education for everyone for its own sake. However, having observed that 

working in McDonalds does not require much by way of mathematical competence, Kristine added 

that “but how do we know from the start who will be a physicist and who will work at 

McDonalds?”  

Other students noted that they do mathematics for as long as they do because it is a formal entry 

requirement for higher education (even if that higher education is unrelated to mathematics). In this 

respect, Andreas (V), in a comment typical of others, noted that “actually it is an entrance 

requirement for the college I plan to go to later... but apart from that I don´t see any reason to know 

such advanced maths”. In such a comment, and those of Sarah and Kristine, lies a tacit concession 

that everyone has to spend twelve years learning mathematics just in case it might be useful, a 

conclusion summarised well by Gina (A), who said, “I think maybe you don´t notice the importance 

until later”. 

In a related manner, Malin (A) spoke of how mathematics supports the learning of other subjects. 

She commented that  



you need to use maths a lot in other subjects, so you have it in chemistry and physics and 

stuff... so maths is a very important tool… so it is not... if you look at the maths as a subject... 

just a subject, then it can be a lot of numbers and a bit like... but if you put it in the context of 

other science subjects, then it is the most important tool you have. 

Knowing mathematics enables one to get a job: Sweden  

Very few students did not, during the course of their interviews, refer to the ways in which learning 

mathematics would enhance their employment prospects. Within the Swedish data two major 

subthemes were identified. The first of these concerned students’ beliefs about the generic ways in 

which mathematical knowledge would prepare them for work. At its most basic, according to 

Andreas (V), “any job requires quite some math knowledge, in all cases, plus or minus, often times. 

… and that applies to the majority of all jobs”. More specifically, as in the comments of Thomas 

(V), “you get better chance of getting a better job with like higher level of mathematics”, while 

Alice (A) believed that “when one has read maths, one can study further and get … more 

opportunities for the future, one can say, more career choices”. Others still, saw beyond their first 

job, as with Kenneth’s (V) comment that “even when you think you have found out what you want 

to be, you might want to switch careers later and then maybe you need more knowledge in maths”. 

From the perspective of particular career routes, Dennis (V) commented that “as an electrician you 

need so this current, voltage, and everything like that, it requires maths for”, while Roxana (A) 

suggested that “if you're going to become an engineer for example you're gonna read a lot of 

mathematics”. 

The second, slightly cynical, theme found students discussing how being mathematically qualified 

gave them an advantage over those who were not. For example, Ted (V) commented that “I think 

that many who have not read maths will not get a job, for the employer will not hire those who 

cannot work in the same way”, while Jacob felt that the mathematically qualified “is more 

knowledgeable, that way he can solve the problem the less skilled cannot; he can see the big picture 

of things better”. Hanna’s (A) view was that such advantages stemmed from the fact that  

it might be like easy for that (mathematically well-qualified) person to think logically, to think 

outside the box and that kind of stuff. And the other (less well-qualified) person might have a 

few more problems with that, maybe… and probably it's easier for the person that's really good at 

math to excel in whatever they want to do… which is harder for the other person  

Most Swedish interviews also contained some reference to the ways in which mathematics was seen 

as a service tool to other forms of activity. Typically, these focused on the natural sciences, as in the 

comments of Adam (V), who said, “you use math well in other subjects like physics”, Mikaela (A), 

who believed that “I know … in chemistry or physics … I need maths. So I think to learn the 

physics or those things you need to learn, to know the maths first. So you can build on it” and Julio 

(V), who argued that “maths is the grounding for several subjects, so if you remove maths, it's not 

just maths skills that will be worse, but then it is physics, chemistry and yes science subjects just 

disappear, so maths is an important part”. Others’ comments were more general, as in Winston’s 

comment that mathematics “works well with other subjects that also need the maths, like they 

complement each other”, while Max commented that “sports is a subject where you use it 

(mathematics)”. 



Discussion 

In this paper we set out to uncover what Norwegian and Swedish upper secondary students believed 

was the purpose of school mathematics, particularly as it has been an ever-present compulsory part 

of their school careers. The results seem much removed from mathematics as a problem posing and 

solving discipline (Ernest, 2016) for which teaching aims to “lead students to appreciate the power 

and beauty of mathematical thought (Dreyfus and Eisenberg, 1986, p.2). Indeed, the two dominant 

themes, mathematics as a support for functioning in the real world and mathematics as an entry into 

employment, are as utilitarian as it is possible to be, showing no connection to mathematics as a 

cultural artefact to be appreciated as would be art, music or literature. Moreover, the themes were 

not utilitarian in the sense that students saw themselves as having been educated for citizenship 

(Noyes, 2007), made socially empowered (Ernest, 2016) or inducted into societal participation 

(Watson, 2004). They were utilitarian solely from the perspective of personal advancement. There 

was no evidence that these students, many of whom were expecting to go to university and study 

mathematics-related subjects, saw mathematics as part of the “moral and ethical imperatives that 

operate in the human and in the more-than-human realms” (Davis, 2001, p. 21). 

While such findings may be disappointing, we acknowledge that these students’ perspectives have 

not emerged by chance but from individually unique experiences of mathematics. These ten- and 

eleven-year experiences, located in different countries and schools, will necessarily have influenced 

the formation of individuals’ beliefs about the nature of mathematics and its purpose (Cobb, 1985), 

and yet their collective voice was close on deafening. So, are there any explanations? Well, the 

literature is not particularly expansive on such matters, although a recent case study may offer some 

insight. In their study of largely disaffected Swedish upper secondary school students, Andersson, 

Valero and Meaney (2015) motivated their students by means of tasks involving, inter alia, 

percentages related to personal economics. This approach, which was received positively by the 

students concerned, raises at least two important questions. The first is whether such an approach 

legitimates students’ perception that school mathematics is about preparing them for the real world. 

The second is whether students’ positive reactions were a consequence of the task meeting their 

expectations of school mathematics. In short, which came first, the chicken or the egg? 
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Visual attention while reading a multiple choice task  

by academics and students: A comparative eye-tracking approach 
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This study exploited eye-tracking technology to analyse the visual attention, while engaging with  

a multiple-choice mathematical task, of 103 participants with different levels of expertise and 

experience, including academics, university students and secondary school students. The majority of 

participants, irrespective of experience or prior knowledge, skipped or did not process all the 

information provided by the task. Important differences were discerned between how the academics 

and the two student groups attended to the different areas of the task’s presentation, highlighting the 

different problem-solving approaches of the experienced and the inexperienced. Moreover, a ‘hit 

ratio’ parameter allowed the identification of those participants who did not look at these important 

areas of the task. The research highlights methodological advantages and disadvantages of using 

eye-tracking and different ways of data analysis. 

Keywords: Eye-tracking, multiple choice task, comparative study. 

Introduction 

The use of eye-tracking for research in mathematics education is an emergent field, albeit still 

relatively rare. For example, during the ICME-13 congress, only 4 of 1952 papers and 533 posters, 

contained the phrase eye-tracking or its variants in their title. Most mathematical education–related 

eye-tracking research has been undertaken in laboratories, with classroom-based studies using head-

mounted eye-tracking device are rare (e.g. Garcia & Hannula, 2015; Hannula 2016). Examining 

visual attention not only shows where and how gaze is directed, but also constitutes a basis for further 

analysis of problem solving, reasoning, attention and mental images. (Just & Carpenter, 1976; 

Zelinsky & Sheinberg, 1995; Ball et al. 2003; Yoon & Narayanan, 2004). The measurement of the 

eyes’ fixations can provide reliable and sensitive insights into otherwise unavailable cognitive 

processes (e.g. Sosnowski, 1993).  

From the perspective of mathematical problem solving, researchers have used eye-tracking to 

distinguish between the behaviors of experts and novices with respect to the solving of linear 

equations (Susac et al., 2014), geometry problems (Epelboim & Suppes, 2001) and their interpretation 

of mathematical representations (Andrà et al., 2009), interpreting graphs (Wcisło et al., 2014), 

perception of Cartesian coordinates (Krichevets et al., 2014) as well as perception of  

a number line (Shvarts et al., 2015). 

Students need to learn how to read mathematical problems. Thus, in-depth knowledge of strategies 

for reading mathematical problems has important didactical consequences, although more needs to 

be known about how participants of different levels of education approach unfamiliar problems. In 

this paper I report an eye-tracking study of approaches to the reading and solving of a multiple choice 

graphical problem concerning motion. The relatively large sample of the current study, more than 

100 participants, is novel as the majority of previous eye-tracking studies in mathematics education 

have been case studies with small samples of fewer than 20 people. 



Methods 

The primary aim of the study was to use eye-tracking to investigate whether different groups of 

participants’ visual attention while reading and analyzing a mathematical problem varied with 

experience and problem-solving expertise. The first group, academics (A), comprised one professor 

of physics and three academics in mathematics, physics and computer science respectively. The 

second group, university students (U), comprised 75 university students at different stages of their 

courses in computer science, physics, mathematics and biology. The third group comprised 24 high-

achieving school students (ages 17-18 years) (S) who attended a so-called university class with an 

extended curriculum in mathematics and physics. Thus, study participants included people with 

widely differing experiences of mathematics. All participants were guaranteed anonymity and could 

withdraw from the study at any time.  

Task and apparatus 

Respondents were invited to solve a multiple-choice mathematical task (proposed by Prof. W. 

Blasiak) concerning the interpretation of a motion graph. The Polish mathematics curriculum 

introduces the interpretation of graphs of functions to students in grade seven (lower secondary 

school). Later, students aged 14-15 years old learn the concept of a function and use its 

representations. During both mathematics and physics classes they also learn the relationships 

between average speed, displacement and time as well as constant acceleration. Thus, the 

mathematical subject matter knowledge of every participant should have been sufficient to solve the 

problem. However, the task, shown in Figure 1, is complex, caused mainly by the simultaneous 

presentation of two time-velocity graphs. In addition, participants were asked to identify incorrect 

statement(s), what is not a standard request. Academics were invited to identify any incorrect 

statements, of which there were two, A and E. For the other participants the task was simplified to 

one incorrect statement A. 

Statement A is incorrect due to its assumption that the graphs represent trajectories. Statements B, C, 

D are correct. Answer B (and E) concerns the distance driven by the vehicles. Statement B can be 

verified in an elementary way, based only on the analysis of speed values: vehicle (I) moves in the 

time span 0-10 min. with higher speed than vehicle (II), so its displacement is greater. Statement C 

concerns only the interpretation of values of the functions for the argument t = 10 min. Statement D 

essentially requires a basic understanding of acceleration, although knowledge of the monotonicity 

of linear functions would be sufficient. Statement E is the most sophisticated, being true only at t = 

10 min. One can notice it comparing the area of respective figures: rectangle and triangle bounded by 

the graphs of the functions and x-axis (graphical interpretation of the distance at the motion graph). 

Concerning version for academics (see Fig. 1) for all positive t ≠ 10 statement E is incorrect, thus the 

general statement is also incorrect. The difficulty connected with statement E was specifically 

included to make a more challenging task for the academics. Other participants were asked to verify 

the statement for t = 10 minutes, therefore statement E for them was correct. 

To record participants’ eye movements, the Eyetracker Hi-Speed 1250 with iView X™ was used. 

The sampling rate was set to 500 Hz, monocular. The movements of the left eyeball were examined 

for every participant and the data obtained processed by the BeGaze software. The 13-point 

calibrations were accepted with an angular accuracy of less than 0.5º. All respondents sat at a distance 



of 50 cm from a 22-inch monitor. The duration of the experiment was not limited. Participants’ eye 

movement data, question responses and mouse clicking were recorded by Experiment Center 3.1. 

Additionally, respondents were asked to orally confirm their selected answers.  

 

Figure 1: The task translated from Polish 

Results  

The analyses were undertaken in several stages. 

Firstly, the figures of Figure 2 show the problem solving results for each group. It is interesting to 

note that while both the university and school students were not particularly successful, identifying 

many correct statements as wrong and not identifying the incorrect statement, the academics, with 

their amended statement E, failed to identify it as incorrect. 

Selected answers A B C D E 

A (4) 4 0 0 0 0 

U (75) 
24 

(32%) 

19 

(25%) 

8 

(11%) 

9 

(12%) 

15 

(20%) 

S (24) 
8 

(33%) 

5 

(21%) 

3 

(13%) 

0   

(0%) 

8 

(33%) 

Figure 2: Results of the task for each group 

Secondly, with respect to the eye-tracking analyses, participants’ eye movements were studied 

initially by five broad areas of interest (AOIs), as shown in the left hand side of Figure 3. These were 

the words comprising the task formulation (Wording), the key word within that text (Incorrect), the 

graphical diagram (Graph), the statements A – E (Statements) and, finally, the remainder of the slide 

(White Space). The right hand side of Figure 3 (right) shows the average data for each AOI for each 



group: the percentage dwell time, number of revisits, fixation time, fixation count and so called hit 

ratio, which informs how many participants looked at the AOI. 

 

 Figure 3: Definitions of broad AOIs (left) and their eye-tracking data in defined groups (right)  

The data presented in Figure 3 (and Figure 5) should be viewed with caution because of the 

calculation of average data. That said, some interesting differences can be discerned between the 

academics and the two student group. Firstly, academics responded to ‘Wording’ differently from the 

two students groups. They spent 24.5% of their total time on task dwelling on the words of the 

problem, in comparison to 14.5% (S) and 16.4% (U). Academics achieved a greater number of 

fixations (44,3) on ‘Wording’ than the student groups (33.2 (S), 37.5 (U)), indicating that the 

academics’ attended more to the words of the problem than students’ in either group. Academics 

addressed ‘Wording’ more attentively than did the students because their average number of revisits, 

1.8, was around half of that of the two students’ groups (3.3 (S) and 3.8 (U) respectively). Secondly, 

the reverse seemed to be true for ‘Graph’; the average number of fixations for academics was lower 

(38) than for in either group (58.5 (S) and 51.1 (U). Thirdly, Academics’ attention to ‘Statements’ 

was lower than that of the students (61.5 (A), 81 (S) and 79.5 (U)). Fourthly, academics’ dwell time 

was uniformly distributed between ‘Wording’ and ‘Graph’ (24.5% and 23.8% respectively) which 

was not the case for students. Fifthly, students revisited ‘Statements’ twice as many times as the 

academics. Sixthly, students made more than ten times as many revisits as the academics to ‘White 

Space’ and spent three times as much time on it, indicating that their visual attention was more located 

outside the defined parts of the slide. Finally, the hit ratio for showed that eight students (1 S and 7 

U) failed to look at the AOI “incorrect”, prompting one to ask, what question were they answering?  

In sum, academics not only spent a higher proportion of their time on the wording of the task than the 

participants of either student group but also made fewer revisits. It can also be seen that the academics 

made fewer fixations on and made fewer revisits to the graphs, the statements and the white space 

than did the participants of either of the other two groups, indicating that the time they spent on the 

words benefitted their problem solving.  



 

The third stage of the analysis was to examine more specific AOIs, which are shown in Figure 4. Ten 

additional areas were associated with task those characteristics that should be analyzed for the 

problem to be solved. These concerned the phrase “dependence of speed in time” (Dependence), the 

two axes (v-axis, t-axis), the graphs’ labels (I, II), the intersection of the graphs (Intersection) and the 

Statement A – E, separately. The chosen average eye-tracking data are presented in Figure 5. 

 

Figure 5: Eye-tracking average data in groups for chosen detailed AOIs presented in Figure 4. 

The figures of Figure 5 show both similarities and differences. It is interesting to note, for example, 

that the times spent by all three groups on the five statements were similar.  However, the academics 

focused proportionally more time on the v-axis and less on the t-axis than either student group, which 

is interesting as their number of revisits to the v-axis was comparable to the students but much greater 

with respect to the t-axis. It is also interesting to note that academics, despite their failure to identify 

the incorrectness of the statement, made fewer revisits to statement E than either student group. In 

such an instance, it is possible that the academics had drawn an over-confident conclusion. Finally, 

the hit ratio shows that while all the academics attended to all ten AOIs, students’ attention was 

complete only one occasion, when all school students fixed on statement A. 

Discussion and summary 

In general, the data indicate that academics were better focused on the task formulation than either 

group of students. Not only did they spend a higher proportion of their time on the wording of the 

task but made fewer revisits. They read each word carefully and did not revisit the same places as 

often as students. Academics also made fewer fixations on and made fewer revisits to the graphs, the 



statements and the white space than the participants of either of the other two groups, indicating that 

the time they spent on understanding and interpreting the problem benefitted their problem solving. 

Unsurprisingly, being academics, they understood what they read and knew where to look to analyse 

a problem. They were more competent than students in their graphical interpretation, being able to 

understand the key elements of the graph. In related vein, their visual attention was distributed 

uniformly across both the problem statement and the graph, and they were not distracted by irrelevant 

parts of the slide. Thus, while the conclusions are not surprising, the data highlight well differences 

in the ways in which experts and novices address mathematical problems. 

 

Figure 6: Sequence charts for all academics and two students per group 

As indicated above, the data presented here are the averages for each group on each AOI. Individually, 

there was an interesting variation within each group of participants. For example, Figure 6 shows the 

complete sequence of eye-tracking activity with respect to the broad AOIs for all four academics and 

the two extremes, the longest and the shortest, from each student group. It can be seen clearly that 

there was a tendency towards an academic homogeneity, particularly the first three who spent 

considerable amounts of time on the task wording. However, the variation within each student group 

was considerable. Indeed, the academics typically spent around a minute on the task, while university 

students’ time on task ranged from around seven seconds to two minutes and 40 seconds. In sum, 

while the study above has been helpful in showing some differences between expert and novice 

problem solvers, individual variation has highlighted the need for further research into how eye-

tracking can support our understanding of effective problem solving strategies.  

This paper has offered one analysis, based on average behaviours, focused on how eye-tracking data 

can support our understanding of the problem solving process. However, this averaging process with 

the atypically large numbers of participants may have masked individual differences, which 

themselves may prove insightful. Thus, focusing on individuals may be a fruitful direction as it may 

identify different factor implicated in either problem solving success or failure. For example, Figure 

7 shows the variety of the participants’ visual attention, presenting so called scan paths for an 

academic (left), a U student (middle) and an S student (right) respectively.  



 

Figure 7: Scan paths of a chosen participant form each groups: A (a), U (b) and S (c). 

Finally, it was interesting that none of academics questioned the correctness of Statement E. Here we 

faced the limitation of pure eye-tracking methodology – mixed methods with interviews or written 

questionnaires may have exposed the reasons. Thus, several months after the research, academics 

were asked to think again and solve the task, without eye-tracking. While solving the task again they 

confirmed answer A, read again all the other statements and eliminated them, treating again as correct. 

When asked why statement E is correct, they answered that the displacement can be counted as the 

area under the graph. They indicated t=10 min. After further questions they were surprised that “t=10 

min” was not written explicitly in the statement. The previous statements for t=10 min together with 

the graph and dashed line indicating the point (10, 10) caused their certainty that the statement E was 

also formulated for t=10 min. That was their tacit assumption, which could be provoked by the three 

factors. One of academics mentioned about the routine of solving multiple choice tasks, usually with 

the only one correct answer, therefore his inquiring mind was asleep after finding the correct answer 

A. 
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This study presents a quantitative analysis of middle school mathematics teachers’ content 

knowledge in two countries. The sample comprises lower secondary mathematics teachers from the 

US (grades 6-9, N=102) and Russia (grades 5-9, N=97). The instrument was designed to assess 

teacher content knowledge based on the cognitive domains of knowing, applying, and reasoning, as 

well as addressing the lower secondary mathematics topics of number, algebra, geometry, data and 

chance. Results indicate significant differences in teacher knowledge between the countries in 

content as well as in cognitive domains. The study results may inform the field on priorities placed 

on lower secondary mathematics teachers’ knowledge in USA and Russia.  

Keywords: Comparative studies, teacher knowledge, lower secondary mathematics.  

Introduction  

The motivation for the study is based on the 8th-grade mathematics portion of the TIMSS-2011 

results (Mullis et al. 2012). We identified two countries ranked closely to each other: Russia - in the 

6th position and the USA – in the 9th position. At the same time, a difference in the US and Russian 

students’ performance was revealing: the average score of Russian students in the content domain 

was 539 and of the US students 509, with Russian students gaining higher scores on Number (534 

vs. 514), Algebra (556 vs. 512) and Geometry (533 vs. 485) whereas US students outscored Russian 

students in the domain of Data and Chance (527 vs. 511). Russian students also outperformed the 

US students in each cognitive domain: Knowing (548 vs. 519) Applying (538 vs. 503), and 

Reasoning (531 vs. 503). These data triggered the following question: to what extent does US and 

Russian lower secondary mathematics teachers’ knowledge differ by content and cognitive 

domains?     

Cross-national studies of teacher knowledge 

Conducting cross-national studies allow comparing, sharing, and learning about issues in an 

international context which in turn helps researchers understand their own context, teaching 

practice, teacher knowledge, and student learning (Stigler & Perry, 1988). During the last decade, 

the number of cross-national studies on teacher education is increasing in order to understand 

differences in student performance on international tests such as TIMSS, PISA (Wang & Lin, 2005). 

Scholars have addressed these differences focusing on characteristics such as teachers’ perceptions 

of effective mathematics teaching (Cai, Ding, & Wang, 2013), teacher knowledge (Tatto & Senk, 

2011; Tchoshanov et al., 2017), among others.  



Few cross-national studies focused on teacher knowledge. A large-scale study conducted by the 

University of Michigan examined the mathematical content and pedagogical content knowledge of 

pre-service teachers from 17 countries including USA and Russia (Tatto & Senk, 2011). The nature 

of mathematics teacher knowledge, conceptual representation, and curriculum materials were 

examined by Ma (1999) to explain differences in students´ performance in the U.S. and China. An, 

Kulm, and Wu (2004) studied the PCK of middle school teachers in the U.S. and China. They found 

that mathematical PCK differs among the countries since Chinese teachers emphasize developing 

procedural and conceptual knowledge through traditional teaching practices while their counterparts 

in the U.S. focus on promoting creativity and inquiry through activities designed to develop 

students’ understanding of mathematical concepts. Sorto et al. (2009) administered a survey that 

measured teachers’ content knowledge in Costa Rica and Panama and found that teachers in both 

countries focus more on knowing rules and procedures than on making connections and reasoning.    

In the last several decades, the field of mathematics education is expanding its knowledge-base in 

understanding the role of teacher characteristics in student learning and achievement. The major 

shift in the field had happened with Shulman’s (1986) work on teacher knowledge that proposed an 

alternative approach to the educational production function perspective, which was concerned with 

examining proxies of teacher knowledge such as coursework/certification and its impact on student 

achievement (Charalambous & Pitta-Pantazi, 2016). Research on teacher knowledge initiated by 

work of Shulman (1986) has focused on teacher knowledge as a major predictor of student learning 

and achievement. Recently, the field benefited from numerous studies (Hill, Ball, & Schilling, 2008; 

Baumert et al., 2010) that substantially advanced the conceptualization of teacher knowledge and its 

association with student performance.  

Following up on this conceptualization, some scholars (Izsak, Jacobson, & de Araujo, 2012) 

examined different facets of teacher knowledge without explicitly emphasizing its connection to 

student learning. Other scholars stressed the importance of the kind of knowledge a teacher 

possesses because it impacts his/her teaching (Steinberg, Haymore, and Marks, 1985). Another line 

of research (e.g., Baumert et al, 2010; Hill, Ball, & Schilling, 2008; Tchoshanov, 2011) specifically 

targets the effects of different types of teachers’ knowledge on student achievement. Additionally, 

scholars have advanced the field by examining teacher knowledge in variety of domains including 

Number Sense (Ma, 1999; Izsac, Jacobson, & de Araujo, 2012), Algebra (McCrory et al., 2012), 

Geometry and Measurement (Nason, Chalmers, & Yeh, 2012), and Statistics (Groth & Bergner, 

2006). However, the field lacks cross-national research that provides a comprehensive analysis of 

the various facets of teacher knowledge (including content and cognitive domains) and its 

connection to student performance.   

Methodology  

The proposed study is based on the assessment framework used by TIMSS (Mullis et al. 2012). In 

this section, we will describe the study participants, the instrument as well as data collection and 

data analysis procedures.  

Participants 

The sample of this study consisted of lower secondary mathematics teachers from the US (grades 6-

9, N=102) and Russia (grades 5-9, N=97). The US teacher-participants were selected from urban 



public middle schools in the Southwestern part of the country. Teacher sample demographic 

information was self-reported by participating teachers. In terms of gender distribution, 55% of 

teacher participants were females and 45% - males.  Most of the US participants (64%) had 1-5 

years of teaching experience. Additionally, 62% of the teacher sample received their teaching 

certificate through traditional teacher preparation programs and 38% of participating teachers were 

certified through alternative programs. The Russian teacher-participants were selected from urban 

public secondary schools in the Volga region. Russian participating teachers had attained a 

secondary mathematics teacher preparation Specialist’s degree, which allowed them to teach in 

secondary schools (grades 5-11). The majority of participating teachers were females (89%). The 

sample was composed of 78% of teachers who have more than 10 years of teaching experience.   

Instrument  

The instrument used in this study was the Teacher Content Knowledge Survey which was developed 

using TIMSS framework (Mullis et al. 2012). It was designed to assess teacher content knowledge 

based on the three cognitive domains: Knowing, Applying, and Reasoning. The TCKS survey 

consisted of 33 multiple-choice items addressing main objectives of lower secondary mathematics 

curriculum: Number, Algebra, Geometry, Data and Chance. The instrument was piloted for 

construct and content validity as well as checked for the reliability. The alpha coefficient technique 

was utilized to evaluate the reliability of the teacher content knowledge survey. “The value of the 

coefficient of .839 suggests that the items comprising the TCKS are internally consistent” 

(Tchoshanov, 2011, p. 148). Examples of the TCKS items in Algebra domain across different 

cognitive types (Knowing, Applying, and Reasoning) are presented below. 

 

 Figure 1. Diagram to the TCKS item in Algebra domain  

Use the diagram above (see Figure 1) to answer the questions that follow. 

1. Knowing 

Which of the following equations best describes the function y3? 

A. y = ax2 + bx + c 

B. y = ax2 + bx + 1 

C. y = ax2 + 1 

D. y = x2 + 1. 

2. Applying 

The function y3 is translated 4 units left and 7 units down. Which of the following equations best 

describes the new function? 



A. y = ax2 + 11x + 28 

B. y = ax2 + 4x + 7 

C. y = ax2 + 8ax + c 

D. y = x2 + 28x + 11. 

3. Reasoning 

The diagram shows a family of functions in the form y = ax2 + bx + c. Which of the following 

statements best describes the changes in the values of the coefficients as the graphs transform from 

y1, to y2, to y3? 

A.   a is increasing, b = 0, and c is increasing 

B.   a is increasing, b = 0, and c is decreasing 

C.   a is decreasing, b is increasing, and c = 0 

D.   a is decreasing, b is decreasing, and c = 0. 

Data Collection and analysis  

Each teacher was given 90 min to complete the survey. In correspondence with the research 

question, data analysis was performed using non-parametric techniques (chi-square). This statistic 

was selected to measure the variance between independent groups of the same (not normal) 

distribution with arbitrary sample sizes of each group. The selection of this test was also based on 

the ranked nature of data for content and cognitive domains of teacher knowledge and student 

performance.       

Results  

In this section, we first analyze teacher knowledge data by content domain, then we examine teacher 

data by cognitive domain, and finally we discuss parallels between student and teacher performance 

within and between countries.  

Content Domain Mean SE SD Conf. level (95%) 

Number 623 20.3129 205.1512 40.296 

Algebra 563 23.2356 234.6679 46.093 

Geometry 514 25.4349 256.8802 50.456 

Data and Chance 593 20.9738 211.8252 41.606 

Table 1. US teachers´ means scores by content domain 

The results reported on teacher content knowledge show that the US teachers’ highest mean score 

was obtained on Number domain – 623 and lowest on Geometry domain - 514  (see Table 1).   

Russian teachers’ highest mean score was obtained on Algebra domain – 728 and lowest on Data 

and Chance domain – 387 (see Table 2). 



 

Content Domain Mean SE SD Conf. Level (95%) 

Number 656 106.5819 319.7456 23.873 

Algebra 728 82.8841 248.6523 30.648 

Geometry 586 72.7004 218.1013 45.505 

Data and Chance 387 125.0891 306.4044 35.844 

Table 2. Russian teachers´ means scores by content domain 

Moreover, we found that in the cognitive domain the US teachers’ highest mean score was obtained, 

as expected, on Knowing – 734 and lowest on Reasoning - 495 (see Table 3).  

Cognitive Domain Mean SE SD Conf. level (95%) 

Knowing 734 19.7673 197.6733 39.2226 

Applying 505 20.7101 207.1015 41.0934 

Reasoning 495 23.8130 238.1303 47.2502 

Table 3. US teachers´ means scores by cognitive domain 

Russian teachers’ highest mean score was obtained, as expected, on Knowing domain – 760 and 

lowest, unexpectedly, on Applying domain - 504 (see Table 4).  

Cognitive Domain Mean SE SD Conf. level (95%) 

Knowing 760 14.2486 135.1745 28.3117 

Applying 504 12.7961 121.3950 25.4257 

Reasoning 593 17.7406 168.3028 35.2503 

Table 4. Russian teachers´ means scores by cognitive domain 

Moreover, we identified that there is no significant difference between Russian and US teachers’ 

knowledge on Number and Geometry domains (Chi-square 0.347 p>.05 and Chi-square 1.293 

p>.05) (see Table 5).  

Content Domain  Number  Algebra  Geometry  Data and Chance  

Russia  656  728  586  387  

USA  623  563  514  593  

Chi-square (df=1) 0.347  6.311*  1.293  8.003**  

Table 5. Russian and US teachers’ knowledge by content domain (* p<.05, **p<.01) 

However, there is a statistically significant difference between Russian and US teachers’ knowledge 

on Algebra domain (in favor of Russian teachers; Chi-square 6.311 p<.05) and Data and Chance 

domain (in favor of US teachers; Chi-square 8.003 p<.05) (see Table 5). This finding closely 

parallels the US and Russian students’ performance on TIMSS on Algebra domain (in favor of 

Russian students) and Data and Chance domain (in favor of US students).  



Also, this study reported that there is no significant difference between Russian and US teachers’ 

knowledge on Knowing and Applying cognitive domains (Chi-square 1.707 p>.05 and Chi-square 

0.008 p>.05) whereas there is a statistically significant difference on Reasoning domain (in favor of 

Russian teachers; Chi-square 19.117 p<.05) (see Table 6).  

Cognitive Domain  Knowing  Applying  Reasoning  

Russia  760  504  593  

USA  734  505  495  

Chi-square (df=1) 1.707  0.008  19.117**  

Table 6. Russian and US teachers’ knowledge by cognitive domain (* p<.05, **p<.01) 

This finding parallels the US and Russian students’ performance on TIMSS’ cognitive domain.  

Discussion and conclusion 

This study confirms the differences between Russian and the U.S. lower secondary in-service 

teachers’ knowledge in the content domain as it was reported by the TEDS-M study that was 

focused on pre-service teachers (Tatto & Senk, 2011). At the same time, this study expands the 

examination of in-service teachers’ knowledge to the cognitive domain.  

Teacher preparation could be considered as the main factor contributing to the differences between 

Russian and US teachers’ knowledge. Overall, there is a tangible difference in secondary teacher 

preparation curriculum between the two countries: in average, Russia offers about 240 credit hours 

in teacher preparation programs compare to 120 credits in the USA. Furthermore, cross-national 

curriculum analysis shows that Russian lower secondary mathematics teachers have more extensive 

content preparation compare to their American counterparts. A number of contact hours for 

mathematical content knowledge, as well as pedagogical content knowledge and specialized 

mathematics knowledge offered at selected teacher preparation programs (e.g., the University of 

Texas at El Paso, USA and Kazan Federal University, Russia) in two countries, are presented in 

table 7.  

Country Mathematics Content 

Knowledge  

Pedagogical Content 

Knowledge  

Specialized Mathematics 

Knowledge  

Russia 1857 278 380 

United States 442 72 87 

Table 7. Contact hours in Mathematics related disciplines in teacher education programs in Russia 

and United States 

Numbers depicted in the table are compatible with the findings of the TEDS-M study (Tatto & 

Senk, 2011). Close examination of secondary teacher preparation curriculum in Russia shows that 

more emphasis is placed on an analytic and algebraic component of mathematics curriculum and 

less emphasis - on statistic and probability component compare to the US curriculum. Moreover, 

item analysis of standardized tests for the lower secondary schools in USA and Russia revealed the 

difference in selection and composition of algebra problems as well as problems related to data and 

chance in the test: while in Russia more emphasis is placed on algebraic problems and less emphasis 

on data and chance problems, in the USA – the emphasis is equally distributed among algebraic 

problems and data and chance problems. We observed another noticeable difference in the role of 



proof in the academic mathematics component of the teacher preparation program which could 

explain the difference in the reasoning domain of the teacher knowledge: Russian curriculum places 

a heavy emphasis on proof across the mathematics coursework including school mathematics 

whereas the US curriculum uses proof in selected mathematics courses primarily in academic 

mathematics coursework.      

We are cognizant of the limitations concerning the convenient sampling technique that influences 

generalizability of the study results. Moreover, there is no cluster matching between teachers 

participating in the study and students tested in TIMSS. However, the study main results suggest 

that student performance on international tests could be explained by teacher knowledge. The study 

also presents opportunities for comparing, sharing, and learning about issues in cross-national 

context in US and Russian teacher education, training, and development. Moreover, the reported 

cross-national study on teacher knowledge may inform the field on priorities placed on lower 

secondary mathematics teachers’ knowledge in USA and Russia by content and cognitive domains.  
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In this paper, as a proxy for their mathematical knowledge for teaching, we examine Greek-Cypriot 

(n=21) and Greek (n=12) first-year undergraduate teacher education students’ written 

explanations regarding a linear equations-related scenario. Qualitative analyses identified four 

broad themes permeating most accounts, irrespective of nationality, which were interpretable as 

either disciplinary explanations or instructional explanations. The themes concerned (a) definition 

of unknowns, (b) inverse operations, (c) presentation of objectives, and (d) rote procedure. The 

analyses indicated the weakness of students’ explanation, whether from a disciplinary or an 

instructional perspective, which was independent of their country of origin. 

Keywords: Mathematical knowledge for teaching, instructional explanations, disciplinary 

explanations, prospective teachers. 

Introduction 

The question regarding what kind of knowledge is needed to teach mathematics has preoccupied a 

number of scholars, while, at the same time, the association of mathematics teacher knowledge with 

instructional quality and student learning is considered to be complex (Charalambous & Pitta-

Pantazi, 2016). Over the last years, several conceptualizations of this kind of knowledge have been 

proposed. Drawing upon Shulman’s (1986) seven tentative categories for teacher knowledge, Ball, 

Thames, and Phelps (2008), for instance, developed the mathematics knowledge for teaching 

framework, which divides subject matter knowledge and pedagogical content knowledge into three 

further sub-categories each. From a different perspective, grounded in data-driven analyses of video-

taped lessons by prospective elementary teachers, Rowland, Huckstep, and Thwaites (2005) 

proposed the knowledge quartet, a framework comprising four units, namely, foundation, 

transformation, connection, and contingency. These units, the authors claim, can be found in every 

mathematics lesson and can be used for evaluating teacher knowledge during the course of teaching. 

More recently, Davis and Renert (2013) have written on profound understanding of emergent 

mathematics, arguing that teachers’ knowledge could be productively interpreted as a complex 

evolving form which is tacit and is better understood as a learnable disposition than a domain to be 

mastered. 

Several of scholars (i.e. Copur-Gencturk & Lubienski, 2013; Phelps & Howell, 2016; Hill, 

Schilling, & Ball, 2004) have urged for the development of effective measures of the knowledge 

required for teaching mathematics. Various approaches to this task have been have been undertaken  

(Charalambous & Pitta-Pantazi, 2016), including, paper-and-pencil tests, the use of lesson videos 

inviting teachers to critique and/or predict, as well as inviting post-instruction reflections on both 

lesson plans and the actual realization of the plan. Adaptations of such approaches, however, should 

be carried out with careful sensitivity to the cultural context, as teacher knowledge, of both in-

service (Andrews & Sayers, 2012) and pre-service teachers (Xenofontos, 2014), is conditioned by 
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cultural expectations with respect to what mathematics is valued and how it is presented. For 

example, Andrews (2003) has highlighted how some cultures construe competent mathematics 

teachers as those who ensure their students complete a large number of tasks every lesson, while 

others see competence in the completion of a few. 

An important element of a teacher’s didactical repertoire is the explanation. Explanations, which 

typically draw on students’ prior knowledge (Leinhardt & Steele 2005), are manifestations of 

teachers’ depth of content knowledge (Inoue, 2009). Of Leinhardt’s (2001) four classifications of 

explanation, two are particularly relevant here; disciplinary explanations are domain specific and 

conform to the epistemological expectations of the relevant discourse, and instructional 

explanations, which are intended to teach some aspect of a particular subject matter to others, are 

“jointly built through a coherent discourse surrounding a task or text that involves the whole class 

and the teacher working together” (Leinhardt, 2001, 340). Therefore, in accordance with prior 

research that explanations may be a useful tool for measuring prospective teachers’ knowledge (see, 

for example, Charalambous, Hill, & Ball, 2011; Inoue, 2009), we present the results of a pilot study 

focused on the use of a single task as a means of evaluating Greek and Cypriot beginning teachers’ 

didactically-related mathematical understanding. The extent to which we consider our tool as 

effective is discussed in another paper of this TWG (see Andrews & Xenofontos, 2017). Here, we 

focus on the identification of similarities and/or differences between the two cohorts’ written 

explanations, which, we believe could offer better insights into the mathematical knowledge 

beginner teachers bring to teacher education and how we, as teacher educators, could build on or 

deconstruct this knowledge.  

The study 

Participants were first-year undergraduate students reading for a degree in elementary education at a 

private university in Cyprus. With Greek being the language of instruction, the programme includes 

both Greek-Cypriot and Greek students. Data collection took place before students had experienced 

any university instruction and involved 21 Greek-Cypriot and 12 Greek students. Students were 

shown, with no additional text, the solution to the equation presented below, and asked to write a 

short account indicating how they would explain it to someone who had missed the lesson in which 

it had been taught. Such a task has the advantage that it allows for both disciplinary and 

instructional explanations (Leinhardt, 2001). 

x + 5 = 4x – 1 

     5 = 3x – 1 

      6 = 3x 

       2 = x 

Data were analysed as single set by means of a constant comparison process (Fram, 2013). These 

analyses, as reported in Andrews and Xenofontos (2017, TWG11), yielded seven themes with 

respect to how participants explained the solution. Of these seven, four themes were present in most 

accounts and are here considered in depth. In the following, we present the results of this process, 

discussing each theme in relation to first the Cypriot and then the Greek students. All names are 

pseudonyms. 



Results 

Definition of unknowns  

A number of Cypriot students wrote statements interpreted as explicit definitions of the unknown. 

For example, Ekaterini wrote that the “known numbers are the ones that don’t include a letter, as for 

example, 5 and -1. Unknown numbers are the letters or the numbers that are accompanied by a 

letter, for example, 4x and x”. In similar vein, Carissa wrote, “I separated the known from the 

unknown numbers: Unknown x + 5 (known) = unknown 4x - 1 (known)”. Both comments, we 

argue, are structurally equivalent in their assertions that unknowns are represented by letters and the 

knowns by numbers. Other students’ definitions tended to the implicit. For example, Hermione 

wrote that “the first thing to do is to separate x from the numbers. In other words, to set apart the 

known from the unknown so that we can find what x is”. Likewise, Alexandra commented that their 

teacher had given “two expressions, each with an unknown (x) and which are equal to each other. 

She asked us to find out what the value of x is”. While neither student explained explicitly what 

they meant by the unknown, their comments present a tacit understanding of the unknown as the 

number represented by the letter x that has to be found. 

In ways similar to their Cypriot colleagues, Greek students offered either explicit or implicit 

definitions of the unknown. With respect to the former, Nina wrote that “we separate the known 

from the unknown numbers: known: 5, -1 and unknown: x, 4x”, while, in a slightly more fluid 

manner, Paraskevi commented that “I separate the known from the unknown. The known numbers 

are all numbers, unknown is whatever is a letter, for example, x, y, z, w”. Students explicitly 

distinguished between x, as a representation of the missing number, and numerical values separated 

from the unknowns. With respect to the latter, Callisto, having written of the need to separate 

knowns from unknowns, wrote that “all the ‘x’ are taken to the right and whenever ‘x’ is on the left 

part of the equation, you change the sign. On the left part, the known numbers enter while the 

unknown enter the right”. Similarly, Daphne commented that “the first unknown x is moved to the 

second part of the equation but instead of a plus we make it a minus”. In both cases, students offer 

instructions in which the x terms are afforded a treatment that distinguishes them from numerical 

terms in ways that indicate their understanding of the nature of the unknown and its significance in 

the equation solving process. 

Presentation of objectives 

The accounts of almost all Cypriot students included some statement regarding the objectives of 

equation solving. In most cases this was implicit and typically represented in statements concerning 

the separation of knowns from unknowns. The briefest such statements were as in Carissa’s “I 

separated the known from the unknown numbers” and Ioanna’s “we set apart the known and 

unknown numbers”. In such statements can be seen an understanding that the identification of the 

unknown was the objective. Even when such students wrote longer statements, the message was the 

same, as in Chloe’s “we separated known and unknown numbers, that is, 5 and 1 and 4x and x”. 

Here, the distinction between Chloe’s and the other two students’ statements is that she incorporated 

an implicit definition of the unknown, but offered no more than them with respect to her objectives. 

Other Cypriot students offered accounts with a slightly less implicit objective in that they also 

discussed the separating of the knowns from the unknowns but in so doing explicitly mentioned the 



role of x, which Chloe did not. For example, Medea wrote that the “first step is to set apart the 

known and the unknown numbers, that is, to bring ‘x’ to one side and the numbers to the other”, 

while Stamatia commented that “we separated the known from the unknown numbers, that is, the 

‘x’ and the ‘simple’ numbers.  

Four students wrote statements indicative of an explicit objective. Two of these were brief, as in 

Stefania’s “the aim is to find which number equals x” and Irene’s “the question in this equation is to 

find ‘x’ and what value it has”. The other two students wrote longer statements, as with Hermione’s 

“the first thing to do is to separate x from the numbers. In other words, to set apart the known from 

the unknown so that we can find what x is”. In all three statements, albeit expressed differently, can 

be seen an expression concerning the identification of the unknown, x. Finally, of the four students 

who offered an explicit objective, Alexandra’s statement also offered the only evidence of a 

relational understanding of the equals sign. She wrote that “the teacher gave us two expressions, 

each with an unknown (x) and which are equal to each other. She asked us to find out what the 

value of x is”.  

For the Greek students, the same three categories of response were identified. For example, with 

respect to implicit goals embedded in statements about separating the knowns from the unknowns, 

Pantelis wrote that “we part the known from unknown numbers”, while Moira wrote that “I would 

tell the student that we separate the known from the unknown numbers and then make the 

calculations”. As far as the second category is concerned, whereby students offered implicit 

objectives alongside an explicit mention of the role of x, Callisto commented that “we separate the 

known from the unknown numbers. For assistance, you can underline the ‘x’ from the numbers”, 

while Paraskevi wrote that “I separate the known from the unknown. The known numbers are all 

numbers, unknown is whatever is a letter, for example, x, y, x, w”. Finally, one Greek student 

offered an explicit objective. In this respect Panorea wrote that she “would explain to the student 

that it’s an equation whereby we are trying to find the unknown x. The data we have are the 

numbers. After, I would explain how to find x”.  

Rote procedure 

Few Cypriot students did not offer a rote rule for solving the equation and of those that did all 

alluded, either explicitly or implicitly, to the redistributive ‘change the side and change the sign’. 

With respect to those who discussed the rule explicitly, one of the more detailed accounts was 

offered by Irene, who wrote that  

Whatever moves to the other side changes ‘sign’. The ‘sign’ is (+) or (-).  We have x + 5 = 4x - 1 

and want to separate ‘x’ from the numbers, so we have to say 5 = 3x - 1. Why? 1x went to the 

right part and changed signs becoming -1x (since x is now 1x) therefore 4x - 1x = 3x (4 -1 = 3). 

‘x’ in common. Now we have to justify 6 = 3x. We have 5 = 3x - 1. Since (-1) is a number, it 

must shift to the left part of the equation and become plus, that is 5+1= 6. (It was -1 and since 

crossing over the = it becomes plus). So 6 = 3x. 

These, and other, students seemed both confident and clear as to the process involved in solving the 

equation. They offered rules whereby objects were moved from one side of the equals sign to the 

other along with a change of sign. Of course, the direction of such movement was determined by the 

solution presented to them but in no case did students offer any justification for the changing of the 



sign. Interestingly, and unique among students, Elina offered a no less unwarranted but general 

account. She wrote that 

At first we get an equation with letters and numbers. The first thing to do is to move all numbers 

to one side and all letters on the other. If a number has a minus (-) sign or plus (+) once they are 

moved to the other side their sign changes; in other words, from minus (-) it becomes plus (+). 

That’s how we deal with similar calculations.  

Several Cypriot students offered accounts, typically short, in which the movement and the changing 

of signs were implicit. For example, Hermione wrote that “[a]s you can see x and 4x have been 

joined and the same is true of 5 and 1. Therefore, x has become 3x and then 5 + 1 is 6”. In these, and 

other, cases neither the movement across the equals sign nor the changing of the sign were made 

explicit. Our interpretation is that students were familiar with the process and saw such properties as 

givens rather than something in need of either explanation or warrant.  

As with their Cypriot colleagues, Greek students typically offered a ‘change the side change the 

sign’ rule. Also, as before, the extent to which this was presented explicitly varied. For example, 

with respect to an explicit account, Daphne wrote that 

Since we have two unknowns on both parts of the equation, the first unknown x is moved to the 

second part of the equation but instead of a plus we make it a minus. Then we subtract it from 4x 

to get 3x. After getting -5 in the second part, we move it to the first, therefore 1 is not a minus but 

plus. Then we add 5 and 1 to get 6.  

In their accounts can be seen an understanding of the ‘change the side change the sign’ rule for 

solving equations. In neither case, however, can be seen evidence of a relational understanding of 

the equals sign as would be represented in statements justifying the described actions. There was no 

sense, for example, that students saw these actions as a consequence of adding or subtracting 

equivalent amounts from each side. In addition, as with the Cypriot students, one student offered a 

generalised account of the same process. In this respect, Callisto wrote that “[a]ll the ‘x’ are taken to 

the right and whenever ‘x’ is on the left part of the equation, you change the sign. On the left part, 

the known numbers enter while the unknown enter the right. Afterwards, we add the known to the 

known and the unknown with the unknown”.  

However, the majority of Greek students offered implicit summaries of the solution with which they 

had been presented. Typical of others, Panorea wrote that she would “shift the given numbers to one 

side and the unknown, x (or 3x) on the other side (e.g., 3x) and that way I would find the unknown 

x”. Similarly, Paraskevi wrote that “[a]t this stage, we carefully observe when to change (+) or (-). 

When they move from the 1st part to the 2nd, the sign changes from let’s say (+) to (-) and vice versa. 

Once we reach this point 6=3x”. In such statements can be seen different but equally incomplete 

accounts of the rote rule. For example, Panoreas’s account highlighted the bringing together of the 

knowns and unknowns respectively, leaving the reader to infer the changing of the sign, while 

Paraskevi’s emphasised the changing of the signs at the expense of her detailing the changing of the 

sides of like objects. In other words, both left significant elements for their readers to infer. 



The inverse operation  

In almost all cases, having articulated some sense of a rote rule, students from both countries 

invoked an operation reversal to explain the final line of the solution, whereby 6 = 3x became 2 = x. 

In this respect, eleven of the 21 Cypriot students offered, albeit implicitly, an understanding of the 

inverse operation necessary to transform the line 6 = 3x to 2 = x. Typical of these were the 

comments of Chloe, who wrote that “after reaching 6 = 3x, we divided 6 by 3 so that x will be by 

itself. I found x to be 2” and Hermione, who wrote “then I divide 6 by 3 and x is equal to 2”. Of 

these eleven students, two students offered more extended but no less implicit suggestions, as in 

Stamatia’s comment that “we take number 6 and equate it ‘=’ with 3x. Then we divide 6 by 3, i.e. 

6/3 equal to x1, “6/3 = x. 6/3 makes 2 and so x1 is equal to 2, ‘x = 2’ ”. In these cases, students’ 

comments about dividing by three seemed to us to reflect, at least implicitly, a recognition of the 

structural significance of the unknown’s coefficient that necessitated division.  

A further seven students offered accounts indicative of a better developed understanding of the role 

of the coefficient and its function with respect to inverse operations. For some this could be seen in 

the ways they reiterated earlier comments about isolating the unknown. This was seen in, for 

example, the writing of Perikles, who added that “arriving at 6 = 3x I divided 3x by 3 to get x alone, 

and 6 on the other side with the 3 before the unknown. So the answer is x = 2. Others in this group 

were more explicitly aware of the coefficient and its significance, as in Medea’s comments that 

“once the basic calculation was made, we divide both parts by the unknown’s coefficient and then 

get the result” or Vassiliki’s “I take the number in front of the x and divide both sides of the 

equation by it”. In such comments, focused on the coefficient of the unknown, can be seen.  

The Greek students’ comments could be categorised similarly, although a smaller proportion, three 

of the eleven, offered entirely implicit statements. Of these, typical was Crino’s “we have reached 6 

= 3x and consequently, we divide 6 by 3 to get the result”. Seven students, also a higher proportion 

than with the Cypriot cohort, presented accounts with an explicit reference to the coefficient, as with 

Ivy’s comment that he (the invisible teacher) “divided by the coefficient of the unknown 3 to get 2 = 

x” and Paraskevi’s note that “once we reach this point 6 = 3x, I must divide by the coefficient of the 

unknown to see what the value of x is, that is to say, to divide both the 1st part and the 2nd by 3”. 

Interestingly, two of these seven students offered accounts, albeit whose intentions were clear, that 

employed an incorrect vocabulary, as with Daphne’s “finally, we divide 3 by the fraction” or 

Nikoleta’s “we divide it by the denominator of x, namely, 3 and we arrive at the final result that 2 = 

x”. In such cases students’ intended meaning was clear. 

Discussion 

Our analyses provide substantial insights, both encouraging and discouraging, into the 

conceptualisation of mathematics these beginning teachers bring to their teacher education 

programme. In this respect, both sets of students appeared procedurally competent, recognising the 

equation for what it is and typically understanding how it had been solved. However, from a 

disciplinary perspective (Leinhardt, 2001), students’ explanations showed very little awareness of 

the epistemological underpinning of mathematical knowledge, almost without exception warranting 

their chosen procedures on the basis of their personal authority as teachers. Moreover, from the 

perspective of research on the solving of equations, students indicated no relational understanding 



of the equals sign, a prerequisite for learners confident solving of equations of the form above with 

the unknown on both sides (Alibali et al., 2007; Filloy & Rojano, 1989). From an instructional 

perspective (Leinhardt, 2001), students’ explanations typically alluded to a presentation of 

objectives and the importance of the unknown and its role in equation solving. However, the 

presentation of such a rule would typically allow little opportunity for learners to understand the 

reasoning behind it. Interestingly, although their rote rules never alluded to operations performed on 

both sides, many students were aware of inverse operations in relation to the unknown’s coefficient. 

In sum, and drawing on Skemps’s (1976) distinctions, our data showed that both Cypriot and Greek 

students were locked into an instrumental rather than relational understanding of mathematics, 

perspectives which their respective curricular traditions would not have encouraged. Finally, when 

framed against the mathematical knowledge for teaching literature, it seems that at this stage of their 

careers both sets of students showed evidence of Rowland et al.’s (2005) foundation knowledge, 

albeit problematic, but, as yet, none of transformation, connection or contingency. Moreover, if the 

goal of teacher education is to facilitate beginning teachers’ profound understanding of emergent 

mathematics (Davis & Renert, 2013) then much is still to be done.  
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Research in mathematical literacy has different emphases; whether the teaching and learning of 

mathematical literacy or the synthesis of results from worldwide studies that emphasises 

mathematical literacy (e.g. the PISA 2003 studies) to focus on the curricular implications. However, 

a comprehensive review of the current empirical research on the area is missing. The poster 

presentation focuses on what research brings attention to in empirical studies where mathematical 

literacy is highlighted. These are both quantitative and qualitative based projects, and include for 

instance articles with data collection where mathematical literacy is emphasised in the development 

of tools for the data collection or in what is being measured, and articles focusing more on teachers’ 

implementation of mathematical literacy in teaching and learning. The poster also focuses on what 

research finds to be implications for teaching and future research on mathematical literacy.  

The poster is based on our work on a review article, submitted to an international journal, that aims 

to address the research on mathematical literacy in primary and lower secondary school, by bringing 

together, comparing and synthesizing the diverse body of current research, emphasise implications 

for research on the area, and point to necessary areas for research to come. Through the poster we 

aim to inform about our review on research on mathematical literacy in school. The poster is used to 

present a systematic review of recent empirical studies through comparing, analysing, and discussing 

the body of articles in relation to the following key questions: 

1. What methodologies have been used to examine emphasis on mathematical literacy in primary 

and lower secondary school? 

2. How is mathematical literacy conceptualised? 

3. What is the focus of attention in research on mathematical literacy? 

4. What are the implications for primary and lower secondary school teaching, and 

recommendations for future research on mathematical literacy? 

We have applied methods well-known for review articles that aim to identify a state of the art within 

a field of research on school related issues, and to make suggestions for further research within the 

area at hand (e.g., Beltman, Mansfield & Price, 2011). This counts for the identification of parameters 

for the review, search in data bases based on the identified parameters, and selection of publications 

to form the basis of the review and analysis. The body of articles for the review consists of 28 articles 

that fulfil the selection criterions used. The studies were conducted worldwide, but with a clear 

majority of European and Asian contributions. 



Our findings show that the research is dominated by quantitative approaches, and do not focus on 

what goes on in the classroom. It focuses on the outcome of what goes on in school. The lack of 

identified attention to qualitative research on teaching for mathematical literacy seems to be due to 

four main reasons. The decision to apply existing data from PISA studies for more quantitative 

analyses on mathematical literacy related areas, application or even exploitation of the mathematical 

literacy concept in studies that are not directly focused on mathematical literacy, and tension between 

policy documents and practice in school on one hand, and tension between learning achievements 

and mathematical literacy on the other hand. This leads to lack of attention to best-practice projects. 

Hence, it seems that research in the future to a larger extent might report research based results on 

what schools and teachers ought to do in order to teach for mathematical literacy. Several of the 

articles use data from PISA test results, and are therefore obliged to acknowledge the prevailing 

OECD definition at the time of testing, because the attention to mathematical literacy in the PISA 

tests is based on this definition. In addition, some of the articles reviewed connect subject matter 

theories within mathematics education with the concept of mathematical literacy. A common factor 

for these articles is their interest regarding the teaching of mathematical literacy in school. Regarding 

implications for primary and lower secondary school teaching and further research on mathematical 

literacy, three main challenges were identified: both researchers and teachers are uncertain about how 

to develop students’ mathematical literacy, specific attempts to work directly with mathematical 

literacy through mathematics alone have not been successful, and teaching for mathematical literacy 

appears to require non-traditional methods for teaching mathematics. 

Furthermore, the subject of mathematical literacy is given extensive attention both at political and 

societal levels (OECD, 2009) and within mathematics education  research. In fact, Sfard (2014, p. 

141) urges the research community to address this issue: “The question of how to teach for 

mathematical literacy must be theoretically and empirically studied. When we consider the urgency 

of the issue, we should make sure that such research is given high priority.” The approach to such a 

quest seems to be through increased emphasis on qualitative research, for instance, through studies 

of best-practice and research projects involving practising teachers. Therefore, the research 

community’s attention needs to shift from nurturing data and findings that highlight student results 

on mathematical literacy tests to research on what to do in order to improve the students’ opportunities 

to develop mathematical literacy. A starting point for such a shift in focus could be to examine how 

mathematical literacy is understood, facilitated and experienced in schools. 
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STEAM  

STEM (Science, Technology, Engineering and Mathematics) is an educational approach based on the 

interdisciplinarity and applicability of scientific and mathematical knowledge to technology and 

engineering. STEAM integrates Art into STEM in order to promote children’s creativity (Fenyvesi, 

Téglási and Szilágyi, 2014). In many European countries, the number of graduates in science, maths, 

technology and engineering areas is clearly insufficient for the needs of their companies and 

industries. To stimulate students’ interest in these areas and art, the European Union has dedicated a 

lot of resources and effort, developing a large number of projects for pre-university classrooms. For 

a review, see Rocard, Csermely, Walwerg-Henriksson and Hemmo (2007). 

KIKS project 

KIKS, Kids Inspiring Kids for STEAM is a European Erasmus+ Project, which involves four 

European institutions: Metropolitan University of Budapest (Hungary), STEM Team East 

(Cambridge, United Kingdom), University of Jyväskylä (Finland) and University of Cantabria 

(Spain). The project started in March 2016 and its main aim is to promote secondary education 

students’ interest on the STEAM areas, by developing activities and presenting them to other students 

locally and internationally. Many students and teachers do not enjoy or have confidence in maths and 

STEM: they have anxiety even maths/technophobia and drop it as soon as they can. So we seek 

to promote the creativity and motivation for learning of these less confident students, working 

interdisciplinary, using technology, and fostering communication and the transfer of ideas/knowledge 

across cultures. From a research point of view, KIKS aims to compare cross-culturally the elaboration 

and resolution of STEAM activities at secondary education level. 

Development of activities 

Students, in teams of fives and led by at least one teacher, are asked to elaborated STEAM activities 

or projects under the following approach: How would you get your schoolmate to love Maths? The 

activities or projects can emerge from a teacher, a pupil, or a KIKS coordinator’s idea. Once the idea 

emerges, it is developed into an activity or project. It should involve different STEAM areas, but its 

duration and degree of difficulty can vary according to teams’ availability. Once an activity is 

elaborated, the team presents it to their local homologous (in face to face events) and to their 

international homologous (through video conferences). Schools from different countries are invited 



to participate in the project, at the moment we have more than 25 participant schools from different 

countries and backgrounds.  

Products to be developed by the students 

Each participant team has to elaborate a written document, an explanatory video, and a presentation 

of its work. (1) The written document (Word Doc or Power Point) has to include a presentation of the 

team members, and a description of the activity with the main results and the material used. (2) The 

edition of the video has to include the practical or technical aspects of activity, which are difficult to 

explain on paper. For example, the manipulative construction of objects, the use of measurement 

tools, etc. All the products have to be developed in the English language. The limited scope of this 

paper does not allow us to include here examples of the activities already developed by our teams, 

but they can be found at our website (http://www.kiks.unican.es/en/actividades/). 

KIKS support 

KIKS provides support to the teams through different platforms including Goggle Drive, YouTube, 

Facebook and a Website (www.kiks.unican.es). The Google Drive and Facebook platforms function 

as storages of information— where teachers and coordinators can exchange ideas— as well as 

repositories of documents elaborated by the teams. The YouTube Canal works as repository of videos, 

and the Website provides different and meaningful information about the ongoing process of the 

project. Apart from the above, KIKS provides support to the teams proposing activities, helping in 

aspects related to the English language, and furnishing technical support for video edition, online 

connections, etc. 

Evaluation 

Parallel to practical work of the project, we are undertaken a research study aiming to evaluate the 

strengths and weakness of KIKS. Firstly, this research aims to assess cross-culturally teachers’ and 

students’ perceptions about STEAM. Secondly, we aim to characterise the STEAM activities 

elaborated by the teams, according to the cognitive (competences, capacities, skills) and motivational 

(attitudes, emotions) dimensions they may develop in the learners. In short we seek to evaluate the 

impact of STEAM activities in the learning process. Tools for evaluating these two dimensions are 

currently under construction.   
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Introduction 

Comparative studies in mathematics include studies that document, analyze, contrast or juxtapose 

similarities and differences across all aspects and levels of mathematics education (Jablonka and 

Andrews, 2012). In this project, which is in an early phase, we intend to carry out such a study at 

the cross-national level. The rationale behind it is to identify similarities and differences between 

mathematics education in Norway and Ethiopia, to reflect on their practices in the light of 

international wisdom (Clarke, 2003), and to lay down grounds for further intervention studies, for 

example for the Norwegian NORHED project that will start in 2017. 

(https://www.norad.no/en/front/funding/norhed/news/). 

We have started comparing textbooks, since textbooks are the main resources used in mathematics 

classrooms (Pepin, 2010) in many countries including Ethiopia and Norway. Textbooks are tools, or 

instruments, that facilitate the daily work of teachers. They also contribute to the field of 

mathematics by preserving and transmitting skills and knowledge (Rezat, 2008a). In general, 

Mathematics is a subject that has long been associated with textbooks and curriculum materials 

(Remillard, 2005). Therefore, it is important to look at textbooks as a source of comparison.   

At this stage, emphasis is given to the teaching and learning of relations and functions as presented 

in the textbooks, partly due to students’ difficulties with learning these topics (Denbel, 2015). As 

teacher educators working with students preparing to work in primary and middle school in 

Norway, we have also observed that many student teachers struggle to grasp these concepts and 

hence to teach them.  

Method 

In this study we selected six textbooks in Norway and the one textbook from Ethiopia from lower 

secondary level which covers the concepts of relation and function. At this early phase of the study, 

definitions, examples, representations, exercises and problems, activities, group works, contexts and 

level of abstractions in the textbooks are being identified and compared.  

Findings 

As mentioned above, the purpose of this poster is to communicate the beginning of our project, 

which will enable constructive sharing of knowledge and experience about the teaching and 

learning of mathematics between the two countries, and we hope with the international mathematics 

education community in the coming years. We report our findings to date as follows.   



Among the selected textbooks, only two of them (one text from Norway and the textbook from 

Ethiopia) address the concept of relations directly by providing definitions, domain and range of 

relations and different representations, examples and exercises, without including the topic of 

function. The other Norwegian textbooks deal with the topic of function by taking for granted that 

students understand the concept of ‘relation’ in mathematics. Most of the books follow the teaching 

of functions by giving context-based definitions and examples, beginning with proportional 

relationships of variables, building to linear and then quadratic functions.  

In The Ethiopian textbook (M9) the definitions of relations and functions are provided in terms of 

subsets of a Cartesian product of two sets. Examples and problems are consistently abstract and 

unrelated to any real context. In contrast, we find no single definition and representation in the 

respective Norwegian textbooks. In addition, the Norwegian textbooks include many real life 

related contexts that are accessible by the students, and they are full of different representations 

(graphs, symbols, words, tables and physical figures) for both concepts.  With reference to this 

topic, the textbook M9 has a higher level of abstraction than its Norwegian counterpart. Symbolic 

and graphic representations are present in M9, but it is devoid of contexts and real life related 

examples and problems. 
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History of mathematics in mathematics education continues to receive much attention. However, 

empirical research and coherent theoretical/conceptual frameworks within this area have emerged 

relatively recently. The purpose of this TWG is to provide a forum to approach mathematics 

education in connection with history and epistemology dedicated primarily to theory and research 

on all aspects of the role, effect, and efficacy of history and epistemology as elements in 

mathematics education. 

TWG12 welcomes both empirical and theoretical research papers, and poster proposals related to 

one or more of the following issues: 

1. Design and/or assessment of teaching/learning materials using the history of mathematics, 

preferably with conclusions based on empirical data; all levels can be considered, from early-

age mathematics to tertiary education and teacher training. 

2. Surveys on the existing uses of history or epistemology in curricula, textbooks, and/or 

classrooms in primary, secondary, and tertiary levels; 

3. History of mathematics education; 

4. Relationships between, on the one hand frameworks for and empirical studies on history in 

mathematics education and, on the other hand, theories, frameworks and studies in other parts 

of mathematics education research. 

Even though the creation of this TWG is fairly recent – it started in CERME6 (2009) – it has deeper 

institutional roots within the maths education research community. Indeed, the HPM study-group 

(History and Pedagogy of Mathematics) was created at the 1972 ICME conference; it has been 

organizing satellite conferences to the ICME meetings since 1984, and has several active regional 

branches (HPM-Americas, European Summer Universities). In CERME10, 16 papers and 2 posters 

were presented in TWG12, for a total of 23 participants affiliated to this group, covering a large 

range of European countries (from Ireland to Russia) and beyond (Brazil, Mexico, the U.S.). A short 

survey showed this TWG attracts newcomers to the CERME community from the HPM 

community, since 9 participants were CERME first-timers, yet only two had never attended any 

HPM-related event.  

Before going into any details, it should be stressed that this TWG has four general but distinctive 

features which give these meetings their specific flavour. Firstly, its topic lies at the intersection of 



different fields of research – maths education research and history of mathematics – which requires 

versatility and methodological vigilance (Fried, 2001; Chorlay & Hosson, 2016). Secondly, the 

strength of the historical and the HPM community varies greatly among countries, and these 

meetings play a crucial role for researchers working in relative isolation, and with difficult access to 

resources in the field. Thirdly, the scope of TWG covers both history in mathematics education and 

history of mathematics education, which are two significantly different research topics (TSG 24 and 

25 in ICME13); connecting the two lines of investigations is a constant challenge. Fourthly, since 

the topic of TWG12 is neither specific to one level of the educational system (from primary 

education to teacher-training) nor to any single mathematical topic (be it fraction concepts, algebra, 

proof, etc.), the work in TWG12 intersects that of most other TWGs. This time, intersection with 

TWG1 (Proof and argumentation), TWG18 (Teacher education), and TWG22 (Resources and task 

design) was significant. It should be noted that, for this edition, there was little intersection with 

what was covered in TWG8 (Affects and mathematical thinking), TWG10 (Diversity and maths 

education), in spite of the fact that it is not uncommon for outsiders of the HPM research 

community – among which most policy-makers and curriculum-designers – to ascribe such goals to 

the historical perspective in teaching. 

These four features made this meeting not only useful but also challenging and exciting. As the final 

discussion made clear, the general feeling among the participants was that one of the main outcomes 

of this meeting is that we actually learned a lot from the one another, both from their papers and 

from the lively discussions. Let us now highlight some of the significant feature of the 2017 

conference. 

For quite some time it has been stressed that more attention should be paid to the actual effects of 

the use of historical sources, either in the classroom or in teacher training (Chorlay, 2016; Jankvist, 

2009). This year, at least two papers contributed to this line of research. For example, the 

Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources 

(TRIUMPHS) project is a five-year project funded by the National Science Foundation in the 

United States, which will create and test 25 full-length Primary Source Projects (PSPs) and 30 one-

day “mini-PSPs.” Each PSP is designed to cover its topic in about the same number of course days 

as mathematics classes would otherwise. With PSPs, rather than learning a set of ideas, definitions, 

and theorems from a modern textbook, students learn directly from the original work of 

mathematicians such as Leonhard Euler, Augustin-Louis Cauchy, or Georg Cantor. The project 

includes an extensive “research with evaluation” study, which will seek to address several 

evaluation and research questions and enable both formative and summative evaluation of the 

project activities. Data sources to inform the research are pre- and post-course surveys (of both 

students and instructors), post-PSP surveys, student interviews, student PSP work samples, video 

captures of selected classroom instruction and audio captures of selected small group student work, 

and instructor post-implementation reports. By the end of the project it is expected that some 50 

instructors and over 1000 students will participate in undergraduate mathematics classrooms where 

PSPs are used. 

On a smaller scale, Areti Panaoura studies the manifold difficulties faced by an “ordinary” teacher 

attempting to use a textbook activity on Egyptian multiplication. It raises many questions for our 

research community to investigate further: as to the level and nature – mathematical, didactical, 



historical – of expertise required from the teacher; as to our (as researchers and teacher-trainers) 

criteria for assessing such teaching sessions; as to the relevant theoretical frameworks for the 

description and analysis of teacher-practice (in particular the use of pedagogical documents). Along 

with these questions, it shows the importance of leaving our comfort-zone, a zone in which the 

teaching sessions are implemented by the researcher who designed them or by teachers with a 

significant experience in the field.  

As is customary in HPM-related meetings, a large number of papers carry out detailed content 

analysis. Let us restrict ourselves to those dealing with numbers and early-algebra: Antonio Oller-

Marcén and Vicente Meavilla describe forms of argumentation about equations of the  

type in a 16th century Spanish treatise, and endeavour to make sense of what we would consider to 

be errors or flaws; Chorlay studies arguments justifying the rule for fraction multiplication in a 

Chinese treatise from the Han dynasty and compares them with arguments found in today’s 

textbooks; Maria Sanz and Bernardo Gómez devise a structural classification of sharing problems 

on the basis of a large historical sample, and complement this classification by showing the variety 

of methods – both arithmetic and algebraic – for solving them. Coming from a perspective of 

history of education, Rui Candeias discusses in details a pedagogical approach to operation on 

decimals, in a context which combines proportionality and magnitudes. Although this line of 

investigation may seem to be very content-oriented, its connections to didactical questions – be they 

theoretical or more applied – are manifold. First, it is hardly necessary to say that content-analysis is 

a central part of a priori analysis, and that – on a par with a purely mathematical analysis – 

investigations into the history of mathematical knowledge and mathematical practices provide key 

background data. Second, the work presented in some of papers is explicitly described as a first 

phase in a larger research project focusing either on learners (Sanz-Gómez) or teachers (Chorlay). 

Third, the content-analyses presented in these papers contribute to the general theoretical discussion 

on some important didactical concepts, such as “epistemological obstacle” (Oller-Marcèn) or 

“generic example” (Chorlay). 

As far as history of education is concerned, let us highlight the contribution of Katalin Gostonyi. 

Her comparative study of the works of mathematics educators T. Varga (in Hungary) and G. 

Brousseau (in France) shed light on the origins of theoretical frameworks which are still very much 

alive in mathematics education research.  

Finally, the paper of Liz de Freitas contributes to the ongoing work in the HPM community from a 

new perspective. Being a philosopher of mathematics, she draws on both her personal research – in 

the continental tradition of the philosophy of mathematics and mathematical practice – and her 

experience in the training of maths teachers to suggest a large number of research questions which 

are relevant for the historian and the maths education researcher alike. Here, we briefly mention two 

such issues which we feel would be worth investigating further.  A first series of questions bears on 

diagrams: the way they are drawn and read; their cognitive impact and their epistemological 

significance; the historical evolution of the meta-rules governing the use of diagrams, in themselves 

and in their relations to other elements of mathematical texts. A second series of questions bears on 

the image of mathematics maths teachers have, its impact on their teaching, and the way teacher-

training modules may impact this image. Investigating this second series of questions could bridge 

the gap between the maths education community and the science education community, a 



community in which research on the Nature of Science (NOS) is a central research topic (see for 

instance Abd-El-Khalick, 2013). 

References 

Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher 

knowledge domain. Science & Education, 22(9), 2087−2107. 

Chorlay, R., & de Hosson, C. (2016). History of science, epistemology, and mathematics education 

research. In B. Hodgson, A. Kuzniak, & J.-B. Lagrange (Eds.), The didactics of mathematics: 

Approaches and issues. A homage to Michèle Artigue (pp. 155−189). Basel Switzerland: 

Springer International Publishing. 

Chorlay, R. (2016). Historical sources in the classroom and their educational effects. In L. Radford, 

F. Furinghetti, & T. Hausberger (Eds.), Proceedings of the 2016 ICME Satellite Meeting of the 

International Study Group on the Relations Between History and Pedagogy of Mathematics 

(HPM 2016, 18-22 July 2016) (pp. 5−23). Montpellier, France: IREM de Montpellier. 

Fried, M. (2001). Can mathematics education and history of mathematics coexist? Science & 

Education, 10(4), 391−408. 

Jankvist, U. (2009). A categorization of the “whys” and “hows” of using history in mathematics 

education. Educational Studies in Mathematics, 71(3), 235−261. 

  



Arithmetical problems in primary school: Ideas that circulated in São 

Paulo/Brazil in the end of the 19th century  

Luciane de Fatima Bertini1 and Andreia Fernandes de Souza2 

1Universidade Federal de São Paulo, Brazil; lfbertini@gmail.com  

2Universidade Federal de São Paulo, Brazil; deianandes@hotmail.com 

 

This article aims to analyze teaching programs, textbooks and journals of education in order to better 

understand the ideas that circulated in São Paulo, Brazil, at the end of the 19th century about the 

conceptualization and the utilization of problems for the teaching of mathematics in these documents. 

The research was conducted through a culture-historical approach (Chartier, 2002), which compels 

the researcher to have a questioning attitude towards the object of study. Thus, it was possible to 

observe that both the teaching program and the textbook valued the utilization of problems because 

both connect the concept of problem with activities presented through narratives in order for students 

to apply previous knowledge. On the other hand, the theme did not have the same value in the journal 

of education because it discussed that topic in only one article, which introduced the concept of 

problem as a synonym for a type of exercise related to calculations. 

Keywords: Arithmetical problems, primary school, intuitive method. 

Introduction  

In the state of São Paulo, Brazil, the end of the 19th century was marked by events that would bring 

significant changes to primary school over the next decades and that would also be a reference for 

other states. In the last decade of that century the foundations of school organization – time, space 

and curriculum structuring - were established. In addition, grupos escolares, which represented the 

idea of a modern and quality urban school, began to be introduced in the state of São Paulo in 1893 

(Souza, 2009). 

Since that was a period whose proposals and determination impacted primary school nationwide over 

the next decades, research on the history of mathematics education has great interest in understanding 

the ideas that circulated in that period regarding the teaching of mathematics. 

This paper aims to contribute to such understanding as it intends to analyze proposals for the 

utilization of problems in the teaching of mathematics by using textbooks1, journals of education2 and 

teaching programs3 from that period as sources. 

                                                 

1 Choppin (2009) observed the existence of several expressions to name school books. Names vary according to context, 

use or style. In this paper the expression “textbooks” is used to name all publications written in order to be used in 

Brazilian primary school classrooms. 

2 Publications that compiled articles written by intellectuals and teachers on themes related to teaching. 

3 Publications that provided guidance on school organization, content and methodology. 



Previous research done by the authors of this paper (Bertini, 2016a; Bertini, 2016b; Souza, 2016a; 

Souza, 2016b) shows the presence of arithmetical problems, or of proposals for their application, in 

several documents from different periods and with different goals. In this paper, the authors aim to 

conduct an analysis of these documents in order to better understand the ideas that circulated in São 

Paulo, Brazil, in the end of the 19th century about the use of problems for the teaching of arithmetic. 

In this study, the definition of problem is not presented a priori because that term is understood in 

different ways according to the historical period in question. Thus, one of the objectives of this 

research work is to identify what concept of problem the documents contain.  

Methodological and theoretical framework 

To develop the historical production in this study, all analyses took into account the historical 

moments and spaces in which the documents were produced as well as the interests involved in this 

production. Thus, we take a culture-historical approach as proposed by Chartier (2002), which not 

only encourages researchers to carry out descriptive work, but also compels them to raise questions 

about the documents studied in order to identify how a specific reality arises and establishes itself 

according to the place and time in which it emerges. According to De Certeau (2001, p. 35), a 

historian’s work is more connected to finding meaning and purpose than to simply narrating facts. 

From that perspective, the notion of appropriation is crucial for a significant historical production 

because it proposes the existence of creative invention in the process of reception (Chartier, 2002, p. 

136). Teaching programs, textbooks and journals of education will be analyzed based on that notion 

because, although in different manners, they all appropriated the ideas and determinations that 

circulated about the utilization of problems to teach arithmetic. Besides, throughout the process of 

creative invention, the authors will work to understand which ideas and determinations are produced 

in the documents about this utilization. 

Moreover, the notion of purpose, presented by Chervel (1990), will be harnessed once it is related to 

the options made for teaching. The historical study that involves the use of arithmetical problems in 

primary school will encompass the understanding of the purposes of their use. The authors will be 

guided by two questions when studying the documents: How were problems harnessed in these 

sources? Why were they suggested that way? 

It is important to emphasize that, according to Valdemarin (2004), in the 19th century the Brazilian 

educational context was influenced by ideas which arose from the intuitive method. She sustains that 

proposals for school activities included presenting a variety of objects to the senses so that ideas 

would be formed as a result of a rational, concrete and active teaching style. Two ideas are presented 

as paramount in the proposals that followed the intuitive method: first, the notion that observation 

leads to reasoning; second, the belief that work prepares individuals for the future (Valdemarin, 

2001). 

The proposal for educational renewal opposed the abstract and little useful character that teaching 

had had so far and comprised a new teaching method (the intuitive method). It started to be introduced 



in Europe, through Pestalozzi’s4 e Frëbel’s5 elaborations, and in the USA, where the work “Primary 

object lessons”, by Calkins,6 was first published, in 1861. Brazil was inserted in this refreshing effort 

in the 1880’s, when the country began to adopt the new intuitive teaching method. That movement 

was influenced by foreign ideas but it was also an attempt to meet political demands in the country 

due to the end of the Empire (Valdemarin, 2001, p.159). 

Dialogues with these productions on the History of Brazilian Education are considered necessary for 

harnessing the theoretical concepts here presented as an option for the construction of a historical 

narrative because it will contribute to the understanding of the context in which the documents were 

produced.  

Teaching programs, journals of education and textbooks 

The first teaching program in the state of São Paulo, as determined in Decree 248 of July 26th 1894, 

provided school management guidance and teaching instructions such as school organization, 

materials, students’ attendance, reports, disciplinary procedures, school-year calendar, curricular 

content and methodology. The Decree was signed by Bernardino de Campos and Cesário Motta 

Junior, who were respectively the President of the State of São Paulo and Secretary of the Interior. 

Nevertheless, besides being determined by law, all those instructions needed to be spread among both 

active teachers and future teachers. In that sense, journals of education were presumably a tool to 

transmit models of work that would help teachers appropriate the new educational proposals. In the 

last decade of the 19th century, the paulista journal “A Eschola Pública” was sponsored by the 

government and its editorial staff was composed of teachers, principals and school inspectors. 

In addition to teaching programs and journals of education, textbooks were another tool used to guide 

teachers’ work because they presented proposals of activities to be done by students in the classroom, 

as well as proposals for school organization (ordering of contents, quantity and style of activities). 

Finally, in this analysis we will articulate these different documents in order to generate understanding 

of the ideas that circulated in São Paulo, Brazil, in the end of the 19th century regarding the utilization 

of problems for the teaching of arithmetic. 

 The program of 1894 

Teaching programs are part of the norms that integrate school culture and help us understand it. 

However, we know that changes and innovations proposed by governments are the result of political 

disputes, which prevents them from happening naturally and passively (Souza, 2009, p.83- 84).   

In the paulista program of 1894 there is guidance on choosing a methodology: 

Article 9 – Lessons on subjects of any course year need be more empirical and concrete than 

theoretical and abstract, and should be conducted in order for children’s faculties to be developed 

                                                 

4 Johann Heinrich Pestalozzi (1746-1827), Swiss educator. 

5 Friedrich Wihelm August Frëbel (1782-1852), German educator. 

6 Norman Alisson Calkins (1822-1885), American educator. This work was translated/adapted to Portuguese by Rui 

Barbosa in 1886. 



in a gradual and harmonic manner. Article 10 – The teacher need aim, especially, to develop the 

faculty of observation by applying intuitive processes for this purpose. (São Paulo, 1894) 

The expressions “lessons... more empirical and concrete” and “intuitive processes” remind us of the 

educational trend that was disseminated at that time, i.e., the intuitive method. 

It is possible to notice that in the program some subjects are not present in every school year. 

Arithmetic, however, remains in all grades/years, with contents that are graded according to their 

difficulty level. 

Besides providing the list of subjects, the program included “more and more detailed prescriptions 

coming from teaching administration departments”. The 1894 program was extensive, according to 

testimonials by inspectors and principals of grupos escolares. Contents related to reading, writing, 

calligraphy and arithmetic were considered essential by teachers. On the other hand, the ones related 

to geography, history and science were of secondary importance (Souza, 2009, p. 84). 

For the teaching of arithmetic, the term problem appears in the content list in the following 

expressions: “Supplementary studies: problems and practical questions”, “Easy problems”, 

“Problems”, “Supplementary assignments: problems, practical questions”. 

It is important to emphasize that the term problem is present from the second year on, always in the 

end of the list of contents. As years/grades advance, the words “easy” and “practical questions” join 

the term problem in expressions. 

 Journal “A Eschola Pública” 

Journals of education are extremely rich and varied sources (Monarcha, 2004). The author reveals a 

chronological list of journals of education of São Paulo, which includes three titles that were 

published in the last decade of the 19th century. Out of those three publications, the UFSC Digital 

Repository7  has two: “Revista do Jardim da Infância” and “A Eschola Pública”, respectively 

Kindergarten Journal and Public School, in free translation. As this paper aims to analyze primary 

school, we will focus on articles published in “A Eschola Pública”. This journal of education was 

first published in 1893. Its early stage, which lasted until 1894, comprises eleven issues. The second 

publishing stage started in 1896, with its final issue published in the following year.  

This journal is the result of a council formed by people who had graduated at Escola Normal da 

Capital8 (Capital’s Normal School, in free translation) and actively took part in political and cultural 

movements at the time. After that publishing period, many of its council members held important 

offices in the government, for example Oscar Thompson, who was named General Manager of State 

Public Education (Diretor Geral da Instrução Pública do Estado), and Arnaldo Oliveira Barreto, who 

was a teacher at Escola-Modelo do Carmo (Carmo Model School, in free translation), in 1894, and 

the inspector of the associated schools of São Paulo. 

                                                 

7 Database fed by GHEMAT researchers, where theses, dissertations, articles, textbooks, education journals and students’ 

notebooks are available. Available in https://repositorio.ufsc.br/handle/123456789/1769 

8 First Normal School in the state of São Paulo, called Caetano de Campos today. It was founded in 1894 and prepared 

future teachers. 

https://repositorio.ufsc.br/handle/123456789/1769


According to Monarcha (2004), the publication had 21 issues. Nevertheless, only 18 issues are 

available at the UFSC Repository, whose digital database is fed by the GHEMAT researchers. All 

over the 18 issues, only 15 articles feature the teaching of arithmetic and only one, which was written 

by Arnaldo Oliveira Barreto in 1897, referred to the term problem. 

In addition to being a teacher at Escola-Modelo do Carmo, the first grupo escolar in São Paulo, in 

1894, Arnaldo Oliveira Barreto (1869-1925) reorganized Grupo Escolar de Lorena, São Paulo. In the 

period between 1902 and 1904, he was editor-in-chief of Revista de Ensino (Journal of Teaching, in 

free translation). He was also part of Sociedade de Educação de São Paulo (Education Society of São 

Paulo). Throughout his career, he produced several books, articles and guidebooks. 

In an article published in March 18979, the author provides suggestions regarding the order of the 

work a teacher needs to perform in the classroom: “write the exercises”, “students with their arms 

crossed”, “distribute all necessary material”, “ring the bell for work to start”, “divide your board” and 

copy “all problems and then do them” (Barreto, 1897, p.38). 

In this article, the author talks about the utilization of calculations involving all four fundamental 

operations whose results are not higher than 20. Some examples of calculations presented in the 

article are as follows: 3 + 2 =, 4 + 3 =, 6 ÷ 3 =, 4 – 2 =, 6 x 2 =  (p. 40). He also suggests two different 

correction procedures: individual and collective. For the collective correction, he recommends that 

each student reads his/her problem: 

- Three plus two makes five. 

- Four plus three makes seven. 

- Two and two are four. 

- A six has two threes, etc. (Barreto, 1897, p.39) 

To refer to the proposed calculations, the author alternates between the term “exercise” and the term 

“problems”, as we can observe in the final part of his article: “provide daily variation in the exercises, 

which is most convenient, and I emphasize that the problems should always be about the four 

fundamental operations” (Barreto, 1897, p. 39). 

 “School arithmetic” 

In the period between the end of the 19th century and the beginning of the 20th century there was a 

“close relation between the public primary expansion and the publishing expansion in the state of São 

Paulo” (Razzini, 2004, p. 1), which was originated with the establishment of the Republic in 1889. 

The textbook was set as one of the necessary aspects for implementing the proposal of grupos 

escolares. 

Costa (2011), in a study about arithmetic textbooks in grupos escolares in São Paulo, states that 

Ramon Roca Dordal’s work titled “Arithmetica escolar – exercícios e problemas para escolas 

primárias, famílias e collegios” (School Arithmetic – exercises and problems for primary schools, 

families and other schools, in free translation), which is composed of six books, circulated in public 

schools in the state of São Paulo in the end of the 19th century and beginning of the 20th century. The 

                                                 

9 Available in https://repositorio.ufsc.br/xmlui/handle/123456789/126750 

https://repositorio.ufsc.br/xmlui/handle/123456789/126750


first four parts of his work were analyzed in this paper. However, after an extensive search, the two 

final parts could not be obtained. 

In addition to the title, a highlight to the fact that the work is composed of exercises and problems is 

also present in the introduction done by the author himself. Although there is no clear indication of 

what is understood by “exercise” or “problem”, the order of the activities featured in each lesson is 

pretty similar and seems to focus on the following: introduction of the rule, exercises and problems. 

Therefore, the term “problems” seems to be associated with a narrative of a daily life situation. 

Lesson XI from the second book, for example, introduces the rule “When the sum does not provide 

exact tens, one should write the exceeding units in the sum and the tens should join the following 

order” (p. 11), followed by operations (Figure 1). 

 

 

Figure 1: Operations featured in Lesson XI of the second book. 

Finally, problems are presented as a final part of each lesson: 

5th – A traveler has covered 25 leagues on a train, 14 leagues on a horse and 44 by ship; how many 

leagues has he covered? 

6th – From Santos to São Paulo there are 16 leagues, from São Paulo to Jundiaí there are 12 and 

from Jundiaí to Campinas there are 9; how many leagues are there between Santos and Campinas? 

Another point that Roca Dordal highlighted about the use of problems was that it was necessary to 

use easy problems, which should compose short lessons, so that children would remain interested and 

attentive, which is paramount for the success of the teaching process. 

The first three books feature all problems that involve the addition operation and the fourth contains 

problems which are all related to subtraction. The situations featured in the problems have as 

backgrounds mostly children’s everyday life situations (school, shopping, etc) and also adult life 

situations (distance between two cities, populations, etc).  

Conclusion: Ideas that circulated 

From observing the three sources selected for this study, it is possible to characterize some ideas that 

circulated in the state of São Paulo, Brazil, in the end of the 19th century about the use of problems in 

the teaching of arithmetic. 

In that historical period the use of problems in classrooms to teach arithmetic was highly valued, 

which is characterized by the presence of problems in almost every teaching program for primary 

school (except for the first year/grade) and also by the presence of the term problems on the cover of 

Ramon Roca Dordal’s work. Textbook covers somehow try to introduce some of the work contained 

inside so that it is more likely to be bought, adopted or used. Therefore, the presence of the term 

problem on the cover seems to endorse the notion that it was valued by those who would make use 

of it or recommend it (institutions or teachers). 

Despite the high regard observed in the teaching program and in the textbook under analysis, 

discussions over the utilization of problems do not seem to have been a serious debate topic in the 



articles featured in the journal that circulated in São Paulo at that time. The teaching of arithmetic 

was the theme of fifteen journal articles but the term problem was referred to in only one of them. 

Still that one article did not discuss effectively the understanding of what a problem actually is. In 

that article, the term problem was applied as a synonym for exercise and referred to the calculations 

proposed using numbers and operation signs. 

Nevertheless, a different understanding is expressed both in the teaching program and in the textbook. 

In these two documents, even though there is no clear exposition of what a problem is, they seem to 

be more related to proposals of activities based on narratives, which somehow approach daily life 

topics, just like the situations contained in the textbooks by Ramon Roca Dordal. The use of the 

expression “practical questions” alongside the term problem in the teaching program may also be 

related to everyday life or to the utilization of objects to be presented to the senses for the formation 

of ideas, once the program represents ideas based on the intuitive method. 

The recommendation to use easy problems is one more idea which is highlighted both in the teaching 

program and in Ramon Roca Dordal’s textbook. This aspect is clearly revealed in the way that the 

documents are written and also in how their utilization is suggested. In the teaching program, for 

example, there is no proposal for the use of problems in the first year/grade, which suggests that first 

children need to acquire knowledge of the four operations, know their signs and be able to perform 

calculations with objects or numbers before being able to make use of this knowledge to solve 

problems. Likewise, in the book by Ramon Roca Dordal, problems are introduced only in some of 

the lessons, which happens after children have exercised their knowledge of the operations. One needs 

to have knowledge of how an operation is done to be able to apply that knowledge in problem solving, 

which points to a suggestion that the purpose of the problems was the application of previously 

acquired knowledge. This interpretation is reinforced when we observe that all problems featured in 

the book are related to the topics contained in the lesson in which the problems are shown or in 

previous lessons. 
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This study aims to analyze Gabriel Gonçalves didactic proposal for the initial approach of rational 

numbers in primary education, published in the 1974 edition of Didactic of Calculation (Didática do 

Cálculo). At a time where modern mathematical ideas began to influence mathematics education in 

the early years, it is important to understand how mathematics was addressed in the pre-service 

education of teachers of this school level. Among the themes approached in this textbook, the choice 

of rational numbers was due to the many difficulties that primary students usually have with this 

subject matter, as well as the teachers in teaching them. The study was conducted with a historical 

perspective based on documents analysis. The proposal of Gabriel Gonçalves emphasizes the 

initiation of rational numbers through decimals instead of fractions and the different types of 

problems that should be presented to students in the initiation to decimals. 

Keywords: History of mathematics education, elementary school mathematics, decimals 

 

Introduction 

This paper is part of a broader work that aims to characterize, in a historical perspective, mathematics 

in the initial pre-service education of primary school teachers in Portugal.On the one hand, from the 

point of view of the centrally issued legislation, on the other hand fromthe analysis of textbooks for 

teachers, which constitute a point of view closer to the practices. This is a pioneering study that will 

focus the analysis of the teacher training textbooks on their approach to non-negative rational 

numbers. It is intended to select a set of representative authors from different periods, between 1844 

and 1986, and examine how the proposed initiation to non-negative rational numbers in the early 

years of schooling evolved. In this article, I selected a representative author of the beginning of the 

1970s, whose proposal of approach to rational numbers will be described.  

This paper analyzes the didactic proposal of Gabriel Goncalves, former teacher of the Primary 

Teacher Training School of Porto (Escola do Magistério Primário do Porto), for the initial approach 

to rational numbers presented in the textbook for teachers of the Special Didactic (Didática Especial) 

discipline of initial pre-service education of primary school teachers, entitled Didactic of Calculation, 

1974. The main questions in this paper are: What is the initial proposal for the teaching of non-

negative rational numbers presented by this author? What kind of representations are privileged? 

What kind of teaching materials are referred to? What importance does this author give to the 

definition of unity? What are the most used contexts for the display of decimal numbers? What kind 

of problems does the author propose to students?   

According to Chartier (1990), the pedagogy textbooks for teachers constitute a source for the history 

of teacher professionalization, and are a sample of what constitutes teachers professional knowledge. 

Pintassilgo (2006) considers these textbooks for teachers a major instrument of innovation and 

http://eric.ed.gov/?ti=Elementary+School+Mathematics


control, legitimizing certain ideas and practices, and simultaneously withdrawing this legitimacy to 

others. Moreover they are important resources in building a school culture and as guides in classroom 

and students management, as well as in the professional teacher development. 

The importance of research in the context of the history of mathematics teaching is not limited to the 

knowledge of the past. Chervel (1990) points out that, through the historical observation, we can 

bring this disciplinary models and operating rules whose knowledge and exploitation may be useful 

in discussions about teaching today. In this sense, Matos (2007) states that knowledge of the past may 

allow an action more grounded in the present. In this perspective, it is important to see how it was 

done the training of primary school teachers, in a mathematical topic as the rational numbers, at a 

moment when the Modern Mathematics Movement begins to emerge, favorable to an active 

construction of knowledge and the use of structured materials in mathematics teaching. The 

operationalization of the analysis of the work of this author was conducted as an historical study 

based on the collection and selection of sources as defined by McCullough (2004). At this stage of 

the work, the document was analyzed essentially in a descriptive way, trying to organize a scheme 

with the topics to be analyzed (Creswell, 2012). 

Pre-service education of primary school teachers during the New State regime 

(Estado Novo) 

In Portugal, the military dictatorship implanted in 1926, and later the New State regime that followed, 

changed the pre-service education of primary school teachers (Pintassilgo, 2012). In 1930, still in the 

transition from military dictatorship to the New State regime, the Normal Primary Schools (Escolas 

Normais Primárias) were replaced by Primary Teachers Training Schools (Escolas do Magistério 

Primário) involving a radical change in school organization, the curriculum framework and, later on 

the syllabi, in 1943. 

With the restructuring of the course in 1942, and the syllabi published in 1943, the mathematical 

content of the programs of the Primary Teachers Training Schools came to be centered on teaching 

and methodological dimensions of the primary content. In these 1943 syllabi, did not exist any 

discipline with mathematical content. The reformulation of syllabi in 1960 reinforced the discussion 

on teaching methodologies. These syllabi had no disciplines with mathematical scientific content, 

situation that remained until 1975 syllabi. It is in the context of these 1960 syllabi that the Didactic 

of Calculation, analyzed in this paper, was published. 

Decimal numbers in the teachers textbook of pre-service education of primary 

school teachers: Gabriel Gonçalves’ approach in Didática do Cálculo 

Didatics of Calculation (Didática do Cálculo), composed of two volumes published in 1972 and in 

1974 by Porto Editora, is part of a set of textbooks for teachers written from the 1960s to serve as a 

support to the discipline of Special Didactics B of the courses of pre-service education of primary 

school teachers. According to the author, Gabriel Gonçalves, former professor of the Primary 

Teachers Training School of Porto and inspector-advisor at the time of the edition of the manual, 

Didactics of Calculation was mainly intended for students-masters of the Primary Teachers Training 

Schools although it could also be used by all of those who were interested in education issues. 

From chapter VII to chapter XIII of the second volume of Didactic of Calculation, Gonçalves (1974) 

addresses the teaching of decimals. Due to space limitations, this article will not address the entirety 



of this author's proposal. This paper focuses on chapter VII which deals with general aspects of the 

teaching of decimals and chapter XIII dedicated to the concept of unit and its application to problems, 

which are important aspects of the teaching of these numbers. 

The chapter VII, entitled “Preparation of the study of decimals; measurements with linear units 

already known. Writing and reading of representative numbers of these measurements; using the 

decimal point” is organized into three main sections: 1) Goals; 2) General considerations and 3) 

Direction of Learning. In the goals, the author begins by pointing out that the aim is that the child 

expands his knowledge of decimal number system, extending it to tenths, hundredths and 

thousandths. These concepts would appear as an extension of the base ten numbering system. 

Gonçalves (1974) presents subsequently some general considerations about the teaching of decimals 

and fractions, starting by putting the question if the teaching of rational numbers should be done with 

decimals instead of common fractions. On this issue, Gonçalves (1974) presents two opposing trends. 

On the one hand, quotes methodologists1 that, according to Gonçalves (1974), claim that one should 

start with decimal fractions in its decimal representation, because it would be "as a continuation of 

the study of decimal number system, but with numbers lower than the unit "(p. 38). He presents the 

submultiples of length measurements, capacity and weight, as examples stating that: 

Each of these units contains ten units of the next lower order. So, we can operate 

in the written calculation as if they were natural numbers. And as the calculation 

with decimal is much easier than with fractions, it will be with the decimal 

fractions, in the form of decimal representation, which should start. "(Gonçalves, 

1974, p. 38). 

On the other hand, he presents the opinion of methodologists2 who claim that we should begin the 

study by the common fractions, of which the decimal fractions would be only a case. Then he 

forwards the arguments of these authors, stating that:  

The calculation becomes more intuitive and rational: the half, third, fourth, ..., are 

easier to understand than the tenth, the hundredth, ... The calculation of common 

fractions prepare better for the decimal than the contrary. (Gonçalves, 1974, p. 38). 

Given these two divergent trends, Gonçalves (1974) refers that he will follow the first, as it was 

prescribed in primary syllabi at the time3 that is, starting with decimals representation. In section 3 of 

this chapter, called the Direction of learning, Gonçalves (1974) shows what stood as the teaching of 

decimals in the primary education syllabi of the time. This topic was considered "the greatest obstacle 

to overcome in the 3rd grade" (p. 39). According to the primary syllabi, the approach to decimals 

should be made from the length measurements, placing students in situations that were necessary to 

measure with meter and decimeter. These measurements would express numbers in what was called 

mixed decimals, numbers with a whole part, that after a decimal point had a decimal part. After 

working with these mixed decimals, students should verify that the rules used with whole numbers 

also applied to decimal numbers, "the numbers continue to have an absolute value and a position 

                                                 
1 On this subject, Gonçalves (1974) quotes methodologists like Büttner, Tank or Pikel, but does not identify the works of 

reference of these authors. 
2 On this subject, Gonçalves (1974) quotes methodologists like Böhme or Hentshel, but does not identify the works of 

reference of these authors. 
3 At the time were in effect the syllabi approved in Decree No. 23,485, Government Daily, 167, 16.07.1968, 1019-36. 



value." (p. 39). After performing this work, situations that could lead them from mixed decimals for 

simple decimal numbers should be offered to students. 

Gonçalves (1974) establishes a relationship between the perspective in the previous two chapters of 

his manual, which addressed the metric system, with measurements only with positive integers, in 

the final part of his general considerations. In this chapter, he proposes to address measurements, 

using the decimal notation, with the decimal point. 

Gonçalves (1974) continues the chapter with section 3. Direction of Learning, with the suggestion of 

some techniques and activities for the introduction of the concept of the tenth, starting from decimeter, 

and the notion of the hundredth and thousandth, from notions of centimeter and millimeter. The author 

proposes the introduction of the tenth in eleven steps (table 1): 

1) Measurements, in which the meter is used 

a whole number of times; 

2) Measurement expressed a whole number of 

times in meters and decimeters (ex.: the picture 

measures 1 m and 2 dm); 

3) In the measurements, identification of the 

entire unit, the meter, and the tenth of the 

entire unit, the decimeter. Representation in 

conventional manner, with the decimal point 

and the identification of the position value. 

4) Identification that the rule that governed the 

whole numbers also apply in decimal numbers: "In 

a number, any digit at the right of other is order 

units ten times smaller than the first one" (p. 30); 

5) Measurements that result in mixed decimal 

representation. Registration in tables; 

6) Measurements that result just with decimal part. 

Lead students to understand that the zero to the left 

of the decimal point is the absence of whole units; 

7) Exercise that does not exceed the unit 

Ex.:  3 dm + 2 dm = 5 dm 

 0,3 m + 0,2 m = 0,5 m 

8) Exercises which form exactly the unit 

Ex.:  5 dm + 5 dm = 10 dm 

 0,5 m + 0,5 m = 1,0 m = 1 m 

9) Exercises that exceed the unit 

Ex.:  4 dm + 5 dm + 3 dm = 12 dm 

 0,4 m + 0,5 m + 0,3 m = 1,2 m = 1 m 

 + 0,2 m 

10) Exercises 

Ex.:  0,4 m = 0,1 m + 0,1 m + 0,1 m + 0,1 m 

  = 0,2 m + 0,2 m = 

  = 0,3 m + 0,1 m 

11) Application and verification exercises.  

Table 1. Proposal for an approach to decimal (Gonçalves, 1974) 

Chapter XIII, titled the “Expansion of the Unit Concept. Its application to solve problems with 

decimals” is divided into two sections: 1. Goals and general considerations and 2. Preparatory 

exercises. In a footnote at the beginning of this chapter, Gonçalves (1974) draws attention to the 

possible application in problems with common fractions4. The first section provides some general 

                                                 
4 The footnote with reference to common fractions is placed in the text by the author, because in later chapters, when it 

comes to addressing the common fractions, will present the same kind of problems. However, we will not address common 

fractions in this paper. 



considerations about the unit and its nature. Gonçalves (1974) begins by distinguishing the single 

units of the 1st or 2nd order units, such as ten or hundred, or units designated as decimals, as 0.1; 

0.01. Also distinguishes other composite units as the dozen or the quarter of a hundred or other sets 

as a basket of oranges that can be considered as a whole. For Gonçalves (1974), this expansion of the 

concept of unit "is the basis of an important branch, allowing you to easily solve questions that 

otherwise would be too complex" (p. 79) and therefore should be developed in children. Gonçalves 

(1974) points out that many problems with decimals have the following expressions: "the amount 

corresponding to the unit; the fraction5; the amount corresponding to that fraction or else their 

counterparts, the value of the unit (the whole); the fraction; the value of the part corresponding to the 

fraction "(p. 79). He points out that being given two of the above items is always possible to find the 

third, and stresses that this implies the possibility of formulating three groups of problems: 1) given 

the amount corresponding to the whole and the fraction, find the value of the part corresponding to 

that fraction; 2) given the fraction and the amount corresponding to that fraction, find the value of the 

whole; 3) given the value of the whole and the value of a part of the unit, find the fraction which 

corresponds to that part. 

The author presented several examples considered similar, for the first group of problems. The first 

problem, with a context of capacity measures, is to find the amount corresponding to the respective 

unit. For this type of problem is presented a resolution, first find the value of the decimal unit 0.1, 

and then multiplying by the number of times it is repeated, in this case, multiplying by three. 

1) Each liter of olive oil costs 18$00. How much 

will cost 0.3l of that olive oil? 

The problem can be solved, first finding the decimal 

value of each unit (18$00:10 =1$80) and then 

multiplying it by number of decimal units (1$80x3= 

5$40). (Gonçalves, 1974, p. 79) 

Soon afterwards a second example is shown. It is also an iterative situation that leads to the meaning 

of multiplication and can be considered a counterpart of the first: "2) Each liter of olive oil costs 

18$00. How much will cost 3 l of the same olive oil "(p. 80). The resolution is the multiplication of 

18$00 by 3, 18$00x3=54$00. Gonçalves (1974) believes that after children observe the resolution of 

the second problem they will eventually realize that the action in the first problem is also 

multiplicative, noting that multiplying by 0.3 is the same as dividing by 10 and multiply the result by 

3. He points out that the child will also conclude that" given the value of the unit, to know the amount 

(whether higher or lower than the unit), the action is multiplicative."(p. 80, italics in original). For 

this first group of problems are still presented other examples. According to Gonçalves (1974), the 

intention is to extend the concept of unit, to the concept of the whole. 

                                                 
5 Gonçalves (1974) uses the term “fraction”, in the sense of part of a whole and not in the sense of fraction representation 

of the rational number. 



In the second group of problems titled “given the fraction and the amount corresponding to that 

fraction, find the value of the whole” several problems are presented. The first two are in the context 

of capacity measures and the author intended that should be solved by analogy. 

1) They bought three liters of olive oil for 54$00. How 

much did cost one liter?  

 

 

2) Were purchased three deciliters (0.3 l) of olive oil for 5$40. 

How much did cost one liter? The meaning of the first problem 

is clearly partitive (54$00:3=18$00). (Gonçalves, 1974, p. 80) 

The first problem is associated with a partitive situation and the solution 

involves a division, 54$00:3=18$00. From this, the student should recognize that the second problem 

presents a similar situation, inferring that if you know the value of a certain amount, to know the unit, 

the meaning is to divide. For the second problem, another kind of solution is suggested: first 

determine the price of each tenth and then multiplying this result by 3. Other examples of similar 

problems are then presented. 

In the third group of problems, “given the value of the whole and the value of a part of the unit, find 

the fraction which corresponds to that part”, are initially presented two problems. 

 1) With 54$00, which portion of olive oil can we buy, whose price is 18$00 per liter? 

 2) With 5$40, which portion of olive oil can we buy, whose price is 18$00 per liter? 

(Gonçalves, 1974, p. 82) 

The first problem is considered to be the division quotative meaning, and the resolution proposed is 

54$00:18$00=3. The second problem is also framed in a similar reasoning and therefore should be 

solved similarly 5$40: 18$00 = 0.3. To Gonçalves (1974), these two problems comprise the quotative 

meaning. Gonçalves (1974) points out that "the fraction is given to us by the relationship (or ratio) 

between the value of the quantity and value of the unit." (p. 82, italics in original). It points out that 

learning these problems should not only be supported by the memorization of rules, or repetition, 

without be a prior understanding. Gonçalves (1974) considers that this understanding of work was 

previously done when they worked multiplication and division of decimals as a generalization of the 

basic rules of these operations with whole numbers. 

In section two of this chapter, entitled preparatory exercises, are suggested three different types of 

problems, 1. Recognize (or find) the fraction; 2. Find the value of the fraction; 3. Find the value of 

the unit (or the whole) which corresponds to the sorts of problems previously shown. Gonçalves 

(1974) begins by highlighting that for the understanding of the basics for learning problem solving, 

should be practiced some sensory exercises, called concrete phase, such as manipulation, paper 

folding, drawing, of which the preparatory exercises were examples. 

Concluding remarks 

In chapter VII of the manual in analysis, the first dedicated to the teaching of decimals, Gonçalves 

(1974) starts by discussing where to begin the study of rational numbers, by the decimals or by 



fractions. In his work, Gonçalves (1974) follows the indication of the primary school official syllabi 

of that time and primarily addresses the rational numbers by its decimal representation. Gonçalves 

(1974) also refers to arguments of different authors. Regarding the teaching of rational numbers, 

Brousseau, Brousseau and Warfield (2007) also present a discussion on the best way to introduce 

them to students considering that it is not necessary to know fractions to learn decimals. Rather, 

decimals can be understood at once as a decimal number, supported by the decimal measuring system, 

allowing that all practical measurement problems can be solved more easily. They consider that this 

solution has many advantages for teaching, especially in countries where children are already familiar 

to the use of metric measurements.  

The different syllabi of mathematics discipline for primary education in Portugal also seem to reflect 

this discussion. In the 1960s two syllabi to this level were in force. In both cases the rational numbers 

were discussed in the third grade from decimal numerals, with the use of linear measurements. The 

fractions were worked only in the fourth grade, but only the concept of fraction. In the syllabi for the 

school year 1974/1975 the introduction of rational numbers was still made with decimal 

representation and working with fractions was no longer part of the primary syllabi, happening the 

same in 1975 syllabi. However, in the 1978 syllabi, the chapter devoted to rational numbers deals 

first with the fractions and then the decimal representation. In the 1980 syllabi, rational numbers were 

again addressed exclusively by decimal representation. In 1990, the official syllabi for primary 

education began the work with rational numbers in the second grade, with the fractions, but only had 

an applied operator to a discrete set. Afterwards and until 5th grade rational numbers were worked out 

just with decimal representation. 

Gonçalves (1974) distinguishes different types of units, referred to as units of "various kinds". He 

defines the single unit, but ten and hundred are first and second order units, that means they are 

composed units. Other composite units are also presented, called set-unit as the dozen or a quarter of 

a hundred. Monteiro and Pinto (2009) highlighted the different types of unit as one of a major 

difficulty in the study of fractions in the early years.  

This unit concept is considered by Gonçalves (1974) as essential for solving problems with decimals, 

because of that definition results the possibility of grouping the problems into three distinct groups: 

1) find the value corresponding to a part of the designated fraction; 2) find the value of the whole 

giving a part; 3) find the part of a whole.  

In the presenting of the problems, Gonçalves (1974) emphasizes the symbolic representation, but also 

presents some problems, and the respective resolutions, illustrated with pictorial models. However, 

in the second section of chapter XIII, he highlights the importance of concrete phase, suggesting the 

use of sensory exercises using the manipulation, paper folding and drawing. However, no structured 

didactic materials are referred.  

Synthesizing, in this proposal of Gonçalves the importance attributed to the work with the decimals 

stands out by the affinity with the calculation with the natural numbers that the students previously 

worked. This option is based on the curriculum that was in force in Portugal at the time, but 

methodologists from other countries who support this option were also mentioned. As the works of 

the mentioned methodologists are not mentioned, it is not possible at this moment to attest to the 

influence they had on the proposal of this portuguese author. This is a discussion that continues today 



as it is possible to see in the works of Brousseau et al. (2007) and the successive changes in the 

approach to rational numbers presented in the portuguese curricula. 

The work with different units and the importance given to the definition of the unit it is also relevant 

in Gonçalves work. This definition of unit allows Gonçalves to systematize the type of problems to 

be presented to the students in the beginning of the learning of this numerical set. The most used 

contexts in these problems are those of measurement (length, weight). 
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Introduction 

We will endeavour to show that some historical documents which are probably too difficult to be 

used in the classroom can nevertheless be fruitfully used in teacher-training, in order to provide 

teachers with tools for the analysis of informal or semi-formal justifications. We will analyze an 

extract from the Nine Chapters, so as to spell out tool for the analysis of three school documents 

bearing on the multiplication of decimal or general fractions. 

A historical example: Multiplying fractions in the Nine Chapters 

The Nine Chapters on the Mathematical Art  (九章算術) is a Classic that was compiled during the 

Han Dynasty (206 BC – 220 AD). It contains an organized list of problems with general procedures 

to solve them, yet with no attempts at justification. In 263 AD, scholar Liu Hui wrote an extensive 

commentary in which endeavoured to justify all the procedures, and identify key subprocedures of 

general scope. We will comment on the passage in chapter one which deals with the multiplication 

of fractions, on the basis of the critical edition and French translation (Chemla & Shuchun, 2004)1. 

Problem 1.19. Now given a [rectangular] field, 4/7 bu in breadth and 3/5 bu in length. Tell: what is 

the area? Answer: 12/35 bu. 

(…)2 Procedure for the multiplication of parts: multiply the denominators to make up the divisor; 

multiply the numerators to make up the dividend. Divide the dividend by the divisor. 

(…) [Liu Hui]: In all cases when a dividend does not fill a divisor, then they are called denominator 

and numerator. If there are parts, expand the corresponding dividend by multiplication, then, when 

the divisor is filled, the division yields an integer. If, moreover, one multiplies something by the 

numerator, the denominator must therefore divide in return [baochu]. To divide in return is to “divide 

the dividend by the divisor”. Now, “the numerators are multiplied one by the other”, hence both 

                                                 

1 An independent English translation is also available (Crossley, Lun & Shen, 1999). As far as this passage is concerned, 

the two translations differ significantly; our interpretation is based on Chemla’s translation and interpretation.  

2 I edited out two similar examples (with proper fractions), as well as Li Chunfeng’s commentary. 



denominators have to divide in return. Whence the multiplication of the two denominators, and the 

division at one go [by their product]. 

The mere length and width of a rectangular field leave no room for a general explanation. Let someone 

ask: “20 horses are valued at 12 jin of gold. Now 20 horses are sold and the proceeds are shared by 

35 persons. How much does each one get?” The answer is 12/35 jin. To solve this by the procedure 

for dividing into parts, take 12 jin of gold as dividend, and 35 persons as divisor. Now, change [the 

problem] to: “5 horses are valued at 3 jin of gold; now 4 horses are sold, and [the proceeds] are shared 

by 7 persons. How much does each one get?” Answer: each one gets 12/35 of jin. To solve this, you 

need to homogenize these quantities (shu) of people and of gold; it is then completely similar to the 

first problem, that of dividing into parts.  If so, “multiply the numerators to make up the dividend” 

does homogenize this quantity of gold;  “multiply the numerators to make up the dividend” does 

homogenize this quantity of people. Equalizing the denominators yields 20, but that plays no part: we 

just need the homogenized. Moreover, when 5 horses are valued at 3 jin of gold, these are the lü in 

whole numbers. If we express them with parts, 1 horse is valued at 3/5 jin of gold. Let 7 people sell 

4 horses, 1 person does sell 4/7 of a horse. (…) As far as expression is concerned, that’s different; yet 

as far as quantities are concerned, the three procedures boil down to the same.  

Figure 1: (Chemla & Shuchun, 2004, 169-171). Free translation: R. Chorlay 

Even if the procedure in quite easy to understand – and familiar to the reader – Liu Hui’s commentary 

is probably hard to decipher. Even without a clear understanding of the details, one can probably see 

at least two things: the goal of Liu is to justify the general procedure of the classic; he gives two 

different justifications, one which does not rely on a semantic context nor on specific numbers, and 

one which does.  

Let us first focus on the first justification. Liu first distinguishes between two cases: a basic case in 

which the fractions represent whole numbers; in this case, the procedure for multiplication is already 

known. Of course, the goal is here to justify the new procedure – in the case where the divisions have 

non-zero remainders – on the basis of the basic procedure. The word “procedure” is important, since 

what is to be justified is the validity of an algorithm. More precisely, two sequences of calculations 

are to be compared: 

Sequence 1: divide a by b; divide c by d; multiply the two quotients. 

Sequence 2: multiply a by c; multiply b by d; divide the first product by the second product. 

If the two sequences relied on operations defined previously and independently, the goal would have 

been to prove the universal equivalence of these two algorithms (that is, same entries yield the same 

output). However, if one is not to beg the question, the first sequence actually contains the undefined 

operation multiply, since the final multiplication may involve a multiplication of fractions3. So the 

goal here is rather to justify that sequence 2 (which involves only well defined operations on integers) 

                                                 

3 When the remainder in the Euclidean division is non-zero, the quotient, the remainder and the dividend were read as a 

mixed number. For instance, the division of 7 by 3 has quotient 2 and remainder 1, so its result is 2 and 1/3. 



should be universally equivalent to sequence 1, thereby implicitly defining “multiply” in terms of 

“multiply.” 

To perform this, Liu uses terms which are specific to the commentary: whereas the Classic uses 

“divide” and “multiply”, Liu uses “expand by multiplication”, and “divide in return” (baochu); these 

terms point to the role of these operations. However, it is important to know that throughout the Nine 

Chapters, “baochu” denotes a division whose role is to compensate for a multiplication by the same 

number, so that these two steps of the procedure do not affect the final output of the sequence of 

operations. On this basis, one can see that Liu’s justification involves a third sequence of operations: 

Sequence 3:    1.  multiply a by b, so that the first factor becomes ab / b, which is equal to a 

2. multiply c by d, so that the second factor becomes cd / d, which is equal to c 

3. multiply the two factors, which yields ac 

4. divide by bd, which is the product of the two denominators 

This sequence is not to be actually performed, it is mentioned for justificatory purposes only. Since 

step 4 is a baochu-division, it compensates steps 1 and 2. The line of argumentation can thus be 

reconstructed as: sequence 1 (which is yet undefined) should be universally equivalent to sequence 

3, and sequence 3 boils down to sequence 2.  

This line of argumentation may seem far-fetched. However, it is quite close to the following 

contemporary proof of the following theorem: the only map f from ℚ × ℚ∗ which is ℤ-bilinear and 

which is a prolongation of integer multiplication (i.e. if m and n are integers, then 𝑓(𝑚, 𝑛) = 𝑚 × 𝑛), 

is 𝑓 (
𝑎

𝑏
,

𝑐

𝑑
) =

𝑎×𝑐

𝑏×𝑑
 (where a, b, c, d denote integers, with bd  0). The proof goes as follows:  

(𝑏 × 𝑑) ×  𝑓 (
𝑎

𝑏
,

𝑐

𝑑
) =  𝑓 (𝑏 ×

𝑎

𝑏
, 𝑑 ×

𝑐

𝑑
)  by ℤ-bilinearity 

= 𝑓(𝑎, 𝑐) by a Lemma4 which relies only on addition in ℚ 

= (𝑎 × 𝑐)    (prolongation requirement) 

Diving both sides by (bd) completes the proof. One could argue that, although Liu Hui states the 

prolongation requirement quite explicitly, never does he say anything resembling the bilinearity 

requirement. Even if this requirement is not explicit, it should be stressed that the bilinearity of the 

operation being defined (i.e. multiply) can be rephrased as follows: multiplying either of the two 

factors by and integer n should multiply the product by n; which is exactly the property which justifies 

the role of the baochu division.  

The second part of Liu Hui’s commentary clearly follows another line of argumentation. The first 

part does not rely on a semantic context of interpretation, nor does it use specific numbers. The second 

part, however, depends on a semantic context which Liu Hui introduces out of the blue after 

dismissing the context provided by the Classic (rectangular areas), and uses the numbers from 

Problem 19. 

In the second part, several in-context problems are mentioned, and their relationships discussed. 

                                                 

4 𝑏 ×
𝑎

𝑏
=

𝑎

𝑏
+ ⋯ +

𝑎

𝑏
 (with 𝑏 terms) =  

𝑏𝑎

𝑏
= 𝑎 (assuming b ∈  ℕ∗).  



Pb. 1: 20 horses are valued at 12 jin of gold [for all 20 horses]. Now 20 horses are sold and the 

proceeds are shared by 35 persons. How much does each one get? 

Pb. 2: 5 horses are valued at 3 jin of gold [for all 5]. Now 4 horses are sold and [the proceeds] are 

shared by 7 persons. How much does each one get? 

Problems 1 and 2 can be connected by a series of problems. Starting from Problem 2, on can consider: 

Pb. 2’: 5x4 horses are valued at 3x4 jin of gold. Now 4 horses are sold and [the proceeds] are shared 

by 7 persons. How much does each one get? 

Although Pb2 and 2’ differ from a semantic viewpoint, they are equivalent in the following sense: 

the numerical answers to Pb 2 and 2’ are equal, since the second parts are the same, and the answers 

depends only on the ratio between horses and jin of gold. The argument would hold for any factor, it 

so happens that “4” is more relevant than others for what follows5. This is quite explicit in the text, 

since throughout the Nine Chapters the technical term lü denotes either a ratio, or numbers which are 

to be considered up to multiplication by a common factor. The relationship between Pb2 and Pb 2’ is 

the same as that between Pb2’ and Pb2’’: 

Pb. 2’’: 5x4 horses are valued at 3x4 jin of gold. Now 4x5 horses are sold and [the proceeds] are 

shared by 7x5 persons. How much does each one get? 

Now, Pb 2’’ is the same as Pb 1, so their numerical answers are the same: 12/35. 

But there is another way to solve Pb 2. The numerical answer to Pb 2 is the same as that of  

Pb 2’’’: 1 horse is valued at 3/5 jin of gold. Now 4/7 horses are sold and [the proceeds] are shared 

by 1 person. How much does this person one get? 

We want to define multiplication of fractions so that the following property of integer multiplication 

remains valid: total value = unit value times quantity. As a consequence, the product 
3

5
×

4

7
 should be 

the numerical answer to Pb 2’’’, hence to Pb 2 just as well, hence equal to 12/35. 

A more formal summary would go as follows (we use ⊗ to denote to multiplication of fractions, to 

be defined here in terms of ): 

 
3

5
⊗

4

7
=  

3 × 4

5 × 4
⊗

4 × 5

7 × 5
=  

3 × 4

5 × 4
⊗

4 × 5

7 × 5
=

3 × 4

7 × 5
 

As for the extra-steps mentioned in the first argument, none of these intermediary operations are to 

be performed when actually multiplying fractions; they are here for justificatory purposes only. This 

formal summary does not do justice to the nature of the argumentation, since it is the context only 

which justifies the equalities: dependence on ratios only (first equality); then reduction to a problem 

involving only two integer data instead of four, and which can be solved by ordinary division. Just as 

well, the fact that any given fraction can be freely replaced by any equivalent fraction can be justified 

                                                 

5 We will not comment on the use of technical terms such as “equalizing” and “homogenizing”, which Liu Hui introduced 

in the context of the addition of fractions:     
𝑎

𝑏
+

𝑐

𝑑
=

(𝑎𝑑)+ (𝑏𝑐)            ←  this is what you get by "homogenizing"

(𝑏𝑑)        ←  this is what you get by "equalizing"
 . 



by the context; for instance, the unit price depends only on the ratio between the number of horses 

and their total value.  

Tools for the analysis of arguments in today’s textbooks 

Reflecting on the Nine Chapters from a teacher-training perspective 

The obscurity of the Chinese text probably makes it impossible to use in the classroom. In this paper, 

we would like to show how the mathematical analysis of this text that we carried out in the first part 

can help raise the awareness of prospective teachers as to several general features of argumentation 

in rather informal contexts (this is our Hypothesis #1); and even supply them with tools which are 

useful in everyday teaching, when they are to decide how to (somehow) justify some mathematical 

definition or property (this is our Hypothesis #2)6.  

The analysis of the Nine Chapters drew our attention to several facts, some of which bear specifically 

on fraction multiplication, and some of which are of a more general scope: 

 There are several ways to justify the rule for the multiplication of fractions. 

 The use of letters is not the only way to express a general line of argumentation, as Liu Hui’s 

first argument illustrates. 

 The rule for fraction multiplication is not only an equality between formulae; it can also be 

seen as the equivalence of two different algorithms (one with two divisions followed by a 

multiplication, and one with two multiplications followed by a division). This equivalence of 

algorithm can be established using general arguments within the algorithmic framework (i.e. 

arguments about algorithms), as opposed to the rewriting of formulae within an algebraic 

framework. 

 Argumentation is not limited to properties or theorems: the choice of a definition (here: for 

the multiplication fractions) can also be justified. With fraction multiplication we are dealing 

with a case domain extension: some notion was already defined for a given class of objects; 

the to-be-defined notion has to apply to a class of objects that encompasses the first class, and 

to coincide with the former notion on the first class. In our case, a very weak form of 

justification would be: this definition of fraction multiplication boils down to ordinary 

multiplication (of integers) should the fractions denote integers (this could be called the 

control case). The Nine Chapters suggests a stronger kind of justification: the extended 

definition of “multiply” should preserve some structural properties of the former definition, 

properties that we value. For instance: bilinearity; or the validity of the formula “total value = 

unit value times quantity”. On the other hand, we are ready to give up on some properties, 

such as: the product of two numbers is greater than or equal to either of them. To some extent, 

when justify the choice of a definition, these required properties play the part that hypotheses 

play in the proof of a theorem. 

 In some cases, from a mathematical viewpoint, these requirements completely characterize 

the new notion. In these cases, whether or not this uniqueness property should be proved in 

                                                 

6 The decisions as to how to justify a given definition or property is closely related to the decision as to whether or not it 

should be, and to the knowledge of ways to justify it (can it be defined, or not, in a given mathematical context?). We 

will not have time to discuss the interplay of these three aspects in this short paper. 



the classroom calls for another decision. Even if the teacher thinks the uniqueness aspect 

cannot / need not be made explicit, the Nine Chapters suggest another lead. Making explicit 

the properties that we want to extend also has a heuristic value, suggesting the path to a 

definition of the extended notion. 

  Liu Hui’s second line of argumentation also suggests many fruitful leads, which we can only 

mention in passing for lack of space:  

o A rather unusual form of argument: proving that two formulae or two algorithms are 

universally equal / equivalent by exhibiting a class of in-context problems for which 

the answer is unique – for any given set of initial data –, and for which – for reasons 

that can be spelled out – both formulae or algorithms work out the solution. Of course, 

this form of argumentation – that can be called semantic immersion – raises questions 

as to the context-dependence of the argument. For instance, multiplication plays a part 

in the context of commercial transactions and in the context of area calculation, and 

nothing proves that the fact that the relevant operations coincide in both contexts when 

the data are integers will still hold with all rational data.  

o Liu Hui’s second argument is not only in-context (a horse-deal), it is also an arguments 

which clearly claims full generality while dwelling on a single specific case, that of 

3/5 times 4/7. This raises the well-kown but deep questions pertaining to the notion of 

generic example (Balachef, 1987, 157). Let us mention two such questions: (1) from 

a mathematical viewpoint, which conditions guarantee the minimal level of non-

specificity that an example should enjoy to be potentially seen as generic (for instance: 

dealing with 1/5, 7/5, or 15/5 instead of 3/5 would probably make this case less 

generic)? (2) The genericity of a case is not a mathematical property but is a 

multilayered property of the relationship between it and the students; it involves 

pragmatic aspects (students should be able to adapt the reasoning to other cases), and 

epistemological aspects (students should regard this case as a mere representative of 

all cases, thus providing some form a general argument); what are the general 

conditions for a didactical genesis of this relationship? 

Field-work  

We shall end with some applied work. The following three documents are extracts from contemporary 

French textbooks or standard teacher-training documents, for students in the second year of middle-

school (Figures 2 and 3) or in the last year of primary school (Figure 4). In cases 2 and 3 they are 

meant for students who are somewhat familiar with fractions and their addition, but with no 

knowledge of multiplication. As to Figure 4, students are familiar with integer multiplication, and 

with multiplication and division of decimals by powers of 10. These extracts are what most French 

textbooks call “introductory activities”, in which students are to experience a new notion from a 

hands-on, guided but non-dogmatic approach. We suggest these documents be analyzed in TWG12 

in order to test Hypotheses #1 and #2.  



 

Figure 2: Two ways to work out a rectangular area (Malaval, 2014, 69) 

 

Figure 3: A justification in terms of combination of operators, and a conjecture relying on the 

control-case of decimal fractions (Mante, 2006, 50) 

 

Figure 4: Generalizing multiplication from integers to decimals using bilinearity7 

Conclusion 

The goal of this short paper was to contribute to the ongoing reflection on the use of original historical 

sources in the classroom or in teacher-training; a reflection which bears both on the goals of this use, 

and on the relevant ways to use such documents.  

Within this general field of research, the main features of this specific contribution are: we dealt with 

teacher-training only, since we do not think this excerpt from the Nine Chapters can be used with 

                                                 

7 Document retrieved from a teacher-training slideshow: http://docslide.fr/documents/techniques-operatoires-cycles-2-et-

3-multiplication-jean-luc-despretz-cpc-landivisiau-avril-2010-lacquisition-des-mecanismes-en-mathematiques-est-

toujours.html (slide 22). Accessed September 14, 2016. 

http://docslide.fr/documents/techniques-operatoires-cycles-2-et-3-multiplication-jean-luc-despretz-cpc-landivisiau-avril-2010-lacquisition-des-mecanismes-en-mathematiques-est-toujours.html
http://docslide.fr/documents/techniques-operatoires-cycles-2-et-3-multiplication-jean-luc-despretz-cpc-landivisiau-avril-2010-lacquisition-des-mecanismes-en-mathematiques-est-toujours.html
http://docslide.fr/documents/techniques-operatoires-cycles-2-et-3-multiplication-jean-luc-despretz-cpc-landivisiau-avril-2010-lacquisition-des-mecanismes-en-mathematiques-est-toujours.html


students who learn to multiply fractions; we endeavoured to show that even for such documents, they 

can be used in teacher-training for other purposes than simply teaching some history of mathematics, 

or enriching teacher’s image of mathematics. As teachers, it is or will be part of their everyday work 

to analyze/assess teaching documents and make decisions on the basis of this analysis/assessment. 

Among these documents, some will be of an argumentative nature: sometimes in the form of pretty 

formal and academic proofs; more often than not, these documents will explicitly display or rather 

implicitly point to other forms of argumentation. We think the conceptual analysis – an analysis which 

has a mathematical component and an epistemological component, and which is to be distinguished 

from both the historical analysis and the didactical analysis – of some historical documents can give 

teacher-trainers opportunities to make explicit some tools which can be of constant use in the analysis 

and assessment of argumentative documents. 

In this paper, we dealt with pretty informal arguments and elementary mathematics. However, we do 

not think this general scheme is specific to such contexts, since this work is a continuation of our 

CERME8 paper (Chorlay, 2013), in which a similar approach was used in a formal and rather 

advanced mathematical context (proof of the relationship between the variations of a function and the 

sign of its derivative).  
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Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources 

(TRIUMPHS) is a five-year, seven-institution collaborative project funded by the US National 

Science Foundation to design, develop, test and evaluate curricular materials for teaching standard 

topics in the undergraduate mathematics curriculum in the United States via the use of primary 

historical sources. Three short projects designed for use in a topology course are described, together 

with elements of a pilot study that collected data from students in the course to evaluate changes in 

attitudes toward mathematics and its study. 

Keywords: Instructional materials, primary historical sources, topology, worldviews. 

Introduction 

There are numerous motivations and benefits for incorporating the use of primary sources into 

undergraduate mathematics teaching. Primary among the cited motivations is that providing students 

experience with reading texts in which the genetic development of a topic is presented gives them an 

opportunity to expand their mathematical education in such a way that includes both traditional and 

modern methods of the discipline (Fried, 2014; Laubenbacher et al., 1994). Another motivation is 

that using original sources in the teaching of mathematics makes it possible to contextualize the 

mathematics in ways that many textbook treatments do not afford. That is, original sources place 

particular mathematical ideas in the context and setting of the investigations in which the author was 

engaged at the time. As a result, the problems with which the author was struggling, and the 

motivations for solving them, are often more clearly and naturally described, and more compelling 

than traditional textbook expositions. Exposing the original motivations behind the development of 

esoteric mathematical concepts may be especially critical for placing the subject “within the larger 

mathematical world,” in the hope of making it more accessible to students (Scoville, 2012). 

Furthermore, primary texts seldom contain the specialized vocabulary that comes with later 

formalism, promoting access to the ideas by students with a wider range of backgrounds than is 

achieved with more standard presentations. 

Many mathematics instructors interested in bringing the history of mathematics to the classroom 

question the use of primary historical sources in light of the increased availability of high quality 

secondary historical sources (e.g., Katz, 2009). Such resources may suffice to help students reap some 

of the benefits of original works; however, they carry their own difficulties. For example, there is a 

risk of placing too much emphasis on the history of mathematics per se, as opposed to using that 

history to support the learning of mathematics. Other key differences between using primary and 

secondary sources are described by Jankvist (2009): 

 



When using secondary sources, the students are exposed to a given historian’s presentation and, 

possibly, interpretation of history, and they must make their choices based on this (Furinghetti, 

2007, p. 136). When reading original sources, the students must, on the other hand, perform their 

own interpretation of what actually took place, why a certain mathematician developed a theory 

in one way or another, whether or not what is written is true, what internal and/or external forces 

drove the development of the work, etc. … The extent to which original sources are being used 

does, of course, have an impact on what the students learn: what students may gain from just 

“sniffing” at a few picks from an original source and what they might learn from being exposed to 

systematic readings of original sources are immensely different things. (p. 250) 

In this final statement, regarding “what students may gain from just ‘sniffing’ at” selections from an 

original source, Jankvist points to the primary focus of the Transforming Instruction in 

Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) project. 

The TRIUMPHS project 

In 2015, a seven-institution collaborative project to design, test, and evaluate curricular materials for 

teaching standard topics in the university mathematics curriculum in the United States via the use of 

primary historical sources was funded by the National Science Foundation. The TRIUMPHS project 

seeks to help students learn and develop a deeper interest in, and appreciation and understanding of, 

these mathematical concepts by crafting educational materials in the form of Primary Source Projects 

(PSPs) based on original historical sources written by mathematicians involved in the discovery and 

development of the topics being studied. These PSPs contain excerpts from one or several historical 

sources, a discussion of the mathematical significance of each selection, and student exercises 

designed to illuminate the mathematical concepts that form the focus of the sources. PSPs are meant 

to guide students in their explorations of these original texts in order to promote their own 

understanding of those ideas. TRIUMPHS plans to work with mathematics faculty and graduate 

students from over forty institutions in the United States who will participate in the development and 

testing process of these PSPs. As part of this five-year project, impacts of the materials and 

approaches to implementing them will be investigated in terms of teaching, student learning, and 

departmental and institutional change. 

Organization of the paper 

The remainder of the paper is organized into four sections. First, we describe the three “mini-PSPs” 

implemented by the third author during his topology course in spring of 2016. Next, we present a 

broad overview of one of the components of research we are conducting during the five-year project, 

and then discuss a small subset of the data collected from five student participants. The paper 

concludes with a discussion of the implications from this small data set from the pilot year of the 

project, and a review of next directions planned for the research. 

Primary source projects in topology: The case of three mini-projects 

The third author developed and implemented three “mini-PSPs” during the Spring 2016 semester at 

Ursinus College, a small liberal arts school outside Philadelphia, Pennsylvania. His experience using 

primary source materials in the classroom began in 2012 when he introduced them into a discrete 

mathematics course. His current interest in using primary sources in the classroom involves teaching 

topology. Three “mini-PSPs,” each taking up two 50-minute class periods, were written for use in an 



Introduction to Point-Set Topology course, an upper-division elective course for mathematics majors 

and a designated “capstone” course intended to provide an experience for mathematics students to 

test and apply previously acquired mathematical knowledge and skills. The author taught this course 

twice before in a standard lecture-based style.  A short description of each of the three projects is 

provided below. 

The course was introduced with a mini-PSP titled “Topology from Analysis” that investigates a paper 

by Georg Cantor (1872) in which he considered a problem in Fourier series, namely, if a function has 

a Fourier series expansion, when is such an expansion uniquely determined?  Cantor proved in a 

previous paper that two convergent trigonometric series with equal sums have the same coefficients 

(uniqueness theorem), even if – for a finite number of values of the variable – the series either fail to 

converge, or converge toward different sums. Could this theorem be extended to certain infinite sets 

of points? After reading Cantor’s statement of the problem, the students explore simple examples of 

infinite sets where such an extension is possible. They investigate what properties these examples 

have that allow for such an extension. The desirable properties ultimately prompted Cantor to define 

concepts like limit points, derived sets, point sets, and iterated derived sets.  The students were then 

able to use these concepts to prove a more general theorem. Even though these concepts were used 

to prove a result in analysis concerning Fourier series, they are naturally topological concepts. Hence 

the project helped to connect analysis and topology, thereby motivating new definitions through the 

need to clarify concepts, rather than introducing them as standard jargon.   

The second mini-PSP focused on the topological concept of connectedness. It again considers a work 

of Cantor (1883) and his study of the continuum. Students follow Cantor’s musings concerning the 

best way to define such a concept. After he defined a perfect point set based on derived sets, he 

investigated whether the property of perfectness is sufficient to characterize a continuum. The 

students wrestle with this question, and eventually observe that such a definition will not suffice. 

Cantor then proposed an additional property, connectedness, which he defined using a metric. After 

reading Cantor’s definition of connectedness, students examine a work of Jordan (1883, pp. 24-27) 

which viewed connectedness in terms of separation of point sets into components. This introduces 

the students to a new conceptual perspective for the same notion considered by Cantor. Next, students 

read from a paper by Schoenflies (1904, pp. 209) in which it was proven that connectedness is a 

topological invariant. To do this, Schoenflies required a definition of connectedness that does not 

appeal to a metric, and is therefore purely topological. Finally, students read from a work of Lennes 

(1911, pp. 287, 303) in which he attempted to give a proof of the Jordan Curve Theorem and gave 

yet another definition of connectedness. Students are then asked to show that Lennes’ definition is 

equivalent to the definition used today. 

The final mini-PSP used in the course studies excerpts from a paper of John Henry Smith (1874) on 

discontinuous but integrable functions. Smith intended to provide a counterexample to a “theorem” 

of Henkel. He constructed an integrable function that is “very badly” discontinuous. Students are led 

through Smith’s work involving the definition of the concept of nowhere dense set in order to 

construct such functions. As in the first mini-PSP, students examine a problem that motivates the 

need for a new mathematical concept by abstracting the essence of particular examples in order to 

capture the essential properties that a set must satisfy to prove a result. Ultimately, this project 



culminates in Smith’s construction of a generalized Cantor set. A function that is continuous except 

on a generalized Cantor set is then seen to provide a counterexample to Henkel’s claim.  

A major benefit of these mini-PSPs is that they naturally induce sophisticated discussions about the 

mathematics by students. During classroom implementation, students were observed to be carefully 

and thoughtfully working to understand concepts, answer questions, and pose their own questions 

and conjectures. One such instance occurred when students began to question Schoenflies’ definition 

of connectedness, without prompting from the instructor.  The question was raised as to what 

Schoenflies meant by the phrase “... can be decomposed ...” One student suggested that he meant a 

partition, but it was soon realized that such an interpretation would be too general. Others then began 

to modify the partition idea to make it work. This sort of high-level engagement had not occurred in 

any previous topology course taught by the instructor.      

Description of the research 

The TRIUMPHS project includes an evaluation-with-research (EwR) study, designed to provide both 

formative and summative evaluation of the key project activities and defined goals for each. In the 

original EwR study design, we designated three project components for which we would conduct 

extensive research and evaluation, and designated these as “student change,” “faculty expertise,” and 

“development cycle.” Here we only describe a small piece of the “student change” component of the 

study. 

Rationale and research questions 

For decades much of the research literature on the impact of the history of mathematics on students, 

particularly at the secondary level or post-secondary level, was focused on students’ attitudes (e.g., 

Marshall, 2000; McBride & Rollins, 1977). There was scant focus on the use of primary sources as a 

classroom tool in the early work in the field of history in mathematics education. However, more 

recent work on the use of primary sources has been done in countries such as Denmark (e.g., Kjeldsen 

& Blomhøj, 2012) and Brazil (e.g., Bernardes & Roque, 2016), while such research has not yet been 

conducted with student populations in the United States. Thus, we are committed to investigating the 

ways in which mathematics students respond to concepts within the undergraduate curriculum that 

are taught via primary sources. To this end, we developed several research questions, of which we 

provide a subset here: 

1. As a result of students’ work with or study of a PSP, what changes do students report in their 

attitudes and beliefs about learning mathematics? 

2. As a result of engaging with PSPs, what do students report as challenges and benefits of learning 

from primary sources? 

3. What is the dominant mathematical worldview reported by students on pre- and post-course 

surveys? And, does academic major (or gender, or race or other attribute) make a difference in the 

reported worldviews? 

Pilot study: The case of a topology course 

This work took place in the first year (pilot year) of the project, which was focused on developing 

instruments and refining the questions that were formulated in the original grant proposal. The only 



data sources available for analysis were student pre- and post-course surveys, student work samples 

(from the three mini-PSPs), and instructor surveys and post-implementation reports. Data were 

collected from four undergraduate mathematics courses during the pilot year of the TRIUMPHS 

project: two courses in Fall 2015 (geometry; analysis) and two in Spring 2016 (abstract algebra; 

topology). In the topology course, the three mini-PSPs described above were implemented and tested 

for the first time by the third author. In this paper we report data that inform the first, second, and 

fourth research questions listed above for the five of eight students enrolled in that course who 

consented to participate in the research and for whom we obtained a complete set of data.  

Exploring student responses: Research questions 1 and 2 

Our initial pre- and post-course surveys (to which students responded before instruction on any PSP 

occurred and again at the end of the course) only contained one pair of open-ended questions asking 

students to identify what they enjoyed most and least about studying mathematics: 

What do you enjoy most about studying mathematics. (Explain briefly.) 

What do you enjoy least about studying mathematics. (Explain briefly.)  

For this small group of students, pre- and post-course responses were mostly stable for this pair of 

questions. This could be a function of the fact that all five students were in the final two years of their 

undergraduate program. However, we discuss two interesting pre-/post-course survey pairs of 

responses below. 

First, in response to the second prompt, Student 2 stated on the pre-course survey that she was “not 

fond of professors/texts that state a definition/theorem/idea without giving any hint to how that 

conclusion was derived, either historically or through proof/explanation.” By the end of the course, 

however, her response no longer referred to lacking historical grounding or a thorough proof or 

explanation. Instead, her response focused on the fact that “it is very easy to go through math classes 

and fall behind. If you don’t understand one topic, the class often moves on without you…”  

A similar change in identifying what he enjoyed least about studying mathematics occurred with 

Student 3. On the pre-course survey, Student 3 stated that he least enjoyed “how everything is given 

to you but never comes with an explanation of where the math is coming from.” However, in response 

to the same item on the post-course survey, Student 3 only commented that he disliked having to 

remember definitions and equations. It is possible that for Students 2 and 3 that the historical sources 

related directly to the formal content of the course satisfied their initial “sore spot” with regard to 

what they previously enjoyed least about studying mathematics. Since there was no effort in the pilot 

year to ask for student clarification (e.g., via follow up interviews), we cannot link the change in the 

sample responses presented here as resulting from students’ engagement with the PSPs. However, 

the responses signal potential interesting outcomes and we have modified our pre- and post-course 

surveys and have added post-PSP surveys to further investigate this potential influence.  

We also asked students to describe their experience using the mini-PSPs in the topology course, as a 

way to explore the benefits and obstacles they identified. The student responses were encouraging, 

and in important ways their responses point to the underlying effect of engaging with materials that 

provide an opportunity to understand the evolution of a mathematical concept. Here, we provide a 

sample of three of the students’ descriptions: 



Student 1 (Mathematics major): “We used these sources to learn about topics such as 

connectedness as we thought about origins of the idea and read about how the definitions changed 

the longer it was studied.” 

Student 2 (Computer Science major): “Each PSP was an interesting addition to class, and it was 

unique to be able to see the process of mathematical ideals through the eyes of the various 

mathematicians.” 

Student 5 (Physics & Mathematics major): “I enjoyed the document on definitions of 

connectedness, because it showed how mathematics is really done and how it takes time to 

accurately articulate an idea. I also liked the first document because it helped motivate topological 

ideas and illustrate the connection between topology and analysis.” 

Exploring student responses: Research question 3 

To address the third research question, we included a subset of 20 items from Törner (1998) on the 

pre- and post-course surveys. Törner and his colleagues surveyed 310 German secondary 

mathematics teachers in order to identify attitudes about mathematics that captured “the essence of 

mathematics,” where they defined “mathematics as a field and not as a subject taught in school” (p. 

119). In doing so, they identified attitudes relating to four aspects of a mathematical worldview: 

scheme, formalism, process, and application. Tables 1 and 2 report the pre- and post-survey means 

of students’ responses for these items. Item responses ranged from 1 to 5, where higher values indicate 

stronger association with that particular worldview. The predominant worldview (in bold in tables 1 

and 2) of the Spring 2016 topology students on both the pre- and post-course survey was the process 

view.1 

Mathematical 

worldview 

Student 1 

(female; 4th 

year2) 

Student 2  

(female; 4th 

year) 

Student 3  

(male; 3rd 

year) 

Student 4  

(male; 3rd 

year) 

Student 5  

(male; 4th 

year) 

Schema 3.4 3.2 3.4 4.2 1.6 

Formal 3.8 3.4 3.8 4 4.4 

Process 4 4.6 5 3.6 4.8 

Application 3.6 3.4 3.6 3.4 3.4 

Table 1: Mathematical worldview of Topology students, Spring 2016 sample (pre-survey)  

Mathematical 

worldview 

Student 1 Student 2 Student 3 Student 4 Student 5 

Schema 3.4 2.6 4.2 3.6 1.4 

Formal 4.8 3.4 4 3.8 4 

Process 4.2 4.4 5 4 4.4 

Application 3.8 3.4 4.4 3.8 3.4 

                                                 

1 Törner (1998) described each of the four aspects. For example, the process aspect characterizes mathematics “as a 

process and as an activity in thinking about problems and gaining knowledge” (p. 122); whereas the schema aspect 

represents a view of mathematics as “a “tool-box and bundle of formulas” and an idea oriented with algorithm and 

schemes” (p. 123). 

2 In the college and university system in the United States, typical undergraduate degrees are four years in duration. 

Table 2: Mathematical worldview of Topology students, Spring 2016 sample (post-survey) 



Törner (1998) reported on the relations among these four aspects, stating, “the formalism and 

schem[a] scale represent both aspects of the static view of mathematics as a system and intercorrelate 

highly” (p. 125). However, these two aspects of a static paradigm “correlate with the process scale in 

a significantly negative way” (p. 125), which is a finding that appears to hold for several students in 

our sample. For example, where there are lower means on the scheme and formal aspects (e.g., 

Student 2 pre/post; Student 3 post; Student 4 post), higher mean values occurred on the process aspect. 

Discussion 

This paper highlights the promise of robust investigations and implications that may result from the 

EwR efforts of the TRIUMPHS project. The project’s pilot year enabled us to trial student and 

instructor survey instruments and data collection procedures. We chose the topology course as a case 

because of the particular nature of the PSPs (“mini” as opposed to full-length), the students’ 

mathematical maturity (juniors and seniors), and the expectation that many of the courses 

participating in TRIUMPHS will also likely have small enrollments. As a result of the pilot year, we 

have significantly modified our survey instruments and research questions, and our aggregate student 

population has now increased. As we move forward, our research plans include conducting multiple 

analyses to identify trends in students’ mathematical worldviews (within courses, across courses, and 

disaggregated by other demographic characteristics). We have also developed and incorporated post-

PSP surveys and are currently developing and piloting multiple interview protocols.  
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A course in the philosophy of mathematics for future high school 

mathematics teachers 

Elizabeth de Freitas 

Manchester Metropolitan University, Manchester, UK, l.de-freitas@mmu.ac.uk  

In this paper, I discuss a course in the philosophy of mathematics designed to help future high school 

mathematics teachers develop an understanding of philosophical questions about mathematics. 

Throughout the course, our discussions link core philosophical questions to particular theories of 

mathematics teaching and learning. Thus the course mixes traditional philosophy of mathematics 

with the study of everyday embodied mathematical habits, offering a kind of descriptive and synthetic 

approach more often associated with continental traditions of philosophy. This paper describes some 

of the key theoretical themes and issues, and argues that such courses offer future teachers important 

insights into the nature of mathematics. 

Keywords: Philosophy of mathematics, ontology, epistemology, teacher education. 

Introduction  

Philosophical questions about mathematics open up discussions about why we have the mathematics 

we have, inviting consideration of how mathematics is embodied in particular material practices. This 

paper discusses a course designed for pre-service mathematics teachers with the aim of diversifying 

their image of mathematics, and enhancing their skills at philosophically analyzing mathematical 

behavior. Throughout the course, our discussions link core philosophical questions to historical 

developments in mathematics (and philosophy) and to particular pedagogical approaches to 

mathematics education. Thus the course mixes historical perspectives with traditional philosophy of 

mathematics and with the study of everyday embodied mathematical habits. The focus on embodied 

material practices in mathematics – past and present – is more often associated with phenomenology 

and other continental traditions of philosophy, rather than the analytic tradition one typically finds in 

the philosophy of mathematics. Such a mixture of analytic and continental philosophy is extremely 

challenging, in part because analytic approaches have been typically concerned with foundational 

questions that do not always translate into studies of everyday mathematical practice. The course is 

modeled on what Corfield (2003) calls descriptive epistemology insofar as it entails interpreting 

mathematical activity for how it reflects certain philosophical assumptions about the nature of 

mathematics, following earlier efforts by authors such as Lakatos and Kitcher to remake the 

philosophy of mathematics into the study of mathematical practice, while incorporating and 

expanding approaches to the foundational concerns.  

 

Students enroll in the course often not knowing anything about philosophy, let alone the philosophy 

of mathematics. They are usually in their fifth year of a combined bachelor degree in mathematics 

and master’s degree in education, and are just beginning to visit high school mathematics classrooms 

and practice-teach. I open the course with a set of statements that Brown (2008) calls the common 

“image” of mathematics. Students are then exposed to the following set of core questions. These core 

questions drive many of the discussions and course assignments.   

1.    Can a diagram function as a mathematical proof?  



2.    What is the nature of proof? How has mathematical proof changed over history? 

3.    Is there such a thing as mathematical intuition? Where is it? Is it innate? 

4.    Is mathematics indispensable to science? Could science work without math?  

5.    What should be the relationship between logic and mathematics? 

6.    What is the status of axioms? Are they grounded in reality?  

7.    Are mathematical propositions necessarily true (or false) (rather than culturally or contingently 

true/false)? 

8.     Is mathematics a language (a system of symbolic signs that are immaterial and not part of the 

physical world)? 

9.     Can we speak about actual infinity (or just potential infinity)? How has the concept of infinity 

influenced the development of mathematics? 

10.  What is the role of the body in doing mathematics? How is mathematical knowledge embodied? 

11.  Is mathematics discovered or invented? What are the ontological implications of your answer? 

12.  Is mathematics objective and certain (rather than subjective and open to revision)? 

 

It’s absolutely essential that before tackling these questions, we unpack the difference between 

epistemological and ontological concerns (knowing versus being). Of course the two concerns are 

always entangled, but students need to identify the distinctive contribution of each. The need to keep 

these two concerns separate while understanding their relationship helps considerably as they go on 

to formulate arguments to support their positions on the core questions. Perhaps because these are 

education students, they seem more at home with epistemological questions (How do we come to 

know the concept of number?) and are initially baffled by ontological questions (What is number?). 

I have learned to motivate the latter by suggesting that such questions will be of huge interest to their 

future students. I suggest they treat the typical student query “how is this relevant?” as a philosophical 

question, and that they consider these queries akin to the very questions posed by philosophers of 

mathematics. Indeed, these bored students are asking, in their own way, the philosophical question: 

“Why mathematics?”. Rather than offer the usual unconvincing answer, such as “because you can 

use it to do ….” teachers might explore with their students the various schools of thought that 

developed as a means of answering this very question. They could, I suggest, introduce one of the 

core questions into their lessons, as a motivator for all those astute students who have raised this 

central concern about the relevance of mathematics. In other words, rather than dwelling on the 

pragmatic nature of mathematics, I suggest we direct attention to the more speculative aspect of 

mathematical activity. 

The course uses historical case studies to help students diversify their image of mathematics. Pairs of 

students research and present a 10-minute slideshow on a discussion topic each week, focusing on 

what are deemed controversies. Sample topics are: Zeno’s paradoxes and the parallel postulate. As 

the instructor, I introduce links between the topics and the core philosophical questions that structure 

the course. For instance, a presentation about the parallel postulate might simply recount attempts to 

prove it and mention developments of non-Euclidean geometry without linking these developments 

to our readings about Kant and his claims about the a priori synthetic nature of geometry. Further 

links need to be raised that help the students grasp how this topic is related to questions about the 

certainty and objectivity of mathematics, and its relation to science. With little to no training in history 

or philosophy, these students tend to present their topics without consideration of social context or 



cultural ramifications. These brief presentations feed into their later more substantial assignment to 

compose a philosophical paper, arguing in support of a position on one of the key questions listed 

above. It has always intrigued me that these students, despite being immersed in mathematics, a field 

known for its careful deductive methods, struggle so much in composing a formal philosophical 

argument. Many of these students confess to having selected mathematics because they don’t enjoy 

reading and writing. However, I feel strongly that, as future teachers, they need to become excellent 

communicators, and I treat the course as an opportunity to build that skill as well. I have designed 

guidelines to help them structure their assignments, and I work with various draft versions of their 

papers to help them improve this skill. 

General philosophical themes 

The distinction between ontology and epistemology helps us narrow in on students’ assumptions 

about mathematical activity, as we discuss how Platonism and other schools of thought consist of an 

ontological claim and an epistemological claim. In this we follow Bostock (2009) who effectively 

differentiates these kinds of claims for different schools of thought. The ontological questions are the 

most difficult for the students to comprehend. We ask: In what sense can universals (redness or beauty 

or triangles or numbers) be said to “exist”? This, as Bostock reminds us, is a question about the 

ontological status of universals. Most students don’t quite know how to engage with this question, 

although they are more than ready to grant universality (generality) to geometric figures or arithmetic 

entities like numbers. They tend to think of this generality as cross-cultural, and confuse it with the 

question of truth value. My task is to tease out questions about truth from metaphysical questions 

about being. I offer them some choices: If universals do exist, do they exist outside the mind, or 

simply as mental entities? If they exist outside the mind, are they corporeal or incorporeal? If they 

exist outside the mind, do they exist in the things that are perceptible by the senses or are they separate 

(or independent) from them? To further support and scaffold their exploration of these questions, I 

offer three schools of thought, each with a different answer to these questions, and I ask the students 

to decide who they most identify with. I am really forcing their hand in this, in that I hope to show 

them that these three responses do not actually exhaust the possible answers to the ontological 

question. In the next section, I discuss how new directions in the philosophy of mathematics offer 

different choices. But the choices first given, drawn from those used by Bostock (2009), are 

simplifications so that they can begin to engage in debate. As in all such sorting and labeling, we can 

query whether a particular mathematician or philosopher is a good example of a particular 

philosophical paradigm (for instance Hilbert is egregiously characterized as a nominalist in this list), 

and I am careful to tell the students that they will debate these issues later, after reading more primary 

texts:  

•The realist (Plato, Frege, Godel) claims that universals exist outside the mind and are independent 

of all human thought.  

•The conceptualist (Descartes, Kant) claims that they exist in the mind and that they are created by 

the mind. Some claim that we create these universals based on sense perception and some say they 

are innate and do not require perceptual stimulation. 



•The nominalist (Hilbert, Field) claims that they do not exist outside of language. Some claim that 

the words and symbols we use are mere shorthand for longer ways of expressing the same idea and 

some claim that statements with such terms are simply untrue in the sense that they refer to nothing.   

The assignment of the names to the schools is imperfect, but it works as a starting point. One of the 

difficulties in starting with the main schools of thought, and then trying to tease out the subtle 

differences and ways in which these philosophers’ claims are not perfectly aligned with the school, 

is that the students are not yet ready to delve deeply into these historical subtleties. For instance, it 

might seem a travesty to put Descartes and Kant together, since Kant pushed past Descartes’ claim 

that mathematical truths are innate, clear, and distinct ideas, so that he might attend to the synthetic 

nature of mathematical judgment. According to Kant, space and time are the mind’s contribution to 

experience. Space and time are the “form” of experience, a form imposed by us on the raw data of 

experience. Historians of philosophy usually oppose Descartes (the rationalist) against Locke and 

Hume (empiricists), and posit Kant as the reconciler. Bostock (2009), however, claims that Locke, 

Hume and Descartes, despite their differences, share the same beliefs about the ontological status of 

mathematical objects (they are ideas or mental entities), and differ in how they think we acquire these 

mathematical ideas. One might then associate Kant with this approach as well, since, as Brown (2008) 

suggests, according to Kant, “Our a priori knowledge of geometric truths stems from the fact that 

space is our own creation.”(p.119) Similarly, arithmetic for Kant is connected to time and the fact 

that time is also a form we impose on the world. This conceptualist approach seems to have saturated 

many of the later treatments of the philosophy of mathematics, seeping into the realist and nominalist 

camps as well. Brown indicates that Frege (a Platonist) embraced Kant’s view on geometry, Hilbert 

(the formalist or nominalist) embraced Kant’s view on arithmetic, and even Russell (the logicist) can 

be characterized as Kantian.  One might also argue that the conceptualist approach has saturated 

theories of learning, and has become full-fledged in cognitive psychology and its dominant image of 

learning. This image assumes that learning entails an acquiring of a set of cognitive ‘schemas’ and 

assumes that brains are the seat of reason. Pre-service teachers need to be aware of this history so that 

they might become empowered to identify and critique the theories of learning that structure the 

curriculum policy they are meant to adopt in their classrooms. 

Diagrams and the body 

Questions about the status of diagrams in proofs are easy for students to connect with, and link directly 

to the opening readings by and about Plato. Students are drawn to the compelling distinction that 

Plato draws between the physical world and the realm of mathematics. We discuss the theory of ideal 

forms, and how Plato was motivated by the gap between the ideas we can conceive and the physical 

world around us. Some students see in the proposal of an ideal realm a way of reconciling their belief 

in the universality of mathematics with the messiness of learning, but more often than not they are 

drawn to a conceptualist approach, perhaps Kantian, whereby mathematics is considered a cognitive 

invention that aligns with the physical universe. Thus they tend to ascribe to the human mind a 

consciousness or intuition or faculty that is capable of bringing together the ideal forms (triangles, 

numbers, etc) that are unchanging and eternal (the realm of being or essence) with the physical realm 

(the realm of becoming or change). We discuss how there is a strong dualism (between mind and 

body) at work in this approach, and how this dualism plays out in different pedagogies. The vast 

majority of pre-service teachers split mind from body, arguing that we grasp the ideal forms only 



through mental reflection, while we understand the physical world through the senses, just as Plato 

might say. Most of the contemporary philosophy of mathematics we read in the course questions the 

validity of this dualism, and we discuss the main criticisms of Platonism that were formulated 

centuries ago. 

Diagrams figure prominently in this discussion, as they have, since Plato, if not before, bridged the 

dualism in ways that trouble its claim to a clean distinction (de Freitas, 2012). In small groups, the 

students are given a set of visual proofs, and asked “What does this diagram prove?” I use this 

question to provoke debate, as it gets to the heart of concerns about what constitutes a legitimate proof 

in mathematics. We discuss to what extent the diagram might function as a proof of an arithmetic 

statement.  

We situate the question historically, by discussing readings by Plato (Meno, Theatetus, Rupublic). 

Although the students tend to find Socrates overbearing in the Meno, they begin to grasp how the 

Socratic method emerges from a particular set of philosophical assumptions about the nature of 

mathematical diagrams and concepts. We compare this method to the kind of questioning sequences 

they see in their observations in classrooms. For Plato, geometrical knowledge is obtained by pure 

thought and divorced from sensory observation, which seems to go against what many of the students 

experience in mathematics classrooms. This is when they become somewhat unhappy with their 

Platonism. As Brown (2008) explains, Plato considered the diagram as merely a heuristic to help us 

“access” the pure forms of mathematics. Plato is critical of the geometers who work with diagrams 

and are led astray by the visual images of mathematical ideals. Plato is rather disparaging of all this 

talk of diagrams and gestures and activity, chiding the geometers for using material verbs to talk about 

mathematical actions: 

Don’t you also know that they use visible forms besides and make their arguments about them, 

not thinking about them but about those others that they are like? They make the arguments 

for the sake of the square itself and the diagonal itself, not for the sake of the diagonal they 

draw, and likewise with the rest. These things themselves that they mold and draw, of which 

there are shadows and images in water, they now use as images, seeking to see those things 

themselves, that one can see in no other way that with thought. (Plato, Book VI, 510d, p. 191) 

Here, true apperception is achieved only through rational discernment (“thought”), rather than 

empirical investigation or what Kant will call synthetic reason. For Plato, geometers use diagrams 

and visual forms to speak about ideal forms, “seeking to see those things themselves” when only 

“thought” in its pure disembodied capacity can access such ideal forms. In the course, we discuss the 

consequences of Platonist and conceptualist approaches that deny or demote the significance of the 

material activity of doing mathematics and prize instead only the mental or cognitive reasoning 

faculty. We begin to read contemporary theories of embodied cognition that attack this approach 

philosophically (Lakoff, G. and Núñez, R., 2000; Nemirovsky et al, 2009; Roth 2010). The students 

begin to grasp how diagramming (and other embodied activities) are not merely heuristic but rather 

necessary for thinking mathematically. We discuss what it might mean for thinking to occur in and 

through this activity rather than independent of it.   

The readings in this section of the course range across phenomenology, focusing on the role of the 

body in learning mathematics. We begin to consider how recent work in embodied mathematics might 



engender a new philosophy of mathematics. Although the work of Lakoff and Núñez is still 

‘conceptualist’ in how it treats the body as the container of the mind (a dualism inherent to their 

approach), there are other scholars who attempt to move even further into a monist philosophy of 

mathematics (Nemirovsky & Ferrara, 2009; Roth, 2010; Stevens, 2012). For instance, de Freitas and 

Sinclair (2014) push past the phenomenology framework, seeking a more post-humanist approach 

that attends more generally to the diverse material forces at work, and less exclusively on the human 

body’s individuated capacities. 

The ontological turn 

The pre-service teachers are shown how much of the philosophy of mathematics since the nineteenth 

century has been contending with the Kantian assertion that mathematical truths are a priori and 

synthetic. Kant claimed that if a proposition is thought as (1) necessary and (2) universal then it is an 

a priori truth; and if a judgment of truth requires one to engage with the phenomenal world in some 

fashion, it is a synthetic judgment rather than an analytic one. Mathematical truth, according to Kant, 

is both synthetic and a priori. How can such knowledge be possible? This is a perennial question in 

the philosophy of mathematics, the question as to how pure mathematics is possible as an activity in 

this messy world (Hacking, 2013). In other words, how can we grasp universal and necessary truths 

by using our material bodies to determine whether they are true? Hacking claims that one has to look 

closely at applications of mathematics if one is to address – or contest – this question of purity. 

Corfield (2003) argues that the philosophy of mathematics has spent far too much time on the 

foundational ideas of the 1880-1930 period, and neglected the thinking and doing of “real” 

mathematicians both before and after that period. Corfield believes that a philosophy of mathematics 

should “concern itself with what leading mathematicians of their day have achieved, how their styles 

of reasoning evolve, how they justify the course along which they steer their programmes, what 

constitute obstacles to these programmes, how they come to view a domain as worthy of study and 

how their ideas shape and are shaped by the concerns of physicists and other scientists.”(p.10) He 

names this approach descriptive epistemology and defines it as the “philosophical analysis of the 

workings of a knowledge-acquiring practice.” (p. 233) Imre Lakatos (1976) is often taken as 

inspiration in this kind of approach to the philosophy of mathematics. He examined the process of 

meaning-making in mathematics, by studying the historical evolution of concepts and procedures, 

and offering insight into the form of deliberation that characterized creativity in the work of 

mathematicians. He was interested less in the so-called foundational issues in mathematics, and more 

in the empirical and material making of mathematics, an approach he called “critical fallibilism”:   

It will take more than the paradoxes and Gödel’s results to prompt philosophers to take the 

empirical aspects of mathematics seriously, and to elaborate a philosophy of critical fallibilism, 

which takes inspiration not from the so-called foundations but from the growth of mathematical 

knowledge. (Lakatos, 1978, p. 42)  

Hersh (1997) characterizes Lakatos as a philosopher of mathematics who was committed to studying 

the social and “humanist” aspects of doing mathematics. For Hersh, Lakatos was a humanist because 

he celebrated the specificity of informal reasoning found in the work of mathematicians, rather than 

or in addition to the generality of its truth claims. For Lakatos, these examples of informal reasoning 

are not simply unfinished formal proofs, in which the pertinent axioms and logical rules of inference 



are suppressed, but rather a significantly different mode of inquiry, a non-axiomatic argument that 

has its own trajectory and its own becoming. 

Despite the significance of this more humanist perspective on the philosophy of mathematics, which 

values the study of informal and unfinished mathematical activity by experts, we still lack 

philosophical insight into the experiences of those who, for the most part, do mathematics from an 

outsider or fringe position, like most students. Although recent moves in the philosophy of 

mathematics – like Corfield – have insisted that we look more closely at the practice of contemporary 

mathematics to build a philosophy of mathematics, these scholars are still entirely focused on 

extremely accomplished mathematicians, and remain focused on the epistemological dimension of 

that activity. In other words, they are still concerned with how mathematicians determine the truth of 

their mathematical propositions. But this is not the only issue! Despite the more expansive study of 

mathematical activity, Corfield’s approach of “descriptive epistemology” is, as the name suggests, 

directed at mathematician’s epistemology or theory of knowledge production.  

A focus on knowledge production confines one to attend to particular aspects of activity – indeed, 

this focus explains why scholars like Corfield look exclusively at accomplished mathematics. In order 

to grapple philosophically with mathematical activity more broadly - be it expert or novice, animal 

or human, revolutionary or controlling, conceptual or algorithmic – one needs to consider 

mathematics not merely as a knowledge production activity. Contemporary philosophers like 

Zalamea (2014) and Châtelet (2000) and Deleuze (1994) lend support in this venture, as they grant 

mathematics more ontological import, although continuing the focus on high-stakes achievement. 

These scholars track how mathematics operates in the world as both an expression of human cultures 

(perhaps as knowledge), but also as a kind of worlding in itself. In other words, mathematics is an 

activity both pragmatic and speculative that makes and mutates possible worlds. As part of what many 

have called the “ontological turn” in the humanities, this speculative work (“worlding”) informs a 

contemporary shift in the philosophy of mathematics, towards an emphasis on “mathematics as 

ontology”, the latter refrain capturing Alain Badiou’s attempt to position mathematics within 

philosophy, but not merely as logic in drag. 

The ontological turn and related developments in philosophy are reshaping the way we think about 

all material-cultural practices, let alone mathematics. The course aims to move students through 

conventional idealism (best formulated in Plato) through conceptualism (best formulated in Kant) 

through phenomenology (best formulated in Merleau-Ponty) to a more post-humanist perspective that 

dethrones the human subject as the central orchestrator of his/her mathematical participation. It is 

near impossible to move students through these radical shifts in one course, but one can begin to 

problematize the landscape and trouble assumptions about mathematics.  

Conclusion 

This course aims to help pre-service teachers develop a nuanced appreciation for the philosophy of 

mathematics, so that they might begin to critique the intellectualist and conceptualist model of 

mathematics teaching and learning. 
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In this paper, we study historical proofs of the existence and uniqueness theorem for the differential 

equation 𝑦′ = 𝑓(𝑥, 𝑦). We analyze original works that played a part in the problematization of this 

concept, thus offering a rational reconstruction of its genesis which sheds light on its meaning. We 

will use results from the socioepistemologic theory to show that variational strategies are efficient in 

the analysis of the proof. We believe this epistemological analysis may help in the future for 

pedagogical designs. 

Keywords: Socioepistemology, variation, existence, uniqueness, differential equation.  

Introduction 

We present the results of an ongoing research on the existence and uniqueness theorem for first order 

ordinary differential equations. The socioepistemological theory, theoretical basis of the research, 

faces, from a systemic view, a possible reconstruction of its meaning due to the variational strategies 

in its development, without limiting itself to a chronological reproduction of the contributions of the 

mathematical works, nor a reinterpretation of what we actually know of the theorem. 

Variational strategies involved the construction of the mathematical notions related to the theorem 

mentioned above are analyzed. These strategies are part of a study program called “Variational 

Thinking and Language” that the socioepistemological program develops. From the study a different 

use of the actual knowledge is recognized, that is considered a potential element to start changing the 

relation with said knowledge from the objects to the actual practices (Fallas-Soto, 2015). 

This notion of “from the objects to the actual practices” talks about constructing a new interpretation 

of the object (the theorem in this case) based on practices (Cantoral, 2013), with the notion of starting 

with the problematization of knowledge, from the Socioepistemology, finding the meanings of said 

knowledge at the moment of actual use. Then, the problematization from this view, consists in 

performing a double study whose elements, historize (historical reconstruction of knowledge) and 

dialectize (coordination of mathematical notions, examples, counterexamples and conceptions and 

misconceptions), are the base to study the evolution of the theorem throughout history and thus to 

analyze how its associated mathematical notions plays in order to construct the theorem from the 

point of what is known today. 

Therefore, the research problem is linked to the meaning in mathematics, this because the way how 

the existence and uniqueness theorem is presented on textbooks does not appears to be deducted from 

the practices properly, nor also from the mathematization. Then, the problem, which are the principles 

that give meaning to the notions of existence and uniqueness as specific characteristics of the 

solution's nature? The hypothesis of this research work is to assume that the construction of the 

theorem can be a prediction model with the study of variation. It can be said that there's a common 
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thread that organizes the conditions for the existence and uniqueness, and is concected with the 

prediction idea that was the basis for the theorem along with its hypothesis. 

The research focus for this research was to mean the existence and uniqueness theorem from a 

particular problematization of mathematical knowledge.  
 

Methodology 

The phases that describe the research are briefly described below: we study the textbooks used in the 

teaching of Differential Equations, particularly we analyze the demonstration. By showing that there 

is no problematization of this mathematical knowledge and only remains as a test of hypothesis, it is 

decided to study the genesis of this knowledge and its evolution. We offer a rational reconstruction 

of the main arguments used by mathematicians and in the part of conclusions we make a comparison 

of the origin of the theorem with the current didactic treatment. 

A rational reconstruction for the existence and uniqueness for differential equations, in a first stage, 

a bibliographical research is presented with some of the mathematical works of the time that helped 

on the construction of this knowledge. These are: 

 (Cauchy & Moigno, 1844), “Leçons de Calcul Différentiel et de Calcul Intégral”  

 (Lipschitz, 1880), “Lehrbuch der Analysis”  

 (Lipschitz, 1868) “Disamina della possibilità d' integrare completamente un dato sistema di 

equazioni differenziali ordinarie”  

 (Peano, 1973 – new-edition) “Sull' integrabilità delle equazioni differenziali di primo 

ordine”.  

 (Picard, 1886) “Cours d' Analyse”  

This proposal there will be reported the results obtained in the analysis of Cauchy & Moigno (1844) 

and Lipschitz (1880) papers, all of them for the study of the variational strategies. These five books 

were chosen because of Picard and Peano appear in the current textbooks contributing to the theorem. 

Then Picard (1886) in his work refers to Cauchy and Moigno in addition to Lipschitz. 

On a second stage, a documental analysis, the elements used on the mathematical works for the study 

of the existence and uniqueness theorem are reconstructed. This gives contributions to generate 

implementation strategies that propitiate the construction of the theorem based on a pragmatic 

evolution of the practices. To obtain the conclusions of tis work, we perform a confrontation between 

the mathematical works (also used for teaching) that arose at the end of the XIX century and at the 

beginning of the XX century, with ideas from the textbooks of XX century and nowadays. 

With respect to the variational strategies presents on this theorem, we are based on the PylVar (That 

its acronym in Spanish means Thinking and Variational Language) program that has been used 

throughout the years by some authors (Caballero, 2012), (Cabrera, 2009), (Cantoral, 2004; 2013a), 

(Cantoral & Farfan, 1998). This approach seeks to show the construction of mathematical knowledge 

from the study of motion, change and the variation of physical or natural phenomena. Our research 

work does not mention the modeling of phenomena related to the theorem of existence and 

uniqueness, however in the study of change is how the differential equations are born and we continue 

to deepen in current research. These works have permitted to explicit the variational strategies 

(practices on the study of change) that the Pylvar program describes, and that are discussed in 

Caballero (2012): 



 Comparison: Associated to the action of establishing differences between states. 

 Serialization: It is associated with the action of establishing relations between successive 

states. To study the changes to determine a certain pattern. 

 Estimation: Starting from other knowlegde of changing states, proposing states for a short 

term. 

 Prediction: The action of being able to determinate after analyzing some states to deduct 

posterior states. It means to anticipate to a certain rational state. 

Results 

We do not offer a mathematical proof but to show arguments that helped the mathematicians in 

formalizing this mathematical knowledge. 

Cauchy & Moigno (1844) consider the differential equation 𝑦′ = 𝑓(𝑥, 𝑦) with the hypothesis that 

𝑓(𝑥, 𝑦) and 
𝜕𝑓

𝜕𝑦
 are continuous functions with the initial condition (𝑥0, 𝑦0). The authors prove the 

convergence of the sequence of points obtained by the fractions method. 

 

 

Figure 1: Fractions method utilized by Cauchy & Moingo, page 386 of the lesson 26 of the work 

Leçons de Calcul Differentiel et de Calcul Intégral. 

This method (this method of approximation was expounded by Euler in 1768 in his Institutionum 

Calculi Integralis) consists on determining successive states that depend on the preceding state 

parting on the study of the linearity and small variations that can be taken with the differential 

equation (as the rate of change that determines the slope of the line) and the initial condition (point 

by which the line passes). This procedure is shown in the following figures. 

 

Figure 2: First iteration of the fractions method. 

 



 

Figure 3: Second iteration of the fractions method 

Therefore, the process is generalized and it is approximated that 𝑦 − 𝑦0 = ±𝛩𝐴(𝑥𝑛 − 𝑥0)where 𝐴is 

an average of the 𝑓(𝑥𝑛, 𝑦𝑛)and 𝛩a value between 0 and 1. Then, the authors generalize the process 

and stating that 𝑦𝑛is equal to  

 

Figure 4: N-th iteration obtaining a numerical approximation of the solution. 

From which 𝑦𝑛corresponds, practically, to the same value that 𝑦0if the difference 𝑥𝑛 − 𝑥0is small. In 

other words, if 𝑥𝑛 → 𝑥0then 𝑦𝑛 → 𝑦0. 

Besides, convergence is studied in the following form as part of a stability of the system. If a small 

increment 𝜍0is added to 𝑦0, then 𝑦𝑛will have an increment 𝜍𝑛. In order for it to converge, this last 

increment has to be as small as 𝜍0. This seeks the stability of the function 𝑦to guarantee the existence. 

Again, the small variation plays a fundamental role to compare states and thus determine a local 

prediction on each iteration to determine a final global prediction (estimation) of the system. 

 

Figure 5: Case where the increment of 𝒚𝒏changes considerably with respect to the increment of 𝒚𝟎. 

This result is studied even further by Lipchitz (1880) when working with systems of equations and 

the uniqueness of the solution. By looking at figure 05, what is really happening is that from the first 



iteration two tangent lines are obtained that correspond, respectively, to each of the solutions. Because 

of this, on the point (𝑥1, 𝑦1), and another one close to it, say (𝑥1, 𝜂1), with 𝜂1 = 𝑦1 + 𝜃1such that 

𝜂1 − 𝑦1is close to zero, two tangent lines are determined, given by 

𝑦 − 𝑦1 = (𝑥 − 𝑥1)𝑓(𝑥1, 𝑦1) 

and 

𝑦 − 𝜂1 = (𝑥 − 𝑥1)𝑓(𝑥1, 𝜂1) 

Which are depicted in the following representation 

 

Figure 6: The existence of two solutions for the equation. 

Then, if we study the difference between these two lines, we see that is the same that subtracting their 

two respective slopes, this because 𝜂1is a value that is close to 𝑦1. Notice that the distance between 

the two lines is determined by 

|𝑓(𝑥1, 𝜂1) − 𝑓(𝑥1, 𝑦1)| 

That is why the Lipschitz condition plays a very important role, due to the fact that this difference 

would be bounded by 

|𝑓(𝑥1, 𝜂1) − 𝑓(𝑥1, 𝑦1)| < 𝑀|𝜂1 − 𝑦1| 

where the constant 𝑀is the bound of 
𝜕𝑓

𝜕𝑦
 that not necessarily is a continuous function. Therefore, if 

this condition holds, we would have that |𝑓(𝑥1, 𝜂1) − 𝑓(𝑥1, 𝑦1)| = 0, being a unique solution to the 

equation. If the Lipschitz condition does not hold, we cannot guarantee uniqueness, it can or cannot 

exists. 

Conclusions 

This study, from the socioepistemological point of view, broadens the knowledge on the Existence 

and Uniqueness Theorem for Ordinary Differential Equations, but most of all it shows the kind of 

practices (variational strategies) that play a role in the justification of both existence and uniqueness. 

The fractions method, absent in most textbooks on Differential Equations, is present in textbooks on 

numerical methods. This is the second time this phenomenon arises. A similar situation arose in the 

prediction based on Taylor series. This findings, are worth mentioning, are derived from an 

appropriate problematization of the mathematical knowledge. Two things that gave genesis to this 

problem were the looking for a formalization on the proof of the theorem and also the determination 

of the minimum quantity of hypothesis that guarantee the existence and uniqueness of the solution. 

Additionally, the initial questions referred to the inverse tangent problem and the different examples 

present in the mathematical discourse for school were answered, but these time with the support 

different resources: variational, numerical, analytical and visual. All these was obtained thanks to a 



documental analysis that was based on original mathematical works. On the other hand, it was 

possible to discuss other constructs, such as convergence, the Lipschitz condition and the continuity 

of the functions 𝑓(𝑥, 𝑦) and 
𝜕𝑓

𝜕𝑦
, with respect to y. 

Besides, the variational strategies on the construction of this theorem were: 

 Comparison: The states that correspond to the numerical solution of the differential equation are 

compared. Besides, the solution is compared before and after of the small variation to determine 

its uniqueness. 

 Serialization: When finding a relation between a state and another, starting with the initial 

conditions, in a lot of cases are possible to obtain an analytical solution to the equation, while in 

other cases it is only possible to predict the value that the solution will take in the next state 

(numerical solution), both cases with the support of the study of the patterns between one state and 

the other. 

 Estimation: When knowing the initial values and unknowing the next value that determines the 

numerical solution of the equation, is when the linear approximation enters to determine the next 

value or state. 

 Prediction: This theorem corresponds to a predictive model, it is utilized to predict the existence 

of the solution, and with the small variation we are certain of the convergence and uniqueness of 

the solution. 

 

When performing a study such as this one, it is possible to study the rupture between most 

contemporary textbooks against the works reported on the mathematical studies of the past. Besides, 

it can be observed that some rationalities arise that will help to design teaching and learning activities 

by means of the use of teaching variables or control variables to modify, keeping in mind the present 

construction of these meanings. Reconstructing these meanings helped us to understand other 

problems related with differential equations, such as the stability of a system of differential equations, 

and to construct other visual interpretations. 
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In this article, I compare two experimental projects led in the 1960s and 1970s by Tamás Varga in 

Hungary and by Guy Brousseau in France, concerning the teaching of combinatorics and 

probabilities. I attempt to show that this comparison can contribute to a better understanding of their 

theoretical reflection on the teaching of mathematics and the dependence of their didactical 

conceptions on the particular historical context in which these reflections were realized. 
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Introduction 

In the Hungarian mathematics education community, the “complex mathematics education” reform 

led by Tamás Varga during the 1960s and 1970s is considered as one of the most important milestones 

of the history of mathematics education in Hungary. Varga’s conception is viewed as a representative 

of the so called “discovery based” tradition of mathematics education. However, this conception was 

never developed in a theoretical level: it can be understood from the documents of the reform (as the 

curriculum, the textbooks, teacher’s handbooks etc.) and from some articles of Varga, but most of the 

time, these texts present his approach on very concrete examples and give only limited, indirect access 

to the conceptual basis of his didactical conception. 

The research presented in this article is part of a more complex work, aiming to analyse Varga’s 

conception with a combined, historical and didactical approach, and in comparison with the French 

reforms and mathematics educational movements of the same period (Gosztonyi, 2015a). This 

analysis contains three levels: the study of the historical context, of the epistemological background 

(the conceptions about the nature of the mathematics in the background of both reforms) and a 

didactical analysis of the reforms’ documents.1 For this third part, French didactical theories were 

used, Brousseau’s Theory of Didactical Situations (TDS) (Brousseau, 1998) among others. The TDS 

proved to be an expedient theory to reveal characteristics of Varga’s conception; however, some 

difficulties of the analysis let to think there were also some important differences between Varga’s 

and Brousseau’s didactical approach. 

These theoretical questions led to consider Brousseau’s work not only as a theoretical framework for 

my research, but also as a research object: actually, Brousseau himself was one of the actors of the 

French math education scene of the 1960s and 1970s. He led experimentations during this period, and 

he developed his didactical theory in relationship with these experimentations, in the very particular 

historical context of the French reform movement. So, a historical analysis of Brousseau’s projects 

                                                 
1 (Gosztonyi, 2016b) gives a short summary of this work, showing how the difference of the epistemological background, 

represented by influent groups of mathematicians in both of these countries, can explain, at least partly, the differences 

of the two reforms. 



of the period could contribute to the comparison of the two countries’ reform movements and to the 

understanding of Varga’s project. 

One more reason explains my interest for Brousseau’s experimentations. One of the main domains of 

Varga’s activity concerns the teaching of combinatorics and probability: so I was interested to do 

comparative analysis partly on these domains. At the same time, these domains are missing from the 

French obligatory education of the period which makes the comparison obviously difficult between 

the two countries. However, during the 1970s, these subjects appear in France in certain experimental 

projects, and one of the most developed examples is Brousseau’s experiment on teaching 

probabilities, described in a retrospective article (Brousseau, Brousseau & Warfield, 2002). 

In the following, I will resume the comparison of Brousseau’s experiment with Varga’s teaching 

projects and experiments, and I attempt to show how this comparison helps to understand the authors’ 

didactical conceptions. 

Some elements of the historical context 

The international discourse on mathematics education during the 1960s and 1970s is dominated by 

the New Math movement and the debates following the introduction of New Math related reforms in 

several countries. France is one of the leading countries of the international reform movement, with 

the “mathématiques modernes” reform introduced in 1969/70. Varga declares also being influenced 

by the international movement: he starts his experimentations in 1963, inspired by Z. P. Dienes’ 

lectures in Hungary in 1960 and a UNESCO conference organized in Budapest in 1962, and follows 

the reforms of several countries during the following decades. His experimentations concerning the 

primary and later also the middle-school are progressively spread in the country, and give the basis 

of a new official curriculum in 1978. 

Although Brousseau is not among the main actors of the French curricular reform movement, his 

early experiments can also be interpreted in the context of the reform. In France, various 

experimentations on primary and secondary school mathematics education were encouraged and 

supported during the 1960s and 1970s. For example the system of the IREMs2 was progressively 

created from 1968, with the mission to form in-service teachers to the implementation of the reform, 

but also to continue experimentations. During the 1970s, the IREMs became also centers of critical 

debates on the reform, and principal sources of the emergence of didactical research in France. 

Brousseau’s early work fits clearly in this context: he led experiences since the 1960s, and his projects 

led in the Jules Michelet experimental primary school from the beginning of the 1970s became the 

basis of the development of his later theory. The experimentations on the teaching of probability 

described in his retrospective article were also led in 1973 and 1974 in this school. 3 

Brousseau’s and Varga’s teaching projects and experimentations 

The reasons to teach combinatorics and probability 

In France and Hungary, combinatorics and probability are not present in primary and middle-school 

curricula before the New Math period. So, the experiments concerning these domains attempt to 

                                                 
2 Insittut de Recherche sur l’Enseignement des Mathématiques 

3 For more details and references on the historical background of the two projects, see (Gosztonyi, 2015a, part I.) 



introduce new elements of curricula or introduce them much earlier than in precedent cases. Varga 

explains in several papers why he found important to introduce these domains very early during 

mathematics education. According to him, these domains contribute to the diversity of mathematical 

subjects treated in school and help to implement dialectic relationships between mathematical 

domains – which is one of the main principles of his reform curriculum’s structure. He says 

combinatorics and probabilities can be studied on the basis of very concrete, material experiences and 

so can give a good example of the process of mathematical abstraction very early, using a diversity 

of representational tools, and without the need of complex theoretical background. These domains 

can also give occasion to many playful activities. More particularly the teaching of probabilities 

represents a “different kind” of mathematics: the mathematics of uncertain things, which is especially 

important to describe real world phenomena. Furthermore, in the frame of tasks related to 

probabilities, and especially through estimations, student’s autonomous thinking and the expression 

of students’ various opinion can be easily encouraged. The quotation below shows also that this last 

question is closely related to more general pedagogical considerations concerning the teacher’s and 

student’s role in the learning process or students’ education to democracy. 

My own view is that estimating, guessing, predicting, mentally representing, the future and 

expressing our opinion about it is a human ability which should play a greater role in education 

than it does now. All these activities [...] get kids personally involved in learning. […] 

Reasons must be strong, maybe not unrelated to sentences from “a child should not have an 

opinion” to “a child should have not will.” If this is a correct conjecture, then the issue is a more 

general one about education, not necessarily school education or school math in particular. (Varga, 

1982, p. 30) 

All the arguments resumed above are important characteristics of Varga’s conception on mathematics 

and its teaching (Gosztonyi, 2016a, b). Thus, one can understand that the emphasis made on the 

teaching of combinatorics and probabilities is closely related to the general educational goals of 

Varga’s reform, and these domains’ curricula and tasks can serve as efficient examples to understand 

the realization of these goals in Varga’s reform. 

In Brousseau’s examined experiment, there is no question of a general curricular reform: probabilities 

are not included in the official curriculum of primary school, and Brousseau’s experimentation is 

realized in the frame of general activities (“activités d’éveil”) and not during the mathematics lessons. 

However, Brousseau underlines also some general arguments to explain the interest of teaching 

probabilities. The idea of “another kind of mathematics” appears also in his work (Brousseau, 

Brousseau & Warfield, 2002, p. 397). Beyond that, students’ autonomous work and the repartition of 

responsibilities between the teacher and the students is in the center of his theoretical thinking, and 

as he admit in the quoted paper (e.g. p. 384, p. 411), the experiments on teaching probabilities played 

a crucial role in the development of his didactical theory. 

Some tasks of Varga on probabilities 

In his articles, Varga describes several probabilistic tasks developed in the frame of his 

experimentations (see e.g. Varga 1970, 1982). In the case of the subtraction game,  



Each kid draws boxes for the digits [of two two-digit numbers] the way they are used in writing 

subtractions. The goal is to make the difference as great as possible. They can fill the boxes in any 

order, but only with random numbers produced by rolling dice. (Varga, 1982, p. 28) 

In another game, the “game with three disks” (Varga, 1970, p. 424), three discs are in a box, one of 

them has a cross in each side, one has a cross on one side only and one is blank in both sides. The 

teacher draws a disk at random and shows one of its faces at random to the students. They have to 

guess the other face. 

In each of these situations, there is a competition between students, which motivates the development 

of a strategy. The comparison of these strategies, their test during further experiments contributes to 

the development of probabilistic thinking. According to Varga’s description, frequentist approach, 

based on repeated experiments and the observation of relative frequencies is alternated with a 

classical approach to probabilities, based on logical arguments concerning models with equally 

probable events. However, the frequentist approach is rarely developed in deep details: it seems more 

to serve as an experimental basis to develop classical models which are then confirmed by logical 

and combinatorial arguments. 

In the situations described by Varga, teacher and students are in permanent dialogue: Varga gives 

several examples how to guide these dialogues in order to help the development of mathematical 

notions, but to give also important autonomy to the students in this process. 

Beyond the description of tasks and problem situations, Varga describes also the conception of long-

term teaching processes. Even if some texts help to understand the long-term conception of 

probability-teaching, the clearest descriptions on the construction of long-term teaching processes 

concern the domain of combinatorics. We study this in the next section. 

Varga’s series of problems to teach combinatorics 

In Varga’s conception, ordered series of problems play a crucial role in the construction of long-term 

teaching processes (Gosztonyi, 2015b). A particularly interesting example concerning combinatorics 

is described in the first grade teacher’s handbook associated to Varga’s reform (C. Neményi et al., 

1978, pp. 243–258). It is interesting not only because it is particularly clearly structured (compared 

to other parts of the handbook), but also because it gives quite explicit explanation about the principles 

of ordering problems. This ordering is not completely given in advance: teachers have to conceive 

(and reconceive) it depending on the particularities of the class, and on the reactions of the students. 

The series contains activities with different materials: the students build towers with coloured cubes; 

thread beads, draw flags or build houses with three parts of different colour; write ‘words’ (letter 

series) with a given number of characters or play music with a given number of notes. One organizing 

principle is the variety of experiences, apparently fare from each-other, and stimulating a diversity of 

senses. But there is also certain progressiveness in their order, namely in the level of abstraction: 

starting from the manipulation of physical objects, through drawing and until the manipulation of 

symbols. 

The activities with one material follow also a progressiveness, which is explained in detail on the 

example of building towers: after a free game with the material (elements with, for example three 

different colours), students are asked to build towers with a given height; then different towers with 



the same height; and then come the question of the number of possibilities. The handbook suggests 

variations of the mathematically important variables as the number of levels or colours, but also the 

mathematically neutral elements as the type of the material or the colours of the elements. It suggest 

also some additional restrictions (as for example two neighbouring levels cannot have the same 

colour; or a given colour can have on the top level, etc.). 

A similar process is described for different materials. The handbook indicates the analogies between 

the corresponding phases of these different activities, and explains also their differences which make 

them problems of different nature in the eyes of students: for example, in the case of building houses, 

the order of the elements is not immediately given, contrarily to the building of towers or the colouring 

of (three-stripe) flags. Students have to recognize progressively the links and the analogies between 

these different problems: that is what will lead to a progressive generalization of methods and 

solutions. 

The process is planned for several years: the object at the first grade is mostly the collection of 

experiences in structuring possible cases and in looking for the number of all possibilities, in concrete 

situations. The systematic variation of conditions and the formulation of rules for calculating the 

number of cases come some years later. In a later article, Varga (1982) describes in detail a process 

on the long-term, based on the example of building coloured towers: there he also explains how the 

progressive construction of representation tools (as tables and trees) leads in his conception to 

creating proofs and general formulas in combinatorics. 

Brousseau’s experimentation 

In his experimentation on the teaching of probabilities, Brousseau also conceives a long and coherent 

teaching process, although the structure of this process is quite different from those of Varga, as we 

will see below. The whole process emerges from one situation: the teacher fills three opaque sacks 

with black and white balls, five in each sacks but the proportion of blacks and withes is unknown. 

The students have to find out the exact composition of each sack by drawing balls one by one from 

the sacks. The process goes through several phases that the authors describe as follows: 

i. “An introduction to hypothesis testing”  (5 sessions) 

ii. “Modelling and experimenting” (3 sessions) 

iii. “Graphic representation of long series” (8 sessions) 

iv. “Convergence and statistical decision” (4 sessions) 

v. “Decision intervals” (5 sessions)  

vi. “Events and their probabilities” (7 sessions) 

After a number of drawings and hypotheses made on the compositions, they decide to model the sacks 

with transparent bottles where they put five balls in different compositions, in order to compare the 

outcomes of these bottles with those of the sacks. Students work almost autonomously during the first 

two phases, only with some “regulative” interventions of the teacher: that’s what Brousseau calls later 

an adidactic situation. The teacher intervenes more directly during the third phase, in order to stabilise 

the method of students’ experimentation. A difficulty emerge in this phase, as even after long series 

of drawings, students are still not able to prove a decision between the possible compositions and 

they start to loose motivation. The teacher refuses to open the sacks but suggest proving the 

compositions by elaborating a methodology which allows students to do predictions. That is what 



happens during the fourth and fifth phases using computers for simulations and different tools and 

methods of representation (as tables and graphics). 

The described process represents a typically frequentist type of approach to probabilities, with the 

use of complex statistical methods and tools, and with a long process of repeated experimentations. 

The first five phases emerge from one initial problem. The classical approach as well as other problem 

situations appear in the sixth phase but, considered more conventional as the precedent ones, this 

phase is not developed in the article (p. 405) 

A comparison of Brousseau’s and Varga’s projects 

Comparing Brousseau’s and Varga’s teaching projects briefly described above, one can observe some 

common points but also several interesting differences. 

Although both frequentist and classical approach appears in both of the authors’ projects, Brousseau 

puts more emphasis on the first one while Varga emphasize more the second one. This difference can 

be explained by different things, as by the coherence with other parts of the curricula (links with 

statistics on one hand, with logic and combinatorics, privileged domains of Varga on the other; the 

use of decimal numbers, privileged by the French curriculum of the period, or the use of fractions, 

emphasized in Varga’s curriculum), but also by some pedagogical questions. 

One of the common motivations to introduce probabilities into the primary school mathematics 

education is, in both of the cases, the opportunity offered by this domain to work with students 

guessing and estimations, and develop mathematical thinking with an important responsibility 

provided to students during the learning process. However, the repartition of responsibilities between 

teacher and students does not happen in the same way by the two authors. For Brousseau, this 

repartition has to be provided by the alternation of adidactic phases, where students work 

fundamentally autonomously and teacher does not intervene on the level of mathematical knowledge, 

and phases of institutionalization, where teacher intervenes essentially in order to transform students’ 

context-dependent discoveries into stable, decontextualized and institutionally accepted knowledge. 

As Brousseau underlines, the experiments on teaching probabilities contributed essentially to develop 

these key-notions of his later theory. In Varga’s case, although students’ responsibility in the learning 

process plays also a key role, the teaching situations are more based on a permanent dialogue between 

the teacher and the class: the teacher acts as an experimented guide to develop progressively collective 

knowledge. 

In both cases, we can see sophistically constructed long-term teaching processes. But the structure of 

these processes is quite different. Brousseau’s experiment is developed starting from one problem 

situation. This is something that he calls later fundamental situation: a problem situation which is rich 

enough to lead to the emergence of a whole theme. The process goes through the alternation of 

adidactic situations and institutional phases. According to him, the transmission of knowledge 

constructed by students in the context of a particular situation is not possible without the 

decontextualisation realized during the institutionalization (Brousseau, Brousseau, & Warfield, 2002, 

p. 407). Indeed, in the examined experiment, other problem situations appear only in the last sixth 

phase. Varga’s approach is quite different to the construction of long-term teaching processes. He 

suggests starting from a diversity of problem-situations, with a big variety of contexts. The 



construction of series of problems offer occasions to recognize similitudes, analogies between these 

different problems, and leads to a progressive generalization of the solutions.  

Behind this difference of the two authors’ conception on long-term teaching processes we can 

recognize a fundamental difference concerning their conception on the mathematical abstraction. As 

for Brousseau, abstraction is decontextualisation, for Varga, the abstraction process does not mean 

the elimination of the context, more a progressive generalization on the basis of a diversity of 

contexts.  

Conclusion and discussion 

The comparison of Brousseau’s and Varga’s experimentations led in the 1970s showed several 

common points and also some important differences. This comparison can help to understand better 

the conceptions of the two authors on mathematics and its teaching, and also the relationship of these 

conceptions to their special context. Both of the two authors’ projects inscribe clearly in the context 

of the international New Math movement, with the reforms of the content of the curricula, the debates 

on the nature of the mathematics and on the psychology of mathematics education. For both of them, 

Piaget’s constructivist theory represents an important reference, but they are both critical with it: the 

alternation of the adidactical situations with institutionalization in Brousseau’s case, and the dialogic 

relationship between the teacher and the student in Varga’s case can be interpreted as two different 

answers to the limits of constructivism considered by these authors. Moreover, Brousseau’s notion of 

adidactical situation seems to be related to the discourses about the French reform, more precisely to 

the notion of situation and its role in pedagogical practices and students’ learning processes (Artigue 

& Houdement, 2007). Varga’s choices seem also to respond to several elements of local discourses 

in mathematics education as well as in pedagogy and psychology (Gosztonyi 2015a). 

An interesting relationship can also be observed with the dominant epistemological background of 

each countries reform movement, concerning the author’s conception on mathematical abstraction: 

Brousseau’s decontextualisation approach seems to be related to the “bourbakian” conception on 

abstract mathematical notions, as Varga’s ideas on the progressive generalization can be find in the 

writings of several Hungarian mathematicians supporting his reform (Gosztonyi, 2015a, part II). 

This case study reveals how a didactical theory, like Brousseau’s one, may depend on the particular 

context in which it emerges. Thus, further studies on the history of didactical theories are susceptible 

to contribute to their understanding, and enrich also projects connecting and comparing didactical 

theories as the “Networking Theories” project (Bikner-Ahsbahs & Prediger, 2014). 

The comparative analysis presented above contributed importantly to the original objectives of my 

research, namely to a reconstitution of Varga’s missing didactical theory. But it can also contribute 

to recent didactical discourse in several further ways, as to the research on the teaching of probabilities 

or to the recent reflections on the notion of mathematical abstraction. 
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The historical anaglyphic method was in use for more than hundred years to create spatial illusions 

of mathematical objects and for technical constructions. While algebraisation is predominant at 

school, students lack experience in understanding the causalities of technical tools. Modern technical 

devices rarely allow for direct investigations on underlying technical principles. Here we use the 

historic anaglyphic method to enable the students to produce high-standard 3D illusions just by using 

coloured pencils, a ruler and glasses with colour filters. We developed an approach to the anaglyphic 

method that uses nothing but similarity and especially surpasses projective geometry. The presented 

approach relates plane and spatial geometry, and can be grasped by all students that have some 

understanding of the similarity of triangles.  

Keywords: Anaglyph, binocular geometry, historical methods of visualization, 3D-representations. 

 

Introduction 

Concept development in high school mathematics – in particular A-level subjects in many countries 

– is characterized by predominant algebraisation. This seems to match successful and effective 

heuristics, attitudes and problem-solving strategies in modern everyday lived experience. Out of 

school it fosters the learning of pattern recognition, algorithmic procedures and trial and error. The 

progressive digitalisation of most fields of experience and actions of contemporary students seems to 

make the search for causalities and functional principals superfluous and unnecessary. Modern 

technical devices rarely for allow direct investigations on underlying technical principles. However, 

approaches and attitudes aiming only for the use and not the understanding of technical devices 

involve the risk of simple manipulation of the user and restrict creative developments of the tools by 

their users. In order to help our students to become autonomous, mature individuals, we need in 

mathematics (and also as a foundation for technical sciences) teaching designs where students start 

to wonder: How does it work? How can I accomplish it on my own?  

In the following we present materials for discovery learning, supporting the described educational 

goals. The design of teaching and learning materials allows for the implementation of the history of 

engineering and technical drawing in different ways and with different aims. A historical 

investigation using original sources can be conducted as an introductory part of a workshop on 3D 

presentations. Historical investigations can also be undertaken as a part of an individual student’s 

presentations after the workshop on anaglyphs and binocular geometry. We start with a short 

historical introduction into anaglyphs as well as into the literature and original sources, which are 

applicable by the students at school or by student teachers in teacher education.  

We then give a short summery of how binocular geometry can be related to the mathematics 

curriculum and discuss a textbook presentation of the topic. The following section deals in detail with 



the geometrical properties of central projections, which enable the drawing of anaglyphs without 

using three-dimensional analytic geometry.  

We tried out the developed set-up and the material in four workshops at an international Kangaroo 

Camp, each with 15-20 high school students between the ages of 15-18, and in a day course at the 

Hausdorff Center with local high school students in Bonn, with a lecture and problem sessions with 

about 60 high school students. 

Historical background 

Sir Charles Wheatstone invented the earliest type of stereoscope in 1838 (Wheatstone, 1838). 

However, as David Brewster writes in (Brewster, 1856, p.27) a certain Mr Elliot was led to the study 

of binocular vision … as early as 1823. Wheatstone and Elliot used mirrors, whereas Brewster 

invented lenses. The mathematician Wilhelm Rollmann (1853) invented the anaglyph stereographic 

method. The Greek word Anaglyph is derived from �́�𝜈�́�(aná), meaning “on” or “on each other“ and 

𝛾𝜆�́�𝜑𝜔(glýphō) “to carve”, “engrave”, or “represent”. In his method, two pictures in the mutually 

different colours blue and yellow are superposed onto each other. The observer in Rollmann’s method 

separates these pictures by using glasses with colour filters, i.e. a red glass for the left eye and a blue 

one for the right eye.1 All cited sources are digitalised and available online. The descriptions of the 

methods are mainly verbal. The few calculations can be performed and understood using elementary 

middle school mathematics. This makes the cited literature a good and suitable source for historical 

investigations in the classroom. 

Rather than being a goal as such, the anaglyph method was already used by Rollmann to illustrate 

mathematical facts and insights in a three-dimensional fashion. Another impressive example of this 

kind of illustration is the Imre Pal’s beautiful book (1961). Although the books of Rollmann and Pale 

describe the three-dimensional model of spatial seeing, nevertheless they do not instruct how to draw 

two-dimensional anaglyph stereographic pictures. For the latter we designed a special workshop, 

which can be related to schoolbook exercises in analytic geometry (Körner et al., 2010, p. 92) or can 

serve independently for project work. 

Anaglyphs in teaching 

Binocular geometry is not a canonical topic for mathematics lessons. So we were rather surprised to 

find a set of exercises related to the anaglyph method as well as well as materials for teacher training 

courses. The following excerpts in Figure 1 are taken from a German school textbook for grade 11 

(one year before A-levels). The book is one of the five most widely used textbooks in high schools 

in Germany. The excerpts stem from a chapter in analytic geometry dealing which the calculation of 

intersections of lines and planes given in Cartesian coordinates. In addition to perspective drawings 

of a house and bowling pins, some general properties of perspective drawings are given (left). In 

preparation for the work with perspective mappings, the textbook authors posed the exercise to 

compute the image of the shadow of a cube illuminated by a lamp given in Cartesian coordinates. 

The shadow has to be calculated in a given plane using the formulas for intersection points of lines 

                                                 

1In our case, we use a red glass for the left eye and a blue or better turquoise one for the right eye.  

 



with planes. The green image (right) is the cube shadow in the given plane. The red image is the result 

for the same calculation but with a slightly shifted illuminant. The students are asked to make red-

green glasses themselves and to look at the picture through these glasses. Among the textbook 

materials for computer-based learning, there are 3D dynamic geometry applets with the green and the 

red calculated images corresponding to different dynamic light sources. Even though the exercises 

deal with a geometrical context – perspective drawings – the proposed approach is purely algebraic.  

 

Figure 1: Erecting a stick of thumb size by lifting a point. 

The pictures are visualizations of the results of algebraic calculations. In (Färber, 2016) the author 

proposes designing the excursion on the anaglyph stereographic method as discovery learning in 

groups. Nevertheless, the lesson planning only involves algebraic manipulations. As we already 

discussed in (Kaenders & Weiss, 2016), the high degree of abstraction and technical complexity of 

algebraic symbolic language gives students few opportunities to question the underlying rules, to 

introduce their own situated notations and notions reflecting their individual understanding of a 

problem and its context or to develop their own mathematical questions. To deal with this problem 

we develop a geometrical context for discovery learning of the anaglyph stereographic method. 

A simple approach: Lifting plane figures 

When we considered using the historical anaglyph method for teaching, we expected a couple of 

difficulties. First, we were convinced that we would have to give a quick introduction to projective 

geometry and then apply it to the anaglyph method. We were then surprised to discover an approach 

to the fabrication of such binocular illusions that does not use projective geometry at all. It is the 

technique of lifting a point. Well understood, it allows not only for the lifting of points but also the 

lifting of any figure from the plane as long as it is supposed to become an illusion of a congruent 

figure in a plane parallel to the initial plane. We give a description of the course of action in the 

workshops.  

Practical preparation 

Before the students are given the task of creating their own anaglyphs, we show them some exemplars. 

By looking through the red-green-glasses they begin to get a feeling for what such a painting could 

look like and which type of effects are generally possible. It turned out to be a helpful practical hint 

to let the student put their fingertip on the spatial spot where they expect the figure to be. A few 

students do not succeed in recognizing the intended illusion. The reason for this might be problems 

like shifted eyesight, where one eye has a stronger visual faculty than the other, or a red green 

deficiency. Nevertheless, these students could successfully participate in the workshop. 



Erecting a little stick 

The first exercise is to erect virtually a little stick of thumb size to an illusion that appears to be an 

orthogonal stick on the paper. In a second step, we can also let the stick appear slightly levitated. In 

order to find such a representation of the desired illusion, the students can turn the question around: 

the stick is given and we seek the red-green drawing on our paper. If we put a stick (like a pencil) 

orthogonally on the paper, we can conceive the red and the green drawing as the shadow we obtain 

when we imagine our eyes to be light sources.  

 

Figure 2: Erecting a stick of thumb size by lifting a point. 

Almost all students draw a short red and a short green line segment that produce two lines that 

intersect at the point that is ought to be the orthogonal projection of the stick on the paper. By 

discovering this, two questions arise: 

 What is the angle between the red and the green line segment? The students relate it to the 

position of the eyes and some conjecture that the lines prolong to the pedals of the eye points. 

 How far do we have to draw the line segments for a perfect illusion? After having explored 

the situation, the students give two conjectures: The ratio of the red and green line segment is 

the same as the ratio of line segments between the pedal points of the eyes and the point where 

the stick touches the paper. They indicate that because of similarity, both assertions are 

equivalent.  

Analysis of the exercise 

To analyse the situation, we assume the position of the eyes 𝐴 and 𝐵 on fixed height ℎ over the table. 

We assume the eyes 𝐴 and 𝐵 to be parallel to the table plane and to have a distance of 7 cm, which is 

about the average eye distance for adult human beings. When we project the eyes 𝐴 and 𝐵 

orthogonally onto the table, we obtain two pedal points 𝐴′ and 𝐵′. We consider an arbitrary point 𝑃′ 

in the plane. Now we want to find points 𝑃𝐴 and 𝑃𝐵 in the plane with the effect that they create the 

illusion of a point 𝑃 in space, that lifts our point 𝑃′ to some height ℎ.  

In Figure 3 we see that this illusion arises when the lines 𝐴𝑃𝐴 and 𝐵𝑃𝐵 cross in the point 𝑃. Then 𝐴𝐵𝑃 

forms a plane. Then the three planes 𝐴′𝐵′𝐵𝐴, 𝐴′𝐵′𝑃 and 𝐴𝐵𝑃 have three intersection lines, two of 

which are parallel. Then the third one is parallel as well. The reason is what one can call the Theorem 

of the Tent: Given three planes 𝐸1,𝐸2 and 𝐸3 that intersect in three lines 𝑔12 = 𝐸1 ∩ 𝐸2 and𝑔23 =

𝐸2 ∩ 𝐸3 as well as 𝑔13 = 𝐸1 ∩ 𝐸3. When two of these lines are parallel to each other, the third is 



parallel to both as well. The proof of this proposition is an occasion to show the efficiency of the set 

theoretic language: Assume that the lines 𝑔12 = 𝐸1 ∩ 𝐸2 and 𝑔23 = 𝐸2 ∩ 𝐸3 are not parallel; they 

then intersect in a point 𝑃, since both lie in a plane. Then {𝑃} = 𝑔12 ∩ 𝑔23 = 𝐸1 ∩ 𝐸2 ∩ 𝐸3 and 𝑔23 =

𝐸2 ∩ 𝐸3 intersect in 𝑃 as well. 

 

Figure 3: The basic principle of point lifting. 

Hence, we can lift the point 𝑃′ to an illusionist point 𝑃, when we draw the lines 𝐴′𝑃′ and 𝐵′𝑃′ and end 

up at points 𝑃𝐴 and 𝑃𝐵, such that 𝑃𝐴𝑃𝐵 is parallel to 𝐴′𝐵′. In order to find out how far the point will 

be lifted, we use the point of view of similarity as the students uttered it. We consider one of the two 

triangles 𝐴′𝑃𝐴𝐴 or likewise 𝐵′𝑃𝐵𝐵 (see Figure 4). We especially want to understand the relation 

between the height ℎ and the distance 𝑑 ≔ 𝑃𝐴𝑃𝐵. 

 

Figure 4: One of the triangles of the basic figure.  

In Figure 4 we read off the following ratios: 
𝑎

ℎ
=

𝐴′𝑃𝐴

𝐴′𝑃′
 and 

𝑎−ℎ

ℎ
=

𝐴𝑃

𝑃𝑃𝐴
. Combining this with the ratio 

between the triangles 𝐴𝐵𝑃 and 𝑃𝑃𝐴𝑃𝐵, we conclude 
7

𝑑
=

𝐴𝑃

𝑃𝑃𝐴
=

𝑎−ℎ

ℎ
. Thus 𝑑 =

7ℎ

𝑎−ℎ
 orℎ =

𝑎𝑑

7+ℎ
.  

Note the remarkable fact that the distance 𝑑 does not depend on the special position of 𝑃′. Hence, we 

have one method to lift not just one point but also a whole figure to a certain fixed height ℎ. For 

instance, we can lift a square by lifting its vertices on the same height and then connect the 

corresponding red and green points. If we do that twice, we can construct the illusion of spatial box. 

Similarity as key concept 

Finally, we want to understand how we can lift a figure that does not consist of line segments, e.g. a 

circle. For this, we need to understand how to lift an arbitrary figure to a fixed height ℎ. For this 

fixed ℎ, we consider the map of the plane to itself, that maps 𝑃′ to 𝑃𝐴 and likewise the map that 



maps 𝑃′ to 𝑃𝐵. We know already the answer, since 
𝐴′𝑃′

𝐴′𝑃𝐴
=

𝑎

ℎ
. Therefore, both are central dilations with 

the factor
 𝑎

ℎ
, one with centre 𝐴′, and the other with centre 𝐵′.    

 

Figure 5: Central dilation with factor 
𝒂

𝒉
. 

These considerations on similarity can be used to construct tasks for instructional scaffolding as well 

as materials for explorative learning. 

Observations during the workshops and development of research questions  

In our workshops, we developed most of the tasks and drawings together with the students on the 

blackboard. This gave us the possibility of choosing between small-step guiding tasks and rather open 

activity-oriented tasks corresponding to the work of the students. The groups in the four workshops 

at the international Kangaroo Camp were very inhomogeneous regarding their English language skills 

as well as their mathematical preparation. These groups had students interested in mathematics but 

without any training for competitions or mathematical extracurricular experiences and participants of 

the International Mathematical Olympics. None of the participants had ever dealt with binocular 

geometry. In spite of their age (15-18 years old) there was no problem to get the students to draw 

pictures with crayons. It became also evident that the problem ‘How to draw an anagram’ is extremely 

suitable for inhomogeneous groups. The students worked in small groups and were quickly fascinated 

by their own experiments and pictures. Our objective that was reached in all four workshops was to 

get the students to search for the underlying principles of constructions and to produce their own 

drawings by using the principles. As soon as the students are acquainted with the technique of point 

lifting, there are many possible projects to tackle. 

The day course in Bonn was organized differently. The workshops were hold by mathematics teacher 

students. We gave introductions into anaglyphs first for the tutors than for the students, attended the 

different workshops and moderated the presentations of the results. For the day course in Bonn, we 

prepared a script for the tutors with problems they were supposed to solve. Before the day course 

there were several meetings were the tutors could asked questions and discuss the concept. There was 

a noticeable difference between tutors who tried to grasp on their own the concept of drawing 

anaglyphs by lifting points and curves using the script more to look up some of the details and tutors 

who first read the script and tried to solve the problems by using the methods described there. The 

first type of tutors led their workshops in a more explorative experimental way; some of the second 

type tutors had inserted into their workshops small lectures on the basic of the script. The students 



asked questions from different perspectives: from a phenomenological perspective (What are 

conditions for two points to create the illusion of a floating point?), from the perspective of 

geometrical invariants (Which properties do not depend on the position of the centre of the 

projection?), from the perspective of geometric transformations (How to place the figure to support 

its three-dimensional illusion?). 

                          

Figure 6: Examples of student products: a box with concave top, a house, a tetrahedron. 

Nevertheless, the students of all groups of the day course were very motivated to understand how to 

draw a 3D picture, experimented with pencils, lifted points and produced their own 3D images (Fig.6). 

During our reconsiderations of the first repeated workshops, we tried to describe the atmosphere when 

the students started to construct central projections and calculate distances. At the beginning - may 

be because of our technical explorations into the past - we called it the mind of engineers and 

inventors. During the next workshops non the less we realized that a substantial part of workshops 

the students were engaged with thought experiments: projections through transparent tables, cutting 

up spheres, building houses out of cubes and tetrahedrons, rotating trefoil knots. This led us to think 

about the role of thought experiments in physic and mathematic lessons. May be it was so easy to 

inspire so different students for experiments because there were not real experiments? Students meet 

nowadays in their everyday life not often people who both are said to be cool and decompose technical 

devises in order to understand basic functional principles. Choosing advanced courses in science for 

A-levels does not imply one has grown up with a soldering iron or a chemistry box. 

One could think that our students good performance and experiences in virtual worlds could give the 

historical extremely important thought experiment a new place in physics lessons in order to develop 

interest in functional principles even if there are only very limited prior technical experiences. But at 

least in German physic lessons, it seems to be rather the other way around: Many computer based 

visualisations and experiments transform the very nature of the thought experiment and replace it by 

a confirmation experiment of a virtual programmed reality (as it is also done in the earlier discussed 

mathematics textbook task using the applet to compute the anaglyphs). 

May be it became rather a task for mathematics educators to integrate thought experiments and virtual 

engineering into mathematics teaching to support the perspective: How does it work? 

Conclusion 

The fact that the participants in our workshops were able to pose independent research questions in 

geometrical terms with geometrical meaning is for us an indication of their development of a 

geometrical language and concept. The students gave their proofs by construction and in different 

geometrical notions using invariants and similarity mappings. We were especially impressed by the 

ability to switch between plane and spatial perspectives on the stereographic pictures developed by 

the participants during the workshops.  



 

Figure 7: Borromean rings made of three golden rectangles. 
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This article describes a proposal for teaching kinematics using mathematics history; recognizing 

that history, mathematics, physics and language share similar knowledge structures that must be 

articulated to achieve teaching-learning processes. To account for this, we discuss how 

mathematics and physics has historically contributed to describe motion representations. A 

learning unit is described based on the experimental technique that probably Galileo used to 

measure times and distances and is not well known by textbooks’ authors. This experimentation 

with intervention tries to interrogate students’ alternative ideas. We intended to provoke a 

conceptual change using several mathematical and physical representations that have been 

constructed throughout history and have allowed describing the nature in a better way. A 

qualitative study of the experience in a physics class was carried out. Forty students aged about 13-

years-old from a public secondary school in Mexico City participated in the study. The learning 

unit described in this article was the first stage of a broader study constituted by five stages. It was 

important to work with students to establish the relationship between the variables involved in the 

description of uniformly accelerated motion, so as the ratio between the distances travelled and the 

time elapsed. 

Keywords: Conceptual change, alternative conceptions, acceleration, uniformly accelerated 

motion, mathematics and physics representations 

Introduction 

The role of the history of mathematics in teaching and learning mathematics has been discussed in 

several workshops (Fauvel & Van Maanen, 1997). However, Fried (2007) has pointed out a major 

problem: Where do teachers find time to teach the history of mathematics? It isn’t easy to answer 

this question, but given that both history of mathematics and mathematics themselves embrace 

genuine ways of knowing, it may be possible to make a didactic design that combines mathematics 

with valuable elements of history of mathematics without investing too much time. 

It is important to recognize that mathematics, history and language are ways of knowing related to 

semiotic systems that are used to understand or interpret any kind of knowledge. Therefore, we 

consider the problem presented above as our own, that’s why we propose an approach that has been 

tested with 13-year-old high school students, to give an example with the intention to contributing 

to answer the previous question. 

Acceleration concept is an example of the relationship between our ways to understand nature and 

to interpret it. It is well known, since ancient times, that interpretations had been made to explain 

acceleration as a physical phenomenon without being able to describe it fully. Unfortunately, the 

nature interpretations that human beings do are determined by common sense, this situation causes 

obstacles to describe it correctly in Bachelard and Viennot’s sense (cited respectively in Jankvist 

(2009), and Bastién, Mora & Sánchez, 2013). Obstacles to understand sciences have been called in 

several ways associated with different epistemological origins, however, authors of this paper agree 



with Halloun & Hestenes (1985), Hierrezuelo & Montero (1989/2006), Laburú & Carvalho (1992), 

Duit & Treagust (1998), and others who have contributed to define obstacles as alternative 

conceptions. Ideas that are related to common sense, which are persistent, shared by many persons 

and can be adapted and modified in such a way that one can believe that those ideas are adequate to 

explain the reality of the physical world. 

Some ideas in science history have been considered satisfactory because they explained, at least in 

part, a field of reality, but others, much more powerful, creative and audacious, have emerged to 

break paradigms and challenge common sense. Such are the ideas of those who have not been 

satisfied with the accepted description of reality at a certain historical moment. 

The so-called scientific revolutions allowed the advance of science and a changing in our 

understanding of the universe. An analogy of these scientific revolutions is found in the processes 

of teaching and learning, as well as alternative conceptions that are compared, but if those ideas 

cannot be used to explain reality, they lose their validity. Anomalies then arise, which will open the 

way to new explanations, often more complex, but those ideas could be used to explain a situation 

apparently in a better way. This process has been called conceptual change (Posner, Strike, Hewson 

& Gertzog, 1982).  

If ideas are images and representations of reality, then in so far as representations are tested, the 

validity of the ideas is proved. Mathematics makes possible the testing of diverse representations of 

distinct levels of complexity, so concept formation can be achieved in an increasingly structured 

way (Pozo & Flores, 2007). 

Considering that it is necessary to challenge the ideas of the common sense, Galileo made 

experiments on the acceleration leaving aside the causes of its origins. Galileo in his Discorsi e 

Dimostrazioni Matematiche (Hawking, 2013) explained some experiments and his description 

about uniformly accelerated motion, but he did not explain his efforts and trials to obtain 

satisfactory results or how he accurately measured time or displacement. Drake (1975) researched 

these problems by reviewing Galileo's notes and pen strokes to discover clues as to how he did his 

research. 

This article deals with the description of a didactic intervention using a teaching experiment in 

which Galileo’s technique is used to describe uniformly accelerated motion. The didactic activities 

allow the students to interrogate some alternative conceptions, such as the idea that, in a uniformly 

accelerated motion equal distances are travelled in equal times (Laburú & Carvalho, 1992). 

Relationships between experiments have also been established, data organized in tables and 

qualitative diagrams to propose a mathematical expression that allows to relate distances and times; 

with the intention to promote a conceptual change. 

Historical development of the kinematical concept 

The first ideas about motion came from Aristotle who in his dialogue On Philosophy uses the term 

proton kinoun as the first motor, the cause of every motion in the Universe (Düring, 1990, p.188). 

According to Aristotle, the velocity of a moving object is directly proportional to the thrust force 

and inversely proportional to the media resistance (Düring, 1990, p.477). 



It was not until the 14th century, when mathematicians from Oxford (most of whom came from 

Merton College), took up again the study of motion of bodies. This was mostly done in the decade 

between 1330 and 1340, as explained by Farmaki, Klaudatos & Paschos (2004).  

William Heytesbury (1313-1400), Richard Swineshead (1340-1354), and John Dumbleton (1310-

1349), mathematicians and logicians of Merton College at Oxford, known as “Calculators”, 

introduced the idea of functional relationships in attempt to describe magnitudes with quantitative 

measurable features. They defined several kinds of motion, proposed theorems concerning motion 

and proved them mathematically, using Euclidean geometry. Swineshead defined uniform motion, 

and Heytesbury the uniformly accelerated motion (Farmaki, et al., 2004, p. 506). 

Nicole Oresme in 1362, in the Configurationibus qualitatum represented the variations of qualities 

(see Figure 1), such as velocity and time, by means of geometrical figures, in which the line AB 

represents the time and the perpendicular lines the speed or its increasing value (Farmaki et al., 

2004, p. 507). 

 

 

 

Figure 1: Oresme representation of a qualitative magnitude  

(Adapted from Farmaki et al, 2004) 

There were many efforts to solve the problem of the unequal velocities that appear in a uniformly 

accelerated motion, however they were not concretized. It was not until Galileo’s deduction 

presented in the Discorsi, where he artfully simplifies the free fall of a ball rolling down along a 

plane with a few degrees of inclination. 

 

Figure 2: Theorem I, Proposition I, Third journey in  

Discorsi e dimostrazioni matematiche (Hawking, 2013, p. 468) 

In Theorem I, Proposition I, Third Day of the Discorsi, Galileo states the relationship between 

velocity and time, using schemes such as those used by Oresme, but replacing uniform motion with 

uniformly accelerated motion (Hawking, 2013). In Figure 2, time is represented as a quality by the 

line AB and velocities are represented as intensities by perpendicular lines.  

The schemas used by Oresme and Galileo suggests that the relation between time and velocity 

could be drawn in a Cartesian coordinate system, but in Galileo’s scheme there is also a line 



representing an external magnitude, the distance. In the Proposition II, third day of Discorsi, Galileo 

explains the proportional relationship between time and distance travelled in a uniformly 

accelerated motion, including the relation between time and velocity. But the method reported by 

him to measure time was not considered practical, in accordance with Drake, who estimated that 

Galileo achieved more accuracy with another method than would have been possible with the 

clepsydra. So, there is a controversy about how Galileo found these results. Galileo just wrote: 

For the measurement of time, we employed a large vessel of water placed in an elevated 

position; to the bottom of this vessel was soldered a pipe of small diameter giving a thin jet of 

water, which we collected in a small glass during the time of each descent, whether for the whole 

length of the channel or for a part of its length; the water thus collected was weighed, after each 

descent, on a very accurate balance; the differences and ratios of these weights gave us the 

differences and ratios of the times, and this with such accuracy that although the operation was 

repeated many, many times, there was no appreciable discrepancy in the results (Galileo Galilei, 

1633/1914, p.179). 

Stillman Drake’s proposal 

In “The Role of Music in Galileo's Experiments”, Drake (1975) described an experiment that 

probably took place in 1604. The experiment was part of a series of investigations that led Galileo 

to obtain finally the correct rule of times-squared being proportional to the distance an object falls 

from rest during the time elapsed. Ben Rose reconstructed the experiment according to 

specifications supplied by Drake (see Figure 3).  

 

Figure 3: Reconstruction of Drake’s experiment (Drake, 1975) 

The objective of this modernized test was to measure as precisely as possible the distances travelled 

from rest by a ball rolling down on an inclined plane taken at the end of eight equal time intervals. 

The grooved inclined plane used in the reconstruction was 6 ½ feet long (198.2 cm) and was set at 

an angle of 1.7 degrees. The time intervals were established at a tempo almost two notes per second. 

At one note the ball was released, and the positions of the ball at subsequent notes were marked 

with a chalk; for comparison the exact 0.55 second positions were also captured by multiple-flash 

photographs. A rubber band was then put around the plane at each chalk mark. The positions of the 

rubber bands were adjusted so that the audible bump made by the ball in passing each band would 

always coincide exactly with a note; the bumps were visualized by leaving the camera shutter open 

during an entire run. Finally, the distances between pairs of adjacent bands were measured. The 



ratios of the successive intervals were found to agree closely with a set of figures logged by Galileo 

(Drake, 1975). 

Methodology 

In Mexico as in other countries, the role of textbooks is very important for the teaching-learning 

process from primary school to the first university-level courses. The first Physics course is offered 

in secondary education to 13-year-old students, where conceptual approach prevails. We decided to 

work with a group of forty students who attend a high school physics class in Mexico City to make 

a qualitative study of their reactions to a teaching sequence proposal. This group had no teacher, so 

the learning unit did not conflict with the daily activities related to the ongoing study of curriculum 

contents. 

After having done an analysis of a Mexican textbook (Gutiérrez, Pérez & Medel, 2012) of the 

secondary school on the proposed activities to study the topic of acceleration, it was decided to 

make a design of a learning unit complemented by a physical experimentation. First, the students 

had to perceive with their senses how the ball falls that is rolling down on an inclined plane and, as 

it rolls, rings bells placed at equal distances. 

Students were asked how distances were covered by the rolling ball between successive rings of the 

bells, how time between each ringing of the bell varied, and to make a personal description of the 

rhythm they had heard. They modified the height of the inclined plane and the distances between 

bells to find out if they perceive changes in the phenomenon. 

At the end of this experiment, students wrote their observations in a notebook. The following 

student’s activity was designed with had the purpose of recalling the meaning of proportionality in a 

context of a recipe to make a three-layered cake. They had to find the proportion of the ingredients 

with respect to the amount of cake that had to be prepared. Students were asked how they found the 

proportion and what the proportionality constant for each quantity was. The amounts of ingredients 

provided were given in kilograms. 

Finally, students were asked to carry out a different measuring process to find the times and 

distances travelled by a ball that rolls down on an inclined plane. The instructions for assembling 

the device in the laboratory were given to the students. The teacher previously tested the assembly 

to control the time in which distances were covered by the rolling ball. The material used consisted 

of an aluminium rail, a steel ball, a universal holder, burette clamps, bells and clips. 

The learning unit took place in a week. All sessions were video recorded. Students wrote their 

answers in a booklet guide prepared by the researcher, those answers were later analysed. 

Description of physical experimentation 

The material was placed on working tables in the laboratory for each team. The teacher had a digital 

metronome on the computer connected to an amplifier so that all students could hear loudly the rate 

of 60 beats per second. 

The experiment started when the teacher activated the metronome; then the students had to 

synchronize the beat of the metronome with their mental count. A student in each team then had to 

drop the iron ball from the top of the aluminium rail upon hearing a beat (of the metronome) and 



stop it upon hearing the next beat. The first distance should be considered as a unit. This action is 

repeated several times to determine the distance travelled in a second, which has to be marked each 

time with a permanent marker pen. The process continued in basically the same manner; students 

must drop the iron ball from the beginning of the rail, just when hearing a beat and stop it after 

having heard two beats making a mark on the rail. The same has to be done with three, four and 

more beats. 

Once the distances travelled per second by the rolling ball were determined, students had to put a 

bell in each marked position. To verify that the travelled distances were correct, they dropped the 

iron ball while the metronome marked the time, so that at each beat of the metronome a 

corresponding bell rang. 

Results 

With the help of the written guide, students took notes on what they had observed. In the first 

activity, 17 out of 40 students answered that the distances travelled between successive bells were 

equal while the time intervals were getting shorter and also described that the ringing of the bells 

during the journey of the ball were getting faster and faster. In the activity to review the 

proportionality issue only three out of 40 students could find the factor to determine the correct 

amount of ingredients for each cake. 

A small exercise was included, which consisted in completing some arithmetic progressions, 

specifically a succession of integers, odd, even, and finally squares. The purpose of this exercise 

was to serve as a heuristic to conjecture that in a uniformly accelerated motion the distance travelled 

increases as the square of the time intervals do. 

 

This means that for a unit of time corresponds a unit of 

distance, for two units of time corresponds four units of 

distance, for . . . 

 

For three units of time correspond to 9 units of distance. 

For four units of time correspond to 16 units of distance 
For five units of time correspond 25 units of distance 

 

In what proportion does the distance increase with respect to 
time? To discuss in plenary with the wholegroup. 

The distance is in proportion to square time   d= t2 

Figure 4: Relationship between distances and time: a student’s conclusion 

Then with the intention of analysing the information provided by the previous activity, the teacher 

asked the students in a plenary session, what relationship was observed between elapsed time and 

distances travelled. Students answered for each unit of time elapsed, that the distance travelled 

increased as the square time intervals, thus establishing a proportional relation between both 

magnitudes associated with uniformly accelerated motion. 

The teacher introduced for the first time the algebraic symbol () to denote the correspondence rule 

which is used in physics when the proportionality constant is not fully determined. Finally, it was 

found that 16 out of 40 students gave incomplete arguments about time measurement and distance 

travelled, but 24 of 40 answered that the rhythm of time was constant while distance increased 

faster and faster as square of the time intervals (see Figure 4). 



Conclusions 

The learning unit described in this paper was important as a starting point of a larger study 

involving several phases of experimentation, because it allows a perceptual approach to uniformly 

accelerated motion. 

The activity provides a simple way to engage students with the task of describing uniformly 

accelerated motion. They associated the problem with Galileo's experiments and were able to 

identify how nature is scrutinized in order to describe and understand it. 

Experimentation allowed students to be challenged by the alternative conception which assumes 

that in a uniformly accelerated motion the velocity is constant. 

This procedure avoids the problem of synchronization with several timers placed simultaneously at 

equal distances, an impractical measure option that is often suggested in textbooks. Another 

advantage is that students can listen to a metronome carefully and measure time mentally, as is done 

in music. 

The students realised some difficulties Galileo may have faced in order to measure time and 

determine their relationship with the distances travelled, providing both experimentation and the 

learning unit design, a learning context that is much more meaningful than any anecdotal 

knowledge. 

Finding the proportionality relationship between elapsed time and distance travelled may be enough 

as a first approach to describe a uniformly accelerated motion for being used when necessary to 

determine more precisely the proportionality constant of a uniformly accelerated motion. 

The results shown in this research give an account of how the obstacles attested by history for the 

understanding of scientific concepts help overcome the obstacles that students face. 

Our didactic proposal was enriched with the development of ideas in the history of mathematics and 

physics by adapting them to provide a different way of accessing to physics and mathematics 

knowledge. In this didactic design, we consider the genesis of the concept of uniformly accelerated 

motion throughout history as an example of the inductive thinking that human being does in the 

construction of their own knowledge, so it has been tested with students, getting encouraging 

results. 
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The concept of infinity and its use is one with different meanings through the centuries within 

various contexts reflecting mathematical historical development. This development is scarcely clear 

to pupils during school time and rarely stressed in teacher education although it offers a lot of 

potential to understand mathematics. The field of arithmetic is one example in which to study 

infinity within a range that student teachers are able to understand and that is useful for and in 

their future teaching. The paper focusses on the potential of this concept within the arithmetic field 

using an original article of Cantor and on examples, also from Hilbert, that stress different 

counting methods and various illustrations of infinity. 

Keywords: Infinity, countable set, denumerable set, very small/large numbers. 

Introduction 

Like many other mathematical concepts ideas of infinity developed and diversified through the 

centuries. Well known is its appearance within the Elements of Euclid within the ninth chapter: 

There are more prime numbers than any given number of prime numbers, cf. Euclid (1997, IX, §20). 

This statement answers the question, if there is an end of prime numbers. The proof uses the fact 

that the product of arbitrary prime numbers added by 1 has a new prime number in its prime 

factorization. That is, to conceptualize the concept of infinity of prime numbers Euclid uses the idea 

that there is always another one apart from the given ones which has a somewhat operative aspect. 

Also within geometric contexts there are ideas about infinity regarding the extensions of space, 

planes and lines as well as the number of points on lines and figures. There are considerations of the 

behavior of parallel lines regarding infinity, like for example the parallel axiom states.  

Already these examples show that there exist different meanings of infinity depending on the 

various mathematical objects. Also, the meanings are verbalized without formulization. Doubtless 

does the use of very large numbers within everyday experiences come close to a sense of infinity. 

For example, the addition of two numbers, one of which is very much larger than the other, form a 

sum that does not differ very much from the large number in terms of the relative error concept.  

Infinity and the use of it deserves a closer look because terms like “infinite”, “endless” and 

“unlimited” have a colloquial meaning that sometimes provides a reasonable starting point for the 

understanding of abstract patterns and sometimes not. In some instances infinity incorporates the 

imagination of a very large extension, endlessness is for many just a word for a very large but still 

finite set of objects or a very large extension like the ocean.   

First-year students often show a vague notion of the term “infinity”, an observation that was done 

also by Woerner (2013). She even points out that a thorough understanding of infinity is neither a 

goal nor is it a step towards understanding mathematics. Dötschel (2011) even finds that the 



understanding of infinity does not vary much between teacher students and pupils of secondary 

level. In school they learned the lemniscate symbol “” and used it associated with the limit of 

sequences, series and – at the best – the differential quotient. At least in principle they know that it 

is not allowed to use this symbol like a number or a variable in all respects (like it was used partly in 

the 18th century), but one can observe a high degree of uncertainty. For instance, what does it mean 

when the differential quotient is interpreted in terms like “zero divided by zero”? And what is the 

outcome? Standard lectures like the ones for Analysis and Linear Algebra usually do not change the 

perspective and are continued with refined conceptions of limits and the definition of concepts like 

that of an infinitely dimensional space. Concerning the cardinality of sets there remains often the 

sketchy notation A =  or the like.  

Precisely because counting, the determination of a number, is a fundamental concept at all school 

levels, it is surprising that the issue of cardinality seems to be somewhat neglected. Nevertheless, it 

is not too difficult to provide a base of knowledge due to Georg Cantor. In many cases original 

mathematical treatises are definitely unsuitable within teacher education, but there are notable 

exceptions. One of these is the article of Cantor (1895), which is understandable in large parts. The 

reason for this is that students are able to acquire understanding with supporting examples on the 

side of the teacher which will be shown later in the paragraph. 

Our paper describes the used examples during the seminar held in the summer term 2016 together 

with some details around the concept of infinity. 

Various ways towards an understanding of infinity 

The mathematical education of future elementary math teachers at the University of Erfurt includes 

among mathematical survey lectures a seminar on the basic principles of arithmetic and algebra. 

One of the goals of this seminar is to improve the student's understanding of (natural) numbers and 

their properties since this field will constitute one of the bases of their future teaching. During the 

seminar students are often encountering the question in how far they have an understanding of the 

set of natural numbers being infinite. The upcoming discussions circle around the question how one 

could find out “what is true”. And the discussion ends with the question why. The phenomenon of 

infinite many natural numbers very often brought about an astonished attitude on the part of the 

students who pondered about the reasoning of Aristotle: There will be always one number that can 

be added. 

In our seminar there was a focus on aspects of numbers, especially of the natural numbers. Apart 

from the Peano axioms, the aspect of ways of counting provides a reliable foundation, especially 

since the cardinalities of sets may be included. This approach promotes a formalization due to the 

concept of bijective mappings, which is of value in its own. The natural numbers can be regarded as 

cardinal numbers of finite sets. But what do students know about the cardinality of the set of the 

natural numbers? Being asked, students claim “infinite” and denote the lemniscate symbol which 

they know from limits of sequences or functions. In interviews they show an obvious uncertainty 

about the arithmetical behavior of the object “infinite”. In case of doubt they often suggest treating it 

like a “usual” number. 

We feel responsible for giving a brief insight into the cultural heritage of the different approaches 

dealing with “infinity”. In particular we seek to show with what kind of caution Euclid, and Cantor 



too, got closer to proper descriptions, depending on the actual contexts. Especially we are interested 

in giving insight into the richness of mathematical thoughts and ideas: "It is possible to regard the 

history of the foundations mathematics as a progressive enlarging of the mathematical universe to 

include more and more infinities" (Rucker, 1982, p. 2). With regard to Cantor, we know that "... 

soon obtained a number of interesting results about actually infinite sets, most notably the result that 

the set of points on the real line constitutes a higher infinity than the set of all natural numbers. That 

is, Cantor was able to show that infinity is not an all or nothing concept: there are degrees of 

infinity." (Rucker, 1982, p. 9) 

There are a lot of ways how to understand mathematical statements. Some point out their proof, 

some stress their genetic development, some point out their formal argument. Our actual 

understanding of infinity allows us to give statements like: the set of natural numbers or the set of 

natural numbers between 0 and 100. The first is an infinite set, the second is a finite one. Stressing 

the idea of a potential infinity which we could not grasp as a solid concept, we help ourselves by a 

stepwise approach knowing that we will never succeed. This very constructive standpoint or 

procedure permits a very simple activity and that is adding one, again and again: |, | |, | | |, … In this 

manner one can distinguish finite and infinite sets. For the first set the procedure ends with a certain 

number, for the second one there is no certain last number and it becomes clear that the procedure 

never ends. In both cases the counting is mathematically a 1-1-correspondence.   

The different meanings of the term infinity show the richness of mathematics and its historical 

development. Needless to say that mathematical history does not develop in a regular and uniform 

way (Dieudonné, 1985, p. 16). Some epoch does not show any development in a field, in some there 

is a continuous change because of new developments. The fact that we use the word infinity the way 

we do with numbers goes back to Cantor (1895). It was the upcoming of new ideas, e.g. the idea of 

a set that changed the understanding of infinity. 

How very much different this meaning is in contrast to the “old” Greek meaning shows when 

student teachers learn about it in their first mathematical lectures: infinity is hard to grasp and the 

use of it shows that school mathematics does not at all build a proper foundation. Because of its lack 

it is even more important to build a solid understanding during mathematical studies especially for 

student teachers as there are many potential links to basic notions of counting in their future 

teaching.  

German mathematical education often refers to three basic experiences (“Grunderfahrungen“), by 

Winter (1996): 

• perceiving phenomena of nature, society and culture; 

• knowing (and appreciating) mathematical issues, represented by language, symbols, images 

and formulas; 

• acquiring heuristic competencies. 

We like to refer to Winter (1996) because he stresses a connection between everyday life 

experiences, heuristics and beginning formalization. In order to get aware of basic experiences and 

deepen the understanding there is a strategy necessary that gets students involved. Kattou et al. 

(2009) points out: 



In particular, academic programs offered to teachers should include mathematical knowledge 

regarding to infinity in combination with instructional approaches related to the concept. A 

proposed teaching approach could include the following steps: presentation with several typical 

tasks aimed at uncovering teachers’ intuitions about the concept, discussion about infinity’s 

applications in real life, introduction of the formal definition of infinity and the two aspects- 

potential and actual- and attempt to distinguish them in examples. (Kattou et al.2009). 

Within this this context we pinpoint the following aspects: 

1. The notion of infinity changed its meaning through the centuries. In the late 19th century the 

notion of aleph 0, aleph 1 and so forth came up. 

2. The way infinity appears in mathematical textbooks follows the idea of Freudenthal’s anti-

didactical inversion. It is common to introduce infinity by using the lemniscate symbol, 

mostly just informing about it. The mathematical developments are neglected. 

3. Some examples of infinite sets can be solved with simple steps used with finite sets. This 

presents an approach with a low barrier to student teachers and enhances their understanding 

of infinity. 

Our didactical approach is influenced by Vollrath (1987) who proposed a phase model showing the 

process of understanding mathematical concepts:  

intuitive and content-related        formal / integrated        critical 

We therefore stress the finding of variations of standard examples and of counting strategies on the 

side of the students. The integration of Cantor’s text provides some formalism and fostered 

discussions about the historical circumstances which were not controversial, that is the conflict 

between Cantor and Kronecker e.g.    

The following paragraph presents examples that proved useful within elementary school teacher 

education. 

Methods of counting 

In many cases it turns out difficult to provide an original text to students with the expectation of an 

adequate comprehension. But just mathematical topics that lead to very fundamental issues may 

prove appropriate in order to their connection with intuition and imagination. Cantor (1895) 

develops a concept of elementary set theory, which includes transfinite cardinalities and their 

arithmetic properties. During teaching it became evident, that important parts of this text are quite 

understandable and can be an opportunity to discuss an historical treatise and express own 

reflections. 

Before we start investigating into various ways of counting infinite sets we observe that there is no 

uniform definition of the concept infinity. The word occurs as an adjective to characterize sets 

especially. We concentrate therefore on the arithmetic field.  

The following sections present a couple of examples that may foster the understanding of infinite 

sets.   



Counting as one-to-one correspondence 

The concept of a set, as introduced from Cantor (1895), surely fits into these frameworks. To him 

we owe the so-called “naïve” definition of a set.  

By an “aggregate” we are to understand any collection into a whole M of definite and separate 

objects m of our intuition or our thought. These objects are called the “elements” of M. 

A counting or numerating of a finite set M with exactly n elements means, that every number 1, 2, 

3, …, n is assigned to exactly one element of the set. This is linked to the concepts of maps and 

functions and more over bijectivity. 

The set ℚ is countably infinite 

This follows out of a scheme in which every positive rationale number shows one time and is 

arranged like this: 

 

1/1 1/2 1/3 1/4 1/5 1/6 … 

2/1 2/2 2/3 2/4 2/5 2/6 … 

3/1 3/2 3/3 3/4 3/5 3/6 … 

4/1 4/2 4/3 4/4 4/5 4/6 … 

5/1 5/2 5/3 5/4 5/5 5/6 … 

6/1 6/2 6/3 6/4 6/5 6/6 … 

… … … … … … … 

Table 1: Cantor’s first diagonal method 

The way the scheme is counted goes back to Cantor and is called the ”diagonal method”. 

Following the presentation of the scheme students were invited to vary it and write down their 

proposals. Are there other suitable paths? What do they have in common? Furthermore, how could 

repetitions of numbers be avoided? In the scheme above every positive rational number is repeated 

infinitely. Does this cause problems? What options do we have to be represented by a reduced table 

of fractions? Is this already an indicative of the countability of even “larger” sets? After all most 

students could design various methods for counting even all rational numbers, for instance by 

designing spiral paths or the like. 

The set ℝ is uncountable 

Suppose that there is an enumeration  

.....,,,, 4321   



of the interval [0, 1[, which is a subset of ℝ, and the numbers are represented in the decimal system, 

i.e. 

.....,0 15141312111    

 .....,0 25242322212    

 .....,0 35343332313    

 .....,0 45444342414    

..... 

with digits }9...,,1,0{...,,, 321 iii   for every positive natural numbers i.  

Now one can define a number ...,0 321      [0, 1[  such that 










1,7

1,1

ii

ii

i
if

if




  

for all positive integers i. Obviously, the representation of  possesses at least one decimal digit that 

differs from i, namely, the i-th digit. Therefore  cannot occur in the enumeration above, which is 

inevitably incomplete. Now, if the given interval is already uncountable, then all the more the real 

numbers are. This scheme originates from Cantor, too, and is called the second diagonal method. 

To promote an adequate understanding, students did vary this scheme in a written form, also 

regarding other b-adic representations. At this point, the fundamental significance of place value 

systems in general is to be clarified. During teaching lessons students were encouraged to replace 

the digits by other symbols such as letters or notes from sheet music etc., and it has become clear, 

that the relating interpretations (“the entity of ‘texts’ is uncountable”) can foster an adequate 

understanding in the sense that students are able to make a transfer. 

Hilbert’s Hotel 

The cardinality of the set of the natural numbers is denoted by ℵ0. In set theory several properties of 

this first transfinite cardinality are elaborated, as there are 

1 + ℵ0 = ℵ0, 

n + ℵ0 = ℵ0  

for any n  ℕ, as well as 

2ℵ0 = ℵ0 

and 

nℵ0 = ℵ0,  

again for any natural number n. To illustrate this, the thought experiment of Hilbert’s hotel is 

helpful: Suppose that there is a hotel with an unlimited number of single rooms, which are 

numbered according to the natural numbers. The hotel is fully occupied and one other person is 

knocking on the door. Will the hotel be able to accommodate this person, too? In the classical 

version each present guest moves up to the room that is numbered one greater as yet. In this way the 



first room (numbered by 0 or 1) becomes available and no one has to leave the hotel. The situation 

is very similar if two or a finite number of new guests ask to come in: The present guests move up 

in the rooms that are numbered n greater than now.  

A bit more challenging is the arrival of a “Hilbertian bus” with an infinite number of passengers, 

named or numbered due to the natural numbers. In this case a constant moving up will not be 

successful. But the past guests could double their initial room number, and every passenger gets an 

oddly numbered room. This is not the only option available, students should contribute alternatives. 

More general, if there are two or a finite number n of “Hilbertian busses”, one can multiply every 

original room number with n + 1 and assign the passengers of the first bus those rooms, which 

numbers are congruent n + 1 modulo 1. The occupants of the second bus move into the rooms that 

are numbered by natural numbers congruent n + 1 modulo 2 and so on. Students are expected to 

formulate a proper mapping rule and to come up with their own ideas relating alternatives.  

Where is the border line? Even a “Hilbertian bus-fleet” of infinite number of “Hilbertian busses” 

numbered according the natural numbers, is still not able to overstrain the hotel. For example, one 

can assign a double index to every passenger due to his bus number and his seat number within this 

bus. Now Cantor does the work by applying his first diagonal method to this matrix structure. Also 

here students could consider a formula or a formal description of an algorithm.  

Students varied the above solutions in several and diverse ways. For example, prime numbers were 

used and alternating methods of simultaneous counting. Of course, the most important task is the 

clarification of the impossibility of lodging an uncountable amount of recent arrivals. 

The above considerations go along with the equation 

ℵ0 + ℵ0 + ℵ0 + … = ℵ0, 

where the number of the summands on the left side is countable. 

The given examples above, which were part of the studies of our futures teachers, have certain 

potential to support understanding. 

Conclusions with respect to understanding the concept infinity 

We referred to Cantor especially when we stressed the 1-1-coresspondance (or mapping) and some 

insights of arithmetic rules including infinity. Since all examples are rather basic but initially 

unknown to most of the students they gained competencies with counting and the notion of 

bijectivity. It is important to realize that the arithmetic rules known from the basic arithmetic 

operations may vary, depending on the context. Another example, but in a different relationship is 

the “double distributivity” in case of unions and intersections of sets. The phenomenon “infinity” 

holds in itself ambiguities which contradict common sense at first glance. It is of great educational 

value to become acquainted with some of them, namely in two respects: in terms of general 

education, which should be a concern of mathematics education and for the purpose of educating 

“good” teachers. The well-educated primary teacher is then in the position to react properly when 

children ask smart questions or questions that show insight but do not use proper wording. Pupils 

occasionally may achieve even philosophical significance – so long as the teacher recognizes its 

meaning.  
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The use of symbolic language and the resolution of equations are of great curricular importance 

and often cause difficulties to our students who find several obstacles. These obstacles can be of 

different nature and epistemological obstacles can sometimes be traced back to ancient 

mathematical texts. In this paper, we will focus on one of the first texts with algebraic content that 

was published in Spanish, the Arithmetica practica, y specvlatiua by Juan Pérez de Moya. In 

particular, we will present the mistakes made by the author when solving equations of the form axm 

= bxn and we will analyze and give explanations for some of them. Furthermore, we will observe 

how 10th grade students face these types of equations and if some of the old arguments are still 

present among our students. 

Keywords: Algebra, mistakes, obstacles, history of mathematics education, 16th century. 

Introduction and objective 

Obstacles to learning can be (Brousseau, 1983) of different types according to their origin. They can 

be ontogenetic, didactical, epistemological or cultural. An obstacle is epistemological if it is 

independent from the teaching practice. Brousseau suggested (Chorlay & de Hosson, 2016) that a 

distinctive characteristic of epistemological obstacles is their appearance in mathematics “from the 

past”. It might be true that in ancient texts we barely find traces of the errors, difficulties and 

failures associated to mathematical creation (Cid, 2000). However, in some kind of texts, devoted to 

teaching or to the introduction and dissemination of knowledge it is sometime possible to find non-

trivial errors1. 

The use of symbolic language and the resolution of equations are of great curricular importance and 

often cause difficulties to our students (Socas, 2010). Consequently, it can be of interest analyze 

ancient algebraic texts searching for possible mistakes or misconceptions. 

The first algebraic texts written in Spanish appeared during the second half of XVI century. The 

first one was the Libro primero, de Arithmetica Algebratica (Aurel, 1552) written by a German 

living in Valencia (Puig & Fernández, 2013). The first text with algebraic content written by a 

Spanish author was (Meavilla, 2005) the Arithmetica practica, y specvlatiua (Pérez de Moya, 

1562).  

In this work will identify some mistakes in Pérez de Moya book. For some of them we will try to 

give plausible explanations and furthermore, we will see how present 10th grade students face the 

type of equations where those errors arise.  

                                                 

1 By non-trivial errors, we mean errors that imply cognitive difficulties of some degree; i.e., we do not take into account 

small arithmetical mistakes, typos, etc. that are also usually found in this kind of texts. 



Juan Pérez de Moya mistakes 

In his book, Pérez de Moya discusses the possible solutions of equations of the form axm = bxn by 

considering four different cases. In table 1 we summarize the information given by the author in his 

text: 

Case 1 a = b and m = n Unique solution, x=1 

Case 2 a ≠ b and m = n No solution 

Case 3 a = b and m ≠ n Infinite solutions 

Case 4 a ≠ b y m ≠ n Unique solution (not given) 

Of course, this information is clearly incorrect from a modern mathematical point of view. It is 

interesting to point out that the same mistakes can be found in different text printed during the same 

period. For instance, in the Arithmetica by Rocha (1565) we find the exact same errors, while in 

Marco Aurel’s previously mentioned work we can find a fragment where the author considers cases 

1 and 2 above in the same way as Pérez de Moya. 

This fact can of course be explained because many of these authors used the same sources and they 

read each other. However, it is noteworthy than none of them noticed or corrected them. This leads 

us to the hypotheses that they did not see them as incorrect and some deeper explanation for them 

must exist. In this work, we will focus on cases 1 and 2. 

Analyzing case 2 

In this paper, we are going to focus of case 2 above. From our modern point of view it is rather 

straightforward that this type of equations have the unique solution x = 0. In any case, 

straightforward as it is, we can try to make some kind of aprioristic analysis of how a hypothetical 

solver can face one such equation. 

Consider, for instance, that we want to solve the equation 4x = 2x. We can conceive, at least, the 

following possibilities: 

1. The “canonically correct” procedure. Transform the equation into 2x = 0 subtracting 2x 

from both sides of the equation and then divide by 2 to obtain the unique solution x = 0. 

2. A procedure which is “syntactically correct” but “semantically incorrect”. Divide both sides 

by x to obtain that 4 = 2 and conclude that there is no solution to the original equation. 

3. A “materialistic procedure”. Four objects of some kind cannot be equal to two objects of the 

same kind. Hence, the equation has no solutions.  

Of course, at that time it was natural not to consider zero as a number so it is reasonable that a XVI 

century algebraist thought that this equation has no solution at all. Hence, from this point of view, 

the answer given by Pérez de Moya would not be a mistake at all.  

Anyhow, it can be of interest to identify which of the three previous possibilities, if any, was chosen 

by XVI century algebraists. 

In principle, point 1 above was well-known at that time. In fact, this was the procedure used by 

Pérez de Moya throughout his work as soon as the considered equation had a constant term. On the 

other hand, Pérez de Moya also used point 2 in his work. For instance (see Figure 1) we can read 



(pp. 546-547): “if you were given an equation like 6x3 = 4x2, divide x3 and x2 by x […] and the 

equation 6x3 = 4x2 will be the same as 6x2 = 4x. And thus you will continue until you can no more”. 

 

Figure 1: Dividing by x during XVI century 

But, in spite of his constant use of point 1 and 2 above throughout his algebraic work, Pérez de 

Moya did not use any of those arguments when facing equations described in case 2. Instead, he 

appeals to that “materialistic procedure”. In particular, we read (p. 544): “if 3x were equated to 4x 

or 5x5 to 2x5, in such case, those equations will be impossible and they cannot be done because two 

reals cannot be the same as three, provided they have the same value”. Moreover, this exact same 

idea, with nearly the same example can be found in Marco Aurel’s work (fol. 78 v): “three ducats 

are not worth the same as four ducats since ducat have one only value” (Figure 2). 

 

Figure 2: Materialistic argument in Marco Aurel’s work 

As we already pointed out, the first possibility led to the solution x = 0. It is very likely that these 

authors conceived ‘0’ just like a figure and not like quantity. Since ‘0’ is not a quantity, it cannot be 

the solution of the equation. Hence, a reasoning like the described in the point 1 above was flawed 

and could not be used. 

Regarding the second possibility, we have seen that Pérez de Moya in fact used this technique. 

Nevertheless, he is quite imprecise saying that it must be used “until you can no more”. It is 

possible that, since in this case this technique leads to non-sense expressions, was also considered 

flawed and abandoned. 

Therefore, from this point of view, the third possibility was the only hope to give an answer to this 

type of equations and so they used it. As we will see, this idea is still present among our students 

and it has an interesting explanation (Booth, 1984). The use of this argument implies that the 



unknown is conceived as an object itself and not as the representation of a number. Clearly Pérez de 

Moya and Marco Aurel have this in mind when they talk about “two reals” or “four ducats” when 

referring to 2x and 4x, respectively.  

Back to case 1 

After the previous analysis, we have a more or less clear idea of why XVI century authors could not 

manage correctly equations of the form axm = bxm with a ≠ b. Moreover, we understand why they 

said that they had no solution. Then, we might want to apply a similar reasoning to equations of the 

form axm = axm; i.e., to case 1 above. 

These equations, from a modern point of view, have – trivially – infinite solutions. They are, in fact, 

what some people call identities. Pérez de Moya, Marco Aurel and other authors provide x = 1 as 

the only solution and, unlike in the previous case, they provide no argument supporting this claim. 

If we try to apply the three aforementioned possibilities to the case of, say, 2x = 2x we would get: 

1. 0 = 0. 

2. 2 = 2. 

3. 2 euros are always equal to 2 euros. 

All three cases lead to some kind of tautology. To some kind of essential identity of an object with 

itself as opposed to an accidental identity of the form 2x = 3x2. When dealing with aspects regarding 

these topics we can turn to Aristotle’s Metaphysics which suggests a genealogy or rational 

grounding for this answer. In particular, in the chapter IX from Book V we read (Taylor, 1801, p. 

122): “But some things are said to be the same essentially, in the same manner as things which are 

essentially one. For things of which the matter is one, either in species or number, are said to be the 

same”. Thus, when facing an essential identity “the matter is one” and the answer is the unity as our 

XVI century authors claim. In any case, as to the historical question of the impact of Aristotle’s 

Metaphysics on our XVI century algebraists, this paper is no place to discuss it. 

Dealing with cases 1 and 2 today 

We worked with 57 students of 10th grade during a 50 minutes class session. By 10th grade, 

Spanish students should be completely familiar with algebraic language and notation (introduced in 

7th grade). They have not systematically solved polynomial equations of degree higher that two, but 

they know how to use techniques such as taking common factor, etc. We designed a questionnaire 

(Table 1) that included the four cases treated by Pérez de Moya in his work. In particular, items (1) 

and (2) corresponded to the cases 1 and 2 discussed above. 

Solve the following equations: 

(1)  x + 1 = 1 + x 

(2)  x = 2x 

(3)  4x7 = 4x5 

(4)  8x2 = x5 

Table 1: Questionnaire 



Among other aspects, we wanted to analyze how the students faced identities like the one presented 

in item (1) and equations like item (2) that lead to the materialistic procedure described above. 

Item 1 

For this equation, Pérez de Moya proposed x = 1 as the only solution. The answers given by the 

students can be classified according to the following categories (Table 2): 

 NS: The student says that there is no solution. 

 US: The student says that there is a unique solution. 

 IS: The student says that there are infinite solutions. 

 N: The student does not give an answer. 

NS 16 (28%) 

US 5 (8.7%) 

IS 19 (33.3%) 

NDS 17 (29.8%) 

Table 2: Answers for item 1 

It is clear that answers from the categories NS and US are incorrect. Moreover, 15 answers from the 

category IS are also incorrect. Thus, only four (7%) students gave a correct answer to this item. 

From these correct answers, two are worth mentioning: 

1. “Infinite solutions. Because the order of the factors does not change the result and if you 

sum one to a number is the same as if sum the same number to one”. 

2. “It has infinite solutions, because any value that you give to the x is the same. For instance, 

x = 5, 5 + 1 = 1 + 5, 6 = 6”. 

The first answer shows that the student has observed the structure (Linchevski & Livneh, 1999) of 

the algebraic expression and has identified it with the commutative property of addition. In the 

second answer, we see that the student has the idea that the solution of an equation is a number that 

leads to an identity when x is substituted by this number. 

Among the students in the category US, only one gave x = 1 as the unique solution to the proposed 

equation. His answer was the following: 

x + 1 = 1 + x  x – x = 1 – 1  x = 1 

The most plausible interpretation for this answer is that the student compared both sides of the 

second equality and assigned to the symbol on the left hand side (x), the corresponding symbol on 

the right hand side (1). Of course, we could not expect any XVI century-like reasoning. 

In addition to this answer, some other mistakes were found that are worth mentioning: 

1. 0x = 0 ; x = 0/0. “It has no solution. Dividing by zero gives an irreal [sic] number”.  

2. x – x = 1 – 1 ; 0x = 0. “It has no solution because it gives 0x = 0, that is, there is no”.  

3. x – x = 1 – 1 ; 0x = 0 ; x = 0. “No solution”. 

4. x – x = 1 – 1 ; x = 0. “Infinitely many solutions”. 

5. 1 – 1 = x – x  0 = 0  x = 0. 

6. x + 1 = 1 + x  x – x = 1 – 1. “No solution, that is, infinite solutions, because if we find zero, 

it means that there can be many solutions”. 



The first mistake comes from the use of the “canonical” procedure to solve linear equations. As we 

pointed out before, this procedure lead to “non-standard” situations, the student cannot manage. The 

second mistake arises when the student tries to give a meaning to the expression 0x. The student 

understands this expression as “there is no [x]”. Since there are no x, there is no value to assign to it. 

Finally, the last four mistakes show different ways to face the expression 0 = 0. Some are wrong, 

some are arbitrary and the last one shows hay the student fails in remembering what he is supposed 

to say when he gets 0 = 0. 

Item 2 

Pérez de Moya states that this equation has no solution. The answers given by the students can be 

classified according to the following categories (Table 3): 

 CS: The student correctly solves the equation. 

 WS: The student gives a wrong answer but with a unique solution. 

 NS: The student is unable to give a numerical solution (either correct or incorrect). 

 N: the students gives the wright answer without any explanation. 

CS 18 (31.6%) 

WS 20 (35%) 

NS 15 (26.3%) 

N 4 (7%) 

Table 3: Answers for item 2 

In this case, we mainly focus on the categories NS and CS, especially on the last one. Students 

belonging to the category WS usually make mistakes when operating and manipulating algebraic 

expressions. The following steps give a rather paradigmatic example: 

x = 2x ; x / x = 2 ; x = 2. 

Regarding those students not providing a numerical solution, it is noteworthy that one of them gave 

an answer that essentially reproduces the XVI century reasoning: “No solution. x cannot be equal to 

2x”. The most interesting other mistakes that we have found in this item are: 

1. x – 2x = 0 ; – x = 0. “It has no solution because x cannot be negative”. 

2. 0 = 2x – x ; 0 = x. “No solution”.  

3. 2 = x / x ; 2 = 1. 

The first two answers show a good knowledge of the algorithmic procedure used to solve a linear 

equation but both students fail in the last step, which involves some kind of interpretation. The third 

answer again involves dividing by the unknown. 

In this case, 18 students provided a correct answer. One of these answers, in some sense, completes 

and corrects the original XVI century mistake: “x = 0. Because x cannot be equal to 2x unless the 

solution is 0”. 

Some final comments 

Leaving apart problems regarding algebraic manipulation and notation, we find a main difference 

between the student who correctly face the analyzed situations and those who do not. In the case of 

item 1, for instance, we see that most of the correct answers involve a clear idea of the notion of 



solution to an equation, while wrong answers always involve the mechanical and algorithmical 

search of the solution using the steps of some kind of canonical procedure. This thoughtless 

application of a procedure implies that the student is not usually able to manage non-standard 

situations like 0 = 0 or 0/0. Then they sometimes try to use some memoristic knowledge or just do 

not know how to give an answer. This algorithmical conception also leads very often to divide by 

the unknown, even if this assumes that x is not 0. Most of the students work at a syntactical level 

and they simply do not care about the meaning of the symbols and the operations among them.  

Consequently, we think that the mechanical manipulations and rules to solve equations, if 

presented, should never be the starting point of our teaching. Rather, the solution of equations 

should be introduced starting from particular problematic situations. After all, algebra was initially 

a method to solve some arithmetical problems involving unknown quantities. It might be possible 

that such an introduction implied what we have called “materialistic procedures”, which can also 

lead to mistakes as we have seen, but at least statements like “x cannot be equal to 2x” can be the 

basis for interesting discussions in the classroom. 

Finally, in the light of our results, it seems clear that we should devote plenty of time to work with 

equations leading to identities and to expressions of the form 0 = 0 and 0/0. They will consistently 

appear throughout the mathematical life of our students and a good understanding of the meaning 

and implications of these expressions will be a great benefit for them. 
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Multiple perspectives on working with original mathematical sources 

from the Edward Worth Library, Dublin 
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In the spring semester of 2016, the author worked with twenty undergraduate (BA) students on 

original sources from the Edward Worth Library (1733), in Dublin. The end goal was to produce an 

online exhibition of the mathematical works from that library. The approach to this collaborative 

work is given, set in the context of a more general framework of the pedagogical value of working 

with original sources for teaching the history of mathematics. Examples of feedback from the students 

are given, as is an outline of how the exhibition itself was eventually shaped. The conclusion reflects 

on the learning gained by all involved in the collaboration. 

Keywords: History of mathematics, original sources, cooperative learning 

Introduction 

This paper outlines the process and product of working, with twenty students and two other 

collaborators, on the mathematical works in the Edward Worth Library (EWL). This collection opens 

a window on two centuries of the development of mathematics in England from the 1530s to the 

1730s, a period of momentous cultural change in Ireland – with the expansion and consolidation of 

English political power and the emergence of an Anglo-Irish Protestant elite – and scientific 

blossoming, culminating in the work of Isaac Newton and his circle, with very strong influences from 

continental Europe, especially from France and the Netherlands. The work, on original sources from 

EWL, of the author with his students and the librarian is outlined, as is the subsequent work in 

preparing an online mathematical exhibition, launched in November 2016. 

The Edward Worth Library and my encounter with it 

The Edward Worth Library was founded in 1733 by its benefactor, Edward Worth (1676-1733), a 

medic who had a passion for fine books and who left some 4500 volumes to Dr Steevens’ Hospital, 

in Dublin. Unusual in Ireland for this period, about one third of his collection comprise texts of 

medical and scientific interest. Of these, in turn, about 9% are mathematical. The collection is housed 

in a single room with glazed cabinets designed specifically for that purpose. The books themselves 

are in impeccable condition due, in no small way, to the fact that they were used very little during the 

283-year history of the library (Mc Cormack, 2005). 

I have taught a one-semester module on the history of mathematics every two years since 2008. A 

few weeks after completing teaching such a module in 2012, I visited EWL on 15th June, for the first 

time, in the company of Professor William (Bill) F. McComas, visiting Fulbright Professor (to Dublin 

City University, DCU) from the University of Arkansas. Combining his interest in the history of 

science and mine in the history of mathematics, EWL gave the impression of an Aladdin’s cave of 

early modern European learning. We were enthusiastically welcomed by the librarian, Dr 

Elizabethanne Boran. With a permanent staff of one (the librarian herself) and some visiting scholars 

and interns from time to time, it is challenging to open the doors to the public, although small 

specialist conferences are accommodated as much as possible. The librarian has overseen the 



publication of online exhibitions that enabled the treasures of the library to be appreciated by a wider 

readership (Edward Worth Library, n.d.).  

On 6th May 2014, the librarian welcomed the first group of my students (undergraduates in their 

second of third year of a three-year BA) to visit EWL. She had put on display works I had chosen by 

Viète, Harriot, Descartes, L’Hospital, Wallis, Ward, Huygens and Newton, dating from 1615 to 1732. 

The reaction of the students to viewing the original sources was very positive, however it was too late 

in the academic year for this cohort of students to engage with these original sources in any 

meaningful way. Their reaction, together with my own growing familiarity with scholarship in the 

HPM community on the importance of working with original sources, prompted me to seek an 

opportunity to work with EWL in a more significant way in 2016. The librarian was keen to extend 

the scope of the online exhibitions at EWL, and it seemed realistic to build a mathematical exhibition 

around the work of the next cohort of students (twenty, including two visiting from the USA). 

Necessary preparatory work on my part was to become familiar with the online EWL catalogue and 

derive from it a (provisional) list of the mathematical works in the collection. From this list (of 109 

works), I identified for which ones the author had a biographical entry in MacTutor (O’Connor & 

Robertson, 2016), and found online versions of about a third of the texts, using EROMM, for example. 

Searching for so many original sources was time-consuming, yet very rewarding; it was an exercise 

I had previously no reason to undertake on such a scale. At this stage, I considered myself ready to 

lead the students in the EWL Project.  This paper gives an overview of how the project itself was 

conceived and implemented. 

Original sources and teaching History of Mathematics 

Much is said in the literature about the use of original sources in teaching the history of mathematics, 

and this is not the place to provide a comprehensive overview. Kiernan identifies the challenge facing 

both teacher/lecturer and students: 

The task of presenting original works of mathematics to a class of undergraduates may seem 

like a daunting task. It requires much preparation. How does one become confident that one 

can do this? Well, you must remember that you are not alone in this task. Attending any 

conference with themes on the history of mathematics will remind you that there are many 

others who have the same interest as you. (Kiernan, 2010, p. 412) 

Because I, the author, am also the lecturer and so a crucial player in the work described in this paper, 

it is appropriate to describe, in the first person, how I engaged with the tasks involved. Glaubitz is 

quite clear that working with original sources is quite a different kind of work from that which 

students usually think of when they ‘do’ mathematics: 

Of course, on the part of the teacher it involves quite some preparation, but this is always the 

case when you are going to try something new. What is more, the study of original sources 

requires teachers and students to be prepared to dive into some strange and unknown realm of 

thinking, to appreciate cultural and historical contexts and – last but not least – to deal 

competently with written text that is more extensive than the word problems they are used to 

in mathematics. (Glaubitz, 2010, p. 351) 



If working with original sources is, indeed, ‘something new’, it “[provides] context, motivation and 

direction for students’ mathematical endeavours” (Barnett, 2012, p. 336). Thus, such work has a 

strong potential to open up new perspectives for students: 

By reading historical sources students can be acquainted with episodes of past mathematics 

where other meta-discursive rules governed the discourse. (Kjeldsen, 2010, p. 52)  

Even when students do not make explicit reference to unfamiliar ‘meta-discursive rules’, appreciation 

of such rules can often be noticed indirectly in the ‘surprise’ they express in their reflections on 

working with original sources. 

Designing the EWL project 

The EWL Project was designed as an integral part of a 5-credit (ECTS) module on the History of 

Mathematics (having a strong, but not exclusive, emphasis on the development of algebra). Credit for 

this module comprised two main components: 70% for a terminal examination and 30% for 

continuous assessment (CA). Roughly one third of the examination and 17 marks of the 30 allocated 

to CA were associated with the EWL Project. Thus, in effect, a substantial 40% of the total credit for 

the module was assigned to this project. What were the salient aspects of the project and how was it 

presented to the students? 

The semester began on 1st February (2016) and it was important to arrange a visit to EWL early in 

the semester to allow the students to become familiar with material that would be very foreign to their 

experience. In advance of the visit, I prepared a one-page overview (with web links, indicated in 

bold, below):  

It is a great privilege to be invited to view a selection of the mathematical works at EWL of 

which there are about 109 in total. These span a period of almost two centuries, from Cuthbert 

Tunstall’s De arte supputandi libri quatuor (1538) to Isaac Newton’s posthumous Arithmetica 

universalis (1732), published the year before the establishment of EWL and the death of its 

founder. 

According to the entry in MacTutor, Tunstall (1474-1559) had a prominent career as a 

diplomat (at the court of Charles V in Aachen, for example) and bishop (eventually of 

Durham). His De arte supputandi (1522) was the first printed work published in England 

devoted entirely to mathematics. This was not an original work, but was based on Luca 

Pacioli’s Suma (1494). 

Newton (1643-1727), arguably the greatest English mathematician, worked in a broad range 

of disciplines including theology, optics, mechanics, algebra and (especially) the calculus. 

EWL has no fewer than 16 works attributed to Newton. There are several other works in EWL 

by others associated with Newton (such as Barrow, ‘sGravesande and van Musschenbroek), 

all of whom (along with Newton himself, of course) are presented in the EWL online 

exhibition on Newton. 

The 109 books are written in four languages: English (21), French (15), Latin (64) and a 

combination of Greek and Latin (9). The authors of 74 of these (and some of the authors, such 

as Newton, have more than one book in EWL) have biographical entries in MacTutor. EWL 



expects to prepare an online exhibition on Mathematics at EWL in summer 2016. You are 

invited to contribute to this by writing a page on one of the mathematical works in EWL. 

In advance of the visit to EWL on 25th February, take a look at one of the seven ‘big’ 

exhibitions already online at EWL (Newton, Botany, Alchemy & Chemistry, Infectious 

Diseases, Astronomy, Dr Steevens’ Hospital and Aldines) or one of the eight smaller 

exhibitions  (e.g. Looking at the Moon or Surgery). Think about the following: 

1. How do you find navigating these webpages? 

2. What features of the exhibition (you chose) do you find attractive? 

3. What do you find exciting/daunting about the prospect of writing a page for the 

Mathematics at EWL exhibition? 

This page set the scene for the project. Its subsequent development required much attention to detail, 

taking on board, to a greater or lesser extent, the reactions of the students as observed in their 

submitted work, contributions to a forum (in a virtual learning environment), and queries by email or 

verbally.  

On the day of the visit, 16 of the twenty students made it, along with a colleague (Fionnán Howard) 

who played a crucial role later in editing work for the online exhibition. The students were given hard 

copy of the following: 

 A list of the twelve works of which nine were put on display by the librarian 

 A page of text or an illustration from ten of these 

 Chapter 3 (“How are mathematical ideas disseminated?”) from Stedall’s The History of 

Mathematics – A very short introduction (Stedall, 2012) 

Students were asked for their reflections on visit, and responded enthusiastically and on a wide range 

of aspects. Different perspectives on the library itself included (with student identifiers given in 

[square brackets]): 

On arrival to the Edward Worth Library (EWL) it was just how I would have pictured it. Not 

only had the books all been perfectly preserved but so had the library itself. [8] 

I expected the library to be quite big and look similar to any other library. My expectations 

were quite incorrect. [15] 

I felt as if I went back in time [12] 

In each case, the student’s surprise, even sometimes delight, is evident. On the nine books put display, 

comments included: 

I was surprised that we were allowed to view some texts up close given their iconic meaning. 

[16] 

The books themselves were written in a number of different languages, mainly Latin and 

French, with only a small amount in English, which again highlights how things have changed. 

[10] 

The most astonishing thing I saw was the quotient rule in a book from 1696. It was bizarre 

seeing it in such and old context. [2] 



There is a real sense here of situating a rule, familiar from school, now in the ‘exotic’ period of the 

calculus textbook (L’Hospital, 1696). In her introduction the librarian had made a very reasonable 

conjecture on the relative plainness of the binding of almost all of Worth’s mathematical books, and 

one student picked up on this: 

Worth didn’t seem to pick these books for their binding or appearance alone, but their content 

[7] 

Some students were thoughtful, as if for the first time, about how mathematics emerges and is 

communicated: 

It quickly became apparent to me that to study any subject during this time period you would 

need a huge amount of devotion and intellect. You would need to be fluent in various 

languages to even access three quarters of the books, you would need to travel to find the 

books and you would need an in-depth knowledge of the subject to comprehend them. [2] 

I was curious about the various languages used in the books and wondered whether every 

mathematician needed to be fluent in order to understand and broaden their mathematical 

knowledge. [6] 

The visit gave me a much better and clearer insight into the HoM module, it put into context 

how the maths we do and formulas we take for granted did not just fall from the sky, but were 

sought after and achieved by great minds. [12] 

Other students articulated hermeneutical sensibilities about the foundations of mathematics: 

Seeing some of the diagrams and equations that were printed in the math books we viewed 

(though in a different language and confusing at times) made me very aware of how long math 

has been around. That may sound childish at first, but it was extremely eye-opening to realize 

that though we may now solve problems using different methods, the foundational concepts 

and ideas are similar. [9] 

I suppose because these books were collected such a long time ago, we assume that they had 

a complete different idea of maths, but in fact this is where our understandings stemmed from. 

The visit to the Edward Worth library made me completely believe and understand that. [15] 

Others again drew attention to the language in which the works were written: 

I was also reminded how much I take it for granted that English is the principal language of 

science today. [7] 

I was taken aback by how easily I could comprehend what was in the books even though they 

were written in different languages. [18] 

Overall the response to viewing original sources close up and in the ‘intense’ atmosphere of EWL 

was strong and clearly expressed. After giving these initial informal impressions of their visit, 

students were asked to work on the detail of the EWL Project in two phases. The first phase was 

introduced as follows: 



The overall aim of this project is to produce material that will contribute to an online 

exhibition of the Mathematical works at EWL. Specifically, you are asked to choose one 

mathematical book from the collection and explore it in whatever way you can.  

Several approaches that students might have adopted were suggested, without being prescriptive. 

These included (along with many others): finding out about the author (from the web), about the 

historical context in which they lived and about who influenced their mathematical development. 

Students were encouraged to make plenty of rough notes, to be explicit about why they had chosen a 

particular work, and to relate it to their prior knowledge and readings. Moreover, the librarian sent a 

message of encouragement with some notes on the availability of English translations of books in 

other languages using the British Library's English Short Title Catalogue (ESTC). She also 

recommended paying attention to the preface of their chosen book (if available in English) so as to 

get an idea of the context of the book and what the author considered important, and to identifying 

the most striking illustrations in the book (if any). 

The four students who could not make the visit had the opportunity to read the feedback of those who 

did, and compose questions for them. In this way, they were integrated into the work of the EWL 

Project alongside their peers. 

Not surprisingly, some books were chosen by more than one student: seven chose Wilkins (1691), 

three chose L’Hospital (1696) and 2 chose Tunstall (1538). Having reviewed the work of phase one 

and given feedback, I nudged students to choose unique books, so that, in the end, 19 distinct books 

were ‘chosen’ (with two opting for Wilkins). 

In phase two, students were required to review and polish there work, taking my feedback into 

account, reviewing features of the existing EWL online exhibitions and distilling their work to 

produce an engaging, informative and reliable piece of between 800 and 1200 words. 

Later, in a short ‘capstone’ exercise, students were asked to identify the two readings they found most 

helpful for insights into the history of algebra, and give reasons why? Many of them chose readings 

related to their work on the EWL Project, indicating its strong significance in their view. 

Preparing the online mathematics exhibition 

Once the students’ work was complete, the next challenge was to devise the structure for the online 

exhibition. The librarian, Elizabethanne Boran, had much experience in this matter and, together, we 

decided to use the headings (Arithmetic, Algebra, Geometry, Conic Sections and Infinities) in Ward’s 

The Young Mathematicians Guide (1719) as categories for five sections, and to augment these by four 

more, namely Probability, Applications, Notation and Communities. These nine sections were then 

to be introduced by an opening section entitled ‘What is Mathematics?’ A decision was made to 

incorporate the students’ project work to the greatest extent possible (within an appropriate editorial 

rubric). Each of these thematic sections included links to the works of featured mathematicians. A 

full list of these mathematicians is given in Table 1 (presented chronologically, with reference to the 

life of Edward Worth himself). 

  



Number represented in EWL who died 

(or were born) in a particular period 
List of those chosen for the EWL Exhibition 

7 died before 1000 

1. Euclid of Alexandria 

2. Archimedes of Syracuse 

3. Apollonius of Perga 

16 more died before 1640 

4. Tunstall (1474–1559) 

5. Commandino* (1506–1575) 

6. Cardano (1501–1576) 

7. Viète (1540–1603) 

8. van Ceulen (1540–1610) 

9. Clavius (1538–1612) 

10. Harriot (1560–1621) 

11. Marolois (1572–1627) 

13 more died before 1678 

(before Worth’s birth in 1676, roughly) 

12. Descartes (1596–1662) 

13. Pascal (1623–1662) 

14. Wilkins (1614–1672) 

15. Barrow* (1630–1677) 

of the remaining 37:  

16 were born before 1640 

(and were living during Worth’s lifetime, 

but were much his senior) 

16. Kersey (1616–1690) 

17. Wallis (1616–1703) 

18. Brouncker (1620–1684) 

19. Dechales (1621–1678) 

20. Leybourn (1626–1716) 

21. Huygens (1629–1695) 

15 more were born before 1676 

(and were contemporaries of Worth, and 

senior to him) 

22. Ozanam (1640–1717) 

23. Ward (1648–1730) 

24. Fontenelle (1657–1757) 

25. Gregory* (1659–1708) 

26. L’Hospital (1661–1704) 

6 were born after 1676  

(and were younger than Worth) 

27. Montmort (1678–1719) 

28. Steell (1690–1726) 

Table 1: List of those chosen for the EWL Exhibition 

In this table, three (indicated by *) are included for their editions of Euclid. The exhibition itself can 

be seen online (OReilly, et al., 2016). 

Conclusion 

This paper has outlined the design and implementation of collaborative work within a module 

dedicated to the history of mathematics, drawing significantly on original sources. The result of this 

work has led to the production of an artefact external to the module, the online mathematical 



exhibition at EWL. It is evident that much was learned by all those involved, students, librarian and 

lecturers, giving clear testimony to the value of engaging deeply with original sources, in this case 

the mathematical works collected by the medic, Edward Worth, in the late 17th and early 18th 

centuries. It is hoped that many will view the exhibition and thereby enjoy the work of those who 

created it. 
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The use of the history of mathematics during an inquiry-based teaching approach is expected to 

multiply the positive effects on students’ learning. The present work investigated a “typical” 

teacher’s difficulties while trying to use the history of mathematics as a teaching tool during 

inquiry-based teaching activities. Two examples which were presented in the textbook of the 5th 

grade of primary education were used to observe the teaching practices. Results indicated that the 

teacher had difficulties in understanding how students could investigate a mathematical concept by 

integrating the history of mathematics and how the study of the history would enable them to 

construct the new-acquired knowledge. The respective knowledge of the domain seemed to be a 

prerequisite in order to be able to use the history of mathematics fluently and flexibly in a learning 

environment which asked students to explore or investigate the mathematical concepts.  

Keywords: Case-study, inquiry-based teaching approach, history of mathematics. 

Theoretical background 

Mathematics education aimed to develop pupils’ abilities to think logically, critically and creatively 

by recognizing that mathematics permeates the world around and by recognizing the power and the 

beauty of mathematics. We believe that a central key for those aims is the appreciation of the 

multicultural and the historical perspective of mathematics which faced the tendency to understand 

it as a formal science which has already been discovered. Using authentic problems from the history 

of mathematics provides experiences for students to actively engage in classroom discourse 

(Gulikers & Blom, 2001), and to realize the role of the construction of the science of mathematics.  

Since 2009, in the context of the CERME we have the appearance of the specific group which 

discusses the role of using the history of mathematics, the theoretical framework, the teaching 

practices and the respective learning results. In a meta-analysis, Butuner (2015) included 56 

researches in Turkey and abroad in order to reveal the influence of using the history of mathematics 

on success.  By the same way numerous articles have been published in scientific journals and 

many conferences have been done, without exhausting the discussion on how to use in a more 

productive way the history of mathematics in order to fulfill the aims of mathematics education. 

Recently there was a special thematic issue of the Menon Journal of Educational Research about the 

use of the history of mathematics in mathematics education. The emphasis concentrated on the 

educators’ experiences, beliefs and practices on using the study of the historical aspects of many 

different concepts for the teaching of mathematics in different ages. There are many studies on the 

level of higher education (e.g. Weng-Kin, 2008) and on the level of secondary education (e.g. 

Kaygin, et al., 2011, Lim & Chapman, 2015) and fewer about the primary education.   

The present work joined the use of the history of mathematics at a specific grade in primary 

education, with the aim of using the inquiry-based approach as a teaching method which was 

supposed to enable students explore and investigate the new mathematical concepts. At the 

Curriculum of Mathematics which was constructed in 2011 for the primary education in Cyprus, the 



use of the history of mathematics was suggested in order to develop students’ positive beliefs about 

mathematics and the usual use of inquiry-based teaching was proposed as the main teaching 

approach. The two central concepts for the inquiry-based teaching approach which were proposed 

were “investigation” and “exploration”. A case study of a “typical teacher” was used in order to 

investigate the two specific research aims: a) to examine his knowledge and beliefs on using the 

history of mathematics in an inquiry-based framework and b) to reveal the teaching practices which 

are used and the teaching difficulties which are faced during the implementation of the innovation.   

The history of mathematics as a teaching tool  

In 2000 the International Commission on Mathematics Instruction has set up a study on the role of 

the history of mathematics in the teaching and learning of mathematics. The main intention was to 

study the role of the history of mathematics in relation to the teaching and learning of mathematics 

to the teacher training. Jankvist (2009) explains the use of the history of mathematics both as a tool 

and as a goal and suggests that introducing the history of mathematics in school curricula enhances 

learners’ motivation, promotes favoured attitudes, and draws attention to possible obstacles faced in 

the generation and evolution of mathematical concepts. As a pedagogical tool it can serve as a guide 

to understand the difficulties students may encounter as they learn a particular mathematical topic 

(Haverhal & Roscoe, 2010). History of mathematics enables teachers to present to their students 

how mathematical ideas develop and to guide them appreciate mathematics as a creative 

disciplinary activity. Schubring and colleagues (2000) also posit that programs based on the history 

of mathematics could increase self-confidence in working with mathematical tasks and develop 

learners’ ability to apply mathematical methods. A journey through the history of mathematics can 

also enable learners to construct mathematical meanings and support new conceptions about 

mathematics by changing learners’ existing beliefs and attitudes (Dubey & Singh, 2013).  

Jahnke (2000) suggests three general ideas which are suited for describing the special effects of 

studying a source on the teaching of mathematics: (a) the notion of replacement according to which 

mathematics is seen as an intellectual activity, (b) the notion of reorientation according to which 

history reminds us that the mathematical concepts were invented and (c) the notion of cultural 

understanding. As Siu (1997) claims, using the history of mathematics in the classroom does not 

necessarily increase students’ cognitive performance, but “it can make learning mathematics a 

meaningful and lively experience, so that learning will come easier and will go deep” (p. 8). As 

Panasuk and Horton (2013) underline the learning of mathematics can be facilitated by studying the 

cultural significance of mathematics and understanding that “in the earliest stages of invention, 

many of the mathematical concepts were extremely difficult to define, understand and accept for 

even the most gifted mathematicians” (p.38).  

Although the mathematics teachers in the study by Lit and Wong (2001) were very supportive in 

using history in their teaching, Siu (1997), in an invited talk given at the working conference of the 

10th ICMI study on the role of mathematics in mathematics education, offered a list of thirteen 

reasons why a school teacher hesitates to make use of the history of mathematics in classroom 

teaching such as “I have no time for it in class”, “Students don’t like it”, “There is a lack of teacher 

training on it”, “Students do not have enough general knowledge on culture to appreciate it”, etc.  



The inquiry-based teaching approach 

The inquiry-based approach in mathematics education is supposed to promote engagement and 

ownership and a “human view” of science as knowledge in the making (Savelsbergh et al., 2016). It 

requires teachers to use pedagogical methods which actively engage students in developing 

conceptual understanding of mathematical concepts (Chapman, 2011). The challenge for 

educational systems is to enable its teachers to adopt the values of the inquiry-based pedagogy. The 

scientific journal of ZDM in Mathematics Education has published a special issue in 2013 with nine 

papers focusing on inquiry-based mathematics education and their implementations, indicating that 

many questions remain unanswered.  

Teachers need to develop their ability to foster student decision-making by balancing support and 

independence in thinking and working (NCTM, 2000). Classroom management is a crucial aspect 

of instructional quality (Taut & Rakoczy, 2016). Chin and Lin (2013) claim that there are obstacles 

and difficulties such as: (i) teachers did not experience inquiry-based learning in mathematics in 

their own school years, (ii) they do not have complete understanding of the inquiry-based teaching, 

(iii) there are practical constraints such as that the allocated teaching hours are not enough, (iv) the 

influence of teaching for success in tests. 

Maab and Artique (2013) examine the implementation of the inquiry-based approach and look at its 

implementation through resources and professional development. They indicate that there is a need 

to promote a widespread uptake of inquiry-based approach in day to day teaching. One of the main 

emphases of the new proposed teaching model of Mathematics in the centralized educational 

system of Cyprus which is presented at the New Curriculum (NCM, 2011), is the use of 

“exploration” and “investigation” of mathematical ideas, as two dimensions of the inquiry-based 

teaching and learning approach. The whole idea is to introduce a mathematical concept by using an 

inquiry-based activity through which the teacher asks students to express their ideas and arguments, 

to communicate by using the language of mathematics. The emphasis is on using authentic and 

open-ended problem solving activities without only one correct answer and by respecting the value 

of inter-individuality.  

Methodology 

The emphasis of the present study was to examine the teaching practices used during the 

implementation of the inquiry-based activities by using the history of mathematics in authentic 

classroom situations. We chose to observe two lessons where the use of the history of mathematics 

was proposed by the textbook, at the 5th grade of primary education. We are referred to a centralized 

educational system where the Curriculum, the textbooks and the teaching materials are proposed by 

the Ministry of Education. A “typical” teacher was chosen after the first phase of the study which is 

not presented at the present paper. The criterion for the selection was his medium performance 

concerning his knowledge and beliefs about using the history of mathematics and the inquiry-based 

teaching approach in mathematics. He took part at a first phase of the project which collected data 

about teachers’ knowledge and beliefs (details about the questionnaire are presented at Panaoura, 

2016). We aimed to make the link between what he might say during an interview and what he 

actually did during the teaching. By using the case-study approach we emphasized the analysis of 

the teaching conditions in real-life classroom situations and the interpretation he proposed during a 



follow up interview. Firstly the teacher at the 5th grade was observed by the researcher and then 

semi-structured interviews were conducted in order to discuss the lessons. The lessons were chosen 

because an activity of using the history of mathematics for introducing a concept during an 

investigation was suggested by the school textbooks. The proposed activities are presented at the 

Figure 1. 

 

 
 

Egyptians used the hieroglyphs in 3000BC which 

included 7 different symbols in order to represent the 

numbers. Write the numbers in the decimal numbering 

system.  

A follow up task asks them to compare the two systems 

and write their comments  

Unit 3, page 73 

The Reed’s papyrus gave us important information about 

the mathematics of the ancient Egyptians. One of them is 

the method of multiplication by using the doubling method. 

After studying the method, apply it in order to find out the 

result of 64X15 and then use the distributive property in 

order to find out the 13X15.  

Unit 3, page 100 

Figure 1: The activities as presented at the textbook (in Greek and in translation) 

A protocol for the observation was constructed and used in order to concentrate the observer’s 

attention on: a) teacher’s guidelines at the introduction of the activity and his interventions while 

students were working and b) teachers’ feedback on students’ difficulties and mistakes. The semi-

structured interviews with the teacher were concentrated on the practices he used and the difficulties 

he faced. 

Results 

The teacher’s observation enabled us to concentrate our attention on the teaching practices he 

followed in order to use the inquiry-based approach during the teaching of numbers and operations, 

by using a historical perspective. 

In the first case the teacher asked students to study the page, then they had to write few numbers by 

using the hieroglyphs and finally they were asked to transform other numbers into the decimal 

arithmetic system. After they presented a few numbers, their teacher asked them to discuss with the 

members of their group the similarities and differences of the two systems. The specific activity 

lasted for 10 minutes and then a whole class discussion was conducted. Teacher insisted by posing 

questions to guide them understand the limitations of the ancient Egyptians’ numeric system. Many 

correct answers were given by the students and only one unexpected question was posed by a girl: 



“Today in Egypt people use these symbols or something which remind them the attempts of their 

progenitors?” The teacher explained why the ancient systems were not survived by repeating 

arguments which were presented previously by the students, such as the complexity of the symbols. 

Nevertheless he admitted that he was not able to answer whether there is something in Egypt today 

which is related with the specific system. He continued by showing his clock and the roman 

symbols on it, he explained that there were residues of arithmetic systems and symbols which were 

used in the past. He then asked students voluntarily to look in their free time for more information 

about the arithmetic system of the ancient Egyptians in order to be able to answer their classmate’s 

question in three to four days. As he admitted during the interview there were some students who 

tried to find out more information about the numeric systems. They had not found anything about 

Egyptians; however they discover the Babylonians’ impact on the way of measuring the time and 

the Latin numbers on buildings such as the German Parliament.  

In the second case, it was the use of the ancient Egyptians’ algorithm of multiplication. The teacher 

asked students to study individually the method which was presented and applied it at the 

multiplication 35X17. Few students were not able to continue after the 32X17. One of them 

continued by writing 3X17 and then she added the two products. Teacher said that it was a wrong 

solution because “Egyptians did not know how to find 3X17”. The follow up dialogue is 

interesting: 

Student: How is it possible to know 2X17, 4X17, 32X17 and they didn’t know 3X17? 

Teacher: They knew only to double the product. 

Student: Why they did that? 

Teacher: It was their algorithm.  

Student: But the guideline at the book asked to use the distributive property to find the       

product. I had used it, 32X17 and 3X17.  

Teacher: It is right today, but not for the ancient Egyptians.  

Student: They were not clever.  

It is obvious that the student did not understand that the method of the Egyptians depended on the 

property according to which when a factor is duplicated the whole product is duplicated and she 

was not able to understand why this method was easier for them rather than the algorithm which is 

used today. However it is important that she understood the use of the distributive property in 

mathematics. Actually this was the objective of the specific course and probably the teacher did not 

know that the history of mathematics was proposed in the specific case in order to enable students 

investigate and understand the use of the distributive property in multiplication. When the teacher 

was asked about the teaching aim and the respective learning aim he said: 

Teacher: The history is used in order to understand that mathematics was created by 

humans.  

Researcher: Yes, but they could understand this at the previous lessons, with the arithmetic      

systems.  

Teacher:  Here they can understand that complicated processes were used as well.  



Researcher: Which was the impact of those processes on the development of mathematics? 

Teacher: I don’t know. However it is important for humans to study their past. 

Researcher: Do you know which were the ancient Egyptians’ occupations and where did they  

                        use mathematics? 

Teacher: No, I am not sure, probably for their transactions.  

The teacher used only naive teaching arguments for studying the history of mathematics without 

understanding that students by investigating the way the arithmetic properties were used, they could 

understand the use of those properties in order to simplify the used processes. He seemed to not 

have adequate knowledge about the cultural, political and economic framework of using the specific 

processes in order to be able to judge their utility.  

Discussion 

Teachers will continue to be expected to actively engage students in inquiry-based experiences. At 

the same time most of the Curriculum will continue to ask teachers to use the history of 

mathematics as a teaching tool in order to enable students to understand the continuity and the 

development of mathematics in respect to the cultural circumstances. The current study provided 

evidence that although probably a teacher may express positive beliefs about the importance of the 

history of mathematics for the introduction or the understanding of mathematical concepts, he or 

she may face serious difficulties in implementing an inquiry-based teaching approach. Teachers 

needs experiences during their school life or even during their pre-service training in order to be 

convinced for the results of the inquiry-based learning and the  positive results of exploring and 

investigating the mathematical concepts through a historical perspective.  

The historical approach is supposed to encourage and enable students to regard mathematics as an 

intellectual process and an on-going activity of individuals (Grugnetti & Rogers, 2000). The 

prerequisite is to enable them to understand how mathematics thinking and applications developed 

in different cultures, in response to the needs and thinking of different societies. As it is obvious 

from the present qualitative study, there are fundamental problems in the implementation of this 

objective in relation to other main objectives such as the use of the inquiry-based teaching 

approach. In the case of the New Curriculum in the educational system of Cyprus the history of 

mathematics is proposed to be used as a tool in teaching the students topics or concepts within the 

curriculum (Jankvist & Kjeldsen, 2011). 

The present study is just a part of a project which investigates the use of the inquiry–based 

approach. Much more research has to be developed in order to relate the teachers’ knowledge and 

beliefs about the use of the history of mathematics with their beliefs and knowledge about the 

inquiry-based approach in different grades Teachers’ knowledge and beliefs are the official targets 

of educational reform (Uwe, Espinoza & Barbe, 2013). Emphasis has to be given on studying 

further teachers’ difficulties in implementing the inquiry-based teaching approach in general and in 

the case of using the history of mathematics in particular, by examining the results of intervention 

programs in real classroom actions, with an emphasis on facing the teachers’ difficulties  
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This paper reports on a study about word fraction problems. These kind of problems have been 

transmitted by the school tradition. Nowadays, they have disappeared because the education model 

has changed. A classification of the problems is given and the historical resolution methods are 

presented here because they may be useful in creating knowledge for teaching.  

Keywords: Descriptive, historical, fraction problems, resolution methods. 

Introduction 

In textbooks, there are a variety of descriptive word problems. Swetz (2012) mints descriptive and it 

refers a story or pseudorealistic situation that is not meant to address any practical real situation 

(some of them are known as recreation or puzzle problems).  

Until recently, these problems were used as an essential part of the teaching of mathematics. 

However, the educational model and the design of mathematics textbooks began to change. Then, 

many problems disappeared from the current books, because the confidence in the educational 

power of these problems had declined. 

Nowadays, descriptive problems have emerged with renewed interest because the curriculum 

proposals consider problem solving as a core competency in the development of arithmetical and 

algebraic thinking. In this context, they become relevant because the historical record of the 

development of mathematical ideas and methods is useful to produced knowledge valuable for 

teaching. Particularly, to support an alternative pedagogical approach different to those that use 

problems as sub-product of other specific content learnings (as an exercise and practice). 

When we have reviewed descriptive problems that appear in textbooks, we have found them under 

different headings which are related with Methods and Rules or with Context, Actions and Agents. 

For example, 

- Methods and Rules: Rule of Three, Compound Proportion (or Double Rule of Three), Conjoined 

Proportion, Fellowship, Allocation, Interest, False Position (single and double), proportional 

distribution, etc. 

                                                 

1 This paper has been done in the framework of the research projects of Ministerio de Ciencia e Innovación, references: 

GVPROMETEO2016-143 and EDU2015-69731-R (MINECO/FEDER) 



 

 

- Contexts: Fountains or Pipes filling or Holes Emptying the Cistern, Inheritance, Clock Problems, 

God Greet You or Heap problems, Passing Through Tax passes, Water in wine, Division of Casks, 

etc. 

- Agents: Ass and Mule, Hound and Hare, Hundred Fowls, Couriers or Mobiles, The Epitaph of 

Diophantus, Animals eating a Sheep, Men Buy a Horse, Men Find a Purse, Lazy Workers, 

Posthumous Twins, Dishonest Butler, Apple-sellers’, Snail Climbing out of Well, Broken Bamboo, 

Monkey and Coconuts, A travelling Merchant, Lotus, etc. 

- Actions: Overtaking and Meeting, Giving and Taking problems, Selling Different Amounts at the 

Same Prices (to yield the same amount), Co-operative work, etc.  

This way of showing problems is the result of historical motivation and it does not allow an overall 

vision of the problems. For example, there is usually not a single resolution method for the same 

problem. Also, problems with different appearance may have the same characteristics or structure. 

This is the reason why the problems can be not organized according to the context, the actions or 

the agents, or even method of resolution. 

Our goal in this research is to build the classification of descriptive fractions problems, with a 

criterion that contributes clarity and generality, for an overall view of them. At the same time, we 

want to recover the different resolution methods, as authors have been reflected in textbooks. 

The remainder of the paper is organized as follows. First, sample problems are presented and their 

classification is explained. Also, the relation between quantities is shown with a generic statement. 

Second, different resolution methods are shown. Finally, the conclusion of the research and some 

suggestions for future research are proposed. 

The problems 

The problems, which are studied in this research, seem similar because they are multi-step fraction 

problems. 

Dying man. A dying man gave 6000 escudos to distribute in this way: the half will be given to 

the monastery of the Jacobites; the third part will be given to the convent of San Agustin; the 

fourth of the escudos to the monastery of the Friars Minor; and the fifth will be given to the order 

of the Carmelites". Question: if the whole is 6000 escudos, how many escudos will each 

monastery have? (Silíceo, 1996, p. 266) 

The Cloth. A certain man buys 4 pieces of cloth for 80 bezants. He buys the first for a certain 

Price, and he buys another for 
2

3
 the price of the first. He truly buys the third for 

3

4
  the price of the 

second. Moreover, the fourth he buys for 
4

5
 the price of the third. It is sought how much each 

piece is worth. (Sigler, 2002, pp. 274-275) 

Lotuses. From a bunch of lotuses, 
1

3
 are offered to Lord Siva 

1

5
 th to Lord Visnu, 

1

6
 th to the Sun, 

1

4
 

th to the goddess. The remaining 6 were ofered to the guru. Find quickly the number of lotuses in 

the bunch (Bhāskarācārya, 2001, pp. 57-58, ex. 3) 



 

 

The Eggs. A country woman carrying eggs to a garrison, where she had three guards to pass, sold 

at the first, half the number she had and half an egg more; at the second, the half of what 

remained and half an egg more; and the third, the half of the remainder and half an egg more 

when she arrived at the market place, she had three dozen still to sell. How was this possible 

without breaking any of the eggs? (Ozanam, 1884, pp. 207-208) 

Nevertheless, they presented two main differences. First, the whole may be known or not. The 

whole is the amount that will be split up in parts. Second, the different parts of the whole are 

interrelated or not.  

The Dying Man is a problem in which the known whole is split up in unrelated parts, i.e., we know 

the whole (T) and for example we have two parts: 𝑝1 = 𝛼1𝑇 and  𝑝2 = 𝛼2𝑇, where 𝛼1 + 𝛼2 ≥ 1 

and 𝛼𝑖   𝜖 ℚ 𝑤𝑖𝑡ℎ 𝑖  𝜖 (1,2). We want to know each part. 

The Cloth, is a problem in which a known whole is split up in related parts, i.e., the known whole 

(T) is divided in, for example, three parts, 𝑝1 = a1 + 𝛼1𝑝1 and 𝑝2 = a2 + 𝛼2𝑝2, where 

𝑎𝑖 𝑎𝑛𝑑  𝛼𝑖  𝜖 ℚ 𝑤𝑖𝑡ℎ 𝑖 𝜖 (1,2). We want to know each part.  

Lotuses are problems in which the unknown whole is split up in unrelated parts, i.e., we do not 

know the whole (T) and it is divided in three parts: 𝑝1 = 𝛼1𝑇, 𝑝2 = 𝛼2𝑇 and 𝑝3 = 𝐴 where 

𝛼𝑖 𝜖 ℚ 𝑤𝑖𝑡ℎ 𝑖  𝜖 (1,2) and A is a known quantity. We want to know the total amount. 

The Eggs, are problems in which the unknown whole is split up in related parts, i.e., we do not 

know the whole (T) and we want divided it in, for example, three parts: 𝑝1 = 𝑎1 + 𝛼1𝑇, and 𝑝2 is 

𝑎2 and 𝛼2 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔, the third part is known A, where 𝑎𝑖, 𝛼𝑖 , 𝐴 𝜖 ℚ 𝑤𝑖𝑡ℎ 𝑖  𝜖 (1,2). We 

want to know the total amount. 

These differences permitted us to classify the problems and show a global vision about descriptive 

word fraction problems (Figure 1). 

 

Figure 1: The classification of the problems 



 

 

Note that it is possible to which the draft of the classification according to the relations between the 

parts: additive (one part is the sum of another or others), multiplicative (one part is a multiple or a 

fraction of another or others), combinations of both, …but the research focuses on a classification 

without subcategories because of the allowed extension. 

Resolution methods 

Different Textbooks, from different periods or historical moments, has been reviewed to select 

problems. The resolution methods observed are the following. 

Method of inversion  

The method of inversion method is explained by Colebrooke (1817, p. 21) in these words, “To 

investigate a quantity, one being given, make the divisor a multiplicator; and the multiplier, a 

divisor; the square, a root; and the root, a square; turn the negative into positive; and the positive 

into negative.” 

In this method, the problems are solved by the inverse operations, i.e., if the problem name the 

product, the division is used to solve, or in the case of addition, the subtraction is used. Note that, 

the resolution process begins with the last operation, and continues up to the first operation 

indicated in the problem definition. 

The next problem of “unknown whole and related parts” shows the method: 

The Eggs solution. It would appear, on the first view, that this problem is impossible, for how 

can half an egg be sold without breaking any? The possibility of it however will be evident when 

it is considered, that by taking the greater half of an odd number, we take the exact the half +
1

2
  . 

It will be found therefore that the woman, before she passed the last guard, had 73 eggs 

remaining, for by selling 37 of them at that guard, which is the half +
1

2
, she would have 36 

remaining. In like manner, before she came to the second guard she had 147; and before she 

came to the first, 195 (Ozanam, 1884, pp. 207-208). 

False position 

False position is related with the algorithmic process where an assumed value is chosen. The 

operations are done with this number so the result is not correct because the value is not the real 

value. Then, a rule of three or a proportion is done to obtain the correct result2.  

We can see this method in a lot of fraction descriptive problems, for example in this known whole 

and related parts problem, 

                                                 

2 The conditions of the statement can be modeled with a first-degree equation with one unknown: b = ax. The rule 

commands that the equation be solved by giving an assumed value to the unknown x = x1, which gives rise to the error 

b1, b1 = ax1. From these two equalities: b = ax and b1 = ax1, we obtain the ratio =
𝑏1

𝑥1
, from which the value of x is 

followed. 



 

 

The Cloth solution. Put the first piece worth 60 bezants (False position), because 60 is the least 

common multiple of 5 and 4 and 3. Therefore, if the first is worth 60 bezants, then the second is 

worth 
2

3
 of it, 40 bezants and the third worth 30 bezants, that is 

3

4
 of the price of the second. The 

fourth worth 24 bezants, that is 
4

5
 of 30. Then you add 60, 40, 30 and 24, i.e., sales prices of the 

four pieces; They are 154 and should be 80; says, got 60 for the price of the first piece and 154 

bezants result that the sum of the four pieces; How much will I put to the sum of the parts it is 80 

bezants? Multiply 60 by 80; and there will be 4,800 which is divided with the rule by 154, i.e., 

1/2 0/7 0/11; the ratio is 6/7 1/1131 bezants. And this is the value of the first piece. Also in order 

to obtain the price of the second, multiply 40 by 80, then divide again by 1/2 0/7 0/11; the ratio is 

20 4/7 8/11 the price of the second piece. Also, to know the price of the third, it multiplies 30 by 

80, and divide by 1/2 0/7 0/11; the ratio is 3/7 6/11 15 bezants; in the end, the price of the fourth, 

multiply 24 by 80, and divide by 1/2 0/7 0/11; the ratio is 1/7 5/11 12 bezants, and you realize 

that in each of the four products is canceled 1/2. (Sigler, 2002, pp. 274-275) 

Or in these other two problems of “unknown whole and unrelated parts”: 

The Tree solution. Because the least common denominator of 
1

4
 and 

1

3
 is 12, you see that the tree 

is divisible into 12 equal parts; three plus four parts are 7 parts, and 21 palms; therefore as the 7 

is to the 21, so proportionally the 12 is to the length of the tree. And because the four numbers 

are proportional, the product of the first times the fourth is equal to the second by the third; 

therefore if you multiply the second 21 by times the third 12, and you divide by the first number, 

namely by the 7, then the quotient will be 36 for the fourth unknown number, namely for the 

length of the tree; or because the 21 is triple the 7, you take triple the 12, and you will have 

similarly 36 (Sigler, 2002, p. 269). 

Lotus solution. Suppose the total number of lotuses is 1. Then the number of lotuses left is  

1 − (
1

3
+

1

5
+

1

6
+

1

4
) = 1 −

20+12+10+15

60
= 1 −

57

60
= 1 −

19

29
=

1

20
. So if 

1

20
𝑡ℎ is 6 the total 

number of lotuses is 
6×1

1

20

= 120 (Bhāskarācārya, 2001, pp. 57-58, ex. 3). 

In both examples, the value of one part is known and the other parts are fractions of the whole 

unknown. If T is the unknown whole and A is the known part, in these problems  𝑇 = 𝑝1 + 𝑝2 + 𝑝3, 

where, 𝑝1 = 𝛼1𝑇;  𝑝2 = 𝛼2𝑇, where  𝛼𝑖  𝜖 ℚ 𝑤𝑖𝑡ℎ 𝑖 𝜖 (1,2). Consequently, we add the fractions 

𝛼1 + 𝛼2, and an equation is drawn between the difference of this sum with T and the known value . 

To solve this equation is arithmetically run as in the false position. For this, one can proceed by 

avoiding the fractions, by taking an assumed value for T that is a multiple of the denominators of 

the fractions (The Tree); Or, taking as value the whole unit (Lotuses), and then with a rule of three. 

Direct method  

In this resolution method, the arithmetic operations with fractions are performed as the statement 

says. We present a “known whole and unrelated parts” problems to show this method: 

Dying Man Solution. For Jacobite the half of 6000 escudos; for St. Augustine a third of the 6000 

escudos, i.e., 2000; for Friars Minor the fourth part 6000 escudos that is 1500; and for Carmelites 

the fifth of the 6000 escudos, i.e., 1200. All of these parts add up 7700, but it is not possible 



 

 

because the man only has 6000 escudos. The divisor is considered 7700, and the multiplier is the 

money that would must be distributed, i.e., 6000. Then, each part is multiplied by this ratio. 

Therefore, if the part of the Jacobites is multiplied by the multiplier and is divided by the divisor, 

they get 2337 escudo 23 duodenos and 2 turonos and 1400/7700 parts of turon. Then, this is the 

amount that corresponds to the Monastery of the Jacobites. In other cases, we proceed similar 

and get the amount corresponding to each of them. Note that 1escudo = 35duodenos; 1duodeno = 

12turonos. (Silíceo, 1996, p. 266) 

In Dying Man, once the arithmetic operations with fractions are performed directly as the statement 

says, is needed an unequal distribution. T is distributed according to the rates 𝛼1: 𝛼2: 𝛼3. Then the 

required distribution of T is: 𝑝1 =
𝑇

𝛼1+𝛼2+𝛼3
𝛼1; 𝑝2 =

𝑇

𝛼1+𝛼2+𝛼3
𝛼2; 𝑝3 =

𝑇

𝛼1+𝛼2+𝛼3
𝛼3. 

The direct method appears in the “known whole and related parts” problems too. In this kind of 

problems, the parts of the whole are considered in different ways. The next examples illustrate it, 

A walker. A certain man walking in the street saw other men coming towards him, and he said to 

them: “O that there were so many [more] of you as you are [now]; and then half of half of this 

[were added]; and then half of this number [were added], and again, a half of [this] half. Then, 

along with me, you would number 100 [men].” How many men were first seen by the man? 

(Hadley & Singmaster, 1992) 

Solution. We can suppose that the half of half is a part; then the half would be two parts; The 

group of men would be four parts and the others are four parts. Therefore, if you divide 99 into 

eleven parts, the result will be half of the half, then the solution is 36 men in the group. Testing: 

36+36+18+9+10100. (Sánchez Pérez, 1949, p. 58) 

Day laborers. Three laborers charged for one hour 610 pesetas. The oldest earned 1/8 more than 

the median and this 1/5 more than the youngest. How many pesetas are each? 

Solution. Supposing that the youngest earned 1, the median would earn 1 + 
1

5
 = 1.5, and the 

oldest would earn 1.2 + 
1.2

8
 = 1.2 + 0.15 = 1.35. If we divide 610 in proportional parts 1:1.2:1.35, 

the youngest earn 
640

3.55
= 171.83 pesetas… (Solís y Miguel, 1893, p. 52) 

The hours. You know the hours, could you say me how many hour have passed since this 

morning? There remain twice the two thirds of the hours that have already passed. (Jacobs, 1863, 

p. 42) 

Solution. You must divide the length of the day in 12 parts, the question is divided this number 

in two parts, such that the 
4

3
  of the first are equal to the second, it is 

51

7
 , consequently, for the rest 

of the day, 6 hours and 
6

7
 . (Ozanam, 1844, p. 192) 

The work. In one work, 25 men, 12 women and 30 children are employed. A woman's salary is 
2

3
 

of a man’s salary, and a child earns 
3

4
  of a woman salary’s. The work has cost 403.20 pesetas. 

What is the salary of each? 

Solution. The 12 women earn as much as 12 ·
2

3
= 8 men. A child earns 

3

4
  of a woman's salary, 

i.e. or 
2

3
·

3

4
=

1

2
 of a man's salary. The 30 children earn 30 ·

1

2
= 15  men. The 403.20 pesetas are 



 

 

the salary of 25 + 8 + 15 = 48 men. Each man earns 
403.20

48
= 8.40 pesetas. Each woman: 8.40 ·

2

3
= 5.60 pesetas. Each child: 

8.40

2
= 4.20 pesetas. (Aritmética razonada, 1940, pp. 151 & 660) 

Algebraic method 

This method is where the problem is reduced a list of quantities and the relation between them gives 

rise to an equation (Puig, 2003). The equation is obtained as a result of matching two algebraic 

expressions that represent the same amount. 

The next example of “known whole and related parts” illustrated this resolution method (Aurel used 

the cossic sign, not x) 

Three men want to share 100 ducats. Three men want to share 100 ducats. The first person has 
2

5
 

of the second person; and if the ducats of third person are divided by the ducats of the first 

person, the number is4
5

6
. So, how many ducats are there?  

Solution. Three men want to share 100 ducats. The first person has 
2

5
 of the second person; and if 

the ducats of third person are divided by the ducats of the first person, the number is 4
5

6
. So, how 

many ducats are there? Solution. I suppose the second person have 1x ducats so the first person 

have 
2

5
 x; and the third will have the remainder, 100 − 1 

2

5
 x. The ducats of the third person are 

divided by the ducats of the first person and the result is 
100−1 

2

5
𝑥

2

5
𝑥

, it is 4
5

6
 . Reduce the equation, 

100 − 1 
2

5
 x = 

29

15
𝑥. Calculating, 1𝑥 is equal to 30, then the first and third person have 12 and 58 

ducats, respectively (Aurel, 1552, fol. 102v, ex 88; Aurel used the cossic sign, not x). 

Conclusion 

With this research, we try to use the historic descriptive problems to produce useful information to 

the mathematics education.  

Firstly, the descriptive word fraction problems, which are in the ancient textbooks, have been 

studied. Secondly, a classification of them is built and is focused in the whole and the parts. With 

this, four different types of problems have been obtained and a generic statement of each problem is 

proposed. Thirdly, some resolution methods have been explained and analyzed: method of 

inversion, false position, direct method and algebraic method. Note that this is a classification that 

supports subcategories, and they are been studying in this moment. 

This research allows us to offer students a range of methods to choose the most appropriate method 

in each problem to solve it correctly.  

In a future, we will design a questionnaire to carry out a cognitive analysis to obtain the students 

achievement in this kind of problems. That is, an empirical analysis that will try to find out the 

difficulties faced by students in each of the determined types. The difficulties will be related with 

the essential elements studied in this research. 
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Mathematics at the Royal Danish Military Academy of 1830   

Asger Senbergs  

Roskilde Katedralskole, Roskilde, Denmark; asger@senbergs.dk  

This paper takes its starting point in the question concerning why mathematics was chosen as the 

most important subject in the education of Denmark’s new officers when the Royal Military Academy 

was founded in 1830. To answer this question, source material from the period is researched. From 

the source material, three educational aims in the mathematical education can be derived: 

mathematics as a goal in itself; mathematics as a tool; and the mathematical method. These 

educational goals can be seen as a desire to educate officers in three skills: theoretical knowledge; 

vocational knowledge; and general education. Together these two sequences of each of the three 

elements are connected in pairs, thereby creating a link between the officers to be educated and 

mathematics as a taught subject. It is concluded that mathematics was chosen as the most important 

subject, because it supported the needs an officer educated at the Academy was required to possess.  

Keywords: Military schools; officer’s mathematics education; societal elite. 

The Royal Danish Military Academy  

In 1830 a new military education was created in Denmark – an education that was very different 

compared to similar educations that existed in Denmark at the time and even very different compared 

to the modern officer’s education in Denmark. This new education was called The Royal Military 

Academy, and it played a central role in the history of Denmark due to the establishment being an 

expression of the emerging nationalism that was forming in the country. It also marked the start of a 

professionalization of the military, which consequently formed a new social class: the educated 

officers. With this institutionalization of military training there was a desire to organize the 

knowledge believed necessary to become an officer. This created a need for both skilled teachers and 

teaching material of a certain quality that could support this new institution.  

In particular a need for educated mathematicians arose, since mathematics was chosen as the main 

subject for the entire education regardless of which field of study, the students were subjected to. At 

the Royal Military Academy officers could study the following fields: general staff officer; engineer 

officer; artillery and rocket officer; and road officers. For all four fields of study, mathematics was 

the subject that had the highest number of modules throughout the 4-year education. The education 

was split into two classes – referred to as the youngest class and the oldest class – both having a 

duration of two years. Students in the youngest class followed courses classified as being “purely 

scientific”, which included mathematics, chemistry, physics and languages. In the oldest class the 

students had courses classified as the “applied“ subjects, which included war history, mine teachings, 

and field maneuvers. 

The split mentioned above seems consistent with the general view of mathematics as a teaching 

subject at the time, i.e. in Denmark as well other countries in Europe mathematics was viewed as an 

entity made up by two parts: a pure and an applied (Kragh et al., 2005, pp. 297–298). Pure 

mathematics was perceived as the theoretical part, which was considered beneficial to the ability to 

think logically and connect structures in a certain way – important aspects of what was described as 



the “general education”. The applied part of mathematics was perceived as a tool for solving various 

problems, often in a very practical context.  

Out of all the subjects taught at the academy, mathematics made up half (49%) of the total number of 

lessons taught during the youngest class. In total during the four years, mathematics made up one 

fourth (25%) of the lessons taught making it by far the largest single subject taught during the entire 

education. Not only was mathematics the largest single subject, it was also taught at a very high level 

in particular in comparison to mathematical knowledge of the average population of Denmark at the 

time. The students at The Royal Danish Military Academy were taught descriptive geometry, 

mathematical analytics and rational mechanics, which consisted of both complicated proofs and 

assignments varying from very abstract situations to practical use. Even compared to the current 

officers’ education in Denmark at The Royal Danish Defense College, this prioritization of 

mathematics is notable. An article brought in a Danish military magazine present the fact that 40% 

of all permanent military employees have difficulties even with 9th grade level mathematics 

suggesting that the mathematical knowledge of today’s military education has been somehow 

downsized (Frovin, 2014, p. 16).  

In a central source material book from 1855, which is concerns the creation and subsequent operation 

of the Royal Danish Military Academy, the following is stated:  

The Danish academy is modelled on the French educational institutions. […] the organization, the 

teaching methods (first theory taught by a teacher and then repetition), the exams, which are 

supervised by other officials than the teachers – these main points with minor details are directly 

copied from the French educational institutions, only with smaller modifications which are caused 

by the economic situation and the smaller scale of the Danish educational system. (Caroc, 

Bjerring, Reich, & Købke, 1855, p. 31, my translation)  

This strong inspiration was most likely due to the fact that several of the officers in the planning 

commission of the Royal Military Academy in Denmark had themselves studied at the Ecole 

Polytechnique. A key difference between the Ecole Polytechnique, created in 1974, and the Royal 

Military Academy was however that the Royal Military Academy did not train civil engineers, which 

was the case at the Ecole Polytechnique.  

The prioritization of mathematics in a military context, as in the case of the establishment of the Royal 

Danish Military Academy is not only a Danish phenomenon, it is closely linked to similar trends 

which started years before in central Europe with France as a starting point (Bradley, 1976, p. 165). 

The French Revolution and the European wars throughout the 1700s led to developments in both 

weapon technology and construction work. This again increased the need for better educated 

mathematicians and hence teaching in more advanced mathematics.  

Still, the question remains, how mathematics was considered to help cadets become better soldiers? 

According to Karp and Schubring (2014) not much research has been carried out on mathematical 

education in a military context. In fact, they describe how this field is only just beginning to take 

shape alongside the methodology. Nevertheless this relatively new research field can contribute to 

our historical knowledge about the development of a society, because mathematical education have 

often been prioritized in historical periods, where society was in need of engineers, technical and 

scientific personal (Karp & Schubring, 2014, pp. 9-10). Hence, an understanding of how the 

mathematical education was constructed at military academies can provide us with an indication of 



what kind of work tasks the military personal was meant to fulfil, thereby also explaining the general 

perception of mathematics at the given time. This sums up the focus of this paper, which may be 

condensed into the following research question: Why was mathematics chosen as the most important 

subject, when the Royal Danish Military Academy was founded in 1830 as the new national officer’s 

education program? 

Methodical approach 

The answer to the above question shall be based on a carefully selected sample of source material 

from that period alongside a variety of secondary literature, which will form the historical background 

for the source material. The historical source material falls in two categories: books concerning 

administrative aspects; and teaching materials.  

In the first category, two very central works from the period are used. The first book is Plan to the 

Royal Military Academy (my translation) and was written by a committee in 1830. The committee 

consisted of eight officers from the Danish army. Lieutenant general Franz Christopher Bülow 

oversaw this committee, and he was also the official author of the work. This book formed the official 

establishment of the Royal Military Academy and described all relevant matters for the creation and 

operation of the academy. The content covered everything from the overall structure and economic 

frame to detailed descriptions of the teaching subjects and lesson tables for all fields of study spanning 

over all four years. This book makes up the main source, since it contains several descriptions about 

why mathematics is important and what role mathematics was to play in various connections. The 

second central book is Overview over the education in the special corps before 1930 and the Royal 

Military Academy's operation from its creation to 1855 (my translation), written by three officers and 

a professor from the University of Copenhagen: F. C. V. Caroc, V. J. Bjerring, C. E. Reich and J. P. 

Købke. This book was released on the occasion of the Academies 25-year anniversary. The book 

makes up an important piece of source material, because it is one of the only available books from 

the period that describes the development of military education and does so in a critical manner.  

In the second category, the teaching materials, there are seven books in total. All seven are teaching 

materials in mathematics: three of these are textbooks in mathematical analysis; two are textbooks in 

descriptive geometry; and the last two are figure books in descriptive geometry the purpose of which 

were to serve as support for the textbooks. One textbook by Bendz (1831) was in particular used to 

support the conclusions about the role of mathematics at the Royal Military Academy. The book is 

in mathematical analysis describing differential and integral calculations, and an analysis shows that 

it contains practically no tasks related to extra-mathematical circumstances, which supports the 

interpretation of the text by Bülow (1830). 

To set the historical frame for the Royal Military Academy, several books have been used, of which  

Danish history of Natural science, Volume II edited by Helge Kragh, and Private Schools through 

200 years, volume I edited by Christian Larsen, are some of the more important books. These works 

provide an overall understanding of the educational level of young men from the higher levels of 

society in Denmark, who would be the students at the Royal Military Academy.  

In order to set the European historical frame, both regarding military education in general and 

mathematics as a teaching subject and as a research profession in particular, several articles and books 

have been used. Here it is important to mention: Boyer (1968); Barnett (2015); and Bradley (1975). 

These works provide the study presented in this paper with background knowledge on how the 



development of the Royal Military Academy might have been influenced by similar institutions in 

other European countries, in particular France.  

 

Mathematics as the cornerstone  

In the main source (Bülow, 1830) there are several descriptions and explanations about the various 

teaching subjects which were taught at the Royal Military Academy. The description of mathematics 

is rather interesting in this context. The following quote from the introduction became the starting 

point for the research described in this paper:  

Mathematics, especially its analytical part, including rational mechanics, is considered the 

cornerstone in education as a whole. Thus it should give the students the means to understand a 

series of other important subjects. (Bülow, 1830, p. 38, my translation)  

Through careful readings of this material several other interesting quotes was found and eventually 

they came to form the analysis. Through this archival based analysis I found evidence to suggest that 

the commission, who planned and designed the Royal Military Academy, were subject to three central 

educational aims, all having mathematics as the cornerstone: mathematics as a goal in itself; 

mathematics as a tool; and mathematics as a method. These aims were never explicitly uttered in the 

source material and could therefore make up a separate question for discussion. In the present 

analysis, however, they came to structure the reading of the source material. In the following I present 

carefully chosen excerpts from the source material in order to support the finding of the three 

underlying educational aims of the commission. 

Mathematics as a goal in itself  

There are several quotes that put emphasis on the importance of “mathematics as a goal in itself” 

without mentioning a specific purpose of the mathematical knowledge, which might lead one to think 

that there was another purpose besides the more direct usage of mathematics. A central quote on this 

is from the descriptions of the teaching subject of physics, where the proper way of learning is 

explained:  

The dual way to realization; the experimental and the mathematical, which here make up the right 

teaching method, which also has an exceedingly significant influence on the entire development 

of the mind; because the mind gets used to neither neglecting the simplicity of the real world nor 

making us lose ourselves in these details, thereby forgetting the general principles. (Bülow, 1830, 

pp. 39–40, my translation)  

Here mathematics is mentioned as one of the two ways to true realization, whereas an experimental 

or practical way is mentioned as the other. In fact we touch upon a very central aspect. As mentioned 

earlier, several publications state that mathematics in this historical period is seen as a unity consisting 

of two parts, namely pure and applied mathematics. The distinction between these two is noticeable 

in the way the mathematical subjects were structured during the education at the academy. For 

example, descriptive geometry was divided into a theoretical and an applied part, with a vast 

difference between what kind of theory and assignments the students were to do. The following quote 

is a description of what kinds of assignments the students should be able to accomplish during a 

lecture in the theoretical part of descriptive geometry.  



For a given curve, draw a tangent, which has a horizontal projection that is parallel to a given line. 

(Bülow, 1830, p. 76, my translation)  

This assignment is purely mathematical without any trace of an extra-mathematical scenario, which 

was very important since the purely mathematical way was thought to be one of two parts in the 

learning process. This central point can be further validated by looking at the teaching material used 

in descriptive geometry, which are two textbooks both authored by L. S. Kellner. The first book 

(Kellner, 1830a) – which conisted of only one booklet – described a theoretical approch to geometry, 

whereas the second book – consisting of six booklets – described different ways to use the given 

theory in a wider range of subjects, spanning how to construct different buildings to how shadows 

fall on objects (Kellner, 1830b). From reading the source material it seems clear that students were 

believed be able to understand the basic sciences to the fullest before they could apply them in other 

connections. Since mathematics was a subject that had its usage in other scientific disciplines and a 

large part of the applied disciplines, mathematics appears to be a subject that students should learn 

and master before applying it in extra-mathematical connections.  

However, the mathematical curriculum exceeds the need in other subjects, which indicates that the 

students were meant to learn beyond the point of what they were actually going to use in these 

subjects. This suggests that mathematical knowledge was an educational goal in itself, because it was 

thought to be beneficial in various ways.  

Mathematics as a tool 

The second identified educational aim was that it was essential that the students learned how to apply 

mathematical equations and a logical approach to problems, because it was a required tool in both the 

purely scientific and applied subjects taught in the youngest and oldest class at the academy. 

Especially in the applied subjects mathematical knowledge was necessary, since these applied 

subjects were the ones to make a student capable of fulfilling his later duties in a specific position 

within the military.  

For that reason it was important that the students knew how to use mathematics as a tool, which 

according to the source material forms the experimental way to realization. This practical use of 

mathematics can be seen in a description of an assignment from descriptive geometries in the applied 

part, which the following quote illustrates.  

Explain the various timber connections in roof- and stair constructions. (Bülow, 1830, p. 79, my 

translation)  

This example forms a clear contrast to the other assignments from descriptive geometry in the 

theoretical part, where there is no connection to the real world. In this short assignment, the student 

should be able to construct very specific structures according to a set of requirements.  

This vast span from theoretical knowledge to the ability to use it practically is closely linked to the 

term “general education”, which is commonly referred to by Bülow (1830). Hence, this term is vital 

for this analysis, and needs to be explained in this paper as well. The term “general education” (in 

Danish “almendannelse” similar to the German “Allgemeinbildung” or “Bildung”) was a common 

term in the Danish society in the beginning of the 1800s, and the exact meaning of the term was 

greatly influenced by the first Danish professor in pedagogy, L. C. Sander. The “general education” 

term was also seen as a unity with two parts: the general part and the professional part. The 



professional part was a person’s ability to carry out a certain profession or job, which required some 

specific skills and knowledge. The general part was a person’s ability to engage in and contribute to 

different levels of the society, which required overall knowledge about culture, history, behavior, 

science, manners and language (Slagstad, Korsgaard, & Løvlie, 2003, pp. 9, 245). Both of these rather 

different parts should be in place before the general education was complete. And this was one of the 

central goals at the Royal Military Academy. Hence, in order for the students to gain this general 

education, they should be educated to be good soldiers and loyal officers with insight in every relevant 

subject in their field.  

The mathematical method  

This brings us to the last identified educational aim, namely the mathematical method. The 

mathematical method is mentioned several times in The Plan to the Royal Military Academy and was 

described as something that benefitted the general ability to think and to conclude logically, not only 

in a mathematical context but also in other circumstances. Actually, it was believed that once a student 

had acquired the mathematical method, this student would be able to transfer this knowledge and 

approach to other fields of study and everyday scenarios (which we of course know from mathematics 

education research often is not the case). 

This idea becomes clear through the following quote, which is taken from a paragraph that describes 

the Danish language as a subject, taught at the Royal Military Academy.  

The incessant desire for clarity and definitiveness of expression leads to clarity and definitiveness 

in concepts of the person, whose thinking has become sharpened by the mathematical study of the 

natural sciences. Thought and language are in close contact with each other; they constantly excite 

and control one another. (Bülow, 1830, p. 41, my translation)  

Not only is the mathematical study seen as something that sharpens the minds of the students, which 

makes them more precise in their choice of words, it is actually seen as something that makes the 

students more likely to draw the right conclusion based on logical assumptions. This is further 

supported by the following quote.  

The verdict is always most correct, when it can be constructed with numbers, or, and even more 

perfect, with specific algebraic symbols that simultaneously provide idea and form, the common 

and the special, the abstract and the concrete. (Bülow, 1830, p. 38, my translation)  

The above suggests that the mathematical method played several important roles in the education at 

the Royal Military Academy. Not only was mathematics a central subject in order to acquire the other 

subjects taught at the academy, it was also believed to develop the mind and the communication of 

those who mastered the mathematical method to its fullest extent.  

The officer: Gentleman and soldier  

In the following, I compare the above described three educational aims, which were condensed from 

the source material, and connect them with the three levels of knowledge that might make up some 

of the main reason why mathematics was chosen in the first place. These three levels of knowledge 

could be described as: theoretical knowledge; practical knowledge; and general education.   

Theoretical knowledge: It is the idea that an officer must be trained in the basic sciences that are used 

in various parts of his work as a soldier. Courses in this type of knowledge are taught at the youngest 



class, which is certainly not a coincidence, but part of a basic philosophy that these basic sciences 

must be mastered in full, before the student will be able to apply the knowledge in other contexts. 

This explains why several of the mathematical topics were not connected to any applications. The 

point was to learn the theoretical basis without any applied context.  

Practical knowledge: This type of knowledge is gained through the courses taught at the oldest class, 

because these subjects are related to the different fields of study, i.e. the “applied” subjects. For 

example, it was in the oldest class that artillery and rocket students had training in artillery, mine 

teaching and statistics, as well as practical exercises in artillery shooting and marching. This tendency 

is present in all fields of study. Many of the courses for students in the youngest class served as basis 

knowledge for the applied subjects in the oldest class.  

General education: Here the underlying idea is that an officer in addition to knowing his profession 

to his fingertips also should be a well-educated gentleman. That meant that an officer trained at the 

Royal Military Academy should be a person with a broad insight into the culture, history and 

language of Denmark as well as other European countries. The students should also have a wide 

knowledge of the natural sciences and their mutual connections, but also with sensible ethics, a good 

appearance, attitude and solid behavior.  

It may seem odd that an officer was taught about Danish literature, since this does not immediately 

suggest itself as a useful subject for an officer. But at the time an officer was also a person who should 

be able to be part of Denmark's highest layer of society. In fact, officer was one of the best educated 

professions in all of Denmark at the time. Therefore, it was indeed expected that the officers were 

well-educated in many subjects and trained in the spirit of the time.   

Conclusion  

My starting point was a question about why mathematics was chosen as the cornerstone subject, when 

the new officer training institution in Denmark, the Royal Military Academy, was founded.  

In this paper the reasons for choosing mathematics as the main subject are examined through source 

materials and mathematical teaching materials from the academy and the given period. The analysis 

of these contemporary sources was structured around three educational aims, which were supported 

by a close reading of the source material linked to other similar institutions of the time, e.g. the Ecole 

Polytechnique. These educational aims could be thought to show three distinct levels of knowledge, 

which were desirable for a recent graduate student to possess from the Royal Military Academy, i.e. 

theoretical knowledge, practical knowledge, and general education.  

Besides these two sequences being findings in their own right of the present study, yet a finding is 

that they belong together in pairs. That is to say, the aim of mathematics as a goal in itself was to 

support students’ development of theoretical knowledge; the aim of mathematics as a tool that of 

practical knowledge; and the aim of acquiring the mathematical method served a purpose of general 

education. Hence, it seems fair to say that mathematics was chosen as the cornerstone for the 

education at the Royal Danish Military Academy, because it supported the objective – namely to 

educate good officers.  
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This paper describes a research project analysing design research projects with history of 

mathematics. As a background, the theory of design research is invoked. For the purpose of this 

paper, preliminary analyses of three publications have been made. In later phases, interviews will 

supplement text analyses to enable a discussion on both explicit and implicit considerations 

involved when designing materials with history of mathematics in mathematics education. 
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Introduction 

The study of how history of mathematics (HM) can contribute to mathematics education has been 

ongoing for a long time. From time to time, major efforts have been made to design materials for 

teaching mathematics with history of mathematics. Parallel to this, design research has emerged as 

an area of study in its own right. The purpose of this research project is to use the insights that 

recent literature of design research provides to study how design have been done with HM.  

Design research 

In a recent ICMI Study on task design in mathematics education, Kieran, Doorman and Ohtani 

(2015) outlines the history of “design-related work” in mathematics education. Design efforts have 

had many forms and names, but I will take as my starting point Malcolm Swan’s encyclopaedia 

article on design research (Swan, 2014). He defines design research in this way:  

[Design research] is a formative approach to research, in which a product or process (or “tool”) is 

envisaged, designed, developed, and refined through cycles of enactment, observation, analysis, 

and redesign, with systematic feedback from end users. In education, such tools might, for 

example, include innovative teaching methods, materials, professional development programs, 

and/or assessment tasks. Educational theory is used to inform the design and refinement of the 

tools and is itself refined during the research process. Its goals are to create innovative tools for 

others to use, describe and explain how these tools function, account for the range of 

implementations that occur, and develop principles and theories that may guide future designs. 

Ultimately, the goal is transformative; we seek to create new teaching and learning possibilities 

and study their impact on teachers, children, and other end users. (Swan, 2014, p. 148) 

I choose to lean on Swan’s definition and use the phrase “design research” here. Others use “task 

design” for similar efforts – task design is not to be understood as merely designing tasks:  

[…] designing a task or task sequence in isolation from consideration of the design of the 

instructional culture in which the task is to be integrated may be of quite limited value – 

somewhat analogous to expecting a bird to fly with just one wing. (Kieran et al., 2015, p. 61) 

Based on a selection from the literature on design research (including task design), I will focus on 

four dimensions: the goal; theories, values and design principles; testing; and end result. 



First, what is the goal of the project? As seen in the quote above, the goal is to improve something 

(a product, process or tool) – for instance it could be to create materials (based on history of 

mathematics) that will improve how geometry is taught. 

Design can be seen as an art or as a science (Kieran et al., 2015, p. 62) or as both. Seen as an art, 

creativity is an important factor, seen as a science, design will be based on previous theories. In 

addition, values will always play a role: “the frames and principles used in task design are intimately 

related to aims of mathematics education” (Kieran et al., 2015, p. 65). The role of theories is 

debatable, for instance Burkhardt (2013) stresses that “strong theories” are often overestimated in 

education, and argues for “phenomenological theories for specific areas” (p. 233). Kieran et al. 

(2015) distinguish between three levels of theoretical frames: Grand Theoretical Frames (such as the 

constructivist), Intermediate-Level Frames (such as the Theory of Didactical Situations) and 

Domain-Specific Frames (such as theoretical frames concerning specific parts of mathematics). 

Based on such theories, as well as on values, design principles are often developed for the research 

project. Thus, the second dimension is which theories, values and design principles are involved. 

Kieran et al. (2015) also makes a further distinction: “Design as implementation focuses attention 

on the process by which a designed sequence is integrated into the classroom environment and 

subsequently is progressively refined, whereas design as intention addresses specifically the initial 

formulation of the design” (p. 28). In design as implementation, the testing in “cycles of enactment, 

observation and redesign” (Swan, 2014, p. 148) has a key role. Moreover, Burkhardt (2013) states 

that there is a “crucial difference” between exploration of teaching possibilities by a researcher and 

testing “what can be achieved in practice by typical teachers with available levels of support” (p. 

207). He claims that impact on practice at least requires involving “typical teachers” in testing. The 

third dimension is therefore what the role of testing is in the project, who is doing it, in what way 

and in how many cycles. 

The fourth dimension concerns the results of the project. The result may be the designed product 

that can be used by others. Often, local theories about the designed material are also developed:  

Potential users of a curriculum should know what conditions are necessary for its successful 

implementation, so they can make sure the conditions are in place […]. It is the development 

team’s job to discover and provide this information in the later stages of development and from 

use in the field. (Burkhardt & Schoenfeld, 2003, pp. 6–7) 

In addition, researchers also want to contribute to more general theories of mathematics education: 

“Design experiments […] are about improving both theory and practice” (Schoenfeld, 2014, p. 404) 

For several reasons, design research studies do not always conform to the definition. For financial 

reasons, testing cycles are often reduced to a minimum. There are also political factors; theories 

seem to be valued more than practical solutions. When publishing or applying for grants, theoretical 

results may be stressed more than design results. However, this may be changing, as signalled by the 

introduction of the ICMI Emma Castelnuovo Award – an award “for excellence in the practice of 

mathematics education”. Burkhardt (2013) contrasts the situation in education with medicine, where 

the development of new medicines and treatments are valued as much as new theories. 



Kieran et al (2015) concluded with a note that “knowledge about design grows in the community as 

design principles are explicitly described, discussed, and refined” (p. 73–74). This is exactly my 

motivation for looking at how design is conducted when history of mathematics is concerned. 

History of mathematics in mathematics education 

Jankvist (2009) shows that the literature on history of mathematics in mathematics education was 

for a long time dominated by “publications advocating […] for history in mathematics education” 

and “publications describing either concrete uses by teachers or developments of teaching 

materials” (p. 13). Some publications in the latter category can be seen as small design research 

studies, but were mostly based solely on reflections by the teacher-researcher. By adding systematic 

testing and data collection, the projects can become empirical studies on the “effectiveness” of 

history of mathematics. Recently, there have been a number of these, and they are often focusing on 

generating theory rather than the development/design of material (although design nonetheless plays 

an important part). Alternatively, putting more weight on the development part, they can become 

fully-fledged design research studies. There does exist a small number of large-scale design research 

projects, for instance the Historical Modules project (Katz & Michalowicz, 2005).  

Research questions 

The main research question of this study is: What are characteristics of the design projects that 

include history of mathematics?  

The design research perspectives are used to analyse the projects to shed light on what is considered 

important by researchers and the community. I will base the analyses on the four dimensions 

discussed above: the goal; theories, values and design principles; testing; and result. 

As not all these dimensions are likely to be described explicitly in written articles about the projects, 

there are two sub questions: a) How is this process presented in writing? b) What considerations are 

involved which are not explicitly included in the written results? 

In addition, this project may give suggestions on ways in which the literature on design research can 

contribute to HPM design projects and vice versa. 

Methods 

The project has three phases. In the first phase (reported in this article), I analyse three publications 

describing efforts in designing materials for teaching mathematics with history. The analysis is 

twofold, the texts are analysed in accordance with the categories of the design research literature, 

and also to find additional considerations not included in the design research literature that I have 

surveyed. The first phase can be regarded as a “pilot” to see if the approach seems worthwhile. In 

the second phase, a more thorough literature review is done and more texts are included, whereupon 

a more thorough analysis is done. In the third phase, interviews are conducted with researchers from 

selected design projects to identify considerations absent in the published texts. 

For the first phase, three texts were chosen: Weng (2008), Barnett, Lodder, Pengelley, Pivkina, & 

Ranjan (2012) and Jankvist (2009). They were chosen because they are different in scope, target 

group and context, and could therefore be expected to provide diversity. Two of them are not design 



research studies on the face of it, thus the analysis can give me a clue as to whether including such 

other design-related studies in my analyses are worthwhile. 

Preliminary results 

Weng: Using history of mathematics in Singapore 

Weng (2008) gives an overview of the use of history of mathematics in Singapore, while section 6 

of the article describes “an action-research based case study” in which the author developed and 

gave a course using history of mathematics.  

Goal: The stated goal of the study was “integrating history of mathematics into the teaching and 

learning of mathematics” and “investigate whether such a methodology help the students develop 

(or even enhance) a positive attitude” (p. 18). The article also includes a ten-page appendix giving 

examples from several projects, suggesting that the examples are assigned a value of their own. 

Theory, design principles, values: The article refers to several potential effects of employing 

history of mathematics, but advocates the use of history of mathematics “to inculcate positive 

attitudes of the learner, as well as the teachers, towards mathematics” (p. 3). Weng proposes a 

“didactical framework”, based on the thought that “the learner must make intellectual leaps” while 

mankind make “historical leaps”. “[The] relationship between the mechanisms which are 

responsible for each of these leaps” (p. 13) is important. The intellectual leaps should be identified, 

“psychogenetical mechanisms” to help should be found, historical mechanisms associated to these 

should be identified, and historical points found which the historical mechanisms were employed to 

tackle. Identifying the historical points is called “sourcing”, and concerns searching the literature 

and discussing with colleagues. 

In the appendix, seven kinds of “implementation methods” are given – these could perhaps be seen 

as seven sets of design principles. The seven are historical snippets; primary sources; worksheets; 

historical packages and enrichment programmes; experimental activities using ancient instruments 

and artefact; outdoor experiences; integration into modes of assessment. 

Testing: The course was taught (once) by the researcher himself. The article includes results from 

students’ and teacher’s logs and a student survey. 

Results: The stated result of the case study was that the historical approach was effective 

concerning belief and perseverance. However, as mentioned earlier, some of the materials created 

are given as examples in the appendix, and there are also examples of “evaluations” connected to 

the concrete examples: “[…] students appeared motivated since this approach replaced the usual, 

re-orientated their mathematical perspective and promoted cultural understanding.” (p. 35) 

There is no discussion of which contexts the examples given could be suitable in, but there is 

discussion on the Singaporean context, including data on teachers’ attitudes and a lament on lack of 

teacher training in history of mathematics, lack of curriculum time and lack of assessment rubrics. 

This could perhaps be helpful for others to see whether their context is similar to the Singaporean. 

Barnett et al.: Designing student projects via primary historical sources  

Goal: The project described in Barnett et al. (2012) builds upon an earlier design research project (a 

“pilot program”) in which “over a dozen historical projects for student work in courses in discreet 



mathematics, graph theory, combinatorics, logic, and computer science” (p. 189) were developed. In 

the new project, “additional projects based on primary sources are being developed, tested, 

evaluated, revised and published” (p. 189). The goal was thus to develop these resources, with the 

aim “to recover motivation for studying particular core topics by teaching and learning these topics 

directly from a primary historical source of scientific significance” (p. 190). The article was written 

while the authors were in the second year of the four-year project. 

Theory, design principles, values: The article does not give an overview of the theory it is building 

on, instead just stating that “Much has already been written about teaching with primary historical 

sources”, and then referring to chapter 9 of the 10th ICMI Study. Some design principles are given:  

each historical project is built around primary source material which serves either as an 

introduction to a core topic in the curriculum, or as supplementary material to a textbook 

treatment of that topic. Through guided reading of the selected primary source material and by 

completing a sequence of activities based on these excerpts, students explore the science of the 

original discovery and develop their own understanding of the subject. Each project also provides 

a discussion of the historical exigency of the piece and a few biographical comments about the 

author to place the source in context. (p. 190) 

In addition, fifteen “pedagogical goals guiding the development” are given. They include “students’ 

verbal and deductive skills”, “moving from verbal descriptions […] to precise mathematical 

formulations”, “the organizing concept behind a procedure”, “understanding of the present-day 

paradigm [and] standards”, “attention to subtleties”, “students’ ability to equally participate”, “offer 

diverse approaches”, “provide a point of departure for students’ work”, “more authentic (versus 

routine) student proof efforts”, “a human vision of science and of mathematics”, “a framework for 

the subject”, “a dynamical vision of the evolution of mathematics”; “greater understanding of its 

roots” and “engender cognitive dissonance (dépaysement)” (p. 190). 

Testing: The testing is done “by faculty at twenty other institutions” (p. 189), but no more detail is 

given in the article on the procedure, number of iterations and so on. 

Results: The projects are published online at http://www.cs.nmsu.edu/historical-projects/, including 

“notes to the instructor” and comments from users of the projects. The article includes some 

experiences from the implementations (p. 199–200), including some comments from students and 

some possible ways of using the materials. This approach to using history to teach mathematics “is 

effective in promoting students’ understanding of the present-day paradigm of the subject” (p. 200). 

Jankvist: Using history as a ‘goal’ in mathematics education 

Jankvist (2009) is a dissertation, and therefore has more room for (and demand of) a clear 

theoretical underpinning than the articles. Moreover, Jankvist’s project is not design research as 

such – to the contrary, the project is an empirical research study whose stated goals are to answer 

general questions, with materials only as “a byproduct” (p. 8). The three research questions are  

RQ1. In what sense, to what extent, and on what conditions is it possible to have upper secondary 

students engage in meta-issue discussions and reflections of mathematics and its history in terms 

of ‘history as a goal’?  

http://www.cs.nmsu.edu/historical-projects/


RQ2. In what sense and on what levels may an anchoring of the meta-issue discussions and 

reflections in the taught and learned subject matter (in-issues) be reached and ‘ensured’ through a 

‘modules approach’? 

RQ3. In what way may teaching modules focusing on the use of ‘history as a goal’ give rise to 

changes in students’ beliefs about (the discipline of) mathematics, or the development of new 

beliefs? (p. 45) 

However, for two reasons it makes sense to regard this project as having a design research project at 

its core. Firstly, his way of answering his research questions is by designing and testing two 

modules. Secondly, the developed materials are interesting results in their own right, as evidenced 

by their being published in full (Jankvist, 2008a, 2008b). Thus, in this analysis, I will look at the 

design parts of Jankvist (2009) as an example of design research. 

Goal: The goal of the design research part follows directly from RQ1–3; to design teaching modules 

engaging students in meta-issue discussions and reflections of mathematics and its history, anchored 

in in-issues, changing students’ beliefs about mathematics in the process. 

Theory, design principles, values: The theories are treated systematically and in detail. First, he 

gives his categorization of the whys and hows. Then, he discusses Meta-Issues (inner and outer 

driving forces; pure and applied mathematics; epistemic objects and epistemic techniques; discovery 

versus invention; multiple developments), In-Issues (in particular Sfard’s theory of commognition) 

and Student Beliefs (stressing students’ beliefs about mathematics as a discipline and the role of 

reflection in changing beliefs). As Meta-Issues and In-Issues are part of what the students are 

supposed to reflect on, a thorough theoretical treatment of them is of particular relevance. 

Design principles are not treated as systematically; they are found throughout the dissertation: 

Obviously, original sources have to be chosen with great care, depending on the educational level 

in question, in order to make sure that the students have a realistic chance of actually working 

with them. (p. 33) 

The historical cases chosen for [a modules approach] should […] be exemplary, e.g. in such a 

way that they embrace as many general topics and issues related to the history and historiography 

of mathematics as possible. (p. 89) 

[cases should be chosen] for which the in-issues could be built up in front of the eyes of the 

students in parallel with the explaining of the related meta-issues. (p. 94) 

Other design principles are “using modern notation in the presentation of the mathematical in-

issues” (p. 95), “setting the text of the teaching material with two different fonts; one for in-issues 

[…] and one for meta-issues” (p. 95), and “Following their group discussions, the groups were to 

write essays on the topics in question and hand these in” (p. 95). 

Jankvist also offers some of his “personal viewpoints”, such as that it is “important to provide 

students with a ‘picture’ of what mathematics in time and space is” and that “one must have some 

kind of understanding of the involved mathematics also” (p. 7). 

Testing: The actual teaching was done by “a typical upper secondary mathematics teacher” (p. 96), 

being “coached” by the researcher (p. 115), but no teacher’s manual was written (p. 95). There was 



just one cycle, but the testing of the first module led to some changes in the second module. Most 

importantly, “[instead] of the introductory essay assignments, so-called historical exercises were 

introduced” (p. 157). Moreover, discussions with the teacher also led to at least one change, in that 

the researcher agreed to discuss the final essays with the class (p. 127). 

An immense amount of data was collected: videos of the teaching and of focus group discussions, 

interviews with teachers and students, lots of hand-ins, including essays, and several questionnaires.  

Results: The modules have been published, but not (as far as I know) in a new version informed by 

the results of the testing, although there are examples of details that were “ill-suited” (p. 150) and 

examples of new ideas; including role play (p. 202) or using the wording “on the shelves” (p. 203). 

There is no attempt in the dissertation to describe conditions necessary for using the modules, 

except that “In other countries with different types of curricula, the possibilities for doing this may 

be somewhat limited” (p. 108). It is pointed out that although this “typical” teacher was coached by 

the researcher, she felt she lacked historical knowledge (p. 275). This makes it doubtful that other 

teachers with the same level of confidence would use the modules on their own – suggesting that 

having teachers collaborating with researchers to develop materials might be better (p. 304). 

On the questions that the dissertation set out to answer, however, there are ample answers: Students 

were able to have discussions on meta-issues, anchored in in-issues. The essay assignments “appear 

to be a suitable setting for having the students engage in meta-issues” (p. 201). “[S]ome of the 

effects of choosing a newer history over an older one appear to be that it may be easier to relate to” 

(p. 281). Changes in students’ beliefs/views were observed. 

Preliminary discussion 

The three publications include the theoretical background to very different degrees – probably partly 

because of context and space restrictions. Therefore, I will not discuss this in detail here. Design 

principles, however, are detailed in all three publications. Some of these concern the parts of history 

to be chosen. In Weng’s case, specific “historical points” are found that will help students make 

“intellectual leaps”, while in Jankvist’s case, the historical cases should be “exemplary”, but without 

concern for whether the mathematics covered is already a central part of the curriculum. Barnett et 

al., on the other hand, does not discuss the choices of topics but seem to choose topics already 

central to the curriculum. 

All three projects include testing to some degree, although they include different levels of detail. 

While Barnett et al. explicitly states that testing will be used to revise the materials, Jankvist gives 

examples of revisions that could be made but he does not make them. None of the publications give 

very detailed (testing-based) pointers on what “conditions are necessary for its successful 

implementation”, to quote Burkhardt and Schoenfeld. However, both Jankvist and Weng are 

concerned about the teachers’ attitudes and knowledge, raising the question of whether the materials 

could be used by “average” teachers at all, without significant support. 

For two of the publications, the materials produced are not presented as the main result of the 

studies. If this emerges as a pattern, it would be interesting to investigate whether this is because of 

the authors’ opinions or because of external factors such as the expected format of research texts. 



Conclusion of the first phase (“pilot”) 

The first phase of this project establishes that there are significant differences in the goals, 

theoretical underpinnings, design principles, testing and results in the three chosen texts. Bringing 

such differences into the foreground may contribute to a discussion which can, in turn, benefit 

future design research projects. 
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Purpose and question of the study 

In the Federal Republic of Germany, public remembers so-called New Math mostly as a curious 

episode during which set theory has preceded numbers in primary mathematics education, a reform 

that has been controversially discussed and finally taken back, having been branded a failure. Thus, 

a closer look at the history of this reform is required. 

As in any educational reform, changes concerned all different components of the educational system. 

Keitel (1980, p. 449) summarizes three levels that are crucial for the course of any reform, namely a 

subject’s educational scientific community, educational administration and curricula alongside their 

implementation in textbooks. Neglecting practical classroom experience, this list stucks to a more 

theoretical view, whereas Fend (2008) constitutes a multi-layer model of educational system upon 

the levels administration (politics and curriculum), school (teachers) and lesson (pupils and parents), 

putting more emphasis on practice and social reception. In both concepts textbook production is seen 

as being closely linked to curricular decisions, nevertheless it is also stated that – particularly within 

the German New Math movement – schoolbooks served as “instruments of innovation” inside the 

classroom (Keitel, Otte, & Seeger, 1980, p. 73). For these reasons, the project is based on a multi-

layer model of schooling comprising the following levels: scientific theories of education, curricula, 

textbooks and implementation in classroom. Former analysis of the reform in Germany has mostly 

emphasized on curricular aspects (Damerow, 1977; Keitel, 1980; Zumpe, 1984), has mainly been 

focused on secondary education and dates back from when New Math curricula were still mandatory, 

causing those accounts to criticize the concepts and implementations rather than bringing them in line 

with long-term historical development. 

From this derives the main purpose of the project, which is to describe ideas and concepts (with regard 

to aims, contents, principles, methodical suggestions) leading to the reform of mathematics education 

in West German primary schools and compare them to how they were implemented into methodical 

concepts. Three different 1st grade textbooks and associated teacher handbooks from the 1960s and 

1970s were chosen as exemplary key sources: alef by Bauersfeld et. al., which developed from the 

country’s only long-term classroom project (Frankfurter Projekt), Wir lernen Mathematik by 

Neunzig & Sorger, which was the first New Math textbook for primary level being published and 

which is explicitly based on the concept of Z. P. Dienes, and Mathematik für die Grundschule by 

Fricke & Besuden, which originated from a former numeracy textbook based on the operative 

principle and therefore on the results by J. Piaget.  

Results 

It shows that the courses differ when it comes to basic curricular decisions as well as to the relation 

between mathematics, sets and arithmetic. Bauersfeld et. al. have created a non-linear course that is 



based on fundamental logical (relations, sets, transformations) and geometrical concepts. Here, 

arithmetic is founded on mathematics; sets serve as one example of a basic mathematical notion. 

Fricke & Besuden subordinate all their subject matter decisions to the learning of operative thinking. 

Thus, mathematics becomes a means for this, and arithmetic as well as set theory, logic and geometry 

serve as examples for mathematical thinking. Neunzig & Sorger’s course, however, is aiming at a 

mathematical foundation of arithmetic, which is solely based on sets. 

Especially the latter, which largely narrowed the original idea – namely to replace pure arithmetic by 

propaedeutic mathematics from the start – to teaching set theory in advance of numbers and 

numeracy, was widely disseminated and thus influential for the course of reform. The question occurs 

what might have caused this development. One result of further investigation of concepts of numeracy 

education up to the 1960s at the German Volksschule is that such an approach could be brought in 

line with long-term tradition of German primary arithmetic education.  
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Introduction 

The aim of this poster is to present the study of the history of the development of genetic and, in 

particular, historic-genetic approach in works of Russian mathematics educators of the second half 

of the 19th century and first half of the 20th century. It is important because the genetic approach and 

the history of mathematics are used in mathematics teaching nowadays (e.g., Fauvel & van Maanen, 

2000). The role of genetic approach and history of mathematics for mathematics teaching is 

important today and it has been investigated by many authors (e.g., Furinghetti & Radford, 2008). 

The role of genetic approach and history of mathematics in works of Russian mathematics 

educators also needs a systematic research. In our study (work in progress), we use books and 

articles written by Russian mathematics educators of the past, notes of their lectures, and 

proceedings of Congresses of mathematics teachers held in the beginning of the 20th century. 

Genetic and historic-genetic approach to the teaching of mathematics in works 

of Russian mathematics educators 

Progressive Russian mathematics educators developed ways of using history and genetic approach 

in mathematics teaching since the middle of the 19th century. 

Russian mathematics educator Petr Semyonovich Guryev (1807-1884) was acquainted with works 

of F.W.A. Diesterweg. As early as in the middle of the 19th century he insisted on the use of 

elements of genetic and concentric (Safuanov, 1999) teaching. He wrote (Guryev, 1857, p. 176): 

It is necessary that theory would develop like concentric circles… It is more appropriate and in 

accordance with the progress of development, that the definitions should be given at the end 

rather than in the beginning of the teaching of elementary arithmetic and geometry. 

Viktor Viktorovich Bobynin (1849-1919), in his report on the 7th All-Russia congress of scientists 

and doctors he explicitly argued that it is necessary to use genetic method in geometry teaching and, 

in particular, to base the methods of teaching on the history of mathematics (Bobynin, 1886, p. 31).  

At the end of the 19th century and in the beginning of the 20th century, one of the leading figures in 

the development of Russian mathematics education was Semyon Shokhor-Trotsky, author of 

mathematical textbooks for elementary mathematics. He invented the “Method of expedient tasks” 

which was essentially similar to genetic method. He wrote in one of his methodical guidebooks for 

mathematics teachers (Shokhor-Trotsky, 1935, p. 9):  

The true method consists in that we should put a child in conditions at which human mind started 

inventing arithmetic, we should make him a witness of that invention. But it is not sufficient 

today. Nowadays we should aim at putting a child in conditions at which she/he would become 

not only a witness but rather the active participant of that invention.  



Most interesting was the development of didactic ideas of Nikolai Izvolsky. Beginning with the 

method of “combination of mathematical representations” (Reports of the First Russian Congress of 

Mathematics Teachers, 1913, pp. 148-157), he eventually came to the profound expression of the 

genetic approach (not reduced to the historical one) to geometry teaching: “…A view of geometry 

as a system of investigations aiming at finding answers to the consequently arising questions” 

(Izvolsky, 1924, p. 9). He elaborated an original version of the genetic approach.  

Conclusion 

Thus, we see that in Russian mathematics education many researchers, mathematicians, as well as 

mathematics educators, strongly contributed to the development of the genetic teaching of 

mathematics. N. Izvolsky articulated the idea of indirect genetic teaching prior to O. Toeplitz. We 

think that ideas of Russian mathematics educators, especially those of S. Shohor-Trotsky and N. 

Izvolski, would be useful for the further elaboration and improvement of the genetic approach in 

future. The development of ideas of Russian mathematics educators will be presented in the poster 

via the use of images and schemes. 
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Introduction 

The working group on Early Years Mathematics was established at CERME 6. The aim of this 

working group has always been to share scholarly research concerning mathematics for children aged 

3-8. In this age group, the transitions within preschool, and from preschool to the early grades of 

primary school are important areas of attention. The working group on early years mathematics has 

also considered that in different countries preschool education has different objectives and children 

in different countries begin primary school at different ages (e.g., in Sweden there is one preschool 

curriculum for children aged 1-6 followed by primary school, and in UK there are different curricula 

for with nursery, preschool and primary school: 0-2, 3-4 and 5-8 years). These differences have 

always stimulated fruitful discussions and CERME 10 was no exception.  

The 15 papers were each allocated 30 minutes of attention during the TWG 13-sessions; 12 minutes 

for presentation, 8 minutes where a different participant prepared a response or query, and 10 minutes 

for open discussion. The five posters were allocated 15 minutes each for a brief presentation and open 

discussion. One 30-minute slot was reserved for group work where participants from different 

countries were grouped and discussed quite openly topics of common interest (such as, e.g., the role 

of aesthetics in mathematics and the use of manipulatives in mathematics), and another 30-minute 

slot was reserved for discussing the plenary by Lieven Verschaffel on children’s number sense. It was 

very fortunate to have him as a participant in TWG13..The final 90-minute session on Saturday was 

used to collaboratively prepare the report for Sunday, which together with what was presented and 

discussed in the other sessions, formed the basis for this introduction.  

One of the Friday sessions included a 60-minute presentation and discussion of the Early Years 

Mathematics chapter draft for the soon to be published ERME book, where one of the editors of the 

book (Kenneth Ruthven) was present. Participants had been asked to read and send their questions 

and comments to the chapter in advance of the conference, and these inputs, as well as comments 

during the session, contributed important input to the ongoing discussion in the group.  

The number of participants in TWG13 has been quite stable over the past five conferences, and each 

time the group has benefitted from a quite broad attendance when it comes to the area of Europe. 

Twenty-nine participants from 11 different countries attended the working group in Dublin (see the 

table below). 

  



 

Country Number of papers Number of posters Number of Participants 

Belgium   1 

Denmark   1 

Germany 1 1 3 

Greece 2  2 

Israel 1  1 

Norway 3 2 8 

Poland 1 0 1 

Portugal 0 1 1 

Sweden 3 1 4 

Spain 2 0 4 

UK 2 0 4 

TOTAL 15 5 29 

 

General summary of presentations 

Seventeen of the 20 papers and posters concerned preschool children aged 3-6 years, 

preschool/kindergarten teachers’ professional knowledge and competence development or teaching 

materials for activities in preschool. The remaining three contributions focused on children aged 6-7 

years, which in most countries means Grade 1 in school. Compared to previous years, there was an 

increased attention given to preschool compared to early schooling. 

Broad attention was given to the roles of preschool teachers’ competencies in promoting early years 

mathematics learning. Vanegas, Gimenez and Samuel studied school mathematics narratives in early 

childhood teacher education, focusing on how the future preschool teachers recognized the potential 

of two professionally designed geometrical tasks to promote mathematical processes. Palmér and 

Björklund considered how preschool teachers characterize their own mathematics teaching in terms 

of design and content, while Hundeland, Erfjord and Carlsen analysed preschool teachers’ 

orchestration of researcher-designed mathematical activities. They used this analysis to discuss what 

can be learned about teachers’ knowledge by adopting the Knowledge Quartet by Rowland and 

colleagues for kindergarten level. Tirosh, Tsamir, Levenson and Barkai studied preschool teachers’ 

variations when implementing a patterning task, where they investigated the impact of the various 

implementations on children’s success in extending repeating patterns. Gifford, Griffiths and Back 

presented a theoretical paper concerning the use of manipulatives with young children, while 

Skoumpourdi presented a framework for designing inquiry-based activities for early childhood 

mathematics. Silva, Costa and Domingos offered an nterdisciplinary approach to linking science and 

mathematics in early mathematics. A new issue presented and discussed during our WG was 



mathematics for special needs children during the early years. Gasca, Clemente and Colella outlined 

and discussed the design of mathematical instructional activities to foster achievements in 

mathematics for children with Trisomy 21 (Down’s Syndrome). Peter-Koop and Lüken considered 

the role of inclusive compared to exclusive settings for the learning of mathematics for children with 

special needs.  

In total, eight papers and posters focused on the learning and development of mathematics for 

preschool children. The paper by Tzekaki and Papadopoulou was based on a teaching intervention 

for developing generalisation in early childhood. Björklund’s paper considered the importance of 

adults challenging two year old toddlers’ evolving concepts of numbers in their play. Her paper 

stimulated a discussion as to whether 3 years of age should be the lower limit of attention for our 

group as it was in the past. Sundström and Levenson reported on an exploratory study of young 

children’s aesthetic development in the context of mathematical explanation, while Pettersen and 

Volden presented a poster considering the use of maps in kindergartens and children’s development 

of spatial orientation and navigations. Bjørnebye reported from a multi-case embodied design study 

on early learning of numbers, while the paper by Schöner and Benz studied preschoolers’ perception 

and use of structures in sets, adopting eye-tracking as a tool. Breive studied preschool children’s 

argumentation as part of an inquiry approach in reflection symmetry and Rinvold investigated 

children’s learning of numerocity. Both Breive and Rinvold adopted Radford’s theory of knowledge 

objectification to kindergarten settings. 

Regarding the first year of primary school, Maj-Tatsis and Swoboda reported on an intervention study 

on first grade school children’s ability in noticing and using regularities in three-dimensional 

geometrical objects while using playing blocks. Van Bommel and Palmer focused on 6 years old 

children’s representation of the semi-concrete and semi-abstract, as connections between concrete 

(objects) and abstract (signs) representations. Finally, Thoules presented a self-study action research 

study on the role of gestures in supporting mathematical communication for first grade students with 

language delays.  

Main characteristics and issues in focus 

The group had ongoing discussions about the importance of fostering children’s early development 

of mathematics for later success. As such, the group experienced presentations and discussions of 

several intervention and exploratory studies, teacher development and ways of fostering children’s 

mathematics learning. The role of play and the term “playful learning” was given great attention. This 

proposed term takes into account that distinguishing between play and learning at this age-level 

makes little sense. The argument offered was that an activity designed, planned and guided by the 

teacher may indeed promote learning among children, but can be considered as play by the children. 

As usual, the group presented a mixture of small scale studies (case study design), large scale studies 

and several pilot studies for larger studies. These different studies contributed valuable insights. We 

also experienced a broad range of theory in discussions of papers and posters, including the theory of 

objectification, variation theory, socio-cultural theories, the use of Clements and Sarama’s 

framework, the core knowledge system, as well as development of conceptual frameworks. The 

theoretical discussions of the group were supported by Lieven Verschaffel’s perspective and 

contributions, generating fruitful discussions of theory use and development. 



The most prominent “news” for our group came from presentations discussing the following issues: 

ways in which special needs children can engage with mathematics, toddlers and mathematics, and 

young children’s appreciation for the aesthetical dimensions of mathematics. The group was also 

introduced for the first time to the possibility of using eye tracking as a tool in early years mathematics 

research. We encourage researchers to continue with their important work regarding early years 

mathematics and hope to see new insights in the next CERME meeting. 
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The aim of this pilot study is to explore when and how toddlers discern aspects of number in 

exploratory play and communication. Data for analysis consists of video-observations of 23 1–3- 

year-olds’ mathematical activities in preschool, revealing occurrences where toddlers’ conceptions 

of number are challenged. A qualitative analysis informed by Variation theory of learning provides 

important clues for early mathematics education: toddlers encounter many aspects of number on a 

daily basis, but their conceptions are rarely challenged. This study will work as a basis for 

intervention and further studies of the possibility to enhance early mathematics education. 

Keywords: Early childhood education, mathematics, number concept, toddlers. 

Introduction 

There is a diversity of pedagogical approaches and theoretical understanding of young children 

learning mathematics. Palmér and Björklund (2016) discuss in a recent review of contemporary 

preschool mathematics research that what children are actually offered to learn in preschool differs 

to a great extent, even though there is a consensus among the research community that early math 

matters. Consensus is however not reached when it comes to what and how mathematics should be 

taught. Some argue that basic understanding, which some children already have acquired, is enough 

and preschool should offer a space for children to use and master these skills. Others find it 

necessary to challenge children’s knowledge and set goals for learning that the majority of the 

children in a group have not yet mastered (Claesson, Engel, & Curran, 2014). 

Many researchers have made efforts to describe developmental trajectories in mathematics learning 

and what to expect from children at different ages or in what order skills develop in general. 

Consequently, there is a large body of research departing from different theoretical approaches (see 

Baroody, Lai & Mix, 2006; Sarama & Clements, 2009 for overviews). A contemporary theory – 

Variation theory of learning (Marton, 2015) – proposes a bold conjecture that the understanding of 

whole numbers originates from experiences of different aspects of number, rather than a predictable 

development trajectory. Focus is here shifted from descriptions of children’s competences and 

learning trajectories towards the content to be learnt, and particularly what it takes to learn that 

content. Based on this conjecture, this study directs attention to what aspects of numbers are 

discerned by toddlers in play and interaction in preschool. The theoretical framework furthermore 

provides analytical tools for interpreting why children express different ways of experiencing 

numbers and what is possible to learn in different interaction. The study will therefore have impact 

on education and further research. There are many aspects of mathematics that could be made object 

for this study, but in this particular pilot project the interest is demarcated to number concept. 

Aspects of number as learning object in the early years 

The concept of number is complex and research shows that many competences seem to be necessary 

for children, to develop their numerical reasoning and arithmetical skills. By the time children turn 

three years, most of them already know the beginning of the sequence of counting words and are 



acquainted with nursery rhymes with number words. To develop an advanced understanding of the 

different meanings of number in different contexts is however a process that continues until children 

are about eight years old, according to Fuson (1992). In the early years, the sequence of counting 

words is best described as a continuing string of words that lack numerical meaning. During their 

preschool years, children’s understanding of number words includes also a numerical meaning, but 

how this process happens is an issue raised by Wynn already 25 years ago (Wynn, 1992). There is of 

today no consensus how this development occurs or what seems critical for learning to handle 

numbers in arithmetic tasks. Some (c.f. Carpenter & Moser, 1982; Fuson, 1992) claim that counting 

is the foundation for arithmetic competence, while others argue for the necessity of perceiving the 

part-whole relationship of numbers (Baroody & Tiilikainen, 2003). One way of finding a path to 

understand the development of number sense and arithmetic skills could be to direct more attention 

to the features of numbers and how numbers may be perceived in different ways, as proposed by 

Marton (2015). A controlled study by Benoit, Lehalle and Jouen (2004) has for example shown that 

the perception of numbers as parts and whole simultaneously, supports children in acquiring the 

meaning of small numbers. This builds on the ability to perceive numbers as exact sets of items 

without counting, referred to as “subitizing” (Kaufman et al., 1949). Subitizing is limited to small 

amounts of three or four, but the ability can be enhanced to larger numbers, so called conceptual 

subitizing (Clements, 1999). When items are arranged in ways that make them possible to recognize 

as patterns or collections of sets, it is easier to compare and estimate both exact number and larger 

magnitude. However, the sequence of counting words and the meaning of numbers as descriptions 

of sets of objects (a sense of “manyness”) probably has to be considered as two necessary aspects of 

numbers that children presumably learn during their first years. 

Even though young children seem to have the ability to perceive exact number, there is no guarantee 

that all children make use of this ability. Studies (Hannula, Mattinen & Lehtinen, 2005) show that 

far from all three-year-olds take initiatives to focus on numerical features of their surroundings or 

use number words in routine situations and play. Spontaneous attention to number among young 

children has nevertheless shown to predict later mathematical achievements (Hannula-Sormunen, 

Lehtinen & Räsänen, 2015) and this can be enhanced by social interaction and directed attention 

towards number relations, with long-lasting effects.  

From earlier research we have reasons to believe that certain aspects of number are necessary to 

discern in order to develop number sense and arithmetic skills. Neuman (1987) argued, based on a 

study of 6-7-yearolds that children who suffer from math difficulties cannot experience the first ten 

natural numbers as magnitudes nor the relations between them. This lack hinders them in perceiving 

that 7 may be a part of 9 and the difference between them is 2. Most children develop strategies to 

deal with numbers and arithmetic tasks, but those who cannot discern the part-whole relationship 

have to turn to cumbersome strategies of counting up and down and even double-counting. Neuman 

further described how children’s strategies for problem solving are related to their conception of 

numbers and what aspects of numbers that the children can differentiate. The following aspects are 

known from the vast literature in the field, confirmed as aspects necessary for arithmetic 

computation in Neuman’s study: a) numbers can be represented in different ways, b) numbers 

constitute a part-part-whole relationship, c) number words refer to cardinality (or manyness), and 

d) number words refer to ordinality (or sequence). 



In an on-going project (Björklund et al., 2016) we found these aspects present in some, but not all, 

5-yearolds conceptions of number. It is thereby of interest to further investigate how younger 

children perceive numbers. Thus, the question raised in this pilot project is: What aspects of number 

are discerned by the youngest preschoolers and how are their conceptions of number challenged?  

Theoretical framework 

The theoretical framework used in this study is Variation theory of learning (Marton, 2015). The 

theory states that variation is central for learning and patterns of variation constitute necessary 

conditions for learning (Marton & Tsui, 2004). When learning new concepts, there is in particular 

one pattern of variation that is essential – contrast. By contrast means that what is to be learnt is 

held constant but some critical aspect of the learning object has to be contrasted to enable 

discernment. In other words, to learn the meaning of “five”, sets of five (items constituting the sets) 

may vary (five flowers, five dogs, five children) but the “fiveness” will appear only when five in a 

set is contrasted with for example four in another set. Only then, can the numerical meaning of five 

be discovered and thereafter generalized to the different sets of five. Generalization, differentiation 

of aspects that are potentially necessary to discern in order to better understand the concept, and 

simultaneous attention to several aspects are the other patterns of variation that the framework holds 

as necessary for learning (Marton, 2015). This theoretical framework provides tools for analyzing 

empirical data to describe the process of learning by focusing on how necessary aspects of the 

learning object are presented to the learner. For example, the child needs to differentiate that 

numbers have both ordinal and cardinal meaning to be able to operate with numbers in arithmetic 

tasks, but if the child has not discerned numbers’ cardinality they cannot make use of numbers as a 

representation for sets of objects.  

Children’s conceptions of a phenomenon constitute, according to this theoretical framework, of 

those aspects that the child can discern in a particular situation (either due to earlier experiences of 

similar phenomena or due to what the situation offers the child to experience). Conceptions can 

thereby be interpreted as the way a child encounters a phenomenon. Lack of discerned aspects is 

thereby also expressed in children’s use of numbers in problem solving (Neuman, 2013) and in 

particular when they are encouraged to communicate their understanding of numbers to peer or 

adults. 

Methods 

The aim of this study was to get an overview of toddlers’ conception of number and in what ways 

their conceptions of number are challenged. This is done through an analysis using Variation theory 

of learning as analytical tool, which directs attention to the content of learning and in particular how 

a phenomenon (number in this case) is perceived by the children in a specific situation. The unit of 

analysis is interaction that provides opportunities to discern necessary aspects of number.  

The participating children attend two randomly selected preschools in Finland, where they take part 

of a pedagogical practice with their peers in both planned activities and self-initiated play. 23 

toddlers altogether (aged 13 months – 3 years 9 months) are observed in their common activities in 

these preschools. The data consists of 45 hours of video-documentations originally collected for a 

larger study with a broader mathematics focus (see Björklund, 2007). Of these, episodes where 



number concepts are focused on are analyzed more thoroughly in this particular study. Written 

consent for children’s participation in video-recorded documentations is given by the children’s 

parents. Children’s and teachers’ names are anonymized in all public presentations. 

The analysis concerns the opportunities children are given to develop their conceptions and learn to 

use numbers and is conducted in two steps: 1) the children’s conceptions of number is 

characterized, 2) the analysis focuses what aspects that are emphasized when children express a 

certain conception including if and how this conception is challenged. The theoretical framework 

provides analytical tools to study such situations where the number concepts are challenged and 

what constitutes the development opportunity. We are in accordance with the theoretical framework 

looking for situations where children or adults “open up dimensions of variations” (Marton, 2015), 

meaning that a certain aspect of the learning object is emphasized and thereby made possible to 

explore and learn the meaning of. It is in particular contrast that we look for and how it enables 

different dimensions of variations to be opened up. 

Results – Acts that challenge toddlers’ number concepts 

We know from studies with older children that some critical features of number are necessary to 

discern to use numbers successfully in arithmetic problem solving. In this study we see the same 

aspects’ importance and can describe how the lack in discerning necessary aspects results in 

different conceptions of numbers. The sequence of counting words is quite common in different 

activities, but the sequence is mostly used for naming items or as any nursery rhyme. The number 

concept is then limited to an ordered string of words without relation to numerosity. It is more 

seldom found that the children use the sequence of counting words to find out how many objects 

there are in a set (in a cardinal sense). However, there are examples of children using number words 

to describe sets and quantities and thereby expressing a conception of number as quantitative 

relations. The following presentation will discuss how toddlers’ conceptions of number are 

challenged in their interaction with peer and adults, with analytical focus on which aspects that are 

made possible to explore for the further development of number concept.  

Describing objects or sets  

Number words are by many toddlers used as a rhyme that is fun to recite. Some relate the reciting to 

groups of objects, one-to-one, and a few children use number words to describe sets of objects. The 

difference between these ways of using number words is in the conception of numbers as ordered 

names (emphasizing an ordinal aspect) or numbers as describing a set (a cardinal aspect brought to 

the fore). To challenge number concepts’ meaning it is then necessary to open up these dimensions 

of variation to the child: 

Harry (2:0): (looking in a picture book) Wow, horses.  

Nancy (3:9): Yes. It’s two horses. 

Harry (2:0): (browsing through the book) There they are. There are also two. 

The short but clear comment from the peer opens up for numbers’ “manyness” and numerical 

relationships to be explored. Harry shifts his attention from “horses” to numbers, “two”. However, 

numbers are not further challenged, such as by comparing two horses with more or less or 

generalizing to other sets of two.  



Expressions of numbers as names of items are common in the literature and frequently observed in 

this study. This conception of number (or rather the number words) is characterized as a way to 

enumerate by giving each counted item a number name, attaching the name to the physical object. 

This means that number words do not refer to quantity - they are rather an ordered list of names 

applied to some items. In the short excerpt below the child Lou is counting stars in a book, over and 

over again, pointing her finger at one star at a time while saying the number words: 

Lou (2:7): One, two, three, four, five, six, seven, eight, nine. 

Arthur (3:1): That one is not nine!  

Lou points at the stars while counting out loud. The second time she points at different stars than 

before, making Arthur react to the break in the pattern of named stars. Arthur acts as the counting 

rather is about “naming” the stars with number words, not differentiating any cardinal meaning. The 

order of naming them is then closely related to the physical objects, emphasizing ordinality. 

Extending the setting  

Mathematics is useful due to the transferability of notions and the abstract relationships that 

mathematics concepts describe. It is in this sense natural to think that generalization is a key to 

learning the meaning of abstract numbers. This is not uncommon in teacher-child interaction: 

Elsa and Ann (adult) are sitting at the breakfast table. 

Elsa (2:6): There’s two (pointing at two plates on top of the other).  

Ann (adult): There’s another two (pointing at two other plates) and there’s two pieces of bread, 

and there’s also two (pointing at two spoons on a plate). 

The teacher makes efforts to pick up the child’s initiatives and generalizes the idea of sets of two. 

However, the observation does not reveal whether the child discerns the cardinal meaning of “two” 

applied to other settings as well or if the directed attention to other kind of objects takes away 

attention from the number’s meaning of “twoness”.  

Comparing more-less 

When numbers are used to describe sets, a possibility to explore number words’ cardinal meaning 

opens up if sets of different quantities are made possible to compare. Subitizing enables children to 

compare and estimate small number of items, but this builds on the above mentioned condition, that 

focus is already directed towards numerosity. 

Lou (2:7):  (brings three different cat toys to a table) Here’s two kitty cats. 

Arthur (3:1): No, it’s not like that, it’s this many (showing three raised fingers on one hand). 

One, two, three (raising one finger for each said counting word).  

Cardinality is undoubted critical for operating with numbers. It seems that comparison of different 

quantities, contrasting numbers as sets, makes this possible. Merely counting will promote 

ordinality as the primary aspect in focus, shorter or further on the sequence of counting words, but 

does not necessarily emphasize the “manyness” of the numbers. 



Attention to the cardinal and ordinal meaning of number words  

Observations show that many children, and teachers, express a rather strong focus on the aspect of 

ordinality, while the cardinal meaning of numbers is an aspect that is rarely opened up for 

exploration. The following excerpt is thereby an exception but important in our investigation of 

learning opportunities in preschool mathematics: 

Alan (3:5): (has been asked to check how many children there are in the cloakroom) There is 

one and one and one and one and one and one and one and one and one and one 

and one and one and one there. 

Gloria (adult): That’s quite a lot. Or was there only one? 

Even though the child is not using number words to express himself, he expresses number as an 

addition of ones. The teacher picks up the word he uses and opens up both the aspect of ordinality 

by referring to the number word “only one” and in the same occurrence also the aspect of cardinality 

when confirming that the boy had described a large number of objects.  

The idea of directing attention to ordinality, as in the following excerpt, is however not always 

critical for a task and may thereby not be taken into consideration by the child: 

Alice (2:4):  (sits with a jig-saw puzzle with pieces shaped as fish and a number of dots on the 

board and corresponding number of dots on the fish) Just one dot and then just 

two (tries to fit a piece in the board). 

Mary (adult): No, you have to look at the dots, here’s three, then you have to see how many dots 

there are there [on the board]. Where should it go?  

Alice (2:4): There! (pointing at the board where there are three dots)  

Mary (adult): (pointing at each dot on the fish) There’s one, two, three, where? 

Alice (2:4): (pointing again at the board and the three dots) 

Mary (adult): There’s one, two, three. 

Alice (2:4): It will go there (putting the rest of the pieces with 1–3 dots on their right places on 

the board). Here’s only one dot (pointing at the last empty place on the board). 

Alice’s attention is directed towards the features of the fish that will not fit on the board. This 

conflict directs her attention to find clues or strategies to ease the task of finding right pieces. She 

discovers the dots and describes their difference in number “just one dot and then just two”. The 

teacher supports her discovery but offers a counting strategy to make sure she finds sets of dots that 

are equally large. However, the attention to different aspects does not seem to meet, nor are they 

simultaneously considered as aspects of numbers. Alice did not count the previous two dots, she 

also seems to perceive equal number of dots if they are three, since she does not make any attempts 

to count in the same way as the teacher instructs her to do. It is thereby uncertain if the aspect of 

ordinality is necessary to emphasize since the child masters the task by focusing on the “manyness” 

of the sets. The number of dots is within the subitizing range, which has to be considered as a 

reason for not needing another strategy to compare the number of dots on the fish and on the board. 



Discussion 

This pilot project brings to the fore that children’s conceptions of number seem to be characterized 

by partly numbers as names and sequence, parallel to using numbers to describe a set of objects. In 

some rare occasions these conceptions are emphasized simultaneously, enabling the fusion of 

ordinal and cardinal meaning, which is presumably an important condition for number concept 

development. An advanced use of number words includes both of these aspects and enables a child 

to solve arithmetic problems. Wynn (1992) raised this issue when presenting findings of 2–3-year 

olds’ sense of numerosity in contrast to their emerging understanding of the counting system. The 

current study confirms that toddlers experience number in different ways, but provides insight to the 

activities and interactions where ordinality, cardinality and the fusion of them are put to the fore and 

thereby enable children to develop number concepts. According to Variation theory (Marton, 2015) 

such analyses are essential for understanding what constitutes the learning object (numbers in this 

case) and consequently how to support concept development by offering necessary aspect to be 

discerned by the child. Forthcoming studies will thereby shed more light on how the conception of 

numbers as names and rhyme can be challenged and related to numbers’ “manyness”. Critical is 

what role the different aspects play in number concept development; is cardinality superior to 

ordinality (c.f. Benoit et al., 2004), and perhaps more important, how are the aspects related in 

toddlers’ number concept development?  

It is of high pedagogical value to consider what activities toddlers encounter in preschool and what 

opportunities to explore ordinality and cardinality there are – the examples presented here show that 

it occurs in both planned and spontaneous situations. Further studies will also direct attention to 

teachers’ acts to engage toddlers in such stimulating activities and how it can be made possible for 

children to extend their conceptions of numbers, as this pilot study indicates is possible. 
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Research on how neuroscience and knowledge of human’s endowment can inform educational 

practice is a young field. With reference to contemporary research and models that hold the idea 

that humans possess non-verbal inborn cognitive systems for estimating sizes and processing 

quantities, empirical data from a multi-case embodied design study on early learning of numbers is 

discussed. Based on observational data and on a discrepancy in the results of traditional and 

modified Give-N-tasks for determining the cardinal knower level, it is contended that designs which 

embrace innate spatially organized representations of numerosity through body-based 

metaphorical mappings, could guide the development of tools for measuring the cardinal concept. 

Keywords: Cardinality, cardinal concept, measurement, embodied design, core knowledge systems. 

Introduction 

Recent research and discoveries in the field of cognitive development suggest that the individual’s 

concept of cardinality in terms of fluency with exact enumeration constitutes a particular predictive 

factor for the development of mathematical skills (Aunio & Niemivirta, 2010). Furthermore, 

mastery of cardinality as a culturally-achieved word principle is regarded as a fundamental skill for 

later development of arithmetical abilities (Dowker, 2005). However, children find it challenging to 

understand the meaning of cardinality (Fluck et al., 2005). Some cognitive psychologists who 

develop models of numerical cognition posit a close relationship between the spatial and the 

numerical domains, and see the existence of spatially organized representations as the core of 

number meaning (e.g. Dehaene & Brannon, 2011). However, there is a dearth of research focusing 

on the underlying cognitive structures that support mapping between non-symbolic and symbolic 

representations of numbers (Mundy & Gilmore, 2009), and in particular inquiries into children’s 

mathematical performances in naturally occurring testing scenes (Reikeras et al., 2012).  

The aim of the study is to explore how the cardinal concept is measured, perceived and 

conceptualized in an educational design incorporating early learning of numbers. In the following, 

we introduce the conceptual framework of the study which is theories of core knowledge system.  

The core systems of number representation and conceptual mapping 

In the literature, there is a consensus that cognition is based on at least four domain-specific core 

knowledge systems for representing objects, actions, numbers and space, each mechanism being 

deeply rooted in human evolution with shared ontogenetically and phylogenetically abilities (Spelke 

& Kinzler, 2007). Two of these core systems are dedicated for representing numbers, i.e. the 

Approximate Number System (ANS) and the Object Tracking System (OTS), accounting for humans 



basic numerical intuitions, and serve as the foundation for acquiring symbolic and cultural aspects 

of the number concept (Feigenson et al., 2004). Whereas the ANS supports rapid analog estimated 

representation of large magnitudes, the OTS is a cognitive system for tracking up to four objects in 

parallel (Burr et al., 2010). Subitizing, which is an immediate perceptual insight of the cardinal 

value of a small set of objects “without having to engage in conscious counting” (Wynn 1995: 36), 

is thought to emerge from the OTS-system. However, the exact nature and origin of subitizing is 

still in dispute (Piazza, Fumarola et al. 2011). Moreover, these core systems of object 

representations center on the spatio-temporal principles of cohesion and continuity, positing that 

objects maintain their connectedness and boundaries across movement in space and time (Spelke et 

al., 2007). Hence, from a core knowledge standpoint, this suggests that infants have an innate ability 

to grasp the ontological aspects of wholeness, numerosity and invariance of the cardinal concept.                                                                      

A conceptual mapping concerns neural connections in the brain including core knowledge systems, 

and is described as a systematic set of relations between constituting elements where a target 

domain is understood in terms of a source domain (Lakoff & Johnson, 1999). Based on this model, 

the level of meaning in the transfer is determined by what the two domains have in common. This 

set of shared features or similarities is termed the “ground”. For example, cardinal word knowledge 

within the subitizing range is thought to reflect a mapping between number terms or metaphorical 

expressions (e.g. “cat-four”) in the semantic domain and the OTS (i.e. the cardinal value 4 is the 

ground). In a similar manner, approximate number word knowledge is supposed to reflect a 

projection between the ANS and cardinal labels such as “all”, “many”, “a part” or “about 20” 

(Gunderson et al., 2015). Thus, linguistic expressions that reflect estimated values or exact 

enumeration share the feature of pointing back to the collection of items as a part or as a whole, but 

these types of number representations are posited to be processed in different neural structures.  

Next, in order to illuminate how the core knowledge system is put into play in the design, a brief 

epistemological and ontological clarification of the cardinal concept is presented. 

The concept of cardinality  

The cardinality refers to the number of objects in a set, also denoted as the set size, magnitude or the 

quantity of a set. Formally, there are two main approaches to determining the cardinality of a set. 

The first method, which is associated with the cardinal word principle (Gelman & Gallistel, 1978), 

uses enumeration, that is the transitive meaning of counting to align the cardinal value to the set. 

The last number-word in a counting sequence points back to the group of tagged items, and hence 

ontologically reflects an aspect of the set as a whole. The second method compares sets directly 

using one-to-one correspondence. For example, a gestalt using two hands, two knees and two feet to 

tag an array of six leaves, is an embodied way of confirming that the quantity of the set of grounding 

limbs and the collection of leaves is the same. The non-verbal transitive relation emphasizes that the 

pair of knees is a part of the entire collection of six body-parts across movement in space and time. 

Thus, the aptitude to treat sets as wholes and parts of wholes reflects spatial and temporal features 

of the cardinal concept, and rests on the ability to grasp the idea that the value of the set is an 

invariant property across the form and shape of the boundary and the configuration of the items.  



Methodology 

Selection and intervention 

Four 4-year olds were enrolled in a six-week program outdoors comprising ten one-hour sessions 

using direct methods to determine the cardinality. The cases were selected based on results on a 

Give-N-task for assessing understanding of cardinality (Schaeffer et al., 1974), as outlined below. 

Cardinal-four knower, Fia (3:9), was selected as a prototypical case, and cardinal principle-knower, 

Kate (4:2), and the two cardinal-one-knowers Chris (3:11) and Ted (4:1) to ensure maximum 

variation in the cases competences in representing numbers. 

Situated in the vicinity of the kindergarten and contextualized by different N-dotted matrixes on the 

asphalt, the participants were guided to articulate their body-based mappings using corresponding 

number-metaphors (see Figure 1). For example, on a four-dotted matrix, they could embody and 

articulate the metaphorical expression “frog-four” performing a gestalt of four body parts tagging 

the dots.  

    
Figure 1: Embodiment of spatial-structures using body parts                                                             

Data collection 

The empirical data was assembled as video-recordings of intervention episodes and assessment 

tasks.  

   
Figure 2: The modified small-scale (left) and large-scale (middle and right) Give-N-tasks 

Pre- and post- Give-N-task. The children were asked to select a certain number of blocks from a set 

of fifteen blocks (e.g. “Can you give me three blocks?”). When the child had responded, the 

experimenter asked “Is that N-blocks?” If the child confirmed, a new task was given. Otherwise, the 

initial question was repeated. No suggestion was made to use a counting procedure to check 

incorrect responses. The knower level (c.f. Lee & Sarnecka, 2010) was determined by the highest 

number of correct responses given by the child in two out of three times (i.e. the criteria set by 



Wynn, 1992), given that all preceding numbers had met the same criteria. Knower-levels above four 

are labeled cardinal-principle-knowers, and reflects the group that knows how counting works.        

The “Create A-Metaphor-N-task” (only post-test, see Figure 2, left). The same procedure as the 

Give-N-task described above was applied but the question comprised the use of “number-

metaphors”. For example: “Can you find a cat-four?” and the experimenter asked “Is that a cat-

four?”                                                                   

The “Embody-Metaphor-N-task” (only post-test, see Figure 2, middle). A circle (d = 2.0 m) on the 

ground with 16 arbitrary distributed dots (d = 0.1 m). The experimenter asked can you jump or find 

a “Metaphor-N” in the matrix; for example, “Can you find a kangaroo-two and then a dog-four?” 

(Coded as 2+4, see Table 1). The question was repeated only if the child did not respond. No 

confirmatory question was posed after the child had completed the articulated embodiment. The 

initial position outside the circle was determined by the movement trajectory of the previous task.       

Qualitative data analysis 

A qualitative multi-case study approach using pattern matching and cross-case analysis as analytic 

techniques (Yin, 2009) was adapted to our purposes. The first step of the analysis identified unique 

patterns in the data material for each case, and meaningful units conveying information of non-

verbal and verbal representations of numbers across testing scenes and activities were transcribed 

and coded in the qualitative analysis tool NVivo. A cross-case analysis was conducted in order to 

identify diversities, gaps and shared patterns across the cardinal-knower-level. Based on this, 

general patterns and discrepancies emerged and were synthesized.  

Findings and discussion 

Five hours of video produced 700 references in NVivo capturing situations where the four cases 

were engaged in bodily-spatial mappings of numerosity. Elaborated, the data shows 1182 

occurrences of the seven most frequently used metaphors of articulated body-based mappings of 

numbers. For example, the use of the “cat-four” metaphor was reported 316 times. Moreover, the 

assessment shows that the cases skills in verbal production tasks span from cardinal-one-knowers to 

cardinal-principle knowers. With the exception of Ted who progressed to a cardinal-two knower-

level, the results from the pre- and post-Give-N-tasks suggest that the intervention had no “effect”. 

However, during intervention and on the two modified assessment-methods, the three subset-

knowers showed domain-specific cardinal knowledge in terms of an ability via metaphors to map 

non-verbal and verbal cardinal knowledge above their assessed level in the ordinary Give-N-test. 

Subsequently in order to ensure an in-depth-analysis comprising the lower bound of the 

performances in the design, the examination will mainly focus on the behavior of Chris, this being 

the case with the lowest measured competence. Table 1 comprises a summary of his Give-N-results. 



  
Table 1: Results for Chris on traditional and modified Give-N-tasks 

The traditional Give-N-task and the “Create a Metaphor-N-task” 

According to the notion of conceptual mapping, the dissimilarities between the two things being 

compared in the Give-N-tasks might create an epistemic “tension” in terms of instability between 

two cognitive domains. Thus, and applied to the core knowledge systems, the question of 

discrepancy in the results narrows down to an explanation as to why the tension was resolved in a 

conventional manner in the projections involving ANS and OTS in the modified Give-N-tasks. 

Overall, the results of tasks above the three subset-knowers level of competence as measured by 

traditional Give-N-tasks suggest that the semantic mapping from a number word (i.e. the source) 

onto an unstructured collection of items (i.e. the target), did not share the cardinal value as a 

common feature (i.e. the ground). For example, the behavior for cardinal-one-knower, Chris, shows 

that the semantic expression “Give me three blocks” is frequently associated with verbal 

expressions such as “many” or “all”, and in a concrete manner mapped as 2, 6, 6, 9, 9, 5 and 15 

blocks respectively. Hence, the transfer gives no meaning as the mappings are reflected in arbitrary, 

unstructured and inconsistent distributions of blocks. Moreover, this suggests that the semantic label 

“three”, with the exception from the first response, is mapped via ANS. However, on the two 

correct responses of post-testing of the two-knower-level (2,4,15,2), Chris accompanies his behavior 

with articulation of the metaphor “kangaroo-two” showing via the OTS an emergent ability to lean 

on figurative support in the mapping of the number-word “two”. In contrast, on the “Create a 

Metaphor-N-Task”, the tension of the mappings initiated by the contextualized metaphorical 

questions was resolved in a conventional manner showing that he is on a cardinal-four-knower level 

in a domain specific way. For example, on “find a monkey-three”-tasks, Chris consistently produced 

spatial structured assemblies of three blocks (see Figure 2, left). Hence, this suggests that the 

mapping from the number word “three” is processed via the OTS to produce structured 

configurations of sets. Furthermore, this chain of reasoning rests on the assumption that no counting 

procedure was employed. This premise lends support from previous research that suggests that 

subset-knowers seldom use any counting procedure on Give-N-tasks (Le Corre et al., 2006). Hence, 



the verbal twist in the small scale “Give-N” question, from “Give-me-two-blocks” to “Can you find 

a kangaroo-two”, suggests that the discrepancy in “knower-level” is on a linguistic level and that the 

knowledge assessed in the modified task is domain-specific and contextualized.  

The “Embody-Metaphor-N-task” and behavior that reflects aspects of the cardinal concept  

Below, we focus on the two core knowledge structures for representing numbers to examine the 

responses that cardinal-one knower, Chris, gave to the kangaroo-two and the cat-four task in the 

“Embody-Metaphor-N-task”. Allowing the use of the commutative property of addition, the results 

in Table 1 show that Chris responded correctly to all four tasks, and the behavior was observed as 

articulated bodily-spatial representations “Kangaroo-two, Cat-four”. Since Chris is standing outside 

the marked boundary of the matrix, we suggest that he cognitively represents the whole assembly of 

16 dots using ANS. Based on the verbal instruction “kangaroo-two”, Chris had to visually identify a 

configuration of dots that matched the metaphorical expression (see Figure 2, right). Although it is a 

difficult task to account for when the two systems for representing numerical information are 

activated, verbal- and non-verbal empirical data in combination with experimental findings of the 

signatures of the OTS and ANS, could provide supporting evidence to the various hypothesis 

(Barner et al., 2008). For example, one hypothesis posits that the first “container” was visually 

identified via a metaphor-word-mapping onto OTS, and the rest of the dots were cognitively 

processed as an estimated quantity through ANS. This suggests that the whole assembly of dots was 

decomposed in two subsets, one part being exact enumeration via OTS, the other being a 

constellation of the whole, i.e. an estimated number representation via ANS. Another explanation is 

that Chris subsequently processed the two dots via the OTS as a part of a whole estimated set. 

Either way, these lines of reasoning finds support in the claim that ANS interacts with OTS (Piazza, 

2010), and moreover the suggestion that ANS constitutes a support in basic numerical processes of 

small numbers (Feigenson et al., 2013). Moreover, the findings of Burr et al. (2010) show that 

subitizing (OTS) rather than estimating needs attentional  resources. Thus, a third hypothesis, which 

also lends support to the claim that ANS is defined for large and small sets (Cantlon et al., 2006), 

suggests that the two-dotted configuration was initially identified as an estimated value via the 

ANS, and as a result of an increased use of attentional resources, was subsequently processed as an 

exact numerical magnitude via the OTS.                                                                       

Overall, the four cases demonstrated flexibility in their non-verbal and linguistic-metaphorical 

representations of numbers, and the diversity of embodied strategies was shared across cardinal 

knower-level and counting skills. However, the quality of the cases use of cultural skills for exact 

enumeration differs. While Kate as a cardinal-principle knower provided exact enumeration of 

embodied additive structures such as 4+4+4 and 1+2+3+4, the subset-knowers could represent the 

same arithmetic structure via articulated bodily-spatial mappings, for example three times “Cat-

four” or “Cat-four, dog-four, bear-four” and “Rooster-one, kangaroo-two, monkey-three, cat-four”. 

Hence, this gap in competence might inform of a potential learning trajectory. 

Concluding remarks 

The results reveal a discrepancy in sub-set knowers’ behavior across representational tasks of 

numbers. In particular, the data show that subset-knowers possess an ability to map non-verbal and 

figurative expressions of cardinality in modified small-and large-scale Give-N-tasks above their 



knower-level as assessed in traditional Give-N-tasks. We suggest that the most promising 

explanation concerns the suggestion that the formation of the cardinal concept rests on the core 

knowledge structures for representing numbers synchronized via direct methods to determine the 

cardinality. Based on this, the full bodily-spatial metaphorical mappings of the matrixes provided 

coherence and meaning to the cases ideas of invariance, wholeness and numerosity. Hence, the 

results correspond to a growing body of evidence suggesting the existence of a fundamental link 

between the non-verbal and verbally-created system for processing numbers (Feigenson et al., 

2013). Furthermore, the consistency of the results in the modified Give-N-tasks suggests that the 

participants managed to transfer their metaphorical number knowledge across testing scenes. Thus, 

the design follows contemporary views on cognition that see mathematical ideas and reasoning as 

“embodied” and “imaginative” (Niebert et al., 2012), suggesting the use of metaphors and imageries 

as powerful “thinking tools” (English, 2013). Hence, the examination emphasizes that the cardinal 

value is a linguistic surfacing manifestation of a deeply grounded spatial structured concept, and 

that the use of metaphors might merge these two domains in a complementary manner. In 

conclusion, the examination shows that authentic assessment during intervention and the adapted 

Give-N-tasks provides a fine-grained picture of the multiple dimensions that proficiency of the idea 

of cardinality reflects.  
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Kindergarten children’s argumentation in reflection symmetry: The 

role of semiotic means 
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In this paper I investigate the characteristics of children’s argumentation when they work with 

reflection symmetry. Using Toulmin’s (2003) model for substantial argumentation, I illuminate 

structural aspects of the ongoing argumentation. In addition, I analyse the children’s 

argumentation with respect to their use of semiotic means. Results show that children are able to 

argue for a claim in a quite complex manner. The study also illustrates the extensive use of semiotic 

means in children’s argumentation. In every element in the argumentative structure, children use 

gestures and other semiotic means to mediate their ideas. It is actually impossible to make sense of 

the ongoing argumentation without considering the use of semiotic means. 

Keywords: Argumentation, kindergarten, gestures, semiotic means.  

Introduction 

How children communicate their mathematical ideas is an important aspect in the attempt to 

understand children’s reasoning in mathematics. In kindergarten children experience mathematical 

concepts through play and interaction with others. In their communication they justify and explain 

their mathematical ideas and in return they need to consider other’s ideas and arguments. Thus 

argumentation can be seen as important for fostering children’s mathematical learning. 

This study is situated within a research and development project called the Agder projecti (AP). One 

of the aims in the project is to investigate how researcher designed mathematical activities, 

developed in the project, stimulate mathematical competences. In this case study I observed one 

kindergarten teacher (KT) and a group of six 5-year-old children engaged in mathematical activities 

about reflection symmetry. The aim of this paper is to examine the characteristics of children’s 

argumentation when they work with reflection symmetry. Furthermore, I examine what role 

‘semiotic means’ (e.g. objects, linguistic devices and signs) play in the ongoing argumentation.  

Following Toulmin (2003) and Krummheuer (1995), I regard argumentation as the practical 

business of choosing statements that serve the purpose of making an initial assertion reasonable and 

accountable for others. Argumentation is the production of an argument. An argument is then “the 

final sequence of statements accepted by all participants” (Krummheuer, 1995, p. 247). In addition, 

several arguments can serve as units in an expanded argumentation which again constitutes a new 

and extended argument. Toulmin also recognises that single statements can contain argumentative 

features. Just by making a statement you put yourself in a position of potentially being questioned.  

Argumentation, acknowledged as an important means for enabling young children’s mathematical 

reasoning, can be promoted through a dialogic approach to teaching (Mercer & Sams, 2006; Yackel 

& Cobb, 1996). Despite the increased focus on the role of mathematical argumentation for enabling 

young children’s mathematical reasoning, little research has focused explicit on the role and 

characteristics of mathematical argumentation at kindergarten level.  Pontecorvo & Sterponi (2002) 

found that children’s reasoning in preschool activity unfolded “through complex argumentative 



patterns” (p. 133). They emphasised that teachers should pay attention to the different ways children 

argue in order to facilitate children’s “possibilities to practice, enrich and refine argumentative 

resources they have already acquired” (p. 139). Tsamir, Tirosh, and Levenson (2009) investigated 

different types of justification given by children between five and six years old, working with 

number and geometry tasks. Their study shows that young children are able to justify their 

statements by using appropriate mathematical ideas. Some children, in contrast, used their ‘visual 

reasoning’ as a way to justify their statements. When the researcher asked how they could know 

which bunch of bottle caps had more they answered “because we see”, and they felt no further need 

to justify their answer or did not know how to do it. Dovigo (2016) investigated how argumentation 

promoted collaboration and problem solving in preschool (age 3-5). By comparing different ways of 

how argumentation took place in teacher-talk and peer-talk they found that peer-talk contributed 

very positively for promoting collaboration and problem solving. But at the same time they 

emphasised that if the teachers were able to guide the debate in a careful and exploratory way the 

teacher guidance could be a positive contribution to the development of the argumentation.  

Theoretical framework 

My theoretical stance is rooted in a sociocultural paradigm where interaction is regarded as the very 

engine of learning and development, (Vygotsky, 1978). As a consequence of adopting this 

theoretical stance, I regard argumentation as a cultural and historical activity. Children are not 

naturally born with the ability to argue. Argumentation is a communicative pattern which they learn 

through interaction with more knowledgeable others.  

Interaction, specific for human beings, is characterised by the use of tools and especially by the use 

of language (Vygotsky, 1978). In recent years there has been a growing interest to study the 

interplay between gestures, language and thought both in mathematics education and in other 

domains. McNeill (2005) developed a theory where he regarded gestures as an integral part of 

language, not merely as a support for language. He regarded gestures as having an active and 

inseparable role in language and thought.  

Not only gestures have been recognised as important for human reasoning. Radford, Edwards, and 

Arzarello (2009) talk about the importance of the multimodal nature of cognition; how different 

sensorial modalities – tactile, perceptual, kinesthetic become integral parts of our cognitive learning 

processes. Radford’s (2002; 2003) theory of knowledge objectification emphasises how gestures, 

bodily actions, artifacts, (mathematical) signs and speech in cooperation affect mathematical 

reasoning. A special category of semiotic means of objectification that Radford (2002) considers is 

deixis. Deictic terms are words that have the function “to point at something in the visual field of 

the speakers” (p. 17), and cannot be fully understood without additional contextual information (e.g. 

“here”, “there” “that”, “this” etc.). All semiotic means play a significant role in mathematical 

mediation and reasoning. “Each semiotic means of objectification puts forward a particular 

dimension of meaning (signification); the coordination of all these dimensions results in a complex 

composite meaning that is central in the process of objectification” (Roth & Radford, 2011, p. 78).  

The concept of argumentation used in mathematics and mathematics education is often related to 

the production of proofs. It is nevertheless important not merely to connect the concept of 

argumentation to formal logic as found in mathematical proofs. Toulmin (2003) distinguishes 



between analytic argumentation, which is used in production of mathematical proofs, and 

substantial argumentation which is informal argumentation used in everyday practices. Substantial 

argumentation does not necessarily have a strict logical structure. Substantial argumentation 

gradually supports a statement by presenting relationships, explanations, background information, 

etc. (Krummheuer, 1995). Toulmin (2003) strongly emphasises that substantial argumentation 

should not be regarded weaker as or less important than analytic argumentation.    

Toulmin (2003) developed a model for analysing structural and functional aspects of substantial 

argumentation with the aim to illuminate how statements are organised for the purpose of 

constituting an argument, and how a conclusion is established through the production of an 

argument. In Toulmin’s model the core of an argument is based on three elements: claim (C), data 

(D) and warrant (W). The claim is an initial statement, for example an assertion or an opinion about 

something. To support the claim, the arguer needs to produce data. Data are facts or statements on 

which the claim can be grounded. A warrant is a justification of the data with regard to the claim. 

The warrant holds the argument together. It points to the relation between the data and the claim.  

In addition, Toulmin’s (2003) model contains three other elements, backing (B), qualifier (Q) and 

rebuttal (R). A backing is a statement that supports the warrant. It is like a special case of data that 

is provided as evidence for the warrant. The purpose of a backing is to answer “why in general this 

warrant should be accepted as having authority” (Toulmin, 2003, p. 95). A qualifier says something 

about the extent to which the data confirm the claim. Words like ‘probably’, ‘presumably’ etc. are 

often used as qualifiers. Rebuttals refer to exceptions or conditions under which the claim is true, 

often used subsequent to a qualifier, exemplified as “The claim is true except/unless/only if …”.  

Method for data collection and data analysis 

In this case study I observed one KT in the focus group of AP and his group of six 5-year-old 

children engaged in mathematical activities about reflection symmetry. The activities had been 

developed in the AP, and as part of an in-service program for the focus group the KTs were asked to 

implement a number of activities with their children. I visited the kindergarten on two occasions 

with a one week interval. It was the KT himself that decided to work with reflection symmetry 

activities on both occasions. The method for data collection was observations and the sessions were 

video recorded and field notes were made.  

I regard argumentation as a sequence of statements (both verbal and non-verbal) that serve the 

purpose of supporting an initial claim. Thus one criterion for selecting episodes from the transcript 

was that they should contain verbal communication and have more than one utterance from the 

children. Another criterion was that the episodes I selected should contain mathematics, and they 

should be linked to the lesson aim (reflection symmetry). In total I found 11 episodes from the 

transcript using these criteria. Ten of these episodes had more or less an argumentative structure. 

Six of the episodes had more than two turns and more than two argumentative utterances from the 

children. These episodes were analysed in depth according to Toulmin’s (2003) model to identify 

the argumentative structures. In addition, I analysed each of the six episodes from a multimodal 

perspective. In fact, I had to look at multimodal aspects in order to be able to differentiate between 

the elements in the argumentative structure. I did not focus on any specific semiotic means and their 

significance for children’s reasoning. Rather I focused on what kind of semiotic means children 



used with respect to the different elements in the argumentation, and what role they played in 

constituting the argument.  

Results 

In this section I will present the analysis of one of the six episodes to illustrate the structure of 

children’s argumentation, and what role semiotic means play in the ongoing argumentation.  

In advance of this episode the children have been asked, by the KT, to find things in the room which 

they think are symmetric or as the KT says “equal on both sides”. Each child is then asked to 

explain why they think the toy they have chosen is equal on both sides. In this particular episode one 

of the boys (John), who has chosen a trolley, is being asked to explain why he thinks the trolley is 

equal on both sides (or more precise; he is being asked if he think the trolley is equal on both sides).   

KT: Maybe we should start with John, since he has a very large thing. John, is this 

equal on two sides?  

John: Mmm (2)ii There (2) ((He lifts his trolley up from the table, and holds it in a 

straight forward position. Then he says “there” and nods his head)).   

John: and there… ((He rotates the trolley 90 degrees, showing the side of the trolley and 

then nods his head while saying “there”)). 

KT: Aha! 

John: and (2) there. ((He rotates the trolley 180 degrees, showing the other side of the 

trolley and nods his head again while saying “there”)). 

Elias: And there and there. ((Elias has already paid attention to the situation)). 

KT: Can you see if this is equal Elias? 

Elias: Look… 

Elias: There, there (.) there, there (.) there, there and there, there. (.) And there and there, 

and (1) everywhere. ((He is pointing with his index finger to show where he thinks 

the trolley is equal. When he says “everywhere” he is letting his whole hand swipe 

over the trolley)). 

KT: ((The KT lifts up the trolley and tries to show the symmetry line and explaining 

how the trolley is equal on both sides of that line)).  

Elias: Everything is equal on both sides, even the wheels.   

The structure of children’s argumentation 

Before this episode each child was asked by the KT to choose a thing that they thought was equal on 

both (two) sides. In this episode John has picked a trolley and just by doing so he has implicitly 

made the claim that the trolley is equal on both (two) sides. When the KT asks John; “John, is this 

equal on two sides?” John’s claim is being challenged. The KT actually asks a yes-no question, but 

the question is still a quest for explanation or justification. 

To argue for his claim, John lifts the trolley up in the air, like he wants to make it visible to the 

others. The first “there” and the first nod is also a part of this visualization which together constitute 



the data he presents. It is important to notice that at this moment he holds the trolley in a straight 

forward position from his own point of view. He is not referring to any particular equal points on 

the trolley. The trolley itself is being presented as the data that supports the claim.    

Then he is trying to present a warrant for his data by rotating the trolley 90 degrees while saying 

“there” and then back again 180 degrees while saying “there” again. Each time he is saying “there” 

he is nodding his head. John is presenting the warrant as two particular sides that are equal, and 

exemplifies the equality. The warrant (the example) relates the data (the presentation of the whole 

trolley) to the claim (the trolley is equal on two sides). Considering the time John is using while 

presenting the warrant and the way he utters the second and third “there”, John does not seem very 

confident in his presentation of the warrant. Nevertheless, when John was walking around in the 

kindergarten trying to find a thing that had two equal sides, he considered the trolley for some 

seconds before he took it back to the table. This indicates that his choice was not completely 

random. John seems certain that the trolley is equal, but he is not quite certain how to justify it.   

After John has presented the second “there”, the KT utters “aha” (with a rising intonation at the 

end). By this utterance the KT gently appreciates John’s contribution, even if the two sides that John 

presented thus far were not equal. While presenting his data and his warrant, John waits several 

seconds, and it seems that the KT thinks that John has finished his explanation after the second 

“there”. From the children’s point of view, the KTs “aha” gives Johns contribution authority and 

can be regarded as a backing of John’s warrant-attempt. But from the KTs point of view, the “aha” 

was not meant as a backing, only as a gentle appreciation of his contribution.   

Elias then contributes to the argumentation. By the utterance “and there and there” and a pointing 

gesture he is presenting another warrant for John’s data. Elias is talking faster and more concisely 

than John. Because he is using his index finger rather than nodding he is also more precise in his 

communication and is able to point on specific points on the trolley, like the joints and the handles. 

The way Elias communicates indicates that he is more confident and has more knowledge about 

reflection symmetry. Elias is actually presenting several warrants for the data. Every time he says 

“there and there” and points at different corresponding points, he gives a new warrant. By 

presenting particular corresponding points, each warrant is exemplifying exactly where the trolley is 

equal. By repeating several almost identical warrants (presenting several examples) it seems that he 

is trying to communicate that every point on one side has a corresponding point on the other side.  

After presenting several warrants Elias says “everywhere” while he is swiping his whole hand over 

the trolley. I interpret this as a generalisation of his previous statements (warrants), and thus a 

backing for the warrants because it answers “why in general this warrant should be accepted as 

having authority” (Toulmin, 2003, p. 95). The warrants are not independent examples of equality 

rather examples of a more general property of reflection symmetry. 

When the KT shifts his attention to Elias in the middle of this episode, Elias answers by saying 

“look”. The intonation of the utterance indicates that he is only introducing his coming explanation. 

I interpret his utterance as synonymous to “let me explain”.  

At the end of this episode, Elias says “everything is equal on both sides, even the wheels”. The use 

of the word “even” in this sentence is very interesting. The word “even” I interpret as a qualifier for 

the claim. It says something about to what degree the data confirm the claim. Usually words like 



“probably” or “presumably” are used as qualifiers, but in this case Elias is indicating that he is very 

certain that everything is equal on both sides, by saying “even the wheels”. It seems that the 

probability for everything being equal increases since ‘the critical points’, the wheels, are equal. 

Why Elias regards the wheels as important points is hard to tell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The structure of children’s argumentation  

This example illustrates the complexity of children’s argumentation. They are able to present more 

than only the core of an argument. In this episode I found that some children are able to present both 

data, warrant, backing and even qualifier for a claim. In another episode that is not provided in this 

paper (because of the limited space) Elias was also able to present a rebuttal. He was able to modify 

his claim by giving examples of exceptions.  

Discussion 

This study shows that young children are able to argue for a claim in a quite complex manner. Using 

Toulmin’s (2003) model to illuminate structural aspects of the children’s argumentation, the results 

show that some children are able to use several of the elements in the model in their argumentation.  

This study also illustrates the extensive use of semiotic means in children’s argumentation. In every 

element in the argumentative structure, children use gestures and other semiotic means to mediate 

their ideas. This illuminates the significant role that gestures and other semiotic means play in 

children’s communication and especially in their argumentation. (cf. McNeill, 2005; Radford, 2002; 

2003; Roth and Radford, 2011). Deixis, in particular, are extensively used in the argumentation 

above. Both the data that John presents and the warrants that John and Elias present are based on the 

deixis “there” and the related pointing and nodding gestures. Even if John and Elias use different 

signs for mediating their ideas, both the nodding and the pointing gestures serve the same purpose, 

Data (John): There [Lifts the trolley 

in a straight forward position and 

nods his head]  

Claim (John): The 

trolley is equal on 

two sides 

Warrant (John): [pause] and there [pause] and there [He is first showing one 

side, then the other side]  

 

Qualifier (Elias): 

even the wheels 

Warrant (Elias): And there and there [pointing with his index finger at equal 

points on two sides of the trolley] 

Warrant (Elias): There, there. There, there. There, there and there, there. And 

there and there [pointing with his index finger at equal points on two sides of 

the trolley] 

Backing (Elias): Everywhere [swiping his hand over the trolley] 



namely to give contextual information to the deixis “there”. It is actually not possible to get the 

whole meaning of the words “there and there” without including the pointing and nodding gestures.  

The deixis and the related pointing and nodding gestures are not the only significant semiotic means 

in this argumentation. To be able to distinguish between the data and the warrant that John provides 

I had to interpret his related actions. When he presents the data he holds the trolley in a straight 

forward position, he is not referring to any particular equal points, only presenting the trolley as a 

whole, as if he wants to show the equality. The way he presents his claim corresponds with one of 

the findings in Tsamir, Tirosh and Levensons (2009), that some children based their justification on 

‘visual reasoning’. The trolley itself is being presented as the fact that supports the claim. In the 

warrant he is presenting two corresponding sides, as if he wants to give an example of the equality. 

Without interpreting these actions, it is impossible to distinguish between the data and the warrant, 

and thus fully understand the structural aspects of the ongoing argumentation. 

The repetitive presentation of Elias’ warrants and the swiping hand that generalises the repetitive 

warrants are other important semiotic means in the argumentation. By repeating “there and there” 

with corresponding pointing gestures Elias indicates that every point has a corresponding point on 

the other side of the symmetry line. When Elias says “everywhere”, he swipes his hand over the 

trolley. This swiping gesture plays a significant role in the generalisation process of the points.    

The results from this study point to significant features of children’s argumentation and give 

important insights into how children argue. I think teachers could benefit from paying attention to 

the different ways children argue and being aware of the structural aspects in children’s 

argumentation in order to provide opportunities for improving children’s mathematical 

communication and reasoning (cf. Dovigo, 2016; Pontecorvo and Sterponi, 2002). But to be able to 

do so, the KTs also need to pay attention to how children make use of semiotic means in their 

argumentation. The Toulmin model revealed structural aspects of children’s argumentation, but 

these structural aspects would not have emerged without considering the use of semiotic means. In 

line with Roth and Radford (2011) I would argue that all the different semiotic means play a 

significant role in the constitution of meaning.  

In the example above we saw that Elias was able to use several elements in the model and 

demonstrated more confidence in his argumentation than John. A possible explanation could be that 

Elias is further in his appropriation of the properties of reflection symmetry than John. Maybe there 

is a correspondence between how far children have appropriated a certain subject and their ability to 

use several elements in the Toulmin model. This is thus a suggestion for further research on this 

interesting topic. 
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The Making Numbers research Project, funded by the Nuffield Foundation, has developed guidance 

for teachers of 3 to 9 year olds on the use of manipulatives in the teaching of arithmetic. The project, 

which consisted of a literature review, survey of teacher use and small-scale teaching investigations, 

identified key principles and issues for the use of manipulatives. This paper gives a brief overview of 

project findings, which are reported elsewhere, and discusses issues relating to the early years from 

the literature review.  
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Background to the project  

Making Numbers is a Nuffield Foundation funded project to develop research-informed guidance for 

teachers of three to nine year olds on the use of manipulatives to teach arithmetic. The project has run 

for two years and includes a literature review, a survey of current practice and the development of 

exemplars of good practice through observation and small-scale teaching investigations. The resulting 

guidance has been published as a fully illustrated book for teachers with accompanying animations 

for use with children (Griffiths, Back, & Gifford, 2016). The findings of the project are reported in 

full elsewhere (Griffiths, Back, & Gifford, in press): this paper gives a brief overview, highlights 

some issues concerning the use of manipulatives with young children and exemplifies key 

pedagogical principles. 

Our definition of manipulatives is “objects that can be handled and moved and are used to develop 

learners’ understanding of a mathematical situation” (Gifford, Back, & Griffiths, 2015, p.1). This 

includes the use of everyday and structured materials, characterized by a pedagogical intention, which 

concurs with recent studies (Swan & Marshall, 2010; Carbonneau, Marley, & Selig, 2013). The 

project focus was on number sense, prioritizing for this age range counting, cardinality, comparison 

and composition of numbers. Hence the project title, ‘Making numbers’, emphasises flexibly 

decomposing and recomposing numbers, which was identified by Boaler (2009) as key to 

mathematical achievement. 

From the survey and interviews with teacher groups, we found that manipulatives were mainly used 

in the early years and with older low achievers (Gifford et al., 2015). The most common were 

counters, interlocking cubes and Numicon 10-frame based number plates (Wing, 2001), followed by 

place value apparatus. Teachers’ choice was influenced by commercial availability and past 

government policy, but for some it was serendipitous. Most expressed a lack of confidence about how 

to use manipulatives to teach different aspects of number.  

The methodological approach of the literature review was to consider studies and theories from a 

range of perspectives, in order to gain insights into factors affecting children’s learning. Sources 

included the history of pedagogy, cognitive and social constructivist theories of learning and 

quantitative and qualitative empirical studies. We found that experimental studies were contradictory 



and inconclusive, identifying only crude factors, such as length of the study or the amount of 

instructional guidance, as shown by Carbonneau et al.’s (2013) meta-study.  

The conclusion was that the effective use of manipulatives depended on some key pedagogical 

principles (Gifford et al., 2015). These included:  

 the careful matching of both manipulatives and activities to the mathematical focus 

 the identification and assessment of children’s prerequisite understanding  

 activities involving comparison, equivalence, analysis and generalisation  

 discussion, requiring children to use manipulatives to justify reasoning 

 linking manipulatives to abstract symbols 

 creating an inclusive mathematics learning community. 

Here we identify some issues from the literature review about teachers’ use of manipulatives with 

young children. These concern fingers as manipulatives, discrete and continuous models for number 

and the learning potential of pattern activities. The pedagogical principles above are exemplified in a 

small case study from a teaching investigation. 

Fingers as manipulatives 

The benefits of drawing from a range of perspectives are evident in the consideration of fingers as 

manipulatives, which are of particular relevance to teachers of young children. Their significance has 

been underlined by neurological research: brain areas representing fingers and numbers are closely 

related, according to Wood and Fischer (2008). Young children use mental finger representations for 

numbers more than adults, suggesting that finger use is significant for the development of number 

understanding. Gracia-Bafalluy and Noel (2008) found that young children’s finger awareness was 

predictive of their mathematical competence and that training in distinguishing fingers resulted in 

improvements in subitising, counting and comparing numbers. However, the way that fingers are 

used for counting varies in different cultures, including counting three to a finger, or counting hands 

as fives. Bender and Beller (2012) argued that the resulting number concepts also vary according to 

different languages, some of which support 10s structures more transparently. Jordan (2003) also 

found that children from low-income families tended not to use fingers to solve problems. This 

suggests that home practices differentially support children’s number understanding and need to be 

taken into account by teachers. 

How should children be taught to use fingers? Sarama and Clements (2009) advised teachers not to 

discourage children from using fingers until they were confident with mental strategies, in order to 

prevent reliance on finger counting. Marton and Neuman (1990), using a phenomenological approach, 

found that older higher attainers, who used recall and derived facts, showed numbers of fingers ‘all- 

at-once’, whereas low attainers continued to rely on using fingers to count on and back. ‘Finger 

numbers’ encouraged children to analyse numbers, developing subitised images and part-whole 

number understanding. This model therefore represents key number concepts more effectively. 

Sinclair and Pimm (2015) reported that using the app ‘Touchcounts’ rapidly resulted in three year 

olds showing ‘all-at-once’ finger numbers. This seems an important skill which young children might 

also learn in other ways, for instance, when singing number rhymes.  

  



Discrete and continuous models of number  

One current issue relating to young children is about the relative merits of discrete and continuous 

models of number, for instance using either counters or colour rods which represent numbers as 

lengths. Usually in England numbers are introduced by counting separate items. However, when 

children are later introduced to number lines, numbers are represented by intervals on a continuous 

line and children often count the numerals or marks, rather than the intervals between them. Sarama 

& Clements (2009, p. 119) recommended caution in using the number line “as a representation for 

beginning arithmetic”, raising the issue of when and how to introduce it. However, neuroscientific 

evidence suggests that people intuitively see some kind of mental number line (Wood & Fischer, 

2015). This supports renewed interest in teaching young children about number based on measuring 

lengths, as proposed by Bass (2015) following the approach of Davydov (1975). Bass pointed out 

that number “arises from measuring one quantity by another, taken to be the ‘unit’” (2015, p. 100). 

He argued that introducing numbers as chosen units for measuring quantities provides a more 

coherent model of numbers which can also include fractions. It supports multiplicative and 

proportional reasoning and early understanding of algebraic principles such as inverse and 

commutativity. This argument also supports the use of colour rods. 

Fuson (2009) argued that number paths or tracks are more comprehensible for young children, as they 

present adjacent squares which are more obviously countable than intervals on a line. Laski & Siegler 

(2014) found that children who regularly played number track games, reading the numbers aloud as 

they counted moves, improved their awareness of number magnitude and arithmetical achievement. 

It has subsequently been argued that children’s engagement with ordinal number has been overlooked 

as a means of developing understanding. Sarama & Clements (2009, p. 93) suggested that children 

were linking the distance model with counting moves and numbers spoken: 

connections between the numerical magnitudes and all the visual-spatial, kinaesthetic, 

auditory and temporal cues in the games (i.e., all the magnitudes increase together: numerals, 

distance moved, number of moves, number of counting words etc.) may provide a rich mental 

model for a mental number line.  

It therefore seems that we may underestimate children’s capabilities to combine the various models 

to construct complex networks of numerical understanding. According to Clements and Sarama 

(2009), four year olds may be in the process of developing a mental number line connecting different 

‘quantification schemes’, including discrete number ideas based on subitising and counting with 

continuous ideas about duration and length.  

Some manipulatives have attempted to integrate discrete and continuous models of number. For 

instance, bead strings present countable beads, usually coloured in groups of five or 10, along a line: 

Beishuizen (2010) reported that teaching children to find a number on a bead string and then on a 

number line helped them to develop mental calculation. Some older apparatus, such as Montessori’s 

numeric rods and the Stern counting board, present rods arranged as ‘staircases’ of discrete cardinal 

numbers, with numerals alongside. These afford a clear image of the value of numerals in sequence 

increasing by one, but are not common in schools, having been replaced by rods made of interlocking 

cubes. An approach we have developed is to use centimetre cubes alongside a ruler: this has the 

advantage of providing countable objects, while demonstrating that the individual items counted are 



in the intervals between the numerals. This not only shows the numbers increasing by one and but 

also that each successive number includes all previous ones, the idea of hierarchical inclusion or 

‘nested numbers’ (Clements & Sarama, 2009, p. 20). Combining both models also provides 

opportunities for children to discuss what is the same and what is different, as advocated by Harries, 

Barmby and Suggate (2008). This is an area where teachers need to be aware of the complexities 

involved in the differences between continuous and discrete models and further investigation is 

needed of how children reconcile these. 

The potential of pattern 

There is a range of possible factors affecting young children’s understanding of manipulatives used 

to represent number relations. From Piagetian theory young children are seen as needing sensory 

experiences in order to learn, and from Vygotskian theory as being able to use symbols, such as 

fingers, from an early age. Recent theories suggest differences in young children’s spontaneous and 

intuitive appreciation of number and pattern. Hannula and Lehtinen (2005) found that some very 

young children displayed a tendency to spontaneously focus on numerical features of a situation 

(SFON), while others did not, and this predicted later achievement. Mulligan and Mitchelmore (2009) 

found that children varied considerably in their awareness of mathematical pattern and structure 

(AMPS) and that this was also linked to mathematical achievement. They identified different stages 

of AMPS: some children focused on non-mathematical surface features of patterns, some children 

noticed one or two mathematical elements in a pattern and others could reproduce and continue 

patterns, by identifying the components and relationships. Mulligan and Mitchelmore also found that 

pattern awareness could be taught to young children, suggesting that this facility is learned from 

experience: Papic, Mulligan and Mitchelmore (2011) reported a successful intervention with four 

year olds, which improved awareness of pattern and mathematical structures. This presents a 

potentially powerful approach, both in building on young children’s strengths with visuo-spatial 

memory and in developing pre-algebraic understanding. 

Staircase patterns 

One of our teaching investigations, into the learning of numbers to 20 with a class of 30 six year old 

children, exemplified the importance of pattern awareness as well as some of the key principles 

identified in the literature review. In a series of small group teaching sessions, we aimed to teach 

children about the numbers from 10 to 20, sometimes referred to as the ‘teen numbers’ (Gifford & 

Thouless, 2016). We used a ‘staircase’ pattern of ‘teen numbers’ made of rods of interlocking cubes 

arranged in number order. The rods for one to 10 were of different colours, with the rod for ten 

consisting of a stick of green cubes; the rods for 11 to 19 then had 10 green cubes with the rods for 

numbers 1 to 9 attached, repeating the same colour sequence. Numerals were presented alongside the 

rods 1 to 9. We invited the children to find a single rod, such as 18. We found that children used a 

variety of strategies to do this: most picked a rod at random and counted the cubes from one. Magda 

counted in ones along the 20 rod and then along the 18 rod and explained ”I knew one less would be 

19 and one less would be 18”. Only one child identified rods by counting on from ten. Some children 

made errors in counting, either in the word sequence, or in matching words to cubes when pointing.  

This activity demonstrated the pedagogical principle of carefully selecting manipulatives to match 

mathematical concepts and showed how this affected the accessibility of those concepts. We wanted 



the children to recognize the sticks as representing the teen numbers as composed of ten and another 

number, but it was not easy to see there were ten green cubes and recognize the ‘ten’, unlike with 

Numicon plates which children had previously identified as ‘ten’. However, the staircase arrangement 

enabled some children to recognize the ‘one more than’ pattern, which would not have been so evident 

with Numicon.  When trying to find the ‘thirteen’ rod, six year Lucasz, who was not yet fluent in 

English, said, ‘because after 2, 3. Because it’s like ten, 1, 2, 3.’ In doing this he made a sweeping 

gesture across the 11, 12 and 13 rods, then across to rods 1, 2 and 3. Later, Magda, whose home 

language was Czech and who was more fluent in English, said, ‘It’s a bit like counting up stairs. Like 

counting 1, 2, 3 but 11, 12, 13.’ The children thereby implicitly identified two types of pattern, a 

repeating units pattern and the stair pattern of equal intervals of one, which is the most basic arithmetic 

sequence. This was evidence of early algebraic thinking, in that they noticed mathematical features, 

identified the relationship between elements and observed regularities  (Blanton et al., 2015, cited by 

Kieran, Pang, Schifter, & Ng, 2016).  

This activity thereby also demonstrated the principle of prompting analysis, by simply asking children 

to say how they identified a number. In our teaching investigations we have been impressed by the 

way patterns can fascinate children. On one occasion, when children were rushing by our table outside 

a classroom on their way to lunch, two six year old boys halted in their tracks in order to gaze at the 

staircase pattern and one child sat down to join us. We found that patterns like these engaged a range 

of children, who had differing expertise with numbers, in solving problems and noticing relationships. 

While some children may have had high levels of AMPS (Mulligan and Mitchelmore, 2009), the 

striking pattern made with manipulatives helped all children to focus on number relationships. 

Presenting number patterns in this way contrasts with other approaches which advocate that early 

years mathematics pedagogy should be based on realistic “context situations” (van den Heuvel-

Panhuizen, 2008, p. 20). 

The activity also prompted discussion, stimulating both Lucasz and Magda to express themselves 

creatively using language and gesture, as shown above, making connections and elaborating ideas. 

Lucasz may have been an example of a child using gesture to express emergent mathematics learning, 

as described by Garber, Alibali and Goldin-Meadow (1998) or he may have already been familiar 

with this pattern and been able to articulate it in Polish: we do not know. However, this showed that 

a lack of fluency did not prevent a child in the early stages of learning a language from trying to 

express a mathematical relationship, and also the importance of gesture in supporting mathematical 

discussion between children who are not using their home languages. The manipulatives pattern 

thereby supported the linking of different modes of representation, not only verbal and visual, but 

also kinaesthetic and, through the use of numeral cards, abstract symbols. 

This activity also exemplified the need to identify and assess prerequisite understanding. Some 

children could not reliably count objects to 20, despite having been assessed as doing this the previous 

year. Most of the children counted from one instead of counting on from 10, even when it was pointed 

out to them that there were always 10 green cubes. This may have been because they lacked skills of 

counting on or were not yet able to unitise ten as an item. As Cobb (1995) pointed out, if children do 

not have a concept of ‘a ten’ they will not be able to ‘see’ it even when demonstrated. Similarly, some 

children could add 10 and 3 and instantly say “13”, but seemed not to understand the inverse 

relationship sufficiently to apply this to decomposing 13 into 10 and 3 and did not use this knowledge 



to identify 13 as 10 and 3. Therefore some children may have lacked the prerequisite understanding 

and skills to access what the manipulatives were intended to represent. 

The final principle shown by this example, is that of an inclusive learning community. The children 

were not in ‘ability’ groups, as is common in English early years classrooms, in which case Lucasz 

and Magda would not have been in the same group. We do not know if Magda would have articulated 

the pattern in this way, if she had not first listened to Lucasz, who was able to hear his idea expressed 

differently.  Latoya, in her second session, identified the 15 rod by counting on from 10, saying, ‘10, 

11, 12, 13, 14, 15’; this was a skill she had not used previously but had observed another child using 

in the previous session. Both the lack of grouping and the open activity, allowing for a range of 

solution strategies, facilitated children in learning from others.  

In our study we also observed successful practice, particularly with colour rods, which similarly 

showed children engaged by patterns and stimulated to discuss mathematical relationships. These 

experiences imply that developing children’s focus on patterns is a promising avenue for 

mathematical pedagogy in the early years. 

Implications 

The issues discussed here suggest some potentially profitable avenues for future research with 

mathematical manipulatives and young children and some implications for practice. Firstly, we might 

build on home practices in finger counting and develop young children’s use of ‘all at once’ finger 

numbers. We also might investigate how children reconcile differences between discrete and 

continuous models of number, through comparing and discussing representations. These issues 

highlight the need to consider carefully exactly how manipulatives might foster learning of particular 

aspects of mathematics. There are promising avenues for early years mathematics pedagogy in using 

manipulatives to build on children’s interest in patterns and to develop children’s own expressions of 

mathematical relationships. However, an important prerequisite for all of these is a focus on 

children’s understanding of mathematical relationships rather than on performing calculations, as 

suggested by Ma (2015), which also has implications for early years mathematics curricula. 
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The aim of this study is to employ the Knowledge Quartet, proposed by Rowland, Huckstep, and 

Thwaites (2005), in order to characterise the kindergarten teacher’s competence when 

orchestrating researcher designed mathematical activities for 5-year-olds. We are drawing on 

design research as a methodology in which design principles such as playful learning and inquiry 

are implemented in the activities. Our analyses show that knowledge-in-action and knowledge-in-

interaction are revealed in the orchestration. Hence, the Knowledge Quartet is applicable in the 

kindergarten context – however, with some modifications due to kindergarten particularities.  

Keywords: Design research, kindergarten, Knowledge Quartet, mathematics, orchestration. 

Introduction 

For about a decade, mathematics has been part of the Norwegian curriculum for kindergarten, a 

curriculum situated within a social pedagogy tradition. In a kindergarten setting in Norway, a 

kindergarten teacher (KT) is supposed to empower the children’s mathematical explorations. 

However, the curriculum is not explicit as regards how KTs are to facilitate the children’s 

mathematical explorations. In this study we characterise one KT’s orchestration of mathematical 

activities for 5-year-olds in terms of knowledge employed by the KT. The following research 

questions are formulated for the study:  

In what ways may the Knowledge Quartet be employed in order to characterise the 

kindergarten teacher’s competence? 

What knowledge-in-action and knowledge-in-interaction does a kindergarten teacher reveal 

in her orchestration of a mathematical activity on geometrical shapes?  

The activities were designed by researchers in mathematics education (the authors of this paper 

among others), as part of an ongoing research and development project called “The Agder project”i, 

in order for the participating children to engage with mathematical concepts and ideas.  

In this study we use the metaphor of orchestration. By this metaphor we mean that it is the KT who 

is in charge of and leads the mathematical activity. She has to plan, think forward, act in the 

moment, follow up children’s questions and comments, adapt questions for each of the children, etc. 

– an important and by no means easy role to fulfil. Our admiration of this complexity is thus 

considerable when we set out to design the mathematical activities and study how the KTs 

orchestrate the activities. 

Theoretical lens: The Knowledge Quartet 

In order to analyse in depth how the Knowledge Quartet may be employed in order to characterise 

the kindergarten teacher’s competence and the revealed knowledge-in-action and knowledge-in-

interaction on behalf of the KT, we draw heavily on the Knowledge Quartet coined by Rowland, 



Huckstep and Thwaites (2005). The Knowledge Quartet was developed by Rowland et al. (2005) as 

a theoretical construct drawing on the profound and substantial work of Shulman (1986). Rowland 

and colleagues drew on videotapes from mathematics classroom lessons where pre-service teachers 

utilised their mathematical and pedagogical knowledge in their teaching. This quartet is used as a 

theoretical lens through which we analyse video data of one KT´s orchestration of one of the 

developed activities. We limit ourselves to one KT taking into account that “the quartet is 

comprehensive as a tool for thinking about the ways that subject knowledge comes into play in the 

classroom” (Rowland, Huckstep, & Thwaites, 2003, p. 97). 

The Knowledge Quartet differs from the framework of Ball, Thames and Phelps (2008), 

mathematical knowledge for teaching (MKT), in that the former focuses on situations in the 

mathematics classroom through which the teacher’s mathematics-related knowledge may be 

observed. Ball et al.’s (2008) framework describes different kinds of mathematics teachers’ 

knowledge. Mosvold, Bjuland, Fauskanger, and Jacobsen (2011) used the framework of Ball et al. 

(2008) to analyse mathematics teaching at the kindergarten level. Mosvold et al. (2011) found that 

the MKT framework needs to be adjusted to the kindergarten context in order to be appropriately 

used. This is because (1) the work situation of orchestrating mathematical activities for a Norwegian 

kindergarten teacher is very different from the teaching situation of a U.S. mathematics school 

teacher; and (2) the tasks of teaching in the kindergarten setting are significantly different from that 

of the school setting. It is pedagogical activities which is the basis for learning activities in 

Norwegian kindergartens, not mathematical activities as such. These differences have been 

emphasised by Erfjord, Hundeland, and Carlsen (2012), through the lens of the didactic triangle. 

In adopting a grounded approach to the analyses of data, Rowland et al. (2005) identified what they 

labelled the Knowledge Quartet, four dimensions along which mathematics teachers’ “mathematics-

related knowledge” (p. 255) may be analysed. These four dimensions are termed foundation, 

transformation, connection and contingency. Foundation encompasses the knowledge background 

of the KT; transformation and connection encompass how and to what extent knowledge is revealed 

in action as the KT implements and orchestrates the activity, hence dimensions described as 

knowledge-in-action. Contingency encompasses the KT’s knowledge as this unfolds in interaction 

with the children, hence knowledge-in-interaction. 

Foundation is a dimension of propositional knowledge used, adapted to our case, to address the 

KT’s mathematical knowledge, the KT’s knowledge of mathematics education, and the KT’s view 

upon the purpose of mathematics education and how children learn mathematics. Analytically, we 

use this dimension to characterise both the mathematics and the didactical insights revealed by the 

KT in her orchestration of the activity.  

Transformation is a dimension of knowledge-in-action which addresses the KT’s choices of 

representations, demonstrations, and use of examples in her orchestration of the activity. The 

dimension focuses on the KT’s ability to transform the mathematics “in ways designed to enable 

students to learn it” (Rowland et al., 2005, p. 265). Analytically, we use this dimension to describe 

the KT’s orchestration of the activity on characterising two-dimensional geometrical shapes. 

Connection is a dimension of knowledge-in-action as well, addressing to what extent the KT draws 

connections between various mathematics concepts and connections between various mathematics 



procedures, alternative meanings for these concepts and different ways of carrying out procedures. 

Analytically, we use this dimension to characterise how the KT makes connections between the 

geometrical shapes and their features, as well as various ways of deciding what shape is what.  

Contingency is a dimension of knowledge-in-interaction, a dimension that addresses how the KT 

interacts with the children through appropriately responding to children’s contributions, to what 

extent she takes advantage of learning opportunities that emerge, and to what extent she makes the 

activity her own and deviates from the goals and foci of the activity. Analytically, we use this 

dimension to characterise how the KT responds to the children’s ideas, the questions and comments 

she uses, whether she draws the children’s attention towards particular mathematical ideas, and 

whether she makes the geometry activity her own and are unbounded by its original foci.  

Design principles and context 

In our design of the mathematical activities we drew on two main principles, playful learning and 

inquiry approach to the teaching and learning of mathematics. The design principle of playful 

learning emphasises that for children play and learning is one and the same thing. Playful learning 

encompasses both free play (child-initiated and child-directed play) and guided play (adult-initiated 

and child-directed play), where guided play is the principle used here. In guided play the KT 

orchestrates and literally guides the play in an adequate direction in order to reach pre-formulated 

aims for the children’s play and to nurture the children’s interest, curiosity, engagement, and 

(mathematical) sense-making (Weisberg, Kittredge, Hirsh-Pasek, Golinkoff, & Klahr, 2015). The 

design principle of adopting an inquiry approach to the teaching and learning of mathematics stems 

from Jaworski’s (2005) inquiry as “a way of being in practice” (p. 103). That is, the KT and the 

children collaborate in order to achieve meaningful answers to prompts and questions, the children’s 

curiosity is taken advantage of, and the children are guided into mathematical inquiries through the 

use of questions, being curious and excited about mathematical issues. 

The KT that takes part in our study is a participant in the Agder Project, and by that also a 

participant in a professional development program. The professional development program within 

this project was based on four workshops of two days duration, focusing on Number, Measurement, 

Geometry and Statistics, combinatory and probability. In the third workshop, the KTs participated in 

lectures and group discussions on Geometry. Our data collection took place during the period when 

the KTs tried out two geometry activities. The observed KT is in her forties, educated for three years 

(180 ECTS) at university level, and is a well experienced kindergarten teacher.  

Context 

We as researchers are interested in scrutinising the KTs’ processes of orchestrating our designed 

mathematical activities. Moreover, the KTs have been participants in a professional development 

program where we have contributed with lectures and feedback on previous orchestrations of 

mathematical activities. We study the case of Wilma and videotaped her orchestration of a geometry 

activity. Wilma had received a written instruction note for the geometry activity a couple of weeks 

in advance of our data collection. 



Analysis and results 

In order to employ the Knowledge Quartet (KQ) on empirical data, one has to go into the code level 

from which the four dimensions are extracted (Rowland, 2016, personal communication). Our 

analytical process started with a first phase of collectively reflecting on our collected data in total, 

consisting of two days with data collection in each of four different kindergartens. In doing that, we 

had the KQ in mind, seeking to use KQ terminology and codes to analyse our data. The second 

phase consisted of us collectively looking at video excerpts from the different kindergartens, 

resulting in our choice of the case of Wilma. The reason for choosing one of the sessions of Wilma 

was that this session, from our collective looking at the video, turned out to be the most promising 

in addressing our research questions. The KT observably revealed her knowledge in action and 

interaction, the children contributed with oral statements and questions, and interaction amongst the 

children was taking place. The third analytical phase consisted of transcribing the video from 

Wilma’s session. The fourth phase consisted of us conducting collective in-depth analyses of the 

natural talk-in-interaction adopting the codes developed in the Knowledge Quartet. 

The activities were presented in written form by us with the three headings Equipment, Intention, 

and Implementation. The particular activity we consider here, is the first part of an activity focusing 

on two-dimensional geometrical shapes. Under Equipment we wrote: Geometrical shapes: triangles, 

squares, rectangles, circles, trapezium, rhombus, while for Intention we wrote: The children are 

supposed to get experience in recognizing properties of different two-dimensional shapes. 

Furthermore, the children are supposed to practice mathematical argumentation with respect to 

features of the various shapes. As regards Implementation, we wrote: Let the children investigate the 

shapes and their characteristics. Let the children discover the shapes’ differences.  

Excerpt 1: Foundation 

The following excerpts are taken from the initial phase of Wilma’s orchestration of the geometry 

activity. Wilma shows and shakes a box containing two-dimensional paper shapes. One of the 

children responds that “It’s shapes”. Upon this, Wilma  continues their conversation. The analytical 

contributory codes are: “awareness of purpose; identifying errors; overt subject knowledge; 

theoretical underpinning of pedagogy; use of terminology; use of textbook; reliance on procedures” 

(Rowland et al., 2005, p. 265).  

Wilma: Yes, that’s correct. And with mathematical terminology we call them geometrical 

shapes. Are you able to pronounce that?  

Sam: I think it is cookies (Smiles as he says it). 

Wilma: John, are you able to pronounce that? Geometrical shapes?  

John: Geometrical shapes. (Several children simultaneously say “Geometrical shapes”) 

Wilma: Yes, that is what they are called with mathematical terminology. Inside this box 

there are several of such shapes (She opens the box and shows it to all the children 

so that they may look inside the box). 

John: It looks like a puzzle. 

Wilma: Yes, it looks like a puzzle. That’s true. 



Sam: Yes. Are we going to puzzle with them? 

Wilma: At least we are going to work with them, yes we are. 

Ken: Can you pour them out? 

Wilma: I was thinking of pouring them out. Then I want you to take a look at them. 

Currently, there are quite a few shapes and some of them are almost identical. 

Now you may take a look at them. (She pours the shapes out on the table; the 

children take some shapes each and say “that is small” and “a triangle”.) 

In this excerpt we argue that Wilma’s orchestration is characterised by her foundation, both with 

respect to mathematics insights and didactical insights. The mathematical insights are revealed 

through Wilma’s emphasis on the mathematical terminology through the twice expressed term 

“geometrical shapes”. Furthermore, her mathematical insights are revealed through her choice of 

shapes that are congruent, shapes that are similar, and the variety of shapes included (various 

triangles, various quadrilaterals, circles of various sizes, ellipses, hexagons and octagons). The 

written material made by us suggested “triangles, squares, rectangles, circles, trapezium, rhombus” 

as shapes to work on in the activity while Wilma introduced many more shapes and terminology. 

Thus, we argue that the foundation here is Wilma’s and not just her use of external provided 

foundation from us in the written form.  

The didactical insights of Wilma are revealed through her way of establishing interest and curiosity 

among the children by shaking the box. The children’s interest and curiosity about the shapes are 

nurtured further by her showing of the various shapes in the box. Wilma confirms that the shapes 

look like pieces of a puzzle and by that she makes a link between these shapes and the apparently 

well-known activity of puzzling. By establishing that link, Wilma also communicates a playful way 

of engaging with the shapes. Finally, in this excerpt, Wilma’s didactical insights are revealed when 

she asks the children to inquire into the various shapes. By orchestrating the activity as playful, 

Wilma signals that she appreciates inquiry as a tool in order to learn mathematics. Additionally, the 

children’s interest, curiosity, engagement, and mathematical sense-making are nurtured.  

Excerpt 2: Transformation and Connection 

Approximately ten minutes later, the following dialogue occurred, exemplifying the dimensions of 

transformation and connection. Relative to transformation, the analytical codes are: “choice of 

representation; teacher demonstration; choice of examples” (Rowland et al., 2005, p. 265). Relative 

to connection, the analytical codes are: “making connections between procedures; making 

connections between concepts; anticipation of complexity” (Rowland et al., 2005, p. 265). Some of 

the children had picked up quadrilaterals that they found interesting since they did not know their 

names and they were different from rectangles and squares. Then the KT said: 

Wilma: Do you know what? These two quadrilaterals actually have other names with 

mathematical terminology. They have four edges (She counts “one, two, three, 

four” aloud while simultaneously pointing at the edges). 

Susie: But what are they called then? 

Wilma:  That one is called a rhombus (she points at the rhombus while speaking). 



Susie: Rhombus. 

Wilma: Rhombus. And that one, do you notice that two and two edges are equal (she 

points at the parallelogram she shows). That edge and that edge (slides her finger 

along the two opposite, parallel edges), are equal, and that edge and that edge are 

equal (slides her finger along the two other, opposite, parallel edges). Its name is 

actually a parallelogram.  

Sam: A paragram? 

Wilma: Yes, a parallel o gram.  

In this excerpt we see that Wilma carefully introduces two new shapes for the children. She gets 

everyone’s attention by holding up and showing one shape at a time. She emphasises that both 

shapes are conceptually associated with quadrilaterals, by overtly counting the edges. At the same 

time she makes it obvious that the two shapes are particular kinds of quadrilaterals. This is 

pinpointed by saying that they have “other names”, implicitly distinguishing these shapes from the 

familiar quadrilaterals square and rectangle.   

Wilma’s orchestration in this excerpt exemplifies transformation in that she uses one example of 

each of the two new shapes. She points at each of them in accordance with what she is saying, and 

she demonstrates how to classify geometrical shapes by counting their edges. Her orchestration also 

exemplifies contingency due to the deviations from the agenda set by the researchers in the designed 

activity. 

The dimension of connection is also exemplified in this excerpt as Wilma draws the children’s 

attention towards the particular features of one of the shapes. Wilma carefully focuses at the two 

pairs of edges that are parallel, one pair at a time, by sliding her index finger along the edges. She 

neither uses the mathematical concept of parallel nor equal length at this occasion. She only uses the 

feature “equal”. The feature of parallelism is thus only implicitly focused. However, by sliding her 

index finger along the two edges, her gesture signals that they are of equal length.  

In the end of the dialogue we also notice that Wilma is particularly focused at offering opportunities 

for the children to learn the name of the new shape. On two occasions, Wilma uses the name 

“parallelogram” for the shape. Both times she puts emphasis on the expression “parallelogram”. We 

see that Sam tries to pronounce the name, but only partly succeeds. Wilma then slows down the 

pace in her pronunciation of the word, in order for Sam, and the other children, to pay attention to 

the new word. Hence, we observe that Wilma is eager to name new objects mathematically correct. 

Naming is an important element in these children’s mathematical learning process. However, both 

in this example and in other examples the naming of shapes comes at a late stage, after the children 

have presented their sorting of shapes and the KT has orchestrated a discussion of the properties of 

the shapes. We consider this as evidence of her taking an inquiry approach in her orchestration. 

Excerpt 3: Contingency  

To exemplify this dimension of the KQ in Wilma’s orchestration, we include examples of single 

moves which illustrate how she responded to the children’s ideas, the questions and comments she 

used to make the children pay attention to various mathematical ideas. Even though she 

occasionally addressed her questions to one particular child, the other children still paid attention. 



The analytical codes used were: “responding to children’s ideas; use of opportunities; deviation 

from agenda” (Rowland et al., 2005, p. 266).  

Wilma drew the children’s attention towards the mathematical concept of sorting. Sam said: “Can 

we sort them?” (19). Then, some moves, but only a few seconds later, Wilma said: “Sam, what does 

it mean to sort?” (27). Wilma also drew the children’s attention towards mathematical features of 

the various shapes. One example was found when Sam said: “Yes, but these are small (points at the 

short edges of the rectangle). These two are equally long” (144). A few seconds later, Wilma 

responded to this utterance and asked all of the five children: “Does anybody know what the shape 

is called when two edges are quite long and two edges are shorter?” (147). With this question, she 

seeks to establish interest and curiosity, and thus to nurture playfulness in her orchestration. 

Wilma likewise focused their communication around the similarities between the shapes. Susie talks 

about the fact that two shapes, two congruent triangles, may be joined in order to make a rectangle. 

She says: “Jack’s shapes have such…, but Ken’s do not have such when he puts them together” 

(196). Upon this statement of observation, Wilma responds immediately: “What happens when you 

put them together?” (197). Furthermore, Wilma addressed the children’s mathematical reasoning 

through questions like: “How did you figure out that one (points at one of the hexagons)?” (72); and 

“Do you want to tell the other children?” (227). These examples show that Wilma adopts inquiry as 

a way of being (cf. Jaworski, 2005) and responds to the children’s ideas and uses the opportunities 

that unveil in their interaction.  

Discussion 

In this study we have considered the following questions: In what ways may the Knowledge Quartet 

be employed in order to characterise the kindergarten teacher’s competence? and What knowledge-

in-action and knowledge-in-interaction does a kindergarten teacher reveal in her orchestration of a 

mathematical activity on geometrical shapes? From what is possible to include in this relatively 

short paper, we are able to discern instances of all four knowledge dimensions through which her 

orchestration of the mathematical activity is informed. As such, the Knowledge Quartet (Rowland et 

al., 2005) has proven to be analytically useful when seeking to wrap up how a KT is able to 

orchestrate researcher-designed mathematical activities. At the same time, we observe that the KQ 

unfolds slightly different in the kindergarten context than in the school context, the context from 

which the KQ was originally elaborated and developed. In the Norwegian kindergarten context, it is 

highly rare, even inappropriate to orchestrate mathematical activities through long introductions and 

demonstrations. Concerning the issue of time, we see that the periods where the KT has the word 

are quite short, often only 5-10 seconds. Furthermore, in the kindergarten context it is unusual to 

give children extensive time to inquire into the mathematics without KT interference. This is 

however a usual case in the school context.  KQ contributory codes, such as use of textbook, 

reliance on procedures, teacher demonstration, and making connections between procedures, are 

partially inappropriate and inapplicable in the kindergarten context. Thus, our modification of the 

KQ materialised as not taking these codes into consideration.  

It is challenging to separate the dimensions from each other in the dialogues. In the dialogues the 

dimensions are intertwined, where one move may simultaneously exemplify several dimensions. 

The excerpts above are thus not mutually exclusive when it comes to the four dimensions of the 



KQ. For the purpose of this paper, however, the excerpts are deliberately chosen to illustrate how 

the KT reveals her knowledge-in-action and knowledge-in-interaction with respect to this particular 

mathematical activity. 
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Mathematicians routinely report that beauty is both a reward and a motivation for the work they 

do. However, how and to what extent children can appreciate mathematical beauty is an open 

question. This exploratory study looks at young children (ages 6-12, with a focus on the younger 

years) as they evaluate different explanations of claims about even numbers and triangular 

numbers. While our results are fairly speculative, we provide case studies which illustrate possible 

kinds of aesthetic reactions, and some of the factors which might impact on those reactions. 
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Introduction 

There is little doubt that mathematicians have rich, aesthetic lives (Sinclair, 2004). While recent 

research has attempted to characterize what exactly this aesthetic life consists of (Raman-

Sundström, & Öhman, 2016) or what is meant by aesthetics in mathematics in the first place (Rota, 

1997), evidence suggests that aesthetic reactions are common in, and perhaps even central to, the 

working lives of mathematicians. According to some, aesthetic reactions include pleasure, tension, 

surprise, and a sense of being compelled (or repelled) (Marmur & Koichu, 2016). Interestingly, 

neuroscientists suggest that the same region of the brain is involved for judging mathematical 

equations and works of art (Zeki et al., 2014).  

Recently, there has been interest in studying aesthetics in mathematics education. While some of 

those studies have investigated school children’s aesthetic reactions while working on mathematical 

problems (e.g., Sinclair, 2006), few have focused on young children. Yet, research has shown that 

young children are capable of sophisticated proof-like reasoning (Maher & Martino, 1996), 

justification, and argumentation (Tatsis, Kafoussi, & Skoumpourdi, 2008). Thus, it seems 

reasonable to ask whether young children could be capable of aesthetic experiences, and if so, at 

what age. Are young children able to experience the satisfaction of finding a good explanation? Do 

they find pleasure in coming to understand an explanation? 

This paper presents an explorative study of the possible aesthetic experiences of young children. 

Mathematics, like other aesthetic subjects, provides experiences that have the potential to draw 

people in. It also provides a reward or a sense of satisfaction (Sinclair, 2004). What makes the 

experience “complete” is the presence of both a startup phase and a reward phase. We study the 

presence or absence of aesthetic reactions of young children (age 6-7) by comparing their behavior 

to an older cohort (ages 9-10). We find that the younger children, while lacking some of the insight 

of the older children, have what we might call “aesthetic dispositions” that allow them to enjoy and 

to be curious about fairly complex mathematical tasks. 

 



 

Theoretical background 

One of the central questions of aesthetics is whether beauty is objective or subjective. According to 

Marmur & Koichu (2016), those that consider mathematical beauty as objective (such as Dreyfus 

and Eisenberg, 1986) list characteristics such as clarity, simplicity, brevity, and conciseness when 

judging theorems and proofs. In other words, beauty is an intrinsic property of the mathematical 

object. Those that consider beauty to be subjective, claim that mathematical beauty is in the eye of 

the beholder and that experience, age, knowledge, and culture contribute to aesthetical views. 

Marmur and Koichu (2016) integrate both views, concluding that when discussing school 

mathematics, we may hypothesize that a mathematical problem might elicit an aesthetic experience 

among students because of its simplicity or surprising result. Ultimately, however, students may or 

may not have an aesthetic experience depending on, among other things, the pedagogical setup of 

the problem.  

In their study of university students, Marmur & Koichu (2009) found that surprise was integral to 

experiencing mathematical beauty. They found that students who referred to a solution as beautiful 

had first struggled with the problem, had put significant effort into finding the solution, and 

ultimately were surprised at the simple and unexpected solution. Struggle was also a factor in 

Brinkmann’s (2009) study of middle and upper school students’ appreciation of mathematical 

beauty. A problem was considered to be beautiful if it had a certain degree of complexity, yet felt 

solvable. Eberle (2014) investigated students’ (ages 8-10) aesthetic attractions when evaluating 

geometric tessellations. Students referred to several characteristics of the geometric objects which 

contributed to their appreciation, such as real world connections, color, complexity, and uniqueness. 

Eberle (2014), as well as Sinclair (2001) also noted the generative role of aesthetics when students 

were involved in inquiry-based tasks. In both studies, aesthetics led students to engage and play with 

the mathematics, guiding them when deciding which direction to pursue. 

The above studies related to aesthetics with regard to problems, solutions, and geometric objects. In 

our study, we focus on mathematical explanations and young children’s appreciation of those 

explanations. Previously, Levenson (2010) found that fifth-grade students have preferences 

regarding different types of explanations. Students’ preferences were based on clarity, brevity, 

relatedness, and because the explanation was perceived as fun. Although some of the reasons 

students mentioned for their preferences are reminiscent of aesthetic evaluations given by older 

students, and even mathematicians, the focus of that study was not specifically on aesthetic 

appreciation or satisfaction from an explanation. In this study, we draw on a theory of explanation 

developed by Gopnik (2000), which helps explain what makes certain explanations satisfying. 

Gopnik suggests that an explanation consists of two parts, the why? (the ‘hmmm….’ phase) and the 

because! (the aha! or wow! phase depending on how surprising the result is for the individual). An 

exploration can have a why? without a because! and vice versa. Both phases are needed for an 

explanation to be found satisfying. Moreover, Gopnik suggests that both the seeking and the 

satisfaction from finding a good explanation are part of our human nature.  

The aim of this study is to begin an exploration of young children’s appreciation of mathematical 

beauty. Specifically, we ask: Do young students’ aesthetic reactions (or non-reactions) to 

mathematical inquiry and explanation differ from that of older students? Are younger and older 



 

students capable of an experience that contains both the hmmm… and aha! phase of a mathematical 

explanation?  

Methodology 

Data was collected using semi-structured interviews with two cohorts of children, one aged 6-7 

years old, and one aged 9-10 years old. The older children worked with explanations about 

triangular numbers, namely that the number of dots in the nth triangular number is n (n+1)/2. This 

cohort included four fifth grade girls, all from the same class, who sat together in a group with the 

interviewer in one of the girl’s houses. The discussion began with introducing the girls to triangular 

numbers, discussing the number of dots in the first five triangles, and then asking them to come up 

with the number of dots in the 100th triangle. After giving them time to work on the problem, the 

girls were shown two solutions and asked to evaluate each solution.   

The younger cohort of three children worked individually with the interviewer with explanations of 

the claim: the sum of two even numbers is always even. Two interviews were conducted in the 

house of the child and one was conducted in the house of the child’s grandmother. Each interview 

began in the same way, asking the child to say if he or she could give examples of even numbers 

and to say why those numbers were even. After confirming that the children were familiar with even 

numbers they were given the following question: what would happen if you add two even numbers, 

would the answer be even or odd? Children were given time to think and reply. Although the 

interviewer had several explanations on hand for the children to evaluate, as will be shown in the 

next section, only one child was asked to evaluate explanations. 

One of the difficulties of studying aesthetics in children, or even with mathematicians, is how to 

detect an aesthetic experience. While there may be bodily clues, such as changes in eye-dilation or 

neural correlates (e.g., Zeki et al., 2014), a natural place to start is by simply listening to what 

people say (see Wickman, 2006) and watching for engagement (or disengagement) during the 

experience. In this study, we take this approach as a first approximation, using key words (taken 

from the background studies) such as “Wow!” and “Funny!” as markers for a general aesthetic 

experience.  

Findings 

Below we present four episodes, one with older girls and three with younger children. What is 

striking about the young children is that there is no sense of surprise. The children seem to lack the 

‘hmm….’ needed to build the wow! or to even warrant an explanation.  

Fifth-grade girls, age 11 

Trying to figure out how many dots will be in the 100th triangle proves challenging to the girls. 

When they realize that they would have to sum all of the numbers from 1 to 100, the interviewer 

gives them some time to work this out and then explains to the girls the Gaussian method for 

summing an arithmetic sequence. She lines up the numbers from 1 to 100 in one row and on top of 

that row, lined up the numbers from 100 to 1 (see Figure 1), explaining that this shows how many 

dots are in each row of the 100th triangle.  

 



 

 

 

 

Figure 1: Summing the numbers from 1 to 100          Figure 2: Combining two triangles  

To explain why one multiplies 100 by 101 and then divide by 2, the following discussion ensues: 

Esther: Two triangles of 100, right? Now look what we have here. (Esther circles the 100 

and 1 and the 99 and 2). 

Girls: Ahh!  

Esther: 1 and 100, 2 and 99, 3 and 98. 

Trina: Wow! It’s great. It’s the same thing. 

The girls are surprised that the sums all add to the same number, 101. Their remarks of “Ahh” and 

“Wow” indicate their pleasure in this simple conclusion. After showing the girls this explanation, 

the interviewer shows them a second method, that of drawing two congruent triangles, inverting one 

and placing it next to the first, thus creating a rectangle. The number of dots in the triangle is then 

equal to the area of the rectangle divided by two (see Figure 2). After establishing that the girls 

understand both explanations, the girls are asked to compare the two methods. 

Esther: Which explanation of the method gives you more satisfaction?  

(All of the girls point to the second explanation with the dots.) 

Amanda: You simply see that you do this times this, and then divide by 2 because you have 

2 triangles. 

Hailey:  Because instead of computing it all, this is easier and simpler and in front of your 

eyes. 

Amanda: Also, it draws attention more. It’s more fun, but not just more fun, it’s like, it goes 

more into your head. 

In the second segment, the girls claim to like the second explanation better because it is simpler and 

because they can “see it.” This hints at their appreciation for the aesthetic value of efficiency, which 

might have been enhanced by their struggle to find the solution. 

Zev, age seven 

Zev is seven years old, attends first grade in Israel, where learning about even and odd numbers is 

part of the curriculum in school. Zev is able to list several even numbers as well as several odd 

numbers. When asked why eight is an even number he says, “because four is even and … because 

four is even and it’s… and also… the second four is even.” Note that he does not stress that 8 could 

be written as the sum of two equal whole numbers, but rather that both of the addends, in this case 

fours, were both even numbers. When asked why 10 is an even number, the following discussion 

ensues: 

Esther: OK. Is ten an even number? 



 

Zev: Yes. 

Esther: How do you know that ten is even? 

Zev: Because odd plus odd is even. 

Here Zev was probably thinking that 10 results from 5 + 5, both odd numbers. Realizing that Zev 

seems already familiar with summing odd numbers, the interviewer asks about the sum of two even 

numbers: 

Esther: And what about an even number plus an even number? 

Zev: Even. 

Esther: Always? 

Zev: Yes. 

Esther: Can you tell me how you know that even plus even is always even? 

Zev: Four plus four, eight. Eight pus eight, sixteen. 

Esther:  How do you know that sixteen is even? 

Zev: Because ten is even, and six is even. 

For Zev, it seems that his working definition of an even number is of a number that can be written 

as the sum of two other even numbers. Although this is a recursive definition, it does not seem to 

bother him and the outcome of this conception is that Zev does not even recognize the question of 

what might be the sum of two even numbers. Zev has no sense of hmm…. When Zev is shown 

another explanation for why the sum of two even numbers is always even (that every even number 

can be written as the sum of twos and thus the sum of two even numbers can also be written as the 

sum of twos), Zev says that the explanation is boring because he already knew that. 

Anna, age six 

Anna is six years old and attends kindergarten in Israel. Although even and odd numbers are not 

part of the kindergarten curriculum, Anna was able to list several even and odd numbers and 

claimed to have learned about them from her teacher. When asked why eight is an even number she 

responded, “Because each one has a partner.” When she was asked to explain what an even number 

is, she said, “That the two of them have a partner. That each of them has a partner.” What Anna is 

alluding to in her own language is that an even number may be written as the sum of twos. After 

talking about even numbers for a few minutes, we discuss the sum of two even numbers: 

Esther: What would happen if I added an even number with another even number? 

Anna: It would be even. 

Esther: How do you know? 

Anna: Because both of them are not separate, it never separates from the second. 

Esther: What do you say! Are you sure that this is always this way? 

Anna: Yes. It will never be that, uhmm, a partner doesn’t run away from the pair. 

Anna has a very specific conceptualization of even numbers, that an even number represents an 

inseparable pair. She draws on this conceptualization to explain why the sum of two even numbers 



 

must always be even. Engaging further with the problem, Anna takes out a bunch of wooden blocks 

from a basket (without counting) and proceeds to pair up blocks. When the interviewer asks if she 

can say if she took out an even or odd number of blocks she readily says that she took out an even 

number of blocks because on the table, every block is paired off. To summarize, Anna is drawn in to 

the problem, has an explanation, but she does not struggle with the claim. 

Leila, age seven   

Leila is from Sweden, has just turned 7, and attends kindergarten. Although learning about even and 

odd numbers is not part of the curriculum, she is able to list several even numbers (perhaps hearing 

about them from her parents or friends). Although prompted to think about the possible sum of any 

two even numbers, Leila shows no interest and instead, with the use of colorful cubes, begins to 

explore a self-generated conjecture involving pairs of twos. She puts together six pairs of cubes to 

represent an even number and then wonders if seven pairs will still be even.  

Leila: I have a question. You can’t have an odd number of twos. 

Manya: How are you thinking? 

Leila: Like, if I have these (pointing to the six pairs of cubes), you can never have an odd 

number. Look here. I have 1, 2, 3, 4, 5, 6. If I have this many (she takes another 

pair), now I have enough…. odd numbers of twos… because there’s seven… does 

it get an odd number or an even? I think it is actually funny.  If you have an odd 

number of twos, it even gets an even number. That I think is really funny. 

Manya: I see.  Why is that? 

Leila: I don’t know, because it feels like it’s actually pretty funny. 

Manya: Do you think it’s funnier to have an even number made of an odd number of twos 

than an even? 

Leila: What do you mean – an even number of odd number …? Yeah. It gets an even 

number if you have an odd number of twos. Because I figured it out of these. 

This discussion suggests that autonomy might play a role in having an aesthetic experience.  Leila 

generates her own question (What is the sum of two odd numbers?) and the resolution of the 

question (that an odd number of twos can be even). She thinks that this conclusion is funny. While 

she might have had a similar reaction to a given statement, the affect seems to be closely correlated 

to ownership of ideas. In the last two lines, the researcher asks her to compare two statements. Leila 

replies “what do you mean”?  The statement is funny to her because she “figured it out of these.” 

Comparing the older cohort to the younger cohort 

The following table summarizes the observations from the data presented above and the children’s 

aesthetic experiences (AE). A full circle represents that an AE took place, a dotted circle reflects a 

partial experience, and an empty circle that no AE was detected.  In all of these cases, we can see 

that the path to having an aesthetic experience consists of several distinct phases. One needs to be 

engaged; there should be some build-up, some crucial moment, and then some release. Only the 10 

year olds seem to have a complete experience. 



 

 

Children Age Task AE Behavior 

Trina, 
Hailey, 
Amanda 

10 Triangular 
numbers 

 Have an aesthetic experience, marked by both surprise 
and satisfaction. They appreciate a solution which is 
simple and “goes into their head”. 

Zev 7 Even 
numbers 

 Has a conception of even numbers, but is uninterested in 
explaining why the sum of evens is even.  He “already 
knows that”. 

Anna 6 Even 
numbers 

 Has a conception of even numbers which goes along with 
the claim about the sum of even numbers. Is engaged and 
involved, but is lacking a “hmmm….” 

Leila 7 Even 
numbers 

 Takes control.  Explores her own hypothesis.  Tests if an 
odd number of twos can be even.  Finds the result “funny”. 

Table 1.  Types of aesthetic experiences for the triangular number and even number tasks 

Build-up takes place when they explore the question, and their interest increases as the interviewer 

shows the explanation involving pairs of numbers. After having time to digest this information, the 

interviewer shows another explanation which further increases their interest. Each time a new 

explanation is understood, the girls say words like “wow!” and “aha!”. The fact that they have this 

kind of reaction, we claim, is because they had time to explore and to start generating their own 

explanations. We also cannot rule out that there might be some developmental issues, such as the 

children being old enough to abstract and/or take in the explanations given. 

In contrast to the fifth-graders, the younger students had limited or no aesthetic experience. Zev is 

strikingly uninterested in any explanation at all. We suspect that his disinterest came from the fact 

that he had been told in school that even + even is even, so there was no tension left to resolve. 

Leila has some interest in explanation, but not for the question given to her. Rather, she generates 

her own question about whether an odd number of pairs can result in an even number. She finds this 

result funny, indicating some level of surprise, which she quickly believed despite her initial 

expectation. Anna is drawn in to the explanation activity, but did not seem to have a full aesthetic 

experience. Unlike the fifth graders who could “see” why the explanations held, Anna simply states 

her conception of even numbers in terms of pairs or partners, and claims that any sum of pairs will 

still be even.  She does not give an actual reason, which might be because she did not experience the 

hmmm… phase of explanation. She is not bothered by any alternative, so no relief or satisfaction is 

expressed. 

Conclusion 

One of the challenges of this study was to find tasks that might elicit an aesthetic reaction. We 

attempted to find tasks that would be suitably challenging, yet accessible to each of the age groups. 

In the end, the older children worked on a new task, presented not only in general manner, but with 

an iconic illustration, while the younger children worked on familiar (at least for two children) 

general characteristics of numbers. Thus, it might be that the different conditions affected the 

aesthetic experiences. Taking these limitations into consideration, there is still the possibility of 

developmental differences in aesthetic experiences. In the naïve view, children have and rely on 

concepts, but are not yet puzzled. Because of this lack of puzzlement (an essential ingredient 



 

according to several researchers (e.g., Gopnik, 2000; Marmur & Koichu, 2009)), there is no tension 

in their mathematical exploration, nothing to be resolved, and so no aesthetic experience is possible. 

In contrast, in the mature view, children are engaged and puzzled. They are more open to 

explanations because they themselves have struggled with the questions. This kind of behavior is 

possible among quite young children (Leila, at age 7, has a very small amplitude aesthetic 

experience when she generated her own conjecture), but might be more likely to occur the more 

autonomy is given to the students, the more challenging the task, and the more supported the 

students are to not to give up when they think they already have the answer. As an exploratory 

study, this paper has begun a discussion regarding young children’s possible aesthetic experiences 

when working on mathematics. Additional research is needed to continue this discussion. 
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We present the analysis of a research conducted with first-grade pupils with a focus on their ability 

to notice and use regularities in three-dimensional geometrical objects by using playing blocks. The 

results show that children had difficulties in reconstructing the figure and retaining the regularities 

in the invisible part of it. 
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Introduction 

Discovering regularities is considered one of the most important processes involved in mathematics. 

Actually, developing an awareness of patterns is a significant step towards generalisation. Children 

are expected to be able to recognise, describe, duplicate and extend patterns, even at a young age. 

These assumptions are expressed in the Polish curriculum (Podstawa Programowa, 2011), in which 

the use of patterns and regularities appear in the first grades of primary schools; for example, the 

pupils are expected to be able to draw a particular pattern. However, much often the attention of the 

teacher is focused on the manual abilities of the students and not on mathematical thinking. In the 

next classes the topics do not play a significant role, according to the Polish curriculum. 

In our study we designed a series of lessons for the first grade pupils using playing blocks. By 

observing constructions presented at pictures the children were asked to construct the same figures. 

In order to do so, they had to recognize a geometric pattern and/or a repeating pattern (Zazkis & 

Liljedahl, 2002), and then use their observations to their work. Our analysis was focused on children’s 

ability in noticing regularities and in continuing them in their constructions. In our paper we describe 

a particular task in which the children had to reconstruct a three-dimensional figure and build an 

invisible part, which could be done by using the same pattern. We try to investigate to what degree 

the children subordinated their actions connected to building the invisible part of the construction to 

regularities of the visible part of the construction. Our theoretical framework is presented in the next 

section, followed by our methodology, the results and analysis, and finally our conclusions. 

Theoretical framework 

Discovering regularities in the primary school 

In mathematics teaching exploring patterns is closely related to the development of mathematical 

thinking and reasoning: “Patterns are the heart and soul of mathematics” (Zazkis & Liljedhal, 2001, 

p. 379). This is underlined in many studies (e.g. Clements & Sarama, 2009; English, 2004; McGarvey, 

2012; Threlfall, 2005). It is thus very important for every child from a young age to have contact with 

patterns; it is considered a way “to make connections to the world around them” (McGarvey, 2012, 

p. 310). As Frobisher and Threlfall (2005) state, in their first years of schooling students should 

develop abilities to describe, complete and create patterns. Tasks that involve patterns encourage 

students to verbalize their ideas, thus improve their communicational ability (Garrick, Threlfall & 

Orton, 2005). Moreover, searching for a regularity is an extremely effective method during solving 



mathematical problems. English and Warren (1998) suggest a patterning approach as a way to 

introduce the concept of variable. Mulligan and Mitchelmore (2013) introduce the construct 

“Awareness of Mathematical Pattern and Structure” in order to study the development of structural 

understanding; moreover, they claim that this development is related to the big mathematical ideas of 

generality and equal grouping. 

Although patterns and regularities are considered vital, in some cases they do not stand on their own 

in the curricula and teachers see such activities as merely an enrichment to more “traditional” 

activities. On the contrary, we believe that “algebra, and indeed all of mathematics is about 

generalizing patterns”. (Lee, 1996, p. 103) Therefore, patterns should be observed and studied in 

many different manifestations in mathematics. 

Three-dimensional geometry in the early mathematics classroom 

Although small children have many experiences with handling three-dimensional objects within their 

play, early geometry curricula usually place three-dimensional geometry to higher educational levels 

(Swoboda & Vighi, 2016). In Polish primary schools, space geometry is almost absent in the first 

three grades. According to the National Curriculum (Podstawa Programowa, 2011), the only relevant 

topics are recognising and naming basic geometrical two-dimensional figures. Generally, the tasks 

proposed in the textbooks have a reproductive character and are directed into building the concept of 

geometrical object. Much often the tasks impose scientific terminology. There is lack of tasks which 

could be a cognitive challenge connected to geometric problem solving. The tasks in which the pupil 

has to use some geometrical properties of objects or some observed relations are also missing in the 

first years of school mathematics. Moreover, there are very few tasks related to three-dimensional 

geometry. Such tasks have a significant influence on development of thinking and imagination of a 

child who is surrounded by three-dimensional objects.   

Context of the study and methodology 

The starting point for our research was a general question concerning the degree that 6-7-year-old 

children can grasp regularities formed in a three-dimensional environment. The research was 

conducted by a preservice teacher (Falger, 2016) – a master student supervised by the second author 

of the paper – among 16 first grade pupils (6-7-year-old). It consisted of a series of four lessons of 

around 45 minutes and it was realized in the period of February – April 2016 every two weeks. The 

preservice teacher was known to the pupils. The research tools were series of tasks, which were based 

on creating a construction by wooden playing blocks of dimensions 3 cm  3 cm  3 cm in three 

colours: red, blue, and yellow. The classes comprised a sequence of activities which started by 

building “towers” and “snakes” (considered as one-dimensional figures) then by “walls” of different 

shapes and regularities (considered as two-dimensional figures) and continued by three-dimensional 

constructions which were also based on some regularities. During the classes the children were asked 

to build some constructions presented on a picture; sometimes this was accompanied by building the 

figure by the teacher. All the lessons were video recorded; additionally, photos were taken. All the 

phases of pupils’ work were reconstructed and analysed by using the video; the process of analysis 

was supported by the photos and the notes of the preservice teacher.  

For the purpose of this paper we will focus on the last lesson which consisted of two different 

activities. The first task was to build a construction which was presented to the children on a picture 



(Figure 1, shape on the left) and then the pupils were asked to continue the figure. The second task 

was to build the construction presented on a picture (Figure 1, shape on the right) and built by the 

preservice teacher by using the blocks. For a short time the pupils could observe it in order to 

familiarize with it (still a part remained invisible to the pupils) and after that the building was 

destroyed. The children were expected to rebuild it. At the end of the activity the teacher asked them 

individually: “Which blocks did you use where it was not visible? Why?”. In this paper we will 

analyse the second activity.   

                              

Figure 1: The first and the second construction during the fourth lesson 

Both constructions were classified as visual geometric patterns (Zazkis & Liljedahl, 2002) in which 

we can observe two types of regularities: the colour repetition (“repeating pattern”, Zazkis and 

Liljedahl, 2002) and the heights of the “towers” which increase by one block (“geometric growth 

pattern that can be quantified”, McGarvey, 2012). The first figure can be considered a two-

dimensional one and the second figure three-dimensional. In the second construction there is an 

“invisible” part which has to be built by the children. 

Our analysis was mainly based on the videotaped process of building the constructions of every child; 

additionally, we collected data from a discussion with the pupil at the end of the task. All aspects of 

pupils’ works emerged during the process of analysis, according to a grounded theory approach 

(Strauss & Corbin, 1998). We focused on answering the following research question: To what degree 

children will subordinate their actions for building the invisible part of the construction to regularities 

existing in its visible part? In particular, we have formulated the following research questions: 

a) Were the pupils able to reproduce regularities in the visible part of the construction? 

b) Did the invisible part of the construction retain any regularities during the students’ work? 

Which student activities led to the retain of the regularities? 

Results and analysis 

In this section we will present the results of the second activity during the fourth lesson. Firstly, we 

present a detailed analysis of the works of three pupils as characteristic cases. All pupils’ names are 

pseudonyms. 

Ania’s work (Figure 2) 

The girl started her work from constructing a “tower” which contained four red blocks. Then she 

created a blue “tower” of three blocks and located it next to the initial one. The next step was one red 

two-blocks “tower” which she put next to the blue one. The wing was finalised by one blue block. 

After that, she started building another “tower” from four blue blocks. Next to it she located a red 

two-blocks “tower” and one blue block. She had left one blue block which she put at the top of the 

construction, half at the red and half at the blue “tower”.  



    

Figure 2: Ania’s work  

Ania used a different regularity of colours than in the picture; her “towers” were the same colour and 

occurred by turns. She consequently kept that rule. She built her “towers” decreasingly, the first part 

of her work retained the regularity of heights but in the second “wing” she made a mistake. Her work 

started from the invisible part and that somehow determined the rest of the construction. The only 

visible element of the highest “tower” was red, which could cause the decision of the colour choice 

for the whole “tower”. Ania built the whole “tower” in one colour and that influenced the fact that 

the rest of “towers” were also one-colour. The process of creating one “wing” with her own ad hoc 

rule could pull her back from analysis of the regularity at the picture. During building of the second 

part of the construction she repeated her own rule and she changed only the first colour into a blue 

one. She also forgot that the four-blocks “tower” appeared only once in the construction. By putting 

the last block she probably tried to keep the regularity of the heights of the “towers” and to balance 

the two contradictions of the right and left “wings”. 

Kuba’s work (Figure 3) 

He firstly built the “right wing” and then the “left wing” of the construction, according to the template. 

Then he connected the two separated “wings” with the edges of the cubes. He completed the 

construction by a “tower” of four blocks: blue, red, blue, and red. He continued the regularity created 

by the second “left wing”.  

     

Figure 3: The phases of Kuba’s work 

Kuba worked very precisely and systematically; all his movements were intentional. He created the 

construction correctly. He recognised and used the regularity of colours and heights. The last part of 

the figure – the invisible “tower” – was an effect of continuation of the regularities previously created 

and connected to the construction of the “left wing”. 

Julia’s work (Figure 4) 

The girl started the construction from the invisible “tower” in the order: blue, red, blue and red block. 

Then she continued the “left wing” by constructing the “towers” of three blocks: red, blue and red, 

then two blocks: blue and red. She finalised the “left wing” by a red block. In that way she created a 

regular wall, concerning the colours and heights. Then she constructed the “right wing” by a “tower” 

of three blocks, then two-blocks “tower” and the last blue block.  



   

Figure 4: Julia’s work 

Julia was the only one who fully succeeded in the task by starting her construction from the invisible 

part. That part was a result of her imagining the continuation of one of the walls (the left wing). She 

applied the observed pattern without testing it on the visible parts of the figure. Thus, she started from 

realising the imagined part and then she reproduced the pattern in the opposite order. Her building of 

the “wing” was done by lower “towers” of alternate colours, thus we can conclude that the base of 

her first decision was determined by firstly ascertainment of the height (four blocks) and calculation 

back: red – blue – red – blue. Even the contradiction between the left and the right “wings” did not 

affect her self-confidence.  

The analysis of the process of building the second construction (Figure 1) of all 16 pupils, led us to 

the following aspects. We have to note that one work may contain more than one aspects:  

1. Regularity of colour – a pupil puts red and blue block in a staggered manner; 

2. Grouping colour – a pupil is grouping the colours by building short series of same colour 

blocks; 

3. Regularity of shape – the figure’s shape is reconstructed correctly; 

4. Partial regularity of shape – a pupil reconstructs only one part of the figure (one “wing”); s/he 

has difficulties in building the second “wing”. 

5. Student’s own shape – a pupil builds a construction which is not related to the template. 

6. The invisible part built first – a pupil starts the work from the invisible “tower”; 

7. The invisible part built as last – a pupil starts from the visible parts and at the end of work 

s/he competes the invisible “tower”; 

8. Colour regularity of the invisible part – a pupil uses the same rule of the colours which was 

observed in one of the “wings” of the construction; 

9. Lack of colour regularity of the invisible part – a pupil does not use the rule of the colours. 

10. Proper height of the invisible part – a pupil builds a “tower” by using 4 blocks; 

11. Improper height of the invisible part – a pupil uses less or more than 4 blocks. 

Table 1 presents the pupils’ ways of work in relation to the aforementioned aspects. We may notice 

that 15 works contain more than four aspects; each aspect present in a particular work is marked by 

x. Only Bartek’s work does not contain any aspect: this boy did not build anything during that activity; 

he was just repositioning the blocks. He justified this in the following way: “I don’t want to build 

anything. I have already built something before (referring to the previous task)”. 

  



 

No. Pupil’s name 
Characteristic aspects of the pupils’ works 

1 2 3 4 5 6 7 8 9 10 11 

1. Kuba x  x    x x  x  

2. Zosia x  x    x x  x  

3. Dawid x  x    x x  x  

4. Julia x  x   x  x  x  

5. Maciek x  x    x  x x  

6. Franek x   x   x x   x 

7. Borys x x  x  x  x   x 

8. Paula x   x  x  x  x  

9. Ania  x   x x   x  x 

10. Wiki x x   x  x  x x  

11. Staś  x   x    x x  

12. Leon  x   x x   x x  

13. Kamila  x   x x   x  x 

14. Basia  x   x x   x  x 

15. Jola  x x   x   x x  

16. Bartek - - - - - - - - - - - 

Table 1: Characteristic aspects of the pupils’ works 

Only four children managed to build the correct construction by using the observed patterns: Kuba, 

Zosia, Julia and Dawid. They all used the regularity of colour (aspect no.1) and preserved the 

regularity of the heights of the “towers” (aspects no.3 and 10). They created the “invisible tower” 

which retained the colour regularity of one “wing” (aspect no.8). In Kuba, Zosia and Dawid’s 

constructions the highest “tower” was a consequence of their work on the “wings” and was created 

as the final element. Julia started her construction from the “invisible” element. The remaining eleven 

children (without Bartek) tried hardly to complete the task. They used the experience from previous 

lessons by putting the red and blue blocks in a staggered manner (aspect no.1) or grouping them 

according to the colours (one “tower” red, then blue or bases of the “towers” are blue and the next 

level of the “towers” are red, etc. – aspect no.2). Five of the mentioned children used the regularity 

of colour (aspect no.1) and three of them transferred their observation into the invisible part, where 

they applied that regularity (aspect no.8). Two pupils out of eleven were able to reconstruct the shape 

by using the shape regularity together with space imagination (aspect no.3) but failed to keep the 

colour regularity (aspects no.1 and 9). Five children did not notice that the invisible “tower” is the 

highest one and contains 4 blocks (aspect no.11; usually the “tower” was built from three blocks, in 

one case it was five blocks). During reconstructing the processes of the pupils’ works it can be noticed 

that the buildings were changed when the children reached the invisible “tower” and then they usually 

lost their regularity. It seems that the invisible part of the figure dominated the pupils’ trials of 

constructions and most of their difficulties were caused by the fact that it was hard to imagine what 

is behind of the figure. Four examples of the constructions are shown in Figure 5. 



    

Figure 5: The works of Staś, Leon, Kamila and Jola (from left to right) 

Although almost all children did not have any problem in building the first construction (Figure 1) in 

which they used the observed visual geometric patterns: the repetition of the colours and increasing 

the heights of the “towers”, building the second construction seemed to be very difficult. While in the 

first task all children were able to use their experience from the previous lessons, in the second task 

the experience was not enough for some of them. We may claim that working with geometrical 

patterns in a three-dimensional environment is much more difficult that than in a two-dimensional 

one and that patterning skills obtained in a two-dimensional environment are not easily transferred.  

Conclusions 

In early years mathematics it is expected that children will easily recognise patterns, particularly they 

should impose regularities on visual images and describe the rules that help to extend or predict those 

regularities (McGarvey, 2012). Many researchers express the opinion that recognising patterns is one 

of the most important skills which are necessary for algebraic thinking (e.g. Lee, 1996). On the one 

hand, research has shown that “perceiving a pattern is not difficult. Students successfully recognize 

patterns by imposing structural regularities onto visual and symbolic phenomenon” (McGarvey, 

2012, p. 313). On the other hand, our study has shown that many children failed to construct the 

presented pattern. Only four out of sixteen pupils performed the task correctly and, additionally, 

retained the regularities in the invisible part. Although the teacher did not mention that the hidden 

“tower” should follow the rule of the whole figure, they felt the need to continue it. The task turned 

out to be difficult; however, many children presented their trials in keeping the regularities they 

observed. They demonstrated their good intuitions and imagination. In most works we could find a 

rule which was dominant and influenced the final performance.  

Our data shows that even if the children had difficulties in reconstructing the figure, they were 

motivated and their work was intentional. The combination of two regularities and the three-

dimensional geometrical object was challenging and such activities brought new experiences to the 

pupils. The tasks using three-dimensional geometric patterns unveiled that the children in early years 

need such stimulations. Such activities engage pupils in discovering regularities but also in 

experiencing and “touching” geometrical objects.  
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How can we design mathematical instructional activities that reveal children's early mathematical 

competence in an analogous way as school activities that exploit children's mother language 

competence? We put forward a list of mathematical conceptions young children may have been 

taught previously and some subsequent actions developed to observe them and guide their first 

steps in mathematics in an instructional context. The list has been developed on the basis of insights 

from modern axiomatic presentation of arithmetic and geometry contrasted with historical results 

and epistemology of mathematics. We discuss the application of the list in a singular context, a 

group of eight 3 to 8 year-old Spanish children with Trisomy 21, to show the suitability of this tool 

for revealing early mathematical competence.  

Keywords: Experiential learning, early years education, special needs, mathematical skills. 

The central issue: Enhancing young children’s competence in mathematics 

The starting point of our research was a situation of stagnation in two different and singular 

educational contexts: the encounter with mathematics of Italian primary first graders and the special 

needs of children with Trisomy 21(or Down syndrome).  

Actual current praxis in Italian first grade classrooms1 and the available research and teaching 

materials regarding mathematics for children with Trisomy 21 show a remarkable similarity in two 

aspects. Firstly, from the point of view of contents, there is a focus on numeracy and especially on 

teaching and learning of numerals and written arithmetic and a clear exclusion of geometry. 

Secondly, from a wider cultural point of view, we witness a marked lack of confidence in the 

relationship between mathematics and children's feelings and mind. (Millán Gasca & Gil Clemente, 

2016). Both aspects are interrelated. As mathematics is socially viewed as a key component of our 

modernity, school is forced to cope with the difficulties of its teaching and learning. Consequently, 

teachers must concentrate on the traditional hardcore, that is, numeracy and practical tasks, 

                                                 

1 A quite homogeneous didactical praxis was identified thanks to the relationship of the Roma Tre University 

Department of Education with schools (private, state, urban and rural, and with students from different social 

backgrounds) in the Lazio area in 2006-2014. Although compulsory mathematics teaching or initiation for 3 to 5 years 

old children is not laid down, in some Italian preschools, including the wide number of state Montessori schools, 

mathematics is a part of the curriculum and goals. A sharp contrast is experienced between the good results obtained in 

these latter schools, where pupils usually show a deep interest and curiosity towards number and geometry, and a 

general situation of difficulty, anxiety and fear of primary school first graders starting in the first months of first grade 

where schoolwork is focused on exercises about the writing of the numerals from 1 to 9 and moving on to addition and 

number symbols with two digits from 11 to 20 after 3-4 months. 



narrowing the goals of the learning to obtain instructional success. Centrality of arithmetic and 

abandonment of formative goals are especially noticeable when teaching children with Trisomy 212.  

Our working hypothesis was that early mathematical competency, in the same way as linguistic 

competency, could be enhanced and analyzed in terms of naive conceptions. For this aim, we 

developed a list of items (including concepts and observable actions) to be used in the design of 

focused mathematical instructional activities, able to bring out young children's mathematical 

competency (avoiding initiating children in mathematics through written arithmetic), in much the 

same way as school activities exploit children's mother language competency (avoiding initiating 

children in linguistic expression through grammar). After testing the suitability of the list with a 

group of twelve 4 year-old children schooled in Lazio (Italy) (Colella, 2014), we faced the 

challenge of using it to enhance the mathematical competence of a group of children with Trisomy 

21 in Spain. 

Naive mathematical conceptions 

The fact that there is a lot of mathematical life “before school” or “before being taught” has been 

pointed out by authors such as Martin Hughes (1986), Margaret Donaldson (1978) and Liliana 

Tolchinsky (2003). Usage-based theory of toddlers´ language acquisition (Tomasello, 2003) offers a 

description of the key situations leading to the first holophrases in a joint adult-child attentional 

frame. It helps us to understand the precocity of children and their interest and enthusiasm regarding 

numbers as well as geometry. 

The empirical examples considered by Hughes among children in Edinburgh’s Department of 

Psychology nursery, as well as by Karen Fuson (1988) regarding her two daughters, recorded in the 

mother's diary she started at 1 year and 8 months, were observations of what are considered as naive 

arithmetical conceptions, that is, conceptions that have been observed in children independently of 

schooling and instructional design. Fuson and Hughes go beyond Piaget and his collaborators' work 

on the roots of children's understanding of arithmetical ideas because they avoided concentrating 

solely on the search for a developmental path and on the isolation of spontaneous cognitive 

development. Instead, they tried to come closer to children's thoughts and feelings through close 

interviews, observations and task experiments, considering that elementary teaching enters the 

scene in the wider context of children's human experience and development. 

We have extended this available research in arithmetic to encompass geometry, following René 

Thom's views (Israel, Millán Gasca, 2012; Millán Gasca 2016), as shown in later pages. 

Insights from historical and mathematical perspectives on primitive objects and relationships  

In order to identify geometrical items we drew inspiration from Federigo Enriques (1924-27). He 

focused on the instructional meaning of the identification of the "primordial", primitive, undefined 

concepts of the modern axiomatic description of arithmetic and geometry considered in their 

historical context (Israel & Millán Gasca, 2012).  

                                                 

2 Elisabetta Monari (2002) pointed out that the "old tree of mathematics" (the traditional view of school mathematics as 

introduction to written arithmetic) should be replaced by a "new tree", where different cognitive potential could appear. 



It can be noted that the pivotal role of the acquisition of sequence of number-words in arithmetic is 

strikingly coherent with the modern Peano's (1899) axiomatic description of natural numbers. 

Information on undefined primitive objects (number and one) and their relationship (successor) is 

contained in axioms, such as, “one is not the successor of any number” or “if two numbers have the 

same successor they are the same number” that evoke counting. In addition, the first recursive 

definitions of addition and multiplication and the definition of “greater than” start from this 

information. Fuson's description of early arithmetical conceptions includes all of these 

mathematically critical ideas regarding an ordinal view of natural numbers defined in a child’s way, 

together with the cardinal views and measures uses to which children are exposed nowadays (these 

views were also central in the ancient origins of number and of extensions of the concept of natural 

number). This attention to mathematically well-identified different number situations in children's 

experience is crucial to draw indications for instructional activities. 

Following the same path, we paid special attention to the role of Hilbertian (1902) undefined 

concepts (point, straight line, plane), relationships (congruence, lie in, lie between) and first 

definitions of objects and relations (angle, segment, circle, triangle, polygon, greater than...) 

deduced from the axioms, in the building of naïve geometrical conceptions in young children´s 

minds. For example, in relation to the concept of line (paradigm of the continuum) and straight line, 

possible naïve conceptions regard line as a path; line as a stroke on a sheet of paper with a pencil; 

lining up, or walking along the minimum distance between two positions. In relation with the 

concept of point we can observe whether they know to stand at a fixed point, or if they are able to 

draw them. Talking about change of direction can be a way to introduce the concept of angle.  

Inspired by these primitive concepts we considered performance regarding “solving simple 

geometric problems”, such as drawing a circle freehand; cutting a circle; comparing circles (cutting 

and overlapping); drawing a straight line connecting two points; joining several numbered points 

freehand with a straight line; drawing a non-straight line; answering questions related to which 

object is longer, bigger or thicker...  

Naïve arithmetical and geometrical conceptions list 

The list we have developed, based upon primitive arithmetical and geometrical concepts and the 

previous developmental insights, includes some possible naïve mathematical conceptions that 

children can have. Following Fuson's point of view (1988), we looked for a web of conceptions, 

including connections between geometry and numbers and some obvious relationships, and not for 

a systematic building of a theory. Naive conceptions also include the ideas on symbols belonging to 

the oral dimension of language (not centered at all on the decimal positional numeration system.).  

As for mother language, naive mathematical conceptions include competence together with errors 

and misunderstanding in a dynamic setting, where exposure to new experiences or situations helps 

the child to correct by him/herself previous ideas or accept and include corrections from peers or 

adults..  

From the list, we have also developed a guide for observation in action. This guide consists of 

several activities intended either to observe this possible mathematical competency (activities 

simulating a non-instructional “informal” context, such as domestic or playground experiences) or 

as “opportunities to learn” (becoming proper instructional, teaching activities). These activities 



should be embedded in children's overall living experience and should have a human sense for them 

(Donaldson, 1978). Furthermore, they should at the same time, help to actually generate learning, 

that is, to guide first steps in mathematics. Of course the border between observation and generation 

of learning is not sharp. For instance, during the time expended in exploring a question, many 

children may learn something or reinforced their knowledge (taking into account besides that not 

every child has the same previous informal opportunities to build naïve conceptions).  

Relating to arithmetic, activities such as bringing enough pencils for everybody, telling the cook 

how many people to prepare lunch may bring out naïve conceptions, skills children already possess 

such as knowing some number words, knowing some part of the number sequence, counting things. 

These conceptions are connected with the primitive arithmetical concepts, idea of number one, or 

successive number. However, children can also bring into play these conceptions to actually be able 

to use their knowledge to bring enough or the exact number of pencils or to try to give an answer to 

the cook or even to answer correctly.  

In relation with geometry other activities like walking down a road, holding a thread between two 

children, folding a sheet of paper neatly are suitable for bringing to light naïve conceptions of path 

and line, which are closely related to the primitive concept of straight line. In the same way, 

children can use these conceptions to learn, as instance, how to distinguish a straight line from a 

curved one. 

First steps in mathematics for children with Trisomy 21.  

When faced with the mathematical instruction of young children with Trisomy 21, we had to take 

into account the adverse general context of confusion about goals and contents mentioned at the 

beginning. In this context, children with Trisomy 21 appear to be in a clear disadvantage due to 

their well-known difficulties with arithmetic, lack of effective proposals for teaching and 

misunderstanding of the role of the discipline in their personal development. 

There is also a problem in assessing the actual mathematical knowledge of children with Trisomy 

21 (Faraguer, 2014) attributed to their scarce skills in oral and written language and their avoiding 

behaviour when put in stress situations (Wishart, 1993). This has lead to evaluations based upon 

interviews with parents or professionals (Faraguer, 2014) and consisting of solving 

decontextualized tasks (Zimpel, 2016). Such evaluations use to show a poor performance in 

mathematics by people with Trisomy 21. 

From the success obtained using the list of naïve conceptions with a group of 4 year-old Italian 

children with no previous exposure to mathematics (Colella, 2014), this list appeared to be a 

suitable tool to make a proper assessment of the previous mathematical ideas of the children with 

Trisomy 21. We could also use this assessment as a basis for the building of an accurate teaching 

programme, that focus on formative values of mathematics without giving up to placing high 

expectations on the children.  



Methodology 

The experience3 consisted of a twenty-hour workshop over ten months with a group of eight 

children between 3 and 8 years old (three aged 3, two aged 5, two aged 6, and one aged 8) without 

previous selection4. The workshop was conducted by a team of four volunteer special education 

teachers and devoted the first three months to an exhaustive exploration of their naïve arithmetic 

and geometrical conceptions. 

It was a study case5 framed in what it is known as research for practice (Faraguer, 2014). 

Throughout the sessions we made an experiential observation, which allowed us to write a narration 

of the living experience (Van Manen, 2013) and prepare a final description of the naïve conceptions 

of each child in relation to the items we have observed. 

Development of the workshop 

Firstly, we have to adapt the original list to make it suitable to the group of children. Table 1 shows 

the conceptions definitively explored. 

Arithmetical conceptions Geometrical conceptions 

Numbers (any ideas) 

Counting (transitive and intransitive) 

Cardinality 

Subitizing 

Zero 

Spontaneous symbolic representation of 

quantity 

Resolution of simple arithmetical problems 

 

Idea of point 

Line and idea of continuous 

Idea of straight and of non-straight 

Ideas of angle 

Ideas of round and circle 

Ideas of triangles and quadrilaterals 

Ideas of sphere and other regular solid 

figures  

Resolution of simple geometrical problems 

Measure of time 

Distance 

Use of cardinal numbers to measure a distance (steps) 

Table 1: Some arithmetical and geometrical naïve conceptions 

Secondly, throughout the three two-hour sessions devoted to the exploration of their naïve 

mathematical conceptions, we faced the challenge of designing activities also adapted to features of 

children with Trisomy 21 (for example most of them did not speak, so we could not use dialogue to 

build mathematical knowledge). We practiced oral sequence when counting balls to decorate a 

Christmas tree or when counting time playing hide-and-seek. We worked with the concept of 

                                                 

3 Carried out in the context of the PhD thesis of the second writer devoted to the exploration of geometry with children 

with Trisomy 21, following a careful consideration of geometry in Édouard Séguin's approach. (Gil Clemente, 2016)  

4 Families who decided to participate in the research, were members of a local association in Zaragoza (Spain) and have 

more confident outlook than those of older children with a disappointing experience of primary school. 

5 It is a common methodology with children with Trisomy 21, because as Monari (2002) pointed out, these studies open 

the path to more general ones that usually confirm results obtained in singular cases. 



straight line folding a letter to the Wise Men. We walked along paths to discover new worlds or join 

points to discover secret drawings. We also compared the length of swords before fighting as a way 

to compare magnitudes. We understood geometrical concepts through mimesis when training for 

having an adventure and we discovered surprising similarities among different familiar objects 

(balls, fruits, caps, towers, boxes, tins or tubes…).  

We must highlight the importance of applying these activities in a happy play context in which we 

could witness their individual and group processes of learning without interference or pressure.  

Results 

In spite of the limitations inherent with an experience carried out in a formal context and not in their 

real life6 we obtained some useful conclusions to guide our later research.  

Most of the children, especially the youngest, had very limited initial arithmetical conceptions. Only 

three of them were able to count to nine and the rest hardly know the numbers “one, two, three”. 

They could only subitize one or two objects, except the eldest child who reached six objects. They 

made a lot of mistakes reciting oral sequences (they counted objects more than once or forgot 

objects when counting) and counting objects or drawings (although they counted objects better than 

drawings). Only the three eldest children had well established some conception of cardinality and 

these children were able to solve some very simple arithmetic problems (such as “give me n” or 

answering to the question “n plus m” with low numbers and only by counting). Surprisingly, hardly 

any had difficulties in understanding zero in several ways, consistently with the research made by 

Zimpel (2016): most recognized the cipher, some knew that it was the number before one in the 

number sequence and some said the word “zero”. 

However, their initial geometrical conceptions were much better. Through the use of their bodies, 

movement and mimesis they showed their understanding of point as a fixed position (standing on it 

without moving), of line as a path (making an effort to go along it without bending) and of straight 

line as the minimum distance between two points (they all walked straightly when asked to go from 

one teacher to another). The eldest ones were also able to distinguish none-straight lines and named 

them as “curves”. They all had an idea of a circle as a round (they knew how to sit in a circle or 

how to turn on themselves). However, they had scarce ideas of polygons (they showed more 

difficulties in recognizing triangles than in recognizing quadrilaterals). Surprisingly, they had a 

special ability to discover the similarities among every day solids. Acquisition of skills related with 

drawing differed substantially from one child to another due to the delay in motor development 

common in Trisomy 21. 

Their greatest difficulties in geometrical conceptions had to do with every aspect related to measure 

(counting steps, for instance, was almost impossible for all of them, even for the eldest one) due to 

the strong relation between measure and numbers. They also showed a poor performance in 

understanding the relationship “to be between two objects or two persons”, basic for the acquisition 

of the concept of segment. 

                                                 

6 We observed only one of the children, the eldest, in his everyday life. From this observation we made a diary that was 

very useful for extending our research (Gil Clemente, 2016). 



The most remarkable conclusion was the enthusiasm and good disposition showed by all the 

children when facing mathematical tasks: only one child did not engage in the activities proposed; 

the other children enjoyed the activities and concentrated on them; many families told us their 

children were looking forward to coming back and doing “mathematics”. This widely confirmed 

our initial thesis about the natural relationship between mathematics and childhood, even for those 

with disabilities.  

The results of our observation show a path to the possibility of seizing the power of geometry for 

developing some abstract thinking processes in children with Trisomy 21. This is consistent with 

the role attributed to geometry by Séguin (1846,1866) for awakening ideas in disabled children’s 

minds and with recent research regarding the strength of abstraction in Trisomy 21 (Zimpel, 2016). 

Final remarks 

The experiences carried out with the two groups of children in Italy and in Spain, indicate that this 

approach to the encounter with mathematics actually stimulates knowledge building on a solid basis 

by avoiding the non-involvement of children in school mathematics and is therefore a promising 

path for future research. It runs in contrast with normal standardized numerical school exercises, by 

proposing items connected to the development of a relationship of intimacy with abstract 

mathematical objects such as points, segments or numbers (Thom, 1971) which should lay the basis 

for further introduction to symbolic thought.  

Introducing geometry in children’s education as a result of the confidence in the relationship 

between mathematics and childhood7 helps children to develop this abstract thinking. We have 

confirmed this idea with the development and application of subsequent teaching sequences based 

mainly on geometrical concepts after the exploration of the naïve conceptions described (Colella, 

2014; Gil Clemente, 2016). 

References 

Colella I. (2014). Un catalogo di attività matematica prima della scrittura (Unpublished Masters 

degree thesis). Università Roma Tre, Roma. 

Donaldson, M. (1978). Children´s minds. London: Croom Helm. 

Enriques, F. (Ed.). (1924-1927). Questioni riguardanti le matematiche elementari (3rd ed.).  

Bologna: Zanichelli (reprinted Bologna, Zanichelli, 1983). 

Faragher, R. & Clarke, B. (Eds). (2014). Educating learners with Down Syndrome. New York: 

Routledge. 

Fuson, K. (1988). Children´s counting and concepts of number. New York: Springer-Verlag. 

Gil Clemente, E. (2016). Didáctica de las matemáticas para niños con síndrome de Down a partir 

de un enfoque integrado de la aritmética y geometría elementales (Unpublished doctoral thesis). 

Universidad de Zaragoza, Spain. 

                                                 

7 Historical research shows the link between teaching of geometry and a vision of mathematics education as paideia, 

following classical humanism or liberal education. (Millán Gasca 2016, forthcoming). 



Hilbert, D. (1902). The foundations of geometry (Townsend, E.J., Trans.). Chicago: The Open 

Court Publishing Company. 

Hughes, M. (1986). Children and numbers. Difficulties in learning mathematics. Oxford and New 

York: Basil Blackwell.  

Israel, G., & Millán Gasca, A. (2012). Pensare in matematica. Bologna: Zanichelli. 

Millán Gasca, A. (2016). Numeri e forme. Bologna: Zanichelli. 

Millán Gasca, A. (forthcoming). Mathematics and children's minds: The role of geometry in the 

European tradition from Pestalozzi to Laisant. Archives Internationales d'Histoire des Sciences, 

175, 261−277.  

Millán Gasca, A. & Gil Clemente, E. (2016). Integrating history of mathematics with foundational 

contents in the education of prospective elementary teachers. In L. Radford et al (Eds.), 

Proceedings of the 2016 Meeting of History and Pedagogy of Mathematics (pp.427−440). 

Montpellier, France: HPM. 

Monari Martinez, E. (2002). Learning mathematics at school…and later on. Down Syndrome News 

and Update, 2(1), 19−23. 

Peano, G. (1899). Arithmetices principia nova methodo exposita. Roma: Regis Bibliopolae. 

Séguin, E. (1846). Traitement moral des idiots et des autres enfants arrieérés. Paris: J. B. 

Baillieère.  

Thom R. (1971). Modern mathematics: An educational and philosophic error? American Scientist, 

59, 695−699. 

Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition. 

Cambridge, MA: Harvard University Press. 

Tolchinsky, L. (2003). The cradle of culture and what children know about writing and numbers 

before being taught. Mahwah, NJ: L. Erlbaum Associates 

Van Manen, M. (2003). Investigación educativa y experiencia vivida. Barcelona: Idea Books.  

Wishart, J.G. (1993). Learning the hard way: Avoidance strategies in young children with Down 

Syndrome. Down Syndrome Research and Practice, 1, 47−55. 

Zimpel, A.F. (2016). Trisomy 21: What we can learn from people with Down Syndrome. Bristol, 

CT, USA: Vandenhoeck & Ruprecht. 



How do preschool teachers characterize their own mathematics 

teaching in terms of design and content?   

  1Hanna Palmér and 2Camilla Björklund  

1Linnaeus University, Sweden; hanna.palmer@lnu.se   

2University of Gothenburg, Sweden; camilla.bjorklund@ped.gu.se  

 

Preschool mathematics may look very different in different contexts. These differences concern both 

what mathematics children are offered to learn and how the learning of that mathematics is 

orchestrated. In this paper we present an ongoing study on how Swedish preschool teachers 

characterize their own mathematics teaching in terms of design and content. The target preschool 

teachers are those working with the youngest children aged one to three. We present two examples 

of how these preschool teachers describe and characterize their mathematics teaching in terms of 

design and content and we discuss possible contributions to research and practice.  

Keywords: Content for learning, design for education, mathematics, preschool teachers. 

Introduction 

Preschool mathematics does not only prepare for future schooling but – and maybe even more 

important – provides “young children with rich and engaging intellectual stimulation” (Ginsburg, 

2009, p. 405). From a time when young children were considered to be almost incapable of learning 

mathematics the question today is seldom whether or not mathematics belongs in preschool but 

rather how to organise mathematics teaching (Björklund, 2014; Cross, Woods & Schweingruber, 

2009; Perry & Docket, 2008). However, the recognition of importance and the increased attention 

do not automatically imply consensus regarding how preschool mathematics should be designed or 

what constitutes an appropriate content. Cultural issues may explain some of these differences but 

there are also differences within countries and seemingly similar educational contexts (Palmér & 

Björklund, 2016). 

There are several studies where researchers observe, analyze and often evaluate mathematics 

teaching and teachers in preschool (see Sarama, Clements, Wolfe & Spitler, 2016; Tirosh, Tsamir & 

Levenson, 2015). More seldom are the preschool teachers asked about how they themselves analyze 

and/or evaluate the observed teaching. In this paper we present an ongoing study on how Swedish 

preschool teachers working with the youngest preschool children, those aged one to three, 

characterize their own mathematics teaching in terms of design and content. To what extent do their 

characterization coincide with researchers and other preschool teachers? Maybe preschool teachers 

use different words to describe “the same kind of” mathematics teaching or reverse, maybe they use 

the same words to describe “different kinds” of mathematics teaching. The aim is to find out how 

these preschool teachers themselves conceptualize their mathematics teaching practice. In this paper 

we will present the frame for analysis we intend to use, to investigate one of our research questions, 

that is:   

 How do these preschool teachers characterize their teaching in terms of design and content? 



Since the study is ongoing the focus of the paper is on the rationale of the study and methodological 

layout with only brief discussions of two examples. First in the paper we will give some background 

of preschool mathematics and Swedish preschool. After this we present the study followed by two 

examples of the empirical material we are to work with. Finally, we discuss what we believe this 

study will contribute with to research and practice. 

Preschool mathematics 

Preschool mathematics is an issue of current debate and may look very different in different 

contexts. These differences are found both in what mathematics children are offered to learn and 

how learning of that mathematics is orchestrated (Cross, Woods & Schweingruber, 2009; Perry & 

Dockett, 2008). While some emphasise basic number facts and applying computational procedures 

(Westwood, 2011) others emphasise advanced mathematical activities focusing on a broad spectrum 

of content (Claessens & Engel, 2013; Seo & Ginsburg, 2004). Regarding what mathematics children 

learn in preschool numbers and quantity are often emphasised but also concepts of space, shape, 

pattern, and order are central in early mathematics learning (Sarama & Clements, 2009). However, 

there are studies showing that the depth and quality of how the content is made an object of learning 

varies, where for example spatial relations, shapes and patterns are rarely problematized (Björklund 

& Barendregt, 2016). 

One way to characterize how mathematics is taught is to distinguish between naturalistic, informal 

and adult guided learning experiences (Charlesworth & Leali, 2011). Naturalistic learning 

experiences are initiated and controlled by the child. A naturalistic learning experience can turn into 

an informal learning experience if a teacher starts to interact with the child in a way that knowledge 

may be reinforced, applied or expanded. Adult guided learning experiences are those being pre-

planned by the teacher involving some direct instruction. Björklund’s (2014) study of meaning 

making of mathematical concepts highlights the complexity of designing preschool mathematics 

education. She found three ways in which teachers planned and acted to facilitate conceptual growth 

among 4- and 5-year-olds. One way of approaching mathematical concepts was to give the children 

individual traditional tasks to solve (“I give you x number of items, can you divide them into 

half?”). Another way of approaching the same concept was to “hide” the mathematical content in 

problem solving tasks, such as games and every-day tasks. The former approach, which was clearly 

goal-oriented and adult guided turned into a task of “doing” where the children primarily waited for 

their turn but not directing attention to the mathematical content rather than the joy of being given a 

task to solve. The latter, which also was carefully planned by the teacher to stimulate certain 

concept development, failed in establishing intersubjectivity because of the children’s different 

attention to play the game and finish the task, rather than stop and reflect on the mathematical 

content within the tasks. Even though the children happily engaged in the activities, the 

mathematics was not in focus of attention. A third way of approaching mathematical content was 

framing a concept in narratives where the teacher could orchestrate the direction of a story and in 

that manner direct the children’s attention towards an intended object of learning. It turned out that 

this approach appealed to the children and engaged them in problem solving where concept 

development was made possible. This third approach was also characterized as more perceptive to 

the children’s suggestions and creative solutions. Thus, designing teaching for preschool 

mathematics is a delicate work, where abstract and “invisible” mathematical principles are to be 



made explicit. Preschool didactics is to make the invisible visible to the child (Pramling & Pramling 

Samuelsson, 2011). Björklund’s (2014) study is one example of this, since the focused attention has 

to be made common for both teacher and child, whereas the design of the activity may constrain or 

enable learning.  

Swedish preschool 

Swedish preschool, in which the present study is conducted, is situated within a social pedagogy 

tradition (Bennett & Tayler, 2006) where care, socialisation and learning constitute a coherent 

whole and is part of the formal education system. Preschool is offered to children between the ages 

of one and six, and similar to other Nordic countries (Reikerås, Løge & Knivsberg, 2012), the 

youngest children attending preschool are increasing in number. In Sweden, 94% of all 4–5-year-

olds are enrolled in preschool or similar pedagogical practice and 88% of all 2-year-olds attend 

preschool or an equivalent practice (National Agency for Education, 2016).  

The preschool curriculum includes several mathematics-related goals, for example that preschool 

should strive to ensure that each child “develop their understanding of space, shapes, location and 

direction, and the basic properties of sets, quantity, order and number concepts, also for 

measurement, time and change”. Another example is to ensure that each child “develop their ability 

to use mathematics to investigate, reflect over and test different solutions to problems raised by 

themselves and others” (National Agency for Education 2011, p. 10). These are however not goals 

for children to attain but instead provides direction for content and activities.  

Based on the curriculum, each preschool chooses the approaches most appropriate for its own 

setting. Preschool teachers and child-minders are the two main types of pedagogues working in 

Swedish preschools. Child-minder is an upper secondary school education while to become a 

preschool teacher; one must complete a three and a half year university programme in preschool 

teacher education. Preschool teachers educated after 2001 have studied mathematics teaching in 

their degree, but the preschool teacher profession is mostly characterized as “educational 

generalists”, without specialization in any particular subject. 

Theoretical framing 

Since we want to investigate how preschool teachers characterize their own teaching we needed to 

develop a framework that included the dimensions of what and how. To capture both these 

dimensions we have used Bernstein’s (1999) notions vertical and horizontal discourses together 

with Claesson, Engel and Curran’s notions (2014) basic and advanced content. 

Bernstein (1999) uses the notions vertical and horizontal discourses to distinguish between different 

kinds of knowledge. A discourse characterized by coherence of content, hierarchically 

interconnected procedures, specialized language, systematically organized activities focused on 

general knowledge is a vertical discourse. A discourse characterized by location within 

communities, high relevance in the situation, every-day language, segmentally organized and 

maximized encounters with persons and habits is a horizontal discourse. In this study the notions of 

vertical and horizontal discourses is used to describe the dimension of how.  

Claesson et al. (2014) define mathematics content as basic or advanced depending on whether the 

majority of children in the group focused on have mastered the content or not. Thus, basic 



mathematics imply mathematics content that the majority of the children already know but that still 

is new for others while advanced mathematics is new content for the majority of the children. In this 

study the notions of basic and advanced is used to describe the dimension of what. However, basic 

or advanced will not be based on groups of children mastering some content or not, but on the 

preschool teachers’ view of the content in each situation being characterized. Together these four 

notions can be used to characterize different contexts of mathematics in preschool as in Figure 1.  

 

Figure 1: Connecting horizontal and vertical discourse with basic and advanced mathematics. 

 

The two extremes basic and advanced content are to be understood as differences when it comes to 

which mathematics being focused on while the two extremes horizontal and vertical discourses are 

to be understood as differences when it comes to design. The axis basic and advanced content 

illustrates if the content is considered as basic or advanced, in other words if the children engaging 

in an activity will be familiar with and master the content or will it be a challenge. On the left side 

(horizontal discourse) it is sufficient that this content is part of every-day activities and routines with 

no need to make it explicit for the children. On the right side (vertical discourse) mathematics is the 

starting point with no need for applications. Thus, every-day is the starting point in the horizontal 

discourse and mathematics is the starting point in the vertical discourse. Along the line there is a 

gradual shift and somewhere in the middle there is a shift concerning everyday life or mathematics 

being the starting point for the design of preschool mathematics.  

The study  

The authors of this paper have been part of a national network for several years that focus on toddler 

mathematics in preschool settings. A consortium of preschool teacher educators from different 

Nordic universities initiated the network with a special interest in the youngest children’s 

mathematics learning and didactical challenges in early childhood education. There are 

approximately 30 active members in the network. On the network’s spring-meeting 2016, the 

current study was presented and the members were invited to participate in generating data for 

analysis. Thus, the selection of participants is information-oriented and deviant (Flyvberg, 2002) 

which imply that we have chosen teachers that we know are interested in teaching also the youngest 



children in preschool mathematics. This selection is based on the research focus not being if these 

teachers teach mathematics but instead how they characterize the mathematics they teach.  

At the network meeting the study was presented verbally and afterwards the information was also e-

mailed to the participants. Until the autumn-meeting 2016 the participants who wanted to 

(participation is of course voluntary) were supposed to document “eight situations where toddlers 

encounter mathematics” on a pre-prepared form. First they were asked to “describe the situation”. 

They got some extra help by the questions: Who was present? What mathematical content? What 

happened? Next they were asked to describe how the situation started. Was the situation 

spontaneous or planned? If the situation was planned, on what grounds? Then they were asked to 

describe their own as well as the children’s actions in the situation. What did they do and say? What 

did the child/children do and say? To find out how these preschool teachers themselves characterize 

the teaching situations they describe, they were asked to place the situation in a picture like Figure 1 

above. If they wanted to they could motivate their placement. Having the preschool teacher to 

characterize the situations based on what and how makes it possible to examine what they associate 

with expressions as everyday mathematics, advanced content for toddlers etc which in turn may 

develop the professional language of preschool mathematics. Finally they were asked to estimate 

how common a situation like the described one, is for this/these child/ren.  

Two examples 

The current study is ongoing and we have only a small sample so far and tentative results. 

Therefore, we will here present two examples of documentations submitted from two of the network 

members to illustrate the framework and how it can be used as an analytical tool.  

Example 1 

The first described situation is about a child aged two years and ten months. She and one preschool 

teacher are sitting together. This situation was planned by the preschool teacher based on the child’s 

interest in sorting activities. The mathematics content is named as “sorting”. 

The preschool teacher gives the girl a box with small plastic bears in different sizes and colors and 

asks the girl if she can sort them. The girl answers, “yes I can” and starts to pick in the box. She 

picks up one bear and at the same time naming its color. She says “blue, yellow, red and green. Do 

we have more colors? Yes we have more blue bears”.  

The preschool teacher describes her own actions as “confirming what she [the girl] was saying” as 

well as “keeping the other children who wanted to take the bears away”. She writes that she asked 

the child if she could count the bears. The child then answered, “yes I can but now I don’t want to 

because I want to wear a dress instead”.  

This situation is described as occurring two or three times a week and is by the preschool teacher 

categorized as in Figure 2 below.   

Example 2 

The second example is a described situation with a child aged exactly two years. The mathematics 

content is named “training volume”. The situation arose spontaneously outdoors. The girl is 

standing together with three other children in a puddle. She takes 2-3 shovels with water and pours 



it into a bucket. Then she pours the water out again. This procedure is repeated over and over again 

for about 15 minutes. After about half the time another child aged two years and ten months starts to 

pour water into the same bucket. The only thing the first girl says during the 15 minutes is “pour 

in”, this as a call to the second child. The situation is described as occurring two or three times a 

week and is by the preschool teacher characterized as in Figure 2 below.  

 

Figure 2: Example 1 and 2 as placed in the figure by the preschool teachers. 

 

As mentioned, our selection of participants is information-oriented and deviant (Flyvberg, 2002) 

why our results will not reflect toddler mathematics in all Swedish preschools. However, the 

empirical material will provide some insight into the context in which the youngest children in 

Swedish preschool meet mathematics as well as which situations these preschool teachers think of 

as mathematical situations. In relation to the first example in this paper one could question the 

preschool teacher naming the mathematical content as “sorting” instead of describing sorting as an 

activity with the aim to make visible mathematical concepts as shape and size. Furthermore, one 

could consider if the content is to be deemed as advanced in relation to the explicit child in the 

situation. In relation to the second example one could question what the child is engaged in. Is she 

exploring volume or pouring water more as a scientific activity? Other questions that can be raised 

are if the invisible is made visible to the children in the situations as well as if focused attention 

becomes common for both teacher and child? Questions like this are about the situations 

constraining or enabling the learning of mathematics. 

Expected contribution to research and practice 

The preschool teachers focused on in this study are working with the youngest preschool children, 

those aged one to three. Based on the national network on toddler mathematics we know that these 

preschool teachers are interested in teaching mathematics. What we want to investigate is how they 

themselves characterize their mathematics teaching in terms of design and content. Since the study 

is ongoing we cannot present other than tentative results since only few examples of empirical 

material are collected so far. In this final section we will discuss what we believe this study can 

contribute with to research and practice. 



The question of whose perspective that leads the interpretation becomes focal when starting to look 

into this kind of empirical data. “Volume” may be considered a quite advanced mathematical 

concept, since it demands attention to three dimensions and the spatial relationship between length, 

height and width of an object, for example. The preschool teacher may on the other hand consider 

the act of pouring water as a very simple exploring activity without further consideration of the 

complexity that the activity may entail. However, the child’s object of learning might very well be 

of natural scientific nature or a motor skill exploration whereas the mathematical content is left for 

the observer to interpret, without any conclusions of the mathematical learning value made possible.      

Another reflection regards how the preschool teachers interpret vertical and horizontal discourses as 

well as basic and advanced mathematics for these preschool children. What similarities and 

differences can be found? As mentioned, one possibility is that preschool teachers use different 

words to describe “the same kind of” mathematics teaching or reverse, maybe they use the same 

words to describe “different kinds” of mathematics teaching. Making such similarities and 

differences visible may develop the professional language of preschool teaching in mathematics. 

Since the study is conducted within the frames of a national network on toddler mathematics we 

believe it is important to contribute to this practice. One way of doing this is to use the empirical 

material to investigate to what extent the members characterize the same situation similarly. One 

way to do this is to ask some of the preschool teachers to present one of their situations and then let 

all the others do a categorization. When they place the situations into Figure 1 they define what they 

consider to be vertical and horizontal discourses as well as basic and advanced mathematics for 

these preschool children. Thus, collective but not joint categorizations can be the starting point for 

discussions about what we mean by spontaneous versus planned mathematics, vertical versus 

horizontal discourses as well as advanced versus basic mathematics.  
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There are numerous studies that confirm the importance of different skills in determining cardinality 

of sets for coherent mathematical learning. Some of these skills can be supported in kindergarten in 

a playful way. In this article we will first discuss whether it’s possible to distinguish the two processes 

of perceiving quantities and determining the cardinality of sets and/or when they may coincide with 

each other. It will also be investigated how the perception of structures in sets develop in children at 

preschool age and how this is used to determine cardinality in various ways. 

Keywords: Perceiving (sub-) structures in sets, determining cardinality of sets, (structural) subitizing, 

preschool education, early mathematics education. 

Introduction 

“Two, three and two more equals seven”. This statement of a five year old girl may sound simple but 

profound mathematical developments underlie this statement. From the age of five to six years, the 

numerical knowledge increases strongly. This period seems to be a fruitful phase for the development 

of mathematical abilities (Weinhold Zulauf, Schweiter, & von Aster, 2003, p. 229). One of these 

developing abilities is the ability to perceive structures in sets and the usage of these in determining 

the cardinality of the set. The example above shows that the girl perceives a structure in a presentation 

of seven dots with the sub-structure two-three-two. This perception leads to a specific determination 

of the cardinality. The background knowledge about these issues is important as it enables 

professionals to ask adequate questions in order to support children individually or to offer suitable 

playing and learning areas. In particular, the different possibilities of the (individual) perceiving of 

structures play an important role, which will be described in detail in the following sections. 

Perceiving (sub-) structures in sets 

Perception does not just happen incidentally but on the contrary it is a very active process. By focusing 

the attention and one’s own interest on the characteristics of a certain object, information from the 

surrounding area is actively chosen (Goldstein, 1997, p. 108). In the interviews described below, the 

attention is drawn to the cardinality of presented objects. Although not all ongoing cognitive 

processes when seeing and perceiving objects can be illustrated here, it shall be briefly referred to the 

gestalt psychology, in which the question is central as to why some things are perceived as a unity 

and others are not (Goldstein, 1997, p. 170). In order to answer the question, several gestalt principles 

(gestalt laws) were formulated. The six main important laws are the law of good gestalt (pithiness), 

the law of similarity, the law of closure, the law of proximity, the law of common fate and the law of 

past experience (ibid. pp. 170–176). The law of proximity indicates that things which are close 

together appear as belonging together (ibid. p. 173). The arrangement of objects as representations of 

sets may due to their distance, indicate a possible grouping of the objects. The emerging structured 

perception based on the grouping can then promote a determination of the set of objects in “a single 

glance”. In psychological and mathematical education research this “perception in a single glance” 

and the simultaneous determination of the set is described as subitizing. Here, it is assumed that a set 



with up to four objects can be determined in a glance, without counting the objects (e.g. Mandler & 

Shebo, 1982). It has not been clarified whether a quick counting process lies behind subitizing 

(Gelman & Gallistel, 1986) or whether it’s about a non-counting process (cf. Dornheim 2008). 

Clements and Sarama (2009) distinguish between perceptual und conceptual subitizing. Perceptual 

subitizing is when you just “see” how many objects there are. So it is possible to identify the cardinal 

number instantaneously. Conceptual subitizing is used when “seeing the parts and putting together 

the whole” (ibid. p. 9). With conceptual subitizing it is possible to subitize more than four objects. 

Clements and Sarama (2009) use the term conceptual subitizing whenever a recognized structure is 

used for determining the cardinality, as in the case ‘counting on’, for example (cf. Schöner & Benz, 

in press). For the following analyzes it is important to use a term which describes the following 

situation only (for a set with five elements or more): the perception of structures in a set and the 

immediate naming of the number. In this case, the term "structural subitizing" is used (ibid.). So the 

term structural subitizing means that the determination of the cardinal number of objects coincides 

with the process in which the set is perceived in structures. The terms "perceptual" and "conceptual" 

subitizing are not used in this article. Even children at preschool age “can perceive structures in 

representations of quantities and use this for the determination of numbers” (Benz, 2013, p. 11). The 

girl who is quoted at the beginning of the introduction “Two, three and two more equals seven” 

determines the cardinality of the set by means of structural subitizing when she recognizes the 

structure and immediately knows that the answer is seven. In this case, she can use the structure for 

determining the cardinality of the set. Söbbeke (2005) states that children use the “visual structuring 

ability” as a method in perceiving and using structures in arrays of objects. This also means perceiving 

sets not as every single item but as (different) groups of items. This ability to change from focusing 

every single item to perceiving and identifying structures in sets is important for the numerical 

development (Hunting, 2003), as well as for the part-whole understanding (Krajewski, 2008; Benz, 

Peter-Koop, & Grüßing, 2015). In this paper, the emphasis is on the visual level, because each time 

the cardinality of a presented set is considered. This is the basis for the later more abstract processes 

with numbers, in which composing and decomposing numbers play an important role. Additionally, 

to the question whether and how the structured perception of sets develop in five to six year old 

children, it is illustrated if and how further possibilities to determine the cardinality of sets can be 

observed due to the perception. 

Research questions 

The following two research questions are investigated in this paper: 

(1) How does structured perceiving of sets develop in children at the age five to six? 

(2) How do children at preschool age use structures for determining the cardinality of sets? 

Design 

In this paper, a case study will show how structured perceiving of sets develops in children aged five 

to six years. In the case study it is also examined how children of this age use structures to determine 

the cardinality of sets. The case study is part of a larger study. In order to understand the framework 

of the case study, the structure of the entire study is described first. The whole study is an efficacy 

study with a treatment group and a control group with more than 100 children aged between five and 

six years (cf. Table 1). It’s a panel design so the same children were interviewed three times (t1, t2, 



t3) to evaluate whether and how they perceive and use structures for determining the quantity of a 

collection of objects. The first interview (t1) was before the intervention. Then the intervention 

happened. The second interview (t2) took place shortly after the intervention. The third interview (t3) 

was conducted as a follow up interview. 

Between t1 and t2 the treatment group got a box with different materials and games, which were 

suitable to discover and facilitate the structured perceiving of sets in a playful way. The kindergarten 

teachers were instructed and used these materials one to three times a week together with the children. 

At time t2, the kindergarten educators were interviewed with the help of a structured interview in 

which six questions were formulated. Amongst other questions, it was asked which developments 

were observed in the children’s perception and usage of structures. In many studies concerning the 

determination of cardinality, a set is presented only for a short instance in order to investigate whether 

the children perceive the set simultaneously or not (e.g. B. Clarke, D. Clarke, Grüßing, & Peter-Koop, 

2008). As it can’t be eliminated that the sets may possible be determined by a quick counting process, 

despite a short time of presentation, a pre-study with 27 children was conducted. Pictures with dots 

were presented to the children and also for only a short instance before they were asked to mention 

the cardinality of the dots. Statements made by the children such as for example “I have counted them 

again, as they could not be seen anymore” or “I have looked at the dots on a picture in my head” 

indicate that visual conception may play a role here. (Schönhammer, 2009, p. 178). Because a short 

duration of presentation does not allow a reliable conclusion whether the children use subitizing or 

whether they have counted the objects (quickly), the study at hand works without a time restriction. 

Therefore, there was no time limit for the children to look at the picture in determining the cardinality 

of the set of dots. To take a closer look into the processes of perceiving sets and determining 

cardinality, the investigation method eye-tracking was used to record the eye movement of the 

children. In this paper we will focus only on one part of the interview, the part with arrays of dots. 

Pictures with different numbers of dots were presented on a monitor. Before the interview, the 

children were instructed to say how many dots they can see, as soon as they know the answer. When 

the children said a number the interviewer asked how they came to the result. Interviews of nine 

children from the treatment group were previously evaluated and in the following section a thereof 

selected case study is presented. 

First results and interpretations 

This section analyses how perceiving structures in sets develop in children in preschool age and 

whether and how they use these structures for determining cardinality of sets. The following results 

and interpretations will be illustrated by means of a single case study. Liam is a child from the sample 

described above which took part in the study. His age at the three investigations is illustrated in 

Table 1. 

Time of investigation Age of each time of investigation 

t1 29th September 2015 5 years, 2 months (5;2 years) 

t2 16th February 2016 5 years, 6 months (5;6 years) 

t3 5th July 2016 5 years, 11 months (5;11 years) 

 Table 1: Liam’s age at each investigation  



The following Table shows a section of the interview. It is based on one item, which was chosen as 

an example for a longitudinal analysis on all three time points of investigation. 

t1 

 

Liam: One, two, three, four, five. (He counts the 

 dots aloud.) 

 Interpretation: Perception: Set as individual elements 

Determining cardinality: Counting all 

t2 

 

Liam: Four and one are one, two, three, four, five. 

 (When counting he points the finger at each 

 dot.) 

I:  Where is the one? 

Liam: (He points to the leftmost dot.) 

I: Thank you. 

 Interpretation: Perception: Set in structures 

Determining cardinality: Counting all 

t3 

 

Liam: Five. 

I: How did you find out that there are five? 

Liam: Here are two und again two and here is 

 one. That results in five. 

 Interpretation: Perception: Set in structures 

Determining cardinality: Structural subitizing 

Table 2: Case study – Liam 

At the first interview t1 (cf. Table 2), Liam perceives the presented set of the five blue dots as single 

elements and uses to determine the cardinality of the set, the counting strategy of “counting all”. He 

uses this determination strategy for all items, independent from the kind of objects shown to him. He 

always counts aloud and often uses additionally, his fingers as a counting aid by pointing to each 

single object. Even in sets of two, three or four, he continuously uses this strategy. 

At the second interview t2 (cf. Table 2), after the implementation for four months, his perception of 

sets changed. Liam is now capable to perceive sets in structures. In order to determine the cardinality, 

he still uses his familiar strategy of “counting all”. It is noticeable that he first explains the structures 

no matter how the objects are arranged. Then in order to determine the cardinality of the set he starts 

to count the objects one after another each time. By means of the eye-tracking data it can be confirmed 

that he really perceives structures and does not look on every single item separately. With several 

items he only mentions the two partial sets and only when asked again by the interviewer, how many 

these make up together, he answers by counting each time all the objects separately. At sets of two, 



three or four, he now uses nearly every time subitizing in order to determine the cardinality. This 

hypothesis can be confirmed by means of the eye-tracking data and thus the possibility of an eventual 

quick counting process can be excluded (Schöner & Benz, in press). 

At the follow-up-interview at time t3, he increasingly succeeds to use his structured perception of sets 

in determining the cardinality, as described in the example above (cf. Table 2). He uses structural 

subitizing in order to determine the cardinality of the set by perceiving the partial sets, knowing then 

directly how many objects there are. At some items he goes back to his familiar determination strategy 

of “counting all”. 

In the example of Liam, a clear development especially concerning the structured perception of sets 

is visible. A very interesting aspect is the fact that the identification of the cardinality of a set is not 

one process, but seems to consist of two processes. There is on the one hand the process of perceiving 

a set, which in turn can be distinguished in three kinds of perceptions and the process of determining 

cardinality which can also be distinguished into three sub-groups. The following Figure (cf. Figure 1) 

illustrates these two processes and their possible relationship. The model is the result of a first 

evaluation and is developed by an inductive approach (cf. Benz, 2013; Benz et al., 2015, p. 134). 

 

Figure 1: Two processes: Perception of sets and determining cardinality (cf. Schöner & Benz, in press) 

The two processes of perceiving the structure of sets and determining the cardinality can run one after 

the other or coincide with each other. There are different possibilities of perceiving a set of objects 

(cf. Figure 1, blue boxes). Each of these three cases offers (partially different) strategies in order to 

determine the cardinality of the presented objects (cf. Figure 1). These processes that have been 

described can run successively. This is shown in Table 2 in the example of Liam at the second 

interview t2. He recognizes and names the structures that he perceives but he is not able to make a 

statement about the cardinality of the dots. This phenomenon can also be observed with many other 

children who were interviewed in the study at hand. In the example of Liam, the two processes 



coincide at time point t3. He perceives the set in structures and then knows immediately that there are 

five dots altogether (structural subitizing). The perception of a set in structures offers not only the 

possibility of subitizing by knowing figural patterns (cf. Glasersfeld, 1982; 1987, p. 261) or by the 

usage of counting strategies for the determination of the cardinality of sets, but is also a necessary 

prerequisite in order to use non-counting derived facts strategies. 

After the implementation of the tasks concerning the structured perceiving of sets at time point t2, a 

clear development can be observed in Liam’s realization of structures. The detailed evaluations are 

not yet finished, but it is already conceivable that this development can also be observed in the 

interviews of many other children. The tendency of the follow-up study t3 is that this newly learned 

knowledge about the structuring of sets does increasingly stabilize itself and becomes more 

independent. In no case of the already evaluated interviews it is visible that the ability to perceive 

structures in sets is lost again. On the contrary, this newly acquired knowledge seems to be integrated 

as a familiar strategy in dealing with the cardinality of sets. 

The kindergarten teachers from the participating kindergarten told that they could observe how 

children did use and explain structures in playing situations between t2 and t3, after the four months 

of implementation. “It [the structuring of sets] did become really independent”. It was also significant 

that there were discussions among the children about it and arguments like: “One can put the five like 

this [four and one] or like that [two and three] or like that dice pattern. And it can well be seen like 

this [structure] and it cannot be seen very well like that, because it is mixed up.” The preschoolers 

passed their newly discovered knowledge on to the younger children and explained to them their 

structured representation of a set. A mother told of a situation at home where her son arranged objects 

also in structures [four and five], explaining “look mum, this adds up in nine”. The kindergarten 

teachers gave no purposeful suggestions to the materials at this time point, but still this higher 

attention of the teachers as well as of the children became independent and turned into an independent 

discovering and exploring. 

Summary and conclusion 

The following section is an attempt to answer the research questions and draw conclusions. In Figure 

1 on the left side it is illustrated which possibilities might occur when perceiving sets. How to perceive 

sets, can thus be completely different. Initially, children seem to perceive a set predominantly as an 

arrangement of single objects. To answer the first research question it is helpful to look again to the 

case study with Liam. At time t1, he perceives several sets as single elements. After four months, he 

perceives the set by means of its structure. This kind of perception is still present at the last 

investigation t3. Here, the visual structuring ability becomes visible, as Elke Söbbeke describes 

(Söbbeke, 2005). This could also be observed in other children, who took part in this study. To 

perceive a set as a whole or in structures seems to be a natural step of development. The second 

research question investigates how children at preschool age use structures for determining the 

cardinality of sets. We examine again the example of Liam. At the first interview he uses his familiar 

counting strategy “counting all”, in order to determine the presented set. Also, at the second point of 

investigation, he uses this counting strategy in order to determine the cardinality although he is now 

able to perceive the structures. It is obvious here that the process of perceiving sets must not coincide 

with the process of determining the cardinality of sets, but that these two processes may happen 

independently of each other. Within the following months, Liam learns to use the perceived structures 



in order to determine the cardinality of sets. At the third point of investigation, it is obvious that 

through his structured perception of sets, he is now able to use non-counting strategies to determine 

cardinalities. In the described item, he uses the strategy “structural subitizing.” To perceive a set in 

structures is therefore an important precondition for the usage of non-counting strategies and for 

replacing counting strategies through calculating strategies in primary school (Gaidoschik, 2010).  

It is possible to support the structured perception of sets in a playful way already in kindergarten. 

Designing mathematical playing and learning environments which are mathematically substantial and 

which will enable the children to act in a discovering and exploring way through adequate games and 

materials, is a precondition for supporting the perception of structures in sets. In addition to providing 

such materials, kindergarten teachers should act inspiringly and supportively within this learning 

environment, in order to support this development in children. On the one hand they must be 

competent concerning mathematical contents but on the other hand they must be able to connect 

situational observations and perceptions with pedagogical-didactical activities. The knowledge about 

the processes of perceiving sets and determining the cardinality of sets, as it is illustrated in this paper, 

may serve as a basis for a differentiated, constructive and individual support in a playful learning 

environment. 
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Nowadays it is widely agreed that students should be involved in critical and creative thinking 

about mathematics concepts and ideas in order to organize and consolidate their thinking, as well 

as to reflect and construct their own learning. Inquiry-based mathematics education, as a teaching 

and learning method among many others, seems to be a fundamental way to initiate and support 

students’ effective involvement to the teaching/learning process. In this method, in which the role of 

students, teachers and activities is changing, the teachers must be also able to design and 

implement mathematics activities that are open to an inquiry-based process. In this paper, a 

framework for designing inquiry-based activities (FIBA) for early childhood mathematics is 

proposed, accompanied with an example, aiming to assist teachers in their instructional design. 

Keywords: Inquiry-based activities, early childhood mathematics, framework. 

Introduction – Theoretical background 

In the last decades, it is argued that instructional design should support a critical (Skovsmose, 1994) 

and a creative mathematics education (Leikin, 2009). The teaching that was based on the simple 

reproduction of given conceptual contents and the transmission of knowledge has yielded space to 

the teaching based on student’s own activities, that contributes to a meaningful learning and 

stimulation of their own identity as an emerged process (Van Oers, 2010). 

In this new context, in which mathematics education is based on inquiry1, teaching includes 

exploration, practical action, developmental thinking, connection of mathematical ideas and 

contents, problem solving and posing, collaborative learning, as well as autonomy to the 

development of ideas and methods (Artigue & Baptist, 2012; Ulm, 2012). Clarke and Clarke (2002) 

describing the effective mathematics teaching, set as a starting point the use of unusual problems 

without suggestions for their solution and the use of materials and other resources relevant to the 

content of the problems but also to the students' interests and needs. Moreover, they propose to 

address the classroom as a 'community of learning', that develops mathematical discourse and 

encourages the expression of students' ideas and strategies, focuses on the big ideas of mathematics, 

uses informal assessment methods to support instructional decisions, as well as facilitates students 

to act and think. In a “community of inquiry” teachers learn from students and students learn from 

teachers solving and posing mathematical problems to each other (Goodchild, Fuglestad & 

Jaworski, 2013). In this perspective, qualitative teaching, takes place by encouraging the creative 

and critical participation of students (Radford, Schubring & Seeger, 2011) and adoption of 

                                                 

1 The IBME (Inquiry Based Mathematics Education) perspectives are based on approaches that have been developed in 

the field of mathematics education, such as the problem-solving tradition, among others, which tend to shape it in a 

particular way. But, in the problem-solving tradition the focus was on 'teaching problem solving' by developing problem 

solving skills and associated metacognitive competences, whereas in the IBME the focus is on 'teaching via problem 

solving'.  



exploratory and expressive ways of learning. As Sierpinska argues, “it makes sense to assume that 

learning – mathematics or mathematics teaching – is either inquiry-based learning or it is not 

learning at all” (2016, p. 55). 

In the inquiry-based mathematics education, the roles of students, teachers and activities, as factors 

that jointly shape the instructional design, are changing. Students are no longer considered as the 

passive recipients of knowledge but as co-constructors and co-researchers of their knowledge 

assuming greater responsibility for their actions (Lau, Singh & Hwa, 2009). They are at the center of 

the learning process; they actively participate in it and are strongly engaged with mathematics 

problems. They are actively involved in explorations and discussions, and they pose questions, that 

were usually posed by teachers, in order to express an opinion, to share and explain their ideas, to 

make assumptions and generalizations, to present their solutions to a problem, to justify their 

creations and to support or prevent the ideas of their peers. When students are forced to describe 

their strategies in detail and justify them, they promote their understanding. Students’ creative 

participation in the teaching and learning process of mathematics is related with producing new 

ideas, giving meaning to symbols, materials and tools, facts and procedures, understanding math 

problems, making plans and devising ways to solve them, as well as finding ways to assess the logic 

of their solution (Haylock, 1987). 

The role of the teachers, since they are not the key persons of the teaching/learning process, is also 

changing and instead of being the sole sources of mathematical knowledge, who only focused on 

practicing the mathematical operations and procedures, they become supporters of children’ 

mathematics constructions (Lau et al., 2009). They work cooperatively with students to create the 

appropriate conditions and organize the process and the ongoing opportunities for them, to explore, 

to make connections, to build mental representations and to develop mathematics concepts based on 

their prior or/and informal knowledge through the interactions with others. They cultivate to 

students the need to communicate their actions, their creations, their solutions with the use of 

materials or other auxiliary means, to discuss their mathematical ideas, to share their thoughts, to 

cooperate (Shriki, 2010). They help students to look for multiple solution methods and multiple 

outcomes for a situation (Tsamir, Tirosh & Tabach, 2010), to identify relationships and common 

characteristics in different cases, to reflect and justify their thoughts and actions. Teachers transfer 

the problem-solving responsibility to students without, at least initially, intervening and suggesting 

ways of thinking. They encourage children to think and present their solutions to the rest of the 

class. The discourse, which includes the presentation of students' results, solutions, strategies and 

methods, highlights students' own considerations and encourages the exchange of their ideas (Ryan 

& Williams, 2007). Teachers pose questions related to students' ideas in such a way, as to explain 

their thinking and imagining, as well as giving meaning to their actions and developing their own 

understanding. It is important that the posed questions are linked with the task and its solving. The 

questions are not supposed to fulfill teachers' desire to teach mathematics, but have to encourage the 

emergence of multiple strategies, to make clear the relationships between these strategies, as well as 

to give opportunities to students to integrate the pieces of their knowledge. 

Activities’ type, in the new cooperative, critical and creative classroom context, is changing. 

Activities arise from tasks that are problem-based with sufficient openness for inquiry-based 

learning (Ulm, 2012). The context of these tasks can be authentic or not, known or unknown to 



students and can be associated with everyday activities, stories, games, workshops etc. Complex and 

creative situations allow various solutions and reasoning. They enable the use of students’ informal 

knowledge and empirical reality. They are ‘realistic’ experiences, supported by a variety of 

materials and other means (Varol & Farran, 2006). Materials that are related to the task are used and 

aim to help students to investigate the situation, to find answers to the questions posed, as well as to 

pose their own questions. The main aim of the activities is not just to be carried out by the students, 

because it is the lesson of mathematics and they should do so, but the challenge to deal with the 

situation presented to them. They challenge students to connect mathematics with their daily life 

(Van den Heuvel-Panhuizen, 2005) and encourage them to describe the different ways in which they 

perceive things. Activities that are realized in many ways require students to conjecture, to interpret, 

as well as to justify their thoughts (NCTM, 2007). They encourage reflection and communication 

for students, to construct mathematical meaning using skills and knowledge they already hold 

(Varol & Farram, 2006). Moreover, they have to be interesting, effective and developmentally 

appropriate inducing the active participation of students (Tzur, 2007) to mathematics discourse. The 

solution of the problem is not readily apparent. To solve the problem, students have to use 

something more than a routine solution or an algorithmic process. The solution of the problem may 

be proposed by a student or a group of students. It may occur during the discourse or be suggested 

by the teacher. The mathematical discussion is completed when the whole class agrees to a mutually 

acceptable solution/s for the task, which can consist of many answers. In each case, children "earn" 

if the discussion, that took place, has set the basis for them to understand that the proposed solution 

is reasonable for this reflection. Then, when possible, the solution is modified and generalized. The 

generalization begins when reasoning gets independent, when it does not refer to the specific 

context in which it was created, and continues when the common characteristics of the different 

ideas are combined. Tasks can be either structured or unstructured but are open to an inquiry-based 

implementation. 

The design of creative and critical activities that can be realized within an inquiry-based process that 

encourages students to decide for themselves when and how to use a method, a process or a 

strategy, can lead to meaningful learning. Such activities allow the creation and communication of 

students’ reasoning cultivating skills such as prediction, fast perception of information, systematic 

reasoning, critical and creative thinking, problem solving and posing, assessment, comparison and 

correlation, as well as generalization, skills that are necessary for the future citizens (Sarama & 

Clements, 2009). This type of activities is not usual in the mathematics classrooms because its 

design and implementation is difficult (Sierpinska, 2016). It is easier for teachers to teach facts, 

procedures and problem solving processes through structured situations even if these situations are 

often not understood by the students and do not influence their thinking. Children, often, because 

they have to deal with routine and structured mathematical tasks, that require the implementation of 

specific strategies, do not sense when and how to use a mathematical procedure to solve a problem. 

Research results pinpoint that it is essential for the mathematics education to include also inquiry-

based activities (Artigue & Baptist, 2012). Thus, a framework for designing inquiry-based activities 

for early childhood mathematics (FIBA) is proposed, accompanied with an example, to assist 

teachers in their instructional design. 



Framework for designing and implementing inquiry-based activities (FIBA) 

Taking into consideration the above main points of inquiry-based mathematics education, a 

framework for designing and implementing activities is proposed. The framework consists of seven 

stages (figure 1): 

 

Figure 1: The seven stages of the FIBA 

1. Τask (key person: teacher): A problem-based task is invented and presented, by the teacher, 

through a context, resulting from children’s interests, experiences, knowledge, queries (emergent 

from a previous free talk and sharing experiences with the students in the class which is based on 

the curriculum and is in accordance with a mathematical purpose). The task, which may have one 

or more solutions, is designed in such a way that it problematizes and incites children, in order to 

engage them in a problem solving and posing process. The problem to be solved could be a non-

standard, unfamiliar, a bit complex and novel situation in order not to be solved just by applying 

existing knowledge and already-known strategies, but through exploration.  

2. Exploration (key person: students): Children (individually or in groups) use their own (informal) 

problem-solving strategies to explore the problem introduced by the scenario, to choose/use 

materials and other auxiliary means, to make conjectures, to pose questions to each other and to 

the teacher for understanding/grasping the situation and to suggest solutions, in order to ‘solve’ 

the problem. In that stage, students have the opportunity to reflect and think about the problem 

on their own, before sharing their thoughts with their peers. They are also free to discuss their 

ideas about the problem with their peers before presenting them to the whole class.  

3. Presentation (key person: students): Children share their explorations with the whole class by 

presenting/describing their ideas, constructions, solutions, experiences etc. Teacher, in that stage, 

is an observer and organizer of each team’s presentation, orchestrating students’ contributions, 

posing questions to help children describe, explain and open out their explorations. He/She also 

encourages students to pose questions to their peers, from other groups, in order to ensure that 

they understand all the presentations.  



4. Connection (key person: teacher): Teacher, in cooperation with students, summarizes the results, 

poses questions and encourages students to ask questions that connect the presented ideas with 

each other, with the task that was explored and with the mathematical aims, in order to construct 

the common meaning that the classroom would share. Teacher’s questions have to encourage 

mathematical thinking and reasoning and can be of several types (Carlsen, Erfjord & Hundeland, 

2010). At that stage, it will become apparent if cooperative grouping strategies are effective in 

promoting classroom discourse. 

5. Generalization (key person: teacher): Teacher is generalizing (and mathematizing when and if 

possible) students’ actions, shaping the mathematical concept, connecting it with students’ 

previous knowledge and giving feedback to them.  

6. Translation (key person: students): At that stage, students are asked to communicate to others 

(students from another class, family etc.), their solutions, creations, understandings etc. through 

different modes—verbalizing, gesturally and schematizing (Skoumpourdi, 2016a). 

7. Expansion: Students are asked to pose/solve related/changed/expanded problems. 

In all the above stages, teachers are also responsible to take students’ questions and comments into 

consideration, turn them into learning opportunities incorporating them to their instructional design, 

creating a new problem-based task.  

The Pattern King: An example of an inquiry-based activity 

Given that, the importance of patterning is increasingly highlighted in recent years and that, to 

further improve the performance of children on patterning, teaching interventions are necessary 

from the early years of schooling (Skoumpourdi, 2016b), in this chapter, an example of a pattern 

task2 is presented, through the seven stages of the FIBA, supporting an inquiry-based 

teaching/learning process of mathematics. 

Task: “The Pattern King forgot the password of his secret room and thus he cannot enter. 

Fortunately, he has photographs of the passwords he used to use and he asks your help to construct 

them”. The students, (individually or) in groups, pick a drawing with chain 

schematization/password3. 

Exploration: Each (student or) group explores its schematization. They pose questions to the teacher 

to understand the situation. They observe how it is made and suggest ways for creating it. After the 

discussion, they choose the associated materials (connected shapes4) in order to construct the 

pattern/password and they create a/the chain. 

Presentation: Each (student or) group presents the structure of its creation to the whole class, 

                                                 

2 This is just an example of an inquiry based pattern activity. Taking into consideration the pattern’s four functional 

characteristics (Skoumpourdi, 2016b), as well as students' pattern abilities and their type of performance (Skoumpourdi, 

2013) a wide range of critical and creative pattern tasks can be designed which can engage children in challenging 

patterning experiences. A different combination of these characteristics leads to different pattern tasks with a varying 

degree of difficulty.  

3 Examples of chain schematizations/passwords      

4 Connected shapes  



bringing side to side the construction with the schematic representation. The teacher is posing 

questions to ensure effective and understandable presentations. Also, students are encouraged to 

pose questions to their peers. The questions can be: “Can you describe us what did you construct? 

Which shapes did you use? Which shapes are similar? How many shapes did you use? Why did you 

put the triangle in this place? Which shapes are repeated? Do you observe any pattern?” etc.  

Connection: Teacher, in cooperation with students, orchestrates a mathematical discourse trying to 

connect presentations/creations with each other, with the Pattern King’s problem, as well as with the 

pattern concept in order for a shared meaning to emerge. Questions can be: “What do you observe to 

this construct? In what, these constructs differ? To what are these constructs similar?” etc. 

Generalization: Teacher is shaping the pattern concept, connecting it with students’ previous 

knowledge to generalize it. Questions are more general and are related to the pattern construct. For 

example: “Are these patterns the same”? “What is repeated in this pattern?” etc. 

Translation: “Can you draw your creation to show it to the students of the other class?” In this stage 

students ‘translate’ their constructs and understandings for patterns and shapes to the paper. 

Expansion: “A magician invited the King to play a game. He was sure that he would win him, to get 

his palace. The magician has two dice, one with numbers and one with shapes. Each of them—the 

king and the magician—would throw the dice and would take as many shapes as the dice indicate. 

The one that would create the longest chain with patterns will be the winner. Come to play the game 

to help the King make a very long pattern chain.” In that stage students expand their understanding 

by creating their own patterns.  

At the end of the inquiry process, students would have used the connected shapes to copy the 

patterns or to construct their own ones. They would have translated their constructions to schematic 

representations, using paper and pencil, as well as verbalized them describing the pattern construct. 

They would also have discussed about the shapes’ names (circle, triangle and rectangle) and their 

orientations, as well as about length comparison.   

Conclusions 

Teachers, in their educational practice, are asked to invent mathematical tasks for their students, to 

design activities relied on them and implement them, as well as to reflect on the outcomes of the 

implementation. Yet it is not easy for teachers to design inquiry-based activities and implement 

them in classroom. They prefer to stay within the comfort of the usual school tasks which are 

routine and structured and they design teacher-centered activities that reproduce the given 

conceptual contents and are solved by memorizing facts and processes.  

But if we take into consideration the argumentations of the last decades for the inquiry-based 

mathematics education, the design and implementation of inquiry-based mathematics activities, 

which are beyond the usual school tasks, will help students to develop their curiosity and creativity, 

their ability for critical exploration, reflection and reasoning and their autonomy as learners leading 

them to mathematical understanding (Artigue & Baptist, 2012).  

Using the proposed framework one can design and implement activities, for early childhood, 

supporting an inquiry-based teaching/learning process of mathematics. Through the seven stages of 

the framework which include: 1. the formulation of the task, 2. the exploration of the problem posed 



by the task, 3. the presentation of the explorations, 4. the connection of the presentations with 

mathematical aims, 5. the generalization of the connections and mathematical concepts and ideas, 6. 

the translation of the understandings on other modes and 7. the expansion of the initial task to a 

modified one, students’ and teachers’ roles alternate. During their cooperation they are both the key 

persons, the co-constructors and co-researchers of the teaching/learning process.  

We do not support that all of mathematics activities should be designed and implemented in an 

inquiry-based process but we do believe that such activities should be adopted to develop different 

skills in students and to actively involve them in their own learning. 
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Despite the fact that discourse is an important facet of mathematical learning, most research on 

students with language delays learning mathematics has focused on their procedural fluency, with 

limited focus on their communication of mathematical reasoning. This study focused on two first 

grade students with language delays as they engaged in choral counting, an instructional activity 

designed to encourage mathematical discourse. Qualitative analysis of the techniques they used to 

express their mathematical ideas found that the students’ use of gestures in relation to an artefact 

supported their mathematical communication. 

Keywords: Mathematics instruction, language impairments, nonverbal communication, discourse 

analysis, pattern identification.  

Introduction 

Discourse mediates mathematical learning (Forman, 2003) by providing a conduit for students to 

participate in mathematical practices, particularly when discourse is defined as comprising all forms 

of communication—including language, gestures, symbols, and artefacts (Lerman, 2001). The 

importance of discourse to mathematics education is shown by its prominence in educational policy 

documents (see e.g. NCTM, 2000), which state that mathematics instruction focused on discourse 

should enable students to express their mathematical ideas, analyse the mathematical thinking of 

others, and clarify and consolidate their own understanding of mathematics.  

Gersten et al. (2009) found that the process of encouraging students with learning disabilities to 

verbalize their thoughts is effective, and yet it is uncommon to see teachers encouraging 

mathematical verbalizations from students with disabilities. This is because the dominant 

instructional paradigm for teaching students with disabilities is teacher-led algorithmic instruction 

(Jackson & Neel, 2006), which is characterized by the teacher demonstrating a step-by-step 

procedure for completing a specific type of problem, and the students then using these same 

procedures to solve similar types of problems. This type of instruction leaves little space for 

independent student verbalizations. In this paper I explore what students with language delays learn 

about communicating mathematical ideas by engaging in an instructional activity—choral 

counting—that encourages students to engage in mathematical discourse. 

In this study I use the term language delays to mean that the students had persistent difficulties with 

expressive and/or receptive language that interfered with their academic competence and had been 

present since early childhood, but was unrelated to low cognitive ability, hearing loss, autism, or 

other known causes.  



Conceptual framework 

This study is influenced by a sociocultural framework in which learning is defined as the 

transformation of participation in a cultural practice (Rogoff, 2003). The cultural practice examined 

in this study is discourse about mathematical ideas. Amongst the community of mathematicians, 

discourse between mathematicians about axioms and conjectures is an important cultural practice 

that allows them to refine and improve knowledge; this is different than the one-directional 

discourse that commonly occurs in school mathematics classes, with the teacher imparting 

knowledge to the students (Lampert, 1990). This study examines the transformation of practice as 

the students move from the type of discourse typical in school mathematics towards disciplinary 

discourse as they learn several practices that mathematicians engage in when discussing 

mathematics: making assertions and presenting evidence (Lampert, 1990). 

Several researchers have used a sociocultural framework to understand how students with English 

as an Additional Language (EAL) participate in mathematical discourse (Turner, Dominguez, 

Maldonado, & Empson, 2013). It is often assumed that students with EAL will struggle to 

participate in mathematical discussions, but Turner, Dominguez, Maldonado, and Empson (2013) 

found that these students increased their participation when the teacher invited their participation, 

validated their participation by responding positively to their contributions and accepted a variety of 

resources as valid forms of communication including gestures, objects, artefacts, and the students’ 

home language. 

These findings about how students with EAL can be encouraged to participate more in 

mathematical discussions, may help us support students with language delays to participate more in 

mathematical discussions. At present students with language delays are assumed to fare better in 

environments that limit peer interactions (Griffin, League, Griffin, & Bae, 2013), however, since 

“content learning is inseparably bound up with language learning and vice versa” (Barwell, 2005, p. 

207), students with language delays may actually need more opportunities to participate in 

mathematics discussions than typically developing students. They may need more practice 

communicating mathematically, just as they need more practice communicating in other modes. 

This means that mathematics lessons should be designed to support students’ language goals as well 

as their mathematical content goals. These language goals will be more readily addressed with 

mathematical discussions than by direct instruction. 

Significance of research 

The research question explored in this paper is: What do primary students with language delays 

learn about communicating mathematically as they interact during choral counting? This study 

contributes to the field of mathematics education by helping researchers and practitioners 

understand more about the intersections of language performance and mathematics learning by 

examining a group of students who are rarely asked to communicate their mathematical ideas as 

they learn mathematical content.  



Methods 

Self-study 

This study is an example of self-study action research, as I was both the Special Educational Needs 

(SEN) teacher for the participants and the researcher in this study. I used the position of the teacher 

to investigate an issue, try a new method, and examine it systematically (Ball, 2000).  

This type of research has several advantages and disadvantages in regards to validity. My 

established relationship with the students meant that I knew the history of shared understandings 

within the class and understood the children’s use of language (Ball, 2000), and could use this 

knowledge to understand to what the children were referring, thus increasing the validity of the 

results. On the other hand, as their teacher I had a vested interest in seeing the students learn, which 

is a threat to the validity of the results. As an attempt to offset this threat to validity I triangulated 

the data with several other sources of data. The reliability of this study would have been increased if 

I was able to include a report of inter-rater reliability for the results. 

This study was motivated by my own experiences teaching mathematics as an SEN teacher. I had 

tried to teach mathematics through direct instruction for several years and was dissatisfied with the 

limited progress that my students were making in mathematics.  Therefore I decided to try a new 

instructional activity that emphasized mathematical discourse—choral counting—and to examine 

this new activity systematically to discover whether it is a fruitful way to work with young students 

with language delays. 

Participants 

The participants in this study were two first grade (6-7-year-old) boys who received small group 

SEN services in the areas of mathematics, literacy, and communication in an urban area of the 

U.S.A.  

Martin1 and Ali were both members of my primary special education mathematics class (PSEM). 

They had both qualified for SEN services under the category of Developmental Delays. Although 

the category given to them by the school district was Developmental Delays, which suggests global 

delays, the term Language Delays more accurately reflects their difficulties. These students showed 

delays in their language development, but no delays in their self-help or motor skills, and only 

minor delays in their social skills. Therefore, I use the label Language Delays to refer to these 

students’ disabilities.  

Martin and Ali were selected because at the beginning of the study they both had Individual 

Education Plan (IEP) goals related to counting, were in first grade, had language delays, and 

remained in my mathematics class throughout the duration of the study. There were four other 

students in their mathematics group, but these students did not receive SEN services in my class 

through the entire duration of the study.  

                                                 

1 All names are pseudonyms. 



Procedures 

I chose to study the instructional activity of choral counting (Lampert, Beasley, Ghousseini, 

Kazemi, & Franke, 2010) because it is an activity that incorporates both appropriate mathematical 

content for students in first grade and an opportunity for the students to engage in mathematical 

discussions. There are two sections to the choral counting activity: 1) rote counting, and 2) pattern 

identification and expansion. It is during the second section of the activity that students engage in 

mathematical discourse by expressing their own mathematical ideas. 

In choral counting the teacher has to first choose an appropriate counting sequence for the students. 

For these students the counting sequences were by ones, twos, fives, tens, or backwards by ones. 

When counting by ones, the count started from a number in the low double digits because the 

students were very familiar with counting by ones from one. These counting sequences were 

selected because they were identified as the essential counting sequences for first grade students in 

the Washington k-12 Mathematics Standards (Office of Superintendent of Public Instruction, 2008), 

which were the relevant state standards in the time and place where this study was situated. Once 

the teacher has introduced the counting sequence to the students, the class counts together while the 

teacher strategically records the count on the board so that certain patterns emerged.  

After writing three or more rows or columns the teacher stops the count and asks the students to 

identify patterns in the numbers. Once a student has stated a pattern they can be asked to extend, 

compare, or justify their pattern, and other students can be asked to build on what the first student 

has said.   

The students in the PSEM class engaged in choral counting approximately weekly from November 

until March. They then continued to participate in choral counts once or twice a month from April 

until June. This resulted in eleven choral counting lessons over the year, each of which took 

approximately 20 minutes to enact. I additionally recorded my lesson plans, my reflections of each 

lesson, and asked the students to complete independent counts. Although I do not report my analysis 

of these additional sources of data in this paper, they did triangulate the data from the videos. 

Data analysis 

The data collected and analysed for this article consisted of two episodes from the videotaped choral 

counting lessons. The data were collected during a single school year, and were analysed 

systematically by drawing upon both sociocultural theory (Rogoff, 2003) and interaction analysis 

methodologies (Schegloff, 1997). In the initial analysis of the data, I used open coding to produce 

concepts, which were revised with further analysis. The resulting claims and assertions are based in 

the data and are therefore empirically grounded. 

Results 

In this paper I show how the students incorporated gestures towards the artefact into their 

interactions, and why this increased their communication of mathematical ideas. 

In the first couple of choral counting lessons all of the students responded to the quest for patterns 

purely verbally. When asked what patterns he saw, Martin responded, “A square right there…Ooh! 

A triangle…Circle…Rectangle.” These verbal responses did not communicate enough information 



to help his classmates or teacher understand why he was responding with shape names, and the 

conversation about shapes petered out. 

On his next turn Martin initiated a new form of communication about the numbers. Instead of 

remaining in his seat, he came up to the board and gestured towards the numbers he was referring to 

(see Figure 1): 

Martin: I see zeroes  

Teacher: Where. Tell me where. [Martin got up.] Tell me 

Martin: Right here. [Martin went to the board and pointed to the zeroes in the final 

column. As he counted he pointed to each zero.] Ten. Twenty. Thirty. Forty. Fifty. 

 

  2   4   6   8 10 

12 14 16 18 20 

22 24 26 28 30 

32 34 36 38 40 

42 44 46 48 50  +10  0 Martin’s pattern 

52 54 56 58 60   4 Ali’s pattern 

62 64     

Figure 1: Count by 2s, December 

In this interaction Martin defied the teacher’s expectations that he would respond to the question 

purely verbally. Instead he adopted some of the teacher’s communication style from the previous 

interaction with Ali by using the artefact to gesture towards the relevant numbers, but also 

innovated to convey more information. While the teacher had used a gesture that simply indicated 

the digits under discussion, Martin used a cohesive gesture that united two separate but related 

aspects of his idea (McNeill, 1992). Martin used pointing to indicate the repetition of the written 

zeroes in the ones place, while verbally reading the count by tens; in this episode Martin used a 

cohesive gesture to express his emerging understanding of the links between the symbolic and 

verbal representations of number. This corresponds to Garber, Alibali, and Goldin-Meadow’s 

(1998) finding that children often use gesture to express emergent learning.  

Martin’s initial comment about “zeroes” was clarified and expanded by his use of gesture. This 

expansion allowed the teacher to respond to his statement and prompt him to further expand on his 

idea. 

Teacher: What are they counting on by? 



Martin: Tens. [Confident voice.] 

Teacher: Yeah. Tens. [Writes +10 beside the zeroes with an arrow pointing down.] That’s a 

great answer. 

The positive response that Martin achieved through this interaction encouraged other students to 

take up his innovation and by episode 4 it had become a norm for the students to come to the board 

when they were trying to communicate which numbers they were discussing. For example, in 

episode 4 Ali communicated that he saw a similarity between the numbers in the first row (see 

Figure 2) by both verbalizing the numbers he was discussing and pointing to the relevant numbers. 

The words that he said,  “Tens…got a number one zero, one one zero,” could have been easily 

misconstrued but because he came up to the board and pointed at the relevant numbers, his listeners 

understood exactly which tens he was talking about.  

 

10  110 210 310 410 

  20 120 220 320 

  30 130 230 330 

  40 140 240 340 

  50 150 250 

  60 160 260 

  70 170 270 

  80 180 280 

  90 190 290   

100 200 300  10 Ali’s pattern 

Figure 2: Count by 10s, January 

 

The use of gestures allowed Ali to clearly communicate his idea and the mutual understanding 

engendered by this exchange of ideas allowed his teacher to extend the conversation (Goldin-

Meadow, 2003).  

Teacher: What number will be here? [Teacher points to the right of 310.] 

Ali: Four 

Teacher: Four hundred [Writes 4.]  

Ali: Ten. [Teacher writes 10.] 



In this exchange Ali went beyond the initial statement of the pattern to extend his pattern to the next 

column while incorporating an unstated arithmetic sequence in the hundreds.  

Discussion 

This action research project improved the participating students’ educational outcomes, challenged 

assumptions and provides a basis for a call to social action, which are all important goals for action 

research (Kincheloe, 2003; Somekh & Zeichner, 2009). 

The instructional activity of choral counting improved the students’ educational outcomes 

(Kincheloe, 2003) by transforming their participation in the cultural practice of mathematics 

discourse by challenging the assumption that students with language-delays will not be active 

participants in discussions around mathematics because they find the language too difficult (Fazio, 

1999). Although both boys found it difficult to express their ideas verbally, they were actively 

engaged in the mathematical discussions and used gestures to enhance their communication. Thal, 

Tobias, and Morrison (1991) found that students with specific language impairments are often 

worse at gesturing than their peers, but that those whose gestures develop normally will later catch 

up with their peers in verbal speech. Therefore it is important to encourage the use of gestures 

among students with language delays and this study showed that allowing students with language 

delays to gesture and physically interact with the numbers can support their participation in 

mathematical discussions. My call to action is to encourage other teachers to involve their students 

with language delays in mathematical discussions and to encourage them to use gestures and 

artefacts to express meaning. 
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Preschool teachers’ variations when implementing a patterning task  
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It is often recommended to engage young children with patterning activities. As part of a 

professional development program, nine preschool teachers were introduced to repeating patterns 

and were given the materials and instructions with which to implement an extension task with 

children. This study presents the various ways teachers implemented this task and investigates the 

impact of the various implementations on children’s success in extending the repeating patterns.    

Keywords: Repeating patterns, tasks, preschool teachers  

Introduction and background 

For several years, we have been providing professional development for preschool teachers guided 

by the Cognitive Affective Mathematics Teacher Education (CAMTE) framework (e.g. Tsamir, 

Tirosh, Levenson, Tabach, & Barkai, 2014). Our aims are to promote teachers’ knowledge and self-

efficacy for teaching mathematics to young children. An essential element of pedagogical-content 

knowledge is knowledge of tasks (Sullivan, Clarke, & Clarke, 2009). In Israel, where this study took 

place, there is a mandatory mathematics preschool curriculum, but few curricular materials are 

available. Thus, introducing preschool teachers to appropriate mathematical tasks is essential. 

However, studies have shown that even when providing teachers with a task, and with explicit 

instructions for carrying out that task, teachers may implement the task in different ways (Bieda, 

2010). In turn, different implementations may affect the cognitive load of a task or a student’s 

conceptualization of key mathematical ideas (Stein, Grover, & Henningsen, 1996). This paper 

investigates the various ways preschool teachers implement a given repeating pattern task. 

Repeating patterns are patterns with a cyclical repetition of an identifiable 'unit of repeat'. For 

example, a pattern of the form ABBABBABB… has a (minimal) unit of repeat of length three. The 

importance of engaging young children with pattern activities is supported by mathematicians, 

mathematics education researchers, and curriculum developers (Sarama & Clements, 2009). Pattern 

exploration and recognition may support children as they learn a variety of mathematical skills 

developed at this age. For example, recognizing repeating patterns may help children develop skip 

counting, such as 5, 10, 15, 20, 25, 30 ... where the ones digit forms the pattern 5, 0, 5, 0, … 

Recognition and analysis of patterns can also provide a foundation for the development of algebraic 

thinking and provide children with the opportunity to observe and verbalize generalizations as well 

as to record them symbolically (Threlfall, 1999).  

Several studies have investigated ways in which young children engage with repeating patterns. For 

example, Seo and Ginsburg (2004) found that young children build block towers with an ABAB 

pattern. Fox (2005) observed young children painting stripes in ABAB patterns as well as one child 

who painted four sets of an ABC pattern and then said, “Look at my pattern” (p. 317). Waters 

(2004) observed a young girl who created a necklace out of game materials and described her 

necklace as “diamond, funny shape, diamond, funny shape” (p. 326). Papic, Mulligan, & 



Mitchelmore (2011) found that some preschool children may be able to draw an ABABAB pattern 

from memory by recalling the pattern as single alternating colors of red, blue, red, blue, basically 

recalling that after red came blue and after blue came red. However, when shown a more 

complicated pattern such as ABBC, they could not replicate the pattern.  

This study focuses specifically on the task of extending a repeating pattern. Pattern extension tasks 

mostly include showing the child a pattern and requesting the child to continue it. Papic, et al., 

(2011) reported that many children succeed at these tasks without necessarily recognizing the unit of 

repeat. Instead, they use the “matching one item at a time” strategy, also known as the “alternation 

strategy” which is especially successful with simple ABAB patterns. Rittle-Johnson, et al., (2013) 

found that some children reverted to producing an ABAB pattern while others could not produce 

more than one unit of repeat correctly when extending an ABB pattern. Similarly, Swoboda (2010) 

found that for some four-year old children, continuing a pattern means duplicating the unit of repeat 

once, and no more. In other words, both the complexity of the unit of repeat, as well as the number 

of times the unit is to be repeated, seemed to contribute to the difficulty of the task.  

Another factor which may impact on the difficulty of extending repeating patterns is whether (or 

not) the given pattern ends with a complete unit of repeat. In one study, children were shown given 

repeated patterns and asked to consider extending the patterns by choosing between different 

possible continuations, some appropriate and some not appropriate. Children had greater success 

extending patterns which ended with a complete unit, than extending patterns which ended in a 

partial unit (Tsamir, Tirosh, Barkai, Levenson, & Tabach, 2015). Furthermore, several of the 

appropriate continuations would have extended the pattern in such a way as to end the pattern with 

an incomplete unit of repeat. Fewer children chose those possibilities as appropriate, even though 

they were correct extensions. 

From the above studies, we see that there are several variables that may be taken into consideration 

when engaging with pattern extension activities: the structure of the pattern, the length of the unit of 

repeat, the number of times a unit appears in a pattern, and if the presented pattern ends in a 

complete unit of repeat or not. However, these variable all have to do with the repeating pattern. 

Might there be other variables that need to be considered when requesting children to extend a 

repeating pattern? Our first question is: Given an extension task and a set of repeating patterns, what 

are the various ways preschool teachers implement the task? Considering variation theory of 

learning and that learners may experience objects in various ways (Ling & Marton, 2012), our 

second question is: What can we learn about children’s patterning abilities from the different 

implementations? 

Methodology  

This study took place within the context of a professional development course for preschool 

teachers, focusing on patterning for young children. Twenty-three preschool teachers participated in 

the program. All had a first degree in education and between 1 and 38 years of teaching experience 

in preschools. The entire program was planned for 21 hours. The teachers met seven times over a 

period of about four months in the local professional development center in their area. 

Approximately five of the seven sessions were devoted to repeating patterns with the other two 

focusing on number concepts. All lessons and tasks were planned by the four authors of this paper.  



During the program, teachers were introduced to different patterning tasks as a tool for promoting 

their mathematical and pedagogical knowledge for teaching patterns in preschool. For the final 

project of the program, teachers were instructed to choose two of the tasks that were presented and 

analyzed during the course, and implement and video those chosen activities with one child. Those 

videos were then analyzed and discussed together in terms of children’s solutions. In this paper we 

investigate teachers’ implementations of one task (see Figure 1). Nine teachers (T1-T9) 

implemented this task, each with one child from their preschool (C1-C9). It is important to note that 

the task, along with the explicit instructions, was presented to the teachers by the teacher educator, 

who demonstrated how the task should be implemented. Furthermore, this task was not meant to be 

an instructive task, but instead an evaluation task in the sense that it was meant to assess children’s 

ability to extend various repeating patterns.  

Present the child with one pattern at a time. For each pattern prepare two or three separate 

containers, each container containing cutouts of triangles, squares, or circles. For example, 

when presenting the first pattern, place before the child two containers, one with blue 

squares and one with red triangles. For each pattern ask: What comes next? This question is 

repeated three times so that in the end, the child will have added three elements to the 

pattern.  

 

P1 

 

P2  

 

P3 

 

P4 

 

P5 

 

 P6   

Figure 1: What comes next? 

Note that there are basically three different structures, from the simpler AB, to the more complex 

ABC, and the even more complex ABB (e.g., Rittle-Johnson, el al., 2013). In addition, the first 

three patterns end in a complete unit of repeat and the last three do not. In other words, the 

sequencing of patterns goes from the simple to the more complex. 

Various ways of implementing the task 

We first note that none of the teachers changed the given patterns. Some variations came about from 

not implementing the tasks according to the instructions. For example, although teachers were told 



to prepare five separate containers for each possible cutout, according to shape and color, and only 

present to the child those containers which contained cutouts for that pattern, only one teacher 

actually followed this instruction. Four teachers did separate the elements into five containers 

according to shape and color, but then kept all of the containers on the table, no matter which 

pattern was being extended. Four other teachers separated the elements into only three containers 

according to shape (e.g., putting blue and red squares in one container), and then placed all three 

containers on the table, no matter which pattern was being extended. Another explicit instruction 

which was not followed was the sequencing of the patterns. Two teachers did not present the 

patterns in the order given above. One teacher showed the patterns in the following order: P4, P6, 

P3, P4, P1, and P2. The second teacher used the following order: P4, P3, P2, P1, P6, and P5.  

Some variations in implementation seemed to come about because no explicit instructions were 

given as to what to say to the child before beginning the task. That is, teachers were instructed to 

ask for each pattern “What comes next?”, but were not told what to say when sitting down with the 

child and introducing the task. Six teachers stated at the beginning of the task, as they placed the 

pattern down on the table, “Here is a pattern.” Five teachers asked the children to say out loud each 

element from the beginning of the pattern. It might be that the teachers thought that saying out loud 

the elements would allow children to hear the repetition of the unit of repeat and thus enable the 

children to pick out the correct next element. For example, at first, T5 did not ask C5 to read out 

loud each element of the pattern. She told her that there was a pattern and then asked her to pick out 

the element that should come next. After waiting a bit and seeing that the child sat still and did 

nothing, she then requested the child to say out loud each element of the pattern from the beginning. 

After that, C5 continued with the task and picked out the next element (correctly). T5 then 

continued with this instruction for each additional pattern (and answered each one correctly). Other 

teachers did not wait to see what would happen, but from the beginning requested that the child say 

out loud each element. T7 began her interview with C7 by saying, “Let’s read the pattern together, 

let’s read.” At that point, C7 did not read the pattern but stretched out her arm to take a blue square 

(the correct element for extending the pattern) from one of the containers and place it at the end of 

the given pattern. T7 stopped her, despite that C7 chose the correct way of extending the pattern, 

and said, “No, sweetie. Wait a minute. First, let’s read it.” Three of the five teachers who requested 

children to read out loud the patterns, and an additional two teachers, asked the child they 

interviewed to say what was in the containers.  

Variations in task implementation also occurred while the child was actively engaged with the task. 

Some of those variations were queries into why the child chose one or another element. For 

example, when engaged in the second pattern (P2), one child mistakenly took a blue square, but 

then immediately switched it with a correct red square. The teacher then inquired, “Why didn’t you 

put down the blue square and why did you put down the red one?” This type of intervention did not 

interfere with the child’s performance, but was instead a way for the teacher to listen to the child’s 

way of thinking. In this case, the child answered, “because here (pointing to the pattern), the square 

is red.” In other instances, the teacher’s intervention came about even before the child took action. 

For example, when placing on the table P4 (the first pattern that did not end with a complete unit of 

repeat) T4 said to the child, “Now pay attention.” After placing on the table the last pattern, T4 said, 

“Now look closely at the pattern, and also look carefully where it ends.” This type of intervention 

has the potential to alternate a child’s performance. In this case, despite all these warnings, C4 



incorrectly extended all of the last three patterns (those that did not end with a complete unit). Some 

teachers intervened when the child chose an incorrect way of extending the pattern. For example, 

when T6 asked C6 to extend P3 (the pattern with an ABB structure), C6 incorrectly added ABA. 

The teacher then pointed to each element in the unit of repeat and said, “Look closely. Square, 

triangle, and …” C6 then responded correctly, “triangle.”  Interestingly, C6 had previously extended 

P2 in an incorrect manner. Although placing the correct shapes to extend the pattern, the child chose 

incorrect colors. In that case, T6 did not intervene, and instead said, “Good.” Perhaps the teacher 

was satisfied that at least the child had chosen the correct shapes. However, when it came to placing 

incorrect shapes for P3, the teacher (T6) intervened.  

Children’s performances 

Results of children’s performances on the task, for each pattern, are shown in Table 1 according to 

structure and if the pattern ended in a complete unit (Comp.) or an incomplete (Inc.) unit. An 

extension of the pattern was only considered correct if the child successfully extended the pattern by 

three elements. As can be seen, children performed better extending a pattern that ended in a 

complete unit of repeat than a pattern which did not end in a complete unit. 

Structure P1 (AB 

Comp.) 

P4 (AB 

Inc.) 

P2 (ABC 

Comp.) 

P5 (ABC 

Inc.) 

P3 (ABB 

Comp.) 

P6 (ABB 

Inc.) 

Frequency 8 (89) 6 (67) 6 (67) 6 (67) 2 (22) 4 (44) 

Table 1: Frequency (%) of successfully extending each pattern (N=9) 

We now address the question of whether different implementations affected the children’s success 

in extending the pattern. Comparing results of children who read out loud the elements of the 

pattern before extending the pattern, and those who did not, the relative frequency of success was 

slightly greater for those children who did not first read out loud the pattern (see Table 2).  

 Reads out loud the pattern (N=5) Does not read out loud the pattern (N=4) 

P1 (AB Comp.) 4(80) 4(100) 

P2  (ABC Comp.)  3(60) 3(75) 

P3 (ABB Comp.) 3(60) 3(75) 

P4 (AB Incomp.) 3(60) 3(75) 

P5 (ABC Incomp.) 1(20) 1(25) 

P6 (ABB Incomp.) 1(20) 3(75) 

Table 2: Frequency (%) of success per variations in reading out loud the pattern 

Regarding the placing of elements in containers, results (see Table 3) indicated that in general, the 

way the elements were presented made little difference to the children’s ability to extend the pattern. 

Taking a closer look, for the first three patterns that ended in a complete unit of repeat, there was a 

higher success rate when the elements were separated by shape and color. However, when the 

patterns did not end with a complete unit of repeat, there was either no difference or there was a 

higher success rate when the elements were separated only by shape. 



 3 containers separated 

only by shape (N=4) 

5 containers separated  by 

color and shape (N=4) 

2 or 3 containers, only 

necessary elements (N=1) 

P1 4(100) 4(100) - 

P2 2(50) 3(75) 1(100) 

P3 2(50) 3(75) 1(100) 

P4 4(100) 2(50) - 

P5 2(50) - - 

P6 2(50) 2(50) - 

Table 3: Frequency (%) of success per variations in containers. 

Regarding other differences in implementations, few affects were noticed. For example, among the 

six children who were told explicitly before beginning the task that there was a pattern which 

needed to be extended, three children extended correctly only two of the six patterns; the other three 

correctly extended three, five, and six of the patterns. Among those who were not explicitly told that 

there was a pattern (three children), a similar variance in success rates was found. The same 

variance in success was noted regarding children who were requested to say which elements were in 

each of the containers. 

When analyzing the errors made by children, we found that the most prevalent mistake when 

attempting to extend a pattern that did not end with a complete unit of repeat was to continue the 

pattern as if it had ended in a complete unit, i.e., adding the first three elements from the beginning 

of the pattern. For example, C2 continued P4 by adding a square, triangle, and then a square. 

Another type of mistake which occurred for patterns both that ended and did not end with a 

complete unit of repeat, was to continue the pattern with ABAB despite there being a different 

structure to the given pattern. This occurred for C6 who added BA to an ABC structure, and also an 

ABB structure. Likewise, C9 continued P6 by adding BABABABA. Another type of mistake was 

taking the correct shape, but with the wrong color, as was demonstrated above by C2. This last type 

of mistake was directly related to the way the task was implemented. Obviously, if only the correct 

colors of shapes would have been on the table, this type of mistake could not occur. 

Summary and discussion 

As part of the professional development program, teachers were supplied with the materials for 

implementing the repeating pattern task. They were given laminated strips of paper with the patterns 

printed on them in color. They were given the matching pictures of colored squares, triangles, and 

circles to be cut out and placed in containers. They were even told what to ask each child. Yet, many 

variations occurred when implementing the task. Some of the variations occurred in the setup of the 

task, specifically with placing the elements in containers. Some of the variations occurred in the 

midst of implementing the task. When reflecting with the teachers on their implementations, it 

became apparent that these variations occurred spontaneously, without planning for them ahead of 

time. And yet, several of the teachers had the same ideas, such as having the children read out loud 

the pattern. Knowledge of tasks includes knowing the affordances and constraints of that task 

(Watson & Mason, 2006). It could be that the teachers saw this task as affording the opportunity to 



review with the children names of two-dimensional figures. According to Zaslavsky (2008), 

teaching tools include not only materials, but other kinds of resources, such as language and time. It 

could be that teachers were incorporating the tool of language into this given task, having children 

say the names of the shapes in the pattern. It could also be, similar to other studies (Stein, Grover, & 

Henningsen, 1996) that teachers were attempting to lighten the cognitive load of the students by 

telling them that there was a pattern and having them say out loud the names of the shapes which 

repeated themselves. In any case, as teacher educators it is important to be aware that teachers may 

implement a given task in various ways. In fact, in our program, the teachers brought the videos of 

their implementations back to the program, and as a group, we viewed them together. This, in turn, 

enhanced the teachers’ knowledge of tasks, including their knowledge of the way children engage 

with repeating patterns tasks.  

Despite the variations in implementations, most of the outcomes were consistent with previous 

research. For example, children had greater success when extending patterns which ended in a 

complete unit of repeat than those which did not (Tsamir et al., 2015). Children in this study made 

similar errors as children in other studies, such as extending an ABB pattern with ABA (Rittle-

Johnson, et al., (2013). Can we conclude then that variations seen in this study had no impact? 

Certainly, a study with nine children is not enough to make such a conclusion, but it does leave us 

with an interesting question. How come the variations seen in this study (e.g., telling the children 

that there was a pattern, reading out loud the elements of a pattern, placing the elements in various 

containers) did not seem to impact on children’s performance? The answer to this question perhaps 

lies in acknowledging the essence of repeating patterns, which is the unit of repeat and its structure. 

None of the variations in implementations focused the child on the unit of repeat. What seemed to 

impact on results was the complexity of the structure as well as if the pattern ended in a complete 

unit of repeat. By reviewing these results with preschool teachers, noticing the variations as well as 

the little affect they had on children’s performances, we strengthen teachers’ appreciation for the 

structure of a pattern, and promote their knowledge for teaching repeating patterns in preschool. 

Acknowledgment 

This research was supported by The Israel Science Foundation (grant No. 1270/14). 

References 

Bieda, K. N. (2010). Enacting proof-related tasks in middle school mathematics: Challenges and 

opportunities. Journal for Research in Mathematics Education, 41(4), 351-382. 

Fox, J. (2005). Child-initiated mathematical patterning in the pre-compulsory years. In H. L. Chick 

& J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the 

Psychology of Mathematics Education (Vol. 2, pp. 313–320). Melbourne, Australia: PME. 

Ling, L., & Marton, F. (2011). Towards a science of the art of teaching: Using variation theory as a 

guiding principle of pedagogical design. International Journal for Lesson and Learning 

Studies, 1(1), 7-22. 

Papic, M., Mulligan, J., & Mitchelmore, M. (2011). Assessing the development of preschoolers' 

mathematical patterning. Journal for Research in Mathematics Education, 42(3), 237-269. 



Rittle-Johnson, B., Fyfe, E. R., McLean, L. E., & McEldoon, K. L. (2013). Emerging Understanding 

of Patterning in 4-Year-Olds. Journal of Cognition and Development, 14(3), 376-396. 

Sarama, J. & Clements, D. (2009). Early childhood mathematics education research: Learning 

trajectories for young children. London, England: Routledge. 

Seo, K.H., & Ginsburg, H. P. (2004). What is developmentally appropriate in early childhood 

mathematics education? Lessons from new research. In D. H. Clements, J. Sarama, & A.-M. 

DiBiase (Eds.), Engaging Young Children in Mathematics: Standards for early childhood 

mathematics education (pp. 91–104). Hillsdale, NJ: Erlbaum. 

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical 

thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. American 

Educational Research Journal, 33(2), 455-488. 

Sullivan, P., Clarke, D., & Clarke, B. (2009). Converting mathematics tasks to learning 

opportunities: An important aspect of knowledge for mathematics teaching. Mathematics 

Education Research Journal, 21(1), 85-105. 

Swodboda, E. (2010). Natural differentiation in a pattern environment (4 year old children make 

patterns). In V. Durand-Guerrier, S. Soury-Lavergne, and F. Arzarello (Eds.), Proceedings of the 

Sixth Congress of the European Society for Research in Mathematics Education (pp. 2657-

2666). Lyon, France: Institut national de recherche Pedagogique. 

Threlfall, J. (1999). Repeating patterns in the primary years. In A. Orton (Ed.), Pattern in the 

Teaching and Learning of Mathematics (pp. 18–30). London, England: Cassell. 

Tsamir, P., Tirosh, D., Barkai, R., Levenson, E., & Tabach, M. (2015). Which continuation is 

appropriate? Kindergarten children’s knowledge of repeating patterns. In K. Beswick, T. Muir, & 

J. Wells (Eds.), Proceedings of the 39th International Conference for the Psychology of 

Mathematics Education (Vol. 4, pp. 249-256). Australia. 

Tsamir, P., Tirosh, D., Levenson, E., Tabach, M., & Barkai, R. (2014). Developing preschool 

teachers' knowledge of students' number conceptions. Journal of Mathematics Teacher 

Education, 17, 61-83.  

Waters, J. (2004). Mathematical patterning in early childhood settings. In I. Putt & M. McLean 

(Eds.), Mathematics Education for the Third Millennium (pp. 565-572). Townsville: 

Mathematics Education Research Group of Australia. 

Watson, A., & Mason, J. (2006). Seeing an exercise as a single mathematical object: Using 

variation to structure sense-making. Mathematical Thinking and Learning, 8(2), 91-111. 

Zaslavsky, O. (2008). Meeting the challenges of mathematics teacher education through design and 

use of tasks that facilitate teacher learning. In B. Jaworski & T. Wood (Eds.), The mathematics 

teacher educator as a developing professional (Vol. 4, pp. 93–114). In T. Wood (Series Ed.), The 

International Handbook of Mathematics Teacher Education. The Netherlands: Sense Publishers. 



Teaching intervention for developing generalization in early 

childhood: The case of measurement  

Marianna Tzekaki and Evangelia Papadopoulou 

Aristotle University of Thessaloniki, Greece; tzekaki@auth.gr and evanpapado@sch.gr 

 

Abstraction and generalization, lying at the heart of mathematical activity, attract the interest of 

many researchers who mostly examine generalizing processes in patterns and algebra. Given that 

earlier approaches questioned the possibility of developing generalizing capabilities in early ages, 

in our research we attempt to examine if an appropriate teaching intervention could change this 

initial assumption. For the needs of this work, 23 preschoolers participated in a seven months 

teaching intervention with relevant tasks in various topics: figures, patterns, measures and numbers. 

In this paper only for length measurement is presented. The children were pre and post examined in 

tests designed to examine their knowledge and initial generalizing abilities in this topic. The results 

indicated that their long-term involvement helped these young children to improve their abilities to 

(a) reflect on their own activity, (b) express their ideas and (c) reach to some concluding remarks, 

first related to their own personal experiences and later to more general thoughts. 

Keywords: Generalization, abstraction, measurement, early childhood, teaching intervention. 

Introduction 

A 6-year-old child saying, “When two distances begin and end together, this does not mean they are 

equal, we need to measure them....” shows a preschooler able to express in a more detached from 

his/her experience and general way a relation concerning length comparison. This reveals a 

generalizing ability that, lying in the heart of mathematical activity, attracts the interest of research in 

mathematics education.  

Current studies related to generalization and generalizing processes concern mainly patterns and 

approaches in algebra for older students (Hitt & Gonzales-Marin 2016; Warren, Trigueros, & Ursini 

2016; Zazkis, Liljedahl, & Chernoff, 2008; Lannin, 2005), while relevant investigations of younger 

children’s generalizing abilities also are connected to patterns and structures (Mulligan & 

Mitchelmore, 2013).  

In our study we attempted to explore generalizing skills in early ages. More specifically, our research 

question focused on whether an appropriate teaching intervention could support young students’ 

disposition related to noticing properties, relations and structure and developing a first level of more 

general conclusions. Our research supports the efforts for a meaningful and effective early 

mathematics education, by accepting generalizing abilities as an important component of it. 

Abstraction and generalization 

Humanity starts dealing with ideas related to abstraction and generalization quite early, pursuing 

answers related to the development of concepts in human’s mind. Similarly, psychologists 

systematically investigated abstraction and generalization, as integral parts of humans’ conceptual 

formation, supporting, thus, many explorations in mathematics education. For mathematics, 

abstraction is considered as a process during which students directly reorganize former structured 



mathematics in a new mathematical structure (Hershkowitz, Schwarz, & Dreyfus, 2001). This process 

(as part of the generalization process) has been studied by many researchers. We could underline the 

advances of Dubinsky (1991) and APOS, Sfard (1992) and the theory of reification, Hershkowith, 

Schwarz and Dreyfus (2001) and epistemic actions, as well as a variety of combinations of these 

approaches (Tzur & Simon, 2004).   

Generalization could be identified as the level at which students, starting from specific situations, 

proceed to more general ideas and conclusions identifying patterns, structures, relationships, rules 

etc. (Kaput, 1999). Similarly the idea of generalization, as an integral part of mathematical 

development, holds an important place in mathematics education. Starting from Harel and Tall 

(1989), Tall and Vinner (1981), Fischbein (1993), Bills and Rowland (1999), Radford (2001), Becker 

and Rivera (2003) and Sriraman (2004), many researchers have proposed models regarding 

theoretical approaches for this conceptual elaboration. These models refer to concept formation (as 

important stage of generalization), reflection and communication (as important reason for 

generalization), different kinds of generalization (extension, reconstruction, disjunction/ results and 

process of generalization), elements of generalization (grasping and expressing) and generalization 

as objectification (factual, contextual, symbolic). 

As mentioned earlier, most of this research is related to generalizing processes in patterns and 

algebraic elements, and certainly examines these processes in older students. Their findings can be 

organized in the following strands: generalizing abilities, generalizing procedures and strategies, 

teaching intervention aiming at improving generalizing skills. Related to generalizing abilities, Yeap 

and Kaur (2008) studied structure and pattern recognition with the use of heuristic tools and 

technology as well as the development of metacognition and critical thought. Related to teaching 

intervention, Zazkis, Liljedahl and Chernoff (2008) investigated the use of appropriate examples and 

tasks. 

The elements or actions and elaborations that consist the integral parts of generalization cannot be 

defined so easily. However, elements such as reflection of action and expression of more generalized 

properties, rules, relationships and structures deriving from specific tasks, problems and practical 

experience could be identified as being essential in this conceptual elaboration and are placed in the 

center of students’ mathematical development. Therefore, mathematical education needs to cultivate 

these skills from early ages and progressively improve them in the course of mathematics education. 

Starting from this basic question, our research aimed at examining (a) the possibility of developing 

generalizing capabilities in early childhood, and (b) teaching interventions that could improve these 

skills in young children. Our wider research concerns teaching and findings related to four topics of 

mathematics curriculum: geometric figures, patterns, geometric measurement and numbers. In 

previous communication (Tzekaki & Papadopoulou, 2016) we presented results concerning 

geometric figures and numbers, while in this paper we are limited to data related to geometric length 

measurement. We believe that the most interesting part of this presentation is not exactly the specific 

topic but the development of generalization capabilities in 5 years old children. 

Measurement and generalization 

Measurement is an important every day activity, that mathematically connects geometry and 

numbers, but its approach is not so evident in early years or even later (Bragg & Outhred, 2004). 



Length measurement can be identified as a procedure that divides a continuous magnitude of an object 

to a number of specific parts (units) and connects it to the number of iteration of these parts. Thus, 

the conceptualization of length measurement could be analyzed in several steps that demand 

understanding and generalization (Battista, 2003): 

1. Identification of length as a special (unchangeable) attribute of an object. 

2. Transfer of this attribute to another object (intermediate). 

3. Comparison of lengths by means of intermediate (arbitrary or conventional). 

4. Covering with different equal units (arbitrary and conventional) and quantify this covering. 

5. Connecting unit iteration (and thus measurement) to a number (Sarama & Clements, 2009). 

Our research related to length measurements examines whether young 

children succeed to understand and express different generalized ideas for three of these steps: 

transfer, comparison and covering. More specifically, generalizing levels of each of these 

measurement steps was expressed and examined, both as procedure and relation, as following: 

- Generalization related to the transfer of a length to an intermediate (2) means that children could 

identify the equality of the lengths of objects and intermediates. 

- Generalization related to the comparison of lengths (or distances) by means of intermediate (3) 

means that children could identify the starting and ending points of objects and intermediates and the 

equality of their lengths. 

- Generalization related to covering with different units for the needs of a measurement means that 

children could understand the role of equal units, the different quantification when the units are 

different and the role of numbers in the procedure of measurement. 

Children’s explanations both in tests and in classroom interchanges during the teaching intervention 

were classified according to this analysis. 

Methodology 

For the needs of this research related to length measurement, 23 preschoolers participated in a three 

weeks teaching intervention with relevant measurement tasks. There were also pro- and post 

examined in tests specially designed to examine their knowledge about measurement and their 

generalization level, before and after the intervention. 

Pre and Post tests 

The tests items in length measurement included four (4) items in accordance to the aforementioned 

analysis:  

1. For the transfer of a length, a real object (for example a frame) hung on a specific height on the 

wall had to be transposed to another place.  

2. For the comparison of lengths, cards of different width and height had to be ordered (their 

dimension were changing inversely, the thinner was the taller, and the thicker was the shorter). 

3. For covering with different units and comparison there were two items: the children had to compare 

unequal distances in zigzags with common starting and ending points drawn on worksheets and 



covered with equal units, as well as equal distances in zigzags with common starting and ending 

points, but covered with different (non equal) units. 

Two of the items concerned lengths, while the other two distances. Also, two of them were real 

situations with material while the other two were representations of comparison situations. The 

children were individually interviewed on these tasks and were questioned about their reflections and 

conclusions. Their answers were organized in the following stages. 

1st Stage: The child does not express any procedure or relation related to measurement. 

2nd Stage: The child starts with a holistic measurement approach of procedure or relations that can 

explain his/her doing, e.g. transferring an object a child says “I thought to put it in the same 

height..” showing an imaginary line with his hand. 

3rd Stage: The child starts conceptualizing length measurement and can explain the procedure 

presenting some relations, e.g. comparing distances in zigzags by means of batons, a child 

says “for this side (showing the starting point) they are the same, but from the other side 

(showing the end) this one (showing) looks longer…” 

4th Stage: The child starts conceptualizing the measurement as iteration of units and can explain 

almost the whole procedure and relations, e.g. comparing distances in zigzags by means of 

matches, a child explains “this one is longer because it has 1,2,3,…,6 matches and the other 

has 1,2,3,4 matches…” 

5th Stage: The children explain all the relations that are needed for the measurement, e.g. comparing 

also equal distances in zigzags by means of matches, a child explains “they start together 

and end together and have the same number of matches”. 

Teaching intervention 

After the pre-test the children were involved in “generalizing experiences” concerning length 

measurement. They first worked with relevant measurement tasks in groups and then presented their 

results in the whole class. The teaching intervention consisted of five (5) lessons with eight (8) tasks. 

The tasks concerned all five steps of length measurement (length/distance - width – height, presented 

earlier) with 

- Length transfer, direct and indirect comparisons and estimations. 

- Indirect comparisons by means of arbitrary of conventional units (unit covering and number 

assignment). 

- Indirect comparison by means of conventional units with iteration and number assignment. 

- Length and height measurement by means of meter. 

Tasks with length transfer proposed the use of batons or strings to measure, for example, the height 

of the position of a frame that has to be hung on a different wall. Indirect comparisons suggested 

covering with meters or other convectional units to measure and compare, for example, itineraries in 

stories or dimensions of furniture. Similarly, other comparisons presupposed the iteration of units for 

these measurements or comparisons. 



The most important part of this intervention was the closure of activities, when children were 

systematically encouraged (a) to identify common characteristics, relationships and properties in the 

different encountered situations, (b) to express more general ideas and (c) to formulate conclusions 

or other overall rules about length measurement. 

The discussion and the generalizing questions aimed at the understanding of measurement procedure 

and its principles and, more specifically, of the equal partitioning of the continuous attribute of 

objects, the unit iteration and the equality relations (with starting and ending points).  

Results 

The results coming from the comparison of the pre and post tests indicated that, after a series of tasks 

and systematic discussions, young children were able to improve their abilities to reflect on their own 

activity, to express their ideas and reach to some kind of conclusions, initially ‘locally’ related to their 

own personal experiences or the specific task (e.g. way of doing it) and later to a more general level 

regarding mathematical ideas (e.g. whether are equal or nor) or even formulating a rule or proposition 

(e.g. to measure two distances we have to…). 

Findings related to measurement: Pre and post tests 

The pre-test findings indicated that children initially didn't recognize the procedure of measurement, 

but approached comparisons globally and estimated lengths and distances based on their own 

experiences. For example, comparing distances covered with batons they didn’t count the number of 

batons but based their responses on personal judgments of closeness. Their justifications were 

idiosyncratic, practical or kinesthetic, e.g. “because I think so…”, or “This line is bigger because in 

this place there is only one animal, so the thunderbolt killed more…”. They ordered objects based on 

their figure, while they covered them with units that were overlapping or had gaps. They understood 

that there was an equality or inequality of dimensions, but explained it based on morphological 

elements, e.g. “it is more pointy…”.. 

The analysis of children’s responses after the intervention indicated a significant improvement 

regarding the identification of the procedure of measurement, as they did successful measurements 

and explained their actions based on measurement principles. They identified the iteration of units 

(with no overlapping and gaps) explain e.g. “we don’t put the sticks as we like, but one after the other, 

watching that they are not overlapping…”. They were able to order objects based on metrical 

characteristics (length and height) and explained the measurement they have done. The children’s 

improvement is illustrated in the following table (Tab. 1). 

 

Issues of Tests Success pre, % Success post, % 

Transfer of heights 0 87,5 

Comparison of weights and heights  33,33 66,66 

Comparison of unequal distances (in 

crooked lines) by means of batons 29,16 95,83 

Comparison of equal distances (in 

straight lines) by means of matches 0 66,66 

Table 1: Results before and after the teaching intervention 



Students’ conclusions related to measurement  

Examining the children’s answers to the interviews and the records from their work in the classroom, 

we can support that the preschoolers are able to conceptualize length measurement and its principals 

and moreover describe it, as procedure and relations at a more general level. The following examples 

present the ideas developed by the young children and the level of generalization achieved after 

involving in generalizing exchanges. At the end, the teacher gathered the children’s conclusion about 

measurement in drawings and utterances. 

The children’s utterances expressing their concluding remarks about the transfer of heights: 

- We must measure one distance before doing the other 

- The two distances must start form the same point  

The children’s utterances expressing their concluding remarks about covering with units: 

- It shouldn't be one over the other and crooked  

- We don't leave gaps, we put start to start and back to back  

- We put them in a line 

The children’s utterances expressing their concluding remarks about the measurement of distances: 

- When two distances are straight and start together and end together, then they are equal  

- When two distances are zigzag and start and end together, it doesn't mean that they are equal, 

we have to measure to see which one is longer and which one is shorter 

- When two distances are zigzag and don't start and end together, it doesn't mean that they are not 

equal, we have to measure them. 

Discussion 

In general, this study shows that the development of generalizing capabilities in early childhood is 

possible on the basis of appropriate teaching approaches that encourage reflection, activity 

justification and concluding communication. The development of these abilities depends generally 

on a modification of young children’s focus from personal to ‘impersonal’ ideas, and, thus, from 

‘local’ to more general as a way of functioning in the mathematical class. This development was 

observed and recorded in all topics: figures, patterns, measurement and numbers (Tzekaki & 

Papadopoulou, 2016). 

The development of children’s ideas and generalizing remarks reaffirmed the importance of teaching 

approaches that orient the class to generalizing experiences (Sriraman, 2004). More specifically in 

the identification of the measurement procedure and relations by the children, their utterances showed 

that they succeeded to overcame the specific content of the tasks and proceeded to the 

conceptualization of measurement principles and invariants (Bills & Rowland, 1999). The children 

passed gradually from local generalizations related to every one of their actions and tasks to more 

general related to all their activity and finally to general principles of the measurement that recorded 

in the specific for their age way. The choice and the sequence of tasks, the group work in the 

classroom and the exchange between groups aiming at arriving systematically to more general 

remarks are the main factors that led to this result. 



The findings gathered from this topic, as well as from all other topics, justify why it is possible but 

also of imperative to exercise children from early age, with appropriate activities and elaborations 

with respect to their age and their way of thinking, to generalizing skills as significant part of their 

mathematical development (Tzekaki, 2014). 
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In this work we recognise how a group of future teacher of Early Childhood Education, analyse 

narratives about rich school experiences. We presented a professional task, in which we wanted to 

see how future teachers recognize initially the potential of the mentioned experiences to promote 

mathematical processes. We recognise that future teachers give a limited value to the problem-

solving process and have difficulties in recognizing the processes of reasoning and proof. We found 

it is not because of a mathematical previous weak formation, but rather it points to the need of 

analysing school practices and narratives as good examples of action.  

Keywords: Early childhood, future teachers, mathematical reasoning, problem solving. 

Introduction 

NCTM (2000, 2013), as other new national curricula, suggested that teachers could design better rich 

school activities, if they can identify the power to develop mathematical processes in their classrooms. 

In Spain, authors like Alsina (2014), pointed out that to achieve a quality of mathematics education 

for early years, it is important to implement curricula focusing on mathematical processes in a 

systematic way. It is important for the teaching and learning of mathematics to use mathematical 

models in relevant everyday contexts. 

Preservice teacher’s mathematical knowledge plays an important role when teaching mathematics. It 

is clear that for early years, almost no one remembers about his own experience. Therefore, their 

knowledge for teaching at early years is limited, and based upon personal theories and preconceptions 

(Jaworski & Gellert, 2003). “Little improvement is possible without direct attention to the practice of 

teaching ... [h]ow well teachers know mathematics is central” (Ball, Hill & Bass, 2005:14). In this 

paper, we assume that narratives are a wonderful way to allow students to personalize mathematics 

(Kurz& Bartholomew, 2013) and develop mathematical knowledge. In such a framework, the use of 

narratives is a powerful tool for teacher professional development and an useful research 

methodology for those interested in the study of teachers, teaching and teacher development (Ponte, 

2001). 

Llinares, Fernández, & Sánchez-Matamoros (2016) pointed out that for teacher education purposes, 

it is important to promote that future teachers (FT) grow on mathematical understanding by noticing 

mathematical aspects when future teachers analyse school experiences. It is also important for FT to 

know about designing rich practices. What about Early Childhood Education?  In some countries as 

Spain, there is a global curriculum for Kindergarten, without any explicit mathematical goals for 

children’s mathematical knowledge. Therefore, FT must have a preparation to understand the 

emergence of mathematical objects and processes from good early school practices. In the case of 

Spain, it is difficult to involve FT in implementing designed tasks, as it is for continuous training. 

There is a danger when considering the practice of teachers, and therefore presumably the experience 

of learners, of focusing exclusively on pedagogic practices, without reflective processes (Shulman, 

1986). It seems to be the main reason for the need of mathematics reflective activities for prospective 

kindergarten teachers. In this presentation, we want to analyse the initial position of future teachers 



when they analyse narratives about school experiences, in order to find how they relate the richness 

of school actions and the emergence of mathematical objects and processes.  

Theoretical framework 

As Ponte (2001) wrote, we use teacher narratives as a way to represent a school experience for oneself 

or for others. A narrative involves three basic elements: i) a situation involving some conflict or 

difficulty, ii) one or more agents that act on that situation with their own intentions, and iii) a temporal 

sequence of related events in which the conflict is resolved in a certain way. It involves people, 

settings, and events that take place in a given time. The acceptance of a story is oriented by convention 

and by “narrative necessity” (Bruner, 1991). In pre-service teacher education, narratives such as these 

provide good starting points to discuss issues faced by a teacher in making curriculum decisions and 

conducting classroom instruction. Some authors, like Chapman (2008) and Ponte (2001), mainly use 

narratives to reflect on future mathematics teachers’ thinking and actions in relation to mathematics 

and mathematics teaching and learning, aiming to broaden their understanding of new curriculum 

orientations.  

In this paper, we use narratives to study teacher’s knowledge when analysing innovative teaching 

practices (Ponte, Oliveira, Cunha, and Segurado, 1998). In the current study, we focus on identifying, 

planning and enriching mathematics practices, made by others. We consider such activity as a fruitful 

starting point for inquiring into how FT should anticipate the enactment that will occur. Some future 

teachers of early childhood want to know and copy nice school experiences. Instead of this, this 

research leads to understand that richness of a school activity relates to the possibilities for emergence 

of mathematics objects and processes. Our aim is to recognise the initial reflection of future teachers 

about the emergence of mathematical objects and processes, as a noticing professional competency 

(Jacobs, Lamb & Philips, 2010). In this presentation, we focus on the analysis of problem solving 

processes, and analysis of the reasoning and proof processes. We assume that the practices in reading, 

analysing, and discussing narratives generate a number of insights that provoked to modify future 

teachers’ planning for instruction. Many studies have reported that narrative data helps to validate the 

learning results as a basis for understanding of human actions (Polkinghorne, 2007), and to 

understand the role of intentionally drawn school practices (Font, Godino & Gallardo, 2013). 

Methodological issues 

We use a qualitative, naturalistic research perspective (Creswell, 1998) focusing on capturing and 

interpreting the participants’ thinking about narratives as a case study. To achieve our aim, we 

designed a professional task. The professional task is structured in two parts. In the first part, FT are 

asked to read two articles: "The map of a treasure" (De Castro & Escorial, 2006) and "Where is 

Paula?" (Feixes, 2008).These articles describe two school experiences about geometrical itinerary 

aspects and spatial references, made with children of 5-6 years old. We select these two narratives 

because they describe rich (Woodham & Pennat, 2014) and high quality (NAEYC & NCTM, 2002) 

of school experiences for children from 3 to 6 years of age. Both school experiences use a continuous 

dialogue in the classroom. They also explain didactical orientations to planning and managing 

activities, connecting geometrical objects and processes. During the first experience, the idea is to 

promote a problem solving approach to “know about” the space of the school, as a provocation to 

find the place where a treasure is. Children spontaneously use paper and pencil itineraries, written 

codifications, and gestures to discuss in groups how to go from one point to another among other 

decisions. During the second experience, the teacher proposed to talk with Paula (a child that left the 

school to come back to her country, Uruguay). The five years-old children immediately ask where 

Paula is. A nice discussion about at what time do we call her, helps the children to discuss how the 

difference of time relates to the difference places in Earth, and different hemispheres. Our interest in 



choosing these two narratives is to look at two sides of the problem of situating points in the real 

world space: the local or short distance problem (narrative 1) and global world problem (narrative 2).  

In the second part of the professional task, four questions are posed to guide the analysis of the two 

narratives read in the first part. These questions are: 1) Talk about what raise your attention after first 

reading. 2) If you should recommend to your teacher friends these experiences, what do you explain 

for them? 3) What is the role of the teacher in both experiences? 4) Why do you think there are rich 

practices that develop the emergence of children’s mathematical thinking?  

The participants in our study are 33 FT of Early Childhood Education at the Barcelona University. 

To describe how they explain the emergence of mathematical objects and processes in the two 

narratives, we collect all the individual responses to the questions proposed in the second part of 

professional task. To analyse the data, we used a tool raised by Coronata & Alsina (2014). This tool 

includes five categories that correspond to the five mathematical processes proposed by the NCTM, 

(2000). For each of these categories, 6-7 indicators are provided for evaluation. In our study we only 

consider the indicators of problem solving and indicators of reasoning and proof processes. 

The analysis takes three moments: a) The research team answer as experts giving a set of the processes 

observed; b) the future teachers’ answers are analysed by using the methodological tool cited above; 

c) the research team explain some hypothesis about why the results appear. We assume that some text 

is related to one or more indicators, if there is a sentence evocating such principle by means of 

discursive argumentation (Gee, 2014). General sentences are not considered. For instance, the 

sentence “The teacher develop the capacity of creating arguments to explain children’s curiosities in 

reference to mathematical concepts as distance, space and time” is assumed as relating to an indicator 

of reasoning and proof. But a sentence like “It is considered the interest of children” is not assigned 

to the indicator, because it is a fuzzy simple comment without any explanation given to what is the 

text or mathematical idea in the narrative. 

Results 

Many mathematical objects are easily identified by almost all the FT, but it is not enough explained 

how these objects emerge from the examples given in the narratives. In general comments, many FT 

talk about the differences among space by using time, and the idea of having different periods in a 

year. They talk about the meridian as a reference for timing. They assume the need of codes in order 

to represent itineraries among other geometrical objects.  

Many FT also consider that problem solving is a common framework in both school experiences, but 

they explained some of the mathematical processes superficially (See Table 1). We find that future 

teachers identify issues related to problem solving more easily than other processes, and have 

difficulties in explaining aspects related to the processes of “reasoning and proof”. 

In Table 1, we associate examples of the responses made by FT to each indicator and we include an 

expert comment when FT identify problem solving process in the narrative 1, as an example of the 

use of indicators for problem solving. Some FT tell us that children’s participation in narrative 2 

stimulate imagination and creativity. Nevertheless, we only observed two out of 33 FT on where is it 

possible to see such promotion of creativity as an inquiry problem solving process.  

The main indicator found is related to the assumption that contextualisation plays a role in problem 

solving activity. Nevertheless almost a half of the students write sentences in which FT talk about 

problem solving without any explicit indicator 

In some cases, as FT14 and FT 24, they do not express any sentence about contextualisation and 

interest. We also see that 27% of the FT talking about mediators and interest are the same as those 



who talk about contextualisation. It is possible that the lack of processes recognised relate to the 

mathematics background of the FT. 

Indicators 
% FT 

n=33 
Examples of FT’s responses Responses from experts 

Questions 

generate inquiry 

and exploration 

 

6% 

“Helps to develop math thinking... 

Formulate questions, hypothesis, to 

find answers, explanations...” 

(FT 3) (FT 6) 

“Where is Paula” is a challenging 

starting question. Teacher promotes 

exploration when asking for 

information at home about time zones 

Propose open 

problems 
-- -- 

The teacher use children’s open (non 

easy) proposals to analyse cultural 

influences about spatial relations 

Contextualise in 

familiar contexts 
52% 

“learn from the surrounding 

environment”(FT 2) 

The teacher contextualise to travelling 

problems to see what is invariant and 

changing in different positions  

Promote 

discussion and 

participative 

debate 

3% 

“contrast and reveal with different 

representations as figures, pictures 

or the use of dialogue the different 

knowledge”(FT25) 

The teacher promotes discussion about  

the need of comparing points and 

itineraries in the space, the use of 

references  

Maintain the 

interest and 

curiosity 

13% 

“…From the beginning, through 

their (children) questions we 

observed that is of its 

interest”(FT2) “children achieve 

different learning from curiosities” 

(FT7) similar (FT9)  

The school teacher focus on a lived 

experience to base a set of continuous 

problems related to the use of images to 

solve the problems 

Use different 

type of mediators 

when solving 

30% 

“The maps used by children are 

different from those done by 

adults” (FT 9) 

“…It is a dream…to know about 

now it is early morning…”(FT 24) 

Children construct and read maps in big 

spaces with the Earth globe as a 

powerful semiotic mediator. It emerges 

the idea of meridian line as a reference. 

The experience itself has an emotional 

background.  

Reinforce the 

process using 

different support 

6% 

“…using trial and error, children 

structure math 

knowledge…”(FT14) 

The teacher promotes the use of the 

starting situation to promote the use of 

spatial relations and references 

Table 1: Responses associated to the indicators of problem solving process (narrative 1) 

We can see that the FT do not relate some verbal aspects as discussing as a part of the problem solving 

process for narrative 2 (See Table 2). They realise that contextualisation is the main aspect behind 

problem solving activity for having good answers. It is expected that the FT talk about the role of 

mediators in this initial moment of analysis, but the justification they give is very limited focusing on 

having a “meaningful task” without any relation to a specific mathematical knowledge. They talk 

about “learn from the surrounding environment” without explaining that the need of a reference line 

(Greenwich Meridian) appears when we have numbers to indicate points in the space (initial idea of 

geographical coordinates). This could indicate a rather weak mathematical background of the FT, and 

the need for having a professional reflection about what mathematical knowledge emerge from a 

mathematically interesting activity like this. Precisely, this is the role of training process and 

professional activity never done before. The results show that narratives help to focus the reader’s 

attention for recognising more mathematical connections (distance/speed; codification/itineraries; 

real world/representation) than expected.  

 



Indicators  
% FT 

n=33 
Examples of FT’s responses  Responses  from experts 

Questions 

generate 

inquiry and 

exploration 

6% 
“build hypothesis, elaborate 

representations” (FT3) 

The teacher promotes different strategies 

as situating, identifying, recognising, 

building hypothesis 

Propose open 

problems 
-- -- 

There are open strategies, but no open 

problems 

Contextualise 

in familiar 

contexts 

36% 

“To know what is a map, which is its 

use” (FT4)“…The problem  promote 

meaningful knowledge”(FT3) 

 

The context of “find treasure” help to 

identify the role of registers when 

solving itinerary problems. 

Promote 

discussion and 

participative 

debate 

 

9% 

“…and the colleagues were able to 

decode the information” (FT9) 

The dialogue gives challenges for 

coding/decoding processes 

Maintain the 

interest and 

curiosity 

3% 

“Children take and search at home 

more different maps … helping the 

comprehension and motivation” 

(FT4) 

The use of a school as a milieu, and the 

aim of arriving to a treasure, ensure 

interest and give opportunities for 

maintaining interest as a long job 

Use different 

type of 

mediators when 

solving 

15% 

“The maps done by children were 

functional, …they served for the 

purpose of representing a space 

indicating the place of a treasure” 

(FT9) 

The maps, are used to identify itineraries, 

distances, directionality 

Table 2: Responses associated to the indicators of problem solving process (narrative 2) 

It is difficult to find explicit children’s arguments and reasoning in the narrative of “Where is Paula?”  

In fact, the teachers tell us many sentences (as “we always ask why”) about the use of argumentation 

and reasoning, without explaining all the details. Nevertheless, in the children’s pictures we can 

observe that they talk and argue when they observe the Earth globe, or when they talk about “Uruguay 

is far away”. We only find general statements about reasoning and proof as we can see in Table 3 and 

Table 4.  

  



 

Indicators  
% FT 

n=33 
Examples of FT’s responses  Responses  from experts 

Helping to 

develop 

student’s 

thinking 

12 % 

“Children structure their 

mathematical knowledge” (FT 13). 

The Teacher promotes reflections and 

arguments about the invariance of 

day/month/year but different time and 

season, by seeing to the Earth globe. 

Inviting to 

explain 

conjectures 

6 % 

“The need to have good 

questioning”(FT4) “revealing initial 

ideas and preconceptions” (FT 16) 

The practice promotes to use arguments 

relating conjecturing about the need for 

having time references 

Promoting to 

control 

conjectures 

3% 

“to establish hypothesis to 

understand zones having the same 

time…to understand why it happens 

in the world… and which are the 

lines that make the difference, when 

situating places in the map” (FT 16) 

The teacher promotes some deductive 

reasoning. To argue, Bernat uses if…then 

as a deductive reasoning.  Describes the 

relation between numbers (+1) and going 

to the right.  Also (-1) means going to the 

left. 

Questioning 

to evaluate 

arguments 

3% 

“...develops the ability to create 

arguments explaining the concerns 

of children which refer, in this case, 

to space and time (FT 1) “being 

aware of time and its difference” (FT 

17). 

The teacher promotes adjusting variables 

and control validity  when talking about  

“that fit with those from other sources as 

it is the case of having information about 

time zones” 

Promote 

reasoning by 

giving 

feedback 

-- 

“...the children in both experiences 

offer the possibility to establish 

arguments and generating 

hypothesis” (FT 9). 

Teacher promotes inference levels of 

spatial reasoning: What it is possible to 

see; what I see without specific attention 

to particular students 

Promoting 

divergent 

thinking when 

arguing 

3% 

“Permits the children to observe, to 

explore, and to determine what is 

more important or less…”  (FT 16) 

Promoting children arguments about why 

do we say “Uruguay is far away” The 

need of relating two points in the space. 

The need of having a global view to 

understand it, by arguing that the flight is 

long (according time) 

Promoting 

discoveries, 

analysis and 

arguments 

6% 

“About the project…it pays my 

attention the amount of information 

that children can draw (extract ideas 

and conclusions) from the 

maps….arriving to conclusions that 

children assume as the best and 

right” (FT2) 

The  teacher promotes the need of  

connecting children’s surprises to math 

or science knowledge (children see Paula 

as summer dressed) 

Table 3: Responses associated to the indicators of reasoning and proof process (narrative 1) 

Clements & Sarama (2009), tell us about the need for promoting reasoning since early years, however, 

FT in the research do not identify the amount of possible quotations in the narratives relating 

reasoning and proof. We observe that, in general, many of the future teachers do not offer specific 

mathematical examples from the narratives to illustrate the reasoning and proof processes.  

It is surprising that inquiry attitude not seems to be considered as part of a problem solving process, 

perhaps because FT have the belief that the most important for a problem solving is to have a right 

solution. In fact, many of the future teachers’ comments do not pay attention to the role of the teacher 

giving opportunities for continuous problem posing moments, promoting hypothesis and conjectures. 

The FT explain that the teacher in both narratives promote the use of arguments, but none of the FT 

mentions the importance of feedback.  



Indicators % 

FT 

n= 33 

Examples of FT’s responses Responses given  from experts 

Helping to 

develop 

student’s 

thinking 

 

15 % 

“In this practice… the teacher 

ask questions to influence 

children’s reasoning, to 

improve their thinking” (FT 

19) 

The teacher tell us explicitly the use of the 

students’ natural environment  to promote 

spatial thinking 

Inviting to 

explain 

conjectures 

 

3 % 

“The teacher tries to improve 

autonomy to reflect, to 

produce hypothesis about the 

ways of coding”(FT28)  

The teacher promotes the emergence of 

Students’ conjectures about maps and big 

distances o represent travelling by using 

descriptions. 

Promoting to 

control 

conjectures 

 

6 % 

“The teacher permits that 

children explore information 

given by the maps, and select 

which information is relevant 

and which one is not”(FT 19) 

The teacher tells about reflections and 

argumentation, but it is not explicit how the 

teacher controls the conjectures, because the 

focus is the codification process. 

Questioning to 

evaluate 

arguments 

6 % 

“Sharing and contrasting (FT 

17)“Discussing about his or 

her discoveries”(FT 23) 

They discuss to have a common result, but 

different representations and evaluate the 

representation used 

Promote 

reasoning by 

giving 

feedback 

-- -- 

The teacher find that David, use a comparison 

(small globe vs big Earth) to reason that from 

Madrid to Lanzarote you must use a flight. 

Promoting 

divergent 

thinking when 

arguing 

-- -- 

The teacher promote that Children adjust their 

arguments about which objects must be in the 

map, where to place and how to represent them. 

Promoting, 

analysis and 

arguments 

 

6 % 

“..revealing initial ideas and 

preconceptions” (FT 16) 

The teacher promote the emergence of 

Students’ ideas (Luke : Itinerary as a set of 

steps; David what we can learn from Earth 

globe 

Table 4: Responses associated to indicators of reasoning and proof process (narrative 2) 

After this professional task, we devote some time for collective reflection not detailed in this paper. 

Some new processes appear as: “The teacher drives arguments, and promotes different possible 

contents and meanings” (FT 19) or “by dialoguing, the teacher gives immediate answers to students, 

reinforcing children’s knowledge about coordinates” (FT 16), or “Children almost prove their 

conjectures, in a way that surprises us” (FT 9). 

Conclusion 

Future teachers are able to identify many mathematical objects and some processes implicit in the 

narratives analyzed. We see less process than it was expected. The main one is problem solving. The 

analysis promoted by the two professional tasks has allowed us not only to characterize some aspects 

of professional noticing of the future teachers, but also to establish a basis for recognizing the role of 

mathematical discourse (Adler & Ronda, 2015). In fact, after the implementation of the professional 

task, we find a more structured discourse of future teachers, more connections, didactic arguments, 

recognition of a greater number of processes and more justifications. With this research, we enlarge 

the conjecture done by Llinares et al. (2016) that noticing also promote deeper subject-matter 

understanding of pre-school’s future teachers. Therefore, we consider that the implementation of this 

type of tasks is relevant in the training of future teachers of early childhood education. 



Finally, it stands out that discussing and reflecting on school narratives such as those presented here 

has allowed future teachers to contrast school practices, different from those they have traditionally 

observed giving mathematics knowledge improvement. 

Acknowledgement 

This research is part of the Project Construction of school mathematical knowledge: Discourse of 

teachers and teaching activity. MINECO/Spain (EDU2015-65378-P). 

References 

Adler, J. & Ronda, E. (2015). A framework for describing mathematics discourse in instruction and 

interpreting differences in teaching. African Journal of Research in Mathematics, Science and 

Technology Education, 19(3), 237−254. 

Alsina, A. (2014). Procesos matemáticos en Educación infantil: 50 ideas clave. Números 86, 5−28. 

Ball, D., Hill, H., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics 

well enough to teach third grade, and how can we decide?, American Educator, 29(1), 14−17. 

Bruner, J. (1991). The narrative construction of reality. Critical Inquiry 18(1), 1−21. 

Coronata, C., & Alsina, Á. (2014). Evaluation of the mathematical processes in the practices of 

teaching and learning in childhood education. Procedia-Social and Behavioral Sciences, 141, 

1320−1323. 

Chapman, O. (2008). Narratives in mathematics teacher education. In D.Tirosh and T. Wood (Eds.), 

The international handbook of mathematics Teacher education: tools and processes in 

mathematics teacher education (pp. 15−38). Dordrecht: Sense Publishers.  

Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: The learning trajectories 

approach. New York: Routledge.  

Creswell, J. (1998). Qualitative inquiry and research design. London: Sage.  

De Castro C., & Escorial B. (2006). El mapa del tesoro: Un proyecto sobre la representación del 

espacio en la educación infantil. Investigación en el aula de Matemáticas. La geometría. SAEM 

THALES & Departamento de Didáctica de la Matemática de la Universidad de Granada, Granada.  

Feixes, D. (2008). ¿Dónde está Paula? Aula de Infantil (41), 14−17. 

Font, V., Godino, J., & Gallardo, J. (2013). The emergence of objects from mathematical practices. 

Educational Studies in Mathematics, 82(1), 97−124. 

Gee, J. (2014). An introduction to discourse analysis. Theory and method. London: Routledge. 

Jacobs, V., Lamb, L., & Philipp, R. (2010). Professional noticing of children's mathematical thinking. 

Journal for Research in Mathematics Education, 41(2), 169−202. 

Jaworski, B. & Gellert, U. (2003). Educating new mathematics teachers. In A. Bishop, M. Clements, 

C. Kietel, J. Kilpatrick, & F. Leung (Eds.) Second international handbook of mathematics 

education (Vol. 2, pp 829−875). Dordrecht, the Netherlands: Kluwer Academic Publishers.  

Kurz, T. & Bartholomew, B. (2013). Conceptualizing mathematics using narratives and art. 

Mathematics Teacher in the Middle School, 18(9), 552−559. 

Llinares, S., Fernández, C. & Sánchez-Matamoros, G. (2016). Changes in how prospective teachers 

anticipate secondary students’ answers. EURASIA Journal of Mathematics, Science and 

Technology Education, 12(8), 2155−2170. 



NAYEC & NCTM (2002). A joint position statement of the National Association for the Education 

of Young Children (NAEYC) and the National Council of Teachers of Mathematics (NCTM). 

Retrieved from: https://www.naeyc.org/files/naeyc/file/positions/psmath.pdf. 

NCTM. (2000). Principles and standards for school mathematics. Reston, VA: Author 

NCTM. (2013). Mathematics in early childhood learning (Ebook). Reston,VA. Author. 

Ponte, J. P. (2001). Professional narratives in mathematics teacher education. In E. Simmt & B. Davis 

(Eds.), Proceedings of the 2001 Annual Meeting of the Canadian Mathematics Education Study 

Group (pp. 61−65). AB, Canada: CMESG.  

Ponte, J., Oliveira, H., Cunha, H., & Segurado, I. (1998). Histórias de investigações matemáticas. 

Lisboa: IIE.  

Polkinghorne, D. E. (2007). Validity issues in narrative research. Qualitative Inquiry, 13(4), 471−486.  

Shulman, L. (1986). Those who understand knowledge growth in teaching. Educational Researcher, 

15(2), 4−14. 

Woodham, L. & Pennant, J. (2014). Mathematical problem solving in the early years. University of 

Cambridge. Retrieved from:http://nrich.maths.org/11113. 

https://www.naeyc.org/files/naeyc/file/positions/psmath.pdf
http://nrich.maths.org/11113


Early years mathematics learning – Comparing traditional and 

inclusive classroom settings 

Andrea Peter-Koop and Miriam M. Lüken 

Bielefeld University, Faculty of Mathematics, Bielefeld, Germany 

andrea.peter-koop@uni-bielefeld.de; miriam.lueken@uni-bielefeld.de 

Keywords: Early years mathematics, inclusive education, assessment. 

Introduction 

Following recommendations by the UNESCO, an increasing number of primary and secondary 

schools in Germany take on children with special needs, who were traditionally taught in special 

education schools, and include them in their classrooms. One organizational approach is to place the 

children with special needs in one class and provide a teaching team consisting of a primary teacher 

and a special education teacher for this class during the majority of the lessons. The study reported in 

this poster seeks to investigate the mathematics learning of four parallel classes during their four years 

of primary school in Germany. While three of these classes are taught in the traditional way with one 

teacher responsible for (mathematics) instruction, the fourth class is taught by a teaching team.  

Theoretical background and research interest 

Studies on the learning of children with special needs in inclusive compared to exclusive settings (i.e. 

in homogeneous groups predominantly in special education schools) in Germany, Austria and 

Switzerland suggest that children with special needs with respect to their school learning frequently 

underachieve when taught in special education schools (Wocken, 2005). Children with special needs 

who attend regular schools with inclusive classrooms, in contrast, demonstrate significantly higher 

achievements (Dessemontet et al., 2011). Already in 1998, Feyerer, who had reviewed findings from 

studies on inclusive learning, concluded that children without special needs taught in inclusive classes 

in regular schools showed at least the same, and sometimes better achievements than their peers in 

traditional settings. Klemm and Preuss-Lausitz (2012) in their meta analysis of more recent studies 

in inclusive classroom settings found that children with special needs in inclusive classes demonstrate 

higher cognitive gains than their peers in special education schools, while both, children with and 

without special needs, who are taught in inclusive settings demonstrate substantial gains with respect 

to their social skills. However, none of the studies conducted in this context explicitly looked at 

achievement in mathematics.  

Methodology  

The longitudinal study (2015–2019) reported in this poster compares the mathematics learning and 

achievement as well as the social and emotional school experience of four parallel mathematics 

classes (n = 100) of one primary school over their four years of primary school education. Three of 

the classes are taught in the traditional way with one primary teacher being responsible for 

mathematics instruction, while one of the four classes is taught by a teaching team consisting of 

primary teacher and a special education teacher. Included in this class are four children with special 

needs. Children’s mathematics learning is measured using the task-based Early Numeracy Interview 

(ENI) and associated Growth Point Framework (Clarke et al., 2002) that was first developed in 



Australia and then translated and adapted to the German curriculum (Peter-Koop et al., 2007). Over 

the four years of primary school the ENI, which involves individual interviews, is conducted five 

times, i.e. at the beginning of school and at the end of each school year. In addition, a standardized 

test on primary children’s social and emotional school experiences, FEESS (Rauer & Schuck, 2004), 

is conducted at the end of each year level with the whole class. Lesson observations during the second 

and fourth year are also planned in order to look at the characteristics of collaboration in the inclusive 

classroom between the primary teacher and the special educator (in mathematics lessons) as well as 

at the differentiation of mathematical content. 

First results 

The analysis of the ENI data shows the highest gain for the inclusive class taught by a teaching team. 

This class showed the weakest mathematics knowledge and understanding in terms of the Growth 

Points and it will be interesting to see how the students continue to develop in comparison to the other 

three classes in that year level. At the beginning of their second primary school year, the inclusive 

class also shows significantly lower values in parts of their social and emotional school experiences 

(measured by FEESS). The significant differences relate to the sub-categories “peer acceptance”, 

“climate in the classroom” and the “children’s self-concept”. 

We are proposing this work to TWG13 as to date little is known about young children’s early school 

experiences during their first year of school, that not only looks at their mathematics learning in an 

individualized and detailed way, but also examines the social and emotional involvement first graders 

experience during their first school year. Another interesting aspect will be to see how these 

experiences may change over the years and how they relate to their mathematics learning.  
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Maps have been used in Norwegian kindergartens in several ways, from topological to more 

topographical maps. The aim of this study is to develop knowledge about how exploring the terrain 

around their kindergarten can help children develop spatial orientation. The children in the 

kindergarten made different maps with pictures from a digital camera. We also used a big picture 

(size A1) taken with a drone from above the kindergarten. The assumption was that making the map 

and examining the picture would help the children translate the world around them into a scaled-

down, two-dimensional representation. Clements and Sarama’s (2014) framework for development 

of spatial orientation, navigation, and maps will be used to analyse the activity, which is based on 

the students’ learning trajectories for spatial thinking. The children have to be familiar with the area 

and special landmarks, then they need to experience the one-to-one connections between the real 

world and objects or icons on the map. Here, it can be helpful to use drawings, such as a table with 

legs, so that children can recognise them from their own perspective. Clements and Sarama argue 

that it is important to work with mathematical questions such as ‘Which way?’, ‘How far?’, or 

‘What is it?’ They also argue that students need experience to become competent users of maps 

(Clements and Sarama, 2014). Bjerva, Græsli, and Sigurdjónsson’s (2011) model for map reading 

skill, kartstigen, will be used, but an aerial picture instead of a two-dimensional map will replace 

Level C. Young children’s ability to use aerial pictures has been investigated in past literature 

(Plester, Richards, Blades, and Spencer, 2002).  

This leads in to the following research questions: What kind of orientation experience do children 

get from activities with maps in kindergarten? How do children understand the representation of 

the area around the kindergarten from maps they have made themselves and from aerial pictures? 

Five children, age 5, were used in the present study. The study was designed and carried out by 

researchers and kindergarten teachers, and consists of three separate parts. First, the kindergarten 

teachers took the children on a walk from the kindergarten to a small lake nearby, with which the 

children were familiar. During the walk, the children were invited to find special landmarks, and the 

teachers took pictures of them. The following week, the children, teachers, and researchers made 

maps from the pictures. These maps were topological and showed the path from the kindergarten to 

the lake, with respect to the order of the pictures. After finishing the maps, the children tried to find 

their way to the lake with the help of the maps. During this walk, the kindergarten teachers and 

researchers encouraged the children to stop at each landmark on the maps. The aim was to 

investigate whether the children were able to make a connection between the real world and the 

maps. Finally, the children were shown a big aerial picture of the same area to investigate how they 

managed to navigate using a picture with a bird’s-eye (vertical projection) perspective. 

Data were recorded with video cameras and transcribed. The study design is an explorative case 

study design (Cohen, Morrison, & Manion, 2007). 



Early findings 

The children did not have much difficulty making a connection between the real world and the 

landmarks on the maps they made. However, when they were presented with an aerial photo of the 

same area, they were not immediately able to find the kindergarten. Monica is one of the 

researchers: 

Monica: What’s on the picture? 

Children:  Kindergarten 

Monica: Where is it? (Children pointing in 

opposite directions) 

Monica: Why do you think that? 

Ann: Because it is grey, and it got that kind 

of thing. 

Erik: Yes, it got that colour. Grey 

Ann: It is the kindergarten. 

Monica: What kind of things are outside the 

kindergarten? On the playground? 

Ann: The playground. What? There is no 

playground. Then it’s not there. 

The kindergarten, from the children’s point of view, has the shape of a big, grey rectangle. This was 

the first thing they looked for. When Monica asked whether they could see the playground, they 

realised it could not be the kindergarten. After examining the picture for a while, they were given 

their self-made maps of the area. They were now able to make a connection between the landmarks 

on the map and the picture, even though they were taken from a different perspective. 

Preliminary findings indicate that the maps were helpful for the children’s experiences, in 

connecting landmarks on the map with the real world, but the children experienced more difficulties 

finding the kindergarten on an aerial picture. 
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Research topic and theoretical approach 

The aim of this study is to develop both activities for the learning of numerosity in three year old 

children and theory describing the process of learning. The theoretical framework is Luis Radford’s 

theory of knowledge objectification. His theory gives a central role to semiotic systems used within 

culturally and historically bound practices and social interaction in mathematical activity and 

learning, but also assumes an intimate and dialectical relationship between mathematical thinking 

and the material world (LaCroix, 2012). According to Radford (2008, p. 222), “… mathematical 

objects are fixed patterns of reflexive human activity incrusted in the ever-changing world of social 

practice mediated by artifacts.”. Knowledge objectification is a matter of actively and imaginatively 

endowing with meaning the conceptual objects that the child finds in his or her culture (Radford, 

2008, p. 223). Counting is a central mathematical activity that children normally develop. It is a 

procedure which children do not initially connect with properties of sets. Counting is interwoven 

with other quantity related cultural activities, such as for instance the How-many task, set 

construction and measurement. Set construction means building a set when its numerosity, for 

instance, is specified by a number word, as in the Give-a-Number task (Wynn, 1992). Davydov 

(1975) has advocated that perceptual comparison of quantity is developmentally prior to numerosity. 

When lengths are divided into equal units, the combination of perceptional length comparison and 

assignment of number words can be seen as a rudimentary example of measurement. The How- 

many task requires that the child assigns a number word to a presented set. The special role of the 

last counting word in a count is a pattern in the interface between counting and the How-many task. 

Children often emphasize the last counting word or insert “and” before it. Such linguistic devices 

are examples of semiotic means of objectification. 

These objects, tools, linguistic devices, and signs that individuals intentionally use in social 

meaning-making processes to achieve a stable form of awareness, to make apparent their 

intentions, and to carry out their actions to attain the goal of their activities, I call semiotic means 

of objectification. (Radford, 2003, p. 41) 

Typically, children for some time think that the counting procedure is the answer to the How-many 

question. To initiate processes of deeper objectification of numerosity, it is proposed that 

engagement in other uses of number words than counting is vital. 

An activity with towers and dice 

In the poster presented at the congress, one designed activity with the intention of integrating 

counting and other quantity related cultural activities was outlined. A hypothesis behind the 

designed activity is that perceptual length comparison may be a semiotic means of objectification 

for connections between counting, the How-many task and set construction. The core of the activity 



is to roll a dice and build a tower with the number of bricks the dice shows. The children sit on the 

floor and walk or crawl to fetch the dice when it is thrown. The plastic bricks are easy to pick up 

and fit exactly into the holes of the dice. An alternative way of building a tower is to put one brick 

into each hole in the top face of the dice and then put the bricks onto the stick. Putting the bricks 

into the holes can also be used to evaluate whether a tower is correctly built. A variation of the 

activity is that a puppet, the Easter bunny, makes a mistake when building the tower indicated by the 

dice. The puppet is hidden behind a screen so that the children do not see what it does. The children 

then are given the opportunity to respond and possibly correct the mistake. 

    

Figure 1: The towers and dice activity 
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Background 

We will present results from children aged five engaging in an activity and learning about magnets 

and inquiry in a kindergarten session. We want to understand how they learn and grow and in what 

ways the kindergarten teacher orchestrates the activities in order to engage the children in 

magnetism through inquiry. The study is part of a broader project in the kindergarten, aiming mainly 

to understand how and what skills and learnings are developed through understanding and inquiry. 

How do children develop inquiry skills (making observations, asking questions, making predictions, 

designing investigations, analyzing data, and supporting claims with evidence)? How do they 

conceptualize mathematics (classification, representing mathematical ideas in drawings, types of 

reasoning, number sense, comparison of sizes, problem posing)? The results show the importance of 

the questions (Carlsen et.al, 2010) and an appropriated orchestration for creating an inquiry 

interdisciplinary learning environment. 

The Portuguese curriculum for kindergarten education (age 1-6 years old) requires an integrated and 

global approach to subject areas. It seems that few kindergarten teachers integrate physics into their 

teaching, and according to Tu (2006) only half of kindergartens are equipped with an area for 

experimental activities and few of those kindergarten teachers promote science and mathematics 

tasks. If such an approach were performed early, it would allow scientific reasoning and it would 

foster a better understanding of science with effect upon the children´s achievement (Eshach & 

Fried, 2005). In this study, we adopt: an interdisciplinary approach between science and math; the 

perspective on early math of Clements and Sarama (2009); and a sociocultural perspective on 

learning and development. We view learning as a social and a situated process of appropriation 

where individuals make concepts, tools, and actions their own through collaboration and 

communication with others (Rogoff, 1998). Also, as Hedges and Cullen (2012), we consider that in 

the early childhood context, participation is more active than mere presence, which in itself may not 

engender learning without attention relationships, content, change, context and cultures. This 

sociocultural perspective is useful for our emphasis on the orchestration of participation in social 

magnet activities.  

The theoretical stance of our study is in accordance with Inquiry-Based Science Education (IBSE), 

(Worth, Duque and Saltiel, 2009). It is an approach to teaching and learning science and math that 

comes from: an understanding of student learning; the nature of science inquiry which may be 

represented as a set of four stages (explore, investigate, draw conclusions and communicate); a 

focus on content and heavy dependence on the local context and the interest of students and 

teachers. The inquiry–based approach has important principles such as: direct experience is key to 

conceptual understanding; students should be taught skills (making observations, asking questions, 



making predictions, designing investigations, analyzing data, and supporting claims with evidence); 

reasoning, talking with others and writing both for oneself and for others. 

Method and results 

The study was carried out in one private kindergarten in Lisbon and adopted a qualitative research 

methodology under the interpretative paradigm, emphasizing meanings and processes. The 

researcher, first author, took the dual role teacher-researcher, conducting the study with her own 25 

children (aged five years) in her own environment. In this study, we collected empirical data 

through the use of video camera and audio as well as field notes from one session out of seven 

sessions implementing the IBSE approach. Interaction and communication were captured as 

children engaged in magnet activities and the teacher orchestrated the group of children who were 

participating. Mathematical features used by children were elicited through the class interactions. 

We decided to analyse deeply the participation of the children in that interdisciplinary environment 

session above mentioned in looking for supporting the remaining research analysis.  

The results imply that children’s learning is influenced by their active participation and by the kinds 

of questions and learning opportunities that emerge, and how kindergarten teacher respond to 

children’s ideas and orchestrates the activities. The collected data from that session indicate such an 

interdisciplinary environment involved playful learning and inquiry. The children developed content 

and competencies in science such as vocabulary (to attract and magnet) and experimentation. The 

children also developed: imagery, quantitative and critical reasoning; number sense (object 

counting, counting mental images, comparing numbers and early addition); as well as representing 

mathematical ideas in drawings. The children had opportunities to pose and to solve problems. 

Children connected ideas in play with the whole class in the game “fishing” and they learnt through 

collaboration and communication with one another.  
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Short description of the research topic and theoretical framework 

The focus of this poster is on the links between representations and solutions when 6-year-olds work 

on combinatorial tasks. The task can be explained as follows: In how many ways can three bears sit 

on a sofa?   

Studies of young children’s representations often focus on informal and formal representations. 

Abstraction is often perceived as a goal and teachers often value when young children use abstract 

representations. Heddens (1986) introduced semi-concrete and semi-abstract as connections 

between concrete (objects) and abstract (signs) representations. He referred to representations of real 

situations, for example, pictures of real items, as semi-concrete, whereas he referred to symbolic 

representations of concrete items, where the symbols or pictures do not look like the objects they 

represent, as semi-abstract. Connected to the task presented above, concrete implies real bears and a 

sofa, semi-concrete implies images of (resembling) bears, semi-abstract implies a symbolic, not 

resembling, representation of the bears and abstract implies the use of formal signs. As for the 

concrete level, the ‘real’ bears can be replaced by three play-bears, or by engaging in a role-play, 

enacting the situation. In both semi-concrete and semi-abstract representations, the colours of the 

bears and their symbols are often kept identical.  

When conducting the combinatorial task in 13 pre-school classes in Sweden (125 children, age 6), 

children showed different levels of abstraction in their solutions of the problem. In a previous paper 

we problematized the apparent relation between the level of abstraction and the number of duplicate 

solutions. Surprisingly we found that the children who used semi-concrete representations in their 

documentations were more systematic in the process of finding solutions with less duplication than 

the children who used semi-abstract representations. We argued that a more abstract level seemed to 

reduce the problem from bears on a sofa to putting three coloured dots on a paper. It seemed that 

children moved too fast to the next level of abstraction. Internalisation of the problem had not 

occurred yet which led to a reduction of the problem as described above. Simultaneously, we also 

concluded that documentation within the semi-concrete level was very time-consuming for children, 

as it takes a lot of time for the children to draw bears (Palmér & van Bommel, 2017).  

Methodology 

How could we slow down these children without slowing down the process of documentation? An 

application was especially designed to let children work on the semi-concrete level, and 

simultaneously, the time-consuming issue of drawing the bears was taken into account. The aim of 

the application was to provide an opportunity to develop an understanding of combinatorics and its 



systematisation by letting children work within the semi-concrete level. The design-principles for 

the application concerned a possibility to adjust the level of the problem, resulting in a choice of the 

number of bears and the size of sofa. It also resulted in the possibility to save solutions as well as to 

offer an insight to all outcomes. By doing so, we wanted to explore the semi-concrete level more 

explicitly and focus on the learning opportunities this level of abstraction can offer the children.  

During the autumn of 2016, 6-year-olds (about 60) from different preschool-classes have tested the 

application. Our reflections concern the learning opportunities created by using the digital form of 

documentation (in addition to the paper and pencil forms). After using the application, we let the 

children work on similar combinatorial tasks but only by using paper and pencil.  

Preliminary results 

Our preliminary results show that the children who have worked with the application do not 

document as many duplicates when using semi-abstract representations as the children in our 

previous study (Palmér & van Bommel, in press). Additionally, we see an increase in the systematic 

way they organise and search for solutions. These first results of the study also indicate that the 

children indeed develop significant skills when working within the semi-concrete level, for instance 

they seem to have obtained a good understanding of what the concept different combinations 

entails. A special note has to be made towards the possibility to adjust the level of the task in the 

application. For example, some children explored the situations of two bears on a three-seat sofa 

and four-seat sofas with different number of bears. Such explorations led to discussions of 

similarities between two and three bears on a three-seat sofa and mathematical aspects of the tasks 

were discussed at another level compared to paper and pencil lessons.  
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Introduction 

TWG14 (University Mathematics Education, hereafter UME) was launched in CERME7 (Nardi, 

González-Martín, Gueudet, Iannone, & Winsløw, 2011) in recognition of the growing area of 

research in university mathematics education research. This area, although sharing in many cases 

approaches, methods and research topics with other areas in mathematics education research, has its 

own distinctiveness: the institutional characteristics at university (or postsecondary education in 

general) are usually quite different from those in compulsory education and do not always follow 

national curricular guidelines; the training of teachers (when existing) is also different from the 

training followed by primary and secondary teachers; there are many cases of classes with a large 

number of students, and teaching approaches are usually different – the amount of personal work 

expected from the students is also much higher; students’ personal experience and aims are different 

than in compulsory education; very often mathematical notions and reasoning are dealt with at a 

higher level of complexity and abstraction; etc.. The fast growth of this research area, both outside 

and inside CERME, is evident in the breadth of research publications in this field and was 

recognized by the ERME community, in inviting the three-year leader of this TWG to present a 

summary of UME research as a CERME10 plenary lecture (Nardi, 2017). 

Within CERME, the number of papers submitted to TWG14 has been increasing steadily since its 

inception. This year, we received a record number of 64 papers, with 47 getting accepted for 

presentation (of which, 41 are published in the proceedings, together with 17 short contributions). 

This indicates a substantial increase in comparison to the 31 full and 14 short contributions in 

TWG14 in CERME9 proceedings (Nardi, Biza, González-Martín, Gueudet, Iannone, Viirman, & 

Winsløw, 2015). Additionally, the substantial number of papers led to the split of TWG14 into two 

isomorphic groups (TWG14A: 23 accepted papers and TWG14B: accepted 24 papers) which ran in 

parallel and common sessions during the conference. This introductory paper summarises the works 

presented in both groups, as well as our common discussions. 



Outside of CERME, the number of handbook chapters focusing on UME or dedicating some 

sections to it (from the pioneering Artigue, Batanero, & Kent, 2007, to the most recent Coupland, 

Dunn, Galligan, Oates, & Trenholm, 2016; Larsen, Marrongelle, Bressoud, & Graham, in press; 

Rasmussen & Wawro, in press) acknowledges the recognition of this research area for its 

specificities, as does the launching of the International Journal of Research in Undergraduate 

Mathematics Education. Moreover, the activities of TWG14 have also led to two major 

contributions: the creation of the International Network for Didactic Research in University 

Mathematics (INDRUM) with a bi-year ERME topic conference (see INDRUM2016 and 

INDRUM2018); and, the publication of a Research in Mathematics Education special issue 

summarising some of the works presented during CERME7 and CERME8, and discussing the use 

of institutional, sociocultural and discursive approaches to research in university mathematics 

education (Nardi, Biza, González-Martín, Gueudet, & Winsløw, 2014). 

In CERME10 we intended to cement and expand further this work, as well as welcoming 

contributions from across the board of research approaches and topics: the teaching and learning of 

advanced university mathematics topics (including proof); transition issues “at the entrance” to 

university mathematics, or beyond; the training of university mathematics teachers; challenges for, 

and novel approaches to, teaching mathematics at university level (including the teaching of 

students in non-mathematics degrees); the role of ICT tools and other resources (e.g. textbooks, 

books and other materials) in the teaching and learning of university mathematics; assessing the 

learning and teaching of mathematics at university level; collaborative research between university 

mathematics teachers and researchers in mathematics education; and, theoretical and 

methodological approaches to research into the teaching and learning of university mathematics. 

In the large number of papers received, we identified some continuities, but also some ruptures, 

with previous iterations of TWG14. For instance, there is still a large number of papers following 

sociocultural, discursive, and institutional approaches, although a considerable number of papers 

using cognitive approaches was also present. Moreover, among the papers focusing on a specific 

mathematical notion, calculus and analysis are still predominant, although we also received papers 

discussing other topics (such as group theory, linear algebra, or logic). There is also a small but 

growing number of papers addressing the teaching and learning of more advanced topics, such as 

algebraic topology, ring theory, and quantum mechanics. The number of papers addressing the use 

of mathematics as a service course (i.e., mathematical course offered to non mathematics 

specialists) is still growing, and papers focusing on engineering were again predominant, although 

we also received papers addressing the use of mathematics by biologists, economists, and 

physicists. The number of papers addressing teachers’ practice, training, and knowledge has also 

grown considerably, showing the increasing interest that this area of research is gaining. 

Conversely, papers proposing experimental interventions (in particular, using technology) are still 

rare in the group. Finally, we note that a larger number of quantitative studies were presented at 

CERME10 in comparison to previous CERMEs. Among the accepted papers, we could identify six 

main themes (although we are aware that some papers fit in more than one theme): students’ 

learning of specific topics; students’ experience and affective issues; interventions; didactical 

transposition and use of resources; mathematics for non-mathematicians; and, teachers’ practices 

and knowledge. In what follows, we follow the structure of these themes to summarise the main 

results presented during the conference. Due to the large number of papers and to space limitation, 

we have not included the content of the short contributions in the summary. 

Themes and paper contributions 

Students’ learning of specific topics 

Nine papers can be seen as contributing to this theme. Aaten, Deprez, Roorda and Goedhart show 

the difficulties with applying Lithner’s framework in order to analyze ‘hybrid’ types of students’ 
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reasoning when solving integration tasks in undergraduate calculus; the authors argue that this 

framework may need the addition of reasoning types that make use of some kinds of recall. Biza 

employs Sfard’s commognitive framework to investigate first-year students’ meaning-making of the 

tangent line, finding that they engage with analytical, geometrical and algebraic discourses in their 

substantiations about tangents, sometimes engaging with more than one discourse in the same 

response, and sometimes separating them across different responses. Chellougui uses Copi’s system 

of natural deduction as a frame to investigate students’ difficulties in producing a valid proof in 

mathematical contexts that involve multiply-quantified statements (e.g. the definition of an order 

relation in elementary set theory). Hanke and Schäfer use eight categories of mental images of 

continuity to show that students’ mental images of real-valued continuous functions can be 

expressed by different forms of communication, which, in turn, depend on whether mental images 

are used or are explicitly verbalized. Juter investigates how students understand continuity and 

differentiability (and their links) during and after a calculus course, with a focus on students’ 

choices of representations, both espoused and enacted; her study identifies that only students who 

preferred formal theoretical representations were able to produce formal proofs, as well as a strong 

coherence between students’ espoused and enacted preferences of representations. Mai, Feudel and 

Biehler study first-year university students’ personal concept definition of a vector; they identify 

several misconceptions and note that a vast majority of students state geometrical concept 

definitions that are not fully adequate and may cause conflicts in their learning of linear algebra. 

Ovodenko and Tsamir describe students’ grasp of the notion of inflection point, and offer a detailed 

classification of reasons students offer to identify a point as an inflection point, and a point as a 

non-inflection point. In the field of abstract algebra, Ioannou studies discursive shifts in year-2 

mathematics students’ learning of group theory, drawing attention to some commognitive conflicts 

between the new discourse and other mathematical discourses, including advanced mathematics 

(e.g. set theory) and high school mathematics. Thoma and Nardi, also taking a commognitive 

approach, study first-year students’ learning of the notion of variable, drawing attention to 

commognitive conflicts between the notion of variable, and even the notion of number, between 

school and university mathematics. Both these papers show that university instructors are aware of 

common student errors, yet they may not be aware of the conflicts that underlie these errors. 

Students’ experience and affective issues 

Eight papers can be seen as contributing to this theme. Using data from questionnaires and 

exploratory factor analysis (EFA), Anastasakis produces a typology of seven different types of 

resources that engineering undergraduates use; he refers to the role of tools within Activity Theory 

and uses also Wartofsky’s categorization of artefacts to propose an interpretation of these resources 

as seven different modes of action in students when studying mathematics, concluding that the way 

we usually classify resources does not necessarily reflect the way these resources are used by 

students. In a study of first-year engineering students’ note-taking, Andrà uses a narrative approach 

where students’ notes are seen as re-tellings of a story told by the teacher; she focuses on how the 

students condense the mathematical content in their notes, and what conditions might prompt 

students to act as ‘scribblers’ or ‘thinkers’. Bampili, Zachariades and Sakonidis conduct an in-depth 

analysis of one student’s process of transition from secondary to tertiary mathematics studies; they 

consider this transition from a rite of passage perspective, finding connections between the social, 

academic and mathematical dimensions of the transition, for instance, an interaction between 

emotions and the student’s reconstruction of her mathematical thinking. Griese and Kallweit report 

on a quantitative analysis of the relationship between patterns of learning behaviour and 

examination outcome in first-year engineering courses. Kaspersen, Pepin and Sikko describe a 

quantitative analytical tool for evaluating students’ mathematical identities and investigate the 

relationships between mathematical identities and grades in university mathematical courses. 

Kürten reports on a preliminary course for engineering students, and shows how this course can be 



designed to influence students’ self-efficacy. Liebendörfer, Hochmuth, Biehler, Schaper, Kuklinski, 

Khellaf, Colberg, Schürmann and Rothe propose a taxonomy of the goals of 44 mathematical 

learning support services offered by universities in Germany; the taxonomy suggests a range of 

educational goals (e.g. learning the language of mathematics or strategies for studying) and system 

related goals (e.g. reduce dropout rates or increase passing rates). Marmur and Koichu investigate 

the relationships between key affective events and the mathematical discourse in two university 

mathematics lessons where two similar problems were considered. 

Interventions 

Five papers can be seen as contributing to this theme. Fredriksen, Hadjerrouit, Monaghan and 

Rensaa study the introduction of a flipped classroom approach in an engineering course at a 

Norwegian university, focusing on the emerging tensions when students are introduced to a novel 

approach with videos and quizzes; using the Cultural Historical Activity Theory (CHAT) approach, 

they identify some tensions attributed to the changes of rules and expectations, as well as the lack of 

shared understanding in the community of students about the mathematical topic, their preparation 

for and participation in the sessions. Hogstad and Isabwe describe the use of a digital tool that 

combines mathematics and kinematics aiming to help students to better grasp integrals; using the 

theory of instrumental genesis, they investigate the activity of two groups of students with the tool, 

and identify the pragmatic and epistemic values of students’ techniques for solving some given 

tasks. Kondratieva and Winsløw develop activities dedicated to helping students relate familiar 

practical tasks from calculus with theoretical ideas of more advanced courses in analysis; their 

approach is based on a theoretical model of the calculus-analysis transition, using the notion of 

praxeology from the anthropological theory of the didactic (ATD), and the associated strategies 

from Klein, to deal with students’ challenges in this transition. Lecorre uses the scientific debate 

methodology developed by Legrand to design and implement, at the transition between high-school 

and university, specific tasks on double-quantified statements (the Q2-game) that may raise the need 

for conventions of interpretations before they are introduced through mathematical formalism. 

Schmitz and Schäfer investigate the potential of designing a course in linear algebra and in analysis 

using the Abstraction in Context framework to increase students’ motivation and ability to engage 

in concept construction; their results indicate that the new courses seem to help students in the 

transition from school to university mathematics. 

Didactical transposition and use of resources 

Two papers can be seen as contributing to this theme. Ghedamsi investigates the mathematical 

organization of complex numbers in the official textbook in Tunisia at upper secondary level; 

mainly building on Sfard’s three stages of cognitive development and on Duval’s theory of semiotic 

representations, she identifies three didactical variables that can be used to efficiently influence 

students’ activities and learning process of complex numbers when they enter tertiary levels. 

Jovignot, Hausberger and Durand-Guerrier analyze the implicit complexity of a proof presented in a 

textbook, which involves the concept of ideal in ring theory; using ATD’s construct of praxeology, 

the mathematical organization related to abstract algebra is modeled into structuralist praxeologies, 

highlighting the intertwined relationships between algebraic, set-theoretic and logical praxeologies 

and, as a consequence, the inadequacy of such proof for students’ self-learning. 

Mathematics for non-mathematicians 

Seven papers can be seen as contributing to this theme. Feudel analyses the use of derivatives in 

economics to introduce cost functions and marginal cost; his data indicate that many of the students 

participating in his study, after their calculus course, just identified the derivative as an amount of 

change, without showing a clear understanding of the differences and connections between the 

derivative in mathematics and in economics contexts. González-Martín and Hernandes Gomes 

analyse the use of integrals in the Strength of Materials for Civil Engineering course to introduce 



the notion of bending moment in the study of beams; using tools from ATD, their analyses show 

that, even if bending moments are introduced as an integral, the proposed tasks do not mobilise 

elements related to integrals from a calculus course. Kortemeyer and Biehler investigate the 

mathematical skills and knowledge required in undergraduate engineering using quantitative and 

qualitative analytical tools developed particularly for this study. Quéré uses tools from ATD to 

study French engineers’ mathematical needs in the workplace; using data from 237 French 

engineers, he identifies mathematical notions they use, but also the need of ‘mathematical abilities’ 

that allow them to use mathematics not only as a tool. Rensaa uses grounded theory techniques to 

investigate engineering students’ own descriptions of what they mean by ‘learning linear algebra’; 

she identifies an apparent contradiction: to describe what they have learned, students emphasize 

conceptual more than procedural approaches, but in order to know that they have learned something 

they refer to solving specific tasks in the discipline. Viirman and Nardi describe a series of activities 

designed for Norwegian students of biology on biology-related mathematical modeling, and follow 

the learners’ path from ritualized participation in mathematical routines towards more explorative 

participation; they suggest that highly scaffolded tasks, that explicitly state which routines students 

should invoke, may inadvertently contribute to students’ ritualized participation in mathematical 

discourse. Wawro, Watson and Christensen analyze one student’s meta-representational 

competence as he engages in solving a quantum mechanics problem involving concepts from linear 

algebra; they correlate this type of competence with abilities to solve tasks that require thinking in, 

using, and relating different notation systems from physics to mathematics. 

Teachers’ practices and knowledge 

Ten papers can be seen as contributing to this theme. Branchetti analyses the resources, orientation 

and goals in the intended practices of a high school mathematics teacher with a PhD in 

mathematics, in relation to the topic of real numbers; the analysis indicates that orientations 

concerning the epistemology of real numbers, the goals of mathematics education in the high school 

and students’ conceptions and difficulties lead the teacher to choose a very intuitive approach, 

missing the opportunity to benefit from his knowledge and expertise as a research mathematician. 

Cooper and Zaslavsky analyse a case of a mathematician/mathematics educator co-teaching 

partnership in an undergraduate course on Mathematical Proof and Proving; they find that the 

mathematician’s main concern was with the written proof and its “correctness”, whereas the 

mathematics educator showed a sensitivity to the person behind the proof, and to pedagogical 

aspects of proof and proving, suggesting that this type of co-teaching might be a way of achieving 

relevance for teaching in mathematics courses. Farah combines an ATD perspective with a 

sociocultural approach to identify institutional features that influence and transform the working 

habits of students in the context of French preparatory classes for business schools; she finds a great 

stability among the teachers’ practices she investigates, these practices being strongly linked to the 

specific institution in which they occur. Fernández-León, Toscano-Barragán and Gavilán-Izquierdo 

use the horizontal and vertical mathematisation to study the conjecturing and proving approaches of 

a research mathematician working in a Spanish university; the analysis suggests that these practices 

(both in a horizontal and a vertical way) interact with each other when mathematicians create new 

knowledge. Florensa, Bosch, Gascón and Ruiz-Munzon report on a professional development 

course for mathematics lecturers in engineering; using tools from ATD and the construct of study 

and research path, they carried out modelling activities with a group of lecturers, allowing the 

introduction of some ATD notions to empower lecturers to question and put under vigilance the 

dominant epistemology at university. Jaworski, Potari and Petropoulou draw on their previous 

research to theorise and characterise university mathematics teaching within an Activity Theory 

perspective, developing an example concerning a lecture course in calculus with first year 

undergraduates; the Teaching Triad at the micro level of goals and actions, together with Activity 

Theory at the macro level, are used together to capture the complexity of the teaching situation, 



addressing for instance the ways the lecturer engages his students and provides for their needs. 

Meehan, O’Shea and Breen examine ‘brief but vivid’ accounts of their lectures they wrote during a 

first-year undergraduate calculus course, and investigate the kinds of decision points they faced and 

how these decisions were triggered. Pinto observes and analyses the decision making and the shift 

of choices of an experienced mathematics teacher (Alan Schoenfeld) while he teaches a 

mathematical problem solving course; the Teaching for Robust Understanding of Mathematics 

framework (TRUmath) is used to unpack the conflicts that may underlie teachers’ dilemmas and to 

explain their decisions. Püschl investigates the discussion patterns of teaching assistants in 

Germany with specific focus on how they work on tasks in small group tutorials, suggesting a 

typology of five discussion patterns of tasks: heuristic, pragmatic, student-oriented, problem-

oriented, and minimalistic. Stewart, Thompson and Brady examine one mathematician’s thought 

processes as he taught a course on algebraic topology; adopting the perspective of Tall’s three 

worlds, they investigate how the teacher moves between the formal, symbolic and embodied 

worlds, and how he uses written handouts to ease students’ movement between the worlds, 

particularly from the embodied to the formal, which he sees as the most challenging for students. 

Current developments in TWG14 

As we mentioned earlier, one of the themes that has grown considerably in this CERME10 concerns 

teachers’ practices and knowledge. The presented papers offer a variety of theoretical and 

methodological approaches to study teachers’ practices and decision making in the preparation of 

their teaching as well as during their actual teaching. As evident in the papers discussed in the 

conference, the investigation of teaching in its complexity seems to demand the use of more than 

one theoretical perspective. Moreover, some of the papers have proposed ways of collaboration 

between researchers and teachers towards better research insight as well as further development of 

teaching through a research-based reflection of teachers on their practice. These works have 

facilitated the discussion on teacher education and professional development at university level; an 

area of significant teaching interest that seeks further research. 

Regarding students’ learning of specific topics, CERME10 contributions continue to deepen our 

understanding of aspects of students’ learning. This year there was more interest in how learning of 

specific topics can be seen also in relation to students’ studying practices that go beyond these 

topics and specific courses. For example, students’ learning can be seen in relation to how they use 

resources, take notes or experience transition issues. 

Furthermore, this year we discussed five papers proposing interventions and reporting on the 

evaluation of the implementation of these interventions. Also, there were studies of tensions 

between innovative approaches and students’ experiences, especially when these approaches 

contradict students’ expectations. As in previous CERMEs, the number of papers proposing 

interventions is not high (Winsløw, Gueudet, Hochmuth, & Nardi, in press), and the account of 

experimental uses of digital technologies is still low. Although a range of studies proposes 

innovative approaches, more research is needed in this area, particularly studies that go beyond 

specific contexts and groups of students. 

Finally, another growing area in TWG14 concerns mathematics for non-mathematicians. The 

papers presented this year show different degrees of collaboration with experts from other 

disciplines, as well as the importance of understanding the needs of these disciplines and their use 

of mathematical notions. From research about the learning of specific topics that happens to be 

conducted, for instance, with engineering students, the field has moved to study specific uses of 

mathematics by professionals (this year from biology, economics, engineering, and physics). We 

believe that this is an important shift of focus, and we expect to see in the future more papers 

studying the use of mathematics (and the professional needs) of several categories of professionals, 

as well as how mathematics can be taught by targeting these professional needs. 



Reflection and ways forward 

In this concluding section we reflect on the research in UME so far and suggest ways forward in 

terms of two directions: general questions about teaching and learning at university level; and, the 

role of mathematics as a service subject. 

Regarding the first direction, general questions about teaching and learning at university level, we 

have noticed that research in UME usually reports on studies conducted in a specific educational 

context. As a research community, we would like to see more research conducted in joint efforts by 

colleagues from different countries. Strengthening communication between mathematics educators 

and mathematicians is also necessary towards collaborative research projects that engage 

mathematicians and suggest innovative approaches for future practice. There are more occasions 

recently where researchers in mathematics education are invited by mathematics teachers to share 

experiences and views and to contribute to curricular development decisions; collaborations of this 

type are very welcomed by our community, 

Furthermore, although there is a considerable number of studies connecting students with 

mathematics, as well as teachers with mathematics, we would like to see more studies connecting 

teachers and students (teaching with learning). Aiming towards this connection may lead to new 

theoretical and methodological developments. Finally, we also discussed that there is a growing 

body of research about mathematicians teaching non-mathematics students, but there is still little 

research on how non-mathematicians teach mathematics as a service subject. 

Regarding the second direction, the role of mathematics as a service subject, we would like to see 

more research on the different challenges and priorities that may occur in service courses. To name 

some examples, in service courses teachers may encounter large and heterogeneous groups; the 

content is not necessarily in the teacher’s research area; there can be consequences for teachers’ 

promotions (between giving a course of his/her specialty or a general course), which may have an 

impact on their motivation and practices; etc.. There is also little research on the epistemological 

analyses of what it means to teach mathematics to other disciplines; what makes the use of 

mathematics necessary in other disciplines; and, why mathematics is used as it is used in other 

fields. These investigations may lead to the identification of possible ruptures – and conflicts for the 

students – with how the content is presented in the mathematics courses. Another way forward can 

come from the use of discursive approaches, which would allow studying the discursive difference 

between communities. In most of these cases, we see the value of the collaboration of UME 

researchers with experts of other disciplines towards a research agenda that can address these 

questions. 

Finally, in a general way, we would like to see more research that goes beyond single case studies, 

as well as research projects that expand small-scale studies to a bigger scale. We also notice that 

most of the papers in our group address mainly one of the themes we listed earlier, but we see the 

benefit of research that connects these themes by addressing the complexity of the teaching and 

learning of mathematics at university level. In all these scenarios, it is possible that mixed-methods 

studies will become more necessary. Regarding contributions to practice, the accumulated body of 

research results in UME should contribute to the development of research-based teacher training 

programmes for university teachers. Furthermore, there is a growth in the amount of mathematics 

learning support, and institutions are developing mechanisms to better guide and support students’ 

learning of mathematics; we need to develop research about these new mechanisms offered to 

students, as well as about their impact and connections to what students learn in lectures. 

This brief account of the presentations and discussions held in TWG14 during CERME10 aims to 

summarise our activities during the conference, as well as to invite the reader to explore the papers 

(long and short contributions) included in these proceedings. Our exchanges will continue in 



different fora and we hope to meet again the participants to pursue our discussions and reflections, 

and to foster collaboration. Until we meet again in CERME11, the next meeting will take place in 

April 2018; we invite all participants (as well as newcomers) to join us in INDRUM2018. 
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Undergraduates’ reasoning while solving integration tasks: 

Discussion of a research framework 
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In this paper we investigate the extent to which the research framework on reasoning developed by 

Lithner (2008) is adequate for characterizing undergraduate students’ mathematical reasoning. We 

conducted a small number of individual task-based think-aloud interviews in which students solved 

integration tasks. Several examples illustrate how we characterized reasoning types by using the 

framework. However, we found that some reasoning types were not covered by the framework. We 

propose to extend the framework by introducing a reasoning type that is mathematically founded but 

not creative, and as a consequence, may be intertwined with imitative reasoning. 

Keywords: Mathematical reasoning, undergraduate students, calculus. 

Introduction 

Students’ mathematical reasoning while solving mathematical tasks is not always as well-founded as 

it appears, as has already been highlighted by Vinner (1997) in his article on pseudo-conceptual and 

pseudo-analytical thought processes in mathematics learning. Moreover, undergraduates’ reasoning 

in the domain of calculus is found to be susceptible to ill-founded reasoning (Lithner, 2003). Because 

of its relevance for mathematics teaching, students’ mathematical reasoning demands further 

investigation. Different frameworks on mathematical reasoning have been reported in literature. 

Some frameworks focus on argumentation used while solving proving problems (e.g., Blanton & 

Stylianou, 2014; Stylianides, 2008). Zandieh and Rasmussen (2010) constructed a framework on 

mathematical reasoning that distinguishes informal and formal reasoning, which seems most suited 

for investigating students’ understanding of abstract concepts. Carlson and Bloom (2005) combined 

the problem solving phases Orienting, Planning, Executing, and Checking with the use of problem 

solving attributes Resources, Heuristics, Affect, and Monitoring. Their framework appears capable 

of identifying students’ problem solving activities and the influence of cognitive, affective and/or 

metacognitive factors. However, this framework does not incorporate the foundation of mathematical 

reasoning. Lithner (2008) constructed a framework which does incorporate foundations of students’ 

strategic decisions in solving mathematical tasks. This framework is often referred to when 

characterizing reasoning as either imitative or creative, which are the two main categories in the 

framework (e.g., Jäder, Sidenvall, & Sumpter, 2016; Jonsson, Norqvist, Liljekvist, & Lithner, 2014). 

However, the framework offers greater detail, by also defining Memorized Reasoning, and Familiar, 

Delimiting, and several types of Guided Algorithmic Reasoning (Lithner, 2008). Since this detailed 

characterization of mathematical reasoning based upon its foundation appears useful for identifying 

students’ reasoning, we selected this framework for our research. Based upon our experiences in 

applying this research framework, we discuss the framework’s possibilities and limitations. 

  



Theoretical framework 

Lithner (2008) defines reasoning as: 

The line of thought adopted to produce assertions and reach conclusions in task solving. It is not 

necessarily based on formal logic, thus not restricted to proof, and may even be incorrect as long 

as there are some kinds of sensible (to the reasoner) reasons backing it (Lithner, 2008, p. 257). 

Based on observations of students who solve mathematical tasks, Lithner describes various ways in 

which students choose a mathematical strategy to solve a task, pointing out students’ ‘predictive 

argumentation’ (reasoning for choosing a strategy) and ‘verificative argumentation’ (reflection upon 

implementation of strategy), where strategy “ranges from local procedures to general approaches” 

and choice “is seen in a wide sense (choose, recall, construct, discover, guess, etc.)” (Lithner, 2008, 

p. 257). The resulting framework is visualized in figure 1. 

 

Figure 1: Visualization of reasoning framework as described by Lithner (2008) 

The framework distinguishes two main categories, Creative Mathematically founded Reasoning 

(CMR) and Imitative Reasoning. CMR1 refers to reasoning that is based on intrinsic mathematical 

properties, that is novel to the student (the reasoner) and for which the student has arguments (Lithner, 

2008). Imitative reasoning is described as reasoning in which an algorithm or answer is recalled in 

some way. Imitative reasoning is divided into Memorized Reasoning and Algorithmic Reasoning. 

Memorized Reasoning implies that the student recalls a complete answer, for example a definition or 

a proof that is learnt by heart. Algorithmic Reasoning occurs when a student recalls an algorithm. 

Lithner’s framework altered over time (see Lithner, 2003, 2004, 2008); in this study we applied the 

framework as described in Lithner (2008). 

The definitions by Lithner (2008) for each of the reasoning types are listed in Table 1. In the definition 

of Delimiting Algorithmic Reasoning (see Table 1), the term ‘set’ of algorithms requires some 

explanation. Lithner (2008) clarifies that if no guidance is available and if the task is unfamiliar to 

the student, then the student must choose an algorithm from the ‘set’ of algorithms the student knows, 

based upon some kind of connection to the task.  

  

                                                 

1 In earlier versions of the framework (e.g., Lithner, 2004), creative mathematically founded reasoning (which was then 

named Plausible Reasoning) was subdivided in a global and a local subtype, but this distinction has not remained. 



 

Reasoning type Criteria 

Creative 

Mathematically 

founded 

Reasoning 

Three criteria: “Novelty. A new (to the reasoner) reasoning sequence is created, 

or a forgotten one is re-created.” “Plausibility. There are arguments supporting 

the strategy choice and/or strategy implementation motivating why the 

conclusions are true or plausible.” “Mathematical foundation. The arguments 

are anchored in intrinsic mathematical properties of the components involved 

in the reasoning” (Lithner, 2008, p. 266) 

Imitative 

Reasoning 

No definition is given. Imitative Reasoning is subdivided into Memorized 

Reasoning and Algorithmic Reasoning.  

Memorized 

Reasoning 

“The strategy choice is founded on recalling a complete answer. The strategy 

implementation consists only of writing it down.” (Lithner, 2008, p. 258) 

Algorithmic 

Reasoning 

“The strategy choice is to recall a solution algorithm. The predictive 

argumentation may be of different kinds (see below for examples), but there is 

no need to create a new solution.” “The remaining reasoning parts of the 

strategy implementation are trivial for the reasoner, only a careless mistake can 

prevent an answer from being reached.” (Lithner, 2008, p. 259) 

Familiar 

Algorithmic 

Reasoning 

“The reason for the strategy choice is that the task is seen as being of a familiar 

type that can be solved by a corresponding known algorithm.” “The algorithm 

is implemented.” (Lithner, 2008, p. 262) 

Delimiting 

Algorithmic 

Reasoning 

“An algorithm is chosen from a set that is delimited by the reasoner through the 

algorithms’ surface relations to the task. The outcome is not predicted.” “The 

verificative argumentation is based on surface considerations that are related 

only to the reasoner’s expectations of the requested answer or solution. If the 

implementation does not lead to a (to the reasoner) reasonable conclusion it is 

simply terminated without evaluation and another algorithm may be chosen 

from the delimited set.” (Lithner, 2008, p. 263) 

Guided 

Algorithmic 

Reasoning 

Text-guided Algorithmic Reasoning: “The strategy choice concerns identifying 

surface similarities between the task and an example, definition, theorem, rule, 

or some other situation in a text source.” “The algorithm is implemented without 

verificative argumentation.” (Lithner, 2008, p. 263) 

Person-guided Algorithmic Reasoning: “All strategy choices that are 

problematic for the reasoner are made by a guide, who provides no predictive 

argumentation.” “The strategy implementation follows the guidance and 

executes the remaining routine transformations without verificative 

argumentation.” (Lithner, 2008, p. 264) 

Table 1: Definitions of reasoning types, derived from Lithner (2008) 



It is important to note that the foundation of Creative Mathematically founded Reasoning is explicitly 

stated, while this is not the case for Imitative Reasoning: CMR is by definition founded in intrinsic 

mathematical properties, while the foundation of Imitative Reasoning is not clearly stated. The 

definitions of various sub-categories of Imitative Reasoning contain criteria like ‘surface relations’, 

‘surface considerations’, ‘surface similarities’, ‘no predictive argumentation’, and ‘without 

verificative argumentation’. This terminology appears to stem from earlier work: Lithner (2004) 

distinguished mathematically founded reasoning and superficial reasoning, where the latter was based 

upon surface properties and not upon mathematically relevant properties. Although in Lithner (2008), 

‘imitative reasoning’ is not defined as founded in superficial or surface properties, many of the 

subtypes are (see Table 1). Moreover, all examples and explanations given by Lithner (2008) do refer 

to situations in which the reasoning is founded in so-called superficial properties and not in intrinsic 

mathematical properties, which is a criterion for CMR.  

Certain studies have already used the framework to characterize students’ reasoning. Boesen, Lithner, 

and Palm (2010) employed the categories of Memorized Reasoning, Algorithmic Reasoning (without 

subcategories) and extended the category of Creative Mathematically founded Reasoning by defining 

the two subtypes Local CMR and Global CMR (in accordance with Lithner (2004)). Sumpter (2013) 

applied the framework to label episodes of students’ reasoning in a study on the role of beliefs in 

mathematical reasoning, and showed three examples which were all labeled as Familiar Algorithmic 

Reasoning. Jäder et al. (2016) used the framework to discern whether students’ reasoning was 

imitative or creative. We remark that these studies have not used all sub-categories of the framework 

as described by Lithner (2008). In the case of Sumpter (2013), only one type of reasoning was 

discussed. Although these studies did make use of the framework, none of them did explicitly reflect 

upon its applicability. Since we consider the framework a worthwhile addition to literature on 

mathematical reasoning, we investigate its applicability for characterizing students’ reasoning. The 

research question we thus aim to answer is: to what extent is the framework by Lithner (2008) 

adequate to characterize undergraduate students’ mathematical reasoning? 

Methodology 

The data in this study originates from interviews with three first year mathematics bachelor students, 

one male and two female, of varying mathematics proficiency levels, determined by previous exam 

scores. These students are a sub-sample of a group of 12 students participating in a longitudinal study 

that investigates the development of mathematical reasoning. The students are majors in mathematics 

at the University of Groningen (the Netherlands) or the KU Leuven (Belgium); universities which 

offer courses in a wide range of domains at undergraduate and graduate level. The individual task-

based think-aloud interviews lasted for approximately 1.5 hours each and are administered by the first 

author at the end of the students’ first undergraduate year. Students were permitted to use a list with 

basic calculus formulas, which did not include elaborate integration formulas. The students were 

asked to explicate their thinking while solving tasks and, after each task, to answer the questions: 

“How did you come to think of using this strategy?”, “How certain were you that this strategy would 

help you solve the problem, and why?”, and “Have you seen this type of task before?”. The interviews 

are video and audio recorded.  

We used tasks to create a situation in which the students must choose a suitable strategy from a wide 

range of possible strategies. We considered integration tasks suitable for this purpose since the 



students had learnt various mathematical strategies for solving integrals, such as partial integration, 

substitution, partial fractions, or Euclidean division, in the courses they had taken so far. These 

considerations led to selection of various tasks, amongst which   dxx29  and   dxx 92 . Both 

integrals can be simplified through inverse trigonometric substitution, e.g. )sin(3 tx   or )cos(3 tx   

to solve the first integral, and )sin(/3 tx   or )cosh(3 tx   to solve the second integral. The students 

had taken courses in integral calculus in which they solved similar tasks, amongst many other types 

of tasks. The explicit discussion of these types of integrals had already taken place earlier in the 

academic year. Based upon teaching experience we expected that these tasks at the time of the 

interviews would be non-trivial to many students. 

While integration tasks may be regarded as tasks that solely require application of procedures, these 

tasks can arouse various types of mathematical reasoning in students. Considering and selecting 

suitable procedures is a process in which Creative Mathematically founded Reasoning as well as 

Imitative Reasoning can become visible. Familiar Algorithmic Reasoning can be used if the student 

recognizes the problem type and recalls the corresponding algorithm; Delimiting Algorithmic 

Reasoning if the student does not recognize the task but recalls various algorithms such as partial 

integration or substitution of some kind; Creative Mathematically founded Reasoning can be 

employed if the student is not able to recall a solution strategy but instead constructs a solution or 

reconstructs a forgotten reasoning sequence, such as drawing a rectangular triangle and deducing a 

suitable substitution. We did not expect Memorized Reasoning, since the solutions to the tasks are 

extensive. Guided Algorithmic Reasoning also appeared improbable, since example solutions were 

unavailable and the interviewer would not offer any hints. The available list with formulas however 

could serve as inspiration. 

Transcripts of the task solutions are split into episodes. An episode begins at the first consideration 

of a strategy (or a set of strategies) and ends when the strategy is abandoned and a new strategy is 

about to be considered. Using the framework to characterize parts of a solution is similar to the 

method of Lithner (2008) and Sumpter (2013). The first author tried to characterize each of the 

episodes through the definitions given by Lithner (2008). If this was unsuccessful, the difficulties 

were described. The findings from this analysis were discussed with the other authors until agreement 

was obtained. 

Results 

Below we describe several reasoning episodes from our data, which illustrate how we characterized 

reasoning using the framework and which problems we encountered.  

Familiar Algorithmic Reasoning? 

Example 1:   dxx 92 ; student A chose to rewrite the integrand by splitting it into two terms and 

next integrating them separately: 
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x . The student had applied 

this strategy earlier in the interview, when (unsuccessfully) solving   dxx 29 . The student 

explained: “The task was similar to the former task, so I figured I could try using the same approach.” 

We observe that the task is recognized as a familiar type, which made the student decide to apply the 

same strategy as before. We characterize this reasoning as Familiar Algorithmic Reasoning.  



Example 2: 


dx
x

x

92
; this sub-task arose while student A worked on   dxx 92 . This sub-task 

is of a standard form because the derivative of 92 x  is in the numerator, making 92  xt  an 

appropriate substitution. Student A effectively chose this strategy and explained afterwards: “Because 

I knew that the derivative of this (points at 92 x  in the denominator), was something like this 

(points at the numerator) […] So I applied substitution to this (points at 92 x ), because this (points 

at the numerator) would then be eliminated.”. We observe that the student noticed the relevant 

mathematical characteristics of this task and knew what algorithm would solve tasks of this type. 

Either the task type was familiar or the student constructed the approach. The ease with which the 

student came to this conclusion and the fact that this type of task has been practiced extensively make 

us expect the student to be familiar with the task type: we characterize the reasoning as Familiar 

Algorithmic Reasoning. However, the student clearly founds the reasoning in intrinsic mathematical 

properties, which is very different from the reasoning that occurred during Example 1, where the 

student appears to base the strategy choice solely on familiarity with the task type.  

We conclude that Examples 1 and 2 provide two rather distinct reasoning types while both satisfying 

the criteria for Familiar Algorithmic Reasoning.  

Memorized Reasoning or Creative Mathematically founded Reasoning? 

Example 3:  


d
cos

1
; this sub-task arose while student C worked on   dxx 92 . The student 

searched the primitive of 
cos

1
with respect to  , which is |tansec|ln   . “It was something like 

ln to the power…, ln  of, wait.  


d
cos

1
. it does not have to be so complicated. There must be 

something that I overlook. […] eh. Ah, no, wait wait, hey. sec θ times … Secant tangent? There was 

something about that. 
|tansec|ln

sec




. I rely on my memory now, because I have solved those 

integrals. I know it’s an integral with secant, with ln. (student calculates the derivative of 

|tansec|ln  , infers it is not correct) What was it like? […] wait, I think I know. |tansec|ln    

is (student calculates derivative) 




tansec

sectansec 2




. Then you can cancel this (‘  tansec  ’ in 

numerator and denominator) and then you obtain indeed… I knew it was something with ln .” 

We observe that the student solves the task by making use of answer recall, but also reasons on the 

intrinsic mathematical properties of the task to be successful. In the framework, the only reasoning 

type that makes use of recall of an answer is Memorized Reasoning. However, the second criterion 

of Memorized Reasoning is not fulfilled. The strategy implementation was not just writing down the 

answer, since the answer was constructed and verified building upon the intrinsic mathematical 

properties of the components involved in the reasoning. On the other hand, the category of Creative 

Mathematically founded Reasoning does not reflect the important role of memory in this solution. 

This example shows hybrid reasoning with elements from Creative Mathematically founded 

Reasoning and from Memorized Reasoning. 



Intrinsic mathematical properties or surface properties? 

Example 4:   dxx29 ; student B rewrote 
29 xy   to 922  yx  and remarked it is a circle: 

“That gives a nice circle. Then you have got the radius, a circle with radius 9, radius 3, I mean. It’s 

not transformed, so you get this. Circular coordinates. Let’s take a look at circular coordinates […] 

Then you get cosrx   and sinry  . So 22222 sincos rrr   . […] This is of course… This is 

just 22 rr   because   22 sincos  … 2r .” The student stops using this strategy. 

We observe that the student considered the circular coordinates (polar coordinates) since the integrand 

made the student think of a circle. The strategy appears to be selected based upon intrinsic 

mathematical properties of the task. However, the student employed the circle coordinates in an 

ineffective way, which shows that the student did not know why the property of the task, that it 

concerns a circle, implies the use of circle coordinates. The strategy of using circle coordinates are 

selected only because the task concerned a circle, therefore the foundation for strategy selection 

should be regarded as based on the task’s surface properties. This example raises doubts concerning 

whether it is always possible to distinguish a surface property from an intrinsic mathematical 

property. 

Conclusions and discussion 

The framework by Lithner (2008) provides means to highlight foundations that underlie students’ 

reasoning when solving a mathematical task. However, we faced several difficulties when employing 

the framework as an analysis instrument. Examples 1 and 2 concern rather distinct reasoning 

episodes, while both satisfy the definition of Familiar Algorithmic Reasoning. Whether or not the 

student provides mathematically founded reasons is a relevant characteristic but not included in the 

definitions. In Examples 2 and 3, the predictive argumentation of a strategy was imitative (based on 

recall of any kind), but verificative reasoning was founded in intrinsic mathematical properties of the 

task. These examples reveal that the framework does not cover such ‘hybrid’ types of reasoning. 

Example 4 confronted us with the more fundamental issue how to decide whether reasoning is based 

on ‘surface properties’ or on ‘intrinsic mathematical properties’.  

A way to improve the applicability of the framework is to include reasoning types that are 

mathematically founded as well as make use of some kind of imitative reasoning. This is not the same 

as local CMR (Lithner, 2004), which is reasoning that is partly Creative Mathematically founded 

Reasoning while the remainder is Imitative Reasoning. We propose that reasoning can be 

mathematically founded without being creative, and in addition, that mathematically founded 

reasoning can be intertwined with imitative reasoning. Whether a property is an intrinsic 

mathematical property or a surface property appears to depend on the student’s understanding, e.g. 

of why a certain task property leads to a certain strategy selection. Distinguishing between the use of 

surface properties and intrinsic mathematical properties therefore requires a more complete picture 

of the students’ reasoning as a whole. These suggestions are based upon difficulties faced when 

applying the framework on a small number of reasoning episodes within the domain of integration. 

To obtain a framework adequate to characterize any type of mathematical reasoning not only requires 

thorough investigation of specific examples, but also requires investigation of the structure of the 

framework such that the framework will be decisive for each reasoning episode to be characterized. 
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Introduction 

Historical records suggest that using tools has always been inseparable from expressing and doing 

mathematics (Roberts, Leung, & Lins, 2012) with numerous examples demonstrating the capacity of 

tools to influence the development of mathematics itself as a scientific discipline (Laborde & Sträßer, 

2009)1. Since the end of the nineteenth century many different types of tools have been used for the 

teaching and learning of mathematics (Kidwell, Ackerberg-Hastings, & Roberts, 2008) however for 

many the term “technology” corresponds to electronic or digital in nature tools (e.g. calculators) 

something that manifests a kind of historical amnesia (Roberts et al., 2012). Students nowadays have 

access to a plethora of digital/online resources that they could use alongside more “traditional” ones 

(e.g. textbooks, lecturers or their own notes) and thus blend their learning. As a matter of fact, Masie 

(2006) asserts that this has been always the case as students were always combining resources in 

order to support their learning. The notion of blended learning (BL) has been introduced almost 30 

years ago however, the term has not been clearly defined yet (Bos & Brand-Gruwel, 2016; Graham, 

2013; Torrisi-Steele & Drew, 2013). The three main definitions of BL used in education are (Sharma, 

2010): BL as a combination of face-to-face and on-line teaching; BL as a combination of technologies 

and; BL as a combination of pedagogical methodologies. In this paper, we are mainly referring to BL 

as a combination of technologies or better as a combination of tools since each era has its own 

technologies not only digital ones. Despite what its name implies, BL has received criticisms and 

some authors argue that it should be rather called blended teaching because current views adopt a 

teacher-centred and not a student oriented perspective by focusing on the resources that instructors 

choose for their students (De George Walker & Keeffe, 2010; Oliver & Trigwell, 2005). If students 

indeed blend their learning by mixing different resources not just digital or the ones provided to them 

by their institution, what kind of resources do they blend and how can these resources be classified? 

In terms of the resources that students use, we have found a lack of empirical studies exploring the 

kind of resources that undergraduates themselves choose and use, with previous studies focusing 

                                                 

1 Although many authors consider the terms “tools”, “artefacts”, “instruments” or “resources” to be different, for the 

purposes of this paper we treat them as having the same meaning. 



mostly on digital/online or institutionally-led resources and thus neglecting the “blended” nature of 

their learning (for a short review see Anastasakis, Robinson, & Lerman, 2016). In effect, our sense 

of the field aligns with comments from authors suggesting that the student perspective has not been 

taken into account in the BL literature (e.g. Ituma, 2011; López-Pérez, Pérez-López, & Rodríguez-

Ariza, 2011). Having previously identified the kind of resources that a sample of engineering 

undergraduates uses when studying mathematics (Anastasakis et al. 2016), our aim in this paper was 

to propose an empirically based typology of these tools. 

Theoretical framework 

Long before the dominance of the world wide web and computers, many researchers had emphasised 

the significance of tools in our everyday activities; a well-developed theoretical account of human 

praxis which emphasises the role of physical tools is second generation Activity Theory (AT) 

(Leontiev, 1981). From an AT perspective, our relationship with the “objective” world is mediated 

by tools: the central role of tool mediation within this framework is due to the fact that tools shape 

the ways we interact with reality and they reflect past people’s experiences and practices (Kaptelinin 

& Nardi, 2006). In AT, activities have a hierarchical structure and they consist of three layers (Ibid.): 

at the top is the activity itself directed towards the object of the activity (our overarching goal); in the 

middle lie actions (what we do) directed at goals (what we want to achieve) and; finally, at the lower 

layer we find operations (non-conscious, routine processes) which are directed to conditions (non-

subjective factors that affect our actions). In sum, AT asserts that tools are the means by which 

subjects are trying to achieve their goals and in this sense tools are bounded with a subject’s practice. 

Despite the central position that tools hold in AT, little is written from this perspective in regards to 

how they can be categorised; among the little accounts found in the literature, is Wartofsky’s typology 

of artefacts. Wartofsky (1973) considered tools as the genes of our cultural evolution and proposed 

that they can be classified into primary, secondary and tertiary artefacts. As primary are considered 

the tools themselves (Engeström, 1990); secondary artefacts represent “modes of action using primary 

artefacts” (Cole, 1996, p. 121) and they “synthesise the ways and procedures of using instruments 

and materials” (Miettinen, 1999, p. 189). Finally, tertiary artefacts are those which emphasise 

creativity (Kaptelinin & Nardi, 2006) and “transcend[s] the more immediate necessities of productive 

praxis” (Wartofsky, 1973). As an example of what constitutes a primary and a secondary artefact, 

Bussi and Mariotti (2008) refer to the abacus: the abacus itself is a primary artefact and the ways of 

using abaci for counting, keeping records or making computations represents a secondary artefact. 

Engestrøm notes that Wartofsky’s typology is closely related to Leontiev’s levels of activity 

(Petersen, Madsen, & Kjær, 2002): primary artefacts correspond to the level of operations/conditions, 

secondary to the level of actions/goals while tertiary to the level of the activity (Engeström, 1990; 

2015). Our focus in this paper are primary and secondary artefacts. 

Method 

This study is part of a doctoral project that aims to identify the kind of tools that undergraduates use 

when studying mathematics, how these tools are used and the reasons for using them. During the 

autumn term, a paper-based questionnaire was administered to four different groups of second year 

engineering students in Loughborough university and in total 201 completed it. Loughborough has 

one of the largest cohorts of engineering students (over 3000 undergraduates) in the UK and a well 

established provision of Mathematics Support (http://www.lboro.ac.uk/departments/mlsc). It has also 



led on significant projects producing high quality printed material (e.g. the HELM project: 

http://helm.lboro.ac.uk). The questionnaire consists of three main parts and its design was guided by 

Activity Theory (AT) (Leontiev, 1981). Here we report only on the part related to the resources (tools) 

that undergraduates use. In this, students were explicitly asked to identify how often they use a list of 

14 resources on a 6-point semantic scale (1/Never, 2, 3, 4, 5, 6/Always) with two additional open 

ended items for other resources not listed in the questionnaire. The list was based on our literature 

review, five in depth interviews with undergraduates conducted in 2015 and the resources that 

Loughborough University offers to students e.g. the Learn website (university’s VLE). The list of 

resources was carefully generated and encompasses a great variety of tools available to students; in 

this way it reflects -to a certain degree- students’ reality as learners when it comes to the resources 

they use. Students were also asked to identify which five of these 14 resources they use the most (top-

5) and rank them in a descending order (not reported here). 

Analysis and results 

Summary statistics 

Results for the tools that students use are presented in Figure 1. These results have been already 

presented elsewhere (Anastasakis et al., 2016) but we include them here for clarity. By using each 

tool’s mean, we categorised them into three main groups: tools with a mean greater than or equal to 

4.5 were characterised as high-use, those with a mean between 3 and 4.5 were assigned into the mid-

use group while resources with a mean between 1.5 and 3 were put into the low-use group. 

Factor Analysis 

Exploratory Factor Analysis (EFA) is a statistical method aiming at grouping variables which have 

something in common (i.e. they correlate with each other). This enables researchers to identify latent 

constructs in the data that cannot be measured otherwise directly. Each group (or cluster) of variables 

is then called a factor and the variables consisting each factor are thought to be measuring the same 

underlying/latent construct i.e. each factor represents one underlying construct. An initial EFA was 

performed on all the 14 variables for tools. We used an oblique rotation because the underlying 

constructs sought in our data were expected to be related (all variables are related to tool-use after 

all). Our sample’s adequacy was measured by the Kaiser-Meyer-Olkin measure of sampling adequacy 

and found to be above the minimum value of .5 (KMO=.711). Bartlett’s test of Sphericity also showed 

that the correlations between variables are not 0 i.e. the correlation matrix is not an identity matrix: 

this is true when the significance value for this test (p) is less than .05 and in our case, it was p<.001. 



The scree plot was used as a criterion for determining how many factors should be kept. Two lines 

that best summarise the scree plot were drawn with the intersection of these lines (called point of 

inflection) indicating how many factors are present in our data, excluding the factor on the point of 

inflection (in our case 3 factors). We additionally examined both the pattern and structure matrices 

and decided to exclude the variables “own written lecture notes”, “HELM workbooks”, “Learn 

website” and “Wolfram Alpha” from our subsequent analysis. This was done because these variables 

were either having factor loadings below the cut-off value of .364 that we used based on our sample’s 

size (see Stevens, 2002, p. 374) or because only one variable was present on a single factor (the goal 

of EFA is to group similar to something variables). Based on this analysis, we run a second EFA on 

the 10 remaining items with an oblique rotation (KMO = .711, p<.001) by requesting a 3 factor 

solution. Both the pattern and structure matrices were interpreted (Tables 1 and 2). Factor loadings 

(numbers at structure and pattern matrices) can be thought as the correlations between each variable 

Figure 1: Tools and their grouping based on their mean 

(high-use: red, mid-use: green, low-use: blue) 

Table 1: Pattern matrix of the final EFA (please 

note that values below .3 are omitted) 

Table 2: Structure matrix of the final EFA (please 

note that values below .3 are omitted) 



and the factors and they represent how well a variable “fits” into a factor. The final obtained factors 

included the following variables: 

 Factor 1 (5 variables): “Mathematics Learning Support Centre”, “other textbooks”, 

“lecturers”, “pre-university notes” and “staff at tutorials” 

 Factor 2 (3 variables): “other students”, “instant messaging” and “social media” 

 Factor 3 (2 variables): “online videos” and “online encyclopaedias”. 

At this point, we decided to treat the 4 variables not loading on any Factor (“HELM workbooks”, 

“own written lecture notes”, “Learn website”, “Wolfram Alpha”) as latent constructs too. This 

decision was made for two reasons: first, these variables did not load on any Factor (i.e. not relating 

with other variables); and second, the nature of each resource is different and unique when compared 

with the other resources, thus they can be thought “measuring” something on their own. By adopting 

a descriptive approach (Rummel, 1970) we named the 7 identified types of resources as follows: 

1. The “official” mathematical textbook: “HELM workbooks” 

2. Students’ lecture notes: “own written lecture notes” 

3. University’s VLE: “Learn website” 

4. The calculator: “Wolfram Alpha” 

5. Teaching staff: Factor 1 

6. Peers and communication tools: Factor 2 

7. External online tools: Factor 3 

From the above types of resources, “teaching staff” (Factor 1) contains 5 variables which they seem 

not fitting together; is it reasonable to interpret together different in nature variables such as “pre-

university notes”, “other textbooks” and “lecturers” for example? In our opinion, it makes good sense 

since they correspond to students’ direct interactions with university’s teaching staff (“Mathematics 

Learning Support Centre”, “lecturers”, “staff at tutorials”) and ways that students interact indirectly 

with teaching staff; this includes the use of resources probably suggested by teaching stuff (“other 

textbooks”) or resources which are the product of prior interactions with a person holding a teaching 

position e.g. A-levels tutor (“pre-university notes”). 

Discussion 

Our aim for this paper was to produce a typology of the resources that engineering students in our 

sample reported using. By performing an Exploratory Factor Analysis on our data, we were able to 

identify 7 different types of resources that undergraduates in our sample reported using (Table 3, left 

column). From a Wartofskian point of view, all the tools used by undergraduates when examined 

separately are primary. On the other hand, secondary artefacts represent “modes of action using 

primary artefacts” (Cole, 1996) and they “synthesise the ways and procedures of using instruments 

and materials” (Miettinen, 1999, p.189, our emphasis); this means that our proposed typology 

corresponds to the different secondary artefacts that undergraduates use. When examined from an 

AT perspective, the typology of tools corresponds to thematically related actions that students 

undertake when studying mathematics. This is because actions in AT are the “...specific interactions 

that people have with artefacts and other people...” (González, Nardi, & Mark, 2009) i.e. as actions 

we account the processes of using a tool (types 1, 2, 3, 4 and 7) and/or interacting with other subjects 

(types 5 and 6). Our Wartofskian and AT-based interpretations are also consistent from a statistical 



point of view: students were asked how frequently they use a resource thus, the nature of each variable 

is related to using a tool or interacting with a person i.e. an action from an AT perspective (Ibid.) or 

the ways of using primary artefacts. Thus, from both a Wartofskian and AT perspective, the 7 

different types of resources that undergraduates use, correspond to the following secondary 

artefacts/actions (Table 3, right column):  

1. Studying the mathematical textbook 

2. Taking notes during a lecture 

3. Accessing institutionally provided material (online) 

4. Performing (complex) calculations 

5. Interacting with teaching staff 

6. Interacting with peers (in-person or virtually) 

7. Searching for external/alternative material online 

 

Typology of Tools Secondary Tools (Wartofsky) - Actions (AT) 

(1) The “official” mathematical textbook Studying the mathematical textbook 

(2) Students’ lecture notes Taking notes during a lecture 

(3) University’s VLE Accessing institutionally provided material (online) 

(4) The calculator Performing (complex) calculations 

(5) Teaching staff Interacting with teaching staff 

(6) Peers and communication tools Interacting with peers 

(7) External online tools Searching for additional/alternative resources of 

information 

Table 3: Proposed typology of tools (left) and their representations as secondary artefacts and actions 

Conclusion 

In this paper, we analysed survey data from a cohort of second year engineering students (N=201) 

about the kind of tools they use when studying for their mathematics modules. In contrast with 

common approaches found in the literature, we did not focus only on digital/online or institutionally 

provided resources but rather we incorporated a variety of resources that students have at their 

disposal. An Exploratory Factor Analysis of our data allowed us to identify 7 different types of tools 

that students in our sample reported using: the “official” mathematical textbook (“HELM 

workbooks”); their own written notes; university’s VLE (“Learn website”); a sophisticated calculator 

(“Wolfram Alpha”); university staff (Factor 1); peers and social apps (Factor 2); and non-institutional 

online tools (Factor 3). By adopting Wartofsky’s hierarchy of tools these dimensions represent 

secondary artefacts i.e. 7 different ways that students use primary artefacts or students’ modes of 

action when studying mathematics: studying the mathematical textbook, taking notes during a lecture, 

accessing institutionally provided material, performing calculations, interacting with teaching staff, 

interacting with peers and searching online for additional/alternative sources of information. This 

interpretation is consistent with AT because these dimensions represent students’ actions when 

studying mathematics. One important implication of our analysis is that although some resources are 



different (e.g. people, digital) they may be used by students in a similar way: this was the case of 

Factor 1 which contained different in nature resources. This result contradicts our common 

assumptions when categorising resources (e.g. people, digital, online etc.) and adds an empirical basis 

for the argument that the way we usually classify resources does not necessarily reflect the ways these 

resources are used. Because of the nature of our data, we could only infer about the nature of the 7 

types of tools that undergraduates use by only examining the resources included in each type. 

However, our preliminary analysis of 14 interviews suggests that our interpretation aligns with these 

resources’ actual use: for example, students who interviewed reported using Facebook for 

communicating with peers when having an issue with mathematics (either by using Messenger or by 

posting a question on Facebook groups created by undergraduates). Our intention for the future is to 

complement the survey data with data gathered with other methods (interviews and diaries). Finally, 

we are of the opinion that the results of our analysis (students’ learning actions), highlight the 

temporal nature of all primary tools used in learning and suggest that our future research foci in 

mathematics education should be on the ways that these tools are used rather than the tools 

themselves.  
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An analysis of freshmen engineering students’ notes during a 

preparatory mathematics course 
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I analyse the notes of a group of first year engineering students who attended a course in pre-

calculus mathematics. Being interested in verbalisation skills at the beginning of university, I adopt 

a narrative lens to analyse the notes: I see a lecture as a story being told by the teacher and the 

students’ notes as re-tellings of the teacher’s story. I focus on the way the students condense the 

mathematical content in their written notes in two distinct teaching formats: a traditional frontal 

lesson and the concluding phase of a classroom discussion after a small group activity.  

Keywords: Secondary-to-tertiary education transition, students’ notes, narrative approach. 

Introduction 

This paper is part of a wider research project on freshmen engineering students at the Polytechnic of 

Milan, aimed at understanding their difficulties during the first year of their studies. Recent research 

has found that mathematics at tertiary level is difficult for engineering students (see e.g. Gomez-

Chacon, Griese, Rosken-Winter & Gonzales-Guillen, 2015). Gueudet (2008) provides a detailed 

overview of mathematics education studies concerning the transition from school to university and 

she identifies the theme that is the core of my research, namely: the students’ organisation of 

knowledge that is new to them at the beginning of university.  

Boesen, Lithner & Palm (2010) argue that the kind of task assigned to the students affects their 

learning: tasks with low levels of cognitive demand lead to rote-learning by students and, 

consequently, their inability to solve problems that are unfamiliar to them (for instance, the ones that 

require conceptual understanding). Breen, O’Shea and Pfeiffer (2013) define an ‘unfamiliar task’ as 

a task “for which students have no algorithm, well-reharsed procedure or previously demonstrated 

process to follow” (p. 2318), and provide evidence that this kind of tasks raises an awareness about 

the need for more than procedural understanding of mathematics, thus easing the students’ transitions 

to university math practices. Also, the teaching strategies employed in the class can influence the 

development of one type of knowledge more than another: teacher-centred methods would favour the 

development of procedural knowledge and student-centred methods would favour conceptual 

knowledge (see e.g. Garner & Garner, 2001; Allen, Kwon & Rasmussen, 2005). Inspired by these 

studies, I investigate how the students organise the knowledge in their notes during a preparatory 

math course. 

To take notes does not involve only mathematical ability. It involves also verbalisation skills. O’Neill, 

Pearce and Pick (2004) found that there is a correlation between performance in generating narratives 

and mathematical ability as early as in primary school years. With Nardi (2011), I recognise the 

centrality of the students’ ability to use ordinary language to construct and convey mathematical 

meaning and I investigate undergraduate engineering students’ notes in a preliminary math course at 

their first year at university. With Nardi (2011), I value the students’ attempts to mediate the 

mathematical meanings through words, symbols and diagrams and I maintain that at the basis of the 

students’ difficulties in dealing with a discursive shift from secondary to university mathematics there 

are: (a) undervalued verbalization and (b) premature compression. According to the former, “the 



students undervalue, and often avoid entirely, expressing their mathematical thoughts verbally” 

(Nardi, 2011, p.2056); according to the latter, “students’ mathematical writing is typically 

prematurely compressed, namely ridden with gaps, leaps and omissions” (ibid.).  

Theoretical framework 

Andrà (2013) examines the relationships between a teacher’s lecture and the students’ notes by 

viewing the lecture as a kind of story that the teacher tells and the students’ notes as retellings of the 

teacher’s story. A mathematical lesson seen as a story can be analysed in terms of its components: its 

characters, setting, action, plot, and moral (see also Bal, 2009). Mathematical objects, in fact, can be 

considered the mathematical characters of a story (Dietiker, 2012). They can play a central or a 

peripheral role, have multiple names, and have properties that can be introduced and developed 

gradually. The setting is the space where characters are placed. Sometimes the setting is not obvious, 

as it refers to underlying assumptions and/or axioms. The setting may also involve different registers, 

such as algebra or the Cartesian coordinate system. The action is that which the actor performs. In 

mathematical stories, the result of an action can be a change in an object or in a setting, or both. 

According to Dietiker (2012), we see that, unlike in literary stories, mathematical ones can change 

actions into objects (through reification). Andrà (2013) observes that the students miss important 

(teacher’s) mathematical actions in their notes and more in general Morgan (1998) notices a relative 

absence of active verbs in mathematical writing. The moral can be seen as the intended message of 

the lesson. The plot is the sequence of actions and it involves the shaping of the story, which is linked 

to its aesthetic effects: for instance, the rhythm and the frequency of the story (Bal, 2009) may affect 

the students’ focusing on the areas of emphasis of the story and foster his anticipative acts. Some 

moves might displace attention away from what the teacher wants to communicate: for example, 

repeating the name of a character often may lead the students to think that the actual name is 

important, or more important than its properties. Other moves may induce the students to believe that 

the setting is unimportant. These moves can be interpreted in terms of Rotman’s (1988) schema, 

which distinguishes between invitations for the reader to be a “thinker” and ones that prompt the 

reader to be a mere “scribbler”. This distinction provokes a further distinction, namely: to think about 

note-taking as mere consumption of mathematical meaning or to think about it as active production 

of meaning. It is possible to interpret Rotman’s schema with respect to the students’ notes in this way: 

a scribbler is a student who reports mainly the mathematical characters of the story and misses the 

actions, so that the notes result to be compressed and ridden with gaps, leaps and omissions (see also 

Nardi, 2011). A scribbler is also a student who avoids putting her thoughts in her notes, and limits 

herself to copying and/or reporting what the lecturer is saying/writing. The plot is the same plot as 

that of the story told by the lecturer. A thinker, instead, re-organises the content of the lesson, she 

(re)structures the plot so that it becomes accessible to herself even after the lesson ends. A thinker 

pays attention to the details and also records the mathematical actions so that her notes are not overly 

compressed and under-verbalised. In Andrà’s (2013) understanding of Rotman’s schema, 

furthermore, some moves invite the students to be thinkers while others invite them to be scribblers. 

In view of the findings of Boesen, Lithner & Palm (2010) we consider two scenarios: in the first one, 

the lecturer proposes a group activity on a conceptual and unfamiliar task and the students’ notes are 

taken during the classroom discussion that follow the group activity; in the second scenario, the 

lecturer assigns a procedural task and corrects it on the blackboard. The interest is to see how the 

students’ notes change (if so) in the two different scenarios. 

  



Methodology 

The Polytechnic of Milan, like many universities all around the world, organizes some courses before 

the beginning of the first semester, which have the purpose to recapitulate the basic knowledge that 

is necessary for the students to successfully attend the courses at the first academic year. One of these 

preparatory courses is on pre-calculus mathematics. Since three years, the course is organised 

according to a flipped classroom pedagogy: the students (are supposed to) watch a series of videos in 

a MOOC and at university the lecturers of the preparatory course involve them in groupwork activities 

aimed at deepening their understanding of the basic math concepts and expose the students to frontal 

lessons with routine exercises. The mixed method of teaching serves the purpose of both exposing 

the students to a new, “conceptual” teaching and to make them feel comfortable with teaching 

practices that are more typical of secondary school. During the first lesson of the preparatory course, 

among the exercises given about polynomials, one had a conceptual nature, since it said “The 

polynomial p(x) is divisible by the polynomial q(x) if…”. This is a kind of task that is unfamiliar for 

Italian students, since it asks for reflection about the definitions and the students do not have a well-

established procedure to resort to. It was first dealt with in small groups, then discussed at classroom 

level. During this last phase, the teacher wrote the steps of the solution at the blackboard and the 

students took notes. Another task had a procedural nature and was not unfamiliar for the students: 

two polynomials were given, p(x) and q(x), and the students were asked to divide p(x) by q(x). It was 

solved at the blackboard by the teacher. I compare and contrast the students’ notes in these two 

different situations: one familiar and procedural (i.e., linked to actions), one unfamiliar and 

conceptual (i.e., linked to characters). In this study, the lecturer under consideration is also the 

researcher and the author of this paper. At the end of the lesson, the students were informed about the 

study and invited to provide their notes for research purposes. I am aware of the potential issues 

concerning this method of data collection, and I followed ethical guidelines in order not to expose the 

students to risk. Ten students offered their notes; of those I selected four to be analysed in this paper 

since they are contrasting. The students are identified with four fictitious names: Angela, Filippo, 

Roberto and Vincenzo. Their notes are analysed through a narrative lens, identifying: the 

mathematical characters; their setting; the mathematical actions, understood in terms of operations 

made on/by the mathematical characters; the plot, or the organisation of the content on the sheet of 

paper; the moral. The four students are inferred to be scribblers or thinkers by looking at these 

elements. The research questions read as follows: (a) how do students organise their notes? (b) which 

elements of the teacher’s “story” are recorded, and which ones are discarded? (c) in which cases do 

the students act as scribblers and in which ones as thinkers? 

  



Data analysis 

Figures 1-8 report the four students’ notes regarding the two tasks. Since they are in Italian, a 

translation is provided in the caption of each figure. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Filippo’s notes about the “conceptual task”. On the first row, he writes “q(x) divisible by p(x)”, 

then he draws an arrow and writes a ratio, from which he draws another arrow and writes “polynomial”. On 

the second row, he writes “example” and in the third row he writes a formula. In the last row: “hence it 

means that there exist a polynomial g(x) such that I can write q(x) = a(x)p(x)”. 

  

 

 

 

 

Figure 4: Roberto’s notes about the “conceptual task”. On the first row, he writes “q(x) divisible by p(x)”, 

then he draws an arrow and writes “a polynomial a(x) | q(x) = a(x)p(x)”. 

Vincenzo’s notes (Figure 1) report exactly what the lecturer wrote on the blackboard. From these 

notes, we can see that the story has: (A) two mathematical characters, p(x) and q(x) and there’s a 

relationship between them, being the latter divisible by the former; (B) the mathematical action is a 

division; (C) the moral is that there exists a polynomial a(x) such that q(x) = a(x)p(x). Vincenzo’s 

plot is linear: each row is put below the other one, with no connections. The plot of Angela’s story 

(Figure 2) is also linear: (A) is followed by (B) that is followed by (C). But she also adds an arrow 

on the right side of (B) and she writes “result”, then another arrow and then “polynomial”. These 

Figure 1: Vincenzo’s notes about the 

“conceptual task”. On the first row, he 

writes “q(x) divisible by p(x)”. On the 

second row, he writes a formula and in 

the last row: “polynomial a(x) s.t. q(x) = 

a(x)p(x)”. 

 

Figure 2: Angela’s notes about the “conceptual 

task”. On the first row, she writes “q(x) divisible 

by p(x)”. On the second row she writes the ratio, 

then she adds an arrow and writes “result”, then 

another arrow and “polynomial”. On the third row, 

she writes “hence there exists a polynomial a(x) 

such that q(x) = a(x)p(x)”. 

 



details have been told by the lecturer orally. For Angela, it is worth noticing that the result of the 

mathematical action is a polynomial (which is a(x), a new character), namely a character that still has 

the same properties of the other two. While the setting was implicit in Vincenzo’s notes, it emerges 

in Angela’s ones: the setting is the set of polynomials. Instead of the mathematical symbol for “there 

exists”, she writes in words and she also adds “hence” at the beginning of (C): the moral is made 

more explicit and the verbalisation is less condensed compared to Vincenzo. Filippo (Figure 3) 

organises the plot in a non-linear way: he writes (A) and on the same row he writes (B), to which he 

draws an arrow and writes “polynomial”. Like Angela, Filippo also remarks about this detail. 

Vincenzo and Angela do not write down the example, while Filippo does. Hence, a story in the story 

is told: it’s the story of the two characters that become two particular polynomials. At the end of the 

story, Filippo writes (C) in a fashion that is similar to Angela’s. 

Filippo’s story is slightly less linear than the stories re-told by Angela and Vincenzo, but the student 

that writes a different plot is Roberto (Figure 4): he writes (A), an arrow, then (C) on the first row, 

namely he puts at the first line the characters and the moral, then on the second row he writes the 

action, which is (B), and the story in the story, namely the example. We can infer that Roberto is a 

thinker, since he re-organizes the knowledge, while Vincenzo is a scribbler, since he reports the story 

in a linear way. Angela and Filippo also act as scribblers: in a sense, we can say that they are more 

accurate than Vincenzo, since they report more details, but do not re-organise the content of the lesson 

as Roberto does. Roberto, in fact, does not only remark what is worth noticing, he establishes a 

hierarchy in the mathematical content: characters and moral on the same, first row, and the action 

plus the example on the same, second row.  

  

 

 

 

 

 

Figure 5: Filippo’s notes about the “procedural task”. On the first row, he writes “Exercises on euclidean 

division and Ruffini’s division”. To the right of the first arrow he writes “Ruffini is used because a first order 

polynomial is present”. To the right of the arrow pointing to -60, he writes “this division is a factorisation, 

because there’s no reminder”. 

If we look at the “procedural task” in Filippo’s notes (Figure 5), we notice that he employs a more 

linear structure compared to the “conceptual” task. He writes: (0) the title of the story (“Exercises on 

the Euclidean division and Ruffini”), then (1) he presents the characters P(x) and Q(x), then (2) the 

series of actions in the Ruffini’s grid. The new character, (3) A(x), the result of the actions, is present 

to the right of the grid. At the right side of the paper he adds comments that are connected to the 

“story” by means of arrows: such comments better characterise, and justify, the actions that are made. 

Like in the conceptual case, we see them as details that are worth to be noticed by Filippo. Like in 

the conceptual case, we can say that Filippo is an accurate scribbler. Vincenzo’s notes (Figure 6) also 

have a linear structure with no connections between (1) and (2), or between (2) and (3). Vincenzo 

also adds the comment “we use Ruffini when we divide by an order-1 polynomial”, but this comment 

about the actions is put below the characters with no arrow. 



  

  

 

 

 

 

 

 

 

 

 

 

Figure 8: Roberto’s notes about the “procedural task”. 

 

Angela’s notes (Figure 7) reflect exactly what the lecturer wrote on the blackboard. The notes have 

no words, just symbols: we can say that there’s only one register present, the symbolic one. She 

records the characters, i.e. (1), the actions, i.e. (2), and the new character that results from the action, 

i.e. (3). Differently from Filippo, whose notes have a rather linear structure, Angela’s ones are even 

more linear and essential, as if she wants to record just the essential facts. Like Vincenzo, Angela is 

an (inaccurate) scribbler. 

Roberto (Figure 8) records (1), then (2), then (5)-(3)-(4) on the same line. To the right of (1) he 

remarks “Ruffini, because x=5 is such that P(5)=0”, hence noticing a detail that is different from the 

ones recorded by Filippo and Vincenzo and also less general than those: Ruffini’s algorithm can be 

used for any value of x when q(x) is an order-1 polynomial, not only for those polynomials where the 

value of x is a zero. Since the lecturer has said something different (see Filippo’s or Vincenzo’s 

notes), we can infer that Roberto added a detail that generated from his own knowledge about 

polynomials. As for the conceptual task, Roberto reorganises the space of the sheet and we can infer 

that he acted as a thinker. 

Discussion 

I discuss the data analysis in terms of what the distinction between scribblers and thinkers can add to: 

(1) our knowledge of the students’ verbalisation skills (responding to the question which elements of 

the teacher’s “story” are recorded, and which ones are discarded?); (2) our understanding of how the 

students organise their knowledge (how do students organise their notes?); (3) whether the teaching 

Figure 6: Vincenzo’s notes about the “procedural 

task”. The first sentence reads “We use Ruffini 

when we divide by an order-1 polynomial”. 

 

Figure 7: Angela’s notes about the “procedural 

task”. 



strategies have an influence on conceptual and procedural understanding of mathematics (when do 

the students act as scribblers and when as thinkers?). I would like to underline that I am not valuing 

“thinker” over “scribbler”, on the contrary I am interested in seeing which elements of the lesson 

provoke either modality in students. Comparing Angela’s and Vincenzo’s notes, I tend to say that 

both them act as scribblers in both tasks. I can further infer that Angela is a scribbler because the 

course is recapitulating mathematical concepts that are familiar for her: she probably does not need 

to put so many details in her notes. Angela’s notes of the procedural task report only what has been 

written on the blackboard. Looking at her notes for the conceptual task, furthermore, I commented 

that she had time to record details that are worth to be noticed and she didn’t give us the impression 

that she was rushing to keep the pace of the lecturer. For Vincenzo, it is a completely different story: 

he records only what has been written on the blackboard during the conceptual task and during the 

procedural one he added “We use Ruffini when we divide by an order-1 polynomial” to his notes 

with respect to what has been written on the blackboard. I can see that Vincenzo is struggling to 

remark all that is relevant, since the lesson is difficult for him. A conclusion that can be drawn from 

these observations is that a student acts as a scribbler in two cases: either if the mathematical content 

is too easy for her, or if it is too hard.  

Nardi (2011) pointed out that the students under-verbalise and hyper-condense the mathematical 

discourses. As regards the conceptual task, I can see that Vincenzo and Roberto condense the 

mathematical content more that Filippo and Angela, but Roberto does it in a completely different way 

compared to Vincenzo: Roberto compresseseorganises the content, to have the character and the 

moral on the same row, and the actions plus the example on the second row, while Vincenzo linearly 

puts the elements of the story one after the other. Andrà (2010) analysed the teaching styles of 

university lecturers and concluded that in a blackboard modality (namely, when the lecturer is mostly 

writing on the blackboard) the students have to adjust the pace of their note-taking to the pace of the 

lecturer’s writing. By comparing Vincenzo’s and Roberto’s notes, indeed, I can imagine the former 

making an effort in dealing with a pace that is too fast for him, to the point that he does not have time 

to record the details that Angela and Filippo remarked, while Roberto seems to stop and think (fast) 

where he wants to put what is told by the teacher. Angela and Filippo can be seen as accurate 

scribblers, and it seems that they tend not to hyper-condense the math content. As well, Angela and 

Filippo tend not to under-verbalise when they take notes on the conceptual task. Why are some 

students more accurate scribblers than others? Andrà (2010) interpreted this difference in terms of 

each student’s ability to keep the pace of the lesson at the blackboard, but I would also add that it 

depends on the student’s views: for some students, it seems necessary to record all the possible details, 

while for others it seems a question of being brief. Looking closely at Angela’s notes, and comparing 

her notes on the conceptual task and on the procedural one, I can see a difference: in the first case, 

she adds details and comments that she discards in the second case. Vincenzo does not add comments 

in neither case, and Filippo accurately adds details in both cases, hence Angela seems to be the student 

on which the procedural vs conceptual nature of the task provokes different modalities of taking notes, 

and actually the conceptual nature of the task invites her to remark more details. This seems to have 

an impact on her verbalisation skills and on conceptual reflection. 
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The transition from secondary to tertiary mathematics encompasses a complex interaction of social, 

academic and mathematical context changes, including a vast array of emotions, beliefs and issues. 

The present paper reports a study of the difficulties faced by a first year undergraduate student in a 

Mathematics Department during her transition from secondary to tertiary education through the 

lenses offered by a rite of passage framework. Data were gathered over the student’s first two 

semesters of attendance predominately through interviews. The results indicate difficulties she faced 

regarding the mathematical content and a powerful interaction between emotions and the 

reconstruction of her mathematical thinking.  

Keywords: Transition, university mathematics, rite of passage, reconstruction.  

Introduction 

The secondary-tertiary transition is itself an exciting and often confusing experience for students. 

After tough examinations, the successful students have yet to adjust to new learning environments, 

new modes of study, and above all, higher expectations.  

The problems encountered in the transition from high school to university mathematics are common 

in every educational system worldwide. Several researchers identify a “gap” between school and 

university mathematics content (Luk, 2005; Kajander & Lovric, 2005; Winsløw, 2013), while others 

identify important changes that affect students during the secondary-tertiary transition. These include 

the new academic and social environment as well as the shift required to a different mathematical 

way of thinking and studying (Cherif & Wideen, 1992; Tall, 1992). 

The aim of this paper is to study the ways in which a first-year student in the Department of 

Mathematics at the University of Athens dealt with transition issues through the lens offered by a rite 

of passage framework, focusing on the ways that changes in the student’s social life and the academic 

environment shaped the reconstruction of the mathematical thinking required. 

Literature review 

The transition from high school to university mathematics could be seen as an interaction of many 

transitions: social, academic, mathematical content transitions as well as others (Alcock & Simpson, 

2002). University as an institution and university mathematics are encountered as a new world, with 

a new language and new rules that make the novice student feel like a foreigner (Gueudet, 2008).  

With respect to the social dimension, Hernandez-Martinez et al. (2011) considered the social aspects 

of transition as the most important when entering university. Students argue that the beginning of 

university life can be a quite scary and nerve-racking phase for many but also an “exciting” personal 

opportunity to develop in a “better environment”. Some recall being quite shy in the beginning but 

becoming more confident over the first year. Going to college is about “working harder” but also 

about expanding social life. The change from a structured, parent-disciplined life to a self-disciplined 



university life is difficult. First-semester students claim that the change of the education environment, 

new expectations and unlimited freedom are the biggest problems (Cherif & Wideen, 1992; Clark & 

Lovric, 2008).  

Concerning the academic dimension, students in transition undergo changes requiring an adjustment 

of learning strategies, time management skills and a shift to more independent studying. They 

experience changes in teaching and learning styles. They often encounter a higher level of 

competitiveness among their unknown colleagues (Clark & Lovric, 2008). The new environment 

demands a different type of critical thinking, something for which students are not necessarily 

prepared (Cherif & Wideen, 1992). 

As far as the mathematical content is concerned, first-year university students often face 

the move to more advanced mathematical thinking [which] involves a difficult transition, from a 

position where concepts have an intuitive basis founded on experience, to one where they are 

specified by formal definitions and their properties reconstructed through logical deductions (Tall, 

1992, p. 1)  

Furthermore they are confronted with a significant change from a computational to a proof-based 

learning and teaching approach. Some concepts learned at high school need to be reconstructed at the 

tertiary level thus increasing the transition’s difficulties. In tertiary mathematics courses students are 

exposed to the introduction of abstract concepts and formal reasoning; they witness an increased 

emphasis on the precision and rigor of the mathematical language, and this is very new for them 

(shock of the new) (Clark & Lovric, 2009). The relevant literature seems to agree that more relational 

and conceptual understanding as well as more flexibility in solving mathematical problems compared 

to high school mathematics is expected (Breen, O’Shea, & Pfeiffer, 2013). In other words, a shift 

from “instrumental understanding” to more “relational understanding” is required.  

Theoretical considerations  

We employed the rite of passage approach (Clark & Lovric, 2008) to explore the ways in which the 

subject of the study dealt with transition issues. We considered the transition from high school to 

university mathematics as a rite of passage, a concept explored in anthropology and in other 

disciplines (e.g. in cultural studies). French anthropologist Arnold van Gennep (1960) (in Clark & 

Lovric, 2008) described and analyzed certain events that, in one way or another, create a “crisis” in 

an individual’s life. He observed that these “life crises” (e.g., birth, betrothal, marriage, or death) 

possess a similar general structure, and based on this, developed a three-stage theory of what he called 

rites of passage. In the separation stage, the person experiencing a crisis gets “removed” from the rest 

of the community (family, social group, etc.). The process of achieving necessary changes constitutes 

the liminal stage. In the incorporation stage, the person learns about the community that she/he will 

belong to at the end of the rite. With the support of members belonging to the communities involved, 

she/he is supposed to find her/his place in the new community. Applied to mathematics, the model 

suggests that one could analyze problems and issues in transition by studying their dynamics within 

three stages: (a) separation (from high school) which takes place while students are still in high 

school, and includes anticipation of forthcoming university life; (b) liminal (from high school to 

university) that includes the end of high school, the time between high school and university, and the 

start of first year at a university; (c) incorporation (into university) concerning roughly the first year 



at a university (Clark & Lovric, 2008). Although Clark & Lovric (2008) suggest applying the rite of 

passage model with regard to the mathematical content only, we utilize a methodology for revealing 

the dynamics and the connections within all three dimensions (social, academic and mathematical 

content).  

The study 

Situated within the literature reviewed above, the study reported here is part of an ongoing research 

project aimed to examine the interface between social, academic and mathematical content aspects of 

the transition from high school to university mathematics. In particular, the research questions 

pursued in the study were as follows: 

1. What was the dynamics exposed in each of the three stages of the rite of passage along the 

three dimensions (social, academic and mathematical content)?  

2. How do academic and social dimensions interact to shape the passage from the liminal to the 

incorporation phase regarding mathematical content?  

Greek students who want to enter University go through hard preparation to pass the exams in their 

last high school year. During their final high school year, most of the students undergo a strictly 

structured life program, including many hours of daily study almost always under the guidance of 

school teachers and private teachers in paid courses after school. They are introduced to Calculus, 

coming across proofs, the emphasis of teaching being, however, more on computational than 

conceptual learning/understanding. As first-semester university mathematics students, they are 

introduced again to Calculus but this time in formal terms, more as Mathematical Analysis. This 

constitutes a qualitatively big jump for their thinking. Furthermore, there is hardly any support around 

provided either by the academic staff, in the form of learning advisors, or by higher-years students 

and/or the Students’ Association.  

In October 2015 we started surveying incoming first-year students (October 2015-June 2016), 

collecting information. Twelve students volunteered to be interviewed individually to help us look 

thoroughly at the issues described above. Four semi-structured interviews (in the beginning of the 

first semester, before the semester exams, in the middle of the second semester and before the second 

semester exams) were carried out, each lasting between 25 and 45 minutes; these were audio-recorded 

and fully transcribed. Students were asked about their conceptions of university mathematics, how 

their experience of mathematics at school differed from that at the university, how their study habits 

or ways of working had changed, how they felt being a member of a new academic environment and 

how they dealt with the changes in their social-personal life.  

One of these students, Nefeli (a pseudonym), is the focus of this work. We chose Nefeli because her 

responses during data collection strongly indicated that she was undergoing a rite of passage 

regarding mathematics: although she was doing well in mathematics (her grades were good at school 

and also in the university entry exams, 16/20 on average), in the beginning of her first university year 

she felt that perhaps it had not been a good decision to study mathematics. She was negatively affected 

because of the overwhelming changes imposed in her lifestyle and the new academic environment 

that strongly influenced her studies. She even considered quitting. Only after the first semester exams 

did she started adapting to the new environment, and at the end of the first year she almost felt well 

adjusted.  



Results 

Nefeli’s representative comments and thoughts related to transition and expressed in the contexts of 

the four interviews were organized along three dimensions, social, academic and mathematical 

content, within each of the three phases of a rite of passage, as presented in Tables 1, 2 and 3. In the 

following, some central issues emerging along each of these dimensions and across the three phases 

are discussed.  

The social aspects of the transition were seen by Nefeli as among the most important (but also 

worrying) issues. She highlighted mainly two of them: (a) the home-university distance and (b) her 

relationships with classmates and friends (Table 1). 

Social dimension Separation phase Liminal phase Incorporation phase 

(a) the home-

university distance 

 

 

 

 

(b) her relationships 

with classmates and 

friends.  

S1:“School was near 

my home”. (1st 

interview) 

 

 

 

 

S5: “I try also to 

spend some time 

with my friends from 

school and 

neighborhood which 

is not easy…they 

hardly understand 

that I have to study 

hard”. (2nd 

interview) 

 

S2:“I am negatively 

affected because of 

the long home-

university distance”. 

(1st interview) 

S3: “I manage time 

better, but I’m still 

undergoing a total 

change in my former 

well organized life”. 

(2nd interview) 

 

S6: “Some interesting 

people I have met 

here helped me to 

adjust myself to the 

new environment”. 

(1st interview) 

S7: “With my 

classmates I have the 

feeling that we 

discuss mostly issues 

about our studies but 

in a competitive 

way”. (2nd interview) 

S4: “I have the 

opportunity to manage 

my time as I want, 

although not so 

effectively all the 

time”. (3rd interview) 

 

 

 

 

 

S8: “I met some 

higher-year students 

who helped me a lot to 

adjust to the new 

environment”. (3rd 

interview) 

 

 Table 1: Social aspects through the three transition phases  

Nefeli experienced big changes in the new academic environment (academic dimension). A vast array 

of answers is identified in her interview responses: from great expectations for a creative teacher-



student relationship and academic staff support to her statement that some professors do not care at 

all if students understand their lectures. Two critical features are (a) teacher-student relation and (b) 

lack of support (Table 2). 

Academic dimension Separation phase Liminal phase Incorporation phase 

(a) teacher-student 

relationships 

 

 

 

 

 

 

 

 

 

 

(b) lack of support   

A1: “I had great 

expectations for a 

creative teacher-

student 

relationship”. (1st 

interview)  

  

 

 

 

 

 

 

 

A6: “I have 

expectations for 

academic staff 

support, like in high 

school”. (1st 

interview) 

 

 

A2: “I couldn’t 

understand what was 

written on the 

blackboard”. (1st 

interview)  

A3: “I believe that 

professors and 

students are not 

close enough.... 

Professors take it for 

granted that students 

understand 

mathematics. They 

have many academic 

expectations from 

them. I am afraid to 

ask the professor, if I 

don’t understand 

something, because 

he may think that I 

am stupid”. (2nd 

interview) 

 

A7: “I am negatively 

influenced by the 

absence of help from 

the Student 

Association and the 

absence of a Student 

Learning Advisor”. 

(4th interview) 

 

A4: “I have to say that 

some professors 

guided us well 

enough…I felt better 

asking questions and 

the truth is that I did 

not receive a negative 

treatment from the 

professors”. (3rd 

interview)  

A5: “I was positively 

influenced by the 

guidance of some 

teachers who inspired 

me to listen to them”. 

(4th interview) 

 

 

 

 

 

 

A8: “…my adjustment 

was getting better after 

a long time with great 

mental and spiritual 

effort...”. (4th 

interview) 

 

Table 2: Academic aspects through the three transition phases 

Regarding studying mathematics (mathematical content dimension), Nefeli lost her self-confidence 

at the beginning. As time went by, she confronted studying mathematics as a challenge: to turn her 



disappointment and stress to something powerful and effective. She highlighted two main issues (a) 

the psychological impact of the “unknown subject” and (b) the new way of studying (Table 3). 

Mathematical 

content dimension 

Separation phase Liminal phase Incorporation phase 

(a) the psychological 

impact of the 

“unknown subject” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) the new way of 

studying 

M1: “I thought that I 

was good in 

mathematics because 

of my good school 

grades and because I 

passed the university 

entrance exams also 

achieving good 

grades”. (1st 

interview) 

 

 

 

 

 

 

 

 

 

 

M6: “I experienced a 

big change. In high 

school, we did not 

pay much attention 

to the conceptual 

understanding. 

Teachers told us 

what to study and 

how”. (1st interview) 

M2: “When I started 

studying university 

mathematics, I was 

desperate. I was 

wondering if I had 

taken the right 

decision”. (1st 

interview) 

M3: “I am still 

thinking that maybe 

it wasn’t a good 

decision to study 

mathematics. If I 

could say only one 

thing that I still 

struggle with, this is 

the difficulty of the 

subject. … I felt I 

turned my love to 

mathematics to 

something sick….”. 

(2nd interview) 

 

M7: “I try to change 

the way of studying. 

I try very hard on my 

own to understand. I 

try to deepen more 

in definitions and 

theorems”. (1st 

interview) 

 

M4: “I am in a position 

now to say that the 

more I study 

mathematics the more 

I love mathematics and 

I am happy with my 

choice”. (3rd interview) 

M5: “I feel more 

confident. The exams 

were less demanding 

than I expected. I 

passed the exams with 

good grades”. (4rd 

interview) 

 

 

 

 

 

 

 

M8: “…I realized that 

to do well on the first 

semester exams, I had 

to use my “simple” 

knowledge inductively 

to solve a problem, 

rather than knowing 

many things”. (3rd 

interview) 

Table 3: Mathematical content aspects through the three transition phases 

The results show the dynamics and the connections identified within all dimensions through the three 

transition phases. As we follow Nefeli’s steps, we can see that in the separation phase she had to deal 

with her expectations concerning her social and academic life (S1, S5, A1, A6) and “move away” from 

her former way of living and studying (M1, M6), which is characteristic of this phase. Some of these 



changes affected her almost until the end of the first year (for example the lack of studying support). 

She struggled a lot to achieve necessary changes (a process assigned to the liminal phase), something 

that also affected her self-confidence as a math student (A2, A3, M2, M3, M7). Her great mental and 

emotional effort as well as the support of some higher year students and the influence of some 

inspiring professors (S8, A8, A4, A5) helped her to take the next step. After the first semester exams 

and more clearly near the end of the first year, it looks like she had also managed to find the necessary 

way of studying (M8). Overall it seems that she was close to finding her place within her new 

community, which is a feature of the incorporation phase (S4, M4, M5). Her success in Calculus I and 

II exams (8/10 and 10/10) can be seen as a positive outcome of her efforts. 

Discussion and conclusions 

Regarding our first research question, we found that the rite of passage framework brings out the 

dynamics of all dimensions. We followed Nefeli passing from one well-defined, established and 

accepted position in life to another, which is equally well-defined, established and accepted (Clark & 

Lovric, 2008). Nefeli saw university as an institution and university mathematics as a new world, 

with a new language and new laws that made her feel like a foreigner (Gueudet, 2008). She 

experienced a big change in her social and academic life which affected her studies as noted by 

Hernandez-Martinez et al. (2011). She struggled with the shift from “instrumental understanding” to 

more rational and conceptual understanding (Breen et al, 2013). As Tall (1992) suggested, in order 

to achieve the transition, students should adopt a new way of thinking, a prerequisite also 

acknowledged by Nefeli. Organizing her thoughts and comments within the phases of a rite of 

passage, we could identify some initial steps of the necessary shift to a new “mathematical self-

identity” needed.    

Regarding our second research question, the results of our analysis reveals dynamics and connections 

between all three dimensions (social, academic and mathematical content). To pass from the liminal 

to the incorporation phase concerning the mathematical content, Nefeli had to feel better in the new 

academic environment and also try to deal effectively with her social life. For example, she appears 

to shift from the position that she felt undergoing a total change (in her former well organized -by 

others- life) during the liminal phase, to finding some positive aspects in her new self-disciplined 

university life (“I have the opportunity to manage my time as I want” and “I realized I had to use my 

“simple” knowledge inductively to solve a problem). This is in accordance with Tall’s (1991) position 

that: 

Advanced mathematics, by its very nature, includes concepts which are subtly at variance with 

naïve experience. Such ideas require an immense personal reconstruction to build the cognitive 

apparatus to handle them effectively. It involves a struggle…and a direct confrontation with 

inevitable conflicts, which require resolution and reconstruction (p. 252)  

We consider that our study constitutes a good starting point for exploring specific transition issues 

more extensively. A deeper investigation of the interaction between different aspects of transition 

from high school to university mathematics is needed. The analysis of other students’ interviews 

indicates that the rite of passage lens allows for critical social and academic aspects shaping the 

passage to the new ‘mathematical world’ to be identified. Overall we view studying university 

mathematics as a multidimensional process requiring the reconstruction of mathematical thinking. 



Fulfilling this reconstruction demands a repositioning of the student considering the new social and 

academic community. To this end, the institution should systematically offer students’ support, and 

in a well-organized manner, since the lack of which, as the results indicated, might affect students’ 

self-confidence and successful adjustment to the new environment.  
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about tangent line in university mathematics students’ discourses 
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This paper reports from a study on first year university mathematics students’ meaning making of 

tangent line, especially in their transition between mathematical contexts: algebraic, geometrical 

and analytical. The analysis draws on the commognitive approach (Sfard, 2008) in order to identify 

characteristics of responses to a questionnaire in which 182 students were asked to explain in 

simple words the tangent line, describe its properties, provide its definition and identify if a drawn 

line is a tangent of a given curve. Findings suggest that students engage with analytical, 

geometrical and algebraic discourses in their substantiations about tangents, sometimes by 

engaging with more than one discourse in the same response or/and across different responses in 

the same script. 

Keywords: Tangent line, mathematical discourse, derivative, narratives, routines. 

Introduction 

Research reports students’ difficulties with their meaning making of the tangent line to a function 

graph. These difficulties have been attributed to students’ encounter with the tangent line in 

different mathematical contexts (e.g. Euclidean geometry, analytic geometry or analysis), 

disconnection between algebraic or analytical approaches (e.g. rate of change, slope, derivative or 

tangent line formula) and graphical approaches (e.g. limiting position of secants, visualisation of 

tangents) and differences between a global perspective (relation of the line and curve as a whole) 

and the local perspective (relation of the line to the curve at a specific point). Most challenging 

cases are: when the tangent has more than one common point with the graph (e.g. f(x)=sinx at π/4) 

or coincides with the graph or a part of it (e.g. when the curve is a straight line); tangency at 

inflection points (e.g. f(x)=x3 at 0); and, points in which the limit of the difference quotient from the 

left and the right are different real numbers (e.g. f(x)=x at 0) or infinity (e.g. f(x)=x at 0) (Biza, 

Christou & Zachariades, 2008; Castela, 1995; Park, 2015; Vinner, 1991). 

In this paper, I draw on my previous research on students’ perspectives about tangent line (Biza et 

al., 2008; Biza & Zachariades, 2010) by analysing not only what lines students recognise as tangent 

or not, but also by considering how they justify their choices. The conjecture I examine here is that 

students use a range of arguments from geometry, algebra and analysis to justify their choices that 

go beyond the correctness or not of these choices. With this analysis, my objective is to gain insight 

into how students make meaning of mathematical objects – in the case of this paper tangents – 

through their communication about them. To this aim, I analyse first year university mathematics 

students’ responses to a questionnaire about tangent line by drawing on the commognitive approach 

(Sfard, 2008). In what follows, I introduce the main tenets of the commognitive approach that I 

employed in the analysis, and the methodology of the study. Then, I present preliminary findings 

from the analysis and I discuss them also in relation to potential implications for teaching. 



Theoretical underpinnings of the study 

According to the commognitive approach (Sfard, 2008) communication about mathematics in 

written or verbal responses is not a window to thinking but an inseparable part of this thinking that 

makes sense only in the context in which this communication takes place. A mathematical discourse 

is defined by four characteristics: word use, visual mediators, narratives and routines. Word use 

includes the use of mathematical terms (e.g., in the context of this study, ‘tangent’, ‘derivative’ or 

‘direction coefficient’) as well as everyday words with a specific meaning within mathematics (such 

as ‘touch’, ‘region’ or ‘point’). Visual mediators include mediators of mathematical meaning (e.g., 

function graphs, diagrams, geometrical figures or symbols) as well as physical objects. Narratives 

include texts, written or spoken, which describe objects and processes as well as relationships 

among those (e.g., definitions, theorems or proofs), and are subject to endorsement, modification or 

rejection according to rules defined by the community (e.g., ‘a tangent line is a line that has one 

common point with a curve’ is an endorsed narrative for tangents in Euclidean geometry but not in 

analysis). Routines include regularly employed and well-defined practices that are used in distinct, 

characteristic ways by the community (such as defining, conjecturing, proving, estimating, 

generalising and abstracting). Sfard elaborates three kinds of routines: deeds, explorations and 

rituals where explorations are categorised into substantiations, recall or constructions (ibid, pp. 

223–245). Recently, there has been increasing interest in discursive approaches and, especially, in 

university mathematics teaching and learning research, discursive approaches are gaining more 

momentum (Nardi, Ryve, Stadler, & Viirman, 2014) in the investigation of university teachers’ 

discursive practices (e.g. Park 2015; Viirman, 2015) and student learning (e.g. Güçler, 2016).  

In this study, students’ responses to a questionnaire are seen as acts of communication and thus part 

of their meaning making about tangent lines. Mathematical routines such as investigating if a line is 

a tangent (see question Q3 in Figure 1) can be explorations that include recall of previously 

endorsed narratives, substantiations of narratives about why a line is (or is not) tangent or 

constructions of new objects such as formulae and graphs. However, there are differences in the 

mathematical discourses about tangency in analysis, geometry and algebra. For example, in 

Euclidean geometry, whether a line is tangent or not depends on the number of common points and 

the relative position between the line and the curve (geometrical routines) because a tangent line to 

a circle has one common point and keeps the circle to one side (geometrical narratives). In analysis, 

tangency is checked locally (analytical routine) and is defined by the derivative at a point 

(analytical endorsed narratives) which is the slope of the line (algebraic narrative). In algebra, the 

tangent line will be justified through calculations (algebraic routine) of the slope and defined 

through its equation or the vector that gives its direction (algebraic narratives). Identifying how 

students’ responses to a questionnaire engage with these discourses is the focus of this paper. 

Methodology 

Data reported in this paper were collected from a questionnaire administered to 182 first year 

university students (97 female) from mathematics departments in Greek universities. All 

participants had been taught about the tangent line in Euclidean and analytic geometry, and in 

elementary analysis courses in Years 10, 11 and 12, but not yet at university as the questionnaire 

was administered at the beginning of their first year. The questionnaire included tasks (see a sample 

of questions from the questionnaire in Figure 1) in which the students were asked to explain in their 



own words the tangent line (Q1); to describe properties of it (Q2); to identify if a drawn line is a 

tangent line of a given curve (Q3); to construct the tangent line, if it exists, of a given curve through 

a specific point on the curve or outside the graph (Q4 and Q5); to provide definitions (Q6), to write 

the formula, and to apply the formula in specific cases (Q7 and Q8). In questions Q3, Q4 and Q5 

only the graph was provided and no formula of the corresponding curve was given; students were 

asked to identify or construct the tangents based on the graphs and justify their choices. The 

proposed curves were chosen to reflect students’ common difficulties with tangent lines identified 

by previous research (Biza et al., 2008; Castela, 1995; Vinner, 1991). For example, the 

corresponding line: had more than one common point with the curve (e.g., in Figure 1, Q3.b and 

Q3.c in comparison to Q3.a challenge the geometrical routine of checking the number of common 

points and the relative position between the line and the curve) or passed through an inflection point 

(e.g., in Figure 1, Q3.d and Q3.e challenge the geometrical routine of the relative position between 

the line and the curve) – for more about the questionnaire design see Biza et al. (2008).  

 

Q3: Which of the lines that are drawn in the following figures are tangent lines of the 

corresponding graph at point A? Justify your answers. 

     
Q3.a Q3.b Q3.c Q3.d Q3.e 

Q6: What is the definition of the tangent line of a function graph at its point A? 

 
 

 

 

 

 

 

 

Q1: Explain, in simple words, what you are thinking when you hear the term “tangent line”. 

Q2: Write as many properties as you can think of about the relationship between a curve and 

its tangent line at a point A. 

 

Figure 1: Questionnaire sample 

In earlier analysis (Biza & Zachariades, 2010), student choices in questions Q3, Q4, Q5, Q7 and Q8 

were characterised according to their correctness and analysed quantitatively. This analysis 

suggested a classification of students regarding their perspectives on tangent line and its relation 

with the corresponding curve into three groups with analytical local perspectives (closer to the 

tangent line in the context of analysis – 25.8%); geometrical global perspectives (more relevant to 

the tangent line in the context of geometry – 17.6%); intermediate perspectives between the 

analytical local and the geometrical global perspectives (56.6%). Although this classification 

indicated a spectrum of students’ perspectives about tangency, it does not grasp the subtlety of these 

perspectives as they were evident in students’ choices and justifications of these choices. To this 

aim, student responses to questions Q1, Q2 and Q6 and their justifications in questions Q3, Q4 and 

Q5 were analysed qualitatively. Part of this analysis focuses on the mathematical discourses 

students engaged in in their responses (analytical, geometrical and algebraic) with specific emphasis 

on the words used, routines and narratives, substantiation of these narratives, how this discourse is 

related to their choices (correct or not) in the questionnaire and the consistency of student responses 

across the questionnaire. This paper discusses preliminary findings from the 182 student responses 

to the items: Q1, Q2, Q3a-e and Q6 presented in Figure 1. 



Student justifications on why the sketched line is a tangent or not 

Justifications students offered in order to accept or reject a tangent line when it does not have any 

other common point and keeps the graph at the same semi-plane (Q3.a) or when it has other 

common points sketched (Q3.c) or not (Q3.b) are summarised in Table 1. 

Justification Script Example 

Rejection of the line as a tangent  

Common points between line and 

curve, global view 

“No [it is not a tangent], the line has 2 points in common with the 

function graph” 

Relation of the line and the curve, 

global view 

“No it is not a tangent, although it touches1 the function graph at the 

point A, it cuts [the graph] at another point” 

Relative position of the line and the 

curve, global view 

“[The line] splits the curve in two semi-planes”  

Only local acceptance of the 

tangency 

“Not [a tangent] in general […] in a small interval (δ>0 (x-δ, x+δ) it 

is [tangent]” 

Derivative / differentiability “Although the function is differentiable at A and thus it has a 

tangent, the extension of the [line] ε that goes through A has another 

common point with the function and as a result it is not a tangent” 

Acceptance of the line as a tangent  

Common points between line and 

curve, local view 

“[It is a tangent, b]ecause if we consider a small region (κ, γ) around 

the point A where [the line] ε is tangent we can see that [the line] ε 

does not touch any other point” 

Relation of the line and the curve, 

local view 

“Yes [it is tangent] because it touches exactly at [the point] A and it 

does not cut it [the graph]” 

Relative position of the line and the 

curve, local view 

“The part of the function graph which is close to the point A is 

located at the same side of the line ε” 

Common points between line and 

curve, global view 

“It [the line] has one common point with the curve” 

Relative position of the line and the 

curve, global view 

“f(x)>(ε)” 

Slope of the line “Yes, the line ε is tangent at A, the slope equals to the direction 

coefficient of the line”2 

Derivative / differentiability “It is [tangent] because it has slope [equals to] the derivative of the 

function at this point”  

Opposite rays “The rays ε1, ε2 which are tangents at A are opposite” 

Other “There is only one tangent at the point A” or “There is a limit which 

is the same from the left and the right side or “ε: it is tangent, the 

point A is defined and belongs to the domain of the graph” 

Table 1: Student choice justifications to questions Q3.a, Q3.b and Q3.c  

 

                                                 

1 Data have been translated from Greek to English. In Greek, the noun tangent [line] (εφαπτομένη [ευθεία]) and verbs 

such as being tangent, abut, touch (εφάπτεται) have the same origin. In Greek, the excerpt: “No, it is not a tangent 

because although it touches the graph …” sounds contradictory (“Όχι, δεν είναι εφαπτομένη γιατί αν και εφάπτεται στη 

γρ. παράσταση …”), one explanation is that the noun “tangent” draws on the mathematical discourse, whereas the verb 

“touches” draws on the everyday discourse.  

2 In the Greek curriculum, the “direction coefficient” is the coefficient m in y=mx+b, that indicates the slope of a line. 



Justifications students offered in order to accept or reject a tangent line when the tangency point is 

an inflection point (Q3.d and Q3.e) are summarised in Table 2. 

Justification Script Example 

Rejection of the line as a tangent  

Common points between line and 

curve, global view 

“No [it is not a tangent], because the curve and the line cut each 

other in several points” 

Relation of the line and the curve, 

global view 

“It is not [a tangent] because [the line] penetrates the curve”  

Relative position of the line and the 

curve, global or local view 

“It [the line] intersects the function graph by going to its both 

sides” 

Inflection point / concavity change “It [the line] is not tangent because A is inflection point” 

Change of function formula “Because the formula of the graph changes” 

Derivative / differentiability “The graph does not have tangent at [the point] A because the 

graph is an image of a function f and A(x0,f(x0)), f΄(x)=κ for x<x0 

and f΄(x)=λ for x>x0 κ≠λ close to x0” 

Solution of the corresponding system 

of simultaneous equations (line and 

curve) 

“[The line] ε is not tangent because the system line – curve has 

one solution and not a double solution” 

Other “more than 1 lines can be sketched through point A with at least 

one common point with the graph” or “if we consider the figure as 

two figures with A as the unique common point the line ε is a 

tangent of the two figures. If we consider the figure as a whole the 

[line] is not a tangent of this figure» 

Acceptance of the line as a tangent  

Common points between line and 

curve, local view 

 “The ε has only point in common with Cf in the region (xΑ-κ, 

xΑ+κ), κ>0 and very small” 

Common points between line and 

curve, global view 

“The line ε is tangent because it has one common point with the 

curve and the concavity of the graph changes at this point” (these 

participants rejected the line when it had more than one points in 

common) 

Opposite rays “It is [tangent] but for the right part of the function after A, tangent 

is the right part of the tangent and respectively for the left [part]” 

Slope of the line “Yes, the line ε is tangent at A, the slope equals to the direction 

coefficient of the line” 

Derivative / differentiability “derivative equals to the slope of the tangent” 

Inflection point / concavity change “It is [tangent] and the [point] A is inflection point” 

Other “The ε is tangent at the point A especially internal” 

Table 2: Student choice justifications to questions Q3.d and Q3.e 

In both set of questions students engage with analytical, geometrical or algebraic discourses. They 

use narratives such as derivative, differentiability, intervals, regions close to the tangency point, 

inflection point or concavity (analytical discourse); common points, relative position of curves, 

same-plane or ray (geometrical discourse); and, slope or system of simultaneous equations 

(algebraic discourse). Routines include checking for common points or for the relative position 

between line and curve (geometrical discourse) or for derivatives (analytical discourse) or slopes 

(algebraic discourse). Routines are applied locally around the point A (analytical discourse) or 

globally for the whole figure (geometrical discourse). Indicatively, of the justifications offered in 

Q3.c, 83.3% were geometrical (either global or local); 12.1% analytical; and, 4.6% a mixture of 

analytical and geometrical/algebraic. Whereas, in Q3.d, 70% were geometrical (either global or 

local); 2% algebraic; 22% analytical; and, 6% a mixture of geometrical and analytic/algebraic. 



Similarly, the word use includes verbal descriptions as well as terms and symbols from geometry, 

analysis and algebra. The relation of the line and the curve especially at the point A are described in 

a range of ways, not necessarily with consistent (in terms of the different discourses) meaning. For 

example, in questions Q3.d and Q3.e where point A is an inflection point the line intersects (τέμνει); 

pierces (τρυπάει); cuts (κόβει); crosses (διαπερνά) or bisects (διχοτομεί). The same word can be 

used with a range of meanings in different scripts or across the same script. For example, 

“intersection” may mean the common point regardless of the position of the curve in relation to the 

line, whereas in other cases (in the same or different scripts) it means the split of the curve into 

parts. The analysis aimed to identify evidence not only regarding the common points but also 

regarding the overall relation of the line and the curve and their relative position. These subtle 

differences are not always evident in student responses. 

Furthermore, the analysis indicated the use of endorsed narratives from more than one discourse in 

the same response or/and across responses within the same script. For example, student S[149] who 

performed well in all questionnaire items, writes in Q2:  

f΄(xA)=λ the direction coefficient. 
A

A

xx
A

xx

xfxf
xf

A 






)()(
lim)('  [analytical narrative]. At this point 

it [the line] has one “double” [his emphasis] common point with Cf [algebraic narrative]. It can 

have other common points with Cf, x≠ xA [geometrical narrative] 

and he sketches the graph in Figure 2a. In Q3.b and Q3.c he accepts the line because “it satisfies all 

the conditions” and in Q3.d he writes: “The [line] ε is [tangent] because f is differentiable at xA and 

ε has one (double) common point with Cf in the region (xA-κ, xA+κ), κ>0 and very small” [a mixture 

of analytical and algebraic endorsed narratives applied locally]. 
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0+x0)». Ενώ στην q3.14: «∆εν είναι γιατί στο διάστηµα (x-δ1, x+δ2) η ε έχει παραπάνω από 

ένα κοινό σηµείο µε την καµπύλη». Για τις ασκήσεις µε σηµεία καµπής ανέτρεξε στο 

επιχείρηµα της τοµής και όχι επαφής γράφοντας στην q3.6 ότι «η ε δεν είναι εφαπτοµένη 

γιατί τέµνει την καµπύλη και δεν εφάπτεται σε αυτή».  

Ο φοιτητής [123] έγραψε στην q1: «Εφαπτόµενη ευθεία είναι µια ευθεία που 

εφάπτεται σε ένα σηµείο Α µιας γραφικής παράστασης και σε µία µικρή περιοχή γύρω από 

αυτό δεν τέµνει την γραφική παράσταση» και στην q2: «Η κλίση της εφαπτοµένης στο 

σηµείο Α(x0,f(x0)) ισούται µε f΄(x0)». Στις q3.1 και q3.2 έδωσε την απάντηση που φαίνεται 

στην Εικόνα 6.5. Στην q3.6 όµως έγραψε: «ε - δεν είναι γιατί διχοτοµεί την f».  

 

Εικόνα 6.5. Άσκηση q3.1, φοιτητής [123] 

O φοιτητής [254] έγραψε στις q3.1, q3.2 και q3.3: «Είναι η ε εφαπτοµένη καθώς 

τέµνει τη γραφ. παράσταση σ'ένα µόνο σηµείο σε µια περιοχή του πεδίου ορισµού της» και 

σχεδίασε και αυτός περιοχή του σηµείου Α στο αντίστοιχο σχήµα. Σχετικά µε τις περιπτώσεις 

σηµείων καµπής, στην ερώτηση q3.6 έγραψε: «Όπως φαίνεται στο σχήµα η ε δεν είναι 

εφαπτοµένη χωρίζει τη γραφ. παράσταση» ενώ στην q3.10 θεωρεί ότι «η ε δεν είναι 

εφαπτοµένη στο Α γιατί έχει άπειρα σηµεία µε τη γραφ. παράσταση (όπως φαίνεται στο 

σχήµα)». Πάντως είτε µε το ένα είτε µε το άλλο επιχείρηµα δεν µπορεί να δεχτεί 

εφαπτόµενες στις περιπτώσεις των σηµείων καµπής. Στο σηµείο αυτό θα µπορούσαµε να 

δούµε και µια παραλλαγή του ΠΟ6 που θα ήταν: Εφαπτόµενη ευθεία µίας καµπύλης είναι η 

 

2a: S[149]’s response to Q2 2b: S[123]’s response to Q3.a 

Figure 2: Student responses 

Student S[123], on the other hand, who had difficulties with accepting tangency at an inflection 

point writes in question Q1: “The tangent line is a line that touches a graph at a point A and in a 

small area around it [the point] it does not intersect the graph” [geometrical narratives applied 

locally]. Then, in question Q2 he writes: “The slope of the tangent at the point A=(x0, f(x0)) is equal 

to f΄(x0)” [analytical narrative]. In Q3.a and Q3.b he accepts the line and justifies the choice: 

“Because if we consider a small interval (κ, γ) around the point A where [the line] ε is tangent we 

can see that [the line] ε does not touch any other point” (Figure 2b) [geometrical narratives applied 

locally]. In Q3.d he responds “ε – it is not [tangent] because it bisects f” [geometrical narrative].  

Another student (S[261]), who also had problems with tangency at inflection points, writes in Q1: 

“Gradient (λ), the tangency point, the formula of the line, f(x)=λ=(y2-y1)/(x2-x1), M(x,y), y2-

y1=f(x)(x2-x1)” [algebraic narratives]. Then in Q2 she responds: “The [point] A is a tangency point 



and belongs to the figure. It satisfies the equation of the tangent as well as of the figure. It is λ=tanω 

(the angle between the figure and x'x)” [algebraic narratives]. In Q3.a and Q3.b she accepts the line 

and justifies the choice: “(ε) is tangent at A [the line is] at the same side of the graph” [geometrical 

narratives applied globally]. In Q3.c she writes “(ε) is tangent at A only. There [the line is] at the 

same side of the graph” [geometrical narratives applied locally]. I have highlighted “there” in her 

response as an indication of the focus at the area around point A. In question Q3.d she responds: 

“(ε) not tangent. It intersects with the graph going through both its sides” [geometrical narratives 

applied locally]. Finally, in Q6 she responds by using mainly geometrical narratives with 

symbolisation from analysis:  

The tangent line of a function graph at a tangency point A=(x0, f(x0), that belongs to the function 

and the tangent, is a line that intersects the function without going from its one side to the other 

but remains at the same side of the function with only one common point the [point] A. [her 

emphasis] 

Discussion 

This paper reports on my first attempt to draw on the commognitive approach to analyse 182 first 

year university mathematics students’ justifications about tangent line. My initial conjecture was 

that students engage with different discourses (geometrical, algebraic or analytical) even for the 

substantiation of similar choices regarding the tangent line. Although the findings presented in this 

paper cover only a small slice of the data, in terms of questionnaire items, I would say that there is 

evidence supporting my conjecture. Students engage with analytical, geometrical or algebraic 

discourses in terms of the endorsed narratives and routines I identified in their responses. Also, the 

word use includes verbal descriptions as well as terms and symbols from geometry, analysis and 

algebra. Additionally, the same justification may engage with more than one discourse or/and 

different discourses across the script. Also, it seems that in several responses there are arguments 

that use analytical endorsed narratives (derivative etc.) applied through geometrical routines (check 

the tangency globally). I note here that my analysis considers students’ responses in relation to the 

discourses of the mathematical community in different mathematical areas and not in relation to 

their correctness. Use of analytical narratives, for example, do not necessarily ‘secure’ the 

correctness of the response and, the other way around, a correct choice does not necessarily draw on 

a coherent and consistent justification. Furthermore, the type of the task may also affect the type of 

discourse students engage in. For example, a graphical question (e.g. sketch the tangent line) may 

trigger geometrical discourses whereas an algebraic question (e.g. calculate the formula) may 

trigger analytical or algebraic ones. The reported findings are indicative and further investigation is 

in process also in relation to inconsistencies within a response with potential commognitive 

conflicts between geometric, algebraic and analytical discourses of tangent lines as well as to the 

extent student responses are mediated by the task formation.   

This work contributes to our insight into what students bring with them when they join post-

secondary mathematics courses and I credit to the commognitive approach the deepening of this 

insight in the case of students’ meaning making of tangency. I envisage teaching implications of the 

outcomes of this analysis in calculus or analysis introductory courses. For example, the observed 

mismatch between lecturers’ and students’ discourses (Park, 2015) would be dealt by explicitly 

addressing commognitive conflicts with the use of appropriately selected examples – see (Biza, 



2011) about the role of examples in student meaning making of tangency. 
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Lecturers’ professional activity is, at least, twofold: research and teaching. However, their 

professional development is generally mostly based on research achievements and little effort is 

made to empower lecturers overcome the difficulties experienced during their teaching activities. 

We postulate that didactics of mathematics can be a powerful tool to help lecturers question and 

reorganize the knowledge to be taught, and to make them aware of the conditions enabling and the 

constraints hindering new modalities of teaching mathematics, more based on its use as a 

modelling tool to approach open questions. We present in this paper a first edition of a professional 

development course for lecturers designed for and experienced in an Engineering School in 

Barcelona. The results obtained are then used for a subsequent course redesign to be conducted 

with lecturers of a similar university school. 

Keywords: Lecturer education, mathematical modelling, Anthropological Theory of the Didactic 

Introduction 

Traditionally, lecturers’ development courses have not been considered relevant by research in 

teacher education. This is a normal phenomenon considering universities’ criteria when hiring 

lecturers and evaluating those already lecturing: mainly research activities and merits are 

considered. In contrast, lecturers’ didactic or pedagogical education is usually ignored or, at most, 

considered as a positive complement. The absence of regular lecturers’ teaching training is a 

worldwide phenomenon with few – and not always successful – exceptions. In the United Kingdom, 

the Higher Education Academy (HEA), the UK Professional Standards Framework (UKPSF) and its 

accreditation process made a first attempt to incorporate lecturer training as a requirement to teach 

in UK universities (Department for Education and Skills, 2003). Nevertheless, this program that was 

thought to be central in lecturers’ professional development has finished as a volunteer training and 

accreditation scheme for both individuals and institutions involved in teaching at higher education 

(The Higher Education Academy, 2011). 

We consider that, as long as their activity has a clear twofold character based on research and 

teaching, in addition to the traditional training in research (Master’s Degree and PhD program), 

lecturers also need an explicit pedagogical and didactic education. In fact, universities are among 

the sole existing teaching institutions where teachers are not required an explicit training course on 

teaching and learning processes. We consider that this crucial difference should not be accepted as a 

given: the conditions of existence of a university teacher education course have to be studied, 

especially with the possibility to base it on contents emerging from research in didactics. 

In order to have a first set of empirical data to evaluate the conditions of existence of such a course 

for lecturers at university level we designed a course for 14 lecturers of an Engineering School in 



Barcelona (www.euss.es). Lecturers participating in the course teach Analysis (3), Strength of 

Materials (4), Physics (2), Electronical Technology (2) and Informatics (2). We took as starting 

point the frame of “study and research paths for teacher education” (SRP-TE) based on recent 

investigations in the Anthropological Theory of the Didactic (ATD) for pre-service and in-service 

secondary teachers. The lecturers’ course was experienced in February 2016. We present the design 

principles and results of this first edition, as well as the subsequent re-design for new editions, to 

overcome the experienced difficulties and take advantage of its potential strengths.  

University teacher education: A field to be explored in ATD  

Courses for pre- and in-service lecturer professional development are an unexplored field in 

research. There exists very little literature regarding this subject and the few experiences reported 

involve only general pedagogical contents not taking into account the very nature of the knowledge 

involved in the teaching and learning processes. It is important to highlight that no paper on this 

field was presented at the last CERME9 (neither at TWG 14, University Mathematics Education; or 

at TWGs 18, 19 and 20, Teachers’ Knowledge, Practices and Education), or at groups regarding 

teacher training or university teaching at the last ICME 13, except for a preliminary version of this 

paper (Florensa, Bosch, & Gascón, 2016b). The structure of ICME13 Topic Study Groups about 

teacher education is especially revealing at this respect: there were four groups on teacher education, 

two (in and pre-service) centered on the elementary level and two on the secondary level, but none 

on the tertiary level. At the recent conferences on Mathematics Education in North America, only 

Ellis presented research on teacher assistants training (Ellis, 2014a, 2014b). 

Regarding the presence of papers in journals about lecturers’ education we have found very little 

production: only two papers (Guasch, Alvarez, & Espasa, 2010; Postareff, Lindblom-Ylänne, & 

Nevgi, 2008) and the Handbook on Teaching and Learning in Higher Education (Fry, Ketteridge & 

Marshall, 1999). We have developed a research from the initial year of publication to the end of 

2015 in these journals: Educational Studies in Mathematics, Higher Education, Journal of 

Mathematics Teacher Education, Mathematical Thinking and Learning, Journal of Teacher 

Education, Recherches en Didactique des Mathématiques, REDIMAT, RELIME. 

As said before, we consider that research in didactics can be used as the basis for courses on lecturer 

education regarding teaching and learning processes. Our starting hypothesis is that results emerging 

form secondary teacher education can be used at this level. Our results will be used to partially 

confirm this assumption. The Solid Findings in Mathematics Education on Teacher Knowledge 

(Education Committee of the EMS, 2012) state explicitly that “content knowledge” (CK) is 

necessary but not sufficient for teaching. The report of the Education Committee highlights as 

crucial notions to be developed in teacher education the “pedagogical content knowledge” (PCK) 

(Shulman, 1987) and the different dimensions of the “mathematical knowledge for teaching” 

(MKT) (Ball, Thames, & Phelps, 2008). Both approaches clearly go further than the traditional 

conception of teaching as transmission of knowledge and consequently ask for changes in teacher 

education concerning the way mathematical knowledge should be approached.  

We use the Anthropological Theory of the Didactic (ATD) as a main framework for the design, 

experience and analysis of the course. The last investigations on teacher education in ATD show 

that the use of notions such as PCK and MKT do not ensure researchers/educators to include a 
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questioning of the nature, selection and organization of the contents to be taught (Ruiz-Olarría, 

2015). Under the ATD approach, the role of teacher education is not limited to enrich teachers’ 

pedagogical performance, but also to provide them with tools to contest the so-called dominant 

epistemology and emancipate from it when designing study processes (Gascón, 2014).  

This questioning and reorganization of the knowledge to be taught is not spontaneous for teachers 

(nor for lecturers) because they tend to assume the institutional dominant epistemology as their own. 

The way proposed by ATD research to locate it at the core of teacher educational processes has very 

much evolved in this last decade. It started with a first experience in secondary teacher education 

based on the “questions of the week” (Cirade, 2006) and nowadays takes the form of an inquiry-

based device called “study and research path for teacher education” (SRP-TE), which starts from a 

problematic question appearing in the field of the teacher profession and leads to the search, 

development and analysis of alternative teaching proposals (Barquero, Bosch, & Romo, 2015, 

2016). The main idea of the SRP-TE is to generate a practical and theoretical questioning of the 

school activities linked to the teacher professional initial question. It is structured in five modules:  

 M0: Formulation and first exploration of the generating question Q0 of the SRP-TE, for instance 

one of the kind: “How to teach (a specific content)?” which is to be partially answered at the end 

of the process.  

 M1: Living a “study and research path” (SRP) as a student. The main goal is to make teachers 

encounter an unfamiliar inquiry-based activity related to Q0 that could exist in a normal 

classroom of the considered educational level. 

 M2: Adaptation of the lived SRP to be experienced in a real school situation. During this 

adaptation, many of the institutional restrictions teachers should face are expected to show up. 

They can thus be afterwards analyzed from an epistemological, didactic and ecological 

perspective (what can “live” and under what conditions in a given educational setting). 

 M3: Experimentation, management and carrying out of in vivo and a posteriori analyses of the 

adapted teaching proposal. 

 M4: Joint elaboration of a critical analysis of traditional teaching practices and the possibilities 

(and limitations) of introducing new proposals, as well as generation of a partial answer to Q0. 

During the development of SRPs-TE for secondary school teachers, an epistemological tool has 

been adapted and developed to facilitate the analysis of the SRP and the questioning of school 

contents: what we call “question-answer maps”. Following other authors, we consider these maps, 

which are used as a key tool in ATD research, as a powerful instrument for teacher education: 

We hypothesize that such a representation is sufficiently close to teachers’ concerns, and 

also captures such essential parts of a didactic design, that one could use it as a tool for 

collaboration and communication with and among teachers, regarding concrete teaching 

designs (Winsløw, Matheron, & Mercier, 2013, p. 281) 

Some preliminary and promising experiences exist in using these maps in teacher training courses to 

describe the dynamic and collective aspects of mathematical activity (Barquero, Bosch, & Romo, 

2016; Florensa, Bosch, & Gascón, 2016a; Jessen, 2014). The work with the maps seem to be useful 

for teachers in order to describe knowledge in inquiry activities and to act as a counterpoint of the 

official curricular organization of contents. 



Research questions  

The work presented in this paper is considered as an exploratory design (Singh, 2007) to obtain and 

analyze a first set of data from the first implemented course and to redesign it to be applied in 

another institution. The specific research questions that will be studied are: 

RQ1. The role played by question-answer maps in teacher education: Do they help lecturers 

describe, analyze and design inquiry and modelling processes and the involved knowledge? 

RQ2.  Does the course empower lecturers to identify the dynamic and collective nature of the 

lived SRP in contrast to the static, individual and compartmentalized dominant conception 

of knowledge?  

Course description  

The engineering school where the course was implemented keeps a four-hour time slope with no 

teaching for all lecturers all Wednesdays: they use this time for professional development, meetings, 

pedagogical courses or activities. In fact, it is a Salesian university with a special concern about 

teaching and learning processes, as well as students’ personal evolution. The course was structured 

in six two-hour sessions during three weeks, and the central question to be partially answered was: 

“Could modelling be the main motivation of my subject? Which conditions enable and which 

constraints hinder this modelling activity?”  

Because of the time restriction, the five-module structure of the SRP-TE had to be adapted. The six 

sessions appeared to us (designers and course leaders) as a short course. However, they finally 

seemed to be enough for the work planned. Of course the true work is to be carried out afterwards, 

when lecturers decide to introduce some new proposals in their subject based in the work initiated at 

the course. During this application phase teachers implementing SRPs asked for help to the 

researchers-educators, thus extending the real duration. We planned the course as follows: 

 1st session: Explicitly state the professional question Q0 and shortly present the ATD 

framework including the notions of praxeology, Herbartian schema and media-milieu 

dialectics, topogenesis, mesogenesis and chronogenesis (Barquero & Bosch, 2013). They 

seemed to be well understood and some of them were mobilized during the 4th session.  

 2nd and 3rd sessions: A SRP was proposed to be carried out in groups of up to three lecturers. 

“Taking into account the incidence index of the last 9 months of a dengue outbreak: could 

you forecast the incidence index for the next 3 months (already known)?” (Figure 1)  

 4th session: Lecturers generated a question-answer map of the lived SRP including aspects 

such as media-milieu dialectics. One of the generated maps can be seen in Figure 2. 

 5th session: Lecturers are invited to create new small groups with the colleagues teaching the 

same subject. They are asked to design a SRP by choosing a generating question in their 

field trying to overcome some observed didactic facts such as the absence of raison d’être, 

the disconnections of topics or the poverty of the experimental work, among others.  

 6th session: Sharing some possible teaching proposals and conclusions of the course. 



 

Figure 1: Data used for the lived SRP 

 

Figure 2: Question – answer map of one of the groups  

In the introduction to the 5th session, lecturers were invited to identify didactic facts that they would 

like to overcome through the new didactic proposal. The goal was not to implement the inquiry by 

itself, but to identify how the dominant epistemology in the institution is related to these 

problematic phenomena and roughly propose new possible epistemological and didactic 

organizations to face them. The question-answer maps were the tool provided to lecturers to carry 

out this work. During the implementation of the course, some of the contents that we initially 

considered as difficult had an easier reception than expected (especially the notion of media-milieu 

dialectics) and, on the contrary, some basic notions were difficult to share with the participants, for 

instance the description of contents in terms of questions instead of topics. 

In order to obtain data to evaluate the course, all the questions-answer maps of all groups, both from 

the analysis of the modelling lived activity and from the a priori design of the SRP, were collected. 

We have also obtained data from a final survey filled in by all lecturers attending the course. The 

survey was structured in three main blocks. The first block addressed general aspects of the course 

such as duration, balance between individual and team work, time structure, etc. The second block 

asked about content-related aspects of the course like the work developed with question-answer 



maps and with the media-milieu dialectics. Finally, the survey asked the lecturers about the possible 

consequences of the course on their teaching activities: changes in the conception of knowledge, 

dynamics and collective aspects of activities, and availability of new designing and evaluating tools.  

Results and discussion 

The question-answer maps regarding the dengue outbreak SRP shew up how the inquiry was 

capable to connect fields usually disconnected in the traditional curricular organization of contents. 

For example, the map of Figure 2 reveals that functions, differential equations, regression, average 

rate of change and epidemiological notions are deeply interrelated. An interesting fact emerged 

when analyzing different maps from different working groups: depending on their lecturing field, 

they approached the problem quite differently. For instance, Mathematics lecturers’ work was 

centered on finding a mathematical model fitting the data, whereas Chemistry lecturers’ work 

evolved around the epidemiological data, the notion of “incidence index” and searching scholar 

literature regarding other similar outbreaks. The different teaching fields of lecturers permitted to 

share different visions of the knowledge at stake in the proposed SRP. The use of the maps was a 

key factor to describe this connection of fields usually lacking in school institutions.  

The second part of the survey about the content of the course reveals that the work developed by 

lecturers with the question-answer maps and the media-milieu dialectics was difficult for them 

(more than 70% of the teachers found it hard or very hard) but at the same time they identified this 

work as “easily applicable to design and manage new teaching and learning processes” (more than 

70% of the lecturers found contents and tools of the course easy to use and to implement). 

Regarding the consequences of the course on the lecturers’ teaching practices, the survey showed 

that it helped (more than 90% totally agreed) to change their previous conception of knowledge 

towards a dynamical-collective conception in terms of modelling activities.  

The third source of evidence are the maps generated by the lecturers as a priori analysis for an SRP 

to be experienced in their subjects. In total, six maps where generated by lecturers, all of them with 

a generating question and making explicit the didactic facts intended to be overcome. Two of these 

a priori SRP designs where experienced during the spring semester, starting just after the lecturers’ 

course. These two emerging SRP have been experienced and managed only by lecturers that 

followed the course and did not have any other didactic experience or training. This fact is 

especially interesting because with the analysis of these experiences a first set of data can be 

collected regarding the conditions of existence of SRPs at the university level led by lecturers with 

almost no direct connection with research in didactics. This first experience in lecturer education 

seem to preliminary validate Winsløw et al. (2013) hypothesis about the use of question-answer 

maps in teacher education and confirm Barquero et al. (2016) results. Lecturers have worked with 

the maps and have used them to both model a lived study process and a priori analyze their own 

designed SRP. Moreover, the maps have been used to compare the knowledge mobilized during a 

specific SRP and the school knowledge. The Q-A duplets appearing in the map were used as the 

elements to contrast with curricular requirements.  

The course also appears as a good tool to empower lecturers to question and put under vigilance the 

dominant epistemology at the university. It produced a discussion (and thus enabled a reflection) on 

what knowledge has to be taught at the university and how the modelling activity with its dynamics 



and collective aspects could be considered. Regarding the conditions of existence of a lecturer 

course based on the ATD, it seems that the described conditions make it viable and that some 

lecturers have taken it as an opportunity to redesign their teaching and learning activities. However, 

an important aspect to take into account is the fact that one of the leaders of the course is also a 

lecturer in the considered Engineer School, what certainly affected the good predisposition of the 

attendees due to his personal leadership in the institution. This particular condition has to be 

considered in new editions of the course and the question of its reproducibility remains open. 
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High school teachers’ choices concerning the teaching of real 

numbers: A case study 

Laura Branchetti 

Politecnico di Milano, Italy; branchetti.laura@gmail.com  

The goal of this paper is to present a case study in which a high school teacher with PhD in 

Mathematics was asked to answer a questionnaire concerning the teaching and learning of real 

numbers and then he was interviewed in order to investigate the interplay between his resources, 

goals and orientations in the decision-making process. As a main result, I show how some 

orientations concerning the epistemology of real numbers, the goals of mathematics education in the 

high school and the students’ conceptions and difficulties lead him to choose a very intuitive approach 

to the teaching of real numbers and to leave aside all his expertise as a mathematician. 

Keywords: Real numbers, teaching, high school, teachers, tertiary education. 

Epistemological issues concerning real numbers and continuum  

The relation between the continuum and the real numbers is often considered as something intuitive 

and to be taken for granted (Lakoff & Nunez, 2000), but as it is well known to the experts in history 

and epistemology of mathematics, this is one of the most complex issues to face dealing with the 

foundations of mathematics. This topic deals indeed with very relevant challenges. I will just 

highlight some aspects that are relevant to characterize the orientations of a teacher concerning the 

epistemology of real numbers and continuum. In Continuity and irrational numbers, Dedekind (1872, 

transl. 1901) stated: “In discussing the notion of the approach of a variable magnitude to a fixed 

limiting value, and especially in proving the theorem that every magnitude which grows continually, 

but not beyond all limits, must certainly approach a limiting value, I had recourse to geometric 

evidences. [...] For myself this feeling of dissatisfaction was so overpowering that I made the fixed 

resolve to keep meditating on the question till I should find a purely arithmetic and perfectly rigorous 

foundation for the principles of infinitesimal analysis. The statement is so frequently made that the 

differential calculus deals with continuous magnitude, and yet an explanation of this continuity is 

nowhere given; even the most rigorous expositions of the differential calculus [...] depend upon 

theorems which are never established in a purely arithmetic manner” (p. 1-2). Dedekind came to the 

construction of R as the field of the rational cuts, stressing that the new numbers - irrationals - were 

creations necessary to identify the points of a line and the numbers and making explicit that the 

assumption of the property of continuity of the line is nothing else than an axiom. In this paper, I just 

report Dedekind’s approach, since it’s particularly relevant to analyse the case study I present here; 

for a complete dissertation see Bell (2014). 

  Challenges with teaching and learning of real numbers and continuum  

The topic of teaching and learning real numbers and continuum in the high school and the university 

have been investigated in several countries and nowadays a lot of results are available; in particular, 

the researches concern the difficulties of high school and university students and prospective teachers. 

In this paper, I report just some examples, but the literature is very rich (for a complete review see 

Voskoglou & Kosyvas, 2012). First of all, cognitive issues "resonate" with the very relevant 

epistemological issues: space-temporal intuitions and metaphors (Bolzano, 1817), and the formal 



approach, based on static and rigorous should be clarified by teachers. Indeed, according to Lakoff 

and Nunez (2000), the identification between objects such as lines, points numbers and sequences, 

that is very usual at school and in the University, hide the intrinsically metaphorical nature of the 

relation between natural continuity and “formal continuity”. The main students’ difficulties reported 

in several studies concern: irrational numbers; infinity; points of a line; density and continuity; and, 

number line. Students from high school to university are often not able to define correctly the concepts 

of rational and irrational numbers, like if rational numbers in general remains isolated from the wider 

class of real numbers (ibid., 2012). In particular, students’ ideas concerning the relation between 

0.999… and 1 (Tall & Schwarzenberger, 1978) and, in general, concerning the meaning and the use 

of decimal representations (Margolinas, 1988) are usually very ingenuous and seem to be product 

rather of a spontaneous generalization from finite to infinite numbers than of a structured learning 

path. Tall (1980) observed a recurrent phenomenon, that was defined dependence: there are more 

points in a longer segment than in a shorter one, based on the generalization to infinite cases of what 

has been learnt of the biunivocal correspondence of finite cases. Tall (1980) also observed among the 

students an intuitive model of the line in which points are as much as they need to fill a segment with 

physical points, that are “non-overlapping marks” (p. 3) and the quantity of numbers is proportional 

to the length of the segment. This intuitive model, without a suitable elaboration, could influence the 

learning of properties like density and completeness if the model of real numbers considered is a line. 

Also, Bagni (2000) alerted from the false illusions concerning the introduction of properties of real 

numbers in the graphical domain. Bergé (2008) highlighted that in the transition from calculus to 

analysis in the university, it’s necessary first to change the conception of the number line. Fischbein, 

Jehiam and Cohen (1995) carried out research based on the assumption that the irrational numbers 

could be counterintuitive because of their high complexity but, contrary to what they had 

hypothesized, they found out that many high school students and prospective teachers overcame the 

barrier quite easily in suitable contexts, paying attention to the potential difficulties and presenting 

them to the students. 

Research problem and framework  

In this work, I face the problem from the point of view of teaching in the high school, focusing the 

attention on high school mathematics teachers’ intended reported choices concerning the teaching of 

real numbers in the high school; in particular the focus is on what considerations and necessities guide 

their decisional process. Schoenfeld’s model (2010) provides a tool to distinguish between three main 

factors that may influence the teachers’ choices: resources (mathematical and pedagogical 

knowledge); goals (educational, instructional and social aims); orientations (beliefs concerning 

knowledge, concerning teaching-learning processes). I used this model to design a written 

questionnaire answered by the teachers in the first part of this research. Orientations may be very 

general (what mathematics is, what learning is) or more specific and may concern epistemological 

(what is the role of real numbers in the history of mathematics, what are real numbers necessary for), 

cognitive (what is difficult for the students, what is a good choice to help students) or ecological 

aspects of the didactical activities (what teachers must do within an institution, what are the aims of 

the teaching in high school). Some of these orientations act as criteria to make choices. Since real 

numbers and continuum both in the history and in the teaching-learning processes oscillates between 

the two poles of intuition and formalization, I owe special attention to the orientations concerning 

rigor and intuition.  



Methodology 

This case study is part of a research carried out for a PhD dissertation concerning the teaching and 

learning of real numbers in the high school, in which I involved 89 Italian high school teachers with 

very different backgrounds. I will discuss in a case study the role of teachers’ resources, orientations 

and goals in a teacher’s decision making intended process, according to Schoenfeld’s model (2010). 

In Italy, according to the national curricula, an introduction to calculus and some theorems of analysis 

are proposed to students in the end of high school. According to Bergé (2008) what characterize more 

the transition from calculus to analysis is the transformation of intuitive models of the line into a 

formal construction of R. Usually, in high school, teachers are asked to introduce: limits, continuous 

functions and related theorems (Bolzano, Weierstrass), derivatives, Rolle and Lagrange theorems, 

examples of computations of limits and derivatives, Riemann integral, examples of integration based 

on Torricelli-Barrow theorem and examples of differential equations. Italian textbooks are usually 

based on formal definitions and intuitive examples that are not suitably connected each other. Usually 

intuitive approaches to the definition and use of real numbers are proposed in the first 4 years of high 

school (roots, points, decimal numbers). Then, in the last year, definition and procedures of calculus 

and theorems are introduced through formal expressions and using concepts such as limits, 

convergence towards a point and open intervals. The research question in this study is: how does the 

interplay between resources, goals and orientations about teaching and learning of real numbers and 

continuum in the high school affect a high school teacher’s intended choices? I designed a study with 

a questionnaire and follow up interviews. The teacher first was asked to answer an online 

questionnaire structured in order to investigate his knowledge, goals and orientations. The first 

questions concerned the teacher’s background and training. The teacher was asked to answer 

questions about the main properties of the set R, the construction of R starting from Q, the definition 

of limit points. In the next section of the questionnaire the teacher was asked what they thought to 

introduce R was necessary for and to comment on teaching materials or parts of lessons concerning 

real numbers and the line, from different points of view (construction of √2, correspondence between 

points of a line and numbers, algebraic and graphic approach to inequalities). Then the teacher was 

interviewed in order to make him declare his choices concerning teaching and learning of real 

numbers in depth and to follow the thread of his thoughts, in order to make the orientations emerge 

in relation to the epistemological, cognitive and institutional issues that were emerging time after 

time. The interview was a semi-guided one: a general question concerning the way the teacher 

introduces usually real numbers in the high school and the motivations of the choices; a particular 

question concerning the relation between numbers and points of a line; a particular question 

concerning the way the teacher presents the enlargement from Q to R in relation with the line; a 

general question concerning the relevance in the last year of high school (in particular for calculus 

and analysis) of the previous knowledge concerning real numbers and the way connect the two.  

I identified the following a priori categories: 

1. Resources 

a. Mathematical knowledge 

i. The teacher knows the main properties of R (complete, ordered, Archimedean 

field) 



ii. The teacher knows at least one construction of R (Dedekind, Cantor, Hilbert, …) 

iii. The teacher knows that a limit point of a set A can be defined in every dense set  

iv. R as a complete ordered field is necessary for Analysis  

2. Goals  

a. Institutional 

i. To introduce intuitively some real numbers, after providing some examples and 

proofs of irrationality of some numbers introduced in geometrical constructions 

ii. To formalize real numbers in order to give foundations to the theorems of Analysis 

b. Personal 

i. To construct a set in which it is possible to define the most used continuous 

functions (exponential, logarithmic, …) 

ii. To construct a set in which it’s possible to solve equations (but the ones with 

complex solutions) and inequalities 

iii. To construct a set in which it’s possible to formulate some theorems of Analysis 

and to define limits, integrals and derivatives  

3. Orientations 

a. Epistemological 

i. R is complete in the sense of the continuity of the line 

ii. A theoretical construction of R is not necessary to develop calculus and formulate 

theorems of Analysis, since it was constructed after the theorems 

iii. R is a set of points of a line 

iv. The representations of real numbers (points, decimal numbers, …) are all 

equivalent (framed in the same theory) 

v. A postulate is necessary in the constructions or axiomatization of R 

b. Cognitive 

i. R is intuitive for students; students have preconceptions of real numbers 

ii. The construction of R is too abstract for students 

iii. Students prefer simple and concrete things, even if they don’t understand 

everything 

iv. It’s important be make the lessons intuitive for students 

v. It’s important to be rigorous and consistent during the lessons 

c. Ecological 

i. It’s important to respect institutional constraints 

I analyzed data of the questionnaire using a priori categories concerning the different dimensions of 



the teacher’s profile - goals, dimensions and knowledge - and then I looked for further emerging, 

unexpected phenomena to frame in this research background and to compare them with further 

literature review. Using a qualitative analysis, I labeled the relevant features concerning the three 

dimension and the declared choices. Then, I looked at the interview searching for sentences that could 

confirm the teacher’s belonging to the categories I used in the questionnaire and to look for new 

relevant elements emerged in the interview. Finally, I looked for a relations between the different 

categories in order to interpret the teacher’s choices in terms of the interplay between resources, goals 

and orientations.  

Data analysis 

I report first the background and the teacher’s answers in the first part of the questionnaire, to show 

that the teacher showed advanced mathematical knowledge. I label the sentences with the codes 

presented before.  

Background: Master, PhD in Mathematics and National qualification for Mathematics and Physics 

high school teachers; 5 years of experience as a teacher 

He studied real numbers: at the University in a course of Analysis and at school  

Properties: two operations make real numbers a field (with characteristic 0); total order, compatible 

with the operations; complete [R-a-i]  

Construction: Two equivalent constructions: 1) the method of Dedekind’s cuts (separating elements 

of two sets whose union is Q and that have no maximum or minimum in Q, e.g. {x ∈ Q : x² < 2} and 

{x ∈ Q : x² > 2}; 2) quotient of set of the Cauchy’s sequences with convergent ones [R-a-ii]  

Limit point: It’s possible to define it also in Q; the set {x ∈ Q : x < 0} has 0 as a limit point [R-a-iii] 

Then, I report the most relevant results of the data analysis carried out in the second stage: 

1. the properties of real numbers are necessary to introduce only differential and integral Calculus, 

sequences and series. [G-b-iii] 

2. a video in which the graphic and algebraic solution of linear inequalities are presented as two 

different solutions should be changed because the solution is the set of numbers that satisfy the 

equation and only the representation may be graphic or algebraic [O-a-iv] 

3. a tutorial in which a concrete problem involving measures of courtyard containment is used to 

present the “reality of irrational numbers” helps the student to create good images of real numbers, 

even if something is not convincing [O-b-iii] 

4. a video in which the correspondence between R and points of a line is showed using a point 

moving on a line, with the extreme indicated by a decimal number with one decimal digit, can’t 

help to grasp the correspondence between real numbers and points of a line, because only an 

origin is fixed and not a unit and it’s difficult to justify negative numbers [O-b-v] 

In the interview, some further relevant aspects emerged concerning the teacher’s knowledge and 

cognitive and epistemological orientations and goals. Since new categories emerged, I label the 

synopsis with a priori but also with a further category (NEW_C_i).  

To present the following synopsis, I use a chronological criterion: 

1. students have preconceptions of the relations between numbers and point of a line. He presents 

real numbers intuitively, as points of a line, and to base on this intuition all the definitions, also 



very formal (e.g. limits, Cauchy-Weierstrass continuity, decimal numbers, ...) [O-b-i]  

2. this is enough to "do what we have to do", a "pseudo-mathematics" [NEW_G_1]  

3. real numbers are imagined as the real line, with an abuse of language, that makes a few damages 

at this level but may have many advantages [G-b-i&ii] 

4. it's important to be coherent with mathematics [O-b-v] without saying it to the students [O-b-iii] 

5. to introduce analysis "seriously" R is needed [R-a-iv]  

6. formal definitions are not useful but were only useful to clear "the conscience of Dedekind" and 

that "Euler did so many good things without formalizing R" [O-a-ii]  

7. history confuses students [NEW_O_1]  

8. students can’t understand very much of real numbers in the high school [O-b-ii] 

9. asked to declare his choices concerning the introduction of continuous functions he referred to 

formal definitions (Cauchy-Weierstrass approach) that are traditional in Italy [G-a-ii] 

10. there is a "parallelism between geometrical and algebraic postulates" [O-a-iii] 

11. R and the line are the same object [O-a-iv]  

12. we live between two truths, the ‘pure mathematical’ and the ‘operational’ one [NEW_O_2]. 

13. none really use R and the line is really strange; maybe teachers are disappointed because no one 

really knows what numbers are, thinking at infinite convergent sequences and the definition of 

new numbers (irrationals) that are limits of convergent rational sequences [NEW_O_3] 

14. he uses representations like decimal numbers, the line, the roots only in order to make operations 

with them [O-a-iv] but never deepen their meaning and mutual relations [O-b-iii]  

15. it's simpler for the students and for the teachers to “sneak off the theoretical crevices” [O-b-iii] 

 

Discussion and conclusions 

The teacher is a PhD in Mathematics (Analysis) and attended teachers’ training courses. The 

knowledge he showed about the topic is advanced. The pedagogical knowledge has never been taken 

in account by the teacher to support argumentations, while his orientations, reflections and 

experiences are used to motivate his statements during the interview. Also, he never quoted explicitly 

the institutional constraints. He declared to choose usually to avoid completely the formal 

introductions of real numbers and the historical issues and to simplify as much as possible. Even if 

he’s aware also of some epistemological issues, his choices are very traditional and are suitable 

calculus but not for analysis (Bergé, 2008). Asked to declare his choices concerning the introduction 

of continuous functions he referred to formal definitions (Cauchy-Weierstrass approach) that are 

traditional in Italy. He declared to switch suddenly from intuitions of continuity and a set of numbers 

with different representations to a formal implicit meaning of R, used in the hypothesis of theorems 

without a contextualization and without stressing the epistemological implications of such a step. The 

teacher conflicted with the true relevance of formal constructions of real numbers: sometimes he said 

it's necessary, sometimes it seemed just a fancy of some mathematicians. He’s convinced that some 

representations of real numbers can't be interpreted in high schools – even if he never considers not 

to use them – so he prefers the students to use them without being aware of their complexity. 

Moreover, he's convinced that not only the students have limitations dealing with real numbers but 

there is an epistemological issue: there are two truths, the ‘pure mathematical’ and the ‘operational’ 

one. Furthermore, he showed “epistemological doubts” concerning the deep meaning and the 

existence of irrational numbers. To sum up what could seem to be only didactical and cognitive 



motivations (he wants the students to understand; simplifying and omitting is always better for 

students) hide – or at least are accompanied by – deep epistemological unsolved doubts and noisy 

ambiguities highlighted by the teacher, declared several times during the interview, both 

spontaneously and answering the interviewer’s questions, as confirmed by relevant sentences like 

“The line is… is perceptual. No.. it’s not perceptual, is stem from... you don’t see. But … what is the 

line?”; “In practice is it useful for anything? It was useful for the purpose of a clear conscience for 

Dedekind but it’s not useful at all”; “I take this point, limit of a function. A bit an approaching to the 

border of the abyss, keep the feet ... approach something that doesn’t exist ... infinite rational paths 

doesn’t imply to be rational. It’s something that maybe we don’t understand very well too ...”. The 

teacher's orientations concerning the cognitive aspects of teaching and learning real numbers 

(intuition and preconceptions) that seemed in the beginning the most relevant motivations towards an 

intuitive oversimplification, considered helpful for students, are thus deeply intertwined with his 

epistemological orientations. Firstly, his orientations concerning the uselessness of formal definitions 

do not motivate him to look for suitable teaching strategies and, on the contrary, act as factor that 

reinforces his naive orientations towards what is better to foster in students’ learning processes. 

Secondly, his epistemological doubts, hidden under perfect formal definitions, encourage him to keep 

the “Pandora’s vase” closed and to avoid to face his own uncertainties, thinking that for the students 

it’s absolutely better not to know them in order to keep on trusting him and let him going on presenting 

the “pseudo-mathematics” that is enough in the high school. His orientations and his decision to use 

a very traditional, internally disconnected and full of “theoretical crevices” approach to the teaching 

of real numbers have been proved to be unsuitable by a lot of researchers both from a general point 

of view and for the specific problem of real numbers. I can state that, in this investigation, it emerges 

that an advanced mathematical knowledge, even very significant, doesn’t imply the use of this 

knowledge in teachers’ choices: doubts and personal orientation can lead the teacher to use a trivial 

and sterile approach for all the complex issues that characterize real numbers and continuum from an 

epistemological point of view, taking the risk to create at least the same problems to the students that 

teachers with a weaker background in mathematics would create. The teachers, without suitable 

reflections and teacher training courses, could also reinforce their motivation towards such a choice 

mixing in their mind personal orientations and expected students' cognitive features, justifying and 

hiding with the last ones the epistemological uncertainty. The main implications of the study are the 

following:  

1) mathematicians, even with a PhD in Analysis, in their transition to a teaching profession may miss 

the opportunity to benefit from their knowledge by not being completely aware of the epistemological 

issues of the importance of formalizations into teaching;  

2) mathematicians who become high school teachers, in order to become able to design good teaching 

and learning activities for their students concerning real numbers, should be trained not only from the 

disciplinary point of view, but also from the epistemological and the didactical one. 

These observations are particularly relevant in the country in which I carried out my investigation, 

from an institutional point of view, where often the significance of the epistemological and the 

didactical background of teachers is a central in the debate between policy makers (and some 

teachers) and the community of researchers in mathematics education. 

  



References 

Bagni, G.T. (2000). Insiemi infiniti di numeri reali, L’educazione matematica, 21 (4), 22-46. 

Bell, J. L. (2014). Continuity and Infinitesimals, The Stanford Encyclopedia of Philosophy, Edward 

N. Zalta (ed.), available online at: https://plato.stanford.edu/archives/win2014/entries/continuity/  

Bergé, A. (2008). The completeness property of the set of real numbers in the transition from calculus 

to analysis. Educational Studies in Mathematics, 67 (3), 217-235.  

Bolzano, B. (1817). Rein analytischer Beweis des Lehrsatzes, dass zwischen je zweyWerthen, die ein 

entgegengesetztes Resultat gewaehren, wenigstens eine reelle Wurzel der Gleichung liege, in: 

Jourdain, P. E. B. (ed.) 1905, Ostwald’s Klassiker der exakten Wissenschaften, 153, Leipzig: 

Engelmann. 

Dedekind, R. (1872). Continuity and Irrational Numbers. Essays on the Theory of Numbers, New 

York: Dover Publications, Inc.  

Fischbein, E., Jehiam, R., & Cohen, D. (1995). The concept of irrational numbers in high-school 

students and prospective teachers. Educational Studies in Mathematics, 29, 29-44. 

Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings 

mathematics into being. New York: Basic Books. 

Margolinas, C. (1988). Une étude sur les difficultés d’enseignement des nombres réels, Petit x, 6, 51-

66.  

Schoenfeld, A. H. (2010). How we think: A theory of goal-oriented decision making and its 

educational applications. New York, NY: Routledge. 

Tall, D., & Schwarzenberger, R. (1978). Conflicts in the learning of real numbers and limits. 

Mathematics Teaching, 82, 44–49. 

Tall, D. (1980). The notion of infinity measuring number and its relevance in the intuition of infinity. 

Educational Studies in Mathematics, 11, 271-284.  

Voskoglou, M.G., & Kosyvas, G. (2012). Analyzing students’ difficulties in understanding real 

numbers. Journal of Research on Mathematics Education, 1(3), 301-33.  

https://plato.stanford.edu/archives/win2014/entries/continuity/
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In mathematical activity, especially in proof, it is a fairly common practice to change letters’ 

logical status without giving any indication of these changes. Nevertheless, in some cases this 

practice is likely to hidden invalid steps in the proving process. In this paper, I show on an example 

that Copi’s system for natural deduction provides a methodological tool that allows us both to 

anticipate where such invalid steps could appear and to analyse students’ proof productions. 

Keywords: Formalism, proof, letters’ logical status, quantifiers, natural deduction 

Introduction 

Difficulties met by university students in the use of logical formalism are well documented in the 

literature (e.g. Selden & Selden 1995, Dubinsky & Yiparaki 2000, Chellougui 2009). An important 

issue on the development of formalism in university mathematics education is to reduce ambiguities 

conveyed by natural language, in order to foster the understanding of mathematical statements and 

to improve the development of proving skills. However, Durand-Guerrier and Arsac (2005) have 

underlined a rather common practise in mathematics textbooks of changing letters’ logical status in 

a proof without giving any indication of these changes. This practice introduces additional 

ambiguities in the proving procedure. The aim in this paper is to address the conjecture that 

university students who are not able to cope with these ambiguities face difficulties with proofs. 

In this paper I use the system for natural deduction (i.e. a formalisation of mathematical reasoning) 

suggested by Copi (1954) in predicate calculus (i.e. an extension of propositional calculus that deals 

with the internal structure of propositions, with symbols for properties, relations, quantifiers and 

individuals) as a tool for checking the validity of proof. A main interest of this system is to make 

explicit the difference between bound variables (i.e variables in the scope of a quantifier) and 

generic elements (i.e any individual element of the domain of quantification at stake)1. In the first 

part, I present the Copi system which has been used for both a priori and a posteriori analysis in my 

research. The second part focuses on the letters’ status in a proof from the logic and didactic point 

of view. To this purpose, I present results demonstrating student’s difficulties with letters' status at 

the beginning of their university studies. In the third part, I present results from first year university 

student’s responses in a proof where the use of letters challenges the validity of the proof 

(Chellougui, 2009). 

Natural deduction system 

I first introduce the natural deduction system proposed by Copi (1954) and show that this system 

provides tools to detect invalid steps in a proof by remaining as close as possible of the usual modes 

of reasoning of mathematicians (Durand-Guerrier & Arsac, 2005). In my work, I use this system in 

                                                 

1 "[…] the proof of a universal statement, apart from the case of proof by induction, is always done by the method of the 

generic element: in order to prove a statement of the kind “for all x ∈ E, P(x)”, you prove P(a) for a generic element a ∈ 

E, then after verifying that only properties of a that are common to all elements in E were used, you conclude that P(x) is 

true for every x in E." (Durand-Guerrier and Arsac, 2005, p.153) 



the frame of predicate calculus, where four rules for introduction and elimination of quantifiers are 

introduced. In Figure 1, I summarize a presentation offered by Durand-Guerrier (2005) of these 

rules completed by some specific restrictions needed for preserving validity. 

 

Figure 1: Copi’s rules (Durand-Guerrier, 2005, pp. 413-414) 

This system can be used to control locally the validity of mathematical proofs. It can act as an 

intermediate between the usual practice and the completely formalized system. The rules of 

introduction and elimination of quantifiers from Copi address the semantic dimension, because 

there is an introduction of letters referring to generic elements. In ordinary textbooks, most often, 

both operations of elimination and introduction of quantifiers are either absent or partial (Durand-



Guerrier & Arsac, 2005; Chellougui, 2009). By making explicit the rules of introduction and 

elimination of quantifiers, Copi’s natural deduction system allows the identification of implicit 

steps, especially in cases of proof that use multi quantified statements where there is, at least once, 

each of both universal and existential quantifiers. In my research, I use Copi’s natural deduction as a 

tool for a priori analysis in order to anticipate possible invalid steps in the proving process of a 

given statement and as a tool for a posteriori analysis of the proofs offered by undergraduate 

students. In a following section, I present an example of such analysis. 

The logical structure of mathematical statements: Changing letters’ status 

Durand-Guerrier and Arsac (2005) have investigated the letters' logical status in mathematics 

teaching. In their work, they refer to the predicate calculus in order to analyse quantified statements 

with a focus on the variables’ dependence. They analyse a specific mistake which appears in proofs 

where one applies twice or more a statement of the kind “for all X, there exists Y such that R(X,Y)”, 

abbreviated to AE statements, and a student may ignore that in that case, a priori, “Y depends on X”. 

The misuse of AE statements in calculus have been demonstrated in an invalid proof of Cauchy’s 

mean value theorem (Figure 2, Durand-Guerrier and Arsac, pp. 151-152): 

 

Figure 2: Two theorems: mean-value theorem and Cauchy’s mean-value theorem. 

We can read: 

"A proof rather often provided by first year science students consists of the following deduction 

of Theorem 2 from Theorem 1: 

Function f satisfies the conditions for applying Theorem 1; hence there is a number c in ]a;b[ , 

such that f‘(c)(b–a)=f(b)–f(a). Also g satisfies the conditions for applying Theorem 1; hence 

there is a number c in ]a;b[ , such that g‘(c)(b–a)=g(b)–g(a).  As g‘ is never equal to zero on 

]a;b [ ,  then g‘(c)0; hence g(b)–g(a)0 . The result follows from the quotient of the above 

two equalities. 

This proof is invalid; one can prove it by considering two functions for which it is not possible to 

choose the same number c." (Durand-Guerrier et Arsac, 2005, p.152). 

According to the authors, the error from a logical point of view is the following: since c is a bound 

variable following an existential quantifier, it cannot denote a particular real number. However, the 

existential elimination that must be applied here allows to consider a real number r such that: 

f‘(r)(b–a)=f(b)–f(a). 



When thus applying the same rule to g, it is necessary to consider a real number s, that may or not 

be equal to r, such as g‘(s)(b–a)=g(b)–g(a). It is important to notice that this logical analysis 

depends only on the logical structure of Theorem 1, and not on the mathematical meaning of the 

letters f, c, r, etc. The same reasoning allows us then to derive the quotients’ equality: 

 
but this does not provide a proof of Cauchy’s mean value theorem (Durand-Guerrier & Arsac, 

2005). 

This example illustrates the difficulties linked with the logical status of letter in proof and proving. 

In the next section, I illustrate one example in Algebra how the use of Copi’s natural deduction 

allow us to anticipate student’s difficulties and to analyse their proofs. 

An example in elementary set theory 

In the context of my PhD (Chellougui, 2004) conducted in Tunisia, I distributed a questionnaire to 

ninety-six mathematics students arriving at university in November 2001 (details on the analysis 

and main results can be found in Chellougui, 2009). In this paper, I focus on a specific example that 

I analysed in detail in order to highlight the methodological relevance of Copi’s natural deduction 

for a priori and a posteriori analysis of proofs. In the Tunisian university, the first elements of 

elementary set theory including equivalence relation, order relation and binary relation, are taught at 

the beginning of the first academic year. The example I discuss here regards the proof that a given 

binary relation  is an order relation (Figure 3). My main objective was to identify precisely 

students’ difficulties in the use of multi quantified statements in proof and proving. 

We consider the set IN*2 endowed with the relation  defined by: 

(p,q) IN*x IN*(pqn IN*; pn=q). Show that  is an order relation. 

Figure 3: The exercise submitted to students 

I hypothesised that the students would be able to recall each of the three properties that an order 

relation checked: reflexivity, antisymmetry and transitivity, because they have met this type of 

questions in the course and in the series of exercises, although the formalisation of an order relation 

was new to them. The three definitions of the properties above were given to the students in the 

general case of a binary relation  as follows: 

Reflexivity: p pp. Formulation containing one universal quantifier. 

Antisymmetry: pq(pqqp p=q). Formulation containing two universal quantifiers. 

Transitivity: pqs(pqqs ps). Formulation containing three universal quantifiers. 

In this paper, I focus on the proof of antisymmetry for a binary relation whose definition involves an 

existential quantifier, leading to a rather complex logical structure as will be shown in the a priori 

analysis. I first present some elements of a priori analysis; then I present results from students’ 

responses. 

                                                 

2 IN*= IN \{0} 



Mathematical and logical analyses of proof of antisymmetry 

The definition of the binary relation  involves two universal quantifiers in the beginning of the 

formula and an existential quantifier in the second part of the equivalence.  

In order to anticipate the difficulties that the students could meet in proving that the given binary 

relation owns the property of antisymmetry and to make explicit the steps needed for a complete 

proof, I provide (Figure 4) a mathematical and logical analysis, using the Copi’s system for natural 

deduction (see Figure 1) with a specific focus on introduction and elimination of quantifiers  

(1) pq (pq  nIN* pn=q) Premise3 

(2) ab  nIN* an=b U I  on (1) 

(3) ba  nIN* bn=a U I  on (1) 

(4) [ ab  ba Auxiliary premise 

(5) ab Simplification on (4) 

(6) nIN* an=b Modus Ponens on (2) and (5) 

(7) ba Simplification on (4) 

(8) nIN* bn=a Modus Ponens on (3) and (7) 

(9) am=b E I  on (6) 

(10) bk=a E I  on (8) 

(11) amk=bk Property of the power 

(12) amk=a Transitivity of the equality on (10) and (11) 

(13) a=1 or m=k=1 Mathematical properties 

(14) a=b ] Consequence of (13) 

(15) (ab  ba)  a=b Introduction of  on (4) and (14) 

(16) pq (pqqp  p=q) U G  on (15) 

Figure 4: Formalisation of the proof in the frame of Copi’s natural deduction 

This formalized demonstration starts with a universal premise followed by four successive universal 

instantiations; twice in (2) with two different letters a and b, and twice in (3) with the two same 

letters a and b; so, one works then with two generic elements. In (4) an auxiliary premise is 

introduced to express the antecedent of the property of the antisymmetry on the generic elements 

(this is a standard way to prove a conditional statement in the frame of Copi’s natural deduction: 

proving B under hypothesise A provides a proof of  The two existential statements (6) and 

(8) are followed by two existential instantiations with two different letters: m in (9) and k in (10). 

                                                 

3 A proposition upon which an argument is based or from which a conclusion is drawn. 



The mathematical argument is developed in (11) to (14) using mathematical properties without the 

quantifiers. The passage from (13) to (14) does not appear in this demonstration. It can be expressed 

in the following way: 

(13): a=1 or mk=1; First case: a=1 then a=b=1; Second case: if mk=1, with mIN* and kIN*, then 

m=k=1; finally, in both cases, a=b (14) 

Framing the proof in Copi’s system allows us to anticipate potential flows likely to appear in 

students’ responses from (6) and (8) to (9) and (10), respectively, in case the restriction rule for two 

successive existential introductions is not applied.  

I provide an a priori classification of the answers that I will use for a posteriori analysis.  

Category 1: answers for which two different letters are quantified existentially. 

Category 2: answers for which the same letter is quantified existentially.  

Category 3: answers for which the same letter is used without existential quantifier,  

Category 4: answers where two different letters are used without existential quantifier. 

Classification of students’ answers  

Among the ninety-six students that answered the questionnaire 80 students have produced a proof of 

the antisymmetry property for the given binary relation. 

1) There are 17 copies in category 1 (about 21%) with representative examples that illustrate this 

category (Figure 5). 

 

Figure 5: Responses of Student 1, Student 2 and Student 3 

In the solution of student 1, the mathematical argument for step (11) to (14) is fully developed. This 

is not the case of student 2: the mathematical argument is absent, there is no mathematical 

justification for the equality of both natural numbers x and y. 

Student 3 used two different letters in the existential statements, however student 3 declared them to 

be equal. In this case we can make the hypothesis that the student attributed the same value to m and 

n in order to satisfy the validity of the statement. Another hypothesis could be that student 3 thinks 

that the equality is necessary. 

2) There are 27 copies in category 2, that I have subdivided in two cases:  



(a) The existential quantifier is present twice (21 copies), see Figure 6. 

 

Figure 6: Responses of Student 4 and Student 5 

In the production of student 4, there is a presence of both quantifiers, the student tries to construct 

the object n existentially introduced in such a way as to have the conclusion. So, to verify the 

property of antisymmetry and have the equality p=q, the student takes, for the natural number n, the 

value 1 which is a solution of the equation pn=q of unknown n. Also for the student 5, where there 

is absence of universal quantification, the construction of the object n is implicit and the conclusion 

is immediate for the student. 

(b) The existential quantifier is present only once (6 copies), see Figure 7. 

 

Figure 7: Response of Student 6 

I notice with the student 6, that the existential introduction of n for the relation pq is also 

considered for qp. Let us note here that, on one hand, both variables p and q are not introduced 

and that, on the other hand, the elimination of the number n is not declared. This illustrates the fact 

that there are implicit arguments in the use of variables and in the steps required to prove the 

antisymmetry property. 

3) There are 36 copies classified in category 3. I have considered in this category copies where the 

letter is used for both statement and is not in the scope of a quantifier. I have consider it as an 

implicit existential introduction without taking in account the restriction rule. The example in 

Figure 8 is typical of answers in this category. 

 

Figure 8: Response of Student 7 

In the production of student 7, the variable n is the same in the two equivalences, and there is no 

mathematical argument supporting the conclusion. It is possible that the student wrote directly the 

conclusion p=q to fulfill the antisymmetry property; another possibility is that he considered that it 

was obvious that both equations pn=q and qn=p allow to conclude that n is 1 and to deduct the 

equality. 

4) There is no copy in category 4, provided that we consider that the existential introduction may 

remain implicit. 

These results confirm my hypothesis that the complexity of the logical structure on the side of 

quantifiers is likely to create an obstacle for the students to provide a correct mathematical 

argument. In particular, it is noticeable that the only students that provide sound mathematical 



arguments are those in category 1, i.e. those who take in account the restriction rule for existential 

introduction.  

These results also highlight the fact that in case of two successive applications of an existential 

definition that a priori requires the use of different letters, many students use the same letter. In 

other words, they do not respect the restrictions on the names of objects associated with the rule of 

existential instantiation. We could suppose that the symmetry in pq and qp triggers the choice of 

the same letter; however in line with other results (e.g. Durand-Guerrier et Arsac 2005) we would 

say that this students’ practice could be found in various other contexts.  

Conclusion 

In this paper, I aimed to illustrate the relevance of our methodology relying on Copi’s natural 

deduction that allowed detailed a priori analysis of proofs and a posteriori analysis of students’ 

productions. From the a priori analysis of the proof of the antisymmetry property of the binary 

relation at stake, I identified possible invalid steps. The a posteriori analysis of the proofs provided 

by students has shown that such invalid steps appeared in many answers and that in some cases, this 

invalid steps prevent the students from identifying the mathematical property required for providing 

a valid proof. 
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Prospective secondary school teachers are required to take undergraduate courses in mathematics, 

which may be of limited relevance for their teaching. In this study, we investigate affordances of co-

teaching for achieving such relevance. This is a qualitative study of an undergraduate course on 

Mathematical Proof and Proving, co-taught by a professor of mathematics education and a professor 

of mathematics. Analyzing an episode critiquing three different proofs, we show that the 

mathematician was concerned mainly with the written proof and its “correctness”, whereas the 

mathematics educator showed a sensitivity to the person behind the proof, and to pedagogical aspects 

of proof and proving. We propose that such a course may help students reconcile conflicts between 

how mathematics is taught and practiced in university and in high school, and suggest such co-

teaching as a model for achieving relevance for teaching in mathematics courses. 

Keywords: Mathematical proof and proving, teacher education, undergraduate mathematics. 

Background and setting 

The study reported herein was carried out in the context of an undergraduate course on mathematical 

proof and proving (MPP) taught at a major university in the USA1. Typically, such courses are the 

responsibility of mathematics departments, yet this course was conceived and designed through 

collaboration between the university’s department of teaching and learning and its mathematics 

department, and was co-taught by a professor of mathematics education – the second author of this 

paper, herein MEI (Math Educator Instructor) – and a professor of mathematics, herein MI 

(Mathematician Instructor). The goal of this collaboration was to capitalize on the two departments’ 

complementary fields of expertise – mathematics education and mathematics. This setting provides 

a unique opportunity to investigate differences and interactions between these two different types of 

mathematical expertise. Some preliminary findings were reported by Sabouri, Thoms, & Zaslavsky 

(2013) and by Zaslavsky & Cooper (2017), where some aspects of the co-teaching were discussed.  

The course was open to a wide range of students, but the majority of participants were enrolled in 

teacher preparation programs, for which it was a required course. Accordingly, we situate our study 

in the context of the mathematical preparation of pre-service secondary-school teachers. These 

students have two different needs for MPP. In the short term, they must be proficient in university 

routines of proving in order to succeed in their mathematics courses. The notion of formal proof is 

new for many university students, and the transition to the kind of mathematical proving that is 

required in undergraduate courses is known to be difficult (Harel & Sowder, 2007). In the longer 

term, the majority of these students will become secondary school mathematics teachers. As such, 

they will be expected to teach MPP in their classrooms and to assess students’ proficiency in and 

understanding of mathematical proving. Thus they are faced with the challenge of two transitions, 

                                                 

1 Data collection was supported by the National Science Foundation under Grant No. 1044809. 



first from high school to university MPP, and then back to high school. One way of addressing this 

challenge is to offer two separate courses, taught in mathematics departments and in schools of 

education, leaving it up to students to reconcile differences between MPP in the two contexts. Our 

study suggests an alternative; perhaps a course that is co-taught by professors of mathematics and of 

mathematics education will help reconcile the different, sometimes conflicting notions of MPP at 

high school and undergraduate levels. This is the overarching question that guides our study. 

Literature review and research questions 

Secondary school teachers are usually required to take some university level mathematics (ULM) 

courses in their pre-service training; in some contexts, they are even required to hold an undergraduate 

degree in mathematics or in a related field. Yet many ULM courses, taught in mathematics 

departments, deal with advanced mathematical content whose relevance for teaching is not 

immediately obvious. A number of researchers have investigated affordances of ULM courses for 

teaching, using a methodology of teachers' self-reporting (e.g., Adler, et al., 2014; Even, 2011; Zazkis 

& Leikin, 2010). Such methodologies have been found to be of limited value; teachers tended to 

report on general affordances of learning mathematics from mathematicians, however, Zazkis & 

Leikin (2010) found that teachers were generally unable to specify in what ways they made use of 

ULM in their teaching. In our study we utilize a different methodology for revealing affordances of 

the MPP course for teaching, in analysing the teaching in this unusual setting.  

According to Harel & Sowder (2009), mathematicians teaching undergraduate courses are not fully 

aware of student difficulties in learning MPP. The conception of co-teaching in our context was 

similar in some aspects to the way it is utilized in special education (Friend et al., 2010), letting the 

mathematician and the mathematics educator share the responsibility for the content, while leaving it 

up to the educator to attend to students’ “special needs”. Thus, we hypothesize that the mathematician 

will take responsibility for epistemic aspects of the course, while the educator will take responsibility 

not only for addressing the students’ mathematical difficulties, but also for the course's relevance for 

teaching. This hypothesis is consistent with Cooper’s findings (2016) in his study of a professional 

development course for primary school teachers taught by research mathematicians, where the 

mathematicians took responsibility for the mathematical content, while the participating teachers 

themselves took responsibility for achieving relevance for teaching. Accordingly, our research 

questions are: 

1. What are the instructors’ views on MPP? In what ways are their views similar or different? 

2. What are the affordances of different views on MPP for the students as future teachers? 

Theoretical framework and epistemic analysis 

We join researchers such as Nardi et al. (2014) in taking a Commognitive approach (Sfard, 2008). 

Mathematical “knowledge” is conceived as a particular community’s established modes of 

communication, called discourses. These are constituted in commonly used keywords (e.g., “proof”, 

“given”), in narratives that are endorsed or rejected by the community (e.g., proofs), in visual 

mediation that is considered useful (e.g., two-column format of a proof), and in repetitive routines 

(e.g., proving). The very different mathematical discourses of two communities - research 

mathematicians and researchers in mathematics education – differ in their use of common keywords, 

in the types of routines they engage in, and in the rules and norms that determine which narratives 



will be endorsed and which will be rejected, and these differences are grounded in the communities’ 

activities – mathematical research on the one hand and mathematics education on the other. 

Proof is a genre in mathematical discourse, a type of narrative that is expected to adhere to a 

community’s conventions. It usually includes text, and may employ a variety of means to visually 

mediate its mathematical ideas. A proof may be endorsed or rejected based on the metarules of a 

community’s mathematical discourse. Proving is a routine in mathematical discourse, with the goal 

of producing a proof. Ideally, the prover should take responsibility for producing a “valid” (i.e. 

endorsable) proof, which may subsequently be endorsed or rejected by a teacher or by peers 

(classmates or fellow researchers). Routines of proving, and the proofs that are produced, are 

governed by very different metarules in school and in university. 

Method and data 

The study reported herein is part of a larger study, for which extensive data were collected, including 

video recording and field notes of each of the 13 lessons taught in 2013, audio recording and field 

notes of weekly meetings held following each lesson, email exchanges among members of the 

teaching team, and students' written homework with TAs' comments and grading. The rich data offers 

insight into the instructors’ intentions, however, in the current analysis we are concerned with 

affordances of the co-teaching as it played out, and thus focus our attention on the video recordings 

of the lessons, and, in particular, on a single episode from lesson 8, selected for being rich in 

interactions between the MI and MEI. We assumed that the two instructors referring to each other's 

ideas, possibly disagreeing with each other, would reveal their tacit norms and ideas about MPP, and 

highlight differences between them.  

Analysis 

In the following episode, MI and MEI discuss a homework assignment, where an exemplary proof 

had been provided for the claim |𝑥 ∙ 𝑦| = |𝑥| ∙ |𝑦|. Three other responses (also ostensibly proofs) 

were included in the assignment, and students were asked to critique them. These “proofs”, labeled 

2.1, 2.2, 2.3, were copied onto the board, and were discussed. 

Format: we present one or more utterances followed by a short annotation raising points that we later 

elaborate in the discussion. For brevity, utterances not relevant for our analysis were omitted.  

Sample proof 2.1 

MI One thing I told you in the very first lecture is to do what? 

Write the “given” and write RTP [remains to prove] … This 

is a mistake that is commonly made because people confuse 

what is given and what you need to prove. 

MI considered proof 2.1 unacceptable, since it begins with what needs 

to be proven, and manipulates it to obtain the incontrovertible 𝑎 ∙ 𝑏 =

𝑎 ∙ 𝑏. He believes that following a simple rule of writing the given and 

writing RTP at the outset can help students avoid this common mistake.  

Figure 1: Proof 2.1 



MEI [Where] we provided proof [in the HW], we actually wrote the given and what you have 

to find, and if the people who wrote this proof [2.1] started by saying: “given”, then there 

would be no confusion of what should the last line be. The last line being verifying this. 

MEI elaborates MI’s point, but soon after gives a different perspective on this rule of thumb: 

MEI It's more than writing what's given and what you have to prove. It's also accounting in each 

line … what is the status of what you wrote. Is it given, is it a known fact that you bring 

from some other place, which is fine. You have to annotate and write where it comes from, 

how you got to there... If we can infer the following [line], we have to say it... We need 

these words to make sense of what the status of each line is. Because you'll suddenly ask 

what is this? How do I know it? It's a mean of communication, but it's also a means of sort 

of control of what you're doing… …We need to know [where it came from], not just us to 

follow you, but mainly for you to produce a correct proof. If you skip and don't account for 

each line, you're more likely to make a mistake. 

MEI stresses the importance of accounting for everything that is written. The most obvious reason, 

stressed by MI earlier in the lesson, is that these are the norms of the genre; this is the way you 

communicate with others within the mathematical community. However, MEI’s words suggest 

additional considerations. First, in her words “we need to know… not just to follow you” she appears 

to be conscious of the pedagogical setting, where instructors need to follow the student’s thinking in 

order to assess their work. Additionally, she sees the written proof not only as a means of 

communicating with others, but also for communicating with oneself (i.e., thinking). Her word 

“control” alludes to metacognitive aspects of proving, and MEI seems to be suggesting that following 

norms of writing a proof may contribute to the process of producing a valid proof.  

Sample proof 2.2 

MI The proof started by saying... this [(𝑥𝑦)2 = 𝑥2 ∙ 𝑦2] is 

correct, right? Does [it] imply [√(𝑥𝑦)2 = √𝑥2 ∙ 𝑦2]? 

MEI The thinking of this person was that they're taking what 

we need to prove and squaring it and getting there 

For MI, it is the proof that is “saying” something, whereas MEI 

draws attention to the thinking of the person behind the proof.  

MI I'm asking you simply does anyone in this room disagree up to this step? 

The implication of MI’s question (“does anyone disagree”) is that the proof may be correct (at least 

“up to this step”) regardless of the thinking of the person who wrote the proof (e.g., squaring the RTP 

instead of beginning with the given).  

MEI This would be ok without this [striking through lines in the parentheses “square both sides 

and get rid of the absolute value”]. Because what it says here, that you took this as given 

in a way, and squared it and got this. 

In spite of MEI’s previous attention to the prover, she is now showing how the written proof can be 

fixed by striking out the parts that were a consequence of the prover’s misguided thinking. 

Figure 2: Proof 2.2 



Figure 3: Proof 2.3 

MI Sorry, I did not read that. I was just looking at the equations. Absolutely right, this is 

making the same mistake [starting with RTP instead of with Given]. 

MEI I do want to say very nicely that at least the logic of the thinking was clear here, because 

whoever did it provided the explanation, and this is easier to follow, and important. 

MI, in assessing the correctness of the proof, had not read the text in parentheses. This further supports 

the suggestion that he is concerned with the proof as a mathematical product (i.e., the equations), and 

not with the prover’s thinking, which is represented in the explanations. MEI, in contrast, values not 

only the mathematical correctness of the proof, but also the clarity of thinking that is revealed. Here 

again she is showing concern for pedagogical aspects of MPP. 

MI Whoever wrote the proof had a very good idea at the beginning, and choked at this point 

[𝑥𝑦 = 𝑥𝑦] 

Here MI refers for the first time to the person who wrote the proof. However, his claim that this 

person “had a very good idea” is not justified. This claim was based on the fact that the first line on 

the board - √(𝑥𝑦)2 = √𝑥2 ∙ 𝑦2 – can serve as the beginning of a valid proof. In this he is ignoring 

the proving process and the thoughts of the prover, as reflected in the words that MEI crossed out. 

Sample proof 2.3 

 

 

MI How many of you think this is a proof? How many of you don't think this is a proof?  

MEI What do you think J's opinion is? Does he think it's acceptable or not? 

In her question, MEI is allowing for the possibility that the students’ opinion will be different from 

MI’s, but she is suggesting that they should be coming around to seeing things Jim’s way. 

MI It is a proof. It's a badly written proof, but it is a proof. Whoever wrote this made a lousy 

job of writing [it]. That's the only mistake that person made... because they don't know how 

to write a proof. How to present it. So the mistake here is not in the content but in the 

presentation. The person ended up writing two paragraphs for two lines.  

These words highlight three aspects of a proof in MI’s discourse. There is the end product, what he 

calls the “presentation”, which in this case he considers “lousy” (Jim later rewrites the proof in two 

condensed lines of mathematical expressions). There is the “content” of the proof, the mathematical 



ideas that underlie the presentation and are revealed in it, which in this case are valid. Finally, there 

is the thinking of the prover, which MEI is keenly aware of, but Jim appears to be ignoring. 

Discussion 

In this section, we discuss findings from the analyzed episode, along with some additional findings 

from other episodes whose analysis we omitted for brevity. Regarding our first research question, we 

found, as hypothesized, that MEI and MI stressed different aspects of MPP. We present similarities 

and differences between their discourse, as it pertains to proof and proving. 

The human element in a mathematical proof 

MI and MEI both held the view that a text purporting to be a mathematical proof must adhere to 

specific norms of communication. For Jim, the question of validity was central: does the proof begin 

with the given, end with what needs to be proven, and is each line in the proof mathematically 

justified. This is a consequence of the communicational role of proof in his discourse – to convince 

members of the community that a claim is valid. MEI, too, was concerned with the mathematical 

validity of arguments, yet she was also sensitive to pedagogical aspects of proving, and considered 

the prover’s communication with a teacher, who is not only assessing the validity of a mathematical 

text, but also the nature of the mathematical thinking that produced it. There were also differences in 

the instructors’ attitude to the prover’s communication with herself. MI saw two distinct phases in 

proving, a draft phase (which he called a “scratch”) where the prover does her thinking and is not 

accountable for what is written, and the final product which will be scrutinized by others. Thus, for 

MEI a student’s proof should reveal the prover’s underlying thinking, whereas for MI the final 

product should conceal thinking. MEI held a more integrated view regarding the phases of producing 

a proof, where the “accounting” in the final product could serve a metacognitive role in the process 

of proving, by “controlling” the flow and minimizing mistakes. These differences in the instructors’ 

attitudes to proof and proving are evident in their use of language. MI spoke of what the proof “is 

saying”, whereas for MEI it is a human agent who is “saying” something. Jim frequently asked if the 

students “agree up to this step”, where he is referring to a step in the written proof. In sample proof 

2.2 MI did not pay attention to the student’s thinking, as reflected in the text in parentheses. It was 

MEI who suggested striking out these lines, but though this would “fix” the proof, she realized that 

it would not fix the thinking of the person who produced it. MI, on the other hand, when speaking of 

the process of producing proof 2.2, attributed a “good idea” to the prover, based on the fact that a 

valid proof could have begun with the first line. He felt that after this promising start the person had 

“choked”, and this just a few seconds after he conceded that the prover had in fact made “the same 

mistake” as the prover in sample 2.1 - beginning with what needs to be proven. 

In spite of MI’s attention in sample proofs 2.1 and 2.2 to proof as a text, in proof 2.3 he suggested 

that this text may be a “representation” (i.e., a visual mediation) for something else. Though the proof 

was badly written, he felt that there was no mistake in the “content” of the proof. The nature of this 

underlying content and its relationship with its representation as a text is not clear. MI does not appear 

to be alluding to a human agent’s thinking, but this point requires further analysis of his discourse, 

drawing on additional data. 



The role of proof in mathematical discourse 

Later in the lesson MEI pointed out how the pedagogical context of the course may give a distorted 

view of the role of proving in mathematics: “Mathematicians do proof in order to establish theories… 

But what happens in this course, because the focus is on how to really construct proofs, sometimes 

we're doing it about facts that may be trivial to you… we may be giving you a wrong message”. This 

may explain the importance MEI attributed to a comment from MI in lesson 6, regarding a proof of 

the claim: if 𝑛 > 10, then 𝑛5 − 6𝑛4 + 27 ≥ 0. At MEI’s prompting, MI showed that a careful 

analysis of the proof reveals that the expression is not only greater than 0, it is in fact greater than 

40,000! Why should this be important? Jim explained that “you might need [this “stronger” fact] later 

on in the proof”. MEI re-voiced this idea, but we suspect that for her it had a second role, in addressing 

“the wrong message” about the nature of proving. The task, given by some anonymous agent, was to 

prove “greater than 0”. In showing more than was required, MI and MEI were modeling proving as 

an investigation, where the prover has some agency in deciding what to prove.  

Affordances of the co-taught course for future teachers: Explicit and implicit goals 

We hypothesized that a course on MPP co-taught by a mathematician and a researcher in mathematics 

education would have special affordances for futures teachers, in presenting and reconciling different 

aspects of MPP that are crucial for teaching. Our analysis has demonstrated some affordances. 

The explicit goal of the course was transitional – to help students learn the mathematics department’s 

norms of MPP, and to develop proficiency in university level routines of proving. This goal was 

addressed by both instructors, with Jim taking a leading role. MEI accepted and encouraged Jim’s 

role as the mathematical authority, in calling on him to take over when crucial mathematical issues 

were at stake. It was MI who modeled the kind of proving that will be expected in advanced university 

courses. Furthermore, if students internalize MI’s discourse, they may eventually bring a commitment 

to mathematical precision and rigor to their own classrooms. MEI did not disagree with Jim. 

However, in stressing other aspects of MPP, we feel that she was modeling not only how to produce 

an acceptable proof, but also how to teach MPP. In her attention to the thinking behind students’ 

proofs she was modeling how these future teachers should be concerned not only with what their 

students are writing, but also with the mathematical thinking that drives their work. She was further 

concerned with some meta-level issues, such as the investigative nature of mathematical activity, and 

the development of metacognitive skills of self-monitoring the process of proving.  

Thus, students were exposed to two different perspectives on MPP, both of which they will need to 

internalize as teachers. However, MI and MEI by and large taught in the one teach, one observe 

approach (Friend et al., 2010), and their points of view remained disjoint. In fact, being aware of their 

differences and wishing to present a unified front, they often tried to resolve them at the planning 

stage of lessons (Sabouri, Thoms, & Zaslavsky, 2013). Had they taught in the teaming approach, 

described as “representing opposite views in a debate, illustrating two ways to solve a problem, and 

so on” (Friend et al., p. 12), there may have been opportunities to openly discuss differences, 

encouraging students to reconcile different aspects of MPP relevant for their future teaching.  
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This paper presents parts of a doctoral research pertaining to the study of mathematics in French 

business school preparatory classes. In what follows, we identify the main features of the 

institutional devices designed and implemented by two mathematics teachers in their respective 

classrooms in order to influence and transform the working habits of their students. To do so, we 

rely on qualitative analysis of data collected mainly through interviews and questionnaires. Our 

conceptual framework borrows constructs from the Anthropological Theory of Didactics as well as 

several works in the sociology of education field.  

Keywords: Mathematics learning, preparatory classes (CPGE), organization of study, teaching 

devices, teachers’ practices. 

Context 

Student failure in mathematics during the first university years is a widespread problem in many 

countries including France, but it does not seem to affect in the same way students of all French 

higher education institutions. In fact, there are in France alternative institutions such as the Classes 

Préparatoires aux Grandes Écoles (CPGE in what follows) students achieve much better results in 

mathematics than those enrolled in regular French universities, as is reported in official statistics 

provided by the ministry of national and higher education and research1. The CPGE prepare 

students over two academic years after obtaining the French baccalaureate to enter the Grandes 

Écoles, which are mainly business schools or engineering schools, by passing the concours, national 

competitive written and oral exams specific to each type of school which students take by the end of 

the second preparatory year. In the French educational systems, the two preparatory years at the 

CPGE are equivalent to the first two years of undergraduate study at university and do not lead to 

obtaining a degree. The CPGE have three streams, scientific (S), business and economics (EC) and 

literary (L), which each have different tracks. 

Our study focuses on the CPGE in the continuation of the work of Castela (2011). These institutions 

differ widely from regular French universities in elements commonly considered as the main causes 

of student failure (Farah, 2015b, chap.II, section 4). They are known for their selectivity in 

recruiting students who have obtained exceedingly above-average results throughout high school 

and in the French baccalaureate, as well as their supportive culture, which fosters student 

collaboration and provides them with close follow-up, in a relatively rigid high-school-like system 

within stable moderate-sized classrooms. In fact, these institutions resemble more the European and 

North American universities than the French universities in terms of teaching methods and student-

teacher relationships. Therefore, it is important to point out that although our study is conducted in a 
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specific environment, its results help us to understand more general issues that concern other 

institutions in France and in other countries. 

With the change of institution, from high school to CPGE, students face a significant rift with 

respect to the work they have to complete in order to succeed in mathematics. In fact, in the CPGE, 

students are expected to develop without teacher supervision and in addition to the tasks that are 

prescribed to them, significant autonomous personal work in mathematics that is not necessarily in 

the continuity of what ensured their prior success in high school. Moreover, assessment in the 

CPGE is entirely conditioned by the nature of the examinations of the concours. In mathematics, it 

is cumulative, covering the content of both preparatory years, which is never the case neither at 

university nor even in high school. In this paper, we are interested in the ways these institutions 

shore up their students and help them develop a new working mode in mathematics, geared towards 

the CPGE requirements, during the first year of scientific track business school preparatory classes 

(ECS). Therefore, we focus on the relationships that exist between institutional and students’ 

personal organization of study in mathematics. 

Conceptual framework 

We are mainly interested in the institutional dimension and its impact on students’ learning in 

mathematics. We claim that through their ways of functioning, the CPGE institutions help their 

subjects (the students) construct a new working mode in mathematics adapted to the CPGE 

requirements. We refer to the foundations of the Anthropological Theory of Didactics (ATD) to 

examine the weight and action of these institutions (Chevallard, 2003). We endorse Chevallard’s 

(2003) description of an institution as a social system that allows and imposes on its subjects, that is 

people who occupy different positions within the institution, ways of doing and thinking. Subjects 

are hence submitted to collective constraints and expectations that regulate their actions and thus 

subjugate them (in French, assujettir). For our study, we consider first, at a global level, the CPGE 

institution within which individuals occupy the positions of student, teacher, and administrative 

staff… At a local level, we focus first on the teaching of mathematics in the broader sub-

institutions, the EC stream then the ECS track. Next, we consider the teaching of mathematics in the 

school institution. Lastly, we examine the institution of the mathematics classroom of each teacher, 

with two main positions: teacher and student. 

Regardless of the level of institution in question, it is important to bring forward the idea of 

organizational stability emphasized by Darmon (2013) and Rauscher (2010). Darmon identifies 

institutional devices that are shared among CPGEs, which put students to work while supervising 

them. In accordance with the ATD hypotheses, Rauscher advances that subjects of the CPGE 

institutions occupying the teacher position (per discipline, hence in mathematics in particular) 

predominantly share common experiences and background traits. They thus form a distinctive social 

group, as a result of several interacting mechanisms, and take decisions as a team, or a tribe (tribu) 

as Chevallard (2003, p.89) would refer to it. The hypothesized continuity and stability within the 

CPGE, as to the norms of the teacher profession and the study organization created by each teacher, 

enables us to foresee the influence of the global CPGE institution on the students’ work. 

The work of Darmon (2013) in sociology allows us to clarify certain important aspects of the 

functioning and role of the CPGE institution, through which it exerts its subjugation actions and the 



 

 

resourcing of students’ personal work. Darmon defines a specific type of institution based on the 

socializing functions of the CPGE and examines it as an institution where a specific type of person 

is manufactured. According to her, these “enveloping institutions” (p.10) shape and transform the 

students through preparatory institutional socialization processes. Therefore, she analyzes the 

different daily functioning devices that make it possible for the institution to exert its effects on the 

students (“surveillance, sanction, examination and pressuring techniques” p.16). It appears that this 

subjugation process in undertaken by taking into consideration the individuals involved; this is far 

from common in higher education practices in France and sounds highly paradoxical. In fact, 

Darmon puts forward the fact that the CPGE strives to soften the preparatory violence. She 

describes the institution as being powerful but not totalitarian, violent but concerned about the well-

being of its members, it operates by individualizing to the extreme rather than homogenizing, thus 

reinforcing its take over the individuals which are its members (2013, p.28). Her findings converge 

with those of Daverne and Dutercq (2013) who put forth the regretted yet accepted pressure to 

which CPGE students are subjected as well as the personalized adaptation of teaching.  

Furthermore, we sought to develop the institutional dimension of our research from the point of 

view of the teachers. We hence considered two levels: the first once pertains to the way teachers are 

subjected to the CPGE institution; the second one is related to the mathematics classroom of each 

teacher, the local institution s/he creates thanks to stable devices which we seek to identify. We 

believe that the subjugations to the CPGE generate an environment in which each teacher enjoys a 

given autonomy and can freely express his/her individuality within the boundaries of the common 

CPGE teacher culture highlighted by Rauscher. Using Darmon’s work, we bring forward the CPGE 

institutional functioning analysis in order to explore how the socializing function is exerted. 

Therefore, based on the different didactical and sociological elements of our conceptual framework, 

we address the following research question in this paper: which institutional devices lead to the 

transformation of the students’ personal work mode in mathematics, at both levels of an institution, 

ranging from the global CPGE institution to the local teacher classroom institution? 

Methodology 

A first phase of our study, which is beyond the scope of this paper, was entirely centered on 

students’ personal work in mathematics. Using questionnaires and interviews of first year students 

from two ECS track preparatory schools in Paris (see Farah, 2015a), we gathered data about the 

organization of mathematics courses, the teaching methods, the assessment tools and the resources 

provided by the teachers to put students at work and accompany them in the study of mathematics. 

Based on this, we sought to approach the practices of the teachers by examining the teaching 

devices they design and implement in their classrooms as well as their meta discourse (Robert and 

Robinet, 1993, p.1). We must clarify that the word “discourse” refers to verbal expression, i.e. the 

use of words to exchange thoughts and ideas. It is not a theoretical construct borrowed from a 

conceptual framework. As for the word “meta”, we refer to Robert & Robinet’s definition (1993) 

whereby a teacher’s discourse contains meta elements, i.e. about mathematics and about the ways of 

doing and learning mathematics. The second phase of our research followed from this. 

To answer the research question addressed in this paper, we relied on qualitative analysis of data 

collected from two mathematics teachers of the schools involved in our study. We started with data 



 

 

obtained through semi-structured interviews conducted with each of the two teachers about the 

devices instituted in their classrooms. Then, we designed and had each teacher complete two 

questionnaires. The first one, inspired from Rauscher’s thesis (2010), is about their career path and 

their choices with respect to teaching in the CPGE, which we believe determine their position and 

impact their subjugation within the CPGE institution. The second one, inspired from Darmon’s 

book (2013), is about the assessment and pressuring devices the teachers implement in their 

respective classrooms to put the students to work, as well as their ways of softening preparatory 

violence in terms of the support and comfort they bring to the students. 

We used Qualitative Content Analysis of the interview transcriptions and questionnaire answers to 

put together a description of institutional devices implemented by each teacher (local) and those 

common across the different institutional levels (global). The narratives were analyzed thoroughly, 

manually, line by line, in a search for keywords and vocabulary terms constituting the teachers’ 

discourse about the ways students should study mathematics, while focusing on anything pertaining 

to institutionalization, regularity, and insistence on specific actions by the students or the teachers. 

Our search was structured around the following themes that determined the analysis rubrics of our 

content analysis: taking notes in class, managing work and revisions overall, studying between two 

mathematics sessions, using resources, preparing for an exam, the colles2, collaboration between 

students, student difficulties. We then resorted to triangulation to confirm the information obtained 

from the teacher-designed instruments by comparing it with what we had gathered in the first phase 

of our study through the students. We must clarify that, besides the things that converge with the 

information gathered from the students, we had very few elements that would allow us to determine 

the propinquity between the teachers’ statements and what actually takes place in their classrooms. 

In fact, one could be surprised that, in an analysis of teaching practices, there have been few filed 

observations. This limit is due to practical constraints in terms the duration of a doctoral thesis. The 

final output of our analysis is presented in the form of a description of the different institutional 

devices that organize and shape students’ personal work in mathematics. 

Main findings 

The findings show that the teachers seek to put their students to work and mold their study methods 

in mathematics through numerous collective devices instituted in their classrooms. In addition, they 

closely follow-up on each student’s work in mathematics through customized individual devices. 

Thanks to the latter, the teachers develop and apply diverse pressuring techniques in order to ensure 

the students’ intellectual training and their successful passing of the concours. We provide below a 

description of the main devices, which are either dictated by the global organization of mathematics 

study in the CPGE institution and thus revealing how the teachers are subjugated to their institution, 

or specific to one of the more local sub-institutions (for more details, see Farah, in press).  

                                                 

2 A colle is an assessment tool specific to preparatory classes. In mathematics, it classically takes the form of a one-hour 

bi-monthly oral examination, in groups of three students working individually but simultaneously, answering lesson 

questions and/or solving problems on the board, managed by a colleur who is present to supervise and grade the work.  



 

 

The teacher’s course and the follow-up beyond 

The mathematics course organization and progression are the first aspects of guidance to students’ 

work. For both teachers, when they explain a mathematics lesson, their first priority is to retain the 

students’ attention while encouraging them to actively participate by regularly asking questions. The 

lesson is completed and illustrated through examples and exercises, which are solved in class or at 

home, then corrected in class. During regular classroom sessions, if needed, teachers wrap up the 

work that they have previously started during practical solving sessions (called Travaux Dirigés or 

TD). Theses special sessions give students room to work on exercises in small groups, thus 

fostering discussions with the teacher as well as classmates. 

Both professors involved in our study use a handout as the baseline for the lesson explanation; they 

distribute it to students either systematically or occasionally. Depending on the teacher, the class or 

the chapter, this handout can be exhaustive or having blanks to complete, and teachers modify it 

regularly in order to tailor its contents to the level of the students and their capabilities 

(concentration, understanding, note taking ability) and the course pace is slowed down or increased 

accordingly. The main objective behind the use of such a device is to save note-taking time in class 

and ensure that students don’t make mistakes in copying key elements. A typical handout contains 

mathematical definitions and notations, propositions and theorems with occasional short proofs, 

lesson examples and application exercises. During the lesson, the teachers spend most of the time 

completing the missing proofs then provide additional examples. They explain to students that the 

proofs are the basis of mathematics, and repeatedly underline the practical and generic aspects to be 

extracted. On the contrary, little importance is given to statements of theorems. This is an example 

of a specificity of mathematics teaching in this CPGE stream as opposed to the insistence on 

academic knowledge in universities. In addition, the teachers formulate several remarks that are not 

solely about theoretical mathematical knowledge. In fact, in addition to the mathematical content, 

the teachers make comments related to practical knowledge. These are part of their meta discourse 

which contains technological elements (Castela, 2011) used to bring forward the know-hows linked 

to the mathematical content, thus allowing them to accompany students in their study. 

In addition to the time dedicated to lesson explanation, exercises solving and correction, both 

teachers ensure to always be available to assist the students in the learning of mathematics outside 

the classroom. They are willing to answer questions, provide explanations, recommend and even 

correct additional work despite believing that the workload they assign is already enough (regular 

exercise sheets and occasional extra exercise sheets with their correction for some chapters). They 

usually encourage students not to look for more resources (textbooks, online) and focus on what 

they provide due to time constraints. Moreover, the teachers hold weekly tutoring sessions to ensure 

that students are getting all the needed help within the institution. Through their extended 

availability and individualized follow-up, the teachers are ensuring that all their students are 

provided with the necessary assistance for their learning, while they control and organize their 

study. They are thus softening the preparatory violence through surveillance and examination. This 

is one important manifestation of the CPGE teacher culture that is absent in French universities. 



 

 

The recurring discourse about the ways of studying 

The teachers encourage their students to regularly study their mathematics lessons and solve the 

assigned exercises (for both the regular sessions and the TD) and they always explain to them how 

they should proceed to do so. The teachers emphasize the importance of reading a mathematics 

lesson actively and critically. The objective is learning the keys lesson elements while thinking 

about them and asking the right questions to first understand then memorize. According to both 

teachers, validation of the learning should be done by playing-back important lesson contents 

mentally, then preferably in writing.  

In addition, they both stress the crucial role of decontextualizing in mathematics learning. To do so, 

they underline the significance of both the results brought through proof and the use of generic 

components of reasoning, in addition to the techniques used in standard exercises which students 

must be able to acquire and plough back in other situations. In fact, they preach strategic exercise 

solving whereby students are expected to identify standard problems and recognize methods, 

techniques and tricks that can be used to solve them, which can also be applied to other problem 

situations. Thus, according to both teachers, students should have a transfer-oriented approach to 

exercises rather than one that favors only practice or reproduction (Castela, 2011), the latter are 

dominant among successful university students but are deemed ineffective in the CPGE. The 

teachers also insist on the necessity of doubling efforts until mastery is attained when facing 

difficulties in solving an exercise.  

We can refer to the notion of constructive help proposed by the teachers to guide students in 

studying the lesson, solving exercises and decontextualizing proof and exercises, when working on 

a daily basis between two mathematics sessions, as well as when preparing for an exam. In fact, we 

have identified several features of help common to both teachers in their discourse, about expected 

ways of studying mathematics and practical knowledge pertaining to the techniques which could 

help students gain know-hows relating to the awaited tasks. These illustrate the convergence of 

learning methods regularly repeated by two different teachers of the same stream and track. 

The assessment tools 

In order to ensure that the students are completing the assigned work (lesson and exercises) and to 

identify their weaknesses and difficulties in mathematics before the graded exams, teachers use 

personalized informal evaluation techniques during classroom sessions (both regular and TD). They 

often resort to oral interrogations about the lesson notions by randomly calling on students or 

choosing those who are inattentive or fall behind. Also, while the students are solving exercises in 

class, the teachers go around to check what they have done, they assess their understanding and help 

when needed. Then, the teachers encourage the students to engage in discussions about the 

exercises’ solutions before correcting them or asking a student to do so. One of the two teachers 

gives special care to exercises preparation by the students prior to class. In order to push students to 

maintain regular work, he periodically calls students to the board and collects notebooks without 

prior warning whenever he notices that the work has not been fully done, without necessary grading 

any. These are all examples of surveillance and sanction techniques that allow the institution to 

monitor and redirect the work of the students’ work. 



 

 

The teachers have several types of more formal assessment devices, institutionalized at the global 

CPGE level, which allow them to evaluate the degree of investment and understanding of their 

students. Firstly, they use all sorts of written evaluations. Teachers mainly resort to short quizzes 

focused on the mathematics lesson content (definitions, theorems…) at the beginning of the school 

years to push the students to study, however they state that they cannot maintain them throughout 

the year due to time constraints. They also have monthly exams (called Devoirs Surveillés or DS), 

and bi or triannual mock concours which are summative and are conducted in conditions similar to 

the official concours. One of the teachers quizzes his students about the correction of previous DS 

exams thus allowing the students to detect and address their weaknesses. In addition, teachers assign 

and grade homework sets (called Devoirs Maison or DM) on a monthly basis and they usually invite 

students to work on those in small groups. All of the above are examination and pressuring 

techniques used across the CPGE institution, with specificities of each sub-institution.  

Last but not least, the colles are the most important assessment tool that teachers use to evaluate 

their students in a highly customized manner. We summarize the main perks they list about this 

institutional device, which are for most specific to the case of mathematics colles in the ECS track, 

since their organization and functioning changes across disciplines, tracks and streams. The colles 

impose on the students a work and study regularity, which is certainly stressful and tiring for some, 

but the pressure is eventually seen as beneficial for the majority. Mathematic colles sessions are 

described as similar to private tutoring sessions where students can discover their weaknesses, ask 

questions, obtain additional explanations and a new point of view, and practice by solving 

additional exercises. Further to these mathematical learning related aspects, the colles are 

characterized by their interpersonal feature and the know-hows and social skills they teach (stress 

management, oral presentation, self confidence) which go beyond the scope of the classroom or 

even the school. Therefore, the colles are viewed as a summary of the best things the CPGE have to 

offer in terms of learning environment for their students (Daverne and Dutercq, 2013, p.182). They 

are to many teachers the secret to students’ success in CPGE (ibidem, p. 182), despite the 

difficulties and constraints they are subjected to. 

Discussion and conclusions 

On one hand, we can conclude that the teachers who took part in our study are heavily involved in 

their students’ learning. To accommodate the needs and level of a “new population” (ibidem, p.7) 

of CPGE students, more diversified in terms of academic and social backgrounds, teachers redefine 

their teaching modalities and pedagogical devices and adjust the level of their expectations. Daverne 

and Dutercq state that if some young students have good working habits when they enroll in the 

CPGE, none yet have the general culture nor the confidence needed to face the concours, which 

requires from teachers a high level of commitment towards them and a constant care for their moral 

(ibidem, p.8). Hence, the teachers participate in the didactical and pedagogical organization of their 

students’ autonomous study thanks to the advice they provide and the devices they institute and 

regularly adapt according to their needs and capabilities. They are therefore clearly dedicated to 

their students’ success. This is also reflected through the closeness in the student/ teacher 

relationships, which we do not tackle in this paper (for more information, see Farah, 2015b).  



 

 

On the other hand, although the use of the varied pressuring techniques in mathematics differs 

among teachers and depending on the students’ dispositions, the techniques themselves remain 

redundant across teachers and classes. This brings forward their generality and continuity within the 

EC stream of the CPGE institution, of which they become a specificity. As a matter of fact, we find 

in the teachers’ discourse common features underlining the coherence in the practices of teacher 

tribes per class as well as the stability of practices within each preparatory school, within the ECS 

track, and even within the entire EC stream. Regardless of the level of the institution, the devices 

used are specific to the teaching and learning of mathematics, even though we do not examine them 

with respect to a specific mathematical content in this paper. We conclude that the coherence of 

practices noted between the two teachers involved in our study concurs with what the sociological 

studies of Rauscher (2010), Darmon (2013), and Daverne and Dutercq (2013) have identified.  
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This work makes a contribution to the research line that studies the mathematical practices of 

research mathematicians, when developing their research, with the aim of improving the teaching 

and learning of such practices in an educational context. To be precise, we focus on the mathematical 

practices of conjecturing and proving in order to identify their characteristics as a basis to formulate 

a model. To address this problem, we consider Rasmussen, Zandieh, King and Teppo’s (2005) 

theoretical constructs (horizontal and vertical mathematising) and report results from a case study 

of a research mathematician.  
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Introduction 

Freudenthal (1973), in relation to mathematics and its learning, asserts that  

there is no doubt that pupils should learn mathematizing […] There is no mathematics without 

mathematizing […] This is what follows from the interpretation of mathematics as an activity. (p. 

134) 

On the other hand, Dreyfus (1991) points out the relevance of mathematising by highlighting the 

processes through which mathematical knowledge is constructed (discovering, defining, proving, 

modelling, etc.). These processes are relevant research focuses in mathematics education by the 

importance of its teaching and learning. In this sense, assuming mathematics as an activity, 

Rasmussen, Zandieh, King and Teppo (2005) also note the significance of considering mathematical 

practices developed in a learning setting.  

From the mathematics education perspective, mathematicians have been seen as study subjects. In 

fact, Tall (1991) already points out that “we are cognizant of the fact that it is essential to understand 

the nature of the thinking of mathematical experts to see the full spectrum of mathematical growth” 

(p. 3). In this regard, several researchers study mathematical practices of mathematicians with the 

aim of proposing models that describe such practices. For instance, Ouvrier-Buffet (2015) proposes 

a model that describes how mathematicians develop the mathematical practice of defining. Weber 

and collaborators focus on aspects of mathematician’s work associated to the process of proving 

(Mejia-Ramos & Weber, 2014; Weber, Inglis & Mejia-Ramos, 2014; Weber & Mejia-Ramos, 2011). 

Furthermore, Weber and Mejia-Ramos (2011) devise “a model for how mathematicians read the 

proofs of others” (p. 341). These inquiries lead us to consider the study of the mathematical activities 

that take place when research mathematicians generate conjectures and proofs.  

In our study, conjecturing and proving refer to those activities carried out to generate conjectures and 

proofs respectively. For us a conjecture is a statement that can be true or false, appears reasonable, 

“has not been convincingly justified and yet it is not known to be contradicted by any examples, nor 

is it known to have any consequences which are false” (Mason, Burton & Stacey, 1982, p. 58). On 



the other hand, we consider Weber and Mejia-Ramos’s (2011) definition of proof: “the socially 

sanctioned written product that results from mathematicians’ attempt to justify why a conjecture is 

true” (p. 331).  

For two reasons, we consider the practices of conjecturing and proving as two sides of the same coin. 

Firstly, for reasons related to mathematics, Peirce’s contributions (1997) on the three type of 

reasoning: abduction, induction and deduction, applied to mathematics, justify the joint consideration 

of both processes (Fernández-León, Toscano & Gavilán-Izquierdo, 2016). Specifically, abduction 

refers to the provisional adoption of a hypothesis, deduction traces out the probable and necessary 

consequences of a hypothesis and induction is the verification of a hypothesis by experiments (Peirce, 

1997). Secondly, from mathematics education, Alibert and Thomas (1991) point out that “[t]he 

formulation of conjectures and the development of proofs are two fundamental aspects of a 

professional mathematician’s work” (p. 215). 

This work contributes to the research line that studies the mathematical practices of research 

mathematicians, when developing their research, with the aim of improving the teaching and learning 

of such practices in an educational context. To be precise, we focus on the mathematical practices of 

conjecturing and proving in order to identify their characteristics as a basis to formulate a model. 

Mathematisation: Theoretical perspectives 

In the last decades, the specific meaning of the term “advanced mathematical thinking” has been a 

subject under discussion. Tall (1992) associates this expression with the formal use of definitions to 

describe concepts and the logical deductions of theorems based upon them. He points out that such 

grade of sophistication is the highest level of mathematical thinking, but not the activities to reach it. 

With this in mind, Rasmussen et al. (2005) propose an alternative characterisation of advanced 

mathematical thinking, called “advancing mathematical activity”, that mainly focuses on general 

mathematical practices (defining, classifying, conjecturing, etc.) instead of on particular 

mathematical contents. They emphasise the progression and evolution of students’ reasoning in 

relation to their previous activity when participating in a variety of different socially or culturally 

situated mathematical practices. 

Rasmussen et al. (2005) also suggest that each mathematical practice can be described by using two 

different dimensions, the so-called horizontal mathematising and vertical mathematising. These two 

terms are firstly used by Treffers (1987) to describe what he calls “progressive mathematising”. 

Treffers refers to horizontal mathematising as the activities of “transforming a problem field into a 

mathematical problem” (p. 247) and to vertical mathematising as those proper activities of the process 

of reorganisation within the mathematical system itself. Notice that the idea of mathematisation is 

originally formulated by Freudenthal (1973), who understands mathematics as a human activity. This 

author indicates that “there is not mathematics without mathematizing” (op. cit., p. 134). He defines 

mathematisation as the activity of organising matter from reality and within the mathematics 

discipline. Freudenthal (1991) assumes Treffers’ dimensions, although expressing their meanings in 

the following way:  

horizontal mathematisation leads from the world of life to the world of symbols. In the world of 

life one lives, acts (and suffers); in the other one symbols are shaped, reshaped, and manipulated, 

mechanically, comprehendingly, reflectingly; this is vertical mathematisation. (Freudenthal, 1991, 

pp. 41–42)  



For him, these two forms of mathematisation are not separated worlds, have the same status in practice 

and can take place at all levels of mathematical activity. 

In our research, we assume Rasmussen et al.’s (2005) approach about horizontal and vertical 

mathematising. These authors also slightly adapt and modify Treffer’s constructs. For them, 

horizontal mathematising refers to those activities used to formulate a problem situation in such a 

way that it can be mathematically addressed subsequently. Thus, horizontal mathematising also 

includes problem situations that are properly mathematical and is mainly related to initial or informal 

ways of reasoning. On the other hand, vertical mathematising refers to those activities built on 

horizontal activities with the aim of creating new mathematical ideas or realities. They use these 

constructs to characterise the practices of symbolising, algorithmatising and defining. An important 

coincidence they find among these three mathematical practices is the relation between “creating” 

and “using”. They argue that both actions occur when these practices are carried out, although with a 

different role in each dimension. In particular, in horizontal mathematisation, people create 

(definitions, algorithms, etc.) “to express, support, and communicate ideas that were more or less 

already familiar” (Rasmussen et al., 2005, p. 70) and products of this dimension are used within their 

mathematical problematic situation. On the other hand, in vertical mathematisation, new 

mathematical realities are created and using promotes “movement from the particular to the more 

general and in some cases the more formal” (op. cit., pp. 70–71). The authors state that vertical 

activities often give rise to other horizontal activities. Vertical mathematisation may be the setting for 

a new horizontal mathematisation, which subsequently can lead to vertical mathematisation, and so 

on, creating a chain of progressive mathematisations. 

Our study aims to identify characteristics of the practices of conjecturing and proving of research 

mathematicians to describe and explain how they develop them. For this purpose, horizontal and 

vertical dimensions proposed by Rasmussen et al. (2005) are considered. Thus, the research question 

behind this study is: Can horizontal and vertical mathematising constructs describe and explain the 

mathematical practices of conjecturing and proving of research mathematicians? 

Methodology 

In this research, we assume a qualitative methodology. In particular, we have adopted a case study 

methodological approach. With the aim of answering the research question above, we consider an 

inductive analysis, that is, the different categories emerge from the data. In this work, we discuss one 

case of a research mathematician.  

Participant and context 

The participant (Anna, pseudonym) is a research mathematician, understanding as such those who 

have a Ph.D. in mathematics and have published research papers also in mathematics. Specifically, 

Anna is a teacher that researches in mathematical analysis (functional analysis) and has more than 

five years of experience in university teaching. The case study of Anna presented here is part of a 

larger research study which aims, among others, to refine and thus improve the analysis shown below. 

The results reported in this paper are based only on this participant’s case. 



The research instruments 

The data for our study are obtained from different sources: interviews, working documents and 

research reports. Four semi-structured interviews are conducted. The first of them aims to obtain basic 

information from the researcher; the following interviews revolve around the mathematical research 

carried out by Anna. Specifically, we discuss her research results collected in different research 

reports (papers, posters and beamer presentations in conferences). We also talk about the personal 

working documents used in the development of her research. Some of these documents are related to 

situations that led to successful outcomes and some others to situations which were less successful. 

Data analysis 

The analysis process (interpretative analysis) considers the dimensions horizontal and vertical 

mathematising from Rasmussen et al.’s (2005) approach to organise the mathematical activities that 

take place when conjecturing and proving. Specifically, this process identifies relevant events in the 

data and assigns meanings according to the theoretical framework: first, they are classified as actions 

linked to the mathematical practices of conjecturing or proving. These actions are subsequently linked 

to the horizontal or vertical dimension of the corresponding practice, according to the characteristics 

of these two dimensions. For instance, when proving, the activity of Detecting patterns in examples 

(see description below) is considered horizontal since when detecting patterns in examples one 

systematically expresses or formulates (based on experimentation) how certain property (the problem 

situation) holds in such a way its generalisation can be addressed in the vertical category Formalising 

findings with examples. Once that double assignment is finished (conjecturing-proving and 

horizontal-vertical), taking the nature of the events in consideration, the categories emerge in such a 

way that each event is seen as an “example” of a category. 

Results 

In this section, categories of activities that emerged from the analysis of the data are presented. 

Consequently, the offered classification is not based either on the content of the research (geometry, 

analysis, etc.) or the mathematical method considered in each practice (proof by contradiction, etc.). 

Although space prevents the exemplification of each given category, we provide several excerpts 

from Anna’s answers and documents to illustrate some of them. Specifically, we denote each example 

by “Example x.y”, where “x”, that may be 1 or 2, refers to the mathematical research situations in 

which the example arises and “y”, that varies between 1 and 6, indicates the precise moment (in the 

temporary sequence) of the mathematical research situation in which the excerpt appears.  

Although conjecturing and proving are closely related practices (Fernández-León et al., 2016), we 

describe them separately for expository reasons. Notice that the informal character of horizontal 

mathematising and the almost simultaneity of these two mathematical practices make complicated to 

differentiate if the features of the researcher’s informal activities are linked to the construction of a 

proof or, on the contrary, of a conjecture.  

How mathematicians conjecture 

Three categories of horizontal nature (C.H.a, C.H.b, C.H.c) and two of vertical one (C.V.a, C.V.b) 

have been characterised during the analysis of Anna’s case. These categories do not describe a linear 



process, but they are interconnected many times. We begin by describing the activities that 

characterise the horizontal component of the practice of conjecturing.  

C.H.a) Detecting patterns. Experimentation with mathematical objects (a triangle, a number, a Hilbert 

space…) and in relation to a certain characteristic or observable property. To be more precise, logical 

reasoning and informal activities with mathematical objects involved in detecting a certain pattern in 

a concrete mathematical context. 

Example 1.1- Anna: When dealing with the research question about whether all complete 

CAT(0) spaces satisfy the (Q4) condition, we started to check what 

happened to spaces with constant curvature, since the other two extreme 

cases had already been checked by the authors of the paper (Hilbert 

spaces and R-trees). Firstly, we checked that the hyperbolic space, with 

curvature -1, satisfied property (Q4). That conclusion led us to a 

conjecture. 

Example 2.1- Anna: We considered the analytic expression of the modulus of convexity of 

the sphere, a geodesic space that is not linear: δ(r,ε)=1-
1

r
 arccos(

cos r

cos
ε

2

) ; 

and tried to prove its monotonicity with respect to “r” through the first 

derivative. We did many calculations but no conclusion could be 

established. Many experiments with the software Mathematica were 

also done to see if the modulus of convexity of the sphere was monotone 

with respect to the variable r. However, we couldn’t derive any 

conclusion from hand calculations, which was the necessary for any 

future publication. 

C.H.b) Testing conjectures. Verification or rejection of a certain conjecture by specific examples. 

Example 1.3- Anna: We started to checked property (Q4) in more CAT(0) spaces, 

specifically, on gluing CAT(0) spaces. These experiments allowed us 

to reject the conjecture “every CAT(0) space has property (Q4)”. 

C.H.c) Modifying statements. Experimentation with the components of an already existent conditional 

proposition (proved or not, that is, a proved proposition or a conjecture) consisting in modifying its 

hypothesis or conclusion. 

The activities that characterise the vertical component of the practice of conjecturing are given next.  

C.V.a) Formalising patterns. Generalisation and formalisation of a certain pattern observed in 

horizontal mathematising activities. Specifically, a pattern observed in the horizontal dimension is 

used to formulate what is known as a conjecture.  

Example 1.2- Anna: We conjectured that “every CAT(0) space has property (Q4)”. 

Example 2.2- Anna: After seeing many different plots with Mathematica of the cited 

function, we conjectured that “The modulus of convexity of the sphere 

is nonincreasing with respect to r”. 



C.V.b) Formalising modifications of statements. Formalisation of the modifications of the hypothesis 

or conclusion of an already existent conditional proposition (proved or not) which gives rise to a 

conjecture.  

Example 1.4- Anna: We changed the conjecture on the (Q4) property by formulating a new 

one that was more probable in the light of the example checked before 

(gluing CAT(0) space): “any CAT(0) space with constant curvature 

satisfies the (Q4) condition”. 

How mathematicians prove 

Two categories of horizontal nature (P.H.a, P.H.b) and four of vertical one (P.V.a, P.V.b, P.V.c, 

P.V.d) have emerged from the data. We start by describing the activities that characterise the 

horizontal component of the practice of proving.  

P.H.a) Detecting techniques or tools within proofs. Careful study and examination of the 

characteristics and steps of other proofs related to the proof to be built. When dealing with the 

construction of a new proof, it is common to seek proof techniques, in other proofs, that may fit in 

well with the new proof. Notice that this description is consistent with the claim by Rasmussen et al. 

(2005) that many specific activities of this dimension are of organisational and clarifying type. 

P.H.b) Detecting patterns in examples. Experimentation with specific examples that satisfy the 

hypotheses of a given conjecture with the aim of detecting patterns that could be extended to more 

general settings for the proof in process.  

Example 1.5- Anna: After formulating the new conjecture, we considered another space of 

constant curvature, the sphere, to see which pattern was followed when 

checking the (Q4) condition in such space. We observed that it was very 

similar in both spaces. 

In the sequel, the activities that characterise the vertical component of the practice of proving are 

given.  

P.V.a) Selecting and applying demonstration methods. Selection and application of demonstration 

methods (direct, by contraposition, by contradiction, etc.).  

P.V.b) Using proof techniques. Use of proof techniques or tools found in the horizontal dimension. 

P.V.c) Applying known results. Application of known results to build chains of logical implications. 

P.V.d) Formalising findings with examples. Extension and formalisation of the findings and 

calculations with examples in the horizontal dimension.  

Example 1.6- Anna: After revising those examples, we extended the calculations in the 

examples to general cases and proved the conjecture. In fact, what was 

done was the following: we wrote the proof in the hyperbolic space and 

wrote what to do in the general case. This type of reasoning is very 

common in our papers if the extension is very easy and useless.  

Results of this study may show the still strong influence of formalism on mathematical research.  



Conclusions 

In this research, different categories are identified (and organised through the constructs horizontal 

and vertical mathematising) to describe and explain the mathematical practices of conjecturing and 

proving. These categories are consistent with previous results of other studies, for instance, inductive 

reasoning described by Peirce (1997) is closely related to our category Testing conjectures. The 

“Examples x.y” shown in the previous section corroborate, for both practices, the interrelationship 

between horizontal and vertical mathematising activities. Notice that the identification of these 

different categories may contribute to elaborate a model that characterises both mathematical 

practices.  

The categories identified may give information about instruction processes to improve students’ 

understanding of the practices of conjecturing and proving and of their products (conjectures and 

proofs). Such understanding highlights and emphasises the duality conjecturing/conjecture and 

proving/proof, so that it is consistent with what mathematics (as a product of mathematicians) reveals. 

On the other hand, Harel and Sowder (1998) identify three different students’ proof schemes: external 

conviction proof schemes, empirical proof schemes and analytical proof schemes. A tentative idea to 

develop in future works is to check whether the role we have identified induction to play in the 

horizontal dimension of the practice of proving, Detecting patterns in examples, may help us to 

facilitate the transition of students from empirical schemes to analytical schemes.  

We characterise the results of this inquiry as exploratory. That is, the classification described above 

must be refined and validated, in future research, in other different contexts (with other mathematical 

contents, other mathematical cognitive levels, etc.).  
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Students’ interpretation of the derivative in an economic context 
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The concept of derivative plays a major role in economics. One important competence for students 

of economics is to interpret values of the derivative in an economic context. In the study presented 

in this paper it was investigated how students of economics interpreted values of the derivative in 

an economic context before and after their Calculus course at university. Before the course only 

very few students were able to interpret these values adequately. After the course about half of the 

students were able to state an adequate economic interpretation of values of the derivative, mostly 

as amount of change of the function while increasing the output by one (marginal) unit, which is a 

common interpretation in economics. However, the data indicates that many of these students just 

identified the derivative with that amount of change without understanding the differences and the 

connection between these two different mathematical objects. 

Keywords: Derivative, economics, concept image, economic interpretation, marginal cost. 

Introduction and embedding of the research 

In order to maximize their profit firms have to make many profound decisions, for example about 

possible investments. An important tool that aids economists to make optimal decisions is marginal 

analysis. Baumol and Blinder (2015) listed marginal analysis even as one of the most important 

ideas of economy. In marginal analysis the consequences of making relative small changes from the 

current situation are examined (Ruffin & Gregory, 1990). Typical problems are the effects on cost 

or revenue if the output is increased by a small amount (normally one unit), or the effects on the 

demand of a product if the price is increased by a small amount. Marginal analysis is closely 

connected with the mathematical concept of derivative, which serves as a tool to measure the effects 

of these small changes on cost or revenue. Therefore, students of economics should have a proper 

understanding of the mathematical concept of derivative and its use in marginal analysis, which is 

currently investigated in my PhD-Thesis (supervised by Prof. Dr. Rolf Biehler). 

Unlike for students of engineering or physical science, whose understanding of the derivative has 

been examined more extensively (Bezuidenhout, 1998; Bingolbali & Monaghan, 2008; Çetin, 2009; 

Maull & Berry, 2000), only little research about the understanding students of economics have of 

this concept exists. Only two studies are known to the author dealing with the understanding of rate 

of change by students of economics (Mkhatswa & Doerr, 2015; Wilhelm & Confrey, 2003), and 

none of these involves the concept of derivative explicitly. To use the derivative in marginal 

analysis the students have to interpret calculated values of the derivative in an economic context. 

Interpreting values of the derivative in contexts is not easy for students, as shown by Bezuidenhout 

(1998) for students of engineering. He showed, for example, that many of these students could not 

interpret values of the derivative of a stopping distance function S(v) (v is the velocity of a vehicle) 

adequately. They overgeneralized that the derivative is the acceleration or the velocity, or they had 

problems with the unit, which shows that they did not have a profound understanding of the 

derivative itself as rate of change. The economic interpretation of the derivative has the additional 

difficulty that it does not directly correspond to any of the usual mathematical representations of the 



derivative, which is explained in detail in the next section. Therefore, it can be expected that 

students of economics have even more difficulties in understanding this interpretation. To address 

this conjecture, the study presented in this paper is guided by the following research question: “How 

do students of economics interpret the derivative in an economic context before and after their 

Calculus course?” The results will extend the knowledge about students’ difficulties in the 

understanding of the derivative with a focus on students of economics, who have been rarely 

considered until now. 

Theoretical background of the study 

The economic interpretation of the derivative 

In physical contexts, the derivative is often interpreted as rate of change (for example as speed), 

which directly corresponds to other representations of the derivative like the slope or the limit of the 

difference quotient. The common economic interpretation, however, represents a different 

mathematical object, which is now explained for cost functions. If :[0; [ [0; [C     is a cost 

function and C(x) represents the cost of a given output x, '( )C x (called marginal cost) is often 

interpreted as the additional cost while increasing the output by one unit (Schierenbeck & Wöhle, 

2003). This additional cost, exactly calculated by ( 1) ( )C x C x  , differs from the derivative C’(x) 

in its numerical value and in the unit. Hence, this interpretation has to be connected to the students’ 

other knowledge of the derivative and needs to be justified. A typical justification is via the 

approximation formula ( ) ( ) ( )C x h C x C x h    for h close to 0 with the additional argument that 

1h   is really small in economic contexts. A more detailed description of the connection between 

the derivative and its economic interpretation as additional cost can be found in Feudel (2016). 

Some books of economics add the word “marginal” to the unit when describing marginal cost. The 

marginal cost is then the cost that arises if the output is increased by a marginal unit and is written 

as '
dC

C
dx

  (e.g. in Reiß (2007)). In economic literature the term “marginal unit” is often used as a 

synonym for a very small, but finite, unit. In Dyckhoff (2002), for example, the term is used to 

emphasize that one unit is small enough and that the derivative C’(x) can be used as approximation 

for the difference quotient 
C

x




 for Δx = 1. Reiß (2007) emphasizes furthermore that it depends on 

the context whether a unit can be considered as marginal or not (example of the book: if water 

utility is measured in cubic meters a marginal unit might be a cubic millimeter). 

Theoretical tools for the study 

An adequate economic interpretation should be part of the students’ conceptual knowledge of the 

derivative, which can be described with the term concept image by Tall & Vinner (1981). The 

concept image describes the total cognitive structure that is associated with the concept. This 

includes are all mental pictures, associated properties and processes. Concerning the derivative the 

students’ concept image should contain the different representations of it, the differentiation rules, 

connections to other mathematical concepts like monotonicity, and in the case of students of 

economics also an adequate economic interpretation of the concept. To understand this 

interpretation properly students should connect it to other knowledge of the derivative they already 

have from school. The process of making these connections, called synthesizing by Dreyfus (2002), 



is a special challenge in the case of the common economic interpretation of the derivative as 

additional cost because this interpretation does not directly correspond to any of the other 

representations of the derivative, and, as described above, justifying it needs some argumentation. 

Knowledge about the derivative covered in the students’ Calculus course 

In the course the study took place in (University of Paderborn, Germany), the derivative concept 

itself was covered in two lectures. In the first lecture the definition of the derivative as limit of the 

difference quotient, which was also visualized by secant lines “converging” to the tangent line, and 

the differentiation rules were presented. Afterwards the unit of the derivative in comparison with the 

unit of the original function was discussed in the case of a cost function C. In the second lecture the 

economic interpretation was presented and justified. Two possibilities were given in the course: 

1. Approximation of the additional cost of the next unit 

This interpretation was justified in the course via the above mentioned approximation formula   ∆C 

≈ C’(x)∙∆x that was derived by deencapsulating the limit in the definition of the derivative and using 

the limit as an approximation of the difference quotient. 

2. Additional cost of the next marginal unit 

It was illustrated in the lecture with the help of the tangent line in the case of a convex function that 

the error between ΔC and C’(x)·Δx in the approximation '( )C C x x    becomes smaller, the 

smaller Δx is. It was explained that the limiting process ∆x→0 results in a fictional 

equation '( )dC C x dx , in which dx was called a marginal unit. 

Some lectures later, after the introduction of the concepts of monotonicity and convexity, the 

connection between the derivative and these two concepts was discussed. In a last step the 

derivative was used as a tool to solve optimization problems. 

Besides the lectures the students had to solve problems referring to the content of the lectures. The 

problems were solved by the students in small groups. One week later the solutions were presented 

on the board in the lecture hall. Relevant for this study is that the problems also included a task to 

interpret the value '(5)C of the cost function 2( ) 8 10 700C x x x    in an economic context. 

Methodology of the study 

Data Collection 

Students of economics at the University of Paderborn were administered a pre-test addressing their 

previous knowledge of the derivative concept in September 2015 in a voluntary bridging course 

before their math courses. The pretest contained the following task, to check if an adequate 

economic interpretation was part of the students’ concept image: 

A company produces pens. The cost (in euro) for the production of a number of x pens can be 

described with a cost function with the following equation: 

3 21 1
( ) 2 , 0

30000 100
C x x x x x    . It can be determined that '(200) 2C  . Interpret this 

result in the above context. 



After their Calculus course in February 2016 the students had to take an exam to finish the course 

successfully. In the exam the students also had to answer a similar task: 

Let :[0; [P  R be a profit function of a company, which manufactures a product in an 

unlimited and indivisible amount. The profit is measured in units of money, the output measured 

in units of quantity. It is known that the derivative function P’ is called marginal profit. You get 

to know that 
GE

'(73) 0.2P
ME

  (GE = units of money, ME= units of quantity). 

State an economic interpretation of this value. 

As described in the previous section, the students were familiar with that type of task. 

Data analysis 

The answers to the two tasks were categorized by the author with quantitative content analysis. 

Besides two categories given by the interpretations “additional cost of the next unit” and “additional 

cost of the next marginal unit”, which were derived from literature in economics (see “Theoretical 

background”), the categories were created inductively because it was not clear what answers the 

students might state. This led to a system of 10 categories for the task in the pretest (other answers, 

which were all wrong, were given by less than 3% of the students). The answers in the first three 

categories were adequate economic interpretations (detailed descriptions in Figure 1). 

 

Figure 1: Adequate response categories for the task to interpret '(200) 2C  for a cost function C in 

an economic context 

The answers in the categories 4-10 were not adequate economic interpretations (detailed description 

in Figure 2): the answers in categories 4-5 contained at least a correct idea, the answers in categories 

6-8 were wrong economic interpretations, and the answers in categories 9-10 were no economic 

interpretations and therefore were wrong answers to the task as well. 



 

Figure 2: Not adequate response categories for the task to interpret '(200) 2C  for a cost function C 

in an economic context 

After the development of the category system the data was re-coded by a student to check inter-rater 

reliability. The reliability coefficient Cohen’s Kappa was κ = 0.82, which is good. 

The 10 categories mentioned above were also used to categorize the answers to the task in the exam 

to interpret '(73) 0.2P   for a profit function P. However, three additional categories that contained 

more than 3% of the answers had to be added (Figure 3). In addition, the category “cost doubles or 

halves” was adapted to “Increase of profit by 20%”. 

 

Figure 3: Additional response categories for the task to interpret '(73) 0.2P   for a profit function P 

in an economic context 

Results 

The students’ answers to the task to interpret '(200) 2C   for a cost function C in an economic 

context before their Calculus course are shown in Figure 4. 



 

Figure 4: Students’ answers to the task to interpret '(200) 2C  for a cost function C in an economic 

context before their Calculus course (N = 143) 

As can be seen in Figure 4, the economic interpretation of the derivative of a cost function C as the 

additional cost of the next unit was not known by the students from school, and is not as intuitive 

that the students stated it spontaneously. Instead, some students tried to use their knowledge about 

the derivative being the slope at a point (category: Gradient of cost at the point) or the rate of change 

(categories: Growth rate at of cost or Cost per unit). Others had misconceptions.  

The students’ answers to the task to interpret '(73) 0.2P   for a profit function P in an economic 

context in the exam after their Calculus course are shown in Figure 5. 

 

Figure 5: Students’ answers to the task to interpret '(73) 0.2P   for a profit function P in an 

economic context in the exam at the end of their Calculus Course (N = 821) 

As can be seen in Figure 5, more than half of the students knew the common economic 

interpretation of the derivative of a profit function as additional profit of the next (marginal) unit 

after the course (but still various misconceptions occurred). Thus, an adequate economic 

interpretation of the derivative was part of their concept image for about half of the students. 

However, the data indicates that many of these students did not really integrate their economic 

interpretation of the derivative with the rest of their concept image, i.e. they did not fully understand 

the differences between the derivative '( )P x  and its economic interpretation as profit of the next 

unit (differences in the numerical values and in the units). Of the 422 students who interpreted the 

derivative as additional profit, 100 students (23.7%) mentioned “unit of money per unit of quantity” 

as corresponding unit, which is the right unit of the derivative but not of its interpretation as 

additional profit. Furthermore, of the 103 students who interpreted the derivative as the additional 



profit of the next unit, only 20 students (19.4%) mentioned in their interpretation that the value of 

the derivative '( )P x  is just an approximation of the additional profit ( 1) ( )P x P x  , although the 

lecturer had emphasized that this has to be stated explicitly in the interpretation (and had shown 

graphically the error on the board). This indicates that many students probably did not understand 

the differences between the derivative '( )P x and its economic interpretation. They just identified 

both objects, which leads to an incoherent concept image of the derivative (Tall & Vinner, 1981). 

Limitations of the study 

Due to organizational problems it was not possible to match the students in the pretest and the 

exam. So it is not possible to investigate the progress of individual students with the data. It is just 

possible to compare the amount of students giving certain answers before and after the course. 

Discussion and conclusions for further research 

The study shows that an adequate economic interpretation was not part of the students’ concept 

image of the derivative (with few exceptions) when entering university. Hence, this interpretation 

should be introduced in the course with caution and connected to the rest of their concept image of 

the derivative concept. After the course an adequate economic interpretation of the derivative as the 

additional cost/profit of the next (marginal) unit was part of their concept image for about half of 

the students. However, the data indicates that many of these students did not understand the 

differences between the derivative as a mathematical concept and its economic interpretation. For 

example, one quarter of the students who interpreted the derivative as additional profit gave the 

wrong unit (a unit of rate). They did not distinguish between the derivative being a rate of change 

and its economic interpretation being an amount of change, which is also documented in literature 

(Mkhatshwa & Doerr, 2015). Furthermore, the data indicates that many students were not aware that 

the value of the derivative is just an approximation for the additional cost/profit of the next unit. 

Students having these problems probably did not connect the economic interpretation of the 

derivative to their concept image of the derivative as a pure mathematical concept properly. 

To find out to what extent the students really integrated the economic interpretation of the derivative 

as additional cost/profit into their concept image as intended in their Calculus course (i.e. that they 

know the differences and the connection between these two different mathematical objects, and can 

justify the identification of them), further research is necessary. Therefore, in spring 2015, an 

interview study addressing this identification directly was conducted to find out to what extent the 

students really integrated the economic interpretation of the derivative into their concept image of 

the derivative concept (and not just memorized it) and what cognitive obstacles occur during the 

justification of the economic interpretation of the derivative in the way it was done in the course.  

The above mentioned research, however, only takes a cognitive perspective into account. There are 

more factors influencing the way students interpret the derivative in an economic context like 

institutional practices of the two institutes involved in their education (institutes of mathematics and 

economics). Taking these institutional influences into account, which has great potential for further 

research, would, however, require other theoretical perspectives like ATD (Bosch & Gascón, 2014). 
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Flipped Classroom approaches to teaching are becoming increasingly popular in higher education, 

but there is a lack of empirical research. We present here a study performed during an engineering 

course for 20 students at a Norwegian university, on student appropriation towards Flipped 

Classroom through interviews, questionnaire, video/quiz usage statistics and classroom filming. We 

approach this research through an activity theoretical framework, focusing on tensions experienced 

as the students try to tackle the demand of video preparation and active learning in class. In line with 

much of the recent research on the topic, we find that most students seem to appreciate more 

collaboration with peers and teacher. However, there is also evidence that the new form of teaching 

creates various tensions; a minor part of the cohort demonstrates conflicting beliefs about 

mathematics learning, resisting the active learning part of Flipped Classroom. 

Keywords: Activity theory, flipped classroom, tensions. 

Introduction 

Flipped Classroom (FC) is most commonly known as a method that arranges the lecturing part of the 

teaching as homework through videos. This is considered the out-of-class part of the FC. When 

students come to class, the stage is set for learning in a student-centered manner, using various 

problem-solving activities (Bergmann & Sams, 2012). This is considered as the in-class part of FC. 

Both are vitally important for the FC learning model to work. The out-of-class video learning 

“primes” the students for the crucial in-class active phase (Seyfedine, Kadry & Hami, 2014), where 

hopefully the active “learning-by-doing” understanding and adaptation takes place. The idea is that 

through well-designed activity sets in class, the teacher has the opportunity to challenge the students 

at both a collaborative and conceptual level in this phase (Wan, 2015).  

In this paper, we describe a study that was conducted in the spring term of 2016 at a Norwegian 

university, where students in their first year of engineering studies were exposed to several 

interventions of the FC way of teaching. The teaching setup in this university is well suited for flipped 

teaching. It is a small campus, with only 20-30 students per-year in a 3-year long bachelor study in 

computer engineering, allowing for a tight integration between the students and the teacher.  

Many studies on the implementation of FC seem to indicate that motivation might increase among 

students in mathematics (Franqueira & Tunnicliffe, 2015; Kadry & El Hami, 2014; Roshan, 2015). 

However, there are also research studies that indicate the opposite. Wasserman, Quint, Norris, and 

Carr (2015) found that students in a flipped calculus III class were critical to the use of class time for 

group work. Strayer (2015) reports that students felt “lost” and disengaged with the material sooner 

than students in the traditional classroom did. Ramaglia (2015) did a comparative study between 



flipped and non-flipped high school and middle school mathematics classes in her PhD thesis, but 

failed to find consistently increased peer-to-peer activity among students. Referring to these mixed 

results from other studies, it seems interesting to gain more insight into what kind of tensions, strains 

and possible resolutions of these can be observed in a FC realization. Based on this background, our 

research questions are formulated as follows: 

Research Question: What are the tensions that emerge from students’ attempts to appropriate change 

towards FC facilitated by videos and quizzes? 

Theory 

We believe that learning can best be understood when considered as a common enterprise among 

students and teacher, emerging as culturally negotiated in an environment based on constructive 

criticism. Turning to Cultural Historical Activity Theory (CHAT) (Engström, 1994), we have a rich 

theoretical basis to put FC in a broader perspective.  

Campus Inkrement

Classroom discourse

Curriculum literature

Student
Learn 

Math

Prepare using 

videos
Roles during 

group work
The class

Become 

engineer

Instruments

Subject Object

Rules Division of labour

Community

Outcome

Figure 1: The CHAT triangle adopted to the Flipped Classroom from a student’s perspective 

The primary part of the activity system in this study is the student as a subject in her object-oriented 

activity to learn engineering mathematics. In attempting this, she uses various instruments. The most 

important ones are Campus Inkrement (a virtual learning environment used for distributing videos 

and quizzes), classroom discourse and curriculum literature. The dominant new rule governing FC 

compared to “traditional teaching”, is the video preparation part, forming the out-of-class component 

of FC. The mathematics in the video should form a common ground of knowledge for the community 

consisting of students and teacher. For the division of labor, we consider how students attain various 

roles in their collaboration to solve tasks in-class. 

In any activity system there exist tensions and contradictions. Engström (1994) summarizes activity 

theory in five principles, and among these, he mentions contradictions as one of the leading sources 

for change and development. Basically, contradictions can be defined as a misfit within elements of 

an activity system, between them, and between different activity systems. Engeström (1987) argues 

that four levels of contradictions are present in an activity system, and identified tensions in 

interactions within and between activity systems. The contradictions can be identified at four levels: 

primary, secondary, tertiary, and quaternary. If we apply this model in the context of FC, we can 

describe the contradictions as follows:  

1. The primary contradictions occur within the elements or components of FC as an activity 

system, e.g. within the community of students and teacher.  



2. Secondary contradictions arise between the elements of FC, or when two or more elements 

of FC conflict with one another, e.g. between the community and subject (for example 

between the class and the individual student), between the object and the community, or 

between the rules and the community, etc. 

3. Tertiary contradictions arise when a new and advanced method or artefact is used to achieve 

an objective, e.g. when videos are introduced as a new artefact to teach mathematics. 

4. Quaternary contradictions occur between FC (as activity system) and another activity 

system.  

Methodology 

We performed two separate periods of FC teaching during the second semester of study year 

2015/2016. We performed data collection by issuing an anonymous questionnaire, doing three semi-

structured interviews and two rounds of classroom filming. In addition, students’ usage statistics of 

video and quizzes were collected through the Campus Inkrement software. As our theoretical stance 

is in the socio-cultural field, an interpretative research paradigm was chosen. The questionnaire and 

the interviews were performed after the students’ first encounter of FC teaching, informing us on 

student impressions on pedagogical and technical impressions with the learning platform chosen for 

distributing video/quizzes, the in-class group work activities and the quality of interaction with the 

teacher and the other students. Episodes relevant for the enlightenment of the research questions of 

the paper, tensions and student appropriation towards FC, are highlighted in the results section. 

Campus Inkrement (CI) as a mediating artefact 

Preceding each in-class session, a corresponding out-of-class session of videos and quizzes was 

presented to the students in CI, which is a web-application fulfilling the role of the out-of-class 

component of FC. Built from the ground up to be consistent with the FC teaching design, the 

teacher/researcher also has the capability to highlight video watching statistics and quiz results for 

the individual student. From a student perspective, CI brings the opportunity to give feedback on how 

well the student understood the current topic on a scale 1-5. In addition, self-perceived effort can be 

reported on a similar scale. The student also has the opportunity to ask for further guidance from the 

teacher on specific topics. This opens up for an out-of-class possibility for students to prompt the 

teacher for assistance without revealing their uncertainty to peers in-class. 

FC implementation 

In this class, there were 20 students following the course. Before attending the spring term, these 

students had all background from a 10 ECTS (European Credits) calculus based Math-1 course with 

traditional lecture-based teaching. The course in the spring term that was subject for FC teaching was 

labelled Math-2, consisting of 10 ECTS containing series, Fourier and Laplace transform, recursion 

equations, proofs and optimization on functions with two variables.  

After having informed the students thoroughly about the new form of teaching in the beginning of 

the term, we started out the term with one month of FC teaching in January. The topic for this first 

round of FC teaching was sequences and series, studying criteria for convergence, and in the end 

Taylor expansions and Maclaurin series. Although we did not influence the curricula, obligatory 

assignments and exam, we could plan and implement FC as we saw fit, including the teaching 

performed in-class. The teaching consisted of two or three 90-minutes sessions each week. To prepare 



each in-class session, 3-4 videos each of 8 to 15 minutes in length were available for the students. In 

between the videos, quizzes directly related to video contents were given. The videos presented the 

mathematics in a chalk-and-talk fashion, screen-capturing teachers writing using a tablet, including 

some demonstrations made in geogebra. We produced 12 of the 36 videos, the rest were collected 

from online resources mainly from Khan Academy (https://www.khanacademy.org). The videos were 

procedural in content, in the sense that there was little time to go into proofs or elaborate on deeper 

concepts. This choice was intended to make the video homework manageable in length for the limited 

out-of-class time. In line with FC ideas, in-depth understanding should be elaborated in an in-class 

setting. 

After this first attempt at FC teaching, we spent the middle of the course teaching traditionally with 

other teachers involved. The reason for this shift was the necessity for collecting feedback through 

interviews with a representative selection of students, in addition to an anonymous questionnaire. 

This to inform us on potentially needed adjustments in the second phase of FC. At the end of the term, 

we ran two more FC teaching weeks on the introduction of functions with several variables, 

linearization of these, partial derivatives and optimization. On most occasions, specially adopted task 

sheets were prepared for in-class active learning to provoke discussion and in-depth conceptual 

reflection about the mathematics, the purpose being to raise the abstraction level. 

Results 

These three sources of data, the questionnaire, the interviews and the filming, provide the possibility 

for us to triangulate findings. As this is a paper investigating tensions in the CHAT sense, we have 

been actively looking for excerpts where such qualities are prominent. 

Questionnaire 

At the beginning of March, we invited all students participating in the class to answer an anonymous 

questionnaire. Here we asked the participants to agree or not on fifteen statements, in a 5-point Likert 

scale fashion, about various features of our FC implementation. The purpose of this was primarily to 

inform us towards the next iteration of FC. Additionally, the questionnaire contained three open-

ended questions, prompting the students to express their opinions about the method with their own 

words. n=15 out of N=20 students responded. 

We have chosen to highlight three responses to the open-ended question: “What did you feel was 

most inconvenient with this method of teaching and learning mathematics?” While other questions 

highlighted the positive sides of FC, the three statements below are representative for most of the 

answers to this question, and are important for the analysis of tensions: 

 “Personally, it works better for me when I spend time on my own with the tasks. Thus, the session 

in the classroom became wasted for me. I believe I should learn new things in the class, and then 

work on my own with the topic afterwards, and then turn to the videos for assistance.” 

“I got “pushed away” from the classroom using this method, since I do not like to work on tasks 

in groups. I feel that group work is difficult since many do not understand the topic 100%, which 

means that many just do not participate in the discussions.” 

“Group work was unsuitable, since mathematics is a more “individualistic” subject.” 

https://www.khanacademy.org/


Interviews 

In addition to the questionnaire, we performed interviews with a representative set of students in a 

semi-structured fashion. Due to time constraints, we had to limit the sample to three persons. This 

group of students was chosen as a representative sample according to gender and age, but also due to 

observed willingness to make critical remarks about the teaching. The interview tried to dig a bit 

deeper into topics of engagements, impressions about videos, group work and interaction with the 

other students and the teacher and lasted for about 30-40 minutes. With respect to our consideration 

of tensions, we present interview excerpts from students with positive and negative views on FC. 

The first interviewee was an engaged student in mathematics, with almost 100% attendance in class. 

He favored learning by videos over traditional learning, and liked the fact that the teacher was more 

available for questions than traditional lecture-based teaching. As the problematic part of all the group 

work, he pointed at troubles with fluency in using new mathematical vocabulary. However, he noted 

that by trying to communicate verbally the task with the others in the group, it became easier to 

understand how to solve it for himself. 

The second interviewee had most of his career from offshore industry but turned to engineering 

studies for health reasons. He had been away from mathematics for a long time and sometimes 

struggled to keep up with the pace in the group work 

Student:  I did not like the specially adopted tasks we got for the class session, and the way we 

worked in the groups was very inefficient for me. Because many in the class are 

above me, I am stuck behind the rest during the work. 

Interviewer: Ok, but you liked to prepare using the videos? 

Student:  Yes, I liked that very much. 

Interviewer: But you think it would be easier for you to find the answer to the tasks if you were all 

by your own solving them? 

Student: Not easier, but it would have been a better way for me to understand them, since I 

would be alone to think it over, instead of the others in the group just working fast 

through them. 

Interviewer: So you weren’t able to engage in the conversation and participate with your own 

thoughts? 

Student:   Not to the degree I wanted. 

Both interviewees 1 and 3 expressed concerns about using specially adopted tasks for the in-class 

work. They worried about the tasks not having sufficient relevance for the final exam, and would 

rather spend time solving tasks from the textbook. I chose to not include excerpts from the third 

person being interviewed, since there were little indications of tensions in this interview. 

Classroom filming 

During the second FC intervention period, we filmed two in-class sessions. We filmed several of the 

groups, primarily motivated by how the out-of-class teaching affected in-class group work. Two or 

three students worked together solving problems related to the videos, but on a slightly higher level 



than the examples used in the videos. One episode in particular caught our attention. One student in 

a pair (let us call her Silvia) attended class seemingly well prepared and brought notes with her that 

she had taken from the videos. The other student in this pair (let us call him Nick) seem to be quite 

unprepared. A study of CI usage statistics confirms this impression. He did not bring notes, and barely 

spoke during the beginning of the episode. Silvia on the other hand expressed interest in how the 

formula of linear approximation for functions in two variables came about. The formula referred to 

is the well-known linearization  

∆𝑓 =
𝜕𝑓

𝜕𝑥
∆𝑥 +

𝜕𝑦

𝜕𝑦
∆𝑦 

The first author hinted that this formula was based on an extension of the single variable case that 

was derived in the video, but Silvia was clearly not satisfied with this, wanting to know more. In 

addition, she was the dominant speaker in the group: In the 22 minutes that the episode lasted, we 

counted 488 words spoken by Silvia, whereas Nick spoke 236. He did catch up in the last third of the 

episode though, speaking almost as much as Silvia does then. We observe from the videos that this 

occurs after he had listened carefully to her struggles with the problems and the conversation that she 

had with the teacher in connection with this. 

It was evident from the CI user statistics that many students had not prepared in the last period of FC 

teaching. This was influencing their progression in-class, although many seemed to use other means 

of catching up with the topic. They used other resources such as the curricula book, discussions with 

more knowledgeable peers like prepared students and the teacher, and even to some extent looking at 

the videos in-class on their own laptop. 

Discussion and summary 

As previously discussed, activity theory can be used to depict tensions in the FC teaching. Studying 

the activity triangle in Figure 1, one of the most prominent changes in FC compared to traditional 

teaching are the rules. These undergo a radical change in FC, enforcing video preparation for in-class 

active learning. 

There are two important observations we would like to highlight. Firstly, the second statement from 

the questionnaire excerpts hints towards a lack of understanding among several group members (the 

community) about the mathematical topic at hand. It seems that many members in the group had not 

grasped the mathematics in the videos, or they simply had not watched them, leading to a breach in 

the quality of student group collaboration. 

The filmed episode of Silvia and Nick confirms this impression. Nick appeared to struggle to follow 

the arguments of Silvia, although there were evidence that he somehow changed from being an 

‘eavesdropper’ of her struggling and collaboration with the teacher to becoming an active participant. 

However, Nick was not playing as the part of a collaborating peer, and thus failing to support Silvia 

in the discourse. We believe that this was due to his lack of preparation using the videos.  

Classroom discussion is considered a vital instrument of learning in FC, and it constitutes a major 

tension if this is not taking place inside a group. We consider this as a secondary contradiction 

between rules and community. As previously explained, the major rule to consider in the student FC 

activity is the necessity to arrive at the in-class session being ‘primed’ by the out-of-class session. If 



a major part of the group has failed to do this, the in-class discourse, considered a CHAT instrument, 

is hampered. Thus, this contradiction could also be seen as a secondary contradiction between rules 

and instrument.  

Considering the data excerpts, we can also mention the tensions below, even though not substantiated 

through triangulation as the one already mentioned: 

1. Tension in expectations/beliefs/rules: Students expect to be “taught” by the teacher, but FC 

rules and division of labour directs students towards learning through collaboration with 

peers (subject – division of labour tension), (secondary contradiction). 

2. Students disagree with the new rule that tasks should be solved during class time. Preference 

towards solving them in solitude (object – rules tension, students feel this is not the best way 

to learn math), (secondary contradiction). 

3. Students need to adopt to a new paradigm of work: Preparation through video lessons 

requires discipline, which results in tension, especially when a heavy workload is expected 

in courses taken in parallel (subject – rules tension), (tertiary contradiction). 

4. Fluency in discourse. Problems expressing the mathematical problems verbally to other 

students. (subject – instrument (discourse) tension), (tertiary contradiction). 

5. Students failing to keep up with the others during group-work (subject – community 

tension), (secondary contradiction). 

As we discussed earlier on, in the filmed classroom episode with Silvia and Nick there is indication 

that students who have prepared by engaging in the out-of-class work seem to express themselves 

fluently in the mathematical problems, and in addition seem eager to learn more about the concepts 

behind the procedural mathematics shown in the videos. This provides empirical evidence (though 

only a single case) of the potential of FC to motivate students to strive towards a higher level of 

abstraction.  

Validity and reliability issues 

This paper must be viewed in the context of a report on a pilot study. More elaborate studies will be 

carried out during 2016/2017 and 2017/2018 with engineering students in the same institution. Thus, 

there is little rigid design according to how data have to be collected to obtain optimal analysis and 

results. Handpicked excerpts from the data material were chosen to highlight the findings. There is 

also the issue of the researcher being present as the teacher, a classical objectivity dilemma found in 

many small-scale educational research settings. However, as we are presenting the data using several 

methods, both quantitatively and qualitatively, we can to some degree state that we have made valid 

triangulation of the findings.  

Conclusion 

Our analysis of the data collected in this study, shows evidence that there exist several tensions in 

FC; some of these could be expected from the outset, while others are surprising. Data seem to point 

towards various aspects of the active learning being the most problematic part for many students 

towards a FC realization. Considering the activity system of the student, a secondary contradiction or 

tension materializes between the rules and the community, since many students was not adhering 

properly to the out-of-class part of FC. This is also seen to hamper the in-class discourse, considered 

to be an important instrument of learning. 
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When complex numbers are introduced, there may be some mathematical choices that go beyond the 

learning processes requirements. Research highlights the necessity to take into account the 

epistemological aspects of complex numbers in order to cope with students’ potential difficulties with 

these numbers. In this paper, we analyze the contents of the mathematical organization planned by 

the upper secondary institution to introduce these numbers by using a micro-model of didactical 

variables. Our results underline a lack of organization and put forward some learning criteria that 

could be deployed to design tasks for introducing efficiently complex numbers.     

Keywords: Didactical variables, complex numbers, mathematical organization.  

Introduction 

One of the most useful approaches to introduce the complex numbers postulates the existence of the 

solution (√−1 or 𝑖) of the equation 𝑥2 + 1 = 0, and enlarges by the same time the set of real numbers 

by including such solution in a way that the sum and product rules could be naturally generalized 

(Ghedamsi & Tanazefti, 2015). Yet, the real number and the complex number are utterly unlike, 

specifically because the former is associated to a concrete measuring process. Some pioneer research 

on complex numbers (Artigue & Deledicq, 1992; Rogalski, 2002; Rossel & Schneider, 2003) 

underline the complexity of learning these numbers by emphasizing the gap between the 

epistemological aspects of these numbers and the mathematical organization chosen to introduce 

them. Three fundamental epistemological aspects are highlighted by these researches and may give 

some details about this gap:  

- In history, imaginary numbers are firstly used as a tool by the Italian algebra school to resolve cubic 

equations; they appeared as the square root of a negative number in the numerical expression given 

by the formula of the real solution ( √𝑎 + √−𝑏
𝑛

+ √𝑎 − √−𝑏
𝑛

) with no more mathematical meanings.  

- Imaginary numbers were being used by mathematicians long before they were first properly defined 

as complex numbers. The progress of the imaginary from the statute of a simple tool towards a 

mathematical existence as an object was supported by their efficiency to solve geometrical and 

infinitesimal calculus problems. Mathematicians made free use of them by applying the permanence 

principle which consists on generalizing real number rules to these numbers.  

- The manipulation of imaginary numbers in history evolved through the use of several mathematical 

and semiotic representations. The use of several procedures, particularly those related to the 

multiplication of vectors, led to a geometric representation of imaginary numbers in the Argand (or 

complex) plane by identifying them to both a vector and a point. This kind of representation is not 

the first one; mathematicians started thinking about trigonometric representations of imaginary 

numbers along with their emergence by using infinitesimal calculus rules. The key role of these 

semiotic and mathematical representations reinforced the utility of imaginary numbers and putted 

forward the necessity to firmly entrench them as a mathematical object.  



Many researches emphasize the major role of the organization of mathematical activities in the 

teaching and learning of mathematics as it shaped what could be taught and how this could be done 

(textbooks, syllabus, etc.). For instance, the study of the mathematical organization of Calculus 

concepts in the transition between secondary school and university highlights several problems in the 

way used to introduce mathematical topics that could potentially affect students’ process of learning 

(Bressoud, Ghedamsi, Martinez-Luaces & Törner, 2016). This paper seeks to analyze this 

phenomenon in the case of complex numbers taking into account the epistemological aspects 

mentioned above, especially through their connection to the development of students’ work with these 

numbers. We build on a networking of frames in order to identify the didactical variables - defined 

as the parameters that influence students’ work (Bloch & Ghedamsi, 2005), related to complex 

numbers. Then, we use these variables to give a global vision of the choices of the mathematical 

organization related to the introduction of these numbers.  

Theoretical frames  

Sfard (1991) argued that three phases shaped both the historical and the cognitive development of a 

mathematical concept. She particularly underlined subtle differences between historical and cognitive 

phases by means of the example of complex numbers. From the historical point of view, the three 

phases are defined as follow: “1) the preconceptual stage, at which mathematicians were getting used 

to certain operations on the already known numbers […] manipulations were treated as they were; 

as processes and nothing else […]; 2) a long period of predominantly operational approach, during 

which a new kind of number begun to emerge out of the familiar processes […], at this stage, the just 

introduced name of the new number served as a cryptonym for certain operations rather than as a 

signifier of any "real" object […]; 3) the structural phase, when the number in question has eventually 

been recognized as a fully-fledged mathematical object […].” (Sfard, 1991, p. 14). These three stages 

are firmly consent with the history of complex numbers. In adequacy with these phases, the cognitive 

development of students is categorized into three stages: 1) interiorization where students become 

aware of the processes that gives rise to the concept; 2) condensation where students start combining 

and generalizing processes; 3) reification where the concept achieves the status of mathematical 

object by unifying the various processes in a structure. In this sense, the mathematical organization 

of complex numbers should cope with activities that enable students to first build skills of 

computation with square roots through active involvement of processes including those related to 

number representations; and secondly to realize through a huge variety of cases the practical 

perspective of these numbers (Sfard, 1991).  

The object level of this concept is closely linked to the algebraic structure (or mathematical category) 

of the set of complex numbers. Each category or structure refers to one mathematical representation. 

In the language of category theory, the establishment of an isomorphism between sets of the same 

algebraic structure allows a person confronted to a new set to detect similarities and connections to 

familiar objects or sets, and to organize efficiently the new set. For instance, the isomorphism of 

field𝑠 φ ∶  (ℂ, +, . )  ⟶  (ℝ2, +, . ), 𝑎 +  𝑖𝑏 ⟶ (𝑎, 𝑏) permits to link the abstract representation of 

the complex numbers to a more concrete one. Furthermore, the use of functors to transit from one 

category to another permits to translate a difficult problem from one mathematics area into an easier 

problem in another area; this is the case of the trisection problem which is just solved by using 

complex numbers. This knowledge thus permits to orientate and to organize mathematical thinking. 



At the transition from the end of secondary school to university, two categories of mathematical 

structures are implicitly used in the teaching of complex numbers: the category of Euclidian space 

and the Field category. To achieve the object level, these categories (and more) should become “the 

ultimate base for claims on the new object's existence.” (Sfard, 1991, p. 20). Of course, this could not 

be done at the transition between secondary school and university! To do so requires some 

foundational notions that are actually not taught at these levels. Nevertheless, the study of the 

mathematical organization of complex numbers by means of category theory provides information 

about the mathematical representations concerned by the institution and their design as well as those 

involved in a process of conversion between two mathematics areas. These information are associated 

to the mathematical culture of complex numbers, and they are useful for the teachers as they become 

aware of substantial details that influence the development of the learning process. Thus, the 

investigation of the upper secondary mathematical organization by using categories should not be 

outlawed simply because of the lack of mathematical notions at this level. However, it is fundamental 

to stress the distinction between the semiotic representations of an object as signifiers - that are 

organized into semiotic registers, and what is signified thus the mathematical representation. In the 

case of complex numbers, one semiotic representation may evoke more than one mathematical 

representation and vice versa. For instance, 𝑧, 𝑧, |𝑧|, arg(𝑧) , etc. constitute the elements (or the 

scripts) of what we called the intrinsic register; students’ work with complex numbers in the category 

of Euclidean space could be done by using both the intrinsic scripts and the geometrical ones. This is 

the case of the representations of three collinear points: A, B and C are collinear points, if there exists 

a real number α≠0 such that 𝑧𝐵 − 𝑧𝐴 = 𝛼(𝑧𝐶 − 𝑧𝐴) which is equivalent to arg(
zC – zA

zB – zA
)0(). Further 

study on the semiotic registers involved in the same category or in the transition between two 

categories is unavoidable. A switch between two semiotic registers is a conversion which refers to 

the same signified being in the same category. This conversion creates a new semiotic representation 

that does not involve the formation of a new object. In the case of the translation from one category 

to another, this switch engages a process of creation of a new mathematical representation of the same 

object. The process of conversions between semiotic representations as well as between mathematical 

representations performed the cognitive flexibility of the students and enabled the enlargement of the 

representations field of these numbers (Duval, 1995).   

This theoretical synthesis highlights the impact of at least three didactical variables on the learning 

process of complex numbers. These variables lead to a micro-model that we use to investigate the 

institutional mathematical organization of complex numbers: DV1: The use of the permanence 

principle which concerns the generalization of real numbers rules (in the categories of field and 

Euclidian space) to the complex numbers; DV2: the use of the process-object duality; and DV3: the 

use of the semiotic and mathematical representations. We classify the mathematical organization in 

terms of practical blocks containing types of tasks and techniques to solve these tasks (Chevallard, 

2006). This classification gives an overall patent description of the institutional requirements that 

permits to analyze the mathematical organization of complex numbers by involving the three 

variables of the stated micro-model. In this paper, we investigate this mathematical organization by 

means of two didactical variables that are DV2 and DV3.   



Empirical context 

Complex numbers constitute one of the most important topics introduced in algebraic courses at the 

end of the secondary school in Tunisia for 16/17 years old students. Courses follow the contents of 

the unique official textbook used by the teachers as their own syllabi; almost all mathematics teachers 

adhere strictly to this textbook. The mathematical organization concerned by this study is taken from 

this textbook.   

The modeling of the whole mathematical organization of complex numbers into praxeologies 

underlines the existence of 14 types of tasks designed T1 until T14; each one can be solved by using 

more than one technique. These techniques are generally algorithmic and indicated in the terms of 

the questions. For instance, to solve the type of task T7: Determine an argument of a complex number; 

students have the possibility to simply employ the property of the argument of the product of two 

numbers, they can also use cosine and sinus properties. Each task is a block formed by the type of 

tasks and the involved technique. The frequencies of these tasks (each task can occur more than once) 

in the whole organization are as follows:  

T1: Determine the cartesian representation of a complex number 20 

T2: Solve an equation using complex numbers 5 

T3: Determine the conjugate of a complex number 2 

T4: Determine the affix of a point or a vector 7 

T5: Determine the modulus of a complex number  12 

T6: Spot points in the complex plane  16 

T7: Determine an argument of a given complex number 5 

T8: Determine the trigonometric representation of a complex number 11 

T9: Determine the kind of a quadrilateral (rectangle, square, etc.) 2 

T10: Determine a set of points of the complex plane 11 

T11: Determine the kind of a triangle (isosceles, equilateral, etc.) 1 

T12: Prove that three points are collinear  1 

T13: Determine the position of two lines (parallel, secant, etc.) 1 

T14: Determine the sinus and the cosine of an angle 1 

Table 1: Types of tasks and frequencies 

The tasks are organized according to the categorization of the course into three sections: 1) the first 

section concerns the introduction of complex numbers via the traditional approach mentioned in the 

beginning of this paper; T3, T2 and T1 are the tasks used in this section particularly to prove and to 

exemplify the proprieties of the product and the sum of complex numbers and of their conjugates, by 

using the cartesian representation; 2) in the second section, the affix and the image notions, and the 

modulus and its proprieties are introduced with no details about the necessity to draw on the complex 

plane; T6, T5 et T4 are the tasks involved in this section; 3) the third section introduces the argument 

and its proprieties, and the trigonometric representation of complex numbers; T7 and T8 are mostly 

studied here. The tasks T9 to T14 are not concerned by a specified section, they are considered as 

integrative tasks that permit to use a variety of techniques. Using this classification, we can now 



analyze the mathematical organization of complex numbers with a particular focus on the micro-

model of the selected didactical variables.   

Some results   

Pseudo operation level of complex numbers  

In opposition to the cognitive development principles as highlighted by Sfard (1991), the 

mathematical organization focus from the beginning, on the object level of complex numbers in way 

that: 1) the reification phase is “imposed” to the students with no tasks that allow the unification of 

the processes into a structure; 2) the preconceptual level of these numbers is missing, and the 

interiorization phase is limited to the manipulation of several representations of the object which is 

already introduced via one of them, this manipulation is mainly guided by the questions; 3) the 

condensation phase, which is supposed to illustrate the operation level of these numbers, is mostly 

neglected. It is important to precise that the same type of tasks could be associated to more than one 

level of complex numbers: preconcept, operation, or object. Specifically, the frequencies of the tasks 

referring to these levels are as follows:  

 Objet Preconcept Operation 

T1: Determine the cartesian representation  20 0 0 

T2: Solve an equation using complex numbers 5 0 0 

T3: Determine the conjugate of a complex number 2 0 0 

T4: Determine the affix of a point or a vector 3 4 0 

T5: Determine the modulus of a complex number  11 1 0 

T6: Spot points in the complex plane 5 11 0 

T7: Determine an argument of a given complex number 5 0 0 

T8: Determine the trigonometric representation  10 1 0 

T9: Determine the kind of a quadrilateral (rectangle, etc.) 0 0 2 

T10: Determine a set of points of the complex plane 1 8 2 

T11: Determine the kind of a triangle (isosceles, etc.) 0 0 1 

T12: Prove that three points are collinear  0 0 1 

T13: Determine the position of two lines (parallel, etc.) 0 0 1 

T14: Determine the sinus and the cosine of an angle 0 0 1 

Table 2: Complex numbers levels and frequencies 

About 2/3 of the whole tasks concerns the object level of complex numbers, and only deals with 

algorithmic computation in the field category or the Euclidian space category of ℂ. The only process, 

referring to the supposed preconceptual level of complex numbers, consists on the strict manipulation 

of complex numbers representations by “juggling” from one to another. These manipulations are 

isolated, indicated in the statements, and do not probably lead to any kind of interiorization, this is 

the case, for example, of the geometric interpretation of the cartesian representation and vice versa. 

Only two tasks from those related to the operation level could actually be considered as an effective 

training to combine and unify processes that show the practical perspective of complex numbers 

(tasks T13 and T14). Tasks T9 to T14 should clearly highlight the role of complex numbers to 



overcome complex computations of the geometrical problems, but with a certain choice of data, the 

students can simply apply geometric rules with no reference to these numbers. But the mathematical 

organization that is investigated in this paper does not permit to underline the role of complex 

numbers in simplifying extremely complicated computations; the data associated to the tasks T9 to 

T12 are not thought to take advantage of the operation level of these numbers.  

The amalgam of complex numbers representations 

Four kind of semiotic representations structured into four registers intervene in the mathematical 

organization of complex numbers: 1) intrinsic register (In., 𝑧, 𝑧, |𝑧|, arg(𝑧) , etc.); 2) cartesian register 

(Ca., scripts using 𝑎 + 𝑖𝑏); 3) trigonometric register (Tr., scripts using 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)); 4) graphic 

register (scripts using cartesian coordinates G.a.c., or polar coordinates G.a.p.). These semiotic 

representations are employed in several ways by mean of the two mathematical categories of ℂ used 

in this mathematical organization: field category and Euclidian space category. The analysis of the 

tasks using complex numbers representations is structured into three levels depending on the 

conversion process: 1) no conversions between semiotic representations as well as between 

mathematical representations; 2) only conversions between semiotic representations; 3) conversions 

between both semiotic representations and mathematical representations. In the case of this 

mathematical organization, each conversion between mathematical representations is followed by a 

conversion between semiotic representations. Depending on the techniques used, the same type of 

tasks could be associated to any of the three levels mentioned above: object, preconcept and operation. 

For instance, the tasks related to T1: Determine the cartesian representation of a complex number 

can be solved in the same register (computing powers of i in the cartesian register), or by moving into 

another register (from the graphic register to the cartesian one). Some techniques used to solve tasks 

referring to T8, T3, T2, T1 and T10 do not require conversions, the frequencies of these tasks are 

shown in the table below: 

Mathematical category Semiotic register Occurrence 

 

Field 

Cartesian 26 

Intrinsic 1 

Trigonometric 2 

 

Euclidian space 

Cartesian 1 

Intrinsic 5 

Graphic/cartesian coordinates 1 

Table 3: Frequencies of tasks with no conversions 

About 1/3 of the whole tasks (26 out of 95) of the mathematical organization concerns the work on 

the Field category using the Cartesian register. These tasks involve simple computations by the mean 

of the properties of the operations in the ℂ field. Tasks from almost all the types are concerned by the 

conversions between semiotic representations:  

  



 

Mathematical category Semiotic conversion  Occurrence 

Field 
(Ca.→Tr.) 2 

(In. →Ca.) 1 

Euclidian space 

(Ca.→In.); (Ca. →Tr.) 1; 6 

(Ca. →G.a.c.); (G.a.c. →Ca.) 24; 5 

(Ca. →G.a.p.); (G.a.p. →Ca.) 4; 1 

(In. →Tr.); (G.a.p. →Tr.) 6; 1 

(In. →G.a.c.); (In. →G.a.p.) 4; 2 

Table 4: Frequencies of tasks with semiotic conversions 

The most important tasks that require semiotic conversions within the Euclidian space are those 

related to the determination of the graphic representation of a complex number by interpreting 

geometrically a given relation with complex numbers. This interpretation is based on a standard 

employ of the properties given in the textbook. Finally, only two tasks need a double conversion: T13 

(Euclidian space./G.a.p.→Field/Tr.→Euclidian space./G.a.c.), and T14 (Euclidian 

space/Ca.→Fied/Tr.). 

Conclusion  

The analysis shows that the mathematical organization of complex numbers involves some values of 

the didactical variables that are theoretically identified. This result corroborates their validity to 

examine students’ learning expectations in the case of complex numbers. However, the approach used 

to introduce these numbers, firstly as object and implicitly as an element of a field set, avoids the 

possibilities to engage efficiently in tasks that deal with the operation level of these numbers as well 

as with valuable conversions of semiotic representations in the category of Euclidian space. 

Moreover, this approach makes it difficult to organize contents related to conversions between 

mathematical representations so that students can use them by their own in the future. But the role of 

the institutional mathematical organization is manifest to overcome the potential changes that should 

occur in the way students are required to work with complex numbers at university level. On the other 

side, the micro-model of didactical variables related to complex numbers reveals a high level of 

cognitive flexibility that is required for learning complex numbers specifically at the beginning of the 

university level: differentiate between real numbers rules and complex numbers ones; use conversions 

between mathematical representations to solve geometrical problems; make autonomously semiotic 

conversions; involve several categories of the set of complex numbers to solve problems outside and 

inside mathematics, etc. These requirements are a source of students’ main difficulties with complex 

numbers (De Vleeschouwer, Gueudet & Lebaud,, 2013 ; Ghedamsi & Tanazefti, 2015). Specifically, 

Barrera (2013) highlights students’ difficulties to interpret the product of complex numbers by means 

of plane’s transformations in the category of Euclidian space. The crucial question is then: how to 

design efficiently the introduction of complex numbers in ways that minimize transition issues to the 

university? This study leads us to conjecture how it is possible to tackle such question by means of 

the micro-model of didactical variables. More precisely, three criteria may be considered for 

designing efficiently the mathematical organization that aimed the introduction of complex numbers: 



1) use several values of the didactical variables and specifically those related to the conversions 

between semiotic and mathematical representations; 2) highlight the distinctions between the 

different categories of the set of complex numbers; 3) focus firstly on the operational level of complex 

number and improve its use in the resolution of different kind of problems. Further studies on 

students’ learning of complex numbers are needed to examine the efficiency of these criteria.  
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Research has shown that mathematics courses in engineering programmes present students with a 

number of difficulties, some of which stem from a disconnection between mathematics course content 

and the professional activity of engineers. Using tools from the anthropological theory of the didactic 

(ATD), we examine how the drawing of bending-moment diagrams is introduced in a classic textbook 

used in engineering programs. Although the notion of integral is used to teach this topic, the 

techniques used rely mostly on geometrical considerations (and not on integral techniques or 

theorems), and the justifications provided are a mix of (incomplete) mathematical discourse and 

professional justifications, with implications for students’ learning. 

Keywords: Mathematics for engineers, ATD, praxeology, integral. 

Introduction and background 

Mathematics is an important subject in many scientific and technological fields, including 

engineering. However, the difficulties university students face in their mathematics courses can lead 

them to abandon their professional aspirations (Ellis, Kelton, & Rasmussen, 2014). Research in 

engineering and mathematics education has shown that these difficulties manifest themselves in at 

least two points in a student’s learning pathway. First, researchers have stated that students find the 

progression from secondary to tertiary education to be very difficult, especially when it comes to 

mathematics (Rooch, Junker, Härterich, & Hackl, 2016), and that they possess unsatisfactory 

mathematical readiness for engineering courses (Bowen, Prior, Lloyd, Thomas, & Newman-Ford, 

2007). Second, a disconnect between mathematics courses and professional courses in university 

engineering programmes has been identified. For instance, Loch and Lamborn (2016, p. 30) stated 

that “mathematics is often taught in a ‘mathematical’ way with a focus on mathematical concepts and 

understanding rather than applications. The applications are covered in later engineering studies.” 

This disconnect may create a “gap in the students’ ability to use mathematics in their engineering 

practices” (Christensen, 2008, p. 131). This gap can be aggravated by the fact traditional engineering 

courses are usually separated into two groups: basic science courses in the first two years (such as 

mathematics and physics), and technical courses specific to each area of engineering in later years. 

Regarding this, Winkelman (2009, p. 306) indicated that “the first 2 years are typically devoted to the 

basic sciences, which means that students may only encounter engineering faculty in the third year 

of study”. Some effort has been made to bridge the gap between mathematical and engineering 

practices, for instance by linking basic mathematical methods to applications (Rooch et al., 2016) or 

by introducing courses on mathematical modelling and problem solving early on in engineering 

programmes (Wedelin, Adawi, Jahan, & Andersson, 2015). These initiatives seem to have positive 

effects on student learning. 

Tertiary mathematics education research has identified a number of difficulties encountered by 



Calculus students; however, there is a lack of research on how teachers of professional engineering 

courses consider and use the mathematical tools taught in prerequisite mathematics courses. In 

general, it is expected that students in second- or third-year professional courses have grasped the 

mathematical notions taught in their earlier courses. We are interested in studying how Calculus 

notions – which students are expected to master – are used in professional engineering courses; in 

particular, whether they are used in the same way as in Calculus courses. Specifically, our research 

analyses the presentation of Calculus notions in a classic engineering textbook. We anticipate that 

this analysis will help Calculus teachers in engineering programmes understand how the notions they 

teach are used in higher-year professional courses, which may lead to a reflection on the connections 

(or lack thereof) between the content of Calculus courses and that of professional courses. In this 

sense, we adhere to Castela’s (2016) position on the issue of choosing appropriate mathematics for 

professional-oriented programmes: “mathematicians need to take some distance with their own 

culture […]. They have to reconsider the following questions: which mathematical praxeologies are 

useful for such engineering or professional domains? What needs would be satisfied? Which 

discourse makes the mathematical technique intelligible? This is actually an epistemological 

investigation that we consider as a prerequisite to the design of mathematics syllabi for professional 

training programs” (p. 426). 

Theoretical framework 

Because we are interested in how mathematical notions are used in Calculus and professional 

engineering courses, we believe that an institutional approach is appropriate for our research. In 

particular, Chevallard’s (1999) anthropological theory of the didactic (ATD) provides useful tools for 

analysing mathematical activity, since it considers that human activities are institutionally situated, 

and, consequently, so is knowledge about these activities (Castela, 2016, p. 420). 

A key element is the notion of praxeology (or praxeological organization), which is formed by a 

quadruplet [T / τ / θ / Θ] consisting of a type of task to perform T, a technique τ which allows the 

completion of the task, a discourse (technology) θ that explains and justifies the technique, and a 

theory Θ that includes the discourse. In analysing tasks, we identify the practical block (or know-

how) which is composed of types of tasks and techniques. The knowledge block describes, explains 

and justifies what is done, and is composed of the technology and the theory. These two blocks are 

important elements of the anthropological model of mathematical activity that can be used to describe 

mathematical knowledge. 

Our research identifies specific praxeologies present in professional courses; we analyse how 

Calculus notions are applied in these courses and whether this application reflects how the notions 

are usually presented in Calculus courses. In this case, analysing the practical block of these 

praxeologies allows us to identify specific tasks that require the use of Calculus notions, whereas 

analysing the knowledge block allows us to identify the justifications given in using these notions, 

and compare them with the justifications usually given in Calculus courses. We consider the work of 

Castela (2016), who identified that “when a fragment of social knowledge, produced within a given 

institution I, moves to another one IU in order to be used, the ATD’s epistemological hypothesis states 

that such boundary crossing most likely results in some transformations of knowledge, called 

transpositive effects” (p. 420). Her model (p. 424) proposes that in the boundary-crossing process, 

some (or all) elements of the original praxeology may evolve, and it ascribes the same level of 



importance to types of problems and techniques as to concepts and theories. However, unlike Castela, 

we do not analyse the same type of task in two institutions, but rather a single praxeology specific to 

engineering and the use of mathematical tools within it. 

Methodology 

As we stated in the introduction (agreeing with Castela, 2016), in order to analyse how mathematics 

are used to solve problems in a given professional field, we must first understand and define these 

problems. We believe this is best achieved in collaboration with professional practitioners. To 

determine how Calculus notions are applied in professional contexts in engineering courses, we 

contacted an engineering teacher who holds Bachelor and Master of Civil Engineering degrees. Over 

the past 28 years this teacher has taught a variety of professional engineering courses at Brazilian 

universities, in engineering programs that meet international standards. He has also enjoyed a career 

in structural systems and reinforced concrete since 1986, developing projects and serving as a 

consultant. We interviewed him in March 2016 to understand how he uses Calculus notions in his 

professional courses. The interview and post-interview exchanges covered his way of teaching, the 

books he uses and the course notes he produces, focusing on his way of presenting different notions. 

For the purposes of this paper, we have chosen to analyse the introduction of shear force and bending 

moment and, specifically, how integrals are used to introduce this topic. At his university, shear force 

and bending moment are introduced in the second year of the programme, in the Strength of Materials 

for Civil Engineering course (students take Calculus in their first year). Three classic international 

textbooks are listed in the course syllabus (all translated into Portuguese), the main reference being 

the book by Beer, Johnston, DeWolf and Mazurek (2012). 

The teacher indicated he primarily follows the structure of the main reference book in teaching shear 

force and bending moment. Therefore, this paper focuses on the book’s content; we are currently 

analysing the complementary material provided to students, as well as the content of the interview, 

which will be the source of future papers. In analysing the textbook, we identified how notions are 

introduced, the type of tasks associated with them, and the type of praxeology developed, paying 

particular attention to the practical and knowledge blocks and the role of mathematical tools and 

discourse within these blocks. 

It is also important to note that in the prerequisite Calculus course at this instructor’s university, 

certain properties and results are proved while others are simply stated. For instance, the connection 

between the sign of the derivative and the monotonicity of the function (θ1) is present and used in 

some tasks (such as the drawing of functions), as well as the connections between differentiability 

and continuity (θ2). 

Shear and bending forces: a summary 

The content introduced in this part of the 

course is related to the analysis and design 

of beams, an important aspect of civil and 

mechanical engineering. Generally, loads 

are perpendicular to the axis of a beam 

(transverse loading), which produces 

bending and shear in the beam. These 



transverse loads can be concentrated (measured in newtons, pounds, or their multiples of kilonewtons 

and kips), distributed (measured in N/m, kN/m, lb/ft, or kips/ft), or both (Figure 1). 

When a beam is subjected to transverse loads, any given section of the beam experiences two internal 

forces: a shear force (V) and a bending couple (M). The latter creates normal stresses in the cross 

section, whereas the shear force creates shearing stresses. Consequently, the criterion for strength in 

designing a beam is usually the maximum value of the normal stress in the beam. 

Therefore, one of the most important factors to consider in designing a beam for a given loading 

condition is the location and magnitude of the largest bending moment. To determine this location, 

students are introduced to techniques for drawing bending-moment diagrams, defining M at various 

points along the beam and measuring the distance x from one end. 

Data analysis and discussion 

Although the main reference book develops its theoretical content in a well-structured way – which 

allowed us to grasp the notions presented – is it possible that students do not read it. Research 

examining how engineering students use their mathematics books seems to indicate that students pay 

little attention to theory, focusing instead on tasks (Randahl, 2012). We are not aware of research that 

looks at the way engineering students use their textbooks in professional courses. 

The content addressing the drawing of bending-moment 

diagrams is presented in Chapter 5 (Analysis and design 

of beams for bending) of Beer et al. (2012). The chapter 

starts by introducing the different types of beam and 

loads, and the notions of load (w), V, and M. Section 5.1 

introduces the relations between, and the directions of, 

the forces V and M in different sections of a beam, 

according to the type of load. In this section, calculations 

are made based on the idea that the sum of forces must 

equal zero, using formulae introduced earlier in the book. 

Sketches of bending-moment diagrams result in 

configurations such as the one shown in Figure 2. 

Obviously, someone with a background in Calculus 

could start to make a connection between the diagrams 

for V and M. However, this connection is not made in the 

textbook until section 5.2 (Relationships between load, 

shear, and bending moment).  

The technique used in section 5.1 is quite rudimentary, 

but section 5.2 defines more explicitly (using derivatives 

and integrals – for this reason we focus on the content of this section) the relationships between w, V, 

and M to facilitate the drawing of bending-moment diagrams, which is the type of task (TE) to solve. 

Section 5.2 presents a new praxeology (related to the one in section 5.1) that introduces the calculation 

of V and M at two adjacent points, x and Δx. Expanding on results from section 5.1, the authors arrive 

at ΔV = -w Δx and state: “Dividing both members of the equation by Δx and then letting Δx approach 

zero: dV/dx = – w. [This] indicates that, for a beam loaded as shown in [the given figure], the slope 



dV/dx of the shear curve is negative” (p. 360). We have two remarks about this. First, the book avoids 

the writing of limits. Including limits could help make a connection with mathematical praxeologies 

present in the prerequisite Calculus courses (for instance, when defining derivatives and shifting from 

Δx to dx). Even if the technology used to arrive at the final expression is based on content previously 

taught in a Calculus course, it is not certain that every student will make the connection, since tasks 

addressing the passage from Δx to dx are not very numerous in Calculus courses. Second, the book 

links dV/dx with the notion of slope, but (surprisingly) relates the latter to a single case (illustrated 

with a figure), rather than explaining it as a general principle using the technology θ1 introduced in 

the Calculus course. This could lead some students to think that this connection between the slope of 

V and w applies only to the given figure. Although the notions (and their properties) introduced 

through TE are defined using tools from Calculus, they are not explicitly linked to technologies (such 

as θ1) derived from Calculus. Finally, the expression is integrated between points C and D to obtain: 

“VD – VC = 
D

C

x

x
wdx

 

 
” and “VD – VC = – (area under load curve between C and D).” 

In general, although the textbook uses elements of Calculus, it avoids explicitly using the kind of 

notation and properties that have been institutionalised in Calculus courses (such as θ1 and θ2 

mentioned above). For instance, the books states: “[dV/dx = –w] is not valid at a point where a 

concentrated load is applied; the shear curve is discontinuous at such point” (p. 361). Here, the author 

avoids a clear statement about continuity and differentiability (available in θ2). As Castela (2016) 

pointed out in a different context, we believe that the authors are seeking to develop another kind of 

knowledge, strongly correlated with a professional context. Employing techniques similar to those 

used to find V (and again, avoiding the writing of limits and saying instead “and then letting Δx 

approach zero”), the expression dM/dx = V is deduced and the authors state: “[this] indicates that the 

slope dM/dx of the bending-moment curve is equal to the value of the shear. This is true at any point 

where the shear has a well-defined value (i.e., no concentrated load is applied). [It] also shows that V 

= 0 at points where M is maximum. This property facilitates the determination of the points where 

the beam is likely to fail under bending”. Interestingly, once again, the book’s authors avoid using 

explicitly a technology derived explicitly from Calculus (θ1), making it less likely that students will 

make the connection. They finally deduce that: “MD – MC = 
D

C

x

x
Vdx

 

 
” and “MD – MC = area under 

shear curve between C and D.” 

We can see that the book avoids explicitly using properties previously institutionalized in Calculus 

courses, which leads to a kind of praxeology in which Calculus tools are written but geometric 

techniques are favoured. We do not mean to say these techniques are wrong; however, they could 

result in a knowledge gap, as some students may not recognise the same object (integral) that they 



encountered in their Calculus course. For instance, the first 

solved example (t1) (Figure 3) presents a uniformly distributed 

load w. Using previous formulae, the reaction forces in the 

extremities are deduced (equal to wL
2

1
), which allows the 

deduction of VA = wL
2

1
 and V – VA = 

x

wdx
 

0 
= –wx, leading 

to V = VA – wx = wL
2

1
 – wx = w 








 xL

2

1
. Note that the 

notation differs from that in the theoretical section, and the 

expression depends on the parameter w (introducing a 

technique τ1 that differs from what was previously presented 

and that does not address the presence of w); however, the latter 

is not highlighted, and a graph is drawn (Figure 3c), taking for 

granted that students can interpret a graph depending on a 

parameter (ignoring students’ known difficulties with 

parameters; e.g. Furinghetti & Paola, 1994). The maximum 

value of the bending moment is obtained by calculating the area 

under the positive triangular region 
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and the curve is hand-drawn (another technique that does not 

address that M has been introduced as the integral of V). The 

authors conclude with: “Note that the load curve is a horizontal 

straight line, the shear curve an oblique straight line, and the 

bending-moment curve a parabola. If the load curve had been an oblique straight line (first degree), 

the shear curve would have been a parabola (second degree), and the bending-moment curve a cubic 

(third degree). The shear and bending-moment curves are always one and two degrees higher than 

the load curve, respectively. With this in mind, the shear and bending-moment diagrams can be drawn 

without actually determining the functions V(x) and M(x)” (p. 362). A single case is used to introduce 

an important technological element (θE) that is helpful in solving TE (drawn by hand), but this element 

is not justified in general, even though introducing V and M as integrals (showing that their 

coefficients can be deduced as primitives) would allow the use of a technology derived from the 

Calculus course for this justification. The book instead chooses to introduce a “rule” (θE) indicating 

that the student simply has to add one and two degrees, respectively, to draw V(x) and M(x). The next 

solved problem has students calculate (again using formulae from section 5.1) the values of forces in 

extremities of intervals as well as areas using geometry. Students are asked to draw by hand the 

bending-moment curve (Figure 4), even for cubic functions. This way, given the original diagram 

(Figure 4-top), students can deduce the value of V, which will be constant at certain intervals, and 

deduce its value at D and E specifically, while simply linking them with a straight line. Once a student 

has drawn the graph for V, it is possible to calculate the areas under each segment to deduce the values 

of M in B, C, and D, linking them by hand. 



In summary, the book introduces a praxeology to solve the 

problem of drawing bending-moment diagrams (TE); however, 

although related notions are introduced using mathematical 

tools such as integrals, the technologies rely on implicit 

mathematical results without clearly identifying them, 

favouring a more professional perspective. The techniques 

presented are limited to calculating certain points on graphs and 

linking them using geometric properties, which hinders 

students’ ability to make connections with the techniques and 

notions introduced in their Calculus course. Notions are 

presented as integrals but this fact is not explicit in the book’s 

techniques nor in the technology; because it is possible to 

ignore the book’s explanations when focusing on techniques, it 

is not certain that students will connect this content with 

content previously studied in Calculus courses. The book 

introduces a praxeology in which the practical block is clearly 

presented [TE, τE], but where the knowledge block (mainly θE) 

mixes statements from mathematics and the engineering 

profession, leaving many facts implicit. Furthermore, this type 

of task does not justify all the content and techniques 

previously learned in Calculus courses regarding integrals.  

Final remarks 

In this paper we analysed the process of boundary crossing (Castela, 2016) of content related to 

integrals, and examined how this content is used as technique and technology in a praxeology proper 

to civil and mechanical engineering. The literature has identified disconnections between 

mathematics and professional engineering courses (Christensen, 2008; Loch & Lamborn, 2016) and 

our research has allowed us to pinpoint one of these disconnections. Furthermore, we believe the tools 

provided by ATD allow us to study praxeologies and identify the connectivities and disconnectivities 

between the content in mathematics courses and professional courses. 

It may be argued that the study of integrals in engineering programmes is motivated by the simple 

fact that “engineers use integrals”. However, we believe that the way integrals are taught in Calculus 

courses follows acknowledged mathematics praxeologies (those which are accepted and recognized 

by the institution of mathematics research; Castela, 2016, p. 421). These mathematics praxeologies 

ignore the use of integrals in professional courses. The crucial question, evoked in the introduction, 

of “what needs would be satisfied?” seems to be ignored by the praxeologies developed in Calculus 

courses, resulting in two different uses of the same object. We intend to analyse the entire content of 

the book related to sheer forces and bending moments, as well as the course notes, to provide a more 

detailed portrait of the use of integrals in this content. This work will be followed by further analysis 

of other engineering-related content, which will allow us to better understand the use of Calculus 

content by engineers and pinpoint possible gaps experienced by engineering students. 
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Students’ view of continuity: An empirical analysis of mental images 

and their usage 
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We investigate university students’ mental images of continuity of real-valued functions by analyzing 

the answers of a questionnaire administered to Bachelor students at the University of Bremen. Our 

conception of mental images is based on concept images in the spirit of Tall and Vinner (1981) and 

the Grundvorstellungen (basic ideas) present in German subject-matter didactics (vom Hofe & Blum, 

2016). For this purpose, we introduce the notion of “communicative simulacra.” Furthermore, we 

catalog students’ mental images of continuity that appear within this and preceding studies and 

demonstrate results on their acceptance in the study group. The used taxonomy and results are part 

of the first author’s master’s thesis (Hanke, 2016). 

Keywords: Continuity, mental images, Grundvorstellungen, concept image, acceptance. 

Introduction 

More than 20 years ago Moore (1994) did an empirical analysis on the difficulties students face when 

they are required to give formal proofs. He identified among other factors that the students had little 

intuitive understanding of the concepts and their concept images were not adequate to perform certain 

proofs. Moreover, Selden and Selden (2013) argue that the ability to choose the right conceptual 

representation is a vital part in proving and generally in problem-solving activities. 

In the context of analysis the concept of continuity is one of the most fundamental notions needed to 

do rigorous proofs. It is well known that students have difficulties with the notion (Tall & Vinner, 

1981). This paper focuses on the mental images that future math teachers, pure math and applied math 

students have, which mental images they find acceptable and which they use to solve tasks. For the 

notion of continuity from the point of view of mathematics as well as mathematics education we refer 

to Tall (2013). 

Theoretical background 

In the German tradition of subject-matter didactics the notion of Grundvorstellungen (regularly 

translated as “basic ideas”) has gained much attention: The idea of Grundvorstellungen was extracted 

by vom Hofe (1995) after an analysis of related ideas of didactics of arithmetics and college-

preparatory didactics by pointing out the importance of creating internal representations of 

mathematical notions in the learners’ minds (vom Hofe & Blum, 2016). According to Kleine, Jordan 

and Harvey (2005) Grundvorstellungen link mathematics and reality by pointing out that modeling is 

a central mathematical process which fulfills requirements of mathematical literacy (application, 

structure and problem orientation): The authors argue that this is only possible after having acquired 

internal representations of mathematical concepts, so called Grundvorstellungen, which connect 

learners’ experiences and mathematical knowledge with real life. Primary Grundvorstellungen are 

directly related to concrete objects and actions in the environment of the learners whereas secondary 

Grundvorstellungen consist of imaginative actions with mental representations (vom Hofe & Blum, 



2016). The latter are particularly relevant for the notion of function and special classes thereof such 

as continuous real-valued functions. 

We prefer to regard the essence of Grundvorstellung, using a subject-matter-didactical analysis, as a 

predominantly normative (or even prescriptive) approach to find internal representations learners 

should acquire in order to be able to recognize and use a mathematical notion in inner-mathematical 

or applied fields. But the idea of Grundvorstellungen is complemented by the wish of mathematical 

didactics specialists to observe actual mental models or images, respectively, that learners really 

develop (vom Hofe, 1995; vom Hofe & Blum, 2016; Kleine, Jordan, & Harvey, 2005). 

The notions of concept image and concept definition by Tall and Vinner (1981) have been 

foundational for the existing literature on university students’ conceptions of elements of analysis 

such as differentiation, integration but also limits and continuity. The concept image comprises “the 

total cognitive structure that is associated with the concept, which includes all the mental pictures and 

associated properties and processes“ (Tall & Vinner, 1981, p. 152). Besides, the concept definition is 

a form of words to specify the concept and to communicate it. It can be personal or formal, thus 

individually shaped or widely accepted by the mathematical community (Tall & Vinner, 1981). A 

formal concept definition rather reflects a normative viewpoint on what is actually forced to belong 

to the concept. We argue that concept definitions are part of the overall of concept images of a 

mathematical notion. Contrariwise, if learners are confronted with an existing concept definition they 

develop concept definition images, a part of their concept images that expressly comprises their 

associations with the definition. Additionally, it is understood that learners enter their acquisition 

process of a newly introduced concept with preexisting concept images (Tall & Vinner, 1981), and 

that teaching persons and environments can influence the acquisition of concept images (Bingolbali 

& Monaghan, 2008). 

Since both the idea of Grundvorstellungen and concept images lack a distinctive description of what 

actually counts as internal representations, a conceptualization of mental images (Vorstellungen) was 

developed in (Hanke, 2016) which seems more appropriate to address the subtleties of precise and 

distinguished research questions in the scope of mental images. Mental images are substantiated as 

individual constructions and therefore reconstructions of all kinds of mathematical notions. They are 

of singular, regular or epistemological nature, can be subdivided into mental pictures 

(Vorstellungsbilder) and mental actions (Vorstellungshandlungen) (Weber, 2007). Due to the premise 

of being able to be communicated, mental images can be shared as well as accepted, rejected or even 

imposed on somebody. 

The most important idea for our study—and in general empirical research—is the fact that mental 

images cannot be observed. Thus, the only way to do empirical research about mental images is to 

study their communicative simulacra, the transformation of a potential inner world of a learner into 

observable entities such as spoken words, written solutions to exercises and so on (Hanke, 2016). In 

particular, communicative simulacra do not reflect normative assumptions on a notion as it is the case 

with Grundvorstellungen. In case of answers to a direct question on mental images (e.g. “What is 

your intuitive meaning of continuity?“) we will speak of exclamatory simulacra. With this 

terminology we emphasize the fact that what is actually communicated by a learner depends on the 

occasion of communication and does not necessarily reflect the full entity of associations of the 

learner. We cannot even be sure that the learner is aware of the intentions of the researcher when 



asked about mental images. Rather, we find blurrings of the actual mental images of learners that 

could potentially be sharpened by further qualitative analysis. In particular, exclamatory simulacra 

are shaped by the learner’s understanding of the concept in question and are only a subset of 

communicative simulacra which, in turn, can be expressed by different forms of communication. 

Here we concentrate on descriptions of communicative simulacra. 

Based on Moore’s (1994) and Selden’s and Selden’s (2013) conclusions, we believe that the mere 

knowledge of definitions, the ability to reproduce them or the setup of mental images for a 

mathematical concept do not necessarily mean that the students are able to use the concept. Also, we 

believe that the more mental images students have the more they are able to apply at least some of 

these in inner-mathematical situations or in contexts. Moore’s (1994) term concept usage is related 

to our idea of distinguishing between exclamatory simulacra of mental images and the usage of 

(probably different) mental images as required in the third section of our questionnaire. The second 

part of the questionnaire provides insight in the acceptance of attitude (Einstellungsakzeptanz) and 

acceptance of usage (Nutzungsakzeptanz) (Weber, 2007) (see next section). 

The review of central papers (Bezuidenhout, 2001; Núñez & Lakoff, 1998; Schäfer, 2011; Takači, 

Pešić, & Tatar, 2006; Tall & Vinner, 1981) on concept images and related results on students’ 

conceptions of continuity lead to the classification in Table 1 of eight possible mental images that are 

reported in the literature following Mayring’s (2015) methodology of qualitative content analysis. 

We emphasize that these categories are representatives of communicative simulacra identified in the 

literature and we do not intend to judge about their formal or normative correctness. 

Connections of continuity to the concept of integration is hardly ever noticed explicitly and therefore 

in case of appearance subsumed under miscellaneous. Likewise, the concept image of “pulling flat” 

the graph of a real-valued continuous function (Tall, 2009, p. 487) could not be found in any of the 

students’ responses. It seems to be related to the rubber band metaphor often used in topology and 

usually is not part of standard German textbooks or lectures on analysis in one variable. Additionally, 

Schäfer’s (2011) Grundvorstellungen for real-valued functions (controlled stability while wiggling at 

a point, possibility of approximation at a point and connectedness of the graph) are subsumed in the 

categories of Table 1. 

# Category Example 

I Look of the graph of the function “A graph of a continuous function must be connected” 

II Limits and approximation “The left hand side and right hand side limit at each point must be equal” 

III Controlled wiggling “If you wiggle a bit in x, the values will only wiggle a bit, too” 

IV Connection to differentiability “Each continuous function is differentiable” 

V General properties of functions “A continuous function is given by one term and not defined piecewise” 

VI Everyday language “The function continues at each point and does not stop” 

VII Reference to a formal definition “I have to check whether the definition of continuity applies at each point” 

VIII Miscellaneous  

Table 1: Categories for mental images of continuity 



Setup of the study and methodology 

Our research questions have been: 

1.) What mental images do students express by exclamatory simulacra? 

2.) What mental images do students accept and make use of in argumentation? 

3.) Is there a difference between students who want to become teachers and those studying pure 

and applied mathematics with regard to mental images or concept usage? 

We distributed a questionnaire to 54 Bachelor students (first-year pure and applied mathematics and 

second-year mathematics teacher students) in Bremen after the completion of a lecture with exercise 

classes on Analysis I (Hanke, 2016). The course covered approximately the content of Binmore 

(1982). The chosen methodology of the questionnaires is very similar to the one used often to 

investigate concept images (e.g. Tall & Vinner, 1981; Bezuidenhout, 2001; Nordlander & Nordlander, 

2012). Our questionnaire, described in detail below, is an extended version of those described in Tall 

and Vinner (1981) and in particular Schäfer (2011). No questions concerning applications are given 

in order to identify students’ conceptions of continuity solely related to the mathematics itself. New 

is the differentiation as described in the taxonomy of communicative simulacra and the comparative 

approach of acceptance of attitude and acceptance of usage, i.e. if students accept certain concept 

images and if they can apply those different images to some example functions. 

To identify the different types of simulacra, the types of questions we provided different stimuli. In 

the first part of the questionnaire the students were asked to freely verbalize what the intuitive 

meaning of continuity from their point of view is. In the second part we probed the acceptance of 

attitude of the verbalizations of mental images presented to the participants in fictive statements on a 

6-point Likert scale (totally decline (0), …, totally accept (5)) (Table 2). Furthermore, the third part 

of the questionnaire focused on acceptance of usage of mental images since we asked to give 

arguments for whether the following functions in Table 3 are continuous at the respective locations 

with multiple mental images. We have chosen the functions because they have discontinuities of 

different kind: the right and left hand side limit of g(x) exist and do not coincide as x approaches 0, 

and the limits of f(x), and h(x) respectively, do not exist as x approaches 1, or 0 respectively, while 

the graph of f is disconnected in every neighborhood of 1, whereas the graph of h is connected in 

every neighborhood of 0. 

# Description # Description 

1 Having minima and maxima is characteristic for 

continuity 

5 Controlled wiggling 

2 Limit definition of continuity 6 Connection to differentiability (“a function is not 

continuous at a point if it cannot be differentiated at 

that point”) 

3 Weierstraß ε-δ-definition / preimages of small open 

intervals contain small open intervals 

7 Graph has no jumps 

4 Graph has no holes 8 Graph does not swing too much back and forth 

Table 2: Mental images of continuity probed in the second part of the questionnaire 



 

Table 3: Different functions in the questionnaire 

Summarizing, we are interested in the threefold of mental images through communicative simulacra: 

exclamatory simulacra and the usage and acceptance of mental images observable in communicated 

outcomes. Due to page restrictions, we limit ourselves on an overview and provide some statistics. 

For instance, the flexibility of usage and acceptance of individuals will be preserved for an upcoming 

paper. 

Results and discussion 

All answers to our questionnaires were categorized according to Table 1. Multiple responses of the 

students were not only possible but desired and multiple categorization of a single answer into the 

categories was also possible. The categorization of the answers to the first question “What is the 

intuitive meaning of continuity from your point of view?“—i.e. the exclamatory simulacra of mental 

images of continuity—led to the following: five students did not give an answer, 37 answers fell into 

only one category, eleven in two and the one remaining answer in three categories. Around 70% of 

the overall codes were found in “Look of the graph“ (I) and all the other categories appeared in no 

more than 10% of the cases each. 

The “Look of the graph” (I) is the dominant mental image among students when asked to give one. 

Nevertheless, some students are able to accept other mental images as well. Figure 1 illustrates this. 

While the items “Graph has no holes” (4) and “Graph has no jumps” (7) are accepted by the majority, 

items close to the limit (2) or Weierstraß definition (3) of continuity have 40% to 50% acceptance. 

The fact that the majority wrongly connects differentiability as a necessary condition for continuity 

may be a problem of the item in the questionnaire which included two negations. Based on the very 

high rejection rates for the items „Having minima and maxima is characteristic for continuity“ (1) 

and „Graph does not swing too much back and forth“ (8) in the second part of the questionnaire, it 

seems to be certain that these are not common misconceptions about continuous functions. 

The functions f, g and h in Table 3 were all known to the students and had been part of the course in 

analysis and also of the exercises. In contrast to Tall and Vinner (1981) we did not give a picture of 

the graphs. The functions f and g seem familiar to the majority of students so about 50% are able to 

give a correct answer. The function h seems more complicated and most students do not answer the 

question at all and about half of the answers are false. This item is one where there is a real difference 

between those who study to become teacher and those who want to work as mathematicians. In the 

latter group the percentage of a correct answers is about twice as high (Hanke, 2016). 



 

Figure 1: Acceptance of item on Likert scale from 0 to 5: Reject (0, 1), Neutral (2, 3) and Accept (4, 5) 

in percent of answers 

To identify group differences between the different study groups (pure and applied math students vs. 

future teachers), we counted the occurrences of every category in Table 1 in the answers of the 

students for each of the questions. Concerning the overall usage of certain mental images measured 

with the coding of all answers to all functions of the third part of the questionnaire Fisher’s test on 

the resulting contingency tables did not yield a significant result. We interpret that there are no 

observable differences in the acceptance of usage of the different study groups. Using the Kruskal-

Wallis-Test, we could not find statistically significant differences except for the acceptance of the 

limit definition (2) in part two of the questionnaire (p < 0,03) where teachers students tended to 

express their acceptance with higher values on the Likert scale than the others. 

Comparing the results with Schäfer (2011) we identified more detailed mental images via their 

exclamatory simulacra (categories 4 to 7). While the concept image of “look of the graph” (I) was 

dominant here as well, it was not so dominant in Schäfer’s study (2011). We see a more diverse 

pattern in the argumentation for the three functions instead. 

The most interesting part of the empirical results is that the same mental image is used by the students 

either to justify a wrong or a correct answer (based on their judgment whether the given function is 

continuous or not; cf. Figure 2): The look of the graph (I) was used most frequently for a correct but 

also for a wrong answer. For example, the graph of function h is connected (i.e. has no jumps) but 

the function is discontinuous at the origin. Among the answers to this function we found e.g. “Yes [h 

is continuous], since [it is] going through, without gaps or jumps,” or “The function looks continuous, 

since it does not ‘jump’.” General properties of functions (V) were even used more often for a wrong 

than for a correct judgment of continuity. Again, for the function h, some students argued it is 

“discontinuous because of a pole,” but also h is “continuous at x=0, since it lies in the domain of the 

function.” For this function we could also find various different justifications for (dis-) continuity like 

“it gets area-like at the origin” or “it wiggles too much.” This is also the function where more wrong 

than correct answers were justified with mental images.  



 

Figure 2: Numbers of correct and incorrect answers per category summed up for all four functions 

Outlook 

In this study we provided a taxonomy that guides empirical research related to mental images of 

mathematics students in several directions. We pointed out that communicative simulacra of mental 

images of real-valued continuous functions depend on the context in which mental images are used: 

Figures 1 and 2 show that the spectrum of mental images used or accepted by the students we 

investigated is broader than the spectrum of explicit exclamatory simulacra. We also found out that 

in the overall of justifications of (dis-) continuity a single mental image does not exclusively help or 

misguide. A first step into mental images of metric space-valued continuity is also given in (Hanke, 

2016). 

We believe that future research on teachers’, doctoral students’, tutors’ or university lecturers’ 

conceptions of continuity will provide insight into similarities and differences between social groups 

in the overall process of teaching and learning of a particular mathematical notion. This will be of 

particular importance for the teaching of real-valued continuity in today’s university classrooms. 

Since continuity is disappearing from the curricula in secondary schools in Germany, it would be 

interesting to find out how the teaching of continuity in secondary schools implicitly or explicitly 

influences the mental images of beginning university students. Particularly, the question on the 

stability of mental images arises. Focusing on the analysis courses taught at secondary schools, an 

upcoming research area are teachers’ judgments of the adequacy of teaching continuity in schools as 

a prerequisite for important facts on differentiability and integration such as the fundamental theorem 

of calculus. 
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Using the theory of instrumental genesis to study students’ work with 

a digital tool for applying integrals in a kinematic simulation 
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Digital tools are increasingly becoming part of mathematics in Higher Education, some of which 

are used pedagogically. An example is Sim2Bil, a digital tool that offers mathematical tasks about a 

simulation of cars. Students can solve the tasks using integrals. Applying the theory of instrumental 

genesis, in which techniques are analyzed in light of epistemic and pragmatic value, we studied the 

tool when used by groups of engineering students. We observed the students applying techniques 

such as instrumented and pen & pencil for solving the tasks. The techniques required the 

combination of understanding integrals kinematically (as distance travelled), graphically (as area 

under a graph) and as a calculation with symbols (finding the anti-derivative). In fact, the 

mathematical tasks provided opportunity for students to address at least one task, and we had 

students solving the most demanding ones. 

Keywords: Digital tool, engineering students, instrumental genesis, epistemic value, pragmatic 

value. 

Introduction 

Solving mathematical tasks involves using different tools. These tools might be compasses and 

rulers, but also language, symbols, gestures, and digital tools. From a didactical point of view, it is 

important to study how such tools function, how students work with these tools and how the tools 

can be incorporated into educational practices. Within education, tools not only serve to do 

mathematics, such as carrying out calculations quickly, but they can also be pedagogical instruments 

for learning mathematics (Artigue, 2002). In our study, we focus on digital tools. Examples of 

digital tools for doing mathematics are Mathematica (www.wolfram.com/mathematica/) and 

MatLab (www.mathworks.com), which are numerical computing environments used in academia 

and industries. Examples of digital, pedagogical tools for mathematics are Geogebra 

(www.geogebra.org) and MIT Mathlets (http://mathlets.org).  

Our research is positioned within the education for engineers. The integral is one of the 

mathematical concepts to be learned. It can be perceived in many different ways, for example as an 

object (as a function or as an area) or as a process (calculating the anti-derivative or taking the limit 

of a Riemann sum). Researchers have found that students have difficulties conceptualizing the 

integral (e.g. Jones, 2013; Swidan & Yerushalmy, 2014). Derouet (2016) has focused on the relation 

between integral, area and probability, in which the integrand is the probability density. We take an 

approach where we study the relation between integral, area and distance in which the integrand is 

the velocity. We are representing the integral as a mathematical model for making objects move 

under certain conditions.  

There are several digital tools used for the learning of integrals. On the internet one can find applets, 

in which the integral is demonstrated with the Riemann Sum with an interactive slider for showing 

the limiting process. Berry and Nyman (2003) used a different tool, namely one that can record 

http://www.wolfram.com/mathematica/
http://www.mathworks.com/
http://www.geogebra.org/
http://mathlets.org/


displacement of an object and then graphically display both a displacement-time graph and a 

velocity-time graph. These kinematical graphs were meant to assist students in visually making a 

connection between the function and its anti-derivative. Yerushalmy and Swidan (2012) describe 

another tool that, given a function and its graph, generates graphically an accumulation point graph. 

Further on, Swidan and Yerushalmy (2014), presented the Calculus Integral Sketcher, which allows 

students to construct and drag a primitive graph when a function graph is given. In all cases, 

students’ learning is supported by graphical means. We want to extend the research on pedagogical, 

digital tools for learning the concept of integrals by combining graphical and kinematical 

approaches with dynamic animations. Therefore, we considered a tool aiming to engage students to 

(1) combine different topics of their curriculum, such as calculus and kinematics, (2) calculate and 

interpret graphs etc, and (3) collaborate. 

We studied Sim2Bil which can be used for groups within higher education where integrals and 

kinematics are part of the curriculum (students in the natural sciences, engineering, etc.). The tool 

requires users to work with velocity functions, of which the integral represents the distance 

travelled. The tool’s name comes from a Norwegian word for car, ‘bil’, derived from automobile. 

The tool consists of mathematical tasks connected to dynamic animations. In addition to studying 

this tool, we want to study collaborative work between students, because inter-personal mediation is 

considered an important aspect of future education (Lowyck, 2014). 

Figure 1 shows the interface of Sim2Bil. The top left part shows an animation of two cars driving in 

a straight line from a starting line to a finish line. This is the simulation area. The lower left part 

shows two separate graphs for the velocity-time function of both cars. The areas under the graphs 

represent the distance travelled by the cars. This is the graph area. The bottom right part is the space 

for the velocity functions of the cars. A user can set in parameters for polynomial velocity functions. 

This is called the formula area. Also, within this area there are buttons to click on. ‘Formula1’ and 

‘Formula2’ give the generalized kinematical formulae for average and instantaneous velocity, and 

displacement, which include the integral symbol. Other buttons can hide/show the cars and graphs. 

When pressing the Start button in the bottom right corner, an animation starts showing the cars run, 

and at the same time the areas under the graphs are animated: the grey areas increase with time.  

The tasks in the top right area were especially designed for the animations. In connection with the 

animations of cars driving by taking over each other and finishing at the same time and the graphs, 

the tasks were about making these cars run under certain conditions. Without the tasks, the 

animations of moving cars will not be very meaningful, and vice versa.  

In the study presented in this paper, we investigate how Sim2Bil is used by groups of students. We 

use the theory of instrumental genesis to analyze our data. Our research question is: what forms 

does the instrumental genesis of students working with Sim2Bil take?  

 

 



 

Figure 1: Interface of Sim2Bil. 

The theory of instrumental genesis 

The theory has assisted researchers to study students’ activities in CAS environments (e.g. Drijvers, 

2003; Guin & Trouche, 1999) and dynamic geometry environments (e.g. Alqahtani & Powell, 

2016). First, we will explain the constructs instrumentalisation, instrumentation and technique 

which play an important role in the theory. Further, we will explain how techniques can have 

epistemic or pragmatic value.  

Any artifact, a physical object, will remain a bare artifact for a person if the person does not know 

what to use it for. However, an artifact might turn into an instrument if there exists a meaningful 

relation between the person and the artifact (Rabardel, 2003). Drijvers and Trouche (2008) give a 

good example of how a hammer, an artifact, is turned into an instrument if a person has skills and 

experience of how to use it properly. The distinction between artifacts and instruments does not lay 

in a physical change of the objects, but a transformation of the way a person thinks about and 

practically uses the object.  

This transformation process is a learning process and it is called instrumental genesis. The 

transformation process works in two directions as explained by Trouche (2004): towards the artifact 

and towards the user. The first direction involves the user learning to use the artifact. This embraces 

the activities in which an artifact becomes an instrument for a user, and about how the action 

influences the user’s activity and knowledge. This direction is called instrumentalisation. The other 

direction concerns the user using the artifact meaningfully for tasks. This is called instrumentation. 

As Artigue (2002) points out, this process involves developing ways for solving tasks. 

We will analyse students’ work with Sim2Bil. Our intention is to understand how students are 

appropriating the tool and the transformation process of the tool becoming an instrument. Since 



there exists a dialectic relationship between an artifact and a user (Gueudet & Trouche, 2009), we 

will look into both directions described above for the investigation.  

Epistemic and pragmatic value of techniques 

While doing mathematics, students can use several techniques, which may involve doing 

calculations and making drawings. A technique within the theory of instrumental genesis means “a 

manner of solving a task” (Artigue, 2002, p. 248). Artigue distinguishes between instrumented and 

paper & pencil techniques. Techniques yield a result and, therefore, they have a value. The value 

can be epistemic or pragmatic. Epistemic value involves that the technique has a meaning for the 

students related to the mathematical objects involved. We observe this, for example, when students 

find solutions to symbolic equations by creating a graphical representation with a graphing tool to 

use the zeros of the graph instead of solving the equations algebraically or numerically.  

A technique might also have pragmatic value. Artigue (2002) explains that we can observe 

pragmatic value when a technique is applied by students who are focused on the productive 

outcome of that technique (e.g. to have a quick answer). Further, she states that epistemic value 

might be less recognizable than pragmatic value since the latter concerns the appearance of 

immediate results. We observe this, for example when students are randomly guessing an equation.  

Methods 

To investigate students’ work with Sim2Bil we needed to observe students interacting with this 

digital tool. Hence, we created an environment in which students use the tool (tasks, animations), 

and other resources such as calculators, pens and paper.  

As a default setting, there are two velocity functions given in the interface so that a student can 

press the Start button, see the cars run and the areas under the graphs grow. The two default velocity 

functions make the cars finish simultaneously. In this way, the forthcoming tasks were framed, 

which all have requirements on how the cars should finish. With a total of four tasks, Sim2Bil 

integrates tasks and animations.  

The first task requires students to press the Start button and explain what the shaded areas represent. 

This task gives a visual introduction to the tool offering an association to distance as represented by 

area under a graph. After Task 1, there are Tasks 2–4, in which students are asked to find velocity 

functions that fulfill different requirements for the running cars. In Task 2, students are asked to find 

other functions so that the cars run with different velocities and arrive at the finish line at the same 

time. This will require students to translate the kinematics into mathematics and find functions v(t) 

so that 

4

0

( ) 400v t   . In Task 3, they are asked to make the green car be only half way when the red 

car reaches the finish line, thus 

4

0

( ) 200v t  . In Task 4, they are asked to make one car have half the 

velocity of the other when they arrive at the finish line simultaneously.  

Our study was carried out at two different universities, at each of which we worked with one group 

of three students. All were within their first year of engineering studies. Group 1 comprised three 

boys, while Group 2 included one boy and two girls. All the six participants were not familiar with 



Sim2Bil. In their lectures, the students of Group 1 might have seen a similar tool as Sim2Bil, 

including a button to press on screen for making an animation run. All volunteered to participate in 

this study outside regular lectures. The groups sat in a room with a table and one laptop with the 

tool in front of them. They were informed that we would study how they interact with the tool, and 

that they would not be assessed. Both groups were given an unlimited time for group work, and it 

turned out that Group 1 spent 45 minutes and Group 2 used one hour.  

There are some differences in how the groups were treated, with regards to parts of the interface and 

how the tasks were given. In the interface, the top right area showed an unused menu for Group 1 

and they received the tasks on paper. For Group 2, the Tasks 2–4 were given on screen. In the 

formula area, the students of Group 1 could write in parameters to make up to third degree 

polynomials (see Figure 1). Group 2 students could write in any expressions. Since Task 1 has a 

different nature than the others, as it does not ask for mathematical expressions, we gave this task 

orally to Group 2, at about three minutes into the session. In this way, we could see whether the 

Start button would be quickly found. The data collection consisted of video recordings of the 

students’ group work. The first author was present with both groups and two cameras were used at 

different angles to capture students’ writings, gestures, and screen activity. The video recordings 

were transcribed fully for Group 1 and largely for Group 2, and analyzed in light of instrumental 

genesis. In particular, techniques the students used to solve the tasks were identified by going 

through the videos and transcriptions, and analyzed in terms of epistemic and pragmatic value.  

Results 

By analyzing the students’ group work regarding the process of instrumentalisation, we observed 

that Group 1 easily found the Start button at the beginning. They saw the cars driving to the finish 

line and arriving together, the growing graphs and the increasing shaded areas. Then they read Task 

1. They related the areas under the graphs with the distance covered by the cars.  

Group 2 was not asked to press the Start button at the beginning. They started by explaining to each 

other what they saw on the screen: 

Dana: We are going to work with the relationship between velocity and time. (…) I’m 

thinking we are supposed to come up with functions like this (points at the 

formula area) related to the graphs (points at the graph area). Isn’t it?  

Jeff: Mhm… Okay, it looks like we have the formula for the velocity of the first car… 

and for the second car. So, uhm…. 

In the episode above the students related velocity functions to the graphs and velocity to the cars. 

After this, Jeff turned to the researcher and asked: “Excuse me, what are we supposed to find out 

here? We are supposed to…”. The researcher asked them to press the Start button. Then, they 

pressed Start and saw the animated cars and graphs, and they related the areas under the graphs to 

distance covered by the moving cars. Thereafter, they started working on the remaining tasks.  

Based on the observation of Group 2, we saw that guidance of finding the Start button was needed. 

At first sight, the screen offers much information, so this button can be overlooked. By pressing 

Start, they were introduced to the tool’s functionalities and to the conditions of the tasks. The 

animation showed two cars running differently but finishing simultaneously. We interpret that once 



the Start button was found, it enabled the appropriation of (1) the operations of the animations and 

(2) the conditions of the tasks.  

In regards to the process of instrumentation, the students used several techniques. For example, they 

set parameters in the formula area and pressed the Start button and watched the cars run. Another 

instrumented technique was to insert parameters and notice how a graph of a function looked like, 

dismissing it when it went too low. These techniques were applied by both groups within each task. 

On some occasions, we observed some students set in parameters seemingly at random in the 

formula area. Then, the graphs were noticed or they saw the cars run. On other occasions, the 

instrumented techniques were done as a final check whether their paper and pencil solutions were 

correct (paper & pencil techniques are explained below). These instrumented techniques had 

pragmatic value, since it was a quick check to see whether inputs were correct. The students might 

have reasonably guessing parameters, and on some occasions, the students explained why the 

animations appeared the way they did connecting it with algebraic expressions of the functions. The 

techniques connect symbolic, graphical, and kinematical representations. Therefore, it can be argued 

that the techniques also had epistemic value. 

We observed both groups use paper & pencil techniques for the tasks 2–4. They calculated the 

integral as anti-derivative, but knowing that they calculated the area under the graph and that it was 

the distance covered by the cars. In task 4, Group 1 also used a technique consisting of making 

rectangle and triangle drawings and making area calculations based on the fact that one area needs 

to be equal the other one. The techniques have a pragmatic value since the focus was on the 

productive potential (finding velocity functions) and it was a way of checking their answers. It can 

also be argued that these techniques, inherent symbols, had an epistemic value, since integration can 

be regarded as anti-derivation and an area can be regarded as distance travelled.  

Both groups discussed how to solve each task. Also, one group occasionally used gestures to 

visualize the cars and graphs in a way they could not visualize through instrumented techniques 

(e.g. get a specific graph). Also, gestures were used to support their imagination in discussions on 

the requirements. When one group started on task 4, they used their hands to gesture the run of the 

cars, mimicking the cars take over each other and finish together. Especially, the use of gestures 

occurred when the students faced challenges in finding parameters to solve the tasks.  

For creating polynomial velocity functions, the tool included a hint for the problem-solving process. 

We observed some students being “stuck” while doing calculations and clicking around on possible 

buttons for a clue. The formula buttons confirmed to them, that they needed an integral, but it did 

not help them in calculating the integral or in mathematizing the requirements of the tasks.  

At the end, the one group related their answer (v1=100, v2=-25t+150) to different parts in the areas 

on screen:  

Erik: Can we prove that the answer is correct? Yes, by the calculations again. (…) But 

we can also see it here that it stops on half of the other (point at the screen). So, it 

stops on 40. So, you can see that on the graph, actually. 

Sam: Oh, yes and you can see that it is a relation between  

the area under the graph…which is the integrated of the velocity.  



This episode shows that the students were reasoning on how they can check whether their answer is 

correct. Erik mentioned the paper & pencil technique (calculating the triangle and rectangle, area), 

and the instrumented technique (notice the graphs on screen including the equal areas and the 

velocity of the red car is half the velocity of the green car). Sam repeated the relation between areas 

and distance.  

Discussion and conclusion 

Research has focused on different approaches for learning the concept of integral. In some studies, 

the integral was visualized as Riemann sum. In our contribution, we have taken another approach: 

we investigated how students work with Sim2Bil, which is a digital tool designed for university 

level engineering studies that include mathematics and kinematics. Two groups of students were 

offered tasks and animations to make cars fulfill different requirements. They needed to 

collaboratively understand the distance travelled as an area under a graph.  

The theory of instrumental genesis allowed us to investigate students’ activities in a technological 

environment as previous studies have shown. In particular, focusing on particular aspects of the 

theory such as instrumentation, instrumentalization and technique, we were able to analyse the ways 

students used Sim2Bil.  

In the theory of instrumental genesis, a distinction is made between learning to use a tool, and using 

the tool for solving tasks. For learning to use the tool, the Start button played a dominant role. By 

pressing the Start button, students observe how the velocity functions make the graphs appear and 

the cars run. Thus, students were introduced to the functionalities of the tool and the conditions of 

the tasks. However, if students weren’t told to press Start, it could take long before they discover the 

dynamic animation. For using a tool for solving tasks, also known as instrumentation, Artigue 

(2002) distinguishes between two types of techniques, instrumented and paper & pencil techniques. 

In tasks 2–4, our students needed pencil and paper for calculating the integral as anti-derivative, and 

making drawings of areas which they also calculated. Their instrumented techniques consisted of 

generating cars running and generating graphs. In both groups, the instrumented techniques were 

always the final activity in each of the tasks 2–4. With this technique, they could check whether the 

functions they had found met the conditions of the task.  

Several techniques were used to solve the tasks. The instrumented techniques in the groups played a 

role as a check whether solutions are correct. Thus, they had pragmatic value. At the same time, the 

instrumented techniques had epistemic value because integration can be regarded as anti-derivation, 

and an area can be regarded as distance travelled. With task 1, our students learned the operations of 

the animations and the conditions of the tasks within only a few minutes. The Start button was 

included to get the cars running. This framed the forthcoming tasks. The challenge laid in finding 

functions for solving the remaining tasks. To overcome these challenges, the students used several 

techniques as explained above supported by gestures and discussions.  

The study has some limitations. Sim2Bil is different from other tools in which students can 

construct mathematical objects (drag triangles, construct families of parabolas, etc). It is more of a 

question generator, the animation “explains” the task, and the students can use the animations or the 

graphs to check their answer. Additionally, the findings of this study may not be generalizable to 

larger groups of students since we have only observed two groups of students using the digital tool. 
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This study aims to investigate undergraduate mathematics students’ learning experiences in a first 

course on Group Theory. I have used the Commognitive Theoretical Framework to examine 

incidences of interdiscursive commognitive conflict that emerge due to incommensurabilities with 

other areas of mathematics, such as Set Theory. Data is comprised of students’ coursework, 

interviews and other secondary data. Analysis suggests that incidences of incomplete mathematical 

learning emerge when students need to cope with the notions of set, group, subgroup, and their 

elements in the same mathematical task. In addition, analysis suggests that students can often 

successfully produce a technically valid proof, without necessarily having full grasp of the involved 

concepts, indicating a ritualistic participation in Group Theory discourse. 

Keywords: Group theory, theory of commognition, discursive shift, commognitive conflict.  

Background  

Unlike other areas of university Mathematics, such as Calculus and Analysis, the learning of Abstract 

Algebra, and Group Theory in particular, has been investigated to a significantly lesser extent. The 

first studies focusing on the learning of Group Theory emerged in the early nineties, adopting, mostly, 

an acquisitionist1 perspective and within the Piagetian tradition of studying cognitive processes and 

errors (e.g. Dubinsky et al., 1994; Asiala et al., 1998). Other studies investigated issues such as 

difficulties students face with the level of abstraction of this particular mathematical subject (Hazzan, 

1999), students’ reaction to the semantic abbreviation and symbolisation (Nardi, 2000), the 

importance of visualisation (Ioannou and Nardi, 2010; Zazkis et al., 1996), and novice-students’ 

difficulty with the process of proof (Weber, 2001).  

These studies have highlighted the pedagogical challenges that students, as well as educators, face in 

the learning of this particular course, mostly due to its abstract nature, the often unclear, to the novice 

students, raison d’être of the fundamental concepts, as well as the consequent tension due to historical 

decontextualisation of these concepts (Nardi, 2000). Leron and Dubinsky (1995, p. 227) suggest that 

“[t]he teaching of abstract algebra is a disaster, and this remains true almost independently of the 

quality of the lectures.”  

Far more scarce are studies in this particular area that analyse learning from a participationist2 

perspective and in particular through the lenses of Commognitive Theoretical Framework (Nardi et 

al., 2014). Ioannou (2012), among other issues, investigated the intertwined nature of object-level 

                                                 

1 Acquisitionists consider human development “as proceeding from personal acquisitions to participation in collective 

activities”. (Sfard, 2008, p.78) 

2 According to participationism, “patterned, collective forms of distinctly human forms of doing are developmentally 

prior to the activities of the individual.” (Sfard, 2008, p. 78) 



and metadiscursive level of mathematical learning in Group Theory, focusing on the intradiscursive3 

commognitive conflicts (see Ioannou (2016) as an example) but also on the interdiscursive 

commognitive conflicts, namely in relation to the incommensurability with other areas of 

mathematics. This study is a ramification of the second category. In particular, the aim of this study 

is to investigate incidences of commognitive conflict that emerge due to the incommensurability 

between various mathematical concepts in other mathematical fields towards the learning of Group 

Theory. For instance the notion of a set, as this has been learned in secondary mathematics education, 

or in the introductory course of Set Theory, and the newly introduced notion of group, focusing both 

on these notions as well as their elements. 

Theoretical framework 

As mentioned above, Commognitive Theoretical Framework (CTF) by Anna Sfard (2008) adopts a 

participationist perspective on learning and teaching. This fact sets CTF apart from Behaviourism 

and Cognitivism, in an ontological, epistemological and methodological level. Unlike the 

acquisitionist perspective, Commognition considers the object of developmental change to be the 

human activity and not the individual. Moreover, by using CTF, one should not aim to analyse the 

students’ skills or the mental schemas of the various concepts but the discourse itself, as the principal 

object of attention. In fact this last characteristic of CTF is what distinguishes it from the other 

participationist approaches (Sfard, 2008).  

Focusing on mathematical discourse in specific, unlike other scientific discourses, objects are 

discursive constructs and form part of the discourse. Mathematics is an autopoietic system of 

discourse, i.e. “a system that contains the objects of talk along with the talk itself, and that grows 

incessantly ‘from inside’ when new objects are added one after another” (Sfard, 2008, p. 129). CTF 

defines discursive characteristics of mathematics as the word use (the mathematical vocabulary, 

including the keywords that are used, not always exclusively, in schools and academia), visual 

mediators (the visible objects that are used as part of communication), narratives (any sequence of 

utterances that describe objects, relations and process, such as definitions, theorems and proofs), and 

routines (repetitive patterns characteristic of mathematical discourse) with their associated 

metarules, namely the how and the when of the routine. 

A useful notion of CTF, especially for this particular study, is commognitive conflict, which is 

defined as a “situation that arises when communication occurs across incommensurable4 discourses” 

(Sfard, 2008, p. 296). Commognitive conflict is considered “a gate to the new discourse rather than a 

barrier to communication, both the newcomer and the oldtimers must be genuinely committed to 

overcoming the hurdle” (Sfard, 2008, p. 282). Therefore, an aim of this study is to identify these 

                                                 

3 These are conflicts that emerge within the particular mathematical discourse, e.g. a conflict that may occur for concepts 

such as subgroups and normal subgroups (both within the discourse of Group Theory). 

4 Incommensurable discourses are the discourses that differ in their use of words, visual mediators, routines or their rules 

of substantiation. In addition, they may allow the endorsement of seemingly contradictory narratives, due to the fact that 

they do not share criteria for deciding whether a given narrative should be endorsed or not. (Sfard, 2008) 



situations in the undergraduate mathematics students’ attempts to solve problems, which involve the 

newly introduced notion of group. 

Other important notions within the CTF that are important for this study are the rules of discourse, 

namely the object-level and the metalevel rules. Object-level rules are defined as “narratives about 

the regularities in the behaviour of the objects of the discourse” (Sfard, 2008, p. 201). In other words 

these are rules that are directly related to the definition of the various objects, e.g. group, subgroup, 

coset, etc. Metalevel rules “define patterns in the activity of the discursants trying to produce and 

substantiate object-level narratives” (Sfard, 2008, p. 201). In other words metarules govern the 

process of proof of new (to novice students) mathematical results. 

Consequently, Sfard (2008, p. 254) describes two distinct categories of learning, namely the object-

level and the metalevel learning. Moreover, object-level learning “expresses itself in the expansion 

of the existing discourse attained through extending a vocabulary, constructing new routines, and 

producing new endorsed narratives; this learning, therefore results in endogenous expansion of the 

discourse”. In addition, metalevel learning, which involves changes in the metalevel rules of the 

discourse “is usually related to exogenous change in discourse. This change means that some familiar 

tasks, such as, say, defining a word or identifying geometric figures, will now be done in a different, 

unfamiliar way and that certain familiar words will change their uses”. In the context of this study, 

object-level rules could be considered the rules governing the elements of the set 𝑋 or the group 𝐺, 

whereas metalevel rules could refer to the proof that an algebraic structure is indeed a subgroup. 

Methodology 

This study is a ramification of a larger research project, which conducted a close examination of Year 

2 mathematics students’ learning experiences in their first encounter with Abstract Algebra. The 

module was taught in a research-intensive mathematics department in the United Kingdom, in the 

spring semester of a recent academic year. 

The Abstract Algebra (Group Theory and Ring Theory) module was mandatory for Year 2 

mathematics undergraduate students, and a total of 78 students attended it. The module was spread 

over 10 weeks, with 20 one-hour lectures and three cycles of seminars in weeks 3, 6 and 10 of the 

semester. The role of the seminars was mainly to support the students with their coursework. There 

were 4 seminar groups, and the sessions were each facilitated by a seminar leader, a full-time faculty 

member of the school, and a seminar assistant, who was a doctorate student in the mathematics 

department. All members of the teaching team were pure mathematicians. The module assessment 

was predominantly exam-based (80%). In addition, the students had to hand in a threefold piece of 

coursework (20%) by the end of the semester. 

The gathered data included the following: Lecture observation field notes, lecture notes (notes of the 

lecturer as given on the blackboard), audio-recordings of the 20 lectures, audio-recordings of the 21 

seminars, 39 student interviews (13 volunteers who gave 3 interviews each), 15 members of staff’s 

interviews (5 members of staff, namely the lecturer, two seminar leaders and two seminar assistants, 

who gave 3 interviews each), student coursework, markers’ comments on student coursework, and 

student examination scripts. For the purposes of this study, there have been analysed the staff and 

student interviews, and the coursework solutions. The interviews, which covered a wide spectrum of 

themes, were fully transcribed, and analysed with comments regarding the mood, voice tone, 



emotions and attitudes, or incidents of laughter, long pauses etc., following the principles of 

Grounded Theory, and leading to the “Annotated Interview Transcriptions”, where the researcher 

highlighted certain phrases or even parts of the dialogues that were related to a particular theme. 

Furthermore, coursework solutions were analysed in detail, after the data collection period, using the 

CTF, and mostly focusing on issues such as students’ engagement with certain mathematical 

concepts, the use of mathematical vocabulary and symbolisation, and the application of discursive 

rules. 

Finally, all emerging ethical issues during the data collection and analysis, namely, issues of power, 

equal opportunities for participation, right to withdraw, procedures of complaint, confidentiality, 

anonymity, participant consent, sensitive issues in interviews, etc., were addressed accordingly. 

Data analysis 

This study focuses on the application of object-level and metalevel rules that govern the mathematical 

concepts under study, namely, groups, subgroups, sets and their elements, investigating also the 

emerging commognitive conflicts. A priori analysis suggests that there are two likely commognitive 

conflicts: the first is related to sets (in school mathematics, sets come with a binary operation, 

whereas, in university mathematics, sets such as 𝑋 in 𝑆𝑦𝑚(𝑋) do not); the second is related to 

functions (in school mathematics, functions operate on algebraic structures, whereas in Group Theory 

they play a double role, namely, operating on sets, and being themselves members of a set with a 

binary operation). Such commognitive conflicts have appeared in five of the thirteen students’ 

solution of the following task: Suppose 𝑋 is a non-empty set and 𝐺 ≤ 𝑆𝑦𝑚 (𝑋). Let 𝑎 ∈ 𝑋 and 𝐻 =

{𝑔 ∈ 𝐺: 𝑔(𝑎) = 𝑎}. Prove that 𝐻 is a subgroup of 𝐺.  

Interestingly, students, despite their problematic application of object-level rules of the involved 

concepts, were often able to apply the involved metarules correctly, and produce a valid proof (e.g. 

for the claim that 𝐻 is a subgroup of 𝐺). This fact possibly indicates that proving, as assessed in this 

course, may not always require an explorative participation in the proof process and complete grasp 

of the involved mathematical notions, but rather can rely on a ritualistic5 performance of new routines. 

Moreover, successful application of metalevel rules does not necessarily imply that all the involved 

mathematical concepts have been fully objectified6. Due to limited space, below there will be 

demonstrated two examples of students’ responses. 

The first example of interdiscursive commognitive conflict, as this has been suggested in the a priori 

analysis above, appears below in the solution of Student A. The student has not grasped the fact that 

the operation refers to the group 𝐺 and not to the set 𝑋. Apparently, he seems to have tried to apply 

it to 𝑎 ∈ 𝑋 in an effort to prove inverses. He has not realised that 𝑋 is a set and not a group, and 

therefore there is no defined binary operation on 𝑋.  

                                                 

5 Rituals are defined as “sequences of discursive actions whose primary goal (closing conditions) is neither the production 

of an endorsed narrative nor a change in objects, but creating and sustaining a bond with other people” (Sfard, 2008, p. 

241) 

6 Objectification is defined as the “process in which a noun begins to be used as if it signified an extradiscursive, self-

sustained entity (object), independent of human agency” (Sfard, 2008, p. 300). 



 

Figure 1: Example of commognitive conflict of Student A 

In Figure 1, one can identify a commognitive conflict that emerged due to the discursive shift from 

the secondary school mathematical discourse, where all mathematical sets have algebraic structure, 

and in particular a binary operation with some properties. The notion of a set without an operation is 

new for these students. Furthermore, it proves to be particularly confusing to deal with this new kind 

of object in the context of a course on Group Theory, where some structures, namely groups, do have 

a binary operation, and others do not. In addition, another commognitive conflict is related to changes 

in acceptable notation. In particular, the notation 𝑔𝐻 is possibly confused with 𝑔 (𝑋). This “abuse” 

of notation, where 𝑔𝐻 stands for “the set of all 𝑔ℎ for ℎ in 𝐻” may contribute to the confusion. An 

underlying commognitive conflict is due to the fact that in a university mathematics discourse, abuse 

of notation is often acceptable where it does not cause mathematical ambiguity. However, notation 

that is mathematically unambiguous may nevertheless be pedagogically confusing. 

The second example, related to the second commognitive conflict of the a priori analysis, appeared 

in Student B’s attempt to solve the aforementioned mathematical task, as seen in Figure 2. Although 

her solution demonstrates that she has a structural understanding of the required proof, yet she is still 

unable to practically do it. She applies accurately the routine for a set to be a subgroup, nevertheless 

there is an inaccurate application of object-level rules of the concepts of set and group and 

consequently several inaccuracies in her attempt. The first one is related to the expressions 

𝑔(𝑎1), 𝑔(𝑎2), … and 𝑎1, 𝑎2… where 𝑎 is used to signal an element of 𝐻, and which is possibly a 

result of a deep confusion regarding the elements of the groups, 𝐺, 𝐻 and 𝑆𝑦𝑚 (𝑋) versus the 

elements of the set 𝑋, as well as the operation of the permutation on a set versus the composition of 

permutations. This inaccuracy may be considered as a result of a commognitive conflict regarding 

the notion of function. In the old mathematical discourse functions operate on algebraic objects, 

which are usually numbers. In Group Theory, functions (such as permutations) play a dual role – they 

operate on sets as in the old discourse, where often these sets have algebraic structure, but, in addition, 

they are also themselves objects of an algebraic structure (in this case group), where there is a binary 

operation (function composition). This dual role contributes to the incommensurability of the 

discourses. 

 



 

Figure 2: Example of commognitive conflict of Student B 

Moreover, Student B uses the incorrect expressions 𝑔(𝑎1), 𝑔(𝑎2), referring to elements of the set 𝑋, 

but under operation that is not applicable in 𝑋. She does not have a clear view of what is 𝑋 and what 

is 𝐻, i.e. that 𝑋 is a non-empty set and that 𝐻 is a subgroup of 𝐺 with a certain condition. At some 

point she also writes 𝑎 ∈ 𝐻, which is not true since 𝑎 is an element of 𝑋. Student B’s incomplete 

object-level learning is also revealed in the following statement:  

I found it quite hard, because... I got a bit confused with this um… 𝑆𝑦𝑚(𝑋) and stuff, but – so I 

don’t – I started it but then I weren’t sure, whether I was doing it right, so I kind of have stopped, 

and I’m gonna go ask for help. To like – because I – I don’t like, if I’m doing something and I’m 

not sure if it’s right, I don’t like to carry on because I don’t want to do it all wrong.  

The Lecturer, with the statement below, reinforces the claim that a number of students had an 

incomplete object-level learning regarding the elements of groups and sets. 

It is interesting, you know you have got a set in the group and somehow separating out in their 

minds the different roles of the elements of the setting up around and the group which is acting, is 

something that, you know, somehow they don't have a picture in their mind of – so they – you 

know writing a string of symbols round like 𝑔1𝑔2(𝑎) its – the sort of – the distinction between the 

elements of the group and the elements of the set is something that is not necessarily clear.  

Lecturer’s opinion highlights the importance of examining students’ object-level learning of the 

relevant mathematical concepts as well as their efficiency with the process of proof, something that 

can be investigated using CTF. It also reinforces the claim of unresolved commognitive conflicts as 

these occur in the discursive shift from the secondary education mathematics discourse to the 

formalism of Group Theory discourse. In particular, this study is in agreement with the Lecturer about 



the fact that in the discourse of Group Theory there coexist structures with and without an operation, 

a new feature that is particularly confusing for novice students. 

Interestingly, Lecturer’s view is in agreement with the Seminar Leaders and Assistants’, as this has 

been expressed in their final report on the 78 students’ performance, as seen in Figure 3. 

Figure 3: Markers’ comments on the 78 students’ performance 

Similarly, Markers’ comments highlight students’ difficulty to distinguish the various algebraic 

structures that coexist in the discourse of Group Theory. Students’ confusion is due to the fact that 

that they often cannot distinguish the elements of the set and the elements of the group, but also they 

cannot always successfully attach the binary operation to the appropriate structure. 

Conclusion 

This study’s aim was to identify incidents of incomplete mathematical learning in the context of 

Group Theory, focusing, when possible, on interdiscursive commognitive conflicts, related, in 

particular with the concepts of set, group and their elements. In agreement with other studies, Group 

Theory is a demanding subject, both from an object-level (Dubinsky et al. 1994; Nardi, 2000) as well 

as from a metalevel (Weber, 2001) perspective. The analysis above suggests that a frequent incidence 

of incomplete mathematical learning emerged during the discursive shift from a set (as students have 

learned in the secondary education mathematical discourse) to a group (new introduced concept in 

the discourse of Group Theory) and it also involved their elements. The first example of 

commognitive conflict emerged when Student A applied object-level rules relevant to the concept of 

group on set 𝑋, in which there is no defined binary operation. A second example of commognitive 

conflict, related to the first, was revealed through problematic use of notation, that displayed Student 

B’s unclear view of what is 𝑋 and what is 𝐻, i.e. that 𝑋 is a non-empty set and that 𝐻 is a subgroup 

of 𝐺. Finally, the analysis above suggests that students may have a structural understanding of the 

required proof, yet they are still unable to practically do it, indicating a ritualistic participation in the 

Group Theory discourse.  
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We draw on our recent research to inspect again some of the theoretical perspectives we have been 

using to analyse data and to characterise teaching-learning in university settings. We focus 

particularly within a sociocultural perspective on Activity Theory (AT) and the construct ‘the 

Teaching Triad (TT)’, seeking to embed the TT within an AT perspective. To achieve this, we relate 

the Teaching Triad with aspects of the sociocultural setting both in and beyond direct interactions 

in face to face teaching. While this is mainly a theoretical paper, an example is taken from 

observations of teaching in university lectures in a Greek university to show how these theoretical 

perspectives have provided insights to the institutional and cultural complexities involved. 

Keywords: University mathematics learning and teaching; teaching triad, activity theory, didactical 

triangle and tetrahedron. 

Introduction to University Mathematics Teaching (UMT) 

By University Mathematics Teaching (UMT) we refer to any or all the teaching of mathematics 

which takes place at university level. In our own corpus of work we are particularly interested in 

face to face teaching in lectures and tutorials in which teachers design their teaching for the benefit 

of students who attend their sessions. We are interested in uncovering relationships between 

teaching and learning within the full sociocultural context of university life. This includes the 

institutional setting as well as the cultures from which teachers and students make sense of the 

interactions in which they engage. In particular, we seek to know more about “what teachers do and 

think daily, in class and out, as they perform their teaching work” (Speer, Smith & Horvath, 2010, 

p. 99). Our research addresses:  

What is it that mathematics teachers do and think as they perform their teaching work in a 

university setting, and how does this relate to the mathematical meaning making of their students? 

(Jaworski, Mali & Petropoulou, 2016) 

This question takes us into the didactical thinking of teachers who consider how best to enable 

students to think mathematically and develop understandings of mathematical topics; it includes 

teachers’ pedagogic thinking in the ways in which they interact with students and use resources to 

promote students’ engagement with mathematics; it includes also the ways in which teachers work 

within university affordances and constraints, the norms and expectations of university culture and 

their own educational histories, their views of mathematics and of what it means for students to 

learn mathematics and so on.  

In our work to date we have used a number of theoretical perspectives to analyse data from teacher-

student interactions in university mathematics teaching. Largely we have taken a broad 

sociocultural perspective in which we aim to address both micro and macro aspects of teaching. In 



some of our work we have more specifically used Activity Theory to examine relationships and 

issues in teaching (e.g., Jaworski & Potari, 2009; Jaworski, Robinson, Matthews and Croft, 2012). 

Within some of this work we have used a theoretical construct, the Teaching Triad to address micro 

aspects of teaching while Activity Theory has addressed macro aspects, as we explain below.  

In this paper our aim is to zoom in on connections and inter-relationships between these areas of 

theory as they apply in our research into teaching mathematics at university level. In order to 

contextualize these theoretical ideas, we include below an example from university lecturing. Since 

our focus is on the theories we are using in relation to the activity of teaching, we do not try to 

analyse the actual meaning-making of the students in our example. 

Introduction to the Teaching Triad (TT) 

The Teaching Triad (TT) is a theoretical construct developed from earlier research into the teaching 

of mathematics at secondary school level. It offers a way of characterizing mathematics teaching by 

acting as a tool for analyzing teaching data from classroom situations; it has also been used by 

teachers as a developmental tool (Jaworski, 1994; Potari & Jaworski, 2002). More recently it has 

been used to characterize mathematics teaching at university level and as an analytical tool at this 

level (Jaworski, 2002; Jaworski, Mali & Petropoulou, 2016). 

Although NOT a triangle, the TT comprises three inter-related elements or domains of teaching: 

Management of Learning (ML); Sensitivity to Students (SS) and Mathematical Challenge (MC). 

These have been interpreted in terms of the interactions that take place within a classroom setting 

and, as such, focus on the micro aspects of teaching, without overt focus on the broader situational 

and cultural focuses, the macro. Briefly, Management of Learning describes the

 

Management  
of Learning (ML) 

 

 
Sensitivity  Mathematical 
To Students (SS)  Challenge (MC) 

 

Figure 1. The Teaching Triad (Jaworski, 1994). 

teacher’s role in the constitution of the 

classroom learning environment by the 

teacher and students. It includes classroom 

groupings; planning of tasks and activity; use 

of textbooks and other resources, setting of 

norms and so on. Sensitivity to Students 

describes the teacher’s knowledge of students 

and attention to their needs, affective, 

cognitive and social; the ways in which the 

teacher interacts with individuals and guides. 

group interactions. Mathematical Challenge describes the challenges offered to students to 

engender mathematical thinking and activity; this includes tasks set, questions posed and emphasis 

on metacognitive processing. These domains are closely interlinked and interdependent (Jaworski, 

1994). Research has shown that a good balance between SS and MC is needed for effective 

teaching: a lot of SS, but little MC can lead to good teacher-student relations but low mathematical 

progress; a lot of MC but little SS can result in students feeling stressed or unable to succeed. When 

challenge and sensitivity are well balanced, the result is “harmony” – students are suitably 

challenged and stimulated while supported to achieve (Potari & Jaworski, 2002). 

The TT is associated with another familiar construct, the Didactic Triangle (DT) which links 

Teacher (Τ), Students (S) and Mathematics (M) and draws attention to relationships 



TeacherStudent; TeacherMathematics; StudentMathematics and links between these 

pairs (e.g., Rezat & Strässer, 2012). The TT expands the “Teacher” node of the DT, illuminating the 

links TeacherStudent and TeacherMathematics through the constructs SS and MC 

respectively while extending the DT to the wider classroom context through the construct ML. This 

wider context includes the resources a teacher uses in mediating between students and mathematics 

as expressed in the idea of a Didactic Tetrahedron in which there are 4 planes: the original DT 

linking TSM and the planes linking TSR, TRM and SRM (R=Resources/artifact; see Figure 2). .

 

Figure 2 . The Didactical Tetrahedron 

(DTetra) (Rezat & Straesser, 2012) 

 

Figure 3. The Expanded Mediational Triangle 

(EMT) (Engestrom, 1999) 

Embedding the TT into the sociocultural perspective 

In this paper we re-examine the TT as a construct used within a sociocultural perspective and 

particularly its relationships to and within an Activity Theory analysis of teaching data. As a 

backdrop to AT we take Vygotskian perspectives involving particularly mediation, tool use, 

scientific concepts and the zone of proximal development (ZPD). Briefly, we see teaching as a 

process of mediation between teacher, students and mathematics (relationships are expressed simply 

in the DT and expanded in the TT). Teaching can be seen as mediating between student and 

mathematics: this is not a simplistic relationship but one with several dimensions which the TT 

serves to accentuate. The resources that a teacher brings to teaching (examples include 

mathematical symbolism, dynamic software, display media) are tools used in the teaching process; 

tools to facilitate learning (indicated by the extension of the DT to the DTetra). Scientific concepts 

are those distinguished by Vygotsky as involving theoretical learning in contrast with spontaneous 

concepts which arise from empirical learning (examples are mathematical concepts which need to 

be introduced by someone – they are not naturally occurring in everyday interactions). Daniels 

(2008, p. 314) cites Hedegaard (1998, p. 120) to suggest that “the teacher guides the learning 

activity both from the perspective of general concepts and from the perspective of engaging 

students in ‘situated’ problems that are meaningful in relation to their developmental stage and life 

situations”. These words capture importantly the basic ideas of ML and SS in the TT of which we 

say more below. Daniels emphasizes the important relationship between the idea of scientific 

concepts and the ZPD as involving a teacher in bringing general theoretical knowledge to her 

interactions with students, while engaging students in concrete tasks from which scientific concepts 

can be abstracted. This suggests important relationships between a teacher’s didactics and pedagogy 

– expressed simply, the former involving the transformation of mathematical concepts into tasks 

and activity for students and the latter involving the organization of the social setting to enable 

students’ engagement with mathematics (together these form the basis of ML in the TT). Within the 



ZPD, student engagement with a teacher’s theoretical input can achieve better learning outcomes 

than would be achievable by a student’s engagement with empirical tasks alone. 

The concepts expressed extremely briefly above fit with the sociocultural perspective of A. N. 

Leont’ev, who makes the following point “in a society, humans do not simply find external 

conditions to which they must adapt their activity. Rather these social conditions bear with them the 

motives and goals of their activity, its means and modes.” (A. N. Leont’ev, 1979, pp. 47-48). Here 

we focus particularly on Leont’ev’s three layers of human action which constitute Activity. The 

outer, or top layer is labelled ‘Activity’ which according to Leont’ev (1979) is always motivated, 

although the motive might not be explicit. Within Activity, the second layer consists of the ‘actions’ 

of humans engaging in Activity. Actions are goal-directed, such that the goals are always explicit or 

conscious. In the third layer, actions include ‘operations’, which depend on the ‘conditions’ within 

which actions take place. In earlier research we have used Leont’ev’s layers to explain issues and 

tensions which have emerged from analyses between teachers’ and students’ perspectives on 

mathematics teaching and learning (Jaworski & Potari, 2009; Jaworski, Robinson, Matthews and 

Croft, 2012).  

If we think of the Activity of a university teacher teaching mathematics, within a university setting, 

subject to all the sociocultural forces within which the Activity takes place, we might think of the 

motive of this activity to be the mathematical learning of students participating within the 

complexities of this setting. Actions here are the teaching actions which take place as the teacher 

engages in the teaching process in relation to the mathematics which is the focus of teaching. Such 

actions are goal directed and relate to ways in which the teacher thinks about her teaching and acts 

in relation to her students. Thus, teacher intentions and theoretical perspectives form goals, and 

didactical and pedagogic processes form actions in this activity setting. The operations within this 

role, with which the teacher engages, are closely related to the practicalities of the role; for 

example, setting exams, creating VLE pages, assessing students’ work. These operations must take 

place within the affordances and constraints of the university system which impose conditions on 

the operations. 

Another model which is used very commonly to represent an Activity System, is the Expanded 

Mediational Triangle (EMT) from Engeström (e.g. 1998). This developed originally from 

Vygotsky’s (simple) mediational triangle (the top part of the EMT) linking a subject with the object 

of her activity via the resources (tools, artefacts) employed in mediation. Engeström recognized the 

important mediational functions of other aspects of the sociocultural setting, such as ‘rules’, 

‘community’ and ‘division of labour’ which expanded the roles of tools/artefacts, and which he 

added overtly in the EMT (see Figure 3). The ‘rules’ include university procedures and constraints, 

community includes both student and academic communities, and division of labour recognizes 

differences between student and teacher roles within the academic setting. 

Example: Teaching in a lecture course in calculus with first year 

undergraduates  

This example comes from the study of university lectures in first year calculus teaching in a four-

year mathematics programme in the mathematics department of a Greek University (see 

Petropoulou, Jaworski, Potari & Zachariades, 2015). The lecturer is an established mathematician, 



with extensive teaching experience, who is very popular among the students in this department. The 

teaching takes place in an amphitheatre with more than 200 students. The course is compulsory and 

its focus is theoretical with an emphasis on proofs; in this example, the mathematical focus is the 

convergence of series. The approach is new for the students who have previously experienced 

calculus in high school as a set of methods and computations. Students’ expressed opinions and the 

very low success rate in the course examination suggest that this course is experienced as one of the 

most difficult during the four year programme. A large number of students take more than four 

years to complete their studies (the average time is 6.5 years) and some of the students have part 

time jobs in order to support their studies financially.  

The lecturer is aware of these sociocultural issues and takes them into account in his teaching, as 

our analyses show. For example, he says, “I do know that students get lost in their first year and that 

most find mathematics too difficult…if you don’t pay attention as a teacher, the average duration 

of their studies could easily become 7 or 8 years”. (In analysis we see here SS in cognitive, affective 

and social dimensions as we explain below).  

The lecturer’s teaching appears rather traditional as he is seen mostly standing at the front of the 

room, writing at the board, “telling” or “explaining” the mathematics with rare interaction with 

students. Nevertheless, we see many elements of sensitivity, taking into account students’ learning 

needs. By scrutinizing his teaching actions and goals, we see that his main teaching goal is to make 

the content relevant to students, with associated actions providing comprehensive explanations, 

highlighting subtle points that cause students’ difficulties, linking informal and formal 

representations, making connections with students’ prior school experiences, emphasizing the 

importance of the specific content in mathematics, in the course exams and in other courses.  

At the beginning of this episode the lecturer reminds students that they know they can add a finite 

number of terms of a sequence i.e. they know that the sum of a finite number of terms always exists. 

He points out that a central question is whether the sum of an infinite number of terms exists.  

He establishes the importance of this question by saying that this is exactly what we mean when we 

say that if it exists then the series converges. He also highlights that the “big difference here” is that 

the number of terms is infinite. By relating the convergence of the series to the existence of a sum, 

he attempts to help students to make sense of the meaning of convergence (which may still be 

difficult however). This can also offer a mathematical challenge that is possibly not appropriate for 

the students to respond to at this stage. It acts more as a situated problem for introducing the 

relevant theorems about the convergence of a series.  

He sympathizes with the students, through a personal story about a teacher he had at school for 

whom the convergence was of great importance. We might say that this story supports their comfort 

zone, offering affective sensitivity. He then formalizes a basic proposition related to the necessary 

condition for a series to converge:  “If a series
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  converges, then the sequence ak → 0”. 

Here we see SS-cognitive in alternative expressions of the meaning of convergence, helping 

students to make sense of the concept of series convergence. We categorise the personal story as 

SS-affective/social, encouraging students in the lecture to have rapport with the lecturer and feel 

empathy with his approach to teaching them. These are pedagogic strategies which enable the 



lecturer to proceed to a more formal didactic stage in his explanation in which he acknowledges a 

problem they might find in a text book on the topic. “The books write ‘consider the sequence Sn-1’. 

But what is the sequence Sn-1 if n=1? Is it S0? S0 is not defined! Ok?”. His solution to this problem is 

to introduce a second sequence tn: “Now, I define a second sequence tn as follows – I am going to 

write down for you the terms of this sequence. First, I set something… let’s say t1, to be equal to 0. 

Then I set the 2nd term of tn to be equal to S1, the 3rd to S2… Ok? … the 4th to S3 etc. Namely I set 

t1 to be 0 - you can set everything you want. So let tn be Sn-1, if n ≥2.” He concludes this proof and 

then he offers a second proof based on the formal ε-δ definition. He compares the two ways by 

characterising the first way of proving ‘the quick way’ and the second ε-δ proof ‘the slow way’. He 

provides all the details in both of these proofs highlighting the problem solving strategies that are 

usually used in proofs about series such as for example the use of partial sums. 

These steps challenge students to engage with the mathematics of series in a more formal way. 

Perhaps this MC is scaffolded by the sensitivity observed in the earlier considerations. We see again 

the lecturer’s drawing of students into his confidence in encouraging them to be critical of the text 

book, and in involving them in his reasoning for introducing the new sequence. We might see these 

careful steps on the part of the lecturer as his sensitivity in “paying attention as a teacher to his 

students’ potential difficulties”. 

The lecturer subsequently takes the opportunity to remind students of the harmonic series 
1

1

k k





  the 

sequence of which tends to 0 but the series itself does not converge, and he uses this to justify that 

the inverse of the above proposition does not hold. He draws students’ attention to the usefulness of 

this example in the forthcoming exams. 

Further actions include providing resources and materials to students for their individual studying 

especially for those students who cannot attend the lectures, the structuring of the content, the 

teaching tools (board, supportive resources) and the traditional communication norms. In the 

analysis, Mathematical Challenge (MC) is often difficult to distinguish, appearing to be integrated 

into the SS. It is usually addressed through problem solving heuristics that are presented by him in 

explaining general mathematical strategies in specific cases of problems and theorems (e.g., the use 

of partial sums for proving the convergence of series) and by emphasizing metacognitive processes 

(e.g., comparing different solution strategies). 

By referring to the EMT, we identify some links to the TT. SS is related to the lecturer’s attention to 

the students’ community (e.g., offering supportive resources for the students who do not attend the 

lectures, the delay for completing their studies). ML is related to the lecturer’s attention to the 

university community (e.g., the tools that the lecturer uses and develops, the institutional rules such 

as examinations, large cohorts of students,) On the other hand MC is related to the community of 

mathematicians and to the mathematical practices that the lecturer brings into the classroom. 

Discussion 

In this example, the Activity is the sociocultural setting of teaching and learning. Seeing the teacher 

as subject (in the EMT) with the object of enabling students to make sense of the mathematical 

topic, mediators are the various artefacts/resources (such as the lecturer’s board writing; his 

provision of on-line resources) as well as the cultures of students or teachers (student community. 



academic community), differing roles of students and teachers (division of labour), and the 

expectations of university lectures/tutorials and the four-year programme (rules). In Leont’ev’s 

terms the Activity is the whole, the lecturing, with the motive of enabling the students to learn basic 

concepts and theorems of calculus by taking into account their learning needs. We see actions and 

goals particularly in the activity of the lecturer: what he does to achieve the main goal of making the 

content relevant to the students, such as explaining mathematics at the board to ensure that students 

are provided with clear accounts of mathematical concepts with which they can work further, 

providing on-line resources to help students who must work to support their studies. 

The Teaching Triad cuts across the Activity Theory frameworks to interrogate the activity of 

teaching. It captures the teacher’s actions as related to mathematics and to the students (MC and 

SS). Through ML, we see the teacher’s use of artefacts: tasks and resources, pedagogic strategies to 

include and engage students, orchestration of the environment to facilitate learning. MC can be seen 

in the ways the teacher presents or provides access to mathematics, linking with what the students 

know and with what they are expected to do in the course exams.  

SS links the affective, cognitive and social elements of student engagement, rationalizing 

conventions and norms within the constraints and affordances of the institution. The triad presents a 

framework in which we see all the aspects of Activity through its three dimensions. 

Elaborating further the elements of the TT discussed above, we see a close link between SS and ML 

in the teaching of this lecturer. SS has a strong social dimension apparent inside and outside the 

amphitheatre. For example, we see his concerns for providing clear explanations without interaction 

with the students as the institutional context and the affective constraints do not allow it. He says, 

“In an audience of 200 students, if you discuss with 2–3 of them, these probably will be the 

strongest students and the others will feel bad. … And finally nothing will remain on the board”. He 

also takes into account students who cannot attend the lectures for various reasons (e.g., 

participating in social associations; socializing after the hard entry examinations; or having to get a 

job for financial reasons) by providing supportive online resources and materials. The lecturer 

teaches within the sociocultural setting described above. He engages with mathematics and with 

students: the fundamental relationships expressed in the DT. He uses a range of resources with 

which to engage students as expressed in the DTetra. The TT enables us to inspect these 

relationships in more depth, addressing the ways in which the lecturer engages the students and 

provides for their needs. We come to see that despite an approach that seems transmissive, he is 

nevertheless sensitive in social, affective and cognitive ways to what students need in order to make 

sense of the mathematics he offers. These needs relate strongly to elements of the sociocultural 

context in which the activity takes place including the number of students, the financial provision 

for their studies, and their struggles with mathematical formalism. We see lecturer’s goals and 

actions, through which he demonstrates challenge and sensitivity, to relate fundamentally to his 

recognition of these contextual demands. While the AT frames (EMT and Leont’ev’s layers) 

characterize teaching activity in its relation to context, the TT zooms in on the goals and actions to 

specify qualities of sensitivity and challenge and their management within the given context. 
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The importance of studying structuralist praxeologies has been highlighted by Hausberger (2016). 

In this communication, we illustrate it on the case of ideals in Ring Theory. We provide a detailed 

study of a proof extracted from a textbook in Abstract Algebra showing that structuralist praxeologies 

involve interplay between intertwined algebraic, set-theoretic and logical praxeologies, revealing a 

hidden complexity. 

Keywords: Mathematical structuralism, structuralist praxeologies, ideals in Ring Theory, logic. 

Introduction 

Hausberger (2016), with the introduction of the notion of structuralist praxeology, underlined the 

importance of praxeological analysis in the didactical study of phenomena related to the teaching and 

learning of Abstract Algebra at University level. His work is based on an epistemological 

investigation of algebraic structuralism that showed that mathematical practice in Abstract Algebra 

may be interpreted as an application of the axiomatic method, structures being used as tools by 

mathematicians in order to prove statements on objects. In the Anthropological Theory of the 

Didactics (Bosch &Gascon, 2014), a method is a set of techniques. In fact, ATD poses the general 

model that every human activity may be described by quadruples [T,τ,θ,Θ], called praxeologies, 

which correspond to the organisations it sets up: these combine a praxis (a type of tasks T and a set 

of techniques τ) with a logos that include two levels of description and justification of the praxis: the 

technology θ and the theory Θ. Hausberger (2016) made the assumption that clarifying the 

structuralist techniques may illuminate practices in Abstract Algebra, make their rationale more 

visible and ground them as a coherent whole. Hausberger (2016) described common tasks and 

techniques in the arithmetic of abstract rings and studied the structuralist praxeologies developed by 

students on a mathematical forum online. By contrast, the empirical data presented here is an extract 

of the solution of an exercise on Noetherian rings proposed by teachers in a textbook. The central 

mathematical notion at stake is the notion of ideal. By a detailed study of this example, we will 

develop the argument that structuralist praxeologies involve interplays between algebraic, set-

theoretic and logical praxeologies, thus revealing a hidden complexity.  

Structuralist praxeologies as intertwined algebraic, set-theoretic and logical ones  

The notion of structuralist praxeology 

Structuralist techniques are the by-products of the complete rewriting of classical algebra operated 

by Noether’s school in the 1920s (Hausberger, 2013 & 2016). They are based on the now standard 

structuralist constructs: sub-structures, homomorphisms, isomorphism theorems, products or sums of 

structures, quotients, etc. Hausberger (2016) stressed that common tasks in Abstract Algebra may 

often be solved using elementary techniques. Whenever its logos block contains a theorem on 

structures, the praxeology may be called structuralist. Nevertheless, a gradation of its structuralist 



dimension (loc. cit.) may be observed. In fact, structuralist praxeologies reflect the concrete-abstract 

and particular-general dialectics that are at stake in Abstract Algebra: tasks involving concrete and 

particular objects are completed by using abstract and general considerations on structures. Examples 

will be given in the sequel. The particularity of structuralist praxeologies that will be investigated in 

this article is that they often involve sub-praxeologies of algebraic, set-theoretic or logical type. 

Algebraic and set-theoretic praxeologies 

Noether qualified her own work of “set-theoretic foundation for algebra” (Hausberger, 2013), 

following Dedekind. On an epistemological point of view, it is characterised by the transition from 

thinking about operations on elements to thinking in terms of selected subsets and homomorphisms. 

The distinguished subsets are the kernels of homomorphisms, hence the normal subgroups in Group 

Theory and the ideals in Ring Theory. Noether uncovered the importance of the chain condition on 

ideals that led to the definition of Noetherian rings (see below). In other words, set-theoretic 

operations on ideals are connected to algebraic properties on elements. We will present below this 

connection by means of a “dictionary”. It explains the intertwining of algebraic praxeologies (on the 

level of elements) and set-theoretic praxeologies (on the level of structures), but it leads also to the 

use of logical praxeologies, notably for the descent from the ideals toward the elements at stake.  

Logical praxeologies 

Many tasks in Abstract Algebra involve proof and proving, thus logical praxeologies. Durand-

Guerrier (2008) has enlightened that the natural deduction developed by Copi (1954) provides a 

powerful tool to analyse and check mathematical proofs. In particular, it allows identifying those 

steps where mathematical arguments are silenced, supporting the claim that mathematics and logic 

are closely intertwined in proof. We will rely on Copi’s natural deduction to describe logical 

praxeologies likely to appear in proof and proving: elimination and introduction of implication, 

universal quantifiers and existential quantifiers, restriction of the domain of quantification. The theory 

is the First order logic (Predicate calculus) and the technologies are logical theorems (i.e. statements 

true for every interpretation in any non-empty domain). In Copi’s natural deduction, one deals with 

a generic non-empty universe, and some aspects need pragmatic control in order to ensure validity, 

as we will see below. The following table details common logical praxeologies that can be involved 

in a proof and hence in the study of structuralist praxeologies.  

We provide triplets (type of tasks, technique, technology): 

index Type of tasks Technique Technology  Example of use 

L1 Elimination of 

an implication 

Asserting the antecedent – 

asserting the consequent 
[(P  Q)  P]  Q  Deduction based on a 

conditional theorem 

L2 Introduction of 

implication  

Recognizing that Q has been 

proved under the hypothesis P, and 

assert “P  Q” 

(P Q)  (P  Q) 

 

Conclusion of the 

proof of a conditional 

statement 

L3 Elimination of 

a universal 

quantifier  

Deleting the quantifier, 

introducing of a generic element of 

the universe, assigning this 

element to every occurrence of the 

variable in the open statement.  

[x (F(x)]  F(y) 

 

Using a universal 

statement in a proof 

by generic element.  

L4 Introduction of 

a universal 

Given a true statement involving a 

generic element of a domain U, 

No logical theorem. 

Need to control that the 

Conclusion of proof 

by generic element.  



quantifier assert the corresponding universal 

statement  

element is actually a 

generic element of U (no 

other assumption on this 

element has been done) 

L5 Introduction of 

an existential 

statement 

Given an element of the universe U 

satisfying an open sentence, assert 

that the corresponding existential 

statement is true.  

F(y)  x F(x) Conclusion of the 

proof of an existential 

statement. 

L6 Elimination of 

an existential 

statement  

Given a true existential statement, 

introduce an element satisfying the 

corresponding open sentence.  

No logical theorem. 

Need to control that the 

name of the element has 

not been used prior in the 

proof  

Using an AE 

statement (“For all, 

Exists”) in a proof.  

L7 Restriction of 

the domain of 

quantification  

Given a universal statement true in 

a domain A, assert it on a 

subdomain B of A.  

[(x (A(x)  F(x))  (x 

(B(x)  A(x))]  [(x 

(B(x)  F(x)) 

Fitting the statement 

with the antecedent of 

a conditional 

statement  

L8 Transformatio

n of a 

statement 

preserving its 

truth value 

Substitute an equivalent statement 

to a given statement 

In the case of 

implication: [(x (P(x) 

 R(x)) (x (Q(x)  

R(x))]  [(x (P(x)  

Q(x)) 

Using the dictionary 

of properties 

elements/structures 

(cf. table 2) 

Figure 1: List of a priori logical praxeologies according to Copi 

The case of ideals in Ring Theory  

The notion of ideal and its ecology 

An ideal I of a ring (𝐴,+,∙) is, by definition, a subset of A with these properties: (i) I is a subgroup of 

the additive group (𝐴, +); (ii) if 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝐼, then 𝑎 ∙ 𝑥 ∈ 𝐼. As part of her Master’s degree 

dissertation, the first author conducted an epistemological and didactic study of the concept of ideal 

in order to explore the ecology, including the habitats and niche (Artaud, 1997) of this concept in 

French university education. This epistemological study started with the creation of ideal numbers by 

Kumer in 1847 and it enhanced the rise towards abstraction leading in the 1920s through the work of 

Noether to the concept we use today (Jovignot, to appear). As far as the ecology of the concept of 

ideal is concerned, the epistemological study allowed the identification of the following a priori main 

habitats: general Ring Theory (quotient rings and isomorphism theorems), arithmetic of abstract rings 

and elimination theory. Bearing on those results, Jovignot developed an analytical framework to 

identify habitats and niches of the notion of ideal in algebra textbooks addressed to undergraduates 

and Master’s students. A first study of 3 textbooks has led to improve this grid, that was then applied 

to a sample of 7 French textbooks that were considered as representative of the ecology of the concept 

of ideal and of its use in the different post-secondary institutions in which this concept is taught in 

France. This study confirmed general Ring Theory and arithmetic of abstract rings as major habitats 

of the concept of ideal, but it also allowed the exhibition of habitats that had not been previously 

identified, such as the theory of modules and algebraic geometry, which suggests the importance of 

leading a complementary study in contemporary epistemology. Finally, elimination theory appeared, 

in our sample, only in the specialized computer algebra manual.  

  



Ideals and structuralist praxeologies in the arithmetic of abstract rings 

Arithmetic of abstract rings as a mathematical domain is characterized by a mathematical structure 

in “Russian dolls”: it involves Euclidean, principal ideal domains (PID) and unique factorization 

domains (UFD), which generalize properties of the ring of integers, and mathematical theorems that 

state inclusions from the former class to the latter. Common tasks consist in proving that a given ring, 

for instance Gauss’s ring of integers Z[i], belongs to a class or the other. More abstract tasks, such as 

the one that will be analyzed below, involve making new connections between such classes. The 

central notion is the notion of ideal. In fact, the class may be defined directly by a property on ideals 

(such as PIDs) or by properties on elements (such as UFDs) which may be related to properties of 

ideals by means of the following “dictionary” which was already mentioned above. This dictionary 

will be useful to understand used praxeologies in the task studied below. 

index Conditions of validity Level of elements Level of structures 

D1  a divides b  (a) contains (b) 

D2  a and b are associates (a) = (b) 

D3 p ≠ 0  p is a prime element (p) is a prime ideal 

D4 A is a principal ideal domain p is irreducible in A (p) is a maximal ideal of A 

D5 A is a unique factorisation domain d is a gcd of a and b (d) = (a) + (b)  

Figure 2: dictionary of properties elements/structures 

The task under study 

In the next section, we will present the praxeological analysis of an exercise involving the concept of 

ideal which is extracted from a book addressed to Master’s degree students preparing the French 

Agrégation1: Francinou, S. & Gianella, H. (1994). This book is widely used by university students in 

France. The authors sampled classical exercises in Algebra and provided proofs. In the chosen 

exercise, students are requested to establish a connection between Noetherian integral domains 

endowed with an extra property and PIDs. We clarify that this praxeological analysis is not a tool for 

teaching but could help us later for the design of experimentation with students. 

The exercise is the following (our translation): 

Let A be a Noetherian integral domain. We assume that every maximal ideal of A is principal. 

1) Show that A is a unique factorization domain. 

2) Show that every non-zero prime ideal is maximal, principal and of the form (p) where p is 

irreducible. 

3) Show that A is a principal ideal domain. (loc. cit. p.57) 

We will restrict our study to question 1. The authors introduce the following classical criteria, in 

which E designates the property of existence of a factorization and U the property of unicity: 

A is a UFD if and only if: 

a) every increasing chain (a1) < (a2) < (a3) <… of principal ideals is stationary (equivalent to 

E) 

b) every irreducible element is prime (equivalent to U) 

                                                 
1 Competitive exam for prospective teachers for secondary and tertiary education 



The proof provided by the authors is the following (our translation from French): 

Since A is Noetherian, A satisfies (E). To establish that A is a unique factorization domain, it suffices 

to prove that if p is irreducible, the ideal (p) is prime. Let us consider a maximal ideal M containing 

(p). By hypothesis M is principal generated by a. Thus a divides p. Since a is not a unit (because M 

≠ A), p and a are associates and (p) = M is maximal. In particular (p) is prime. 

Praxeological analysis of the task 

Supplementing the proof 

Reading the proof of the authors, it appears that a lot of steps remain implicit. In order to be able to 

study the full set of praxeologies involved in the proof, either explicit or implicit, we have 

supplemented it. We consider that the proof is complete when all the statements are obtained by 

natural deduction from previously established results or standard theorems in Abstract Algebra. We 

do not examine in detail in this paper the question of which of these supplements should be taught, 

but we will provide hypothesis that will be studied in further steps of this research. The steps of the 

proof presented in the textbook are numbered, our supplements appear in italic and are designated by 

letters whenever several steps are involved. The supplemented proof reads as follows: 

1. Since A is noetherian, A satisfies (E). 

a. Indeed, A is Noetherian so every increasing chain of ideals is stationary by definition. 

b. In particular, every increasing chain of principal ideals is stationary. 

c. So, thanks to the criteria, A satisfies(E). 

2. To establish that A is a UFD it suffices to prove that if p is irreducible, the ideal (p) is prime. 

a. Indeed, we need to show that every irreducible element is prime (criteria, b) 

b. And “p is prime” is equivalent to “(p) is prime” 

c. In fact, we will show that (p) is maximal. It is enough since every maximal ideal is prime in a ring. 

3. Let p be an irreducible element of A and M a maximal ideal containing (p). 

a. If there aren’t any irreducible elements, we are done. In fact, irreducible elements exist since A is 

Noetherian, except if A is a field.  

b. p is not an unit, so (p) is proper and M exists according to Krull’s theorem. 

4. By hypothesis M is principal. Let a be a generator of M. 

5. Thus a divides p. 

a. Indeed, (p) is included in M and M = (a), so (p) is included in (a). 

b. And (p) is included in (a) if and only if a divides p. 

6. Since a is not a unit (because M ≠ A), p and a are associates - indeed, a|p so there exists b in A 

such that p=ab; moreover, p is irreducible so, since a is not a unit, b must be a unit and p and a 

are associates - 

7. and (p) = M is maximal since two principal ideals are equal if and only if their generators are 

associates. 

8. In particular (p) is prime. 

  



Praxeological analysis 

We present the praxeological analysis as a tabular; in the column labelled “steps”, we are indicating 

in which steps of the proof the studied praxeology appears. Only tasks, techniques and technologies 

are mentioned; the theory in the sense of ATD is Ring Theory. We note S structuralist praxeologies 

and A algebraic ones. 

steps Type of task Technique Technology 

1 – 8 (S1) Show that a ring is 

UFD  
Use of the criteria Equivalence between the criteria and 

the definition of a UFD 
1 L7 
2  L8 
2 b – 8 (S2)  Show that an 

element p is prime 
Associate to p the ideal (p) and 

show that (p) is prime 
The dictionary of properties 

elements/structures (D3) 

2 c – 8 (S3) Show that an ideal 

is prime 
Try to show that the ideal is 

maximal 
Every maximal ideal is prime 

2 c L1 
3 - 7 (S4) Show that an ideal I 

is maximal 
Take a maximal ideal M 

containing I and show that M=I 
Krull’s theorem 

3 a L6 (making explicit the two existential statements permitting the introduction of p and M) 

4 - 7 (S5) Show that two 

principal ideals are 

equal 

Show that two generators of 

those ideals are associates 
The dictionary of properties 

elements/structures (D2) 

5 (S6) Show that a divides 

b 
Show that (a) contains (b) The dictionary of properties 

elements/structures (D1) 
6 (A1) 

  

Show that two 

elements a and b are 

associates 

Show that a divides b; it is 

enough to conclude whenever b 

is irreducible and a is not a unit 

Definition of units, irreducible 

elements and associates; a and b are 

associates if and only if a | b and b | a 

Figure 3: praxeological analysis of the task 

Conclusions of our analysis 

This praxeological study allows us to highlight significant characteristics of the praxeologies used by 

the authors that we summarize below. 

The dictionary elements/structure is used along the proof; indeed the proof involves relationships 

between properties of elements of the ring (being an irreducible or a prime element) and properties 

of subsets (being a principal, maximal or prime ideal). Moreover, the algebraic notion of generator 

and the dictionary of properties elements/structures allow the replacement of common set-theoretic 

praxeologies (such as proving an equality of two sets by double inclusion) by more powerful algebraic 

praxeologies (involving A1). This cultural shift that is characteristic of structuralist algebra may be 

pointed out as a potential obstacle (previous praxeologies hindering the use of the new praxeologies 

to be acquired). 

The structuralist praxeology S1 decomposes into several sub-praxeologies S2-S6, A1, L1, L7, L8. In 

the authors’ proof, only structuralist steps of the proof are given; the steps involving algebraic and 

logical praxeologies are nearly systematically hidden. We may hypothesize that these authors see 

structuralist steps as the architecture of the proof and expect students to be able to reconstruct the 

missing elements by themselves. On the contrary, we will argue in favour of setting out the non-

structuralist praxeologies and elaborate on their role in connection with structuralist praxeologies. 



The nearly systematic omission of logical praxeologies raises the following issues and comments. 

First of all, the proof deals with generic objects, which is due to the level of generality of the statement 

of the exercise. It is already explicit in the statement itself, therefore both rules of elimination (L3) 

and introduction (L4) of a universal quantifier on the ring are not needed. In the sequel, the ideal M 

is introduced (step 3) without justification of its existence (Krull’s theorem). The introduction of the 

generator of M is allusive and could be misinterpreted, letting think that this element has already been 

introduced. In both cases, the elimination of the existential quantifier (L6) remains implicit, letting 

thus implicit the statements themselves. The generic element p that plays a central role in the proof 

is not introduced, while it is a delicate step. Indeed, a classical way to prove a conditional statement 

by generic element is to introduce an element satisfying the antecedent, under the implicit assumption 

that such element exist; indeed, if not, there is nothing to prove (step 3.a). In addition, letting silent 

the restriction of the quantification domain (L7, step 1) hides the fact that this rule does not apply for 

existential statements, which might not be clear for some students. Finally, the substitution rule (L8) 

is a key for using the dictionary elements/structure by substituting a property of elements for a 

property of structure and vice-versa. 

Giving such a proof requires the availability of the praxeologies cited above and a suitable 

understanding of their interrelations, or enough experience on the structuralist methodology in order 

to apply these praxeologies en acte. We hypothesise that the textbook’s proof does not permit the 

appropriation of the structuralist praxeologies at stake. A didactical strategy to reach this goal may 

include, for instance, a “meta-discourse” on the crucial role of the dictionary elements/structure, 

together with making explicit the logical praxeologies whose role has been underlined above. 

The particular construction of the proof (related to the decomposition of S1 into S2-S6-A1) can be 

understood by analysing the interplay between the blocks of the praxis and that of the logos of the 

different praxeologies engaged in the proof. However, the technological elements are seldom present 

in the proof written by the authors. For example, the properties of the dictionary are used but barely 

cited. Even if the students own in their praxeological equipment those technologies, the proof doesn’t 

offer them the opportunity to identify those technologies in the context of the proof and thus build 

the associated structuralist praxeologies in order to be able to use them by themselves in another proof 

situation. 

General conclusion and perspectives 

Our praxeological analysis has highlighted the complexity of the chosen exercise. This complexity 

comes, in particular, from the decomposition of structuralist praxeologies into several structuralist 

sub-praxeologies and their interrelation with logical and algebraic praxeologies. These are 

fundamental in order to make the structuralist technologies practically operative. A sketchy proof 

which restricts to the structuralist steps, although it is seen as a clear and synthetic account by 

mathematicians, may therefore appear quite inadequate for self-learning by students who are not 

familiar with the structuralist methodology. In other words, our study contributes to break the 

“illusion of transparency” behind proofs that may be found in Abstract Algebra textbooks. 

We aim to record and analyse the work of students who attempt to reconstruct the proof as we did, or 

to write a proof from scratch. In this forthcoming empirical study, our praxeological analysis will 

serve as an a priori analysis. It may also be used as a starting point in order to prepare clues for the 



students and other types of didactical intervention, as well as to lead semi-structured interviews. 

Moreover, we intend to interview the authors of the book in order to get insights in their goals and 

motivations for the choices they made when writing down the proof. More generally, it is expected 

from these praxeological analyses, conducted on a larger scale, a deeper understanding of structuralist 

praxeologies with a view to setting up didactic engineerings dedicated to the teaching of structuralist 

concepts and in particular the ideal concept. 
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representations of continuity and differentiability  
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The aim of the study reported in this paper is to investigate how students understand continuity and 

differentiability during and after a calculus course. The students’ choices of representations, both 

claimed and acted, were also studied. The study is part of a larger study of four student groups 

taking a calculus course. 207 students answered a questionnaire during the course and of them, 11 

were interviewed after the course (the ones in this paper). Answers in questionnaires and interviews 

were categorised and compared. All students who preferred formal theoretical representations, and 

only those students, were able to produce formal proofs. The students’ stated and acted preferences 

of representations were quite coherent, with only a few inconsistencies.    

Keywords: Calculus, continuity, differentiability, understanding, representations. 

Introduction 

Learning means adaption of, building on and sometimes rejection of prior knowledge. Calculus at 

university level comprises numerous new things to learn for many students and the actual learning 

may take place a while after the teaching occasion or even the examination. Differentiability and 

continuity, the topics studied in this paper, are closely linked to limits that have been proven 

difficult to learn (e.g. Juter, 2005, 2012; Tall & Vinner, 1981). Nagle (2013) concludes, in her 

overview of research on transitions to formal limit conceptions, that there is a consensus in the 

results about the students’ insufficiently developed concept images that do not allow them to 

formally understand limits. The transition requires students to go from a dynamic, discrete way of 

perceiving limits as processes to a static, continuous viewpoint where limits are regarded as formal 

objects. Nagle suggests an alternative introduction to calculus where more time is spent on informal 

conceptions to ease the transition to a formal definition. Raman (2002) found that students learning 

calculus do not seem to develop abilities to coordinate formal and informal aspects of mathematics 

unprompted, due to too little experience of such activities. It is therefore important to learn more 

about how students use formal and informal representations, deliberately or not, when they study 

mathematics. Exams also influence students’ studying strategies. Bergqvist (2007) found that a vast 

majority of tasks from 16 university exams in introductory calculus from four different universities 

in Sweden only required imitative reasoning skills to pass. Mathematics learning is then endangered 

to become reduced to remembering routines rather than understanding concepts, processes and 

relationships, since students’ strategies for learning are influenced by exams. The study in this paper 

further investigates formal and informal representations used by students to argue for relational 

properties of continuity and differentiability during a calculus course, and how they have developed 

after the course. The students’ exams were divided in two, where the first part was a written routine 

problem solving exam and the second an oral exam where definitions and proofs were assessed. The 

students’ preferred types of representations were also investigated and compared to their used types 

of representations and understandings to further explain how the students’ use of formal and 



informal representations compare to their learning processes. The research questions addressed in 

the paper are: 

 How do students’ relational understandings of continuity and differentiability during a calculus 

course compare to their understandings after the course? 

 How do students’ claimed preferences of representations match their actual use of 

representations? 

 How do students’ understandings and preferences of representations, spoken and acted, 

correlate? 

Theoretical frame and some prior results 

Students’ understandings of mathematical concepts are reflected in their solutions, reasoning and 

other actions as traces (Juter, 2005) of their concept images, i.e. the total cognitive representation of 

a concept that an individual has in his or her mind (Tall & Vinner, 1981). Tall and Vinner define a 

person’s concept definition for a concept as the words or symbols used to define the concept. 

Understanding a concept and being able to solve tasks involving the concept may be regarded as 

synonyms for some students, particularly if being able to solve tasks through imitative reasoning is 

enough to pass exams. The two ways of dealing with mathematics can however be distinguished 

according to their core features. Hiebert and Lefevre (1986) defined conceptual knowledge (p. 3) as 

a web of pieces of information well linked together with meaningful connections. Relations between 

concepts are abundant and significant. They defined procedural knowledge (p. 6) as knowledge 

requiring an input which the learner recognises and is able to perform a linear procedure on to 

obtain an outcome. No relational understanding is required for the process to be carried through. 

Strong and valid connections between concepts, i.e. conceptual knowledge, help learners to 

understand more as new information is embedded in, and supported by, their existing knowledge 

(Hiebert & Carpenter, 1992). Rich connections between concepts also reduce the burden of 

remembering pieces of knowledge and makes transfer within the concept image easier. Students are 

often unaware of the quality of links between concepts in their concept images, particularly if 

irrelevant or untrue links are mixed with true ones (Juter, 2011). A large number of links enables 

students to explain what they think determines a concept or a relationship between concepts. This 

can give a false sense of understanding if the links are incorrect, which in turn may lead to a 

situation where the student is unaware of any need for further work with the concept. 

Connections between different representations of the same concept, as well as connections between 

different concepts, are important to create strong concept images. A function can for example be 

represented in different ways algebraically, by a graph, or in words. Santi (2011) addressed the issue 

of students understanding different representations of the same mathematical phenomenon or 

concept, e.g. tangents. He compared the limit process of a derivative in calculus with a cognitive 

perspective to a more embodied Euclidean approach of the tangent touching the curve in one point. 

Some students showed difficulties in seeing those representations as the same object. In a study of 

university students learning limits of functions (Juter, 2005), another example of incoherence in 

representations of a concept was apparent. Several students interpreted the formal theory as stating 

that limits are unattainable for functions, but when limits were used in problems they could see that 

sometimes functions could attain limit values (e.g. linear functions). When both these perceptions 



were evoked simultaneously, the students became confused. Students meet different definitions and 

representations, depending on the context, e.g. intuitive descriptions, informal definitions and 

formal definitions (Jayakody & Zazkis, 2015). Jayakody and Zazkis presented two definitions of 

continuity based on limit definitions used at university courses. They concluded that students should 

investigate different definitions and their consequences to better understand the purpose of them. 

When investigating a function for continuity, the results may differ depending on definition choice, 

particularly if the definitions are learned intuitively rather than formally. An intuitive representation 

is here regarded as a perceived self-evident mental representation of a concept or phenomenon, as 

described by Dreyfus and Eisenberg (1982). An intuitive representation often lacks the benefits of 

formal strictness that can be useful in particular situations, e.g. determining if a function is 

continuous in a neighborhood of a given point. Developing conceptual knowledge may be difficult 

based mainly on intuitive perceptions. In the example with attainability of limits (Juter, 2005) some 

students misinterpreted the strict inequalities in the formal definition to mean that the function never 

can attain the limit value. The intuitive interpretation of that part of the definition overthrew the 

formal definition leaving the students with an incoherent concept image. Intuitive representations 

and other informal representations work as support for learning in many cases, but sometimes they 

are obstacles, particularly in a procedural learning approach where there are few opportunities to 

understand relations from deductive reasoning. In this study students formal and informal (including 

intuitive) representations of continuity and differentiability are studied and compared to the 

students’ stated and acted preferences of representation forms. 

The study, methods and sample 

The 11 students focused on in this study were part of a larger study of 207 students enrolled in their 

first calculus course at university level. The course was not given in one particular program, so the 

students were from different disciplines, such as physics or mathematics. Their understandings of 

continuity and differentiability, and proving strategies of statements regarding the concepts, were 

examined (for prior results see Juter, 2012). The students were from four different groups taking the 

same course (different semesters). The duration of the course was 10 weeks and included basic 

calculus with limits, continuity, derivatives, integrals, differential equations and Taylor’s formula. 

The students wrote an individual exam with focus on problem solving, mainly with calculations, at 

the end of the course and if they passed, they took an individual oral exam covering the theory of 

the course a couple of days later. The students answered a questionnaire when they had covered 

continuity and derivatives in the course. The 207 students in the study were all answering the 

questionnaire, which was more than 90% of the students attending the lectures. They filled it out 

after a lecture and had as much time as they wanted (they used up to about 30 minutes). The aim 

was to learn more about the students’ understandings of the concepts and the relation between them, 

but also how they expressed their responses, e.g. formally or informally. The questions were for 

those reasons openly formulated. The first five questions were about what features continuous 

functions and differentiable functions have and what the concepts are used for. The questions 

relevant for the part reported here followed and they are:  

1. Are all continuous functions differentiable? Justify your answer.  

2. Are all differentiable functions continuous? Justify your answer.  



The aim with these two questions was to see what types of representations the students would select 

to argue for their hypotheses. Before the data collection, they had seen examples and proofs that 

would enable them to answer both questions even though they were differently formulated than in 

the course. After the course, 11 of the students were individually interviewed. The students 

volunteered by indications in their questionnaires and were selected from their questionnaire 

answers to exemplify conceptual understanding, procedural understanding, formal use of theory and 

informal use of theory. The selected students are described after Figure 1. Each interview lasted 

about 30-45 minutes and was audio recorded. The questions were about the questions from the 

questionnaire and the students’ answers to them, proving, examination forms and attitudes to 

mathematics. They were particularly asked if they agreed to their former statements in the 

questionnaire or not. The analysis of the interviews were tightly connected to the questionnaires and 

the students’ development from them. Representation forms as well as mathematical content were 

analyzed and categorized.  

Results and discussion 

Figure 1 shows the students’ answers to the two questions in the questionnaire (Q), if they agree or 

disagree (correctly or incorrectly) to those answers at the interview (I) after the course, and if the 

students managed to prove their statement in the second question (if so, in the questionnaire, Q, or 

the interview, I).  

Stud.  Continuous 

implies diff. Q 

Diff. implies continuous  

Q 

Agrees (I) correctly/ 

incorrectly 

Disagrees (I)  

correctly/ 

incorrectly 

Proves 

formally, 

Q or I 

Jonas No, |x| Yes, small change in x 

causes a small change in 

y 

Correctly but he 

wants something 

added about 

intervals  

 Yes, I 

Jack No, |x| Yes, no actual reason Correctly 

explaining why |x| is 

not differentiable 

 Yes, I 

Jim No, not |x| and 

endpoints of [a,b]  

Yes, differentiability is a 

stronger feature than 

continuity 

Correctly   Yes, I  

 

John No, |x| Yes, correct formal 

proof using the 

definitions of continuity 

and derivative  

Correctly   Yes, Q 

Felicia No, |x| Yes, same left and right 

limit, slope independent 

of chosen point in the 

neighbourhood of the 

point 

Correctly agrees 

with first question 

and explains why |x| 

is not differentiable 

Correctly clarifies her 

answer to the second 

question. Thinks it was 

messily formulated 

No 

Fred 

 

No, |x| Yes, no reason Correctly  (some 

confusion)  

 No 

Fay Yes, no jumps in a 

neighbour-hood of 

an undefined point 

so same limits 

form left and right 

No, a function may be 

differentiable on an 

interval, but not in the 

actual jump 

 Correctly but a bit 

vaguely justified in a 

formal attempt 

No 

Clara No, only if defined 

for all points in an 

interval 

No, no reason Incorrectly    No 



 

Carly Yes, since they 

always have a 

slope 

Answers that continuous 

implies differentiable 

again 

Incorrectly on the 

first question, not 

really addressing 

the second 

 No 

Celia No, |x| Yes, no actual reason Agrees but adds 

error: In (0, 0) is |x| 

not continuous 

 No 

Carl No, at peaks there 

are many different 

tangents. States 

that continuous 

implies diff. in 

another question 

No, not a stair function Correctly agrees on 

the first question  

Correctly disagrees to 

his statement that 

continuous implies 

differentiable but 

unable to clarify the 

second question  

No 

Figure 1: Students’ understandings of continuity and differentiability from questionnaires during the 

course (Q) and interviews after the course (I) 

The students in Figure 1 are categorized in three groups, separated by different first letters in their 

fictitious names, depending on their responses to the two questions in the questionnaire and the 

interviews. In the first group (all names start with J), the four students correctly answered the 

questions in the questionnaires and interviews and came up with correct formal proofs. All four 

students used |x| as a counter example to show a continuous non-differentiable function in the 

questionnaires. Three of the four students (all but John) did not prove their answers to the second 

question in the questionnaires, but they were all able to do so in the interview. Jim did at first not 

think he was able to prove his statement in the interview, but when he got started he was able to 

take it deductively step by step through knowledge about the concepts revealing a conceptual 

(Hiebert & Lefevre, 1986) approach to mathematics in this area. Jack had a similar task to prove at 

his oral exam and showed confidence in procedurally proving it in the interview, even though he 

was unable to prove it during the course in the questionnaire. In the second group, with three 

students, all names start with F. The students either answered correctly at the questionnaire and 

agreed with their answers in the interview (Fred and Felicia) or answered wrongly at the 

questionnaire and then disagreed in the interview (Fay). Felicia and Fred both used |x| as a counter 

example the same way the students in the first group did. The students in the second group could 

show some confusion or small mistakes, but they answered correctly in a large sense after the 

course. The students did not produce any proof of the second question, but Fay made an attempt to 

do so when she was asked to try. She was however unable to see it through after she had written the 

definition for continuity where x tends to a and the definition for derivative where h tends to 0. It 

would probably work better for her if she had used a definition of derivative where x tends to a so 

she could combine the definitions easier; the lack of such flexibility could be due to her concept 

definitions. Comparisons of various definitions, as suggested by Jayakody and Zazkis (2015), could 

have helped her adjust her concept definitions to work together. She also thought that a limit is not 

an exact value, which can lead to problems understanding that a tangent in a point is unique if it 

exists, as Santi (2011) found. The third group comprises four students, all names starting with a C. 

These students were unable to correctly answer and/or justify their answers in the interviews. Carl 

and Carly both stated that continuous functions are differentiable in the questionnaire (Carl wrote it 

as an answer to another question where he was asked what features continuous functions have, so he 

gave two opposing answers in the questionnaire since he answered ‘no’ to question 1 above) and 



Carly kept that opinion in the interview whereas Carl changed to a correct standpoint. He was 

however not able to correctly answer the second question. Carly thought that all continuous 

functions have a specific slope in all points and are hence differentiable. In the interview she 

thought that all differentiable functions are continuous in an open interval since the tangent does not 

fall over the edge at the endpoints. Carly had an intuitive (Dreyfus & Eisenberg, 1982), non-formal, 

way of explaining her thoughts as this example indicates. Celia got the answers correct but added 

erroneous explanations that did not seem founded in any conceptual knowledge, e.g. |x| is not 

continuous at (0, 0).  

There were various kinds of confusion in all groups, but in the first group it was only Jonas who 

lacked something about intervals in his own reasoning in the questionnaire, and this was sorted out 

in the interview. The other two groups showed more serious errors and confusion as described. The 

clarity in representation varied in the students’ responses to questions in the study and the students 

used different types of representations to argue for their hypotheses. Figure 2 show the students’ 

preferred representation styles as they described it and as they acted when answering the 

questionnaire (Q) and in the interviews (I). The category called “F theory” means students using 

formally expressed definitions and theorems. “Pictures” is a category for students using diagrams or 

other figures to explain. “Words” is a category for descriptions in words, including theoretical (but 

not formally theoretical), and informal (including intuitive) descriptions. The categories “F theory” 

and “Words” complement each other in the sense that formal representations are in the first category 

and informal representations in the second. The categories can be combined, e.g. “Theory” and 

“Words” in John’s description where he formally stated a proof of the second question using formal 

definitions of derivative and continuity and explained the definition of continuity using words and 

not formal theoretical notation. John specifically stated that he did not use pictures ever, Clara 

stated that she read the formal theoretical parts, but did not use that way to express herself and Celia 

described her learning intentions to be shallow with no focus on formal theory. The categories for 

these three students are specified according to this in Figure 2. These are only narrow timespans to 

look at the students’ mathematics representations so they may of course vary from what is reported 

here. 

 

Students  Says to prefer in interview Preferences in action 

Jonas F theory F theory I, Words Q 

Jack F theory F theory  I, Words Q 

Jim F theory  F theory I, Words Q 

John F theory, Not pictures F theory I, Q, Words I 

Felicia Pictures Pictures I, Words Q 

Fred F theory Pictures I, Q, Words Q 

Fay Pictures  Words I, Q, Pictures Q, F theory I 

Clara Reads F theory Words I, Q 

Carly Pictures  Pictures I, Words Q 

Celia Not F theory Words I, Q  

Carl Pictures  Pictures I, Q 

Figure 2: Students’ outspoken and acted preferences of representation forms in interview (I) and 

questionnaire (Q) 



There is a rather good correlation between what representations the students said they preferred and 

what they used in this study. Fred’s statements and actions were most apart as he said that he 

preferred formal theory, but showed no traces of it. Instead he used pictures and words as did Felicia 

and Fay in the same group. Only students in the second and third groups, i.e. students with names 

not starting with a J, stated that they preferred to use pictures in their reasoning. The tendency was 

also apparent in their actions. Carly, who was very visual in her explanations, preferred 

representations as pictures. Her mathematical development was not conceptually strong as her 

representations were vague and erroneous. Fay also preferred pictures, but she turned to formal 

representations when she was urged to try to conduct a proof (as afore described). Male students had 

a stronger focus on formal theory throughout, but this is a small sample so it may be a coincidence. 

All four students in the first group (names starting with J) said to prefer formal theoretical 

representations and correspondingly used formal theory. John even emphasized that he did not use 

pictures, which he also did not do in this study. No other student than these four both said to prefer 

formal representations and used formal representations in justifying claims. The four students were 

the only ones who could prove that differentiable functions are continuous (Figure 1). Three of them 

were unable to prove it in the questionnaire (or did not do it for other reasons) even though they had 

just covered the topic in the course, but managed to prove it in the interviews. One reason may be 

that many students learned the theory after the course for the oral exam since the theory was 

examined then. If so, they did not use much of the theory in problem solving or in making sense of 

mathematics during the course. 

Celia stands out from the other students in Figure 2, as she showed traces of a concept image with 

quite weak connections. She was aware of the weaknesses since it was her strategy to learn 

mathematics shallowly and she kept on learning that way on purpose. Her stated approach to 

mathematics was procedural and she had no attempt to learn anything conceptually. This was also 

very clear in her responses in the interview and the questionnaire (see Figure 1). Celia had a 

representation of |x| not being differentiable, but she did not know why. She had an intuitive sense 

of how it should be and kept that standpoint even though she had no means available in her concept 

image to justify or explain it. When she tried to explain she came to the wrong conclusion that |x| is 

not continuous at (0, 0).  

Conclusions 

The changes in students’ understandings of continuity and differentiability from the time right after 

they have learned the concepts (Q) to after the exams (I) were mainly correct adjustments. Some 

added errors occurred but the main type of changes were improvements of the concept images. It 

appears as if the students’ conceptual understanding and use of theory had matured and small 

mistakes could be clarified deductively after the course. Students with more serious 

misunderstandings or insubstantial learning strategies during the course did however not show 

evidence of understanding the concepts better after the course (e.g. Clara and Carly). Most students’ 

descriptions of what types of representations they used agreed with their actual usages in the data 

sample. A clear result is that all students in the first group claimed to prefer formal theoretical 

representations, all used them and all (and only they) were able to correctly prove the statement in 

the second question. The results of this study imply that further development of conceptual 

understanding after the learning situation may depend on students’ preferred representation style. 



Formal representations seem to be most useful for developing conceptual understanding of the 

concepts. 
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This study continues our previous research about the relationship between learning behavior and 

examination outcome in first-year engineering courses. So far, our findings have stressed the 

importance of making (continuous) effort and processing the weekly assignments (Griese, 2016; 

Griese & Kallweit, 2016), but learning behavior related to understanding was found to have little 

relevance. In this paper, we examine a consequent cohort of 458 students, and investigate the 

relationships between examination outcomes and deep learning strategies. This approach is better 

suited to assess competence rather than calculation routines, in accordance with the SEFI (Société 

Européenne pour la Formation des Ingénieurs) curriculum (Alpers, 2016). To reach this goal, 

variations of traditional exercises are planned to be gradually introduced in a mathematics lecture 

(and the appertaining assignments) for engineering first-years. 

Keywords: Engineering, mathematics, curriculum, competence, assessment. 

Introduction 

There is a general awareness of “the struggle students endure in Service Mathematics courses” (Liston 

& O’Donoghue, 2009, p. 10), and of an orientation of future engineering education towards 

competencies (http://www.teaching-learning.eu; Alpers, 2011, 2016), following analogous 

developments in secondary education. This, however, is not intended to mean less skill in the handling 

of symbols, formulae, and operations, as the deficiencies in this area are often lamented. Rather, the 

notion is to keep “higher-level learning goals” (Alpers, 2011, p. 107) in mind: thinking, reasoning 

and modeling mathematically, posing and solving mathematical problems, as well as communicating 

in, with, and about mathematics (Alpers, 2011, p. 103f.), while not neglecting the traditional skills. 

This change must necessarily involve reforms in teaching and assessment (Entwistle & Entwistle, 

1992), albeit gentle ones. Our research prepares the ground for a planned development study in this 

area. 

Theoretical background and research approach 

When introducing curricular innovations, it is advisable to investigate the initial situation as 

thoroughly as possible, so that changes can be researched adequately. This applies to the current state 

of teaching and assessment in engineering mathematics, as well as to predictors of success or failure. 

For mathematics majors, Rach (2014, p. 219) identified, among others, mathematical competence and 

school qualifications as predicting as much as 38% of academic success (in terms of passing a first-

year module in calculus), whereas other researchers (Eley & Meyer, 2004) focus on aspects of the 

learning process (e.g. “systematic and principled use of examples”, p. 449). The role of affective 

factors was investigated in depth by others (e.g. Andrà, Magnano, & Morselli, 2011; Liston & 

O’Donoghue, 2009), stressing the importance of enjoyment of mathematics, the individual’s 

mathematical self-concept, beliefs, and motivation. Personality, or more specifically, interest in 

mathematics, is also an important factor (Alcock, Attridge, Kenny, & Inglis, 2014; Liebendörfer & 

Hochmuth, 2013). When aiming at competence-oriented learning of mathematics for first year 

http://www.teaching-learning.eu/


engineering students, their specificities and level of understanding is worth investigating (Entwistle 

& Entwistle, 1992; Khiat, 2010), and should be supported not only by an appropriate choice of tasks, 

but also by innovations in both teaching and assessment, such as “small group activity, a variety of 

forms of questioning, an assessed group project” (Jaworski & Matthews, 2011, p. 178) or journal 

writing (Glogger, Schwonke, Holzäpfel, Nückles, & Renkl, 2012).  

We are interested in what learning behavior is promoted 4 for first-year engineering students, who 

are confronted less with proofs, but who have to deal with formal notations and who are expected to 

draw the connection between abstract theorems and calculation routines when aiming to succeed (see 

also Griese & Kallweit, 2016). Findings could also shed a light on how much conceptual 

understanding is required in service mathematics. We phrase our research objectives as follows:  

RQ1: How do specific teaching practices relate to student learning behavior in first-year engineering 

mathematics courses? 

RQ2: What clusters of students indicating specific learning behavior can be identified? 

RQ3: What are the relationships between student learning behavior and academic success?  

Methodology 

Questionnaire 

For our current survey we opted for items covering learning behavior under six aspects: weekly 

assignments (a1 to a8, 8 items), lectures (l1 to l5), tutorials (t1 to t4), deep learning (d1 to d8), surface 

learning (s1 to s4), and effort (e1, e2). The items were taken from Wild and Schiefele (1994), 

Himmelbauer (2009) as well as from Trautwein, Lüdtke, Schnyder, and Niggli (2006), via Rach 

(2014), and were slightly reworded to distinctly refer to mathematics. All items were rated on a 4-

point Likert scales with extreme points (1) not true and (4) true. The survey was conducted three 

weeks before the end of the first semester. So, students had had ample experience (> 12 weeks) with 

academic work, had overcome the Christmas break, and the written examinations were looming. The 

mathematics lecture for students of civil, mechanical, and environmental engineering was addressed 

in the academic year 2015/2016, as well as the more advanced one for students of electric engineering 

and IT security, yielding a total of 458 data sets, complementing the 508 from our previous study 

(Griese & Kallweit, 2016). 

Data analysis 

In order to explore the structure of the questionnaire, we employed descriptive statistics, conducted 

explorative factor analysis (principal component analysis with orthogonal, i.e. varimax rotation) and 

calculated Cronbach’s α for internal reliability. 

Then, k-means cluster analysis was employed to identify different learner types who might show 

different patterns of academic success. Here, standardization of scale scores proved helpful for the 

characterization of the clusters. The average examination scores of the clusters were calculated.  

Multiple linear regression was chosen to explore the influence of the different categories of learning 

behavior on academic success. For each participant, the items of one scale were combined by 

determining their means. These were used as predictors to calculate their influence on the outcome 

variable, academic success, represented by assessment points. Predictors were entered into or 



removed from the linear model by means of the forward, backward and stepwise methods. Constants, 

coefficients b, their standards errors, standardized coefficients β, their significance values, R² and 

ΔR² were calculated. Missing data was eliminated pairwise in all analyses. 

Results  

Sample description 

Out of the 458 students having answered our questions, 382 (83.41%) are enrolled in an engineering 

course (the rest gave no answer or were attending other courses). 74.61% of these are male, although 

the percentage varies over the different engineering courses (from only 49.35% males in civil 

engineering up to 90.23% males in machine engineering). The average age is 20.75 years (SD=3.30 

years, median = 20 years), which means that the vast majority enrolled at Ruhr University almost 

directly after leaving school. About one quarter (25.57%) have a mother tongue different from 

German. About two thirds (67.42%) gained their general qualification for university entrance at a 

grammar school (German Gymnasium), and 70.05% attended an advanced course in mathematics 

when at school. 69.02% went to the preparation course offered by our university. Considering that 

37.31% of the students state they got no more than average marks in mathematics at school, there 

may be a notable share of students facing problems with tertiary mathematics. 

The sample of 262 data sets from students of machine, civil, and environmental engineering (who 

attended the same mathematics lecture) was chosen as it fit the sample from the previous year. 192 

data sets could initially be matched via their individual codes to results from the written examination, 

and a further ten were matched by completing exactly one blank (out of the five defining a code). In 

order to avoid wrong matchings, this was only done in unambiguous cases. The resulting 202 data 

sets were then used for further explorations (meaning 60 questionnaires were eliminated for the 

purpose of research question three). 

Exploration of items and factor structure 

Some items showed prominent descriptive values. The items with the highest scores are l1 and t1 

(Ml1=3.69, SDl1=0.75, Mt1=3.58, SDt1=0.85) which cover regular attendance of lectures respectively 

tutorials. Item l4 (see below) scored lowest, followed by t3 (Mt3=1.94, SDt3=0.86, I prepare for the 

math tutorials). 

The results of the explorations of the factor structure are presented here, complementing the outcomes 

from the year before, see Table 1. In summary, in 2014/2015, the theoretically implied six factors 

were identified with only one slight renaming of effort into continuous effort, but the internal 

reliability was compromised in three of the six scales (Cronbach’s α < 0.6): surface learning, deep 

learning, and tutorials. This was acceptable only because the factors relevant for academic success, 

weekly assignments, and continuous effort, had α > 0.7. The explorations for the new data from 

2015/2016 finally resulted in the same six scales as before (with a root mean square residual of 0.07). 

The similarities between the two years are notable, and as before, the total variance explained sums 

up to 48%. 

  



Factor Items 14/15 α in 14/15 Items 15/16 α in 15/16 

Weekly assignments a1, a2, a4, a5, a6, a7, a8 0.75 a1, a2, a5, a6, a7, a8 0.74 

Continuous effort e1, e2, d4, d7, d8, t3, l5 0.72 e1, e2, d4, d7, d8, t3, l5 0.63 

Lectures l1, l2, l3 0.72 l1, l2, l3 0.48 

Surface learning s1, s2, s3, s4 0.57 s1, s2, s3, s4 0.59 

Deep learning d1, d2, d3, d5, d6 0.56 d1, d2, d3, d5, d6, a4 0.61 

Tutorials t2, t4, a3 0.53 t1, t2, t4, a3 0.61 

Table 1: Factors and their internal reliabilities, data from two years 

Item a4 (I only hand in the solutions of weekly assignments that I authored myself) has changed its 

loading from weekly assignments to deep learning, and indeed it can be understood both ways, as a 

strategy for handling the weekly assignments, and as a deep learning strategy. The factor continuous 

effort shows only an acceptable internal reliability which does not improve when items are deleted or 

added. Item l4 (During or after the mathematics lecture I ask questions if something is unclear to me) 

again showed its inadequacy and was not entered into further calculations, so this item (with 

Ml4=1.80, which is the lowest value observed, and SDl4=0.91) is not expedient. Item t1 (I regularly 

attend math tutorials), which was eliminated in 2014/2015 due to unilateral scores, now loads (in 

compliance with its conception) on tutorials, without worsening the internal reliability. The scale 

lectures has lost its cohesion due to the fact that it contains both the lowest and the highest scoring 

item (l4 and l1). The scoring may be connected to some changes in teaching style, thus addressing 

RQ1. Mostly, the internal reliabilities of the scales are within the range of acceptability or better (apart 

from lectures with α = 0.48) and allow the use of five out of the six factors for further investigations.  

Scale 

centers  

A E L S D T # Students Average assess-

ment points 

Cluster 1 0.55 0.54 0.21 -0.46 0.55 0.53 64 84.52 

Cluster 2 -0.63 -0.62 -0.25 0.52 -0.63 -0.61 56 50.84 

Table 2: Cluster analysis (k-means) for two clusters, standardized score values  

Concerning RQ2, the data fitted best into two clusters, whose average standardized scale scores are 

presented in Table 2. The students in the first cluster show superior learning behavior under all the 

six aspects represented by the factors; they even employ less surface and more deep learning 

techniques (as pointed out by the pattern of algebraic signs), which consequently correlates to a higher 

number of achievement points in the written examination. 

The scales (named with capital letters) show varying average scores, indicating the relevance students 

assign to them. Lectures (L), tutorials (T), and weekly assignments (A) score highest (ML=3.55, 

MT=3.43, MA=3.26, SDL=0.57, SDT=0.54, SDA=0.52), while deep learning (D), continuous effort 

(E), and surface learning (S) score medium (MD=2.87, ME=2.82, MS=2.31, SDD=0.48, SDE=0.43, 

SDS=0.60).  

  



Predictor b SE for b β  Sig. 

(Constant) -33.10 30.50  0.280 

Weekly assignments 17.18 5.88 0.27** 0.004 

Continuous effort -3.43 7.02 -0.04 0.626 

Lectures 5.27 5.25 0.08 0.318 

Surface learning -12.71 4.57 -0.24** 0.006 

Deep learning 2.97 6.55 0.04 0.651 

Tutorials 17.06 5.65 0.27** 0.003 

R²=.38, *** for p<0.001, ** for p<0.01, * for p<0.05 

Table 3: Regression model with six predictors and outcome variable academic success 

For answering RQ3, concerning the relationship between learning behavior and examination 

outcomes, linear modelling was employed. The correlations between the resulting six factors were 

limited to 0.45, allowing this method. The purpose of a linear model is to identify the factors 

(predictors) connected to an outcome variable (academic success, measured in achievement points in 

the written examination), as well as the direction (via the algebraic signs of b and β) and the strength 

of their influence (via the absolute value of the standardized β). In linear regression, the aim is to 

predict values of an outcome variable via a linear model of one or more predictor variables. 

Correlation between the predictor and the outcome variables is a condition for linear regression, but 

must not be interpreted as causality without further information. It can (but need not) mean causality 

in both directions (or even a common cause for both observations). Linear regression, however, has 

the advantage of distinguishing between predictors and outcome. It also provides estimates for the 

significance and the strength of the influence of each predictor on the outcome variable. 

Predictor b SE for b β  Sig. 

(Constant) -35.40 26.94  0.192 

Weekly assignments 16.54 5.61 0.26** 0.004 

Surface learning -9.81 4.35 -0.18* 0.026 

Deep learning 6.10 5.78 0.08 0.293 

Tutorials 16.65 5.12 0.27** 0.001 

R²=.38, *** for p<0.001, ** for p<0.01, * for p<0.05 

Table 4: Regression model with four predictors and outcome variable academic success  

In our case, the direction of the influence (learning behavior on examination performance) is 

unsuspicious, even though we are aware of the fact that other variables (e.g. general intelligence, 

education before university) influence performance, too. As a first step, all six factors were entered 

into a linear model, resulting in the parameters presented in Table 3, showing the importance of 

weekly assignments, tutorials, and of avoiding of surface learning techniques. 



The forward, backward, and stepwise methods for entering predictors into the model, respectively 

removing them, were employed, resulting in the four-predictor model shown in Table 4, which 

additionally comprises deep learning strategies (which, though not significant, increases the R² 

considerably from 25%), and explains 33% of the variance of academic success. The algebraic signs 

of the (significant) β values indicate the direction of the supposed impact of the predictors on the 

outcome variable: The more students engage in working on their weekly assignments, the more they 

actively partake in the tutorials, and the less they employ surface learning behavior, the more 

successful they are in the written examination. 

Summary and discussion 

The highest average scale scores were found for lectures and tutorials, thus pointing out their central 

role in university teaching (in spite of new digital tools for distance learning). Again, the item on 

asking questions during or after lectures scores consistently lowest and loads unsystematically. 

Obviously, hardly any students dare to ask questions in the huge lecture hall comprising more than 

800 seats. This item need not be used again in comparable courses. There is no scale with a mean 

score below 2.3 (all average scale scores are medium or high), which can be understood as an 

indication for the fact that our questionnaire covers only the learning behavior students report to 

engage in regularly; it may also be understood as a weakness of the questionnaire, as learning 

behavior not engaged in might also provide interesting revelations.  

Some parameters of the new sample indicate a more competent cohort (e.g. the smaller share of 

students with a weaker educational background), although other findings show hardly any difference 

(e.g. gender, mother tongue ≠ German). The high scores for the items from the lectures scale are 

striking, it now has a distinctly higher average score (ML=3.55 in 2015/2016; ML=2.35 in 2014/2015) 

and has gained the top position, hinting that the students from this cohort attended the lectures more 

often and engaged in preparations or follow-up work more regularly. One reason for this may be a 

very different teaching approach in 2015/2016, which (among other features) involved the upload of 

script with gaps before lectures, as contrasted to uploads of complete scripts after lectures in 

2014/2015. This distinct difference impacts on learning behavior and addresses RQ1. 

Regarding RQ2, in the cluster analysis, two opposing groups of almost equal size emerge: one 

showing sensible, continuous, and diligent learning behavior (and consequently attaining more 

assessment points); the other is characterized by superficial and irregular learning or procrastination 

(and less points). It is remarkable, though, that their standardized scores for lectures are more similar 

than the scores from the other scales, which (apart from the fact that it reveals the weakness of this 

scale) allows the interpretation that the engagement in lectures is a less distinctive feature than other 

learning behavior. Considering how irregular the items from this scale score over the years, and the 

personality factors involved, this scale will probably stay problematic in future.  

Concerning RQ3, the linear modeling stresses the relevance of working with the weekly assignments 

(as in the previous year) and attending tutorials. Again, lectures play no quantitatively relevant role, 

despite the high average score assigned to them now; but for reasons pointed out above this scale 

must be interpreted with care. The fact that surface learning techniques have a significant (and 

negative) impact in the final model is remarkable in view of the task types engineering students face 

in their first year. This may be hinting at an already changed assessment focus, but that would have 



to be supported by a detailed and comparative analysis of the tasks from several years. Deep learning 

techniques were kept in the model as a complement and because they increase the explained total 

variance, although it can be argued that their contribution is weak and not significant. In contrast to 

other findings, (continuous) effort now does not contribute relevantly to explaining academic success, 

which is another indication of a change in assessment. On the whole, the more recent model paints a 

clearer picture of what is relevant or not in order to succeed in the examination than in the year before, 

when multiple choice tasks were involved. 

Outlook on further research perspectives  

The results form the basis for further research in which the tasks from the weekly assignments and 

the exercises in the written examination are examined more closely with the goal to gradually change 

them towards more competence-orientation, according to the suggestions by Alpers (2016). This 

would involve, for example, finding, describing, and correcting different types of mistakes in the 

calculation of an inverse matrix, instead of doing the calculation itself. The results gained from the 

explorations presented in this and a previous paper (Griese & Kallweit, 2016) will then supply the 

background against which the expected changes can be compared. 
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Arguments have been made that one purpose of learning mathematics successfully is for students to 

develop mathematical identities. Thus, since students are frequently evaluated with grades in 

university mathematics courses, a relevant question is how mathematical identities are associated 

with average grades. This study has measured engineering students’ mathematical identities and 

compared these measures with grades in university mathematics courses, and a Welch’s ANOVA 

conclude that the mean average grade amongst students with high mathematical identities is 

significant, and about one grade higher than students with low mathematical identities. Moreover, 

the variance is greater amongst students with low mathematical identities, which indicates a strong 

association between mathematical identity and average grade only when mathematical identities are 

high.  

Keywords: Mathematical identity, Rasch, ANOVA. 

Introduction 

The transfer of mathematical knowledge from university to the world of work seems problematic. 

Specifically, evidence has been provided that “attainment” in university mathematics courses is 

poorly transferred. One example is an experiment that illustrated how 17 students and researchers all 

failed a mathematics examination they had previously passed, even the students who had recently 

passed the original exam with an “A” (Rystad, 1993). Moreover, selected studies illustrate how the 

mathematics is often hidden in “black-boxes” (e.g. Williams & Wake, 2007) in the world of work, 

and consequently, arguments have been made that the world of work seeks more general 

mathematical characteristics than what is typically assessed in standard exams (e.g. Hoyles, Wolf, 

Molyneux-Hodgson, & Kent, 2002). On a general note of education, Wenger (1998) argued that 

learning is about developing identities in communities of practice. In general, over the last decades, 

there has been an increased attention towards the construct of identity, and mathematical identity in 

particular (e.g. Axelsson, 2009; Black et al., 2010; Wenger, 1998). Thus, if the world of work seeks 

general characteristics of working mathematically, a relevant question is how mathematical 

attainment in university mathematics courses, as represented by average grades, is associated with 

mathematical identity. This paper addresses this question.  

This study has examined the association between self-reported mathematical identities and average 

grades in university mathematics courses. From a Rasch calibrated instrument, previously validated 

in Kaspersen (2015), the students were categorised as having a “low,” “medium,” or “high” 

mathematical identity, and the paper will illustrate how the mean average grade of students with high 

mathematical identities was significant and about one grade higher than students with low 

mathematical identities. Moreover, the variance amongst students with low mathematical identities 

was higher than amongst students with high mathematical identities, although the difference was not 
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significant (p=0.06). The paper concludes that high mathematical identities are associated with high 

average grades in university mathematics courses. However, the same conclusion is not true amongst 

students with lower mathematical identities.  

Theoretical framework 

The construct of identity suffers from a lack of consensus on general philosophical issues (Cote & 

Levine, 2014). Specifically, identity is defined differently across different studies and paradigms, 

such as “a certain kind of person” (Gee, 2000, p. 99), “those narratives about individuals that are 

reifying, endorsable and significant” (Sfard & Prusak, 2005, p. 44), and “self-perceived mathematical 

knowledge, ability, motivation and anxiety” (Axelsson, 2009, p. 387).  

This lack of consensus is typical in pre-paradigmatic fields (Kuhn, 1970). Unlike firm paradigmatic 

fields where well-established theories tend to guide the analyses, research in pre-paradigmatic areas 

has a more dialectical relationship between data and theory (Kuhn, 1977). This description is a fair 

representation of how the theoretical perception in this study was chosen. That is, no ready-made 

theory was chosen on pure faith. Rather, a definition of identity was established that was consistent 

with measurement (i.e., consistent to conclude some persons to have stronger mathematical identities 

than others), yet, influences by fragments of multiple existing theories. The following theoretical 

perspective and a wider discussion on practical significance has been provided in more detail in 

Kaspersen, Pepin, and Sikko (2017).  

On another note, we do not regard theories as mirrors of some true reality. Thus, we do not believe 

that some theories are true, and that others are false. When we propose the following theoretical 

perspective, therefore, we are not refusing other perspectives, for instance, a narrative view on 

identity. Rather, we claim that if we choose the following perspective, then the practical consequence 

is that mathematical identity can be measured.  

The perspective of mathematical identity relies on two assumptions. First, we assume that identity 

(originated from the Latin idem) is about sameness and distinction. As such, the position in this study 

juxtaposes perspectives that consider persons to have their unique identity. That is, persons are indeed 

unique. However, they can be defined as identical with respect to a set of characteristics, just like 

mathematical objects can be identified by certain characteristics while remaining unique on others. 

Moreover, since there exists an infinite number of characteristics, identities have a varying degree of 

complexity. That is, mathematical identity can be binary, linear, or multidimensional, and we argue 

that there is no ontological limit to the number of dimensions. Consequently, there exists no set of 

criteria that dictates when researchers have arrived at the final dimension. Hence, the choice of 

complexity can be nothing but pragmatic, and in this study, we have chosen a one-dimensional 

perspective on mathematical identity, whereby persons are distinguished on a continuum from having 

a low to having a high mathematical identity within the engineering education context.  

Furthermore, if we accept that persons participate and contribute in multiple activities, a consequence 

is that each person has multiple identities, a position that is shared by many authors, for example 

Black and colleagues (2010) who, inspired by Leont'ev (1981), presented the idea of “leading 

identity.” Since there is no limit to how many ways persons can be distinguished, we argue that there 

exists no limit to the number of identities, although the number of identities that individuals are 

consciously aware of is likely to be finite. Moreover, in this study, we take no definite position on the 



relationship between identities. Thus, when we later will conclude that selected persons have (more 

or less) the same mathematical identity, we do not make claims about how these are related to the 

multiplicity of identities–for instance, whether they are central/leading or peripheral identities.  

Second, we assume that identity is relational by nature. That is, persons can be concluded to be 

identical relative to a set of characteristics, only if the structure of these characteristics is person-

independent. Thus, in quantitative studies, we reject the assumption that persons with the same score 

on some test or questionnaire are identical unless statistical evidence is provided that the items stay 

invariant across relevant subgroups. Hence, there likely exist contexts that are so different that 

comparisons of identities across these contexts do not make sense. Consequently, we argue that the 

methods that are applied to capture identities should also capture the level of invariance. 

In conclusion, we define mathematical identity to be where persons position themselves relative to 

the social structure of being mathematical within the activity in which they participate and contribute. 

From a one-dimensional perspective, “the social structure of being mathematical” is a person-

independent set of characteristics and their internal structure (i.e., their relative distance) that 

distinguishes persons on a continuum from having a “low” to having a “high” mathematical identity. 

“Where persons position themselves” is persons’ positions relative to the social structure.  

Method 

To test the relationship between engineering students’ self-reported mathematical identities and 

average grade in mathematics courses, a convenience sample consisting of Norwegian engineering 

students (N=361) was selected. 47 students attended an “Introductory course in mathematics,” 71 

students attended a “Calculus 2” course, 113 attended a “Calculus 3” course, 11 a “Cryptography” 

course, and 119 were students from a variety of courses in their normalised final year of education. 

The participants responded to a Rasch-calibrated instrument (Rasch, 1960), previously validated in 

Kaspersen (2015), that measures persons on a continuum from having a low to having a high 

mathematical identity relative to 20 uni-dimensional characteristics. The items in the instrument were 

collected from three sources: the literature, other related instruments, and from persons contributing 

in mathematical activities (e.g., students and lecturers). The validation of the instrument will not be 

discussed in depth, as details can be found in Kaspersen (2015). The person reliability, analogous to 

Cronbach’s alpha, was 0.87. Moreover, from principal component analysis of residuals, the 

instrument was found to be sufficiently uni-dimensional for the purpose of measurement with a 1.99 

unexplained variance (in Eigenvalue units) in a second contrast. Furthermore, the mean of the squared 

standardised residuals (outfit mnsq) and the information-weighted version (infit mnsq) (see e.g., Bond 

& Fox, 2003, p. 238 for a detailed description) indicated a sufficient data-model fit, with Item 6 and 

Item 15 as the most underfitting items (Table 1).  

Rasch measurement requires additivity, uni-dimensionality, and invariance, and the probability of an 

observation is a function of the difference between a person’s measure and a characteristic's measure 

(e.g. Wright & Stone, 1979). Thus, most response strings follow a Guttman-like structure with most 

deviations around the measure of the person. Consequently, persons with approximately the same 

measures, except those with large misfit, have, not only the same measures but also approximately 

the same combination of self-reported characteristics (and thus concluded to be identical with respect 

to these characteristics).  



After the validation of the instrument, the respondents were categorised as having either low 

(measures lower than -1), medium (measures between -1 and 1), or high (measures above +1) 

mathematical identities (all measures are in logit units). The distance from the “low”/”medium” to 

the “medium”/”high” thresholds was about the same distance as one response category. 

Consequently, persons with “high” mathematical identities were expected to respond at least one 

category higher on each characteristic than persons with “low” mathematical identities. Subsequently, 

a one-way ANOVA was conducted to compare the association between mathematical identity and 

the self-reported average grade in mathematics courses at the University (from grade F=1 to grade 

A=15). However, since the Levene’s (1960) test barely accepted the null hypothesis of homogeneity 

of variances (p=0.06), and the sample sizes across categories were unequal, the Welch’s ANOVA 

was chosen since it is more robust to unequal sample size and variance.  

Moreover, the assumption of normality was violated, and the grades were ordinal as opposed to 

interval measures. Since Welch’s ANOVA assumes normal and interval measures, 10,000 

simulations were made in R (R Core Team, 2015) to assess how these violations affected the 

robustness of the analysis. To ease this part of the analysis, we considered a transformed data set 

which had no difference in the mean across groups but was otherwise identical to ours–the 

assumptions of Welch’s ANOVA were violated equally in the empirical study and the simulated 

studies. This transformation eased the interpretation since we could compare the results with the 

statistical ideal situation (perfectly normal interval data, equal sample size and variance). If our data 

set was as good as the ideal situation, we would expect the Welch’s ANOVA to show a significant 

difference in about 5% of the simulations.  

Specifically, from the empirical data frame, M, a new data frame, M', was made whereby each grade 

in the medium and high groups was shifted so that the mean of all three categories in M' were equal 

(i.e., keeping the sample sizes and distributions, but aligning the means). From M', 10,000 data 

frames, M1 – M10,000, were randomly sampled whereby the sample sizes in the three groups were 

equal to the original M. Subsequently, Welch’s ANOVA was conducted on each simulated data 

frame. Since the result showed that 5.2% of the p-values in the simulations were less than .050, it was 

concluded to ignore violations of Welch’s ANOVA’s assumptions since they had only a trivial 

negative effect on the robustness.  

Result 

Mathematical identities 

Due to the Guttman-like response strings, a rough interpretation of Table 1 is that most students with 

low mathematical identities (measures lower than -1) agreed with characteristics much lower than -

1, and disagreed with those much higher than -1. That is, students with low mathematical identities 

often keep trying when they get stuck, but they rarely study proofs until they make sense (to them), 

they rarely like to discuss mathematics, they rarely derive formulas, etc. Likewise, students with 

medium mathematical identities (measures between -1 and 1) frequently keep trying, connect new 

and existing knowledge, and can explain why their solutions are correct, but rarely take the initiative 

to learn more than expected, rarely take the time to find better methods, etc. Students with high 

mathematical identities (measures above +1) agree with most characteristics in the instrument. A 

more thorough discussion is discussed in Kaspersen, Pepin, and Sikko (2017). 



Item statistics: Measure order 

Measure INFIT MNSQ OTFIT MNSQ            Item 

 1.91  .81  .83 1. Takes time to find better methods 

 1.58 1.08  .99 2. Takes the initiative to learn more 

 1.24  .91  .86 3. Thinks of times when methods don’t work 

  .55 1.22 1.20 4. Struggles with putting problems aside 

  .51 1.05 1.07 5. Derives formulas 

  .45 1.36 1.37 6. (x) Likes to be told exactly what to do 

  .41  .96  .95 7. New ideas lead to trains of thoughts 

  .32 1.05 1.05 8. Likes to discuss math 

  .20 1.07 1.07 9. Makes his/her own problems 

  .05  .99  .99 10. Studies proofs until they make sense 

  .04  .86  .88 11. Moves back and forth between strategies 

 –.10  .87  .86 12. Tries to understand formulas/algorithms  

 –.20  .72  .74 13. Considers different possible solutions 

 –.26  1.03 1.05 14. Pauses and reflects 

 –.38  1.32 1.31 15. Finding out why methods do not work 

 –.47   .86  .86 16. Wants to learn more things 

 –.77  1.20 1.20 17. Visualises problems 

  –1.19  .71  .76 18. Can explain why solutions are correct 

  –1.83  .83  .88 19. Connects new and existing knowledge 

  –2.05  1.02 1.06 20. Keeps trying 

Note. Item 6 was negatively coded 

Items in their entirety in https://www.researchgate.net/publication/309740755_math_identity_questionnaire 

Table 1: Characteristics of mathematical identities amongst Norwegian Engineering students 

Moreover, it is evident from Table 1 how the identities in this study were situated amongst the 

engineering student context. That is, persons with measures, say, around 0.5 in other contexts would 

be identical to engineering students with the same measures, only if the same set of characteristics 

were proven to be invariant (i.e., calibrated to have the same structure) in both contexts. 

The relationship between self-reported mathematical identities and average grade 

Figure 1 illustrates the relationship between self-reported mathematical identity and average grade in 

university mathematics courses. The Welch’s ANOVA showed that the association between 

mathematical identity and self-reported average grade was significant, F(2, 110.79)=31.966, p=0.000. 

Moreover, the mean of the self-reported average grade amongst students with high mathematical 

identities was about one grade higher than those with low mathematical identities. The Games-Howell 

test showed that the difference was significant between all groups with low-medium as the least 

significant (p=0.001).  

https://www.researchgate.net/publication/309740755_math_identity_questionnaire


 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The relationship between self-reported mathematical identity and average grade in 

university mathematics courses 

The unequal variance is also illustrated in Figure 1. Specifically, the variances decreased with the 

increase of mathematical identity. That is, high mathematical identities are associated with high self-

reported average grade. However, there seems to be no limit to how low mathematical identities 

students can have and still get high grades.  

Conclusion and discussion 

In this paper, we have argued that the average grade in university mathematics courses amongst 

students with high mathematical identities is about one grade higher than amongst students with low 

mathematical identities, and the difference is significant. Moreover, we have shown that the variance 

of self-reported average grades amongst students with low mathematical identities is higher than 

amongst students with high mathematical identities. That is, students with high identities get, for the 

most, high grades. However, the grades of students with lower identities are more uncertain.  

We have in this study examined the association, and not the causal relationship, between self-reported 

mathematical identities and average grades, and therefore we argue that the significance of the result 

is that it points the direction for future research. Specifically, we suggest future research to address 

the following: 

First, replicates of this study should seek more precise measures. That is, the precisions of the 

mathematical identity measures can be improved by including more response categories (as long as 

they are sufficiently validated) and more items, particularly near the “gaps” (e.g., between 0.5 and 

1.2 logits). Moreover, the precision of the average grade would most likely be improved if self-

reported average grades were substituted with actual average grades.  

Second, future research should seek a more causal relationship between identities and grades. 

Specifically, this study does not conclude that an increase in mathematical identity infers an increase 

in attainment.  



Third, future research could study the significance of mathematical identity versus the significance 

of attainment. For instance, students can be categorised as having “low identities and low grades,” 

“low identities and high grades,” or “high identities and high grades,” and subsequently studied with 

respect to other variables, for example, in the transition from university to the world of work.  

Fourth, we argue that future research can transfer the design of this study to other samples and forms 

of testing students’ attainment. For example, relationships between mathematical identity and 

measures on international standardised tests, such as PISA and TIMSS, can be tested. Accordingly, 

we argue that future research can nuance the debate on the significance of these tests. If some 

districts/countries are “teaching to the test,” then one might hypothesise that a relatively great 

proportion of students in these districts/countries are in the “top left corner”–that is, students with 

low mathematical identities, yet, high measures of attainment.  
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In our previous work on Calculus–Analysis transition we independently explored the reasons of 

students’ difficulties with studying analysis and observed that the problem is related to the 

discontinuity of students’ experiences leading to their inability to interpret the (formal and more 

rigorous) ideas learned in analysis courses in terms of (practical) knowledge acquired in calculus 

courses, and vice versa. In this paper we continue and combine our work with two new 

contributions: a theoretical formulation of Klein’s idea of a “Plan B” for teaching mathematics, 

applied to the transition in question; and a concrete student activity attempting to give flesh to this 

“plan” for the special case of introductory Fourier Analysis.  

Keywords: Calculus, Fourier analysis, transition, praxeology  

Introduction  

Calculus and Analysis appear as related, but distinct subdisciplines in many contemporary 

university programmes. Calculus courses specialise in mathematical themes indicated by course 

titles such as “Integral Calculus”, “Functions of several variables” or “Ordinary differential 

equations”. Analysis courses, on the other hand, treat theoretical perspectives on these same 

mathematical themes, gradually moving from course titles such as “Real Analysis”, “Fourier 

Analysis” towards more abstract areas such as functional and harmonic analysis. In short, calculus 

courses can be roughly characterized as teaching students certain calculation practices related to real 

and vector valued functions, with little theoretical precision or justification – while analysis courses 

tend to present “formal theory with little practice”. This division is a didactical construct which is 

related to historical and institutional conditions (see Klisinska, 2009, for an in-depth analysis of the 

case of the “fundamental theorem of calculus”).  

The main reason for the division seems to be that the two types of courses cater to different student 

populations. While calculus courses are studied by a large cohort of students in natural and social 

sciences, much fewer students get to study analysis (mainly students of pure mathematics, 

theoretical physics and mathematical statistics). For these and other reasons, it may be difficult to 

change the course structure. 

The transition from Calculus to Analysis presents mathematics students with several challenges (for 

examples, see Winsløw & Grønbæk, 2014). Here is a typical student formulation of some of these 

(interview with a student of the first author, summer 2016): 

In calculus courses we learn methods, but usually the why questions are not explained or proved. 

(...) However, analysis courses felt as separate. They were more theoretical than applied. I never 

grasped them as well as Calculus. It was often unclear, what it was leading to. I wish we had a 

better sense of connection between the theory we covered in pure math courses and the methods 

shown in applied math courses.  



We have explored this perceived lack of “connection” in earlier papers (Kondratieva, 2011, 2015; 

Winsløw, 2007, 2016). In the present paper, we use the notion of praxeology (Chevallard, 2006) to 

represent the general “connection” problem in more precise terms, and - as a theoretical case study - 

to present a new proposal for “connecting” Calculus and one of the basic theorems in Fourier 

Analysis. Our research results are thus basically theoretical. 

Theoretical framework  

Chevallard (2006) defines a praxeology as a pair ),( LP  consisting of a praxis block P and a logos 

block L. A praxeology is a minimal element of human knowledge, P representing the practical part - 

the “know how” - and L the intellectual part, the “thinking and explaining” – often called “know 

why”. The two are interdependent: 

…no human action can exist without being, at least partially, “explained”, made “intelligible”, 

“justified”, “accounted for”, in whatever style of “reasoning” such an explanation or justification 

may be cast. Praxis thus entails logos, which in turn backs up praxis. For praxis needs support – 

just because, in the long run, no human doing goes unquestioned. (Chevallard, 2006, p. 23). 

As we focus here on mathematical praxeologies taught and learnt at university, it is obvious that 

praxis (e.g. computing the Fourier series of a given function) is intimately connected to various 

forms of logos - from ad hoc explanations of standard techniques to theories involving general 

definitions, theorems and proofs. To compare and contrast the praxeologies developed in calculus 

and analysis courses, we consider that they represent various affinities with the praxeologies of 

present-day mathematicians, which we shall represent suggestively using Greek letters ),(  . We 

can thus, as a first naïve model, propose that praxeologies taught and learnt in calculus courses are 

of the form ),(
ii
L : the praxis blocks, including computational techniques, are identical to those 

used (for tasks of the same type) by professional mathematicians, while the logos blocks iL  are 

limited to informal explanations of smaller collection of practice blocks (like the various techniques 

for determining whether a series is convergent or not). On the other hand, analysis courses then 

focus on the scientific form of logos blocks. The taught and learnt praxeologies in such courses are 

therefore of the form ),( iiP   where each i constitutes a logos block consistent with the scientific 

model, while the praxis blocks iP  are didactic “afterthoughts” constructed to consolidate the 

acquisition of i . As mentioned in the introduction – such teaching practices often fail to motivate 

students for i  and to provide them with a coherent, autonomous relationship with ),( ii  . Our 

research focuses on how this issue can be addressed. 

Taken together, calculus and analysis courses in principle provide students with praxeologies 

),( ii  which, taken individually, are close to the scientific model. For instance, convergence tests 

used in Calculus praxis on series are now supplied with a theory involving precise definitions and 

proofs of the “criteria” for convergence. However, because the number and technical complexity of 

these praxeologies is quite high and the i  were taught in other courses, typically years before, 

some effort and support may still be needed for students to “assemble” individual praxeologies 

),( ii  . We can say that working along these lines corresponds to establishing complete but 

separate praxeologies within different small areas of mathematics, which is what Klein called “Plan 

A” for teaching: “Plan A is based upon more particularistic conception of science which divides the 



total field into a series of mutually separated parts and attempts to develop each part by itself.”  

(Klein 1908/1932, p. 77, see also Winsløw, 2016) Within this approach two praxeologies are related 

only through strict logical dependency at the theoretical level and only within strictly confined areas 

(which, in terms of what students actually acquire, may be surprisingly small).  

However as explained by Klein, the scientific practice (historically as well as currently) involves 

more than isolated or strictly dependent praxeologies. Klein (1908/1932, p. 78) recommended that 

also elements of “Plan B” be included in mathematics teaching both in schools and at university: 

The supporter of Plan B lays the chief stress upon the organic combination of the partial fields, 

and upon the stimulation which these exert one upon another. He prefers, therefore, the methods 

which open for him an understanding of several fields under a uniform point of view. 

In terms of the praxeological model above, we may thus summarize the two “plans” or strategies for 

developing and connecting students’ previous knowledge as follows: 

Plan A. assemble elementary praxeologies ),( ii  from calculus and analysis elements, by 

establishing firm relations of type ii  . In fact, this is sometimes a possible function of the 

“fingertip” exercises, which constitute iP  in many courses and textbooks on analysis. 

Plan B. develop cross-cutting relationships among praxeologies which could be of one of the 

following types (or combinations among them):  

B1.  Relating praxis blocks ( ji  ) or logos blocks ( ji  )  

B2.  Relating otherwise unrelated praxis and logos blocks ( ji  ) 

It may be more easy and common to develop relations of type B1, even if they certainly appear more 

often in “mathematician” praxeologies than in typical course teaching. We now present and analyse 

an example of student activity aiming at developing relations of the last type (B2): namely, that 

students connect a collection of praxis blocks i  (concerning trigonometry, integration and 

convergence) to a logos block ( L0
) from Fourier Analysis. 

A logos block from Fourier Analysis  

For a 2-periodic, piecewise continuous function f : ℝ → ℂ, the Fourier series of f is defined as  
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In general the two infinite series may not converge at a point x. In 1829, Dirichlet gave one of the 

first sufficient conditions for pointwise convergence of a Fourier series. A version of this result 

which is usually formulated for piecewise continuous functions, is stated below in a special case to 

avoid technicalities. We refer to it as Dirichlet’s theorem, although we don’t use his original claim. 

Theorem If f : ℝ → ℂ is a continuous 2-periodic function with piecewise continuous derivative, 

the Fourier series of f is pointwise convergent to )(xf  at every x ℝ. 

Here we outline the main steps of the proof that appears in a typical formal course on Fourier 

Analysis (see e.g. Folland, 1992, pp. 30–36 for the wealth of computational details omitted here): 



1. First, it is shown that under weaker assumptions, such as f being square integrable and 2-

periodic, the coefficients na  and nb  tend to zero as n tends to infinity. (In fact, one 

demonstrates this by showing that the series 2

na  and  2

nb  are both convergent.) 

2. Next, by direct computation, we rewrite the Nth partial sum given by 
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3. Finally, let DN (x) = sN (x)- f (x). Using 2., a straightforward set of computations yields 

(*)   DN (x) = 1
p gx (y)sin(y / 2)cosNydy
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p

ò + 1
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 . In fact, gx (y)  

is a continuous for y ¹ 0 and 2-periodic function. At y = 0 gx (y)  may have a jump 

discontinuity if f '(x+0) ¹ f '(x-0). The functions gx(y)sin(y / 2)  and gx(y)cos(y / 2), 

notwithstanding the possible discontinuity of the latter at y = 0, are bounded, and thus, 

square integrable. Formula (*) shows that DN (x)  is simply the sum of Nth Fourier 

coefficients of these two functions. Applying now 1., we conclude that the infinite Fourier 

series s¥(x)  converges to f (x)  because its partial sum sN (x) can be written as 

sN (x) = f (x)+DN (x), where DN (x)vanishes as N®¥. 

The key point of the proof is (*): to rewrite DN (x)  as a sum of two Fourier coefficients, together 

with the fact that the coefficients tend to zero as N®¥. According to the distinction we made 

above, the general result (and certainly its proof) does not belong to the realm of Calculus. When 

students are presented with the theory in a somewhat more general form, - they may not realize that 

the proof almost entirely draws on the notion of series convergence and on techniques known from 

Calculus. To make them discover that is the aim of the design that we present in the next section, 

focusing on the following special case: 

Example. Applying the above Theorem for 2)( xxf  , extended periodically from   ,  to ℝ, we 

get that the Fourier series converges to 0 at 0x . Computing the Fourier coefficients, this gives 

 0 = 
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The latter - striking - result can be derived by other means, as a variant of the famous Basel problem 

(see e.g. Kondratieva, 2016). One such approach is at the root of the design presented below. 

Outline and a priori analysis of Student Activity  

In continuation of earlier work of the first author (Kondratieva, 2016), we took the Example above 

as a point of departure for constructing a sequence of exercise-like activities that would lead 



students through two approaches to computing the infinite sum considered in the Example: part 1 

consisting of a series of “calculus-like assignments” which, without saying so, go through the proof 

of Dirichlet’s theorem in the special case where 2)( xxf  ; part 2 in which the students work 

directly with the result, as in the Example; and a final reflection in which the students are supposed 

to realize that the proof (known from a Fourier Analysis logos block L0
) amounts to nothing more 

than a generalization of the sequence of calculus techniques drawn upon in part 1. We notice here 

that the numbering suggests that the praxis and logos blocks thus connected through the activity are 

not, prima facie, connected - and, thus, the connection established is really of type B. 

Part 1 begins with presenting the problem of determining the value of   21 /)1( nS n . The 

praxis blocks acquired in calculus courses do not provide ready-made techniques to solve this 

problem; instead, students are invited to do so through “several preliminary problems”: 

1. Compute the integral 
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 for any natural number m   ( :1  integration rules).  

2. Show that 
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4. Find u  and show this function is bounded on  2/,0    

   ( 3 , and :4  differentiation from first principles). 

5. Show 
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6. Show that the integral in 5 converges to 0 as m  (
1  and )3 . 

7. Finally, combine the results above to find S (
1 ). 

The only slightly advanced praxis (technique) involved in the above appears in 6., where 
1  is 

supposed to include something like   ff  – or, alternatively, 3  should include a rule which 

permits to conclude that 0 I
m

m
flim  under appropriate conditions on )( mf . 

Part 2 of the activity invites the students to compute the Fourier series of 2)( xxf   and engage in 

some concrete computations related to its convergence which are in fact very similar to 1.-6. above.  

The final reflection is supposed to make them discover the close parallel between the two parts. 

In case they do recall elements of the proof of Dirichlet’s theorem, they will recognize in Problem  

2. the simplification technique of the Dirichlet’s kernel in step 2., and in Problems 3.-6. – a way to 

get the convergence result of step 3. Meanwhile, step 1 appears more indirectly in the concrete case, 

where both the Fourier coefficients of f and the auxiliary coefficients, appearing in (*), can be 

computed or estimated directly. Indeed, many textbooks present Step 1 as a corollary of a more 



general theorem on orthogonal sets in Hilbert space. This, together with the technicalities related to 

the possible non-continuity of f, contributes to the impression that the proof is way beyond simple 

techniques from Calculus. Nevertheless, comparing the proof with the proposed activity, the 

students could realize that in the special case f (x) = x2the proof relies entirely on well-known 

praxis blocks ( i , i = 1,2,3,4). Certainly, this could establish a strong relation L0 « ( i , i = 1–4) 

which might in fact be prepared by students’ working Part 1 above prior to encountering L0
. 

Some experimental observations  

To pilot and refine the above design before testing it with a larger group of students in a course on 

Fourier Analysis, we have done a preliminary study with five students who have completed at least 

3 years of undergraduate mathematics program. These students were involved in summer research 

projects in mathematics at the Memorial University of Newfoundland. This involvement is an 

indicator of the students’ high motivation and achievements in studying mathematics. The students 

volunteered to solve the problems from the activity (with no firm restrictions in time or access to 

any materials) and participate in a follow-up semi-structured interview. The students were asked 

whether they found the problems (a) familiar, (b) interesting, (c) easy/accessible; and whether they 

saw any connections between praxis and logos of parts 1 and 2. All students regarded problems 1-6 

as familiar from their calculus courses, and they found them easy. In words of one student, “I loved 

that stuff when I was in my calculus courses, so I found these problems pleasant… And they are not 

difficult, too.” While problems 1-6 were familiar to the students, they clearly indicated that no 

projects of nature similar to problem 7 were present in their study: “I think it is a cool layout. 

Nothing of this format was in my calculus courses, – when you need to use previous results to solve 

larger or more interesting problem.” Students regarded the task of series evaluation as challenging 

but also most enjoyable: “The problems 1-6 were like baby steps… And they met together nicely in 

problem 7”. So, at least these students were successful and appreciative of tasks in part 1. As for the 

accessibility of part 1 for an average student in a calculus course, we had overall a confirmative 

response: “I think it is accessible for a student who has done Integral Calculus.... if they are not 

confined to a very short period of time, then yes.” Another student confirmed, “it could be a good 

exam sequence, more fun than just doing problems.” However, a different perspective was also 

articulated: “…many students take this [Integral Calculus] course because it is a prerequisite for 

their programs, so maybe they would not be interested as much.” 

Among the five students only one had studied Fourier series in his courses, while others had heard 

the term but had very little familiarity with the subject. However, they all recognized the similarity 

in the technical praxis of parts 1 and 2, for example, that calculation of the Fourier series in part 2 

resembles evaluation of integrals in problem 1 from part 1. Bridging the theory and connecting the 

idea of convergence of an individual series in part 1 and pointwise convergence of Fourier series 

was more challenging. This is where the role of an instructor might be critical: to help students to 

relate new theoretical constructs and ideas to familiar praxis.  We realize that students’ background 

makes a difference, however even learners previously unfamiliar with Fourier series seem to benefit 

from this activity. Students’ responses based not on reproduction of known facts, but rather on 

reasoning related to their practical experiences, is an indication of establishing new mathematical 

relations. The following is an excerpt from an interview with students of the first author:  



M.K.: Is it always possible to replace a function with its Fourier series in calculations? 

Student 1: In my (applied) courses we were told that no (a function is not always equal to its 

Fourier series), but this was never proved. Now it kind of makes more sense. 

M.K.: Do you think that familiarity with part 1 would help to exemplify general theory 

related to Fourier series and their convergence? 

Student 1: Yes, definitely. I think it is more logical to go this way about discussing 

conditions of pointwise convergence of Fourier series. However, the experiences 

need to be close together in time, so that the second part occurs before students 

have forgotten the first portion.  

The space available does not allow us to give the details of students’ accomplishments and their 

impact on our design. We simply note that the sample students were by and large able to complete 

them and see the inner connections. Also, the students considered that building on the familiar 

computational tasks (1-6) on the one hand, and on new theoretical constructs (Example) on the other 

hand, organized around given problem (evaluation of the series S) was stimulating: “Suppose 

someone has a theoretical solution and I have a computational solution and they look completely 

different, but they give the same answer to the same problem so they have to be the same 

somehow… then I want to go back and find out why they are the same. I found it very interesting.”  

Conclusions  

While calculus courses include praxis blocks i  compatible with those of professional 

mathematicians, their theoretical components are more informal and focused on algebraic 

computation. Moreover, these praxis blocks are often isolated from each other, as they occur within 

separate sections of textbooks and courses, and students typically don’t get opportunities to apply 

them in combinations. When students meet Dirichlet’s theorem, they are given a general and 

relatively complicated proof (in Analysis). In such courses, “simple applications” (such as the 

Example above) may be introduced as examples or exercises, to build an artificial practice block 0P  

corresponding to the much richer logos block L0
. The fact that the general proof ( L0

) is essentially 

linked to familiar praxis blocks from Calculus will then not appear. We propose that by replacing 0P  

by a sequence of computational auxiliary tasks (1-7), similar to the steps 2 and 3 of the proof ( L0
), 

two goals can be achieved. First, students will see how different praxis blocks ),...,( 41   from 

Calculus work together and combine to support 0P  by themselves. Secondly, this special case might 

help to prepare for the various general theorems on Fourier series convergence ( L0
and beyond) by 

relating it to the concrete and familiar elements P1,...,P4
. This hypothesis will be investigated 

empirically. More generally, we hypothesize that situations which enable students to establish 

“cross cutting relations” ji   are precise and possibly partial interpretations of Klein’s Plan B. 

At the same time, constructing integrated praxis blocks such as ),...,( 41  above constitutes an 

essential complement to “Plan A” type courses. These constructions could emerge from detecting 

explicit links between different solutions of interconnecting problems (Kondratieva, 2011), as 

shown above. It will clearly necessitate a careful analysis of (central) theory blocks of more 

advanced courses, and resources found in reasonably well-established praxis blocks of previous 



courses. So, while the general hypothesis may look fairly simply, realizing it in concrete cases - 

even theoretically - represents a non-trivial didactical research programme.  
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In our project, we investigate the mathematical skills that are required in first-year courses of 

technical subjects of engineering bachelor courses, i.e., we do not look at the courses on pure math. 

We analyze four exercises from an exam in electrical engineering, which is compulsory for first-

years. To solve such exercises, students have to combine their knowledge in electrical engineering 

with their skills in mathematics. We introduce a theoretical approach consisting of three elements: 

a normative solution called “student-expert-solution, “low-inferent analyses” for qualitative 

studies with students, and categorizations of written solutions. We describe the newly developed 

tools and details on one of the exercises and present the results from the analysis of the exercise in 

reference to the three concepts mentioned above. This provides insight into the interface between 

mathematics and engineering courses in the first year at university. 

Keywords: Engineering mathematics, competence, differential equations. 

Introduction 

Engineering students at German universities are taught mathematical subjects as well as engineering 

subjects, which require some understanding of mathematical topics, at the same time. This leads to 

several challenges for the students: To begin with, the lectures on Mathematics for Engineering 

Students (MfES) and the Fundamentals of Engineering (FoE) are very often asynchronous. On the 

one hand, there is a deductive structure in the lectures on mathematics, which leads to a certain 

order of presentation of the different topics to assure understanding. On the other hand, there is also 

a standard way of presentation of the different engineering topics in the FoE-courses and because of 

that, mathematical topics are often needed earlier in the FoE-courses than they are presented in the 

MfES-courses. Moreover, there are different mathematical practices in MfES and FoE, for example 

in the use of vectors or differentials (see e. g. Alpers, 2015). There is a mismatch between the 

mathematics in MfES-courses, the mathematics at school level, and the “contextual mathematics” 

required in engineering tasks (see e. g. Redish, 2005). 

At the beginning of the research, our central question was: how do engineering students solve tasks 

in basic engineering courses given this situation with two interconnected fields of competences - 

mathematics and engineering. We are interested in the modelling and assessing of explicit as well as 

implicit competences required and developed by students in this field. We investigate how students 

actually solve exercises in FoE-courses and which difficulties occur. Our focus is on four typical 

exercises of a FoE-exam after the first year at university. In this paper, we present a case study of 

these issues in the context of a single exercise on ordinary differential equations in the electrical 

engineering field of oscillating circuits. Our focus here is on the following research questions:  



1. What are the expectations from students’ solutions to an exercise on ordinary differential 

equations in a first-year electrical engineering course? 2. What are the characteristics of students’ 

problem-solving processes (e. g. strategies, difficulties) in electrical engineering courses? 

For the analysis of students’ work we required a normative solution of the exercise, which was 

developed with engineering experts and which considers both fields of competences. This 

normative solution is based on relevant theoretical concepts that are presented in the next section.  

Theoretical background 

In this section, we present the theoretical tools that were used to develop the newly constructed 

methodology for our investigations. As a first step, the approaches deal with modelling processes 

using mathematical methods and mathematical problem solving. Both theoretical approaches are 

relevant, as they combine inner- and outer-mathematical solution parts and describe their 

connections. Next, we also consider actual solving processes that help us to supplement normative 

solutions with the steps students use when solving an exercise. 

The first approach is the modelling cycle by Blum and Leiss (2007), which is used to describe 

idealized modelling processes of real world problems that can be solved using mathematics. In a 

broad outline, it divides the modelling processes into two distinct parts, the so-called “rest of the 

world” and “mathematics”. Our second perspective is mathematical problem solving by Polya 

(1949), who intended to give advice to students on how to solve mathematical problems as well as 

applied problems referring to mathematics. He divides the solving processes into four phases: 

understanding the problem, devising a plan, carrying out the plan, and looking back. 

For the analysis of actual solution processes of students, we use theoretical approaches developed by 

Redish and his working group, i.e., by Redish and Tuminaro (2007) and Redish and Bing (2008), in 

addition to the normative solution. Their approaches discuss the role of mathematical resources and 

knowledge in solving processes by pairs of physics students. Redish and Tuminaro (2007) 

distinguish three framings in qualitative solving processes: quantitative sense-making, qualitative 

sense-making, and rote equation chasing (without understanding the underlying physical situation). 

Bing (2008) looked at mathematical justification strategies and found four distinct types of 

justifications: calculation (a correctly done algorithm gives a correct result), physical mapping (the 

physical behavior is described correctly by mathematical results), invoking authority (the result is 

consistent with the lecture) and math consistency (the same mathematical approach is used in a 

similar situation). The theoretical background is presented in more detail in Biehler, Kortemeyer, 

and Schaper (2015). 

The newly developed methodology and its aims 

In order to do research in this interface of two interconnected competence fields, new theoretical 

approaches had to be developed. This section presents the three main approaches that were 

developed on the basis of the theoretical approaches mentioned above. As shown in Figure 1, the 

central theoretical tool is the SES, which builds on expert interviews and the theoretical frameworks 

of the modelling cycle and mathematical problem solving. The SES is our tool to answer the first 

research question, i.e., it gives idealized solution processes which we can expect from first-years. It 

is used to analyze and structure the video-graphed solving processes, which were transcribed using 



LIAs, and the categorizations of written solutions. Details on the SES, the LIAs and the 

categorizations are presented in Figure 1: 

 

Figure 1: Diagram on the connection of the different elements of our analyses 

Initially we asked the task designer and the electrical engineering experts to solve the exercises from 

the perspective of students who understood the contents of the courses in the first year of studies 

well. Afterwards we interviewed them concerning their solution processes. The aim of the expert 

interviews was to identify the explicit and implicit competence expectations of instructors in 

electrical engineering courses. We conducted the interviews using the Precursor-Action-Result-

Interpretation (PARI) method by Hall, Gott, and Pokorny (1995) which is a task-based interview 

technique. This solution was then subdivided using the language of the modelling cycle and 

mathematical problem solving, which in combination structured the normative solution of the 

exercise. The solving processes could be divided into three main phases: mathematization, math-

engineering working, and validation and each main phase was subdivided by Polya’s four phases. 

The expert interviews and the structure shown in Figure 1 were the basis of the student-expert-

solution (SES), which was used to finally sharpen the theoretical description, and as a basis for the 

further analysis of students’ work. SESs are represented by two columns: the first column provides a 

normative solution to the exercise in detail and is structured as mentioned above. The second 

column contains a division of the problem-solving process into phases, as well as remarks given by 

the experts on expected mistakes, alternative solutions, and learning goals for the different phases. 

One of our main interests is to describe real problem-solving processes of students for the four 

exercises using both qualitative and quantitative methods. Those analyses are based on the SES. We 

conducted video studies of problem solving processes of three to four pairs of students per exercise, 

who were asked to solve the exercise and to think aloud during the solution processes. The videos 

were transcribed with additional remarks on the activities (especially gestures) performed. We 

analyzed the transcripts using our concept of the low-inference analyses (LIAs) with the aim of 

finding differences to ideal solutions (the SESs) and to identify students’ difficulties. The LIAs 

consist of four parts: First, there is the connection of the phases in the SES and the phases in the 

problem-solving processes of the students. Second, the differences between the idealized solution 

parts in the SES and the actual solution paths of the students are described. The third part consists of 

commenting and interpreting of the differences, which forms the basis to conceptualize and describe 

problem-solving strategies, which are expected to be more general than just the process in the actual 



exercise alone. Finally, we connect the strategies we found with the strategies described by Redish 

and Tuminaro (2007) in general, and Bing (2008) in particular, in order to find typical strategies and 

challenges at the interface between math and engineering. 

In addition to these qualitative studies, we also scanned 92 anonymized “solutions” of students from 

their written exams. In order to analyze the solutions, the phases in the SES were subdivided into 

the particular activities that students have to accomplish in order to solve an exercise. For example, 

the phase of the math-engineering work was subdivided into the forming and the evaluation of the 

formula. Each student’s work was categorized using a partial credit system, i.e., they got two points 

if the activity was done correctly, or they got one point if it contains right parts (e. g. the solution 

would be correct if one multiplied it with a power of 10), or they got no points if the solution is 

completely wrong. The categorization “1” was subdivided into 1a, 1b, 1c etc. to distinguish 

different forms of mistakes. This provided quantitative results on the frequency of mistakes and – by 

combination of activities in contingency tables – the connection of successes in different activities. 

The results are used to confirm, refine, and enhance the results in the first two levels.  

The SES for the analyzed exercise on ordinary differential equations 

This section presents the first part of one of the exercises of the exam to exemplify our method and 

present exemplary results. It answers the first research question, which asks what we can expect 

from students in their first year at university. The exercise deals with oscillating circuits and 

transients. We present the problem setting as well as a short overview of the solution. This solution 

is enhanced by the remarks of the experts, which were elicited in the third phase of the PARI-

interview. For the first time, this paper presents our total approach for an exercise using methods 

from MfES. In this exercise, the oscillating circuit contains a resistor R, an inductor L, a capacitor C 

and an ideal voltage source U0. In summary, the students have to read the sketch – taking into 

account conditions on the switches S1 and S2 - to be able to form an ordinary differential equation 

(ODE) and then to solve it. The exercise starts with the circuit diagram shown in Figure 2. It 

consists of eight subtasks. In this paper, we concentrate on the first five subtasks, which deal with 

the left part of Figure 2. 

Initially, both switches are open, and the inductor and the capacitor are totally discharged. At the 

moment t=0 the switch S1 is closed, while S2 remains open. In subtask 1 and 2 the students are to 

give the values of uC(t), the voltage at the capacitor, iC(t), the electric current in the capacitor, and 

iL(t), the voltage at the inductor, before and after opening S1, i.e., before and after t=0. Solution: All 

three values are 0 before S1 is closed, because the components of the circuit are initially assumed to 

be discharged. After closing switch S1, uC(t) and iL(t) are still 0, as a voltage across a capacitor or an 

electric current through an inductor does not change discontinuously; a fact students learned in the 

lecture. iC(t)=U0/R directly after the switching of S1 due to Ohm’s law and then declines due to the 

charging of the capacitor. 
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Figure 2: Sketch of an oscillating circuit containing the mentioned components 

In subtask 3 the students are to form an ordinary differential equation for uC(t). Solution: We have to 

apply Kirchhoff’s voltage law on the left part, giving U0=uC(t)+uR(t), and use the two component 

equations of the capacitor CuC’(t)=iC(t) and the resistor uR(t)=iC(t)R. The combination of those 

equations gives an ordinary differential equation (ODE) of first order, which is uC(t)+ RCuC’(t)=U0. 

The ODE is to be solved in subtask 4. Solution: The solution can be done using either the separation 

of variables combined with a variation of constants, or alternatively, the solution can be found by 

superposition of the solution of the homogenized ODE, one particular solution of the 

inhomogeneous ODE and the using of the initial value uC(0)=0. The solution is uC(t)=U0(1-et/(RC)). 

In subtask 5 the students are to sketch the voltage curve of uC(t). Solution: The graph of uC(t) 

starting at uC(t=0)=0 approaches an asymptote at uC(t)=U0, because et/(RC) converges to 0 for t  . 

Developing the SES for this exercise 

At first sights, the solving process can be divided into three phases: mathematization (the given 

circuit diagram, subtask 1 to 3), math-engineering working (subtask 4), and validation, which is 

partly done in subtask 5, at least, if the students know the physical behavior of the setting. 

As stated in Biehler et al. (2015), there are differences to the modelling cycle in mathematization 

processes in exercises in basic courses of electrical engineering. Students do not construct a real 

model from a real situation– as suggested in the modelling cycle – but they need to have strategies 

to reconstruct the underlying real model - which was implicitly taught in the course (but usually not 

called model). This includes understanding conventionalized circuit diagrams. In contrast to the 

exercise on magnetic circuits that was presented in Biehler et al. (2015), the equivalent circuit 

diagram does not have to be produced by the students; they can use the given diagram directly for 

their mathematization. In both cases, students use implicit idealizations and are not necessarily 

aware that they are idealizations. The students have to “read” the diagram and recall and use its 

physical background in the first two subtasks. The didactic motive of the first subtasks is – as stated 

by the task designer – to remind students of applying Ohm’s law. Then in subtask 3, the 

mathematization consists of two independent competences: either recognizing certain components 

and translating them into their equations, or alternatively the translation of the experiment set-up 

into mesh and node equations using graph-theoretical arguments in an application of Kirchhoff’s 

laws. The result are three equations: U0=uC(t)+uR(t), CuC’(t)=iC(t), and uR(t)=iC(t)R.  

In the next step, there are similarities to the modelling cycle, except that physical quantities are used 

instead of numbers. The left part can be mathematized by the three equations mentioned and using 

them, an entering of the “world of mathematics of physical quantities” is possible. Students have to 



do equation management (see Biehler et al., 2015) to combine the equations in order to get a 

formula, which also contains one unknown quantity (given by a function in this case), while all the 

quantities are given in the exercise or have already been calculated. The equation management 

includes equations with functions as objects and leads to an inhomogeneous ODE of order one. A 

further characteristic of the equation management is that, unlike in the solving of systems of linear 

equations, there are no methods to find out whether there are enough or too many equations to get a 

solvable ODE. Asked for typical mistakes the experts said that the students have some problems in 

applying mathematical methods to solve the ODE. He also said, that for some students, the 

application of Kirchhoff’s laws is hard, as they do not obtain all the required equations. 

Students have learned two different algorithms to solve such ODEs. In the MfES-courses, they solve 

the homogenous ODEs by separation of variables and – using the solution of the homogenous ODE 

– they subsequently solve the inhomogeneous differential equation. In the FoE-course, they retain a 

solution by using superposition of the homogenous and the inhomogeneous solution. In the 

interview, the expert said that most students are able to set up the differential equation, the 

following solving of the ODE, however, is quite difficult for many students, especially finding the 

inhomogeneous solution. As the students work with functions instead of numbers or quantities, 

there is no difference in the use of the solving algorithm for ODEs, which was presented in the 

MfES-course. So, in this case, the solving process can be divided analogously to the modelling 

cycle, i.e., there is a “real” world (given by a conventionalized sketch), its translation using three 

equations and the solving in the mathematical world with quantities. 

The solution of the inhomogeneous ODE, uC(t)=U0(1-et/(RC)), describes the behavior of the voltage 

in the capacitor in such a setting. Students know the qualitative behavior of this function from lab 

courses, which are obligatory in the first year at university. The didactic motive of the task designer 

was to make students see the connection between their solution of the ODE and the physical 

mechanisms they know from the lab courses, and use this as a validation strategy. Possible 

variations of exercises on this topic, which were suggested by the experts, can be either done by 

using further components (as in the right part of the sketch, which leads to a second order ODE) or 

by changing the setting of the circuit from a series connection to a parallel connection. 

Analyzing the actual solution processes of the students 

Selected results of the analyses of the videos in the LIAs. Three pairs of students worked on this 

exercise in our video studies. Each pair directly found the component equations using the concepts 

and the language of graph theory for applying Kirchhoff’s laws was a bigger problem for two pairs: 

They were not sure whether one mesh equation would be enough to mathematize the setting, or if 

they also needed to have node equations, as there was a node between the two parts of the 

oscillating circuit. However, no pair started the equation management with an incorrect equation 

and they were also successful in combining them. In reference to solving the ODE, all three pairs 

used the superposition-method, i.e., they used the method presented in the FoE-course.  

In subtask 5 the three pairs acted in different ways, which they described while thinking aloud. One 

pair found the solution of the ODE by inserting t=0 and realizing that the function converges to U0. 

Another pair remembered the behavior they had seen in the lab courses, i.e., they knew that the 

graph should start at uC(0)=0 (also known from subtask 1 and 2) and would converge to the value of 



the ideal voltage source, so they applied their physical knowledge to get a mathematical 

representation of the result, i.e., they used the “mapping meaning to mathematics”-game (see Redish 

& Tuminaro, 2007). The third pair used both arguments, i.e., they drew the solution of the ODE and 

validated it with the physical behavior, saying it confirms the result of the ODE. 

Some results of the analyses of the written exams. There is a connection between finding the 

component equations and the applying Kirchhoff’s law: 84 of 92 students either did both types of 

equations right or both wrong. Here, 77 students were able to find the correct ODE; 56 of them 

solved the homogenous ODE correctly, i.e., for about 73% of the students solving the rightly 

formed ODE was no problem. Table 1 shows that all students who were able to solve the 

homogenous ODE could also solve the inhomogeneous ODE. Eight students only solved the 

inhomogeneous ODE correctly by finding one particular solution using physical arguments, i.e., 

they were able to solve at least one part of the task without applying any mathematical methods to 

solve ODEs, by looking instead at certain values of uC(t) that were known from the problem setting. 

 Inhomogeneous solution: 

wrong resp. partly right 

Inhomogeneous 

solution: right 

Total 

Homogenous solution: wrong 28 8 36 

Homogenous solution: right 0 56 56 

Total 28 64 92 

Table 1: Connection between homogenous and inhomogeneous solutions 

Summary and discussion of results 

The solution processes of first-years (Research Question 1). The SES shows that this exercise has 

more similarities to the modelling cycle than the one presented in Biehler et al. (2015). Although the 

exercise uses quantities rather than numbers, it contains three distinct parts, which are analogous to 

the modelling cycle: mathematization, math-engineering and validation. The mathematization part 

consists of finding equations for the involved components and the experiment set-up by applying 

Kirchhoff’s laws. In math-engineering these equations are combined in a purely mathematical way, 

they are solved using inner-mathematical algorithms. The validation part is attended to by a 

retranslation into the so-called real world by looking at the physical behavior. 

The analysis of students’ work (Research Question 2). In the mathematization part, most students 

were able to find both kinds of equations, and in the video-studies the biggest hurdle was, whether 

they had the right number of equations to get a solvable ODE. The component equations were cited 

from the FoE-lecture, i.e., the students invoked authority (see Bing, 2008). The students in our 

studies could either find both the component equation and the equations by application of 

Kirchhoff’s laws or none of them. In contrast to the remarks of the experts, the same holds for the 

solution processes in the math-engineering part, i.e., more than 90% of the students who solved the 

homogeneous part correctly also solved the inhomogeneous part. Moreover, some students only 

solved the inhomogeneous ODE using physical arguments. The question remains is whether 

students realize that they can also apply another method from the MfES. In the validation part, 

students used different strategies, involving both mathematical as well as physical arguments, i.e., 



some students did all steps of the modelling cycle, while others argued using inner-mathematical 

arguments. They showed different justification strategies, analogous to justifications like calculation 

and physical mapping, as defined in Bing, 2008.  

Acknowledgments 

Project was funded by the German Federal Ministry of Education and Research (BMBF) under 

contract FKZ 01PK11021B. 

References 

Alpers, B. (2015). Differences between the usage of mathematical concepts in engineering statics 

and engineering mathematics education. In R. Göller, R. Biehler, R. Hochmuth & H. G. Rück 

(Eds.), Didactics of Mathematics in Higher Education as a Scientific Discipline (pp. 138–142), 

khdm-Report 16-05. Kassel: Universitätsbibliothek Kassel. Retrieved from http://nbn-

resolving.de/urn:nbn:de:hebis:34-2016041950121 

Biehler, R., Kortemeyer, J., & Schaper, N. (2015). Conceptualizing and studying students' processes 

of solving typical problems in introductory engineering courses requiring mathematical 

competences. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Conference of the 

European Society for Research in Mathematics Education (CERME9, 4-8 February 2015) (pp. 

2060–2066). Prague, Czech Republic: Charles University in Prague, Faculty of Education and 

ERME. Retrieved from https://hal.archives-ouvertes.fr/CERME9/public/CERME9_NEW.pdf 

Bing, T. J. (2008). An epistemic framing analysis of upper level physics students’ use of 

mathematics. Ph.D. thesis, University of Maryland. Retrieved from 

http://drum.lib.umd.edu/bitstream/1903/8528/1/umi-umd-5594.pdf 

Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems? In C. 

Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling: Education, 

engineering, and economics (pp. 222–231). Chichester: Horwood. 

Hall, E. P., Gott, S. P., & Pokorny, R. A. (1995). A procedural guide to cognitive task analysis: The 

PARI Methodology (No. AL/HR-TR-1995-0108). Armstrong Lab Brooks AFB TX Human 

Resources Directorate. Retrieved from http://www.dtic.mil/dtic/tr/fulltext/u2/a303654.pdf 

Polya, G. (1949). How to solve it: A new aspect of mathematical method. Princeton, New Jersey: 

Princeton University Press. 

Redish, E. F., (2005). Problem solving and the use of math in physics courses. In Proceedings of the 

Conference, World View on Physics Education in 2005: Focusing on Change, Delhi, August 21-

26, 2005. Retrieved from http://www.physics.umd.edu/perg/papers/redish/IndiaMath.pdf 

Tuminaro, J., & Redish E. F. (2007): Elements of a cognitive model of physics problem solving: 

Epistemic games. Physical Review Special Topics - Physics Education Research 3 (020201), 1–

21. doi: http://dx.doi.org/10.1103/PhysRevSTPER.3.020101 

http://nbn-resolving.de/urn:nbn:de:hebis:34-2016041950121
http://nbn-resolving.de/urn:nbn:de:hebis:34-2016041950121
https://hal.archives-ouvertes.fr/CERME9/public/CERME9_NEW.pdf
http://drum.lib.umd.edu/bitstream/1903/8528/1/umi-umd-5594.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a303654.pdf
http://www.physics.umd.edu/perg/papers/redish/IndiaMath.pdf
http://dx.doi.org/10.1103/PhysRevSTPER.3.020101


Self-efficacy of engineering students in the introductory phase of 

studies 

Ronja Kürten 

University of Münster, Germany; ronja.kuerten@uni-muenster.de  

In this paper we investigate the self-efficacy (SE) of engineering students in the introductory phase 

of studies. We focus on changes occurring in the first weeks, reasons for those changes, and the effects 

of a mathematics preliminary course on SE. Based on results of interviews with first year students in 

2014, the preliminary course was adapted in the following year. In 2015 we interviewed first year 

students and collected questionnaires on SE. In the analysis we focus on mathematics, social, and 

general SE. 

Keywords: Self-efficacy, transitional programs, undergraduate students, higher education. 

Introduction 

The start of studies at tertiary education institutions marks a new stage of life for young people. 

Students often move to a new location, meet new people, learn new rules, and are required to become 

accustomed to new educational settings. These changes can influence the students’ self-efficacy (SE) 

beliefs (Schunk & Meece, 2006), which can be defined as “beliefs in one's capabilities to organize 

and execute the courses of action required to produce given attainments” (Bandura, 1997, p. 3). In 

academic contexts these beliefs correlate with perseverance, persistence, and achievement (Pajares, 

1996; Schunk & Pajares, 2001), and therefore mediate study-success (Fellenberg & Hannover, 2006). 

Depending on the given task, different SEs are of importance: Engineering students for example face 

mathematical, social, and course-specific tasks. For this reason mathematics, social, study-oriented, 

and course-related SEs may influence the study progress. In this paper we focus on mathematics and 

social SE, as it seems reasonable to assume that they might be influenced by a mathematics 

preliminary course. 

Van Dinther, Dochy and Segers (2011) reviewed 39 studies investigating factors that affect SE at 

higher education level, which were conducted between 1993 and 2010. None of these studies 

considered effects of preliminary courses that are common measures at the introductory phase of 

studies. Fischer (2014) investigates the perceived change in SE occurring during a mathematics 

preliminary course in his dissertation and finds that students perceive only minor changes in SE 

caused by the preliminary course. This study, however, offers no reasons for existing or non-existing 

changes. Another educational transition, namely the transition from primary to secondary school, is 

well investigated concerning SE beliefs. “Young adults often experience declines in their competence 

and efficacy beliefs as they make the transition from elementary to middle school […] [that] may 

result from changes in the school environment” (Schunk & Meece, 2006, p. 80).  

The results of interviews conducted with first year students at the University of Applied Sciences 

Münster in 2014 suggested that several study-related SEs might change during the first weeks at 

university. The students reported rising uncertainty concerning the new style of teaching and learning 

at university and the finding and joining of a study group. Furthermore they feared to fail in their 

mathematics studies whilst being confident about success in other subjects. When asked for mastery 

experiences in mathematics during the first weeks they didn’t report any preliminary course 



experiences, and even improvement in the mathematics-tests didn’t raise their confidence, as 

improvement was the least they had expected in a test that mostly differed only in numbers from the 

first one. As a consequence of these results, the preliminary course was adapted in 2015 to promote 

participation and cooperation of students.  

In this paper the development of SE (mathematics and social) of engineering students at the start of 

studies is investigated. The study focusses on changes occurring during the first weeks at university, 

their reasons, and the role of the redesigned mathematics preliminary course regarding those changes. 

Theoretical framework 

SE is “competence-based, prospective, and action-related” (Luszczynska, Scholz & Schwarzer, 2005, 

p. 440), as shown in items such as “I am confident to solve the systems of equations with 𝑥 + 𝑦 = −7 

and 𝑥 ⋅ 𝑦 =  30” (Zimmermann, Bescherer & Spannagel, 2011, p. 2137) or “I am confident that I can 

start a conversation with someone I don’t know very well” (Hermann, 2005, p. 107). Efficacy beliefs 

are multi-dimensional, varying in level, generality, and strength (Bandura, 1997). Generality of SE 

can range from task-specific SEs as used in the original definition of Bandura (1997) to domain-

specific SEs such as mathematics SE or social SE to general SE. “Mathematics self-efficacy 

expectations indicate the belief of a person in his/her own competence to solve mathematical 

problems and tasks successfully” (Zimmermann et al., 2011, p. 2136). Engineering students are 

confronted with a considerable amount of mathematics in their studies, although they usually don’t 

choose their course of studies for that reason. Social SE can be defined as “an individual’s confidence 

in her/his ability to engage in the social interactional tasks necessary to initiate and maintain 

interpersonal relationships” (Smith & Betz, 2000, p. 286). Students beginning their studies at 

university face these tasks daily. “General self-efficacy […] reflects a generalization across various 

domains of functioning in which people judge how efficacious they are” (Luszczynska et al., 2005, 

p. 440). It can be defined as “the belief in one’s competence to cope with a broad range of stressful 

or challenging demands” (Luszczynska et al., 2005, p. 439). We use this rather stable SE to control 

our results for testing effects. 

SE beliefs influence goal-setting, motivation, or perseverance of people (Bandura, 1997). Empirical 

studies have shown that in academic contexts, low study-related SEs influence proneness to drop out 

of studies, whereas high SEs are supposed to promote study success (Fellenberg & Hannover, 2006). 

Pajares (1996) discovered that SE influences performance independently from and as strong as 

ability, and Schunk and Pajares (2001) showed that mathematics SE is a better predictor of 

achievement than self-concept, anxiety or prior experiences in mathematics. In general, SEs that 

slightly exceed actual skills are the most functional, as they “lead people to undertake realistically 

challenging tasks and provide motivation for progressive self-development of their capabilities” 

(Bandura, 1986, p. 394). SE can be developed through four main sources: enactive mastery 

experiences, vicarious experiences, verbal persuasion, and physiological and affective states. 

Enactive mastery experiences (failures or successes) are the most influential source, especially when 

they are attributed to personal effort. When no absolute measures of adequacy exist, social 

comparisons can function as source of SE. These vicarious experiences, i. e. observed experiences of 

models, are of greater influence when the observer perceives higher resemblance to the model. Verbal 

persuasion can be a third source of SE if significant others express faith or doubts in one’s capabilities. 

This source is less influential than the first two. The last source mentioned by Bandura is that of 



physiological and affective states. Stress reactions or feelings of joy in the face of certain tasks may 

influence one’s SE if no other information is available. The way these sources influence one’s SE is 

dependent on the cognitive processing, and therefore SE cannot simply be interpreted as the sum of 

prior mastery experiences (Bandura, 1997). Of these sources, enactive mastery experiences appear to 

be the strongest at higher education level (van Dinther et al., 2011).  

Research questions and methods  

Based on the preliminary findings and open questions described above, this study aims to find 

answers concerning the following research questions: 

1. Do mathematic and social SEs change during the first months at university and if so, how 

do they change? 

2. How does the mathematics preliminary course affect mathematic and social SEs? 

At University of Applied Sciences Münster each year in September before the start of the semester, 

a mathematics preliminary course takes place. It consists of twelve modules: The first one – “How to 

study” – addresses general differences between school and university and other study-related aspects, 

such as time-management or preparation for exams. The second module – “practicing mathematics” 

– gives an introduction into reading and writing mathematics, set-theory, propositional logic and 

proofs. The remaining ten modules focus on contents of school mathematics from lower and upper 

secondary level (Kürten & Greefrath, 2016).  

 

Figure 1: Time bar of the preliminary course and the accompanying surveys 

For the quantitative part of the study, three data collection points were chosen: At the day before and 

at the first day of the preliminary course (pretest), in the first two weeks of the semester (posttest) and 

in the first two weeks of January (follow-up test, see Figure 1). Participation in the first test was 

mandatory for all students taking part in the preliminary course and voluntary for the rest. 

Participation in the posttest and follow-up test was voluntary because of organizational reasons. Each 

mathematics test consisted of 19 items associated with the contents of the mathematics modules of 

the preliminary course, with items that vary from test to test only in the used numbers or the given 

context. After completing the mathematics test, the participants submitted a questionnaire on 

statistical data, such as the type of school qualification and the elapsed time since the end of school, 

and a SE questionnaire. This questionnaire, in 2015, was composed of the German versions of three 

category systems: general SE (Hinz, Schumacher, Albani, Schmid & Brähler, 2006), mathematics SE 

(Zimmermann et al., 2011), and social SE (Hermann, 2005). The general efficacy part uses a four 

level Likert scale, while the other two operate with a five level Likert scale. The results of the general 

SE test were used to complement the specific view of the other scales and provide an opportunity to 



detect testing-effects. The other scales were chosen due to the results of prior analysis (2014), which 

suggested changes in mathematics and social SEs. This specific mathematics SE scale was chosen, 

as it presents tasks that can be solved using school mathematics, the only mathematics most of the 

students taking part in our survey knew when filling in the pretest. The reasoning behind the choice 

of social SE scale lies in its specific design for students at tertiary education. It was translated into 

German, and the translation was validated by retranslating the items back into English and comparing 

the two English versions. These scales were chosen because they were already tested for validity, 

objectivity, and reliability with satisfying results (e.g. Cronbach’s α between .80 and .94) 

(Zimmermann et al., 2011, Blömker, 2016, Smith & Betz, 2000). 

For the qualitative part of the study we chose two data collection points: In the week before the 

preliminary course began (first interview) and during the third and fourth week of studies in October 

(second interview, see Figure 1). Participation in the interviews was voluntary. In the first interview 

14 students were interviewed, and out of this group 8 were chosen for a second interview according 

to their department, their results in both mathematics tests, and their school-leaving qualification, to 

generate a heterogeneous sample and thus gather a large range of positions present in the population. 

The interviews were conducted using a semi-structured interview guide. The questions focused on 

mathematics and social SE as well as the students’ motivation for studying and learning. In addition 

to the qualitative data gained in the interviews, the results of the SE scales were analyzed using t-tests 

to find changes in SE during the course, and semi-partial correlations to assess the relationship 

between attending the preliminary course and changes in mathematics SE. The interviews were 

transcribed and analyzed using qualitative content analysis according to Mayring (2014). As the 

interviews should be used to understand the quantitative findings, our focus lay on mathematics and 

social SE. To find reasons for changes and the perceived level of SE, inductive category formation 

was used conducting a summarizing content analysis (Mayring, 2014). 

Results 

Self-efficacy scales 

In 2015 the SE questionnaire was completed by 409 students in the pretest, by 243 students in the 

posttest and by 135 students in the follow-up test. The downturn in the number of participants from 

pre- to post- and follow-up test can be ascribed to the change from mandatory to voluntary 

participation. 167 students completed the questionnaires in pre- and posttest and 54 students 

completed all three questionnaires. Comparison of the results of students taking part in the pre- and 

posttest (n = 167) respective in all three tests (n = 54) shows no significant differences in general SE 

and significantly higher results in the post or follow-up test for social SE (small effect size: 

dz_post = 0.20, resp. dz_fu = 0.40) and mathematics SE (medium effect size: dz_post = 0.61, resp. 

dz_fu = 0.79). To measure the relationship between attendance in the course and changes in 

mathematics SE we compute a semi-partial correlation of preliminary course attendance (as stated by 

the students) and mathematics SE after three months. We assume that for students not taking part in 

the preliminary course, mathematics SE didn’t change in the weeks of the course. As those students 

neither took part in the course nor in the associated e-learning, we suppose they didn’t engage in 

mathematics during this time. As we did not have results from those students in the pretest, we 

compare the first result of each student (whether it is from the pre- or posttest) with their results in 

the follow-up test. We found a significant correlation of .26 (n = 112, p = .006) between preliminary 



course attendance and mathematics SE in the follow-up test, after partialing out mathematics SE-

results of the first test. 

Interviews 

In 2015 eight students taking part in the preliminary course were interviewed twice. They were of 

age 18 to 22 and studied chemical engineering (2), informatics (1), and electrical engineering (5). The 

qualitative content analysis resulted in six main categories: mastery experiences, vicarious 

experiences, verbal persuasion, goal setting, temporal effects, and type of teaching. 

Pseudo-

nym 

School-leaving 

qualification 

Last grade 

in mathe-

matics 

Test results Mathematics 

SE 

Social SE Time 

since end 

of school  Type Grade Pre Post Pre Post Pre Post 

Dennis ATC 1 1 81% 84% 80% 96% 59% 73% 0 years 

Roman A-level 3.3 4 68% 74% 72% 75% 53% 47% 1 year 

Christoph ATC 2.3 2 11% 61% 59% 72% 71% 80% 3 years 

Leon A-level 2.6 2.7 42% 95% 69% 80% 70% 72% 3 years  

Table 1: Statistical data of the interviewees cited in the article with German grades ranging from 1 

(very good) to 6 (inadequate) and German school-leaving qualifications “Abitur” (A-level) and 

“Fachgebundene Hochschulreife” (advanced technical certificate [ATC]) 

In the first interviews some students explained their perceived competence in mathematics by the 

time that has elapsed since their last studies of mathematics at school (Christoph, Leon) or by social 

comparison with students coming from more demanding schools (Dennis): 

Christoph:  Well, my mathematics are a bit rusty. I had in the advanced technical certificate/ I 

was quite good. […] And now I haven’t had any mathematics in the last three years 

apprenticeship. Really not a bit. (1st interview, translation by the author) 

Dennis: If I now/ If I consider, I’ve been at a main school (Hauptschule), so surely there is 

something missing in maths compared with those of a middle school (Realschule) 

or a grammar school (Gymnasium). (1st interview, translation by the author) 

In some of the answers the changes in the preliminary course are quoted as reasons for confidence in 

social or mathematical settings. The groupwork at the beginning of each tutorial offered possibilities 

to meet people and to solve harder tasks together. In the second interviews differences in school-

leaving certification were of lower importance than mastery experiences in social tasks (finding a 

study group) as well as in mathematical tasks, and in the latter case the mastery experiences were 

attributed to personal effort: 

Dennis: It worked out well. I met new people right after the preliminary course. It opened 

up with the groupwork. You have to talk to other people there. […] And then groups 

formed right away and why should it worsen?! (2nd interview, translation by the 

author) 



Roman: […] I was first put off a bit by the exercises because I wasn't able to figure them 

out. But as I took the lecture notes, I understood it and I liked that a lot. Because I 

realized that I understand things I didn’t understand before. And I could solve 

exercises I hadn’t been able to solve and then I saw there is improvement. (2nd 

interview, translation by the author) 

Christoph:  That shows me that I’ll be able to solve hard problems that I couldn’t solve at first 

if I study for them. And it shows me concerning my studies that a 2.0 might be 

possible. Depending on how much I will knuckle down and then practice, practice, 

practice. (2nd interview, translation by the author) 

The prediction of failure rates was mentioned by some students as a reason for their fear to fail in 

mathematics. These vicarious experiences didn’t differ from those reported in 2014: 

Interviewer: Okay. We get to the next statement: “I’m afraid to fail in my studies due to 

mathematics“. 

Leon: Well, I would say four. That’s more like the case, there is a certain fear of course. 

Interviewer:  And can you explain why you put the cross at the four? 

Leon: Well, if you look at the rate of the last year, there are many failing. And there is of 

course/ you fear a bit that you won’t be able to make the cut somehow. (2nd 

interview, translation by the author) 

Discussion and perspectives 

In the study presented here we show that students’ mathematics and social SE did rise during the 

preliminary course, and that this effect was stable over a period of at least three months.  

As participation in the interviews and the posttests was voluntary, and participation in the pretest only 

mandatory for those taking part in the preliminary course, the sample is probably not representative 

of the population of first year students. For example, motivation for learning or studying might 

influence the students’ decision whether or not to take part in the course, the interviews or the tests. 

This is especially important for the quantitative analysis of the SE scales. Although the qualitative 

analysis of the interviews doesn’t need statistical representativeness, it should be considered that 

certain interesting types of students (for example those with low motivation) were not included in our 

sample. Besides this limitation of the study, the results presented show that even in the first weeks at 

university study-related (mathematics or social) self-efficacies change, while general SE remains 

relatively stable. For ethical reasons we had no control group of students wishing to take part in the 

preliminary course, and for organizational reasons we weren’t able to collect pretest results of those 

students not attending to the preliminary course. Therefore, the quantitative data does not reveal 

whether the perceived changes in SE are caused by the preliminary course or not. At that point the 

qualitative data help interpret the quantitative results, as their analysis suggests that experiences in 

the preliminary course influence changes in SE. Those experiences resulted partly from the redesign 

of the preliminary course in 2015, for example, the forced group work at the beginning of each tutorial 

that fostered social SE.  

We did assume that for students not attending the preliminary course, no changes in mathematics SE 

occurred during the time of the course. However, some students might have used other resources to 



prepare for their studies or just reflected on their competencies in comparison to the requirements of 

the University of Applied Sciences Münster. Again, the qualitative data help us justify our 

conclusions, as none of the students taking part in post- or follow-up tests stated other mathematical 

activities as reasons for not attending the preliminary course in the open ended questions of the 

survey. We feel therefore confident that our conclusion is valid for at least the bigger part of the 

students. Nevertheless, the correlation between course attendance and development of mathematics 

SE has to be treated with caution.  

With regard to our first research questions we can say that in contrast to the findings of Fischer (2014), 

SE beliefs did change in the first months at university at least in the part of the population that attended 

the preliminary course. Social SE rose slightly and mathematics SE rose moderately during the 

preliminary course. These results are in contrast to the findings described in the introduction that 

predict a decline of self-efficacies during transitions (Schunk & Meece, 2006). The differences may 

be a result of different ages of the observed students, effects of the preliminary course, or other 

reasons. Another possible explanation is that the decline of SE takes place even before the preliminary 

course and is therefore missed by our survey. Further research could clarify this by assessing SE well 

before the move to tertiary education, as well as before and after a preliminary course. With regard 

to the second research question, we did find clues that there is a relationship between the changes in 

SE and the preliminary course attendance. Those students who reported mastery experiences (social 

or mathematical) in the second interview showed an increased value for the related SE in the second 

test as well. Further research should investigate changes in SE during a preliminary course in an 

experimental or quasi-experimental design to investigate whether the changes reported here are 

indeed caused by the preliminary course.  

Of the students cited in this paper, those who had been out of school for a longer period showed lower 

mathematics SE than the others. As they also stated the elapsed time without mathematics training as 

a reason for their perceived mathematics ability, it might be interesting to evaluate the effect of time 

on mathematics SE. 
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Q² game used in a task design of the double quantification  
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This article deals with student’s interpretation of multiply-quantified statements. The efficient 

interpretation of such statements is useful, for example, for those who try to understand and use the 

formalism of the definition of limit of a function. Literature points out some students’ difficulties in 

the interpretation of double quantified statements. I am using the scientific debate methodology to 

design and implement tasks by means of two fundamental steps. In the first step, I draw on the 

results of a questionnaire to identify students’ difficulties related to the order of quantifiers in the 

interpretation of such statements. The aim of the second step is to design the targeted tasks by 

considering the results of the first step; these tasks are based on a game called Q². The 

implementation of the design shows that students understand that there are at least two kinds of 

interpretations, and that conventions of interpretations are needed. 

Keywords: formalism, quantification, limit, scientific debate in class, game Q². 

Quantified statements problem 

Mathematics formalism uses massively quantification and specifically multiply-quantification. 

Research shows that students have difficulties with the interpretation of multiply-quantified 

statements (Dubinsky & Yiparaki, 2000; Chellougui, 2009; Piatek-Jimenez, 2010). EA statements 

corresponding to “Exists…for all…” sentences must be distinguished from AE ones corresponding 

to “For all…there exists…”. Dubinsky and Yiparaki (2000) study the impact of two main variables 

on the interpretation of double quantified statements. The first variable is the order of quantifiers 

(AE or EA) and the second one is the kind of statement, mathematical or non-mathematical. They 

show that the interpretation of non-mathematical statements is essentially correct but the 

interpretation of mathematical ones is difficult for students. For AE mathematical statements, the 

students’ interpretation is very efficient, whereas their interpretation of EA ones seems to be done 

through an inversion: the EA statement is very often interpreted as the AE corresponding statement 

(the variables remain with their own quantifiers but the order of quantifiers are changed). Moreover, 

it is noticed that “the students did not appear to care of the syntax of a statement to analyze it […] 

the student did not appear to be aware of having engaged in interpreting the questionnaire 

statements.” (Dubinsky & Yiparaki, 2000, p. 53). The inversion of interpretation of an EA statement 

is also noticed by Chellougui (2009) when she asks students to define the upper bound M of a set A 

and when almost all of them answer by what she calls “a strange definition”: « ∀ x ∈ A, ∃ M ∈ IR, x 

≤ M ». Piatek-Jimenez (2010) confirms the asymmetric perception and interpretation of those two 

kinds of double quantification in the mathematical field. There seem to be two different problems: 

the use of “strange” conventions and the unawareness to interpret statements. 

To overcome these difficulties Dubinsky and Yiparaki (2000) presented a game based on the 

dialogical logic (explained below) and used it with students to make them aware that two kinds of 

interpretation can be used and that this depends on rules of interpretation linked to the places of 

quantifiers. Results have shown that the game seems to help sometimes students to understand such 

statements but in some cases, it does not, and in a few cases this has created more confusion.  



I want to pursue this research by designing tasks to overcome the difficulties of the interpretation of 

double quantified statements using the methodology of scientific debate. This implies two related 

goals. The first one deals with the identification of students’ difficulties related to the order of 

quantifiers in a double quantified statement. I specifically explore the role of some other potential 

variables: the set of quantification (familiar or not, finite or infinite), the semiotic representation of 

the quantified variables (formal or usual language) and the kind of relation involved in the predicate 

(familiar or not). The second goal is to design and to implement tasks by considering the results of 

the study related to the first goal. A new game called Q² based on the interpretation of double 

quantified statements to determine a winning strategy will play a fundamental role in this design. 

The aim of this paper is to study the following question: is there a domain of values of variables 

where students take into account the order of quantifiers and if yes how to take advantage of this 

domain to enlarge it? Specifically, how to make students aware that they are interpreting these 

statements and that they need rules for that? 

The methodology of scientific debate: A tool for designing tasks 

The scientific debate (Legrand 2001) is a socio-constructivist approach to learning and teaching 

mathematics based on two main principles: 1) the need of new knowledge can be obtained by 

making one realize that his/her previous conceptions may lead to contradiction; 2) the organization 

of appropriate debates among students permits firstly to express and share previous conceptions 

about the targeted subject, secondly to encounter the limits of these conceptions, and thirdly to be 

able to understand the institutionalisation related to this knowledge that is made by the teacher. 

Three fundamental steps shape the design of tasks by means of the scientific debate methodology:  

1) The first step consists on epistemological and cognitive studies of the targeted mathematical 

concept: the role of quantifiers in formal statements and the interpretation of double quantified 

statements that stands on the use of a convention of interpretation. For this interpretation, I have 

chosen the dialogical logic (Lorezen, 1967). In this paper, we mainly explore the cognitive aspects 

and we use a questionnaire for that purpose. 

2) The second step concerns the design of the tasks, which is done by using mainly two kinds of 

questions to initiate the debate. The first kind of question concerns the truth of a conjecture: is it 

true or false? This conjecture can be given by the teacher or can come from the students after a call 

for conjecture. The second kind of question concerns the nature of an object for a conjecture or a 

property: is it an example, a counter example, or off topic (neither example nor counter-example) 

for this conjecture, and is it an example for a property? The example can come from the teacher or 

from a call for an example. A vote is made: do you think it is true, false or something else (an 

example, a counter example, off topic or something else)? The possibility of voting for something 

else is given to preserve the authenticity of the other votes (voting True or False must be a choice 

founded on convictions). Then a debate is organized by the teacher among those who have different 

view-points. The teacher never gives any opinion about what is debated but tries to maintain a level 

of interaction by emphasizing the contradictions between students. 

3) The third step concerns the level of experimentation and its analysis: what actually happens is 

confronted to what was expected to happen. Specifically, this analysis leads to discuss the efficiency 

of the choices made in the two first steps. 



The whole study is conducted according to the aforementioned three steps. In this paper, I show my 

findings from the study related to the first step and I give more details about the elaboration and the 

results of the two final steps. For the first step, I have chosen to use a questionnaire on a sample of 

181 students in their last year of secondary school to identify students’ difficulties with the 

interpretation of double quantified statements in formal and non-formal context. For the second 

step, the results of this questionnaire are used in a way that is aiming to make students aware that 

the lack of the rules of interpretation is not a problem in a certain domain but leads them to conflicts 

out of this domain. This design is based on a game, called Q², in which the interpretation of double 

quantified statements is crucial: the question that will initiate the debate concerns the way to win 

this game. For the third step, I experiment this design for students in their last year of secondary 

school in a scientific class composed of 29 students (experimentations at university are planned). 

Task design 

Background: The result of the questionnaire 

I have mainly studied five variables in the interpretation of double quantified statements: place of 

quantifiers, kind of statements (mathematical or not), the set of quantification (familiar or not, finite 

or infinite), the semiotic representation of the variables (formal or informal language) and the kind 

of relation involved (familiar or not). In the questionnaire, words (for all, exists) are used instead of 

symbols because symbols are introduced after the game Q² as a solution to the conflicts that appear 

about quantifiers and associated conventions. A questionnaire has been given to 182 students. We 

will only give the findings here (for more details see Lecorre, 2016a). The first finding is that the 

rule of “correct interpretation for AE statements and inversed one for EA statements” seems not so 

obvious: some EA statements are perfectly interpreted whereas some AE statements are interpreted 

through an inversion of the quantifiers and the variables. The second finding is that some other 

variables are correlated with difficulties in the interpretation (e.g. width of the quantified set, 

formalization of variables...). The third finding is that there exists a domain of correct interpretation 

for both EA and AE. This domain is made of non-mathematical statements quantified on a “small” 

finite set (less than ten values) without any formal variable and with a familiar relation. These 

findings are then used to design the tasks aiming at discussing the interpretation of double 

quantified statements. 

The game Q² 

The game presented by Dubinsky and al. (2000) is based on the dialogical logic of Lorenzen (1967) 

which gives a way to decide on the truth of quantified statements using a codified dialog between a 

proponent and an opponent. In this game, for example, if the sentence is “for All x there Exists y 

such that R(x;y)”, the A-player chooses x and the E-player has to find a y such that R(x;y) is verified. 

If he/she fails to find such y, the A-player wins, otherwise the A-player can give another x (same 

kind of rule for EA). I call this game a direct game: given a statement and sets of quantification, you 

have to decide the truth. The Q² game is an inverted game: given a statement and the truth, the 

players construct the set of quantification to make a statement true or false. 

For the Q² game I choose values of the variables that make it an easy game to play: non-

mathematical field, small set of quantification, familiar relation. This choice is made to permit 

students to get into the game and into the interpretation of associated statements.  



This is a two players’ game. This game is given by four elements: a starting rule, a winning rule, a 

statement and a grid. For example, red player has to start (starting rule) and plays for the 

falsification (winning rule) of the statement S: “For all red letters, there exists the same black letter” 

and the given grid: 

 
Figure 1: A grid for the game Q² 

So red has, first, to circle one letter with his red pencil. Then the black player circles one letter and 

so on until all the letters have been circled. With the given elements of this example (starting and 

winning rule, statement, and grid) and the coloration of letters, if the statement S is false then the 

red player wins, but if it’s true the black one wins. This game has, of course, many variants, 

beginning with the filling of the grid and the starting and winning rules. This game is the heart of a 

design which aims precisely to enlarge the domain of good interpretation. I am going to show that a 

smart use of Q² in the design has the potential to reach such a goal by emphasizing the lack of the 

convention of interpretation. 

 “The Q² situation” 

The principle of the Q² situation is to provoke conflicts of interpretations that will lead students to 

the need of the convention of interpretation. The situation Q² is divided into four periods: 

- The first period aims an appropriation of the game Q² by playing. 

- The second period deals with the concept of winning grid for the game Q². 

- The third period targets a conflict of interpretation, in a way that students feel the need of 

conventions of interpretation. At that stage, the conventions are given. 

- The fourth period is just an application of these conventions on the unsuccessful domain 

where the values of the variables lead students to difficulties of interpretation. 

In the first period, a paper is given that contains eight games of Q² to play (each game is defined by 

a statement, a starting rule and a grid). These games are designed for the two players to have 

opportunities to win and to start to have ideas on how to play to have good chances of winning. In 

fact, with such a game, with “good players”, the winner depends only on the statement (EA or AE), 

the starting rule, and the grid given. 

The second period aims at the definition of winning grid. The students are asked to give the winning 

grids for a given rule, then a debate is organized about these propositions: are they winning grids, or 

not? The contradictory opinions about the propositions should lead students to identify the lack of a 

definition of winning grid. A winning grid is, in fact, quite difficult to define in a mathematical way 

for pre-university students (double recursive definition). Here, a definition such as “a grid is a 

winning grid for red if when red plays “cleverly”, he is sure to win, even if black also plays 

cleverly” is largely sufficient for this design. When the students show a need for a definition, the 

above definition is given. 



The third period aims to highlight the lack of convention of interpretation. Once again, for a given 

rule, the students are asked to give winning grids. There should be no more conflicts about what is a 

winning grid in general, but new conflicts should appear about the propositions: is this grid really a 

winning grid with this rule? This should happen because the winning grids depend on the 

interpretation of the rule which is a double quantified statement. And the need for a convention 

should appear with the impossibility to find a common agreement (is it a winning grid or not?). The 

didactical principle which is used here is the following: it seems very difficult to organize a direct 

confrontation of the different rules used by students to interpret a double quantified statement, 

because this problem, taken as a general one, is too theoretical and depends on too many variables 

(findings of the questionnaire). On the contrary, it is much easier to create a conflict on concrete 

consequences of the interpretation of such statements. Here, the conflict holds about the question ”is 

the grid a winning one or not?” Then, trying to understand each other, and trying to convince their 

peers, students are going to explain their own interpretation. And then it will appear that the implicit 

conventions used by students are contradictory. Students can realize that without common 

conventions, no agreement is possible. Deciding if a grid is a winning grid or not is possibly more 

complicated than the logical principles of deciding who won, but it leads students to materialize 

their own conventions through these grids and permit to confront these conventions. 

Then these conventions are given in the manner of the dialogic logic (Lorezen, 1967), which is 

described above with the game of Dubinsky and Yiparaki (2000). At this stage, the game Q² plays 

as a preparation to such rules by simulating a game between a proponent and an opponent. The 

design here aims much more the awareness of the need of convention than the “right rules”. The 

aim is to make students aware of the necessity to check the validity of their interpretation relatively 

to the adopted conventions.  

The fourth period consists in verifying, still using debates, that the given rules can lead to 

agreements, and even in the domain where students used to fail: the rules are helpful, efficient. 

Results 

The first period of the situation Q² (playing the game) shows a good appropriation of the game: the 

winning grids were almost always won by the one for who the grid was a winning one, which means 

that the students were playing “cleverly”. Some strategies seemed to begin to be used. And, above 

all, almost all the decisions about who is the winner were correct. All this is coherent with the 

results from the questionnaire in terms of domain of interpretation. 

The second period led to the question of the definition of a winning grid. The definition is given. 

The third period begun with a question of the interpretation raised by students in a debate. I present 

an extract of the script of this debate to explain this unexpected acceleration. Student are asked to 

give winning grids for red for the game “There exists a red square such that all black squares have 

the same symbol” where red starts and plays for true. The given statement does not specify if black 

squares shall have the same symbol as the red one or not. So, after six winning grids had been given 

by the students in the second period, this lack of information was intensely discussed.  



 
Figure 2: The winning grids for red given by the students 

The grid P1 was put into debate and everyone agreed that it was winning grid for red. Then P2 was 

put into debate (28 votes for a winning grid for red and 1 for “something else”). Loïc who had voted 

“something else” changed his mind and explained why, for him, it was a winning grid for red: 

Loïc:  Because red starts and as he plays to win he takes the square A and… 

Teacher:  You’re saying that “red plays A first” yes and what? 

Loïc:  Then black takes only B squares. 

Teacher:  Black only takes B squares. Why, in the end, red wins? 

Loïc:  Because…. 

Hadrien:  Because Black has only B squares. 

But Quentin disagreed with this explanation: 

Quentin:  And because red has it also (One B square) 

But Hadrien and Louis did not agree with this addition: 

Hadrien:  No, he has A squares and B squares. 

Quentin:  Yes! 

Louis:  I think that I should just say that there exists a red square. 

The sequence above shows that these students do not need to disagree on the fact that it is a winning 

grid or not to begin to explain their own interpretation: “the same symbol as the red square” 

(Quentin), or “the same symbol for all black squares” (Loïc, Hadrien). Then Fabio, in the same way, 

explained that nothing must be added contrary to the sayings of Quentin: 

Fabio:  I do think that what Quentin added is not necessary. 

Then Quentin proposed a grid to strengthen the differences of interpretations: 

 

Figure 3: Quentin’s grid (As in black and Bs in red) 

Leaving aside for a while the problem of the winning grid, the teacher asked whether the statement 

S1 was true or not, according to the grid of Quentin. Twelve students thought that the statement was 

true, ten false, while six students voted something else. Some conclusions were then raised : 



Fabio:  There are some, like me, that can think that all the black squares have got the 

same symbol is enough and some other, like Sébastien, who are thinking that there 

must be a red square that has got exactly the same symbol as any black square. 

Mickaël:  I’m asking: if you who think that only black squares have the same symbol is 

enough, this red square exists such that what? 

This made Hadrien change his opinion, but Louis did not agree with this change: 

Louis:  There are two opposite opinions just because we’re not thinking the same. 

Teacher:  Ok, you are not reading the same way…That is what Fabio said… 

Louis:  Exactly! 

Juliette and Maxime then explained why they voted something else: 

Maxime:  That is exactly why, from the beginning, I voted Other. 

Juliette:  So do I. 

These two interpretations are not directly linked to an EA/AE inversion but to the interpretation of 

the predicate. It would be interesting to investigate the role that the vernacular language (the 

linguistic subtleties that may eventually vary in French or English) may have played in leading 

students to interpret the two variables in the predicate as bound variables (“the same as red 

squares”), as shall be done in AE statements, where as it isn’t the case in such an EA statement. In 

any case, the discussion among students led them to work on these interpretations and to get aware 

of the complexity of having a unique interpretation. The teacher then gave the conventions of 

interpretation of EA and AE logical statements. These conventions were then used successfully for 

the applications of the fourth period. One month later, the same students had to face double 

quantified statements in a situation aiming at the definition of limit. They experienced, once again, 

the need of conventions when they encountered another conflict of interpretation of these 

statements, so they checked the conventions to decide on their own (Lecorre, 2016b). 

Later, another experimentation was realized with some other students using a “complete” rule 

(“…such that all the black squares have the same symbol as the red square”) and this led students, 

with a grid of eight squares filled with symbols appearing twice, to the predicted conflict (EA/AE 

interpretation). A new didactic variable is then identified, the constitution of quantified sets (how 

they are filled relatively to the predicate), which raises an unexpected question: is the students’ 

choice of convention between EA and AE convention for the interpretation more guided by the 

constitution of the sets of quantification than by the statement itself? 

Conclusion 

The Q² situation, with the scientific debate methodology, were used to make the interpretation of the 

double quantified statement the main object of students’ discussion. The contradictions that the lack 

of conventions of interpretation was bound to imply then emerged in that discussion. This lack 

which was invisible to students suddenly came into light with these contradictions. 

More precisely, the questionnaire led to identify some variables playing a role in the interpretation 

of students. There is a domain of the value of those variables which gives a good interpretation. 



This Q² situation led students to be ready to receive the conventions of interpretation of double 

quantified statements. Indeed, they have experienced the need of shared conventions. The described 

situation Q² mainly aims the recognition that there are two kinds of double quantifications that 

should be differenced according to the order of the quantifiers in the statement and the convention 

of interpretation of the predicate but the validation using variables defined in function of the other 

variable remains a difficulty.  
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In university mathematics, support measures address diverse goals in terms of students’ knowledge 

and abilities, motivation and beliefs, or institutional goals like the reduction of dropout rates. In 

order to facilitate the analysis of specific support measures’ goals, their evaluation and 

comparisons with other forms of support, we aim at developing a taxonomy for these goals. To this 

end, we have analyzed documents of 44 innovative projects of mathematics support in Germany and 

conducted supplementary interviews with teaching staff. We present the method and intermediary 

results of this research and discuss its potential use for researchers, policy makers and teaching. 

Keywords: Educational objectives, Mathematics support, Taxonomy, Tertiary education. 

Background and aim of the paper 

Mathematics support has become a common endeavor in many universities and both researchers 

and teaching staff are interested in identifying the “best way” of supporting their students. The 

research we present here is part of the ongoing WiGeMath project (Wirkung und Gelingensbeding-

ungen von Unterstützungsmaßnahmen für mathematikbezogenes Lernen in der Studieneingangs-

phase; Effects and success conditions of mathematics learning support in the introductory study 

phase), which is a joint research project of the Universities of Hannover and Paderborn (Colberg et 

al., in press) led by Biehler, Hochmuth and Schaper. In a first phase, the research aims at identifying 

and structuring goals that have been pursued in selected Projects of Mathematics Learning Support 

(PMLS). This paper reports on the methodology and the research outcomes of this first phase, 

drawing upon the project proposal and the intermediate project report of the three project leaders. 

In WiGeMath, we examine 44 PMLS in mathematics programs, teacher education and diverse 

engineering programs at 14 German universities. These projects all have in common that they are 

trying to help students acclimatize to university mathematics. We label them innovative as they aim 

at deviating from the formats of standard lectures or standard tutorials. The extent to which they can 

fulfill this deviation is part of the evaluation in WiGeMath. The PMLS are clustered into four types: 

bridging courses, mathematics support centers, redesigned lectures and support measures that 

parallel courses. In most German universities, bridging courses are offered shortly before the 

beginning of the first semester and aim to bridge the gap between school and university, dealing 

with school contents as well as university contents. Mathematics support centers are relatively new 

to German universities and have been implemented in rather few universities. They are designed as 

optional classes for students where they can go and seek help or work on their math problems under 



the supervision of experienced tutors. Redesigned lectures are also relatively new and are offered 

particularly for preservice secondary teachers in order to support their transition from school 

mathematics to more abstract mathematical content. They focus more on study techniques like 

problem solving or reading and writing mathematical texts than on mathematical content. Support 

measures that parallel courses are diverse and include formats that provide online learning material 

as well as tutorials for special study groups (e.g. students at risk of failing the course), with a special 

focus (e.g., applications) or for a special purpose (e.g., exam preparation). Using a program 

evaluation approach (Chen, 1990), WiGeMath aims at evaluating different PMLS based on their 

own assumptions and comparing them. Therefore, we developed a taxonomy in the sense of a 

descriptive (non-normative), structured set of goals, features and conditions of the PMLS. In this 

paper, we focus on the taxonomy for the goals of PMLS. Here, the term “goal” is interpreted in the 

sense of any observable criterion that provides ground for the evaluation of a PMLS against its own 

initial conception. Existing taxonomies of educational objectives include cognitive and affective 

aspects of students’ learning (e.g. Krathwohl, 2002). However, they only describe learning 

outcomes of the individual. For evaluating the PMLS’ outcomes against their respective initial 

conception and comparing different PMLS, existing taxonomies have proved insufficient. We 

found, for example, that some PMLS have goals that cannot be assessed in terms of individual 

learning objectives, like the support of certain study groups.  

Method 

We constructed a new taxonomy using an empirical approach consisting of two steps. In the first 

step, a document analysis was conducted based on documents from the partners’ PMLS. This step 

resulted in a first draft for the taxonomy. In a second step, this rough taxonomy guided interviews 

with teaching staff to check, refine and supplement the categories. 

For the first step, we asked our partners to send us any document that might inform us about the 

projects, including self-descriptions and learning material. The kind of information greatly varied 

across the projects: some PMLS had been described in conference papers or posters; others sent us 

lecture notes or books, and in several cases, flyers or websites addressed at students were available. 

In the case of redesigned lectures, we also analyzed study regulations. Moreover, the depth of 

information varied as some projects had explicit descriptions of their goals, others only had learning 

resources and some PMLS were just in the making and could not give us any documents. We thus 

asked several partners to describe the goals of their projects either via email or in unstructured 

interviews and then included these emails or interview notes and transcripts in the analysis. In the 

following phase of the document analysis, we followed the typical steps of skimming the 

documents for relevant passages, reading them and interpreting them as an iterative process 

(Bowen, 2009). Following the principles of inductive category formation in qualitative content 

analysis (Mayring, 2015), we worked through the relevant passages line by line, either subsuming 

the goals under existing categories or constructing new ones. In this step, we also reconstructed 

goals that were not mentioned explicitly but were apparent in the documents. If, for example, 

learning material explicitly asked the students to consider mathematics as a process of trial and 

discovery, we assumed the change of students’ mathematical beliefs to be a goal. Due to the high 

diversity of materials and goals, we worked through all the material before reorganizing the 



categories in a rough taxonomy. Here, distinctions from the literature were implicitly taken into 

account, like the distinction of cognitive and affective outcomes. 

A limitation of document analyses may lie in insufficient details and a bias in the document 

selection (Bowen, 2009). Specifically, the teaching staff could have had goals that were not 

reflected in the documents. Thus, in the second step the rough taxonomy was used to guide eight 

interviews. Two interviews were held for each of the investigated designs, i.e., bridging courses, 

mathematics support centers, redesigned lectures and support measures that parallel courses. The 

interview guide first asked for the goals of the PMLS in general and then used the subcategories for 

deeper inquiry of each specific aspect. In the interviews, we found that some staff members did not 

mention all goals immediately. In reaction to a general question, only some goals were named. 

Explicit questions mentioning specific goal categories, however, led to additional goals named by 

the staff members. These interviews, taped and transcribed, were coded using the rough taxonomy 

as a coding scheme in order to see if each goal that was mentioned by the interviewees fit into one 

of our categories. This led to the refinement or reformulation of subcategories, but generally, all 

goals were covered by the taxonomy. 

Results 

The goals we identified were split into two main categories of educational goals and system-related 

goals, each of which consists of several sub-categories. We proceed with a presentation and 

description of the emerged categories and sub-categories that are summarized in Table 1. 

Educational goals 

The first main category of educational goals comprises learning outcomes with a focus on 

objectives regarding the individual learner. These educational goals are subdivided into knowledge 

goals, action-oriented goals and attitudinal goals. As these goals are more or less covered in existing 

taxonomies (e.g. Krathwohl, 2002) and space is limited, we omit a description and discussion of 

these goals. We only shortly mention the last category of learning and working conduct. It refers 

to learning rhythm (i.e., when do participants study), learning expenditure (i.e., how much do 

participants study), learning materials (i.e., which resources do participants use when studying), 

learning environment (i.e., where and with whom do participants study) and use of the PMLS’ 

provision. This goal differs from the ones mentioned so far as it does not represent a final goal of 

studying but rather functions as a mediating partial objective that facilitates the fulfillment of other 

goals at a later point in the course of studies. Staff members explicitly mentioned that they wanted 

their students to work in specific ways they assumed to be most efficient. 

System-related goals  

In our study, we found goals which do not focus on students as individuals but rather take into 

account the university as a broader organization and therefore decided to label them system-related 

goals. We specify how we understand each of these categories and which aspects they include. It is 

important to note that the system-related goals and the educational goals are not necessarily disjoint. 

When using the taxonomy to categorize the goals of a PMLS, these goals may fall into one category 

under educational goals and, at the same time, into another category under system-related goals. 

The difference lies in the focus on the individual learner versus the institution as a broader 



organization which for example has to establish its own reputation, take into account questions of 

funding as well as maintain its societal position in providing studies that lead to certain certificates. 

Educational goals 

Knowledge goals  - school mathematics knowledge and abilities 

- higher mathematics knowledge and abilities 

- the language of mathematics 

Action-oriented goals - mathematical modes of operation 

- university modes of operation 

- learning strategies 

Attitudinal goals - beliefs  

- affective features 

- perceived relevance for the future job 

- perceived relevance for future studies 

- mathematical enculturation 

Learning and working conduct  

 

System-related goals 

Creation of prerequisites for 

knowledge/abilities 

- improvement of school knowledge and abilities as a 

prerequisite for university studies 

- requirements for lectures that exceed school knowledge 

Improvement of formal study 

success 

- dropout rates 

- passing rates/achievements 

Improvement of teaching quality  

Improvement of feedback quality  

Promotion of social contacts and 

connections relevant for the studies 

 

Making university study demands 

transparent 

 

Supporting of certain student groups  

Table 1: Categories of the WiGeMath taxonomy 

As to the creation of prerequisites for knowledge/abilities, PMLS with this target would aim at 

qualifying students to participate successfully in subsequent university classes. This might be 

achieved via the improvement of school knowledge and abilities as a prerequisite for university 

studies, a category that we defined as a first sub-category. We refer to topics and methods that are 

not part of regular university lectures but should be familiar to students from their school 

background like doing arithmetic with fractions, sine, cosine, and solving systems of linear 

equations. The difference between this goal and the educational goal of fostering school 

mathematics knowledge and abilities is that the educational goal is only achieved when each and 

every student has gained the knowledge in focus, whereas the system-related goal is reached when 

the bigger part of students has gained this knowledge so that future teaching can take this 

knowledge as shared. In the latter case, it is inconsequential whether all students make use of the 

knowledge supply and integrate it into their own learning. It is well known, for example, that 



students entering university often have gaps in their knowledge while lecturers want to give their 

lectures as if this knowledge was present. In one bridging course, asked for knowledge as a 

prerequisite in future lectures, a staff confirmed this (all quotations are own translations): 

Staff member: Due to the fact that we refresh the students’ school knowledge, there is something 

they can build on later [in the lectures] and certainly will. […] If I look at a proof 

of continuity, I need absolute values and inequalities. If I do not know them, 

particularly now that they were removed from the school curriculum, then I have 

to learn them before. 

Interviewer:  That means, you try to compensate some deficits, in particular after changes 

through a school reform where some topics have been canceled from the 

curriculum? 

Staff member: Yes, I would say. 

Often, PMLS also aim at providing requirements for lectures that exceed school knowledge. In the 

innovative courses included in our study, examples may be seen in topics like groups, rings or fields 

that could be shifted from regular university courses, in which they would usually be discussed. 

Sometimes, bridging courses also cover topics that were considered school knowledge in the past 

but are no longer taught in schools today. 

For some institutions, the improvement of formal study success also proved to be important. This 

relates to objectively measurable success criteria like dropout rates, defined as the number of 

students who withdraw from their studies, and passing rates/achievements, which can be measured 

via the final exam. For a support center, for example, this was central in the interview: “Clearly, I 

mean, the big credo was always to reduce the dropout rate.” In German universities, dropout rates in 

mathematics and engineering programs exceed 30 % (Heublein, 2014). These criteria are of special 

interest as they may be used for an institution’s quality evaluation. PMLS addressing dropout 

include tutorials for specific study groups with low success rates or students who already failed an 

exam twice and now make their final attempt. 

The improvement of teaching quality is another goal of PMLS. The aim is to improve the 

teaching quality as perceived by the students and gain better evaluations from the participants. This 

may include changing the teaching styles and improving the communication with the students. 

In our analysis, three more goals emerged, which all reflect the position that, the university on the 

one hand wants to provide an optimal environment for the students’ learning, yet on the other hand 

does not take the responsibility for each individual student. The sub-category of improvement of 

feedback quality covers the aim to provide students with high-quality feedback on their state of 

studies that helps them improve their learning. Under promotion of social contacts and 

connections relevant for the studies, we subsume the support of social exchanges and 

conversations, technical aids, and stimulation to form study groups. For example, students may be 

offered specific hours for a specific lecture in a mathematics support center so that they may form 

learning groups on their own account. Also, the design of such centers may reflect this goal: “These 

workstations there have desks, where eight students may sit at a time. Students have increasingly 

come in larger groups. And it was clearly our goal, to foster this”. A further category that some 

PMLS aimed at is making university study demands transparent. This includes giving insight 



into demands of university education, especially with future orientation concerning preconditions 

and requirements in the course of further studies. Together, these aspects enable the students to 

make well-informed decisions on how to study according to their personal preferences.  

Finally, some PMLS were designed to help certain students more than others, for example, students 

with a different language background, females, students with a sideline job or students with 

children. These aims would be encoded under supporting of certain student groups. For one 

support center, for example, the focus was on low and medium-achieving students, as we could see 

in the interview: “Our priority is on everyone but the high-performing students. So, from low-

achieving to average. […] If we have resources left, then the high-performers are also welcome”. In 

contrast, a redesigned lecture addressed the average-achieving students but not the low-achieving 

ones: “We have, so to say the very good students, a broad midfield and then the lower fifth part or 

so, where most of them will probably dropout from their studies, because they are not suitable after 

all. But they take part at the beginning and want to try it, anyway. And my objective during the 

development and conduction of this course was to address the broad midfield and in addition 

provide challenges for the very good students.” Another specific group that might be mentioned 

consists of students without “Abitur”. The German school system is split into schools for lower-

achieving students where students attend nine/ten years and the so-called “Gymnasium” that adds 

another three years of school. Generally, only the students of the Gymnasium are allowed to attend 

university after they have passed the final exam called Abitur. Yet, there are exceptions where 

students without Abitur may attend university, a scenario that occurs particularly frequently in 

engineering programs. As engineering was one of the study fields we focused on, this category 

seemed especially relevant. This goal may reflect a special profile of the university or study 

program or societal goals and may come along with special funding opportunities. 

Discussion 

Methodological discussion 

As mentioned above, the taxonomy at hand was developed in cooperation with university staff 

involved in innovative PMLS. Contrary to our expectation that the goals of PMLS were thought 

through and decided upon in advance, we found, in the course of our work, that many of their goals 

had remained implicit until our inquiry. This observation raises the question of whether important 

goals of innovative PMLS can be fully accessed from documents and interviews. Similarly, goals of 

traditional lectures might also be implicit, since some lecturers may be reproducing these long-

established formats without further reflection. To be more specific, it seemed as if some PMLS aim 

at establishing a specific didactic contract (Brousseau, 1984). For example, students are to be 

offered a good learning environment in hope of thereby increasing success rates but the university 

does not take responsibility for the success of each individual. However, this aspect was not 

included in the taxonomy as we lacked clear evidence. The lack of reference to the didactical 

contract in the materials and the staff interview might be because of its implicitness in PMLS goals 

and to the less familiarity of staff to such theoretical terms. 

Discussion of the taxonomy 

The educational goals in our taxonomy show similarities to the objectives of other taxonomies 

(Krathwohl, 2002). Whereas these models focus on individual learning outcomes, the WiGeMath 



model aims at comparing and evaluating innovative measures as a whole, in particular following the 

program evaluation approach (Chen, 1990). This reflects in the new category of system-related 

goals. The system-related goals reflect three purposes: Some of the goals ensure the preservation of 

the institution. The creation of prerequisites for knowledge/abilities, improvement of formal study 

success, and improvement of teaching quality would fall into this category. Another set of system-

related objectives consists of improvement of feedback quality, promotion of social contacts and 

connections relevant for the studies, and making university study demands transparent. These goals 

improve the environment for students’ self-directed learning. Supporting certain groups of students 

is a goal of a third kind as it represents the societal goal of creating equal study conditions in higher 

education for a wide range of students. The taxonomy thus reflects the institutional framing, in 

particular goals related to the institutions’ preservation as well as the preservation of the innovative 

PMLS, which mostly had no regular funding but were financed by federal grants for innovative 

support. Related notions can be found in classification systems for higher education institutions. 

However, these categories are intended to be strictly descriptive and can therefore not be 

reformulated as goals. An early example is provided by the Carnegie Classification of Institutions 

of Higher Education, which was created in the 70s for US institutions. Initially, it was mainly 

concerned with structural and organizational characteristics of institutions but has undergone major 

changes in 2000, strengthening the emphasis on teaching-related institutional characteristics 

(Bartelse & Vught, 2009). A shortcoming of the model is that it lacks a consistent theoretical 

framework. In following the program evaluation approach, we based its development on the 

individual language and paradigms of the PMLS and did not question them in their data. From a 

practical point of view, the model helps to highlight their similarities and specialties. From a 

theoretical point of view, a next step could be the consistent re-interpretation of their goals from a 

specific theoretical and epistemological stance, e.g. clarifying basic notions of knowing and 

learning. We should keep in mind, however, that such a taxonomy might not only be used for the 

non-normative exchange of ideas, but also be turned into a normative model. 

Implications for research, policy and teaching 

It seems obvious that a model like the one developed above is never complete and could be 

expanded not only to fit more goals of innovative measures but also in order to serve regular 

courses or classes in other fields of study. So far in the first study phase of university mathematics 

education, we focused on innovative PMLS. We may thus have missed goals that are related to 

studies beyond the introductory year or to innovative measures integrated in the regular classes. An 

example for a possible system-related goal that was not mentioned in our study is the qualification 

of future staff or PhD-students.  

Since many practitioners had to reconstruct their goals during the interviews, we believe that our 

taxonomy may prove beneficial to both teaching staff and developers of courses and support 

measures as a heuristic tool, helping them reflecting on their goals and teaching practice. It may 

also highlight ethical questions, e.g. by pointing out that some PMLS were designed to specifically 

support some students but not others. This taxonomy could also improve the communication about 

goals between students, teachers and institutions. It provides a common language and a frame of 

reference. In research, this framework is ultimately intended for the evaluation of innovative 

measures and so far proved useful in doing so in the ongoing WiGeMath project. For policy-



makers, a taxonomy may help in the evaluation of their decisions. In our study, we found that many 

practitioners had thought about various aspects of their work, but did not have a (shared) language 

to communicate these thoughts.  
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The vector concept is an important concept students are confronted with in their first year at 

university. To be able to build on students’ previous knowledge it is important to find out what they 

have learned about vectors from school. This study aims at exploring university freshmen’s personal 

concept definitions of a vector. We therefore analyzed common German school textbooks to find out 

how vectors are introduced and what conception of a vector students might have developed at school. 

In addition, we administered a short pretest in which students were asked what a vector is and to 

explain vector addition and its properties. We ascertained that freshmen stated a lot of individual 

concept definitions. The majority of students stated geometric ones, which were mostly not fully 

adequate, i.e. improperly formalized to be embedded into the theory of abstract vector spaces. 

Furthermore, various misconceptions were identified. 

Keywords: vector, concept definition, transition, textbook analysis. 

Introduction 

Many students face problems connected with the transition from school mathematics to university 

mathematics. To reduce students’ difficulties during this transition, the Ministry of Innovation, 

Science and Research initiated the Studifinder project. Part of this project are the studiVEMINT 

learning materials. We have developed these learning materials (which are an e-learning based 

bridging course for mathematics) at the University of Paderborn since 2014 (Colberg, Mai, Wilms, 

& Biehler, 2017). The development was completed in summer 2016, although quality assurance still 

takes place. Students can use the course for several purposes: to fill gaps in their mathematical school 

knowledge, or to get used to elaborated forms of school content. In any case a focus lies on accurate 

language and notions and a mathematical discourse based on the definitions introduced, as it is 

expected at university. 

An important concept students are confronted with at school and university (at a more abstract level) 

is the concept of vectors. In early 2016 we started the development of a chapter on vectors for the 

studiVEMINT learning materials by looking into school textbooks to explore how the concept could 

be introduced. While looking into many of these textbooks we observed the following: 

1. The formal definition – that is either geometric as an infinite set of arrows with the same 

direction and length or symbolic as a triple of real numbers – is often not referred to again in 

the chapters following the introduction of the vector concept. 

2. During the mathematical discourse related to vectors, several models (in the sense of Dörfler 

(2000)) of the concept are used without arguing about isomorphism. 

3. The symbols labeled as vectors and used are not always conceptually coherent with the 

axiomatic definition of a vector space. 



These observations led us to question which of the many representations of a vector that were labelled 

as vectors at school the students actually consider to be a vector. This question was examined by 

analyzing the common German school textbooks dealing with the vector concept and by 

administering a short test to university freshmen at the beginning of their university studies. The 

results are presented in this paper. 

Theoretical background 

Although every formalized mathematical concept has a precise definition, students need to give it a 

meaning by operating with the concept (maybe just mentally) in order to understand it. Tall and 

Vinner (1981) use the term concept image to describe all associations students may have acquired by 

operating with it. These include examples, counterexamples, visualizations as well as properties of 

the concept. In order to specify the concept with words it has a concept definition. This can either be 

the formal definition accepted by the mathematical community, or student’s reconstruction of a 

definition of the concept from their concept image (more precisely from the parts of the concept 

image that were activated during this reconstruction process, which Tall and Vinner (1981) call 

evoked concept image). In the latter case Tall and Vinner (1981) call it personal concept definition. 

The formal definitions of the vector concept the students might have learned at school are the 

following ones, which were discovered when analyzing German school textbooks: 

1. A vector is an infinite set of arrows with equal direction and length (Bigalke & Köhler, 2012; 

Bossek & Heinrich, 2007; Brandt & Reinelt, 2009; Weber & Zillmer, 2014). 

2. A vector is a triple of real numbers or a matrix with one row (Alpers et al., 2003; Artmann & 

Törner, 1984; Griesel, Andreas, & Suhr, 2012; Griesel & Postel, 1990).  

However, students’ personal concept definitions, which they reconstruct from their concept images, 

may differ depending on individual experiences with the concept. 

In the following we present for each of the two formal definitions of the vector concept, how they are 

introduced in German school textbooks and what possible personal concept definitions university 

freshmen might have, assuming these introductions formed their concept image at school from which 

they reconstructed their personal concept definitions. Then we discuss how the formal definitions are 

referred to further in the books when operating with vectors and how this might again influence the 

students’ concept definitions reconstructed from their evoked concept image. 

Analysis of books using the geometric definition of a vector  

The geometric definition as an infinite set of arrows with same length and direction is often motivated 

by translations (Bigalke & Köhler, 2012; Weber & Zillmer, 2014), and sometimes even defined by 

these (Brandt & Reinelt, 2009). The translations are then represented by arrows with the same length 

and direction. Afterwards, students are told that all of these arrows describe the same translation and 

can therefore be identified as the same object (e.g., see (Weber & Zillmer, 2014)). This path would 

lead to the adequate concept definition of a vector as an infinite set of arrows with equal length and 

direction (D1). However, this identification step is rather difficult as is denoted in the literature, and 

may result in the incomplete conception that a vector is considered as a single arrow (D2) (Malle, 

2005). The motivation of the formal geometric definition as a set of arrows with equal length and 

direction may also lead students to think that a vector is a translation. While a definition of a vector 



as a translation mapping operation on the whole plane is consistent with its formal concept, literature 

shows that translations are often understood as the motion of an object (Yanik, 2011). So the students 

might think of a vector as a translation of an object or translation of a point (D3). Yanik (2011) also 

found out that the connection between a vector and a translation is often not understood, and that 

many teacher students thought that a vector only gives the direction of a translation. This might lead 

to the following misconception: vector as direction indicator (D4).  

Besides using translations, some books also motivate arrows in space as a quantity characterized by 

length and direction in physical contexts like speed or force (Bossek & Heinrich, 2007; Weber & 

Zillmer, 2014). The recognition that two of these arrows can be considered as the same, since only 

the magnitude and direction matter (e.g., for the resulting movement of an object) leads to the 

adequate concept definition of a free vector, which is a quantity characterized by length and direction 

and represented by a free movable arrow (D5) (Watson, Spyrou, & Tall, 2003). But since forces are 

normally considered as dependent also on the point of origin (Watson et al., 2003), this approach can 

again lead students to the consideration that a vector is a single arrow (D2).  

The geometric definition requires not only a lot of effort in its introduction, it is also difficult to handle 

afterwards. In literature, this is denoted as a lack of operability of the definition (Bills & Tall, 1998). 

For example the geometric definition is difficult to handle when defining vector operations because 

for all operations the independence from the chosen representative of the vector has to be justified. 

In some books, this problem is discussed (Weber & Zillmer, 2014), others ignore it, and vectors are 

simply identified with arrows when defining vector operations geometrically (Bossek & Heinrich, 

2007). This can again lead to the conception of a vector as a single arrow (D2). Another option to 

deal with these difficulties is highlighted in Bigalke and Köhler (2012): the addition of vectors is 

defined via the addition of the components in the symbolic representation as an n-tuple (directly after 

its introduction) and from then on the geometric addition only serves as a visualization. This does not 

result in a misconception but becomes problematic when trying to embed the geometric vectors with 

operations defined between triples into the formal theory of vector spaces because in the formal theory 

the operations have to be defined on the set, whose elements will be the vectors if the axioms are 

satisfied. After the introduction of the vector operations and their properties, the definition as a set of 

arrows (or as a translation) is not referred to again (Bigalke & Köhler, 2012; Brandt & Reinelt, 2009; 

Weber & Zillmer, 2014). Instead, in the following chapters on analytical geometry, single arrows and 

their corresponding number triples are used to describe geometric objects. This can lead to a loose 

connection between the formal definition and students’ concept image from which they might deduce 

their own personal concept definition (Vinner, 2002). The resulting personal concept definitions in 

this case would be: vector as a single arrow (D1) or vector as a number triple (D6). 

In summary, if the vector concept was introduced geometrically as an infinite sets of arrows with 

equal length and direction, the following concept definitions can be expected: vector as an infinite 

set of arrows with the same length and direction (D1), vector as a single arrow (D2), vector as a 

translation of an object or translation of a point (D3), vector as direction indicator (D4), vector as a 

quantity characterized by length and direction (D5), or vector as a triple of numbers (D6). The 

personal concept definitions D1 and D6 correspond directly to possible formal definitions of the 

vector concept, D5 is also an adequate conception, in which the equivalence of arrows with equal 

length and direction is realized by independence from the space, D2 and D3 are incomplete concept 



definitions (D2 does not take into account that vectors are equivalence classes, D3 does not take into 

account that a translation is a mapping on the whole plane) and D4 is a misconception. 

Analysis of books using the symbolic definition of a vector as n-tuples  

The symbolic definition is often motivated geometrically by translations or arrows (Alpers et al., 

2003; Griesel et al., 2012) or as coordinates of the points in the space (Griesel & Postel, 1990). 

Sometimes the symbolic definition is introduced earlier in connection with the theory of systems of 

linear equations (Artmann & Törner, 1984). The symbolic definition of a vector has the advantage of 

allowing a flexible interpretation as a point or an arrow. This can avoid the discussion about the 

equivalence of arrows (e.g., see Alpers et al. (2003)). However, besides the already mentioned 

incomplete conception of a vector as a single arrow, this flexibility can lead to another inadequate 

conception: vector as a point (D7). The identification of vectors and points becomes problematic in 

higher mathematics, e.g., in the theory of affine spaces, in which they are considered different objects 

(Henn & Filler, 2015).  

The way the vector concept is introduced in Artmann and Törner (1984) can also lead to another 

adequate concept definition. Artmann and Törner (1984) restrict their visualizations of vectors on 

points and arrows starting at the origin. If students identify the number triples with these arrows 

starting at the origin, they might consider a vector as an arrow starting at the origin (D8). These 

arrows starting at the origin can serve as elements of a vector space (with suitable operations defined 

between them).Unlike the geometric definition of a vector as a set of arrows, the symbolic definition 

is operable when defining vector operations and justifying their properties like the commutative law. 

However, some books do not mention these properties explicitly (Alpers et al., 2003; Artmann & 

Törner, 1984; Griesel et al., 2012). One reason, which is also noted in literature, might be their self-

evidence (Harel, 2000). However, the symbolic definition can also be difficult to handle in the case 

of the definition of geometric concepts related to vectors such as the norm of a vector. Purely algebraic 

definitions of these concepts seem unnatural without further explanation (e.g., see Alpers et al. 

(2003)). Geometric definitions of these concepts on the other hand (e.g., see Griesel et al. (2012)), 

have the danger that the vector defined as a triple is again identified with just a single arrow, which 

is an at least incomplete vector conception. 

After the introduction of vector operations, the concept of a vector is mainly used in geometrical 

settings (describing lines and planes in the space). This might cause students to not identify vectors 

with the originally defined ‘triple’ but with its geometrical representations such as points (D4) or 

single arrows (D2) (students might reconstruct their personal concept definitions of vectors from 

these representations and not from the formal symbolic definitions).  

In summary, the symbolic approach can lead to two further personal concept definitions besides the 

intended definition of a vector as a triple (D6), which have not been mentioned yet: vector as a point 

(D7) or vector as an arrow starting at the origin (D8). The identification of symbolic vectors with 

arrows starting at the origin is not problematic because the latter ones can truly serve as objects, which 

the vector operations can be defined upon. The identification of vectors with points, however, can 

cause conflicts later in the theory of affine spaces, where these two objects have to be distinguished.  

  



Methodology of the empirical study  

Research question 

On entering university, what personal concept definition of the vector concept do students have? 

Data Collection 

In September 2016 a short test was administered to 103 university freshmen in a mathematics bridging 

course at the University of Paderborn. These students were either freshmen majoring in mathematics 

or in mathematics for teachers at grammar schools. The pretest consisted of three open questions: 

1. What is a vector?  

2. Explain how you add two vectors a  and b . 

3. Explain, why for all vectors a  and b  the following is valid: a b b a   . 

The first question was asked to identify what the students’ personal concept definition of a vector in 

the sense of Tall and Vinner (1981) is. We did not ask for a definition because we did not want the 

students to try to recall the formal definition they had learned at school, but rather to specify the 

concept in their own words. We also did not use the term “definition” because we suspected that 

many students might not be familiar with the term and therefore might get confused.  

The other two questions were asked to further analyze if the students used the defined objects to 

explain vector operations and their properties. This is important for a proper embedding of the old 

vector concept into the abstract notion of a vector space, which is a set with operations defined on its 

elements. However, this problem will be investigated later. 

Data Analysis 

The answers to the first question “What is a vector?” were categorized by using possible personal 

concept definitions deduced from the analysis of the textbooks (see theoretical background, categories 

D1,…, D8). Furthermore, four additional categories have been added. The first one, a vector as an 

element of a vector space was added before the analysis because, although this generalization is not 

taught at school, it may happen that some students had heard about it (e.g., in mathematical clubs at 

school). The other categories depict inadequate personal concept definitions that often showed up 

during the analysis: a vector as a line segment, a vector as a line and a category containing other 

inadequate concept definitions not yet mentioned.  

The whole typology of 12 categories is shown in Table 1. The first five categories can be considered 

adequate, which means that objects described in the definition can serve as concrete examples of 

vectors in a vector space (if suitable operations are defined on them) or if vectors are already 

considered as elements of vector spaces. Categories 6 and 7 contain incomplete concept definitions, 

categories 8 to l2 contain inadequate concept image definitions, which can be considered as 

misconceptions. 



 

Figure 1: Answer categories to the question “What is a vector?” 

Two of the authors separately coded the data from the questionnaire. The interrater-reliability 

coefficient, Cohen’s Kappa, was κ=0.803, which is good. Afterwards, they discussed the answers 

they had coded differently and agreed on a categorization. 

Results of the study 

The students’ personal concept definitions of the vector concept that were identified form the 

students’ answers to the question “What is a vector?” are shown in Figure 2. 

 

Figure 2: Students’ answers to the question “What is a vector?” (N=103) 

The bars of adequate personal concept definitions (which correspond roughly to possible formal 

concept definitions of models of the vector concept) are marked green, not fully adequate concept 

(i.e. they cannot be properly formalized or embedded into the abstract theory of vector space) 



definitions are marked yellow, inadequate concept definitions are marked red. As can be seen in figure 

2, the students had a variety of individual concept definitions of the vector concept when entering 

university. Most of them had a geometrical basis. However, in most cases these geometric concept 

definitions were either incomplete (the yellow bars, in which either the nature of a vector being an 

equivalence class was not mentioned or in which a vector was considered as a translation of points or 

objects and not as translations of the whole space) or inadequate (the red bars). Nevertheless, even 

the inadequate conceptions of a vector like “a direction”, “a connection between two points or a line 

segment” or “a point” have some properties of the adequate conceptions of vectors (e.g. if a vector is 

considered as a line segment, it has the property “finite length”, which is as basic property of the 

arrows, which represent a vector geometrically. 

Conclusion and outlook on possible further research 

Our study shows that the students have a variety of concept definitions of what a vector is when 

entering university. Thus we should keep in mind that freshmen do not come to university with a 

shared idea on what a vector is. The majority of students stated geometric definitions which were 

mostly inadequate definitions in the sense that they cannot be properly formalized or embedded into 

the common definition of a vector in mathematics. This indicates that it is difficult for students to 

fully grasp the concept of a vector. However, many students seemed to be familiar with the symbolic 

definition of a vector as an n-tuple and that it can be interpreted in manifold representations. This 

property of the n-tuple approach seems very appealing. Dealing consistently with equivalence classes 

including the independence from the chosen representative can be circumvented with this approach. 

Hence, we chose this approach for the studiVEMINT course. We utilized the connection between the 

symbolic and geometric representations as often as possible. However, we avoided using the 

geometric representations while introducing the mathematical discourse on vectors that we wanted to 

be consistent with the provided definition (Sfard, 2000), similar to what is required from the students 

in their upcoming lectures about linear algebra.  

For further research we will look into the students’ answers to questions 2 and 3 more thoroughly 

with a more elaborated theoretical framework. We also intend to do a follow-up study to investigate 

the influence that the linear algebra course achieved on students at the end of the currently ongoing 

winter term 2016/17. Including a semiotic point of view and an analysis of textbooks from school as 

well as the introduction of vectors within the linear algebra course will improve the theoretical 

framework and provide further insights. 
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This paper reports on part of a study regarding student learning-experiences and affective pathways 

in undergraduate calculus tutorials. The following question is pursued in this paper: How do the 

students’ key affective states relate to the type of mathematical discourse conducted in class? We 

present and discuss two lessons where two similar problems were considered. The lessons were filmed 

and followed by stimulated recall interviews with nine students. Though the students in both lessons 

did not understand the solution to the challenging problem, they evaluated the lessons and subsequent 

learning experiences very differently. We suggest the difference was related to the type of discourse 

employed by the instructor. The lesson that evoked a negative reaction utilized only an object-level 

discourse. The lesson that evoked a positive reaction additionally utilized a meta-level discourse. We 

will call this heuristic-didactic discourse. Implications are drawn.   

Keywords: Undergraduate calculus, emotional states, key affective events, discourse. 

Introduction 

Emotions have long been recognized to take an integral part in mathematical problem-solving 

activities, especially when coping with non-routine problems. However, relatively little is known on 

the role emotion plays in undergraduate student learning, and even more so in context of frontal 

tutorials. This paper is part of a wider research investigating student emotion and learning-

experiences fostered by problem-solving explanations in calculus tutorials. In this paper we present 

and discuss 2 cases. The first case, which is at the focus of this paper, consists of students regarding 

a lesson containing a highly challenging problem rather positively, whilst not fully understanding the 

solution. Our interest in this case lies in the generally positive attitude towards this part of the lesson, 

accompanied by students admitting that key parts of the proof were incomprehensible, and showing 

disbelief in their ability to solve such problems on their own. This lesson will henceforth be referred 

to as Lesson-P (positive student attitude). Lesson-P especially stood out when juxtaposed with a 

lesson containing a similar challenging problem also not understood by students, yet their lack of 

understanding was accompanied by negative emotions of anger and frustration. This lesson will be 

briefly presented in the paper as a contrastive background and referred to as Lesson-N (negative 

student attitude). Thus, we were faced with the following question: how can it be that the students of 

Lesson-P described their learning experience in a rather positive manner, though not fully 

understanding the solution? 

Theoretical background 

Frontal teaching style of undergraduate mathematics 

Undergraduate mathematics courses are typically comprised of lectures and tutorials. This paper 

focuses on large-group tutorials, which are lessons that present problems accompanying the 

theoretical material (presented in the lectures), and are taught in a traditional-frontal style (Marmur 



& Koichu, 2016). The common practice of the frontal teaching style (henceforth referred to as FTS) 

in undergraduate mathematics education possesses pros and cons. On the one hand, there is evidence 

that FTS can be effective in modeling mathematical reasoning for students by “conceptual scaffolding 

through demonstration and worked examples” (Pritchard, 2010, p. 611). This modeling can be 

motivational to students, particularly when exposing the struggle that precedes the reaching of a 

solution (Pritchard, 2010). On the other hand, it has been argued that FTS at university level consists 

of a one-directional communication based on transmitting information (Biggs & Tang, 2011) and 

treating the students as “non-emotional audience” who are granted no room for individual difficulties 

(Alsina, 2002, pp. 5-6). It is not our intention to either support or oppose these claims. Rather, we 

recognize that FTS is widespread and will most likely not disappear in the near future. Therefore, it 

is vital to gain a better understanding of how students learn in this environment in order to be able to 

improve the system from “within”, theoretically and practically, by identifying learning opportunities 

for students within the FTS paradigm. Lectures and tutorials comprise however only a certain 

percentage of the total time spent on an undergraduate mathematics course by students, and they are 

generally expected to spend many additional hours studying independently. Consequently, when we 

discuss the need to recognize and identify learning opportunities presented in the classroom, we mean 

not only those aspects related to the learning process in class, but also the aspects that support the 

learning that continues outside the classroom. 

Emotions, learning, and discourse in the undergraduate classroom 

In this paper we utilize Goldin’s theory of local affect. Goldin (2000) defines emotional states as “the 

rapidly changing (and possibly very subtle) states of feeling that occur during problem solving” (p. 

210). Affective pathways are regarded as a sequence of emotional states, and are linked by Goldin to 

mathematical cognition and heuristic processes students utilize at different stages of mathematical 

problem solving. Specifically, we choose to focus on what Goldin (2014) refers to as key affective 

events during mathematics learning, i.e., events “where strong emotion or change in emotion is 

expressed or inferred” (p. 404). Weber (2008) claims that emotional states may have a substantial 

impact on a student’s failure or success in a high-level calculus course. In his paper, Weber 

demonstrates how a single and strong positive experience of success may alter a student’s attitude 

and type of engagement with the material for the continuation of the course. Marmur and Koichu 

(2016) illustrate that also in a single lesson the creation of strong emotional experiences for students 

may significantly influence their level of focus, attention, and involvement in class.    

Student emotions are examined in this paper in relation to the discourse led by the instructor in class. 

Theoretically, Evans, Morgan, and Tsatsaroni (2006) link emotions with discourse by regarding 

emotions as a “socially organised phenomena which are constituted in discourse” (p. 209). According 

to Sfard (2008), learning is perceived as a change in the mathematical discourse, while distinguishing 

between a discourse on mathematical objects, called object-level discourse, and a “discourse about 

this discourse” (p. 300), referred to as meta-level discourse. In relation to the FTS, the focus on the 

instructor’s discourse finds additional support in Sfard’s (2014) claim that this teaching style allows 

an expert to teach students how to “talk mathematics” and thus promote student learning through their 

introduction to a new mathematical discourse (p. 201).  



Research question 

The study reported on in this paper is part of a broader research on the link between student emotions 

and learning during calculus tutorials. This broader research focuses on characterizing classroom 

events students respond to during calculus tutorials, students’ affective pathways and learning 

experiences during tutorials, and classroom learning-opportunities as reflected by the students’ own 

point of view. This paper addresses these issues by concentrating on the following question: How do 

students’ key affective states relate to the type of mathematical discourse conducted in class? 

Method 

Context and participants  

The two lessons reported on in this paper were of two separate tutorial groups that were part of the 

same second-semester calculus course. The course was highly demanding and challenging, and was 

attended by students from the computer science faculty. Both lessons were attended by approximately 

50 students. The instructors (henceforth referred to as Instructor-P and Instructor-N) were both 

experienced instructors with a good reputation at the university. 

The problems  

Lesson-P took place during the second half of the semester and was regarding the topic of the two-

variable Riemann integral. For this lesson the students were asked to prove that the function below is 

Riemann integrable in two variables on [0, 1] × [0, 1] (and the value of the integral is 0). 

𝑓(𝑥, 𝑦) = {
1

𝑞
 , 𝑥 ∈ ℚ 𝑎𝑛𝑑 𝑦 = 𝑝

𝑞
∈ ℚ, 𝑝

𝑞
 𝑖𝑛 𝑙𝑜𝑤𝑒𝑠𝑡 𝑡𝑒𝑟𝑚𝑠, 𝑞 > 0

0 , 𝑥 ∉ ℚ 𝑜𝑟 𝑦 ∉ ℚ
Lesson-N took place during the first 

half of the semester and was regarding the one-variable Riemann integral. The problem of interest 

was to prove that the “popcorn function” below (also known as “Riemann’s function”) is Riemann 

integrable on [0, 1] (and the value of the integral is 0). 

𝑓(𝑥) = {
1

𝑞
 , 𝑥 = 𝑝

𝑞
∈ ℚ, 𝑝

𝑞
 𝑖𝑛 𝑙𝑜𝑤𝑒𝑠𝑡 𝑡𝑒𝑟𝑚𝑠, 𝑞 > 0

0 , 𝑥 ∉ ℚ
Both instructors referred to the definition of a 

Riemann-integrable function. The problem in Lesson-P was planned as a follow-up two-variable 

version of the “popcorn function”. 

Data collection and analysis 

Both lessons were filmed by the first author of this paper who also took notes during the lessons. 

Subsequently, individual stimulated-recall interviews were conducted with nine volunteering 

students: five on Lesson-P and four on Lesson-N, each student participated in only one of the two 

lessons. The interviews were conducted over a nine-day period after the lessons. Stimulated recall 

was the chosen methodology as it presents a non-intrusive method to help students “relive” the lesson 

and reflect upon their thought processes during its course (Calderhead, 1981). During the interviews, 

the students were presented with an approximately 20-minute video excerpt of the filmed lesson in 

which the problem of interest was taught. They were explained that the video served as a tool to help 

them “relive” the lesson, and were instructed to stop the playback whenever they had a particular 

recollection of what they thought or felt at that moment.  During this part of the interview the 

interviewer occasionally asked clarifying questions, mainly in the form of “can you explain why you 



thought/felt this way at that specific moment?” After watching the filmed episode, the students were 

asked follow-up questions regarding the problem, lesson, and course, the main ones being: a) Was 

the problem memorable for you, and if so, in what way? b) What were you pleased and displeased 

with during the lesson? and c) What is your general attitude towards the course? The interviews were 

audio-recorded and ranged in length from 40 to 65 minutes, depending on the level of detail shared 

by the student. 

For the data analysis we utilized a “general inductive approach” (Thomas, 2006) that allowed us to 

coordinate the raw data into a brief summary that addresses and explains the “underlying structure of 

experiences or processes” (p. 238) most apparent in the data. The goal of the analysis was to identify: 

1) students’ key affective states as indicators of potential-learning or obstacle-for-learning episodes; 

and 2) types of mathematical discourse in the classroom. Specifically, we focused on: 1) episodes 

where all students stopped the video to reflect on the lesson; and 2) repeated statements or themes 

(whether within a specific interview or between interviews). Subsequently, we continued with a 

recursive process of going back and forth between the video observations and the student interviews 

in order to refine our conclusions. Although students were asked in each interview to express their 

emotional states during the lesson itself, it should be recognized that the accounts shared by the 

students might have been of their emotions during the interview. However, we considered this issue 

as a point of strength for the research, rather than a limitation. Such a selective recollection of 

emotions may shed light on the process, addressed by Goldin (2014), of how in-the-moment 

emotional states transform into longer-term attitudes and beliefs, and on how this process shapes the 

mathematical learning. Accordingly, while adopting Goldin’s (2014) terminology of “key affective 

events”, and in line with Marmur and Koichu (2016), we regarded: a) the most memorable emotional 

states of students as key emotional states that shape their overall learning experience; and b) student 

expressions of strong emotions as indicators of potential-learning or obstacle-for-learning episodes 

in class.  

Findings 

Due to the scope limitations of this paper, in the Findings section we will focus on: a) the instructional 

episodes most prominently addressed in the student interviews; and b) student thoughts and emotions 

regarding these episodes. Additionally, the Findings section will predominantly focus on Lesson-P 

as the main explored phenomenon, utilizing Lesson-N as a contrastive background to illustrate and 

emphasize certain aspects of the findings. 

Lesson-P 

After having presented the problem to the students, Instructor-P said: “Let us first try to understand 

what’s going on here. [...] I want us to make some observations.” The instructor reminded the students 

of the one-variable Riemann (popcorn) function, after which the following 10 minutes were focused 

on what was titled on the board as “Observation” and “Observation no.  2”.  The first “Observation” 

entailed that for a fixed 𝑥 we get ∫ 𝑓(𝑥, 𝑦)𝑑𝑦 = 0
1

0
 and therefore the following iterated integral equals 

zero: ∫ (∫ 𝑓(𝑥, 𝑦)𝑑𝑦
1

0
) 𝑑𝑥 = 0

1

0
. After having written the title “Observation no. 2”, Instructor-P asked 

the students: “What happens if I fix 𝑦?” The students participated in the discussion regarding a fixed 

𝑦 ∉ ℚ and a fixed 𝑦 ∈ ℚ, the latter giving the Dirichlet function 𝐷(𝑥) = {
1

𝑞
 , 𝑥 ∈ ℚ

0 , 𝑥 ∉ ℚ
. This led to the 



conclusion that the integral ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
1

0
 does not exist and therefore it is impossible to calculate the 

(opposite-direction) iterated integral ∫ (∫ 𝑓(𝑥, 𝑦)𝑑𝑥
1

0
) 𝑑𝑦

1

0
. 

These observations led the class to two conclusions regarding the function: 1) Its double integral 

exists, yet the iterated integral (in one of the directions) does not; 2) It demonstrates the necessity of 

the continuity assumption in Fubini’s theorem which allows us to calculate the double integral 

∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦, 𝐷 = [0,1] × [0,1]
𝐷

, as the iterated integral ∫ (∫ 𝑓(𝑥, 𝑦)𝑑𝑥
1

0
) 𝑑𝑦

1

0
. These conclusions 

were in fact surprising for the students, as conveyed in their interviews. It was only then that the 

instructor admitted that everything discussed so far “does not yet answer our problem”. At that point 

he wrote: ‘So how do we solve?’, and said: “In such a case we need to follow the definition.” 

We interpreted the students’ general attitudes towards that part of the lesson dealing with this 

problem, as rather positive in the following manner. At different levels of explicitness, all students 

claimed that the lesson and teaching were good, while mainly pointing at the problem presented 

above. For example, even before knowing what the interview was about exactly, Student A said: 

“You came to a very special lesson […] The instructor chose a non-standard problem [the discussed 

one] to convey his messages. I really loved it”. Student B said: “You came to a good lesson, really!”, 

and referred to the discussed problem as “the problem” of the lesson (emphasis in intonation). Student 

C said: “The lesson was interesting. The lesson was clear. The first function [the discussed problem] 

was different and new.” Students A, C, and D called the problem beautiful. Students D and E claimed 

the problem was good since it prepared them for similar problems that may appear in the exam. 

However, all students admitted the problem was difficult and challenging, and the unexpected 

impression we got was that the students did not fully understand the solution, nor expressed 

confidence in their abilities to solve similar problems independently. For example: Student A 

admitted that a key line in the (actual) solution seemed to him like gibberish; Student C found the 

same line to be full of incomprehensible transitions which she referred to as “jumps”; Student B 

referred to the same line with: “What??? He said it, so it is probably true”, and later in the interview 

admitted: “If this problem was in the exam, I wouldn’t have succeeded solving it”; and Student E 

hoped such a problem would not appear in the exam and hoped the lecturer did not have such a “dark 

heart”. However, these statements were not accompanied by any explicit expressions conveying 

negative emotions. Additionally, such statements barely appeared in other parts of the interviews, and 

did not even appear at all when the students were explicitly asked what they were displeased with 

during the lesson. 

It is towards the opening “observations” part of the lesson that the students mainly expressed positive 

opinions on what had happened. Additionally, all students claimed that even though the 

“observations” part was not directly utilized in the actual solution, it was nonetheless an indispensable 

part in support of their learning. They supplied us with a variety of reasons: it exposed the thinking 

process of how to reach a solution; it allowed time to think about the problem; it included a counter-

example for claims they thought were true; it imitated what they would actually do if they were to 

start solving the problem on their own (i.e., try to calculate the iterated integral); it helped them 

understand the problem through step-by-step analysis; it gave room for “mathematical play” where 

the goal was not merely to solve a problem; and it demonstrated that even if an attempt for a solution 

did not succeed, they should just try again in a different way. Some students clearly linked their 



positive attitude with the following didactic aspect of the mathematical discourse led by the instructor 

in class. Student A shared that he really loved the approach taken by Instructor-P during the 

“observations” part. The student described that the instructor put himself in the position of a student, 

approaching the problem through their eyes, and instead of immediately solving the problem because 

he was already familiar with the solution, he started “playing” with it with the aim of seeing where 

this will lead them. A supportive angle is given by Student D who said that during the lesson 

Instructor-P really tried to give the impression that he did not already know the answer, but rather 

was trying to solve the problem with them. She said that only once she was convinced he was not 

“fooling” them, she started thinking with him. The instructor, however, was indeed familiar with the 

solution, and Student D admitted that only when watching the lesson again during the interview, 

she realized how planned and structured the lesson was. 

Lesson-N 

After having written what needs to be proven according to the definition of a Riemann integrable 

function, Instructor-N told the students: “At the beginning you may experience some lack of 

understanding. Once we reach the end [of the solution] you’ll understand where I took the numbers 

from that initially might have looked a bit weird.” Then he wrote the following:  Choose 𝑛0 such that 
1

𝑛0
<𝜖

2
. This is a key moment where all 4 interviewed students stopped the video and expressed similar 

thoughts and strong dissatisfactions. The main criticism the students conveyed is expressed in the 

following interview excerpt: “It really bothers me that he reads the solution by the order of the proof 

and not by the order of how you think about the proof. [...] At the end it all works out. But it doesn’t 

help me with how to solve a problem.” The student then continues while expressing her anger: “It 

really pissed me off.  He pulls the answer out of a hat, and I don’t know how he got to it.” 

These negative opinions towards the lesson, while pinpointing the underlying reason to the key 

moment presented above, continued and repeated throughout all interviews. The students claimed 

that also at the end of the lesson they did not understand the solution, and that the promise made by 

the instructor at the beginning was left unfulfilled.  

Discussion 

While the case of Lesson-N demonstrates that students can possess negative emotions towards a 

solution they did not understand, the case of Lesson-P, containing a similar problem, demonstrates 

that a lack of understanding can still be accompanied by positive student emotions. Both lessons 

contained episodes focused on the solving of a challenging problem, which we suggest to regard as 

an object-level type of discourse. However, the positive emotions in Lesson-P were mainly directed 

towards that part of the lesson focused on how to approach a challenging problem, which we regard 

as a meta-level type of discourse. While other explanations for the students’ positive attitude towards 

Lesson-P are certainly possible, our interpretation is based on what we found to be most prominently 

conveyed by students during the interviews. Furthermore, we suggest that not only did students 

appreciate this meta-level discourse, as expressed in their interviews, but that this discourse may have 

also had a neutralizing effect on the potential negative emotions related to not understanding the 

solution.  

The meta-level discourse in Lesson-P revealed a heuristic approach on how to tackle a challenging 

problem. On the one hand, the discourse was planned and monitored from an expert’s point of view, 



which may be viewed as a teacher’s learning goal (Simon, 1995) that did not coincide with the 

declared main goal of solving the problem. In the case of Lesson-P, the “observations” part did not 

constitute a directionless exploration, but rather led to the conclusions mentioned in the findings. On 

the other hand, as also regarded by the students themselves, the discourse was led by the instructor 

through a student’s point of view, considering students’ cognitive and affective needs, their ways of 

thinking, their assumed misconceptions, and the steps they would most likely take. We call such a 

discourse, presenting heuristics monitored from an expert’s point of view yet derived from a student’s 

point of view, a heuristic-didactic discourse. In the case of Lesson-P, the heuristic aspect of the 

discourse may be viewed in line with what Featherstone (2000) refers to as “mathematical play”, 

which puts emphasis on the act of exploring rather than solving, and may support the creation of a 

zone of proximal development, giving guidance to the learning student. The didactic aspect of the 

discourse may be viewed in line with what Jaworski (2002) refers to as “harmony” between 

“mathematical challenge” and “sensitivity to students” (both their cognitive and affective needs) in 

order to help students make mathematical progress. This is one example of a heuristic-didactic type 

of discourse, and we call for further research on characterizing different types of heuristic-didactic 

discourses in the undergraduate classroom. 

In practice, the presented study suggests that university students wish for a more heuristic-didactic 

discourse to be held in the undergraduate mathematics classroom. In simple terms this means that it 

is necessary for students to get “tools” on how to approach a challenging problem on their own. In 

the presented lessons, not only were students satisfied when a heuristic-didactic discourse took place, 

students also showed strong emotional responses of anger and frustration when this need was not 

fulfilled. Furthermore, even though Lesson-P could have been improved by the students also 

understanding the solution better, it clearly demonstrated that the learning induced by the heuristic-

didactic discourse was perceived by the students as the most valuable kind of learning, even at the 

expense of not fully understanding a solution. Sfard (2008) regards meta-level learning as a change 

in meta-rules of the discourse, while claiming that this change is not likely to be initiated by students 

on their own. Accordingly, meta-level discourse in class may serve as an initial point of aid for 

students to continue a meta-level learning-process at home. All this implies that lecturers and 

instructors should consider paying more didactic attention in revealing to students how they came up 

with their solutions and proofs. This learning-opportunity may be implemented in the common 

undergraduate frontal teaching style and could supply valuable tools for the learning process that the 

students are required to continue independently. 
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We report on an analysis of ‘decision points’ that occurred during first year undergraduate calculus 

lectures. We analysed 135 accounts written by three lecturers concerning their own teaching; these 

accounts were written during a professional development project on employing the Discipline of 

Noticing (Mason, 2002). We classified the decision points in these accounts into eight categories. 

Furthermore, the triggers of these moments were identified and classified into seven categories; of 

these, the majority (58.2%) arose as a result of the lecturer monitoring either her own practice or the 

students’ engagement. 

Keywords: Teacher noticing, decision points, mathematics lecture, university mathematics.  

Introduction 

Today I was happy with my ‘performance’ from a teacher-centred perspective as the lecture 

evolved: I felt I was coherent, explained and connected ideas well, used multiple representations 

of concepts and built on students’ prior knowledge, However, I realised more than halfway through 

the class that my lecture was just that – very teacher-centred! I tried to rectify this but was not 

happy that my attempts were successful. (Lecturer C) 

Lecturer C speaks about a tension inherent in large-group mathematics lectures between teacher-

centered and student-centered methodologies, and this is probably familiar to anyone who has taught 

such a course. It also highlights the dilemma that faces a lecturer when it occurs to her mid-way 

through a lecture that she might deviate from her original plan. The change of plan can feel like a 

risky strategy, especially when working with very large groups of students; however research on 

mathematics teaching at school level indicates that rich learning opportunities can arise from 

decisions to change direction (Rowland and Zaskis, 2013). It is important then, that lecturers are 

aware of opportunities that present themselves, for the simple reason that the quote in the title, 

borrowed from Schoenfeld (2011, p. 228), suggests. It is also important that lecturers develop the 

skills to take advantage of these opportunities as they arise. In this paper, we explore the opportunities 

to make decisions that might arise in a mathematics lecture; we have named instances when a non-

trivial choice between alternative courses of action could be taken ‘decision points’.  

The Discipline of Noticing developed by Mason (2002) consists of “a collection of practices which 

together can enhance sensitivity to notice opportunities to act freshly in the future” (p. 59). Mason 

notes that practitioners, of necessity, form habits in order to deal with issues that arise in their 

everyday practice. The practices described by Mason provide educators with techniques to assist them 

in developing the dual abilities to notice key events in the classroom, and secondly to have possible 

actions come to mind in-the-moment in order to respond to these in non-habitual ways. 



Mason (2002, pp. 33-34) distinguishes between levels of noticing, from ordinary-noticing, through 

to marking, and finally recording. “Ordinary-noticing” is where a person’s memory of something can 

be jogged if another person remarks upon it; “marking” is where someone has taken sufficient notice 

of something to “re-mark” upon it at a later stage; and, finally, “recording” is where one records or 

makes a note of something one has noticed, usually in writing. To do the latter, Mason (2002, p. 46) 

advocates the practice of writing “brief-but-vivid accounts”. These are brief notes which give an 

“account-of” an incident, rather than an “account for” as Mason explains: 

To account-for something is to offer interpretation, explanation, value-judgement, justification, or 

criticism. To give an account-of is to describe or define something in terms that others who were 

present (or who might have been present) can recognize. (p. 41) 

The data for this paper comes from a set of brief-but-vivid accounts written by the three authors on 

incidents that occurred during teaching over a two-year period when they took part in a project aimed 

at using the Discipline of Noticing to study their own teaching (see Breen, McCluskey, Meehan, 

O’Donovan & O’Shea (2014) for more details). 

In this paper we will present an analysis of the accounts which relate to large-group teaching of first 

year modules; in particular we will endeavour to answer the questions: What types of decision points 

can occur during a mathematics lecture? What triggers these decision points? 

Literature review 

Teacher noticing has been receiving attention in the research literature recently, see for example the 

research studies included in the book edited by Sherin, Jacobs & Philipp (2011). In presenting an 

overview of these studies, the editors observe that while the conceptualisation of teacher noticing may 

vary, it is generally considered as consisting of one or both of two main processes. The first process, 

“attending to particular events in an instructional setting” (p. 5), relates to where the teacher does 

(and does not) place her attention in the classroom setting. The second process they describe as 

“making sense of events in an instructional setting” (p. 5) and note that some researchers 

conceptualise this process only as “interpreting” (p. 9) what is noticed, while others view it as “both 

interpreting and deciding how to respond” (p. 9). 

Instances when a choice presents itself during teaching are labeled “contingent moments” by 

Rowland, Huckstep, and Thwaites (2005) in their work on the Knowledge Quartet. At these moments 

teachers have to think on their feet and possibly deviate from the planned lesson. Rowland, Thwaites 

and Jared (2015) identified three types of triggers of contingent moments in their study of 

mathematics teaching: responding to student ideas; teacher insight; and, responding to the availability 

of tools and resources. Teachers may deal with the first trigger in one of three ways: ignore; 

acknowledge but put aside; acknowledge and incorporate (Rowland and Zaskis, 2013).  

Schoenfeld (2010) has developed a theory to explain what influences the decisions an individual 

makes when carrying out a particular task. He has applied his theory in particular to decision-making 

in mathematics classrooms. He proposes that decisions a teacher makes while teaching are a function 

of her resources, orientations and goals. Although “resources” is a broad term, Schoenfeld classifies 

the knowledge that a teacher possesses as being a key component of the resources she brings to the 

classroom. He uses “orientations” to encompasses one’s “dispositions, beliefs, values, tastes, and 



preferences” (p. 29). And while the term “goal” is self-evident, Schoenfeld notes that an individual 

may pursue a particular goal “simply in the service of other goals” (p. 20). 

Most of the research studies discussed above in relation to noticing, contingent moments, or decision-

making in the classroom have been conducted at the school level. An exception is the work of Barton, 

Oates, Paterson, and Thomas (2015) and colleagues in New Zealand who use Schoenfeld’s (2010) 

theory to discuss taped video excerpts from participating mathematicians’ and mathematics 

educators’ lectures as a means of engaging in professional development on teaching practice. 

However in terms of noticing and the occurrence of decision points in lectures, there is little research. 

Indeed to many it might seem like traditional lectures provide few opportunities for contingency. 

However McAlpine, Weston, Beauchamp, Wiseman and Beauchamp (1999) report on a study of 

monitoring of student cues by university lecturers. The lecturers in this study were found to attend to 

four types of cues: student written, student verbal, student non-verbal, student state. McAlpine et al. 

(1999, p. 117) posit that the lecturers had a corridor of tolerance for these cues and a decision to 

change practice was only taken when the cue lay outside of this corridor. In contrast to the work of 

both Schoenfeld (2010) and McAlpine et al. (1999), we focus here on the opportunities for decision-

making that arise in lectures rather than the process of decision-making itself. 

Methodology 

The authors are lecturers of mathematics at three different universities in Ireland. Each has a doctorate 

in mathematics or applied mathematics and has a minimum of fifteen years’ experience of teaching 

mathematics at the tertiary level. Between them they have taught mathematics classes from first year 

undergraduate through to postgraduate level, and have experience of teaching students in class sizes 

ranging from single figures up to a few hundred students. In 2010/11, along with two other colleagues, 

they embarked on a project aimed at reflecting on their teaching using the ideas and philosophy 

described by Mason (2002). As part of this process, over the course of two years, they engaged in 

writing brief-but-vivid accounts of incidents or moments that occurred in relation to their teaching. 

See Breen et al. (2014) for further details.  

The accounts of all five members of the group were collected and a general inductive approach 

(Thomas, 2006) was used to identify themes in a sample of the accounts. We noticed that many 

accounts described instances where the lecturer was faced with a decision about what to do next, or, 

instances where an opportunity to make a decision that might change the course of the lecture or 

discussion was implicit. We labeled these moments decision points (DPs). In order to focus 

specifically on these moments, all accounts that did not specifically deal with lecturing were removed. 

The first and second authors (AOS and MM) independently analysed all the accounts to both identify 

and code the DPs. After some discussion they agreed on the identification of DPs and the codes 

assigned. In addition, AOS identified the triggers. Then all five members worked through all the 

accounts to confirm their agreement or express disagreement with the DPs and triggers identified and 

the codes assigned. By the end of this process, the group had reached a consensus. AOS then grouped 

the codes into categories, and the third author (SB) examined these for consistency. In some of the 

accounts, the action taken by the lecturer as a result of a DP was recorded, however we will not 

discuss the identification or classification of these here. 



In this paper we present findings on the DPs and triggers from accounts written by each of the three 

authors while lecturing a first year mathematics class. In total there were 135 accounts with 141 DPs 

identified, as some accounts contained more than one DP. These DPS were classified into 8 

categories. In order to provide a context for the accounts, we note that Lecturer A taught Calculus to 

a group of approximately 200 students consisting of both mathematics and finance students in the 

first semester of both 2010/11 and 2011/12. Lecturer B taught mathematics to a group of over 200 

first-year business students in the first semester of both 2011/12 and 2012/13, while Lecturer C taught 

Calculus to a first year class of approximately 50 mathematics students for the duration of the 

academic years 2010/11 and 2011/12. The format for each course consisted of either 2-3 lectures per 

week given by the lecturer, to which all students were required to attend.  

While all three lecturers engaged in what might be considered lecturing - that is, the lecturer speaks 

to the whole class, and perhaps writes on a projector or board while the class is expected to remain 

silent - they also engaged in initiatives aimed at increasing student participation. These fall into two 

categories – whole class question or discussion and class activity. The former relates to where the 

lecturer asks the whole class a question or attempts to conduct a whole-class discussion, while by 

class activity we mean an activity that students are expected to engage in during class, usually in 

small groups. As a final part of the analysis MM classified each account containing a DP as occurring 

in either Setting 1 (S1) – lecturing; Setting 2 (S2) – whole-class question or discussion; and, Setting 

3 (S3) – class activity. We now present the findings. 

  Lecturer A Lecturer B Lecturer C Total 

 Decision Points S1 S2 S3 S1 S2 S3 S1 S2 S3  

DP1 How to engage students? 5 0 3 1 0 0 4 2 0 15 

DP2 
How to respond to students’ 

questions, answers, or 

comments? 

8 0 1 0 4 0 3 0 3 19 

DP3 
How to ask questions to gather 

information? 
4 0 2 1 0 0 1 1 1 10 

DP4 How to deal with disruption? 1 0 0 18 1 1 2 1 0 24 

DP5 How to conduct class activity 

or discussion? 
0 0 3 0 2 0 2 2 7 16 

DP6 
How to deal with students’ 

mathematical difficulties? 
4 0 2 0 17 0 1 7 5 36 

DP7 What to do next in the lecture? 5 0 0 1 2 0 4 3 2 17 

DP8 Other 1 0 0 2 1 0 0 0 0 4 

 Total 28 0 11 23 27 1 17 16 18 141 

Table 1: Decision Points by Lecturer and Setting 

Findings 

In Table 1 we present the categories of DP with frequency by lecturer and setting. Lecturer A mainly 

wrote accounts about S1 and S3, Lecturer B about S1 and S2, while Lecturer C wrote about all three. 



This is perhaps not surprising as she had a much smaller class. Over a quarter of all DPs identified 

belongs to the category “How to deal with students’ mathematical difficulties?” (DP6, n=36, 25.5%). 

It is noteworthy that 31 of these occurred in Settings 2 and 3. The next largest category of DPs is 

“How to deal with disruption?” (DP4, n=24, 17.0%) with three-quarters of these attributed to Lecturer 

B in the lecture setting. The third largest category is “How to respond to students’ questions, answers 

or comments?” (DP2, n=19, 13.4%) and while these DPs may be expected to occur in Settings 2 and 

3, it is interesting to note that just under half are attributable to Lecturer A in the lecture setting. The 

category “What to do next in the lecture?” (DP7, n=17, 12.0%) contains DPs relating to opportunities 

for decisions that present themselves when moving from a whole-class question/discussion or class 

activity, back to the lecture setting. Four of the DPs did not seem to fit in any of the categories 

identified and were grouped as “other”.  

Each DP was found to have an associated trigger and in Table 2 we present the categories of triggers 

with frequency by lecturer and setting.  

  Lecturer A Lecturer B Lecturer C Total 

 Triggers S1 S2 S3 S1 S2 S3 S1 S2 S3  

T1 Lecturer monitors aims/goals 3 0 1 1 0 0 2 1 3 11 

T2 Lecturer monitors practice 6 0 1 2 1 0 3 1 0 14 

T3 
Lecturer monitors student 

nonverbal 
9 0 0 0 5 1 8 4 0 27 

T4 
Lecturer monitors absence of 

student verbal  
0 0 6 0 0 0 0 0 4 10 

T5 
Lecturer monitors disruptive 

behavior 
1 0 0 18 0 0 0 1 0 20 

T6 
Student question or comment or 

answer 
8 0 3 2 19 0 6 9 9 56 

T7 Other 1 0 0 2 0 0 0 0 0 3 

 Total 28 0 11 25 25 1 19 16 16 141 

Table 2: Triggers by Lecturer and Setting 

The first five triggers listed in Table 2 (T1-T5) are as a consequence of the lecturer monitoring her 

aims/goals for the class, her practice, what the students were (not) doing, which students were not 

answering questions or contributing, and student behaviour. These account for 58.2% of triggers 

identified. In terms of the triggers identified when the lecturer monitored students (T3-T5) there are 

some similarities between the cues identified in McAlpine et al. (1999) and those described in the 

accounts relating to these triggers. The category labeled “Student question or comment or answer” 

(TP6, n=56, 39.7%) contains student-initiated triggers and is the largest of the trigger categories. The 

“Other” category relates to triggers that are neither lecturer- nor student-initiated and relate to issues 

such as a cold room or poor attendance due to bad weather. These findings are similar to those of 

Rowland et al. (2015) who in their study classified triggers of contingent moments as emanating from 

the teacher, the students, or resources and tools, with the latter category accounting for far fewer 

triggers than the first two. Exploring links between DPs and triggers, not surprisingly almost all DPs 



categorized as DP2 (18/19) and most of those as DP6 (29/36) arose from T6 triggers. Over half of 

DP3 and most of DP4 (20/24) resulted from T1 and T5 triggers respectively. 

We now present some examples of accounts featuring DPs and associated triggers that occurred in 

the lecture setting. We note that the account by Lecturer C at the start of the paper is an example of 

a lecturer attempting to make her lecture more student-centred in order to engage students (DP1) as 

a consequence of monitoring her practice (T2). In the following account by Lecturer A, the trigger 

for the decision point about how to engage students (DP1) is the lecturer monitoring what the 

students are (not) doing (T3) while she is lecturing. 

I continued the introduction to limits today. I was doing a lot of talking and I realized that people 

weren’t taking anything down. I tried writing more explanations on the pictures I was drawing, so 

hopefully it will make more sense when they look at it again. (Lecturer A) 

Similarly the account by Lecturer C describes how noticing students’ expressions (T3) during a 

lecture, prompts her to explain what mathematicians do in an attempt to engage the students (DP1):  

On noticing students exchanging glances when I asked them why they would attempt to solve a 

particular problem in a particular way, I was prompted to reiterate what “doing mathematics” (at 

this level) entails. (Lecturer C) 

The next account illustrates how a student asking a question (T6) during a lecture results in a decision 

point for the lecturer about whether to review material already covered (DP2). 

I found the limit of  as  when a mature student, who asks lots of questions, 

asked why you couldn’t just cancel the sin’s and the x’s to get 2/3. We proceeded to discuss the 

meaning of the term  and the difference between multiplication and composition. I had 

spoken about this before but felt talking about it here was useful. (Lecturer A) 

When a lecturer monitors student behaviour (T5) during a lecture, decision points about how to deal 

with disruptions (DP4) may arise as illustrated in the following account by Lecturer B: 

Shortly into the lecture I ask a group of four students to stop talking. Minutes later I tell two other 

students to stop talking. Some minutes later, I ask the first group to stop talking again. I look at 

the class – most of them are staring straight at me and not moving. I realize I am nagging and 

stopping the lecture for the sake of a few “talkers”. As I continue to write and talk, I hear 

whispering coming from various parts of the theatre and my explanation falters. I decide I can’t 

get any more annoyed. I put up a question and ask the class to work on it. (Lecturer B, T5, DP4) 

Unlike the accounts so far which occurred in the lecture setting, the following account takes place 

during a class activity. During the activity the lecturer experiences a decision point concerning how 

best to respond to student questions (T6 and DP2). But on completion of the activity another decision 

point arises about what to do next in the lecture (DP7).  

I put up an exercise for the students to work on. I remind them that the first part is revision – they 

have to find the profit function. As I walk around the theatre a student asks: “What are the fixed 

costs?” I remind him that this example is different to the one I did earlier in class. Another asks: 

“Do I multiply this function by q to get total revenue?” “No, you are given total revenue, you don’t 

have to find it”, I reply. “What is q?” another asks. I feel deflated – this is revision. I planned to 

sin(2x) / sin(3x) x®0

sin(2x)



finish the exercise today, but instead, show them how to get the profit function and complete the 

exercise in the next lecture. (Lecturer B) 

Discussion and conclusions 

We wish to discuss three points in this section. The first concerns decision points that arise while 

lecturing. One might assume that in the traditional sense of a lecture, a lecturer delivers from a pre-

prepared script and unless a student asks a question, the lecturer will not deviate from the script. 

However there is some evidence from the three lecturers’ accounts on their practice that indicates that 

even while lecturing in the traditional sense, they monitor their aims for the class, their own practice, 

and how the student cohort are acting, and that this monitoring leads to the occurrence of many of the 

decision points. About one third of the triggers for decision points in our study were student initiated, 

(T6 in Table 2) in contrast to the findings of McAlpine et al. (1999), but in comparing one must be 

cognizant that our methodology differs from theirs. While we acknowledge that the fact that the three 

lecturers undertook a professional development project on using the Discipline of Noticing (Mason, 

2002) to improve their practice may mean that they are not typical, it would be interesting to explore 

further what mathematics lecturers focus on while in a lecture as well as gathering more data to 

illuminate the relationship between triggers and decision points. 

Secondly we observe from our findings that decision points relating to how to address students’ 

mathematical difficulties usually emerged in the context of a whole class question or discussion or a 

class activity. This is perhaps not surprising but does highlight the importance of including such 

activities during a lecture in order to assess students’ mathematical understanding. However it is also 

worth pointing out that over half of all the decision points identified in this study were as a 

consequence of such an activity, which may suggest an increased cognitive load for the lecturer who 

engages in such activities.  

Our final point relates to the methodology used in this study. Our analysis of the settings seems to 

indicate the lecturers’ individual preferences for pedagogical techniques and activities however we 

cannot use our data to draw conclusions about the proportion of class-time they each spent in the 

three settings, or make general claims about the relationship between the settings and the occurrence 

of decision points. This is because the lecturers in this study had complete autonomy over what 

incidents they chose to write about. They wrote about what mattered to them and many of the accounts 

relate to incidents where the lecturer felt unsure about what to do, or uncomfortable about a decision 

she had made. In any lecture, there may have been a multitude of more interesting moments worthy 

of noting, but either they did not notice them, or chose not to write about them. In this way there is a 

parallel with the findings of Barton et al. (2015). In choosing excerpts from a video-taped lecture for 

group discussion, the authors note that: “Counterintuitively, lecturers chose parts in which they felt 

less comfortable” and in group discussions “frequently chose to focus the group’s attention on 

interludes in the lecture when unexpected decisions were made” (p. 152).  

We return to the quote from Schoenfeld (2011): “Noticing is consequential – what you see and don’t 

see shapes what you do and don’t do” (p. 228). We suggest that the use of the Discipline of Noticing 

(Mason 2002) can help lecturers to identify opportunities for making (possibly different) decisions in 

their lectures. Individually the process also highlighted for each of us different aspects of our practice 

that we wanted to work on – for Lecturer A it was how to make her lectures more student-centered, 



for Lecturer B the issue was how to deal with disruptive behavior, for Lecturer C, how to address 

mathematical difficulties effectively and sensitively. We also recommend that lecturers, as a 

professional development exercise, write a selection of brief-but-vivid accounts and discuss them in 

a group setting using Schoenfeld’s theory (2011) to frame the discussion. 
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This paper describes students’ grasp of inflection points. The participants were asked to define 

inflection points, to judge the validity of related statements, and to find inflection points by 

investigating (1) an algebraic representation of a function, and (2) the graph of the derivative. We 

found that participants provided their own “filtering conditions” to determine or deny the existence 

of an inflection point In order to analyze participants’ conceptions of inflection points, we used the 

lenses of Fischbein’s theoretical framework. 

Keywords: Inflection point, formal knowledge, algorithmic knowledge, intuitive knowledge. 

Introduction 

Functions receive considerable attention in secondary school, commonly in algebra and calculus 

lessons. Inflection point is one of the function-related notions addressed in high school and in 

further mathematics studies. In preliminary studies, we found some indications of common 

erroneous conceptions of the notion (e.g. Ovodenko & Tsamir, 2005; Tsamir & Ovodenko, 2004; 

2013). These findings encouraged us to expand our research regarding the grasp of the notion of 

inflection point, and regarding possible sources of related common errors, while addressing a larger 

and diverse population who was given richer types of tasks (elaborated upon in the methodology 

section). In this paper, we present part of the findings from the extended study (Ovodenko, 2016). 

The research tools were designed and the findings analyzed with reference to a number of 

theoretical frameworks, including Fischbein's theory of algorithmic, formal, and intuitive 

components of mathematical knowledge (Fischbein, 1987, 1993a) and his theory of figural concepts 

(Fischbein, 1993b). Specifically, our research questions are: In the students’ opinion, (1) When is a 

point an inflection point? (2) When is a point a non-inflection point? 

What does research tell us about students’ conceptions of inflection points? 

Literature gives some indications of students’ difficulties when using the notion of inflection point. 

Some researchers (e.g. Carlson, 1998) have reported that students tend to use fragments of phrases 

taken from earlier-learned theorems, such as “if the second derivative equals zero [then] it is an 

inflection point” when solving problems in the context of dynamic real-world situations. 

Other researchers have reported that early experiences with the tangent to a circle contribute to the 

creation of the intuitive grasp of the tangent as a line that touches the graph only at one point and 

does not cross it (e.g. Vinner, 1982). This intuition was evoked when students were asked to 

identify and draw a tangent line to a curve’s points that included non-differentiable and 

differentiable inflection points (e.g. Biza & Zachariades, 2010). 

In a previous study, we examined students’ conceptions of inflection points, in which we came 

across a novel tendency to regard a “peak point” as an inflection point (e.g. Tsamir & Ovodenko, 

2004). We found tendencies to regard f '(x) = 0 as a necessity for the existence of an inflection point 

(Ovodenko & Tsamir, 2005), as well as tendencies to view f '(x) ≠ 0 as a necessary condition and       



f ′′(x) = 0 as a sufficient condition for an inflection point (Tsamir & Ovodenko, 2013). 

Consequently, we designed a large study to examine students’ conceptions of the inflection point 

when solving a rich variety of problems. Here we report on part of the findings (Ovodenko, 2016). 

Methodology 

The research population included 223 participants from different educational levels of mathematics: 

high school students studying mathematics at the intermediate level, high school students studying 

mathematics at the advanced level, university students and university graduates (the latter majoring 

in mathematics-rich subjects, such as mathematics, computer science, and electronic engineering). 

All participants had studied the notion of inflection point during their calculus lessons. 

According to the Israeli mathematics curriculum for secondary schools, an inflection point is 

defined as a point on a curve at which the curve changes from being concave up to concave down or 

vice versa, usually relating to functions that are at least twice differentiable in a small neighborhood 

of the point. It is important to note that the first encounter with inflection points occurs before the 

term is defined. It happens when students start investigating functions: they solve f '(x) = 0 to find 

possible x-s of extreme points and accidentally encounter cases where f '(x) = 0, but there is no 

extreme point because the function is monotonic in the interval that includes this point. In such 

cases – f '(x) = 0 but the point is non-extreme – students are first guided to label these points as 

inflection points for purposes of communication and to distinguish them from extreme points. 

Afterwards, useful theorems are introduced, e.g., a necessary condition for x0 to be an inflection 

point is f ''(x0) = 0; a sufficient condition may be: (1) f ′′(x0
+), and f ′′(x0

-) have opposite signs in the 

neighborhood of x0; or, (2) f ′′′(x0) exists and f ′′′(x0) ≠ 0.  

In order to widen the scope of the gathered data, two types of tasks were designed: Produce-a-

Solution (production) tasks (i.e., solve mathematical problems), and Evaluate-a-Solution 

(identification) tasks (i.e., examine the correctness of given solutions). Tasks in each of the two 

types were presented in verbal, graphic, and algebraic representations (see Figure 1).  

 

 

 

 

 

 

This systematic structure of tasks provided insight to the participants’ ideas and reasoning. It was 

developed and empirically validated (during preliminary pilot studies) as a tool that allows students 

to explain related formal, algorithmic and intuitive components of their mathematical knowledge 

(Fischbein, 1987, 1993a). The contribution of these structured tools may go beyond the broad 

exploration of students’ conception of inflection points; such structured tools could be useful to 
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      Figure 1: Structure of research questionnaire  



reveal students’ conceptions of additional mathematical notions. That is, the research tools offered 

in this study may serve as a model when designing research tools aimed at investigating students’ 

conceptions of other mathematical notions.  

In the following, we present four tasks (Produce-a-Solution) from the questionnaire.  

Task 1: Define: What is an inflection point?  

Task 2: True or false? Prove:  

Statement 1: f: R → R is a differentiable function. 

            If f '(x0) = 0, then P(x0, f (x0)) is an inflection point.  

Statement 2: f: R → R is a continuous, (at least twice) differentiable function. 

            If f ′′(x0) = 0, then P(x0, f (x0)) is an inflection point.  

Statement 3: f: R → R is a continuous, (at least twice) differentiable function. 

            If f ′(x0) = 0 and f ′′(x0) = 0, then P(x0, f (x0)) is an inflection point.            

Statement 4:  f: R → R is a continuous, (at least twice) differentiable function. 

                  If f ′′(x0) = 0 and the function is monotonically increasing (decreasing)  

                  in the neighborhood of x0, then P(x0, f (x0)) is an inflection point.  

Task 3: Find (if possible) the inflection points of the functions: 

  (1) f (x) = x4 + 2x3 – 1;  (2) f (x) = x4 + 32x;  (3) f (x) = | x3 – 1|;                                   

  (4) 
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Task 4: Find (if possible) the inflection points of f(x), g(x), t(x), 

based on the graphs of f '(x), g '(x), t '(x) – see Figure 2.           
 

Task 1 and Task 2 are in a verbal representation, addressing participants’ formal knowledge, Task 3: 

in an algebraic representation, addressing what we expected to be algorithmic knowledge; and Task 

4 in a graphic representation, addressing participants’ figural conceptions. Intuitive knowledge may 

be expressed in all four tasks. 

Before giving our high school participants the tasks, we asked their teachers whether these tasks 

would be familiar to them. We learnt that Task 3 was expected to be most familiar – students 

usually investigated algebraic expressions of functions. They seldom analyzed graphs of the 

derivative, as required in Task 4; and were rarely asked to determine and prove the validity of a 

statement, as required in Task 2. Students’ modest experience with such tasks and the impossibility 

of applying routine algorithms in the related solutions led us to assume that students’ knowledge 

might be challenged. 

Based on the analysis of their solutions, 20 participants were invited to individual, semi-structured, 

follow-up interviews, where they were asked by the researchers to elaborate on their written 

solutions. Interviewees were chosen according to their solutions in the questionnaires, focusing on 

interesting, correct, and incorrect ideas, while aiming to understand their reasoning. Interviewees 

were asked, among other things, to explain their solutions and to analyze solutions proposed by 

other participants. The interviews took 30-45 minutes and were audiotaped and transcribed. 

Figure 2: Graphs in Task 4 



Results 

In this section, we answer the research questions: In the students’ opinion (1) When is a point an 

inflection point? (2) When is a point a non-inflection point? We discuss each of the ideas as 

presented in relevant tasks. More specifically, we present each of the conceptions found as 

expressed in the four tasks, in descending frequency of the phenomenon. 

When is the point an inflection point?  

Our data indicates six sets of conditions that in the participants’ opinions guarantee the presence of 

an inflection point. 

Passage point from convex to concave or vice versa ⇒ Inflection point – This conception was 

mainly expressed (55%) in Task 1 (Define): “Inflection point is a point where the graph shifts from 

concave to convex (or vice versa)”. However, no reference was made to characteristics of the 

function (domain, continuity or differentiability). 

f ′′(x0) = 0 and a passage from convex to concave ⇒ Inflection point – This conception 

prevented participants from finding the non-derivative inflection point of the functions, based on the 

graphs of derivatives in Task 4 (24%). In addition, it was also expressed in solutions to the algebraic 

representation of function f (x) = |x3 – 1| (16%) in Task 3. 

f ′′(x0) = 0 ⇒ Inflection point – This conception was evident in the participants’ solutions to three 

tasks. In Task 3, f ′′(x) = 0 considerations were erroneously used as sufficient for inflection points of 

polynomial functions and even of piecewise functions. For example, participants correctly found  

A(0, –1) and B(–1, −2) as inflection points of f (x) = x4 + 2x3 – 1 by examining only f ′′(x) = 0 (30%). 

Similarly, the point (0, 0) was erroneously claimed to be an inflection point of 
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by examining only f ′′(x) = 0 (15%). About 30% incorrectly claimed that Statement 2 is correct 

(Task 2). Some of them added: “That is the definition: P is an inflection point if and only if f ′′(xP) = 

0”. Others provided algorithmic considerations, mentioning solutions to investigate-the-function 

and stopping after solving f ′′(x0) = 0, e.g.: “We find inflection points when looking for extreme 

points. If f ′′(x0) = 0, then the point is not minima or maxima, and that is why it is an inflection 

point”. In their reactions to Statement 3 (Task 2) participants (10%) incorrectly answered that the 

statement is valid and explained that “f ′′(x0) = 0 is a sufficient condition for the existence of an 

inflection point”. 

f '(x0) = 0 and f ′′(x0) = 0 ⇒ Inflection point – This conception was mainly expressed in Task 2; 

about half of the participants incorrectly claimed that Statement 3 was valid. Most of them provided 

the methods that they used to solve investigate-the-function tasks. They wrote: “[We] always find 

inflection points when looking for extreme points, thus starting this search with f ′(x) = 0”, then: 

“An inflection point is a point where f ′′(x) = 0”. In addition, in Task 4 (Investigate the graphs of 

derivative), about 20% incorrectly found an inflection point only at x = 6, exhibiting an erroneous 

assumption: “We see that t ′(6) = 0, that is, the slope of the tangent of y = t ′(x) at x = 6 is zero, so,   t 

′′(6) = 0, therefore at x = 6 there is an inflection point.” 

f ′′(x0) = 0 and monotonicity in the neighborhood of x0 ⇒ Inflection point – Participants (42%) 

incorrectly claimed that Statement 4 was valid (Task 2). They explained: “Those are sufficient 



conditions for an inflection point”, or gave a supporting example, like f (x) = x3 + 5. In their 

interviews, several of the latter explained their solution in terms of: “If the second derivative is zero 

and the function continues to increase when increasing and to decrease when decreasing, there is a 

change of convexity-concavity”. The combination of these two conditions is likely to determine an 

inflection point. However, this answer can be refuted by a counter example, like f (x) = x4 + 32x (this 

function appeared in Task 3, but it was not used to refute this statement), f ′′(0) = 0 and the function 

is increasing monotonically in the neighborhood of x = 0 but (0, 0) is not an inflection point. 

Evidence about this set of insufficient conditions that seem to be “allegedly certain” for ensuring an 

inflection point, to the best of our knowledge, was found for the first time in this research. 

f ′(x0) = 0 and monotonicity in the neighborhood of x0 ⇒ Inflection point – Participants (16%) 

wrote, for instance: “A point where f ′(x) = 0 and the graph keeps increasing (or decreasing) before 

the point and after it is an inflection point” (Task 1). In reaction to Statement 1 (Task 2), 

participants correctly answered that the statement is false, but their explanation was: “f ′(x0) = 0 is 

necessary but not a sufficient condition for an inflection point. If in addition to f ′(x0) = 0 the 

function increases (or decreases) before and after the point, only then is the point an inflection 

point” (10%). It should be noted that a combination of these conditions define a particular type of 

notion – a horizontal inflection point. This grasp of inflection point probably ignores non-horizontal 

inflection points (Task 3), like the inflection point of the function f (x) = x4 + 2x3 – 1 (10%). 

When is the point a non-inflection point? 

We found three conditions that deny the existence of an inflection point: 

No differentiability ⇒ No inflection point – In reactions to Task 3, investigate the function          f 

(x) = |x3 – 1|, most participants (63%) found an inflection point only at x = 0, providing algorithmic 

considerations of solutions to investigate-the-function, such as: “f ′(0) = 0, f ′′(0) = 0, before x = 0, f 

′′(x) is positive, so f (x) is convex and after x = 0, f ′′(x) is negative, so f (x) is concave, thus x = 0 is 

an inflection point”. Some of them added a correct graph to their investigation and, with relation to 

x = 1, wrote that “although at this point the function changes from concave to convex, it is a non-

inflection point, because the function is not differentiable at x = 1”. In their interviews, several 

participants explained: “The function is non differentiable at x = 1 and therefore there is no 

inflection point”, or: “No differentiability, no inflection point.” Following this, a quarter of the 

participants defined “inflection point” (Task 1) as requiring differentiability. For example: “A point 

where f ′′(x) = 0 and the function turns from concave to convex or vice versa”, or: “The slope of the 

tangent of the function at this point is zero, and the function is either increasing on both sides of the 

point, or decreasing on both sides of the point.” 

No second derivative ⇒ No inflection point – This conception, that is consistent with the condition 

f ′′(x0) = 0, is used as a filter to reactions to Task 3, Investigate the function
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included explanations (23%) such as: “When there is no second derivative – there is no inflection 

point. All inflection points must satisfy the condition f ′′(x0) = 0. Otherwise there is no infection 

point”. It was also found in reactions to Task 4 (15%), Investigate the graphs of f ′(x), that only the 

point x = 6 that satisfies the condition f ′′(x0) = 0 was identified as an inflection point. The other point 

(x = 10), where the second derivative is not defined, was ignored. 



f ''(x0) = 0 and f '''(x0) = 0 ⇒ No inflection point – expressed in the investigation of the function  

f (x) = x4 + 32x (7%). Note that this function really has no inflection points. Yet, this correct 

judgment was based on a wrong consideration. A counter-example is f (x) = x5 has an inflection 

point, yet both f ′′(0) = 0 and f ′′′(0) = 0. 

Commonly studies report of students’ conception of mathematical notions by reporting on criteria 

that lead to regard the notion as defined. Here we show a new angle of criteria that regards the 

notion as undefined. 

Discussion 

We discuss the findings by using Fischbein’s (1993a, 1993b) theoretical framework for analyzing 

students’ errors and for examining possible related sources. 

What are possible sources of students’ mathematical errors? 

Fischbein studied broad aspects of students’ mathematical reasoning, claiming that an analysis of 

students’ performance has to take into account three basic aspects: algorithmic, formal and intuitive 

(Fischbein, 1987, 1993a). The algorithmic aspect includes knowledge of (a) “how” to solve a 

problem, and (b) “why” a certain sequence of steps is correct. The formal aspect includes 

knowledge of axioms, definitions, theorems, proofs and knowledge of how the mathematical realm 

works. The intuitive aspect of mathematical knowledge is an immediate and self-evident, though 

not necessary correct, knowledge, accepted with certainty. Fischbein’s three components of 

mathematical knowledge and their interrelations play a vital role in students’ mathematical 

performances. However, “sometimes, the intuitive background manipulates and hinders the formal 

interpretation or the use of algorithmic procedures”, causing inconsistencies in students’ solutions 

(Fischbein, 1993a, p. 14). Fischbein further addressed the impact of drawings (e.g., in geometry) on 

learners’ mathematical reasoning by explaining that the figural structure may dominate one’s 

reasoning instead of being controlled by the corresponding formal constraints (Fischbein, 1993b). 

What are the possible sources for students’ errors with the concept of inflection points? 

We found tendencies to determine or deny the existence of an inflection point under certain 

conditions. It is important to note that during the study we did not ask directly: Under which 

conditions, does or does not one get an inflection point? Participants provided “filtering conditions” 

by their own initiative. So, if one of the following sets is true: (1) convex-concave; (2) f ′′(x0) = 0 

and convex-concave; (3) f ′′(x0) = 0; (4) f ′(x0) = 0 and f ′′(x0) = 0; (5) f ′′(x0) = 0 and monotonicity in 

the neighborhood of x0; (6) f ′(x0) = 0 and monotonicity in the neighborhood of x0; on the other 

hand, if there is (7) No differentiability; (8) No second derivative; (9) f ′′(x0) = 0 and f ′′′(x0) = 0 – 

then there is no inflection point. During the interviews, students reinforced these views. 

An initial evaluation of the reasons underlying erroneous conceptions suggested two main causes: 

algorithmic experience with investigations of functions, and the impact of the drawing. Students 

tended to explain that: “This is how I find an inflection point when I investigate a function”, or, [in 

relation to Task 4] “According to the graphs, each function has one inflection point at x = 7 where 

the graphs shift from concave down to concave up”. Thus, it seems that the answers may intuitively 

evolve from the participants’ mathematical, algorithmic experiences (Fischbein, 1993a) and from 

their figural concept of inflection point (Fischbein, 1993b).  



Four of the six sets of conditions that participants presented for “being an inflection point” do not 

necessarily lead to inflection points (sets 1, 3-5); the other two sets determine inflection points only 

for a limited family of functions (sets 2, 6). For example, in set 1, the participants provided intuitive 

definitions, without reference to the type of the functions (e.g., continuous or differentiable). In set 

4, participants exhibited slope-zero figural concepts (Fischbein, 1993b) in their reactions to Task 4, 

when they incorrectly found an inflection point “where slope of the tangent is zero...”, or, “where 

the first derivative and second derivative cross the x-axis”. In set 5, the necessary condition  

f ′′(x) = 0 was presented as a critical step in the algorithmic offering (Fischbein, 1993a), but in 

combination with the condition of monotonicity, that at first sight seems “sufficient” for an 

inflection point, surprisingly this does not necessarily lead to an inflection point (as presented in the 

results section).In set 6, the unnecessary condition f ′(x) = 0 was possibly used as a result of the 

“primacy effect”. That is, it might be the case because these are usually the first inflection points 

addressed in calculus lessons (Fischbein, 1987); but it was presented with the condition of 

monotonicity, and thus defined a particular type of notion – a horizontal inflection point.  

The three sets of “denying conditions” сan shed some additional light on students’ conception of 

inflection point from two perspectives: (1) types of functions that are usually investigated, and, (2) 

logical constraints of their knowledge. Requesting the necessity of differentiability (set 7) can be 

related to functions that are usually investigated or presented graphically in textbooks – most of 

these are differentiable at the inflection point. Thus, an intuitive image of a “smooth inflection 

point” was created. Here, as in many other cases, students recognize the concept “by experience and 

usage in appropriate contexts” (Tall & Vinner, 1981, p. 151; their emphasis). The necessity of twice 

differentiability (set 8) might be rooted in intuitive ideas that interfere with students' formal 

knowledge (Fischbein, 1987; 1993a). That is, from the theorem, “If f (x) is twice differentiable in 

some neighborhood of x0, and if x0 is an inflection point, then f ′′(x0) = 0” students erroneously 

conclude that “if no second derivative then there is no inflection point”. Here, this answer can be 

refuted by a counter example, like f (x) = x5/3. In set 9, the inadequate declaration: ‘f ′′(x0) = 0 and  f 

′′′(x0) = 0 ⇒ No inflection point’, might be rooted in intuitive ideas that interfere with students' 

algorithmic knowledge (Fischbein, 1987). That is, from the theorem “f ′′(x0) = 0 and f ′′′(x0)  0 ⇒ 

Inflection point” students erroneously create the rule “if ... then..., if not … then not…”.  

This study considerably enriches the existing body of knowledge regarding high school students’, 

university students’, and university graduates’ conceptions of inflection points. Only a small number 

of studies have dealt with students’ conceptions of inflection points directly (e.g. Rivel, 2004; 

Tsamir & Ovodenko, 2004) and indirectly (e.g. Biza & Zachariades, 2010; Vinner, 1982). Reported 

studies usually addressed a limited population and dealt only with specific conceptions. The current 

research offers a broad collection of related correct and incorrect conceptions found among 

participants with suitable mathematical backgrounds (as specified in the methodology section), with 

reference to the type and the representation of the given tasks. 
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Math teaching as jazz improvisation: Exploring the ‘highly principled 

but not determinate’ instructional moves of an expert instructor  
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When engaging students in genuine mathematical problem solving, how can instructors maintain a 

productive learning environment? In this paper, I examine a series of improvised instructional moves 

of Alan Schoenfeld, a renowned teacher of mathematical problem solving, and investigate his 

dilemmas, considerations, and in-the-moment decisions. I use the TRUmath framework to unpack the 

conflicts that underlie Schoenfeld’s dilemmas, and to propose a tacit teaching heuristic that help 

explains his hard-to-justify moves. I conclude that Schoenfeld’s in-the-moment decision making is 

tacitly oriented towards maintaining certain kinds of balances between his pedagogical principles. 

On the basis of this analysis, I recommend exploring further the use of TRUmath as a framework for 

analyzing in-the-moment decision making in the context of conflicting pedagogical principles. 

Keywords: University math teaching, teaching dilemmas, decision making, problem solving. 

Introduction 

I think this kind of teaching is highly principled by not determinate. What I was thinking of is jazz 

improvisation. It’s anything but random; there are moves that the musician will say would or would 

not be right; but, there may not be a sound justification for any particular in-the-moment move 

other than ‘it just felt right’. 

In this quote, Prof. Alan Schoenfeld reflects on a series of in-the-moment teaching decisions he made 

during a problem solving session. Schoenfeld is an expert teacher of mathematical problem solving 

(MPS hereafter); he has been studying and teaching MPS for more than three decades now. After so 

many years, Schoenfeld’s instruction seems anything but improvised. For this study, he has reflected 

on numerous teaching moves that he made during his MPS course, and he was typically able to 

provide a sound and detailed rationale for his decisions. However, there were certain decisions that 

Schoenfeld found hard to fully justify, as a key ingredient in their making was a tacit sense of where 

the class is and how different decisions could work out. In the quote above, Schoenfeld argues that 

this kind of hard-to-justify decisions makes the instruction of MPS a lot like jazz improvisation, in 

the sense that both activities are ‘highly principled but not determinate’. In this paper we investigate 

Schoenfeld’s jazz-like teaching moves through a case study of three hard-to-justify decisions in one 

MPS session. In this session, Schoenfeld faced a typical dilemma in MPS-oriented lessons: how 

should a teacher react when a student comes up with a beautiful and original idea that opens the door 

to a mathematical exploration that seems worthwhile for some of the students, and a step too far for 

other students? The aim of this paper is to unpack Schoenfeld’s conflicting pedagogical 

considerations in this case, and to provide insights into his decision making. 

The lesson examined in this paper was part of Schoenfeld’s MPS course. Schoenfeld’s teaching in 

this course has been studied in several papers. For example, Arcavi, Kessel, Meira and Smith (1998) 

studied Schoenfeld’s teaching in relation to the establishment of classroom norms and MPS 

heuristics. Schoenfeld’s in-the-moment decision making in this course, which is the focus of this 

paper, has not been studied so far. This MPS course was given to education graduate students and 



prospective teachers and comprised of paper reading, a small scale research project, and engagement 

in authentic MPS. In terms of goals and pedagogy, the lesson described in this paper is similar to 

lessons that Schoenfeld has taught in earlier years to undergraduate mathematics students. Therefore, 

the dilemmas and instructional moves discussed below are not specific to teacher-education courses, 

and should be viewed in the context of MPS-oriented instruction at university. 

There are various approaches for explaining why teachers make the decisions they make as they teach. 

One approach, which has been gaining much attention in recent years, is to explain teaching decisions 

in terms of knowledge, goals, and orientations (Schoenfeld, 2010). This approach has been used at 

the university level in empirical studies (e.g. Pinto, 2013) and also in professional development 

programs, as an organizing framework for instructors’ self-reflections on their teaching (e.g. 

Schoenfeld, Thomas, & Barton, 2016). However, a notable limitation to the explanatory power of this 

approach is that instructors’ self-reflections are oriented towards what instructors notice in their 

teaching and have words for. Therefore, there is a need for an organizing framework that would draw 

attention to various important facets of the work of teaching. One candidate framework is the 

Teaching for Robust Understanding of Mathematics framework (TRUmath) (Schoenfeld, 2015). In 

this paper we analyze Schoenfeld’s reflections on his teaching from a TRUmath perspective, and 

examine the use of TRUmath as an organizing structure for instructors’ reflections on their dilemmas 

and decisions that attends to all the major contributors for productive learning environments.  

Setting and methods 

This paper examines a lesson taught by Alan Schoenfeld in a “Mathematical Thinking and Problem 

Solving” course at the Graduate School of Education at UC Berkeley. The lesson took place during 

the 11th week of the semester. The class comprised of 21 students – graduate students in the school 

of education and students from teacher preparation programs. The class met once a week for a 3-hour 

lesson and every lesson included an MPS part where students worked alone or in small groups on a 

list of problems and then reconvened to share ideas and solutions. The author videotaped the lessons 

and took notes. After each lesson, Schoenfeld wrote down some reflections on his dilemmas, his 

instructional moves and decisions, and their impact on the lesson. In addition, the author conducted 

three 1-hour interviews with Schoenfeld at different stages of the semester that focused on where the 

class is with respect the learning trajectories for the course. 

The analysis in this study is based in part on the TRUmath framework, which seeks to characterize 

the main contributors for productive learning environments. This framework was derived through a 

comprehensive literature review by distilling the factors that shape learning in classrooms into a small 

number of “equivalence classes”. These classes are represented through five dimensions: (1) the 

richness of the mathematics, (2) cognitive demand and opportunities for “productive struggle”, (3) 

equitable access to content for all students, (4) students’ opportunities to develop agency, ownership, 

and positive mathematical identities; and (5) formative assessment. According to the TRUmath 

framework, these five dimensions are both necessary and sufficient for studying learning 

environments in the sense that instruction needs to do well along these dimensions in order to produce 

mathematically proficient students. Figure 1 provides a brief account of each dimension. 



In this paper, we explore TRUmath’s explanatory power on Schoenfeld’s own instruction, and use 

the five dimensions as an organizing structure for the discussion of his dilemmas and considerations. 

Schoenfeld is one of the leading developers of the TRUmath framework, and therefore it is 

particularly suitable for exploring his decision making. We examine a sequence of three hard-to-

justify decisions, first from an outside observer perspective based on the videos of the lessons; then 

from Schoenfeld’s inner perspective based on his post-lesson written reflections and the interviews; 

and finally, from a TRUmath perspective, where the dimensions are used to organize and compare 

Schoenfeld’s various considerations, to unpack the pedagogical conflicts that underlie his dilemmas, 

and to investigate what kinds of balances he achieved in his in-the-moment decisions.  

The Square-ness task 

The discussion analyzed in the paper revolves around the Square-ness task, given in the figure below, 

which was designed by Judah Schwartz in cooperation with members of the Balanced Assessment 

Group at the Harvard Graduate School of Education. In the lesson, Schoenfeld framed this task as 

“an introduction to the game mathematicians play”, and directed students to start with their intuition 

as to what it means for a rectangle to be more ‘squarish’, and then mathematize this intuition by 

“coming up with a mathematical characterization that would enable anyone to perform some sort of 

operations on a rectangle […] and obtain a number that would tell, in some sense or other, how close 

to being a square that rectangle is.” 

Below you will find a collection of rectangles.  

(a) Define a mathematical measure that allows you to tell which rectangle is the "most square" 

and which rectangle is the “least square”. 

(b) Define a different measure that achieves the same result. 

(c) Is one measure "mathematically superior" to the other?  

Argue why, and be prepared to defend your choice to the class 

Figure 1 – The five dimensions of the TRUmath framework (Schoenfeld, 2015) 



Analysis  

It’s not the note you play that’s the wrong note – it’s the note you play afterwards that makes it 

right or wrong. (Miles Davis) 

Taking a cue from a renowned jazz improviser, I maintain that improvised teaching decisions should 

not be examined in isolation but rather as part of the flow of instructional moves that teachers make 

during a lesson. Accordingly, this investigation of Schoenfeld’s improvised teaching moves examines 

three hard-to-justify decisions in the context of Schoenfeld’s instruction throughout the MPS session. 

The analysis is presented as a narrated description of the whole session that comprises of three 

threads: an outside-observer description of Schoenfeld’s moves; a synthesis of Schoenfeld’s 

reflections on his moves, as explicated in the interviews; and a TRUmath perspective on three 

challenging teaching dilemmas and their hard-to-justify resolutions.  

The discussion of the Square-ness task began with a short introduction by Schoenfeld, after which he 

invited students to present their candidates measures. One of the students, Sophie, approached the 

board and suggested that the square-ness of a rectangle with side-lengths a and b will be defined by: 

“The ratio a/b ought to be close to 1”. Two students objected to this definition, arguing that it is not 

well defined and that it should specify that a is the shortest side length. Sophie disagreed at first, 

claiming that “it does not matter”, but was eventually persuaded. She added “where 𝑎 ≤ 𝑏” to the 

written definition, and walked back to her seat. At this point, Schoenfeld intervened:  

Ok, I love it when the class takes over and raises mathematical objections. The question is, if 

you’re characterizing the square-ness of this figure and you’re getting a number, shouldn’t we get 

the same number if we happen and bring it down this way instead? (Draws a figure of a rectangle 

rotated by 90 degrees) It’s the same rectangle, so whatever measure you have should bring you the 

same number. If you have say, a 1 by 3 rectangle, then you get 1 over 3 which is not the same 

distance from 1 as 3 over 1; so, it begins to be problematic unless you lay it down so that ‘a’ is the 

smaller one of the two [side lengths], and then take ‘a’ over ‘b’. 

After making this remark, Schoenfeld leaned quietly against the wall and waited for the students to 

react. In his reflections, Schoenfeld noted that up to this point the discussion took off just as he 

intended, as the students were engaged in defining, comparing and criticizing measures, and by doing 

so, expressing their implicit expectations from a measure. Schoenfeld noted that it is quite typical that 

the first candidate measure is based either on the ratio or on the difference between adjacent side 

lengths of the rectangle. The measure Sophie suggested has the nice property that it can be defined in 

a way that makes it invariant under rotations and scaling. The students’ debate on whether Sophie’s 

measure was well defined did not address explicitly the properties of the measure. The students 

seemed more occupied with figuring out the exact routine for computing the measure. Nevertheless, 

Schoenfeld explained in the interview that this debate provided him with an opportunity to 

acknowledge, respond to and build on students’ ideas, while rephrasing these ideas in a way that fit 

his goals – to engage students in discussing the desired properties of measures.  

Emmy was the first to comment on Sophie’s example: “I think that I can probably find a quadrilateral 

that is not a square, but would have that, hmm… would be a square under that measure of square-

ness, but it is not a rectangle, is that OK?” 



Schoenfeld’s immediate response was to the entire class: “Do you want to take a vote? Is that OK?” 

The class seemed divided with some students wondering whether considering quadrilaterals other 

than rectangles is allowed, while others expressing interest in seeing Emmy’s example. Schoenfeld 

agreed with the students that the problem is stated just for rectangles, but as several students 

responded in disappointment, he paused to make a quick evaluation and to decide how to proceed.  

In his reflections on this moment, Schoenfeld noted that Emmy’s example came as a surprise, and 

too soon with respect to where he felt the class was. He explained that he was more expecting students 

to propose another candidate measure, which he could compare to Sophie’s measure; or to point out 

that Sophie’s measure is invariant under scaling, which would have provided another opportunity to 

discuss properties of measures. Schoenfeld reflected on his dilemma: on the one hand, the class 

seemed eager to see Emmy’s example; Emmy’s comment was well aligned with his own agenda of 

discussing the desired properties of measures, as it pointed out the fact that Sophie’s example might 

not be generalizable to parallelograms. He also considered this comment as an authentic and beautiful 

example of ‘doing mathematics’ and he wanted to acknowledge this; and, coming from a student, this 

generalization felt natural and organic rather than an artificial teaching move, making it even more 

appealing. On the other hand, Schoenfeld noted that he was worried that Emmy’s example might 

steer the discussion towards arbitrary quadrilaterals, and he was not sure that the class was ready for 

this level of abstraction. He wanted more students to participate in the discussion and considered 

putting Emmy’s example on hold so other students could present their candidate measures for 

rectangles. He also noted that he had examined some of the student work on this problem and that 

there were a few important insights that he wanted to draw from that work. 

In the classroom, Schoenfeld responded almost instantly: 

Now, before I throw [Emmy] out of class (laughing), let’s examine what [she] said. One of the 

properties one might like for, hmm... any definition is to ask the question: what class of objects 

this definition applies to? […] So, this measure (points at the Sophie’s definition on the board) 

works for rectangles, but being my psychic self, I think the figure Emmy had in mind was a family 

of rhombuses (draws two rhombuses on the board), all of which have a measure 1 according to the 

definition, if we think in terms of side lengths; but they don’t look like a square! 

Note that Schoenfeld’s response opened the door for Emmy’s example, but that he presented the 

example himself, as he understood it, rather than letting Emmy present it in her own words. Looking 

back at his response, Schoenfeld noted that it is hard to justify, claiming that on one hand, it is highly 

principled in the sense that it is consistent with his goals and orientations, as explicated in his 

reflections on his dilemma. On the other hand, this decision was not determined by principles, as it 

was based in part on a tacit sense of where the class was, and how well things could work out.  

We now turn to analyze Schoenfeld’s hard-to-justify decision from a TRUmath perspective. One 

option Schoenfeld had was to invite Emmy to present her example in her own words. This option is 

well aligned with the Formative Assessment and Agency dimensions. Moreover, Schoenfeld 

considered Emmy’s idea to be “a beautiful example of doing mathematics”, and since his goals were 

to discuss properties of measures, he considered this option to also be well aligned with the 

Mathematics dimension. However, Schoenfeld’s reflections suggest that he found this option less 

appealing from the perspectives of the Access and Cognitive Demand dimensions. He explained that 



it is essential that students understand and relate to the goals of the exploration. Emmy, who might 

still be struggling to formulate her idea, could end up leading a discussion that the rest of the students 

could not engage with productively. Another option Schoenfeld considered was flatly rejecting 

Emmy’s example, or putting it on a back burner. This option would have given Schoenfeld more 

control over the lesson, which has merits in terms of the Mathematics, Cognitive Demand and Access 

dimensions. However, Schoenfeld considered this route potentially harmful in terms of Authority, 

Agency and Identity, and Formative Assessment. Schoenfeld’s response represents an alternative to 

these two options. He acknowledged and built on Emmy’s idea (Formative Assessment), lowering 

the risk of being perceived as rejecting her thinking (Authority, Agency and Identity). However, he 

did so by proposing two visual examples of rhombuses, making the discussion more concrete and 

accessible (Cognitive Demand and Access). Moreover, Schoenfeld provided a crisp outlining of the 

topic of the discussion: “what class of objects this definition applies to” (Access), orienting the 

discussion towards the properties of measures (Mathematics). To summarize, Schoenfeld considered 

the first two options to be potentially beneficial as well as potentially harmful; his reaction chose a 

middle ground that he still considered beneficial, and safe. 

The lesson continued with Sophie, Emmy and a few other students discussing how to modify Sophie’s 

measure to make it ‘more square’. This discussion led to a new candidate measure for square-ness: 

the product of the ratio between adjacent side lengths and the ratio between adjacent angles. However, 

Emmy criticized this measure, claiming that while this measure has the nice property that squares are 

separated from other shapes, she can no longer see what kind of ordering this measure induces on 

parallelograms, and whether this ordering has anything to do with her initial intuition as to what 

square-ness should mean. Several students endorsed this criticism, and the class abandoned this 

measure. One student suggested that it might not be possible to find a measure that works for both 

rectangles and rhombuses, and the whole classroom discussion started to break up into several 

concurrent discussions. At this point, Schoenfeld intervened:  

I’ll point out that what we’re doing right now is exactly the business mathematicians are engaged 

in. […] We start with rectangles and see candidate measures for rectangles; then the question is, 

what about parallelograms? Trapezoids? Arbitrary quadrilaterals? Is it possible to find a measure 

that could characterize square-ness for all of those? We only got one definition of square-ness of 

rectangles so far, and I want to see a few more. It is possible that if we are just looking at rectangles 

any of the candidate measures will do, although some might be easier to calculate, some might 

correspond more to your intuition in terms of how square something is. And then, as we move on, 

only some of those definitions work for more objects. That’s the game mathematicians play. So, 

we have two directions to go. We have this definition (wipes the board clean and writes ‘a/b closest 

to 1 where 𝑎 ≤ 𝑏’). We can ask, are there any other characterizations, or reasons to like them more 

or less; and we can ask do they generalize and how much, which can also get us to a discussion 

about just what properties of definitions in general do we want, and what properties do we want in 

this particular case. The floor is open. 

Reflecting on this intervention, Schoenfeld noted that this was a point where he sensed the class was 

indeed not ready for the exploration they initiated, as he anticipated might happen; in his message to 

the students, he was trying to steer the discussion back to rectangles, while making sure he is still 

giving due credit to the exploration the students were engaged with, framing it as the ‘game 



mathematicians play’. Schoenfeld considered this decision as essentially based on a tacit evaluation 

of where the class is. In the interview, he used TRUmath terms to make this evaluation somewhat 

more explicit: He explained that he was reading from the students’ facial expressions that some 

students were getting disconnected, signaling Access was becoming an issue; he also noted that the 

fact students starting to question whether the problem could be solved at all was for him a signal that 

the Cognitive Demand of the task might be too high. Schoenfeld concluded that in his intervention 

he was implicitly trying to attend to the Access and Cognitive Demand dimensions. 

At this point, Emmy suggested: “I have an idea, but I don’t know how to turn it into a measure […] I 

have a measure that would split out squares, but I don’t know how to make it order everything else. 

Should I share it? (Schoenfeld nods) OK, my theory is that if you have a given a perimeter for a 

quadrilateral, the square will have the maximum area. So, I want something that takes perimeters and 

determine whether or not, hmm… determines whether or not that’s the maximum area for that 

circumstance and then order everything else according to how not maximum it is, or something.” 

Emmy’s suggestion led to a rapid exchange between her and Sophie, while the rest of the students 

remained quiet. In the interview, Schoenfeld referred to this moment as another challenging dilemma 

that led to a hard-to-justify decision. While he considered Emmy’s comment to be mathematically 

inspiring, it also impeded his attempts to lead the discussion back to rectangles. Schoenfeld explained 

that he guessed Emmy’s idea is intuitively based on the isoperimetric theorem, and he estimated that 

forming a measure for arbitrary quadrilaterals on the basis of this intuition might prove too difficult 

for most students, potentially reducing their confidence and sense of efficacy even further. Thus, even 

though following up on Emmy’s comment was very appealing from the Mathematics and Formative 

Assessment perspectives, this option seemed very risky from the perspectives of Access, Cognitive 

Demand and Identity. However, Schoenfeld found that while his principles directed him to object to 

exploring Emmy’s idea, his sense of the class suggested otherwise: he sensed that the students were 

quiet but not passive, that they were actively listening to Emmy and Sophie. Consequently, 

Schoenfeld explained he decided to try and provide the class with just enough scaffolding to enable 

more students to engage productively in the new exploration:  

Ok, let’s take what we do know and see if we can turn this to a measure. Hmmm… you may have 

heard […] of this thing known as the isoperimetric theorem … the general theorem is that if you 

take any figure whatsoever for a fixed perimeter, the circle is the figure with the largest area. If 

you limit yourself to quadrilaterals, to rectangles, it turns out that for any given perimeter the 

square is the figure with the largest possible area. So, the question is whether we can turn that into 

a measure we can use, and then think about abstracting this into some of these other figures. 

In TRUmath terms, Schoenfeld’s decision can be expressed as an attempt to amend the level of 

Cognitive Demand so to increase Access. The intervention paid off. Four more students joined Sophie 

and Emmy and participated in the exploration. It took just a few minutes of discussion for Sophie to 

come up with a measure that works: “The perimeter over four, squared, over the area of the shape”. 

The class enthusiastically picked up on this suggestion, and eventually endorsed it.  

Discussion 

In this paper, we examined a sequence of three in-the-moment decisions. Schoenfeld’s first decision 

was to open the door to Emmy’s original idea, but present it in his own words; when the exploration 



of Emmy’s idea seemed too challenging for the class, Schoenfeld’s second decision was to try and 

steer the discussion back to the original problem; and finally, a quick evaluation of where the class 

was led Schoenfeld to reverse his second decision and allow an even more challenging exploration. 

Schoenfeld considered his decision making to be highly principled in the sense that his decisions were 

well aligned with his explicit orientations and goals; however, in his reflections, he also observed that 

some of these decisions were hard to fully justify since they were strongly influenced by a tacit sense 

of where the class is and how things could work out. This sense of the class is a resource Schoenfeld 

developed over years of teaching the course; his reflections suggest that this resource has a crucial 

role in his decision making when faced with challenging dilemmas: it helps resolve pedagogical 

conflicts that rise from tensions between competing goals and orientations. The TRUmath framework 

proved to be useful for unpacking these tensions by providing an organizing structure for the different 

considerations and the conflicts they present. For example, in the context of Emmy’s original idea, 

when examining three alternative options, we found that Schoenfeld considered two of the options to 

very well aligned with some of the dimensions, but also potentially harmful from the perspective of 

the other dimensions. The TRUmath analysis suggested that Schoenfeld chose a path that he 

considered more moderate across all five dimensions in terms of potential gains and risks. This 

analysis led Schoenfeld to suggest a teaching heuristic that may have tacitly guided him: keep the 

lesson productive from the perspective of each dimension, and avoid the temptation to excel in just 

one or two dimensions at the expense of the other dimensions.  

This paper illustrates the theoretical potential of TRUmath as a framework for explaining decisions 

made in light of conflicting goals and orientations, and the practical potential of TRUmath as an 

organizing structure for teacher reflection that highlights the gains and risks entailed in different 

instructional moves. As Schoenfeld is both the subject of this study and one of the developers of 

TRUmath, further research is required to assess TRUmath’s explanatory power for other instructors. 
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Mathematical tutorials play an important role in tertiary teaching of mathematics in Germany. 

However, we do not know a lot about what actually happens in these tutorials. This paper reports 

from a small study in the context of a PhD project which investigates the work of teaching assistants 

(TAs). The result of this study is a typology of discussion patterns of tasks in mathematical tutorials. 

In this study typological analysis, including a hierarchical cluster analysis, was used to identify 

different ways in how TAs work on mathematical tasks in classroom discussions. The findings suggest 

that there are five main patterns for the discussion of tasks, differing in focus, length and support of 

students’ learning. 

Keywords: Teaching assistants, tutorials, problem oriented instruction, classroom discussion. 

Introduction 

In Germany, teaching assistants (TAs) play a vital role in the learning of mathematics at universities. 

A mathematical course usually consists of three parts: the lecture, homework assignments and small 

group tutorials. The lecturer delivers the lecture and assigns three to five tasks for the homework 

assignments. After working on these assignments for one week, the students hand in their solutions 

to the tasks, TAs correct them and later discuss these tasks in small group tutorials. Usually, the 

lecturer and TAs meet every week for planning the tutorial session. TAs do not assist the lecturer in 

his teaching activities, but they are on their own in the tutorials and free to discuss the tasks as they 

like. TAs in Germany are undergraduate students who are just a few years ahead of the students they 

teach and they are usually employed for one semester. By leading the tutorials, TAs are close to the 

students’ actual learning and may function as link between students and lecturer, e.g., they shall 

connect the contents of the lecture to the tasks, they ought to get feedback from the students and report 

this to the lecturer. TAs are expected to be accurate and to facilitate students’ learning by also sharing 

their own experiences as successful students.  

Although TAs play such an important role in the learning of the students, there is hardly any research 

on German TAs’ practices. Internationally, research on TAs has increased in the last 20 years. 

However, as their role and practices differ in many ways from that of German TAs, it is uncertain in 

what respect the results of these studies can be transferred to the German context. Therefore, the aim 

of my PhD project is to understand how German TAs organize their tutorials in order, later, to be able 

to provide a basis on which we can develop quality criteria for German tutorials and use them to 

support TAs in weekly meetings and tutorial trainings. 

Theoretical background 

In the last years, research on mathematical teaching practices has increased and there have been a few 

studies that compare characteristics and teaching styles of instructors in different levels. Weber 

(2004) showed that one lecturer might use different teaching styles, depending on his learning goals 

and the content he is teaching. Weber could identify three different ways of teaching proofs in a 



traditional lecture format: logical-structural, procedural and semantic. This suggests that, at least 

advanced lecturers, change their teaching styles intentionally.  

There have also been studies on comparing teaching styles of different instructors. One example is 

Pinto’s (2013) study on two TAs that are even supposed to follow the same lesson plan. Using 

Schoenfeld’s resources, orientation and goals theory (Schoenfeld, 2011), Pinto illustrates how both 

TAs prepare and hold their tutorials quite differently according to their research background and 

experience in teaching this particular topic. Also Mali (2015) could accord to the findings of Pinto. 

In their study on two tutors in small group tutorials, they found out that teaching seems to be closely 

linked to research practices of the tutors: the mathematician “uses the graph to make fundamentally 

mathematical ways of thinking transparent to students”, whereas the mathematics educator uses the 

graph “as an alternative to explain the mathematics” (p. 2193). 

Of course, looking at TAs from the German context, they do not have a research background that 

might influence their teaching. However, their experience from their own tutorials or from teaching 

tutorials in former semesters as well as their learning goals, beliefs about learning or the mathematical 

contents might influence the way they discuss tasks. Therefore, the main research question for this 

paper is: What different “discussion patterns” do TAs use when working on mathematical tasks in 

tutorials? This includes sub-questions like: Do TAs focus on the problems they identified when 

correcting the students’ work? Do they always discuss the whole task or only parts of it? How much 

do they support the students in their learning process? For this paper I combine the answers to these 

questions by trying to find overall patterns for classroom discussions.  

Methods and design 

The study is being conducted at a German university. Students of mathematics for pre-service 

teachers are expected to attend lectures and additional small group tutorials of 10 to 30 students. Both, 

lectures and tutorials are weekly sessions of 90 minutes, the students are supposed to work on tasks 

out of class which are assessed by the TAs and discussed in tutorials. The videos for this study were 

generated in tutorial sessions containing 78 task discussions in total (2-3 discussions per tutorial). 32 

TAs have taken part in this study, all of them pre-service teachers. The data set includes task 

discussions in tutorial sessions from different semesters of the years 2010 to 2015 and the discussion 

covered a range of topics from analysis, arithmetic and geometry. This great variety of tutorials was 

chosen to get a representative sample of task discussions, thereby reducing other influences (style of 

lecturer, difficulty of mathematical content, etc.).  

The students in the tutorials were all bachelor students studying teaching mathematics in secondary 

schools. Students were not directly videotaped unless they presented parts of the solution in front of 

the class. Their questions, comments and other contributions to the task discussions are audible in the 

videos. 

In a previous part of the PhD study, these 78 task discussions were analyzed for different aspects: 

how TAs start and end the task discussions, what methods they use, how they try to support the 

students using visualizations, references to the lecture, etc. Using qualitative content analysis, 

different categories were generated to investigate each aspect in more detail (Püschl, 2016).  

This part of the study focus on the task discussion as a whole. As we want to find out different types 

of discussions, an empirical typification method, namely the “typological analysis” by Kuckartz (as 



described in Kluge, 1999), was used for analyzing the data. An important part of typification methods 

is to identify features which characterize the different discussion patterns. These features for the 

classification of task discussions are based on some categories from the previous part of the PhD 

project (see Püschl, 2016). The following four features were considered for the typological analysis: 

use of didactical elements, completeness of discussion, focus on problems and focus on strategies. 

The use of didactical elements is a key feature for the discussion, because it indicates to what extend 

the TAs support the students in their learning process. In the previous analysis of the PhD study, ten 

different didactical elements were identified: “use of visualization”, “highlighting common 

mistakes”, “reference to lecture, other exercises, school”, “giving structural advice”, “clarification of 

expectations”, “solving in several ways”, “recapitulation of main results”, “clarification of student 

questions”, “generating cognitive conflicts”, “returning students’ questions” and “asking advanced 

questions”. Some were only used in a few discussions (like “returning students’ questions”) while 

others could be found frequently (e.g., “use of visualization”). Some didactical elements are rather 

pedagogical (e.g., “returning students’ questions”), others demand more mathematical skills (e.g., 

like “asking advanced questions”). For the purpose of this paper instances in which a TA used a 

didactical element were counted, ranging from a minimum of 0 to a maximum of 13 elements per 

task discussion. The feature completeness of discussion tells, whether the TAs discuss the whole task 

or only parts of it. Therefore, this is a binary feature, 0 standing for an incomplete discussion. The 

other two features give insight into the focus of discussion and relate to categories from prior analysis. 

The focus could be on the mathematical problems the students had when working on the task. The 

focus on problems feature consists of three categories from the previous part of the study: “giving 

feedback on the work of students”, “highlighting common mistakes” and “telling the students to 

review specific parts of the task”. The focus on strategies feature is quite different: here, the TAs do 

not discuss mathematical difficulties, but rather pass on strategies that students need to solve a 

specific type of tasks. It contains the following three categories: “pointing out the task difficulty”, 

“giving structural advice” and “summarizing of task”. For both features, the elements in each 

discussion are counted, ranging from 0 to 4. 

Based on these four features, agglomerative hierarchical clustering was used to find patterns in the 

78 task discussions. Agglomerative clustering starts with all 78 cases, each building one cluster. The 

algorithm then merges a selected pair of clusters into a single cluster, so that after 77 steps only one 

big cluster is being left (Hastie, Friedman, & Tibshirani, 2001, p. 472). To equal the relative influence 

of the four features in the cluster algorithm, they were scaled between 0 and 1. The Squared Euclidean 

distance was used as a metric to calculate the distance between each cluster. To decide which clusters 

are joint in each step, the Ward’s Method was chosen as linkage criterion. The Ward’s Method tries 

to minimize the total distance from centroids by joining two clusters. This method facilitates the 

construction of clusters with similar sizes and is frequently used because it has often provided better 

results than other linkage criterions (Bortz, 2005, p. 573). As the clusters become more heterogeneous 

in every step of the algorithm, it is often recommended to stop at a number of clusters before the 

greatest increase of distance (Bacher et al., 2010, p. 241). The statistical analysis was facilitated by 

the software SPSS (version 23). 

The data has been analyzed regarding the four features mentioned above. In addition, other factors 

have been taken into account as they might influence the results (Kuckartz, 2012, p. 125). Therefore, 

the discussion patterns identified by the cluster algorithm were analyzed in regard to a variety of other 



factors. Three factors are presented in this paper: time spent on the discussion, the TAs’ individual 

approaches and their experience in leading tutorials. 

Results 

The results from the cluster analysis suggest five clusters from the 78 discussions. Using four or less 

clusters would have resulted in a high increase in distance between the cases in the cluster. Three 

cases of the 78 discussions were eliminated, because they did not fit one of these clusters for several 

reasons1. One case, for example, which showed a great distance to all of the other clusters, was a task 

discussion in which the TA was really ambitious and wanted to discuss the whole exercise with a lot 

of student participation, focusing on problems as well as strategies. However, in this way she ran out 

of time and was not able to discuss even half of the exercise in more than 40 minutes. As there is no 

similar task discussion in the data and it would have influenced the cluster algorithm too much, this 

case was eliminated according to these qualitative and quantitative considerations.  

Cluster  completeness 

(1 complete, 0 

incomplete) 

number of 

didactical 

elements (0-

10 elements) 

focus on 

problems – 

number of 

elements (0-4 

elements) 

focus on 

strategies – 

number of 

elements (0-4 

elements) 

1 median 1 4 0 1 

N 18 18 18 18 

2 median 1 2 0 0 

N 22 22 22 22 

3 median 1 6 1 0 

N 10 10 10 10 

4 median 0 5 2 0 

N 6 6 6 6 

5 median 0 2 0 0 

N 19 19 19 19 

overall mean value 1 3 0 0 

Table 1: median of four features distributed into five clusters (N=75) 

Table 1 shows that most of the discussions fall into clusters 1, 2 and 5. Only 16 of the 75 discussions 

have a focus on problems. Cluster 2 and 5 make up more than half of the discussions (55%), both not 

focusing on either problems or strategies. Cluster 1 is the only cluster with a focus on strategies. 

Taking into account the five clusters from cluster analysis five different discussion patterns could be 

identified in the material: 

  

                                                 
1 For further explanations on this process of analysis see Hastie, Friedman & Tibshirani (2001, p. 473). 



Heuristic discussion (Cluster 1) 

The TA discusses the complete task by focusing on strategies the students have to acquire in order to 

solve tasks from this specific type. The heuristic discussion is the only pattern with this focus on 

strategies and used 24% of all task discussions. 

Pragmatic discussion (Cluster 2) 

The TA discusses the complete task without focusing on strategies or problems and with minimal use 

of didactical elements to support the students in their learning processes. The pragmatic discussion is 

the most frequently used discussion pattern (29%). 

Student-oriented discussion (Cluster 3) 

The TA discusses the complete solution of the task while focusing on the specific problems the 

students might have had. This pattern is called student-oriented, because the TA satisfies the students’ 

request for a model solution, but also tries to help them to overcome their difficulties. The student-

oriented discussion is only used in 13% of the task discussions. 

Problem-oriented discussion (Cluster 4) 

This type of discussion can be characterized by a focus on problems. The TA highlights the 

difficulties in the solution process, using many didactical elements to support the students. This 

pattern is similar to the student-oriented discussion, only differing in the completeness of the 

discussion. Only 6 task discussions fall into this pattern.  

Minimalistic discussion (Cluster 5) 

TAs using the minimalistic discussion just discuss parts of the solution without a specific focus. The 

TAs hardly use didactical elements to support the students. This pattern is quite similar to the 

pragmatic discussion except for the completeness of the discussion. About 25% of the task 

discussions fall into this cluster. 

Duration of discussions 

The average discussion time of one task is about 19 minutes long, ranging from a minimum of 2 to a 

maximum of 53 minutes. The boxplots in Figure 1 show how long the discussions last in each 

discussion pattern.  

Although the differences in average discussion time between the different patterns is not statistically 

significant (one-factor ANOVA at a 5% significance level) there are some interesting observations to 

be made: The pragmatic discussion and the minimalistic discussion are about 10 minutes shorter than 

the discussions in the other clusters. Especially for the pragmatic discussion, this result is quite 

surprising as the TAs are going through the complete solution. However, both discussion patterns do 

not have a specific focus. TAs who discuss problems or strategies probably need some time to 

concentrate on this focus and need more didactical elements to support the students. Time might be 

an important factor for TAs to choose a discussion pattern like the pragmatic or minimalistic patters 

as they often run out of time in the tutorials. 

 



 

Figure 1: duration of discussion in minutes each discussion pattern (N=75) 

Individual approaches of the TAs 

Another factor which might influence the choice of discussion pattern might be the individual 

approaches of the TA. Depending on their beliefs on learning, some TAs might prefer learning from 

mistakes and usually choose discussions in the problem-oriented or the student-oriented pattern. 

Others rather want to hand on the model solutions and therefore choses the pragmatic discussion 

pattern. One interesting aspect to investigate might be whether TAs usually choose the same pattern 

or whether they switch between the patterns when discussing different tasks.  

As most TAs in the data only discuss one or two tasks, the data for this analysis is quite small. The 

following table shows the distribution of discussions from two TAs who discuss seven different tasks: 

 

TA 

discussion pattern  

overall heuristic pragmatic student-

oriented 

problem-

oriented 

minimalistic 

Andrew 1 5 0 0 1 7 

David 2 2 2 0 1 7 

Table 2: distribution of clusters on example of two TAs 

Andrew tends to use complete discussions with no specific focus. Although he discusses seven 

different tasks, he never focuses on strategies. David’s discussions fall in four different patterns. He 

does not seem to have a preference for any of the different types. This result suggests that some TAs 

have individual approaches while others might be rather flexible in their choice of discussion pattern.  

Both, Andrew and David, are experienced TAs who have led tutorials for several semesters. However, 

not all of the TAs are as experienced as David and Andrew. Like expert and novice teachers differ in 

some aspects of their teaching, rather inexperienced TAs might also choose different ways of 

discussing tasks. Only 11 TAs of the 32 TAs in the data have led tutorials before the semester of this 

study and are therefore labeled as “experienced” while the other 21 TAs are called “inexperienced”.  



 

experience of TAs 

discussion pattern  

overall heuristic pragmatic student-

oriented 

problem-

oriented 

minimalistic 

experienced 11 10 3 1 10 35 

inexperienced 7 12 7 5 9 40 

Overall 18 22 10 6 19 75 

Table 3: distribution of discussion patterns depending on experience of TAs (N=75) 

Table 3 suggests that there are some differences between experienced and inexperienced TAs. The 

experienced TAs, which have lead tutorials in the previous semesters, seem to prefer the heuristic, 

pragmatic and minimalistic discussions. The inexperienced TAs have a greater focus on problems. 

They use the student-oriented and problem-oriented patterns more frequently than the experienced 

TAs. This result is quite surprising as you would rather expect experienced TAs to have a specific 

focus in the discussion. However, the number of cases is quite small, it would be very interesting to 

analyze this aspect for a bigger set of data. 

Final remarks 

This paper presents five different patterns for the discussion of tasks in mathematical tutorials. The 

“heuristic discussion” focuses on strategy teaching which is very important for learning. This type 

consumes more teaching time than the other types and is rather used by experienced TAs. As Brophy 

explains, this kind of instruction is not “only demonstration of and opportunities to apply the skill 

itself but also explanations of the purpose of the skill (what it does for the learner) and the occasions 

on which it would be used” (2000, p. 25). Therefore, the students can hopefully gain more than just 

another solution from this kind of discussion. 

In the “student-oriented discussion” and the “problem-oriented discussion” TAs focus on aspects the 

students struggle with and help them to overcome these difficulties. These types of discussion take 

some more minutes than the average discussion. Interestingly these patterns are seldom used by 

experienced TAs. One explanation might be that inexperienced TAs are more aware of the students’ 

problems as they still remember their own problems. It could also be the case that experienced TAs 

do not believe that these patterns help the students in their learning process. However, this result 

might only due to the data.  

More than half of the discussions have no specific focus and few didactical elements to support 

students’ learning. The “pragmatic discussion” and the “minimalistic discussion” consume the least 

teaching time, so time pressure in the tutorials might be a reason for the frequent use of these two 

discussion patterns. However, the TAs might have other motivations for using discussion patterns 

without focus. Possibly, TAs might pursue learning goals that we are not aware of in this study. This 

shows that further research on this aspect is needed.  

According to the findings of Weber (2004), some TAs seem quite flexible in using the different 

discussion patterns. This result gives rise to possibility that we can support TAs in using the 

appropriate pattern for a specific learning goal. Especially, the heuristic and the problem-oriented 



patterns could be practiced in tutorial training. Apart from that discussion patterns could be a topic in 

the weekly meetings, helping the TAs to plan their tutorials more goal-oriented. 
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This paper deals with the theme "mathematics in the workplace" in the context of engineering work 

in France. In the continuity of recent research, it draws results from a two-step enquiry 

(questionnaire and interviews) with 237 French engineers. Using the Anthropological Theory of the 

Didactic (ATD), I study questions concerning the praxeological mathematical needs encountered by 

these engineers in their daily work ("in the workplace") and about their mathematical training and 

its adaptation to these needs depending on the training institution. This article shows that math 

should not only be considered as a "tool", because engineers sometimes need to have an accurate 

understanding of what they use. Furthermore, it shows that the two first years (called Preparatory 

Cycle) have a great impact on the future of these engineers' mathematical abilities. 

Keywords: Engineering schools, mathematics in the workplace, praxeologies, preparatory cycle. 

Introduction - Context 

The field of "Mathematics in or for the Workplace" has recently received an increasing interest 

especially at Tertiary Level (Biza, Giraldo, Hochmuth, Khakbaz, & Rasmussen, 2016). Worldwide 

researchers have contributed to think about and beyond dichotomies such as "school versus work" 

maths (Bakker, 2014). In the case of engineering apprentices, Ridgway (2002, p. 189) shows that 

"mathematical challenges of engineering differ from the mathematical taught in school. In 

particular, great precision is required, applied to a variety of mathematical techniques; a good deal 

of practical problem solving is necessary". Hochmuth, Biehler and Schreiber (2014) go further 

considering differences between mathematical practices in higher mathematic lectures and in 

advanced engineering lectures. They highlight the idea that for "solving a specific task, 

(engineering) students have to make specific decisions regarding the relevance of knowledge"    (p. 

697). Kent and Noss (2002, p. 1) have identified "a pattern of mathematics-in-use in which 

mathematics of school (are) transformed in something rather different, […] part of a social 

practice", and Romo-Vázquez (2009, p. 37) adds that "their most advanced dimensions tend 

increasingly to be supported either by experts or by software" and that "the needs of non-specialists 

seem to move towards the ability to manipulate these mathematics as a tool for communication 

through specific languages" (p. 37). All these works evidence that the usual training received by 

future engineers is not always adequate and depends on the kind of training institution. They also 

evidence that their mathematical needs are complex. 

In the following, I investigate similar issues in the context of engineering education in France. In 

this country, "engineering schools" are independent institutions, not inserted within universities. To 

become an "engineering apprentice" in an engineering school, students first have to follow two 

years of "Preparatory Cycle" after the baccalaureate. These two-year studies can take place in 

different kinds of institutions: 



- CPGE (Preparatory classes, Classe Préparatoire aux Grandes Écoles): This is a demanding 

training that concerns 50% of French future engineers. It takes place in "Lycées" (upper 

secondary schools) and has historically been created to allow students to enter the most 

prestigious engineering schools. The curriculum is rather generalist, and the admission very 

selective. 

- CPI (Integrated preparatory cycle, Cycle Préparatoire Intégré): for nearly 25% of future 

engineers, this training takes place directly in engineering schools. The curriculum is more 

adapted to the specialty of the school (Mechanics, Chemistry, and so on); the admission is 

also selective. 

- University: the remaining 25% of French future engineers follow their Preparatory Cycle in 

classical Universities (no selection for admission). 

In this paper, after a presentation of the theoretical framework and my research questions, I explain 

the methodology and the details of my enquiry. It comprises two elements: an online questionnaire 

submitted to working engineers, and semi-structured interviews with some of the respondents. I 

analyze the answers to selected questions of the questionnaire and then the interviews. Finally, I 

discuss these results and present some perspectives. 

Theoretical framework and research questions 

Mathematics practices in the workplace are conducted by the needs of the workplace itself. The 

diversity of existing tasks added to the particular tools and resources used in each workplace tend to 

make a research generalization difficult. Moreover, it is recognized that "school mathematics are 

often obscured by the production goal, technology, artifacts and established routines of workplace 

activity" (LaCroix, 2014, p.158). Furthermore, speaking of "school mathematics" requires making a 

difference again between the institutions where the training has taken place. For these reasons I have 

chosen an institutional perspective, provided by the Anthropological Theory of the Didactic (ATD) 

(Chevallard, 2006). 

I use in particular the concept of praxeology that is a system [T, τ, θ, Θ] designed to model every 

human activity (i.e. a certain subject's activity in a certain institution). Among the four elements of 

this organization, we can first meet the type of tasks T. The observed type of tasks T is associated to 

a technique τ to create the "practical-technical block" (so-called a know-how). The second block is 

called "technological-theoretical block" formed by a technology θ (meaning a rational discourse that 

justifies the technique that is used) and a theory Θ, whose role towards the technology is the same as 

the one of the technology towards the technique. I am interested in "mathematical praxeologies", 

which means here praxeologies where mathematics intervenes in one or several components of the 

praxeology. In Chevallard's theory, praxeologies can moreover be adapted from a very general to a 

very precise point of view, following "codetermination levels" that I do not detail here (Chevallard, 

2006). Using this approach, the two research questions I study in this paper are the following: 

(1) Which mathematical praxeologies live in the "workplace" institution for French engineers? 

(2) In which institution did they learn the mathematics they use in the workplace? 



Methodology 

The first step of my enquiry is an online anonymous questionnaire addressed to active engineers. I 

have sent it to institutional mailing lists (more than 20) of former French engineering students. To 

be as relevant as possible, I have tried to spread this questionnaire in schools with different domains 

of specialty such as data processing, electricity, electronics, agronomy, finance, chemistry, 

mechanics, materials, etc. In fact, I was not able to know in advance the number of engineers that 

would receive the invitation to participate, nor how many of them would answer. 

The questions mostly deal with the training engineers have received in maths and the questionnaire 

is divided in four parts. Only the first three ones will be analyzed in this work: 

- The first one concerns personal and professional elements. 

- The aim of the second part is to precise what kind of praxeologies they have encountered 

during their training in mathematics in their engineering school. 

- The third part concerns their effective use of mathematical praxeologies: Is maths a real need 

for their job? For what type of tasks do they need maths more frequently? For what 

professional objectives? Have they had in-service or self-training after their engineering 

school? What difference with the techniques of the initial training? What kind of tools: 

software, books, community, lectures notes, MOOC, etc.? 

The second step of my enquiry consisted of semi-directive interviews with 6 engineers selected 

according to their responses to the questionnaire and representing different classes according to the 

following variables: age, gender, institution of preparatory cycle (I've invited some ex-CPI students 

but none of them have unfortunately answered) and domain of specialty (see Figure 1). 

I describe here briefly the four parts of the interviews: The first one concerns the opinion of the 

engineers about their own training (preparatory and engineering curricula) regarding their current 

specific mathematical needs: what seems to them well adapted or not and why? Based on the same 

idea, the second part asked them to give indications of content that should be or should have been 

taught in their training, how and why. The third part concerns their view about student's autonomy; I 

do not use it in this paper. The fourth part concerns their self-training for learning useful specific 

mathematical praxeologies: which devices or resources? What difference with their initial training? 

 John Peter George Matthew William Alice 

Age/Gender 25/male 27/male 35/male 29/male 35/male 30/female 

Qualification Computer Computer Materials Chemistry Electricity Materials 

chemist 

Domain of 

work/job 

Signal 

(audio) 

processing 

Data 

security 

Consultant Control process 

engineering 

Entrepreneur 

in financial 

analysis 

Motorcars 

development 

engineering 

Preparatory 

Cycle 

CPGE University CPGE CPGE/University CPGE CPGE 

 

Figure 1: The six engineers interviewed 



Analysis of the answers to the questionnaire 

237 engineers from all over the country filled this questionnaire, some of whom are currently 

working abroad. In part 1, I observe that the predominant represented domains of activity are 

Chemistry, Physics Materials and Energetic, Computer, Electrical and Electronics, Production and 

Mechanics, Generalist, Agronomy and Economy. The repartition according to the principal 

variables is as follows (Figures 2): 
 

Age Min Med Max Avge 

Years 24 29 61 32 

 

Gender Women Men 

% 38 62 
 

Preparatory cycle CPGE CPI Univ 

% 68 12 20 

Figure 2: Age, Gender and Preparatory Cycles repartition 

In part 2, question 10 (have you received a training in mathematics in your engineering school?), 

183 engineers amongst the 237 (77%) answered yes. Among the other 23%, we note that 83% are 

chemistry engineers. This may indicate that the mathematical training depends on the precise 

orientation of the studies. 

Question 12 (During your training in engineering school, the main mathematical contents taught 

were…) concerns the mathematical contents mostly taught in the engineering schools, for which I 

proposed a list of main mathematical themes. I chose those themes according to groups of chapters 

mostly found in maths literature for engineers: the results are in Figure 3. 

In Figure 3, I notice the score of Statistics and Probability: it seems to be the most common 

mathematical theme taught in the engineering schools in France, followed by Analysis. 

In part 3, question 19 (Would you say that you encounter (or have encountered) a real need of 

mathematics in your job as an engineer?), 53% declare that they do not have a real need of maths. In 

the next question (question 20), like in question 12, I proposed a list of main mathematical themes 

used in the workplace; the results are presented in Figure 4. 

 

 Scientific 

computation 

Analysis Algebra Probability Statistics Modelling Logic Set 

Theory 

Graphs 

% 69.4 44.1 25.2 37.8 55.9 49.6 54 9 18 

Figure 4: Main mathematical contents needed 

In figure 4, the Scientific computation domain reaches the highest level. Then comes Statistics but 

with a far lower result compared with Figure 3; we observe the same for the Probability, Algebra 

and Set Theory domains. On the contrary, according to those percentages, the domains of Scientific 

computation, Modelling and Logic seem to represent important needs although they are not taught 

widely. In the answers to question 21 (For what kind of professional tasks?), the engineers explain 

Contents Scientific 

computation 

Analysis Algebra Probability Statistics Modelling Logic Set 

Theory 

Graphs 

% 40.4 47.5 44.8 68.9 84.7 27.9 23.5 17.5 16.9 
 

Figure 3: Mathematical contents taught in engineering schools 



the practical use of these contents. The tasks mentioned are simulation, modelling, data analysis, 

software or algorithms development, basic calculus for estimations, budgets, chemical dosing… 

Analysis of the interviews 

In this section I try to observe, drawing on sections 1 and 4 of the interview, the mathematical 

praxeologies present at the workplace, according to the interviewees. I recall that I consider as a 

"mathematical praxeology" a practice, and a discourse commenting/explaining this practice, where 

mathematics intervene. I propose a classification of these praxeologies, and I also try to identify in 

which institution the mathematics involved were met. 

Transversal types of tasks and mathematical technologies 

I classify in this category praxeologies of the workplace where the types of task is general, not 

necessarily linked with mathematics (as we see below, it can range from "problem solving" to 

"communicating"); and the engineers mention mathematical techniques, and even more importantly 

technologies in the corresponding praxeology.  

Some engineers identify, in the workplace, "reasoning" or "problem solving" type of task directly 

linked or not with mathematics (e.g. making an estimation of costs). Those coming from CPGE 

declare that, for such tasks, techniques and technologies they learned during this preparatory cycle 

are useful. The techniques and technologies they cite are linked with proof, testing hypotheses or 

logic. Obviously these techniques and technologies have been met in CPGE for very different types 

of tasks, but these engineers have transferred them to the workplace. For instance, John says that 

proof, seen as a method in CPGE, is very important to him in his job because it makes him 

understand the utility of mathematical rigor. George explains that, as a project manager, he has to 

understand the mathematical thinking hidden behind a phenomenon more than the phenomenon 

itself. William says that the prominence of hypotheses verification in reasoning is what sometimes 

makes the difference between him and some of his colleagues, as well as being able to rigorously 

check the result of this reasoning at the end. Finally, Alice tells us the importance of logic in her 

everyday job. She gives the example of the contraposition: when she had been taught this kind of 

logical reasoning in CPGE, she thought it would be useless for her. Years later, when she had to 

work on "experience plans", she realized that it is very important to master it when trying to show 

that an implication is true or false. 

According to the declarations of the interviewees all the mathematical contents corresponding to 

these daily needs are taught especially in CPGE more than any other institution. 

Another kind of transversal mathematical praxeology is what John, Matthew and William refer to as 

"basics" – that we identify with the term 'basic skills' used by Ridgway (2002). The corresponding 

types of task in the workplace are situated in many domains like cryptography (Peter), resolution of 

recursive problems in computing (John), and actuarial science (William). Because of the variety of 

tasks, it is also difficult to identify comprehensively all the techniques (integrating, solving 

equations or differential equations, etc.) and technologies (functions of several variables, geometry, 

matrices) in use. One important type of task appearing in the interviews can be formulated as: 

"Meeting and understanding new concepts". For this type of task, having a good general knowledge 



in Analysis and Algebra, including theoretical aspects, is mentioned as very helpful. This can be 

seen as an evidence of the theoretical bloc of praxeologies in action. 

In a similar way, I identified in the interviews the type of task: "communicating about or with 

mathematics". George declares that, thanks to his training in CPGE, he feels at ease to communicate 

about maths subjects with the people he works with. In this case the type of task is directly related 

with mathematics, and the techniques for presenting mathematics have been learned in preparatory 

classes. Another type of task cited by George is "Exploring new domains" like, for instance, static 

physics. I observed the same type of task for Matthew and William in other domains like 

computation or finance. For this type of task their initial training in mathematics is not sufficient, 

and brings to "searching on the Internet"(forums, specialized websites). Sometimes they have a look 

into their old lecture notes or in books as mathematical references that they need anyway to be able 

to enter the field. For this way of learning, they say that they feel satisfied to find the right 

information by themselves. 

Types of tasks in specific domains and mathematical techniques 

In the interviews the six engineers also describe types of tasks met at their workplace but belonging 

to scientific domains, like physics; the techniques in the corresponding praxeologies include 

mathematics. In these praxeologies I did not clearly identify technologies. This is the second type of 

mathematical praxeologies I observe in my analysis. 

First, I would like to highlight the fact that basic mathematical skills are also mentioned as 

providing techniques for many specific types of tasks in various domains, like for example the task 

"modeling the ageing performance of a material" (Alice). Nevertheless, the principle of use of the 

techniques and technologies differs: the aim is to be able to use some results (like theorems or 

formulae) without trying to understand them mathematically. Most of those basic skills are taught in 

the Preparatory Cycle, but the techniques (and technologies) they provide for the workplace are 

taught in the engineering schools. In fact these types of tasks are well known by them since many 

years; the same holds for the associated techniques. 

Amongst these basic skills, the case of Statistics and Probability seems specific because this domain 

is mostly not taught in the various Preparatory Cycles in France. Each engineering school provides 

its own specific training adapted to its needs. According to the interviewees, once confronted in the 

real world of the workplace, sometimes a statistics formula becomes useful (they mostly remember 

having learnt at the engineering school a lot of theory which does not intervene in their work). 

Reasoning + Using = "Reasusing": a concept for a personal and new mathematical experience 

A last category of mathematical praxeology I found in the interviews combines mathematics in the 

techniques, in the technology and even in the theory. This seems to be linked to specific types of 

task, requiring the development of original techniques – almost a research work. John cites a type of 

task that can be formulated as: "outperforming competitors in the design of new software". He 

explains that he has to know which theorem he must use, but not exclusively: he also has to have a 

deep understanding of the proof of this theorem to be able to understand which parameters will 

allow him to obtain a result in a smarter way than other colleagues. To illustrate this, he gives the 

example of audio latency that is one of the most important qualities for the client of music 

production software. The type of task here could be "Reduce the latency". It corresponds to a short 



period of delay between when the musician plays and when he can hear the sound through the sound 

system (e.g. headphones). When the competitors offer a 20 milliseconds latency, John has to put his 

efforts to find in the theorems or in their proofs (mostly based on Fourier Analysis) how to 

minimize it to 6 ms. This will make the commercial difference and it requires that he really 

understands what is happening "inside" the theorem. This corresponds to the technique "analyze a 

theorem proof". I consider this as a third type of mathematical praxeologies with a type of task 

requiring some innovation. 

Discussion - Conclusion 

Drawing on the results exposed in this paper, I now come back to the two research questions 

presented above. 

Regarding the mathematical praxeologies that live in the "workplace" institution for French 

engineers, the primary result in this study is that only 47% declare they have a real need of maths in 

their everyday job. Concerning the mathematical needs, I have encountered three different kinds of 

praxeologies: A first one with a general type of task, like "solving a problem" or "communicating"; 

techniques, and mostly technologies involving mathematical elements like reasoning and proving, 

and also some elementary mathematical skills. Rigor, logic and an amount of maths basics 

(sometimes considered as useless at first sight, because lacking of concrete sense to them) are 

necessary for the everyday work of these engineers, and also allow them to communicate more 

easily with other people in their working environment. The second kind of praxeology that lives in 

the workplace comprises specific tasks (simulating, modeling, data analyzing, calculating, etc.) 

associated with mathematical techniques: here again, the maths basics are considered as very 

important but they are seen as providing techniques. The last and rather interesting kind of 

praxeology is the mix of reasoning and using (I call it "reasusing"): for an engineer, it means to 

interlink a technology or even a theory to make them become an integrated part of a technique for a 

specific kind of mathematical type of task (such as a logical analysis of a situation, understanding a 

theoretical mathematical concept). 

For the second research question about the institution where they learn the mathematics they use in 

the workplace, I notice that the praxeologies developed in all types of Preparatory Cycles are mostly 

concerned with teaching basic mathematical skills. To end this analysis, I must highlight that the 

engineers who declare needing the first kind of praxeologies (thinking, reasoning and problem 

solving) that where taught during their Preparatory Cycle are all coming from the CPGE institution. 

Finally, my study certainly has some limitations. It cannot be considered as fully representative of 

the whole population of French engineers (in terms of age, gender, domains of work, and 

Preparatory Cycles). Moreover a large part of it is based on what the participants say about the 

mathematics they have learned and use, but it is not clear that they all have in mind the exact same 

interpretation of things. I will work on this issue in my future research. 

But the results that I expose can lead us to think that even if an important part of the engineers do 

not really need mathematics daily, they do not consider them exclusively as providing techniques. 

Receiving a training of the type "maths as a toolbox" is not satisfactory for them because they 

sometimes need to understand the precise functioning of the tools. It is possible for them thanks to 

their own mathematical "culture" (or background) and also their will to investigate by themselves 



some new concepts. I interpret this as the need for "complete" praxeologies (Bosch, Fonseca & 

Gascón, 2004): the engineers do not only need the praxis (basically taught in engineering schools), 

but also the logos (essentially depending on the Preparatory Cycle training). Moreover, several 

interviewees declared that they did not perceive the usefulness of the theoretical aspects when they 

were students. We interpret this as a need to motivate the praxeologies when taught. 
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The present paper investigates engineering students’ own descriptions of what they mean by 

learning of linear algebra and how they know that they have learned something. I seek to extract 

keywords from engineering students’ descriptions of learning of this discipline by drawing on 

grounded theory techniques and classifying the answers in conceptual and procedural approaches. 

By this, both detailed and more meta perspectives on learning are obtained. Results indicate that 

when explaining their learning of linear algebra, conceptual more than procedural approaches are 

emphasized. However, in order to know that they have learned something, many engineering 

students need to know that they are able to solve relevant tasks in the discipline. 

Keywords: Approaches to learning, linear algebra, engineering students. 

Introduction 

Students’ learning of mathematics is a main interest within the community of researchers in 

didactics of mathematics. We seek to know how students learn, what they learn, but also how they 

perceive their own learning (Sfard, 2007). Learning may be defined according to which point of 

view one has in an investigation, but also by taking into consideration what is relevant for the 

particular individuals of a study. A classical definition is given by Hiebert and Lefevre (1986), 

distinguishing between conceptual and procedural knowledge that may yield conceptual and 

procedural learning. Conceptual knowledge is defined as “knowledge that is rich in relationships” 

(ibid.1986, p. 6), which means that it cannot exist in isolation. Procedural knowledge includes 

sequential relationships or step-by-step instructions. Engelbrecht, Bergsten and Kågesten have 

found conceptual and procedural notions valuable in their research of engineering students (2009), 

and because the target group of the present investigation is engineering students, these constructs 

will be utilized.  

The present paper focuses on engineering students’ interpretation of their own learning in a linear 

algebra course. Such reflections are beneficial because the students then have to reflect on how they 

see their mathematical knowledge and for what purposes they study the discipline. Thus, asking 

questions about learning is valuable and frequently done by researchers. An immediate example is 

the present data collection, in which questions asked to the students were picked from a research 

investigation of a related group of students in a mathematics and physics foundation program for 

students going into an engineering program (Marshall, Summers, & Woolnough, 1999). Based on 

data from a longitudinal study over an academic year, they derive conceptions of learning held by 

these students. In my study the setting is somewhat different as the students are experienced 

engineering students, their reflections about learning are confined to a particular domain in 

mathematics, and it identifies students’ reflections at the end of the course. In this particular setting 

the following research questions are asked: Which approaches do engineering students include in 

their description of learning in linear algebra and how do they explain their knowing that they have 

learned something? 



Theoretical background 

The study reported on here investigates engineering students’ description of their learning 

approaches rather than the cognitive processes of learning itself. As will be argued for, such 

approaches are adequately split in two main categories: approaches connected to conceptual and to 

procedural knowledge. The definitions were originally given by Hiebert and Lefevre (1986) and are 

widely used. In this framework, conceptual knowledge is pieces of knowledge connected together 

or, as explained by Kilpatrick, Swafford, and Findell (2001), “an integrated and functional grasp of 

mathematical ideas” (p. 118). Procedural knowledge, on the other hand, includes familiarity with 

symbols but also representation systems in mathematics along with knowledge of rules and 

procedures that can be used in task solving strategies in mathematics (Hiebert & Lefevre, 1986, p. 

6). However, conceptual and procedural knowledges are partners and the interplay between them is 

valuated, emphasizing how one knowledge may lead to the other (Rittle-Johnson & Alibali, 1999). 

Indeed, they are increasingly regarded as interrelated and inseparable, but also object for extensions 

to superficial and deep qualities of the knowledges (Baroody, Feil, & Johnson, 2007). Such 

relationships are multifaceted, and researchers move towards more integrated views in which 

determining the dynamics between the two is the objective (Engelbrecht et al., 2009).  

Students often perceive linear algebra as difficult. This stems from three sources of difficulties 

(Dorier & Sierpinska, 2001). It is about the pedagogical approach, as proofs are found difficult 

(Rogalski, 1990). It is also a matter of difficulty with grasping the theoretical concepts and 

mathematical language; the ‘obstacle of formalism’ (Dorier, 1997). Finally, linear algebra demands 

a ‘cognitive flexibility’ as one has to move between different languages, both theoretical and 

practical forms. Students tend to think in practical terms (Sierpinska, 2000), and lack of connection 

to theoretical structures may hinder their learning (Dorier & Sierpinska, 2001). 

Engineering students recognize mathematics as a foundation of their education (Khiat, 2010). Still, 

they consider the discipline as a routine practice of their profession (Steen, 2001) and expect to be 

exposed to real-world engineering problems in mathematics (Hjalmarson, 2007). With such an 

approach, the formalism of linear algebra may be especially hard to get a grip of. Engelbrecht and 

colleagues (2009) found that engineering students uphold mathematics as procedurally founded. As 

part of their investigation, the authors created tailor-made working definitions to focus on 

engineering students, thus these are adopted in the present study:  

“Procedural approach: Use and manipulate mathematical skills, such as calculations, rules, 

formulae, algorithms and symbols. 

Conceptual approach: Show understanding by e.g. interpreting and applying concepts to 

mathematical situations, translating between verbal, visual (graphical) and formal mathematical 

expressions and linking relationships.” (Engelbrecht et al., 2009, p. 932). 

Methodology 

The present investigation is part of an ongoing study dealing with engineering students’ views about 

the learning of linear algebra. The teaching format in the course which was taught in English was 

‘traditional’, with large group lectures followed by task solving sessions where students worked in 

groups. The ‘untraditional’ part was that a well-functioning video recording system recorded all 



lectures and published them in-time. The linear algebra course was scheduled in the students’ fourth 

year of studies to become master engineers, postponed in accordance with Carlson’s 

recommendations (1993). However, some basic tools in linear algebra had been introduced in a 

mathematics course in their first year of studies, since these are necessary for use in the professional 

disciplines. All together 59 students attended the course this year, and data was collected as I was 

the teacher and arranged for a questionnaire to be answered at the end of the course. The open 

questions picked from (Marshall et al., 1999) discussed in the present paper were: “What do you 

mean by learning in linear algebra? And how do you know that you have learned something?” Due 

to experiences from a previous investigation (Rensaa, 2014), the questionnaire was made mandatory 

but anonymous to increase truthfulness, and the response rate was very good; 93% (55 out of 59). 

Data analysis was done in phases. Initially, grounded approaches were used (Strauss & Corbin, 

1998) to obtain codes that embrace engineering students’ approaches to learning. Next, these codes 

were related to the definition of conceptual and procedural approaches as described by Engelbrecht 

and colleagues (2009) since this definition is tailor-made for engineering students. It offers a meta-

perspective on the analysis results from coding, and this provides answers to the research questions 

about engineering students’ approaches to learning. 

Analysis and results 

The development of codes was done in steps. Initially, I wrote down headwords in each student’s 

description which was given in English. By comparing these, some seemed to describe similar 

things, e.g., ‘utilize for own goals’ and ‘use in gps’ [Global Positioning System], both which could 

be interpreted as ‘learning as applying mathematics’. Because I was working back and forth 

between statements and codes with an aim of reducing the number of codes without deteriorating 

their meanings, each time two replies were interpreted within the same category had to be put down 

as a criterion for the category. For instance, for descriptions of obtained learning, ‘know the whole 

picture’ and ‘associate theory to applications’ were both interpreted as being able to relate the 

different aspects of linear algebra to each other, thus crystalizing a category called ‘ARel’ (able to 

relate). The importance of emphasizing relation in this category was helped forward by a statement 

that did not fall into this category: ‘use different theorems to achieve solutions to practical 

problems’. The emphasis here is on obtaining solutions more than the relation, thus crystalizing a 

category called ‘ASol’ (being able to solve problems). Going back and forth between statements and 

codes resulted in a final reduction to 8 categories for what learning is and 6 categories for what is 

meant by learning of linear algebra.  

Next, the original data set and my developed codes were sent to another researcher for validation 

purposes. This researcher used the codes to independently code the data. Then, we met for 

comparison of results and refinement of codes. A main refinement was deepening the meaning of 

applications. Students had referred to applications when trying to describe learning in linear 

algebra, but we agreed that students should express that applications were actively studied in a 

mathematical connection in order to be coded as ‘Study Applications’ (SAp). An example of a 

statement where the coding was adjusted by this interpretation is the following: 

Student 30: For me, learning is knowing the practical use of theory and how to execute said 

theory. As a computer engineer student specializing in games development, linear 



algebra is central in the programming I perform. I only know I have learned 

something if I can associate theory to a problem I encounter.  

We agreed that this student is not stating that he is studying applications, but rather that he is 

actually taking advantage of knowing applications from other disciplines as part of his learning 

process. Thus, ‘Utilize Theory’ (UTh) is a closer category as the statement points to how theory may 

be utilized for practical purposes. The other refinement of codes that was needed was a specification 

of relations, originally named ‘Rel’. It was unclear which types of relations this was referring to. 

The category had derived from students’ answers as relating back to previous knowledge, thus the 

category needed to be adjusted to ‘RelB’ (relating to background).  

Two additional codes were agreed on: the categories ‘NoAns’ (no answer) and ‘Other’. All blank 

responses could be categorized as ‘NoAns’, while ‘Other’ refers to answers that responded to 

something else than what was asked about. The ‘Other’ category developed from cases in which 

divergence in our separate coding appeared. We both encountered problems because none of the 

codes actually fit with some of the particular answers. An example is ‘It really gives the knowledge 

of different engineering mathematical problems’. One researcher had interpreted this statement as 

‘Study Applications’ (SAp), the other as ‘Able to understand why/what is going on’ (AUn), but the 

student does not seem to be actually describing his learning. Thus, the final coding for this response 

was ‘Other’. This joint coding process showed that the codes were adequate and could be used to 

code all statements. However, we experienced that coding statements together often resulted in 

finding more information in a reply than what we had done individually.  

Ending the process, the following codes crystallized for engineering students’ description of what 

they mean by learning in linear algebra: SAp (Study Applications), GUn (Gain Understanding), 

UTh (Utilise Theory), ForM (Grasp Formalism), SimP (Simplify), SoL (Solve problems), RelB 

(Relating to Background), and ToO (Use Tools). Analytical results for this question are given in 

Table 1, presenting both the number of students in each category and percentage (rounded off) of 

the total number of 55 students. The category ‘No Answer’ consisting of 17 replies is left out, while 

a number of explanations covered approaches in more than one category. Thus, the sum of 

percentages does not add up to 100.  

 SAp Gun UTh ForM SimP SoL RelB ToO 

Number/% 8/15% 11/20% 10/18% 2/4% 2/4% 11/20% 2/4% 2/4% 

Table 1: Responses to what engineering students mean by learning in linear algebra 

Coding responses to engineering students’ description of how they know that they have learned 

something gave the following codes: ASol (Able to Solve), AExp (Able to Explain), AUn (Able to 

Understand Why/What is going on), AAp (Able to Apply), ARel (Able to Relate), and ARem (Able 

to Remember). Analytical results for this question are given in Table 2, including responses coded 

as Other (answering something else). The table presents both the number of students in each 

category and percentage, and again multiple codes were found in some answers. 



 

 ASol AExp AUn AAP ARel ARem Other 

Number/% 15/27% 3/5% 6/11% 9/16% 1/2% 2/4% 5/9% 

Table 2: Responses to when engineering students know that they have learned something 

When the codes and categories were set, I assigned the codes in conceptual and procedural parts. As 

the codes had developed based on engineering students’ own descriptions, they were aligned with 

Engelbrecht and colleagues’ working definition (2009) for conceptual and procedural approaches of 

engineers. This was done by linking the description of codes to statements given in the definition. 

Some codes were easier to categorize, like GUn. Gaining understanding was classified as a 

conceptual approach as this is necessary to be able to expose mathematical understanding. Other 

classifications were harder. An example is ASol. Problems may be complex, theoretical and demand 

deep argumentations, and solving these should classify as a conceptual approach. On the other hand, 

problems may as well be ‘standard’, connected to a set of skills that are more like a routine part of a 

learning process. Such dual interpretations of an activity highlight the complexity involved in 

interpreting conceptual and procedural knowledges in a praxeology. However, engineering students 

tend to ‘proceduralize’ problems, even those of a conceptual nature (Engelbrecht et al., 2009). 

Considering this, I deduced that ASoL ought to be categorized as a procedural approach, but highly 

interdependent upon conceptual approaches  

By going back and forth between the definition and codes, a final classification of codes was 

obtained. For what is meant by learning in linear algebra, the following codes were classified as 

conceptual: SAp fits with ‘applying to mathematical situations’; GUn is about ‘showing 

understanding’; UTh may be interpreted as ‘translating between verbal and formal mathematical 

expressions’; and RelB is about ‘linking relationships’. The remaining categories were classified as 

procedural: ForM is about ‘manipulating’ linear algebra expressions; SimP is simplifying by 

‘calculations’; SoL refers to a way of ‘using mathematical skills’; and ToO is to use tools like 

‘rules, formulas and algorithms’. About knowing that something is learned, the following codes 

were classified as conceptual: AExp is about ‘interpreting concepts’; AUn is about ‘showing 

understanding’; AAp is about ‘applying concepts to mathematical situations’ and ARel is ability to 

‘link relationships’. The remaining codes were classified as procedural: ASol is knowing how to 

‘use and manipulate mathematical skills’; and ARem may be a part of the manipulation of 

mathematical skills by recalling how to do this. Drawing on these interpretations, Table 1 and 2 may 

be organized in conceptual and procedural approaches. Gray coloring of conceptual cells and white 

coloring of procedural cells indicate the appropriate classification. In many cases, an interpretation 

of a student’s reply comprised more than one of the codes given. An example is the following 

statement with three codes of a conceptual type and one of a procedural type, codes included in 

parenthesis: 

Student 6: Generally, I mean that learning is to study something until you understand (GUn) 

the theory (UTh), and is able to use it in both theoretical and practical problems 

(SAp and SoL). 



A statement could be coded in a mix, as illustrated by the last part of the above statement. 

Interpreted as being ‘able to use it,’ this may be about studying applications as a way of utilizing 

knowledge in problem solving – SAp, a conceptual approach. Interpreted as being ‘able to use it’ 

this would be more about the solving process itself – SoL; a procedural approach. Thus, a statement 

could be coded in both procedural and conceptual categories, again illustrating the close 

relationship.  

Discussion 

The analysis results summed up in Table 1 and 2 give some indications of engineering students’ 

conceptions of learning. In many cases, an interpretation of a student’s reply comprised more than 

one of the codes and one phrase could be coded in a mix as illustrated by Student 6’s explanation. 

Engelbrecht and colleagues emphasize that the distinction between conceptual and procedural 

approaches are complex and not absolute (Engelbrecht et al., 2009). Thus, mixed coding may be 

expected. Brought together, however, the frequencies of codes give a meta perspective on which 

approaches (procedural or conceptual) are most appreciated by engineering students. In this 

perspective, Table 1 shows that engineering students emphasize conceptual approaches more than 

procedural ones when explaining what learning in linear algebra means to them.  

Table 1 shows that ‘Gain Understanding’ (GUn) is important to students, having the highest 

response rate. However, understanding is often – like in the above example – connected to knowing 

how to apply this understanding. Only when being able to apply their knowledge the students think 

they have understood linear algebra. This result is in line with the fact that these students are 

engineering students, busy with relating to the use of mathematics (Hjalmarson, 2007). To some 

students, however, solving of problems becomes the main issue and the scale by which they 

measure their learning. Lower interest is given to understanding, as the main objective is to obtain a 

correct answer. An example is the following:  

Student 34: in my opinion, linear equations are some kind of tool (ToO) to solve the problems 

(SoL) in real industrial areas such as factories and… (AAp). 

Not all replies coded as describing learning in a procedural way focus on solving problems. 

Grasping formalism, which is an aspect of difficulty for students when learning linear algebra 

(Sierpinska, 2000), may also be interpreted as a procedural approach in terms of manipulating the 

linear algebra language. This is illustrated in the following student’s description:  

Student 5: the meaning of learning linear algebra is actually learning a mathematical 

language (ForM), a language you can use to solve big questions with many 

variables (SoL). 

 

Responses to the question about engineering students’ knowing that they have learned something, 

summed up in Table 2, are more equally distributed between procedural and conceptual approaches. 

This is mainly due to the category ‘Able to Solve’, which takes all together 27% of the responses. 

An example of a statement coded within this category is: 



Student 35: The simplest way to know that I have learned something is that I can solve some 

problems (ASol), when I am faced with some practical problems using this 

method. 

This student indirectly says that he seeks to apply the mathematics in practical situations but 

knowing that he has learned something is concentrated to the solution process itself. 

Altogether, a rough answer to the stated research questions may be that the present engineering 

students emphasize conceptual more than procedural approaches when explaining learning of linear 

algebra, but in order to know that they have learned something a noteworthy amount need to know 

that they are able to solve relevant tasks in the discipline.  

Conclusion 

A result of the present analysis is that the engineering students emphasize conceptual aspects like 

understanding and utilizing theory as most important in their learning of linear algebra. This may be 

an anticipated result when dealing with students in general, but engineering students’ expectations 

towards mathematics are slightly different. They consider mathematics more as a routine practice 

(Steen, 2001) and procedurally founded (Engelbrecht et al., 2009). Thus, the result is noteworthy. 

However, to know that they have learned something, the same students seek confirmation in terms 

of being able to solve problems; a more expected procedural approach. An explanation to this result 

may be that the mathematics course is one in linear algebra. This course is more theoretical framed 

than the initial calculus courses, thus students are somewhat new to proofs and proving when 

coming to the course. Students find such approaches difficult (Dorier, 1997; Dorier & Sierpinska, 

2001; Rogalski, 1990), and engineering students may therefore put particular attention on these 

aspects in learning of linear algebra. Their consecutive measure of knowing that they have learned 

something in terms of ability to solve problems then shows that the connection between theory and 

task design is particularly important. Tasks should offer opportunities to engage in conceptual 

arguments on the preferred premises of solving tasks. However, as assessment guides students’ 

ways of studying, task design in exams is the most vital part. Thus, an investigation of engineering 

students’ learning approaches related to design of exam tasks will be an important follow-up of the 

present project. 

Even if students in the present study were asked to reply in writing – which naturally reduces the 

richness of the replies compared to responding orally – interesting responses were given. The 

following is an illustration of this, concluding the paper: 

Student 9: To learn does not necessarily mean to remember something, but to understand it in 

depth (GUn) and be able to utilize that information for your own goals (UTh). 

When one has truly learned something, one can easily explain it to someone else 

(AExp). 
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The transition from school to university mathematics is known to present a major challenge to many 

students, resulting in poor performances and high dropout rates during the first semesters. In this 

paper we present the preliminary results on summer courses in Linear Algebra and Analysis after 

the first semester, which were designed based on the Abstraction in Context framework (Dreyfus & 

Kidron, 2014) and on the self-determination theory (Deci & Ryan, 2000). In particular, we 

investigate the potential of this course design to contribute to the motivation of the students and to 

their ability to engage in concept construction. These qualitative preliminary results will be used in 

further research to quantitatively assess the effect of these courses as well. 

Keywords: Mathematical concepts, advanced mathematical thinking, tertiary level mathematics. 

Introduction 

A recurring problem in undergraduate mathematical education is students’ difficulty in coping with 

the transition from school mathematics to the higher paced, more demanding and more formal 

mathematics at university level. This can be seen in the high dropout rates of math students in the 

first semesters and the poor exam results. In particular, some students require more time to learn 

than the time span determined by the lecture course, and find it hard to catch up with their peers for 

the next course. The previous approach of the mathematics faculty at the University of Bremen had 

been to install weekly extra tutorials for the courses in Linear Algebra and Analysis, parallel to the 

corresponding lecture courses. Even though these were conducted by senior student tutors, they 

yielded poor results. Few students attended, and there was no perceived positive effect on 

motivation or performance with regard to concept building. Limited time during the semester was 

stated as the main obstacle to continuous attendance. 

In response to this, a new approach consisting of summer courses in Linear Algebra and Analysis 

was developed and implemented by the authors. These were voluntary courses that took place 

within two weeks between the first and second semester, after the students had not only had the 

weekly feedback from their homework groups, but also some individual feedback on their progress 

by the end-of-semester test. In addition to the goal of enabling the students who had failed (or 

scored low in) the first test to pass the retake, the courses were intended to foster the students’ 

motivation and help them create appropriate concept images (Tall & Vinner, 1981) of the core 

concepts of each course. This is assumed to be of vital importance, in order for them to be able to 

profitably take part in the follow-up courses in the second semester. From the experience gathered 

in the first implementation of these courses, we intend to give a preliminary evaluation with respect 

to these two factors. This will be used to make some adaptions to the following implementations, 

which will then be evaluated more thoroughly. 



In this paper, we will focus on the description and evaluation of the Linear Algebra additional 

course given by the first author. The analysis course was designed analogously by the second author 

and the results were similar.  

Figure 1: Structure of the Linear Algebra module 

In figure 1 the structure of the whole Linear Algebra module in Bremen is displayed. The lectures 

extend over 14 weeks with 4 hours of lecture, 2 hours of exercise in groups and 2 hours of plenary 

exercises each week. The test at the end of the first semester takes place about a week after the 

lectures end and does not contribute to the final grade. The students nevertheless have to achieve a 

certain number of points in order to complete the module. The pass rate is set at a low level 

compared to the final exam, so the students know what to expect on the final, but are not impeded 

by having to retake the test, unless their score is very low.  

Theoretical background 

In their extensive study on teaching Linear Algebra in the first university semester, Dorier et al. 

(2002) identified and described a main obstacle for students to learn the subject, which they called 

the obstacle of formalism. This obstacle is found to be a conglomerate of formal reasoning, 

abstraction and extracting ideas from concepts, due to the vast abstractions, simplifications, and 

unifications in the subject’s history. 

We tried to give students additional support to master this difficulty by a course design based on the 

Abstraction in Context framework, AiC, (Dreyfus & Kidron, 2014). This framework merges the 

idea of the vertical mathematization process by Freudenthal with Davydov's method of ascent to the 

concrete (ibd., p.87), in order to explain how abstraction processes can occur. Abstraction is 

assumed to happen in a “three-stage process: the need for a new construct, the emergence of the new 

construct, and the consolidation of that construct”. The corresponding (observable) epistemic 

actions are recognizing (R) the relevance of certain known constructs in a given situation, building 

with (B) these constructs to achieve (local) solutions and constructing (C), i.e., integrating the 

previously known constructs into a new whole. This model is referred to as the RBC-model.  

Since performance at challenging and creative tasks is dependent on intrinsic motivation, we make 

use of the self-determination theory of motivation (SDT), which postulates the existence of three 

basic psychological needs (Deci & Ryan, 2000). When these needs for autonomy, competence and 

sense of relatedness are fulfilled at a satisfactory level, intrinsic motivation is likely to occur. Low 

achieving students, in particular, may benefit from an environment that fosters positive experiences 

with regard to these needs in relation to mathematics (Um, Corter, & Tatsuoka, 2005; Rakoczy, 

2006). Hence, both in the course design and during the course hours themselves, special attention 

was paid to these factors of SDT. 

As in the methodology of design research according to Gravemeijer and Cobb (2006), we plan to 

develop the design of the additional courses in experiment-reflection-cycles. Gravemeijer and Cobb 

identify three main stages: (1) preparing for the concrete design experiment, (2) experimenting in 

the classroom (in this case the actual implementation of the course), and (3) analyzing the 



experiment retrospectively. At this point of our research, we consider ourselves to have obtained 

enough information from the initial design and implementation, as to be able to proceed to the first 

genuine design cycle within this framework. 

Research questions 

The main research questions we want to deal with are the following: 

1.) How does the participation in the course change the perceived fulfillment of the basic 

psychological needs and, thus, intrinsic motivation? 

2.) What is the effect on the epistemic actions with regard to the relevant concepts for the 

participants in the following course? 

In addition, a minor question can be seen to be “Is there a beneficial short term effect on the retake 

test?”, as this is the main motivation for the students to take part and also an institutional concern. 

We are, however, more interested in the long term effects. 

Description of the course design and design principles with examples 

The Linear Algebra course consisted of five days of activity spread out over two weeks (alternating 

with the corresponding Analysis course). Each day was divided into a morning and an afternoon 

session of three and two hours, respectively, with a lunch break in between. The sessions 

themselves were each devoted to a central topic of the Linear Algebra lecture, e.g., bases, linear 

maps or different interpretations of matrices, and were split into smaller working units of varying 

types and content, which were occasionally adjusted spontaneously according to the students’ needs. 

The instructional design of the course was based on the observation that low achieving students 

often do not have the mathematical resources to occupy themselves for a long time span with a 

given (in general more complex and open) task, but need to be guided to acquire these resources. 

Thus, the course proceeded from very short and clearly defined tasks of varying nature (but with 

immediate feedback) to longer and more open and self-determined ones. For example, the first task 

of the whole course consisted of a lecturer-guided group discussion of very small exercises 

concerning relevant geometric objects (lines, planes), while the very last task was a guided session, 

in which students were asked to create individual exercises to given topics by themselves and then 

solve each other’s exercises, including negotiations on the wording of the task and different 

approaches and solutions. In this way, the possibility of increasing the levels of fulfillment of the 

basic psychological needs was provided. 

With respect to the subject specific aims, on the one hand the focus was on developing the core 

ideas of Linear Algebra and important techniques (Gauss’ algorithm, proofs relating to algebraic 

structures, etc.). On the other hand, great emphasis was placed on the creation and discussion of a 

zoo of examples and counter-examples to the relevant notions, as this is known to be very effective 

in the initial understanding of new concepts (see Dahlberg & Housman, 1997). 

We illustrate how the AiC framework was used in the task design by the example of the concept of 

“linear independence” of vectors, which was comprehensively dealt with in the afternoon session of 

the first day and then later referred to throughout the whole course. 



To aid the construction of viable concept images of “linear independence”, the students were given 

geometric situations, where this concept is relevant, e.g. describing a plane in a three-dimensional 

space as the span of two vectors and characterizing the pairs of vectors where this description fails. 

Thus, the students had to recognize (R) that this particular knowledge of a linear relation between 

vectors is relevant to particular geometric problems (note that at this point the students were already 

aware of the existence of the definition of linear independence). Afterwards, the students were given 

tasks, where linear independence appeared in different situations and in relation to other concepts 

(such as basis, coordinate system, etc.) as to integrate the concept into their mathematical views and 

work out means to examine and apply the concept locally (B). Finally, by discussions among the 

students and with the whole class, the students were encouraged to express and evaluate different 

views on linear independence, which we hope has helped the students in building an (at least 

preliminary) concept image of “linear independence” (C). 

Since the students had already encountered the definitions during the lecture and found themselves 

naturally confronted with extracting meaning from them, we did not incorporate a component of 

guided reinvention in the sense of Freudenthal into the course. Students were not encouraged to 

create models of the key concepts themselves as proposed in RME (Gravemeijer, 1999), but instead 

the “models-of” were already given (e.g. in the form of the definition of linear independence) and 

had to be realized as “models-for” in corresponding applications. 

Field notes including students' actions and reactions during the course were collected by the first 

author. 

Implementation and observations using AiC and SDT 

We will illustrate the implementation of the course and relate it to the relevant theory by the help of 

two examples. In the first sessions of the course, the students were given explicit exercises of 

varying type and difficulty involving some recognizing of, but mainly building with, concepts. As a 

first example, we will therefore report on one specific exercise at this stage of the course. 

 

Figure 2: A problem from the course in linear algebra 

The exercise shown in figure 2 was given to students on the second day, after the concept of basis 

had been established and been related to the concepts of generating system and linear independence. 

It was part of a set of exercises, on which the students worked in small groups of two or three or 

individually according to their own choice. The students took to the exercises well, and most of 



them found access to part (a) quickly (possibly after short exchanges with other groups or with the 

lecturer). Part (b) was claimed to be impossible by some students, but this was resolved mainly 

among the students themselves without much intervention of the lecturer. The remaining parts were 

difficult. Part (c) was attacked by an attempt to prove that the vectors are linearly independent, and 

linear independence was claimed persistently. For time reasons, part (d) and (e) were only dealt with 

by some students, who all implicitly assumed K to be the real numbers, V to be the real plane and 

whose arguments were of a geometric nature. It is noteworthy, that the students refrained from 

trying to manipulate the expressions according to some formal rules they had not understood, but 

rather tried to give meaning to the statements, albeit not always succeeding. Similar effects could be 

observed throughout the course. 

With regard to the epistemic actions in AiC, in this exercise the students were mainly building with 

the concept of basis, while recognition of the relevance and the role of linear independence was 

required. The students' reaction (i.e. the persistent claim of linear independence) to part (c) indicates 

that the concept of linear independence had not yet been consolidated, although it had been 

extensively covered before. The geometric approach to the tasks, however, seems to show that the 

students already had acquired a basic concept image and tried to use this, as opposed to merely 

manipulating the concept definition. There was no particular observation concerning the motivation 

for this exercise. 

The second example to illustrate the implementation is taken from the last day of the course, where 

the students were given the task of creating exercises themselves. Each student was given an index 

card, which was labeled with one of the concepts that had been dealt within the course. He or she 

was then asked to make up an exercise together with a solution involving the corresponding topic 

and write up the exercise on the index card. Students who had quickly completed this task were 

given additional index cards, until everyone had made up at least one exercise. The cards were then 

redistributed randomly, and the students were asked to solve the exercise given to them. Once 

finished, they were told to check their solution with the creator and if both agreed, they repeated the 

process with another exercise. 

There were very different approaches to this task by the students. Some students chose to model 

their exercises on the ones they had been given during the course with only slight changes (different 

numbers, different number of variables/equations, etc.), while others tried to produce an original 

task by combining things they knew. Both approaches were encouraged by the lecturer. During the 

creation of the exercises, the most striking observation was that the students suddenly felt the need 

for certain insights, which had been difficult to stir beforehand. E.g., one student wanted to create a 

linear system of equations, where a row of zeros would appear at some point in the process of 

Gaussian elimination, and was confronted with the need for a practical criterion to achieve this. 

Even though this issue had been dealt with during the course, she seemed to recognize the relevance 

of linear independence of the rows only at this point, when it was explicitly needed by her. 

Additionally, the participants were aware of the need to communicate their mathematical problem 

well enough for someone else to make sense of it and there seemed to be a genuine effort to achieve 

this. In the following session of solving each other’s exercises, a dynamic of interaction was 

observed, where the randomly allocated pairs of creator and solver got together to sit down and 

negotiate the wording of the exercises and the validity of different approaches (in particular, 



students who had not closely worked together before). There was very little intervention from the 

lecturer. 

Concerning the epistemic actions in AiC, there was much activity of recognizing and building with 

concepts. Moreover, the proposition that there has to be a need for a concept for an abstraction 

process to occur was confirmed in some cases, e.g., in the case of the student described above. We 

do not know, however, at this stage, whether this led to the construction and consolidation of the 

relevant concepts, which we consider to be a long term process and not measurable in this short 

time span. With respect to self-determination theory, after a short period of orientation a high level 

of motivation was observed during this task. The students seemed to feel a strong sense of 

autonomy, as they were given the freedom to create a problem of their choice with only the general 

topic prescribed. During the period of solving, many students displayed a boost in perceived 

competence, particularly when they were in the creator-role, and experienced their exercise and their 

comments on it to be of value for someone else. Furthermore, the students appeared to build new, 

largely positive, relationships with each other via the random and varying allocations of creator-

solver pairs. This interaction seemed to be of natural importance to the students (the extensive 

meetings of these pairs were their spontaneous creation and had not been suggested by the lecturer). 

Hence, the conditions for intrinsic motivation according to SDT were largely fulfilled, which might 

help to explain the unusually high motivation. We believe, however, that this exercise would not 

have worked out well if the participants had not been prepared for it in advance by the preceding 

days of the course. 

Results  

One of the institutional measures to evaluate the success of the course was the pass rate of the test 

and retake test, which was compared to the one of the previous year (as the style of the lecture and 

of the exams were largely the same, this comparison seems justified). In 2015, the pass rate for the 

regular test was about 65%, while the retake test was passed by 50% of the participants. In 

comparison, the regular test in 2016 was passed by 78% and the retake by 95%. Although there are 

of course various factors, which play a role in these results, an effect of the additional course seems 

likely. 

In addition, the course was hoped to have a positive lasting effect both on the motivation as well as 

on the ability of the students to achieve concept construction by themselves with the means of the 

relevant epistemic actions. This has not been quantitatively assessed yet and will be the subject of 

further research. However, there are many indications that such an effect might indeed be observed. 

During the sessions of the course, the students appeared to be (at least extrinsically) motivated and 

confident of benefiting from the course. Confidence and perceived competence seemed to increase, 

as the students advanced from the passivity of merely carrying out tasks imposed onto them by the 

instructor to more self-determined action. This seemed to be accompanied by a shift from mere 

extrinsic motivation (to pass the retake) to at least some intrinsic motivation, e.g. some students 

were observed to carry on discussing tasks during the break. The actual mathematical competence 

was seen to increase accordingly, as students gathered experience and perceived deeper 

mathematical insights, which they worked to develop. By the analysis of the two examples above, it 



can be inferred that in the framework of AiC and of SDT there have indeed been positive effects on 

motivation and the ability to perform epistemic actions with regard to the relevant concepts. 

These positive effects reached far into the next semester. Most participants felt that they had 

acquired a basic knowledge and techniques, which were necessary for the following courses, and 

were repeatedly observed by the authors to use methods they had picked up on in the additional 

course during the exercise classes of the following course. In almost all cases this was bolstered by 

the fact that the retake had been passed. Many students expressed their conviction of having profited 

to a great extent from the additional courses, both immediately after the course and about half way 

into the next semester. 

Conclusion and perspectives 

Compared to the previous approaches of the faculty of mathematics and to other approaches 

described in the literature (e.g. remedial courses as discussed by Di Pietro (2014), which were 

shown to be largely ineffective) to help the students in the transition from school to university 

mathematics, the additional courses described here seemed to be more effective with regard to the 

research questions posed above. Various factors are assumed to be of importance for this. 

As this was a voluntary course aimed at students having failed the end-of-term test, it was made 

clear beforehand that it should be seen as a chance to acquire skills not yet developed rather than an 

obligatory task (as in Di Pietro, 2014). The course was announced at the beginning of the semester, 

giving the students the opportunity to take it into account in their planning. In general, the allocated 

time was met with approval, both because it meant no conflict with the workload during the 

semester and because the end-of-semester test provided some feedback for the students whether 

attendance was advisable (due to other time restrictions regarding school and computer practica for 

the students, however, the course should not exceed two weeks). In addition, the common goal to 

prepare for the next semester and pass the retake seemed to ensure a sense of belonging to a peer 

group with a common aim. Hence, the general framework of the course proved to be more feasible 

than the previous ones, and will be kept for the time being. 

The design of the course with sessions devoted to central topics, which were each split into smaller 

units of varying tasks, were also perceived to have a positive impact with regard to the above 

questions. In particular, the general progress from rigidly set tasks to more self-determined ones 

seemed to be appropriate in this setting. The exercises themselves were developed using the AiC 

framework, and their construction will be refined, based on the observation of how the different 

tasks affect the perceived concept building in the students. For example, in the exercise given in 

figure 2, part (c) has already been modified to ask for linear independence of the differences of the 

given vectors as opposed to their sums. This allows for the generalization of ideas from lower 

dimensions to higher ones, giving the students the possibility to use previously built knowledge 

more directly. Moreover, part (d) was simplified to ask only for real vector spaces, as the additional 

difficulty of an arbitrary field seemed to be ignored or actually hindered the building with in the 

previous course. This will be reflected on further, using the gathered experience, and systematically 

revised for the next implementations. After this first preparatory cycle, we hope to be able to 

contribute to the research regarding the mediation of students’ problems in the first year of 

university by carefully designing and evaluating the next cycle of the described additional courses. 



We are going to evaluate the two main questions in the next cycle as follows. To assess the effect 

with regard to SDT, we propose to use a pre-post-test according to the items presented in Rakoczy 

(2006) with the pre-test set at the end of the lectures of the first semester and the post-test in the 

middle of the second semester. We want to check for correlations of these results with the 

performance in the end-of-first-term test. With regard to concept building, we are going to evaluate 

some abilities concerning the relevant epistemic actions at the end of the additional course itself 

with a free form questionnaire, supplemented by two or three interviews with students to reach 

theoretical saturation and to clarify the data. 
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In this case study, we examined a mathematician’s thought processes as he taught a course on 

Algebraic Topology. The mathematician shared his teaching-related journals over an entire semester 

and discussed them in depth during weekly meetings with the research team comprised of a 

mathematics educator, a cognitive psychologist, and a postdoctoral fellow in mathematics. 

Concurrently, one of his students took detailed journals on most lectures. The team employed Tall’s 

three worlds of embodied, symbolic, and formal mathematical thinking as various lenses to 

gain insight into the mind of the working mathematician as he taught a course on Algebraic Topology. 

Although the analysis of the data from the instructor’s journals and the in-depth discussion of the 

journals during the team meetings revealed his thought processes, the 35 handouts that he prepared, 

aligned with students’ needs, provided the most insight into his way of thinking.  

Keywords:  Embodied, symbolic, formal, Tall’s three worlds, Algebraic Topology  

Introduction 

Communicating advanced mathematical ideas to university students is a challenging endeavor. It is a 

common and accepted practice for many mathematicians to write definitions, theorems and proofs on 

the board and make comments as they introduce mathematical ideas to students. Thurston (1994, p. 

162) asked the question: “How do mathematicians advance human understanding of mathematics?” 

In interviewing 70 research mathematicians, Burton (1999, p. 31) found that “intuition, insight, or 

instinct” was seen by most mathematicians as a necessary component for developing student 

knowledge. Although we have some literature on examining mathematicians teaching practices (e.g. 

Fukawa-Connelly, 2012; Stewart, Schmidt, Cook & Pitale, 2015), research on what takes place in the 

minds of mathematicians and their students is still scarce (Speer, Smith, & Horvath, 2010). Dreyfus 

(1991) believed that, “one place to look for ideas on how to find ways to improve students’ 

understandings is the mind of the working mathematician” (p. 29). In this study, we examined a 

mathematician and one of his students’ daily thoughts on Algebraic Topology. The overarching goal 

of this research was to investigate the way mathematicians and students think about mathematics and 

the possible pedagogical challenges that they may face.  

Theoretical framework 

In this study, we employed Tall’s (2013) three-world model of conceptual embodiment, operational 

symbolism, and axiomatic formalism in order to describe an expert geometer’s ways of mathematical 

thinking. In Tall’s view, the embodied world involves mental images, perceptions, and thought 

experiments; the symbolic world involves calculation and algebraic manipulations; the formal world 

involves mathematical definitions, theories and proofs. Tall (2008) asserts that, “all humans go 

through a long-term development that builds through embodiment and symbolism to formalism” (p. 



23). Bridging between the embodied and symbolic worlds is of critical importance. Tall emphasizes 

that “a curriculum that focuses on symbolism and not on related embodiments may limit the vision 

of the learner who may learn to perform a procedure, even conceive of it as an overall process, but 

fail to be able to imagine or ‘encapsulate’ the process as an ‘object’ (p. 12). 

Tall and Mejia-Ramos (2006, p. 3) declared that the word ‘world’ is carefully chosen and has a 

‘special meaning’ in order to represent “not a single register or group of registers, but the development 

of distinct ways of thinking that grow more sophisticated as individuals develop new conceptions and 

compress them into more subtle thinkable concepts”. As Dreyfus (1991, p. 32) declares “One needs 

the possibility to switch from one representation to another one, whenever the other one is more 

efficient for the next step one wants to take… Teaching and learning this process of switching is not 

easy because the structure is a very complex one.” Duval (2006) claims that many students do not 

have the cognitive framework to perform the switch. The overarching goal of the first author’s 

research program is to investigate the ways in which mathematicians move between modes of thought 

and facilitate their students’ movements among these modes. Tall’s theoretical framework accounts 

for movement between the worlds of mathematical thinking and is a suitable scaffold for this research. 

Through our collaborations, we are beginning to understand how the minds of working 

mathematicians operate. Thus, we hope to evolve Tall’s theory and use it to analyze rich data from 

many mathematicians. We endeavored to investigate the following research questions: (a) How did 

the instructor and student move between the formal, symbolic, and embodied worlds? (b) How did 

the instructor use handouts in order to help students move between the worlds? 

Viewing Homology Theory through three lenses 

The mathematician appreciated the developmental aspect of Tall’s framework in which one begins 

with a very embodied view of the world around them and then moves with increasing age and 

experience to a symbolic view as one matures. However, he took issue with the “formal” viewpoint 

as the ultimate destination of this progression, especially since formal from a math perspective (i.e., 

set theoretic axioms, definitions, and formal deductions from such a system) is not the way 

mathematicians think. One can program a computer to generate (i) statements and (ii) formal proofs 

of these statements within an axiomatic system. In what sense can we say that the computer is 

discovering a mathematical theory? Humans use a lot more when they discover/develop a 

mathematical theory. Among all the myriad of possible statements that could be true in this formal 

theory, mathematicians choose certain ones (usually as a result of intuition and metaphors possibly 

supported by symbolic computations to garner evidence for the particular statements) called 

conjectures, and they try to prove them. Instead, the mathematician made sense of Tall’s worlds by 

thinking of them as three lenses that allowed him to view a mathematical reality/world. Figure 1 

illustrates his views of Homology Theory through these lenses. The embodied lens allows the 

mathematician to see cycles as geometric objects, and similarly for chains and various topological 

spaces. The symbolic lens allows the mathematician to use symbolic computation tools such as the 

Mayer-Vietoris sequence and produce symbolic computations (e.g., the homology of the 2-torus). 

The formal lens allows the mathematician to work with the Eilenberg-Steenrod axioms and results 

which can be derived formally from these axioms. The geometric side of topology spans the embodied 

and symbolic lenses. Algebra, primarily in the form of Homological Algebra, spans the symbolic and 

formal lenses.   



 

 

 

Figure 1: The three-lens view of Homology Theory 

We can think of similar lenses, for example, in medicine. One can look at a patient with one’s eyes, 

take an x-ray or an MRI of the patient, view the patient through an infrared lens, listen to the patient’s 

heart and lungs etc., talk to the patient about their symptoms, and draw blood and perform tests. These 

are different modes of gathering information to give a practitioner a more complete picture of the 

patient. 

Method  

The participants. Our qualitative narrative study investigated the ways an expert mathematician 

navigated among Tall’s worlds of mathematical thinking. The research team consisted of four 

members: a mathematics education researcher; a geometer, Noel Brady (the course instructor); a 

cognitive psychologist; and a mathematics postdoc familiar with both Algebra and Topology.  

The course. The Algebraic Topology course was the first in a two-semester sequence of graduate 

courses. There were eight graduate students enrolled in the course. During class meetings, Noel often 

passed out handouts to help students follow along with the topic of the day. He believed some topics 

covered in the chosen textbook (Hatcher, 2001), needed to be handled in a more detailed fashion. 

“Hatcher is a bit fast and loose with all of this”. Students actively solved problems together in groups, 

or individual students were called to the board to complete problems. Noel also helped to revive an 

extracurricular, student-led topology seminar.  

Data and procedures. In this study, we analyzed a geometer’s thought processes and actions while 

he taught Algebraic Topology over the entire Fall 2014 semester. One source of data was a series of 

teaching journals that contained Noel’s reflections on his preparations for class, what happened 

during class, as well as some descriptions of the events that took place during office hours and a 

student-led topology seminar. The research team read his daily journal entries and discussed them 

during weekly research meetings. During these meetings, we asked Noel further clarification 



questions, and he often drew additional pictures as he described the course content. These meetings 

were audio recorded and later transcribed and will be used as a source of data. Another source of data 

came from one of Noel’s graduate students who also wrote daily journals. These student journals 

provided an additional perspective into the events that took place in class. In addition, further data 

came from 35 handouts that Noel provided.  

Coding scheme. The data were analyzed thematically, meaning we mainly considered the key issues 

that emerged in this study. The main themes and their sub-categories were identified and coded (see 

Figure 2). In addition to assigning codes for the three worlds of mathematical thinking, we also 

created codes for movement between the worlds (e.g., embodied-symbolic). While coding Noel’s 

journals, at times we assigned multiple codes for a particular instance. For example, an excerpt could 

be coded with both the “Teaching” and “Tall’s Worlds and Movements” codes.  

In the following section, we give a glimpse into the analysis of Noel’s journals, as well as instances 

from the student’s journals to illustrate how the student perceived movement among the worlds. 

Results and discussion 

Figure 2 shows the percentage of total qualitative codes that were applied to excerpts from Noel’s 

teaching journals. 

 

Figure 2: Qualitative coding scheme 

The main theme of Tall’s three worlds of mathematics comprised 25% of the total codes. Teaching 

was the main theme that was coded the most (46%) in Noel’s journals. Reflections included 20% of 

codes, and codes pertaining to students involved 9% of the total codes. Analysis of the data revealed 

ample evidence that Noel repeatedly navigated between the three worlds of mathematical thinking. 

Below, we provide examples from our analysis of his teaching journals and a student’s journals to 

illustrate movement between worlds. 



Moving between embodied (intuition) and formal worlds 

According to Noel, this may have been the type of movement that the students found the most 

challenging: “There were a lot of questions about how to pass from an intuition to a formal proof 

(many of these examples used techniques/results from quotient spaces).” 

The analysis of the student’s journals showed his concerns regarding the proofs. This excerpt was 

taken from one of his journals at the beginning of the semester:  

Dr. Brady's way of proving results that come from concepts we're already supposed to have come 

across before his class is nice, I think. He gives a detailed outline verbally, which is helped along 

visually by his pictures and hand gestures. For the most part I'll watch without writing almost 

anything, but I definitely get a lot out of reviewing concepts in this way. I'm a little worried, 

however, that when we get to brand new material Dr. Brady's way of proving results might remain 

in the same verbal/hand-waving/picture-drawing style and that this won't be enough for me to 

follow the proof right there and then. He tends to speak and write very quickly, which is fine when 

we're reviewing. But since I can either copy furiously what he writes on the board or listen to him, 

but not both, this could become a problem. 

Noel refused to give students proofs that were pre-packaged. More specifically, he wanted to provide 

students with intuitions/pictures that would help them understand the conceptual nature of the proof 

and ultimately lead them to it. In one of the research meetings Noel said: 

I mean I can give verbatim proofs of things or give them more detailed proofs where Hatcher 

leaves stuff out, but that will just waste time and I’ll reproduce a book and nobody will get anything 

out of it. So I’ve given them intuitions, enough of an intuition that they can tag that together with 

a formal proof. 

Later in the course the student wrote: “I've seen van Kampen's theorem before, but Dr. Brady's from-

the-ground-up approach was very nice in that it showed us through comprehensive diagrams just 

where exactly the theorem comes from.” 

Movement between embodied and symbolic worlds 

Noel discussed moving from embodied demonstrations (e.g., rope trick) to having students complete 

symbolic examples (e.g., right-angled Artin group (RAAG) complexes and the torus knot spine): 

More of the same. I connected back to several examples from the first week and from the intro 

to 𝜋1. The pair of circle links in 𝑆3 example (a.k.a. the rope trick) and the RAAGs. This seemed 

to go ok. Mentioned again that RAAGs are deceptively simple looking groups, but that their 

subgroup structure is surprisingly rich. In particular, Bestvina-Brady (1997) and Agol-Wise (2012) 

contain very surprising results about subgroups of RAAGs. Told them that the story is still 

ongoing. Left off with an example of a torus knot spine (Hatcher).  

The handouts 

Analysis of the 35 handouts that Noel created illuminated the motives behind some of his thought 

processes and movement between worlds. These handouts gave the team a more authentic glimpse 

into the mind of the mathematician than the teaching journals that Noel regarded as self-critical (self-

aware). Figure 3 shows the first two pages of a handout Noel created on barycentric subdivision. The 



start of the handout contains the formal definitions of “barycenter” and of “barycentric subdivision.” 

These definitions build on a previous definition (and square bracket notation) of an n-simplex. The 

definition of “barycentric subdivision” is recursive (i.e., defined in terms of lower dimensional 

versions of itself). The rest of the two pages is devoted to building students’ intuitions for these 

definitions. At the bottom of the first page, two embodied examples are provided which demonstrate 

how to unwrap the recursive definition to determine the barycentric subdivision of a 1-simplex (a line 

segment) and of a 2-simplex (a triangle). This is followed by an exercise which asks the student to 

add another layer of recursion and describe the barycentric subdivision of a 3-simplex (a triangular-

based pyramid). This is a very embodied example. At this stage, Noel hoped that the student should 

be gaining confidence working with the recursive definition and should be developing an intuition 

that the symbolism will work in higher dimensions where one’s embodied intuition fails. The second 

exercise asks the student to iterate the barycentric subdivision process for a 2-simplex. Again, this is 

very embodied and can be drawn easily in the plane. Noel pointed out that developing an intuition 

about iterated barycentric subdivisions is important since they will form the heart of the proof of the 

“locality result” and the proof of the “excision theorem” for singular homology later on in the course. 

The two Roman-numeral-labeled observations at the end of page 2 build on the student’s embodied 

intuition of the behavior of iterated barycentric subdivisions in dimension 2 (obtained from doing 

exercise 2). They motivate the statement of the theorem that will be given and proven on subsequent 

pages of the handout. They also alert the student to the fact that some care will have to be given to 

the proofs on the subsequent pages. This is particularly so, since these proofs will hold in arbitrary 

dimensions.  

Noel pointed out that, from a textbook perspective, one can skip straight from the definitions of 

barycenter and barycentric subdivision to the statement and proofs of the theorems about the behavior 

of the diameters of simplices under iterated barycentric subdivisions. Nothing in the logical 

progression and framework would be lost. However, students’ intuitions would be lacking (save for 

the rare student or two who can do some mental exercise equivalent of the examples, exercises and 

observations of these two pages.). This handout is one of a sequence of three handouts. These 

handouts get increasingly symbolic and abstract. Eventually, the results contained in the last handout 

are just what are needed in the formal proof of the “locality theorem” (and the “excision theorem”) 

of singular homology. At this stage, the proofs are very symbolic and far removed from geometry. It 

is good that students have developed an embodied intuition about iterated barycentric subdivisions, 

so that they have concrete models in their mind for how excision works on the geometric level of 

chains.  



 

Figure 3: An excerpt from Noel’s handout 

Concluding remarks 

This study revealed that Noel viewed Algebraic Topology through all three mathematical lenses 

(embodied, symbolic, formal), and his handouts provided his students with opportunities to view the 

course material through these different lenses as well. In one of the research meetings, Noel 

mentioned:  

When I think of the mathematical world of algebra I have examples in my mind, many of which 

are very embodied, and many of which are symbolic, I also know the axiomatic definitions of 

concepts in this world like "group," "ring," "field" etc. So, when I think of the world of algebra all 

three lenses (embodied, symbolic, formal kick into gear. Likewise, for the mathematical world of 

topology. 

Our research team, comprised of a mathematician, a mathematics educator, and a cognitive 

psychologist, are working together to apply and evolve Tall’s theoretical framework by analyzing the 

teaching journals of mathematicians and their students. We have come to realize that the embodied, 

symbolic, and formal worlds blend together as applied to Algebraic Topology; it is often not clear 

where one world starts and another world ends. In addition to thinking about problems from the ESF 

perspectives, mathematicians often translate a problem from one area of mathematics (e.g. Topology) 

to another (e.g. Algebra). This translation is achieved using mathematical constructs called functors.  

Noel used the analogy of a translator to describe the mathematical notion of a functor. When a 

statement of a problem is translated from one language to another, some of the details may get lost in 



the translation. Perhaps this loss of information has an unexpected benefit; the simpler formulation 

of the problem in the new language might allow for new insights or intuitions to be gained, and 

perhaps even for a solution to the original problem. 

Noel talked about functors in his journals, and described how they are used to solve problems in 

topology by first translating then into algebra problems: 

We introduced some other situations where Algebraic Topology functors might help solve 

topology problems, and mentioned that the homology functors would be introduced and studied in 

the course.  

We are using analogies and metaphors to communicate with one another as we attempt to understand 

the pedagogical decisions of the working mathematician. As Thurston (1994, p. 168) asserted: “we 

mathematicians need to put far greater effort into communicating mathematical ideas. To accomplish 

this, we need to pay much more attention to communicating not just our definitions, theorems, and 

proofs, but also our ways of thinking...we need to appreciate the value of different ways of thinking 

about the same mathematical structure”. 
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Discursive shifts from school to university mathematics and lecturer 

assessment practices: Commognitive conflict regarding variables 
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We report part of an ongoing study that aims to characterise lecturers’ assessment discourse, 

especially on closed-book examinations. We focus particularly on lecturers’ discourses that concern 

the transition from school to university mathematics, and we do so through highlighting one 

commognitive conflict regarding the use of variables in a task from an examination paper for a Year 

1 module on Sets, Numbers and Probability taught in a UK mathematics department. We show 

evidence that the lecturer’s assessment practices aim to facilitate students’ avoidance of errors that 

are occurring because of said conflict. Here, we focus on students’ scripts which illustrate that, 

nonetheless, students make errors and do not draw on the discourse of integers when deciding the 

domain of the variables used in the task. We conclude with a brief discussion of students’ experience 

of commognitive conflict in the transition from school to university mathematics.  

Keywords: Undergraduate examinations, assessment routines, commognitive conflict, variables.  

Introduction  

Studies in mathematics education have focused on students’ transition from secondary school to 

university (e.g. Gueudet, 2008). Part of how students experience said transition is evidenced in their 

engagement with examinations during their first-year undergraduate modules. The nature of tasks in 

examinations has been studied using different theoretical frameworks (e.g. Tallman, Carlson, 

Bressoud & Pearson, 2016). Researchers have also examined lecturers’ perspectives on examination 

tasks (Bergqvist, 2012; Tallman et al., 2016). In our study, we take a discursive approach in analysing 

examination tasks and lecturers’ perspectives focusing on aspects of the transition from secondary 

school to university mathematics. This theoretical approach allows a characterisation of the 

mathematical discourse the students engage in when solving the tasks, and provides insight into 

lecturers’ assessment practices and their expectations from students’ responses.  

In this paper, we analyse a task from a first-year module on Sets, Numbers and Probability offered in 

a UK mathematics department. We build on previously reported work from this study (Thoma & 

Nardi, 2016) in order to delve into lecturers' assessment practices facilitating students’ transition to 

university mathematics in more detail. Specifically, we take the case of variables and the way these 

appear in a Number Theory task of the module’s examination paper. In choosing this particular case, 

we take cue from previous works (e.g. Epp, 2011) which note that variables have diverse uses in 

mathematics, some of which often create difficulties for students’ transition to algebra and other 

advanced topics. Of particular relevance in this paper is the discussion by Biehler and Kempen (2013) 

about the difficulties with variables that students face. 

In the part of our study reported here, we focus on a commognitive conflict concerning the number 

domains in the secondary school and university mathematics discourses. First-year mathematics 

undergraduate students’ errors regarding variables, when engaging in a Number Theory task, provide 

evidence of this unresolved commognitive conflict. In what follows, we present briefly the theoretical 

framework of the study, the examination task and the study’s participants. We then analyse the task 



and the interview data with the lecturer who posed the task. The interview data illustrate the lecturer’s 

ways of assisting the students to avoid the errors. Finally, we highlight the errors evidenced in the 

student scripts despite this assistance, we present the case that these errors stem from aforementioned 

commognitive conflict and conclude with a discussion of findings and how these are embedded into 

the larger study. 

Commognitive conflicts and assessment routines facilitating discursive shifts 

Sfard's (2008) theory of commognition is a discursive approach that is being increasingly used in 

mathematics education (Tabach & Nachlieli, 2016), as well as specifically in university mathematics 

education (Nardi, Ryve, Stadler & Viirman, 2014). Mathematics in this approach is a discourse that 

can be described in terms of the following four characteristics: word use (e.g. divisor), visual 

mediators (e.g. algebraic symbols), endorsed narratives (e.g. definitions) and routines (e.g. proving). 

The routines are distinguished in deeds (“an action resulting in a physical change in objects”; Sfard, 

2008, p. 236), rituals (“creating and sustaining a bond with other people”, p. 241) and explorations 

(“producing endorsed narratives”, p. 259) with the explorations further categorised in recall, 

substantiation and construction. Of particular relevance to our analysis here is the construct of 

commognitive conflict “the phenomenon that occurs when seemingly conflicting narratives are 

originating from different discourses – from discourses that differ in their use of words, in the rules 

of substantiation, and so forth.” (p. 257). For example, a commognitive conflict may occur between 

the different relationships that the number domains have in school and university mathematics 

discourses. In school, number domains are introduced progressively. They are used for some time; 

and then subsumed in the next number domain. Positive integers are introduced first. Then, as the 

students learn about division, rational numbers follow. After a while, the discourse about unsigned 

rational numbers (which includes integers and rational numbers) together with negative numbers 

constitute the discourse on rational numbers (p. 121). The discourse of real numbers is introduced in 

later stages of the secondary school. In the university discourse, the number domains play a different 

role. They are presented as crucial abstract structures, the ring of integers and the fields of rationals, 

reals and complex numbers. In particular modules, the focus of study are those abstract structures and 

that is the case for Number Theory, where the domain of the variables is restricted in the discourse of 

integers. 

In our study, we examine students’ participation in the university mathematics discourse taking also 

into account the lecturers’ perspectives, particularly their rationale for the choices of the examination 

tasks and the wording of the tasks. Our previous analysis of examination tasks and lecturers’ 

assessment practices (Thoma & Nardi, 2016) highlighted the following assessment routines: giving 

directions to the students regarding the steps their response to a task may take; structuring the tasks 

and subtasks in ways that allowed students to secure and optimise marks as they progressed from one 

part of a task to another; and, providing guidance regarding expected justifications in the students’ 

responses. Overall, these routines aim at assisting students’ shifting from school to university 

mathematics discourse. Here, we aim to extend our previous analyses, also taking into account 

lecturers’ assessment routines, which aim to avoid expected errors. We will make the case that 

unresolved commognitive conflicts are responsible for those errors. We are, therefore, starting to look 

in tandem at aspects of students’ experience (here: commognitive conflicts relating to variables in a 

Number Theory examination task) and lecturers’ perspectives on – and intended practice relating to 



– this experience. In the following, we outline the larger study our paper originates in; and, introduce 

the examination task and a brief commognitive analysis of it. We then offer an analysis of the 

lecturer’s perspectives on the task, highlighting those assessment routines that aim to help students 

avoid errors relating to variables. Finally, we present the student examination scripts, which illustrate 

these errors and examine whether, and how, the unresolved commognitive conflict in the different 

relationships with number domains at school and university, may be seen as responsible for these 

errors. 

The examination task and the participants of our study (lecturer and students) 

The data of our study 

consists of examination 

tasks from different 

modules, lecturers’ 

interviews on those tasks 

and students’ scripts 

corresponding to these 

examination tasks. The 

focus of this paper is on 

one task from the module 

Sets, Numbers and Probability. This is a first-year module and has two parts: Sets, Numbers and 

Proofs taught in the autumn semester 

and Probability taught in the spring 

semester. The final examination 

includes six tasks: the first two are 

compulsory and the other four 

optional. One of the compulsory and 

two from the optional tasks are on 

Numbers, Sets and Proofs and the 

others on the Probability part of the 

module. At the final examination, the 

students have to solve both the 

compulsory tasks and three from the 

optional tasks. The total grade of the 

examination is 100 marks and the 

pass grade is 40 marks. This paper 

focuses on the compulsory task from the Sets, Numbers and Proofs part of the module (Figure 1). 

More specifically, in this part of the module, the topics covered are: Set Theory (notation, operations, 

cardinality and countability), Functions (introduction to functions, injection, surjection), Proofs 

(direct proof, proof by induction, proof by contradiction, proof by counterexample), Number theory 

(greatest common divisor, prime numbers, modular arithmetic) and Equivalence relations. The topic 

examined in this task is proof by induction and Number theory. Our analysis will focus on students’ 

responses to the Number theory part of the task, task (ii). The model solution for part (ii) created by 

the lecturer for departmental use is in Figure 2. We note that this solution is not made available to the 

students.  

Figure 1: Compulsory task on Sets, Numbers and Proofs 

Figure 2: Model solution of part (ii) of the compulsory task 



Fifty-four students took part in the final examination and the marks of their responses in this task 

ranged from 4 to 20, with the mean being 16.85 marks. The scripts of 22 students were selected by 

the first author to represent a variety of marks (Figure 3). The errors based on what we see as an 

unresolved commognitive conflict regarding variables were observed in 6 students’ scripts. Here we 

report: first, analysis of the task and from the lecturer interview data; then, a sample from the analysis 

of the six students’ scripts.  

Task analysis and the lecturer interview 

In part (i) of the task (Figure 1), the students are asked to engage in a substantiation routine (proof by 

induction). The wording of the task directs the students to this type of proof. In part (ii), the  

students are directed to engage first in a 

recall routine, giving the definition of a 

divisor, and then in a substantiation 

routine of a relationship describing the 

connection between the linear 

combination of a and b and the divisor d 

of a and b (iia). The students are then 

directed toward using the Euclidean 

Algorithm in (iib) and, in the last part 

(iic), they are expected to engage in a 

proof by contradiction (not explicitly 

mentioned in the wording of the task) in  

 

order to prove that the linear combination given is not divisible by 7 – see (Thoma & Nardi, 2016) 

for more detailed analysis of the task. For the purpose of this paper, we focus on the lecturer and 

student data corresponding to the second part of the task, (ii). 

During the interview, the lecturer said:  

Lecturer: (…) my memory of school mathematics is that there was a lot of doing things but not 

necessarily a lot of formally defining things (…) And of course they came to 

university thinking that they knew what that [the definition of the divisor] meant 

but in this situation it really matters that they are restricting themselves to the-to the 

ring of integers (…) and all the symbols represent integers so what it means to 

divide is very different than if they were working with fractional numbers or 

something where they could write a over b and things like this. 

Our commognitive analysis highlights the differences in the lecturer comments between the school 

discourse and the university discourse and, more specifically, with regard to the routine of defining 

and the importance of understanding that “all the symbols represent integers”. 

He highlights the differences between what the students are used to and what they are expected to do 

at university level. Our analysis sees this as the differences between the two discourses: on the one 

hand on the focus of the routines; on the other hand, on the constraints of the different discourses that 

exist within the mathematical discourse at university level. More specifically, the students, working 

with this definition have to restrict their work on integers – and not on rational or real numbers. The 

lecturer, then, speaks about the nature of the symbols involved. We recognize this comment by the 

Figure 3: Marks from all the students’ scripts 



lecturer as foreseeing students’ errors in the case that they treat the divisor as a rational instead of an 

integer, drawing on the discourse of rational numbers instead of the discourse of integers. Integer 

numbers are rational numbers, and making the distinction between the two – and then opting for 

working within the discourse of integers – is not something that these students have been routinely 

working with in school. This shows that the lecturer expects students to use division in the way that 

they were taught in school, instead of considering the abstract structure that this task is asking them 

to restrict their activity in. In the excerpt that follows, the lecturer explains his assessment routines 

which aim to assist students with avoiding errors that are happening because of what we see as a 

commognitive conflict: subtask (ii) is gradually structured as first asking the definition, then, 

substantiating a narrative that draws on this definition, engaging with the Euclidean algorithm and, 

finally, combining all the above to engage in a proof by contradiction. He comments on the purpose 

of this gradual structure as follows:  

Lecturer: (…) what’s being tested here is their ability to write down something formally and 

correct. And I would worry that if I didn’t prompt them to write down formally the 

definition of what it means for one integer to divide another in the exam, in the 

pressure of the exam and so on, then their answers could start looking very 

‘creative’ at the second part and they might start writing down fractions. 

Therefore, he aims that the gradual structure aids students towards achieving the expected solution. 

This can be thought of as a way of helping students avoid experiencing errors stemming from what 

we labelled as commognitive conflict, where a and b, would be treated by students as rational 

numbers, instead of integers: this gradual structure serves as a reminder that they should restrict 

themselves in the discourse of integers. Additionally, the analysis shows that the lecturer stresses the 

routine of justification and the rigor of the university discourse compared to the school discourse, a 

further staple of the transition that these students are at the moment experiencing (Gueudet, 2008). 

Lecturer: (…) the only challenging part would be the last part, the part that requires some thought 

and they need to-to sort of understand or remember that somehow it relates to what 

happened up here [shows parts (iia) and (iib)] (…) to remind them that I want them 

to explain why they are answering what they are saying. 

In the excerpt above, the lecturer comments on the challenge of the (iic) part of the task and the 

purpose of the prompt “Explain your answer carefully”. In this part of the task, the students have to 

engage in a substantiation routine that is based on the endorsed narratives that they have created for 

parts (iia) and (iib). The lecturer suspects that the students may omit justifying their response 

regarding the substantiation of the given relationship and aims that this prompt will help them do so.  

From the above, we see that the lecturer has identified students’ difficulties with the nature of the 

variables being used in this task. Our commognitive analysis sees this as evidence that the lecturer 

appears alerted to this difficulty as a difference between the school and the university discourse. The 

students, during their school years, gradually moved from the discourse of the natural numbers, to the 

one of the integers, then to the rational numbers and finally to the reals. Now, in this task, they are 

asked to endorse the discourse of the integers, which is subsumed in the discourse of rational numbers, 

within which they have been performing division of numbers in school. We now turn to students’ 

responses, which evidence that, despite aforementioned aid provided by the lecturer, errors 



illustrating this commognitive conflict were not avoided. Of the twenty-two student scripts analysed, 

six contained said evidence ([01], [03], [06], [11], [16], [17]). 

The students’ scripts 

Student [03] first communicates the relationship between the divisor d and a using written verbal  

 

visual mediators. In the second part of 

(iia) the student writes, using symbolic 

mediation, that d is a divisor of a and d is 

a divisor of b. However, in the symbolic 

realisation of the divisor, the student 

deploys fractions, with d being the 

numerator and a and b being the 

denominators. This way of writing that d 

divides a can be seen as a translation of 

the written verbal mediator into a 

symbolic mediator without taking into 

account that the fraction line means that 

the denominator divides the numerator. In 

the case of the task, this division would 

result in a non-integer number. This way 

of writing signals that the student may see 

m and n (written on the right hand of the 

script) as numbers and not as integers. 

Then, the student writes the relationship 

between the symbolic mediators m, d and 

a and concludes that d is equal to the 

product of m and a. The student used all 

the symbols given in the wording of the  

task to produce a narrative that involves fractions. Fractions could be part of the discourse of rationals, 

and this task asks the students to restrict their activity within the discourse of integers. We see the 

appearance of fractions and the absence of the constraints regarding the variables as evidence of the 

commognitive conflict regarding the relationships between the number domains in school and 

university mathematics discourses. Unclear meaning making regarding the object of a divisor is 

evidenced as the student starts by explaining that d is a factor of a, then engages in the discourse of 

rationals concluding that d=ma but then saying that the product 2d has d as a divisor. Having 

concluded that the greatest common divisor is 3 (Figure 4) using long division - and not the Euclidean 

algorithm - the student writes 123m + 45n =3. Then s/he divides all the terms of the equality by 3 and 

takes different cases where the new equality is true. 

In doing so though, [03] does not take into account the nature of the variable symbolic mediators and 

the variables become rational numbers. Also, there are multiple values in the rational numbers that 

satisfy this equality as can be seen in the response (Figure 4). Finally, in the last part of the task, the 

student responds affirmatively that there are “integers” s and t. However, the s and t s/he gives are 

Figure 4: Student [03]’s script to (ii) 



rational numbers chosen to result in 7. This signals a ritualised use of the word “integers”: the student 

uses the word integer, seemingly repeating the wording of the task but in fact providing numbers that 

are not necessarily integers. 

 

Two more students [16] and [17] give similar 

responses. Student [16] (Figure 5) does not give a 

definition of the divisor, attempts the substantiation of 

the relationship describing the connection between the 

linear combination of a and b and their divisor d, finds  

the greatest common divisor and uses only integers similarly in the identification of the integers m 

and n which give the linear combination of the greatest common divisor. However, when responding 

to (iic), [16] finds two non-integer rational numbers for s and t and confirms that the expression results 

in 7. Similarly, in the scripts from the students ([01], [06], [11]) there are instances where errors occur 

as the number domain of the variables is not clarified and the students work in a different number 

domain than the integers, which is what the task calls for.  

Symbolic visual mediation and the transition to university mathematics  

Looking at the model solution produced by the lecturer (Figure 2) and the wording of the task (Figure 

1), we can see that there are four different instances where the students have to define the symbolic 

mediators they use: first, in the definition of the divisor where an integer is introduced to illustrate 

the relationship between a and d; then, in the narrative which connects a, b and their divisor d; next, 

in the substantiation of the relationship between the linear combination of a and b and their divisor 

d; and, finally, in order to prove by contradiction that a linear combination of a and b is not divisible 

by 7. In the last instance, the symbolic mediators on both sides of the equality have to be integers and, 

as 7 is not divisible by 3, the contradiction occurs. The wording of the task, where the lecturer stresses 

that all the variables in this part of the task are integers, and the structure of the task aim to signal to 

the students that they have to be working within the domain of integers. Our analysis suggests that 

lecturers design the tasks being aware of the students’ potential errors regarding the variables 

belonging to different number domains and thus adds to Bergqvist’s (2012) results on what lecturers 

take into account when designing assessment tasks. The data from the students’ scripts shows 

however, that, in six out of the twenty-two analysed responses, students’ errors signal an unresolved 

commognitive conflict that relates to making a distinction about the nature of the variables. Engaging 

with this distinction is not a routine that students are typically engaged with, at least in the UK 

secondary classrooms where the students participating in this study have been educated in: number 

domains are introduced progressively and students are simply expected to always work within the 

latest introduced number domain. However, in the university, the numerical context of a task may 

differ from task to task and the students are expected to be able to swiftly identify the domain that is 

appropriate for each task and work within it. We approach this issue therefore as a non-negligible 

aspect of the students’ transition from school to university mathematics. Our results resonate with 

those in Biehler and Kempen’s (2013) study. They found that, frequently, their participants would 

use symbols without providing information regarding the domain of the variable; in our case, not 

attending to such information results also in leaving parts of the task practically not answered – 

especially in the cases where the explicit request for “integers s and t” in (iic) receives non-integer 

responses.  

Figure 5: Student [16]’s to (iic) 
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We report analyses from a collaborative, developmental research project between two Norwegian 

centres of excellence in higher education (MatRIC and bioCEED) in which biology-related 

mathematical modelling (MM) activities are introduced to biology students as a means to motivate 

their appreciation for, and competence in, mathematics. This phase of the project involved four 

sessions with 11 first-semester students. We report data and analyses from two activities: Yeast 

Growth and Digoxin. Our commognitive analyses trace the evolution of the students’ mathematical 

discourse in two episodes, revealing a scaffolding story about the gradual transition from ritualized 

to exploratory engagement with MM, and pointing to the crucial role played by the teacher in this 

process. We conclude with discussing some implications of our analysis for the design and use of 

MM activities for students of Biology, and other non-mathematics specialists. 

Keywords: Theory of commognition; mathematical modelling in biology; mathematical discourse; 

routines; rituals and explorations. 

Teaching mathematics to biology students through mathematical modelling 

Research into the mathematical needs of non-mathematics specialists is by no means new (e.g. Kent 

and Noss, 2003). Participants in many university-level studies are often non-mathematics specialists 

(e.g. engineers or pre-service teachers), but their specialism often remains a mere part of the study’s 

backdrop (Biza, Giraldo, Hochmuth, Khakbaz & Rasmussen, 2016). The relatively small but 

growing number of studies in this area (e.g., Gould, Murray & Sanfratello, 2012) have touched on 

issues such as: the double discontinuity between school, university and workplace mathematics; the 

challenges of teaching mathematical modelling at school and university levels; issues of confidence 

in and appreciation for mathematics; and, embeddedness of mathematics into other disciplines.  

Within biology, mathematics is becoming increasingly important, placing new demands on the 

education of future biologists. In the US, for example, the recognition of these demands has led to 

two national projects focusing on developing undergraduate biology education (Brewer & Smith, 

2011; Steen, 2005). A potential problem with placing greater emphasis on mathematics in biology 

education is that “biology education is burdened by habits from a past where biology was seen as a 

safe harbour for math-averse science students” (Steen, 2005, p. 14). The project that we draw on in 

this paper aims to improve student appreciation for mathematics through helping them experience 

the relevance of mathematics to their field of study. It does so through exploring the suggestion 

made by several authors (e.g. Brewer & Smith, 2011; Steen, 2005) for greater integration of 

mathematics and biology in the curriculum. MM, as Brewer and Smith (2011) point out, is a basic 

skill within the ‘core competencies and disciplinary practices’ (p. 17) of biology – and a vehicle for 

improving student appreciation for the role that mathematics can play in scientific research. 

http://www.uia.no/senter-og-nettverk/matric
https://scholar.uib.no/bioceed/


Studies which have investigated the use of MM in university biology education (e.g. Chiel, 

McManus & Shaw, 2010) indicate that engagement with MM activities can contribute to more 

positive attitudes towards, and self-perceived competence in, both biology and mathematics. 

Concerning an integrated approach to mathematics and biology, Madlung, Bremer, Himelblau and 

Tullis (2011) investigated whether such an approach might have adverse effects, such as breadth at 

the expense of depth, or mathematics anxiety problems. Two versions of a bioscience module, one 

of which contained a computational statistical element, were developed and offered to an 

introductory and an advanced biology class. Results showed no detrimental effects of an integrated 

approach but indicated that advanced level students were more able to benefit from it.  

To examine the evolution of biology students’ appreciation for, and competence in, mathematics as 

they engage with MM activities we espouse a discursive perspective – particularly that of the theory 

of commognition (Sfard, 2008; Nardi, Ryve, Stadler & Viirman, 2014, p. 183-5) – according to 

which learning is change in one's participation in well-defined forms of activity (discourse). In what 

follows, we introduce those components of the commognitive perspective pertinent to the data 

analysis we present in this paper; we then present a sample of our data and analysis (two episodes 

from students’ engagement with two MM activities, Yeast Growth and Digoxin). 

The commognitive construct of routines: Explorations, deeds and rituals 

According to the commognitive perspective, ‘it is by reproducing familiar communicational moves 

in appropriate new situations that we become skillful discursants, and develop a sense of 

meaningfulness of our actions’ (Sfard, 2008, p. 195). A routine is a set of meta-rules that describe a 

repetitive discursive action. Sfard defines three types of mathematical routines: explorations, deeds 

and rituals, with deeds and rituals presented as predecessors of explorations. A routine is called an 

exploration ‘if its implementation contributes to a mathematical theory’ (p. 224) (e.g. equation 

solving, defining and proving). Explorations involve the construction, substantiation or recall of 

narratives about mathematical objects. Routines that involve practical action (action resulting in 

change in objects, either primary or discursive, p. 241) are called deeds. Deeds are therefore 

different from explorations, which aim to effect change on narratives. Often, however, there are 

routines that “begin their life as neither deeds nor explorations but as rituals, that is, as sequences 

of discursive actions whose primary goal […] is neither the production of an endorsed narrative nor 

a change in objects, but creating and sustaining a bond with other people’ (p. 241). 

Sfard claims that rituals are a ‘natural, mostly inevitable, stage in this development process’ (p. 

245) and that the road to exploration often leads through ritual. The data and analysis sample we 

present in this paper examines this claim with a particular focus on the following research question: 

“What characterizes the use of routines by Y1 Biology students as they engage in MM activities?” 

Aims, methods, data and participants of the study  

The research design of our study comprises cycles of developmental activity (planning, 

implementation, reflection, feedback) which are theoretically informed, contribute to the emergence 

of theory and take place in a partnership between teachers (in this case, a university mathematician) 

and didacticians (Goodchild, Fuglestad & Jaworski, 2013). This ongoing project is a collaboration 

between two Norwegian centres of excellence in higher education – the Centre for Research, 

Innovation and Coordination of Mathematics Teaching (MatRIC) and the Centre for Excellence in 

http://www.uia.no/senter-og-nettverk/matric


Biology Education (bioCEED). The aim of the project is to improve biology students’ motivation 

for, interest in, and perceived relevance of mathematics in biological studies through the use of 

MM. The teaching took place at a well-regarded Norwegian university where biology students take 

one compulsory mathematics course, taught in the first semester, designed not specifically for the 

biology undergraduate programme but for students from about twenty different natural science 

programmes. Typically, in this university, there is little collaboration between the mathematics and 

biology departments, and few opportunities for focusing on issues specific to biology in the 

mathematics course. The data for this paper originate in four three-hour sessions with twelve 

volunteer students, nine female and three male. Activity during the sessions was video and audio 

recorded, both from whole-class and small-group work. Also, all written material produced by the 

students was collected. The teaching was conducted in English, but all student group work and most 

student contributions to group discussions were in Norwegian. The first session began with an 

introduction to the basic ideas of MM and to the modelling cycle. Students were then asked to work 

in smaller groups on modelling problems of varying complexity, but requiring only pre-calculus 

mathematics. The structure of the three remaining sessions was similar, but the initial exposition 

instead introduced specific types of models relevant to the problems given in that session. The data 

we draw on in this paper are taken from sessions two and three, and concern one group of four 

female students as they work on two different, but related, tasks, Yeast Growth and Digoxin. In the 

analysis, we examined the discourse of the students looking for recurring patterns that could be 

described as routines, for instance graph construction. Furthermore, we looked for signs indicating 

the type of routine use. For instance, we aimed to discern the motives (if any) students provide for 

their activity. Since the changes in discourse that we aim at charting in this paper take place 

gradually and over extended periods of time, they are difficult to exemplify through data excerpts 

within this short paper. Hence, in presenting the data analysis we have opted for offering instead a 

condensed, selectively detailed narrative account of key incidents illustrating these changes.  

Mathematical modelling for biology students: Yeast Growth and Digoxin tasks 

A large part of the first session was spent on a very open task where the students were asked to 

estimate the density of a rabbit population based on the number of roadkill rabbits along a stretch of 

highway. Reflecting on the session, the lecturer felt that the students had not been able to work 

productively enough on this task, and he decided to make the second session more structured. The 

first 45 minutes of that session were spent first on a follow-up of a homework task given at the end 

of the previous session, followed by a brief lecture on “steady-state box models” and, related to this, 

a very short task on pollution in a lake. Then the focus shifted to modelling change, introducing a 

task concerning the growth of a yeast culture in a petri dish (Yeast Growth). Contrary to the first 

session, however, the task was broken into subtasks that the students worked on for 10-15 minutes 

each, with whole-class summaries in between. 

For the first Yeast Growth subtask, the students were given a first part of a table of data, taken 

from an old research paper (Pearl, 1927), with three columns (time, amount of biomass, change in 

biomass) describing the growth of a yeast culture. The students were asked to: analyze the 

numerical data in the table; plot the data and analyze the graph; suggest a simple model based on a 

difference equation of the form nn pkp 1 , where np is the size of the yeast biomass after n hours, 

https://scholar.uib.no/bioceed/


nn

def

n ppp  1 is the change of biomass between two measurements, and
1k is a positive constant; 

and, explain what their expectations would be regarding the predictive power of the model they 

constructed. The initial plan for the second subtask was to give students the second part of the 

table and ask them to: analyze this new data (noting the change in population per hour becomes 

smaller as the resources become more limited); plot the population against time, explore the shape 

of the graph and state what they would expect in the long run; and, calculate the expected value for 

“carrying capacity” in this case (noting that, based on the graph, the population appears to be 

approaching a limiting value, known in biology as “carrying capacity”). However, in the actual 

session (due to limitations of time) the students were instead given a non-linear model based on 

incorporating the carrying capacity: “We may estimate carrying capacity to be 665 (this value is not 

precise and your value may differ a bit). As the number np665  gets smaller and smaller as np  

approaches 665, we may adjust our simple linear model replacing it with a nonlinear model 

)665(2 nnn ppkp   or alike, if you have chosen 664 or 666. Test a new model by plotting 

np against )665( nn pp  to check whether a reasonable proportionality is observed. Then, estimate 

the proportionality constant
2k . What is your value?” For the third and final subtask, the students 

were asked to use the new model, with 
2k =0.00082, to compute values and compare them with the 

actual data (“Compute twelve values of np using the formula and starting with the initial 

value .6.90 p ”). 

Digoxin was the first task of session 3 and also concerned the modelling of change, in this case the 

decay in the body of Digoxin, a drug used in the treatment of heart disease: (a) For an initial dosage 

of 0.5mg in the bloodstream, the table shows the amount of digoxin na remaining in the bloodstream 

of a particular patient after n days, together with the change na each day. Plot na versus na and 

explore the graph. Suggest a simple model based on a difference equation of the form nn aka 3 , 

where 3k is a positive constant. What is your choice of 3k ? (b) Now our objective is to consider the 

decay of digoxin in the blood stream to prescribe a dosage that keeps the concentration between 

acceptable levels so that it is both safe and effective. Design a simple linear model describing the 

following scenario: we prescribe a daily drug dosage of 0.1mg and know that half the digoxin 

remains in the system in the end of each dosage period. (c) Consider three different options where 

the initial one-time dose of medicine received by the patient is 0a  = 0.1mg, 0.2mg or 0.3mg. What 

are your conclusions? What would you recommend if you were this patient’s GP?” 

In Yeast Growth, the students were expected to find an approximately linear relation between the 

change and the amount of biomass, estimate the proportionality constant, and conclude that this rate 

of growth cannot continue indefinitely. With the additional data then provided, they were then 

expected to conclude that the growth decreases and the amount of biomass stabilizes at the carrying 

capacity of the petri dish, in this case 665. The students were then given a suggested non-linear 

model and were expected to check the validity of the model by finding the proportionality constant. 

Finally, they were expected to use the model to generate values that could be compared with the 

actual data. To do this, they needed to solve the equation )665(21 nnnnn ppkppp   for 1np . 

In Digoxin, in part (a) the students were expected to find a linear relationship between the change 

and the amount of digoxin remaining, and estimate the proportionality constant from the graph. In 



part (b) they were expected to construct a model of the form 1.05.01  nn aa , and then, in part 

(c), use this model with the different initial conditions to realize that, in all cases, an equilibrium of 

0.2mg will eventually be reached, leading to a recommended initial dose of 0.2mg. 

In what follows we highlight two critical incidents, one from Yeast Growth and one from Digoxin. 

Yeast Growth: Ritualized engagement with mathematical modelling  

The group ignores the first question in the subtask, about analyzing the data in the table. Instead, 

their initial efforts concern the practical details around graph construction and data plotting: 

choosing the right scale for the axes, and the like. They do all work in parallel, constructing one 

graph each, on millimetre grid paper, but they still work collaboratively, discussing their work at 

every turn. The routines they are using seem familiar to them, but there is no evidence of any 

reflection concerning the purpose of the activity they are engaging in. The task requests of them to 

plot the data, and since this is something they know how to do, they do it. We see this as suggestive 

of ritualized routine use. After about ten minutes, however, they seem confused about how to 

interpret the data in the table: what does np actually mean? They start discussing how to fit a 

straight line to the data, but the relative inefficiency of their working method – putting a lot of effort 

into the design of the graph and all drawing their own copy – means that, in the end, they do not 

have the time to do this, let alone find the proportionality constant. In the first whole-class follow-

up, the students quickly agree that the problem concerns exponential growth, but none of the groups 

have succeeded in finding the constant
1k . It turns out that that they have constructed the wrong 

graph: plotting change against time, not against amount. We see this as evidence of ritualized 

routine use. Had the students engaged with the first question in the subtask, and reflected about the 

interpretation of the data, this mistake might have been avoided. Instead, the students resorted to a 

well-established routine for data plotting, using time as the independent variable. After this mistake 

has been clarified, the students are given additional data, and start discussing the validity of the 

model: is unlimited growth reasonable? The need for a revised model is established. 

The work on the second subtask still mostly revolves around plotting the data, but now the group 

only constructs one plot. There is, however, some remaining confusion regarding the nature of the 

data: does np represent change or the actual amount? One of the students interprets the decrease 

in np as evidence of a population crash (a catastrophic decline in population), but the other group 

members point out that the decrease is in change, not actual amount: “But this is just the change, 

this is not the number of living cells.” Thus, when engaged in biological discourse, they are able to 

reason in a meaningful manner about the interpretation of the mathematical symbols. However, the 

formulation of the task creates additional confusion. It explicitly mentions a nonlinear model, but at 

the same time asks for proportionality. Finding proportionality between the more complexly 

presented quantities in this task seems unfamiliar to the students – and, since this is something not 

normally done in school, it probably is. Following the recent whole-class discussion, but contrary to 

what is written in the formulation of the subtask, the students do what they were expected to do in 

the first subtask, plotting the change np against np instead of against )665( nn pp  . They thus 

struggle with fitting a straight line to the data, since their plot does not describe a linear relationship. 

In the whole-class follow-up, it turns out that, yet again, none of the groups have been able to 

compute the constant
2k , and, in the end, the lecturer provides the students with an estimated value 



and asks them to use the model they now have to compute a number of values of np  and to check 

the predictive value of the model. This turns out to be very confusing for our group, who are at a 

loss as to how to proceed: “I don’t have a clue. I feel so stupid.” The work they have been doing in 

both sessions so far has been geared towards constructing models, not validating them, leaving them 

unprepared for this way of using models. Furthermore, the routines they have been using have all 

concerned graph construction and plotting, and now they are supposed to compute values. After 

some initial confusion, they start doing computational work, but their nervous laughter and 

exclamations of surprise suggest that they have little faith in that what they are doing makes sense. 

Indeed, the different numbers they are juggling around suggest that they are making various 

computational errors. Also, they spend quite some time plotting the values that they obtain. We see 

this as indication that their routine use is still highly ritualized: they do certain things because they 

feel that it is expected of them, without having any clear rationale for why they are doing so.  

Looking at the way the students engage with the Yeast Growth task, we conclude that what was 

intended by the lecturer as scaffolding – dividing the task into clearly delineated, smaller subtasks – 

in fact amounted to restricting student agency. We propose that this restricted agency is connected 

to ritualized routine use. The formulations of the subtasks state explicitly what the students are 

supposed to do, and even suggest what specific routines to invoke (plot the data; estimate the 

constant). This decreases the need for reflection about what routines to use and why, thus inviting 

ritualized routine use. This interpretation is further supported by how they struggle when asked to 

perform a different set of routines, using a given model for substantiation purposes, rather than 

constructing a model from given data. This indicates to us that they are not yet using the 

construction routines in an exploratory manner. 

Digoxin: Towards exploratory routine use 

Although there seems to be a connection between the highly scaffolded format of the Yeast Growth 

task and students’ ritualized routine use, we do not intend this to be seen merely as a cautionary 

tale. Indeed, looking at the students’ work on the Digoxin task in session 3 four weeks later, there is 

evidence of progress towards making the discourse of growth model construction their own. The 

Digoxin task was presented as a whole, without the same amount of scaffolding as the Yeast Growth 

task. As in the second session, the group focuses their effort on constructing the graph, but has some 

problems interpreting the task because of unfamiliar terminology (e.g. difference equation). 

Contrary to Yeast Growth, in Digoxin time is not included as a column in the table of data, thus 

minimizing the risk of students resorting to the “plotting against time” routine. Still, one of the 

students suggests using n as the independent variable, in an attempt to fall back on the familiar 

routine. After some discussion, they decide not to resort to the earlier default option of using time as 

the independent variable, and, using the graph and the table, they manage to find the proportionality 

accurately. This might be interpreted as an indication of what Sfard (2008, p.251) calls “thoughtful 

imitation”. Having failed at constructing the requested plot in subtask 2 of Yeast Growth, and then 

being shown by the instructor what should have been done, they are now able to engage more 

fruitfully with this similar, but less complex, task. There is some additional confusion due to the 

formulation of the task (even though we are dealing with decay, the task still prescribes 

that 3k should be positive). Here we see signs that the group have still not made the discourse fully 

their own, but rather are emulating the discourse of the teacher. Rather than trusting their own 



reasoning, they handle the problem in a manner familiar to many students – they adapt the answer 

to fit the teacher’s expectations: “Let’s just drop the minus sign.” As for parts (b) and (c) of the 

task, they (as well as the other two groups) run out of time before managing to make much 

headway. Still, it appears as if the ritualized routine use when working on the Yeast Growth task has 

supported the students’ pathway towards handling the Digoxin task in a more exploratory manner. 

The path to exploration passes through ritual: Conclusions and ways forward 

In this paper, we examine a case (Y1 Biology students’ engagement with MM) of how new routines 

evolve, and particularly how discursants experience a step from ritualized to exploratory routines. 

The analysis points to the crucial role played by the teacher in facilitating this process. For instance, 

through the tasks presented to students, he influences their routine use, not only in the obvious way 

of suggesting what routines to use, but also in what way to engage with these routines. We have 

seen how a highly scaffolded task, which explicitly states what routines to invoke, might in fact 

invite ritualized routine use, whereas a less strongly scaffolded task might necessitate reflection 

about what routines to invoke and why, thus inviting a more exploratory engagement. At the same 

time, our analysis suggests that perhaps the ritualized routine use suggested by more scaffolded 

tasks might be a necessary step on the route towards exploratory routine use.  

Per Sfard (2008), rituals are a ‘natural, mostly inevitable, stage in this development process’ (p. 

245) and, recognizing this as so, recognizes fully the ‘inherently social nature of human thinking 

and learning’ (p. 245). Our claim here resonates with Sfard’s: the road to exploration must 

sometimes pass through ritual. There is an inherent circularity in this evolutionary process: a learner 

‘could not possibly appreciate the value of the new routine until she was aware of its advantages; 

such appreciation, however, could only emerge from its use’ (p. 246). Furthermore, ‘the deed-

enhancing mathematical explorations would sometimes involve new abstract objects, objects that 

can only emerge through implementation of this very routine’ (p. 247) and this holds for the 

evolution of an individual’s mathematical discourse as well as that of the field of mathematics as a 

whole. Discursive researchers – Sfard herself as well as Bakhtin – posit that thoughtful imitation 

can be a transitory phase in transforming ritual into exploration (where imitation is meant as a non-

trivial process that involves evaluation, assimilation, reworking and re-accentuation). Indeed, in the 

students’ work on the Digoxin task, we have shown signs of such “thoughtful imitation”. 

Deritualization results in consolidated discourse, namely a ‘well-developed network of interlacing, 

partially overlapping routines’ (p. 254). In this trajectory of growth there are at least two ‘basic 

conditions for effective mediation’: the principle of the continuity of discourse (‘introducing a new 

discourse by transforming an existing one’, p. 254); and, the principle of commognitive conflict 

(‘the situation in which different discursants are acting according to different metarules’ (p. 256) – a 

potential source of discourse change, and thus of learning). In this paper, we sample evidence 

mostly of the former principle. Our scrutiny of the entire dataset is now gearing towards the 

identification of evidence of the latter. Further, we anticipate that rolling out more MM activities to 

a new cohort of Y1 Biology students will lend corroborative power to the conjectures we explore 

here. It may also provide an opportunity for a more extended testing out of using the commognitive 

framework towards analyses that inform pedagogical practice. 
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In this report we analyze one student’s meta-representational competence as he engages in solving a 

quantum mechanics problem involving the linear algebra concepts of basis, eigenvectors, and 

eigenvalues. We provide detail on student A25, who serves as a paradigmatic example of a student’s 

power and flexibility in thinking in and using different notation systems. This case study, which lays 

the groundwork for future analysis, provides evidence that meta-representational competence (MRC) 

is beneficial to a student’s ability to make sense of and use concepts from linear algebra while solving 

quantum mechanics problems. 

Keywords: Linear algebra, meta-representational competence, physics. 

Introduction 

The National Research Council’s (2012) report, which charges the United States to improve its 

undergraduate Science, Technology, Engineering, and Mathematics (STEM) education, specifically 

recommends “interdisciplinary studies of cross-cutting concepts and cognitive processes” (p. 3) in 

undergraduate STEM courses. It further states that “gaps remain in the understanding of student 

learning in upper division courses” (p. 199), and that interdisciplinary studies “could help to increase 

the coherence of students’ learning experience across disciplines … and could facilitate an 

understanding of how to promote the transfer of knowledge from one setting to another” (p. 202). 

Our work contributes towards this need by investigating student understanding of linear algebra in 

quantum mechanics. Two research questions that guide us in this paper are: what are the various ways 

in which students reason about and symbolize concepts related to eigentheory in quantum physics, 

and in what ways might meta-representational competence impact how they make sense of linear 

algebra concepts in quantum mechanics? 

In this paper, we focus on one student’s reflection on symbolizing choices he makes while solving a 

quantum mechanics problem that involves linear algebra. In particular, we analyze his reasons for 

how and why he chooses a specific symbol system – either Dirac notation or matrix notation – for 

solving an expectation value problem. We align our analysis with the frameworks of meta-

representational competence (diSessa, Hammer, Sherin, & Kolpakowski, 1991) and of structural 

features of algebraic quantum notations (Gire & Price, 2015). This case study, which lays the 

groundwork for future analysis, explores in what ways MRC might aid a student’s ability to make 

sense of and use concepts from linear algebra while solving quantum mechanics problems. 

Background and theoretical framework 

In this section, we give an overview of research conducted on student understanding of symbols and 

representations in mathematics and physics, as well as our theoretical orientation. We conclude with 

a brief introduction to eigentheory in Quantum Mechanics and Dirac notation. 



Student understanding of symbols and representations 

The recognition of the importance of students’ understanding of symbols used in mathematics and 

physics has grown over the past few decades. Arcavi (1994, 2005) coined this as “symbol sense,” 

which includes aspects such as being “friendly” with symbols, engineering symbolic expressions, 

choosing which aspects of a mathematical situation to symbolize, using symbolic manipulations 

flexibly, and sensing the different roles symbols can play in various contexts. Other research along 

this vein include: an explication of how different perspectives, such as cognitivist, situationist, and 

social-psychological, provide vastly different ways to understand how students make sense of and 

use inscriptions and symbols (Kaput, 1998); a study of how students mathematize their language from 

a Vygotskian perspective (Van Oers, 2002); and an exploration of how notational systems can serve 

as a mediational tool which triggers and sustains mathematical activity (Meira, 2002). 

Research into students’ competence with symbols and representations is not limited to primary and 

secondary school studies. For example, Hillel (2000) described three modes of description (abstract, 

algebraic, and geometric) of the basic objects and operations in linear algebra and pointed out that 

“the ability to understand how vectors and transformation in one mode are differently represented, 

either within the same mode, or across modes is essential in coping with linear algebra” (p. 199). 

Thomas and Stewart (2011) found that students struggle to coordinate the two mathematical processes 

captured in 𝐴𝒙 = 𝜆𝒙, where 𝐴 is an n x n matrix, 𝒙 is a vector in ℝ𝑛, and 𝜆 is a scalar, to make sense 

of equality as “yielding the same result.” This interpretation of the “equals” symbol is often novel 

and nontrivial for students (Harel, 2000). Harel also posits that the interpretation of “solution” in this 

setting, the set of all vectors 𝒙 that make the equation true, entails a new level of complexity than 

does solving equations such as 𝑐𝑥 = 𝑑, with each taking values from the reals. Thomas and Stewart 

(2011) conjecture that this complexity may prevent students from progressing symbolically from 

𝐴𝒙 = 𝜆𝒙 to (𝐴 − 𝜆𝐼)𝒙 = 𝟎, which is particularly useful when solving for the eigenvalues and 

eigenvectors of a matrix 𝐴. 

Research into students’ understanding of quantum mechanics also investigates student use of 

symbols, such as how students make sense of and use a novel notation, called Dirac notation 

(explained in the subsequent section). Most closely related with this current study, Gire and Price 

(2015) looked at structural features of three different notation systems used in quantum mechanics 

(Dirac, matrix, and wave function) and how students’ reasoning interacts with these features. The 

features identified by the authors are: (a) individuation, or “the degree to which important features 

are represented as separate and elemental” (p. 5); (b) externalization, or “the degree to which elements 

and features are externalized with markings included in the representation” (p. 7); (c) compactness; 

and (d) symbolic support for computation. Using problem-solving interviews with students as insight 

into these features, Gire and Price found that students readily used Dirac notation, and that the 

structural features vary across the different notations and among contexts. 

Relatedly, diSessa et al. (1991) importantly discovered that students have a great deal of knowledge 

about what good representations are and are able to critique and refine them, which the authors 

defined as Meta-Representational Competence (MRC). diSessa and Sherin (2000) explained that 

MRC includes inventing and designing new representations, judging and comparing the quality of 

representations, understanding the general and specific functions of representations, and quickly 

learning to use and understand new representations. Furthermore, diSessa (2002, 2004) offered a 



variety of critical resources students possess as part of their MRC for judging the strength of 

representations, such as compactness, parsimony, and conventionality. Two particular resources 

encompassed by MRC that we focus on in our data are “critique and compare the adequacy of 

representations and judge their suitability for various tasks,” and “understand the purposes of 

representations generally and in particular contexts and understand how representations do the work 

they do for us (diSessa, 2004, p. 94).  

In this study, we align ourselves with the theory that representations are a sense-making tool, in that 

“the construction of representations on paper during problem solving mediates and organizes one's 

understanding of mathematical concepts” (Meira, 2002, p. 101). We couple this with a framing of 

MRC, specific to two particular notational systems, to investigate a student’s reflection on his own 

notational preferences in quantum mechanics and what that may reveal about his understanding of 

change of basis and eigentheory in that context.  

Brief introduction to eigentheory and Dirac notation in quantum mechanics 

In quantum mechanics, certain physical systems are modeled and made sense of using eigentheory. 

To a physical system we associate a Hilbert space (such as ℂ2), to every possible state of the physical 

system we associate a vector in the Hilbert space, and to every possible observable (i.e., measurable 

physical quantity) we associate a Hermitian operator (usually given in its matrix form). The only 

possible result of a measurement is an eigenvalue of the operator, and after the measurement the 

system will be found in the corresponding eigenstate.  

Dirac notation, also known as bra-ket or just ket notation, is a commonly used notational system in 

quantum mechanics. A vector representing a possible state is symbolized with a ket, such as |𝜓⟩. 

Mathematically, kets behave like column vectors, such as |𝜓⟩ ≐ [
𝑎1

𝑎2
], 𝑎1, 𝑎2 ∈ ℂ, and are usually 

normalized. The complex conjugate transpose of a ket is called a bra, which behaves mathematically 

like a row vector, such as ⟨𝜓| ≐ [𝑎1
∗ 𝑎2

∗]. In addition, the eigenvalue equations for observables are 

central to many calculations. For example, the eigenvalue equations for 𝑆𝑥 (the operator measuring 

the 𝑥-component of intrinsic angular momentum) of a spin-½ particle are 𝑆𝑥|±⟩𝑥 = ±
ℏ

2
|±⟩𝑥, where 

|+⟩𝑥 and |–⟩𝑥 form an orthonormal eigenbasis of 𝑆𝑥, and ±
ℏ

2
 are the two possible measurement results 

of the observable. When symbolized in terms of this eigenbasis, the matrix representation of 𝑆𝑥 is 

[
ℏ 2⁄ 0

0 − ℏ 2⁄
]. One can also measure spin along other directions, such as 𝑧; similarly, the eigenvalue 

equations are 𝑆𝑧|±⟩ = ±
ℏ

2
|±⟩ (it is common for no subscript to be used for the 𝑧-direction). Thus, 

“within its own basis,” the matrix representation of 𝑆𝑧 would be identical to the aforementioned 

diagonal one for 𝑆𝑥. It is often beneficial to change between bases; for example, |+⟩𝑥 = 1

√2
|+⟩ + 1

√2
|−⟩ 

and |−⟩𝑥 = 1

√2
|+⟩ − 1

√2
|−⟩, so 𝑆𝑥 in the “𝑧-basis” is [

0 ℏ 2⁄

ℏ 2⁄ 0
]. Finally, inner products are involved 

in computing the expectation value of observable 𝐴 for state psi, ⟨𝜓|𝐴|𝜓⟩. These calculations require 

the bra and ket expansion to be in the same eigenbasis as the matrix representation of 𝐴.  As such, 

expectation value problems present a rich setting for investigating students’ symbolizing of 

eigentheory and change of basis in a physics context. 



Methods 

Participants for this study were third year undergraduate physics majors at a large, public, research-

intensive university in the Pacific Northwestern United States. They were drawn on a volunteer basis 

from a class of 35 students in a Spin and Quantum Measurements course; this course met for 7 class-

hours per week for three weeks and involved many student-centered activities and discussions. The 

data for this report come from individual, semi-structured interviews (Bernard, 1988) conducted with 

8 students at the end of the course. The goals of the interview questions were to learn how students 

reasoned about linear algebra concepts (e.g., normalization, basis, and especially eigentheory), how 

they reasoned with these concepts as they discussed quantum mechanics concepts and solved 

quantum mechanics problems, and how they symbolized their work.  

To begin our analysis, we viewed the video and observed how students navigated the interview 

problems, while we kept in mind the overarching research questions regarding students’ reasoning 

about and symbolizing eigentheory in quantum physics. We noticed some students were particularly 

fluent in how they talked about and worked with both matrix and Dirac notations. This compelled us 

to investigate the literature about student use of symbols and notations, the most relevant of which 

were discussed above. Our analysis draws most heavily on the work of diSessa and colleagues 

regarding MRC, and that of Gire and Price (2015) regarding structural features of algebraic quantum 

notations. In particular, we coded for instances of students mentioning structural features of the 

mathematics or students making explicit meta-commentary on the representations they chose to use. 

This allowed us to integrate our analysis of students’ MRC with Gire and Price’s types of structural 

features in a way novel to the physics and mathematics education fields.  

In this report, we focus on one student: A25, a double major in physics and nuclear engineering who 

had completed two 10-week courses in linear algebra. The reason we chose to focus on participant 

A25 was his demonstrated ability to articulate his thinking. During the interview, he exhibited 

flexibility in reasoning about the concepts we were probing, and through his explanation a great deal 

of MRC seemed visible and analyzable. 

Results 

In the beginning of the interview, student A25 volunteered that he sometimes explicitly chooses 

between doing calculations in matrix notation or in Dirac notation:  

I:  So how do you feel like, using eigenvectors and eigenvalues, in spins has been 

similar to and different from how you've experienced those in other classes? 

A25:  Uh, well, it's very similar because you're doing a lot of the same math …the 

difference especially in physics, you're looking at kets. In, in at first I was kind of 

jarring, like to- to try to do the math in kets. But now, it's kinda- it's kinda easier, 

there's problems, there certain problems…where there's two ways to do them, 

they're kind of parallel, you can do it and you can expand the- the state in- in like 

as a- and expand them as kets in a different basis, or you can write that state as a- 

as a, as a vector, in that basis, and you can either do the matrix math for the like 

expectation values for example, you can do the matrix math or you can do the ket 

math, and sometimes it's, I'm finding that I, rather expand something in the ket. 



From the transcript we see that A25 was aware multiple legitimate ways exist to solve the problem, 

seemingly understanding the various mathematical nuances and implications of his notational 

choices. His brief explanation highlights sentiments that are consistent with Arcavi’s characteristics 

of symbol sense, such as being “friendly” with symbols and using them flexibly. Also, A25’s self-

reflection on his symbol usage adds a metacognitive aspect to the symbol sense characterization. 

Because A25 volunteered expectation value problems as a situation in which he could use either 

notation, the interviewer had him work on such a problem right away, even though it was prepared 

to be at the end of the interview: “Consider the state |𝜓⟩ = −
4

5
|+⟩𝑥 + 𝑖

3

5
|−⟩𝑥 in a spin-1/2 system. 

Calculate the expectation value for the measurement of 𝑆𝑥.” A25 immediately worked on the problem 

using Dirac notation, saying, “basically to find the expectation value… it's like denoted that way 

[writes 〈𝐴〉] but really what you're doing is you're taking the, the bra of the state, and then you're 

putting the operator [writes = ⟨𝜓|𝐴|𝜓⟩] in the middle of the inner product.” He continued to explain 

his work as he proceeded, with statements such as “you know that 𝑆𝑥 is just going to um, like apply 

it's eigenvalues to these, so, so like the eigenvalue corresponding to plus 𝑥 is going to be + ℏ 2⁄  and 

the, the eigenvalue corresponding to −𝑥 is going to be − ℏ 2⁄ , so you end up with this equation that 

looks like this [points to the second half of line 2 in Figure 1a]. Note that his work in Figure 1a, which 

led him to the correct answer of 7ℏ 50⁄ , involved the state’s expansion and use of eigenvector 

equations for 𝑆𝑥 in ket notation. He did not need to physically write the expansion of |𝜓⟩ in the 𝑥 

basis kets, nor did he write out the eigenvector equations; however, his verbal description of his 

process relied on his understanding of both basis and the eigenvector relationships at play. 

Furthermore, this notation was novel to the students during this course; as such, A25 was clearly 

quick to use and understand this representation (a quality of MRC, diSessa & Sherin, 2000).  

After discussing his work and solution, the interviewer asked: “Before you were telling about bra-ket 

versus matrix notation, you brought up an expectation value as an example of like, either or both, so 

can you, now that you had this problem, kinda revisit that?” A25 immediately solved the problem 

completely within matrix notation. He began by saying “if we’re strictly in the plus and minus 𝑥 

basis” and wrote the column vector [
−

4

5

𝑖
3
5

] associated with the given ket |𝜓⟩. He then said, “and then the 

bra would be, um, minus 4 over 5 and then minus i 3 over 5,” writing out the row vector [−
4

5
−𝑖

3

5
] 

as he spoke (see Line 1 in Figure 1b). He then said, “and so what you do is take this [copies the 

column vector]…and then you have the operator in the middle [writes an empty 2x2 matrix], and then 

you have the bra here [copies the row vector], and the operator in this case is 𝑆𝑥 and we’re in the 𝑥 

basis so it’s just ℏ 2⁄  and -ℏ 2⁄ , 0, 0” [fills in the 2x2 matrix values] (see line 2 in Figure 1b). 

Impressively, he was able to fluidly move from his original ket notation to matrix notation, flawlessly 

making translations from the bras, kets, and operators in ket notation to row vectors, column vectors, 

and matrices in the matrix notation, further evidence of his strong MRC. Next, he explained his 

process for computing the matrix times the column vector before he did the computation, noting that 

“you’re gonna get a vector.” Again in line 3 he explained “then I do it again, so, um, this time you're 

gonna get a number out,” meaning he anticipated that a row vector times a column vector would be 

a number. This shows two aspects of A25’s strong understanding: first, a fluency in the calculations 

and computations within matrix notation similar to his ease in working in ket notation, including the 

ability to anticipate results before actually carrying out a computation (as in anticipating the result of 



a matrix times a vector); and second, an ability to compare the two notations as well as an 

understanding that the two notations represent two ways to conceptualize the quantum physical 

calculation of expectation value. We see this as flexibly using symbolic manipulations (Arcavi, 1995) 

and an anticipation of results.  

 
(a) 

 
(b) 

Figure 1: A25’s expectation value problem, in ket notation (a) and matrix notation (b) 

The interviewer then asked A25 to reflect on any preference between the two notations:  

A25:  Uh...To be honest, I don't really, I don't really know why I prefer this [Figure 1a], I 

think it's just because, um, I like this notation. This specific notation [Figure 1a line 

1] like this to me is like a cleaner way of writing that [Figure 1b line 2] because 

that- I mean this and that [touches Figure 1a line 1 and Figure 1b line 2 

simultaneously] I feel like are your starting points, so you, you start here with this 

nice, like, looking thing [traces one finger under ⟨𝜓|𝐴|𝜓⟩], or you start here with 

this big array of numbers [puts two open hands around Figure 1b line 2], and I prefer 

this [Figure 1a line 1], even though you have to expand this into basically the same 

amount of information [Figure 1a line 2]. And also, the nice thing about, about this 

[Figure 1a line 1], is it—actually this is really why it's better—is because you can, 

you can say ok 𝑆𝑥 works- acts directly on these kets, you can just get rid of the 

matrix altogether... 

We see his use of “nice looking thing” and “big array of numbers” in comparison to one another are 

an example of compactness. He also compares Figure 1a line 1 and Figure 1b line 3 regarding the 

“amount” of information they convey, which involves reflection on the physical and mathematical 

content expressed in the compared notations. Finally, acting directly on the expansion in terms of the 

eigenstates of the operator allow him to forego the matrix calculation entirely, which speaks to A25’s 

view of compactness, parsimony, and symbolic support for ket notation for this problem.  

When asked about his notation preferences if the basis expansion of a given state vector and the 

operator “didn’t match,” A25 recalled a problem from his last homework that was “actually easier…to 

do the matrix multiplication,” stating “you don't want to have to change these kets into different bases 

all over the place 'cause they're already all written in the same basis and you know what the operator 

is in that basis so you might as well just, do the matrix multiplication.” Here we see how strong A25’s 

understanding is of the important linear algebra concepts of bases and change of bases, and how they 

relate to the matrix multiplication within expectation value quantum mechanics problems. 



Furthermore, we see another aspect of his MRC, namely his understanding that different notations 

have different strengths and weaknesses, and his ability to leverage these strengths and weaknesses 

depending upon the particular quantum mechanics situation. This speaks to his awareness of symbolic 

support as well as using symbols flexibly. Finally, when asked if the concepts of basis or 

eigenvectors/eigenvalues come up more in one notation than the other, A25 stated, “certainly…every 

time you write down a ket you're, you're very conscious of what basis you're in. In this one [points to 

Figure 1b] it's just kinda implied…all this [is] in the same basis, so you're just, you're just writing out 

numbers, an arrays of numbers, but here [in Figure 1a] you're thinking ok, this is the 𝑆𝑥 operator, this 

is the 𝑥 plus ket, this is the 𝑥 minus bra…so I think that you're definitely more aware of what basis 

you're in when you're using this, because you have to be.” This explanation is consistent with 

externalization (Gire & Price, 2015), in that the ket notation allows features of the problem, namely 

basis, to be externalized in a way that matrix notation did not provide for A25. This again attests to 

his understanding that notations have different strengths and weaknesses, an element of MRC that 

seems particularly important within quantum mechanics. 

Conclusion 

In this report we analyzed one student’s MRC and his understanding of change of basis and 

eigentheory as he solved an expectation value problem in quantum mechanics. This case study lays 

the groundwork for future analysis by being a paradigmatic example of a student’s power and 

flexibility for thinking in and using different notation systems. In addition, it provides evidence that 

MRC seemed to positively impact this student’s ability to make sense of and use concepts from linear 

algebra while solving quantum mechanics problems. In addition to analyzing the other students from 

our data set, future research includes investigating how classroom interactions may have influenced 

students regarding their notational choices, what aspects of MRC seem most important to success in 

using linear algebra when solving quantum mechanics problems, and what that implies regarding 

students’ understanding of the mathematics and physics content involved.  
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The teacher’s practice plays a major role in the learning process and influences students’ behavior. 

Moreover, teacher's choices affect students’ self-perception and guide their work. Ghedamsi (2008) 

also established that mathematical activities of students depended on mathematical organization and 

teachers’ designs. Robert and Rogalski (2002) also found that the mathematical activity of students 

such as calculus was affected by the way an exercise was organized. The work presented in this paper 

continues along the same lines and analyses the impact of the teacher’s practice on students’ learning 

of the Riemann integral concept in the first year of university. 

Theoretical considerations and method 

Studying the impact of the teacher’s choices on students’ learning in the case of the Riemann integral 

in the first year of preparatory studies led me to considering a tool developed by Ghedamsi (2015) 

for analysing the teaching and learning process in a regular lesson at the first year of university. This 

tool includes two dimensions: teacher management and students’ work. In this paper, the students’ 

work consists of two levels. The first is based on action and formulation by which students formulate 

questions concerning specific knowledge; spontaneously express knowledge by changing semiotic 

setting, making examples, or linking several notions; and formulate a view on knowledge. The second 

level is based on validation when students indicate technical methods; perform their own validations; 

and discuss patterns proposed by peers or by the teacher. 

Students participating in this study were in first-year preparatory classes at IPEIT (Preparatory 

institute for engineering school) in Tunisia. They had all obtained a mathematical baccalaureate. The 

method used in this research consists of three phases. In the first phase, we prepared a preliminary 

test for 25 students to be taken before studying the concept of Riemann integral, aimed at analysing 

and understanding their background. This test proposed tasks found at the end of the secondary 

school. Then, we observed some regular lessons (18 students were present in these lessons). In 

preparatory classes, the courses are organized into lectures and tutorials that each lasts two hours. 

Tutorials represent an opportunity to apply the definitions and theorems taught previously during 

lectures. We developed a detailed analysis of the two tutorials on the Riemann integral. Observation 

of these lessons allowed us to see the interaction between the teacher and the students. Finally, we 

prepared a second test after the teaching of this concept; 15 students participated in this test. The 

questions; which were presented in the second test primarily involved problems concerning Riemann 

integral concepts.  

 

 

  



Results 

Based on an analysis done using the tool of Ghedamsi (2015) cited above, we can conclude that the 

Riemann integral is used in the calculation of limits of some sequences that refer to Riemann sum. 

The teacher had the intention to invite debates and give students the opportunity to express themselves 

about the knowledge at play but the contract he established limited the students' opportunity for 

interactions, thus hindering the students in developing their analytical skills and improving their 

critical thinking. 

The intervention of the teacher seemed to point out the importance of the integral as a tool for 

calculations.  

The classroom observation allows us to see more clearly the impact of the teacher's choices on the 

quality of students’ learning. We can make the following observations: 

 Only the teacher offers the solutions and the different techniques required. The 

mathematical activity of the students is reduced to simple applications of the 

procedures proposed by the teacher. Thus, the practical implementations of knowledge 

are limited to the technical level. 

 The organization and structure of the tutorial sequences conducted by the teacher do 

not encourage student’s autonomous work. The types of tasks proposed do not invite 

reflective thought that mobilizes the supposed acquired knowledge, but rather invite 

algorithmic work. Students' work is limited to a few memory techniques to solve most 

often stereotyped questions. 

 The majority of tasks can be treated in the algebraic register. There is no recourse to 

other registries such as graphic register.  

Conclusion 

The analysis of the data collected suggest that is possible to develop teaching sequences for the 

Riemann Integral concept which take into consideration students’ autonomous work and encourage 

them to create their own self-perception. Hence, a Didactic Engineering can be elaborated in order to 

surmount the problems identified in this analysis and to propose another alternative improving the 

teaching-learning process of the Riemann Integral concept. 
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Transition and fragmentation 

Transition problems from school to 

university in mathematics 

Tall (2008) presented a theoretical model 

which he called the three worlds of 

mathematics to describe the transition 

problem from school to university in 

mathematics. He postulates the difference 

within the existence of a so-called 

axiomatic-formal world at university and a 

separated conceptual-embodied respectively 

proceptual-symbolic world at school. This 

model helps to account for some difficulties 

of many students’ transition to university in 

mathematics, resulting in missing common 

threads and not knowing connections. Consequently, one of the ideas of our visualization project is 

the attempt of following “known” conceptual-embodied and proceptual-symbolic truths – where 

possible through development in time – into the axiomatic-formal world in order to see their genetic 

connection, the desired and meaningful so-called “golden thread”.  

Interactive mathematical maps 

The concept of “mathematical maps” was introduced by Brandl 

(2008) as a didactical tool in the form of a virtual tree or net, 

which shows interrelation between topics (horizontal 

dimension) as well as the development of a subject matter – 

starting from an initial problem – in time (vertical dimension). 

A structural model can be seen in Figure 2. This concept offers 

several opportunities to foster joined-up thinking and will allow 

the student to follow the development of an initial problem in 

time. For example, the visualization in three dimensions allows 

for an ideal transparency of the interdependencies or the 

connection of single nodes which additionally offer contents 

from other platforms by link (Brandl, 2008, pp. 106–109). 

Another concept, especially for the horizontal orientation, is 

made by Acevedo (2014) with the “OpenMathMap” which organizes different subjects of 

Figure 1: The three worlds of mathematics (Tall, 2008) 

 

Figure 2: Structural visualisation 

of the development of an initial 

problem in time 

 



mathematics by size according to the amount of published papers and by closeness representing the 

relationship of two subjects (pp. 6–7). 

Design-based research methodology 

The new teaching format for students in mathematics and mathematics teacher education at the 

University of Passau will be developed via design-based research methodology. Interactive 

mathematical maps will be used as a didactical tool to show the interrelationship between different 

mathematical topics as well as between mathematics at school and at university level, connected by 

the development of the subject matter in time. 

The current status of our work-in-progress is ongoing 

conceptualization of the teaching format and development of the 

code for the interactive mathematical maps. Figure 3 shows a 

screenshot of a first attempt (via JavaScript) to produce content 

knots which are connected to related content knots by lines in an 

automatically evolving 3D-visualisation. In order to link the 

interactive mathematical maps with contents, ILIAS will be used 

as an e-learning tool (which is the common tool for online 

courses at the University of Passau). Reasons for the use of e-

learning formats are given by constructivism, improvement of 

quality of teaching, motivation of students and preparation for 

lifelong learning (Kreidl, 2011, p. 15).  

The final product will be implemented in mathematics teacher education for (higher) secondary 

schools (i.e. Gymnasium) to serve for a de-fragmentation process of mathematical contents learned 

at school and at university. We intend to improve teaching by using e-learning – particularly 

blended learning – in connection with these interactive mathematical maps. Furthermore, there will 

be special courses connecting courses in mathematics (first: geometry) and didactic of mathematics 

(first: didactics of geometry) using the presented ICT-tool in mathematics teacher education. 
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We report on a study aimed at examining the ways in which lecturers of large mathematics classes 

receive and use feedback from their students, with a particular focus on how they use feedback 

received via the Maths Support Centre (MSC). Three separate interviews with each of thirteen 

lecturing staff over the course of one semester were conducted. We discuss the ways in which these 

lecturers receive and use ten modes of feedback from their students and examine where the feedback 

received by the MSC sits in the general context of this feedback. We conclude that MSC feedback is 

one of the most valuable to lecturers and state the reasons given for such a claim. 

Research questions 

 How do lecturers receive and use feedback from large first year mathematics classes? 

 In what ways, if any, do lecturers find the feedback provided by the MSC on students’ visits, 

useful? How do they use it? 

 Where does MSC feedback sit placed in the general context of formative feedback? 

Methodology 

Thirteen lecturers from a research-intensive university in Ireland volunteered to participate in this 

study. Lecturing experience varied from two to seventeen years and two lecturers were teaching their 

particular module for the first time. The modules’ sizes ranged from 66 to 550 students in subjects 

including Calculus, Statistics, Linear Algebra, Computer Science and Applied Mathematics. Twelve 

of the 13 classes we examined were mathematics/statistics modules taught to non-mathematicians, in 

particular the cohorts consisted of agriculture, computer science, engineering, business, science and 

applied mathematics students. 

Thirty-seven semi-structured interviews consisting of three interviews with each lecturer were 

conducted in semester one of 2014/15 (interview one was not conducted with one lecturer as there 

was no MSC feedback to discuss at that time and the final interview for one module was conducted 

with both co-lecturers of that module simultaneously). This feedback, on the content of each students’ 

visit, is generated by the attending MSC tutor and electronically uploaded (anonymously) in real time 

via the MSC software system where it can be viewed at any time by the lecturer (Cronin & Meehan, 

2015). Interview 1 was an exploratory interview conducted in week 4 of the teaching term where 

lecturers were asked to review the MSC feedback collected from their module to see if they could 

identify the topic and mathematical difficulty being reported. The mathematical content of this 

feedback is discussed in the PhD of Nuala Curley and more information is available in Curley & 

Meehan (2016). Interview 2 was conducted in week 8 where lecturers were asked to comment on the 

various ways in which they receive feedback from their students and to comment on the usefulness 

of each. The third interview, conducted three weeks after teaching had finished, invited lecturers to 



summarise their experiences with the MSC feedback mechanism throughout the term and discuss the 

value associated with each of the feedback forms they received from students throughout the module. 

Interviews were analysed using thematic analysis (Braun & Clarke, 2006). 

Findings 

Lecturers reported nine ways in which they receive feedback from large classes. These are: in-class 

questions, after-class questions, continuous assessment (e.g. quizzes), midterms and final exams, 

module tutors, online activity (Blackboard, Moodle, WebWork etc), the institution’s Module 

Feedback system, staff-student fora and MSC feedback (Figure 1). Lecturers identify MSC feedback 

as one of the most valuable forms of feedback from a large mathematics class. In particular it is 

specific, detailed and lecturers reported that it aligns closest to in-class questions as it is content based, 

formative and in real time. It is mathematically accurate being the MSC tutor’s interpretation of the 

student’s difficulty. Lecturers stated that it is reassuring and confirms what is been asked at (and 

after) lectures. Many instructors stated that reviewing MSC feedback has had impact on their practice 

including; revising lecture content, writing midterms and revision classes, omitting material and 

delaying (or bringing forward) continuous assessment components. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Usefulness of feedback forms to lecturers 
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The measurement of student learning for a federally funded project, EHR #831882, (Watkins, 

Duranczyk, Mesa, Ström, & Kohli, 2016) will be used to investigate the connection between 

instructional practices and student learning in algebra courses at six community colleges in three 

states of the United States. The poster focused on measurement issues faced in identifying students’ 

learning gains in the pilot data.  

Although we like to think that teaching causes learning, the truth is that such connection has not been 

established empirically (Hiebert & Grouws, 2006). As a first attempt to establish this connection, we 

investigate the extent to which there is a correlation between what occurs in the classroom and what 

students learn in a one semester course. Whereas there is some research documenting how individual 

and institutional characteristics (e.g., prior achievement, family support, financial aid, learning 

support and tutoring centers, and ratios of full- to part-time instructors) factor into failure rates and 

other performance measures (Bradburn, 2002; Feldman, 1993), there is little information about the 

fundamental work of teachers in the classroom, and the interaction that occur between instructors, 

students, and the mathematical content. The Quality of Mathematics Instruction (QMI), a video 

analysis tool used in P-12 settings (Learning Mathematics for Teaching Project, 2011), was adopted 

to measure faculty and student interaction at the community college. Research in K-12 and four-year 

colleges documents that the association between quality of instruction and student outcomes can be 

moderated by instructors’ knowledge and attitudes towards innovative teaching practices, knowledge 

of algebra for teaching, and their beliefs about mathematics, its curriculum, and students’ learning. 

The association is also moderated by students’ attitudes, beliefs, and confidence about mathematics, 

their patterns of adaptive learning orientations, and the perceptions they have about their instructors’ 

behaviors in the classroom and by the personal characteristics of instructors and students. The Algebra 

and Precalculus Concepts Readiness (APCR) test (Madison, Carlson, Oehrtman, & Tallman, 2015) 

was used to measure student learning. 

The first phase, presented here, is the pilot testing of the APCR instrument to measure learning gains. 

The algebra instruction captured for analysis focused on three key algebra topics: linear, rational, and 

exponential equations. The APCR tests these topics and was administered in the second week of the 

semester before the topics were introduced and then two weeks before the end of the semester after 

the three focal topics had been taught. 

The analysis based on the APCR data from 6 community college faculty and 161 students in 

beginning, intermediate and college level algebra courses lead to questions about the suitability of 



the instrument for our work. Examining the descriptive statistics, item analysis, and reliability 

measures from classical test theory (Thorndike & Thorndike-Christ, 2010) revealed problematic 

point-biserial correlation and poor item discrimination. Ten item on the test fell well below acceptable 

levels (point-biserial correlations below 0.20). 

Reliability measure gives information about the extent to which the scores produced by such 

measurement procedures are consistent and reproducible. The APCR had a Cronbach’s alpha of 0.676 

for the pretest data and 0.784 for the posttest data. The test-retest coefficient reliability coefficient 

(Crocker & Algina, 1986) for the APCR data was equal to 0.597, another low indicator. 

Conversations were held with the authors of the APCR and the instrument is undergoing major 

revisions to be re-tested in April 2017. Working collaboratively with the APCR team on the newly 

revised version hopefully will generate an instrument that performs at a higher standard for greater 

reliability and discrimination. The poster presentation provided an excellent venue to review the 

testing results and confer with colleagues in possible next steps which were taken in March, 2017. 
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The dilemma of the didactical design  

This poster reports on a large study dealing with the issue related to the implementation of didactical 

designs in the institutional context. This presentation is an attempt to specify some methodological 

principles for planning didactical design that could be used as a resource by the institution. We build 

on the Theory of Didactic Situations (TDS) construct of didactical engineering (DE) (González-

Martín, Bloch, Durand-Guerrier, & Maschietto, 2014) to first address the issue concerning the use of 

DE both as a fundamental research tool and as a tool ready to be used for action (Artigue, 2016). We 

then briefly introduce preliminary results of two studies which empirically investigate this issue in 

the case of the teaching and learning of convergence of sequences and complex numbers. DE is a 

research methodology usually associated to TDS, that “consists of designing, regulating and making 

controlled observations of experimental situations where certain mathematical knowledge appears 

as the optimal way to address a mathematical problem.” (González-Martín et al., 2014, p.120). Three 

global steps shape the design of DEs as a research tool: 1) Epistemological and cognitive analyses 

which deal with the mathematical specificities of the targeted knowledge and their impact on the 

cognitive process of learning; the results are supposed to define the didactical variables – namely the 

parameters that influence students’ work, which should be taken into account to design the projected 

situations; 2) The phase related to the a priori analysis leads to the identification of the values of the 

didactical variables that are used to build the experimental situations; these situations are thus 

analyzed in terms of milieu – "namely the set of material objects, knowledge available, and 

interactions with others" (p. 119) including the interactions with the teacher; 3) The results of the a 

posteriori analysis (by comparing with the a priori analysis) permit to assess the relevance of the 

experimental situations and the validity of the theoretical model. The aim of the final analyses is to 

give feedback on the theoretical frame and its efficiency; the research does not actually consider the 

conditions for the implementation of the DE in the institutional context. In the last decades, research 

dealing with didactical design has increased its focus on the issue concerning the “application role 

when didactical design is seen as a way for organizing the relationships between research and 

practice or, in other words, for developing educational actions inspired by research and 

incorporating its results.” (Artigue, 2008, p. 9). Yet, this issue is still pending and the didactical 

actions are not defined neither theorized. In the following section, we describe the methodological 

tool that we have elaborated to plan efficient DEs for action. 

The methodological tool for empirical investigation: the cases of the convergence 

of sequences and complex numbers   

The fundamental principle of the two DEs we have constructed is based on two essential ideas:   1) 

the necessity to negotiate and to plan such DEs with the actors of the educational system (teachers, 



 

 

trainers, policy makers, etc.); 2) the experimentation should provide some flexibility to the teacher in 

order to make adjustments depending on the class context. We rely on the research version of the 

design methodology (DE) and go forward to provide three empirical phases used as a method to plan 

and to experiment DE for action (Figure 1). 

 

 

 

Figure 1: A methodological tool - DE for action 

Its use with more than one mathematical topic gives more legitimacy to our methodological tool. In 

spite of their mathematical differences, these two studies revealed the cornerstone role of the 

institutional mathematical organization in the teaching and learning processes and how to manage it 

for more efficiency, for instance: 1) regarding the convergence of sequences: improve the neglected 

role of approximation and numbers; 2) regarding complex numbers: rehabilitate the operational level 

of these numbers by emphasizing the role of their several representations. For both cases, the results 

of the implementation of the first step corroborate the necessity of such adjustments. 
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We have investigated the difficulties encountered by undergraduate physics students when studying 

differential equations, and how these are best addressed. We developed a survey to identify these 

difficulties that was administered to a pilot cohort of students. The results were used to develop an 

instructional intervention, informed by APOS Theory, that seeks to address the difficulties uncovered 

by the survey. The intervention comprised fourteen one-hour tutorials. The tutorials were trialled for 

the next iteration of the module in question and the survey was given to the students who had 

completed the module. Applying a design based research approach, the results from these surveys 

were used to improve the intervention which is being evaluated using a combination of pre- and post-

testing and interviews with students in the coming academic year. The interviews will be analyzed 

using the APOS framework, which acts as the overall conceptual framework for this research 
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Research questions 

1. What is the precise nature of the difficulties encountered by physics students in using 

(identifying the need for/setting up/solving) differential equations? 

2. How may these be addressed? 

These questions lead to the following specific aims for the project which are: (1) identify the areas 

students struggle with and excel in during their study of differential equations; (2) develop a set of 

tutorials based on the data from the survey; and (3) evaluate and improve the tutorials that were 

developed. 

Conceptual framework 

In 1984, Dubinsky began developing a theory of how mathematical concepts may be learned. This 

eventually became known as APOS Theory and is a constantly evolving model developed and refined 

through application in research and instructional design. As described by Arnon et al. 

APOS Theory focuses on models of what might be going on in the mind of an individual when 

he or she is trying to learn a mathematical concept and uses these models to design 

instructional materials and/or evaluate student successes and failures in dealing with 

mathematical problem situations. (2014, p.1) 

As explained by Dubinksy (1991), APOS Theory describes the mental structures and mechanisms an 

individual constructs and applies when trying to understand a problem in mathematics. This project 

primarily uses APOS Theory as an analytical, evaluative tool. The language of APOS Theory is used 

to describe the level of understanding displayed by students during their interviews. 



Methodology 

Achieving the aims outlined in the opening sections will require the combination of both qualitative 

and quantitative data. The design diagram below shows how the project is structured. 

 

Figure 1: Design diagram 

The first aim, identifying difficulties, gave rise to both quantitative and qualitative data, gathered 

using a survey. The Diagnostic Survey was divided into four separate sections assessing different 

aspects of the students’ learning in differential equations: prior mathematical learning; conceptual 

issues in the study of differential equations; transfer issues; and modelling. To evaluate the tutorials 

a series of pre- and post-tests and interviews are being used to assess the effectiveness of the 

intervention. These results feed into the evaluation and improvement of the tutorials. 

Results 

The results obtained from the Diagnostic Survey show that of the four sections contained in the 

survey, students struggle most with conceptual understanding, indicating (in terms of APOS Theory) 

shortcomings in their ability to encapsulate Actions and Processes as Objects. Comparing to the 

results of the students who completed the tutorials, we saw a dramatic increase in their conceptual 

understanding, in addition to improvements in the three other sections of the survey. The pre- and 

post-test data were also used to amend the tutorials for the second research cycle.  
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Problems in university mathematics education: in the Japanese context 

It is becoming more important for all students regardless of educational level to acquire the ability to 

use mathematics in a variety of contexts, especially in real world situations (Niss & Jablonka, 2014). 

From this viewpoint, mathematics education for non-mathematics students at university is becoming 

an important issue; however, it is still under-investigated (Artigue, 2016). In Japan, it is an emergent 

issue that we have no successful mathematics curriculum designed especially for humanities and 

social sciences students. Many of those students have math anxiety and difficulty in doing and 

learning mathematics, and do not understand how mathematics is used in the real world. Hence 

mathematics education for those students is a challenging issue. 

Design principles of mathematics courses for humanities and social sciences 

students 

Continuing empirical studies from our previous research (Kawazoe et al., 2013), we have developed 

the following design principles of mathematics courses for humanities and social sciences students: 

(1) Design lessons according to mathematical modelling processes; (2) Choose topics and contexts 

by considering which mathematical knowledge students will encounter in real life and in which 

situations they will encounter it; (3) Present problems in different contexts associated to the same 

mathematical knowledge; (4) Connect different areas of mathematical knowledge by using different 

mathematizations of the same problem or mutually related contexts; (5) Explain mathematical 

concepts and operations in both mathematical language and everyday language; (6) Engage students 

in group activities rather than individual activities; (7) Design worksheets based on hypothetical 

cognitive processes of students’ understanding and use them as tools for formative assessment.  

The above principles originate in the four perspectives of learning environments developed in 

learning science (Bransford, 2000, Chapter 6). The first four principles (1)-(4) also originate in 

discussions on mathematical literacy (cf. Sfard, 2014) and mathematical modelling (cf. Kaiser, 2014). 

Especially, (3)-(4) are aimed at making students’ knowledge decontextualized and structuralized 

respectively, because it is often claimed that teaching mathematics in real world contexts makes 

students’ knowledge restricted to the learning contexts (cf. Sfard, 2014). In a previous study 

(Kawazoe et al., 2013), we showed that mathematics courses designed according to the above 

principles are successful in reducing students’ math anxiety and motivating them to learn math. 

However, their effectiveness for decontextualization and structuralization was not examined. To 

examine this effectiveness is the research objective of the present study.  



Evaluation of decontextualization and structuralization 

To evaluate the effectiveness of our design principles for decontextualization and structuralization, 

we analyzed the performance of examinations and the free descriptions in the self-report 

questionnaires conducted at the end of each semester in Basic Math I and Basic Math II, which are 

successive one-semester mathematics courses for humanities and social sciences students designed 

according to the above principles. The data were collected in the academic year 2012, when 300 and 

244 students took the courses respectively, with students divided into four classes.  

The examinations mainly consisted of problems in real world contexts, but the contexts were different 

from the learning contexts. The mean scores of the exams of Basic Math I & II were 85.9 and 75.4 

out of 100, respectively. The results of the exams indicated that students were able to use mathematics 

in contexts different from those they had studied before, suggesting that they acquired abilities to use 

mathematics in real world situations. 

In the qualitative analysis of the self-report questionnaire, we found evidence of structuralization of 

mathematical knowledge only in a small number of descriptions. Here we show an example: 

Student:  In this course, it seemed that mathematical formulae, which were just isolated 

pieces of knowledge, had been changing into meaningful ones. I felt that the 

knowledge base of mathematics that I had became harder and stronger; in that 

respect, it was a meaningful time. 

In sum, the design principles can be considered to be effective for decontextualization, however, the 

structuralization is still a challenge. More study is needed for structuralization. 
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Introduction and research problem  

Progressing from the study of rational numbers to irrational and real numbers can prove challenging 

for students. The way irrationals and reals are introduced in secondary school textbooks does not 

seem to promote the development of ideas that allow students to adequately grasp convergence or 

density in their tertiary studies (González-Martín, Giraldo, & Souto, 2013). Difficulties with irrational 

numbers also have been reported in university students (Kidron, 2016). However, we believe that 

certain activities, such as studying the approximation of irrational numbers by sequences of rationals, 

could help students grasp, informally, the ideas behind the formal 𝜀 − 𝑁 definition of convergence at 

university. We have not found works in the literature that address the connections between the 

teaching of these two notions. For this reason, we seek to investigate how they are presented in 

textbooks and study the connections that are made (or the lack thereof). Our research is guided by the 

following questions: 1) how do pre-university textbooks organise and present the notions of limit and 

of approximation of a real number by a sequence of rationals?; and 2) how do textbook tasks help 

students develop connections between the two notions? 

Theoretical framework 

Our research uses tools from Chevallard’s (1999) anthropological theory of the didactic (ATD). ATD 

acknowledges that every human activity generates a praxeology or praxeological organisation 

identified by the quadruplet [T/𝜏/θ/], where T is a type of task, 𝜏 is a technique used to complete 

this task, θ is a discourse (technology) that justifies and explains the technique, and  is a theory that 

includes and justifies the given discourse. The couple [T/ 𝜏] is the practical block (or praxis) and 

[θ/] is the theoretical block (or logos). We focus on the institutional relationship with the notions 

of real number (and activities of approximation) and limit, as reflected by the textbooks. 

Methodology 

Our study uses the tools provided by ATD to analyse the textbooks and recommendations of the 

Tunisian Ministry of Education’s official programme. Teachers in Tunisia use a different textbook 

for each school level; all are published by the Ministry. We chose two textbooks for our analysis: the 

first is used in the ninth level of the basic cycle (14-15 year-old students) and the second is used in 

the third level of secondary school (17-18 year-old students), which is the penultimate year before 

university. In examining the first textbook, we analysed the content related to real numbers, paying 

special attention to tasks concerning the approximation of an irrational by a sequence of decimals. 

We focused on whether such tasks implicitly use a theoretical block based on the notion of limit. For 

https://www.pdf-archive.com/2017/03/25/poster-cerme-2/


the second textbook, we looked at two chapters, “Sequences of Real Numbers” and “Limits of 

Sequences of Real Numbers”, to determine whether those chapters develop praxeologies that use 

(implicitly or explicitly) any of the elements present in the first textbook. 

Main results and discussion 

We identified three types of tasks in the first textbook (geometrical, algebraic and numerical). These 

are: Tpr (prove that a given figure is a square and calculate its area), Tcl (calculate the square of rational 

numbers using a calculator) and Tbn (determine lower and upper bounds of a square root). All these 

tasks seek to introduce routine techniques, such as the algorithm for bounding √2 between two 

decimals. The institutional relationship with this notion is characterised by an institutional void with 

regard to the theoretical block, which includes two technologies: θpr (the diagonals of a square are 

perpendicular and isometric, and they intersect at the same midpoint) and θcl (0 < a < b < c 

⇒  √𝑎 < √𝑏 < √𝑐), both of which are derived from Euclidian Geometry and elementary algebra. 

This institutional void may have an impact later on in the third level of secondary school, during the 

introduction of limits and convergence. Concerning the second textbook, it proposes three types of 

tasks (calculus, geometrical and numerical) focusing on bounding square roots and 𝜋. With respect 

to calculus, the textbook presents an activity related to the Fixed Point theorem and, essentially, the 

application of the algorithm of Newton’s method. This task, “determine upper and lower bounds for 

√37,” proposes a technique that breaks the exercise down into three sub-tasks: Tres (solving of an 

equation), Trep (representation of a sequence), and Tbnd (bounding of √37). The technology is implicit 

in this activity because the students have not yet studied the Fixed Point theorem. The two geometrical 

activities concern the approximation of 𝜋 using Archimedes’ polygonal approach. Finally, the 

numerical activity asks students to determine the rank 𝑛 of a recurrent sequence (𝑥𝑛) that verifies 

|√𝑎 − 𝑥𝑛| ≤ 10−𝑝. Our results indicate that all tasks presented in the two textbooks are routine. Both 

textbooks insist on the approximation of square roots and 𝜋. This could affect students’ learning of 

real numbers when the latter are formally introduced in university. We also found that both textbooks 

contain praxeological organisations that insist on the practical block and that implicitly present the 

theoretical block. Furthermore, the activities are presented using algorithms, without discussing the 

useful application of the knowledge gained. 
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The Mathematics community often does not agree on definitions of concepts and on the meanings of 

their symbols. For example, in the topic of complex numbers some Israeli textbooks propose that 

√𝑎 + 𝑏𝑖 represents a single value, while others maintain that two values are indicated (in the field of 

real numbers there seems to be a consensus around √𝑎2 = |𝑎|). When introducing such a debatable 

concept to students, teachers usually choose a particular approach among mathematically acceptable 

alternatives, and stick with it. In this poster, I am focusing on the question “what does a university 

lecturer take into account when making such a choice?”. 

I embark on the question with Schoenfeld’s (2011) theory of decision making. According to this 

theory, in-the-moment decisions that teachers make in classroom situations can be modelled with 

three explanatory constructs: resources (consisting of teacher’s knowledge inventory, social and 

material resources), goals that are set to be achieved (either consciously or unconsciously) and 

orientations (including beliefs, values and preferences). Schoenfeld suggests that the model can be 

further used for structuring developmental trajectories and promoting teacher expertise.  

For an experienced university lecturer, the choices among mathematical alternatives are hardly “in-

the-moment”, in the sense of spontaneity. Instead, I argue that these choices are systematically 

reproduced by some decision-making mechanisms that a lecturer brings to bear in a variety of 

teaching situations. Indeed, after the choice has been shared with the students (i.e. in one ‘moment’ 

during a course), for the benefit of course coherence, a lecturer is expected to maintain the choice 

through consequential inferences. Accordingly, making sense of these choices might illuminate some 

aspects of one’s epistemological perspectives on mathematics didactique. I showcase this idea with 

the case of Elza and direct interested readers to Kontorovich (2016), where additional illustrations 

were analyzed with a different theoretical lens. 

Elza is a highly-reputed lecturer in a technological university in Israel, who holds a master’s degree 

in mathematics and a PhD in mathematics education. Elza has more than thirty years of teaching 

experience, and she specializes in teaching linear algebra. These facts suggest that her knowledge 

inventory is rich and solid. Elza’s specialization determines a significant component of her 

instructional setting; typically, students in Elza’s university learn a single course in linear algebra, 

which is a pre-requisite for many other courses. In this way, didactical choices that Elza makes shape 

students’ knowledge development in her course and in the courses taught by her colleagues. 

An interview with Elza revealed a variety of interesting didactical choices that she makes, some of 

which are barely conventional. To name a few, it turned out that in the field of real and complex 

numbers, she defines √𝑎
𝑛

 to be multi-valued - all solutions to the equation 𝑥𝑛 = 𝑎. Elza explained 

that this is her way to connect roots of numbers, roots of equations and roots of polynomials, all of 

which are discussed in her course. When a singular positive root is required, she uses the symbol 

‘+√  ’. For example, when computing a module, Elza writes |𝑎 + 𝑏𝑖| = +√𝑎2 + 𝑏2. With regard to 



an apparent conflict between her multi-valued approach to real roots and a single-valued approach 

which is used in the calculus courses, she indicated that, “[I]n calculus they have functions and [here] 

we are dealing with values in linear algebra. Every branch of mathematics works with its own 

premises”. It also turned out that Elza avoids using complex numbers, the Cartesian form of which 

contains roots (e.g., √3 + 𝑖) because “they look like a single thing but are actually two numbers”. 

Lastly, Elza explained that she has just a few hours to cover the foundations of complex numbers, 

and then she does not go into “nuanced details”. She would have expanded the scope of the course if 

it was intended for pre-service teachers only. 

Several observations can be made based on Elza’s choices. On the one hand, a multi-valued approach 

to the root concept and radical symbol entails consistency between several topics in her linear algebra 

course. For instance, real roots of a number are preserved and possibly extended with non-real 

numbers in the field of complex numbers. Then, for Elza’s students a transition from the field of reals 

to complex numbers is mostly a matter of concept extension rather than redefinition. On the other 

hand, Elza’s choices create ‘monsters’ (cf. Lakatos, 1976), such as inconsistency with mathematics 

studied in other courses, ambiguity and unconventional symbols. When monsters are necessary for 

linear-algebra purposes, Elza conducts “monster-adjustment” to familiar categories (e.g., ‘+√  ’), 

otherwise, the “monster-barring” method is used to expel the problematics from the course scope 

(e.g., √9 + 𝑖).  

In terms of Schoenfeld (2011), Elza’s didactical choices can be explained with a complicated 

intertwining of resources, goals and orientations. A limited resource of time promotes setting 

pragmatic goals, the scope of which does not go beyond a particular course. In some cases, the choices 

lead to unconventional consequences and artificial limitations of the course content. In other cases, 

the choices seem to benefit the course instruction through tightening the connections between the 

topics. Evidently, the choices align with Elza’s orientations about the nature of mathematics (e.g., 

different branches can have incompatible approaches to the same concept) and students’ academic 

needs (e.g., roots should be taught differently to pre-service teachers). In this way, the choices seem 

to reflect an ‘equilibrium’ that Elza achieved in her didactical decision-making. 

Are Elza’s choices really beneficial for her students? Are students aware of non-chosen alternatives? 

How unique is Elza’s decision-making? I invite the community of university mathematics education 

to join me in pursuing these interesting questions through further research.   
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Introduction and research problem 

Our motivation for engaging in this research project relies on recurrent students’ difficulties in the 

appropriation of the concept of Taylor approximation. Despite the richness of this concept as a tool 

in many fields of application (e.g calculation of limits, local study of a function and the study of 

physical phenomena), for what we know, there is little research on this topic in mathematics 

education. Beyond the lack of comprehension of the notion of convergence for Taylor series (Martin, 

2013), we hypothesize that the articulation between syntax and semantics is not clear for students, 

creating a fuzzy area that prevents them from being able to apply Taylor approximation as a tool in 

applied mathematics. In this paper, we summarize the main results of our epistemological 

investigation and the first element of a didactic study of teaching material on this topic, in order to 

identify paths for improving its teaching and learning. 

Theoretical framework 

Throughout our epistemological and didactic investigations, we refer to the dialectics between 

semantics (graphic interpretation, dynamic interpretation and numerical approximation) and syntax 

(the different formulations of the Taylor approximation), including their articulation with the tool-

object dialectic (Douady, 1991) and the registers of semiotic representations (Duval, 2006). (this 

approach is developed and used in Kouki, to appear). 

Epistemological investigation 

We outline the evolution of the mathematical object known as “Taylor approximation” through a 

historical and epistemological investigation. Our study emphasizes the co-existence of different types 

of techniques mainly with geometric, algebraic and dynamic origins that contributed to the emergence 

and development of this object (Kouki, Belhaj Amor, & Hachaïchi, 2016). 

Our research identifies key moments in the development of infinitesimal calculus and local 

approximations which led to the calculus as it is taught nowadays. In particular, the works of 

Roberval, Euler, Fermat, Leibniz, Newton, until Taylor and Weierstrass are significant in the 

development of Taylor approximations. 

Didactic investigation 

Based on our epistemological investigation, we have conducted a didactic study of the Tunisian 

curriculum, textbooks and course handouts on Taylor approximation. The Tunisian curriculum, three 

handwritten courses and four handbooks were analyzed. Through this study, we confront the various 

dimensions of this concept revealed by the epistemological investigation with those that are present 

in teaching materials. 



This study supports the hypothesis that there are gaps in the teaching of Taylor approximation. In 

particular, some of them are due to insufficiencies of graphical representations and numerical 

approximation, corresponding to a deficit of semantic work, the emphasis being put on the syntax. 

Conclusion 

The epistemological and didactical investigations summarized in this paper are part of a larger project 

aiming at developing propositions for enhancing the teaching and learning of Taylor approximation. 

This enhancement can help to foster an appropriation of the concept allowing to use it in the various 

applications undergraduate students could meet in further studies, in particular in applied 

mathematics. 
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Introduction 

Flipped learning is a relatively new model of instruction currently growing both in popularity and 

success. In a flipped classroom the elements of typical lecture and homework are reversed. Students 

are introduced to new material at home, mostly through videos prepared by the teacher, while the 

classroom time is reserved for solving problems, group work, discussions and other activities that 

help students control, deepen and extend their understanding and knowledge. 

The board of the Flipped Learning Network has defined Flipped Learning as 

… a pedagogical approach in which direct instruction moves from the group learning space to the 

individual learning space, and the resulting group space is transformed into a dynamic, interactive 

learning environment where the educator guides students as they apply concepts and engage 

creatively in the subject matter (FLN, 2014) 

The number of college and university instructors who practice Flipped Learning has increased over 

the past two years and has expanded in all subject areas. Research in Flipped Learning has shown 

positive impact both on students’ achievement and engagement (Overmeyer, 2015). 

Methodology 

During our study we collected data from the students, the lecturer and the class. We conducted a semi-

structured interview with the lecturer in the middle of the semester at the university campus and had 

several informal discussions through Skype and emails at the end and after the end of the semester. 

The students were given evaluation forms to fill out both in the middle and in the end of the semester, 

the latter being enriched with open questions where the students were asked to describe their 

experience with the flipped course. In addition, we visited the class and observed how in-class time 

was spent and how the students interacted with each other and with the teacher. 

The researchers in this study have direct experience with the course material and the way it was 

previously taught, as they attended it as students. The second author has also taught the course. 

The structure of the course 

The lecturer-informant recorded videos, using a mobile phone, while writing down on a blanc A4 

paper what he would otherwise write on the blackboard in a traditional lecture. The videos were then 

made available to the students through the course’s webpage. The problem sheets, which are, except 

from small changes, the same sheets that were used in previous years, were also put out on the web. 

The students were instructed to watch the videos at home and work with the problems when they met 

in class. 

Ten to twelve students on average were normally attending the class, which is an expected number 

for this course. In a relaxed and informal environment, students formed groups freely and worked 

with the problems, while the lecturer was walking around answering questions and guiding them 



through the problems. The groups were let to progress through the problem sheets at their own tempo 

and already in the middle of the semester different groups were working with different parts of the 

curriculum. Thirteen students took the exam at the end of the semester. 

Findings 

Even on this primitive form the Flipped Learning Model turned out to be beneficial to the learning 

outcome of the students. The students spent more time working on computational problems, 

concretizing difficult abstract concepts such as for example the radical of rings and modules, 

projective and injective modules, exact sequences, resolutions and dimensions, clarifying in this way 

the connection between theory and concrete problems on special classes of algebras. 

Some more advantages pointed out by the lecturer include, among others: 

 Differentiated guidance according to the level of each student 

 Students forced to work more actively with the course, during the whole semester 

 Better balance between learning the theory and working on problem solving 

What the students found more beneficial was, among others, 

 Watching the videos at their pace. Pause it, think, watch it again. 

 Thorough explanations from the lecturer 

 Working the problems in groups, learning from each other. 

There was a slight improvement on the average of the grades, compare to the previous years the 

lecturer-informant had taught the course, though the class is too small to make any safe conclusions. 
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Introduction 

Variational Thinking and Language (PyLV) is a line of investigation developed at Cinvestav, whose 

objective is the study of forms in which individuals deal with change mediated by their culture for 

predictive purposes. It is a form of methodology for the elaboration of teaching proposals based on 

the investigation. PyLV is founded in the Socioepistemological Theory of Educational Mathematics 

(Cantoral, 2013), where mathematical knowledge is recognized as part of human wisdom, that is to 

say, of the articulation of knowledge of diverse nature (scientific, technical and popular knowledge); 

this requires a decentration of the mathematical object, which leads to the analysis of the practices 

that accompany the construction of the object; we call this process the social construction of 

mathematical knowledge. 

This way, we assume change and variation as a substantial part of the scientific and technical work 

areas and the daily experiences of individuals and social groups in non-school situations. In these 

areas, the prediction is socially constructed by the development of normed practices that we call social 

practices (Cantoral et al., 2006; Tuyub & Cantoral, 2012). Derived from the projects developed, 

strategies and fundamental variational arguments were characterized for prediction. Therefore, a 

series of teaching sequences was developed for the improvement of education both in and outside 

school; moreover, the results of PyLV have had an impact in the educational reforms in Mexico. The 

prediction of the phenomena that have been investigated under PyLV involve mathematical models 

whose resolution needs the convergence of the Taylor series in a given domain (deterministic nature) 

as the future state, the value of f (x+h), depends only on the starting values of h, f(x), f’(x), etc. 

through the expression: f(x + h) = f(x) +
f´(x)h

1!
+

f´´(x)h2

2!
+⋯ 

Now, based on this research, the goal of our project is to characterize the nature of the predictions 

made by mathematizing phenomena not governed by the analytical study of a formal mathematical 

expression, as described above. We have taken interest in the analysis of the ways in which change 

and variation are used in the estimates made by doctors in their professional practice. In this scenario, 

the dynamics of the system are not deterministic but rather chaotic, since the conclusion of the 

trajectories that patients follow after a certain treatment may be divergent - sensitive to initial 

conditions. The development of these objectives requires an in-depth study of the dynamics followed 

in cardiac functioning, through the analysis of original works and medical specialized books 

(Castellano, Et al., 2004; Harvey, 1994), the analysis of the medical practices, and its articulation in 

previous investigations in the PyLV. 

 

 



First findings 

We found that medical practice requires more than assuming that something changes, it is necessary 

to recognize how fast the change is in order to diagnose patients. Our first finding was that, in the 

case of the interpretation of electrocardiograms, the recognition of how, how much and why the heart 

rhythm behavior changes, is done by the practices of comparison and seriation; reported as variational 

strategies in the study of optimization problems and calculation of the derivative of a function 

(Caballero, 2012). Hence, we claim that the basic practices of the study of change and variation are 

shared by medical professionals and students or teachers in Calculus courses. In addition, we 

identified the use of different orders of variation in the location of different types of blockages in 

electrical conduction in the heart. For example, in the figure, we can see that type II Mobitz I block 

requires the identification that the time invested in the PR segment has a progressive extension and a 

progressive decrease in that increase (Lobelo et al., 2001, p. 2126); that is, it is necessary to analyze 

the change in the change in the PR segment between beats.  

 

Final thoughts 

The next phase in the research corresponds to an ethnographic study where the theoretical 

construction on the study of variation is contrasted with the practices developed by medical 

professionals. It is important to mention that the future intention of our research is the impact on the 

educational system, particularly in higher education. Concerning this, the characterization of basic 

forms of reasoning is fundamental for theoretical proposals of sociocultural nature, especially for the 

socioepistemology that bases the redesign of the school mathematical discourse on the assumption 

that knowledge is constructed based on practices.  
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Theoretical background and research question 

According to our previous study (Slavíčková, 2013) we state the following research questions: “How 

to design a course of calculus to help students obtain higher level of understanding of the topic? How 

to implement an ICT into this process? Will be using of and ICT helpful?” To find the answers we 

used mathematical and didactical software in the lectures for presentation of mathematical terms, 

definitions, properties etc. We also created an e-learning course in the Learning Management System 

Moodle (LMS). We used this LMS as a primary communication channel between the teacher and the 

students, we published there all the materials from the lectures, as well as some extra tasks for the 

students (solving of these tasks was not obligatory). 

Activities implemented into the educational process were based mostly on constructivism. Our goal 

was prepare such activities which help students obtain cognitive dimension “Apply” according to the 

RBT (Revised Bloom Taxonomy) according to Anderson & Krathwohl (2001) and Web-link Bloom 

taxonomy (2015). Most of the activities were supported by ICT and we used mostly the works of 

Jonassen (2000) and Kadijevic (2006). 

The important notes concerning the learning/teaching process according to RBT: 

 Before you can understand a concept, you must remember it. 

 To apply a concept you must first understand it. 

 In order to evaluate a process, you must have analyzed it. 

 To create an accurate conclusion, you must have completed a thorough evaluation. 

Intervention 

We used Derive, Graphic Calculus, MS Excel and GeoGebra software in the lessons to demonstrate 

mathematical properties of functions, sequences, limits of a sequence, a function etc. We prepared 

small environments for observing, modeling and exploring.  

Organization of the teaching - learning process 

Lectures: lectures were lead by us; we used the computer and data projector to project mathematics 

formulas, theorems, some parts of the proofs and the most important – to demonstrate the 

relationships between the theory and the praxis.  

Seminars: The main work was on the students. We use data projector and computer to project the 

tasks, questions, some interesting schemas etc. Students can use computers to solve them or to help 

themselves to get deeper view into the problem. The materials from the activities were uploaded to 

the LMS Moodle, so students can use them at home preparation. 



The Table 1 shows the focus on the lessons and test – on the lessons we focused every field marked 

with “x”. On the test were only task highlighted by red. 

  Remember Understand Apply Analyze Evaluate Create 

Factual x x x x     

Conceptual x x x x x   

Procedural x x x x x   

Metacognitive             

Table 1: Cognitive and the knowledge dimension according to RBT 

Results 

The implementation ICT and using different type of software we obtained the good results. The most 

important results from the observations in our group are: 

 students take an active part of the teaching/learning process, 

 students wanted to discuss the interesting mathematical topics on the lessons, 

 students started modelling of the situation without a teacher’s command, 

 students interest in the topics was higher than in the other group (taught by our colleagues – 

it could be also by the personality of the teacher, but previous years showed us, that in our 

and colleagues group were similar result), 

 some students started studying more outside the classroom so they can follow the topics 

without the troubles (we avoided the troubles which still resist in colleague group, like if we 

change the task a little, students do not know what to do) 

Discussion 

The preliminary results shows that there is potential in using ICT on calculus lessons to obtain deeper 

knowledge and better understanding of the topic. Using different kind of software shows students 

different approaches to the different issues. The next step in our research will be to enlarge the sample 

and to prepare more technology oriented materials for the research.  
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Here a tutorial is described that focuses on mathematical methods that implicitly appear in the 

mathematics shown in a Linear Algebra lecture, and makes these methods explicit for the students. 

Interviews with students at the end of their first semester show some effects. 

Theoretical framework 

Mathematics, as all sciences, comprises content (e.g. definitions, theorems, finished proofs, …), but 

also mathematical methods.  

Pólya (1945) underlined the importance of the mathematical methods in the subtitle of “How to solve 

it -A new aspect of mathematical methods”. We use a broad approach of heuristic strategies as a 

central part of the mathematical methods shown in the following list: 

 Organise your material / understand the problem: change the representation of the situation 

if useful, try out systematically, (Pólya, 1945) use simulations with or without computers, 

discretize situations,  

 Use the working memory effectively: combine complex items to supersigns, which represent 

the concept of ‘chunks’ (Miller, 1956), use symmetry, break down your problem into sub-

problems,  

 Think big: do not think inside dispensable borders, generalise the situation (Pólya, 1945), 

 Use what you know: use analogies from other problems, trace back new problems to familiar 

ones, combine partial solutions to get a global solution, use algorithms where possible (Pólya, 

1945),  

 Functional aspects: analyse special cases or borderline cases (Pólya, 1945), in order to 

optimise you have to vary the input quantity,  

 Organise the work: work backwards and forwards, keep your approach – change your 

approach – both at the right moment (Pólya, 1945). 

Other mathematical methods are e.g. “proof strategies” which make extensive use of formal language 

such as mathematical induction, proof by contradiction, proof by exhaustion, the invariance principle 

or others. Another kind of methods are the use of mathematical language e.g. in depth reading 

mathematical texts or writing down mathematical proofs correctly. 

Tutorial example 

In the tutorial we made mathematical methods implicitly used in the lecture explicit. We also used 

these methods giving additional explanations and reflected this use afterwards in the tutorial. The 

concept of quotient spaces in linear Algebra was established on rings. One example given in the 

lecture was ℤ/𝑚ℤ
 
. In the tutorial we reduced this example to the case ℤ/4ℤ and gave additional 

representations of this concept, some of them shown in figure 1. 



 

Figure 1: ℤ/𝟒ℤ in several representations. 

Here the four residue classes are shown in several representations, together with the way of 

calculating on that structure. The similarity of the calculation on a common clock was stressed as a 

possible link to school mathematics and further explanations were given. Calculating on the 

equivalence class that are supersigns from the heuristic point of view was difficult for the students 

and the similarity to calculating with fractions that are equivalence classes and supersigns as well was 

discussed. Furthermore, moving between representations was stressed as a method to deepen the 

understanding of the content or to find a way to solve a problem. 

Students’ feedback 

At the end of the first semester we interviewed five students who participated in the tutorial over the 

whole semester. The interviews were transcribed and analyzed using quantum content analysis. 

All students remembered well the connection to school mathematics based on mathematical methods 

that appear in university and school as well. The students also emphasized that visualized 

explanations with less formal language were very helpful. These explanations using “a change of 

representation” were remembered well. 

The input related to the heuristic strategies was remembered by the students. The concept of “heuristic 

strategy” was remembered and the students could describe examples given in the tutorial, connecting 

the examples to the appropriate heuristic strategy. 

Conclusions and looking ahead 

Supporting students by stressing mathematical methods, and particularly by stressing heuristic 

strategies, seems to have a positive impact, but is not realized easily. For this we will continue with 

this tutorial in the third and fourth semester bringing in heuristic strategies wherever possible. 

References 

Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity 

for Processing Information. Psychological Review, 63, 81-97.  

Pólya, G. (1945). How to solve it. A new aspect of mathematical methods. Princeton University Press. 



Supporting university freshmen – an intervention to increase strategic 

knowledge 

Thomas Stenzel 

University of Duisburg-Essen, Germany; thomas.stenzel@uni-due.de 

Keywords: Secondary-tertiary transition, problem solving, metacognition.  

Rationale 

At school, we actually only had exercises where we could calculate with numbers and formulas. 

Now, it was really abstract what we had to do. [...] We didn't really know: Where should we begin? 

How does this work? (Aylin, mathematics student, 1st semester) 

The quote above shows that some strategic knowledge is needed for problem solving at university 

level. Additionally, a necessary condition to deal with those problems is to be familiar with the related 

content of the lecture. The literature provides a lot of successful strategies both for problem solving 

(Pólya, 1945) and learning (Ramsden, 2003), but it is also known for a long time that it is insufficient 

for improving students’ skills to provide them with a list of those strategies (Schoenfeld, 1985). 

Therefore, I am cyclically developing an intervention program to help students act strategically. 

Research interest 

This study aims to test how an intervention may influence the students’ problem solving and learning 

processes and how the induced changes affect their success in university mathematics. 

Design of the intervention 

The intervention is embedded into the classic problem sessions of a first-semester lecture of B.Sc. 

students and future secondary school teachers (weekly sessions, 14×90 minutes). So far, there have 

been two pilot studies accompanying the Calculus 1 lecture. The classic purpose of the problem 

session, to discuss homework already submitted by the students, has not been altered. However the 

main objective of the intervention is to foster students’ self-regulation by engaging them in 

metacognitive processes. Therefore the students’ actions are systematically reflected. This is done in 

three steps: 

1) From a constructivist point of view it is of great importance that students develop their own 

strategies rather than using a checklist. Therefore students work on a few problems every week at 

home and write down used strategies. 

2) To support the individual development of strategies, different approaches are collectively reflected. 

In particular, those students who were unable to find a solution themselves get the opportunity to 

explicate their strategies and can benefit from the experience of their more successful fellow students. 

A lot of different ideas, especially those that might not lead to a solution, are reviewed and evaluated. 

Lastly, at least one solution chosen by the students is completely expanded upon. That way, students 

who were not able to solve the problem by themselves can have a deep insight into that process. 

3) During a reflection phase at the end of each class, the utilized strategies are discussed once again 

and those that could be helpful for more than one particular problem are written down on a “strategy 

board”. Usually those strategies resemble those postulated by Pólya (1945) and Schoenfeld (1985). 



For instance, when dealing with sequences or series, one firstly needs to clarify affiliated concepts 

like convergence and divergence. Then different strategies might be helpful, for example to generate 

different representations (a sketch, tables, etc.) or look at special cases. Considering related problems 

might also be a helpful strategy. 

Evaluation 

The program evolves cyclically based on student interviews, observation of solving processes, 

evaluation sheets and systematically documented experiences. At the end of the first pilot phase, the 

students were asked how often they use certain strategies (4-level likert scale). It showed that those 

displayed on the strategy board had significantly higher values than others. Especially self-reflection 

and clarification of concepts are frequently used. Nevertheless a qualitative analysis of videographed 

solving processes showed that the students still had a lot of difficulties to clarify concepts on their 

own. Therefore, in the following phases, we tried to increase their activity level concerning this task. 

We also integrated one unknown problem per week so we could experience a whole problem solving 

process together. 

In the second pilot phase, the design needed to be altered since the composition of students was very 

different. In summer most of the students have already failed at least one exam in Calculus 1. In 

addition to possible lower mathematical skills, their academic self-concept might be affected. We 

observed a much lower activity level than in winter, so we had to add introductory tasks to encourage 

the students to actively take part in the sessions. This could also apply to single weaker students that 

in winter would be unnoticed. 

Perspective 

As the order of courses was changed in the academic structure, the main study, starting April 2016 

will take place in the context of Linear Algebra. The necessary adaption of the concept will be an 

interesting task. For the first time, we will also be able to treat a statistically relevant number of 

students, so in addition to ongoing qualitative research, quantitative evaluation will be possible. 
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Over the past years, a number of engineering programs have arisen that transcend the division 

between technical, scientific and art-related disciplines. Media Technology at Aalborg University, 

Denmark is such an engineering program. In relation to mathematics education, this new 

development has changed the way mathematics is applied and taught in these disciplines. This 

paper discusses a doctoral dissertation that investigated and assessed interventions to increase 

student motivation and engagement in mathematics among Media Technology students. The results 

of this dissertation have been used to assess and improve practice in Media Technology and they 

may inspire interventions in other trans-disciplinary engineering programs. 
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Introduction  

This poster presents the main contributions of a doctoral dissertation, which aimed at investigating 

mathematics teaching and learning for Media Technology students (Triantafyllou, 2016). Media 

Technology at Aalborg University is a program that focuses on research and development, which 

combines technology and arts and looks at the technology behind areas such as advanced computer 

graphics, games, electronic music, animations, interactive art and entertainment, to name a few. 

This dissertation investigated and assessed interventions to increase student motivation and 

engagement in mathematics among Media Technology students. These interventions focused on two 

directions: a) teaching methods and b) ICT-based learning environments. As far as teaching 

methods are concerned, this project has applied the flipped instruction model (or the flipped 

classroom). Regarding ICT-based learning environments, a game engine (Unity) has been 

introduced as a domain for mathematical learning. Since many studies have indicated that the 

attitude towards mathematics influence the achievement of learning goals, Media Technology 

students’ attitudes towards mathematics were also investigated.  

This dissertation employed several mixed method studies. Observations and a survey study were 

employed for gathering information on student attitudes towards mathematics, student approaches 

on mathematical problem solving and student competences (Triantafyllou, Misfeldt, & Timcenko, 

2016). In regard to research on ICT-based learning environments, a use case study was conducted 

exploring development of student mathematical knowledge and effect on student motivation, when 

mathematics is being taught by programming in a game engine (Triantafyllou, Misfeldt, & 

Timcenko, in press). As far as the flipped classroom approach is concerned, two use case studies 

and a statistics course redesign and assessment took place (Triantafyllou & Timcenko, 2014; 

Triantafyllou & Timcenko, 2015; Triantafyllou, Timcenko, & Busk Kofoed, 2015).  

This dissertation has provided insights in student attitudes towards mathematics in Media 

Technology. It was found that these students often lack mathematics confidence and they consider 



 

 

mathematics a difficult subject that they do not like but value. The adoption of the flipped 

classroom instructional model revealed that students perceive learning with online resources on 

their own pace as contributing to their understanding and they reported that they could adjust the 

learning process to their own needs. This dissertation has also proposed the use of a model of 

reflection for designing activities that promote experience-based learning in flipped classrooms. As 

far as ICT-based learning environments are concerned, the study on the use of a game engine for 

mathematics learning provided insights on how students apply knowledge from a mathematical 

model to implement a physical model. This study shed light on students’ misconceptions and 

difficulties but also on their opportunities to challenge their understanding. This dissertation 

contributed to the discussion of the theoretical foundation of the flipped classroom and discussed 

aspects of ICT-based mathematics learning for Media Technology. These results can be furthermore 

used to assess and improve practice in Media Technology and other trans-disciplinary engineering 

programs. 
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I present a longitudinal study with engineering students taking a (science) foundation course (FC). 

The aim of the research is to explore the reasons why students decided to take the FC going beyond 

the rather obvious reason, “because they did not have the necessary qualification for direct entry”. 

Secondly, I explore students’ mathematical progression into first year engineering. Many UK 

universities have addressed students' lack of mathematical preparedness (e.g. Hawkes & Savage, 

2000) by establishing drop-in centres or one-to-one support with specialist tutors; some offer a one-

year FC as an alternative route into higher education, primarily aimed at students wanting to study a 

STEM subject. While the FC is often seen as aimed at students who ‘missed’ (perhaps narrowly) their 

target grades at A-level, it became clear to me that students came from varied backgrounds and 

qualifications, work experience, and included students with health problems that impacted on their 

progression. Thus I became interested in the motivational factors that led students to take a FC and 

the mathematical progression that students make. The FC at my institution consists of a number of 

modules, of which mathematics and physics are compulsory for engineering students, the largest 

group in the cohort. Topics studied include indices, logarithms, differentiation, integration, matrices 

and complex numbers. I pose two research questions: (1) Why did students take the FC? (2) What is 

students’ mathematical experience when moving into first year engineering study?  

Methodological considerations 

So far two cohorts of students have been interviewed at the end of their FC; one cohort has been re-

invited for interview at the end of the first year of their engineering course. Ten to eleven students 

were interviewed each year. I, therefore, pursue a case study methodology within an interpretive 

paradigm. The study is longitudinal in design with further interviews planned over the next years. 

Data analysis is qualitative with a focus on the reasons that students gave for taking the FC. I take an 

activity theory perspective since identifying reasons means identifying the motive of activity, hence 

closely linked to characterising activity (Leontiev, 1981). Action-goals can be used to discuss 

students' mathematical goals, and actions taken in pursuit of these, a focus in future analyses. 

Research was with students I had taught. Interview questions were communicated in advance and 

followed a fixed order. All interviews were recorded and subsequently transcribed and analysed. 

Research findings and conclusions 

I report on two separate findings. First, in interviews in 2015, students were asked why they had 

chosen a FC. Students replied in a variety of ways, giving one or more reasons. As part of analyses, 

these were categorised using an open coding procedure and summarised in Figure 1. Most students 

cited career advancement and gaining entry to their engineering course when A-level grades had not 

been good enough. Some did so strategically, i.e. there was no need to re-apply through UCAS, the 

UK body overseeing university applications, since passing the FC guaranteed entry. Also represented 

were six students who took the view that it gave them an advantage over other students when entering 

the first year of engineering. Thus students’ motives were nuanced, going beyond 



Reasons given Freq 

Change of career or advance current career 6 

A-level grades were not good enough 6 

Wrong subject taken at A-level/change of mind 3 

Interest/passion for the subject 5 

Foundation year gives an advantage in year 1 6 

Foundation year as orientation course 1 

Figure 1: Reasons for choosing the FC 

“because they did not have the necessary qualification for direct entry”. Most (not all) students 

reported having difficulties with the mathematics content of the FC, and some students said they were 

overwhelmed by them. Second, I report on three of seven students who were re-invited for interview 

and asked to compare current experience with how they recalled their experience during the FC. The 

second and third column (Figure 2) relate to students’ experience and achievement during the FC (as 

recalled by the student one year later); the last column to students' current experience. Clearly there 

are some differences in how students perceived their transition.  

Foundation Year FC Maths grade Year 1 Engineering degree 

Student A2-14 Maths is not strong Student feels settled 

GCSE is highest 

qualification 40 to 60% 

Student achieved 

40 to 50% (Maths) 

Student is not confident Degree programme is not heavily 

reliant on mathematics 

Student A2-12 Maths is not strong Student is struggling 

BTEC is highest 

qualification 60 to 70% 

Student has re-sit exams 

in mathematics 

Student is not confident Degree programme is 

heavily reliant on mathematics 

Student A2-15 Maths is strong Student does not feel settled 

IB is highest qualification 

80 to 90% 

Student achieved 

40 to 50% (Maths) 

Student is confident Degree programme is 

heavily reliant on mathematics 

Figure 2: Results from three interviews 

The FC is well established at my university and students are thought successful in progressing into 

their engineering courses. Students cited different motivational factors for taking a FC. While some 

were not surprising (e.g. change of career, A-level grades not good enough) others were, and related 

to students employing a more strategic decision (e.g. to gain an advantage later on in their studies). 

Considering students’ progression it is clear that this is far from linear. Both mathematically strong 

and not so strong students cited struggling with the mathematical demands placed on them, while a 

mathematically weaker student reported feeling settled and coping well. This raises some questions 

to explore further, e.g. to what extent can the FC provide a good mathematical basis for all students. 
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Introduction 

For the second successive CERME two groups addressed mathematics education research concerning 

technology. TWG15 focused on issues concerning teaching, teacher education and professional 

development, whereas TWG16 focused on students’ learning with technologies and software and task 

design issues (see Drijvers, Faggiano, Gerianou & Weigand, Introduction to TWG16 in this volume).  

TWG15 engaged in work that was stimulated by contributions in the form of 19 research papers and 

6 posters that had responded to the call, which had highlighted the following themes: 

 The specific knowledge, skills and attributes required for efficient/effective mathematics 

teaching with technologies and resources. 

 The design and evaluation of initial teacher education and teacher professional development 

programmes that embed these knowledge, skills and attributes – to include programmes that 

involve teachers’ working and learning in online communities. 

 Theoretical and methodological approaches to describe the identification/evolution of 

teachers’ practices (and of effective practices) in the design and use of technology and 

resources in mathematics education. 

 Theory and practice related to the formative/summative assessment of mathematical 

knowledge in a technological environment. 

The work of TWG15 drew upon research from 17 countries: Australia, Austria, Denmark, Faroe 

Islands, France, Israel, Italy, Lebanon, Germany, Greece, Norway, Palestine, Spain, Sweden, Turkey, 

United Kingdom and USA.  

TWG15 themes 

The contributions to TWG15 were grouped according to the following themes: large-scale 

professional development through online courses; technology-mediated assessment of students’ 

mathematical learning; establishing quality criteria for digital mathematics tasks; understanding 

teacher perspectives on technology use; in-service teachers’ knowledge and practice; pre-service 

teachers’ knowledge and practice; and the advancement of theories on technology use in mathematics 

education. 



  



The TWG15 was organised as follows: 

1. A research paper by Kimeswenger was selected to be the focus of a single TWG session as it 

highlighted a new issue for the TWG, which was the development of quality criteria to support 

the selection of (dynamic) digital resources for teaching mathematics.  

2. Two symposia, to address the themes: on-line large-scale professional development courses; 

and digital assessment of students’ mathematical learning. These included selected papers that 

were presented by the main author, followed by an invited reaction by one participant. 

3. The remaining papers were grouped by theme and presented as individual short presentations 

by the main author, followed by individual reaction by another invited participant. 

In all cases, the discussion was opened to the whole group (in small groups of 6-8 participants), which 

provided the opportunity for explicit links to be made with the topics of the poster submissions by 

both the TWG leads and participants, and to encourage all participants to share their own knowledge 

and experience during discursive work. Brief feedback from these small groups was collected at the 

end of each session. 

Large-scale professional development: Online courses 

The papers by Hohenwarter et al., Taranto et al. and Panero et al. focused on the design and early 

evaluation of three large-scale professional development online courses that had been designed for 

participants from Austria-Romania-Turkey, Italy and French-speaking countries respectively. Central 

to all three courses was the objective to offer practicing teachers an opportunity to develop their uses 

of technology in mathematics classrooms. These courses were described as either ‘open online’ 

(OOC) or ‘massive open online’ (MOOC), where the word ‘massive’ implied that there were no 

geographical boundaries nor limits to teachers’ registration and participation, although the language 

of the course was a limiting factor. 

The three courses used theoretical frames in different ways. Hohenwarter et al. adopted Koehler and 

Mishra’s Technological, Pedagogical and Content Knowledge model (TPACK, Koehler & Mishra, 

2005) to inform their course design. Panero et al. and Taranto et al. sought to network the theories of 

meta-didactical transposition (Arzarello et al., 2014), documentational genesis (Gueudet & Trouche, 

2009) and communities of practice (Wenger, 1998) to understand the collaborative work of teachers 

in the online context as seen through their productions.  

The invited reaction given by Bretscher stimulated a discussion that raised the following issues: 

defining and understanding ‘participation’ within open online courses; specific design features of 

(M)OOCs for teachers of mathematics and the balance between technological and mathematical 

content; the appropriateness of (M)OOCs for the (large-scale) professional development of teachers; 

and how research methodologies might need be developed to assess the impact of (M)OOCs on 

teachers’ classroom practices. 

Assessing students’ mathematical learning 

The papers by Sikko et al., Chenevotot-Quentin et al. and Olsher & Yerushalmy were centered on the 

use of technology in classes by teachers and students, for activities and assessment. Even if referring 

to different school levels, they focused on the technology as a means to support teachers’ assessment 

activities. In the first case, Sikko et al. presented the use of motion sensors in the Norwegian primary 



school classroom to support pupils’ construction of meanings for functions and their graphs. This 

work was set in the context of a large European project (Formative Assessment in Science and 

Mathematics Education, FaSMEd) aimed at researching the use of technology for formative 

assessment. In the second case, Chenevotot-Quentin and colleagues showed the use of a technological 

tool for the assessment of lower secondary school students’ learning of numbers and equations. Their 

technological tool is applied in a way that is consistent with an epistemological analysis of the topics 

and with the theoretical perspective of the Chevallard’s Anthropological Theory of Didactics (ATD, 

Chevallard 1985). Olsher & Yerushalmy presented a platform where students respond to geometrical 

tasks using a dynamic geometry environment, which are then classified within the platform according 

to their geometrical dynamicity. From the teacher’s perspective, the three papers presented in this 

session engaged the participating teachers with professional considerations in diverse and deep ways: 

as designers of tasks for assessment, as teachers while teaching; and as observers of students. The 

papers highlighted the importance of teachers’ and researchers’ collaborative work in the design and 

evaluation of such resources for the classroom. 

The discussion at the end of the presentation, stimulated by the invited reaction given by Yerushalmy 

focused on: the potential impacts of online formative assessment on teaching; the nature of online 

mathematics tasks and their formative/summative assessment; possible theoretical frameworks to 

support design and evaluation; automatization of students’ responses and subsequent feedback to 

students/teachers; high stakes testing; and issues of design. 

Quality criteria for digital mathematics tasks 

The paper by Kimeswenger problematized the existence of online platforms that host many thousands 

of user-generated digital resources for teaching mathematics, which presents a particular challenge 

for (other) teachers as they seek to locate suitable resources that meet their individual requirements. 

The author described a project in its early stages that seeks to develop a research-informed set of 

criteria to support different methodologies for user-review. The research focused on the views of 

‘experts’ with respect to the existence of quality criteria alongside their personal descriptions of the 

‘educational value’ of digital mathematical resources, concluding eight quality dimensions. This has 

led to an exploration of the possible correlation between resources that are highly rated as other users 

have decided that they have a ‘high-quality author’ and those that are identified by users as containing 

‘high quality material’.  

As anticipated, the TWG15 participants were most interested by, and animated to discuss, the issues 

raised by this paper, given that many had themselves been involved in the design of open educational 

resources or worked alongside teachers to try to support them to make thoughtful resource selections. 

This discussion concerned: the authors of quality criteria and the mathematical 

cultures/content/values on which such criteria might be based; the role of a consumer-led approach 

(i.e., ‘likes’ by teachers?) or a community-led approach; and, given the vast number of available 

resources, the usefulness of new algorithms that might automatically score ‘quality’, based on 

developed criteria 

Technology integration: Understanding teacher perspectives 

The two papers by Abboud & Rogalski and Bretscher both addressed aspects of technology 

integration into ‘ordinary’ secondary mathematics classrooms in France and England respectively. 



Whilst Abboud & Rogalski analyzed videos of lessons at distance using an ‘ergonomic’ theoretical 

approach (Robert & Rogalski, 2005) that highlighted tensions and disturbances in the observed 

practice, Bretscher used classroom observation and interviews to research aspects of a teacher’s 

mathematical knowledge for teaching with technology. These two papers instigated a critical 

discussion within the working group that was revisited several times during the conference as TWG15 

sought to understand, and question the use of the word ‘ordinary’ to describe teachers (and their 

classrooms) within research studies. For some this referred to experienced teachers who are 

dependent on their own ability to (re)design lesson with technology (as in Abboud & Rogalski). For 

others, it referred to teachers who are required to adapt their teaching to their situation and 

institutional constraints in a world of changing digital tools. There was a general agreement that 

teachers who are involved in research studies/projects/communities concerning the use of technology 

in mathematics were rarely ‘ordinary’. One helpful description that was offered described the set of 

teachers who were not yet aware of their own instrumental genesis with new technologies (or that of 

their students), which seemed to resonate with many of the researchers in the TWG. The TWG15 

participants concluded that ‘ordinary’ was an unhelpful descriptor and this highlighted the importance 

that researchers describe teachers’ contexts more fully (i.e. country, teacher background, school 

system, school curriculum, etc.) to enable deeper and more critical insight into each other’s research 

settings.  

The paper by Kolovou & Kynigos differed from the two previous papers by focusing specifically on 

the learning processes of the designers of dynamic digital resources to foreground students’ and 

teachers’ mathematical creativity, which is fully described in their paper. By focusing on a 

‘community of interest’ (which included teachers) that had been formed around the design of a 

particular creative book (c-book), the authors show how the participants’ learning was stimulated by 

the boundary objects (Fischer, 2005) in the design process. 

A focus on pre-service teachers 

The papers in this theme offered different approaches to pre-service teachers' training and the 

different interpretations of their required knowledge about technology. 

Prodromou investigated the usefulness of a flipped classroom approach in tertiary education in 

Australia. The theoretical frame was that of the ‘four pillars’ that define a flipped classroom, which 

take account of the flexible environment; a shift in the learning culture; intentional content; and the 

role of educators (Flipped Learning Network, 2014). The analysis of an experiment with pre-service 

teachers was presented with a particular focus on the role of the lecturer in a flipped classroom. The 

study by Herrelko tracked the implementation of technology in a mathematics methods course for 

pre-service teachers in the USA. The method, based on the Apple Classroom of Tomorrow framework 

(ACOT, Dwyer, Ringstaff, Haymore & Sandholtz, 1994), sought to describe the necessary conditions 

for the development of pre-service teachers who are knowledgeable about instructional technology. 

Baya’a et al. focused on pre-service teachers’ TPACK (Koehler & Mishra, 2005) and provided 

analyses of the impact of teacher preparation courses that had been shown to develop teachers’ 

TPACK.  

The main questions that these presentations highlighted, and were discussed by the TWG, are linked 

to understanding the pre-service teachers' perspectives in the design and implementation of 



mathematics with technology. Leading on from this, there is a need for deeper understanding of the 

required technological, mathematical, pedagogical, and epistemological knowledge that is essential 

for future teachers in order to prepare them to use digital tools effectively in their teaching.  

A focus on in-service teachers 

This theme concerned in-service teachers, their professional engagement in the various activities 

related with teaching: planning lessons; using technologies; working in communities; orchestrating 

different devices in laboratory activities for students; balancing laboratory activities and more 

traditional teaching. The presenters of the papers showed various aspects of the ways that teachers 

work with technologies, both related to their teaching practices and to the design and management of 

educational materials.  

Tamborg shared research on the use of a platform in Denmark, Meebook, for planning mathematics 

lessons in accordance with the teachers’ pre-determined learning objectives, teaching approaches and 

curriculum. The framework used for the study is the ‘instrumental approach’ (Gueudet & Trouche, 

2009), along with the ‘documentational approach’ (Gueudet et al., 2012) to describe the teachers’ 

collective processes in their use of the platform to plan their lessons. Kayali’s study centered on an 

investigation into the uses of mathematics education software by English secondary mathematics 

teachers, to understand why some software is used more or less than others, in which ways and for 

which reasons. Again, the instrumental and documentational approaches are the adopted frames 

alongside the ‘teaching triad’ (Jaworski, 1994), for the collection and analysis of data on teachers’ 

considerations when implementing tasks in mathematics lessons. Zender and colleagues showed a 

motivating way to support students’ learning with technologies outside of German classrooms using 

MathCityMap, a geo-located application for smartphones, which is used as an instrument for a range 

of situated mathematical tasks. The collaborative professional development of teachers in Lebanon 

on the use of GeoGebra in mathematics classes was the theme introduced and discussed by Kasti et 

al.. They based their research on the frame of Valsiner’s three zones (Valsiner, 1997) and the TPACK 

theory (Koehler & Mishra, 2005), using questionnaires and interviews to investigate how GeoGebra 

is introduced in various mathematics activities.  

Advancing theories on technology use in mathematics education 

The papers by Gustafsson and Grønbæk et al. both focused on advancing theories on technology use 

in mathematics education. Gustafsson investigated the potential of Ruthven’s Structuring Features of 

Classroom Practice framework (2009) as a tool to analyze empirical data to conceptualize and probe 

teachers’ rationales for technology integration in the mathematics classroom. Gustafsson’s results 

showed that, whilst the framework captures most aspects of their rationales, it did not fully encompass 

teachers’ justifications with respect to their students’ attitudes and behaviors. Hence, he suggested 

the addition of a new (sixth) structuring feature that relates to teachers’ craft knowledge of the use of 

technology to manage different types of student behaviors or attitudes.  

Grønbæk et al. suggested the addition of the concepts of out- and in-sourcing to Chevallard’s (1985) 

Anthropological Theory of the Didactics. These concepts, taken from the field of business economics, 

are used as metaphors within the dialectics of tool and content in the planning of teaching. Their 

addition offers a ‘production model’ to support teachers’ reflection on crucial choices between 

instrumented and non-instrumented praxeologies. This highlights the need for teachers to be able to 



identify core activities (with potential for in-sourcing) and non-core activities (candidates for out-

sourcing) based on the learning goals and the possible praxeologies when planning their use of 

technology in mathematics lessons.  

TWG15 participants’ reflections 

During the final TWG session, the participants were invited to reflect upon, and record on paper, their 

own insights and learning during the conference. A textual analysis of the 31 responses highlighted 

the following aspects of knowledge exchange: 

 Broader appreciation of theoretical frames and their uses: exposure to new theories; 

consideration of the limitations of theories; discussions of networking theories; and reflections 

on personal interpretations and applications of theories.    

 Deeper understanding of international contexts: theoretical traditions; institutional 

constraints (i.e. curriculum and examinations); the rejection of the concept of an ‘ordinary’ 

teacher, which seems difficult to define or to establish a common meaning across countries.  

 Widening of knowledge on emerging themes: opportunities afforded for large-scale teacher 

development through MOOCs and OOCs; the need for ‘quality’ criteria for digital resources 

to support their selection/uses by teachers; and the role of technology within formative and 

summative assessment that relates strongly to the mathematics curriculum, its values and 

traditions.  

Some participants reflected upon the unintended consequences of the division of the technology group 

for the two different foci (teachers and students), highlighting that an opportunity was missed to 

explore ‘How to develop a good framework to capture the interplay between mathematics content, 

technology (tools/resources), teachers and students/learners?’. 

Finally, a few participants commented on the collegiality of TWG15, highlighting they had also been 

‘inspired’ as they learned about the CERME spirit: ‘humility - and how to express both orally and in 

writing with humility’.  

Conclusions 

The broad range of papers and posters presented at CERME 10 highlighted the diversity of research 

interests in the participating countries. However, many common concerns prevail. The design and 

implementation of programmes and courses for future and practicing teachers was one such 

challenge. Debate over the exact content of such courses in order to address the knowledge and skills 

to integrate technology into future mathematics teaching practice was paramount, alongside the 

modes of delivery and the integration of teachers’ classroom experimentations. This highlighted the 

different views and perceptions of the simplicity and complexity for teaching mathematics with 

digital tools and the dilemma between technology appearing to make a teacher’s role easier (e/g/ by 

automatically marking students’ productions), whilst at the same time introducing new teaching 

challenges (e.g. by introducing new representational forms and related interactions). The TWG 

discussed ways to face such challenges through the development of research-informed teachers’ 

collaborative professional development models that integrated coaching, face-to-face and online 

communities, often conducted or sustained over a time period of years, rather than months, drawing 

on the outcomes of the recent ICMI Survey on this theme (Robutti et al., 2016).  



A common challenge is the scaling of such professional development models, for which (M)OOCs 

might offer some solution, although substantial research is needed to evaluate the ‘best designs’ to 

respond to the many different cultural contexts and requirements. The networking of theories 

proposed by Panero et al. and Taranto et al. provided some potential theoretical and methodological 

tools to this effect. 

The topic of the automated assessment of students’ digital work led the group to question deeply the 

nature of mathematical activity (and mathematics itself) that warranted such assessment. This raised 

a general concern over the ease with which closed mathematical questions can be posed and digitally 

assessed and the much greater technical challenge to design automated assessment that privileged 

mathematical processes such as reasoning, justification and proof. The poster by Recio and the two 

papers by Olsher & Yerushalmy and Chenevotot-Quentin et al. respectively contributed greatly to 

this debate. 

TWG 15 critiqued advancement in theories concerning teachers’ uses of technology in mathematics 

education. In particular, the notions of ‘tensions and disturbances’ as a theoretical construct to support 

analyses of teachers’ practices (Abboud & Rogalski), alongside extensions to Ruthven’s ‘Structuring 

Features of Classroom Practices’ (Bretscher & Gustafsson, and the poster by Simsek & Bretscher).  

Looking ahead to CERME11, TWG15 concluded the following questions, which might inform 

individual and collaborative research efforts over the next two years: 

 Which theoretical frames and methodological approaches focus on aspects of the 

collaborative work of researchers and teachers within the context of the use of technology for 

teaching mathematics?  

 What approaches might be fruitful to raise teachers’ awareness of the mathematical-

pedagogical decisions concerning the design and use of technology for learning and its 

assessment? 

 How do we create opportunities and approaches that support teachers to appreciate and plan 

for the process of students’ instrumental genesis? 

 In the design of technology-focused professional learning for mathematics teachers (pre- and 

in-service), what is the balance between professional needs across generic technologies and 

mathematics-specific needs? and how can this be achieved? 
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This paper presents an extension of approaches of the teacher technology-based activity, articulating 

the Double Approach alongside with the Instrumental Approach within the overarching frame of 

Activity Theory. Tensions and disturbances are defined for analysing the dynamics of the teacher's 

activity when ICT tools are mediating both teacher's and students' activity. The approach is 

illustrated throughout a comparative study of two "ordinary" teachers using dynamic geometry. 

Various tensions related to the temporal, cognitive and pragmatic dimensions were observed, 

differently managed depending on personal, material and social determinants. Tensions are inherent 

to the dynamics of the situation. Together with disturbances, they are lenses contributing to a fine-

grained analysis of teachers' activity.    

Keywords: Teachers, technology, activity, tensions, disturbances, dynamic environment 

Introduction 

The activity of "ordinary" teachers integrating technology into teaching is constrained and depends 

on several determinants, namely personal, institutional and social. The work of researchers such as 

Ruthven (2009), Drijvers et al. (2010) and Abboud-Blanchard (2014) emphasize the need to study 

the practices of these teachers, often not technology experts and practicing in non-experimental 

conditions(i.e. ordinary practices). One of the aims of such studies is to better understand what 

happens in the classroom and thereby to address professional development issues (Clark-Wilson, 

2014). The aim of the present paper is to contribute to this research line by introducing two new 

theoretical concepts, tensions and disturbances. These concepts were developed within a model of 

instrumented activities of teacher and students and were actually used as complementary resources 

within ICT teacher education programs.  

We consider the teacher as managing an “open dynamic environment” (Rogalski, 2003), and we focus 

on both the relationship between the lesson preparation and its actual implementation (anticipation, 

adaptation); and also on the management of the inherent uncertainty within such an environment. 

Indeed, the use of technology adds a “pragmatic” dimension emphasizing the “open” character of the 

environment that constitutes the classroom activity. Monaghan (2004), stresses that this use leads to 

an increased complexity in teachers’ practices and also that the uncertainties related to students’ 

mathematical activities with technologies bring teachers to modify their objectives during the lesson 

in progress, leading them to focus on new "emergent goals". The concepts we introduce enable an 



analysis of the impact of the dynamics of students’ interactions with technology tools on the 

management of the planned (by the teacher) cognitive route (Robert & Rogalski, 2005), and the 

possible divergences from this during the lesson. In this paper, we provide an example of the 

comparative analysis of the activity of two "ordinary" teachers’ uses of dynamic geometry with their 

(6th grade) students to describe the methodology and associated analytical tools and to highlight their 

usefulness. We selected this particular example from our research data as it is relatively easy to 

present in a short paper.  

Theoretical and methodological approaches 

The ergonomics theoretical perspective considers teaching as a case of dynamic management of the 

teaching environment (Rogalski, 2003). This environment is “open” as it contains many uncertainties 

due to the fact that the students’ activity cannot be completely predicted and the teacher is often in an 

improvisation mode. The teacher’s conceptions of the mathematical domain to be taught, and of the 

relation students have to it, are subjective determinants of his professional activity. These conceptions 

condition the “didactical process” he wants his students to follow i.e. the planned cognitive route, 

alongside the management of the processes developed during the lesson (Robert & Rogalski, 2005). 

Although the didactic scenario is familiar, the students’ diversity and the specific context of the class 

introduce a factor of uncertainty. This uncertainty is exacerbated when students are working with a 

technological tool as the teacher may encounter difficulties to control the tool’s feedback due to 

students’ manipulations and to identify their emerging interpretations. Teachers often have to deal 

with tensions due to the presence of the tool and its role in the student’s activity, and also its 

interaction with the mathematical knowledge at stake. 

Following Rabardel’s Instrumental Approach (2002), technological tools can be viewed from both 

the teacher’s and the students’ perspectives. In both cases, the subject-object interactions are mediated 

by the tool. As Rabardel states:  

Beyond direct subject-object interactions (dS-O), many other interactions must be considered: 

interactions between the subject and the instrument (S-I), interactions between the instrument and 

the object on which it allows one to act (I-O), and finally subject-object interactions mediated by 

an instrument (S-Om). Furthermore, this whole is thrown into an environment made up of all the 

conditions the subject must take into consideration in his/her finalized activity (Rabardel, 2002, 

p.42-43).  

Nevertheless, the object of teacher’s activity is the students’ learning, whereas the object of the 

students’ activity is the content of the task given by the teacher; their instruments based on the same 

tool are thus different. Figure 1, presents how these two instrumented activities are articulated within 

the dynamics of class preparation. 



 

Figure 1. Teacher’s and students’ instrumented activities within the preparation phase 

We now consider the classroom environment and present how the two instrumental situations are 

articulated within the dynamics of class management, indicating possible tensions and disturbances. 

Tensions and disturbances 

In our approach, we depart from the way Kaptelin & Nardi (2012) introduced the terms "tension" and 

"disturbance" when presenting the concept of contradiction central in Engeström's framework of 

analysis for how activity systems develop (Engeström, 2008). These terms appear in their familiar 

use; emphasis being put on the analysis of contradictions in activity systems as main learning sources.  

We do not define tensions as conflicts or contradictions. In the teacher’s activity tensions are 

manifestations of “struggles” between maintaining the intended cognitive route and adapting to 

phenomena linked to the dynamics of the class situation. Some of these tensions might be predicted 

by the teacher and so he/she plans how to manage them. Others are unexpected and constrain the 

teacher to make decisions, in situ, that direct his/her actual activity.  

Disturbances are consequences of non-managed or ill-managed tensions that lead to an exit out of 

the intended cognitive route. Disturbances happen when a new issue emerges and is managed while 

the current issue is not completely treated or when the statement of a new issue is not part of the initial 

cognitive route.  

We consider here only tensions and disturbances related to the local level of a class session; while 

some tensions are or might be managed at a more global level (i.e. over several sessions). Figure 2 

illustrates how tensions can be related to different poles of the system of teacher-and-student 

activities; they can be shaped differently along three dimensions (previously introduced by Abboud-

Blanchard (2014)): temporal, cognitive, and pragmatic. 

Tensions related to the cognitive dimension appear in the gap between the mathematical knowledge 

the teacher anticipated would be used during task performance and the knowledge that is actually 

involved when students identify and interpret feedback from the instrument. Tensions related to both 

the pragmatic and cognitive dimensions are produced by the illusion that mathematical objects and 

operations implemented in the software are sufficiently close to those in the paper-and-pencil context 



(we refer to Balacheff (1994) analysis of the “transposition informatique”). Tensions related to a 

temporal dimension are frequent in ICT environments and are linked to the discrepancy between the 

predicted duration of students' activity and the actual time needed to perform the task. Teachers are 

generally aware of such tensions; they often manage them by taking control of the situation, either by 

directly giving the expected answer or by manipulating the software themselves.  Finally, a tension 

non-specific to ICT environment may concern the didactical contract: Students cannot identify the 

type of answer the teacher is expecting. ICT environments may amplify this type of tensions when 

students are uncertain of the goal of the activity i.e. is it about a mathematical object to manipulate 

with the software or about the use of the software itself. 

 

Figure 2. Tensions and disturbances within the dynamics of class management 

Illustrating the theoretical approaches through a comparative case study 

We present how tensions and possible disturbances appear in the case of two teachers, Alan and Colin, 

using dynamic geometry software (Geoplan) with 6th grade students to introduce the notion of 

perpendicular-bisector. They are both “ordinary” teachers who use technological tools occasionally, 

and willingly, in ways that are in line with the institutional expectations, that is to introduce students 

to an experimental approach. The two teachers designed the same cognitive route based on the 

succession of two tasks: moving several points (eight) on Geoplan screen in order to place each of 

them at the same distance from two fixed points, M &N, (ICT task) and then similarly drawing 8 

points with the same condition in a paper-and-pencil context (p&p task). Each teacher’s final goal 

was to: give the definition of the perpendicular-bisector as a set of points equidistant from two given 

points; and establish an efficient associated construction method using compasses. Alan’s school is 



in a low-income socio-economic zone, while Colin is in a middle-class zone. Their working 

environments are different: Alan had access to a traditional classroom and a computer room that 

lacked either a video projection device or a black board, while Colin worked in a classroom equipped 

with laptops.  

The sessions included in our analysis were video recorded by the teachers themselves. Our choice of 

data collection approach is to reduce as far as possible the impact of researchers on the teacher’s and 

students’ activity in the class. The analysis of the teachers’ preparation documents and deferred 

interviews enable the identification of some personal and social determinants. We then compare the 

observed succession of episodes in the video alongside the planned cognitive route, to enable us to 

detect tensions and disturbances.  

Results 

A somewhat surprising result is that both Alan and Colin managed the session without temporal 

tensions despite a number of “unfavourable” material and social determinants. In Alan’s case, these 

could have resulted in strong tensions, e.g. the time needed to move from classroom to computer 

room and students’ prior cognitive difficulties. In fact, Alan took into account the social determinants 

of his class and the material constraints by anticipating and avoiding tensions that could have produce 

disturbances through a threefold organisation: temporal, pragmatic and cognitive. Indeed, Alan 

closely supervised his students and organised their activity by structuring the cognitive route as a 

succession of well-defined sub-tasks. This mode of guidance has been identified previously as a 

common approach that teachers use to manage such experimental approach in order to avoid students’ 

erratic behaviour (Abboud-Blanchard, 2014). The rhythm of sub-task completion is also strictly 

planned and guided. This is probably linked to Alan’s personal determinants that led him to establish 

strong routines to discipline students in all moments. Indeed, not all teachers with this type of students 

are able to establish such routines and to be at ease when implementing them. Colin avoided temporal 

tensions in quite different ways. He started by presenting the task both with ICT and p&p. During the 

session, he used the IWB for sharing elements of the task outcomes with the whole class. He 

particularly drew students’ attention to where they should look on the screen, and by doing so, avoided 

some pragmatic and cognitive tensions. Colin’s open attitude may be related to a personal determinant 

of “compliance” inherent in his relationship with his students. 

Regarding tensions related to the cognitive dimension, an important result is the shared illusion of 

transparency: Implicitly, Alan and Colin took for guaranteed that after completing the ICT task, all 

students would have detected the existence of a straight line on which all equidistant points are 

situated. This was clearly not the case. This tension was not managed as indicated by the absence of 

any collective comment concerning the point of transition between the ICT task and the p&p one. For 

some students, this fact led to a divergence from the intended cognitive route: a “local” disturbance. 

These students persisted conscientiously throughout the whole session to draw equidistant points 

without appreciating the notion of a straight line as the set of such points.  A tension related to the 



didactical contract was also observed in both classrooms when, during the p&p task, some students 

tried to place the 8 points at the same positions they occupied on the screen. What may have triggered 

this students’ interpretation of the task differs for the two teachers. Alan had introduced the p&p task, 

by saying “now we will do the same task but without the computer”. However, for Colin, the 

computers were not shut down and thus students may have continued to refer to what they saw on the 

screen. During the session, both teachers succeeded in managing this tension by explaining the 

differences of the two situations. 

Finally, a pragmatic tension that was not managed was an implementation issue that could be related 

to a shared belief among teachers that students are skilled with technology using a trial and 

improvement approach. At the beginning of the ICT task, for any given point (P) on the screen, the 

students could read the relative distances to the point M and N and, when moving this variable point, 

they could observe the numerical changes. However, dragging the point P to maintain the equality 

involved two degrees of freedom on the plane. Therefore, an efficient approach relied on both 

students’ awareness of this constraint and their development of an adequate concept-based strategy 

to “maintain a constant dimension when moving along the other” or “anticipate the curve on which 

the point is moving” (as shown in Abboud-Blanchard, 2015). In Colin’s class, some students 

continued to drag points without any strategy even when the teacher asked them to engage in the p&p 

task. As a consequence, they could not easily be aware of the efficiency of using compasses instead 

of rulers when switching to the p&p context. For Alan’s students, we can infer that some of them 

succeeded to place only few points with limited opportunities to notice their alignment. 

Overall, we have identified a set of tensions in the activity of two ordinary teachers use of dynamic 

geometry and have illustrated the dimensions they may affect. By predicting many tensions, these 

teachers avoided some of these tensions by anticipating and organising the students’ activity relative 

to the temporal, cognitive and pragmatic dimensions. The teachers managed others in situ mainly via 

individual interactions with, and support for the students. Their approach to classroom management 

depends on personal, material and social determinants. Nevertheless, the analysis also shows that 

even though they succeeded to maintain the essence of their intended cognitive goal, some 

unrecognised or ill-managed tensions led some students to diverge from the planned cognitive route.   

Discussion and conclusion 

In this paper, we have presented how and why we developed the notions of tensions and disturbances 

to analyse the dynamics of teachers' activity in ordinary contexts when they are using ICT in line with 

the institutional demands. We first schematised how ICT occupies two different positions as an 

instrumental tool for the teacher and for the students. The first schema is based on the postulate that 

there exists a crucial difference in the object of activity of the teacher (e.g. students' 

understanding/learning of the mathematical content involved in the task), and of the students, which 

is essentially to complete the task. Within the second schema, we added and defined several types of 



tensions that may appear within the teacher's activity along three dimensions: temporal, cognitive, 

and pragmatic, and at the level of the didactical contract.  The cases of Alan and Colin are examples 

of ordinary, experienced teachers investigated within a larger study, who use technology regularly. 

In addition, they are convinced that dynamic geometry enables students to make pertinent 

observations through the immediate feedback (this belief is widely shared by teachers). We identified 

a set of tensions: some of which were managed through anticipation; others in real-time (depending 

on different personal and social determinants); some were not detected or detected and not managed 

by the teachers. If teachers are able to identify and manage tensions, they can maintain the intended 

cognitive route for students or, when disturbances occur, modify this route to different effect. Several 

issues remain open for further research. First, the present study focused on the “local level” - an 

analysis of a specific classroom session. It will be necessary to extend our concepts and 

methodological tools to analyse tensions and disturbances at the more global level of a sequences of 

tasks on particular mathematical topics. Secondly, we analysed cases with “simple” ICT-based 

students’ tasks; other cognitive and pragmatic tensions could appear when the tasks involve objects 

and operations that are more deeply modified by the “transposition informatique”. Finally, at the 

deeper level considered in Artigue (2007), what different kinds of tensions would teachers encounter 

when students are engaged in mathematical activity involving mathematical objects (an epistemic 

orientation) compared with more specific computer-based tasks (a pragmatic orientation). Finally, we 

consider that the concepts of tensions and disturbances have enriched the range of theoretical tools to 

study teachers' instrumental activity, in particular for the identification and analysis of critical aspects 

of the dynamics of this activity. We conjecture that this could also inform approaches to teacher 

education.   
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We outline a model for analyzing the use of ICT-tools, in particular CAS, in teaching designs 

employed by ‘generic’ teachers. Our model uses the business economics concepts “out-” and “in-

sourcing” as metaphors within the dialectics of tool and content for the planning of teaching. Out-

sourcing is done in order to enhance outcomes through external partners. The converse concept of 

in-sourcing refers to internal sourcing. We shall adhere to the framework of the anthropological 

theory of the didactic, viewing out- and in-sourcing primarily as decisions about the technology 

component of praxeologies. We use the model on a concrete example from Danish upper secondary 

mathematics to reveal what underlies teachers’ decisions (deliberate or spontaneous) to incorporate 

instrumented approaches.  

Introduction  

Has use of computers in schools resulted in better education? With the steadily growing take-up of 

technology throughout the world, this question is as important as ever. The role and importance of 

technology has undergone phases from initial excitement to, more recently, a mixture of cautious 

optimism, moderate skepticism, and the stance that the use of computers might forfeit the true values 

of educational discipline. A recent, rather extensive international report (OECD, 2015) indicates 

countries’ improvements in learning by a number of measures against their investment in ICT. The 

foreword summarizes the implications for educational policy: 

Mere embracement of ICT in itself is at best harmless. Access to ICT does not automatically improve 

learning, “The results also show no appreciable improvements in student achievement in reading, 

mathematics or science in the countries that had invested heavily in ICT for education”. 

In person teacher-learner contact is essential, “One interpretation of all this is that building deep, 

conceptual understanding and higher-order thinking requires intensive teacher-student interactions, 

and technology sometimes distracts from this valuable human engagement”. 

There is a need for alignment of technology and learning: “Another interpretation is that we have not 

yet become good enough at the kind of pedagogies that make the most of technology; that adding 

21st-century technologies to 20th-century teaching practices will just dilute the effectiveness of 

teaching”. 

A deeply rooted trust in the progressive power of ICT (but with a somewhat unimaginative scope to 

traditional learning material), “Why should students be limited to a textbook that was printed two 

years ago, and maybe designed ten years ago, when they could have access to the world’s best and 

most up-to-date textbook?”. 



A tall order on teachers to meet the expectations (by pedagogy rather than by subject discipline), 

“Perhaps most importantly, technology can support new pedagogies … it is vital that teachers become 

active agents for change” (OECD 2012). 

Other meta-studies (Higgins, Xiao, & Katsipataki, 2012; MBUL, 2015) point to similar conclusions,  

“There is at most a weak positive correlation between bulk use of computers and learning outcome.” 

In contrast, there are numerous reports on very fruitful and insight-giving use of computers (Böhm, 

Forbes, Herweyers, Hugelshofer, & Schomacker, 2004; Heid, 2003; Nabb, 2010). These are often the 

result of computer focused teaching designs that are part of didactic research or teaching 

development, carried out by dedicated teachers. Therefore, the question is not how much, but how, 

about what, and by whom. 

The Danish landscape 

In the OECD report Denmark is ranked second in use of computers. From the mid 1990’s there has 

been rapidly growing CAS-use in Danish high schools, starting with graphing calculators and 

accelerated through the extensive use of PC’s from around 2005. The situation now is that most high 

schools use Maple, TI-Nspire, Geogebra, and/or a CAS-tool specially developed for Danish high 

schools (WordMat, a CAS engine integrated within Microsoft Word). Students bring their own PC to 

the classroom, and use of PC is required at examinations. Initially, the transformation was carried 

through by progressive and CAS-curious teachers, many of whom were inspired by reform pedagogic 

ideas that supported a shift from abstract mathematics towards applications and more intuitive 

conceptual understandings. There was (and is) also an element of believing in diffusion: If CAS helps 

advanced (university) students to solve advanced problems, we might as well use CAS to help less 

advanced students solve less advanced (but to them difficult) problems. The educational system 

eagerly supported the development. Mathematics has been a vehicle for use of PC in other subjects, 

and examinations using CAS could (possibly) help more students achieving higher levels in math. 

Since 2005, CAS has gone from being a tool for enthusiastic teachers to a tool for everyone, including 

teachers with less interest and less competency in CAS. There has been no essential change in the 

standard curriculum (only minor ones allowing time for, say, 𝜒2-test) – and standards for CAS use 

have not been introduced. On the contrary, the curriculum endorses the use of CAS in mathematical 

modeling and concept building, but without any indication of how, and in connection with what 

topics, to carry this out. In this landscape, many teachers have developed templates that students are 

allowed to use in exams, and the preparation of students to use these has become an important activity 

during normal lessons. Students of teachers, who for one reason or another disfavor such, may find 

templates on the internet or borrow from friends. Most of such templates have little epistemic value 

and a rather narrow pragmatic value in the sense of (Artigue, 2002) towards solving (standard) 

problems. With CAS at the national tests these tendencies of trivialization are even more pronounced, 

as problems must be formulated to be equally solvable on different CAS platforms, 

Denmark’s extended use of computers in education reflects of course a trend in society but is also as 

described above to a large degree the result of explicit educational policies. Hence, a teacher has to 

find his/her pathway through the affordances, constraints, possibilities etc. stipulated by official 

guidelines, curriculum and instruction plans. As indicated, successful use of computers does 

seemingly not scale up (MBUL, 2015). In order to understand the reasons for this better we propose 



an analysis model to help understand teachers’ decisions on use of computers in mathematics 

teaching. 

Theoretic framework 

As our proposal aims at elucidating teaching in an institutional context we find the anthropological 

theory of the didactics (ATD, Chevallard, 1999) well suited. We start by briefly recalling the most 

important concepts of ATD that we shall use. Mathematics as an enterprise (educational as well as 

scientific) is seen as human activity composed of two blocks each with two parts, a praxis block 

comprising types of problems, tasks, with techniques to accomplish these and a theory part 

comprising technology and theory. Together such two blocks are termed a praxeology (praxis + 

logos). Tasks are the immediate goals of the activity, i.e. finding the slope of a graph of a function at 

a given point. A task can be accomplished by several techniques, i.e. plotting the graph on a computer, 

zooming in on the point in question until the graph appears linear and reading off the slope. The 

technology part concerns the discipline discourse of the technique and its relation to the tasks, i.e. the 

scope and limits of computer rendering of graphs (in relation to variation of functions). The theory 

part is a discourse on the technology part and its relation to the praxis block, i.e. on the concept of 

linear approximation that the sketched approach leads and on how it is related to a larger body of 

mathematical knowledge and practice, for instance that of the theory of differentiation.  

We would like to stress a couple of points. A given task can be unfolded in many praxeologies. To 

choose, detail and organize such unfoldings is the essence of teaching design. Any praxeology has 

underlying praxeologies, i.e. praxeologies aimed at slope of a linear function, and is itself related 

to/part of other praxeologies. A praxeology always comprises all four parts. This is one key point of 

the analysis in (Barbé, Bosch, Espinoza, & Gascon, 2005). 

Praxeologies take place within organizations of mathematical practice and knowledge. In ATD such 

organizations are formed by two components, a mathematical body consisting of a totality of objects, 

concepts, statements, interrelationships, procedures, etc., termed the scholarly knowledge and an 

institution of society within which this body is taught, manifesting possibilities and constraints for 

acquisition of learning. The passage from scholarly knowledge to its institutional version (which has 

more components than indicated) is in ATD conceptualized as didactic transposition. 

In (Artigue, 2002, p. 271) it is noted that didactic transposition in its first version was described with 

respect to rather traditional scholarly mathematics. In order to underline a computerized setting 

Artigue has singled out the term instrumented techniques. 

The model 

In ATD the teacher is considered as the director of the learners’ didactical processes (Barbé et al., 

2005), that is, responsible for the establishment of relations between learners and organizations of 

knowledge within institutions. We shall take this a step further, viewing it as production of learning 

outcomes through production activities, the praxeologies. For this production, the teacher has at 

his/her disposal a palette of resources, typically in terms of techniques (along with their theoretical 

block) to solve tasks. The ‘employees’ who use the techniques towards the production are the 

students. 



This setup is very similar to a business economic model of the production of a corporation. In order 

to enhance the outcome a corporation director makes sourcing decisions on the allocation of 

resources. In modern terminology, one speaks of outsourcing, insourcing, backsourcing1, 

“outsourcing involves allocating or reallocating business activities (both service and/or 

manufacturing activities) from an internal source to an external source” (Schniederjans, 

Schniederjans, & Schniederjans, 2005, p.3). Insourcing can be viewed as an allocation or reallocation 

of resources internally within the same organization. Any business activity can be outsourced or 

insourced (dichotomy), but this decision is crucial to the success of the corporation. The basic idea 

of outsourcing is old, essentially, it is the dictum ‘buy or make’. However, in the last few decades, 

outsourcing has grown almost explosively. A main reason for this is the development of ICT. But 

outsourcing is risky. It is reported (Schniederjans et al., 2005, p. 12) that half of all outsourcing 

agreements fail due to lack of appropriate analysis, and the necessity of strategic planning has become 

evident. There seems to be general acceptance (Schniederjans et al., 2005, p. 9) that such starts with 

an analysis to identify the strengths of the corporation, in terms of core activities (‘core competencies’ 

in (Schniederjans et al., 2005). Loosely, a core activity is what the corporation does better than its 

competitors and possible outsourcing providers. Core activities must be insourced, non-core activities 

are candidates for outsourcing and a balanced decision to achieve the strategic goals must be made. 

Key advantages of outsourcing of inspiration for didactic equivalents are: focus on core activities, 

gain of outside technology, enhancement of capacity and lower cost, whereas some key disadvantages 

are loss of control, increased costs, negative impact on employees’ morale and difficulties in 

managing relationships with outsourcing provider. 

In the didactic version, the client is a didactically transposed knowledge organization along with the 

teacher(s) to direct the didactic processes. The outsourcing provider is an external knowledge 

organization, typically within a CAS. In the business model, external/internal refers to ownership. 

For our purpose the fundamental feature of ownership is that it allows for control of processes, i.e. 

outsourcing implies loss of control. We shall take this as the defining property. Hence outsourcing a 

mathematical activity means allocating it to a resource at the price of giving up control of processes. 

A blunt example could be a teacher encouraging students to find solutions to homework on the 

internet; a more elucidating example is employment of instrumented techniques in the form of black-

box applications of CAS. As pointed out, any activity can be outsourced or insourced, that is full 

praxeologies, be it punctual, local or regional, or just parts of praxeologies, typically the praxis block. 

To be more precise, the starting point of CAS outsourcing is typically a problematic task to be solved 

by the outsourcing provider’s technique thereby creating a transformed or new praxeology. We stress 

that a CAS such as Maple is not solely a provider. To the extent that a teacher exercises control over 

CAS processes, these are considered insourced. Outsourcing to CAS is a more restrictive concept 

than mere use of CAS. (Teacher control must be distinguished from student control as the latter is the 

result of the first, and perhaps of other competencies, acquired without the influence of the teacher.) 

                                                 

1 Backsourcing means reallocating tasks from external sources to internal. This could be in order to regain control of the 

production process but could also be imposed by outside regulatives. In an educational context such could be new 

stipulations of use of CAS at national tests. 



A simple example (an object of many controversies) illustrates the concepts. Arithmetical 

computations require a careful analysis of what are core activities that accordingly should be 

insourced. Depending on (long-term) learning goals, these could be the systematics of paper and 

pencil algorithms, skills of mental arithmetic with “nice numbers”, etc. On the other hand, 

multiplication of many-digit numbers is hardly a core activity and is therefore a candidate for 

outsourcing to calculators2. This does not mean that tasks, which can be solved by mental 

computation, should not be insourced by calculator techniques. The point is that the core activity of 

mental computing may give control also of some calculator computations. Note that a calculator 

praxeology is completely different from its non-instrumented equivalents, for instance its theory part 

may involve representation of numbers in a finite memory.  

The very decision to use CAS (or other instrumented techniques) involves, regardless of its specific 

use, outsourcing. The teacher has no control of the coding that underlies the CAS, the syntax, the 

defaults, the library of routines, etc. Most CAS-tools are developed with teaching in mind, at least 

partly. Perhaps most importantly, the CAS design may have didactic intensions, which the teacher 

may surrender to if not disable. Maple’s ‘clickable math’ is a good example of this. The relationship 

between non-instrumented mathematics and computerized mathematics resembles that of a strategic 

partnership with mutual outsourcing. This relationship is dialectic in nature. The potential of CAS in 

mathematical praxeologies needs non-instrumented mathematics to be redeemed.  

There is of course nothing new in the very idea of strategic planning. Mathematical activity has at all 

times involved use of ‘non-controlled’ components and didactic considerations have always had this 

as a condition. The modern aspect of CAS is the magnitude of impact, calling for a much clearer 

elaboration of such planning. The addition of the concepts of out- and insourcing to ATD offers a 

model for reflection on crucial choices between instrumented and non-instrumented praxeologies on 

basis on insight in the CAS-tool and in possible mathematical activities. On one hand, the model 

gives a framework for investigation of ordinary teachers’ undertakings and perhaps more importantly, 

of what is not undertaken. On the other, it provides a strategic planning scheme for the teacher cf. 

(Schniederjans et al., 2005, Figure 1.3), where II+III are the crux of the matter: 

I. Establishment of content and learning goals of the mathematical organization to be taught 

II. Detailed analysis of subject matter and activities of possible praxeologies. 

III. Identification 

a. Core activities 

b. Non-core activities 

IV. Sourcing decisions 

a. Core activities are insourced 

b. Non-core activities are candidates for outsourcing. 

                                                 

2 A business equivalent of the historically initial excitement about the freeing potential of calculators and the afterthought 

concerning (permanent?) loss of core activities: The reservation system of the flight company TWA was superior to those 

of its competitors, i.e. a core activity, but was outsourced in the 90’s. TWA never regained its market share and went out 

of business in 2001. 



How do teachers decide on what is a core activity? The dialectics of pragmatic and epistemic value 

(Artigue, 2002) seems inevitable, but is not directly reflected in the dichotomy of out- and in-

sourcing. The computational power of several thousand digits, obviously to be outsourced, may have 

epistemic value in relation to approximation by decimal expansions. The pragmatic value of graphing 

of polynomials may be an asset of outsourcing in order to study whether polynomials have desired 

properties, which are considered epistemic of certain mathematical models. In other praxeologies 

graphing, by hand or by CAS, may be insourced. 

Methodology for prospective work with the model 

We aim at a fully-fledged model to give a general description of ordinary teachers’ implementation 

of CAS and through this, an insight in the scaling-up question mentioned previously. Our first step is 

to analyze a rather extensive material of reports on teaching designs with CAS, succeeded by 

reflections on further development, modification and refinement of our model. These reports are 

produced by project participants at Center for Computer based Mathematics Education (CMU3), 

University of Copenhagen, as the last step of a reflective practitioner process. The mission of CMU 

is to support use of CAS in Danish high schools respecting core mathematics qualities in order to 

reverse the trivialization tendencies described above. The only condition for participating is a moral 

subscription to this mission. Thus, teachers have been free to choose subject, CAS platform (within 

CMU’s coaching expertise), design of teaching, etc. This first round of analysis data is collected in 

contemplation of dissemination, rather than evidencing answers to research questions, but in a 

systematic way that allows for a grounded theory approach.4  

Having an elaborated model, we intend a large-scale investigation on Danish mathematics high school 

teachers’ choices and rationale for outsourcing to CAS. 

A sketch of an analysis: a praxeology of finding derivatives 

The so-called 3-steps method of finding the derivative, 𝑓′(𝑥0), of a function is the canonical approach 

to differentiation in Danish high schools, explicitly mentioned in official guidelines. We recall: (1) 

With ∆𝑦 = 𝑓(𝑥0 + ∆𝑥) − 𝑓(𝑥0) form the fraction 
∆𝑦

∆𝑥
 ; (2) reduce the fraction to make   lim

∆𝑥→0

∆𝑦

∆𝑥
 

accessible (3) find the limit lim
∆𝑥→0

∆𝑦

∆𝑥
 (if it exists). These are tasks in three praxeologies with rather 

separate theory blocks involving algebra, topology and geometry. In a CMU – project 

(Differentialregning, tretrinsreglen), the teacher, in the sequel L, wants to improve on students’ 

understanding of the method by CAS-outsourcing “to give the students hand-on experience of secant 

and tangent slope and limits through experimentation with CAS sheets” (our transl.). An outsourcing 

strategy like this is rather common in Denmark. L has worked on the teaching problematics of the 3-

steps method for many years ‘without really understanding why students find it so difficult’ (our 

                                                 

3 The Danish Industry Foundation, Department of Mathematical Sciences at University of Copenhagen, The Danish 

Ministry of Education, and Maplesoft Inc. sponsor CMU. 

4 For further details about the CMU material, we refer to the CERME 10 poster of TWG 15 (Bang, Grønbæk, & Larsen, 

2017) 

 



translation from Danish taken from the project report). This time L starts with a thorough analysis of 

prerequisites ending in 12 points. L decides to use CAS in the case of 𝑓(𝑥) = 𝑥2 on three points of 

the 12: ‘(5) computing slope of a straight line; (7) understanding what tangent and slope are; (12) 

understanding (the concept of) limit’ (our transl.). A few observations: (A) L is by his very wish to 

understand reasons for learning difficulties led to in- and outsourcing considerations. (B) There is a 

tendency to regard pragmatic and epistemic values as separate features: (5) is pragmatic and (7) & 

(12) are (by L phrased as) aiming at epistemic value. (C) Some core activities are recognized as such 

and insourced, i.e. algebraic reduction of polynomial expressions such as ∆𝑦 for 𝑦 = 𝑎 𝑥2 + 𝑏 𝑥 + 𝑐 

- partly insourced to paper and pencil, partly to CAS. Other core activities are outsourced, i.e. use of 

sliders on the graph 𝑦 = 𝑥 + 2 to find lim
𝑥→0

𝑥 + 2, as last step in the 3-step method with 𝑥 replacing 

∆𝑥; (D) non-core activities are not spelled out. What is it that sliders can do for secant-tangent 

considerations without sacrificing core activities? (E) Affective aspects are outsourced: ‘CAS tools 

should … activate students and challenge their desire to … explore mathematical problems’ (our 

transl.) From L’s reflections, it appears that the outsourcing (D) is indirectly motivated by the 

textbook treatment of the subject. Textbooks rarely have core activity considerations, but rather bold 

instigations to CAS use. This risk of dilution of mathematical competency is pinpointed by the 

concept ‘outsourcing core activities’.  

Further use and development 

L is an example of a teacher with neither desire nor reputation to be a front-runner, but navigating 

resourcefully and dedicatedly under post-modern circumstances of mathematics teaching. Our 

observations (A), … (E) apply to many teachers (CMU, 2015; CMU, 2016) so the sketch of an out-

/in-source analysis of L’s project is testimony that our approach may have potential for shedding light 

of the kind of decisions, with shortcomings and potentials, that ordinary teachers make. The business 

metaphor seems confluent with natural praxis of resource considerations, thus providing a framework 

for large-scale investigations much similar to studies of business economics forces that govern trade 

and production. One may fear a risk of introducing yet another business corporation model to 

education. Outsourcing is growing in business due to the incitement of fierce competition. While 

perhaps tempting, a flat educational interpretation of this is misleading. The rooting in a business 

model is motivated within a local or regional mathematical organization through its level of didactic 

co-determination. Even though mathematics may be seen as a productive force, learning outcome is 

not a commodity. It cannot be bettered simply through optimization tactics. 

Our sketch has focused on director decisions, i.e. the teacher’s planning. Further development must 

include employees, i.e. students, that is, the last step of the didactical transposition: matter taught  

matter learned. 
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The ministry of education is launching a national project to implement the use of ICT in the Israeli 

education system. To prepare pre-service teachers with whom we work for this kind of 

implementation, we designed a model, which supports them to learn to use digital tools effectively 

while integrating a particular pedagogy for teaching a specific mathematics or science content. The 

goal of the present research is to study the development of these pre-service teachers’ 

Technological, Pedagogical and Content Knowledge (TPACK), attitudes toward computers and 

their ICT proficiency. For this purpose, we used and adapted questionnaires from different sources. 

The research results show significant improvement in the TPACK level and ICT proficiency, but no 

significant effect of the preparation on most of the components of the teachers’ attitudes toward 

computers, being positively high before and after the preparation. 

Keywords: Pre-service teachers, TPACK, digital tools, professional development.  

Introduction 

Shulman (1986) suggested the PCK (pedagogical content knowledge) model to represent the 

interaction of two types of teachers’ knowledge: content knowledge and pedagogical knowledge. He 

proposed that this interaction be considered in order to understand teachers’ expertise in teaching a 

particular subject matter. Various researchers (for example Koehler and Mishra, 2009; Niess et al., 

2009), built on Shulman’s PCK to describe the interaction of teachers’ understanding of educational 

technologies with their PCK that results in effective teaching with technology. Specifically, they 

talked about the technological pedagogical and content knowledge of teachers (TPACK), where this 

model describes the interactions between and among the three main components of teachers’ 

knowledge: content, pedagogy, and technology. These interactions result in new types of teachers’ 

knowledge, namely PCK, TCK (technological content knowledge), TPK (technological pedagogical 

knowledge), and TPACK. In this paper, we describe the development of pre-service teachers’ 

TPACK as a result of preparing them in the use of digital tools over one academic year.  

Technological, Pedagogical and Content Knowledge 

Though some researchers consider TPACK too blunt an instrument (e.g., Clark-Wilson & Hoyles, 

2016; Thomas & Palmer, 2014), other researchers refer to it when studying mathematics teacher’s 

professional development (e.g., Balgalmis, Shafer, & Cakiroglu, 2013; Bowers & Stephens, 2011). 

Generally speaking, TPACK is the knowledge of how to integrate technology in teaching the subject 

matter. This knowledge also includes the appropriation between a specific technological tool, the 

teaching of a specific topic and being aware of the difference between various technological tools in 

teaching a specific topic. Further, this knowledge means being aware of students’ problems of the 

subject matter that could be overcome by using specific technological tools. It also includes the 



awareness of students’ difficulties of the subject matter that result from using specific technological 

tools and how to overcome these problems (Koehler & Mishra, 2009).  

Robova, and Vondrova (2015) studied mathematics teachers’ awareness of the specific 

technological skills needed for their teaching (making functions visible on the screen, changing 

visual appearance of graphs, interpreting numerical results, using dynamic features of a tool) and 

their ability to design teaching which takes the specific skills into account. Furthermore, Koh and 

Divaharan (2011) described an instructional model for developing pre-service teachers’ TPACK. 

We follow the previous attempts to suggest a preparation model for developing pre-service teachers’ 

TPACK in utilizing digital tools in their teaching. 

Pre-service teachers’ attitudes toward computers 

Fishbein (1967) defined attitude as a learned tendency to respond to an object in a consistently 

favorable or unfavorable way. Other researchers (Zan & Di Martino, 2007) defined attitude in terms 

of emotions: a positive or negative emotional reaction toward a specific situation. These definitions 

show the possible influence of attitudes on behavior in general and on pre-service teachers’ 

behavior in particular. Attention to attitudes has risen when ICT started to emerge as a possible tool 

for the improvement of teaching and learning. In this context, researchers found that these attitudes 

have major influence on the success and meaningful use of the ICT in their teaching (Albirini, 

2006).  

In our research, attention was given to pre-service teachers’ attitudes toward computers, together 

with the development of their TPACK and ICT proficiency, as a consequence of their preparation in 

the use of digital tools. We used the ‘teacher’s attitudes toward computers’ questionnaire (TAC) as 

it probes teachers’ attitudes toward ICT use in teaching and their intention to do so (Baya’a & 

Daher, 2013). We were also interested in the pre-service teachers’ proficiency level in ICT as an 

indicator of their intention to use ICT in their teaching as the proficiency variable is reported to 

affect teachers’ readiness to use ICT in their teaching (Granger, Morbey, Owston & Wideman, 

2002). 

The research questions 

The main research question is: How will the preparation of pre-service teachers in the use of digital 

tools, according to the model that we designed, affect their TPACK level, ICT proficiency and their 

attitudes toward computers?   

Research context, participants and the preparation model 

This current research accompanies the preparation of pre-service teachers to study how to use 

effectively digital tools in the mathematics or science classroom. This knowledge is the core of the 

TPACK model. We administered questionnaires to measure the advancement of the TPACK levels 

and attitudes toward computers of the pre-service teachers who implemented the model, as well as 

their ICT proficiency. Approximately 55 students majoring in mathematics and science teaching in 

intermediate schools completed the questionnaires at the beginning and end of the preparation. 

These students were in their third year of training alongside two courses that provided a background 

in the use of ICT for teaching mathematics and science. 



The preparation model aimed to improve the pre-service teachers’ selection of a suitable digital tool 

for a specific pedagogy and subject. It also tried to improve the integration of digital tools to teach 

some specific content. This preparation model concentrated on two aspects. First, knowing the tool 

technically and being able to adapt it to teach some specific content. Second, developing the ability 

to select and integrate suitable digital tools for some specific content and pedagogical method. In 

more detail, each pre-service teacher worked independently to learn to use at least two digital tools 

and to prepare user guides (as PDF file or digital book) that included descriptions of the most 

significant functions of these digital tools. Furthermore, the pre-service teachers were required to 

record video clips of screen shots while performing operations in these digital tools as explanations 

for another user. The pre-service teachers were asked to select the digital tools from a catalog of 

general digital tools prepared by the ministry of education in Israel. This catalog includes various 

digital tools that could be adapted for use in various subjects and levels, such as: Flipsnack for 

creating online digital books, Linoit for creating collaborative bulletin board, Socrative for personal 

and class assessment and Mindomo for creating mind maps. 

Moreover, each pre-service teacher was required to prepare pedagogical materials on how to use the 

digital tools that she was engaged with in teaching mathematics or science, and then present the 

materials in the training workshop to receive comments from her peers and the pedagogical 

supervisor. Following that, the pre-service teacher reflected on her developed materials, adjusted it 

and uploaded all the materials to an internet site that was constructed by the pre-service teachers and 

the pedagogical supervisors. This internet site constituted a data bank for digital tools. In addition, 

each pre-service teacher was requested to prepare at least two lessons for teaching mathematics or 

science and pick three digital tools from the catalog (including one that she was engaged with) to 

use them in her teaching. These lessons had to involve also collaborative investigations that 

encourage the use of higher order thinking skills. Finally, each pre-service teacher picked a subject 

from within a digital textbook for teaching mathematics or science, and added connections to 

pedagogical activities based on using digital tools from the data bank site.  

During the first semester, the pre-service teachers had two options: to start from the digital tool and 

integrate it for teaching some specific content, or starting from the content and selecting a suitable 

digital tool to teach that content. In the second semester, each pre-service teacher was asked to 

experiment with the prepared materials and lessons in her training school with at least one of the 

chosen tools, and reflect on the experience. This reflection was on the actual implementation of the 

digital tool in the classroom environment, and it was posted in the data bank for digital tools for 

other pre-service teachers to consider as they selected digital tools for their own use. 

Research instruments 

The research instruments included three questionnaires as follows: Questionnaire 1: Technological, 

Pedagogical, and Content Knowledge (TPACK) (revised) questionnaire, constructed on the basis of 

the TPACK instrument for pre-service teachers developed by Schmidt et al. (2009).  

Questionnaire 2: Teachers’ Attitudes toward Computers (TAC, v. 6.1) questionnaire: This 

questionnaire was tested by Christensen and Knezek (2009) who concluded that it is a well-

validated and reliable instrument for teachers’ self-appraisal of their attitudes toward computers.  



Questionnaire 3: The Use of ICT in Colleges of Education (UICT): This questionnaire was 

developed by The MOFET Institute (A Center for the Research, Curriculum and Program 

Development in Teacher Education in Israel) to track the professional development of pre-service 

teachers’ use of ICT. We used the ICT proficiency part of the questionnaire. 

The validity of the questionnaires was considered by giving the Arabic translations to a group of 

pre-service teachers who were requested to examine if the questionnaires’ statements were clear to 

the reader. As a result, some items of the questionnaires were rephrased to clarify their meaning. 

The pre-service teachers’ scores in the overall constructs and their categories, before the preparation 

and after it, were examined for internal reliability using Cronbach alpha. The results showed high 

Cronbach alpha (above 0.85 for all the categories and for the overall construct) indicating adequate 

internal reliability for the questionnaires and their categories. These results were expected due to the 

extensive use of these questionnaires in the literature.  

Data processing 

Data was analysed using paired-samples t-test to determine if there were significant differences 

between scores of pre-service teachers in the various questionnaires before and after the preparation. 

Cohen’s d (the ratio between the difference of the means and the average of the standard deviations) 

(Cohen, 1969) was used to compute effect sizes to assess the practical significance of results.  

Results 

Pre-service teachers’ ICT proficiency 

Table 1 shows the proficiency level of the pre-service teachers before and after the preparation 

(values between 1 to 5), as well as paired sample t-test between the two observations.  

 Before Preparation 
 

After Preparation  

Outcome M SD M SD     t     d 

Score of ICT 

proficiency in UICT 3.80 0.56 

 

4.20 0.59 4.17*** 0.70 

          *** p < 0.001 

Table 1: Means, standard deviations and t-test for pre-service teachers’ ICT proficiency level (n=54) 

As displayed in Table 1, the results show that the pre-service teachers’ ICT proficiency level differs 

significantly before and after the preparation. Large positive effect size of 0.70 was derived for the 

preparation on the pre-service teachers’ ICT proficiency level. This advancement was mainly the 

result of the major improvement in their ‘multimedia tools proficiency’.  

 

Pre-service teachers’ TPACK level  

The TPACK level comprised the total score of the TPACK questionnaire and six other scores for 

each partial type of knowledge for technology, pedagogy, content and intersections between them. 

Table 2 shows the TPACK components’ scores of the pre-service teachers before and after the 

preparation (values between 1 to 5), as well as paired sample t-test between the two observations.  



 Before Preparation  After Preparation  

Outcome M SD 
 

M SD       t d 

TPACK 3.93 0.53  4.50 0.46 8.19*** 1.15 

TK 3.90 0.63  4.44 0.59 6.31*** 0.89 

PK 4.04 0.52  4.57 0.46 6.35*** 1.08 

PCK 3.81 0.57  4.57 0.49 8.49*** 1.43 

TCK 3.78 0.76  4.45 0.52 7.02*** 1.05 

TPK 4.02 0.67  4.50 0.63 4.85*** 0.74 

TPCK 3.88 0.78  4.51 0.68 5.19*** 0.86 

  *** p < 0.001  

Table 2: Means, standard deviations and t-test for pre-service teachers’ TPACK level (n=54) 

As displayed in Table 2, the pre-service teachers’ scores in the components of TPACK differ 

significantly before the preparation and after it. Large positive effect sizes of 0.74 and more were 

derived for the preparation on the pre-service teachers’ TPACK and its components. 

Pre-service teachers’ attitudes toward computers  

Attitudes toward computers were assessed using 9 categories. Table 3 shows components’ scores of 

the pre-service teachers’ attitudes toward computers before and after the preparation (values 

between 1 to 5, except perception 1 to 7), as well as paired sample t-test between the two 

observations.  

 Before Preparation  After Preparation   

Outcome M SD 
 

M SD t d 

TAC General 3.86 0.47  3.99 0.53   2.09* 0.26 

Interest  4.37 0.64  4.32 0.74  -0.42  -0.07 

Comfort  4.11 0.99  4.17 1.11   0.38 0.05 

Accommodation  4.65 0.59  4.38 1.04  -1.86 - 0.33 

Interaction  3.82 0.90  4.19 0.87   2.53* 0.41 

Concern  2.54 0.69  2.82 0.85   2.55* 0.36 

Utility  4.29 0.51  4.39 0.74   1.01 0.16 

Absorption  3.45 0.91  3.82 1.07   2.28* 0.37 

Significance 4.18 0.67  4.27 0.78   0.88 0.12 

Perception  5.60 1.06  5.79 1.19   1.25 0.16 

            * p < 0 .05  

Table 3: Means, standard deviations and t-test for pre-service teachers’ TAC level (n=54) 

As displayed in Table 3, the pre-service teachers’ scores in the categories of attitudes toward 

computers differed significantly before the preparation and after it in the categories: interaction, 

concern, absorption and TAC general. In these constructs, a small effect size of 0.26 was derived for 

the preparation on the pre-service teachers’ general TAC score, and moderate effect sizes of 0.41, 



0.36 and 0.37 were derived for the preparation on the interaction, concern and absorption 

respectively. 

Discussion and conclusions 

The research aimed to examine how the preparation course affected the pre-service teachers’ ICT 

proficiency, TPACK level and their attitudes toward computers. The research results indicated 

several significant positive effects of the preparation model used in that preparation that related to 

the pre-service teachers’ abilities and knowledge regarding the integration of digital tools in 

teaching. 

Pre-service teachers’ ICT proficiency   

The research results indicated significant improvement in the pre-service teachers’ ICT proficiency 

as a consequence of the preparation, especially in multimedia tools proficiency. The mathematics 

and science pre-service teachers usually have high ICT proficiency, but the requirements in the 

preparation model led to significant improvement particularly in their multimedia proficiency. 

These results are due to a consideration of the technology knowledge related to the digital tools in 

the preparation process. This resulted in the pre-service teachers increased competence in their use 

of digital tools for personal and professional purposes, which caused them to feel confident to 

utilize new digital tools independently and individually (Prestridge, 2012), and thus improved 

significantly their ICT proficiency. This suggests that pre-service teachers need to be given the 

opportunities to work with technological tools in order to improve their ICT proficiency and their 

readiness to integrate ICT in their teaching (Muir-Herzig, 2004).  

Pre-service teachers’ TPACK level   

As a result of the preparation, the general TPACK level of the pre-service teachers, as well as its six 

partial types, were significantly improved. These results could be due to the attention of the pre- 

preparation model to the ability of the pre-service teachers to appropriate the digital tools 

pedagogically to teaching a specific content, and vice versa. It could be said that the pre-service 

teachers’ diverse experiences in the workshop improved their knowledge in different types of 

knowledge related to their teaching mathematics or science. Thus, the preparation model provided 

the pre-service teachers with opportunities to maintain and shift their instructional approaches 

enriched with innovative educational technologies (Martin, 2015). This preparation model could be 

implemented worldwide when taking into consideration the particular background and conditions of 

the pre-service teachers involved.  

Pre-service teachers’ attitudes toward computers 

The results of this research show that following the preparation process, no significant improvement 

was detected in the pre-service teachers’ attitudes toward computers for most of the TAC 

components, with exception of TAC general, interaction, concern and absorption. We should note 

that in both cases, before and after the preparation, the attitudes were very favorable toward 

computers.  

As for the positive change in some attitudinal categories, such as absorption, the pre-service 

teachers had, during the workshop, the chance to be actually involved and improve their knowledge 

in computers and ICT. This might have improved their ability to solve problems related to the 



computer use in the classroom; which encouraged them to insist to solve these problems, even the 

hard ones. This influence of teachers’ experience in technology on their ability to solve 

technological problems is supported by DeLuca (1991) who claims that technological knowledge 

overcomes technological problems in the classroom. This could improve pre-service teachers’ 

attitudes toward computers.  
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Research on technology in mathematics education highlights the importance of teachers having a 

positive stance towards technology for successful integration into classroom practice. However, 

such research has paid relatively little attention to teachers’ knowledge of specific mathematical 

concepts in relation to technology. This paper examines the innovative use of technology by a 

teacher, Robert, as a critical case study, to argue that the significance of mathematical knowledge 

for teaching using technology should not be overlooked nor underestimated. 
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Introduction 

Seeking to understand teachers’ integration of technology, research on technology in mathematics 

education (e.g. Zbiek et al., 2007) has documented the important role teachers’ beliefs and 

conceptions play in their integration of technology into classroom practice. For example, Zbiek et al 

(2007) identify the constructs of pedagogical fidelity and privileging as useful in understanding the 

extent and nature of technology integration in a teacher’s classroom practice. Pedagogical fidelity is 

described as the degree to which teachers’ beliefs about the way a digital technology allows students 

to act mathematically coincides with their beliefs about the nature of mathematical learning (Zbiek 

et al., 2007). Privileging is a notion developed by Kendal and Stacey (2001) to describe how 

teachers, consciously or unconsciously, frequently use or place a priority on certain things in their 

practice, for example, types of representation, skills or concepts and by-hand or by-technology 

methods (Zbiek et al., 2007). Both these constructs relate to teachers’ conceptions of mathematics as 

a discipline (Thompson, 1992), their beliefs about the nature of teaching and learning mathematics 

and how these interact with their beliefs about technology. 

Such studies have in common a focus on teachers’ global conceptions of mathematics as a 

discipline and on teachers’ beliefs about the nature of teaching and learning mathematics with 

technology. They do not tend to focus on teachers’ knowledge of specific mathematical concepts in 

relation to technology. This is an important omission since the documented shifts in teachers’ views 

suggest a move towards models of teaching aimed at developing conceptual understanding. Such 

models may require a great deal of knowledge for successful implementation and inconsistencies 

between teachers’ professed beliefs and practices may be the result of lacking sufficient knowledge 

and skills necessary to implement them (Thompson, 1992).  

Whilst highlighting the role of teachers’ conceptions in technology integration is important, this 

paper argues that the significance of mathematical knowledge for teaching using technology should 

not be overlooked nor underestimated. For example, Bowers and Stephens (2011, p. 290) assert that 

the set of (teachable) knowledge and skills for teaching mathematics using technology may be 

empty, emphasising instead that teacher educators should seek to nurture a favourable conception of 



“technology as a critical tool for identifying mathematical relationships”. Whilst it may be that 

teacher educators should seek to nurture favourable conceptions towards using ICT in their trainees, 

this paper argues the knowledge required to put such conceptions into practice should not be 

neglected. 

Theoretical framework 

The central Technology, Pedagogy and Content Knowledge (TPACK) construct of Mishra and 

Koehler’s (2006) framework is useful in highlighting mathematical knowledge for teaching using 

technology, by emphasising technology as a knowledge domain alongside pedagogy and content 

knowledge (Bretscher, 2015). Whilst space does not allow for a full description of the framework, 

the central TPACK construct serves to highlight the situated nature of such knowledge. In 

particular, in this paper, mathematical knowledge for teaching using technology is viewed as a 

situated abstraction (Noss & Hoyles, 1996), that is, ‘abstract’ mathematical knowledge 

simultaneously situated in the context of teaching with technology. 

Borrowing from Shulman (1986), mathematical knowledge for teaching using technology is 

assumed not only to be a matter of knowing how – being competent in teaching mathematics using 

technology - but also of knowing what and why. That is, although much of teachers’ knowledge 

may be tacit, craft knowledge (Ruthven, 2007), at least some of their know-how is underpinned by 

articulated knowledge that provides for “a rational, reasoned approach to decision-making” 

(Rowland et al., 2005, p.260) in relation to teaching mathematics using technology. In other words, 

mathematical knowledge for teaching using technology, as defined in this study, is when know-how 

or knowledge-in-action is underpinned by and coincides with the teacher’s articulated knowledge. 

This intersection between articulated knowledge and knowledge-in-action is important because it is 

this type of knowledge that initial or in-service teacher education programmes focus on developing. 

Method: Robert as a critical case 

Four teachers were selected from a group of English mathematics teachers who took part in a survey 

of secondary school mathematics teachers’ use of ICT (n=183) and who further agreed to be 

contacted as case study teachers (Bretscher, 2011; 2014). The four case study teachers were chosen 

along two dimensions of variation likely to be associated with mathematical knowledge for teaching 

using technology, based on their responses to survey items. Firstly, the case study teachers were 

chosen to be two of the most student-centred and two of the most teacher-centred in their approach 

to mathematics teaching in general (not limited to ICT use) of those who volunteered. Secondly, 

two teachers were chosen to be from schools with a high level of support for ICT and two with a 

low level of ICT support. In addition, the four case study teachers had described themselves as 

being confident with ICT. As technology enthusiasts, the case study teachers were likely to display 

mathematical knowledge for teaching using technology; the variation in case selection aimed to 

highlight such knowledge – making it more ‘visible’. 

Each case study teacher was observed teaching one lesson in a computer suite where pupils were 

given direct access to ICT. These observations provided opportunities to infer the case study 

teachers’ knowledge-in-action in a situation involving the work of teaching mathematics with 

technology. Post-observation interviews then provided an opportunity to infer the case study 



teachers’ articulated knowledge and hence, triangulated against their knowledge-in-action observed 

in the lesson, provide evidence indicating mathematical knowledge for teaching using technology.  

Robert was selected as a case study teacher because he was one of the most student-centred teachers 

in the survey sample. In addition, his school appeared to be generally supportive of ICT use 

compared to the other schools surveyed. He stood out, even amongst the case study teachers, as 

being a critical case of a teacher likely to display mathematical knowledge for teaching using 

technology for two main reasons. Firstly, Robert showed a favourable conception of technology, as 

described in the following section, in relation to mathematics teaching and in line with Bowers and 

Stephen’s (2011) description of viewing “technology as a critical tool for identifying mathematical 

relationships”. Secondly, Robert’s lesson appeared to be exceptional: he used GeoGebra software to 

affect his pupils’ learning in an innovative way that would not be easy to achieve without digital 

technology, in comparison to the other lessons observed where software was used to replicate and 

enhance paper-and-pencil activities. He had 4-6 years of teaching experience, held a management 

position within the mathematics department and had completed a Masters in Education degree. 

Robert was also the most technologically proficient of the four case study teachers: his 

undergraduate degree was a Bachelor of Engineering in Computing.  

Analysis and discussion 

Robert’s favourable conception of technology use in mathematics teaching 

For the first part of his lesson, Robert had created a series of maze activities, embedded in 

GeoGebra files, designed to take advantage of his 12-13 year old pupils’ tacit understandings of 

reflection as a means of making them explicit and thus leading towards a more formal 

understanding of reflection. Using the mouse to direct the movement of a point, coloured in blue, 

the pupils had to guide the blue point’s reflection, shown in red, successfully through a maze (see 

Figure 1).  

 

 

 

 

 

 

 

 

Figure 1: One of Robert's GeoGebra maze activities - by dragging the blue point, guide the reflected 

red point through the maze  

The reflection line was super-imposed on the maze diagram and the path of the red point was traced. 

Robert hoped that the activity would encourage pupils to predict how the reflected red point would 

move in relation to movement of the blue point as a means of increasing their chances of 

Blue point 

Red point  

and trace 

Reflection line 



completing the maze successfully. By predicting the movement of the red and blue points, he hoped 

his pupils intuitive understandings of reflection would be made more explicit. 

In the post observation interview, Robert explained what inspired him to create the maze activities. 

He provided a critique of similar GeoGebra activities as lacking an impetus to focus attention on 

and articulate tacit understandings:  

Robert:  I had a look on the GeoGebra wiki and most things tended to be ‘Here’s a mirror 

line, here’s a shape, if you drag this, what’s happening?’ just kind of ... and say 

what you see. And I could imagine them sitting there with that and basically just 

dragging the mouse a bit and seeing it happen and ... and then where does it go 

from there?  

He also described a pedagogic strategy of predict-then-test that he aimed to use in the lesson to 

make pupils’ understandings of mathematical relationships explicit:  

Robert:  just you know introduce that ‘pause’ of what do we think is going to happen and 

then let’s test that it’s going to happen  

and how he intended to formalise these understandings during the lesson by introducing 

mathematical vocabulary:  

Robert:  So one of the things I wanted to talk about was that if you’re moving that point 

parallel to the mirror line, the point moves in the same direction, whereas as soon 

as you’re moving it in a direction that’s not parallel, the point doesn’t move in the 

same way.  

Summarising at the end of the lesson, he did introduce mathematical vocabulary during class 

discussion, in a similar way to the intention described above, describing the movement of the red 

and blue points. Thus Robert’s design of the maze activities, his use of them in the lesson and his 

comments about the lesson in the post-observation interview demonstrate the strong emphasis he 

placed on the use of technology to explore the mathematical relations behind the mathematical 

phenomenon of reflection, consistent with Bowers and Stephens’ (2011) description of a favourable 

conception of technology. 

Robert’s mathematical knowledge for teaching using technology 

Using the series of maze activities successfully to meet the aims of the lesson depended on 

transforming students’ strategies for completing the mazes into more formal understandings of 

reflection that could be used as strategies for constructing the image given an object and line of 

reflection. As indicated above in excerpts from the post-observation interview, Robert recognised 

his interventions with individual pupils and directing whole class discussion as being critical to 

effecting this transformation.  

The maze activities potentially addressed two complementary strategies for using geometric 

properties to construct the image given the object and line of reflection: 1) using the local geometry 

of the object together with the properties of reflection, namely, preservation of length and of 

direction parallel to the line of reflection and reversal of direction in the axis perpendicular to the 

line of reflection, to construct the image; and 2) using the geometric property that the line of 



reflection is the perpendicular bisector of line segments connecting corresponding points on the 

object and image.  

The first strategy was addressed through the maze activities by the necessity of considering how to 

drag the blue point, i.e. in what direction and how far, to guide the reflected red point through the 

maze. In particular, the main challenge in completing the maze is derived from the reversal of 

direction caused by the reflection. Less obvious perhaps is that length is preserved: dragging the 

blue point causes the red point to move the same distance. The second strategy was addressed in 

later maze activities by the addition of the line segment connecting the blue and red points as a 

possible aid to maze completion.  

Robert was not satisfied with his interventions during the lesson. In the post-observation interview, 

he pointed to technical difficulties, his desire to let the students enjoy the maze activities and his 

rush to move onto the second activity as contributing to the result that he did not spend as much 

time as intended on discussing the geometric implications of the pupils’ maze-solving strategies. 

Timing was certainly a factor and technical difficulties meant that he was unable to direct a whole 

class discussion juxtaposing the identical mazes with and without the line segment joining the red 

and blue points. As a result, Robert was unable to address the second strategy outlined above 

involving recognition of the line of reflection as the perpendicular bisector of the line segment 

joining the red and blue points. However, he did have two opportunities during the lesson to elicit 

the geometric properties of reflection that underpin the first strategy through whole class discussion.  

The first opportunity came when Robert brought the class back together after some time engaging 

with the maze activities. He displayed one of the early maze activities with a vertical line of 

reflection and asked pupils to give instructions to a pupil-volunteer to direct their movement of the 

blue point. Robert summarised their responses, drawing attention to the relative direction of 

movement of the red and blue points i.e. that when the blue point was dragged up or down the red 

point moved in the same way but that dragging the blue point left or right caused the red point to 

move in the opposite direction. Whilst drawing their attention to the direction of movement, Robert 

did not mention that dragging the blue point causes the red point to move the same distance, thus he 

did not draw his pupils’ attention to the geometric property that length is preserved under reflection.  

Robert then displayed a maze with a horizontal line of reflection and, employing his predict-then-

test strategy, asked the pupils to predict whether the relative direction of movement would be the 

same or different. The pupils correctly predicted it would change: now, dragging the blue point left 

or right would result in the red point moving in the same way but dragging the blue point up or 

down would cause the red point to move in the opposite direction. Contrasting these diagrams made 

the point that the relative direction of movement of the red and blue points was connected to the 

orientation of the line of reflection. At this juncture, Robert could have introduced the mathematical 

terms parallel and perpendicular to specify the nature of the connection between the relative 

direction of movement and the orientation of the line of reflection, thus generalising to state the 

effect of reflection on direction. He could also have noted that in both maze diagrams, independent 

of the orientation of the line of reflection, dragging the blue point causes the red point to move the 

same distance, hence length is preserved under reflection.  



Robert did not introduce the mathematical terms parallel and perpendicular at this point nor did he 

note the geometric property that length is preserved under reflection. Instead, apparently on impulse, 

he offered his pupils a new challenge: to find out whether turning the mouse back to front would 

help them to complete the mazes, presumably by double-reversing the direction of movement. This 

challenge risked distracting from the aims of the lesson, since turning the mouse back to front 

involves a rotation of 180 degrees and not a reflection. Later in the post-observation interview, 

Robert dismissed it as “just a silly question to get a few of them thinking”. However, in asking this 

question, he missed an opportunity to capitalise on his pupils’ correct predictions to generalise their 

maze-solving strategies towards a shared, formal understanding of the geometric properties of 

reflection. In particular, Robert’s challenge highlights the situated nature of mathematical 

knowledge for teaching using technology in terms of weighing up the pedagogical value of 

interpreting how the mouse movement relates (or not) to the geometric properties of reflection. 

The second opportunity occurred at the end of the lesson. Due to the shutdown of the computer 

system, the students were unable to begin the second GeoGebra activity Robert had prepared. After 

spending some time wrestling with the technology, Robert gave up and gathered the pupils to 

summarise the lesson. In this moment of contingency, Robert was inspired to ask his pupils to 

imagine the join between two rectangular tables, where they met along their longest edge, was a 

mirror. One of the pupils sitting at the table was holding a ball: this became the de facto ‘blue 

point’. Robert discussed moving the ‘blue point’ close to the mirror, through the mirror (which he 

noted you can’t do in reality), and finally parallel to the mirror. He did not have another chance to 

discuss what happens when the ‘blue point’ moves perpendicular to the mirror nor to discuss the 

preservation of length under reflection because, at that point, the bell rang for the next lesson.  

Although his second opportunity to elicit the geometric properties of reflection was cut short, in the 

post-observation interview, when asked what he wished to do had there been more time, Robert did 

not articulate that he meant to discuss what happened when the blue point moved perpendicular to 

the line of reflection and to note that distances remained the same under reflection. These missed 

opportunities, together with the post-observation interview, suggest that Robert had not planned 

precisely what and how he would use mathematical terminology in his interventions to support his 

pupils’ interpretation of controlling the red and blue points via the mouse, thereby transforming his 

pupils’ maze-solving strategies into more formal understandings of reflection to connect with the 

aims of the lesson. In addition, when asked what he would have done differently in preparing the 

lesson, he focused solely on planning to prevent the technical difficulties arising rather than 

suggesting he could have been more precise in his use of mathematical terminology. Although 

Robert did not have much time to deliberate over the lesson (as the author has) and it is 

understandable that the technical difficulties that were so disruptive were uppermost in his mind, 

this suggests his experience during the lesson did not prompt Robert to recognise the need to plan 

his interventions more precisely to connect his series of maze activities with the mathematical aims 

of the lesson. In particular, Robert appeared to lack a frame of reference to help him identify what 

his mathematical difficulties were in using technology to make his pupils’ tacit understandings 

explicit and, as a result, why his interventions appeared unsatisfactory. However, such a frame of 

reference can be seen as part of mathematical knowledge for teaching using technology, since in this 

study such knowledge is assumed not only to be a matter of knowing how – being competent in 

teaching mathematics using technology - but also of knowing what and why (Shulman, 1986, p.13).  



Conclusion 

Despite his favourable conception of technology, using the maze activities in practice was not trivial 

and Robert did not entirely succeed in making explicit the mathematical relationships the pupils 

were exploring using the GeoGebra software. His difficulties, in supporting his pupils’ 

mathematical interpretation of controlling the red and blue points via the mouse to elicit the 

properties of reflection, appear at once mathematical and yet simultaneously situated in the context 

of teaching using technology. In particular, the strength of Robert’s maze activities lay in the real 

difficulty of controlling the direction of movement of the reflected red point via the mouse. This 

difficulty focused attention on how the direction of movement changes under reflection, which 

Robert drew to his pupils’ attention through his interventions, albeit without making use of precise 

mathematical terminology. However, dragging the blue point using the mouse results in the red 

point moving the same distance unproblematically. Thus the maze activities did not draw attention 

to preservation of length in the same way, underlining the need for teacher intervention to highlight 

this property of reflection. The strain placed on his mathematical knowledge for teaching using 

technology was most evident perhaps when Robert included a challenge relating to rotation, finding 

out what happens when the mouse is turned back to front, which distracted from his stated lesson 

aims regarding reflection. This challenge again highlights the situated nature of mathematical 

knowledge for teaching using technology in terms of weighing up the pedagogical value of 

interpreting how the mouse movement relates to the geometric properties of reflection. 

This suggests that a positive stance towards technology, in terms of global aspects of teacher 

knowledge (e.g. Bowers & Stephens, 2011; Zbiek et al., 2007), may not be sufficient to ensure a 

teacher’s use of technology enhances mathematical instruction. The missed opportunities to 

transform pupils’ maze-solving strategies into more formal statements of the geometric properties of 

reflection, using precise mathematical terminology to make connections between the maze activities 

and the aims of the lesson, suggest that mathematical knowledge for teaching using technology has 

a significant role to play in successful technology integration. Thus, whilst highlighting the role of 

teachers’ conceptions in technology integration is important, this paper has argued that the 

significance of mathematical knowledge for teaching using technology should not be overlooked 

nor underestimated.  
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At the Goethe University Frankfurt am Main a new digital tool was developed to easily create 

mathematics trails as a mathematical outdoor activity aimed at school education, called 

MathCityMap. Following the articles and studies of many others, the usage of a new tool is quite an 

issue for teachers. Following some teacher training activities offered by our team, we offer interim 

results of user behavior based on data from an online survey. Our results can be useful for the 

implementation other digital tools. 

Keywords: Mathematics activity, handheld devices, computer uses in education, teacher education. 

Introduction 

In their publication “Learning Outside the Classroom” the English and Welsh Department of 

Education and Skills strongly recommended that more lessons should take place outside of the 

classroom. They listed many benefits “nurture creativity, develop skills, improve attitude to 

learning, stimulate and improve motivation” just to name a few. (DfES, 2006) 

The advantage is quite obvious, going outdoors means to encounter real life objects. For 

mathematics education, it is possible to create authentic tasks such as: What is the height of a 

certain building? how many stones have been used to build that wall over there? how much water is 

in that pond? and so on. Tasks such as these immediately require many process competences such as 

problem solving, reasoning and proof, communication, connections and representations. In the early 

1980s Blane and Clark proposed the idea to connect those kind of tasks to form a mathematics trail. 

This requires a map on which to find the tasks, a description of the tasks (both together is called the 

trail guide) and then you can start to walk around and solve mathematical problems. (Blane & 

Clark, 1984) 

In short, a mathematics trail is a set of mathematical outdoor tasks in walking distance. To solve the 

tasks you normally will need tools like a measuring tape and so on, which should be listed in the 

trail guide. 

Although mobile devices and computers are widely used in every aspect of our daily lives 

(especially among pupils), they play a small role in education (Chen & Kinshuk, 2005). Going on a 

mathematics trail could be greatly enhanced by the use of mobile devices, since they allow learning 

to occur in an authentic context and extend to real environments. At the Goethe University of Frank-

furt am Main we started the MathCityMap Project (MCM) which combines traditional mathematics 

trails with the opportunities of new technologies. In 2013 the first ideas were made concrete 



(Ludwig, Jesberg, Weiss, 2013), but it took until 2016 to finally launch an accompanying web portal 

and mobile application. These have been released mainly for teachers to use in class, but are openly 

available to anyone who wishes to use it. 

In spring 2016 we started to promote mathematics trails in combination with MCM by providing in-

service teacher training and student courses at the university. Although the feedback on the training 

and courses was highly positive, the real usage of the MCM tools falls short of our expectations. In 

this article, we investigate reasons for this phenomenon we have encountered. 

Theoretical background 

Challenges creating a mathematics trail 

Many mathematical tasks today are contextualized and appear to be realistic. But are they authentic? 

Following the definition Vos (2011) has given, an object is authentic, if it is clearly not created for 

educational purposes. Consequently, it is not easy to find authentic tasks. The objects in the tasks of 

MCM can be described as real-life objects, however, the authenticity of the tasks depends on the 

creators. We provide assistance by offering training alongside best-practice examples. 

Usually the creation process of a mathematics trail consists of designing appropriate tasks and the 

trail guide or trail booklet (Cross, 1997). On the one hand, creating the tasks can be challenging for 

teachers as studies have shown (Jones & Pepin, 2016). On the other hand, manually putting the 

tasks together into a trail guide which should also contain a map overview and a title page, may be 

time consuming.  

Difficulties integrating new technologies into mathematics classes 

Given the availability of new technology in schools, questions have always arisen such as, do 

teachers work with the new tools? how do they use them? and so on. Drijvers made a study in 2012 

about the factors for successful use of new technology amongst teachers. One of the three important 

factors is the role of the teacher (Drijvers, 2012). In Germany, a majority of teachers report to have 

not enough time alongside their daily tasks at school (Schneider, 2015 p. 20). Consequently, the 

time a new tool needs to be set up is an important issue. The MathCityMap project tries to simplify 

the creation process of designing tasks and trails to make it less time consuming for teachers.  

In addition, Kuntze, Siller and Vogl (2013) have shown that both pre-service and in-service teachers 

self-perception towards mathematical modelling is mainly negative. Especially the in-service 

teachers lack of knowledge about new technologies and modelling. They feel unprepared for 

modelling by their university education. Pre-service teachers on the other hand feel a lack of 

diagnostic pedagogic skills and feel unable to give good hints to the pupils. There is a difficulty to 

integrate modelling into classes, especially with new technologies. 

GPS-based applications in mathematics education 

Two examples of applications in mathematics education, that already successfully use mobile GPS-

data, are Wijers, Jonker & Drijvers (2010), who developed a game which allows students to walk 

along the shape of geometric objects outside the school, and Sollervall and de la Iglesia, who have 

developed a GPS-based mobile application for embodiment of geometry (Sollervall & de la Iglesia, 

2015) 



The MathCityMap project 

The intention of the MathCityMap (MCM) project is to automate many steps in the creation of the 

mathematics trail booklet/guide and to provide a collection of tasks and trails that can be freely used 

or just viewed to get inspiration for own tasks. Furthermore, it gives users (e.g. groups of pupils) the 

possibility to go on a mathematics trail more independently by using mobile devices’ GPS functions 

to find the tasks location, by giving feedback on the users answer and by providing hints in the case 

that one got stuck at a particular task. The core of the MCM project can be divided into two parts, 

the MCM web portal and the MCM app. 

MCM web portal - www.mathcitymap.eu 

The web portal is a mathematics trail management system. After a short registration, the user can 

view public trails and tasks or create his own tasks and trails by typing in the necessary data (e.g. 

position, the task itself, the answer, an image of the object etc.) into a form (see Figure 1). For every 

mathematics trail, the mathematics trail booklet can be downloaded as PDF or accessed via the 

MCM App (see Figure 2). It contains all task information, a map overview and a title page. 

   

Figure 1: The MCM web portal form for tasks 

MCM app for mobile devices 

The MCM app allows the user to access mathematics trails created within the web portal. The trail 

data, such as images and map tiles, can be downloaded to the mobile device. After this procedure, it 

is possible to use a trail without an internet connection (see Figure 2). This design decision 

minimizes technical issues when using the app without mobile internet or in an area with low 

connectivity. Furthermore, the app offers an open street map overview for orientation purposes, 

feedback on the entered answers and a stepped hint system. The hint system enables pupils to solve 

the tasks independently and additionally has a positive impact on learning performance, learning 

experience and communication (Franke-Braun, Schmidt-Weigand, Stäudel, & Wodzinski, 2008).  



           

Figure 2: Screenshots of the MCM App 

To describe the pedagogic functionality of MCM, we use the model by Drijvers, Boon and Van 

Reeuwijk (2010). It divides digital technologies into three groups of didactical functionalities: (a) do 

mathematics, (b) practice skills, (c) develop concepts. MCM offers mathematical tasks at real life 

objects where the user mainly can practice his skills.  

Research question 

Following the teacher training events, we had expected more teachers to become active by creating 

own mathematics trails with MCM. This leads us to the research question: 

Why do (and don’t) in-service teachers and student teachers use MathCityMap? By this question we 

follow Drijvers study of the usage of digital tools by teachers (Drijvers, 2012). 

Methodology 

To promote MathCityMap as a digital tool (and therefore the usage of mathematics trails in school) 

we have implemented three teacher trainings with 143 participants and two university student 

courses with 30 students during spring/summer 2016. To evaluate the trainings and gather further 

information for future improvements of the MCM tool, an online questionnaire was created. 

Additionally, we have analyzed the usage statistics. 

Teacher training 

The training is a half-day intensive training for in-service teachers. Since they have already studied 

mathematics and have a lot of teaching experience, we keep the theoretical parts on outdoor 

mathematics and task design rather short and prefer to go out on a prepared mathematics trail so 

they can experience this kind of activity. Later on, we also let them find tasks and focus more on the 

handling of the web portal and the app. After this course every teacher will have experienced doing 

mathematics outdoor with MCM, but also how to create new tasks in the web portal. 

Student courses 

The student courses took place at Goethe-University in Frankfurt (11 students) and the University of 

Potsdam (19 students) in the summer semester of 2016. The following topics formed part of the 

seminar: Theoretical introduction to mathematics trails, introduction to the MCM App and going on 



a mathematics trail with the app, aspects of outdoor task design, creating new tasks and setting them 

up in the MCM web portal, arranging a mathematics trail, testing the trail with a school class (grade 

nine), reworking the trail, testing the trail with another class (grade eight). Compared to the teacher 

trainings the students had to really engage themselves in mathematics trails with MCM. 

Online survey 

About 200 people (143 participants of the teacher trainings plus registered users of the web portal), 

who have agreed to receive e-mails about MCM, were invited to take part in the survey. Twenty 

(eight students and twelve teachers) of them completed the questionnaire.  

The online survey consists of 27 items, from which twenty are closed questions or statements and 

seven are open text fields. The questionnaire is divided into five sections: 

1. General Information (Five closed questions)  

Sample item: How did you hear about MathCityMap? 

2. Usage of the MCM web portal (Seven mainly closed questions)  

Sample item: Do you already have created a task in the web portal? 

3. Statements about the MCM web portal (Seven 5-point Likert scale items: I do not agree – I 

agree) 

Sample item: The interaction between web portal and app is easy to understand. 

4. Feedback on MCM (Four mainly open questions)  

Sample item: Which are the reasons for you to use MathCityMap? 

5. General use of digital tools in mathematics classes (Four closed and open questions)  

Sample item: What are your requirements for using a digital tool in mathematics classes? 

Results 

Questionnaire 

Four of twelve teachers stated that they had created their own tasks. Two of them had already used 

the mathematics trail with a class. All eight students had created tasks and went on a mathematics 

trail, because it was part of the seminar. 

Due to the low number of participants we report the reasons why MathCityMap was used or is 

going to be used and the reasons why it was not used yet in a qualitative way by forming categories. 

The answers were collected by an open text field, so multiple reasons could be given. The following 

categories are sorted by the number of mentions. 



  

Figure 3: results of the survey about the reasons for using / not using MCM (13 / 8 persons in total, 

open text answers) 

If we take a look at the things teachers do require from a digital tool to be used by them, MCM is 

doing quite fine. MCM is easy to get and free to use. It is not time consuming to learn it and some 

of the teachers already have positive experiences (see Figure 4). 

 

Figure 4: results of the 

survey about the 

requirements to use a digital 

tool in class (17 persons in 

total, preset answers, several 

selections possible) 

 

 

 

 

 

Usage statistics 

Independent of the online survey, we also analyzed the statistics relating to the web portal and the 

app to describe the current state. In September 2016 74 users were registered in the web portal. 

Thirty of these were in-service teachers who participated in the trainings, about 20 were students 

who were part of the student courses. The other users were not part of the trainings or courses. In 

total 33 unique users (45%) created 140 tasks. About 25 mathematics trails were created by 22 

unique users (30%). The app has been installed 210 times which means that there must be some 

people who use only the app, without being registered in the portal (e.g. pupils).  



Discussion 

MathCityMap as a digital tool seems to be mainly used as the mathematics trail idea is considered 

positively (high motivation for students and connecting mathematics to the reality). Hereafter the 

integration of digital tools in mathematics classes is another reason to use MCM (see Figure 3).  

The lack of time, difficulties in creating appropriate tasks and the integration into the current lessons 

are the most mentioned reasons for why MCM had not yet been used. However, the findings also 

suggest that the task and trail creation processes in the web tool might be too complex at its current 

state (see Figure 3). All of these reasons could be interdependent. If one has difficulties in finding 

tasks or difficulties in integrating the mathematics trail into the lessons, it will take more time to 

solve these problems. Since many teachers report that they are short of time, this might lead to not 

using MCM (Kuntze, Siller, Vogl 2013, Schneider 2015). 

Conclusions 

In our case the reasons for not using the tool (web portal and app) were mainly identified not in the 

tool itself, but in the mathematics trail concept (creating tasks, implementing the trail in classes). 

The teacher training events and student courses need adjustments so that they pay more attention to 

the following identified difficulties: 

1. Higher focus on task design – guidance, best practice examples, blueprint tasks which can be 

easily adopted to the participants’ school surroundings. 

2. Creating a teaching concept – concrete example of how to integrate mathematics trails in 

combination with MCM into mathematic lessons for a particular topic. 

In addition, ‘doing mathematics outdoors’ could be integrated into the school curriculum to increase 

its significance. On the technical side, further research is needed on how to improve the usability of 

the MCM web portal to make the creation process more intuitive. 
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Exploring a framework for technology integration in the mathematics 

classroom  
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The aim of this paper is to investigate the potential of Ruthven’s (2009) framework the Structuring 

Features of Classroom Practice (SFCP) as a tool to analyze empirical data to conceptualize and 

analyze teachers’ reasoning about technology integration in the mathematics classroom. The 

framework is tested on interview data from a Swedish design research project seeking to develop 

design principles for Classroom Response System (CRS) tasks. The results show that the framework 

captures a large part of teachers’ ways of reasoning, while the parts it does not capture are related 

to students’ attitudes and behaviors. If the SFCP framework aims at capturing key features of 

classroom practice, and is to be built on a system of constructs closer to the ‘lived world’ of teacher 

experience and classroom practice, it would benefit from an extension.  

Keywords: Technology integration, framework, classroom response system.  

Introduction 

Recent years have seen a remarkable increase in technology investments in education, and 

nowadays many teachers and students have constant access to computers or tablets in the classroom 

(OECD, 2015). The reasons for these investments are likely related to expectations that digital 

technology can enhance students’ learning, and there are several studies that suggest this (e.g., 

Cheung & Slavin, 2013; Li & Ma, 2010; Lynch, 2006). However, the mere presence of digital 

technology in the mathematics classroom does not guarantee improved student learning. For 

instance, a report on PISA 2012 (OECD, 2015) showed that increased time spent with the computer 

at school can decrease students’ learning in mathematics. It may be possible to explain these 

ambiguous findings by studying how the technology was used in the classroom (Drijvers, 2013; 

Hattie & Yates, 2014). Nevertheless, integrating technology in the classroom seems to present a 

challenge, and one of the most important factors influencing successful integration is the teacher’s 

expertise (e.g., Drijvers, 2013; Ruthven, 2013). Hence it is important to learn more about how to 

successfully integrate the technology within mathematics education. There is a need for practical 

analytical research tools and frameworks that offer the potential to analyze teachers’ technology 

integration in mathematics. A commonly used framework, derived from Shulman’s (1987) 

pedagogical content knowledge, is Koehler and Mishra’s (2009) Technology Pedagogical and 

Content Knowledge (TPACK), which focuses on the aspects of teacher knowledge that are needed 

for the effective use of technology in the classroom. Other researchers have used the theory of 

“instrumental orchestration” as an interpretive framework for analyzing technology-mediated 

teaching and learning (cf. Drijvers, Doorman, Boon, Reed, & Gravemeijer, 2010; Trouche, 2005). 

This theory focuses on a process of “instrumental genesis” whereby a tool evolves into a functional 

tool and, simultaneously the teacher evolves into a proficient user. Another recently developed 

framework for analyzing and identifying critical aspects of technology integration in the 

mathematics classroom is Ruthven’s (2009) Structuring Features of Classroom Practice (SFCP). 

TPACK and “instrumental orchestration” are commonly used frameworks for analyzing technology 



integration in the classroom, but as Ruthven (2009, 2013) stresses, the SFCP framework includes 

aspects such as the complexity and importance of a teacher’s “craft knowledge”, which other 

frameworks largely overlook. This is the main reason I have chosen to explore the SFCP 

framework. A second reason is that the SFCP framework is relatively new and needs to be tested 

using empirical data from other contexts (Ruthven, 2009). Thus, my contribution to research is that 

I have investigated the potential of this framework using interview data from a Swedish design 

research project seeking to develop design principles for classroom response system1 (CRS) tasks in 

a multiple-choice format. Hence, the aim of this paper is to investigate the potential of the SFCP 

framework as a tool to analyze empirical data to conceptualize and understand teachers’ reasoning 

about technology integration in the mathematics classroom.  

Participants, context and data  

The framework was tested on interview data from two cases of CRS integration in mathematics 

classrooms within grades 6-9 in lower secondary school in one of Sweden’s largest municipalities. 

One teacher participated in Case 1, and six teachers in Case 2. The reason for working with only one 

teacher in Case 1 was that this case was a pilot study, which prioritized the depth of the intervention 

and analysis in the beginning of this design research project. Further, the choice of teachers at these 

particular schools was partly due to the fact that during these academic years, I was a mentor to 

mathematics teachers at these schools. In addition, the schools were one-to-one schools, where all 

students had access to their own computer. These teachers were not explicitly chosen for the 

research project, they just represent ordinary Swedish teachers in ordinary schools. The reason for 

working with six teachers in Case 2 was that all of the mathematics teachers at that particular school 

wanted to improve their teaching and asked me to guide them. Further, the teachers had no (or little) 

experience in utilizing a CRS, and had received training in how to use the digital resource in 

practice. In both cases, CRS supported with specific tasks was used to engineer mathematics 

classroom discussions that could both elicit evidence of learning and also give the teacher an 

opportunity to advance the students’ mathematical thinking. These tasks were often used in the 

beginning of the lessons or after a short lecture on the topic. Additionally, in Case 1, tasks were also 

used to evaluate the lessons and obtain information about the students’ knowledge at the end of 

lessons. Based on the teachers’ own wishes in Case 2, the teachers also used flipped classroom 

method to gain more time for classroom discussions, and Peer Instruction method as support for 

orchestrating the discussions. Based on the teachers’ lesson goals and a pilot of the design 

principles, the researcher constructed and supplied suggestions for tasks to be used with the CRS. In 

both cases the topic of fractions was chosen, determined by the timing of the study along with the 

teachers’ wishes. The teachers used and evaluated a total of 31 tasks. Figure 1, which follows, 

shows an example of one evaluated task type with different multiple defendable answers (Beatty, 

Gerace, Leonard, & Dufresne, 2006).  

                                                 

1 Using a computer or smartphone, students can answer their teacher’s question and the teacher can instantly see the 

results compiled in a chart in the software program and display this for all the students on a shared screen.   



 

All CRS tasks were built on the idea that tasks that produce a spread in students’ answers, are more 

likely to prompt a mathematical classroom discussion (e.g., Crouch, & Mazur, 2001). This 

particular task was developed to be used as a repetition of some important properties of fractions 

that students had already encountered. Semi-structured interviews were conducted to support one 

phase of the evaluation of the intervention. In order to explore the SFCP framework, I chose to test 

the framework using the data from one interview with the teacher in Case 1 and one group interview 

from Case 2. The interviews were audio-recorded and then transcribed and analyzed in NVivo 10.  

The SFCP framework 

The idea of the SFCP framework is to support the identification and analysis of certain crucial 

features of technology integration (Ruthven, 2009). The framework was developed by synthesizing 

and extending concepts and constructs from earlier research on classroom organization, interaction 

and teacher craft knowledge, which resulted in five crucial features (Ruthven, 2009). These features 

of classroom practice shape the ways in which teachers integrate new technologies (Ruthven, 2013). 

Ruthven’s own summary of the framework is presented in Table 1 (Ruthven, 2013, p. 12).  

Structuring 

feature 

Defining characterization Examples of associated craft knowledge related 

to incorporation of digital technologies 

Working 

environment 

Physical surroundings where 

lessons take place, general 

technical infrastructure 

available, layout of facilities, 

and associated organization 

of people, tools and materials 

Organising, displaying and annotating materials 

Capturing or converting student productions into 

suitable digital form  

Organising and managing student access to, and use 

of, equipment and other tools and materials 

Managing new types of transition between lesson 

stages (including movement of students) 

Resource 

system 

Collection of didactical tools 

and materials in use, and 

coordination of use towards 

subject activity and curricular 

goals 

Establishing appropriate techniques and norms for 

use of new tools to support subject activity 

Managing the double instrumentation in which old 

technologies remain in use alongside new 

Coordinating the use and interpretation of tools 

Activity 

structure 

Templates for classroom 

action and interaction which 

frame the contributions of 

teacher and students to 

particular types of lesson 

segment 

Employing activity templates organised around 

predict-test-explain sequences to capitalise on the 

availability of rapid feedback 

Establishing new structures of interaction involving 

students, teacher and machine, and the appropriate 

(re)specifications of role 

Curriculum 

script 

Loosely ordered model of 

goals, resources, actions and 

Choosing or devising curricular tasks that exploit 

new tools, and developing ways of staging such 

Figure 1: A constructed CRS task with multiple defendable answers 



expectancies for teaching a 

curricular topic, including 

likely difficulties and 

alternative paths 

tasks and managing patterns of student response 

Recognising and responding to ways in which 

technologies may help/hinder specific processes and 

objectives involved in learning a topic 

Time 

economy 

Frame within which the time 

available for class activity is 

managed so as to convert it 

into “didactic time” 

measured in terms of the 

advance of knowledge 

Managing modes of use of tools so as to reduce the 

“time cost” of investment in students’ learning to 

use them or to increase the “rate of return” 

Fine-tuning working environment, resource system, 

activity structure and curriculum script to optimise 

the didactic return on time investment 

Table 1: The SFCP framework components 

Method of analysis 

The interview data was used as a means to explore the potential of the SFCP framework. In this 

exploration, the framework was used as an analytical tool to capture teachers’ reasoning about 

utilizing a CRS. To support the exploration of the framework’s potential, I used two analytical 

questions: 1) How much of teachers’ reasoning ends up in the various categories in the SFCP 

framework? and 2) Are there parts of teachers’ reasoning that do not fit the categories of the SFCP 

framework? If so, does a new theme emerge? To answer these questions, I conducted a content 

analysis with systematic quantification (Kvale & Brinkmann, 2009), with text segments in the 

transcriptions of the interviews coded in NVivo 10 based on the categories in the SFCP framework. 

I then compiled the text segments from every category and wrote an accompanying narrative.  

Summary of the content analysis  

Due to space limitations, the outcome of this content analysis is not presented in detail here; instead, 

some of its main findings are discussed. 

Working environment 

The teacher in Case 1 pointed out that when the projector screen is pulled down it blocks a large 

part of the whiteboard surface. This can constrain the usage of the CRS. When the teacher wants to 

write students’ solutions to or explanations of CRS tasks on the whiteboard she has to pull up the 

projector screen and blacken the computer projection, and then pull the screen down again to 

continue the CRS tasks. This may constrain the possibility to conduct a classroom discussion. 

Further, in both cases the teachers declared that students sometimes do not bring their computer, 

and sometimes do not have access to the internet. Students without a functional computer or internet 

access constrain the work in the classroom. The teachers solved this by letting students work with a 

peer who had a computer.  

Resource system 

The teacher in Case 1 emphasized the importance of combining CRS tasks aiming at engineering a 

discussion with a demonstration of methods. This suggests that the teacher needed to coordinate 

these two curricular elements to achieve the lesson’s goal. The teacher also mentioned that students 

seemed to be reluctant to work out solutions to the CRS tasks on paper before submitting an answer 

in the software program. According to the teacher, this constrained her opportunity to identify and 

see students’ reasoning behind their answers before the discussion. A teacher in Case 2 did not 



believe students needed access to paper and pencil before responding to a task, but thought this 

could be useful afterwards if they were to proof their own or others’ answers. Further, teachers in 

Case 2 told of struggling with the software and launching tasks in the wrong mode. This gave all the 

students access to all the tasks at once, which resulted in the teachers decision to shut down the CRS 

work for that particular lesson. They then discussed the possibility of trying out the different modes 

before the lesson.  

Activity format 

The teacher in Case 1 said that the CRS tasks were a great way to get all of the students focused. 

The students interacted with their computer, and were forced to contribute with an answer to the 

tasks. They then interacted with their peers through peer and whole-class discussions. The activity 

formats used in both cases were: first alone, then peer discussion, and finally a whole-class 

discussion; and also first alone and then a whole-class discussion. One teacher mentioned that it was 

hard to decide whether to orchestrate a whole-class discussion or a group discussion in tasks with 

multiple correct answers when applying peer instruction, which holds that students benefit from a 

group discussion if 30-70% of the students responding correctly. Further, the teachers also discussed 

the importance of allowing time before the students are to respond to the CRS task. Several of the 

teachers let the students take as much time as they needed, which led to some students having to 

wait a couple of minutes. 

Curriculum script 

Teachers mentioned that the CRS tasks made them aware of some student misconceptions, and gave 

them an opportunity to deal with them. Further, the teacher in Case 1 pointed out the improvement 

of feedback, both the possibility to use instant feedback through the computer in CRS tasks and the 

feedback in the peer and whole-class discussions related to the discussion tasks. The technology and 

tasks 1) gave the teacher information about students’ knowledge, and 2) added a new form of 

feedback resource which, together, developed the teacher’s curricular script. Moreover, in Case 2, 

several teachers identified and talked about different types of CRS tasks and their characteristics, 

and how they had succeeded in engineering a discussion. One teacher realized that you could not 

always have tasks with several correct answers, because the students quickly realize this. The 

teachers also stressed that it is hard to conduct whole-class discussions on CRS tasks, and one 

teacher mentioned the importance of having a clear teaching strategy for every CRS task to improve 

the whole-class discussion.  

Time economy 

The teacher in Case 1 believed that having CRS tasks at the end of the lesson makes students more 

focused on mathematics for a greater part of the lesson. These tasks improved the “rate of return” in 

two ways: firstly, students worked with mathematics for a larger part of the lesson; secondly, the 

software program automatically gave students instant feedback on their answers. One teacher said 

she would continue using CRS, although it takes time to prepare. Thereafter, she mentioned that 

“it’s worth the time because it activates every student…when I activated one student who usually 

doesn’t participate she said ‘ahaaa’ in front of the whole class. It was amazing”. Several teachers 

pointed out that the discussions take time, and that it is a challenge to decide how long to work on 

each task and how many tasks to use in one lesson.  



Results 

In this section I present the results of the analysis of the framework’s potential according to the 

analytical questions.  

How much of teachers’ reasoning can be categorized within the SFCP framework? 

Table 2 shows the coverage of the different categories in the transcription of the interviews 

regarding teachers’ reasoning in Cases 1 and 2. Some text fragments were coded in several 

categories. I have also rounded the figures. All features captured some parts of the teachers’ 

reasoning, and a total of 90% of the interview in Case 1 and 65% of the group interview in Case 2 

were captured by the framework.  

 Table 2: The SFCP frameworks coverage of teachers’ reasoning in the interviews 

Are there parts of teachers’ reasoning that do not fit the categories of the SFCP framework? 

If so, does a new theme emerge?  

Approximately 10% of teachers’ reasoning in Case 1 and 35% in Case 2 did not fit the SFCP 

framework categories, and when the parts the framework did not capture were analyzed a clear 

theme emerged. Almost all reasoning that the framework did not capture was related to students’ 

attitudes and behaviors. I will continue with a summary on this theme. 

All teachers reasoned about their students’ attitudes and behaviors concerning the lessons. Some 

classes and students greatly enjoyed working with CRS tasks in mathematics. As one teacher said, 

“they think it’s fun to discuss things”. Another teacher reported that “the students were crazy about 

the CRS tasks”, and another talked about how the students want very much to respond correctly to 

the tasks and demanded to do it again in the next lesson if they failed the first time. In some classes 

the students were eager to discuss the CRS tasks; the teacher commented that “the students want to 

hear their peers’ opinion and they want to tell the class about their own perception”. Further, 

teachers also mentioned that some students did not want to participate, especially in the discussions, 

during which they simply sat quietly. Some teachers had difficulty in handling students who wanted 

to respond quickly and could not wait for others to think and respond to the tasks. All the teachers in 

Case 2 talked about the difficulty of getting students to do the homework and to be prepared for the 

work with the CRS tasks in the classroom. One teacher mentioned: “In one of my classes, only one 

student had done the homework and watched the flipped movie at home.” 

Conclusions and discussion  

The exploration of the SFCP framework showed that it captured a large part of teachers’ reasoning 

about technology integration in the mathematics classroom. Most of the teachers’ reasoning was 

related to features of activity format, curriculum script and resource system. My conclusion is that 

the SFCP framework could be useful as an analytical tool for conceptualizing and analyzing 

 Working 

environment 

Resource 

system 

Activity 

format 

Curriculum 

script 

Time economy 

Case 1 5% 20% 25% 20% 20% 

Case 2 5% 15% 15% 25% 5% 



teachers’ reasoning about technology integration in the mathematics classroom in the context of 

Sweden and CRS technology. However, the framework did not capture all the teachers’ reasoning 

about important aspects of technology integration. Almost all of the reasoning that did not fit any 

category was related to students’ attitudes, and students’ behavior. According to Ruthven (2009), 

the SFCP framework aims at identifying and making key structuring features of classroom practice 

analyzable for the integration of technology into a classroom. Further, Ruthven (2009) states that the 

benefit of the SFCP “is in providing a system of constructs closer to the ‘lived world’ of teacher 

experience and classroom practice” (p. 145). This study’s results indicate that students’ attitudes and 

behaviors are an important factor that teachers reason about when discussing the implementation of 

technology in the mathematics classroom in Sweden. Like all five features of the SFCP, I suggest 

that students’ attitudes and behavior are also important factors for successful technology integration 

in classroom practice. Research on CRS points out that students’ attitudes and behaviors are a 

challenge that teachers face (e.g., Kay & LeSage, 2009; King & Robinson, 2009; Lee, Feldman, & 

Beatty, 2012). If the SFCP framework aims at capturing key features of classroom practice and is to 

be built on a system of constructs closer to the ‘lived world’ of teacher experience and classroom 

practice, it would also benefit from taking into consideration students’ attitudes and behaviors. This 

could be done by adding a new, sixth construct to the framework relating to teacher craft knowledge 

for managing different types of student behaviors or attitudes.  

The main contribution of this paper is that it investigates the potential of the SFCP framework with 

empirical data from a new context and new types of data. It was partially tested on data from group 

interviews in the context of CRS integration in mathematics at Swedish lower secondary schools. 

Further, this study and the conceptualization of teachers’ reasoning about CRS integration can 

contribute to the knowledge regarding challenges involved with utilizing a CRS in the mathematics 

classroom. This conceptualization may also be useful for teachers intending to integrate CRS into 

their practice. For instance, they could gain knowledge about different activity formats and common 

challenges, as well as how to deal with these challenges. Finally, the results from this study need to 

be further investigated with empirical data from similar or other contexts.  
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Preparing preservice teachers to use instructional technology: How 

much development can happen in one semester? 
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Abstract: Knowledge of instructional software programs that can meet mathematical curricula 

objectives, motivate and engage students in problem-based learning/inquiry is essential for teachers. 

This is the first of a series of studies tracking the implementation of instructional technology in a 

mathematics methods course. Data were collected from surveys, power point presentations of an 

instructional technology lesson, and the reflections written post lesson presentations. The data were 

used to classify where preservice teachers were on the five steps Apple Classroom of Tomorrow 

(1994) inclusion of instructional technology in the classroom. Of the 24 preservice teachers, 21 were 

solidly on Step 2 – limited use of technology. There were 3 who stood at Step 3 creating their lesson 

plans to use technology on a daily basis. 

Keywords: Instructional technology, preservice teachers, mathematics education. 

Introduction 

Teaching mathematics in 2016 requires far more than a deep understanding of mathematics. Multiple 

pedagogical methods and strategies are needed to address student learning needs. Today, teachers 

need to use instructional technology that applies scientific processes and stored knowledge to solve 

practical tasks (Earle, 2002). Knowledge of computer software that can meet curricula objectives, 

motivate students, and engage students in problem-based learning and inquiry is essential. The ground 

work for applying technology with intent and purpose should be part of the responsibility of teacher 

preparation programs. Defining instructional technology in education has been evolving since the 

American Educational Communications and Technology group produced a broad definition in 1963 

that matched the elements of pedagogical courses of the time (Ely, 1963, p. 18-19). While the 

technology sections of learned societies grappled refining the definition of instructional technology, 

the Association of Mathematics Teacher Educators (AMTE) created standards for the preparation of 

preservice mathematics teachers for grades Pre-Kindergarten to grade 12 (PK-12). These standards 

devoted a section of the Adolescence to Young Adult (AYA) grades (C.1.6. Using Mathematical tools 

and technology) identifying the types of mathematical software preservice teachers should master. 

AMTE explained C.1.6. with the following statement: 

Well-prepared beginning teachers of secondary mathematics must be proficient with tools and 

technology designed to support mathematical reasoning and sense making, both in doing mathematics 

themselves and in supporting student learning of mathematics. In particular, they should develop 

expertise with spreadsheets, computer algebra systems, dynamic geometry software, statistical 

simulation and analysis software, and other mathematical action technologies, as well as other tools 

such as physical manipulatives (AMTE, 2017, p.133). The AMTE elaboration aligns with the goals 

of this research to help mathematics preservice teachers become competent and frequent users. 



Integration of instructional technology into curricula issues 

Ertmer, Conklin, Lewandowski, Osika, Selo, and Wignal (2003) found that preservice teachers 

needed specific ideas and examples of how to put instructional technology into their mathematics 

instruction. Wang’s (2004) research noted that goal setting increased self-efficacy. Dexter and Riedel 

(2003) identified clinical educators use of instructional technology as a key to helping preservice 

teachers increase their classroom technology self-efficacy. For this research, instructional technology 

was practiced in the methods course providing teaching ideas and strategies to the preservice teachers. 

A teaching assignment goal required use of a software program following Wang’s (2004) finding.  

Introduction of technology to pre-kindergarten to Grade 12 

In the 1970’s, Apple® created the Apple®II for classroom work. By the 1980s, computers became 

part of some PK-12 classrooms. School districts developed technology plans to implement the use of 

computers at each grade level. However, the districts were missing measurable objectives to track 

and identify the educational impact of computer use by the teachers and student. By the 1990s, schools 

had a computer on every teacher’s desk and computer laboratories. The 2000s students worked with 

personal devices such as Chromebooks and iPads. Graphing calculators span the decades since 

Demana and Waits (1988) noted the importance of creating multiple graphs to grasp a mathematical 

concept.  

Preservice teachers using technology for knowledge production  

Preservice teachers are well versed in the use of electronic devices as are today’s PK-12 students. 

Applying that understanding beyond word processing, communications, and gaming to using 

technology for knowledge production should be part of every teacher preparation program. Doering, 

Hughes, and Huffman (2003) did a five-year study that provided the hardware and software for their 

preservice teachers and content faculty at the University of Minnesota. Initially, they found that 

preservice teachers had solid knowledge of technology use, but integrating technology into daily 

instruction and problem-based learning was not a skill they had. By the end of the study, integrating 

instructional technology into content and pedagogical classes, preservice teachers became productive 

users of instructional technology in their field experiences. Franklin (2004) reported on the attitudes 

of University of Virginia elementary level teacher graduates. The participants noted a clear 

understanding of classroom technology to foster student curiosity and construct ideas. These teachers 

had a deep comprehension of electronic pedagogical content knowledge as the reason for their smooth 

transition to classroom implementation. The use of Web 2.0 tools in the classroom by preservice 

teachers was examined by Sadaf, Newby, and Ertmer (2016). Use Web 2.0 tools to increase learning, 

preservice teachers needed: support of their clinical educator; easy access to those tools; and to hold 

a high level of self-efficacy regarding their ability to help student learning. Only when these elements 

were met did the preservice teachers use instructional technology in their classrooms.  

Assessment scales for instructional technology implementation  

A long term study by, Dwyer, Ringstaff, Haymore, and Sandholtz (1994) working with Apple 

Classroom of Tomorrow (ACOT) examined how teachers adapted their classrooms and pedagogy to 

using technology when provided with multiple computers, an abundance of software, technical 

support and training. The researchers identified a five step progression of how teachers developed 

technology-based pedagogy naming it the ACOT stages of classroom change. Step 1 - Entry. The 



teachers are acquainted with the basic tools of the computer and classroom programs. Step 2 – 

Adoption, the teachers adopted the computer programs for limited use (defined as practice not 

knowledge building). Step 3 – Adaptation, the teacher thoroughly integrated the use of computers 

into the curriculum. This step resulted in students learning more, being engaged with the content, and 

producing better knowledge products. Step 4 – Approbation, teachers who cannot teach without 

computers. Step 5 – Invention, teachers created their own programming that enhanced student 

learning. The ACOT (1994) study noted that teachers’ development was not done in leaps, but moved 

forward in increments over time. As the teachers embraced technology, their pedagogical strategies 

shifted from being teacher-centered to student-centered.  

Theoretical framework 

The researcher selected the ACOT (Dwyer et al., 1994) steps to serve as the theoretical framework 

for this study to judge how preservice teachers developed using technology. The ACOT instrument 

focused on the changes in teacher practice whereas, other instruments focused on the partnership of 

the teacher and the students. The case study descriptive quality lends itself to using the ACOT 

descriptions to define advancement on these steps. This research is to learn how far preservice 

teachers can grow using instructional technology in one semester. 

Method 

This article is the first report of a long term descriptive case study following American preservice 

mathematics teachers in a mathematics methods course that required a lesson using instructional 

technology to be taught during a 90-hour field experience. A case study format fits this research as it 

describes the conditions necessary to produce knowledgeable preservice teacher’s regarding 

instructional technology. The research question is: How far can preservice teachers develop using 

instructional technology on the ACOT Steps in one semester?  

Participants 

The 24 preservice teachers in this study were enrolled in a course entitled Secondary Mathematics 

Methods, which was required for state licensure to teach. Eleven majored in Adolescence to Young 

Adult Mathematics Education (AYA). Thirteen were Middle Childhood Education (MC) 

mathematics. There was one male in each licensure group with 10 AYA females and 12 MC females.  

Setting 

The university is a private, non-profit school in the south-western, urban section of a Midwestern 

state in the USA. There are approximately 8,529 undergraduates and 3,117 graduate students. The 

Teacher Education department conducts classes at the undergraduate and graduate levels. 

Procedure 

In the methods course, a survey was given asking how frequently students used: 1) word processing; 

2) spreadsheets; 3) power point presentations; 4) photomath; 5) Wolfram Alpha; 6) DESMOS; 7) 

GoogleSketchUp; 8) Polling apps; 9) GeoGebra; added in 2016 10) Kahoot. Likert scales from 0-

never used to 5-used all the time were the choices. The course introduced freeware mathematical 

programs, demonstrated them and provided practice teaching. During the clinical experience, the 

preservice teachers were required to create and teach an instructional technology lesson. 



Study history: Equipment survey of partnership schools  

One of the elements needed for preservice teachers to use instructional technology was easy access 

to Web 2.0 tools in the classrooms (Sadaf et al., 2016). This study interviewed the university’s 

partnership school districts to learn what technology was in their classrooms. The schools reported 

that they had invested in computers for all teachers and individual laptops, iPads, or Chromebooks 

for the students. The more frugal districts had multiple computer carts with 30 individual devices for 

classroom use. Regarding educational software programs, freeware was the programming of choice. 

The availability of Web 2.0 tools and software programs allowed the researcher to create an 

assignment goal requiring the use of instructional technology that Wang (2004) recommended.  

The search for mathematical freeware and program criteria  

The criteria used to evaluate the appropriateness of the instructional technology were the eight 

Common Core State Standards Mathematical Practices (CCSSM) (National Governors’ Association 

& Council of Chief State School Officers, 2012) and the eight National Council of Teachers of 

Mathematics (NCTM) Teaching Practices (Leinwand, 2014). Any mathematical program had to 

require students to perform six of the eight Mathematical Practices and the teacher to use all eight 

NCTM Teaching Practices. At an NCTM affiliate meeting, in a Skype session by DESMOS creator 

Eli Luberoff taught the participants to use the program in minutes. At the NCTM Interactive Institute 

2015, the program focused on freeware of GeoGebra, DESMOS, and polling programs to engage 

students in discourse to evaluate the solutions of others. These polling programs required smart 

phones rather than clickers. Wolfram Alpha could be used for higher levels of mathematics. This 

program had many more options for teachers to integrate other content areas. This search for 

instructional technology was not exhaustive. Once these major programs were found, the researcher 

stopped the search. The study included: DESMOS, GeoGebra, Wolfram Alpha, PollEverywhere.  

Data collection 

The data collection began with a survey at the start of the mathematics methods class asking 

preservice teachers how frequently they used software programs. The instructional technology lesson 

plans with preservice teacher reflections were collected after the six weeks of field experience. The 

reflections served as a record of the preservice teachers’ comfort level, frequency, and self-efficacy 

using technology. The preservice teachers presented their instructional technology lesson in a power 

point presentation that included video clips of their teaching with instructional technology, their 

classes discussing and completing the mathematical work, and voting on the most elegant solutions. 

The video tape clips verified what was stated in the lesson plans and reflections. Data were recorded 

regarding the frequencies that the preservice teacher used: instructional technology; had students use 

that software; and the issues that arose while teaching a technology-based lesson.  

Data analysis  

Analysis of survey 

The Survey of Classroom Technology for Knowledge Production was conducted to learn how 

familiar the preservice teachers were with use of instructional technology. The Likert scale scores 

were totaled and measures of central tendency were calculated.  



Assessment of class assignment  

The researcher created an assignment with a goal matching the findings of Wang (2004) to learn what 

level the preservice teachers reached on the ACOT scale of proficiency – could they use and integrate 

technology smoothly into their teaching? Each preservice teacher created and video-taped an 

instructional technology lesson plan using a real world problem for their classes to solve by using a 

mathematical software program. Once the students had solutions, they were grouped and each student 

explained their solution to the group. The group debated the solutions and modified their work to 

create their best solution. Each group presented their work to the class. PollEverywhere was used by 

students to vote on the elegant solution. The projects were graded using the rubric found in Table 1.  

 16 points of the total possible of 21 points is the minimum passing grade 

 

Elements 1 2 3 Score 

1. Completed 

UD lesson plan 

format 

Hard copy of the 

lesson passed in 

with the incomplete 

reflection. The 

lesson plan lacks 

the sections and 

requirements of the 

AYA/MC UD 

Lesson Plan format.  

Hard copy of the 

lesson passed in 

with the completed 

reflection. The 

lesson plan follows 

most of the section 

requirements of the 

AYA/MC UD 

Lesson Plan form 

Hard copy of lesson 

passed in with written 

reflection. The lesson plan 

format follows all the 

requirements of the 

AYA/MC UD Lesson 

Plan format. The 

reflection provides clear 

and thoughtful responses. 

 

2. Use of 

DESMOS, 

GeoGebra, or 

GoogleSketch-

Up 

Your presentation 

shows your attempt 

to use DESMOS, 

GeoGebra, Google-

Sketch-Up to 

present the problem  

Your presentation 

shows your use of 

DESMOS, 

GeoGebra, 

Google-Sketch-Up 

posing the problem 

Your presentation clearly 

shows your mastery of 

DESMOS, GeoGebra, or 

GoogleSketch-Up as the 

presentation mode for 

posing your problem  

 

3. Problem 

solving with 

engaging real 

world problem 

Evidence of the 

students solving a 

mathematical 

problem. 

Evidence of the 

students solving a 

real world math 

problem. 

Evidence of solving an 

engaging, real world 

problem. The problem is 

posted and easily read. 

 

4.Math 

discourse: 

explain,defend, 

challenge the 

ideas of others 

Evidence of 

students engaged in 

classroom 

discourse, but not 

on topic. 

Evidence of 

engaged classroom 

discourse. Types  

of discourse are not 

clear. 

Evidence of classroom 

discourse that includes 

explaining, defending, 

and challenging the 

solutions/ideas of others. 

 

5. Student 

presentations 

Evidence of 

presenting solutions 

with no reasoning. 

Evidence of 

solutions with little 

explanations. 

Evidence of presentations 

explaining/defending 

their solution. 

 

6. Student use 

of polling  

No use of polling 

devices 

Some students use 

polling devices. 

Evidence of the students 

using electronic polling  

 

7. Clear video 

of the voted 

solution. 

No clear result to 

the voting. Or the 

solution is not clear 

Problem solution is 

correct, but not the 

voting.  

Evidence of the problem 

solution selected by the 

class can clearly be read. 

 

Total Score               _______/21 

Table 1: Technology and mathematics project rubric  

During the power point presentations, notes were taken by the researcher regarding the frequency of 

use and the issues that the preservice teachers had when implementing this lesson. Lesson reflections 

were reviewed for common themes and attitudes.  



Results 

The results of the Survey of Classroom Technology for Knowledge Production revealed that the AYA 

preservice teachers used mathematics instructional technology more than the MC preservice teachers 

prior to the methods course. All 24 preservice teachers used word processing, 11 used spreadsheets, 

and 19 used power point presentations. When the preservice teachers reached the specific 

mathematical instructional technology questions, many scores were zero. See Table 2 for median 

scores, standard deviation and standard error measure. 

Table 2: 2015 Survey of Classroom Technology for Knowledge Production, N=24 
     _____________________________________________________________________ 

      Question   1 2 3 4 5 6 7 8 9 10 

     _____________________________________________________________________ 

 Median   5 1 2 0 2 2 0 0 1 0  

 S.D.   0 0.65   0.79   0.2    1.57    1.31   0      0      1.4    0 

 S.E.M.   0    0.13   0.16   0.04   0.32    0.27   0      0      0.29   0 

     _____________________________________________________________________  

The preservice teachers were able to implement the instructional technology lesson to varying 

degrees. The AYA preservice teachers were able to create a real-world problem around which they 

built their lesson using instructional technology. The preservice teachers taught the students how to 

use their selected computer program on one day and the lesson the next day.  

The MC preservice teachers created their real-world problems, but those who taught in grades 4 and 

5 were not able to use any program. Their cooperating teachers believed that this technology was not 

developmentally appropriate for the students. Since a majority of the students in these grades did not 

own smart phones, many of the preservice teachers used Kahoot. The preservice teachers used this 

software program to project questions for voting.  

Table 2a: 2016 Survey of Classroom Technology for Knowledge Production Pre-Field, N=15 

     _____________________________________________________________________ 

      Question   1 2 3 4 5 6 7 8 9 10 

     _____________________________________________________________________ 

 Median   5 3 4 0 1 0 0 2 2 2 

 S.D.   0.52 1.26   1.39   0.60    1.21   0.85   0 .28   1.72   1.34   1.59  S.E.M.   0.14 0.35   

0.39   0.17   0.34   0.24   0.08    0.48   0.37   0.44 

     _____________________________________________________________________  

 
Table 2b: 2016 Survey of Classroom Technology for Knowledge Production Post Field, N=15 

     ___________________________________________________________________ 
      Question   1 2 3 4 5 6 7 8 9 10 

     ___________________________________________________________________ 
 Median   5 2 4 0 0 1 0 1 0 2 

 S.D.   1.3 1.35   1.06   0.52    1.10   1.22   0 .74   1.20   1.10   1.46 

 S.E.M.   0.34 0.35   0.27   0.13   0.28   0.32    0.19    0.31   0.27   0.38 

     _____________________________________________________________________  
The 2015 scores from the project rubric were reported in the following data for Year 1: 

Table 3a: 2015-Data Results from Technology + Mathematics Methods Project Rubric Scores. 

  



_________________________________________________________________ 
Rubric  # 1   2    3     4      5      6   7 N=24 

_______________________________________________________________________ 

Median       3   2       3       3       2       3       3   S.D.  0.64   0.63    

0.51     0.52    0.51    0.26    0.74 

S.E.M.  0.17   0.16    0.13    0.13    0.13    0.07    0.19 

Table 3b: 2016-Data Results from Technology + Mathematics Methods Project Rubric Scores.  

_________________________________________________________________ 
Rubric  # 1   2    3     4      5      6   7 N=9 

_______________________________________________________________________ 

Median       3   3       2       3       3       3       3   S.D.  0.0   0.0    

0.71     0.44    0.0     0.0      0.0  

S.E.M.  0.0   0.0     0.24    0.15    0.0     0.0      0.0 

Over all, the 2015 and 2016 rubric scores were 2 or 3. There was one student who did not do the 

assignment. The preservice teachers were successful having the students vote on the elegant solution 

to their problem. The high mean score with the lowest standard deviation and standard error measure 

confirm the attention the preservice teachers paid to this element of the assignment. The power point 

presentations with video clips demonstrated the ease with which the preservice teachers acquainted 

their classes with instructional technology. This assignment matched the attributes needed for success 

by preservice teachers learning instructional technology found by Ertmer et al., (2003) specific ideas, 

Sadaf et al., (2016) available Web 2.0 tools, and Wang (2004) providing goals. The overall theme in 

the preservice teachers’ reflections found that using instructional technology was a positive 

experience. They solved technology issues including: the internet working only on laptops in half of 

the classroom; no internet accessible; reserving the cart of tablets then found another teacher took the 

cart without regard for the reservation list. Observing the power point presentations and reading the 

lesson reflections for Year 1, the preservice teachers noted the number of times they used instructional 

technology beyond the assignment. Given the one preservice teacher who did not do the assignment, 

20 preservice teachers were solidly on ACOT Step 2 – limited use of technology. Three of the 24 

used some version of instructional technology almost every day placing them on Step 3 – Adaptation 

where they built more lessons implementing instructional technology. For Year 2, there was a wider 

variation in the levels achieved. Three pre-service teachers were at Step1entry use of technology. 

They only used technology for this unit. Ten pre-service teachers achieved Step 2 which is defined 

as limited use of technology. Five pre-service teachers (four AYA, one MC) achieved Step 3 where 

they incorporated technology as a major teaching tool on a regular basis. 

Discussion   

Implications and connections to mathematics teacher education 

Adding program elements for instructional technology into the curriculum for preservice teachers is 

not a simple fix. Instructional technology needs time to present, model, and practice. The research by 

Carlson and Gooden (1999) suggests that the responsibility for teaching preservice teachers to 

integrate technology be done not only in education courses, but also in mathematics classes. If these 

two departments can collaborate sharing this responsibility, the preservice teachers would witness the 

power and benefits of teaching with technology. Preservice teachers need to learn how to use 

instructional technology in order to create student-focused classrooms that engage their students in 

the learning process from their first day of teaching mathematics.  
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The purpose of this paper is to introduce an ongoing Erasmus+ project “Maths Teachers’ Adventure 

of ICT Integration (MTAII)” and its outputs. The main aim of the project is to provide professional 

development for mathematics teachers to integrate Information and Communication Technologies 

(ICT) into their lessons. To achieve this, three intellectual outputs have been designed; an open online 

course (OOC), open educational resources (OER), and an online teacher community (OTC). In the 

scope of the OOC teachers should gain insights about ICT integration into mathematics classrooms. 

Through development and dissemination of OER we aim to help overcome the scarcity of resources. 

Through support of peer teachers and researchers at participating organizations we hope to establish 

an OTC including the teachers participating in the OOC. This paper focuses on the design of the 

three outputs.  

Keywords: Erasmus+ project, online learning, open educational resources, online community, 

professional development 

Introduction 

Numerous research studies (Li, & Ma, 2010; Cheung, & Slavin, 2013) have shown that technology 

integration can play an effective role in tackling the challenges of teaching mathematics. In their study 

Hew and Brush (2007) have determined several barriers of technology integration for teachers: 

resources, institutional constraints, subject culture, attitudes and beliefs, knowledge and skills, and 

assessment. They also describe strategies to overcome these barriers such as: having a shared vision 

and technology integration plan; overcoming the scarcity of resources; changing attitudes and beliefs; 

reconsidering assessments; and conducting professional development. Bingimlas (2009) and Kopcha 

(2012) have also pointed out that professional development activities for teachers play an important 

role concerning technology integration in education and, in relation to this, several studies indicate 

the potential of active professional communities (Arkün, & Aşkar, 2013; Duncan-Howell, 2010; 

Vrasidas, & Glass, 2004).  

MTAII 

The project “Maths Teachers’ Adventure of ICT Integration”1 (MTAII, www.mtaii.com) aims to help 

overcome the barriers of knowledge and skills in relation to ICT integration (Hew and Brush, 2007) 

into mathematics teaching by creating a professional development environment for teachers that 

                                                 
1 The project Math Teachers' Adventure of ICT Integration (2015-1-TR01-KA201-021561) has been funded by the 

Erasmus+ program of the European Union. The European Commission's support for the production of this publication 

does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission 

cannot be held responsible for any use which may be made of the information contained therein. 
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includes several of the abovementioned strategies. To achieve this, three intellectual outputs have 

been designed, focusing on a different strategy each, and combined with each other, forming a 

professional development environment for mathematics teachers from different countries.  

Addressing the need for direct professional development opportunities, an open online course (OOC) 

is designed as the first output of the project. The goal is to help teachers gain some insight into the 

potential benefits of using technology for education, particularly for learning and teaching 

mathematics. As part of the OOC teachers are guided towards developing interactive instructional 

materials and integrating them into their own classroom teaching. The second output addresses the 

scarcity of high quality, yet ready-to-use educational materials through the development and 

dissemination of open educational resources (OER). The project’s third output will provide the 

infrastructure and expertise to establish and foster an online teacher community (OTC) that is 

expected to support the participating teachers beyond the duration of the project. Social, instructional, 

and technical support will be provided to teachers through the OTC by peers (other teachers) and 

researchers from the participating organizations.  

In addition, the project partners will provide a series of face-to-face workshops, with different content 

targeting the specific needs of mathematics teachers in each of the participating countries. These 

events will also serve to promote and disseminate the project’s outputs. 

Output 1: Open online course 

The MTAII OOC is underpinned by three modules that address different aspects of ICT integration 

for teaching mathematics: (a) Module 1 – ICT use for learning and teaching, (b) Module 2 – Design 

and development of instructional materials with GeoGebra, (c) Module 3 – Implementation, and 

evaluation of ICT integration. 

After a general introduction of ICT integration and its potential benefits for teaching and learning 

mathematics (Module 1), participating teachers will be guided through the process of analyzing, 

designing and developing their own instructional materials based on the interactive mathematics 

software GeoGebra (Module 2), before they are encouraged to implement their designed lesson in 

their classrooms and evaluate their experiences supported by experts and peers (Module 3).  

As Hew and Brush (2007) have highlighted the necessity for teachers to be able to have easy access 

to technology, the GeoGebra Math Apps (www.geogebra.org) have been selected for the project. This 

set of educational mathematics software applications has been developed for teaching and learning 

mathematics and are freely available all over the world. In addition to the apps being available in a 

multitude of different languages, the accompanying GeoGebra Materials platform offers additional 

support and features related to the creation and dissemination of interactive educational materials. 

The sharing of such materials with students is achieved by the use of GeoGebra Groups, a simplified 

Learning Management System (LMS) for mathematics educators and their students.   

The Technology Integration Planning (TIP) model (Roblyer and Doering, 2014) was selected as the 

theoretical framework for the OOC. Organized in three phases, the TIP Model provides a practical 

approach to lesson planning by guiding teachers towards methods and strategies of using ICT for 

their teaching in an effective way. It also helps them to identify and address the potential challenges 

involved in this process. Thus, Module 1 of the OOC is based on Phase 1 of the TIP model, the 

analysis of learning and teaching needs, whilst Module 2 focuses on Phase 2, planning for integration. 

http://www.geogebra.org/apps


Finally, Module 3 will conclude the course by implementing Phase 3, post-instruction analysis and 

revision, of the TIP model. 

Module 1: ICT use for Learning and Teaching 

The main goal of Module 1 is to illustrate the purpose and benefits of using ICT for the teaching and 

learning process, by introducing a variety of suitable technology applications, as well as sharing best 

practice examples with the participating teachers, in order to demonstrate effective strategies of 

technology integration. In addition to providing their expertise in ICT integration, the project partner 

HU (Hacettepe University, Department of Computer Education and Instructional Technology, 

Ankara, Turkey) will also guide the participants of the OOC through phase 1 of the TIP Model 

(Roblyer and Doering, 2014). In the second step, teachers are led towards assessing their own 

technological pedagogical content knowledge necessary for teaching a self-selected topic in their own 

classroom, based on the Technological Pedagogical Content Knowledge (TPACK) framework 

suggested by Koehler and Mishra (2009). 

TPACK is a model to emphasize the types of knowledge needed by a teacher for effective 

instructional practice in a technology based learning environment. This framework suggests that ICT 

integration for teaching specific content like mathematics, requires understanding of the three 

components Technology (T), Pedagogy (P) and Content (C), as well as of the relationships between 

them, resulting in seven different knowledge (K) areas: CK, PK, TK, PCK, TCK, TPK, and TPCK. 

According to Koehler and Mishra (2009) teachers should have technological pedagogical content 

knowledge in order to be able to effectively integrate ICT into teaching. 

In order to support the TPACK framework, each of the project partners contributes according to their 

area of expertise, with HU providing TPK, JKU (Johannes Kepler University, Department of 

Mathematics Education, Linz, Austria) contributing PCK and AIGB (GeoGebra Institute Association 

of Botoşani, Romania) adding TCK. By creating an interdisciplinary OOC, the participants of the 

OOC should be able to form TPC Knowledge, which represents the intersection of all three 

knowledge areas. Roblyer and Doering (2014) suggest teachers assess the knowledge they already 

have and either use this knowledge or identify what they need to learn and broaden their technology-

based teaching methods.  

Module 2 – Design and Development of Instructional Materials with GeoGebra 

Following a general introduction of ICT integration into mathematics teaching and assessment of 

their TPC Knowledge in Module 1 of the OOC, Module 2 provides an opportunity for the participants 

to plan their own technology-supported lesson, deepen their technology content knowledge by 

learning about the basic use of the GeoGebra Math Apps, as well as create their own instructional 

materials and integrate them into their lesson plans. Both AIGB and JKU will combine their expertise 

and experience concerning the introduction of teachers to mathematics software, its use for teaching 

and learning, as well as the development of interactive instructional materials, while developing 

Module 2. 

The main aims of Module 2 of the OOC are: to raise participants’ awareness of pedagogical aspects 

of integrating ICT into their teaching (Bingimlas, 2009) by providing best practice examples for 

different methods of successful ICT integration into mathematics teaching; and to guide them towards 

planning and developing their own technology-supported lesson tailored to their own classroom 



teaching. The participating teachers are first encouraged to select a mathematical topic relevant for 

their teaching. They are then guided through the planning process of a technology-integrated lesson 

by implementing the following steps: (a) deciding the objectives of the lesson and selecting effective 

assessment strategies to evaluate the success of the lesson; (b) analyzing and preparing their 

technological teaching environment and inquiring about potential technical support available during 

the lesson; (c) selecting appropriate instructional strategies and planning how to implement and adapt 

them to their students’ needs; and finally (d) designing and creating appropriate instructional 

materials and activities that will help their students reach the objectives of the lesson. 

Awareness of the different technology-related skills of the course participants, as well as of their 

potential previous knowledge of using the GeoGebra Math Apps, Module 2 of the OOC will also 

provide the opportunity to broaden the participants’ technology content knowledge by learning about 

the basic use and features of certain GeoGebra Math Apps, as well as introducing online tools to 

create instructional materials on the GeoGebra Materials platform.  

By providing a series of different tutorial components to introduce the GeoGebra Math Apps, 

participants will have the option to select the app most relevant to the mathematical topic of their 

lesson (e.g. geometry, function graphing, manipulation of equations). As suggested by Preiner (2008), 

the content and structure of the tutorial components are carefully selected, taking into account the 

potentially different technical abilities and diverse backgrounds of the OOC participants, as well as 

the difficulty level of mathematical content and the potential complexity of the introduced features 

of the software. Thus, the content of each tutorial component will be partitioned into a series of 

interactive worksheets containing one task each, that can be solved quite easily and enable 

participants to progress steadily through the chosen content. Being aware of the different 

technological abilities of the course participants, basic tasks will be optional, but will guide the 

participants towards gaining the skills necessary to also solve more complex, mandatory tasks of the 

respective tutorial component.  

In order to allow for an individual learning pace and the option of selecting content relevant for each 

of the course participants, each tutorial component will provide automatic and immediate feedback 

to the user’s work on the provided interactive tasks. However, expert course moderators will be 

available throughout Module 2, providing feedback or assisting with potential technology-related 

problems participants might encounter.  

Furthermore, the participating teachers will learn how to create their own interactive instructional 

materials by using the online editors for interactive worksheets and online books provided on the 

GeoGebra Materials platform. Thus, they will explore the option of creating new interactive 

worksheets relevant for their lesson ‘from scratch’, as well as experience the possibility of searching 

the platform for suitable ready-to-use interactive online worksheets of other authors and collecting 

them in a so called GeoGebra Book. In this process, the participants will be able to decide themselves 

whether to share their developed materials with their peers or keep them private, only sharing them 

with the course moderators for feedback purposes. During the entire planning and lesson preparation 

process, course moderators and experienced GeoGebra material authors from JKU and AIGB will be 

available to support the participating teachers on a pedagogical and mathematical content level, as 

well as providing technical support, an aspect that Bingimlas (2009) identified as being a potential 

barrier for effective ICT integration if lacking. In addition, the course team will offer constructive 



feedback about the newly developed materials and lesson plans, increasing the likeliness of a 

successful and effective implementation of the lesson in the teachers’ classrooms.  

Module 3 – Implementation, and Evaluation of the ICT Integration  

By the end of Module 2, the course participants are expected to have finished the planning stage of 

their technology-supported lesson, which should be ready to be implemented in their classrooms at 

the beginning of Module 3. Subsequently, Phase 3 of the TIP Model (Roblyer and Doering, 2014) 

will be applied in order to guide teachers through analyzing and reflecting about their lesson, as well 

as to help them to revise and improve their initial lesson plan. During this process, participants will 

be encouraged to share their lesson plans, as well as reflection about the implementation with their 

peers, allowing for further revisions and improvements of their instructional materials, based on the 

expertise of the experts and their peers. 

After completion of the OOC, i.e. by the end of Module 3, each of the course participants is expected 

to have designed and carried out an effective technology-supported lesson, which can be shared 

among and reused by peer teachers, contributing to an online pool of ready-to-use interactive 

instructional materials that foster ICT integration into mathematics teaching.  

Implementation of the OOC 

As the project is a transnational cooperation of the three countries Austria, Romania, and Turkey, the 

participating teachers are expected to be from diverse backgrounds with different native languages. 

Consequently, a nurturing and meaningful online environment for the participants is needed. The 

following guidelines for increased participation in online communities suggested by Çoban and 

Arkün-Kocadere (2016) have been taken into account for the implementation of the developed OOC: 

limiting the number of participants and forming communities from small groups; giving the 

opportunity to interact in their mother tongue; focusing on participants’ direct needs; giving feedback; 

gamifying the online environment; limiting the workload of the participants; expressing the aim of 

community and expectations from participants explicitly. 

Being aware of the local needs of teachers to support communication, feedback and development of 

educational materials in their native languages, as well as to encourage participation in the 

accompanying online discussions (Çoban, & Arkün-Kocadere, 2016), the OOC will take place in four 

language branches - English, German, Romanian and Turkish - as opposed to offering one course 

requiring all participants to use English for communication. Each of the four language branches will 

be supported and moderated by the project partners, as well as additional experts fluent in the 

respective languages. Also, limiting the number of course participants per language will allow for 

smaller discussion groups as well as individual feedback by moderators and peers, who will be able 

to directly address the needs of each of the participating teachers, keeping in mind the different 

educational backgrounds and teaching methods in the respective countries. Each of the four language 

branches of the OOC will use a different GeoGebra Group as the platform for communication and 

sharing of materials, providing valuable insights into the needs of different language groups, which 

will allow us to repeat the OOC in the future and make it available to the educational community in 

even more languages. 

Some gamification elements will be integrated into the OOC to encourage teachers’ continued 

involvement and active participation, as well as to attempt to minimize the drop-out rate during the 



course. Gamification can be defined as using game elements in a non-game context. Literature shows 

that gamification has the potential to solve engagement, motivation, and especially participation 

problems in online courses (Çağlar & Arkün Kocadere, 2015). In their applied study, Borras-Gene, 

Martinez-Nunez, Fidalgo-Blanco (2016) found that participation in online courses can be increased 

by developing online communities and gamification methodologies, in addition to providing support 

for students’ learning and participation, by increasing their motivation. Being aware of the potential 

benefits of gamification elements for online courses, like rewards, badges, leaderboards, progress 

bars, and levels, the project team is currently planning a potentially gamified environment for the 

different Modules of the OOC, including the subdivision of each Module into levels, allowing 

participants to keep track of their progress in each level, as well as awarding the successful completion 

of each level. Furthermore, the course participants might be able to compete among each other, taking 

into account their current level of progress, their activity level of participating in the course, as well 

as their readiness to support their peers throughout the duration of the course. Finally, successful 

completion of each of the tutorial components in Module 2 might result in awarding a badge on the 

respective participant’s GeoGebra Profile page, while MTAII certificates will be awarded for a 

successful completion of the entire OOC.  

As a professional development opportunity for in-service mathematics teachers, the time-frame and 

duration of the OOC were planned carefully and took account of the limited time available to teachers 

during the school year in general, as well as the potentially different schedules of the school year in 

the countries of the participating teachers. Thus, the OOC will be implemented over 6 weeks with an 

expected workload of about 3 hours per week for the participants (M 1 - one week; M 2 - three weeks; 

M 3 - two weeks). Since the implementation of the developed lesson plans involves students, the 

participating teachers will be informed about the general expectations of the course and the required 

classroom teaching at the beginning of the OOC to allow for sufficient time for organizational issues 

related to technology-supported teaching methods. 

Output 2: Open Educational Resources (OER) 

After the OOC, the materials developed by the participating teachers will be reviewed by the 

GeoGebra experts at JKU and AIGB and selected materials will then be transformed into OER, to 

help overcome the aforementioned scarcity of resources for ICT integration (Bingimlas, 2009; Hew, 

& Brush, 2007). The project partners will develop best practice examples and make lesson plan 

suggestions for different teaching methods that can be added to the interactive GeoGebra materials 

developed as part of the OOC. By translating these materials into multiple languages involved in this 

transnational project and publishing them on the GeoGebra Materials platform, a large community of 

teachers will have access to these high-quality instructional materials. In this way, teachers (and 

especially those who are new) to the concept of ICT integration in their everyday teaching, can benefit 

from the outputs of the project by getting access to a variety of ready-to-use interactive instructional 

materials, as well as to the experiences and expertise of teachers, who are expert ICT users for 

teaching and learning mathematics.  

Output 3: Online Teacher Community (OTC) 

The third output aims to establish an online teacher community to complement the OOC and ensure 

sustainability of the project outcomes. Literature shows the success of online teacher communities 



for professional development in general, as well as for supporting the ICT integration into teaching 

and learning process in particular (Arkün, & Aşkar, 2013). 

The OTC will be designed and conducted with the support of the 3 project partners (JKU, HU, AIGB) 

who developed the OOC and will use GeoGebra Groups as the underlying platform. Again, four 

different OTC branches will be provided, allowing participants to communicate in their native 

languages, while the moderators of the OTC groups will also communicate in English across these 

language groups. In addition, high quality interactive instructional materials developed in either of 

the languages might be translated and adapted to the teaching methods of the other language OTC 

branches, making them available to a larger community of teachers across the different countries.  

Throughout the lifespan of the project, the OTC will provide a platform for teachers to discuss their 

experiences with technology-supported teaching and learning, exchange their lesson plans and 

educational materials, and share their reflections and improvement suggestions. The participating 

teachers will receive support from peer teachers as well as from the experts in the partner 

organizations through the teacher community. The OTC is expected to have a long life cycle as it will 

be supported by the project partners as well as GeoGebra experts, with the goal of becoming self-

sustaining community groups by the end of the project, being complementary to other efforts of ICT 

integration and sharing of high-quality interactive instructional materials. Furthermore, as opposed to 

the teacher communities on some other subjects, the project’s OTC will be a math teacher community 

focused on ICT integration into teaching and learning, developing ready-to-use high-quality 

instructional materials in different languages tailored to the diverse needs of mathematics teachers 

and students in different countries.  

Conclusion 

The main aim of the project described in this paper, is to combine the diverse expertise of the project 

partners for the design and development of a professional development environment for mathematics 

teachers consisting of an open online course, open educational resources and an open teacher 

community, and focusing on overcoming a selection of different barriers of ICT integration into 

teaching and learning of mathematics.  

The online course is designed to support the participating teachers throughout the entire process of 

planning and developing materials, while also supporting them during the implementation of their 

technology-integrated lessons and subsequent revision of their materials. Through the development 

of high-quality and ready-to-use resources in different languages, many mathematics teachers will be 

able to benefit from the project’s efforts by joining an online community of mathematics teachers 

willing to integrate ICT into their everyday teaching. By building a community that combines the 

expertise of researchers and actual classroom teachers from different countries and languages, the 

project aims to develop a network providing continuous support for teachers at all stages of ICT 

integration into the teaching and learning process, that we hope will become self-sustaining and 

outlast the duration of the actual project.  

While the content of this paper focuses on the design and implementation of the described project, 

further studies will describe the accompanying research design and analyze its outcomes. 
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Integrating technology in education is still not an easy task, teachers’ adoption of technology in their 

teaching is even more problematic and the wide availability of technology made things more 

challenging. This research is a multiple case study that aims to study in depth the effect of a GeoGebra 

(a free mathematics software) intervention on the teaching of in-service mathematics teachers in 

secondary schools who follow the Lebanese curriculum. The type of the study is Design-Based 

Research that focuses on working closely with practitioners in collaborative and iterative manner in 

the real context to add principles to theory and practice. Results showed an increase in the extent 

teachers use GeoGebra in their student-centered teaching approach.  

Keywords: Technology integration, professional development, in-service secondary teachers, 

GeoGebra, design based research.  

Introduction 

When new technologies appear in medical or industrial fields, there is often a rush to replace 

obsolete tools with new ones, the staff get immediate training on their use and the adoption level is 

high and quick. Why does this not happen in the education field? Answering this question is not an 

easy task due to the multiple factors are involved in adopting technology and the rate of change in the 

education field, which is known to be slow. 

Literature review 

Research has extensively focused on the problem of technology integration in general and in 

mathematics in particular. First, research in many countries has shown that technology still plays a 

marginal role in mathematics classrooms and that access to technology resources, educational 

policies, and institutional support are insufficient conditions for ensuring an effective integration of 

technology into teachers’ everyday practices (e.g., Cox, Abbott, Webb, Blakely, Beauchamp, & 

Rhodes, 2004; Cuban, Kirkpatrick, & Peck, 2001; Goos & Bennison, 2008). Second, research studies 

in general focused on some aspects of the integration problem such as lack of teachers training (e.g., 

Law, 2008; Tondeur et al., 2008) or lack of theory (Mishra & Koehler, 2006). Others suggested 

certain solution(s) such as conducting professional development of specific characteristics, working 

with mentors (Kratcoski, Swan, Mazzer, 2007), working in a community-based inquiry environment 

(Lavicza, Hohenwarter, Jones, Lu, & Dawes, 2010), or working based on a theoretical framework 

such as TPACK, but most of these suggestions “have crashed on the hard rocks of the classroom” 

(Herrington, McKenney, Reeves, & Oliver, 2007, p. 9). Third, in most studies the methodology used 

is not sufficient for such a complicated multi-faceted problem, and this partially explains why 

research has had limited impact on practices (Herrington, McKenney, Reeves, & Oliver, 2007). A 

key factor is that teachers should be able to actively participate in the process of technology 

integration (Voogt et al., 2011). To summarise, this research aims to study how a collaborative and 



iterative work with in-service mathematics teachers affects their level of GeoGebra integration in 

their teaching to answer the following research questions:  

1. How does a cooperative and iterative intervention affect in-service secondary mathematics 

teachers' practices regarding the integration of GeoGebra in their teaching? 

2. How do participants’ Valsiner’s three zones mediate the impact of the intervention on 

teachers’ practices regarding the integration of GeoGebra in their teaching? 

In this study we have used the Valsiner’s zone theory, which states that the factors that affect teachers’ 

use of technology can be categorized into three zones: (1) Zone of proximal development (ZPD) 

which includes skill, experience, and general pedagogical beliefs; (2) Zone of free movement (ZFM) 

which includes access to hardware support, curriculum and assessment requirements, students (3) 

Zone of promoted action (ZPA) which includes pre-service education, practicum courses and 

professional development (Goos et al., 2010).  

Methodology 

Three iterations of a design based research (DBR) methodology were used in this study across two 

stages (Figure 1).  

The first pre-intervention stage was dedicated to understanding the situation of integrating GeoGebra 

in the Lebanese curriculum, piloting the GeoGebra activities and testing the instruments. Six 

workshops were conducted over two years and a pilot study with two teachers. At the end of this 

stage four teachers (other than the ones in the pilot study) were selected as cases for the study. After 

selecting the participants, a 3 hour-workshop was conducted by the researcher with the four 

participants to ensure that all participants had acquired the basic features of the software (GeoGebra). 

In addition, we discussed as a group the topics in the secondary mathematics Lebanese curriculum 

that could be better taught with the use of GeoGebra. The second stage was the intervention stage, 

which comprised two iterations. In this stage collaboration was one-to-one between the researcher 

and each of the participants. In the first iteration, the participating teachers decided which lesson they 

wanted to teach with GeoGebra in accordance with their school mathematics scope and sequence. 

They were provided with a ready-made GeoGebra activities (made by the researcher) to 

be implemented in their classes. In the second iteration, teachers adapted already made GeoGebra 

activities and/or made their own GeoGebra activities. Three visits were conducted with each 

participant at his/her own school and according to his/her available time. The first visit was to prepare 

for the first lesson. The second visit was to evaluate the first lesson and prepare for the second lesson. 

 

Figure 1. The stages of the study 



Analysis of data collected from the instruments was done before starting the second iteration as 

required by a design based research methodology. The last visit was to evaluate the second lesson 

and give a general overview of the whole experience. 

Instruments  

For the pre-intervention phase, three questionnaires were administered by the participating teachers: 

(1) Demographics questionnaire, (2) Instructional Practices in GeoGebra Questionnaire IPGQ (Form 

1), (3) Barriers (grouped in zones) in Using Technology Questionnaire BUTQ (Form 1). The purpose 

of these questionnaires was to measure teachers’ current (before the intervention) 

integration practices of the GeoGebra software in their teaching and the barriers (grouped in three 

zones) that affect their technology integration. After conducting the first lesson, a semi-structured 

interview parallel form was used (IPGSI (Form 2) and BUTSI (Form 2) to measure the impact of the 

intervention on teachers’ practices and to find out to what extent the zones could mediate that effect. 

In addition, another instrument was used to assess the GeoGebra activity itself, the Lesson 

Assessment Criteria semi-structured Interview (LACI), which is based on instrument by Harris, 

Grandgenett & Hofer (2010).  

The analysis was done in general for the four participants and later individually. The general analysis 

looked for the general impact of the intervention and for the dynamicity of change in the extent of 

use in each category of the practices and its subcategories. For the impact of the intervention we were 

interested in the change in the extent of use of GeoGebra at the end of implementation, whereas for 

the dynamicity we were interested in the pattern in the extent of use of GeoGebra of change happened 

in between the implementation stages. The dynamicity could be: (1) static: there was no change in 

extent of use in between the implementation stages or (2) dynamic: there was a change in extent of 

use in between the implementation stages. 

Participants 

In the sixth (last) workshop conducted by the researcher attendees were given the pre-intervention 

questionnaires mentioned above. Based on the answers, for the practice instrument, the values were 

0 (never use GeoGebra), 1(sometimes use GeoGebra), and 2(most of the time use GeoGebra). The 

average of all the questions was calculated. Similarly the average for each zone was calculated in the 

zone questionnaire that consists of 27 questions. Based on these results, four cases were selected 

(Pseudonyms: Tima, Sara, Amani, and Hazem) in a way that they differ among themselves in practice 

level and/ or in at least one barrier level. Table 1 represents the characteristics of each participant.  

Table 1. Participants domographics, practice and zones level 

*Not: the zone is not considered as a barrier to GeoGebra integration 

  

Name Age 
Highest 

degree 

Teaching 

experience 
Practice level ZFM ZPA ZPD 

Amani 50-55 BS 25 years Low Moderate Moderate Low 

Tima 23-26 Masters +TD 2 years Moderate Low Moderate Not* 

Sara 33-40 BS 7 years Moderate Moderate Low Not 

Hazem 41-50 Masters 31 years High Moderate Not Not 



GeoGebra modules 

The criteria used for lesson selection are based on those identified by Angeli & Valanides (2009) 

called ICT-TPCK. The GeoGebra activities were prepared by the researcher and tested on both 

students and teachers. The activities were designed based on the following criteria: Each activity: 1) 

should be student centered, 2) can be conducted by students in a computer lab or elsewhere (classroom 

or at home), 3) allows student to discover the concept or theorem under study, 4) includes immediate 

application of the concept under study, 5) does not require prior knowledge of the software.  

Each teacher selected an activity according to his/her scope and sequence, so each teacher applied a 

different GeoGebra activity. Table 2 shows type and place of activities applied by each teacher.  

 Activity 1 Place  Activity 2 Place 

Amani Sign of quadratic polynomials In class Derivative In lab 

Tima Vectors In lab 3D In class 

Hazem Equation of a straight line In class Thales Theorem In class 

Sara Translation of functions In lab Vectors In lab 

Table 2. The intervention activities conducted by participating teachers 

 

Results 

Stage of Use of GeoGebra 

Figure 2 shows that the pattern of impact was the same for using GeoGebra in lesson presentation, 

lesson implementation, and lesson enhancement but different for assessment. For lesson presentation, 

implementation, and enhancement, in general, participants started with ‘sometimes use GeoGebra’ 

and ended with ‘most of the time’ after the second lesson. For assessment, there was a slight 

breakthrough from ‘never use of Geogebra in assessment’ to ‘sometimes use’ for each of the four 

0

1

2

A T S H A T S H A T S H A T S H

I use GeoGebra for
lesson preparation

I use GeoGebra for
Lesson implementation

I use GeoGebra for
Lesson reinforcement

I use GeoGebra for
Assessment

Before implementation

After implementation 1

After implemenation 2

 

Figure 2. The extent of using GeoGebra by the participating teachers over the three stages:  

Before the intervention, after implementing the first lesson , after implementing the second lesson. 

0: Never; 1: sometimes; 2: Most of the time 

A: Amani; T: Tima; S: Sara; H: Hazem 



participants. For all the stages of using GeoGebra, in general, the change was static then dynamic. 

Probably more time was needed for the change to happen prior to the second implementation, which 

was due to teachers’ need to: become more confident in using the software; be more knowledgeable; 

and have more free movement. 

Concerning the stage of teachers’ use of GeoGebra the intervention resulted in: (a) an increase in 

using GeoGebra in most stages mediated positively by teachers’ ZPD, and (b) an increase in teachers’ 

appreciation of GeoGebra as a teaching tool due to the characteristics of the activities. There was 

interdependence between confidence and the extent of using GeoGebra in each stage. When teachers 

applied the activities, this led in an increase in teachers’ confidence which in turn led to an increase 

in the extent of GeoGebra use in each of their teaching stages. There was a low impact on using 

GeoGebra in assessment mediated by teachers’ ZFM. Three particular ZFM factors mediated 

negatively the impact of the intervention on assessment, these factors were: (a) Lebanese national 

curriculum which is so demanding with little time left for discovery, (b) Lebanese national 

assessment policies which assess mostly procedural knowledge, and (c) school assessment policies 

which are mainly set by the school administration and teachers have little impact on changing them. 

The characteristics of the GeoGebra activities that made impact of the intervention more effective 

were: (a) the effectiveness of the GeoGebra activity, (b) the ease of operating the software by students, 

(c) the strong alignment between the activity and the curriculum, and (d) lastly the strong fit of the 

activity with the instructional strategies each teacher uses. 

Method of use 

It is important to use GeoGebra, but what is more important is how to use it. In this category of 

practices the intervention had, in general, no to a slight increase in the extent of use in most 

subcategories and the general pattern of change was static with minimum dynamicity. For example 

the intervention did not affect Amani’s use of GeoGebra for ‘presenting a lesson’ or for ‘conducting 

an activity with the help of students’. Amani used for the first time GeoGebra for ‘discovery activity 

done by students’ or for ‘students to present their work’ but that change was static (never use) then 

dynamic. The impact of the intervention on Amani’s method of use was a change in her teaching 

method to become more student-centered (activity done with the help of students) mediated positively 

by her ZFM and her ZPD. A second example is Tima, despite her ZFM factors that mediated Tima’s 

extent of use of GeoGebra in her methods of teaching she applied for the first, time discovery 

activities done by students in the computer lab and/or in class. The collaboration between Tima and 

the researcher increased her self-confidence, skills and knowledge and that mediated positively her 

GeoGebra application. A third example is Sara. Before the intervention Sara was a moderate user of 

technology in general, and GeoGebra specifically, but the lack of a computer lab in her school and 

the lack of hardware in her class were the main barriers to increase technology integration. Sara used 

to show her students some applets using her class LCD connected to her own laptop but for the first 

activity she made a huge effort to take her students to the computer lab to apply discovery activities 

and she said: 

After this experience (applying GeoGebra activity) for the first time and in a lab I will change a 

lot of things (in my teaching) now I have a lab for secondary. Frankly I will not use that with an 

LCD in the class to show students such things, there is nothing called to show (not effective) 



showing them is like treating them as babies not capable of applying and concluding results, when 

they do it, it is different even for me I felt different. (Interview 2, November 7, 2015). 

The intervention had an important effect on increasing the use of conducting discovery activities done 

by students in the computer lab and that change was not the same dynamicity for all teachers. The 

barriers teachers faced in this part of the practices were the accessibility to the computer lab and 

curriculum requirements (ZFM) but these barriers minimally mediated the impact of the intervention. 

Place of use 

Similar to method of use category there was no to slight effect of the intervention on the extent of use 

of GeoGebra in their classroom or at home. There was a noticeable impact on the use of GeoGebra 

in the computer lab since three out of the four teachers tried one or both of the GeoGebra intervention 

lessons for the first time in the computer lab. This was not a surprise because to use GeoGebra in 

class or in the computer lab is related to availability of equipment and the way of using GeoGebra. 

This change was not the same dynamicity for all of the teachers. Amani’s change was static then 

dynamic, Tima’s change was dynamic then static, Sara’s change was dynamic, and Hazem’s change 

was static then dynamic. 

An example is the case of Sara, her first student-centered discovery activity was the activity she 

applied in her first lesson of the intervention. In this lesson she sensed the importance of discovery 

activities and how this students motivated the students and she said: 

I gave them four cases with aim of acquaint to GeoGebra trace, animation, and sliders. They liked 

a lot so and got their attention and interest. Gave them the function act printed and they started 

working, one student volunteered to help me… Students enjoyed a lot the activity and attained all 

the required objectives. They could see things (Interview 2, November 7, 2015). 

A second example is Hazem’ case, the intervention did not affect the place where Hazem uses 

GeoGebra. He mentioned availability of a computer lab and/or the accessibility to the laptops (ZFM) 

to be the only barriers to more extent of using GeoGebra in his teaching. He did overcome that barrier 

by asking every student to bring his own device mainly tablets. Since his first interview Hazem 

affirmed his continuous use: 

I am willing to use GeoGebra if it is related to my lesson, I consider working with GeoGebra as 

‘clean work’ contrary to board drawing (draw, redraw…). I encourage my students to use it; I 

already introduced them on its features and how to use. (Interview 1, November 7, 2015) 

In his second interview he said: “all students contributed [in the activity discussion], to a certain 

extent, according to their motivation. If they bring their own device things would be more beneficial.” 

(Interview 2, February 11, 2016) 

Summing up, due to the intervention the extent of using GeoGebra for discovery by students in the 

computer lab increased. For all categories of the practices the accessibility and availability of 

hardware were the main negatively mediating factors to higher levels of practices for all participants. 

The general pattern of change in the practices was more from static to dynamic in the stages of use, 

static in the method of use and in the place of use.  

  



Discussion 

It seems that unlike the medical or the industrial fields, the educational field is more complex in 

integrating technology in terms of social and psychological factors of all the stakeholders. 

In the medical field for example the instrument for measuring blood pressure is one tool that is used 

for all people, young or old, under-weigh or over-weight… To use this instrument or an updated 

version of it does not require social acceptance or/and making the medical staff believes of its 

importance. On the other hand, in the educational field there is no technology that fit all ages, abilities, 

and intelligence levels… Deciding to use any instrument in a certain class needs to pass many filters 

in order to be an integral part of the teaching-leaning process.  

Recommendations 

To see change in mathematics teachers’ extent of using GeoGebra in particular and technology in 

general it seems one day workshop is not the perfect choice according to this study. Maybe with such 

professional development teachers’ knowledge might change quickly but more has to be done in order 

to change their practices. How should universities prepare their pre-service teachers to be ready to 

use technology most of the time in their teaching? How should professional development be designed 

to make sure teachers’ practices are changed regarding integrating technology in teaching? Maybe 

this study answers some of these questions but more work still needs to be done to solidify them.  
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“One of the beauties of Autograph is … that you don’t really have to 

think”: Integration of resources in mathematics teaching 
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This paper introduces part of a larger study on the use of technology, specifically mathematics-

education software, by secondary mathematics teachers. It presents some of the data collected with 

the aim to investigate teachers’ use of mathematics-education software: why are certain settings 

used, or underused, how are they used, and what are the reasons behind such use? The findings will 

be discussed by drawing on the documentational approach (Gueudet & Trouche, 2009) and 

teaching triad (Jaworski, 1994). The data comprised one interview and one lesson observation with 

a secondary mathematics teacher. While the documentational approach provides an overview of the 

set of resources being integrated to achieve a specific goal, the teaching triad offers a lens to 

observe teachers’ considerations when implementing a task in a mathematics lesson.  

Keywords: Tasks, documentational genesis, teaching triad, mathematics education software. 

Introduction 

The complexity of the teaching profession imposes several factors that impact upon teachers’ 

classroom actions, that include not only their beliefs and knowledge but also their experiences and 

the educational context in which they act (Biza, Nardi, & Joel, 2015; Speer, 2005). Teachers, while 

planning and teaching, consider the contexts they work within: their students, school environment, 

curriculum, etc. In other words, any study of teachers’ practices should take into account the 

different contextual conditions in which these practices develop to include personalities, 

institutions, circumstances, epistemology, time issues and materials (Herbst & Chazan, 2003). The 

study presented in this paper forms part of the PhD research of the first author and it investigates 

mathematics teachers’ ways of balancing the different elements in their working environment, 

especially when using technology (in this study mathematics education software, i.e. software 

designed for mathematics teaching and learning purposes), by looking at their practices or intended 

practices within specific contexts. Furthermore, our work examines any gaps between intended 

technology use in mathematics classrooms and actual teachers’ practices. To this aim we invite 

teachers’ views on hypothetical classroom situations that involve teaching with technology in 

written responses and follow-up interviews. Then, we observe teachers’ use of technology in their 

classroom. In this paper we present preliminary analysis from one participant, Adam, by drawing on 

two theoretical perspectives: the documentational approach (Gueudet, Buteau, Mesa, & Misfeldt, 

2014; Gueudet & Trouche, 2009) and teaching triad (Jaworski, 1994). 

The documentational approach 

The documentational approach looks at teachers’ interactions with resources where a resource is 

defined as “anything that can possibly intervene in [a teacher’s] activity”, it can be an artefact (e.g. a 

pen or a mathematical technique), a teaching material, or even a social interaction (Gueudet et al., 

2014, p. 142). Adler (2000, p. 207) adds that “resource” can be also “the verb re-source, to source 

again or differently”. During their interaction with resources, teachers develop schemes. A scheme 



is a set of organised procedures carried out on an artefact (Gueudet & Trouche, 2009). It consists of 

“the goal of the activity; rules of action; operational invariants; and inferences” (Gueudet et al., 

2014, p. 140, italics in original). Here, operational invariants are cognitive concepts established 

throughout the activity to be used in comparable situations (Gueudet et al., 2014). For teachers, 

these constitute “professional knowledge” (Gueudet et al., 2014, p. 142). The documentational 

approach describes a two-way influence between a resource and a teacher: a resource affects the 

teacher’s actions and knowledge; and the teacher’s perceptions and experiences impact on the way 

the resource is used (Gueudet et al., 2014, p.140). A management process, which Gueudet & 

Trouche (2009) call instrumental orchestration, is required in order to organise the learning 

environment (e.g., space, time, dialogue) by the teacher, whose responsibility is to manage the 

process according to the requisites of the task (Gueudet et al., 2014). When a teacher uses a set of 

resources according to a specific scheme for a specific goal, s/he creates a document. Such a 

development of a document is called documentational genesis. Thus, the documentational genesis is 

the process of a teacher developing schemes for adapting different sets of resources to achieve a 

specific target (Gueudet et al., 2014). The documentational approach studies the development of 

“structured documentation system[s]” that represent teachers’ work and progress as a result of 

influencing and being influenced by different resources (Gueudet et al., 2014). In this study we have 

conjectured that teacher’s schemes are dynamic and are being re-adapted from one situation to 

another and that the teaching triad (Jaworski, 1994) can help the exploration of those schemes. 

The teaching triad 

Jaworski’s (1994) teaching triad (TT) addresses classroom management as an act of harmony 

between three domains of activity: sensitivity to student (SS), mathematical challenge (MC) and 

management of learning (ML). These domains are evident when a teacher plans a lesson and starts 

to think of how to consider teaching a specific mathematical idea (MC), particular students’ needs 

(SS), the best way to work on the task with the students (ML) (group work, individual work or 

classroom discussion). The same domains will be in play during lessons, but within a different 

context as this time the interactions with the students are happening and the teacher should respond 

on demand, in many cases by diverting from what was planned.  

As Jaworski (1994) and Potari and Jaworski (2002) suggest from the “macro analysis” of classroom 

interactions, alongside the TT domains, teachers’ plans and practices are also influenced by social 

factors, such as: time pressure; having to complete a set syllabus; the requirement that students 

know specific things for exam purposes; expectations from the teacher; school ethos; and the 

training provided for teachers. Such factors seem to be at the centre of teachers’ considerations and 

they include students’ social culture, teaching resources and materials, syllabus, assessment 

schemes, time restrictions, room constraints, and cultural considerations of what constitutes good 

teaching practices (Goos, 2013, p.523). Hence, the TT domains, along with these factors, reflect the 

range of considerations mathematics teachers have to balance. The TT can be “used as an analytical 

device (by researchers) and as a reflective agent for teaching development (by teachers)” (Potari & 

Jaworski, 2002, p. 351). We are conjecturing that the teaching triad domains are related to schemes’ 

development regarding the use of resources. Sustaining the goals of the resource use, depends on 

how teaching is balanced by the teacher. Operational invariants can be derived from artefacts, 

mathematical concepts or social environments. All the above can be used to satisfy a specific goal 



and produce a proper usage and inferences, but these are flexible techniques of balancing and 

rebalancing of the TT domains from one lesson to another. The analysis presented here aims to 

investigate this conjecture. 

Technology in mathematics teaching - A view through the lenses of the 

documentational approach and the teaching triad  

Technology software and hardware devices are “artefacts” (Gueudet et al., 2014, p.141) and can be 

adapted to provide access to formal mathematical knowledge. They afford “opportunities for 

additional student actions, such as the manipulation of on-screen objects and the ability to make a 

range of mathematical inputs, which places an additional demand on teachers as they strive to make 

sense of a diversity of student activity in real-time” (Clark-Wilson & Noss, 2015, p. 95). Thus, 

interactions with technological resources influence teachers’ documentational geneses by 

developing the ways they organise their classroom activities and manage learning situations with 

impact on the shape of the teaching process and on the way knowledge is communicated. When 

employing technology, resources become more complex, and so do the TT domains. Sensitivity to 

student becomes more evident (e.g. if students know more about technology than their teacher). 

Tasks can be more challenging for teachers to design, and the management of learning becomes 

more complicated with the higher chances of distraction. We also re-emphasise the importance of 

social factors when technology is used based on several premises. First, the technology use 

dependency on the teacher training provided (Gueudet et al., 2014, p.144; OECD, 2015, p.69). 

Second, the availability of hardware and internet connection (Bretscher, 2014, p. 66; OECD, 2015, 

p.61 & p. 146). Third, the national curriculum obligations (OECD, 2015, p.70). Fourth, and most 

importantly, the education policies that aim to embed technology (OECD, 2015, p.50). 

Methodology 

This paper reports from the first phase of a project that looks at secondary mathematics teachers’ 

work with technology that involves participants’ written responses to situation-specific tasks 

alongside follow up interviews and classroom observations. Situation-specific task methodology has 

been suggested by Biza, Nardi, & Zachariades (2007, p. 301) where tasks are given classroom 

situations that “are hypothetical but grounded on learning and teaching issues that previous research 

and experience have highlighted as seminal; are likely to occur in actual practice; have purpose and 

utility; and, can be used both in (pre- and in-service) teacher education and research through 

generating access to teachers’ views and intended practices”. The study is conducted in England and 

participants are secondary school mathematics teachers with different levels of experience and 

training. The work is based on providing qualitative findings established on an interpretative 

research methodology (Stake, 2010, p. 36).  

In this paper we discuss the written response to the situation-specific task presented in Figure 1 (we 

call it the 3D Task), the follow-up semi-structured interview and the lesson observation (75 

minutes) of one participant, Adam. Both interviews and observations were conducted by the first 

author. The situation described in the 3D Task regards an open investigative question to be given to 

the students. It did not suggest any specific use of technology, and left that to be decided by the 

teacher. The situation regards a geometrical problem with a potential consideration of the 

affordances of software available at the school where the data were collected, such as Autograph 



(http://www.autograph-math.com/) or Geogebra (https://www.geogebra.org/). Adam was invited to 

offer a written response to the 3D task and, then, he was interviewed, to clarify the answers and 

offer more elaboration where needed. Then, a lesson was observed of a Year 12 class (17-18 year-

old 4 female and 5 male students) and was audio-recorded. The focus of the observation was 

Adam’s use of resources, especially his use of Autograph or Geogebra, which he said he frequently 

used, and his classroom management. At the time of the data collection, Adam was a mathematics 

teacher with four years’ experience, during which he taught students aged 12-18 years. He held 

degree in economics, a postgraduate certificate for teaching mathematics at secondary level, and 

was about to finish his master’s degree in educational practice. The school had interactive 

whiteboards, a computer lab, and Geogebra and Autograph software installed on all computers. 

3D Task 
A group of Year 11 students are asked the following question: 
Design a milk container with capacity of 1L. What dimensions and which design uses less materials? Why? 
- What are the mathematical ideas and activities addressed in this question?  

- Would you use this question in class? Why or why not? What are the learning objectives for which you would use 

this question? Would you modify it? 

- Would you use technology with this question? If yes, what type of technology? If no, why? 

- If you were to use technology, how would you use it? 

- What teaching approaches and resources would you suggest for this question? 

- Do you anticipate any problems or challenges (either with students or resources)? 

Figure 1: The 3D Task 

A preliminary analysis of teachers’ comments and interactions during interviews and lessons was 

performed for the transcripts (May, 2001). This was coded according to the Teaching Triad 

(Jaworski, 1994) into SS, ML, and MC. During each interaction, we explored the teacher’s 

interactions with the resources, according to the documentational approach (Gueudet et al., 2014). 

We then reviewed the results from the interview and observation, and offered a discussion 

according to TT and documentational approach together.  

Adam’s responses to the 3D Task and follow up interview 

Adam identified mathematical ideas involved in the 3D Task, such as “volume”, “surface area” and 

“calculus”. In his response to the task, he frequently repeated the word “scaffold” to state that he 

would try to adapt the task according to the students’ needs and “prior knowledge”. He emphasised 

that he would not use the problem as it is because it needed a lot of scaffolding and it included “too 

many variables”. During the interview, he explained that the scaffolding would include giving hints 

and examples and even values to work on for weaker students. He said he will not use 1L in this 

problem, but would use a bigger number: 

I think straight away students having to think of a length width and height that times to get 1 will 

be quite difficult for students… They might be able to go 1 1 1 and they might be able to go 2 ½ 

1 or something like that. That will be it, they’ll really struggle. 

He wrote that he would use technology with the task for “gradient of curves on Autograph” and “to 

visualise the shapes”. During the interview, when asked how and when he would use it during a 

lesson, Adam suggested “I think as a group activity. It wouldn’t be the focus of the lesson though it 

would just be almost the point at the end”. When asked to elaborate he said: 

I think it is because one of the beauties of Autograph is that it means that you don’t really have to 

think... I want the student to be thinking about problems and how to approach problems. I think 



almost Autograph gives you too much, too much help and then you don’t have to think about the 

shape of the graph because you can just plot it in Autograph. And then other, obviously other 

reasons a lot of my students have never used Autograph even at key stage five1. So, to start 

understanding it, it will take quite a long time and a lot of effort just to get the students to 

understand it to start with. 

Adam said he will not use the task as it is because although it works well in “an ideal world”, it 

does not go well with the way the syllabus is set. He anticipated problem with keeping track of 

calculations, prior knowledge and many involved variables (e.g. Adam suggested if a student chose 

to design a cylinder container, the case would be very confusing because s/he would have to think of 

adjusting the radius and height of the cylinder in order to find the minimum surface area). 

Adam’s teaching observation 

The observation was on a revision lesson about solving simultaneous linear and modulus equations 

(i.e. equations that include absolute value). Adam started by moving a stick in the air in order to 

draw a specific graph, and asking the student to recognise the graph. One of these graphs was the 

sine graph, but the students seemed to be confused about what graphs were being drawn. Then, 

Adam asked his students to solve some problems that were displayed on the board. All the problems 

apart from one (which was designed by Adam) were chosen from the textbook. During the lesson, 

Adam used Autograph to check the answers given by the students, he entered the functions and the 

graphs were projected on the board. Then a discussion/demonstration of the algebraic solution was 

led by him on the white board. For example, for the simultaneous equations: y = ǀx + 2ǀ and y = 3, he 

asked students to draw the graphs on their notebooks and see the solution before solving it 

algebraically: “You will get two points, you can see this graphically”. Then, he started to write one 

of his student’s algebraic answers on the board: “3 = x + 2 or -3 = x + 2”. He then commented on the 

student’s answer: “So, math says x = 1 or -1... What text book would say is y = (x + 2) or y = - (x + 

2). Textbook would just say that, I’ll probably do it this way”. Later, with the problem that 

followed, he commented that: “This is GCSE grade C2 […] This is mark C in C13”. He repeatedly 

encouraged the students to solve another problem he displayed on the board by saying that it is an 

“exam question”. When the students asked Adam why they should learn modulus equations, he 

went to his computer and googled “when to use modulus equations in real life” and gave the 

answers accordingly “Distance, currency exchange…”. Two of the students finished with the 

problems on the board earlier than the rest of the class and Adam gave them an extension problem 

which might have been suggested spontaneously in response to the need of extra work. The 

extension problem was in two parts, the first asked for two different modulus functions that do not 

intersect, the second asked for two that intersect once. “Is that possible? Can you give me two that 

intersect once?”, Adam asked the class, and the dialog below followed: 

                                                 

1 Key stage five is post-16 school education in England i.e. for students aged 16-18. 

2 GCSE stands for the General Certificate of Secondary Education. It is the qualification taken by school students aged 

14–16 in the UK (except Scotland). Its exams are graded on a scale of A* to U, with A* being the highest grade and U 

the unsatisfactory. A grade/mark C reflects an average progress (pass). 

3 C1 stands for Core1 and it refers to one of the mathematics textbooks, used at Adam’s school, for students aged 16-18. 



Student A: y = ǀ x ǀ and y = 2 ǀ x ǀ, shift across  

Adam: Oh, ya it is.  

Student A: Ya, you’ve translated it. 

Student B: y = ǀ x – 4 ǀ and y = 2 ǀ x ǀ. 

Adam looked at the graphs on Autograph and nodded in what seemed like a hesitant agreement 

Student C: Change the slope. 

Adam amended the equations as student C suggested and wrote y = 2 ǀ x – 4 ǀ and y = 2 ǀ x ǀ 

without commenting on student’s B answer  

Adam did not follow up student’s B response or student’s C correction, but moved straight to a 

completely different activity by which he concluded the lesson.  

Analysis 

From his responses to the task and the observation we notice that Adam’s resources were the 

textbook used at his school, help cards, a computer, Autograph, Excel, Google, interactive 

whiteboard, the stick he used at the beginning of the lesson observation, information about exam 

grades and questions, past experiences with students along with the mathematical concepts and 

methods. Adam’s appreciation of Autograph’s ease of use as a tool for visual representation was 

evident, so he used the software to check students’ work, and present graphical solutions before 

going for algebraic ones. So, he would ask his students to solve graphically, check that their 

graphical solutions are right according to the answers on Autograph, and then ask them to find the 

same answers algebraically. However, Adam seemed being confused by the Autograph when it 

came to student B’s answer on which he seemed to hesitantly agree. This might be because only one 

intersection point was visible within the displayed part of the graph. In this case, Adam missed the 

opportunity to use the full affordances of Autograph in order to improve student’s B answer and to 

explain the correct answer to the rest of the class. There was no evidence that the rest of the class, 

apart from student C, realised where the problem was and how it was amended. 

In terms of the TT, Adam indicated sensitivity to students “they don’t know Autograph”, “prior 

knowledge”, “scaffold”, “weaker students” (SS). In his teaching choices, he also showed 

consideration of the syllabus he had to follow, exam questions and the timeframe he had to adhere 

(MC and ML). The way he intended to use resources showed an attempt to balance mathematical 

challenges (MC) (e.g., change 1L, exercises from the textbook) with students’ needs (SS) (e.g. 

students do not know how to use Autograph, providing extension question when needed), and 

management of teaching (ML) (e.g., use technology at the end of the lesson as a group activity, 

encouraging pair work when solving textbook exercises, graphing the equations to see the answers 

and then doing the algebraic solution because “Putting it in a graph might be easier”) with attention 

to management of learning with technology (e.g. technology takes a lot of time). 

Now, we will look at how Adam used the available resources to design and implement his teaching. 

Along with the textbooks that are being used at his schools, he mentioned he would also use help 

cards with hints or examples. These will help him “scaffold” and build on “prior knowledge”, these 

terms seem to be adopted during Adam’s teaching practice or teacher’s education courses for 

reflection on students’ needs (SS). Also, he drew on his teaching experience (as a resource) when he 

mentioned in the interview that students would struggle to “keep track of their calculations” (ML 

and SS). In terms of Autograph as a resource, Adam would use it as a graphing software that helps 



visualise graphs and shapes and shows answers (ML and MC). The data showed the two-way 

influence between Adam and the resources. For example, Adam’s belief that students do not think 

when using Autograph (SS) was influencing the way the resources were used, so he used Autograph 

to show or check answers (MC). Also, the resources available influenced the teacher’s decision, so 

in this instance he used Autograph to show the graphical solution and then asked the students to do 

the algebraic solutions keeping the answers from Autograph in mind. Additionally, Adam frequently 

used the textbook as a source for exercises, so the textbook influenced which mathematical 

challenge he gave the students (MC). At the same time, Adam used the textbook exercises along 

with Autograph and, by doing so, Adam’s way of managing the teaching affected the way the 

textbook was used. Adam’s management of the teaching situation led us to conjecture that his use of 

resources is connected with a potential scheme developed in order to properly use the resources 

available and achieve a specific goal, which in the lesson observation was revising the topic of 

linear and modulus simultaneous equations. We have identified some operational invariants in 

Adam’s schemes, for example the use of Autograph as a class activity managed by the teacher on 

the board. However, we believe that more data and observations are needed to further investigate 

Adam’s schemes. 

Discussion and summary 

The preliminary findings we present in this paper derive from a study on mathematics teachers’ 

practices/intended practices in relation to the used resources and especially mathematics education 

software.  

Adam’s attempt to balance the different domains of activity described by the teaching triad was 

evident in the interview and during the lesson observation; and his interactions with resources were 

influenced by considerations of these domains as well as considerations of exams’ questions and 

grades, time management, and the syllabus. His use of technology resources was led by him on the 

board, because of his concern that he would be teaching mathematics and technology use if his 

students were to work independently or in pairs on computers. Although the teacher used Autograph 

frequently, his use was mainly for checking answers and displaying visual representations. This is 

due to his concern that Autograph offers excessive help and would stop students from thinking 

about the mathematical problems. The pilot observation proved that more clarification about the 

teacher’s actions should be sought from future observations along with pre- and post- lesson 

interviews. This is because the pre- and post- lesson interviews will give more space for the 

teachers’ interpretations of their classroom actions. More observations are also needed to explore 

the teacher’s documentational work and investigate how the teaching triad helps clarify teachers’ 

considerations when working with resources. 
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This paper describes a PhD research project addressing the issue of the quality aspects of dynamic 

materials. Platforms with user-generated Educational Resources for mathematics teaching show a 

wide variety in terms of the quality of the materials. The presented project investigates possible 

quality criteria for dynamic materials based on the opinions of experts in electronic resource 

development, who describe their views on educationally valuable use of dynamic materials. The 

relevance of the findings that have emerged is examined through a further quantitative study. 

Results of this project offer new inputs and ideas for designing manual and/or automatic review 

systems for dynamic material platforms such as the GeoGebra Materials platform. 
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Introduction: Quantity vs. quality of resources  

Numerous online platforms provide a large number of Open Educational Resources (OER) for 

teaching mathematics (e.g. GeoGebra Materials, 2016; LearningApps, 2016; I2Geo, 2016). The 

enormous quantity and variability of quality make it difficult for users to quickly find appropriate 

resources for their teaching (Trgalova, Jahn, & Soury-Lavergne, 2009). The problem of inconsistent 

quality particularly appears on platforms with user-generated Educational Resources, not supported 

by a dedicated editorial team. They are often free or low-cost materials, which are created and 

shared by different types of users (Camilleri, Ehlers, & Pawlowski, 2014; Ott & Hielscher, 2014).  

An example of a large repository of dynamic mathematics materials – GeoGebra Materials 

One example of such a platform is GeoGebra Materials (2016) that already offers more than a half 

million public dynamic materials (as of November, 2016). Since dynamic worksheets – created 

using the dynamic mathematics software GeoGebra – can be uploaded, copied, edited and organized 

into collections by every user, this platform is subject to the aforementioned problem of inconsistent 

quality (Kimeswenger & Hohenwarter, 2014, 2015). According to interviews with GeoGebra users, 

it is not always easy to find high-quality resources on this website that comply with users’ own 

quality standards. Thus, it might be desirable to reconsider the review and ranking systems of a 

platform that might influence the appearance and order of search results. 

Quality and assessment of mathematics materials on platforms 

Several platforms with materials for mathematics teaching have different mechanisms to assess the 

quality of their resources with a similar aim: influencing the search results and ranking the high-

quality materials first (Libbrecht et al., 2008; Ott & Hielscher, 2014). For instance, the project 

Intergeo, Trgalova et al. (2009, p. 1163) characterized nine “relevant indicators” of quality of 

dynamic geometry resources on their platform I2Geo: “metadata, technical aspect, mathematical 

dimension of the content, instrumental dimension of the content, potential of the DG, didactical 



implementation, pedagogical implementation, integration of the resource into a teaching sequence, 

[and] usage reports.” For example, one criterion according to the indicator “content” is “validity” 

with the question “Are the activities in this resource correct from the mathematical point of view?”. 

Intentional vs. non-intentional reviews 

To facilitate the development of a new review system for the GeoGebra Materials platform I 

considered combining an intentional and non-intentional review system. Under the project Intergeo, 

a questionnaire was developed based on the above-mentioned quality indicators. The assessment of 

the quality of a particular resource on the I2Geo platform requires users to respond to 9 broad 

statements, which can be extended optionally to 59 questions – using a scale from ‘I agree’ to ‘I 

disagree’ (Kortenkamp et al., 2009; I2Geo, 2016; Trgalova et al., 2011). Alternative ways for users 

to intentionally contribute to the evaluation of a resource are through ‘likes’, comments or star 

ratings, which are also often implemented on platforms with a large number of resources for 

teaching mathematics – for instance, on CK-12 (2016) or LearningApps (2016). These review 

possibilities are highly depend on the willingness of individual users to contribute to the review 

process of certain materials.  

In many cases, only a small number of the materials that have been viewed have also been reviewed 

by a user. For example, on average, only 0.22% of viewed resources on the video-sharing website 

YouTube have been reviewed by likes or comments (Siersdorfer et al., 2010). Therefore, Ott and 

Hielscher (2014), who investigated the issue of the quality of interactive exercises on the platform 

LearningApps, considered assessing quality in an automatic way. For instance, one quality criterion 

is related to the communication with other users. It turns out that authors of exercises of 

LearningApps with an average well-rated content (4-5 stars out of a maximum of 5 stars) 

communicate more than the average authors. Thus, the absolute number of authors’ messages could 

be used as an evaluation criterion for their created content according to Ott and Hielscher (2014). 

In summary, I am interested to identify suitable methods for reviewing dynamic materials that are 

different to traditional practices, such as solely by questionnaire. It is possible that elements of both 

approaches, where users assess quality intentionally or non-intentionally/automatically, might be 

combined within a new conception of a review system for dynamic instructional materials on the 

GeoGebra Materials platform. 

OECD results – Does technology provide benefits? 

The recent OECD results highlighted the necessity to regard the quality of mathematics teaching 

materials supported by technology. According to the report of OECD (2015) there is no evident 

improvement of students’ achievements in countries that invested heavily on educational ICT 

(Information Communication Technologies) concerning their performance in PISA. Drijvers (2016) 

reflected to the state of the art, and questioned OECD's rather generally formulated claims. 

Assuming that digital technology is generally good or bad is not a proper approach according to 

Drijvers (2016). He emphasized the necessity to ask HOW technologies should be used to benefit 

mathematics learning and encourage high-quality teaching. Higgins, Xiao, and Katsipataki (2012, p. 

3) also highlighted the urgency to think carefully about HOW technology should be used for 

teaching mathematics: 



We need to know more about where and how it is used to greatest effect, then investigate to see if this 

information can be used to help improve learning in other contexts. 

Drijver's interpretation of the OECD results and the above quote of Higgins et al. (2012) also 

indicate that technology use does not always result in good teaching. The interpretation within the 

OECD (2015, p. 3-4) report emphasizes that solely using technology without educational 

considerations is clearly insufficient. Nabb (2010) highlighted that the availability of different 

available devices has forced a fundamental question: “How should such devices be used in the 

teaching and learning of mathematics?”. In my research, I investigated the quality of technology-

supported teaching materials and their ‘valuable’ uses in education. I believe that my study will 

assist to fill the gaps suggested by OECD and Drijvers by offering possible guidelines for 

identifying high-quality technology materials for teaching and learning of mathematics. In 

particular, I aim to address how to recognize and create high-quality materials, which leads me to 

the research questions of this project. 

Research questions 

Q1: What quality criteria for dynamic materials exist according to experts?  

Q2: How do experts describe the educationally valuable use of dynamic materials? 

Q3: How could the conclusions from research questions 1 and 2 contribute to the conceptual design 

of a new review system and the further development of platforms, e.g. “GeoGebra Materials”? 

Research design 

I began by investigating the complexity of quality aspects of dynamic materials using qualitative 

research based on Grounded Theory (Strauss & Corbin, 1996). Experts, in particular mathematics 

teachers and mathematics educators, were interviewed to enquire about their perspective of quality 

materials. I selected international participants who were deeply involved in different projects and 

had been working on the development of instructional materials with GeoGebra for many years, 

thus they can be named as “GeoGebra experts”. I considered different nationalities and cultures to 

reflect on different perspectives concerning decisive criteria for a high-quality material for 

mathematics teaching, because the GeoGebra Materials platform is also used by wide-range of users 

from all over the world. Consequently, I interviewed experts from Hong Kong, Uruguay, England, 

Austria, Hungary and Germany. 

After analyzing the interviews, I created a category system that described core dimensions that 

contributed to the quality of a dynamic material. In addition, I expressed a list of quality criteria for 

dynamic resources in a “theoretical and detailed quality catalog” obtained from the expert 

interviews. These considerations about quality criteria and the educational value of the use of 

dynamic materials should provide new ideas for a conceptual design of a review system for 

platforms like the GeoGebra Materials website. and that might combine different elements of 

existing review systems used by other platforms. Based on the initial results of this stage, I also 

conducted quantitative research and received responses from 84 Italian and Austrian mathematics 

teachers using an online questionnaire and investigated the relevance of the emerged results. 



Examples of quality criteria – The orthocenter of a triangle 

The following example offers an idea what quality aspects were mentioned by experts, in this case 

by a highly-experienced teacher and user of GeoGebra, who referred to a specific dynamic resource 

on the GeoGebra Materials platform focused on the orthocenter of a triangle (see Figure 1). 

     

Figure 1: Dynamic worksheet, Interview 2014-12-11, https://www.geogebra.org/m/mXFpXfza 

The interview with the expert revealed one of many quality criteria for a dynamic resource is 

“supporting the learning of mathematics”. A related question that could be asked of users 

concerning the resource shown in Figure 1 is, “Does the dynamic material support the learning of 

mathematics?”. An answer, from the perspective of the expert, might be, according to the 

instructions next to the construction, students should move point C and observe the effect of its 

position to the triangle orthocenter’s shape and position. The potential of the material is from the 

expert's point of view that the dynamic worksheet allows students to explore through the dynamic 

construction. Depending on the location of the vertices of the triangle, the position of the 

orthocenter changes. For instance, students could discover that the orthocenter lies inside an acute 

triangle and outside of an obtuse triangle. Such materials are intended to encourage students to 

come up with their own assumptions and formulate insights, as in Table 1 summarized. 

Quality 

criterion 

Question How? 

“Supporting 

the learning of 

mathematics” 

 

“Does the dynamic 

material support the 

learning of 

mathematics?” 

Allows students to explore with the dynamic construction 

Allows students to discover mathematics 

Encourages students to make their own assumptions 

Encourages students to formulate insights 

Table 1: Quality criterion “Supporting the learning of mathematics”, Interview 2014-11-12 

This example shows that often many different quality aspects come together to influence the overall 

quality of a particular material. Experts were asked about their opinion and perspectives on the 

potential of instructional dynamic materials in order to investigate the complexity and different 

facets of the issue of quality of dynamic materials. Table 1 summarized the aspects that concerned 

the quality criterion “Supporting the learning of mathematics” considering the dynamic worksheet 



about the orthocenter and showing that many aspects could contribute to the quality of this dynamic 

worksheet. Additionally, I would like to highlight the difficulty to express guidelines or criteria 

defining the quality of a dynamic material: 

[T]he issue of how to maximize the benefits of the integration of technology is hard to capture in 

overarching guidelines. (Drijvers et al., 2010, p. 86) 

Nevertheless, in this paper, I summarize and describe dimensions developed in this study that could 

contribute to the quality evaluation of dynamic materials.  

Eight quality dimensions of dynamic materials 

The analysis of the expert interviews revealed eight core “quality dimensions” as crucial factors: (i) 

author, (ii) mathematical content, (iii) resource type, (iv) supporting the learning of mathematics, (v) 

integration into teaching, (vi) advantages of dynamic material, (vii) design and presentation, and 

(viii) technical aspects.  

These dimensions were compared to the literature and could significantly influence the quality of a 

dynamic material created for mathematics teaching. The “author” (i) can be considered as a main 

quality dimension influencing all of the other above-mentioned items (ii-viii) and is therefore listed 

first. This importance is due to the fact that the creator has a considerable effect on the resource that 

she or he has developed and can assist in the decision of what mathematical content is presented to 

support learning. The creator should consider how to integrate technology to benefit classroom 

activities and to exploit the potential of the dynamic material. Depending on these considerations 

and on the available technology in the classroom, the author adopts the dynamic material's design to 

be as user-friendly as possible and considers teaching aspects related to this kind of material. Next, I 

present examples showing the importance of the author and how certain conditions – such as 

available technology and the author’s view on learning – effect the development of GeoGebra 

resources. 

Importance of the author of a dynamic material 

The majority of experts stated that there is a strong correlation between the quality of the author and 

the created material (see Figure 2). 

    

Figure 2: Correlation between quality of author and dynamic material 

When I asked experts to describe their search strategies to find high-quality materials, the 

importance of the author was pointed out several times. It seems nearly impossible to decide in 

general, whether a specific resource is of “high quality” or not: “A given resource can be ‘good’ in 

one context and ‘poor’ in another.” (Trgalova et al., 2009, p. 1162). Nevertheless, there seem to be 

certain strategies for searching for “good” dynamic materials on the GeoGebra platform and certain 

“authors” were often named. For instance, a British expert mentioned an author, whose: “materials 

are brilliant and if you see something of [him] then it is a guarantee of quality.” (Interview 2015-07-

15) Expert users of GeoGebra seem to search particularly on profile pages of already known “high-



quality authors”, which they expect to produce “good” dynamic materials according to their own 

standards of quality: 

If you get to know people who produce quality materials, they don’t tend to produce quality materials by 

accident. Once, you find one or two things by somebody which is good, you can expect pretty much more 

materials with high quality. (Interview 2015-07-15) 

As mentioned in the beginning, inconsistent quality especially occurs, when users with different 

quality standards share their dynamic materials online. However, this can be regarded not only as a 

disadvantage, but also as an advantage. These user-generated Educational Resources provide a vast 

number of instructional materials ready to be used in classrooms created by different authors 

considering varying circumstances such as diverging curriculums, technical requirements or quality 

standards. 

Available technology 

An author's creation of a dynamic material depends on the available technology and the individual 

classroom situation. In a computer lab, pupils can work independently and actively on dynamic 

materials, but they require clear instructions and questions complementing the applets. In contrast, 

dynamic materials do not necessarily contain instructions if it is the intention for the teacher to 

demonstrate the concepts using a projector. In this case, the teacher can explain the purpose of the 

resource to students during the presentation. Another example of the influence of available 

technology on the design of a dynamic material could be derived from mouse driven approaches as 

opposite to working on touch-sensitive devices. On tablets and mobile phones, learners may directly 

use their fingers to work with a dynamic resource, while on non-touch devices, dynamic materials 

are manipulated with a mouse. In addition, displays of these devices are usually smaller than 

computer monitors and this should be considered within the design of the resource (Kimeswenger & 

Hohenwarter, 2014). In summary, the classroom situation, especially the available technology, 

strongly influences the design and use of dynamic material's design to include task instructions and 

the usability. 

The author's views on learning – learning theories 

Authors' views on learning and on the acquisition of knowledge considerably affect the use of the 

created materials. The structure and design is influenced by teachers’ intentional or non-intentional 

views on learning theories such as behaviorism, cognitivism or constructivism. 

The value of students’ own constructions has been often discussed in educational research papers. 

Mercat, Soury-Lavergne, and Trgalova (2008) mentioned that principles that draw on a 

constructivist approach to teaching and learning are commonly accepted in mathematics education. 

Nevertheless, the development of an instructional material depends on the author’s view on learning 

theories (behaviorism, cognitivism or constructivism). A platform should draw users’ attention to 

high-quality authors who have similar views on learning. On the one hand, this would simplify 

finding “good” materials within a vast number of resources in repositories. On the other hand, these 

high-quality authors should be recognized and honored for their effort and top-quality materials. 



Identification and recognition of high-quality authors 

Experts suggested to allow users to follow particular authors on the website. Based on these 

interview results, the "Followers" Badge was released on the resource-sharing platform GeoGebra 

Materials (March 2016). It seems to be important that a review system of a platform enables users to 

find materials of specific authors quickly who adhere to similar quality standards. It should also 

allow following these authors and support finding of these dynamic materials by giving resources of 

the ‘followed’ authors a higher priority among the search results. 

The “Followers” Badge could help identifying high-quality authors chosen by other users. It 

represents some kind of recognition outlined by a mathematics educator of Hong Kong: 

If the material is good [on the platform GeoGebra Materials], I think the designer has paid a lot of effort. 

He or she need more encouragement or appreciation. (Interview 2015-07-13) 

Caprotti and Seppälä (2007, p. 7) also emphasized that authors should be respected and recognized 

for their high-quality resources. Users will share more materials if their work is recognized – 

“Credits to creators”. 

Conclusion 

This study addresses the key issue: What is a high-quality material for mathematics teaching 

supported by technology? The internet offers an immeasurably large number of diverse mathematics 

teaching and learning resources proving it difficult to navigate for ordinary teachers and students. 

Therefore, it would be beneficial to identify and assess the quality of dynamic materials before using 

them in the classroom. It seems important that a review system influencing the search result order of 

a platform enables users to quickly find materials of specific authors who adhere to similar quality 

standards as well as to allow following these authors. Additionally, the platform should give 

resources of followed authors higher priority in search results, but it is also important to offer 

chances for new authors to be represented among the highlighted search results. Further analysis of 

different expert interviews and 84 responses of an online questionnaire will examine the complexity 

of the quality of dynamic materials in greater detail resulting in a detailed catalog of quality criteria. 

With this background knowledge, additional suggestions for intentional and non-intentional review 

systems for dynamic material platforms such as GeoGebra Materials could be devised. Beyond the 

PhD project described in this paper, software developers may implement further results of this study 

on the material sharing platform GeoGebra to improve finding of high-quality materials for 

mathematics teaching and learning. Further research will be necessary to investigate these new 

releases and support their continued improvement. 
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This study focuses on the design of a novel genre of e-books incorporating dynamic constructionist 

artefacts-widgets that aim to induce mathematical creativity allowing students to interact with their 

content in significant ways (called ‘c-books’, c for creativity). The design of the c-books is addressed 

through collectives of educational professionals with a diversity of expertise. The analysis of the 

design process of a c-book on Curvature shows that the interactions fostered by the socio-technical 

environment allowed diverse practitioners to learn from, work with and collaborate across their 

boundaries supported by collectively evolving artefacts as boundary objects. The end-product of this 

social creative process, the c-book on Curvature, evolved through the constant versioning of a 

narrative intertwined with malleable dynamic constructionist artefacts.  

Keywords: Curvature, design of digital resources, social creativity, documentational approach of 

didactics, theory networking.   

Introduction 

Curvature is weakly addressed as a conceptual field (Vergnaud, 2009) with respect to its potential to 

generate environments rich in opportunities for mathematical meaning making by students. In 

traditional curricula it lies disparately in Euclidean Geometry sections, in Algebra and Calculus 

depicting systematic co-variation, in 3D Geometry but in simple applications like conic sections. The 

dynamic and diverse representational repertoire provided by digital media allows us to approach 

curvature anew with a disposition to re-structure (to use Wilensky & Papert's term, 2010) the ways in 

which mathematics is conceptualized in education in the quest to make it more attractive to students, 

affording meaning making, creative mathematical thinking (through problem-solving/posing and 

constructionist activity) and engagement. Previous research has shown that dynamic digital 

environments and especially 3D spatial environments support students in constructing meanings about 

challenging conceptual fields (Kynigos & Psycharis, 2003; Zantzos & Kynigos 2012). In this study, we 

look at a digital medium affording the meshing of narrative with malleable constructionist artefacts 

such as half-baked microworlds (Kynigos, 2007) and study the ways in which a diverse community of 

professionals jointly design narratives around curvature with an explicit interest to afford creative 

thinking in their prospective students. We perceived of the medium which we called the 'c-book', as 

potentially affording thinking out of the box, allowing for restructuration of mathematical conceptual 

fields. We also began from the premise that collaborative design by educational professionals with 

diverse expertise would generate a socio-technical environment more likely to produce creative ways 

to enhance creative mathematical thinking (CMT) for students. In this study, the designed c-book 

eventually focused on a story involving comparisons between Archimedes' and exponential spirals. In 

addition, by involving in-service teachers in all stages of the design process, we aimed to induce their 

reflection on the affordances and pedagogies incorporated in the tools, the tasks and narratives under 



development, as well as the changes to the mathematical content and the classroom practices that the 

presence of technology brings about.  

Theoretical background 

The design of digital educational resources for fostering mathematical creativity and meaning 

generating in a mathematically rich conceptual field like curvature is a complex task, which brings 

the issue and study of creativity in the design to the fore. In the design, process and product are 

inextricably linked in the sense that the former draws its very existence on the pursuit of the creation 

of some novel products, and that a creative product acquires its substance as the end-result of some 

design processes. However, the role of creativity in instructional design, or specifically in 

educational resource design, has been only recently acknowledged (Clinton & Hokanson, 2012).  In 

this study, we looked at the process of designing such a resource collaboratively, focusing on the 

emergence of Social Creativity (e.g., Fischer 2005; 2014) which we employed as a theoretical frame 

to both understand and foster creativity in collective design. Our designer communities were 

engineered to include diverse expertise and personal histories of educational professionals (we 

borrowed Fischer's term 'communities of interest' or CoI) working together and using digital tools 

specially designed to amplify the outcome of their collaborative efforts. We hypothesized that social 

creativity builds on the wealth of diverse individual perspectives brought in by different 

stakeholders in addressing a design problem of common concern and focuses on the interactions 

occurring in socio-technical environments (Fischer, 2014) i.e., among the individual members of a 

community and between them and particular technologies and artefacts. 

The diversity within a CoI although being a source of discontinuities and breakdowns in 

communication, can be also a source of new ideas, insights and artefacts. According to Akkerman and 

Bakker (2011) boundaries are defined as the “sociocultural differences that give rise to discontinuities 

in action and interaction” (p. 139), which can be overcome through boundary crossing processes, i.e., 

efforts made by individuals or groups ‘at boundaries’ to establish or restore continuity in action or 

interaction across practices, leading to learning, identity development and re-conceptualization of 

practice. These efforts are facilitated by boundary objects (Fischer, 2005) which are externalizations of 

ideas that help to establish and maintain a common ground supporting communication and shared 

understanding. They come in the form of artefacts (such as specially designed computer tools), 

discourses (as a common language), or processes that allow the coordination of actions. Thus, 

computational support for CoIs should enable the creation, discussion and refinement of boundary 

objects that allow different knowledge systems to interact (Fischer, 2005). 

In our study, we worked with educational designers and thus needed to also employ a framework to 

help us understand the context particularly of teachers as resource designers. Thus, we adopted the 

documentational approach of didactics (Gueudet & Trouche, 2009), which focuses on the 

interactions between mathematics teachers and resources and their consequences for professional 

growth. Teachers ‘learn’ when selecting, transforming, implementing and revising resources in the 

course of their teaching. The documentational approach proposes a specific conceptualisation of this 

learning as a documentational genesis, which jointly generates a new resource and a scheme of 

utilisation of this resource in an ongoing process. In relation to collectives instead of individual 

teachers, community documentational genesis describes the process of gathering, creating and 



sharing resources to achieve the teaching goals of the community. The result of this process, the 

community documentation, is composed of the shared repertoire of resources and shared associated 

knowledge (Gueudet & Trouche, 2012). A collaborative design activity, and more particularly an 

activity involving teachers as designers of creative educational resources, is thus a process that is 

expected to trigger collective documentational genesis. The present study aims to unfold social 

creativity, located in and nurtured by the boundary crossing encounters among the CoI members, 

and collective documentational genesis processes in the design of digital creative mathematical 

resources for curvature, which takes place in a socio-technical environment consisting of a 

community of diverse educational professionals and a digital environment specially designed to 

allow them coordinate their efforts in designing these resources. 

Method 

The Community of Interest (CoI) 

A wide range of expertise was brought together in the design of the c-book “Curves in Space”. The 

seven CoI members participating in this joint design were practitioners in different levels of 

education (from primary to tertiary education) specialized in mathematics, mathematics education, 

creative writing, computer mediated communication and the design of digital tools for mathematics 

education. This diversity in knowledge domains, perspectives and cultures was meant to enhance 

the CoI’s creative potential. 

The Computational environment 

The C-book environment provides the ‘CoICode workspace’, a tool for asynchronous online 

discussions allowing designers to choose between a threaded forum discussion organised in a tree-like 

structure (see Figure 1) and a mind map view. When posting a contribution, CoI members have to state 

its nature (i.e., alternative, contributory, objecting, off task or management) by using a specific icon, 

and can attach and refer to objects like online resources, texts or widget instances that reside in the c-

book under construction. In addition, the environment contains a platform which is the space for 

authoring (the C-book authoring tool) and the space where students interact with the c-book (the C-

book player). The platform is designed to incorporate pages with dynamic and configurable widget 

instances accompanied by corresponding narratives (see Figure 2). In this case, MaLT+, a 3D Logo-

Based Turtle Geometry tool affording dynamic manipulation of variable values was used 

(http://etl.ppp.uoa.gr/malt2). Spirals are generated by either constant or incremental curve and torsion 

changes to a turtle respectively repeating very small displacements.  

Data and analytical approach 

Our data were the 124 contributions uploaded in the ‘Curves in Space’ workspace from the outset of 

the design process (6/4/2015) until the final version of the c-book was released (23/7/2015). The 

analysis of the contributions posted in CoICode involved the selection and analysis of critical 

episodes, i.e., relatively brief and uninterrupted periods in CoICode discussion, shedding light on 

some important aspect of the social creativity processes and/or products developed, by focusing on 

the interactions among the CoI members and with the C-book technology. Furthermore, we traced 

paths of socially creative ideas, which stretch over longer periods of time and include several critical 

episodes, in terms of the critical moments in their evolution from the initial to the final idea (i.e., an 



idea implemented and incorporated into some part of the c-book). The emphasis was on unveiling 

the social nature of the processes involved in the development of ideas and in the examination of the 

C-book environment features which added to the formulation, elaboration and cross-fertilisation of 

the CoI members’ ideas.  

  

Figure 1: Excerpt from the CoICode 

workspace depicting critical episode 1 

Figure 2: A ‘Curves in Space’ c-book page asking students 

to fix the code for designing the Olympic rings 

Results 

Critical episode: The design of a widget instance 

The episode selected (see Figure 1) started one month after the outset of the design process, it lasted 8 

days (14/5-20/5/15) and the participants in it were three CoI members: George, Mathematics teacher 

and graduate student in Mathematics education, Dimitra, Literature teacher and graduate student in 

ICT in Education, specialised in creative writing and Marianthi, MA ICT in Education graduate and 

developer. At that time an exchange of resources was taking place on the mathematical idea of Helix-

Spiral between a senior mathematician (Stefanos) and George. The discussion is initiated by Dimitra 

(14/5) who, inspired by the airplane functionality in MaLT+, suggests that students calculate the 

distance covered by airplanes performing spiral movement during air shows. George (14/5) responds 

enthusiastically, elaborates on Dimitra’s idea and provides a Wikipedia link on jets streams. Marianthi 

then puts forth a suggestion on a half-baked widget instance (i.e., a ‘buggy’ procedure where students 

are asked to experiment, figure out what is wrong or superfluous in the code and correct it): 

Marianthi (19/5): […] in MaLT+ I created a procedure where the airplane movement forms the 

Olympic rings. I am sending you the complete code so that we can half-bake it, 

e.g. it can turn by a 45-degree angle in the last two turns so that the rings do not 

come out straight (attaches ‘Olympic_correct.txt’) 

Marianthi (19/5): I am sending you the one I wrote with the wrong angles (attaches 

‘Olympic_wrong.txt’) 



George (20/5): I like it a lot! I suggest not to half-bake it, but ask students to create it by 

themselves by looking at an image of the Olympic rings […]  

Marianthi (20/5): […] I think if it’s half-baked it will be more challenging for students to correct 

it than create it from scratch. Also, we can focus on specific mathematical topics 

like the turn angle or the distance of cycles. 

George (20/5): […] Since the unit addresses senior students it would more creative to allow them 

work without such restrictions. If we half-bake it though, wouldn’t it be better to 

use variables for the angles? 

George (20/5) refers to drones as a more innovative alternative to airplanes and designs two alternative 

versions of the widget instance in which he adopts Marianthi’s proposal. Finally, one of his versions 

was incorporated in the c-book without further negotiation including his suggestion of imprinting the 

traces of a drone instead of a plane (see Figure 2). This episode shows how the collective resource 

system is enriched through the sharing, reflection and transformation of individual resources to 

boundary resources. What is more, boundary crossing interactions between CoI members allowed the 

cross-fertilization of diverse perspectives: mathematics, digital tools development and creative writing. 

Dimitra, having studied existing resources is inspired to articulate the airplane idea stating in what 

ways it deviates from what has been heard before. Marianthi turns Dimitra’s idea into a ‘tangible’ 

object, i.e., a widget instance, while George expresses considerations initiating an interesting exchange 

on the pedagogical affordances of different types of activities. He brings CMT to the fore and poses 

the challenge to other members to directly argue on specific pedagogical and technical affordances of 

the proposed activities. The final version of the instance appears in the c-book as a result of the 

coordination of George’s and Marianthi’s ideas. Social creativity is thus enhanced by exchanging, 

discussing on and modifying half-baked curve designs acting as boundary objects, allowing the 

communication and coordination of diverse perspectives. Mathematical resources thus take a 

mediational role between diverse perspectives undergoing several transformations and revisions until 

they are reified as widget instances in the c-book. As teachers negotiate over an emergent 

mathematical construction, they are challenged to reflect on and reconsider their beliefs and practices 

as well as their meanings of mathematical objects and relationships, thus expand their learning. 

The evolutionary path of the narrative 

The path presented below is related to the evolution of the narrative of the c-book. The respective path 

includes 52 contributions and stretches along the entire workspace. Early on in the design process, CoI 

members were concerned with devising a narrative that, together with appropriate widget instances, 

would provide opportunities for mathematization and meaning making around curvature. The 

mathematical affordances of various digital tools also became an early topic of discussion so that tools, 

narrative and mathematical concepts were interrelated in the design of the c-book. Below we provide 

decisive contributions from individual CoI members and stress the social nature of the processes 

involved in the development of the scenario from its first appearance to its incorporation in the c-book. 

At that time a number of widget instances designed to afford creativity and meaning making in 

curvature took the role of boundary objects by evolving through multiple cycles. However, a cohesive 

narrative that would incorporate and join together these elements was pending, despite the fact that 

some interesting ideas had been already suggested. The path sheds light into how the CoI members’ 



conceptions about their productions in terms of didactical design (widget instances and corresponding 

learning activities) intertwined with their ideas about the narrative of the c-book. Stefanos (22/6) 

presents a -rather loose- synthesis of his own and other members’ ideas on the c-book narrative 

integrated in a new version of the c-book: the history of curves, two detectives working to solve a 

crime, a 3d printer laboratory, and solving riddles related to spirals. George (24/6) reacts 

enthusiastically and attaches an elaborated version of Stefanos’ story incorporating Sylvie’s comments 

on enhancing the story: two renown detectives (Hercule Poirot and Sherlock Holmes) try to solve a 

mysterious robbery in a laboratory, which is connected to constructions related to curvature. Sylvie, a 

teacher and creative writing specialist who joins the discussion at that time, presents a totally different 

idea on the structure of the scenario relying on contemporary characters, which fuels an intense debate. 

Stefanos (25/6) objects to Sylvie’s suggestion on the grounds that the storyline should blend with the 

widget instances so that students follow a learning trajectory working with tools of gradual increase in 

complexity. He also posts a document in which he justifies his rationale for building his own version 

in which mathematical concepts are presented in a coherent and meaningful way. George and Katerina 

(computer mediated communication specialist) react to Stefanos’ post: 

George (26/6): Very insightful comments, especially in relation to the way the current narrative 

supports the smooth integration of the learning sequence on curvature. […] 

Wouldn’t it be better to make some corrections without discarding what we’ve 

done until now? […] (He attaches ‘What a strange morning in the laboratory.doc’ 

where he expands his previous version to include logarithmic spirals). 

Katerina (27/7): […] I don’t think that the new version rejects previous constructs and ideas […] 

but rather promotes them by organically binding them with a fresh, creative story. 

Up to this point there are two opposing views on the scenario; a mathematics oriented strict, 

structured and robust learning scenario mainly supported by a senior member who is an experienced 

Mathematician, teacher and researcher (Stefanos) and a more innovative one which embodies a set 

of characters and situations of contemporary culture. This tension is released when George (28/7) 

replying to Katerina, posts a new synthetic version of the scenario. In the next two versions of the 

scenario Sylvie, Katerina and George collaborate so that Sylvie presents a more robust synthetic 

version that organically integrates the designed widget instances. The coordination of the two 

prevalent perspectives in the design of the c-book, i.e., the mathematics and the creative writing 

perspective, made possible the infusion of creative elements in the narrative, while not losing sight 

of its mathematical focus on curvature. It is noteworthy that these two perspectives are not only 

gradually reconciled after the catalytic intervention of George, they also enrich each other; the 

senior mathematician later proposes two additional ideas on the scenario much more innovative 

than his initial ones, while the creative writing specialist, after closely collaborating with 

mathematicians, comes to adjust her story in a synthetic version. These reflective processes are 

essential for the interweavement of widget instances with the narrative into a concise whole. Social 

creativity is thus facilitated by the meshing of the Sherlock Holmes narrative with curvature, which 

can only have emerged because of the diversity in the CoI. Furthermore, the process of story 

versioning boosts social creativity as it allows for the generation of new ideas which capitalize on, 

object to and finally synthesize previous ones. It is an ongoing process where ideas are adjusted, 

adapted and combined to produce new documents. 



Conclusions 

The analysis of social creativity in the design process of a c-book on Curvature focused on the 

boundary crossing interactions between the CoI members and the role of the narrative and the widget 

instances as key resources for the development of social creativity. Two important boundary crossing 

processes, coordination and reflection, have enhanced social creativity establishing communication 

between different communities of practice: Mathematics, Literacy/creative writing and Digital tools 

development. Reflection, on the other hand, is the process which gave ground to the fertile synthesis of 

different views. Moreover, the story and its versions as a key resource was paramount to social 

creativity within the CoI. The story versioning process allowed for warm debate and idea exchange to 

take place: it created common ground for all CoI members to unfold their expertise, as well as the 

meshing of narrative with constructionist artefacts-widgets on curvature. As a result, a collective 

document, that is the c-book, was developed, associating various shared resources (activities, widget 

instances, text, and CMT representations) and a scheme for interweaving all these elements in a 

coherent whole. The issues that emerged during the construction of successive c-book versions 

challenged teachers’ perceptions with respect to the teaching and learning of curvature resulting in 

innovative approaches fostering creativity and meaning-making. Embedding the comparison of 

constant to incremental turn and torsion changes to generate spirals in space within a Sherlock Holmes 

'who dun it' story involved stepping out of curriculum structures for curvature and making a new 

conceptual field available to students connecting curvature with functions and 3D geometry.  

The use of different theoretical perspectives, i.e., Social Creativity, Documentational Genesis and 

Boundary Crossing, has helped us gain a deeper insight in the phenomena in question. In our framework 

of analysis, the Social Creativity perspective provides the lens thought which the social dimension of 

teachers’ documentational genesis process can be approached. Moreover, resources take the role of 

boundary objects allowing the coordination of diverse perspectives leading to the generation of creative 

products (the c-book as an end-product). Thus, by coordinating these theoretical approaches, we seek to 

develop a networked understanding (Prediger, Bikner-Ahsbahs, & Arzarello, 2008) of the collective 

design of a c-book as a novel digital medium to foster students’ creative mathematical thinking; a single 

theory would not suffice for understanding such a complex process. Even though drawing connections 

between theories is not a trivial task, such networks are potentially powerful and useful for the further 

development of mathematics education as a scientific field. (Prediger et al, 2008). 
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This paper investigates how mathematics teachers plan lessons with a recently implemented Danish 

learning platform designed to support teachers in planning lessons in line with a recent objective-

oriented curriculum. Drawing on data from observations of and interviews with teachers, three 

mathematics teachers’ joint planning of a lesson in geometry with a learning platform called 

Meebook is analyzed using the instrumental approach. It is concluded that the interface in Meebook 

orients the teachers work toward what the students should do rather than what they should learn, 

although the latter is a key intention behind the implementation of the platform. It is also concluded 

that when the teachers succeed in using learning objectives actively in their planning, the objectives 

support the teachers to design lessons that correspond with their intentions. The paper concludes 

with a discussion of the dialectics between learning objectives and planned activities.   

Keywords: Planning lessons, objective-oriented curriculum, learning platforms. 

Introduction 

Teachers’ planning of lessons is an important aspect of teaching as the decisions made at this stage 

shape students’ opportunities to learn (Superfine, 2008). Planning is especially important for 

mathematics teachers as techniques and tools are closely linked to mathematical conceptualizations 

(Haspekian, 2005). It is therefore essential that teachers’ choices of resources and tasks resonate 

with the teachers’ intentions of what the students should learn. Currently, an increased number of 

technologies are becoming available that support teachers to plan lessons (Johnson, Adams Becker, 

& Hall, 2015) by giving teachers access to new resources and allowing them to design their own 

materials (Gueudet, Pepin, Sabra, & Trouche, 2016). Although such technologies bring new 

opportunities, they also bring challenges as new resources and materials often require mathematics 

teachers to reconsider how environments that give the students the right opportunities to learn can 

be designed (Haspekian, 2005). 

In Denmark, learning platforms are currently being implemented that are an exemplar case of new 

technologies that support teachers in planning lessons. Among other things, the learning platforms 

serve to give students, parents and teachers access to plans for students’ learning progression, and 

the platforms are designed to support teachers in planning and sharing lessons (KL, 2014). The 

learning platforms share a number of characteristics with learning management systems (LMSs; see, 

for example, Watson & Watson, 2007), but learning platforms also integrate affordances that are not 

typically associated with LMSs. Although LMSs typically are designed to handle all aspects of 

student learning, the learning platforms also support teachers to design lessons by giving the 

teachers access to online curriculum materials and enabling the teachers to create their own. 

Previous research about platforms that support teachers’ planning has identified a need to support 

teachers to design lessons and choose resources that are in line with the teachers’ intentions for 

students’ learning (Hodgson, Rønningen, Skogvold, & Tomlison, 2010). Danish learning platforms 



were implemented in the wake of a recent curriculum reform that foregrounds learning objectives, 

and the idea is that learning objectives will support teachers to make choices that reflect the 

teachers’ intentions for student learning. Although the learning platforms are already used widely in 

Danish primary schools, there is yet little research on how teachers plan lessons with these 

platforms. This paper investigates how Danish mathematics teachers plan lessons with one of the 

most widely chosen platforms, called Meebook (https://meebook.com/). It derives from a small-

scale pilot study in an ongoing PhD-project. The paper contributes to the literature as it offers the 

first empirical analyses of how Meebook mediates teachers’ planning and discusses the 

consequences of this planning for the orientation of their planning and of the foundation on which 

teachers build their choices of resources and tasks. The data in the study consists of a case of three 

teachers’ joint planning and individual interviews with the same teachers. I begin the paper by 

explaining the Danish context and some of the key ideas behind the implementation of the learning 

platforms. I then introduce the instrumental genesis framework and my methodological approach 

and analyze a case of three teachers’ joint planning with Meebook. I conclude with a discussion 

about the dialectics between learning goals and planned activities in which I draw on a concept of 

rational and relation modes of planning (John, 2006; Superfine, 2008).   

Context 

In 2014, as part of building a national digital infrastructure, the national government decided that all 

municipalities in Denmark would be required to purchase and implement a learning platform during 

the 2016/2017 school year. Instead of developing a common, national learning platform, the 

Government and Local Government Denmark (KL) allowed municipalities in Denmark to choose a 

platform that best meets their needs. As some degree of uniformity was needed, KL stated 64 

functional requirements that the learning platforms must fulfill in order to be approved (KL, 2014). 

Among other things, these requirements included that the platforms should support the 

implementation of an objective-oriented curriculum reform and that they should support teachers to 

define the learning objectives for each lesson (KL, 2014). The idea was that teachers would begin 

their planning by defining a learning objective and then design or choose activities and resources 

that will enable the students to attain the objectives. Currently, six platforms are available that fulfill 

the 64 functional requirements of Local Government Denmark. These platforms differ in design, the 

amount and type of support that teachers are offered in planning lessons and how the national 

curriculum is considered as part of teachers’ planning.  

The school in which the present study took place is in a municipality that has chosen Meebook, one 

of the most widely chosen platforms. In contrast to some of the other available platforms (for 

example, https://minuddannelse.net), Meebook is characterized by an interface that allows teachers 

to choose how and when to integrate learning objectives in their planning. For example, 

MinUddannelse requires teachers to define a learning objective as the initial step of planning a 

lesson. The school had begun a gradual implementation of Meebook in December 2014 when the 

teachers initially were encouraged by school leaders to experiment with the platform. In August 

2015, school leaders made it mandatory for teachers to use Meebook to plan lessons in both 

mathematics and native language education.  

https://meebook.com/)
https://minuddannelse.net/


The Meebook interface 

Figure 1 illustrates Meebook’s interface to create a course and add a chapter, text, picture, video 

material, a PDF document, a hyperlink, a task or activity, e-textbook material or a student reflection. 

In this interface, the teacher defines what should happen in the lesson and which resources should 

be integrated. The learning objectives are in a separate tab that is illustrated in Figure 2 and can be 

accessed at individual teachers’ convenience. However, a learning objective must be defined before 

the course can be saved.  

 

Figure 1: Meebook’s interface for teachers to plan a course/lesson 

Figure 2 illustrates the interface in Meebook where teachers can define learning objectives for the 

course. Here, the teachers can also access the learning objectives from the national curriculum 

through a link and select those addressed by the course or lesson. Teachers can also define their own 

objectives.   

  

Figure 2: Meebook’s interface in the tab called “Add skill, knowledge and competence objectives”  

Theoretical framework and research questions 

In this paper, I draw on the instrumental approach (Guin, Ruthven, & Trouche, 2005). The 

instrumental approach is a framework developed to study the consequences of different kinds of 

tools, technologies and software for learning and teaching mathematics (Gueudet, Buteau, Mesa, & 
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Misfeldt, 2014). A key aspect of this approach is the assumption that the relation between design 

and use is dialectic rather than one-sided (Haspekian, 2005). When a subject uses an artifact in an 

activity with a specific objective in mind, the artifact can shape the appearance of the activity or 

even force the subject to redefine the objective of the activity. The subject’s use of the artifact can, 

however, also exceed the intended uses of the artifact. The latter is referred to as design that 

continues in use (Ejsing-Duun & Misfeldt, 2015).  

The instrumental approach distinguishes between artifacts and instruments. An artifact is defined as 

a cultural social construct that offers mediations of human activity, and an instrument is defined as 

the product of a subject’s use of the artifact for certain activities with a certain objective (Gueudet & 

Trouche, 2009). An artifact therefore becomes an instrument when the artifact is used by a subject. 

This process is called instrumental genesis and results in a change in the mediating artifact and in 

the activity the artifact is used for. These two opposite processes (the shaping and the being shaped) 

are referred to as instrumentation and instrumentalization (Haspekian, 2005). Instrumentation is the 

process in which the subject’s use of an artifact shapes the artifact, while instrumentalization is the 

process in which the artifact shapes the subject’s activity (Gueudet & Trouche, 2009). The approach 

also distinguishes between pragmatic and epistemic mediations (Rabardel & Bourmaud, 2003). 

Pragmatic mediations are the use of technology to perform a task (Rabardel and Bourmaud use the 

hammer as an example) while epistemic mediations are the use of technology that allows the subject 

to learn about the object through the use of the technology (Rabardel and Bourmaud use the 

microscope as an example). Finally, the framework distinguishes between different orientations of 

instrumentations and proposes three main orientations: orientations toward the object of the activity, 

toward other subjects or toward oneself (Rabardel & Bourmaud 2003). I use this framework to 

address the following research question: Which mediations of the teachers’ work occur as they plan 

lessons with Meebook, what are the consequences for the orientation of their work and for the 

foundation on which they build their choices of resources and tasks for the lesson?  

Method 

The data in this study comprised observations of two 2-hour meetings during which three teachers 

collectively planned lessons, and of individual interviews with the three teachers. In general, the 

teachers expressed a positive attitude towards Meebook, although none of them had previous 

experience of using LMSs. The observations focused on: 1) the materials and task that was chosen 

by the teachers; 2) whom or what their planning was directed towards; and 3) what the foundation 

of their decisions seemed to be. The meetings, which took place at the school where the teachers 

worked, were documented by video recordings and field notes taken during the session. The video 

was recorded with a high-resolution camera that showed how the teachers maneuvered in Meebook. 

All video recordings were subsequently transcribed as closely to the spoken word as possible and 

supplemented by the notes taken during the observation.      

The interviews were carried out after the observations and supplied data about what the teachers 

found important to consider when planning lessons—in general and related to the observed sessions. 

The interviews also collected data about the teachers’ educational backgrounds and their seniority.  

For this paper, I use a single case (Yin, 2014) that was selected as it gives insight into the relation 

between the teachers’ planning practices and their use of the different interfaces in Meebook. 



Although the amount of data in this study is sparse, the case reveals important problems and 

prospects associated with supporting mathematics teachers’ planning with technologies, such as 

learning platforms. The case also identifies issues that future research in this area could consider.  

Case 

This case took place during three teachers’ joint planning of a lesson on geometry in middle school 

(students aged 10–11). The three teachers were Karen, Miriam and Gina. At the time this session 

took place, the teachers were two weeks into a three-week course on geometry. Karen is 29 and has 

2 years of teaching experience, Gina is 40 years of age and has 5 years of experience and Miriam is 

46 and has 22 years of experience teaching.    

During the meeting, the teachers alternately discuss how to plan the lesson and write their decisions 

in Meebook in the tab illustrated in figure 1. While working in this tab, they decide that the students 

should work in groups and categorize the geometric figures they had been working with for the last 

two weeks (rectangles, squares, trapeziums, parallelograms and rhombuses). The teachers agree that 

each group should be given cardboard figures in the shape of these five figures and that the students 

should categorize the figures by placing them on an A2 piece of paper. Gina then openly poses the 

question whether the students should categorize the figures ‘freely’ or whether they should follow 

certain instructions. As the teachers discuss this matter without immediately reaching an agreement, 

Karen turns to the tab in Meebook where they have written the learning objectives for the course 

(illustrated in Figure 2). Karen reads the objectives aloud to her colleagues: “According to the 

objectives, the students should be able to distinguish between the five figures and categorize 

different types of figures according to their side lengths and angle sizes.” Miriam argues that if these 

objectives should be addressed, then the students should identify the figures from their properties 

and that they therefore should be given instructions to do so. The two other teachers concede. Gina 

then comments: “If we give them figures to categorize, how do we make sure that they actually talk 

about the properties of the figure?” This comment makes the teachers aware that there is a risk that 

the students will categorize the figures from what they spontaneously believe the figures look like. 

The teachers find this likely, as the students have been working with the same five figures for two 

weeks at this point. This method of categorizing the figures would not target the objective for the 

lesson. The teachers therefore agree to hinder this from happening by cutting the cardboard figures 

into shapes that are unlike the figures the students have been exposed to during the last two weeks 

(for example, a ‘crooked’ trapeze, as Miriam calls it). They believe that this will make it difficult for 

the students to recognize the figures and that this will prime the students to actually investigate the 

properties of the figures and to do their categorization from this. The teachers also decide to instruct 

the groups to take turns picking a figure from a pile of cardboard with the figures facing downward, 

then place the figure in the category on the A2 paper where they believe it belongs and explain to 

the rest of the group why they believe it belongs there.  

Results 

The teachers’ planning of the lesson initially takes place in the interface illustrated in Figure 1. This 

interface in Meebook displays an overview of the resources available to the teachers and presents a 

blank field for them to fill. This blank field refers to the content of the lesson: which resources they 

will draw on and which activities they will include in the lesson. Meebook’s visualization of the 



content as the first aspect of the lesson to consider seems to be reflected in the teachers’ initial 

decision that the students should categorize laminated geometric cardboard figures and that this 

activity should be carried out in groups. At this stage, the teachers’ activity is oriented toward the 

object (the lesson to be planned), and their objective seems to be to decide which resources and task 

to include in the lesson. This priority of the content contradicts all three of the teachers’ statements 

in the interviews where they emphasized the importance of beginning their planning by defining the 

objectives for the lesson. Miriam expresses it in the following way: “We always begin our planning 

with the learning objectives. That way, we can find or design the resources and tasks that fit the 

objectives. That’s the whole starting point when we plan lessons.” This suggests that the teachers’ 

use of Meebook leads to a shift in the orientation of their activity from being oriented toward 

learning objectives toward being oriented toward defining the content. A consequence is that the 

choice of the cardboard figures does not reflect considerations about which specific geometric 

learning the students should obtain. This choice seems rather to reflect that the current topic is 

geometry. In the interviews, Karen and Miriam stated that they found it important that students have 

the chance to verbally express themselves in mathematics, as they believe that this creates good 

opportunities to learn. It is possible that the teachers’ choice of organizing the lesson in groups is a 

reflection of this belief. The teachers’ choice of using cardboard figures and that the students should 

categorize the figures, however, rather seems to reflect an objective of deciding what the students 

should do than what the students should learn. As previously stated, a subject’s use of an artifact in 

an activity can shape the appearance of the activity or even force the subject to redefine the 

objective of the activity. In this case, Meebook’s visualization of the activity ‘planning lessons’ 

seems to instrument the teachers’ activity and orient it toward deciding the content for the course 

instead of prompting discussions about what the students should learn and which resources and 

tasks would enable this learning to occur. The case does not clearly illustrate an epistemic nor a 

pragmatic mediation. The case however illustrates that the teachers’ use of Meebook does not lead 

to a new understanding of how the lesson could be planned according to their intentions.   

As the teachers’ meeting continues, they discuss whether the students should categorize the figures 

freely or whether their categorization should be guided by specific instructions. This decision 

requires a basis, and to find this basis, Karen turns to the tab in Meebook’s interface where the 

teachers previously have written the learning objectives for the course. By turning to the objectives, 

the teachers become aware that the setting requires certain instructions if the learning objectives 

should be addressed. In this manner, the teachers use their knowledge about the students to 

anticipate how they would engage in solving a task and what learning in which this would result. 

This can be seen as an instrumentation of Meebook as the teachers merge two otherwise separate 

interfaces in Meebook. This results in the opportunity for an epistemic mediation of their activity 

that did not occur when the teachers worked in Meebook’s content interface. As the learning 

objectives in Meebook become available for the teachers to use, they are enabled to explore their 

design of the lesson and modify it according to their intentions. At this point, the teachers’ activity 

is characterized by a shift in orientation from the content of the lessons toward other subjects: the 

students, and more specifically, the students’ learning. In other words, the teachers’ activity shifts 

from being oriented toward what the students should do toward designing a lesson that creates 

opportunities for the students to learn something specific.  



Discussion and conclusion 

One of the main ideas behind implementing learning platforms in Denmark is the assumption that 

integrating learning objectives in the platforms will support teachers in choosing resources that 

correspond to the teachers’ intentions for student learning. However, this pilot study suggests that it 

is not sufficient that learning objectives are integrated as a part of teachers’ planning in the 

platforms, but that the ways the learning objectives are integrated in the design of technologies are 

important. In the case presented here, Meebook’s interface separates the objectives from the content 

of the course that in this case implies that the teachers’ choice of resources is separate from the 

learning objectives. Considering the importance of techniques and tools for mathematical 

conceptualizations, it is crucial that the choice of resources and tasks is carefully considered. This 

does not seem to be the case here. The case demonstrates that learning objectives can be valuable 

assets and work as epistemic mediators for teachers when they plan lessons. The teachers’ use of the 

learning objectives enables the teachers to explore their lesson design and modify it so it 

corresponds with their intentions. However, it is remarkable that this opportunity arises as a 

consequence of the teachers’ instrumentation of Meebook rather than of Meebook’s 

instrumentalization of their activity. In addition, the initial choices (that the students should 

categorize cardboard figures in groups) are not changed or reconsidered during the session. In the 

case presented here, the teachers succeed in building a lesson with the cardboard figures and group 

organization a way that reflects the teachers’ intentions. However, it remains to be known whether 

the teachers would have changed or discarded the cardboard figures or not if it turned out that these 

resources were incompatible with the learning objectives. This point suggests that this is an issue to 

be aware of in future research.  

Previous research in mathematics teachers’ planning distinguished between a rational and a 

relational mode of planning (John, 2006; Superfine, 2008). The rational mode views education as a 

linear input–output relation in which the planning begins by defining the objectives and 

resources/activities then are decided. The relational mode is planning focused on how students 

encounter each other, the mathematical content and with the teacher in a specific setting and the 

opportunities to learn arising thereof (John, 2006). The rational mode has been criticized for 

resulting in lesson plans that overlook and fail to anticipate the complexity and contingency of 

educational contexts while the relational mode is often referred to as a ‘better alternative’ (John, 

2006). The results in this paper challenge that these modes should be separated sharply. It is exactly 

when the teachers foreground the learning objectives that they are able to engage in a relational 

mode of planning and design tasks and resources in ways that reflect the teachers’ intentions. 

Through combining these modes, this potential is exploited, and neither the rational nor the 

relational mode in itself would enable this process. This result suggests that future research in this 

field could benefit from considering how learning objectives are integrated in technologies that 

support teachers’ planning and what kind of planning modes these objectives en- or disable.  
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Multiple choice (MC) items are the natural choice for automated online assessment. Ideally, making 

a choice should be based on knowledge and reasoning. Nevertheless, studies demonstrate that often 

various techniques (e.g. guessing) are the common practices. In the last decade technology has been 

employed to support real-time feedback as formative assessment for teaching and learning. This 

study examines whether and how learner generated examples, when required as support to the 

choice made in MC task, could be automatically identified to give insights into learners' 

understandings. Results show discrepancies between chosen correct statements and their 

supporting examples. Other automatically assessed characteristics are related to learner's 

approaches and strategies. 

Keywords: Reasoning with examples, geometry, multiple choice questions, automatic online 

assessment, formative assessment. 

Theoretical background 

Multiple choice (MC) tasks are the most well-known tasks when it comes to automatic assessment 

(Farrell & Rushby, 2016; Sangwin & Kocher, 2016). They are used for testing various topics of 

study as well as different levels of abilities from basic through high order thinking. They hold 

several advantages including objectivity of scoring, and availability of more items in each 

assessment due to short solving times (Farrel & Rushby, 2016). However, MC tasks are often 

criticized for being biased (Hassmen & Hunt, 1994), for sometimes being measurements of how fast 

a student could make an educated guess or use elimination techniques, and not necessarily assessing 

what the MC tasks were designed to assess (Lau, Lau, Hong, & Usop, 2011).  

Recent use of technology has made it possible to automatically assess responses by not only using 

MC tasks (Stacey, & Wiliam, 2012; Sangwin & Kocher, 2016). Immediate presentations of 

information on tasks performed in a technological environment are used as means to formative 

assessment: serving as feedback to modify teaching and learning activities (Black & Wiliam, 1998). 

One of these avenues is by automatically assessing learner generated examples (LGE) in a dynamic 

geometry environment (DGE) (Leung & Lee, 2013). Example generation tasks may serve as 

possible means to show conceptions of mathematical objects, or concept images (Vinner, 1983), 

informing about possible difficulties and inadequacies (Zaskis & Leikin, 2007). Another use of 

examples is for determining the validity of mathematical statements (Nagari-Haddif & Yerushalmy, 

2015), in which systematic analysis of LGE could shed light on the evolving understanding of the 

status of examples in proving or refuting a mathematical claim (Buchbinder & Zaslavsky, 2009). 

Combining the accessibility of MC tasks in assessment with the potential reasoning abilities and 

demonstration of understanding by generating examples in a technological environment has the 

potential to enhance formative assessment in the mathematics classroom. 



Methodology 

This study is part of a long-term project aiming to explore ways in which automatic assessment 

could give more insight about student understanding in mathematics (Olsher, Yerushalmy, and 

Chazan, 2016). Specifically, we ask whether the requirement to provide examples to support a 

chosen answer gives the assessor additional insight into students’ understanding in MC tasks. The 

participants were 32 secondary Israeli geometry teachers, from all over the country who taught 

different levels and ages ranging from 7th to 12th grade. The study was conducted as part of a 

broader national professional development effort to expose teachers to innovations in mathematics 

education. 

Tasks 

The study included three tasks and the context was mathematical similarity. The tasks were 

designed as interactive diagrams describing a geometrical context, using the STEP platform1. The 

interactive diagrams were constructed using GeoGebra and they enabled the participants to drag a 

set of elements in the diagram, according to the predefined characteristics determined by the 

designers of the task. The context was described in the task, and several statements were provided 

for the participants to consider. The participants were required to select the statements that are 

correct in regards to the diagram. More than one statement could be correct in relation to the 

interactive diagram in any single task. The tasks were similar to conventional multiple choice tasks 

accompanied by an interactive diagram, with one main difference: In these tasks the participants 

were expected to experiment and manipulate the interactive diagram into a state that fits one or 

more of the statements. In order to add another layer of reasoning, we asked the participants to 

attach a screen capture of the applet in a state that exemplified each of the statements they have 

chosen, thus requiring the participants to add an example instead of just select a statement as in 

traditional multiple choice tasks. 

Automatic checking of tasks 

The STEP platform enabled an automatic analysis of the predefined mathematical properties of the 

submitted solutions in order to characterize these solutions pedagogically and mathematically 

(Olsher, Yerushalmy and Chazan, 2016). The tasks in this study were designed so that the system 

would indicate if the corresponding example fits the criteria in the relevant statement2, and enable 

the teacher to immediately have access to filtered answers accordingly. Yet, it is important to state 

that at the present time technology cannot determine correctness on its' own for these types of rich 

tasks. For each task, a well-defined set of conditions should be applied in order to determine the 

type of feedback affording formative assessment. Meeting the conditions of the checking algorithm 

does not mean correctness. It just means that this is what was automatically checked, and any 

                                                 

1 Seeing the Entire Picture - STEP – is a formative assessment platform developed at the University of Haifa’s Center 

for Mathematics Education Research and Innovation (MERI). For more detail about this platform, see 

www.visustep.com. 

2 When automatically checked, a margin of accuracy was determined by the teacher in which solutions are considered 

sufficiently accurate. For example, in this case, parallel lines, or coinciding points. 



interpretation about correctness is purely suggestive, and should be carefully examined by both the 

assessor and the assessee. 

Analysis 

Our unit of analysis was the task. The first stage included locating discrepancies between a correct 

choice and the accompanying interactive example. We checked which participants chose the set of 

correct statements and compared it with the number of participants to correctly attach examples for 

all of the statements. The second step included a refinement of the analysis. We counted how many 

correct statements were chosen per-task (more than one choice could be correct for a single task), 

and compared it with the number of incorrect examples that do not meet the required answers' 

conditions. The third stage included the coding of the discrepancies according to pre-set categories 

(e. g. familiar mistakes or additional reasoning) in order to study the characteristics which could be 

subsequently assessed automatically. 

Results 

       Table 1 shows the distribution of answers (consisting of chosen statements and supporting 

examples submitted by the participants (n=32) to the 3 different tasks. 

Task 

(number of 

correct 

statements) 

No. of 

participants 

which 

submitted 

an answer 

(n=32)  

Sum of correct 

statements chosen 

by submitting 

participants  

Sum of correct 

examples 

attached to 

correct chosen 

statements  

No. of 

participants 

with all 

correct 

statements 

chosen 

(n=32)  

No. of 

participants 

with correct 

answers and 

correct 

supporting 

examples. 

(n=32)  

1 (3) 30 66  49 13 5 

2 (2) 28 40  32 11 7 

3 (3) 21 39  27 7 5 

Total N.R* 145  108 N. R.* N. R.* 

* N. R = Not relevant 

Table 1: Answers submitted, statement choices, and examples provided for 3 tasks  

As can be seen in Table 1, a total of 145 correct statements were chosen and submitted. For 108 of 

them (74.5%) correct examples were submitted. The remainder (25.5% of the correct choices) were 

submitted with incorrect or no examples. We now investigate the work related to two statements of 

task 3 in order to learn the nature of the examples that did not seem to be coherent with the choice 

of statement. In this task (Figure 1), the topic is the recognition of similar triangles, and ratios 

between areas of similar triangles. The context of the dynamic figure is presented to the participants 

in multiple representations: a verbal description in the task description, starting with: "point D is the 

midpoint …", a symbolic representation in the digital geometry environment (DGE): ED┴AB, 



AD=DC, and a DGE construction: A draggable triangle ABC with point D and E. Measurement 

tools and numerical feedback are not supported in this task. 

 

Figure 1: Multiple choice with supporting example task 

In terms of correctness, the red points in the diagram could be dragged to create an example for any 

of the three statements in this task, making all the choices potentially correct ones. In order to 

construct a supporting example for the first statement, the lines ED and BC should be parallel3, in 

order to construct a supporting example for the second statement points E and B need to coincide. A 

supporting example for the third statement would be any position where AB>5AE. But in order to 

construct such examples (mostly for statements 1 and 2) participants are required to have some 

understanding regarding similarity and ratios of areas of similar triangles. 

Automatic assessment of this task was performed with the STEP platform, which is designed to 

present the submitted examples in several representations, including a visual representation of all 

examples attached to each of the statements (Figure 2), while enabling the assessor to automatically 

                                                 

3 There is also another option to construct this where E is outside ABC and AE=AB. 



filter the results according to mathematical and pedagogical criteria (Olsher, Yerushalmy, and 

Chazan, 2016), as will be demonstrated for this task. 

 

Figure 2: A sample of supporting examples for statements presented on the STEP platform 

Incorrect examples that do not meet the required answers' conditions  

Analyzing the collection of examples per-statement suggest a finer categorization. Statement 3-1 

(the first statement in task 3) stated that the ratio between the area of triangle ABC and the area of 

triangle ADE is 4:1. Triangles ABC and ADE are similar as ED is perpendicular to AB. In addition, 

AD has the same length as DC. Thus, any example in which ED is parallel to BC, which means AE 

has an equal length to EB and vice versa provides a supporting example. There were a total of 17 

examples submitted for this statement. 13 of which met the criteria for correctness. In Figure 3 

appear the 4 submitted examples that were automatically marked as incorrect, as the automatically 

calculated ratio between the relevant triangle areas was not approximately 4:1.  



Figure 3: Incorrect submitted examples for task 3-1 

The main characteristic that could be automatically assessed with this representation is the 

possibility that these participants did not address the characteristics relevant for this statement in 

their submitted examples - ED is not even approximately parallel to BC. 

Incorrect examples in line with familiar student mistakes  

Statement 3-2 stated that the ratio between the area of triangle ABC and the area of triangle ADE is 

2:1. Triangle ABC and ADE are similar. Thus, any example in which points E and B coincide 

provides a supporting example. There were a total of 12 examples submitted for this statement. 8 of 

which met the criteria for correctness. In Figure 4 appear the 4 submitted examples (a, b, c and d 

from left to right) that were automatically marked as incorrect, as the automatically calculated ratio 

between the relevant triangle areas was not approximately 2:1. 

 

Figure 4: Incorrect submitted examples for task 3-2 

In Figure 4, we see two incorrect examples (4a, 4b) that were further automatically categorized as 

"familiar mistakes". In these examples, the ratio between the lengths of BC and DE is 

approximately 2:1. These examples are a possible indication of holding the image of “linearity” 

between ratio of lengths and ratio of areas, a familiar phenomenon from the literature and teacher 

practice. 

Examples with additional verbal, symbolic or free-hand graphic reasoning  

Figure 4c shows an example that includes a correct verbal explanation but without any matching 

change to the dynamic diagram. One of the functionalities of the STEP platform is a free-hand pen 

tool which can be used for making annotations and marks, or any other use that the participant 

might find helpful. The participants were aware that the platform automatically checked their 

figures, and that text or graphical markings, if submitted, are presented for the teacher to review but 

not analyzed automatically. The example above is one of 18 submitted examples (across all three 

tasks in this study) that were accompanied with free-hand markings on the interactive diagram. 

Apart from verbal explanations, the examples also included annotations in the form of either 

symbolic writing or in graphical marks on the diagram. There are numerous possible explanations 



for such responses. The participant might not have been able to construct the example, but thought 

about its mathematical properties, and wanted to demonstrate his knowledge. Annotation could also 

indicate that the participants needed to justify their example in a more robust, mathematical fashion, 

not fully accepting the diagrammatic example alone as a valid justification for a statement, which is 

closer to Israeli standard classroom practice.  

The example in figure 4d was not automatically categorized beyond its' incorrectness, as it did not 

fit the predefined filter for a familiar student mistake.  

One other aspect of the automatic assessment of MC tasks is the correctness of the entire task (e. g. 

choosing all of correct statements and providing them with correct supporting examples). In this 

study 13, 11, and 7 participants made a correct choice of statements in the three tasks respectively 

(Table 1). The number of participants who chose both the relevant statements and also provided a 

correct corresponding supporting example is lower: 5 (of 13), 7 (11), and 5 (7) (Table 1). This might 

be because the tasks were not clear enough, not specific about the relevant conditions; or perhaps 

ill-defined in terms of level of accuracy required. In order to enable efficient formative assessment 

these analyses are presented to the assessor in various graphic (e. g. Figure 2) and analytic (e. g. 

Venn diagrams) representations for further investigation. 

Conclusions 

This study provides initial information about discrepancies between choosing a correct statement, 

which could be a result of a guess or good examination tactics (Hassmen & Hunt, 1994; Lau, Lau, 

Hong, & Usop, 2011; Sangwin & Kocher, 2016), and providing an example to support this 

statement, which requires the translation of the conditions into a DGE context.  

Many of the automatically assessed characteristics of submitted examples were not related to the 

correctness of the example in supporting the claim, but to other aspects such as student approaches 

and strategy (e.g. construction of prototypical figures, unexpected solutions). Although, due to space 

limitations, this report has focused on the limited analysis of discrepancies between chosen correct 

mathematical statements and their supporting examples, it has provided several additional insights 

into the MC tasks. Some of the solvers did not attend to significant characteristics required to 

support the answer (e. g. a line that needs to be a mid-section therefore to connect mid-points of two 

sides of the triangle and to be parallel to the third one), or the fact that they construct an example in 

line with a familiar student mistake (e. g. the ratio between the areas of similar triangles is the ratio 

of their sides squared, not the exact same ratio as reflected in the submitted example). These types 

of phenomena could help teachers better assess the performance level on these types of tasks, in the 

relevant mathematical topic, providing meaningful real-time analysis in the service of instruction. 

The automatic analysis and categorization alongside the visual representation methods played a key 

part in discussions of the results with teachers. This practice is well aligned with what Olsher et al. 

(2016) claim that the viability of this assessment in the mathematics classroom lies within the 

ability to automate the assessment process as much as possible, and to provide the teachers with 

suggestive insights as part of a better picture of their classroom example space and answers.  
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The main aim of this paper is to analyse the experience of a MOOC for mathematics teacher training 

implemented in France, in parallel with a similar experience in Italy1. The study focuses on teacher 

collaboration within such an online learning environment, in terms of co-working and co-learning. 

The Italian and the French teams outlined a common starting point for the research and some 

common research concerns. Each team then reformulated the research questions and sought to 

answer them through specific theoretical lenses. In the case of the French MOOC eFAN Maths, we 

study the trainees’ collaborative design of a pedagogical resource, by focusing on the efficiency of 

an evaluation grid designed by trainers to be used within a global process of peer evaluation. A 

comparison with the results of the Italian experience is shown in the conclusion. 

Keywords: MOOC, teachers’ professional development, meta-didactical transposition, community, 

collaboration. 

Introduction 

Internet communication tools provide the opportunity to develop new types of teaching methods that 

combine online courses, resources and discussions. MOOCs (Massive Open Online Courses) were 

conceived in 2008 at the initiative of prestigious American Universities (MIT, Harvard, Stanford, ...) 

that sought to enlarge the courses they offered to a wider audience. Since then, the MOOC 

phenomenon has been growing steadily and worldwide, the number of MOOCs doubled between 

2014 to 2015 (Shah, 2015). Although there is a wide choice of many different topics, when looking 

specifically for a MOOC aimed at teacher training, the range is limited, especially in mathematics. 

Nevertheless, there is a growing interest in MOOCs involving mathematics teachers as participants, 

as shown by the TSG44 work during the 13th ICME2. In particular, from our experiences, there is a 

need for designing and implementing a MOOC for teacher training in mathematics education with a 

particular focus on the development of communities of practice (Wenger, 1998) and collaborative 

work among teachers as the basis for their professional development. Indeed, when people co-work 

(work together collaboratively) they can also co-learn (learn together collaboratively), as highlighted 

in the ICME survey of Robutti et al. (2016). The authors found that teachers can learn through 

discussion, conversation and reflection on their own teaching, on students’ learning and the teaching 

of others. The methodology of the French MOOC eFAN Maths aims to create collaborative contexts 

                                                 

1 See Taranto et al. (2017). Since the French MOOC and the Italian MOOC were delivered at the same period of time, 

even if the contents were designed independently, our teams had the opportunity to discuss and exchange about them. 

2 For more information, see http://www.icme13.org/files/tsg/TSG_44.pdf 



for teachers’ work, where they can learn from these kinds of practices. Taking into account the 

necessity for teachers to be supported in exploiting the affordances of technology, the shared 

objectives of both the French and Italian MOOCs are shared, namely: accompanying teachers in the 

production of teaching resources, by examples of activities and reflection on their ongoing resource 

design; fostering a reasoned use of technology, encouraging teachers to choose appropriate digital 

tools for the classroom. Such aims are related to the interest in the design and the implementation of 

teacher professional development programmes to include the role of teachers working and learning 

in communities (Wenger, 1998; Jaworski & Goodchild, 2006). 

The originality of our research based on the data collected from two MOOCs (in Italy and in France) 

that share similar aims and objectives, is twofold. First, it focuses on the specific dynamics of online 

interactions – among trainees and between trainees and trainers – to study the trainees’ use and 

appropriation of a tool (an evaluation grid) designed by trainers, for supporting peer evaluation of 

collaborative projects. It is topical and urgent to analyse the efficiency of such tools and interactions 

in the context of distance learning, because of the increased interest in this approach in recent years. 

Second, it analyses such dynamics according to the cultural constraints that shape MOOC design and 

development. French and Italian school environments have some remarkable differences and one of 

the most palpable is a wider freedom that institutional regulations traditionally give to the Italian 

teachers, compared to the major institutional constraints met by the French teachers. The Italian 

Indicazioni3 (guidelines) highlight for each discipline the fundamental learning goals that students 

have to achieve at the end of each cycle of instruction (two or three scholastic grades). These 

guidelines have the character of general didactic guidelines and require teachers to take the 

responsibility to choose and link the specific mathematical contents to be developed in the classroom 

in order to reach the required learning goals. The French Programmes4 (syllabus) are also based on 

competences for a given cycle of instruction, but they appear to be more detailed and normative: for 

each mathematical content, they provide some examples of activities. Moreover, they are 

accompanied by several additional resources intended to support the curriculum implementation in 

the classroom. 

In this paper, and in parallel with the Italian contribution to the symposium, we draw on the common 

theoretical element of the Meta-Didactical Transposition (Arzarello et al., 2014) to highlight how the 

concepts of community and of collaborative work evolve, taking new and different forms, and how 

these processes impact on teachers’ professional learning. As members of the French team, we are 

working together with members of the Italian team to compare data from the two MOOCs. In our 

conclusion, we will discuss the relevance of cultural and institutional aspects to the specific dynamics 

of the two experiences.  

                                                 

3 http://www.indire.it/lucabas/lkmw_file/licei2010/indicazioni_nuovo_impaginato/_decreto_indicazioni_nazionali.pdf 

4 Links to the French curriculum and supporting material are available at http://eduscol.education.fr/ 



Description of the MOOC eFAN Maths 

The MOOC eFAN Maths5 was delivered on a French national platform (FUN, France Universités 

Numérique) and its target was the world-wide French-speaking community, namely mathematics 

teachers and teacher educators willing to improve their practices in using technology in their 

classrooms. The second season of the MOOC, which is reported in this paper, lasted from early March 

to mid-April 2016 over a period of five weeks. The MOOC eFAN Maths is part of the Stratégie 

Mathematiques of the French Ministry of Education, which stresses the relationship of mathematics 

with other sciences and with the world, and aims at training teachers in this perspective in order to 

give students a refreshed image of mathematics. More specifically, this season of the MOOC was 

created with a dual institutional aim: to support teachers and teacher educators to understand and 

implement the new French curriculum (introduced in September 2016 in all French primary and 

secondary schools); and to promote collaboration within the French-speaking community. Courses, 

activities and discussion were especially focused on the new themes involved in the French 

curriculum, namely algorithmics and interdisciplinary work. The MOOC was grounded on a project-

based pedagogy, aimed at the design and the analysis of a classroom activity involving the use of 

digital tools. Every week, trainees took courses on specific topics of mathematics education from 

three video-based lessons, answered the related quizzes and worked on specific activities. The courses 

were constructed to provide trainees with elements to develop their reflections and projects about 

teaching and learning mathematics with technology. They showed brief episodes of classroom 

observation and their analysis, or were based on existing resources, showing and commenting 

animations or programs created with technology. Collective work was strongly encouraged among 

trainees. For this purpose, they were invited to join the “MOOC eFAN Maths 2016” group, created 

on Viaéduc6, a professional social network specifically designed for teachers’ exchanges. Viaéduc 

essentially allows members to post comments, to create subgroups, to create and publish documents 

and to comment/recommend/share them. Group members can work collaboratively either 

asynchronously, being authors of the same online document, or synchronously, writing on the same 

online collaborative board (padlet). 

During week 0, on Viaéduc, trainees were invited to propose a theme, an idea or a project to work on 

and to start to establish relationships with others. Week 1 was devoted to the characterisation of digital 

or non-digital resources that can support teachers’ and teacher educators’ work. On Viaéduc, trainees 

gathered together around a project constituting public subgroups of the main “MOOC eFAN Maths 

2016” group, so that any trainee could read the work of any subgroup and follow any discussion. 

Week 1 activity involved the selection of resources to constitute a “toolkit”, deemed relevant to the 

group project. Week 2 was devoted to the analysis of students’ activity using technology in 

mathematical situations. On Viaéduc, each group had to design a mathematical situation and to 

analyse it from the students’ point of view using an analysis grid proposed by the trainers. Week 3 

was devoted to the analysis of the teacher’s role in the designed mathematical situation. An analysis 

grid that focused on instrumental orchestration was presented through the courses and trainees were 

                                                 

5 eFAN Maths stands for Enseigner et Former avec le Numérique en Mathématiques (Teaching and Training in 

Mathematics with technology). See https://www.fun-mooc.fr/courses/ENSDeLyon/14003S02/session02/about 
6 See www.viaeduc.fr 



invited to apply it to their situation. During week 4, trainers organised a process of peer evaluation of 

the different projects (submitted as versions 0) and proposed an evaluation grid grounded on the 

theoretical frames presented in the course, underpinned by the analysis of digital resource quality 

(Trgalová & Richard, 2012). Finally, every group was supposed to use the feedback received to refine 

and revise their project, submitted as version 2. 

Theoretical framework 

The MOOC eFAN Maths was analysed using a combination of three main theoretical frameworks: 

the Meta-Didactical Transposition (Arzarello et al., 2014), the documentational approach to didactics 

(Gueudet & Trouche, 2009) and the concept of communities of practice (Wenger, 1998). 

The Meta-Didactical Transposition (MDT) model and the documentational approach to didactics, 

which places a major emphasis on the collective aspects of teachers’ work, both required a theory to 

support the analysis of the development of teachers’ (and researchers’) collective work. Both 

approaches adopted the theory of communities of practice (CoP), mainly because these communities 

are structures where learning occurs. CoP are formed by people who engage in a process of collective 

learning in a shared domain of human endeavour. For Wenger (1998), a condition for the development 

of such communities is to balance participation and reification, where reification means producing 

resources, symbols, stories etc., recognised by the whole community as common products. Such 

communities may develop by themselves, or be “cultivated” (Wenger et al., 2002), i.e. encouraged, 

supported by an organisation. Indeed, organisational knowledge develops in a constellation of CoPs, 

and each CoP plays a specific role in this organisation. 

The MDT model captures the dynamic interactions between teachers’ and researchers’ practices when 

these two communities interact, typically in training contexts, and in particular in the case of training 

programmes in mathematics education. Using the MDT lens, we can address research questions that 

infer the influence of the practices of one community on the other. Such practices are described 

through the notion of praxeology (Chevallard, 1999): a praxeology for a given task consists of a 

practical block comprising techniques to accomplish the task, and a theoretical block justifying and 

supporting these techniques. In a teacher education programme, trainees and trainers bring into play 

the components of their respective praxeologies. The objective of the programme is to transpose, in 

the sense of Chevallard, some components of the trainers’ research practices into the teachers’ 

practices, taking into account the classroom reality and teachers’ expertise for effectively enacting 

such components. Thus, the two communities together contribute to creating a shared praxeology, 

which both communities can adapt in their future practices. This occurs through the phenomenon of 

internalisation: a community internalises a component of the praxeology of the other community, 

that was previously external to it, entailing an evolution of practices. 

The documentational approach to didactics (Gueudet & Trouche, 2009) analyses teacher professional 

development through the interplay of practices and resources. This interplay is modelled as a 

documentational genesis, extending the notion of instrumental genesis introduced by Verillon and 

Rabardel (1995) between artefact and instrument. A documentational genesis involves different steps, 

such as looking for resources, selecting/designing mathematical tasks, planning their sequence, 

managing available artefacts, etc., to achieve a given teaching goal. This genesis gives birth to a 

document, which is a mixed entity composed of the revised and recombined resources and the 



associated usage schema. Each documentational genesis is then a means to trigger teacher 

professional development. The genesis of a document combines two processes: instrumentation, 

when the affordances and constraints of the resources influence the subject’s activity, and 

instrumentalization, when the subject shapes the resources that he/she appropriates. The 

documentational approach to didactics, from its beginning, and even more in its recent developments 

(Pepin et al., 2013), gives a major importance to the collective aspects of teachers’ work with 

resources, evidencing the importance of interactions within teacher collectives for spurring 

documentational genesis and teachers’ professional development. 

The combination of these three frameworks supports our analysis of what happened during the 

MOOC, seen as a constellation of cultivated CoPs. These communities are not created at once, they 

emerge in the dynamics of a shared project. First, the community of trainers emerges as they design 

and implement a new teacher education programme. Then the communities of trainees emerge, each 

one developing through the advancement of the individual projects. The elaboration of a project 

involves the design of a pedagogical activity from selected existing resources that are subsequently 

adapted, modified and combined by the group members. Thus, this process can be seen as a collective 

documentational genesis. In such a process, we are interested to analyse the efficiency of the tools 

designed by the trainers, as elements of their meta-didactical praxeologies, to foster both collaboration 

and project development. We study the phenomenon of internalisation in interaction with the process 

of documentational genesis as a reification process, addressing the following research questions: How 

does each trainees’ CoP emerge through the process of documentational genesis according to CoP 

criteria? How do the CoP of trainers and each trainees’ CoP interact through the MDT lens? 

Methodology of the study 

In this paper, we focus on the final week of the MOOC and in particular on the trainees’ use of the 

evaluation grid. This tool had been constructed by the trainers to include all of the phases of the 

pedagogical design, developed in the MOOC week after week. Analysing the way trainees used it 

can provide insights into the way they have understood and internalised the principles underpinning 

each phase of design. Moreover, the final week revealed an interesting dynamic between individual 

activity (the evaluation of another project through the grid) and collective work (of each group on the 

delivered version 0 for improving it). The evaluation grid was structured around the following four 

criteria: 1. Accuracy of the definition and description of the project; 2. Relevance of the mobilised 

digital resources with respect to the educational goal of the designed mathematical task; 3. Relevance 

of the analysis of the students’ activity; 4. Relevance of the analysis of the teacher’s role. For each 

criterion, aimed at evaluating the work done by a group during a specific week, some guiding 

questions were proposed with a double objective: to foster the production of justified feedback; and 

to deepen the reflection carried out in the previous weeks of the MOOC. The grid finally asked for a 

brief global feedback on the project and some suggestions to improve the work. Trainers provided 

this tool to support trainees in the process of peer evaluation, with the implicit aim to facilitate the 

internalisation of the evaluation criteria. Each trainee was invited to use the grid individually to 

evaluate the project of another group, by answering each guiding question with an appreciation: very 

good, satisfactory, weak or insufficient, accompanied by a justification. Trainers gradually collected 

feedback and comments in a table and shared it in a specific space on Viaéduc, called “Project 

evaluation”, so that all the trainees could access them. 



Data analysis 

2500 people were enrolled in the MOOC, and more than 700 registered on Viaéduc, of which 

approximately 11% contributed to the work of a group, generating a large amount of data from 

multiple sources. In this paper, we analyse some discussions on Viaéduc related to how trainees used 

the evaluation grid and illustrate the main finding of our study: the trainees’ internalisation of the 

evaluation criteria, through the tools provided and the process established by the trainers. 

The evaluation grid became a resource for trainees. It was used both to provide feedback to other 

projects (instrumentation) and for reflecting on and refining their own project (instrumentalization). 

We illustrate this double action, that of the grid on the trainees and that of the trainees on the grid, 

through some excerpts of Viaéduc discussions. The comments, written by some trainees (CC, CM) 

on the wall of the “MOOC eFAN Maths 2016” group, show a formative value of the peer evaluation 

and specifically refer to an introspective use of the grid. 

CC  It is clear that the peer evaluation of the projects is also an exercise [...] I think that 

the aim is not marking “very good” everywhere, so I try to use the grid with its 

criteria that I start to understand [...]. A difficulty that I encounter is that, when I 

perceive a small flaw in one of the aspects of the whole structure of the project, this 

flaw seems to impact on several items of the grid...? [...]” 

CM  Indeed, by evaluating another project, you discover much better how to improve 

yours. The evaluation grid is a great support but I join CC on the domino effect of 

some points. 

In particular, CC’s and CM’s comments show a well-thought-out use of the grid, especially the 

awareness that the evaluation criteria are interrelated. The double process of instrumentation and 

instrumentalization of the grid shows that trainees internalise the evaluation criteria using the grid 

also for reflecting on the quality of their own document. 

Moreover, the remote collaboration on Viaéduc allowed trainees to evolve version 0 of the document 

into the version 1, taking into account both peers’ external feedback and each member’s introspective 

feedback. An example of this step in the collective documentational genesis is represented by the use 

of the padlet “TO DO List” within one of the groups. In this padlet, the group members organise the 

different tasks to be done in order to make the common document (version 0), seen as a resource, 

evolve into a new document (version 1). When a comment is ticked off and an author and a date are 

specified, this is the sign that the task has been done. This to-do list consists of feedback coming from 

peers but also of some personal comments, such as “For the resources I think that we must orient the 

reading of the first ones according to the soma cube activity”. We can reconstruct the story of this 

proposal to reorganise the project resources, due to the parallel discussions that had occurred in the 

group. Such discussions show that trainees (JP in this case) benefited from both peers’ feedback and 

introspective feedback, coming from the action of evaluating other projects. 

JP  [on the wall of the group] Hello, after having read several projects I actually 

expected that someone “criticises” a little bit our profusion of resources. […] 

Perhaps, we could prune it in the v1 of the project by keeping only those that are 

actually usable in the SOMA cube activity. What do you think? 



In terms of remote collaboration, it is worth noting that some groups used such collaborative tools for 

organising their remote work. This organisation guided the transformation of the version 0 into the 

version 1 of the project, as a reification of the collaborative participation within the CoP. 

Discussion 

Each community of practice benefited from the feedback of others and from the introspective 

reflections that the members, who were engaged in the design process, made during the evaluation 

process. Crossing the external and the introspective feedback allows the trainees to work 

collaboratively on the refinement of their version 0 and to produce the version 1 of their project. This 

new version of the document is both a stage in the documentational genesis and the result of the 

internalisation of the evaluation criteria which occurred through the participation in the evaluation 

process. On the one hand, the evaluation grid is a technical tool of trainers’ meta-didactical 

praxeologies, based on the theoretical concepts tackled in the courses and justified within the global 

process of peer evaluation. On the other hand, the trainers’ choice of collaborative tools, seen as a 

trainers’ technique, is grounded on the trainers’ objectives to foster the emergence of communities of 

practice among trainees. Our analysis shows how these praxeological choices influence the trainees’ 

work when they improve the version 0 of their project into the version 1. In return, this analysis 

influences the trainers’ meta-didactical praxeologies in the perspective of a re-design of the new 

season of the MOOC. In particular, the organisation of the MOOC schedule will be modified taking 

into account the emergent question of time. Communities of practice need time for establishing an 

effective remote collaboration, so that participation and reification equilibrate as much as possible. 

At the same time, the evaluation process and the documentational genesis need time for being 

effectively carried out. In that sense, we can observe the double phenomenon of internalisation: from 

trainers to trainees as well as from trainees to trainers.  

Comparison with the French experience and conclusion 

As French team, we observed local communities of practice. We studied the phenomenon at a micro 

level, intervening in the groups’ discussions to support and encourage the development of the 

collaborative work. The Italian team (Taranto et al., 2017), instead, observed a general community. 

They studied the phenomenon at a macro level, that is to say not intervening in the interactions 

between trainees.  

During MOOC Geometria (the Italian MOOC) local groups are generated “emerging from chaos” 

(Siemens, 2004), namely they are subject to a spontaneous generation. During MOOC eFAN Maths 

trainers induce the generation of local groups and regulate peer relationships. Despite the fact that the 

cultural aspects affect these differences for sure (as we underline in our similar introduction), for both 

MOOCs there is an affinity that relies on the fact that trainees’ learning is often generated by self-

feeding discussions and instrumentalization processes. 
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Using a flipped classroom approach in the teaching of mathematics: A 

case study of a preservice teachers’ class 
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This study investigates the usefulness of a flipped classroom approach in tertiary education. This 

exploratory study was conducted to understand the efficacy of the flipped classroom approach that 

was implemented by a lecturer teaching mathematics education. The study was conducted with the 

lecturer and her 185 pre-service teachers who attend her online course. Data collection instruments 

included a survey designed to investigate the dynamics of the flipped approach, semi-structured 

interviews for the pre-service teachers and the lecturer. The study adds to the literature related to the 

flipped classroom approach and the role of the lecturer in a flipped classroom.   

Keywords: Digital technologies, flipped classroom, flipped learning, mathematics education, tertiary 

education 

Introduction 

The integration of digital technologies is becoming central in our mathematics classrooms. Some 

schools use digital technologies to replace or supplement teaching resources (Geiger, Goos, & Dole 

2015). Multiple studies have been conducted that show that teachers and schools find it challenging 

to integrate such resources within mathematics lessons (Gueudet, Pepin, and Trouche 2012; Clark-

Wilson, Robutti, and Sinclair 2014). Flipped classrooms integrate digital technologies allowing the 

teacher to implement the restructuring and re-organisation of teaching materials in both synchronous 

and asynchronous modes. The facilities of the classroom approach can be accessible from anywhere, 

in both real time or otherwise. How to best take advantage of digital technologies implemented in 

flipped classrooms is a challenge while attending at the same time to the dynamics of a flipped 

classroom and what is entailed in flipped learning. Given that research on the flipped classroom 

approach is in its infancy, there is limited research that has examined the approach under a 

pedagogical microscope.  

Flipped classroom and flipped learning 

Bergmann and Sams (2012) distinguished between the terms ‘flipped classroom’ and ‘flipped 

learning’, pointing out that they are not synonymous and that flipping the classroom does not 

necessary lead to flipped learning (FLN 2014). There are different interpretations of this approach 

and associated variations in implementations strategies. According to Bergmann, Overmyer and 

Wilie (2013), the characteristics of flipped learning are:                        

 increased interaction and personalized contact time amongst students and teachers; 

 students take responsibility for their own learning; 

 the role of the teacher is not the ‘sage on the stage’, but the ‘guide on the side’; 

 a blending of direct instruction with constructivist learning; 

 students who are not able to attend the class due to illness or extra-curricular activities such 

as athletics or fieldtrips, don’t get left behind; 

 content is permanently achieved for review or remediation; 



 all students are engaged in their learning; 

 all students can receive a personalised education. 

Abeysekera and Dawson (2015, p. 3) defined the following typical characteristics of a flipped 

classroom within higher-education settings:  

 a change in use of classroom time; 

 a change in use of out-of-class time; 

 doing activities that were traditionally considered as ‘homework’ in class; 

 doing activities that were traditionally considered as in class work out of class; 

 in-class activities that emphasise active learning, and problem-solving; 

 pre-class and post-class activities; 

 use of technology, especially video; 

For this article, I will use the term ‘flipped classroom’ as defined by the Flipped Learning Network 

(FLN) to refer to the mode of teaching and learning ‘in which direct instruction moves from the group 

learning space to the individual learning space, and the resulting group space, and the resulting group 

space is transformed into a dynamic interactive environment where the educator guides students as 

they apply concepts and engage creatively in the subject matter’ (FLN 2014 para. 1). The FLN 

propose the ‘Four Pillars of Flip’ that recognise the significant features that are essential for learning 

to occur in a flipped classroom: (1) flexible environment, (2) a shift in the learning culture, (3) 

intentional content, and (4) professional educators (FLN 2014). This framework was considered to 

account for diverse learning modes, and its implementation necessitates the arrangement of flexible 

learning environments that may include, for example, the rearrangement of learning spaces and the 

use of digital technologies.  

The Four Pillars of Flip framework is appropriate for gaining a better understanding of how the 

flipped classroom approach is implemented in practice. This framework is appropriate when 

analysing data about the teacher’s role in organising the teaching materials in the flipped classroom. 

Abeysekera and Dawson (2015) proposed a theoretical model for the flipped classroom (see Fig. 1) 

that identifies the capacity of the flipped classroom to help students have a sense of competence, 

relatedness, and autonomy that will lead students to increased extrinsic and intrinsic motivation.  

  

Figure 1 Theoretical model for the flipped classroom  

Moreover, a flipped classroom approach is characterised by tailoring teaching material and activities 

to students’ different expertise that allows students’ self-pacing of pre-recorded lectures that may 

reduce cognitive load and help learning in a flipped classroom.  



The theoretical model for the flipped classroom was considered appropriate for interpreting data 

pertaining students’ engagement and motivation while it is required measurement of the cognitive 

load and motivation that are useful mechanisms for learning. The flipped classroom approaches are 

being adopted with enthusiasm despite the lack of specific evidence about their efficacy. However, 

substantial research questions remained unanswered. This article is particularly interested in 

university lecturer’s implementation of the flipped approach in her practices. A small-scale localised 

intervention, including an experimental study, was conducted to understand the significant features 

of the lecturer’s role against the essential criteria for learning to occur in a flipped classroom 

approach.  

Methodology 

An exploratory case study methodology was chosen as it involves a detailed study of a group of pre-

service teachers’ experiences. The data collected for the case study was both qualitative and 

quantitative. Analysis methods were employed (Creswell 2003) to provide richness and depth to the 

empirical investigation of a single university unit within its real context using multiple sources of 

evidence such as the lecturer, the entire cohort of preservice teachers who enroll in and attend the unit 

of study, and the teaching and learning resources that were used by the pre-service teachers.  

The choice of the lecturer and her class was purposive in that the lecturer had indicated a strong desire 

to improve aspects of her online teaching related to student engagement, motivation, and self-pacing. 

The lecturer used a flipped classroom approach, and the appropriate technological infrastructure and 

digital technologies was in place to provide students with access to all teaching resources.  

The study was conducted with the lecturer and her 185 pre-service teachers who attended an online 

unit that was required for a bachelor in Primary education or master in teaching Primary Education. 

The unit covered the content and pedagogy appropriate to teaching primary school students at stage 

3 (year 5 or Year 6) in the strands of Data, Chance, Patterns and Algebra, and Number (numeracy). 

Students were asked to demonstrate their personal content knowledge in these strands, discuss 

associated teaching strategies, and create developmental learning sequences. The prescribed 

textbook, (Siemon, D., Beswick, K., Brady, K., Clark, J. and Faragher, R., 2015) was used to guide 

decisions about the sequence of mathematics topics to be taught. The textbook was used in 

combination with the Australian Curriculum (ACARA, 2016).  

The lecturer prepared lectures recorded by Echo360, and offered two interactive online tutorials that 

were offered in real time by Adobe Connect. Each online tutorial was scheduled for two hours and 

students were able to ask questions and complete the tutorial activities with the help of the lecturer. 

Students who were not able to attend the online tutorials had access to the recording of the tutorials 

(in asynchronous mode).  Additionally, demonstrations, electronic resources and relevant readings 

were available for students’ use on the Moodle learning platform, which served as an online learning 

space were students interacted with each other, posted questions and engaged with collaborative 

activities (i.e. students were constantly experiencing feedback).  

All students had access to the internet, and the online materials were also available for downloading 

in their own computers. The students were encouraging to assess the recordings of the online lectures, 

online tutorials, resources and assessment tasks for each topic.  



Participants included one lecturer (Dr. April, pseudonym) and 185 students who attended the online 

unit. 142 students completed the online survey and 5 (3 females and 2 males) volunteered to 

participate in the semi-structures interviews. Dr. April, the lecturer had been teaching tertiary 

education for 7 years and was qualified to teach mathematics education to pre-service teachers and 

in-service teachers within primary and secondary and post-graduate programs. She had experience in 

using features of flipped classrooms for 7 years.  

Data collection instruments consisted of an online survey that contained 18 questions about the use 

of the lecturer-prepared online resources. Responses were recorded against a five-point Likert scale. 

Semi-structured interviews were developed by the researcher to allow the lecturer to probe the pre-

service teachers’ experiences of the flipped classroom approach in this discipline. Pre-service 

teachers’ online activities, postings, pre-service teachers’ participation per day and the semi-

structured interview of the lecturer were used to triangulate the data collected from pre-service 

teachers. All interviews were audio-taped and transcribed. Pre-service teachers’ responses were coded 

and ascribed to five thematic categories as identified by Abeysekera and Dawson (2015). Lecturer’s 

responses were also analysed and coded in four thematic categories based on the four Pillars of FLIP 

framework.  

Results  

In this section we present an analysis of the data collected from interviews with the lecturer, which 

was analysed using the Four Pillars of FLIP as a framework to recognise the significant features of 

the lecturer’s role against the essential criteria for learning to occur in a flipped classroom: (1) flexible 

environment, (2) a shift in the learning culture, (3) intentional content and (4) professional educators. 

The data is supplemented with survey and interview data from the pre-service teachers.  

Flexible environment:  

When the lecturer was asked about the flipped teaching environment in an interview, she commented: 

Dr April: Students are expected to view the online lectures and the online resources (videos) any 

time that is best for them because they are mature students who study this online 

unit and they prefer working during night hours.  

Dr April: I am trying to extend classroom into their home where students cover the weekly teaching 

content and work the routine tasks and examples at home prior to the weekly 

lecture.  

Students reported to making very good use of the online resources prepared by the lecturer and the 

recordings of the online tutorials at home, indicating that both were helpful for their mathematical 

learning and the completion of their assessment.  As stated by two students, George and Sarah: 

George: I do not worry if I missed the real-time online tutorial due to my family commitments. I 

have the capacity to access the recordings of the online tutorials and lectures at any 

time I wish.  

Sarah: It is fantastic because I can watch the entire online tutorial or lecture without pausing it. 

But sometimes, I will watch it and pause it to write my notes about it. If I would 

like to repeat a part of it, I will simply go back to the part I need to listen again. I 

refer to certain parts many times because they are very essential for the online 

course.  



A shift in the learning culture 

Dr April relegated the more procedural demonstrations of solving a mathematical problem or 

constructing a mathematical application using mathematical software for the pre-service teachers to 

watch outside of the online tutorial time. As she commented:  

Dr April: It is fantastic because it frees up teaching time instead of spending half of the time of the 

tutorial to show students the procedure of solving a mathematical problem with or 

without the use of mathematical software. I am trying to maximise the tutorial time 

by covering the key aspects of the weekly content taught and the teaching 

techniques of teaching school students a target content.  

The students reported that they make good use of Dr April’s video based procedural presentations 

and demonstrations. For example, John and Jill (pseudonyms) said during an interview: 

John: I first listened to the online tutorials. I do find the online tutorials very helpful because the 

lecturer explains the mathematical content by applying the mathematical concepts 

in real life situations and solving mathematical problems. If you first watch the 

online tutorial very carefully it explains the mathematical content, application of 

mathematical content, primary students’ difficulties in understanding specific 

concepts and pedagogical approaches and appropriate to teaching these primary 

students.  

Jill: Dr April’s video based resources are very helpful to understand the content at home on my 

own without attending traditional classrooms.  

George: The online tutorials allow me to interact in real time with a group of other students and 

the lecturer, so I do not feel lonely during my studies. I post my questions on 

Moodle platform when I am stuck or unsure of the correct process.  

Intentional content  

Dr. April selected the content, decided on ways to present this content, and what resources (e.g., 

interactive whiteboard activities, or interactive games) would be appropriate for the online tutorial. 

As Dr April said: 

Dr April: In the video-based resources that students are expected to view before the tutorial, I 

demonstrate how to use technology when they teach, for example I demonstrate 

how they insert data in a table using Tinkerplots and create various graphical 

representations of data and analyse data. Or I explain the use of interactive board 

activities or educational games that would help pre-service teachers to teach 

students how to compare fractions using computer based interactive tasks.  

Dr April’s approach included the use of technology to transform the teaching content from the 

textbook into video format that allowed her to unpack mathematics in more depth during the online 

tutorials and lectures. She also prepared materials and videos that related mathematics more directly 

to cross curriculum priorities such as Aboriginal and Torres Strait Islander history and cultures, Asia 

and Australia’s engagement with Asia, and sustainability.  

Moreover, pre-service teachers commented that the digital technologies employed by their lecturer to 

teach mathematics had provoked rich discussions amongst the pre-service teachers, allowing them to 

access the step-by-step instruction as the lecturer intended.   

  



Professional educators  

As Sarah noted, when asked if there was anything about the online teaching of Dr April that helped 

her particularly to develop her mathematical learning: 

Sarah: The technology she uses helped me to visualise abstract mathematical concepts … the 

presentations help me to visualise the graphical presentations as she manipulates 

the graphical representations to help me to observe the impact of dragging the graph 

to the algebraic equation of the function. She is explaining very well and clearly all 

the step-by-step procedures and their dynamic behaviours. I am really amazed by 

the animations that she provided to show the dynamic behaviour of mathematical 

concepts.  

John also pointed out: 

John: I feel that Dr April’s videos are giving mathematics life. They explain mathematics better 

than the textbook does. I really prefer the recordings of the online tutorials because 

Dr April explains in detail what she is doing step-by-step using a very simple 

language.  

George and Sarah also mentioned that: 

George: the presentations are very professional and the quality of the sound is perfect. The 

recordings of the online lectures and online tutorials were easy to follow and 

although mathematics was not my strongest subject of study, I enjoyed my study. I 

found those recordings very engaging. 

 Sarah: I had all the online resources on my laptop and I study them while I am writing my 

assignment. I listen also to the online tutorials and lectures to write my assignment, 

but I do not use the prescribed textbook.  

As indicated, the online resources were more appealing to the pre-service teachers and preferable to 

the prescribed textbook. The preparation of the online materials used for the pre-service teachers to 

access on their own exemplifies the enactment of the first, second, and third pillars of the flip 

framework. There was a shift from a static to a dynamic representation of the content and an 

intentional selection of the aspects of direct instruction that could be assessed in students’ individual 

spaces.  

Summary of 142 pre-service teachers’ responses to the Likert items 

Pre-service teachers indicated that they found the online resources prepared by Dr April to be very 

helpful for their mathematical learning (Q1, 96%). They also indicated that the online resources 

prepared by the lecturer are easy to follow and flowed well (Q2, 97%) and they agreed that they are 

engaging and interesting (Q3, 100%). The resources prepared by their lecturer were favoured over 

other online resources (Q4, 89%). Responses to the survey also indicated that pre-service teachers 

did not use the internet resources to help them with their mathematics learning (Q5, 73%). Pre-service 

teachers indicated that they found the online lectures relevant and meaningful, and they assist them 

with their mathematics learning (Q6, 96%). They also indicated that the online lectures were easy to 

follow (Q7, 99%) and they were about the right length (Q8, 95%).  Significantly, respondents also 

found that the online tutorials offered them a great opportunity to answer questions about the 

mathematical content (Q9, 95%), fitting nicely into their schedule (Q10, 87%), being interesting and 

engaging (Q11, 89%; Q12, 2% boring). Interestingly, responses indicated that they make use of the 



'Online tutorials' to explore mathematics (Q14, 5%) and they rarely use the 'Online tutorials' as a last 

resort when they were stuck on problems (Q15, 12%). However, they seemed to believe that they did 

better on the assessment because they watched the online tutorials (Q16, 82%). Importantly, pre-

service teachers also believed that the step-by-step 'Demonstration of Mathematics software' was 

simple to use and it was beneficial (Q17, 93%), with only 1% of the responses indicated that the 

'Demonstration of Mathematics software' was lacking and it required more technical tools (Q18, 1%); 

a possible consequence of the selection of the intentional content that Dr April expected students to 

cover before attending the online lectures and tutorials.  

Conclusion  

Dr April’s attempt to implement aspects of a flipped classroom approach to her online course was 

made possible within a highly structured teaching and learning content because of the robust 

technological infrastructure in the university. Nevertheless, the pre-service teachers’ engagement 

with their study of the online course was a consequence of the online resources developed by the 

lecturer to support her students’ online learning. It would appear that pre-service teachers appreciated 

the opportunity they were offered to progress through materials at their own pace exercising a degree 

of autonomy in developing their own mathematical competence.   

The four Pillars Framework afforded insights into the specific features of Dr. April’s implementation 

of the essential features of flipped learning. The analysis of the data showed that Dr. April has 

provided students with a flexible environment that provided students with a sense of autonomy and 

self-pacing. Reflection on lecture’s practice indicates a shift in the learning culture by transferring 

direct instruction from the classroom environment to home. The flipped classroom approach was 

implemented without removing the synchronous interaction of pre-service teachers with other 

students and the lecturer. It is noteworthy to point out that the interactive online tutorials aided in 

preventing students from being alienated from other students, the lecturer and the teaching materials. 

The selection of the intentional content was challenging in order to tailor the content to different 

students’ expertise. Pre-service teachers appeared to be motivated to access the online resources 

prepared by Dr. April stressing the importance of relatedness between students and materials 

prepared by the lecturer to foster a version of an online flipped classroom. There was evidence that 

pre-service teachers engaged in rich mathematical discussions about the content of the teaching 

materials, showing that a flipped classroom can increase motivation and interaction amongst students 

and learning of ideas aimed by the provided teaching materials. The fourth Pillar of the flipped 

learning, the professional educator, appeared to be the agent of the flipped classroom approach. A 

professional educator (as Dr. April demonstrated) could foster the implementation of the flipped 

classroom approach in teaching and learning practices without making radical change to their current 

pedagogical approaches― a finding consistent with research conducted by Muir and Geiger (2016) 

who found that a flipped classroom approach could be implemented without radically reforming a 

teaching practice. Future studies could examine the suitability of flipped mathematics classroom 

approaches in different teaching contexts, such as inquiry learning contexts, teaching school 

mathematics, and whether or not it would be effective in improving students’ learning outcomes.  
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In this paper we report an experimental activity involving working with functions and graphs in a 

grade 6 class in a Norwegian primary school. We argue that working with graph loggers in the 

form of an echo sound system enhances student conception of mathematical graphs.  

Keywords: Mathematical concepts, mathematics activities, mathematics education, educational 

technology. 

Background and literature review 

The research reported in this paper was part of the EU FaSMEd project1, which brings together 

seven European countries and South Africa, researching the use of formative assessment and 

technology in mathematics and science education. Part of each country’s work has included case 

study interventions in ordinary classrooms in close cooperation with school teachers. In this paper, 

we focus on a particular set of lessons concerning functions and graphs, and how one particular type 

of technology was used to increase student activity and engagement, leading to enhanced learning.  

The function concept is generally regarded as a difficult concept for students to grasp (Dreyfus & 

Eisenberg, 1982; Sajka, 2003; Sierpinska, 1992). Dreyfus and Eisenberg (1982) point out that the 

function concept is not a single concept by itself, but has several aspects and sub-concepts 

associated with it. DeMarois and Tall (1999) connect this to the learning of functions, saying that 

“for many students, the complexity of the function concept is such that the making of direct links 

between all the different representations is a difficult long-term task” (p.264). Also in Norway, 

national and international tests have shown that mathematical functions is a problematic topic area. 

It took humanity several thousand years of mathematical activity until functions were introduced in 

the 17th century; and even then it took time to place functions on a solid foundation within 

mathematics. It is therefore not surprising that pupils struggle with functions and how to respond to 

this struggle has been addressed in various ways. During the “New Math” movement in the 1960-

70s, it was believed that school mathematics should resemble research mathematics, and attempts 

were made to introduce functions during the first years of primary school. Eicholz, Martin, Brumfiel 

and Shanks (1963) did exactly that. This American textbook was translated into several languages, 

including Norwegian. The pendulum turned away from this with the “back to basics” movement, 

and, in Norway, functions were moved to the secondary school. As a consequence, most research on 

students’ understanding of functions and graphs is conducted with secondary school students. In this 

paper, we report on work done in primary school.  

                                                 

1FaSMEd = Improving Progress for Lower Achievers through Formative Assessment in Science and Mathematics 

Education, see https://research.ncl.ac.uk/FaSMEd/  

https://research.ncl.ac.uk/fasmed/


According to Duval (2006) we can only gain access to mathematical objects by semiotic 

representations. Janvier (1984) distinguished between four representations of functions: situations; 

graphs; tables; and formulae; and how to work with transitions between these. Duval (2006) stresses 

that “What matters is not representations but their transformation” (p. 107). That is, when learning 

about a mathematical concept, students deal with a representation of the object, and the main 

difficulty is to change between different representations of the same object. Duval distinguishes 

between conversions and treatments. Here, treatments take place between the same registers (e.g., 

changing y = 2x from one particular form to another), while conversions take place between 

registers (e.g., reading a table and using the numbers within it to interpret a situation). The latter 

seems to be far more difficult, while the former is the most common activity format in school. 

Consequently, Janvier’s framework helps teachers to focus on the change of registers rather than 

algebraic manipulation alone. To support the learning of functions, many different kinds of digital 

tools have been developed and used. Regardless of any particular view on learning outcomes from 

using technological tools, it is important to realize that use of technology is more than the 

introduction of new tools. In a survey on mathematics teachers’ use of technology in England, 

Bretscher (2014) found that while ICT might contribute to change, the direction of this change was 

as likely to be towards “more teacher-centered practices rather than encouraging more student-

centered practices” (p. 43). The tools used in our study are a particular type of data loggers. These 

are mainly used in science, but we claim that inclusion of these types of tools may be beneficial also 

in the mathematics classroom, and may contribute to more student-centered practices. According to 

Newton (2010) “data-logging methods involve the use of electronic devices to sense, measure and 

record physical parameters in experimental settings.” (p. 1247). Measurements and results of the 

logging can be displayed on a computer screen, either subsequently or simultaneously. We used this 

type of technology to study students’ early understanding of graphs. The use of motion experiments 

in the learning of functions has been studied by several authors. Nemirovsky (2003) conjectures that 

"mathematical abstractions grow to a large extent out of bodily activities" (p. 106). Arzarello and 

Robutti (2004) claim that students can grasp mathematical concepts through meaningful sensory-

motor experiences if they are encouraged to communicate and have the necessary support (p. 308). 

Arzarello, Pezzi and Robutti (2007) point out that teachers can use new technology to design 

experiences for students “where graphs can be presented in a dynamical and genetic way” (p. 135). 

Robutti (2009) conducted research on time-distance graphs with kindergarten children using motion 

sensors and calculators, finding that even very young children were able to make connections 

between the movements they made in front of the sensor and the graph sketched by a calculator.  

The research question addressed in this paper is: How can a primary school teacher use data logger 

technology to enhance primary school students’ engagement and conceptual knowledge about 

function graphs? 

Method 

The teaching experiment was carried out in a grade 6 class (students around 11 years old) in a 

primary school in Norway. The number of students in the school is close to 600, and the number of 

teachers around 35. The participating teacher has background from general teacher education, with 

specialization in mathematics and history. At the time of the experimental sessions, he had been 

working as a teacher for 7 years, the last three years at the school in question. He had been teaching 



mainly mathematics, and also some science. During his participation in the FaSMEd project he was 

teaching the same group of students, which began in grade 5 and continued with the same group of 

students into grade 6. There were 31 students in his class, 15 girls and 16 boys.  

The theme of the teaching sessions was time-distance graphs. Several technological tools and 

software had been introduced to the participating teachers at FaSMEd meetings at the university. 

Teaching material from the FaSMEd toolkit that addressed time-distance graphs had also been 

introduced. The planning of the experimental lessons began at this meeting. The teacher would give 

one lesson introducing the students to graphs and to the connection between graphs and real life 

situations. Working with mathematical graphs connecting situations and graphical representations is 

usually not done in Norwegian primary schools. According to the national curriculum, functions and 

graphs is not a specified learning goal for students until after grade 10. This would therefore be the 

first time this teacher had worked with students in primary school on graphs. Because of this, he 

wanted to first pilot the lesson on a small group of students that he considered high achieving and 

with an interest in mathematics. Subsequently the lesson was repeated with a group of students 

considered to be lower achievers.  

The technology used was two echo sounder devices developed by Pasco. This was chosen as the 

entry level for using it was not too high, and therefore the teacher considered it could be 

experimented with grade 6 students. It facilitated students to walk back and forth in relation to a 

logging device, such that a graph was immediately drawn on the computer screen indicating how 

near they were the device during a time lapse of ten seconds. The immediate live update of the 

graph distinguishes this activity from most regular science data logging activities. The computer 

was loaded with an app with premade tasks that were presented to the students. When students 

walked in front of the echo device, the computer would give a live display of graph in a time – 

position coordinate system. The tasks2 were a mix of practical tasks: “Walk a graph”, and open-

ended questions about interpretation of the graphs from the “walks”. All the results were saved and 

could be used by the teacher for assessment and feedback to the students. These data were e.g. used 

by the teacher at the end of the sessions to determine which student groups should present their 

work in a plenary. Students were chosen deliberately to give good examples of graphs made and 

how to interpret them.   

Data sources collected during the experiment include a) observation sheets from two sessions; b) 

audio recordings from two sessions, from teacher pre- and post-interviews, post-lesson reflections, 

interviews and q-sorting activities with students; c) video recordings from two sessions; d) 

transcriptions of audio and video recordings; e) photos taken at sessions and of student work; f) files 

and screen shots from PC during student activity; g) teacher lesson plans for two sessions. 

After the “walking a graph” activity, students were interviewed in a q-sorting3 activity; i.e. they 

were presented with a set of statements printed on cards and asked to sort the cards according to 

                                                 

2 The echo sound activity used some tasks taken from the software bundled with the Pasco software. Instructions for 

using the software and tasks were translated into Norwegian by the FaSMEd team. Some additional tasks were added.  

3 https://en.wikipedia.org/wiki/Q_methodology 



whether they agreed, disagreed or were undecided about, the statement on the card. This activity 

was carried out in groups of 3 to 4 students.  

Findings 

The echo sound activity made this lesson stand out from an ordinary mathematics lesson. One 

student said, 

Student A: It was very different (…) In maths lessons we never move, we sit at our seat; 

except sometimes we go out to do measurements, but that is always during 

summer. 

The tasks were also considered different to normal mathematics exercises on two accounts. First, 

students were not used to doing mathematics tasks using computers. Second, in the classroom they 

usually have to compute things, whereas in these lessons  

Student B: There were word problems and we had to do things. 

The q-sort revealed that students generally agreed to statements that connected mathematics to real 

life. E.g., students agreed to the statements “Mathematics helps us to understand our surroundings” 

and “Mathematics is used in everyday life”, whereas they disagreed with the statements 

“Mathematics is only for the classroom, not for real life outside school”, “I can do without 

mathematics” and “Mathematics is not relevant for my future life”. The q-sorting activities were 

completed around two weeks after the time-distance graph lesson. We may therefore claim that 

there is some evidence indicating that the lesson had made students aware of, or strengthened their 

awareness of, connections between mathematics in school and real life situations that can be 

described by mathematics or where mathematics is used. Students agreed that “Mathematics is 

important”, claiming that  

Student C: We use it all the time. Everywhere. In the shop. (…)  On trains. Airplanes. The 

bus.  

It seems that these groups of students held positive attitudes towards mathematics, and that they 

were able to see mathematics as relevant for themselves and for real life situations. During the echo 

sound activity, the students had to relate what they were doing, i.e. the way they were walking in 

front of the sensor to the graph the software would display on the PC screen. We can see evidence 

that students were able to connect the pace of their walking to the slope of the graph:  

Student E: It rises earlier because you walk faster.  

This relates the time (horizontal axis), distance from the sensor (vertical axis) to speed (how steep 

the curve is), a fundamental relationship in understanding time distance graphs, and a fundamental 

relationship in physics, and of course in everyday life. There were several student utterances 

showing the same kind of understanding:  

Student F: It will be more slanted the faster you walk. So you start slow, then you walk faster. 

The teacher asked another student how you can find from the graph where you walked faster. The 

student said that 

Student H:  You can see, because, first it is quite slanted, and then it goes straight up. 



Students also developed understanding of the fact that a graph does not have to start at the origin. 

When trying to walk in a way that would produce a W as graph:  

Student I: You have to start far away [from the sensor] because then it goes downwards and 

then it goes upwards and then it goes downwards.  

We see here that they understand that a graph can cross anywhere on the vertical axis, and the 

relationship between distance from the sensor and time passed. Their descriptions and discussions 

did not use mathematical vocabulary or concepts. Rather, they described what they saw in everyday 

terms, which shows that they are able to change registers and not only operate within the same 

register. These examples show how such an activity helps students in the process of conversion.  

The activity offers two aspects of working with graphs. On the one hand, students had to translate a 

given situation into a movement in front of the echo sound device, observe the graph being plotted 

on the computer screen and adapt their movement to change the graph as needed. On the other hand, 

students would interpret a graph plotted on the screen into what kind of movement that this would 

correspond to. In the interviews, students said the tasks in this lesson were more challenging than 

the mathematics tasks they normally work with, e.g., in that they had to explain how they did things. 

Being challenging is not really a bad thing, and students said they found the sessions to have been 

great fun and exciting. They claimed that they had learned a lot about graphs. During q-sorting, 

students who agreed to the statement “I can better understand when I use the technology tools in our 

mathematics lessons” also agreed that the statement referred to learning about graphs: 

 Student E: I learned a lot about graphs and how they change with the computers 

When the lesson was repeated with students that were considered to be lower achievers, the setup 

remained unchanged, making it more relevant for comparison. Notably, we found that it was not 

possible to distinguish any big differences between the first session with higher achievers and the 

second session with lower achievers.  

Teacher:  It was indeed very similar (…) maybe these were a bit slower. And I would be 

tougher, push the others more. (..) But I think they were clever, they were good at 

cooperating, learning on each other. (…) It shows that if you have open and good 

tasks, you have a lot of differentiation included. 

The activity prompted student communication and discussion. The teacher found that students who 

normally keep quiet were engaged in discussion. 

Teacher: In particular, some of the girls in the last group, they were talking, usually they are 

very quiet. Now they talked, without me having to point at them, prompting them; 

now they gave their opinion (…) And I was positively surprised at how easy it was 

for them, to listen to each other’s arguments.  

It was obvious that, even if these types of activities with graphs are common in Norwegian primary 

schools, it had not been too difficult and that this is a topic that could easily have been done with the 

whole class. The teacher said that  

Teacher: I think, interpreting graphs, it could have been done quite easily. (…) I think this 

might be more fun in primary than in lower secondary school. They still find it 

exciting with graphs (...) they are more curious and less biased. 



In the interviews, all students said that they had enjoyed taking part in the project and performing 

the lessons with graphs.  

Student: In my opinion everything was good (…) We learned a lot about graphs. 

Discussion and conclusions 

The echo sound graph plotting activity was very useful to give the students hands-on experience in 

using modern technology and use their own physical movements to create something to talk about 

mathematically. Acquiring experience with new technologies can be an educational goal in itself, 

and in particular, echo sound technology is not common in the classroom, but it is well known in 

other aspects of life. In the interviews, students claimed this was an important part of what they had 

learned and which distinguished these lessons from ordinary mathematics lessons. In traditional data 

logging experiments, students might see the data collection and the data analysis as two separate 

entities as these are separated in time (Barton, 1997). In our experiment, the gap between the 

collection of the data and the displayed graph is narrowed down to practically zero. In this respect, 

this activity also resembles working with dynamical graph tools, like GeoGebra4. These software 

tools allow students to explore graphs by manipulating parameters within designated bounds, while 

walking a graph changes freely the look of a graph only limited by the range of the echo sound 

device. This is more in line with work by e.g. Arzarello and Robutti (2004) and Robutti (2009). 

When looking at the Janvier table we see that what the students had engaged in was making a 

transition between a situation and a graph. However, the typical sketching activity proposed by the 

Janvier framework when working with functions usually has a different feel than in this experiment. 

Not only is the sketching part of the activity itself done in a kinesthetic manner. There is also a dual 

aspect in that the students continually interpret the graph whilst the graph is sketched by the 

program on the screen. This way we can say that students work simultaneously with two elements of 

Janvier’s framework, giving further evidence that changing registers is a difficulty that can be 

overcome by giving appropriate teaching materials. 

The kinesthetic part of the activity, the walking, is in itself an important aspect of the experiment. 

As it turned out, the designated low achievers were able to perform well and display great 

enthusiasm during the session. This can be related to the way learning through movement can be an 

alternative approach to put students in a receptive state, ready for learning. Learning through 

actually moving your body is rarely an aspect of mathematics lessons, but can certainly encourage 

engagement, as seen in this experiment.  

The type of activity exemplified in this experiment is completely devoid of focus on algorithms or 

procedural performance in the form of computations. Students do not know in advance how to solve 

the problems presented, and so focus is on developing conceptual knowledge about function graphs. 

From their statements, we also see that they relate mathematical concepts, like slope, to real world 

experiences, like speed. This is similar to findings in Robutti (2009, p. 68). A well founded 

conceptual understanding of functions and graphs in a time-distance setting will contribute to better 

understanding of functions on a more general level. When students encounter functions at higher 

                                                 

4 http://www.geogebra.org  

http://www.geogebra.org/


grades, their conceptual foundation will make it easier to grasp other aspects and algorithmic 

approaches to functions. 

The literature suggests that teachers need support of different kinds in order to conduct teaching 

with new technologies in a meaningful manner. For example, building on a large teacher survey in 

Singapore, Tan, Hedberg, Koh and Seah (2006) suggest that teachers need support from laboratory 

technicians, data logger training, and instructional material to use data loggers effectively. In our 

case, none of these were present. We do however acknowledge the collaborative effort between 

teacher and researchers as instrumental to the success of the sessions. It is also important to stress 

that learning is not an automatic outcome from playing with technological tools, no matter how 

sophisticated the tools are. The role of the teacher is instrumental in bringing about learning, as 

highlighted by Clark-Wilson, Robutti and Sinclair (2014, p.396).  
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“Pépite” is an online automated assessment tool for elementary algebra for students in secondary 

education (12-16 years-old) in France. Pépite was initially developed for students at the end of 

compulsory schooling in France (16 years-old). At CERME9, we presented its transfer at different 

school levels and illustrated it with the design of Pépite test for grade 8th students. Information 

provided by Pépite allows identifying students’ consistent reasoning and calculation in order to 

organize teaching corresponding to students’ learning needs. In this paper, we focus on the use of 

Pépite test for grade 8th students to learn the domain of equations. We defined an epistemological 

reference of the algebraic domain that allows us not only to build the tasks selected for the test and 

to analyze students’ responses but also to propose suitable courses adapted to students’ learning 

needs. 

Keywords: diagnostic assessment, Information and Communication Technology (ICT), elementary 

algebra; equations, student’s profile, teaching suggestions. 

Context of the study 

This paper deals with the issue “Digital assessment of and for learning” of TWG16 “Students 

Learning Mathematics with Technology and Other Resources”. Since the 1990s, our team has 

developed several multidisciplinary projects (Delozanne & al., 2010; Grugeon-Allys & al., 2012) 

concerning the design, development and use of online tools for diagnostic assessment and student 

learning. One of these tools, named “Pépite”, is relevant for learning elementary algebra for students 

of secondary education (12-16 years) in France. We have disseminated Pépite online tool on 

platforms1 largely used by teachers and students. 

In this paper, we deal with the use of Pépite online assessment for learning the domain of equations 

for grade 8th students. First, we revisit the theoretical foundations of Pépite online assessment. Then, 

we illustrate it with Pépite assessment for grade 8th students in France (13-14 years). We specify both 

the didactical model and the computer model that automatically generates generic tasks, analyses 

students’ work and provides descriptions of students’ profiles. Finally, we discuss the potentialities 

                                                 

1 Pépite tools are available on LaboMep platform (developed by Sésamath, a French maths’ teachers association): 

http://www.labomep.net/ and on WIMS environment (an educational online learning platform spanning learning from 

primary school to the university in many disciplines). 

http://www.labomep.net/


of Pépite online assessment to propose suitable courses adapted to students’ learning needs for the 

domain of equations for grade 8th. 

The theoretical and methodological framework 

In the educational system, assessment is a complex issue. Usually, assessment results are generated 

from standardized and psychometric models. Studies highlight the strengths and limitations of such 

approaches to make instructional decisions (Kettelin-Geller & Yovanoff, 2009). To identify the 

features of appropriate online assessment for learning, we have chosen both a cognitive and 

epistemological approach and also an anthropological approach, the potentialities of which are 

described in Grugeon-Allys & al. (2012). 

Epistemological and cognitive approach 

Designing a test requires the selection of a set of tasks that enables the assessment to be realized. We 

agree with Vergnaud who stated, “Studying learning of an isolated concept, or an isolated technique, 

has no sense” (Vergnaud, 1986, p. 28). Furthermore, Vergnaud introduced a strong assumption: 

dialectics between genesis of a student's knowledge and mathematical knowledge structure. Beyond 

a quantitative analysis of responses, we have to define a qualitative didactical analysis (based on a 

collection of students’ responses to the tasks) to identify the type of procedures and knowledge used 

by students in solving the tasks. To provide descriptions of a student’s consistent reasoning, it is 

necessary to define a reference for modelling the mathematical competence, in a mathematical 

domain, at a particular school grade. 

Anthropological approach 

The epistemological approach is not sufficient so as to take into account the impact of the institutional 

context on students’ learning. According to the anthropological approach, mathematical knowledge 

is strongly connected to the institutions where it has to live, to be learnt and to be taught; it is strongly 

connected to mathematical practices (curricula, etc.). Chevallard (1999) analyses knowledge in terms 

of praxeology, that is to say in terms of type of tasks, techniques used to solve these tasks, 

technological discourses developed in order to produce, explain and justify techniques, and last, 

theory that justifies technological discourses. 

A reference epistemological praxeology for algebraic knowledge 

For a given mathematical domain, we defined a reference epistemological praxeology (Garcia, 

Gascon, Higueras & Bosch, 2006) that makes it possible to create an a priori design that describes 

features of an appropriate assessment. For algebraic knowledge, such reference is based on results 

from didactics of algebra (Chevallard, 1989; Artigue & al., 2001; Kieran, 2007). In its tool dimension 

(Douady, 1985), there are tasks for generalizing, modelling, substituting, proving. In its object 

dimension, there are tasks focused on calculus with algebraic expressions (calculating, substituting a 

number for a letter, developing, factorizing) or equations (solving). This reference makes it possible 

to define appropriate technology for an intelligent and controlled algebraic calculus, based on 

equivalence of algebraic expressions and the dialectic between numeric and algebraic treatment 

modes.  



The domain of equations for grade 8th students 

The three following types of tasks are specifically related to equations (we will give some precise 

examples later about our experimentations): 

- Modelling and putting a problem into equation (tool dimension). These tasks motivate the 

production of an equation in order to solve modelling problems and require semiotic 

conversions (Duval, 1993). 

- Solving an equation using an algebraic technique; proving that two equations are equivalent 

(object dimension). These tasks use the concept of equivalence and require transformational 

activity (Kieran, 2007). 

- Testing if a number is a solution of an equation; identifying the degree of an equation (object 

dimension). These tasks are based on substitution and polynomial properties. 

Features of Pépite online assessment 

The Pépite online diagnostic assessment is based on a reference epistemological praxeology of the 

algebraic domain, both for designing tasks and for analyzing responses to the test. We will base this 

on the Pépite test for grade 8th students. 

The didactical model 

Pépite test 

The test (targeting 13-14 years old students) is composed of 10 diagnostic tasks and 22 individual 

items covering the types of tasks defined below (Table 1). The tasks may be multiple-choice or open-

ended items (Figure 1). 

Types of tasks Number of items Test items 

Calculus 4 / 22 7.1 / 7.2 / 8.1 / 8.2 

Producing numerical expressions 1 / 22 5 

Producing algebraic expressions  2 / 22 3.1 / 6 

Translation or recognition 14 / 22 1.1 / 1.2 / 1.3 / 2.1 / 2.2 / 2.3 / 3.2 / 4.1 / 4.2 / 9.1 / 

9.2 / 9.3 / 9.4 / 10 

Problem solving in different 

mathematics frameworks 
1 / 22 6 

Table 1: Organization of the 8th grade level test in terms of types of tasks 

Exercise 6: Proof and calculation program 

A student says to another student: “You will always find the same result if you take a number, you add 6 to 

that number, you multiply the result by 3, you subtract triple the initial number”. 

Is this statement true for any number? Justify your answer. 

Justification 

 

 

Result 

The statement is true for any given number: true or false? 

 

Figure 1: Example of generalization task 

Responses analysis: the multidimensional model of algebraic assessment  



At the local assessment level (for each task), students’ responses are not only evaluated as 

correct/incorrect, but also according to their technological discourse, that justifies the techniques. The 

analysis concerns validity of response (V) and seven dimensions: meaning of the equal sign (E), 

algebraic writings produced during symbolic transformations (EA), numerical writings produced 

during symbolic transformations (EN), use of letters as variables (L), algebraic rationality (J), 

connections between a semiotic register to another (T) and skills with negative and decimal numbers 

(N) (Table 2) (Grugeon-Allys, 2015). We code the responses with assessment criteria, which depend 

on knowledge and reasoning involved in the techniques2. 

Assessment dimensions  Assessment criteria 

Validity of response V0: No answer 

V1: Valid and optimal answer 

V2: Valid but non optimal answer 

V3: Invalid answer 

Vx: Unidentified answer 

Algebraic writings produced 

during symbolic transformations 

EA41: Incorrect rules make linear expressions a²->2a 

EA42: Incorrect rules gather terms 

… 

Connections between a semiotic 

register to another 

T1: Correct translation 

T2: Correct but non optimal translation 

T3: Incorrect translation taking into account the relationships 

T4: Incorrect translation without taking into account the relationships 

Tx: No interpretation 

Table 2: The multidimensional model of algebraic assessment (partial view) 

We illustrate the multidimensional model of algebraic assessment on the task “Proof and calculation 

program” (Figure 1). In order to solve this task, two a priori strategies are possible: an arithmetic 

strategy using a number or an algebraic strategy mobilizing a variable. Several incorrect techniques 

can illustrate an arithmetic strategy (Table 3) according to the rules used to translate or transform 

numeric expressions. Algebraic strategy may be incorrect (J3) if the conversion rules (T3 or T4) or 

algebraic transformation rules (EA3 or EA4) are inadequate (Table 4). 

Solutions Reasoning and technological discourse Coding 

For number 5 

(5 + 6)  3 – 3  5 =18 

Correct arithmetic strategy with global 

expression that uses parenthesis 

V3, L5, EA1, 

J2, T1 

For number 5 

5 + 6 = 11; 11  3 = 33; 3  5 = 15; 

33 – 15 = 18 

Correct arithmetic strategy with partial 

expressions 

V3, L5, EA1, 

J2, T2 

For number 5 

5 + 6  3 - 3  5 = 8 

Erroneous arithmetic strategy with global 

expression that uses no parenthesis 

V3, L5, EA3, 

J2, T3 

For number 5 

5 + 6 = 11  3 = 33 – 3 = 30  5 = 150 

Erroneous arithmetic strategy with 

calculus by step (procedural aspect) 

V3, L5, EA3, 

J2, T4 

Table 3: A priori analysis for arithmetic strategies 

  

                                                 

2 Contrary to usual practices in assessment, we do not attribute a code by technique for each task. This would lead to a 

multiplicity of codes on various tasks and would be unusable for a cross analysis on all the tasks of the test. 



Solutions Reasoning and technological discourse Coding 

(x + 6)  3 – 3  x 

= 3x + 18 – 3x 

= 18 

Correct algebraic strategy with global 

expression that uses parenthesis 

V1, L1, EA1, 

J1, T1 

(x+6)  3 = 3x + 18; 

(3x + 18) - 3x = 18; 

Correct algebraic strategy with calculus by step 

(procedural aspect) 

V2, L1, EA1, 

J1, T2 

x + 6  3 – 3 x  

= x + 18 - 3 x 

= - 2x + 18 

Erroneous algebraic strategy with global 

expression that uses no parenthesis 

V3, L3, EA32, 

J3, T3 

(x + 6)  3 = 3x + 18 = 21x ; 

21x - 3x = 18x; 

Erroneous algebraic strategy with calculus by 

step (procedural aspect) 

V3, L3, EA42, 

J3, T4 

Table 4: A priori analysis for algebraic strategies 

Student’s profile, groups and differentiated strategies 

The Pépite diagnostic assessment proposes both individual and collective assessment. The individual 

assessment, at the global assessment level (on a set of tasks), builds the student’s profile which aims 

to identify features of algebraic knowledge and skills for the seven dimensions. The collective 

assessment locates a student on a scale with four components: skill in Algebraic Calculus (CA), skill 

in Numerical Calculations (coded CN), Use of Algebra for solving tasks (UA) and flexibility in 

Translating a semiotic register to another (TA). For each of those four components, different 

technological levels and appropriate benchmarks have been identified (Grugeon-Allys & al., 2012). 

Regarding to a class, students are divided into three groups according to their skill in Algebraic 

Calculus: CA1 (group A) - reasoned and controlled calculation preserving the equivalence of 

expressions -, CA2 (group B) - calculation based on syntactic rules often in blind, not always 

preserving the equivalence of expressions - and CA3 (group C) - meaningless and non-operative 

calculation. Therefore, for a given learning objective, it is possible to assign tasks to each group, 

depending to didactical variables related to the associated technological levels (Delozanne & al., 

2010, Pilet & al., 2013). 

The computer model 

An iterative process between educational researchers, computer scientists and teachers was used to 

design and test different Pépite prototypes in order to improve the didactical model. We defined the 

conceptual IT model of classes of tasks, which allows the characterizing of equivalent tasks 

(Delozanne & al, 2008). The software PépiGen (Delozanne & al., 2008) automatically generates the 

tasks and their analyses, at different grade levels. It uses Pépinière, a computer algebra system, to 

generate anticipated student correct or incorrect answers (according to the a priori analysis). Pépite 

automatically calculates a student’s profile as well as profiles for groups of students. According to a 

learning objective defined by the teacher, Pépite generates tasks adapted to the related technological 

levels (Grugeon-Allys & al., 2012). 

Results and discussion 

The information provided by Pépite diagnostic assessment allows the teacher to identify students with 

close profiles in algebra. Then, Pépite automatically generates differentiated routes corresponding to 

these algebraic profiles. As mentioned above, these routes were designed on the basis of a reference 

epistemological praxeology. 



Differentiated routes for learning equations 

Three differentiated routes were created concerning equations. The first route “Motivating the 

production of an equation and solving it with an equation solver” motivates the production of an 

equation. It includes tasks like “equalizing two calculation programs” (see the example below). 

Students have to solve them using an equation solver. The second route “Algebraic resolution of an 

equation” requires technologies for solving equations by algebraic methods (by using the concept of 

equivalence of equations). In the last route “Algebraic resolution of problems that lead to an 

equation”, tasks that require a problem to be expressed as an equation and then solved, such as, 

“equalizing two perimeters of dynamic figures”, are proposed. 

We give now two examples of tasks for the first route. The first one aims to introduce equations and 

to highlight the inadequacy of arithmetic techniques to solve problems of first degree. As we can see, 

thanks to a thoughtful choice of the didactic variables, this task prevents arithmetic strategies – 

because of the presence of the unknown in both calculation programs – or “trial and errors” methods 

– because the solution of this problem which is 
7

3
 cannot be easily obtained by successive trials. 

Algebraic techniques are necessary. 

For groups A, B and C 

Program A Program B Alex and Brenda choose the same start number. 

Alex tests the calculation program A and Brenda tests the 

program B. 

Then, Alex and Brenda find the same final result. 

Which start number did they choose? 

Choose a start number 

Multiply it by 3 

Add 5 to the result 

Choose a start number 

Multiply it by 6 

Subtract 2 to the result 

Table 5: Task for motivating the production of and equation and solving it with an equation solver 

The second task is differentiated (Table 6) to take into account students' algebraic activity and makes 

the students work on semiotic conversions (from the representation register of algebraic writing to 

the representation register of calculation program). Differentiation relies on didactical variables: the 

left member of the equation for group A is a product and solving the equation needs to use the 

distributive property, while the equation for groups B and C do not require it to be solved. Moreover, 

the multiplication sign is used for groups B and C to suggest that one or more multiplications are 

expected in the expression. 

For group A For groups B and C 

Write a problem with two calculation programs that 

correspond to the equation 2(𝑥 + 7) = 5 − 3𝑥. 

Write a problem with two calculation programs that 

correspond to the equation 2 × 𝑥+ 7 = 5 − 3 × 𝑥. 

Table 6: Task for working on semiotic conversions solver 

Experimentation in a grade 8th class 

We now present the results of research carried out in 2016 with a mathematics teacher we will call 

M2. M2 has been working in a REP establishment (high-priority education network) for three years. 

We chose him because he is not an expert. After an observation phase (6 hours) of his teaching 

practices, we proposed a whole teaching sequence to him on equations that takes into account the 

main epistemological aspects of the reference epistemological praxeology. M2 was free to adapt this 

sequence to his practices; however, both teacher and researcher have worked together to plan the 

implementation in the class. 



M2 is required to introduce equations in his grade 8th class. First, his 20 students (14 years old) 

completed the Pépite test. Then, they were been divided into three groups A, B and C. Only one 

student belonged to group A (reasoned and controlled calculation preserving the equivalence of 

expressions). The others students belonged to groups B (15 students who can calculate correctly 

expressions but without using semantic rules) and C (4 students who do not understand the calculus 

on algebraic expressions). M2 proposed to his students the three routes mentioned above, in the same 

order. Due to the fact that most of his students were in group B (15/20), M2 chose to give the same 

tasks to the whole class. After working on the three routes, the 20 students completed a written test 

on equations. We chose to focus on two tasks from this test to present our results. The first task was 

about solving three first-degree algebraic equations. Depending on the equation they solved, 7 to 11 

students among the 20 students found the correct solutions. We particularly studied how many 

students used an algebraic technique. We observed that 17 out of 20 students solved the equations 

using the equivalence of equations. Even if they did not find the right solution, they had a strategy 

and transformed the equations in order to “eliminate” the unknown; they respected the concept of 

equivalence to do so. For the second task, equalizing two calculation programs (as presented above 

in table 5), 11 out of 20 students succeed for putting the problem into an equation. 

Discussion 

The Pépite assessment tool, based on an epistemological reference of the algebraic domain, allows 

the teacher to identify students’ consistent reasoning and calculation in order to plan differentiated 

courses adapted to grade 8th students’ learning needs for the domain of equations. The mathematics 

routes tested in our experimentation seemed to have effects on the students’ technological level: most 

of them used algebraic techniques to put a problem into equation. But this experimentation only 

concerns one teacher. So, in the ERASMUS + project “Advise me” which has just started in 

September 2016, we aim to carry out a larger scale research study.  

We intend to validate these results for the field of arithmetic of integers for grade 3-4 pupils. Grapin 

(2015) carried out a multidimensional model of assessment for this new domain in elementary school. 

She defined an epistemological reference of arithmetic of integers to design an assessment tool in 

order to define pupils’ profiles and to highlight the epistemological aspects of arithmetic to work 

according to pupils' learning needs. She organized an experimentation to study the evolution of 

pupils’ profiles according to differentiated routes adapted to students’ learning needs for the domain 

of arithmetic of integers. Data analysis is underway. 
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The main aim of this paper is to analyze the experience of a MOOC for mathematics teacher training 

implemented in Italy, in parallel with a similar experience in France1. The study focuses on teacher 

collaboration within such an online learning environment, in terms of co-working and co-learning. 

The Italian and the French teams outline a common starting point and set of concerns for the research 

(the two papers have a similar Introduction for this reason). Each team then reformulated the 

research questions and tried to answer them through specific theoretical lenses. The Italian team 

used a fresh theoretical framework called MOOC-MDT. We concentrate on practices implemented 

by teachers who attend the MOOC, in particular on their contributions to communication boards and 

the consequent conception and growth of their particular community. In the conclusions, we contrast 

our results with those of the French experience.   

Keywords: MOOC, teachers’ professional development, meta-didactical transposition, community, 

collaboration 

Introduction 

Internet communication tools provide the opportunity to develop new types of teaching methods that 

combine online courses, resources and discussions. MOOCs (Massive Open Online Courses) were 

born in 2008 at the initiative of prestigious American Universities (MIT, Harvard, Stanford, ...) that 

sought to enlarge the courses they offered to a wide audience. Since then, the MOOC phenomenon 

has been regularly growing and the worldwide number of MOOCs has doubled from 2014 to 2015 

(Shah, 2015). Although there is a wide choice of many different topics, when looking specifically for 

a MOOC aimed at teacher training, the range is limited, especially in mathematics. Nevertheless, 

there is a growing interest in MOOCs involving mathematics teachers as participants, as shown by 

TSG44 work during the 13th ICME2. In particular, from our experiences, there is a need for designing 

and implementing a MOOC for teacher training in mathematics education with a focus on the 

development of communities of practice (Wenger, 1998) and the collaborative work among teachers 

as a basis for their professional development. Indeed, when people co-work (work together 

collaboratively) they can also co-learn (learn together collaboratively), as highlighted in the ICME 

                                                 

1 See Panero et al. (2017). Since the Italian MOOC and the French MOOC were delivered at the same period of time, 

even if the contents were designed independently, our teams had the opportunity to exchange and to discuss about them. 

2 
For more information, see http://www.icme13.org/files/tsg/TSG_44.pdf 



 

survey of Robutti et al. (2016). The authors found that teachers can learn through discussion, 

conversation and reflection on their own teaching, on student learning and on the teaching of others. 

The methodology of the Italian MOOC Geometria aims to create collaborative contexts for teachers’ 

work, where they can learn from these kinds of practices. Taking into account this necessity for 

teachers to be supported in exploiting affordances of technology affordances, the objectives of both 

the French and Italian MOOCs are shared, namely: accompanying teachers in the production of 

teaching resources, by examples of activities and reflection on their ongoing resource design; 

fostering a reasoned use of technology, encouraging teachers to choose appropriate digital tools for 

the classroom. Such aims are related to the interest in the design and the implementation of teacher 

professional development programmes to include the role of teachers working and learning in 

communities (Wenger, 1998; Jaworski & Goodchild, 2006). The originality of our research based on 

the data collected from two MOOCs (in Italy and in France), that share similar aims and objectives, 

is twofold.  

First, our new framework (MOOC-MDT: see below) facilitates the study of the specific dynamics of 

the interactions among trainees and between trainees and trainers, which occur online and in totally 

virtual environments. It is topical and urgent to analyze these interactions in the context of such 

distance learning due to the increased interest in this approach in recent years. Consequently, we 

reviewed and revised an existing framework that had been used to describe face-to-face meetings for 

teacher professional development, namely the Meta-Didactical Transposition (see below).  

Second, our new framwork analyzes suech dynamics according to the cultural constraints that shape 

the MOOCs’ design and development. The French and Italian school environments have some 

remarkable differences and one of the most palpable is a wider freedom that institutional curriculum 

regulations traditionally give to the Italian teachers, compared with the major institutional constraints 

met by the French teachers. The Italian Indicazioni3 (guidelines) highlight for each discipline the 

fundamental learning goals that students have to achieve at the end of each cycle of instruction (two 

or three scholastic grades). These guidelines have the character of general didactic guidelines and 

defer to teachers the responsibility of choosing and linking the specific mathematical contents to be 

developed in the classroom in order to reach the established learning goals. The French Programmes4 

(syllabi) are also based on competences for a given cycle of instruction, but they appear to be more 

detailed and normative: for each mathematical content, they provide some examples of activities. 

Moreover, they are accompanied by several additional resources intended to support for the 

curriculum implementation in the classroom. 

In this paper, and in parallel with the French one, we draw on the common theoretical element of the 

MDT to highlight how the concepts of community and of collaborative work evolve to new and 

different forms, and the impacts on teachers’ professional learning. As members of the Italian team 

we worked alongside members of the French team to compare the data from the two MOOCs, so in 

the conclusion we will discuss the relevance of cultural and institutional aspects in the specific 

dynamics of the two experiences.    

                                                 

3 http://www.indire.it/lucabas/lkmw_file/licei2010/indicazioni_nuovo_impaginato/_decreto_indicazioni_nazionali.pdf 

4 Links to the French curriculum and supporting material are available at http://eduscol.education.fr/ 



 

The description of MOOC Geometria 

The “MOOC Geometria” is the result of a long development process over many years by the 

researchers of the Mathematics Department of Turin University, and characterized by many previous 

experiences of teacher education projects in which the team has been involved (e.g. the M@t.abel 

project https://goo.gl/Q30Dn0) alongside years of research into teacher education. The MOOC was 

delivered on a Moodle platform (http://difima.i-learn.unito.it/) between October 2015 to January 2016 

(6 modules in 8 weeks), and the 424 participants, all teachers in secondary school, were from all over 

Italy. 36% of the teachers completed all of the MOOC activities, which compares with reported 

average completion rate of about 5% (Bayne & Ross, 2013). 

The MOOC team comprised 13 people (university researchers and expert in-service teachers). The 

MOOC had two main teacher education aims: professional training and raising awareness of the 

possibilities for technology use in schools. Every week the trainees worked individually to become 

familiar with different approaches. These activities included: watching a video where an expert 

introduced the conceptual knot of the week; watching a “cartoon video” with some guidelines to carry 

out the units; reading the geometry activities based on a mathematics laboratory (and the option to 

experiment with these in their classroom). Trainees were invited to share thoughts and comments 

about the activities and their contextualization within their personal experience, using specific 

communication message boards (forum, padlet, and tricider: see Table 1 for an outline description of 

each). The team of trainer chose to limit their own interventions in these message boards to a 

minimum in order to support the birth of a trainees-only community. The trainers were more active 

within the webinars: educational online event for trainees.  

TOOL AFFORDANCES 
REASON OF THE 

CHOICE 

IN WHICH 

MODULE 

WAS IT 

THERE? 

Forum 

(web 1.0 tool) 

For public discussion, where 

everyone can read and answer to 

messages, using nested replies. 

To give teachers a friendly 

and known tool for 

discussion. 

1, 2, 3 

Padlet 

(https://it.padlet.com/) 

(web 2.0 tool) 

Board of collaboration/sharing 

material (images, videos, 

documents, text) on common 

tasks. 

To give a communication 

mode different from the 

forum, for supporting 

teachers in participatory 

methods. 

1, 2, 3, 4, 5, 6 

Tricider 

(https://www.tricider.c

om/) 

(web 2.0 tool) 

For easy brainstorming and 

voting. For decision making, 

crowdsourcing and idea 

generation. 

To facilitate decision 

making after any discussion 

by the request of a vote. 

2, 3 

Table 1: Collaborative a-synchronous tools for interaction 

Theoretical framework 

As previously mentioned, we developed the MOOC-MDT framework to suitably describe and 

analyze the MOOC’s dynamics (presented by Taranto in TSG 44 of ICME 13). It integrates three 

https://goo.gl/Q30Dn0)


 

theoretical frameworks in a new form: the Meta-Didactical Transposition5 (MDT: Arzarello et al., 

2014), Connectivism (Siemens, 2004; Downes, 2012), and the Instrumental Approach (Verillon & 

Rabardel, 1995). In what follows we give a synthetic idea of this framework.  

First, a MOOC can be considered as an artifact, that is a static set of materials. Connectivism allows 

us to picture the MOOC-artifact with its own network-based knowledge: its nodes are the content, 

the ideas, the images and videos used; the connections are the links between their node pairs. When 

a MOOC module is activated, it dynamically generates a complex structure (Siemens, ibid; Downes, 

ibid) that we call ecosystem: “all the relations (exchange of materials, experiences and personal 

ideas/points of view) put in place by participants of an online community thanks to the technological 

tools through which they interact with each other, establishing connections within the given context”. 

The network-knowledge of the MOOC-ecosystem is dynamic: it evolves as the MOOC-artifact’s 

network, thanks to the participants’ contribution. Also, the network-knowledge of individuals evolves 

as a personal self-organization (Siemens, ibid, p. 4) of the ecosystem. The process of transformation 

from artifact to instrument (Verillon & Rabardel, ibid) is here replaced by the evolution artifact-

ecosystem-instrument. 

In a MOOC there are two communities, a community of inquiry (the researchers and designers of 

MOOC) and one of practice (in the sense of Wenger, 1998), that is teachers as trainees in the MOOC6. 

The trainers evolve from their meta-didactical praxeologies (m-dp), to new ones, to deal with the 

MOOC’s training in Geometry. These new m-dp are based on a double awareness. One is that learning 

within the MOOC is connectivist: each trainee is part of a community, with the opportunity to share 

her/his own views, self-organizing information, with which (s)he comes into contact, for creating new 

connections, and questioning the existing ones. The second is that what is shown in the MOOC should 

encourage experimentation. The trainers’ m-dp constitute the network of the MOOC-artifact. During 

the implementation of the MOOC-artifact’s network-knowledge, in fact, trainers foster its nature of 

ecosystem, sharing tools and posing appropriate key questions. Moreover, the tasks designed by 

trainers suggest to trainees, in a more or less explicit way, to use the proposed material in their classes. 

In such a way, the MOOC is enriched with reports about trainees’ teaching experiences: this process 

increases a virtuous circle that encourages other trainees to experience the same materials. For this, 

the trainers’ m-dp evolve themselves, because trainers analyze, observe and monitor the MOOC 

activities as an ecosystem, to understand what did work or not. 

The community of trainees is not a unitary subject of learning: the MOOC-ecosystem is an instrument 

that belongs to each single trainee. The trainees have to solve multi-tasks, through multi-techniques, 

properly justified. In fact, they must look at the proposed material, share their thoughts through 

sharing tools, and experience their activities. These tasks are not predetermined, depending on the 

                                                 

5 MDT is a model that describes the process of teachers’ professional development with the aim of grasping its 

complexity. It is a tool to analyse the dynamic aspects of this process, namely the evolution of teachers and researchers’ 

activity over time. This activity is described through teachers’ and researchers’ meta-didactical praxeologies (Arzarello 

et al., 2014, pp. 353-355), which consist on the task in which they are engaged in the educational programme, with the 

techniques used to solve it, along with its theoretical justification.  

6 In the following we use trainers to indicate both researchers and designers and trainees for participants of the MOOC.  



 

time, approach and depth with which trainees address them. The multi-techniques are the ways in 

which the trainees extend and modify their network-knowledge, drawing on that of the ecosystem, 

and influencing it in turn (thus affecting all other trainees). The m-dp of each trainee trigger a “double 

learning process”: firstly the MOOC-ecosystem is a specific learning tool for the individual, and 

secondly the use of MOOC-instrument by the individual generates learning for the whole ecosystem. 

The dynamic process has the following components, intertwined and self-feeding each other: 

i. Instrumentation/Self-organization (from the ecosystem to the individual): process by which the 

network of MOOC-ecosystem expands the individual’s network-knowledge. In particular, the 

instrumentation (Verillon & Rabardel, ibid) is the process by which the chaos (Siemens, ibid) 

of the ecosystem network reaches the individual. The many novelties of views and experiences 

make sure that the individual compares himself with new usage schemes. A phase of self-

organization (Siemens, ibid) of the MOOC’s information follows this process: when the 

individual selects which usage schemes proposed by the MOOC are valuable and which are not. 

ii. Instrumentalization/Sharing (from the individual to the ecosystem): process by which the 

individual’s network-knowledge expands the network of MOOC-ecosystem. The 

instrumentalization (Verillon & Rabardel, ibid) is the process by which the individual, with 

her/his renewed network-knowledge independently builds new connections. The individual is 

stimulated by a task requested by MOOC and (s)he caters to the ecosystem to turn it according to 

her own (new) usage schemes. (S)He wants to integrate it with her/his own cognitive structures. 

Sharing is the process by which the MOOC welcomes the contribution of the individual and 

makes it available to all: information goes towards all members. 

Within this complex, iterative learning process lies the inherent difference between the frame of the 

MDT and the MOOC-MDT. In fact, in the MDT, the trainers shape their proposal according to the 

practices they think appropriate, and so they can realize how much the trainees learn such proposal. 

On the contrary, inside the MOOC-MDT the process appears to be more difficult to control. The 

trainers do not know “what” the user has really looked at among the presented materials, nor they can 

know how (s)he interpreted them. At the same time, the trainees benefit from material provided not 

only by trainers, but also by other trainees that share some of their own materials and ideas using the 

communication boards. The process evolves stochastically: a determining role is played by the 

individual trainees, and by their feeling as a community with whom to collaborate, to inspire and to 

share results. Basing on such a theoretical framework, it is now possible to suitably formulate a 

specific research question as follows: How effective and in which form is the collaboration between 

involved teachers (trainers and trainees), and how does it develop because of the support of tools 

designed by the trainers? 

Data analysis 

The accesses of the trainees in the MOOC (distinct from watching videos, reading materials and 

interventions in communication boards) have been in the order of tens of thousands. Accessing the 

MOOC, each trainee enters into an ecosystem, living in it through the use of free collaboratively a-

synchronous tools (as shown in Table 1), through which (s)he interacts with a community. Each of 

these interactive tools has been carefully monitored by the trainers’ team during the weeks of the 

MOOC delivery. The trainers’ team met regularly and, at the end of each module, they shared what 



 

they had observed during that specific module. In particular, the most significant trainees’ 

interventions or sharing actions were discussed. After the first few weeks we realized that we were 

dealing with a unique community of trainees, which we will expand on in the last section. We explain 

below how the trainees have used these interactive tools, showing some examples (in italics). 

The forum played a predominant role with respect to the other tools. Despite being an almost out-

dated mode (based on web 1.0), the trainees were very fond of it and used it to share their experiences 

of learning or of working. There was no moderator in the discussions: each trainee had the opportunity 

to read a diversity of opinions and experiences, and when (s)he understood how it worked, then (s)he 

introduced her/himself, became an author of posts, influenced other colleagues, or appreciated the 

idea expounded by a colleague. For example, in the second module of the MOOC, the geometrical 

topic was the widespread (at least in Italy) misconception that students have between angle and arc. 

Several activities have suggested to teachers to tackling this problem and a forum was inserted in this 

module. It collected 31 discussions, each of them with from 1 to 21 response replicas. In the 

following, just an extract: “The proposed activities have made me think about (a) how the conceptual 

articulation "Angle vs. arc" is delicate. When the guys study trigonometry at high secondary school 

(b), they know the Radian that […]allows you to no longer distinguish between (width of) angle and 

(length of) arc. I would like to know your thoughts (c), especially those who teach at lower secondary 

school”. In (a) there is an evident phase of Instrumentalization: the trainee is creating new connections 

between his network-knowledge and that of the ecosystem. He was stimulated by the activities that 

he saw in this module and he is connecting this thinking to his classroom (b). In particular, he invites 

another person to share their thoughts about this topic (c).   

If the forum was the right place for the trainers to talk about themselves, including their strengths and 

weaknesses, the Padlet was the place where the trainees began to share photos, videos and, 

spontaneously, their own materials. It is clear that the Padlet did not help to structure the exchange, 

but many trainees obtained inspiration from the exchange of materials in this place. For example, it 

was re-used and proposed by a participant as a tool to track her training programme with the 

construction of a Learning Diary: “I am reviewing all of the course materials ... Because of my age, 

I can hardly remember the various proposals, ideas offered in this course surely professionally 

enriching and among the best I've attended to! So I thought to produce a Learning Diary with Padlet. 

Step by step it will enrich it, even with external links, with the materials I have looked for during this 

course or suggested by colleagues in the forums. Can it be useful to anyone?”.  

The Tricider had the goal of triggering simple threads, most of all confined to the approval or not of 

ideas, by voting through “likes”. However, the participants used it more for collecting ideas and 

comparing their didactical experiences – as a forum – rather than for the expected use. Practically, 

the trainees realized a catachresis (Verillon & Rabardel, 1995): an artifact is used to do something it 

was not conceived for. Due to the fact that they explored the tool for the first time, and also because 

they usually need to explain and to go in depth when they express an idea, so the simple vote would 

not have let them satisfied. The posts written in Tricider are rich of ideas for both trainees and trainers. 

The trainees were introduced to a new tool for them. The trainers acquired awareness about the 

necessity to be clear in writing the tasks, in exemplifying the use of the tools and in providing tutorials 

on their affordances. 



 

Beyond some trainers’ interventions in the forums, or email communications with administrative 

aims, the actual contact between trainees and trainers was realized through three online webinars 

(using the chamber BigBlueButton of Moodle): they supported the community with synchronous 

interaction. While the trainers in the webinar could use video and chat, the trainees could use only 

the text chat. The trainers (in this case, only the academic professors) presented themes linked to the 

didactics of geometry and from mathematics education research. In all the three webinars there was 

a high participation (from 90 participants in the first one to 50 in the last one) of trainees, who posed 

questions and doubts.   

Discussion 

The complex ecosystem structure developed as soon as the trainees had begun to access the MOOC. 

They are asked to enter into what, at first glance, may look like chaos, because of the multitude of 

materials and available technological resources. In fact, initially the trainees may not have enough 

self-confidence with the situation (instrumentation). Gradually they implemented the self-

organization phase: appropriating the use of the MOOC’s usage schemes, they began to use resources 

and materials (instrumentalization) and also to contribute comments to the communication boards 

(sharing). A community, in the sense of Wenger (1998), began to take shape. It is a community 

comprising individuals who are both looking for answers and helping others, by sharing their 

practices - a community that seeks to grow collaboratively. The will to establish the threads often 

leaks out, though it is very difficult that they take shape in a broad and articulated manner. In fact, 

the threads tend to split into different groups, which are formed and split locally and for a certain 

period of time, depending on the needs felt by the individual, but generally they contribute to give to 

all trainees the sense of a common participation in one unitary event, precisely the MOOC. Using a 

term from neuroscience, we call this property plasticity, which makes it possible to adapt to various 

situations in different groups and times. It is true that situations and times change, but within a 

community that preserves its global unity. This unity consists in the collaborative sharing of what 

happens, even if the active participation converges on more than one local theme. The sharing 

processes (of materials, thoughts, ideas, experiences) in fact gives life to the ecosystem, enhancing 

the materials and expanding the individual’s network-knowledge. Even the “contact points” with 

trainers via webinars contribute to this purpose. Through sharing processes the ecosystem becomes 

more and more structured; fragments from the history of web communication (from web 1.0 on) 

coexist and complement each other, and are used by the trainees. This aspect is interesting and little 

pointed out in the literature. It is something similar to the multimodal interactions that take place in 

the classroom thanks to the activation of different registers: we call it technological multimodality. 

Plasticity and technological multimodality are the two main properties distinguishing the evolution 

of a community in a MOOC from that in a traditional training course. It is primarily for this reason 

that we needed to change the framework of the MDT elaborating the lens of MOOC-MDT: it allowed 

us to give a first answer to our research question. 

Comparison with the French experience and conclusion 

The Italian team worked to observe a general community, studying the MOOC phenomenon at a 

macro level and they did not intervene in the interactions between trainees. By contrast, the French 

team (Panero et al., 2017) observed local communities of practice. They studied the phenomenon at 



 

a micro level, intervening in the groups’ discussions to support and encourage the development of the 

collaborative work. During MOOC Geometria local groups are generated “emerging from chaos” 

(Siemens, 2004), namely they are subject to a spontaneous generation. During MOOC eFAN Maths 

(the French MOOC) trainers induce the generation of local groups and regulate peer relationships. 

Despite the fact that the cultural aspects affect these differences for sure (as we underline in our 

similar introduction), for both MOOCs there is an affinity that relies on the fact that trainees’ learning 

is often generated by self-feeding discussions and instrumentalization processes. 
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The extensive use of CAS at upper secondary school in Denmark provides a laboratory for research 

on the development of standards for CAS teaching. The poster focus on action research into teachers’ 

development of lessons and student activities in an ongoing collaboration between university and 

high schools on use of CAS in mathematics teaching. Coaches mediate design processes, reflection 

and documentation, and enable sharing. We discuss coaching as a valuable part of action research, 

and how to draw findings from such collaboration. 

Danish CAS context  

Starting with handheld devices in the 90’s, the use of CAS in upper secondary mathematics education 

has accelerated. The reform in 2005-07 of Danish high schools opened the door to extensive use of 

computers, resulting in a move to PC based programs like Maple or TI-Nspire, used in the classroom 

as well as for homework. Powerful CAS tools such as Maple drastically change the teaching 

environment, but have only led to minimum adjustments in the final examinations since the earlier 

CAS-days. Early adopting teachers do give access to their own material, but there is no systematic 

sharing of experiences or standards for use of CAS within Danish mathematics education.  

CMU’s1 Agenda 

Many teachers experience instances where CAS provides new insight or furnishes new possibilities 

to handle examples that are more interesting or more realistic. CAS can also provide possibilities for 

extensive drill and practice of taught methods. However, and especially when use is allowed in the 

final exams, CAS can turn mathematics into merely an instrumental enterprise and thus trivialize 

mathematics education. Moreover, this trivialization is hard to see, outside looking in. From a policy 

maker’s, school leaders, parents or even students point of view, you hardly know what is missing. 

Understanding that CAS can work in ways where skilled students learn less because tasks are too 

easy, while at the same time the less able students are performing poorer, because they try to rely on 

a tool they do not know how to use, demands insight. Addressing these issues, lead to establishing 

CMU.  

Principles for coached teacher training 

CMU collaborates with teachers interested in developing and sharing their experience with the use of 

CAS as an instrument for learning. We used a bottom-up approach, drawing upon models for action 

research (Asiale et al., 1996, Borba & Skovsmose, 2004), to designed a project management model 

(Figure 1). In Denmark, teachers have wide latitude to organize their teaching, but a limited tradition 

                                                 

1  CMU, Center for Computer Based Mathematics Education, Department of Mathematical Sciences, University 

of Copenhagen, Denmark, founded in 2013.  



for addressing teaching and learning in didactical terms. Through individual or group coaching2 we 

support teachers to develop their own ideas about mathematics with CAS. The coaches play an 

important role to promote teachers’ reflections before, during and after teaching - our goal being 

twofold; to draw on teachers’ experience and to promote teachers’ professionalism (Dale 2003). We 

have designed a project report template to capture teachers’ reflections alongside the teaching 

material, and made the projects available on our website (http://cmu.math.ku.dk/projekter/). The 

coaches also assist in this documentation process. 

 

Figure 1: Systems model for a CMU project 

Participants present their projects, goals and standards on an annual basis. It is essential to develop a 

common language and understanding of how mathematical content, and student activity changes in a 

CAS environment. From the discussions at our seminars, we can point to themes such as: 

- which non-CAS activities should be introduced when working with CAS? 

- what is the value of students mastering (details of) the CAS program or put in another way – 

how well should students know the CAS program in order to make real investigations? 

- How can you work in ways that students both acquire useful skills and concept knowledge? 

CMU has a double agenda of promoting sound use of CAS and of in service teacher training, so we 

pose our own research questions: 1. How to draw general conclusions about CAS standards based on 

individual projects? 2. Which teacher competences - CAS, didactical and mathematical - should 

coaching promote? 
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Introduction 

The implementation of CAS in the teaching of mathematics introduces new challenges that concern: 

content, technology and didactics. There is a change in the mathematical focus from pragmatic to 

more epistemic, since the routine work is taken over by digital tools (Artigue, 2002).  Furthermore 

the didactic changes, not only by the change in the mathematical knowledge, but also due to the need 

for the teacher to orchestrate a new component in the classroom (Drijvers, Doorman, Boon, Reed, & 

Gravemeijer, 2010). In the course “Numbers, Arithmetic and Algebra” for mathematic student 

teachers for lower secondary school on the Faroe Islands we implement the format of lesson study as 

a tool for the student teachers to develop their knowledge on teaching with CAS. This is a preliminary 

study of the transcripts from a reflection meeting, which will later form the basis for a more detailed 

study as part of my work towards the PhD.       

Theoretical framework and research question 

The anthropological theory of the didactic (ATD) suggests considering human activity as an amalgam 

of praxis and knowledge: praxeology. The praxis, also named the praxis block of the praxeology, 

consists of the constituting task and the corresponding technique. A technique can consist of several 

actions. The task and technique are in one-to-one correspondence. The knowledge, also called the 

logos block, is the discourse of the techniques and the theory that explains and verify the discourse. 

For more details see (Bosch & Gascón, 2014). This study considers the didactical praxeology and the 

mathematical praxeology of mathematics student teachers when implementing CAS in research 

lessons. Within ATD the task of solving an equation with CAS is categorized as mathematical 

praxeology, while the task how to teach the students to solve an equation using CAS is categorized 

as a didactic praxeology. The research question is “What didactical logos developed during the 

reflective meeting of a lesson study cycle?”       

Context and study 

The study is situated within a course focused on numbers, arithmetic and algebra. As part of the 

course, groups of three to four students participate in four lesson studies where CAS has to be 

implemented in the teaching of algebra in grade 7 and 8 (14 - 15 year). Each lesson study cycle 

consists of a planning phase resulting in a lesson plan, a research lesson, a reflection meeting and a 

new lesson plan. In the lesson plans, the student teachers will not only describe the intended lesson 

but also have to justify the instrumental orchestration, part of the didactical technique, in relation to 

the mathematical praxeology of the lesson. Reflection meetings in lesson studies are a rich 

environment for the development of knowledge for teaching (Miyakawa & Winsløw, 2013; 



Rasmussen, 2015). As part of the protocol for these meetings, the student teachers reflect on the 

relationships between the instrumental orchestrations used during the research lesson, the 

development of the mathematical praxeology of the students and the mathematical praxeology of the 

teacher.  

Conclusion 

As an example, the mathematical praxeology of making two integer sliders in GeoGebra and the 

related didactical praxeology of how to teach students to make two integer sliders in GeoGebra is 

considered. As a didactical technique, the student teachers chose to hand out a booklet with step-by-

step instructions in order to guide the students through the lengthy technique. Focusing on the 

didactical logos related to the technique of handing out a booklet during the reflection meeting the 

teacher students concluded that if the student did not get the exact same picture as in the booklet such 

as slider b above slider a instead of slider a above slider b, they would consider it an error and not 

usable. Additionally, the students were discouraged by having to read text in addition to carrying out 

the  GeoGebra technique. It was agreed upon by the student teachers that a booklet is still a good 

didactical technique but has to be complemented or preceded by a board-demonstration for the 

students.        
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Mobile digital technologies, such as tablets, hold great potential for teaching and learning, but they 

are being introduced into schools with little evidence to guide how they are implemented. With little 

impact on learning outcomes there is increasing attention on the need for greater focus on the role 

teachers play in the use of digital technology in the classroom. This study investigates the way 

teachers at an English school, which has one tablet per student, view and use tablets in teaching 

mathematics. The results of my study form a framework on how tablets are used in teaching. 
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Introduction 

“Despite considerable investments in computers, Internet connections and software for education use, 

there is little solid evidence that greater computer use among students leads to better scores in 

mathematics and reading” (OECD, 2015, pp. 145). Mobile technologies are increasingly being 

introduced in schools with little evidence to guide how they are implemented (Kiger et al., 2012). 

With the technology available today, some argue that there is a need for renewal of pedagogy 

(Jouneau-Sion & Sanchez, 2013), and greater understanding of the teachers’ perspectives and practice 

regarding the integration of technologies in schools (Ertmer, 2005). Using a paper poster, I outline 

how my study addresses this by investigating how a group of lower secondary school mathematics 

teachers in the south of England – who meet regularly as a group to reflect on and develop their 

practice – view, use, and develop their use of tablets in their teaching.  

Theoretical Lens 

Within the second facet of Ruthven’s (2008) examination of the incorporation of new technology into 

educational practice - the process of integrating a tool at the level of a community - Laborde (2001) 

identifies four stages of increasing degrees of mathematical/pedagogical innovation. This is the base 

of my analysis.  

Methods 

My study ran in two phases over the course of one year. Phase one established the context of the study. 

In phase two data was gathered by (1) group meetings in which teachers reflected on, and developed, 

their practice; (2) classroom observations; (3) post observation interviews with teachers.  

Findings 

I developed a framework of how mathematics teachers use tablets in their teaching. I adapted 

Laborde’s (2001) framework of instrumental evolution, to which I developed new categories that are 

organized in the two distinct groups of efficiency and engagement. Efficiency includes tasks that help 

to organize the class structure to give more time to focus on the mathematics. An example includes 

the use of quick response (QR) codes, which speeds up the distribution of online material to students. 



Engagement includes tasks that help to capture the attention of students so that they focus more 

intently on the mathematics. An example includes using virtual games to practice numeracy skills.  

My study addresses the criticisms of education research that it does not investigate questions that are 

important to teachers, thus impacting on the lack of disruptive change in schools (Pring, 2002). Other 

studies have investigated the use of technology in mathematics education by (Ruthven et al. 2009; 

Galligan et al. 2010). However, the combination of a natural school setting, regular collaboration 

among teachers, observation of use over a longer period of time, focusing on the use of tablets, and 

focusing on multiple lessons per teacher, makes my study unique. This research can help guide future 

implementation of new technologies in schools and the associated teacher professional development.  

Acknowledgment 

I would like to thank my supervisors Dr Gabriel Stylianides and Dr Niall Winters for their support. 

References 

Ertmer, P., (2005). Teacher Pedagogical Beliefs: The Final Frontier in Our Quest for Technology 

Integration? Educational Technology Research & Development, 53 (4), 25–39. 

Galligan, L., Loch, B., McDonald, C., & Taylor, J.A. (2010). The use of tablet and related 

technologies in mathematics teaching. Australian Senior Mathematics Journal, 24(1), 38-51 

Jouneau-Sion, C., & Sanchez, E. (2013). Preparing schools to accommodate the challenge of web 2.0 

technologies. Education and Information Technologies, 18(2), 265-270. 

Kiger, D., Herro, D., & Prunty, D. (2012). Examining the Influence of a Mobile Learning Intervention 

on Third Grade Math Achievement. Journal of Research on Technology in Education, 45(1), 

61−82. 

Laborde, C. (2001). Integration of Technology in the Design of Geometry Tasks with Cabri-

Geometry. International Journal of Computers for Mathematical Learning, 6, 283−317. 

OECD (2015), Students, Computers and Learning: Making the Connection, OECD Publishing,      

Paris. Retrieved from http://dx.doi.org/10.1787/9789264239555-en 

Pring, R. (2002). The Virtues and Vices of an Educational Researcher. In M. McNamee and D. 

Bridges (ed.), The Ethics of Educational Research (pp.23-40). Oxford, England: Blackwell 

Publishing 

Ruthven, K. (2008). The interpretative flexibility, instrumental Evolution and Institutional Adoption 

of Mathematical Software in Educational Practice: The Examples of Computer Algebra and 

Dynamic Geometry. Journal of Educational Computing Research, 39(4), 3. 

Ruthven, K. (2009). Towards a Naturalistic Conceptualisation of Technology Integration in 

Classroom Practice: the example of school mathematics. Education & Didactique, 3(1), 131-159 

http://dx.doi.org/10.1787/9789264239555-en


The role of automated reasoning of  

geometry statements in mathematics instruction 

Francisco Botana1, Tomás Recio2 and M. Pilar Vélez3 

1Universidade de Vigo, Spain; fbotana@uvigo.es. 2Universidad de Cantabria, Spain; 

tomas.recio@unican.es. 3Universidad Antonio de Nebrija, Spain; pvelez@nebrija.es 

 

Keywords: Mathematics instruction, elementary geometry, automatic reasoning with GeoGebra. 

 

The tools … 

By “automated proving of geometry statements” we refer to tools that mechanically output a 

mathematically rigorous (e.g. not based upon a probabilistic proof) yes/no answer to the conjectured 

truth of a given geometric statement. By “automated derivation of geometry statements” we refer to 

tools that, rigorously, output some/all geometric relations verified by a collection of selected 

elements within a geometric construction. Finally, by “automated discovery of geometry 

statements” we refer to tools that systematically find complementary, necessary, hypotheses for a 

conjectured geometric statement to become true.  

The community of mathematicians and computer scientist has been working on these goals for the 

past 50 years, with a variety of approaches, outcomes and popularization results (cf. the pioneer 

work of Gelertner (1959) in the Artifical Intelligence context, or the algebraic geometry framework 

to automated reasoning in geometry disseminated by the book of Chou (1988)). On the other hand, 

although we can mention the development of some intelligent tutorial systems designed to assist 

students to construct proofs in Geometry such as GRAMY (Matsuda and Vanlehn, 2004) or 

GeoGebraTutor (Tessier-Baillargeon, Richard, Leduc and Gagnon, 2014), it is fair to say that, up to 

now, the dissemination, use and impact of these findings in the educational context is very limited.  

Thus, the very recent survey by Sinclair et al. (2016), on geometry in education, although it includes 

a full section on the role of technologies and another one on “Advances in the understanding of the 

teaching and learning of the proving process”, does no refer at all about automated reasoning tools. 

…and the issues 

Hence, we consider it quite relevant to address, in our poster, two issues: one, to announce the very 

recent implementation (2016) of tools for the automatic proving and discovery of geometric 

theorems over a free dynamic geometry software, with tens of millions of users worldwide, and a 

great impact in mathematics education. See Abánades, Botana, Kovács, Recio and Sôlyom-Gecse 

(2016) and Hohenwarter, Kovács and Recio (2016).  

Then, recalling that the program where we have implemented our automatic reasoning tools (ART) 

is available over computers, tablets, smartphones, with and without internet connection, the second 

issue we would like to pose here is the consideration of the following questions: what could be the 

role, in mathematics instruction, of the ample availability of such tools?  It was already 30 years ago 

(cf. the visionary ICMI Study “School Mathematics in the 1990's” (Howson and Wilson, 1986) or 

the inspiring paper by Davis (1995), with a section that refers to the “transfiguration” power of 



computer-based proofs of geometry statements) when educators started reflecting about the 

potential role in education of software programs dealing with automatic theorem proving (automatic 

discovery and derivation were inexistent at that time). But these reflections were formulated rather 

as considerations about the future than as proposals for the present time of their authors… 

Thus, in view of the current implementation of ART in well spread, dynamic geometry programs, 

our final goal is to make an open call to the community of math teachers and math education 

researchers, in order to join us preparing a research project to address the following questions:  Are 

ART in geometry education good for anything? If yes, what are they good for? What should be the 

necessary changes and requirements in the educational context, if ART are to be considered good 

for anything?  
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The rationale of the study 

More recently, a need for further studies examining the process of integrating digital technology into 

classroom practice in order to support the development of a better, more comprehensive 

understanding of classroom practice with digital technologies, and to refine evolving frameworks 

has been emphasised by a number of researchers (Artigue, 2010; Hoyles, Noss, & Kent, 2004). In 

this context, the present research is useful in various different areas. First, the study is concerned 

with the concept of geometric similarity in geometry teaching using Dynamic Geometry Software 

(DGS). This particular topic makes our study beneficial, specifically because geometric similarity 

has been overlooked in recent studies. Given the significance of geometric similarity to benefit 

students’ spatial and geometric reasoning skills (Watson, Jones, & Pratt, 2013), the fact that this key 

area of mathematics has not received sufficient attention seems surprising. Secondly, this study uses 

and adapts a contemporary theoretical framework (the Structuring Features of Classroom Practice 

(SFCP) framework) (Ruthven, 2009) that aims to assist researchers in the identification and analysis 

of classroom practice using digital technology. Our study, therefore, helps identify how the SFCP 

framework supports and/or hinders the researcher in the process of such identification and analysis. 

Furthermore, an exploration of teachers’ classroom practice using the new technological tool 

provides deeper insight into the issue of digital technology integration through the detailed analysis 

of two case studies.  

Research design 

The purpose of this research is to develop a holistic understanding of how the Cornerstone Maths 

(CM) software is integrated by teachers into their classroom practice when teaching geometric 

similarity. This entailed conducting a qualitative research study in order to gain a detailed in-depth 

understanding of teachers’ use of the CM tool in the classroom. We adopted the case study approach 

where data is collected through multiple sources of information; i.e. in this study, observation 

followed by semi-structured post-lesson teacher interview based on the observations made during 

the lessons. While the more experienced teacher’s classroom practice was observed in two lessons, 

the less experienced teacher’s classroom practice was observed in one lesson. With each teacher, 

one follow-up teacher interview took place.  

In addition, a multiple-case study design was used, so that a better holistic understanding of 

teachers’ technology integration into classroom practice could be accomplished by comparing the 

teachers’ two cases. Between the teachers who participated in the CM project professional 

development programmes, the participants were chosen based on their different experiences of 

teaching using digital technology because this offers a productive comparison that will highlight the 



variables in the teachers’ integration of technology in the classroom (see Bozkurt & Ruthven, 2015). 

The data analysis was made according to the five factors in the SFCP framework, namely: working 

environment, resource system, activity structure, curriculum script, and time economy. 

Findings 

Data analysis suggests several key findings related to five structuring features of classroom practice 

using digital technology. For instance, the varying levels of teachers’ experience in using digital 

technology to teach have a considerable influence on the degree and type of their technology use 

during classroom activities. In addition, teachers think that pre-designed technological resources 

with good ideas support them to better exploit the didactic potential of digital technologies in 

classroom practice because they do not have enough time to prepare such resources. The evidence 

shows that teachers’ preparation for integrating technology into classrooms leads them to not use 

their time productively enough on the mathematical content to be taught in the course of planning 

their lessons. Lastly, despite some technical difficulties appears during classroom practice, the use 

of digital technologies facilitates and accelerates students’ learning of mathematical ideas. 
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Introduction 

I report on the resource systems (Gueudet & Trouche, 2009) of a sample of mathematics teachers’ 

in England. An influence on these teachers’ appropriation of resources for learning and teaching is 

current mathematics education reform that is focused on how mathematics performance in England 

compares to the highest attaining systems internationally. The OECD’s Program for International 

Student Assessment (PISA, 2012) ranked England in the 25th position in mathematics achievement, 

with the assessment table headed by a clutch of south-east Asian jurisdictions. PISA results also 

showed that England’s performance in mathematics has stagnated over the years. There is a 

government-backed mandate to explore, adapt and embed the Singapore/Shanghai model of mastery 

teaching and assessment for learning approaches across England (Hodgen, et al., 2014; NCETM, 

2014). “Mastery learning can be described as a set of group-based, individualized, teaching and 

learning strategies based on the premise that virtually all students can and will, in time, learn what 

the school has to teach” (Anderson, 1975 p.4). Although mastery learning has morphed into various 

adaptations, essential elements remain the feedback, corrective and enrichment (Drury, 2014). 

Extant research points to the potential of well-implemented mastery teaching as enabling higher 

levels of achievement, deep understanding and confidence (Drury, 2014).  

This study combines an activity theoretic approach with the more recent ‘documentational 

approach’ (Gueudet and Trouche, 2009) from French didactics as theoretical tools for developing an 

understanding of the teachers' appropriation of digital resources and building up a coherent 

explanation for its impacts on classroom practices. In this investigation, I document the context for 

the current motivation for adopting mastery teaching and examines the emergence of the resource 

systems of seven English mathematics teachers’ as they ‘resource for mastery’, and the potential 

impact of this on classroom practices. The major aims of this study are to: 

 Analyze how teachers’ appropriate digital resources for classroom practices. 

 Explore teachers’ resource systems for mastery teaching. 

 Contribute to the discourse on teachers’ appropriation of digital resources. 

Research design, methodology, data collection and analysis 

A qualitative case study approach (Creswell, 2013) was adopted. Purposive sampling was used to 

select seven teachers from three schools based on the use of digital resources, access, proximity and 

the opportunity to observe rich and real life-context of teacher practice with digital resources. Data 

collection was undertaken during the 2015-2016 school year through periodic whole day school 

visits. Data were collected through: audio-recorded semi-structured interviews; classroom 

observations using an adapted systematic classroom analysis notation for mathematics lessons 

(SCAN, Beeby, Burkhardt & Fraser, 1979); screen capture software; and collation of documents. 



Data analysis is ongoing at the time of writing and includes: coding and analyzing transcribed 

interviews using thematic analysis and taking into account key concepts from the literature and 

information emerging from the data alongside the SCAN analysis of classroom observations. Data 

is organized by teacher and by data type. The thematic mappings will be constantly grouped and 

regrouped into categories and themes for discussion.  

Emergent results and implications 

Preliminary results from ongoing data analysis includes: 

1. Teachers’ appropriation of digital tools for formative assessment (student seat-work is e-

analyzed during lessons which allows the teacher to enact changes in the tasks).

2. The reality of ‘emergent (in lesson) task design’ afforded by access to multiple resources.

3. The emergence of Twitter as a key platform for ‘massive live staffrooms’ (teachers are

constantly collaborating, developing task, and sharing expertise and resources on mastery

approach).

I believe that this research will contribute to the ongoing discourse on issues and challenges of the 

integration of digital resources in classrooms and offer ‘working hypotheses’ for future research. 
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The use of technology and other resources for mathematical learning is a current issue in the field of 

mathematics education and lags behind the rapid advances in Information and Communication 

Technology. Technological developments offer opportunities, which are not straightforward to 

exploit in regular teaching. In CERME10 TWG16, the recent research findings, issues and future 

questions have been explored and discussed in detail. In this introductory chapter, we will outline the 

scope and focus of the work, describe the results with respect to existing questions, and identify 

upcoming topics as well as missing topics that might set the agenda for future work in this domain.  

Keywords: Digital resources, mathematical learning, educational technologies. 

Scope and focus of the Working Group 

In recent years, discussions within the CERME-technology-group have confirmed the relevance of 

Information and Communication Technology (ICT) for the learning of mathematics. ICT provides a 

range of resources, such as software, handheld devices and online classroom activities. This range of 

resources has been compared to non-digital resources, such as textbooks, worksheets and other types 

of tools and manipulatives. The impact of both digital and non-digital resources on mathematical 

learning has been of great interest to our working group. The scope of this working group was to 

explore and discuss opportunities and possibilities, as well as challenges and limitations, of 

technological resources for student learning. We wanted to establish an overview of the current state 

of the art in the use of technology in mathematics education, including both practice-oriented 

experiences and research-based evidence, as seen from an international perspective and with a focus 

on student learning, as well as to suggest important trends for technology-rich mathematics education 

in the future, including a research agenda. TWG 15 is closely related to this theme, but focuses on 

the teachers’ roles and practices.  

In the pre-conference call for papers and poster proposals, theoretical, methodological, empirical or 

developmental contributions were particularly welcomed on the following topics:  

 Analyses of the impact of using digital and non-digital technology on students' learning;

 New forms of digital resources, including mobile devices and dynamic e-textbooks;

 Digital assessment of and for learning;

 E-learning, blended mathematics education and (Massive Open) Online Courses for mathematics;

 Influence and use of social media in students' perception of learning mathematics;

 Promoting communication and collaborative work between students through ICT;

 Using ICT for out-of-school informal mathematics learning;

 Examples of the use of technologies devoted to the support of students with disabilities.



This introduction provides an overview of the 24 presented papers and 6 posters and the discussions 

in TWG16 building up on theories and past research on digital technologies and other resources for 

mathematical learning. We especially refer to the CERME history of this technology group and 

consider the results of the 2017 conference as a continuation of the background, aims and scope of 

the conferences since 1999 (Trgalova, Clark-Wilson & Weigand, to appear). To do so, we will first 

address “old” questions, then describe upcoming topics, and close off with topics we missed.  

Taking up “old” questions  

Some contributions to TWG16 continued the discussion on topics that had been addressed in the past, 

such as the potential of digital tools to evoke the dynamical aspect of manipulating objects within a 

digital tool, functional thinking, and the use of e-books.  

Interactivity, dynamics and multiple representations  

Since the early years of using digital technologies in mathematics education in the 1970s and 1980s, 

interactivity, dynamic and multiple representations played an important role in developing new 

strategies for understanding mathematical concepts. Dynamic manipulations were prominently 

present in dragging opportunities in Dynamic Geometry Systems (e.g. Leung, 2008). Digital 

technologies created easy access to multiple representations and interactions between the user and 

the software (e.g. Noss & Hoyles, 1996; Moreno-Armella, Hegedus & Kaput, 2008). On a more 

elaborated level, the interactions between the knowledge, the tool and the learner built three main 

aspects of digital technologies and were also strongly represented in TWG16 of CERME 10. 

Dynamic digital tools can promote conceptual understanding (e.g. Drijvers, 2015) and potentially 

support low-achieving students. An example is the interactive environment presented by Swidan, 

Daher and Darawsha, to support the learning of the concept of equivalent equations. An applet gives 

the possibility to work with numerical, algebraic and/or graphical representations. Moreover, a pan 

balance represents enactive experiments with “weights” and a slider allows to dynamically change 

the x-values. The idea is to represent enactive actions and to allow students to work with a visual 

mediator while changing mathematical objects. The difficulties, limits and obstacles of working with 

multiple representations are also highlighted. Low-achieving students, for example, can become 

overwhelmed when faced with a large number of representations, which may prevent their progress. 

The consequence is not to avoid working with multiple representations, but to create didactical 

reflected learning environments with a successive introduction of multiple representations and 

reciprocal interpretation of the transition between these representations.   

Functional thinking 

Another “old” question concerns the prototypical dynamic view of functions while filling bowls with 

water and asking for the height of water in a bowl as a function of the volume of water in the bowl 

(Carlson et al., 2002). Lisarelli’s contribution to TWG16 involved the outcomes of investigating 

different dragging modalities in the frame of the above-mentioned problem, as shown in Figure 1. 

Users had to be familiar with different kinds of dragging possibilities: (quasi) continuous dragging, 

discrete dragging (e.g. if only natural numbers are allowed), or impossible dragging, (i.e. where the 

user tries to drag a dependent point). She argued for the importance of recognizing the aim for a 

specific type of dragging and considering whether it is a random movement, a movement for testing 



possibilities or a guided dragging to reach a special configuration. Such a classification of dragging 

modalities gives the possibility to observe, describe and analyze students' processes involved in the 

exploration and solution of dynamic problem solving activities. This example shows clearly a digital 

tool as a medium, which is – or mediates – between the user and the mathematical concepts. 

 

Figure 1. The Bottle Problem task and its dynamic representation 

The interactive worksheets presented by Lindenbauer and Lavicza focus on functional thinking 

through a situational model (the area of a triangle) and a related graphical representation. The 

explanation and interpretation of the graphical representation is – especially for lower achieving 

students – challenging and as the author stated, the help of the teacher may be crucial. These graphical 

representations allow students to reflect on what the impact of moving the point on the x-axis is by 

showing the small or big changes to the area of a triangle. Such an approach provides students with 

an intuitive access to the concept of rate of change.  

E-books 

A great variety of digital books or e-books for classroom use exists. Such books may be more or less 

extended versions of the traditional schoolbooks, including dynamic activities and in-built 

assessments (Gueudet et al., 2017). The “Creative Electronic Book on Reflection” presented by 

Geraniou and Mavrikis allows students to explore mathematics situations individually and 

interactively, and it also encourages them to reflect on their actions while they are exploring and 

solving mathematical tasks. A key role in the students’ reflection is played by the so-called “bridging 

activities” which emphasize the mathematics integrated into the book. As claimed by the authors, the 

design and evaluation of such interactive learning environments, learning paths or trajectories and the 

promotion of their wider use in classrooms is a new challenge.  

Theories 

The discussion on theoretical approaches regarding digital technologies for mathematical learning is 

also an on-going one within CERME (Trgalova, Clark-Wilson & Weigand 2017). There are some 

well-developed and experimentally confirmed theories like semiotic mediation (Bartolini Bussi & 

Mariotti, 2008), instrumental genesis (Trouche, 2004) or the documentational approach (Gueudet & 

Trouche, 2009), which are also used in many papers and discussions in TWG16. Murphy and Calder, 

for example, applied a framework including social semiotics and multimodality to interpret screen 



casts of students working in a problem-solving application on an ipad, to understand the learning that 

took place.  

In spite of theoretical developments in the field (e.g., see Monaghan, Trouche & Borwein, 2017), 

Schacht’s was the only contribution to TWG16 that paid attention to a new theoretical field. Taking 

an inferential perspective, he investigated the relationships between mathematical and tool language 

while working with digital technologies and the transition – or non-transition – from one to the other. 

He showed how the way in which this transition can be accomplished can have implications on the 

individual concept formation processes. He especially emphasized the meaning – but also the 

obstacles – of the transition in the language use (by students) from a tool-oriented language to a 

mathematical-oriented language. The philosophical discourse about the concept of “digital” (see 

Galloway, 2014) - “Any discourse that produces or maintains differences between two or more 

elements can be labelled digital” (Schacht) - might give orientation also in the evaluation of the 

language transfer in mathematics education.  

Upcoming topics 

The continuous development of technological tools, which are used both in and out of school, requires 

us to address old questions under a new perspective. On one hand, this new perspective has to consider 

new developments in hardware (tablets, smartphones) but also in software (social media, cloud 

computing). On the other hand, we have to consider new developments in society, science and 

(mathematics) education, for example with respect of online communication without any limitations 

in time and space. Goals in education have to be continually rethought and evaluated.  

3D-geometry 

Regarding the future development and progress of our working group, there are different topics for 

which we see the potential for further investigations. Kynigos and Zantzos presented a study, during 

which students were asked to construct the shortest path between two points on a cylindrical surface. 

To solve the problem, they had to see the relationship between 3D- and 2D-geometry and activated 

the “old idea” of a turtle geometry which allowed access to difficult concepts like the curvature of a 

special surface.  

MOOCs and new kinds of e-learning 

A second aspect is the meaning and the impact on mathematical learning of free available massive 

open online courses (MOOCs). Khan Academy1 offers a free tool that allows teachers to monitor 

students’ activity and provide them with feedback and guidance. Vančura used this tool at a Czech 

high school to provide feedback for students’ homework. The investigation showed that weak 

knowledge of the English language might not be a barrier for students. Vančura also sees the danger 

of using such courses just for the training of algorithms without developing knowledge of underlying 

mathematical concepts.  

Gray, Lindstrøm and Vestli also used the Khan Academy (KA) tool for pre-service teachers in 

mathematics who were allowed to substitute their compulsory mathematics assignment with exercises 

1 www.khanacademy.org/ (06.04.2017)

http://www.khanacademy.org/


in KA. They compared their results with those of a control group, learning in the traditional way.  At 

the end, there was no statistically significant difference in the performance of the two groups. 

It is an open question whether MOOCs or SPOCs2 will have an influence on the teaching and learning 

at schools and universities. Nevertheless, identifying good ways of e-learning will remain important, 

whether open resources on the internet or special courses integrated in learning management systems 

are used.  

Tablets 

Since the very first CERME conference, an important question has always been what kind of 

interactions take place between the tool and the learner. The goal has always been to bring the 

individual into the centre of learning. Digital technologies can mediate between mathematics and 

understanding. Nowadays, the relatively straightforward and intuitive use of digital technologies in 

the form of laptops and smartphones gives users the chance to not put too much emphasis on the 

technical aspects of the tool, but to concentrate on the learning. Palha and Koopman created the tablet-

driven project Interactive Virtual Math: a tool to support self-construction of graphs through 

dynamical relations. The aim of the project is to develop a visualization tool that supports students’ 

learning and relational understanding of graphical situations. The medium – here a tablet – allows the 

students to “draw” graphs using a finger, a digital pen or a mouse, to ask for help and to compare 

their own solution to the expected solution. According to the authors, this tool has the potential to 

help students understand functional relationships, but more importantly, allows the students to work 

on their own, experiment, create self-productions and reflect on them. Until now the authors only 

evaluated their tool in a small qualitative study. 

 

Tablets will be important tools in the years to come. With multi-touch technologies, gestures have 

become an essential feature of user interface. The relation between touching and meaning-making 

might become more important. De Freitas and Sinclair used multi-touch technology and tangible 

gestures with young children to promote counting on and with fingers. These children used their 

fingers – one after another – while counting sequentially, they used their fingers simultaneously to 

represent numbers and they left a trace on the screen with one or more fingers. With the touchscreen 

interface, and particularly the multi-touch actions, they see the hand involved in a process of 

communicating and a process of inventing and interacting. “We interpret these speculative comments 

as an indication that the future of the gesturing hand in relation to new media may involve all sorts of 

surprises, and that perhaps even pre-school children may count ‘on their hands’ to 100 as they engage 

with these media” (De Freitas and Sinclair). 

Smartphones 

Nur Cahyono and Ludwig used smartphones to help students engage in meaningful mathematical 

activities. A math trail is a walk in which mathematics is explored in the environment by following a 

planned route and solving outdoor mathematical tasks related to what is encountered along the path. 

In the MathCityMap-Project students are confronted with special situations and questions along the 

path, supported by a GPS-enabled mobile phone app. Students were intrinsically and extrinsically 
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motivated and engaged in this project. Moreover, they got to know more about their environment and 

model problems related to it.  

Digital games 

Computer game characteristics could also be exploited for the purpose of mathematical learning. As 

an example, Gjovik and Kohanova developed a mobile app on the topic of linear functions. The 

mobile phone is a tool we can expect to see more in mathematics education as learning becomes 

further individualized and online. In the “Lucky Hockey” game students have to strike a hockey puck 

along a straight line by entering a linear expression. Prior knowledge concerning the properties of 

linear functions is required when playing this game and in order to identify the path of the puck so 

that it hits the coins. The results of this project especially concerning the long term effect have not 

been satisfactory. The authors conclude that it might be difficult to make applications that facilitate 

exploration and discovery while doing mobile learning. It might be more effective if quite narrow 

mathematical topics are used. The concept of linear function might already be a too elaborate topic. 

There are many questions around the use of games in mathematics classrooms which still need to be 

examined. How do we integrate games into the curriculum? When do students play these games? Is 

the motivation to play these games just an initial effect? What is the impact on students’ learning and 

understanding? How sustainable is that knowledge over time? 

Computational thinking 

Robots are starting to play a more important role in our daily life. Robot competitions are quite 

popular in schools, but these activities usually take place outside regular lessons. The control of the 

robots, e.g. while walking through a labyrinth, needs algorithmic thinking similar to the turtle 

geometry of the 1980s. Seymour Papert (1980) originally created the label “computational thinking”, 

but nowadays this concept has a much wider scope: it includes collecting, analysing and visualizing 

data, programming, creating computational models, and understanding relationships in systems. 

Broley, Buteau and Muller presented a model of computational thinking practices based on Weintrop 

et al.’s (2016) taxonomy for computational thinking in mathematics and science practices. The 

authors ask for further clarification of this concept and ways to integrate it into mathematics lessons. 

Missing topics 

If we compare the TWG16 call for proposals with the actual contributions made by the participants, 

we see some interesting gaps. Firstly, no attention was paid to digital assessment of and for the 

learning of mathematics. There are on one hand questions concerning written (final) examinations: 

Which technologies are allowed? Which tools are needed (Drijvers et al., 2016)? Which tasks are 

appropriate? How do students report their thinking? On the other hand, the question of how formative 

assessment might be a means to develop student competences is also of interest (Beck, 2017; Black 

& Wiliam, 2009). These topics have been addressed in some aspects in TWG 15 and in more detail 

in TWG21 on assessment. 

Moreover, the topics of e-learning, blended mathematics education and (Massive Open) Online 

Courses for mathematics may set the agenda for CERME11.  This includes issues such as 

personalized and adaptive learning, and the design of online feedback for students. The opportunities 

and constraints of using social media in students’ perception of mathematics and their learning have 



also been absent, as was the case for the intriguing topic of virtual and augmented reality. Examples 

of the use of technologies devoted to the support of students with disabilities have not been addressed 

either. 

With respect to the methodologies in the reported studies, the focus was on small-scale qualitative 

studies, whereas large-scale experimental studies were not presented. Even if the latter may have 

pitfalls, the field might benefit from an integration of both qualitative and quantitative approaches, so 

as to gain sustainability and applicable knowledge on how mathematical learning can benefit from 

the interaction with digital resources.  

Concluding remarks 

Digital technologies are now an element across all CERME groups (e.g., see Ferrara & Ferrari, 

TWG24; Hogstad, Norbert Isabwe & Vos, TWG14; Montone, Faggiano & Mariotti, TWG4). This 

indicates how digital tools permeate the mathematics education research landscape and have gained 

legitimacy across the field. In today’s mathematics classrooms, different types of digital technologies 

are integrated in daily practice: interactive whiteboards, tablets, notebooks, graphing calculators with 

and without CAS. We have noticed a significant gap between research findings and mathematics 

teaching and learning practices in the regular classroom. The overall impression is that we cannot yet 

speak of a sustainable change through the use of digital technology, scaled up beyond the incidental 

level. We should acknowledge that integrating digital tools in a way that is beneficial to student 

learning is not as straightforward as we might have thought some decades ago. Thus, a specific 

working group on digital tools in mathematics education is appropriate within the frame of CERME, 

even if the impact of technological developments is hard to isolate from its context and from the 

topics central to other CERME working groups. A TWG dedicated to this issue could make a distinct 

contribution to important questions on the future of mathematics education.  
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This paper reports on a pilot study concerning a first implementation of a collaboration script, 

aiming at developing students’ argumentative competences in mathematics, as part of an interactive 

digital storytelling. We discuss the outcomes of the transcripts’ analysis, which seem to show that 

the collaboration script fosters the introduction of the student to the construction of arguments as 

cohesive texts, independently on the student’s skill in mathematics, and that the success of the script 

depends on the learners’ engagement in the story and on the team mood. 
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Introduction 

This paper focuses on a part a wider research (Dello Iacono, 2015; Albano, Dello Iacono, Mariotti, 

2016; Albano, Dello Iacono, Fiorentino, 2016), aimed to investigate the effectiveness of  the design 

and implementation of a Digital Interactive Storytelling in Mathematics (DIST-M), that is a 

platform model organizing mathematical learning activities based on social virtual interactions. The 

DIST-M consists in collaboration scripts implementing a work methodology for the students that, 

according to Vygotskian perspective, is expected to mediate specific mathematical competences. A 

collaboration script is a scheme that regulates and structures roles and interaction in a collaborative 

setting (King, 2007). The choice of the use of storytelling is related not only to motivational aspects 

and cognitive effectiveness, but also to the possibility of integrating narrative and logical-scientific 

thought (Zan, 2011). In our DIST-M the student does not create the story, but she interacts with it. 

In “Programma Discovery” the student assumes the role of a scientist at NASA, member of a team 

led by Professor Garcia (head of story and voice platform). The goal of the team is to analyse the 

data coming from a probe launched on a new planet, trying to figure out if this can accommodate 

life. During the fruition of the story, the student will face problems, whose solution is needed to 

continue the work of the team. This paper reports on a pilot study concerning an implementation of 

the DIST-M focusing on the development of students’ communication competences in expressing 

argumentative mathematical sentences, as they can be considered as critical to the advance of 

mathematical thinking (Ferrari, 2004). The goal is to introduce the student to the construction of 

arguments written according to a register shared in the mathematical scientific community. We 

analyse, from a qualitative point of view, the arguments produced by the students under a linguistic 

perspective, focusing on the organization of the verbal texts, as cohesive texts, which means words 

and sentences perceived as a whole entity. We also look at the functioning of the collaboration 

script in terms of the team work and its impact on the success of the activity. We expect that the 

collaboration script in organizing the roles and actions within the team fosters the production of 

arguments and counter-arguments, allowing each member to interiorize the so-born practice. 



Theoretical framework 

Collaboration script 

In cognitive psychology, the internal memory structure corresponding to a sequence of actions that 

define a well-known situation is named script (Schank and Abeson, 1977). Here each actor has 

specified roles and actions to take. The script is activated every time the individual is in the same 

situation. In educational context such constructs differ mainly because of its external definition and  

they aim to regulate roles and actions of students in collaborative/cooperative learning in order to 

succeed in learning (King, 2007). The use of external scripts has been incremented in computer-

supported environment, where the need of pre-structuring and regulating the social and cognitive 

processes is much more evident. Concerning argumentation, it is well known that the simple request 

of collaborating does not guarantee the development of argumentative competences. This can be 

fostered by means of computer-based scripted collaboration (Weinberger et al., 2007), taking 

advantages on the use of text-based interfaces that allow the students to have more time to read their 

written argumentations and their peers’ ones and to come back to their writings every time they 

want. According to Vygotsky (1930), “Every function in the child’s cultural development appears 

twice: first, on the social level, and later, on the individual level; first, between people (inter-

psychological) and then inside the child (intra-psychological)”. Although the scripts are externally 

designed and imposed to the learners, the goal is that they are internalised along the time through 

the social practice. Only when the external script is interiorised, then it is successful; otherwise we 

have once again a repetition of actions externally imposed and learned by heart. 

Language and cohesion 

As the defined script aims to the construction of arguments, we are interested in how the student can 

propose verbal arguments to support the solution to a given question, apart from the correctness of 

the solution. Although some theoretical models regard arguments with no reference to language, as 

a matter of fact, a written argument is, first of all, a written text, and for the student, the tasks of 

producing a correct text and an acceptable explanation are closely intertwined. This is why we will 

use a linguistic perspective with related specific tools such as cohesion. This latter allows creating 

the texture, which is the quality of being a text instead of a disorganised set of words and sentences 

(Halliday and Hasan, 1976). Though related, cohesion is different from coherence. The first one 

refers to the linguistic devices needed to realize the second one, which is instead a mental process, 

proper of the individuals involved in the discourse. The production of an acceptable argument can 

be hindered by the lack of either mathematical or linguistic competence. Often students produce 

written explanations that are plain descriptions of the procedures they have carried out, by means of 

a set of more or less disconnected clauses where cohesion is marked just by the fact that the text 

they produce is semantically congruent to the actions they have performed. In other words, their 

cohesion markers are extra-linguistic, and we cannot tell whether or not the writer is aware of the 

semantical links among the clauses. We believe that the construction of cohesive texts is the first 

step towards the development of logically acceptable arguments. The script has been designed with 

the aim of fostering the student to construct cohesive arguments, which can be interpreted by their 

pairs, independently on their mathematical abilities.  



DIST-M script 

The DIST-M script presented here aims to allow the student to grasp a method of construction of 

mathematical arguments expressed verbally. The student is involved in tasks alternately individual 

and social. Social tasks are realized by means of chat and group forum (Figure 1).  

 

Figure 1: Design of the script 

The chat supports the explicit comparison and it mediates (Bartolini Bussi & Mariotti, 2008) a 

modality of communal acting (to get an answer, an argument that supports its correctness, a reply 

adapting to the possible contradictory) that from social activity becomes an own way of working of 

the student. The forum, through its rules of use, supports the sharing and discussion, and in this 

way, it mediates the interaction inducing everyone to give their own contribution and to listen the 

one of others. In the forum, each student writes a description of his/her solution, reads / interprets 

the writings of others and can / must compare his/her texts with those of others. All this requires 

significant semiotic processes that besides being expected to foster the development of 

 mathematical meanings, are expected to promote social argumentation experiences that might be 

internalized and become own internal process of each student. Thus, according to Vygotsky (1930), 

there is a development of “higher mental functions”. In our case we refer to experiences of argued 

debate on manner of thinking / solving / answering the question, thus with higher mental functions 

we refer to argumentative skills, concerning the need to support the correctness of their answers 

with relevant topics, socially and mathematically acceptable. The functioning of the DIST-M 

requires different types of interactions: interaction with the script and interaction between the 

members of the team. The goal is to give a shared solution for the task, but the main achievement 

for the single student is to formulate his/her own argument (as a text) supporting the correctness of 

such a solution. In the script specific constrains have been designed to induce the production of 

personal arguments, their comparison and eventually the elaboration of a final answer, mediating 

the moving from an informal to a formal expression of the final individual answer.   

In the following, we give a brief description of the various tasks constituting the script (Figure 1). 

At first the group chooses its own Captain talking to group friends in the group chat (Task 1). He is 

in charge of engaging all the team members in following the tasks of the script. The next task is the 

interaction with a GeoGebra interactive construction (Task 2). The aim is to investigate and solve a 

problem posed by the story. After a more purely experiential phase and subsequent guided 

reflection, the student answers on the forum to an open question aimed to generalize the experience 

and the results to which the student has come (Task 3). When all students have submitted the 

response to the Forum, the discussion continues chatting with the aim of achieving a common 

response that the captain reports on the chat (Task 4). In the next task, the student responds 

individually to a semi-open interactive question (Task 5). The interaction consists in manipulating 

the words-blocks available to build the response and motivation to the previous individual and 

group question, and in receiving a feedback on the correctness. The words-blocks have been 

constructed using some answers collected in a pilot. In order to highlight the causal structure of an 



argument, the causal conjunctions, which are responsible of the cohesion, constitute separate words-

blocks from the other ones. Then the student is required to report on the forum the phrase built by 

words-blocks with the received feedback and he can see the ones by his peers (Task 6). It follows a 

chat group discussion to reflect on the words-blocks sentences proposed by all the members with 

the aim of clarifying the correct answer and argument (Task 7). Finally, the student writes in the 

personal Log Book all information considered useful for the mission, the impressions on the 

activity, the difficulties encountered and how they were overcome (Task 8). 

Experimentation 

The prototype used for the experimentation has been realized by means of open-source or free tools, 

that have allowed to create new interactive graphical applications and semi-open interactive 

applications (Dello Iacono, 2015). The pilot study has involved 23 10th grade students of Liceo 

Scientifico in Pompei (NA, Italy). The students have been split into 6 teams, each of them 

constituted of 4 students, except one constituted of 3. The teams have been randomly assembled, so 

that each student at the beginning did not know his/her team mates. Students belonging to the same 

team could communicate only through the forum and the chat. In the following, we analyse and 

discuss the experiment with respect to the following key points: (i) the production of verbal 

arguments for supporting of the solution to a question;  (ii) evidence of the different functioning of 

the script (that is the implementation of the designed learning activity) according to the student’s 

engagement with respect to the story and the team work. 

Concerning the first point, we analyse, from a qualitative point of view, the arguments produced 

during the individual open question and the answer in forum (Task 3 and 6 in Figure 1), that is 

before and after the semi-open interactive question, in order to investigate the effectiveness of the 

script. The students are required to answer if and why, fixed a sector in an aerogram, the angle 

varies according to the radius variation. As we will see in the following, the comparison between 

the nature of the individual arguments produced during the two tasks shows evidence of an 

improvement in the cohesion of the explanations constructed. In order to verify the cohesion, we 

look for the following cohesion markers in the texts produced by the students: lexical repetition 

(consisting in repetition of words), grammatical repetition (reference, that indicates something 

already appeared in the text, and ellipsis, that consists in the deliberate omission of words that are 

required to make up the sense), conjunction which allows to link two parts of a discourse (external, 

when it refers to a fact, internal, when it refers exclusively to the organization of the text). 

Let us consider the team 2. At Task 3 only 1 student provides an argument explaining his/her 

answer, and he/she is the one who draws team’s attention on this request, actually, replying to a 

mate enquiring of the platform’s feedback on his/her answer, he/she says in chat: 

1           S7    me too, but we are required to justify our answer 

So next his/her answer in the forum is the following: 

2 The quantity to be represented is 

equivalent to 20%. 

A first reformulation of the data of the problem 

3 

4 

360°:100%=x:20% 

x=(360x20):100=72° 

S7 carries out a calculation 



5 Although the radius changes, the size of 

the angle does not change 

A conclusion is drawn on the previous 

calculation. 

What is posted in the forum is mostly like a report of his reasoning (thinking aloud) without any 

cohesion marker. It can be seen as a report the mental process in the mind of the writer S7 and in his 

view it is coherent. This may not be the case for a reader, as it was for another student who asked 

for clarification. So S7, in order to explain to him, transformed such a personal reasoning in a new 

text.  

6 The angle of the coloured part does not 

change varying the radius 

The conclusion becomes the first statement 

expressing the answer to give. 

7 Because in a circle the angle is always 360° 

and then 20% is always 72° 

The previous calculation has been interpreted to 

become an explanation of answer. 

The new text is cohesive. As a matter of fact we note lexical repetition (angle), external 

conjunctions (because, then), ellipsis (20% refers to 360°). The difference between the two texts 

consists in the fact that the cohesion of the text can help the reader to grasp its coherence, which 

may remain inaccessible for the first text. An effective use of cohesion promoted the shift from a 

personal report of reasoning to an argument: the sequence statement – calculations – conclusion 

became a statement plus an explaining argument. Such a cohesive text was generated for 

communication goals: the request of sharing his/her personal answer seems to have induced the 

student to better articulate the solution process transforming the calculations into a verbal text 

providing the reason of such calculation. So the collaborative script has promoted the construction 

of cohesive argumentations, because of the need of improving communication within the group.  

In Task 6, we note a clear improvement: 4 students (that is all members of the team) produce an 

answer that includes an argumentation. In particular, 2 students (S5 and S8) who did not justify in 

Task 3,when  reporting the answer made of words-blocks, not only produce a justification, but both 

of them go further the request and rephrase with their own words the arguments.  

At Task 3, S8 writes the non-cohesive sentence (there is only an internal conjunction “anyway”): 

8           S8   Varying the radius anyway the angle does not change 

Then, at Task 6, he writes: 

9 The angle does not vary because it is always 

equal to 20% of the circle angle. 

External conjunction (“because”), 

reference (“it”). 

10 The other scientists completely agree with me 

as varying the radius there is only an extension 

of it and the angle remains unchanged. 

External conjunction (“as”), reference 

(“it”), lexical repetition (“angle”). 

The first sentence is the one constructed by the words-blocks, as required in the Task. Then the 

student get back in touch with the story and he/she seems engaged and making reference to the 

scientists, he/she explains in his/her words why all the scientists agree and produces his/her own 

arguments for supporting the given answer. The second sentence is cohesive. Also in this case the 

script, requiring reporting the answer constructed by words-blocks and the scientists’ feedback, 

seems to promote the construction of arguments in terms of cohesive texts.   



A similar evolution is shown by student S5. At Task 3, she produces a non cohesive text with no 

markers of cohesion: 

11           S5   The angle does not change, only the radii vary 

In following tasks, he/she writes: 

12 The angle does not change because it is 

always equal to 20% of the circle angle. 

External conjunction (“because”), 

reference (“it”). 

13 All the members of my team has the same 

idea. I have the angle is always the same 

because in a circumference the angle is 

always 360°, then 20% of 360° is always the 

same 

Two lexical repetitions (“angle”, 

“360°”), two external conjunctions 

(“because” and “then”) 

Also the student S5 at beginning reports the answer made by the words-blocks, but later he/she 

refers to the story and he/she seems so engaged to say “my team”, the team of the scientists to 

which he/she belongs in the story, and when he/she refers to the story, he/she rephrases with his/her 

own words the answer and its motivation. The sentence constructed by S5 is cohesive.  Thus, it 

seems that the functioning of the script, based on sharing the answers and impelling to find an 

agreement might lead to appropriate the meaning of argument as explaining and supporting the 

correctness of the solution by means of cohesive texts.  

Let us consider a case where, even if the answer given by the student is not correct, we can anyway 

observe a shift towards the production of an argument. The student S22 at Task 3 writes: 

14 Greater is the radius as much as the angle 

decreases. 

This text is not cohesive (there is no 

markers). 

At Task 6 he/she writes: 

15 The angle decreases because it is inversely 

proportional to the radius but the other 

scientists do not agree 

Two external conjunction (“because” and 

“but”), ellipsis (“the angle” is omitted in 

the secondary sentence) 

Here we have a cohesive text constructed by means of the words-blocks. Even if the answer is not 

correct, there has been the production of arguments. So, the script seems to work according our goal 

(to foster verbal argumentation) independently on the correctness of the mathematical content. 

Similar behaviour can be observed in the other teams: we have only 8 students among all teams that 

produced argumentation at beginning, whilst at the end all of the 23 students do it. In particular, the 

request of sharing on the chat seems to have a mediating function leading to transform a personal 

reasoning into a public argument. As shown above, the students do not limit themselves to report 

the sentences constructed with the words-blocks, but they also reproduce arguments with their own 

words assembled in a structure similar to the ones suggested by the script. 

Concerning the second point, the transcripts show evidence that the effectiveness of the activity is 

strongly influenced by the students’ engagement with respect to the story and to working in group. 

The effective work of Team 2 seems to occur because all the members were engaged in the story 

and shared a good mood allowing collaboration. However, in some other cases, we can see that the 



activity fails if this does not occur. Let us consider for instance, team 5. The Task 3 seems to work 

well, the students are engaged in the activity and produce quite different argumentations: 

16    S17  360:100 

17                        3.6x20=72 

18                        varying the radius the angle does not change 

19                        because the percentage is always the same 

20      S20  varying the radius the angle indicating the percentage of the considered  

21                       stone does not change because 20% of 360° is always 72°, 360.1/5=72      

Arriving at the Task 6, we find that they seem to have lost interest in the activity. Looking at the 

chat transcripts, there is evidence of a change of the team’s mood. Actually, students start to 

become nervous around the end of Task 4: 

22   S20  but we have not yet given the first agreed answer beep 

23    S18  WE ARE DISCUSSING NOW TO HAVE AN AGREED ANSWER 

24                        20, you are a genius of evil, connect you brain       

Team mood in chat get worse until the beginning of Task 6: 

25   S18  HAVE YOU UNDERSTOOD?! 

26                        DO IT ALL OF YOU 4 IF YOU DID NOT DO IT YET! 

27                        I said to you in the session share not in the notes, I was sure that you did it 

28                        Hurry up to write in the sharing session 

29                        THERE ARE TWO SESSION OF beep. S20 who are you? 

At the Task 6 the students have lost their initial engagement and do not satisfy completely the 

requests. It seems evident that the mode of operation has been strongly affected by the negative 

engagement, in particular of the Captain, and by the impossibility of collaborate. 

Conclusions and future directions 

In this paper we have reported on a pilot study concerning a computer-supported collaboration 

script, aiming at developing students’ verbal argumentative competence. The analysis of the 

students’ transcripts seems to show that the collaboration script fosters the introduction of the 

student to the construction of arguments as cohesive texts, independently on the student’s skill in 

mathematics. Some students shift from producing computations to constructing cohesive 

argumentations that make use of the previous calculations; some other students, although they do 

not get the correct answer from the mathematics point of view, also produce cohesive texts as 

expression of their reasoning. We are now working on a quantitative data analysis, by means of 

statistical test, coding cohesion of the written students’ productions to compare Task 3 and Task 6, 

in order to confirm the effectiveness of the script as shown by the transcripts in the previous section. 

Moreover, in order to check that students really interiorized the script and not only repeat what they 

did before, as well as the use of the cohesion, we are implementing a new script, as continuation of 

the story, without the word-blocks. There is also evidence that a negative mood in the work team 

can compromise the success of the learning activity. To this aim, we are implementing a new 

version foreseeing the introduction of a role for each member of the team, behind the Captain, 

avoiding that somebody in the group gives away the responsibility. We are going to prove that the 



designed script, suitably modified in order to create a positive mood in the work team, promotes 

effectively the construction of cohesive texts and the fact that there is a strict interconnection 

between them and logically acceptable arguments.    
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“Computational thinking” is a hot topic in math education, among teachers whose curricula now 

include the term, and researchers who wish to pinpoint what it means and how it could be promoted 

in classrooms. A recent study resulted in a theoretical model of the computational practices of 

professional mathematicians and scientists, with the aim of offering teachers a set of competencies 

around which to build activities for their students. Nonetheless, concrete examples that validate the 

model and exemplify its use in math classrooms have yet to be discussed. We wish to open up this 

discussion, which we see as crucial to understanding how to empower students to participate in the 

computational thinking that has become integral to the mathematics community and beyond.   

Keywords: Computational thinking, mathematicians’ practices, legitimate peripheral participation.  

Introduction 

Parallel to the invention of the personal computer, Papert (1980) envisioned a world where children 

fluently use the tool as young mathematicians. Some thirty years later, we’ve witnessed a 

widespread resurgence of interest in that vision, taking shape in educational reforms (e.g., in 

Europe; Bocconi, Chioccariello, Dettori, Ferrari, & Engelhardt, 2016) and research regimes (cf., 

www.ctmath.ca) in the name of computational thinking, deemed a 21st century skill. Yet, there is 

little consensus on what this “new” term encompasses or how/if it should be conceptualized within 

subject areas beyond computer science (Grover & Pea, 2013). In response to these issues, Weintrop 

et al. (2016) developed a taxonomy of computational thinking practices geared towards science and 

mathematics. They based their work on a literature review, an analysis of learning activities, and 

interviews with “biochemists, physicists, material engineers, astrophysicists, computer scientists, 

and biomedical engineers” (p. 134). They also show, through concrete examples, how the practices 

might be promoted in physics, biology, and chemistry classrooms. To build on this work, we could 

ask: What might the computational thinking practices look like in mathematics classrooms? 

Moreover, are they representative of professional mathematicians’ practices? 

In this contribution, we attempt to provide some answers to these questions by drawing on two 

resources: 1) fifteen years of experience in a sequence of three undergraduate Mathematics 

Integrated with Computers and Applications (MICA) courses at Brock University, where students 

create and use computer environments to explore mathematics concepts or real-world situations; 

and 2) reflections of mathematicians whose research falls within an area recognized by the 

European Mathematical Society in 2011: “Together with theory and experimentation, a third pillar 

of scientific inquiry of complex systems has emerged in the form of […] modeling, simulation, 

optimization, and visualization” (p. 2). The next section outlines the perspective underlining our 

work and our approach in preparing this paper. We then present our results, i.e., we exemplify 

(empowering legitimate peripheral) computational thinking practices in mathematics.  

http://www.ctmath.ca/


Theory and methods 

The way we interpret “Learning mathematics with technology” in the context of this paper is well 

explained by Lave and Wenger’s (1991) concept of “legitimate peripheral participation”, whereby 

students are invited to become mathematicians through engaging in their shared practices. 

“Mathematics”, then, is not seen as a body of knowledge to be acquired by the student, but rather as 

a social community to which the student gradually gains membership. Hence, we do not discuss 

computer “technology” from a cognitive point of view, for example, as a helpful tool in illustrating 

concepts. We focus, instead, on how mathematicians, the old-timers of their discipline, and 

students, the new-comers, create and use computer tools to engage in practices considered to be 

integral to the mathematical community.  

 

Figure 1: Computational Thinking Practices, taken from Weintrop et al., 2016, p. 135 

In recent work, Weintrop et al. (2016) outline what they believe to be these integral practices 

(Figure 1). Their framework provides a detailed description, specific to STEM (i.e., science, 

technology, engineering, and mathematics), of one of three dimensions introduced by Brennan and 

Resnick (2012) to characterize “computational thinking”: namely, computational concepts, 

practices, and perspectives. Such frameworks seek to elaborate on the general definitions on which 

they are grounded; for instance, that of Cuny, Snyder, and Wing, who describe computational 

thinking as “[t]he thought processes involved in formulating problems and their solutions so that the 

solutions are represented in a form that can be effectively carried out by an information-processing 

agent” (2010). Computer programming plays a particularly important role, as it “is not only a 

fundamental skill of [computer science] and a key tool for supporting the cognitive tasks involved 

in [computational thinking] but a demonstration of computational competencies as well” (Grover & 

Pea, 2013, p. 40). Such ideas invoked in us vivid images of our own experiences with/as 

mathematicians and students creating and using computer tools to do mathematics. And this 

inspired us to address an apparent void: that is, a comparative picture that highlights the powerful 

computational thinking employed by professional mathematicians, on the one hand, and, on the 

other, the potential of students to participate in the same kind of thinking. 

To prepare this picture, we re-examined Broley’s (2015) research, which explored the use of 

programming by 14 mathematicians in their research and teaching. In an interview, each participant 

described research where they developed and used computer tools. Unbeknownst to us at the time, 

this provided examples of how some full-membership mathematicians engage in computational 



thinking. Amongst them, we chose four that align with the groupings in Weintrop et al.’s (2016) 

taxonomy. We then reconsidered the data from another study (Buteau, Muller, Marshall, Sacristán, 

& Mgombelo, 2016) – the 14 MICA projects completed by one student, Ramona – as a source of 

four examples of peripheral computational thinking. MICA’s goal of responding to society’s need 

for professionals proficient in programmable technology made it a natural database for comparison.  

Results 

This section provides examples of computational thinking as it might be experienced by full and 

peripheral participants in the mathematics community. For each category identified by Weintrop et 

al. (2016), we describe a mathematician’s project that we feel effectively exemplifies it. This is 

contrasted to a MICA project that we see as providing access to the same kind of practices.  

Data practices 

Adèle uses her expertise in mathematics and computing to solve problems in financial engineering. 

In one project, she developed a model that enables investors to judge the investment potential of 

various market entities. In particular, the model calculates the risk that an investor will lose money 

because the investee is unable to pay back what they owe. The tricky part is that most investees have 

never had such financial problems (e.g., with bankruptcy). To assess a given company or individual, 

Adèle considers their portfolio: She collects their history of actions (e.g., investments, bonds, 

shares) on the financial market. The basic idea is that as others agreed to invest a certain amount of 

money in the company or individual, they implicitly demanded to be compensated for the risks they 

were taking, thereby predicting the probability that the investment would be a good one. 

Mathematically-speaking, the problem is of an extremely high dimension: Adèle’s model contains 

over 20 parameters that must be estimated for each portfolio by manipulating the corresponding 

data with optimization techniques. Intensive numerical methods are then applied to the specified 

model to generate the data necessary for evaluating the risk of the investee(s) being considered. The 

result is not a simple measure of the average risk. Adèle must perform a nuanced analysis to meet 

her clients’ needs, calculating and visualizing probability distributions in order to portray the best 

and worst case scenarios. About the place of computation in her work, Adèle was blunt: She said 

there would be no project without it. In fact, when tasked with assessing the risk associated to 

hundreds of companies at once, she must use computer clusters to get the job done.  

In their second of three MICA courses, students in Ramona’s cohort were assigned a project similar 

to Adèle’s. During lectures, they were introduced to mathematical ideas related to the stock market. 

In regards to programming, they also learned how to read data from files. Up to this point, they had 

worked with data they created through simulation; but during this project, they had to use data from 

Stock Market sources. During two (two-hour) lab sessions, the students initiated their individual 

work by collecting the S&P index, a measure of market conditions, from 1950 to 2002, and writing 

a program to manipulate, visualize, and analyze the data using standard statistical techniques. 

Students were also required to select ten stocks and, like Adèle, make recommendations to a fictive 

client based on their own analysis. In her report, Ramona grounded her recommendation on the 

mean and average yearly percentage of her stock selection. Then, as requested, she conducted a 

regression analysis of a stock over a decade and described how visualizing the data as a cloud of 

points confirmed her interpretation of the coefficient as representing a weak correlation. 



Modelling and simulation practices 

Alice’s projects are often inspired by a collaborator in need of her modelling and simulation skills. 

She spoke, for example, of a kinesiologist who initiated a multi-year project about muscles. Alice 

began by learning about the application, which she knew little about. She could then design a 

system of equations that would allow her to study the features of interest, i.e., tensions, bulges, and 

fibers; but only once the model was implemented on a computer. During her interview, Alice joked 

that computation was essential because, unfortunately, the solution to a real-world mathematical 

model never simplifies to the quadratic formula. While some researchers use existing simulators to 

gain access to their models’ solutions, Alice prefers to have the control of constructing her own. 

This comes at a price: Even if her team starts with an existing code, they still have to think very 

hard about how they implement their equations, import data, generate meshes, and so on. But all 

this hard work apparently paid off in this project: Alice described the resulting computational model 

as “the most complex simulator of its kind”, and was hesitant to share its massive code during her 

interview. This tool was used systematically to investigate issues the researchers initially sought out 

to understand. But by varying parameters in an exploratory mode, they also found and tested 

solutions to an unreported problem: the forming of well-defined fiber structures. During her 

interview, it was clear that Alice was excited by this discovery, for her collaborator had observed 

the formation of the exact same fiber structures, but in a real human! In the end, the data collected 

during this ultrasound experiment of a person on a bicycle assessed Alice’s model, confirming that 

it represented “the real thing” in more ways than expected. 

       

Figure 2: Ramona’s epidemic simulator (left) and discrete dynamical system program (right)  

Modelling and simulation practices that resemble Alice’s are central to the MICA courses. At the 

end of the third course, students in Ramona’s cohort were asked to use the theory of cellular 

automata to model and simulate the spread of an epidemic. Students worked individually to 

construct the computational model (i.e., to implement it in VB.Net), complete with a dynamic 

visualization of the cellular automatum and a complementary graph (Figure 2, left). Using this 

model, students were invited to observe real-time simulations of certain scenarios with the goal of 

coming to understand the effects of vaccination on the proliferation and diminution of epidemics.  

They were then told how to extend their models to include the cost of immunization and medical 

treatment, so to find (estimate) the solution of a minimal medical cost problem. In her report, 

Ramona went beyond finding the solution; as required, she also assessed the ability of her extended 

computational model to provide an accurate estimate, finishing with suggestions for improvement.   



Computational problem solving practices 

To understand Norman’s pure mathematics research, some preparation is in order. In his work, a 

permutation of length n is just a string, σ = σ1σ2…σn, where each σi is a unique element from the set 

{1, 2, …, n}; for example, α = 624531 is a permutation of length 6. Given another permutation, e.g. 

β = 231, we say that ∝ contains the pattern β if we can find in ∝ a subsequence (not necessarily 

consecutive) whose numbers have the same relative order as 231. The fact that ∝ contains the 

subsequence 451 – 1 is the smallest number, 5 is the highest, and 4 is in between – means that it 

contains β (we could have equally used subsequences 241, 251, 231, or 453). If a permutation does 

not contain a pattern, it is said to avoid it; for instance, α avoids 1234. An interesting problem for 

mathematicians is to determine the number of permutations pn of length n that avoid a given pattern. 

It is known that pn grows almost exponentially with n. The growth rate, however, is still unknown 

for many patterns. In search of one such rate, Norman’s team had to build a complex computer tool. 

The programming was delegated to a student, whose life was simplified by the development of a 

modular solution based on an existing subroutine for another pattern. The creation of the entire 

algorithm, nonetheless, was a team effort, for it involved the careful assessment of different 

approaches and solutions. One option was to calculate the exact value of pn for as many n as 

possible and then extrapolate the growth rate. But according to Norman, this approach was 

inefficient: At the time of his project, they could calculate the exact values only for n ≤ 25, which 

was not enough to provide an acceptable solution. The mathematicians hence chose a probabilistic 

approach that uses estimates for pn rather than exact values. This enabled them to calculate more 

data points; but their program was still slow. Seeking to troubleshoot and debug the problem, 

Norman suggested that his team try to visualize the permutations. Their decision to represent a 

permutation σ = σ1σ2…σn as a function that sends i to σi led to the discovery of an unexpectedly 

striking structure (Figure 3, left). Norman insisted on the importance of creating this particular 

computational abstraction: The pattern would not have been observable, for example, had they 

produced only a list of matrix entries. And then Norman might have missed out on a novel research 

direction that occupied him for many years. 

Since all MICA projects involve programming, computational problem solving practices like 

Norman’s always form a major part of their completion. Starting in the first MICA course, students 

discuss what makes a math problem amenable to exploration through programming. Since this is 

new to most of them, they are also led to develop their computational skills through a carefully 

selected progression of projects, which increase in complexity in terms of both the mathematical 

content and the programming requirements. For example, Ramona and her peers learned about 

discrete dynamical systems alongside techniques of displaying graphics in VB.Net, which they 

applied by creating a program to numerically and graphically explore the logistic map. In a later 

project, the students were asked to build on this work (i.e., borrow modular computational solutions 

from it) and program a tool to explore the system of a two-parameter cubic (Figure 2, right). This 

new problem required more serious preparation for a computational solution, as the domain of the 

cubic called for the consideration of different cases. Inherent to the programming process was also 

troubleshooting and debugging, creating computational abstractions, and assessing different kinds 

of solutions, which may have contributed to Ramona’s conclusion in her written report that 

“creating and working with this program has assisted me to fully grasp the way a dynamical system 

works by observing the table, the graphs, and the cobweb with countless test values.”  



    

Figure 3: Norman’s discovery of structure in pattern-avoiding permutations (left) and Albert’s 

computation of trajectories resulting from a perturbation off an orbit close to the moon (right) 

Systems thinking practices 

Albert has studied many complex systems, including those defined in celestial mechanics. The 

three-body problem, for example, seeks to describe the motion of a spaceship in the presence of two 

bodies, like the Earth and its moon. The complexity of the system is managed by ignoring the 

presence of other bodies, taking the spaceship to have negligible mass, and assuming that the 

massive bodies move in circular orbits. These explicit boundaries do not render the system useless. 

In fact, the model has provided initial approximations for real space missions. Moreover, it serves as 

a rich source of problems that allow Albert to show off the mathematically and numerically 

sophisticated software he has developed, software that according to him can compute “amazing 

things” that are simply “not computable” by traditional methods. Albert’s team has computed the 

uncomputable at different levels. Macroscopically-speaking, they have investigated the three-body 

system as a whole by finding and classifying an infinity of its periodic solutions (i.e., closed 

trajectories where a spaceship could remain in orbit). On a microscopic level, they have explored 

these orbits in family groups and individually. This latter consideration also helps them understand 

some relationships between elements within the system: For a given orbit, the researchers can 

determine the set of trajectories that a spaceship could follow after experiencing a slight 

perturbation. The resulting tube-like structures are like highways that enable space travel to far-

away places with minimal effort (and money). One image (Figure 3, right) is enough to convey the 

importance of visualization in communicating Albert’s results.  

In each MICA course, the last two weeks are dedicated to challenging original projects wherein 

students select topics of interest to them. Ramona’s terminal (14th) project is an example of how 

students might engage in practices similar to Albert’s and, as the MICA course creators aimed, 

“develop their own strategies for handling complex real world problems” (Buteau et al., 2016, p. 

144). With two of her colleagues, Ramona investigated, as a whole, the complex system associated 

to the water level changes in Lake Erie (Canada). In particular, they were interested in explaining 

how and why the level changes over time (i.e., in understanding the relationships within the 

system). They described their initial research in existing literature as “a crucial starting point in 

[their] project, allowing [them] to obtain an understanding for the changes in the water supply of 

Lake Erie.” Based on the information gathered, they designed and programmed stochastic and 

deterministic models of the phenomenon. They then performed an analysis, through simulation, of 

six case studies, representing the system in various ways on a different, more microscopic, level. 

They used their initial research to justify the assumptions they made, the parameters they chose, and 



the case studies they considered in order to manage the complexity of the system. This explanation 

was part of the 26-page report where Ramona’s group communicated their results.  

Discussion and conclusions 

The four pairs of examples provided above aim to render Weintrop et al.’s (2016) framework more 

concrete, validate its correspondence with a diverse set of authentic professional practices, and 

provide some insight as to how students might be invited to gain access to them, all within the 

context of mathematics. Ramona’s work differed from the mathematicians’ in its magnitude: Her 

projects were more restricted in scope and length, her computer programs were more naïve, and her 

findings had less immediate value for the community at large. This is not surprising since Ramona 

was in a peripheral phase of participating in the mathematics community, where she was 

simultaneously negotiating entrance into a community of students at a particular university, with its 

own norms limiting engagement in full-membership mathematical activity. Nonetheless, in 

exposing Ramona to the computational practices of mathematicians, programs like MICA support a 

nuanced discussion of what it means to integrate digital tools in students’ learning of mathematics.    

Many scholars have reported on the ways in which building and/or interacting with digital tools 

might assist students in meaningfully acquiring mathematical ideas or ways of thinking that are 

embedded in current curricula. The collection of papers presented in the working group on learning 

mathematics with technology at this year’s CERME conference provides numerous examples. In 

fact, the main framework used in this paper was built on the premise that learning activities 

involving computational thinking practices can enrich students’ understanding of mathematics and 

science (Weintrop et al., 2016). This said, the framework was equally inspired by the ever-

increasing computational nature of STEM-related disciplines. As evidenced by our examples, and 

much work that precedes us, the power of the computer has had a major impact on the way that 

STEM professionals (can) do their work. And so, the computational thinking trend presents an 

opportunity (or perhaps a necessity) for mathematics educators at all levels to reconsider not just the 

“how” of mathematics teaching, but also the “what”, i.e., the knowledge and skills to be taught. 

After all, students’ participation in the computational thinking practices of mathematicians might 

not just prepare them for a computational future in general; it may also widen their perspectives of 

the nature of mathematics and who is capable of learning (and doing) it.    

Both research and experience tell us that reflecting on the above issues, developing curricula to 

address them, and enacting that curricula in classrooms are quite different feats. Detailed and 

extensive frameworks like the one developed by Weintrop et al. (2016) can certainly help support 

researchers, curricula developers, and teachers. But there is still a need to examine more closely and 

completely the experiences of students who are peripheral participants in computational 

communities of practice: What skilled knowledge (i.e., practices) do they actually develop? 

Moreover, how do they identify with communities they are both entering and (eventually) 

influencing? Given our analysis in this paper, the MICA program provides a rich context within 

which to study such questions. The answers could lead to an enlightening discussion about 

challenges and opportunities in bringing about a nuanced technology-rich mathematics education. 
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The MathCityMap-Project was developed by combining the concept of a math trail program with 

advanced mobile technology. It aims at providing a new approach to promote student motivation to 

engage in meaningful mathematical activity. An explorative study was conducted as a pilot using nine 

secondary schools in the city of Semarang, in Indonesia, and 272 students and nine teachers were 

included. Using self-determination theory as a framework, we explored the motivation of students to 

engage in mobile app-supported math trail activity. Data collection procedures comprised 

observation, interviews, questionnaires, and student work analyses. Findings indicate that intrinsic 

motivation and identified regulation established an essential part of students’ motivation to engage 

in this activity. The design of the learning environment, the use of mobile app, and the value of the 

mathematical task have contributed to this result. 

Keywords: MathCityMap, mobile app, math trail, student motivation. 

Introduction 

A math trail, a path for discovering mathematics, was created as a medium for experiencing 

mathematics in all its characteristics, namely, communication, connections, reasoning, and problem 

solving (Shoaf, Pollak, & Schneider, 2004). In such a trail, students can simultaneously solve 

mathematical problems encountered along the path, make connections, communicate ideas and 

discuss them with their teammates, and use their reasoning and problem-solving skills. Although the 

math trail project is not new, supporting this outdoor education with mobile technology is an 

innovative approach to the program. This idea appears together with the fact that, in recent years, 

mobile technology has significantly improved and mobile phone use has significantly increased 

(Lankshear & Knobel, 2006). These advancements have been followed by the creation of many 

mobile phone applications (apps), including those intended for use in outdoor activities. In learning 

activities, Wijers, Jonker, and Drijvers (2010) suggested that mobile devices could be employed to 

facilitate learning outside the classroom. They also suggested that mobile technology could be 

exploited to support the outdoor educational program. Integrating advanced technology with the math 

trail program is the basis for the development of our project, called the MathCityMap-Project, in 

which math trails are facilitated by the use of GPS-enabled mobile phone technology. This project 

has been developed and implemented in Indonesia since 2013 and has been tailored to this country’s 

situation. The main focus of this paper is to explore the motivation of students to engage in a math 

trail program supported by the use of a mobile app. 

Theoretical background 

The MathCityMap-Project is a project of the math trail program, which is supported by the use of a 

GPS-enabled mobile phone app and uses specialized mathematical outdoor tasks (Jesberg & Ludwig, 

2012). This project was not conceived merely to design and/or use the math trails. Instead, it includes 

the entire process: preparation (how to design it), implementation (how it runs), and evaluation (how 



it impacts student motivation). The mobile phone app, as a supporting tool, was also created and used 

during this project. Therefore, the theoretical framework for the MathCityMap-Project study is 

underpinned by the concept of the math trail program, the use of mobile technology in mathematics 

education, and student motivation in mathematics. 

A math trail is a walk in which mathematics is explored in the environment by following a planned 

route and solving mathematical outdoor tasks related to what is encountered along the path (English, 

Humble, & Barnes, 2010). In math trail activities, "children use mathematics concepts they learned 

in the classroom and discover the varied uses of mathematics in everyday life" (Richardson, 2004, p. 

8). They discover real problems related to mathematics in the environment and also gain experience 

connecting mathematics with other subjects. Among the many benefits of a math trail (Richardson, 

2004) is the creation of an atmosphere of adventure and exploration resulting from the fact that it is 

located outside the classroom. A math trail guide, such as math trail map or human guide, must be 

prepared to inform walkers about the math trail task stops and to show the problems that exist at each 

location. It also tells about the tools needed to solve the problems, so that the walkers are prepared 

before starting to walk on a trail. With the rapid development of technology nowadays, it is possible 

to collect the tasks and design a math trail guide based on a digital map and database. 

In recent years, rapid developments in technology have occurred in the scope, uses, and convergence 

of mobile devices (Lankshear & Knobel, 2006). These devices are used for computing, 

communications, and information. Mobile devices are portable and, usually, easily connected to the 

Internet from almost anywhere. This makes them ideal for storing reference materials and learning 

experiences, and they can be general-use tools for fieldwork (Tuomi & Multisilta, 2010). Their 

portability and wireless nature allow them to extend the learning environment beyond the classroom 

into authentic and appropriate contexts (Naismith, Lonsdale, Vavoula, & Sharples, 2004). Wireless 

technology provides the opportunity for expansion beyond the classroom and extends the duration of 

the school day so that teachers can gain flexibility in how they use precious classroom activities. The 

use of mobile devices can also promote positive emotions for students toward learning mathematics 

(Daher, 2011). These advantages have been exploited through the MathCityMap-Project. Math trail 

blazers can create and upload math trails into a database through a web portal, then the math trail 

walkers can access them and complete the math trail with the help of a GPS-enabled mobile app 

(Cahyono & Ludwig, 2014; Jesberg & Ludwig, 2012). 

In this paper, we focus on the exploration of the factors that motivate students to engage in mobile 

app-supported math trail activity. The academic literature distinguishes between two motivational 

concepts namely: extrinsic motivation and intrinsic motivation. An influential theory that explicates 

intrinsic–extrinsic motivation in depth is self-determination theory (SDT, Deci & Ryan, 1985). The 

SDT model conceptualizes a range of regulation from intrinsic motivation to amotivation. Between 

these, there exist identified regulation and external regulation. Intrinsic motivation exists when a 

student is engaged in an activity for his/her own sake/pleasure/satisfaction. Identified regulation refers 

to engagement that is valued as being chosen by oneself. External regulation is the type of motivation 

when engagement is regulated by rewards or as a way to avoid negative consequences. Lastly, 

amotivation is associated with engagement that is neither intrinsically nor extrinsically motivated 

(Guay, Vallerand, & Blanchard, 2000).  



Having outlined the theoretical background for this study, we can clarify the research question: what 

is the nature of student motivation to engage in a math trail program supported by the use of a mobile 

app? 

Methods 

An explorative study was conducted in the city of Semarang in Indonesia involving nine secondary 

schools. The participating schools represent three levels (high, medium, and low) and two location 

types (downtown and suburban). This study is a part of development research on the MathCityMap-

Project for Indonesia. There were two main phases in this research, namely the design phase and the 

field experimentation phase. Here, we focused on studying student motivation to engage in the 

activity that was conducted in the second phase. This phase consisted of an introduction session, a 

treatment (math trails guided by the app), and a debriefing session. Student motivation was measured 

using the self-reported Situational Motivation Scale (SIMS) developed and validated by Guay, 

Vallerand, and Blanchard (2000) based on self-determination theory (SDT). The results of their study 

exposed that the SIMS represents a brief and adaptable self-report measure of situational intrinsic 

motivation, identified regulation, external regulation, and amotivation. ‘Situational motivation’ refers 

to the motivation individuals experience when they are currently engaging in an activity (Guay, 

Vallerand, and Blanchard, 2000). Therefore, this questionnaire is appropriate to be employed in this 

project to explore motivation of student to engage in the activity.  

The SIMS is a 16-item questionnaire consisting of 4 subscales, intrinsic motivation (IM), identified 

regulation (IR), external regulation (ER), and amotivation (AM). In the first part of the instrument, 

the questionnaire asks, ‘Why are you currently engaged in this activity?’. Respondents are to rate a 

number of answers using a 7-point Likert scale from 1 (not at all in agreement) to 7 (completely 

in agreement) for each item. The items are ‘because I think that this activity is interesting’ (IM), ‘I 

am doing it for my own good’ (IR), ‘because I am supposed to do it’ (ER), ‘there may be good reasons 

to do this activity, but personally, I don’t see any’ (AM), ‘because I think this activity is pleasant’ 

(IM), ‘because I think this activity is good for me’ (IR), ‘because it is something that I have to do’ 

(ER), ‘I do this activity, but I am not sure if it is worth it’ (AM), ‘because this activity is fun’ (IM),‘it 

was my personal decision’ (IR), ‘because I don’t have any choice’ (ER), ‘I don’t know; I don’t see 

what this activity brings me’ (AM), ‘because I feel good when doing this activity’ (IM), ‘because I 

believe that this activity is important for me’ (IR), ‘because I feel I have to do it’ (ER), and ‘I do this 

activity, but I am not sure it is a good thing to pursuit it’ (AM). 

The four subscale scores are then used to calculate a single motivation score called the Self-

Determination Index (SDI) for each student using the following formula: SDI = (2 x IM) + IR – ER 

– (2 x AM) (Sinelnikov, Hastie, & Prusak, 2007). The SDI score ranges between (2 x 1) + 1 – 7 - (2 

x 7) = -18 and (2 x 7) + 7 – 1 - (2 x 1) = 18. A higher SDI score indicates the student is more self-

determined and more intrinsically motivated to engage in the activity. A positive SDI score indicates 

that, overall, more self-determined forms of motivational type (IM & IR) are predominant (Vallerand 

& Ratelle, 2002). Then, open-ended follow-up questions were given to students to deepen the 

information about deciding factors affecting student engagement in this mathematical activity. Data 

were analyzed using qualitative methods to discover whether and what kind of motivations influenced 

these students. Quantitative data were also collected and analyzed. Non-parametric statistical 



calculations were performed because the data consisted of ordinal scores, and normality could not be 

assumed. 

Results and discussion 

In the first phase of the MathCityMap-Project study in Indonesia, technical implementation of the 

project was formulated, and a mobile app was also created to support the program (Cahyono & 

Ludwig, 2014). Thirteen math trails containing 87 mathematical outdoor tasks were also designed 

around the city of Semarang (Cahyono, Ludwig, & Marée, 2015). Task authors found mathematical 

problems that involved objects or situations at particular places around the city. They then created 

tasks related to the problems and uploaded them to a portal (www.mathcitymap.eu). In this portal, 

the tasks were also pinned on a digital map and were saved in the database. Each task contained a 

question, brief information about the object, the tools needed to solve the problem, hint(s) if needed, 

and feedback on answers given. Math trail routes can be designed by connecting a few tasks (6-8) in 

consideration of the topic, level, or location. In designing the trails, it is also necessary to consider 

several factors such as: safety, comfort, duration, distance, and accessibility for teachers who would 

observe and supervise all student activity. 

             

Figure 1: App interfaces (Map: ©OpenStreetMap contributors) 

Figure 1 shows examples of the app’s interfaces including an example route, task, feedback, and hint. 

Math trail routes can be accessed by students via the mobile app, a native app that was created by the 

research team as part of this project. Installation of a file in *.apk format was uploaded to the portal 

as well as the Google PlayStoreTM. From there, students could download and install the app, which 

works offline and runs on the Android mobile phone platform. Students can then carry out math trail 

activities with the help of the app. They follow a planned route, discover task locations, and answer 

task questions related to their encounters at site, then move on to subsequent tasks. The app informs 

them of the tools needed to solve the problems, the approximate length of the trail, and the estimated 

duration of the journey. On the trail, the app, supported by GPS coordinates, aids the users in finding 

the locations. Once on site, users can access the task, enter the answer, get the feedback, and ask for 

hints if needed. 

In the second phase, field experiments were conducted with 272 students and nine mathematics 

teachers. Each school was represented by a class consisting of an average of 30 students. They were 

divided into groups of five to six members. Four schools carried out activities outside the school 

while five schools conducted activities in the school area. These choices were made because of 

http://www.mathcitymap.eu/


conditions and situations (such as: safety and availability of teaching and learning time) unique to 

each school. The activities were conducted during normal school hours over two 45-minute periods 

beginning with the teachers giving a brief explanation of the learning activities and goals. Groups 

then began their journeys, each from a task location that was different from the others (Group I started 

at task I, Group II from task II, and so on). As the groups trekked the trail, teachers observed and 

supervised student activities but were not expected to provide assistance because all the necessary 

information was to be provided by the app. Once the activity was completed or maximum time 

allowed for the activity had passed, the students moved to the next task. After completing the trail, 

each group returned to class, then had a discussion with the teacher about the task solutions and what 

they learned along the trail. At this time the questionnaire was also completed by the students. All 

272 students’ SIMS responses and SDI scores are summarized in Table 1. 

 IM IR ER AM SDI 

N 272 272 272 272 272 

MIN 3.50 2.25 1.00 1.00 2.00 

MAX 7.00 7.00 6.25 5.50 16.25 

AVERAGE 5.9770 4.7215 3.4651 2.9779 7.3180 

SD 0.82939 1.23314 0.93080 0.91471 2.92629 

Table 1: Students’ SIMS and SDI scores 

Averages SIMS scores for the four subscales varied considerably, ranging from 1.00 to 7.00. The 

standard deviations indicated adequate variability in all subscales. It is apparent that the nature of 

these students’ motivations to engage in the activity is diverse. However, all had positive SDI scores 

(ranging from MIN = 2.00 to MAX = 16.25 and average  SD = 7.3180  2.92629). This result 

indicates that overall, their motivation was more self-determined. Positive scores in this case indicate 

that internalized forms of motivation, namely intrinsic motivation and identified regulation, were 

predominant. Students perceived the activity to be interesting or enjoyable (an indicator of IM) and 

meaningful or valuable (an indicator of IR). They were engaged in the activities for their own 

sakes/pleasure/satisfaction, and their engagement was considered to be a self-choice. This finding is 

supported by the Independent-Samples Kruskal-Wallis Test (Table 2), which shows that there was a 

statistically significant difference in score between the SIMS subscales, χ2(2) = 623.583, p = 0.000, 

with a mean rank score of 886.37 for IM, 637.52 for IR, 379.97 for ER and 274.15 for AM.  

Compared with others subscales scores (Table 1), the amotivation subscale had low average SIMS 

scores (AMaverage = 2.9779  0.91471), which were contributing factors to the positive SDI scores. 

These low scores indicate that students enjoyed the activity and found value in it, which was reflected 

in the intrinsic motivation scores (IMaverage = 5.9770  0.82939) and identified regulation scores 

(IRaverage = 4.7215  1.23314). Students also reported being motivated by and were reacting to external 

demand, an indicator of extrinsic regulation. However, the ER scores (ERaverage = 3.4651  0.93080) 

show they tended to be neutral on this subscale. 

  



 

 Subscale N Mean Rank   Score 

      

Score 

IM 272 886.37  Chi-Square 623.583 

IR 272 637.52  df 3 

ER 272 379.97  Asymp. Sig. .000 

AM 272 274.15    

Table 2: Kruskal-Wallis Test using subscale (IM, IR, ER, AM) as the grouping variable. 

The open-ended questions asked in the next step focused on two types of motivation, namely intrinsic 

motivation and identified regulation. The first question was, ‘Why did you enjoy the activity?’ We 

found that 30% of the students enjoyed learning outside the classroom, 23% were excited to use the 

advanced technology, 18% were satisfied with applying mathematics, 16% liked collaborating, 11% 

reported different reasons, 2% mentioned negative feelings, and 0% did not give a reason. The second 

question was ‘What experiences influenced your consideration that this activity was valuable?’ (each 

student could mention more than one experience). Students mentioned application of mathematics in 

real life 158 times, outdoor mathematical activities 96 times, advanced technology for math 87 times, 

use of non-standard measuring tools 79 times, team work 72 times, activities in public places 65 

times, and other 19 times. These answers showed that most students were delighted to engage in this 

activity because it was conducted outside the classroom, an unusual setting that offered comfortable 

conditions and it was a free and fun activity. The use of mobile devices for outdoor mathematics 

learning activities has become an attraction, encouraging students to engage in this activity. However, 

as a serious mathematical learning activity, it was not only enjoyable, but the students considered it 

a valuable activity. They reported that through this activity they learned how to apply mathematics in 

the real world, even where they had never thought about it in the past. The use of the latest technology 

in the learning process has also been reported as a valuable experience and new knowledge for them. 

The self-reported data and answers to the follow-up questions were cross-checked with information 

obtained through field observations and the student works analyses. For example, here is one of the 

results of observations and analysis of student work on the Flood Gate Task, a task located on the Old 

Town Route. In this task, the problem statement is, ‘Suppose your city is now in an emergency, and 

you are asked to raise the floodgate one meter from its original position. How many times must the 

worm drive be rotated to raise the sluice one meter from its original position?’. This task is situated 

at one of the tourist attractions, an icon of the city, namely the Old Town area of Semarang City. All 

students agreed this was a pleasant place for learning math, and it was near the school where there 

were lots of trees, a pond, a garden, nice old buildings, and traffic was not too congested. These 

conditions made them feel joyful and comfortable in performing the activity there. Not only the 

location was exciting for them, the task was also considered by students to be a meaningful 

mathematical task because it was an important issue for them as citizens to know how this floodgate 

works. In this way, they could save their town if there were an impending disaster. Figure 2 shows 

an example of students working on this task.  



      

Figure 2: Students work on the flood gate task 

It appears that the students had the opportunity to learn and practice ways of solving real problems 

by following the stages of mathematizing, namely, understanding a problem situated in reality (I), 

organizing the real-world problem according to mathematical concepts and identifying relevant 

mathematics (II), transforming the real-world problem into a mathematical problem that represents 

the problem situation (III), solving the mathematical problem (IV), and interpreting the mathematical 

solution in terms of the real situation (V). In addition, working in the environment to find the hidden 

task location was interesting and challenging for the students. They reported that the more hidden the 

task location, the more curious they were to find it. It was breathtaking for them when they had to 

match the coordinates of their current position and the coordinates of the task location. Here, students 

recognized the importance and attractiveness of utilizing a GPS-based mobile app as a navigation 

tool in the math trail activity. This is just one example task, and in general, the students' activities in 

this field experiment were similar. This explanation proves that the results of the student self-report 

instrument to determine their motivation to engage in activities coincided with actual conditions in 

the field. 

Based on these findings, we conclude that the design and arrangement of the math trail and the mobile 

app as well as a combination of both have been successful in creating a pleasant situation and 

attractive environment offering valuable knowledge and experience in mathematics. They embody 

the aspects of enjoying or being interested in the activity and the use of advanced mobile technology 

for learning mathematics (an indicator of intrinsic motivation) and of value and meaningfulness of 

the mathematical tasks and the activity (an indicator of identified regulation), which were generated 

through the implementation of this project. 

Conclusions 

In conclusion, our findings indicate that student motivation to engage in the math trails program 

supported by the use of a mobile app was complex. Both intrinsic and extrinsic types of motivation, 

as well as amotivation, were found in the reasons for completing the activity. However, we also found 

that students reported and demonstrated more intrinsically motivating rather than extrinsically 

motivating and amotivating factors for engaging in the activity. While intrinsic motivation was an 

essential part, identified regulation was also important. The design of the project and its technical 

implementation contributed to these results, as reported by the student through the self-report 

instrument, and it was demonstrated through their activities and work. Therefore, in the 

implementation of the MathCityMap-Project, we must be aware of the important role of influencing 

student motivation when designing a mobile app-supported math trail activity. The relevance and 

value of the task must be clearly identified and linked to the objective of the project. Most importantly, 

students must enjoy and be attracted to the activity, both in completing the math trail task and in using 

the mobile app. These are the main factors that need to be considered when implementing the 

MathCityMap-Project. 
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This paper is about the threshold between gesture and touch in mathematical activity, focusing on 

the role of multitouch technology. Drawing on the work of gesture theorist Jürgen Streek, we 

propose and discuss the notion of the tangible gesture, in the context of mathematical explorations 

of young children with a novel, multitouch iPad environment called TouchCounts designed to 

promote counting on and with the fingers. 

Keywords: Technology, multitouch, number and operations, gesture. 

Introduction 

With the advent of multitouch technologies, gestures have become an essential feature of user 

interface. Touch technologies break with previous computer-based norms, where the hand’s actions 

were indirectly related to changes on the screen through mouse and keyboard manipulation. Touch 

technology invokes earlier drawing technologies in which the hand’s actions had a more direct 

relation with a given surface. The digital nature of contemporary surfaces, however, significantly 

alters the relation between touching and meaning-making.  

In this paper, we draw attention to the distinctive gestures new media elicit and produce and the way 

these new manual activities are changing the way we perform mathematics. We also interrogate the 

taken-for-granted distinction between the touchscreen gestures common in the technology world 

and the in-the-air gestures that have been the focus of study in mathematics education research. At 

first blush, they may seem quite distinct—albeit having the same word—but we follow Streeck 

(2009) in seeing them as being on a continuum, a perspective that enables us to better appreciate the 

role that touchscreen gestures might have in mathematics learning. 

In the context of mathematics education research, many studies have focused on student and teacher 

use of gesture in classrooms, but this work tends to code and sort gestures insofar as they are 

representations of thinking. These studies tend to divorce the motoric hand from the feeling swipes 

and swishes of fingers on screens. Material semiotic approaches to the study of interaction, on the 

other hand, consider gesture less as representations and more in terms of the material effects they 

achieve (Roth, 2001; Radford, 2002; Nemirovsky, Kelton & Rhodehamel, 2012). Our goal in this 

paper is to unpack the implications for understanding mathematics learning in relation to new 

media. In order to illustrate how these new media gestures operate as expressions of numeracy, we 

draw on research involving a novel multitouch App in which fingers and gestures are used to count 

(Jackiw & Sinclair, 2014). 

Gesture as movement 

The predominant line of research in gesture studies focuses on movements of the body (especially 

the hand) and their interactions (i.e. correlations) with speech in communication (Kendon, 2000, 

2004; Kita, 2003; McNeill, 1992; 2005). Researchers have identified different categories of gestures 



(icon, metaphoric, deictic and beat) so as to distinguish different relations between gesture and 

speech. McNeill has drawn on Peirce’s (1932) semiotics in which signs (icons, symbols, and 

indices) differ in terms of the nature of the relationships between the signifying sign and the 

signified. These categories have been used extensively in mathematics education research. 

Research that codes gesture only in terms of linguistic potential tends to overlook the physicality of 

the hand movement, except insofar as such movement contributes to or obscures linguistic meaning 

(Rossini, 2012). As Streeck (2009) indicates, “it is common to treat gesture as a medium of 

expression, which meets both informational and pragmatic or social-interactional needs, but whose 

“manuality” is accidental and irrelevant” (p. 39). Streeck (2009) defines gesture: 

… not as a code or symbolic system or (part of) language, but as a constantly evolving set of 

largely improvised, heterogeneous, partly conventional, partly idiosyncratic, and partly culture-

specific, partly universal practices of using the hands to produce situated understandings. (p.5)  

Thus he studies gesture for how it is “communicative action of the hands” with emphasis on the 

term action (p.4). This focus on action allows Streeck to study gesture for how it couples with and 

intervenes in the material world in non-representational ways. Researchers often distinguish 

between hand movements in the air and hand movements that make graphic marks, where the 

former is deemed a gesture and the latter an act of inscription. However, such distinctions become 

fuzzy when we study the movement of the hand across and through media, where ‘media’ can be 

more or less receptive of trace or mark. In other words, all hand movements traverse and incorporate 

media. We see a trace in certain media, and not in others, but since the logic of new media is to 

break with current conventions of perception, this distinction is provisional. New media allow for 

new kinds of traces. This insight allows for new ways of studying numeracy and multitouch 

technologies. In the next section, we discuss a case study of children working with such 

technologies, showing how this material encounter entails a very different concept of number 

precisely because of the indexical aspect of gesture.  

The question of trace and inscription returns us to how the indexical is different from the iconic. 

The contiguity aspect of indexicality (the smoke is materially caused and coupled with the fire) is 

aligned with touch and the way our body connects with another through touch. This approach to 

gesture supports the systems approach to bodies by which bodies become coupled with the 

environment they inhabit (Maturana & Varela, 1987). Streeck studies gestures as part of a nested 

scaling approach to this system, beginning in the world that the “hand knows best”, and then 

examining how gestures operate at greater distance or remove from that world (p. 58). The touch or 

haptic factor of hand movement is precisely how the fragile interface of inscription or trace is 

currently produced. Again, we emphasize that this production of a trace is contingent on current 

configurations of sensory perception and material media.  

Most of the hand’s features (digits, degrees of freedom of movement, fatty palms, flexure lines, 

papillary ridges) evolved to facilitate grasping (prehension), and thus the hand “became a 

‘compromise organ’” in serving multiple purposes (Streeck, 2009). Prehensile “postures” are 

formed as the hand reaches its target (in our case this will be a screen), during which a pre-

conscious calibration of speed and collective force determines the particular movement of the digits, 

hands and arm. As the hand moves towards the target, there is a strong reliance on peripheral vision 



rather than vision directed at the target (Streeck, 2009, p.47). The speed of the gesture reduces as the 

hand reaches its target. But the moment of contact entails the forming of a new assemblage, when 

the entire body of the gesturer links up with that which it touches. Thus, we are focusing on how 

gesture is a hand action that does more than identify or code particular aspects of an object.  

The video data discussed below is part of a larger project exploring the power of touchscreen 

technologies in teaching and learning mathematics in early childhood. Several research studies have 

already been carried out concerning the way that children learn various concepts using 

TouchCounts, including ordinality (Sinclair & Coles, 2015), place value (Coles & Sinclair, 2017) 

and finger gnosis (Sinclair & Pimm, 2015). The focus of this paper is less on the learning process 

using TouchCounts than on the various and distinctive forms of hand actions that are involved in 

creating and manipulating number in this environment.  

What is distinctive about the index is that it is a sign that is materially linked or coupled to “its 

object”. According to Peirce (1932), an index “refers to its object not so much because of any 

similarity or analogy with it, (…) as because it is in dynamical (including spatial) connection both 

with the individual object, on the one hand, and with the senses or memory of the person for whom 

it serves as a sign, on the other” (2.305). For instance, the chalk drawing of a parallelogram on a 

blackboard is often considered to be an iconic reference to a Platonic conception of parallelogram, 

but it is (also) an indexical sign that refers to the prior movement of the chalk. This latter indexical 

dimension is usually not emphasized in the semiotic study of mathematical meaning making, since 

we tend to focus on the completed trace and dislocate it from the labour that produced it. This focus 

on the completed sign neglects how the activity of the body and various other material encounters 

factor in mathematical activity. 

TouchCounts: A multitouch early number App 

In this paper, we discuss an application that author Sinclair has been involved in creating in which 

the digital gesture plays an even more central role in the mathematical activity. TouchCounts 

(Jackiw & Sinclair, 2014) is an application that permits young learners to coordinate simultaneously 

various forms of number: number names like ‘three’, number of taps on the screen, number of discs 

on the screen and number symbols like 3. It enacts a multimodal correspondence between finger 

touching, numeral seeing and number-word hearing (a one-to-one-to-one correspondence of touch, 

sight and sound). The App has two worlds: the Enumerating and the Operating worlds. In this paper, 

we focus on the Enumerating world, which is the one that children usually first experience. 

In the Enumerating World, the screen starts almost blank, except for a horizontal bar called a shelf. 

In this world, a learner taps her fingers on the screen to summon numbered discs. The first tap 

produces a new yellow disc on which the numeral “1” appears. Subsequent taps produce 

sequentially higher numbered discs. As each tap summons a new numbered disc, TouchCounts 

audibly speaks the name of its numeral (“one,” “two”). As long as the user’s finger remains on the 

glass, it holds the numbered disc, but as soon as she “lets go” (by lifting her finger) virtual gravity 

makes the number object fall to and “off” the bottom of the screen. If the user releases her 

numbered disc above the shelf, or “flicks” it above the shelf on release, it falls only to the shelf, and 

comes to rest there, visibly and permanently on screen, rather than vanishing out of sight “below” 

(see https://www.youtube.com/watch?v=7xD-pqnsce0). Since each time a finger is placed on the 

https://www.youtube.com/watch?v=7xD-pqnsce0


screen, a new numbered object is created, one cannot “catch” or reposition an existing numbered 

disc by retapping it. We note that, at least initially, the eye plays a prominent role in directing the 

finger above or below the shelf, but that if one does not care where the disc alights, the tapping of 

the finger needs little visual direction. 

If we take the finger tap as a gesture involving the placement of a finger on the screen, and the 

subsequent production of an event featuring visual, mobile and aural aspects, then we might say that 

the gesture is iconic in its relation to the production of unitary quantities, or perhaps even 

metaphorical for the children for whom such unitary quantities are still “abstract”. But what seems 

much more pertinent for the children as they engage with this application is the indexical nature of 

the gesture. The tap both points to the screen, designating one place of contact with it, but also 

creates a new numbered disc under the soft skin of the finger-pad, a disc which often falls with 

gravity-like weight. In addition, each tap produces a simultaneous sound. The children can also tap 

the Reset button, which makes all the numbered discs disappear and resets the count to 1.  

While TouchCounts was designed to support the development of one-to-one correspondence 

between number and hand movement, by drawing on the tangible dimension of counting, its use by 

young children has prompted us to examine both the particular ways in which they use their hands 

and the implications of their hand actions on the meanings they make around counting, in particular 

the concepts of ordinality and cardinality (see Sinclair & Pimm, 2015).  

A case study 

This case study is drawn form a broader research project that was conducted in daycare and primary 

school settings over the course of three years. In the excerpt we present, co-author Sinclair was 

engaged in a clinical interview with a five-year-old kindergarten child named Katy, who is 

interacting with TouchCounts for the first time. (Indeed, it was the first time she was using a 

touchscreen tablet.) The interview occurs in June and therefore close to the end of the school year. 

We have chosen the excerpt because it illustrates a range of gestures that have been observed over 

the course of the research study, while also showing hand motions that have not been explicitly 

taught. In this case study, the hand actually operates very close to the surface of a screen: pointing to 

objects on the screen by tapping them; sliding objects along on the screen so as to leave visual and 

aural traces of the finger’s path; pinching objects together in order to make new ones.  

The room is quiet. Without prompting, Katy’s hand approaches the screen, and her finger touches 

the top of it and slides down to the bottom. A yellow disc appears under her finger with the numeral 

‘1’ on it and the sound ‘one’ is made. The index finger moves back to the top of the screen, slowly 

swimming downwards. A chorus of ‘two’ comes both from her mouth and the iPad. This happens 

repeatedly, although sometimes only the iPad can be heard announcing the new numbered disc 

while Katy’s lips move in synchrony (Figure 1a). The appearance of ‘10’ on the tenth yellow disc 

attracts attention, perhaps because of its double digits, and Katy bends over to look closely.  

Katy looks up again and her finger resumes touching the screen, but now only the iPad counts the 

numbers (Figure 1b): she no longer says them aloud herself. After ‘seventeen’, several fingers fall 

on the screen at once, and then ‘twenty-one’ is heard (since she has tapped the screen with several 

fingers, only the sound of the final number is said aloud, but the four discs all appear under where 

she has touched). This produces a pause in the action, and Katy’s lips spread into a smile. All but 



the index finger are tucked away, as the rhythmic tapping continues along with the chorus of named 

numbers. At ‘twenty-seven’ Katy looks up, no longer watching the screen (see Figure 1c), and she 

continues swiping and saying numbers. This continues until a finger accidentally land on Reset. 

     

Figure 1(a). Katy swiping; (b) Following the yellow disc; (c) Tapping while looking up. 

Katy’s finger – as the main organ of touch in this encounter – takes on new capacities through the 

reset button. It is no longer the organ that can only move or drag the yellow circle. The power of the 

reset button to recalibrate the tempo and rhythm of this encounter, becomes part of the finger’s 

potentiality, thereby redefining what is currently entailed in the sense of touch. 

Discussion 

Fingers can serve as both a physical extension of what Rotman (1987) calls the ‘one-who-counts’ 

(p. 27) (usually with an extended pointed finger reaching out to the world) as well as the thing-to-

be-counted (in which the gaze is directed towards one’s own fingers): fingers are thus 

simultaneously subject and object, both of the person and of the world (Alibali & diRosso, 1999). 

And this is what makes the finger actions of Katy so interesting; the mathematical act of counting 

with TouchCounts fuses this duality and in so doing changes the relationship between the hand and 

eye, as well as the ears. 

Katy’s hand actions change over the course of the episode, not only in the particular muscular form 

they take, first sliding down the screen as if lingering on the yellow discs to produce or partake in 

their falling off the screen, and then tapping impetuously so that each new touching of the screen 

follows the end of the sounds of the voiced numerical. The swiping gesture seems more exploratory 

while the tapping gesture seems to concatenate into a unit the touch-see-hear bundle of sensations 

involved in making a new disc-numeral-name. As Streeck writes, tapping is also “characteristic of 

ritualized behavior” (p. 76), which suggests that Katy has moved from exploration to practice. In 

both the swiping and the tapping, the finger can be seen as making an indexical gesture, with the 

trace being both visible and audible, not to mention tangible for Katy.  

Although the initial movement and touch of her finger is what produces the disc, it is the disc that 

drives the swiping movement of her finger. Indeed, both her finger and her eyes follow the yellow 

disc as it heads down the screen. In shepherding the numbered disc off the screen, Katy sees when 

it’s time to lift her finger and start making a new disc. But with the tapping, the eyes attend to the 

numerical sign on the disc—indeed, when 10 appears, Katy notices the change from the previous 

one-digit numerals. In this sense, the eye and the finger do very similar things in the swiping, the 



visible trace is followed closely by Katy’s eyes as the swiping takes place, so that the hand is 

subordinated to the watchful eye. With the tapping, the hand seems less subordinated, with the eye 

only interested when there’s a novel situation. When Katy looks up, the hand is no longer 

subordinate. When Katy’s eyes close, her fingers do the seeing and touching as they repetitively tap.  

But of course, there is more than the eye and hand involved in this situation. The ear and voice 

feature importantly as well. Indeed, while the voice is subordinate to the touch (it only speaks while 

Katy taps), Katy’s hand is also subordinate to the ear in that the ear judges the moment of the next 

tap. And the ear is disrupted by the hand, when several fingers touch the screen at once, causing the 

voice to jump from “seventeen” to “twenty-one.” The eye, which was about to drift off, must return 

to survey the situation. And the hand returns to its single digit tapping. The importance of the aural 

and the vocal in this context is interesting in terms of the counting activity at play. Indeed, the ritual 

origins of counting are oral in nature, and counting with young children is often undertaken as the 

learning of a song that one memorises and chants. The involvement of the hand in this otherwise 

oral event provides a visual and tangible trace of the count, while also associating each counted 

number with a single swipe or a single tap.  

One might question whether Katy’s actions on the screen, which we might think of as touch-

pointing, can really be thought of as gestures. Streeck argues that such touch-pointing gestures (and 

indeed all gestures) emerge from the touching and handling of things—the tracing (or other “data-

gathering devices” such as caressing, probing, cupping) of objects that allows one to discover its 

texture and temperature (and, for young children, for instance, the difference between a cylinder and 

a pyramid). When the hand has done its exploring of the object, which fulfills an epistemic function 

in gathering information, it may then be lifted off the object and inclined to repeat the same 

movements ‘in the air’: “the hands’ data-gathering methods are used as the basis for gestural 

communication” (p. 69). Streeck identifies such gestures as being communicative, which for him is 

the characteristic feature of a gesture. So perhaps Katy’s touch-pointing becomes a gesture once she 

lifts her hand form the screen to do her tapping. 

Distinguishing hand movements that explore from ones that communicate is problematic though. As 

Streeck writes, exploratory actions can become communicative when they are made visible to 

others, who may join in the action or infer tactile properties. If we look at Katy’s swiping and 

tapping gestures, we might say that they are both exploratory, with the swiping gestures involving 

prolonged tactile contact that enables her to discover what would happen when her finger touches 

the glass—that a yellow disc would appear, with a numeral on it; that the disc would move down 

the screen; that the iPad would speak the numeral’s name aloud, and that this could all be repeated 

as often as she wished. But Katy’s swiping and, later, her tapping, are also communicative inasmuch 

as they tell TouchCounts what to do and say. The same might be said for clicks of the mouse or key 

presses of the keyboard, with the difference that the touchscreen is acted upon by direct hand 

motions. Instead of disentangling the tracing from the pointing (the exploration from the 

communication), we suggest that re-assembling them into an indexical enables us to see how Katy’s 

hand movements can tap into the potentiality of the body by reconfiguring the relationships between 

sensations of touch, sight and sound that are at play. This potentiality mobilizes new mathematical 

meanings as Katy uses her fingers to count on, to count with and to count out one by one and 

indefinitely. Streeck recognises that hand-gestures “enable translations between the senses” (p. 70) 



as tactile discoveries provide visual information for interlocutors. With Katy though, the tactile 

discoveries provide visual and auditory information to herself. She is her own interlocutor. 

Conclusion 

Streeck argues that hand-gestures cannot be taken only as components of a language system cast 

apart from the material world and used only to communicate about the world. Rather, they are of the 

world, and part of how we feel the world around us. This perspective requires us to see the moving 

hand as “environmentally coupled” (Goodwin, 2007), that is, as inextricable from the things it 

touches and engages with. But while Streeck implies a vector from the exploratory hand action to 

the communicative hand-gesture, our case studies reveal how the exploratory hand frees itself from 

the optic regime and invents meaning as much as it communicates it. This new kind of gesture is 

possible in large part because of the feedback mechanism of digital technologies, which can talk, 

push and show back. With the touchscreen interface, and particularly the multitouch actions, the 

hand is involved in a process of communicating that is also a process of inventing and interacting.  

In the example we presented, we have shown that the gestures made by Katy in TouchCounts had an 

indexical nature both because they involved some kind of pointing (with one finger or more) and 

they left a trace that is both visible and audible. The trace is important in drawing attention to the 

material engagement of the gestures. The gestures arise out of movements of the hand, but they also 

result in material reconfigurations that can give rise to new movements of the hand. In discussing 

the effect of new digital technologies in mathematics, Rotman has written about the future cultural 

neoteny in which speech would “become reconfigured (as it was once before when transformed by 

alphabetic writing), re-mediated and transfigured into a more mobile, expressive, and affective 

apparatus by nascent gesturo-haptic recourses” (p. 49). We interpret these speculative comments as 

an indication that the future of the gesturing hand in relation to new media may involve all sorts of 

surprises, and that perhaps even pre-school children may count ‘on their hands’ to 100 as they 

engage with these media. 
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This theoretical paper reports about our perception of the contributions that the working group TWG 

16 about the learning of mathematics with digital media have made during the last CERME 9, taking 

into consideration the previous and the upcoming ERME conferences. Our analysis highlights the 

evolution of research questions, methodologies and theories through the lenses of the “didactical 

tetrahedron” metaphor and the networking strategies and methods. Finally, we point out themes that 

are, to our opinion, insufficiently addressed and need further discussions within the technology 

group. 

Keywords: Mathematics, learning, technology, didactic tetrahedron, networking strategies.  

Introduction and rationale 

‘State of the art’ is a common expression used in surveys, review papers and up to date books 

reporting on the newest achievements in the research. This is also the ambition of the tenth Congress 

of the European Society for Research in Mathematics Education (CERME 10) TWG 16 leaders as 

they have announced: 

We want to establish an overview of the current state of the art in technology use in mathematics 

education, including both practice-oriented experiences and research-based evidence, as seen from 

an international perspective and with a focus on student learning [...] (Call for papers, CERME 10 

TWG 16). 

There are studies trying to establish such overviews (e.g., Drijvers et al., 2016), but also some 

claiming to report on the ‘state of the art’ research without sufficient argumentation and full 

justification of their statements throughout the text. The phrasal adjective ‘state of the art’ fits to 

advertise a ‘product’ but has our community become mature enough to respond to a challenge of 

offering ‘state of the art’ descriptions of complex phenomena like the use of technology in 

mathematics education which has a characteristic of enormous dynamism? 

In this article, we do not claim that we have undertaken a meta-research beyond the scope of the 

CERME although we are aware of the variety of working groups on similar themes at other 

conferences as ICME, ICTMT, CADGME or ATCM and special issues of journals. Aiming to 

investigate how the CERME TWG 16 could capitalize knowledge of discussions regarding the 

learning with technologies, we have rather devoted ourselves to focus on two main issues: 1) how 

have the research questions and methodologies about the learning of mathematics with technologies 

evolved and 2) is there a substantial progress regarding the use of the theories. We begin discussing 

these two issues through the relations in a “didactic tetrahedron”.  
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The “didactic tetrahedron” metaphor 

The “didactic tetrahedron” metaphor (Fig. 1 right) was introduced by Tall (1986, p. 6) as an 

enlargement or adaptation of the “didactic triangle” (Fig. 1 left) commonly used before the advent of 

technology to analyze the teaching and learning of mathematical knowledge.  

 

 

 

 

 

 

Figure 1:  From a “didactic triangle” (left) to a “didactic tetrahedron” (right) 

The integration of an artefact, e.g. an ICT tool, introduces a new component into the teaching/ learning 

system and creates new relationships between the components of the didactic triangle. Thus, for 

example the face ALK (A for Artefact or ICT, L for learner and K for Knowledge) represents 

phenomena related to learning mathematics with technology, such as students’ conceptualizations of 

given mathematical concepts mediated by technology, or the edge AK highlights phenomena related 

to new approaches to given mathematical concepts offered by the affordances of a given digital 

artefact. The didactic tetrahedron has by now been used for analyzing mutual participation of artifacts 

and their users in a socio-cultural context (e.g. Rezat & Sträßer, 2012) or as a heuristic for studying 

the implementation of digital media in the teaching and learning praxis (Ruthven, 2012). In this paper, 

we use it to position the scopes of technology groups at the ERME conferences.  

Until CERME 8, issues related to any vertex, edge or face fell within the range of a unique technology 

group, initially called “Tools and Technologies”. The subsequent changes of the name into “Tools 

and technologies in mathematical didactics” from CERME 2 to 5 and “Technologies and resources 

in mathematics education” from CERME 6 to 8 indicate the appearance of enhanced specifications. 

The growing interest in the theme and the amount of research have led to splitting the technology 

group into two groups at CERME 9 which  have progressed discussing topics focusing on edges and 

faces having “teacher” and “learner(s)” as a vertex, respectively. 

Research method 

In this paper we propose an analysis of the two issues 1) and 2) stated above based on the “didactic 

tetrahedron” through the: a) Calls for papers of the CERME 8-TWG 15, CERME 9-TWG 16 and 

CERME 10-TWG 16, b) Introductions to papers and posters of the groups published in the 

proceedings of the CERME 8 and 9, and c) Papers of these groups published in the proceedings of 

the CERME8 and 9. In this analysis we also refer to “networking strategies and methods” (Prediger 

et al., 2008, p. 170). 

 



Findings and discussion 

a) Evolutions tracked through the Calls for papers since the CERME8 

The Call of the CERME 8-TWG 15 guided the discussions by posing three themes referring to design 

and uses of technologies, students’ learning, and teacher professional development in presence of 

technologies. These three themes clearly refer to the three vertices of the triangular face “ALT (T for 

Teacher)” in the didactic tetrahedron (Figure 1). Although such structured shape for questioning the 

themes of interest may not appear straightforward by reading the text in the CERME 9 and 10 Calls, 

they are indeed meant to contribute to research related to the face “AKT” (TWG 15) and to the face 

“AKL” (TWG 16). Besides the split of the technology group in two groups, the relation between 

learning, teaching and digital tools is still present in the issues of the CERME 9-TWG 16 Call, as 

stated for example in the items “designs of teaching experiments with software and technologies 

concerning student learning” or “results of empirical studies and investigations especially concerning 

long-term learning with ICT, massive courses, national programmes of teachers’ professional 

development”. Thus, the face “ATL” remains relevant to both groups. 

b) Evolutions tracked through the Introductions to the papers and posters of the CERME 8-

TWG 15 and CERME 9-TWG 16 

The Introduction of the CERME 8-TWG 15 corresponds to the Call and is structured according to the 

three themes (stated in a), i.e. the face “ATL”. Moreover, it goes beyond the affirmed issues by raising 

a general one for “capitalization of research results” (Trgalová et al., 2013, p. 2500). This general 

issue has been addressed in an overview for mathematics, technology interventions and pedagogy 

based on systematic literature review by Bray (CERME 8, 2013) and in a survey reporting about 

undergraduate, master and doctoral studies for promoting the use of technologies in mathematics 

education by Scheffer (CERME 8, 2013). Further on, in this Introduction, it is claimed that a 

development of “specific methodologies enabling to assess the effectiveness of ICT in learning 

processes” (Trgalová et al., 2013, p. 2501) is required. The call for a “proper usage of research 

methods, which are informed by contemporary theories” (Lokar et al., 2015, p. 2438) is present in 

the Introduction of the CERME 9-TWG 16. 

This paper builds on this claim and attempts to further investigate the usage of theories referring to 

the learning of mathematics in technology-rich environments in the next subsection.  

c) Evolutions tracked through the Papers published in the proceedings for CERME 8-TWG 15 

and CERME 9-TWG 16 

Evolution of research questions (RQs) and methodologies 

Unlike the frequent use of several methodologies and theories for exploring teaching (e.g. TPACK 

or instrumental approach), a large assortment of RQs and methodologies comes out from the papers 

regarding learning phenomena with technologies. We organize them in the following two categories: 

 Category 1: RQs referring to at least two of the edges of the face “ALK” 

While the most of the papers from this category discussed at CERME 8 focus on the impact of using 

technology on students’ behavior, learning or performance, there is a greater variety of research issues 

addressed in papers at CERME 9. For example, the qualitative-empirical study by Kaya, Akçakın, & 

Bulut (CERME 8, 2013) related to the RQ: “does the use of Geogebra via interactive whiteboards as 



an instructional tool affect students’ academic achievement on transformational geometry?” (p. 2596) 

seems to meet all edges in this triangle. Likewise, a quasi-experimental study by Kilic (CERME 8, 

2013) considers concepts in geometry (K), a development of geometric thinking and ability of proving 

in geometry (L) by using a Dynamic Geometry Software (A). Based on teaching experiments with 

high school students and prospective teachers, Bairral and Arzarello (CERME 9, 2015) have raised 

the RQ: “which domain (constructive or rational) of manipulation touch screen could be fruitful to 

improve student’s strategies for justifying and proving?” (p. 2460). In this contribution, there is 

evidence not only of the three edges of the face “ALK” but also of the teaching component of the 

“didactic tetrahedron” by pointing out a lack of research about the teaching of mathematics with the 

use of touch screen devices besides task design concerns and cognitive implications (p. 2464-2465). 

 Category 2: RQs referring to one of the edges of the face “ALK” 

Exemplary studies addressing the edge “AL” are: a design based study by Misfeldt (CERME 8, 2013) 

about the students’ instrumental genesis with GeoGebra board game, a study by Persson (CERME 8, 

2013) grounded on students’ interviews and teachers’ questionnaires about instrumental and 

documentation genesis, or empirically based case study by Storfossen (CERME 8, 2013) about 

instrumented action of primary school students. It seems that the emphasis on RQs and methodologies 

studying instrumental genesis regarding the relation “AL” has slightly decreased from CERME 8 to 

CERME 9. 

A paradigm which is noticeable in the CERME 9-TWG 16 papers and was not present before, except 

for one paper, is the online learning. Although the significant amount of RQs referring to learning 

through the Web (e.g., peer learning, collaborative learning, networking, flipped classroom) is visible 

(e.g., Biton et al., CERME 9, 2015; Triantafyllou & Timcenko, CERME 9, 2015), many specific 

questions related to the face “ALK” remain unanswered. For instance, what is the most relevant 

mathematical content available on the internet and how to locate it or what is a good quality of online 

teaching/ learning materials for mathematics and how to measure it. Another such question referring 

to the edge “AL”, is about “students’ perceptions if and how online resources contribute to 

mathematics learning and motivation” (Triantafyllou & Timcenko, ibid., p. 1573). The diverse nature 

and the complexity of these questions about online learning, in addition to the methodological 

approaches applied, mainly small scale studies or online surveys, do not allow generalizing 

conclusions about its truthful effects for the mathematics education. 

Looking at the face “ALK” of the “didactic tetrahedron”, an interesting question that could be worth 

exploring is whether a possession of a “(piece of) mathematical knowledge” leads to gaining an “other 

(piece of) knowledge” embedded in an ICT tool, e.g., knowledge in computer engineering. Except 

for one contribution by Misfeldt & Ejsing-Duun (CERME 9, 2015) about learning mathematics 

through programming and algorithms, we have not found others which would report on any kind of 

connections between learning mathematics and computer science or informatics. Neither have RQs 

about the learning of mathematics in relation to robotics, augmented reality and artificial intelligence 

been proposed in any of the calls, the introductions to papers or the papers in the technology group 

for the learning of mathematics at the CERME 8 and 9. This issue is neither mentioned in the 

CERME10-TWG16 Call, although we could expect that it may become an emerging one due to 

curricular changes in some European countries (e.g., France) highlighting algorithms in mathematics 

education. 



Evolution of theoretical frameworks 

Several observations can be drawn about theories and their networking in the papers. 

First, the instrumental approach (Rabardel, 1995) appears as a widespread theoretical framework at 

CERME 8, while it is seldom mobilized at CERME 9. The hypothesis that may explain this fact is 

related to the shift in research questions reported above. However, in the terminology of “landscape 

of networking strategies and methods” (Prediger et al., 2008), it appears that the instrumental 

approach has been used for local organization and coordination, rarely combined with other theories. 

The heterogeneity of research questions at CEMRE 9 may be related to a greater diversity of ICT 

tools usage. Besides the commonly used technologies as dynamic geometry systems (DGS), computer 

algebra systems (CAS) or spreadsheets, innovative artefacts, such as multi-touch screen, Arbol 

software for developing combinatorics thinking or non-digital Fraction board, raise elderly and new 

concerns akin to those of tool affordances and multiple representations (“AK” edge of the didactic 

tetrahedron). Two main frameworks are called for exploring such questions: the theory of semiotic 

mediation (Bartolini-Bussi & Mariotti, 2008) and the approach of registers of semiotic representation 

(Duval, 1993). These two theories seem to go along one with another and have a relatively high 

degree of integration founded on the strategies for understanding and making understandable, 

comparing and synthesizing (Prediger et al., 2008). Original digital devices, and possible novel 

teaching methods enabled by them (e.g., flipped classroom, learning on the Web) may lead to 

modifications of learners’ perceptions of their efficiency or performance. These are explored through 

the Vygotskian perspective of object/meaning ratio. 

Further observation leads to an assumption that there is a greater variety of theoretical frameworks 

used in CERME 9 compared to CERME 8 papers (Fig. 2). This seems to correspond to the previous 

argumentation. Besides the recognizable continuity of the usage of three theoretical frameworks, 

instrumental approach, constructionism and learning by scientific abstraction, there is a vivid 

occurrence of numerous others. Yet, “the multiplicity and isolated character of most theoretical 

frames used in technology enhanced learning in mathematics”, brought to the fore by Artigue (2007) 

and considered by the author as “an obstacle to the exchange and mutualisation of knowledge” (p. 

75), is still not overcome. The heterogeneity of the networking space may further be analyzed by 

using the flexible triple of principles, methodologies and paradigmatic questions (Radford, 2008). 

 

Figure 2: Theories used in paper at the CERME8-TWG15 (left) and CERME9-TWG16 (right) 



It is worth noticing that most of the theoretical frameworks considered in the papers are not 

technology specific. In fact, the instrumental approach, human-with-media concept (Borba and 

Villareal, 2005) and the theory of semiotic mediation are rare frameworks addressing the interactions 

between learners and artifact(s), digital or not, besides those between learners and teachers. A widely 

used technology non-specific theoretical framework is the theory of didactical situations (Brousseau, 

1997), which is occasionally combined or integrated locally with other theories. 

Finally, we wish to draw attention to theoretical concepts that are not mentioned in the papers, 

although they are particularly relevant for addressing the relation “AK”. Some of them, such as 

computational transposition (Balacheff, 1993) and epistemological domain of validity (Balacheff & 

Sutherland, 1994) are powerful means for ICT tool analysis in reference to a given field of knowledge 

and in terms of their possible contribution to the teaching and learning.  

Conclusion 

Looking through the lenses of the “didactic tetrahedron”, the split of the CERME 8 technology group 

in two groups since the CERME 9 is not only a practical, organizational necessity due to the rapid 

growth of the number of scholars interested in the theme. It rather seems as a temporary solution to 

tackle and deeply investigate challenging questions about each of the faces of the tetrahedron before 

fabricating ‘state of the art’ reports.  

Thinking about the capitalization of knowledge disseminated by the CERME 8-TWG 15 and the 

CERME 9-TWG 16 relating each of the two main issues in this survey paper, we may conclude the 

following.  

1) Evolution of RQs and methodologies. Miscellaneous RQs are emerging rapidly, before the previous 

are being sufficiently explored. On the one hand, it seems that the trend of publishing findings about 

the influence of the World Wide Web including social networks and online educational platforms 

will continue in a relatively large amount despite an apparent lack of specific methodological and 

theoretical frameworks that could be commonly used to approach topical issues in the field of 

technology in mathematics education. Applied methodologies for approaching these questions belong 

within the frame of small scale qualitative empirical studies. On the other hand, research questions, 

appropriate methodologies and theories about attitudes, accomplishments and inclusion of specific 

groups of learners as low achieving, gifted and/or disabled students in technology supported learning 

environments remain urgent in the research agenda. 

2) Evolution of theories. Is the use of current general theories like those referring to the “didactic 

triangle” sufficient or is there a need for a development of new ones, which would allow addressing 

issues specific to technology enhanced teaching and learning of mathematics? The latter seems to be 

more likely, as shown by a new item in the call for papers in the theory working group welcoming 

contributions on “theories for research in technology use in mathematics education” (CERME 10-

TWG 17 Call for papers), which has not been part of the previous call of the group. Our analysis also 

shows that exploitation of the networking strategies and methods for understanding, comparing, 

contrasting, coordinating, combining, synthesizing and integrating theoretical frameworks (Prediger 

et al., 2008) may be beneficial for further truthful studies of the learning mathematics with 

technologies.  
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With frequent predictions of upcoming technological and economic difficulties triggered by an 

impending shortage of information and communications technologies (ICT) professionals, the calls 

are growing stronger to include coding as a core element of school curriculum. These calls are 

bolstered by the suggestion that coding supports the development of thinking skills – which echoes a 

longstanding argument for teaching mathematics. Motivated by the parallel, we attempted to 

investigate some of the common ground between learning to code and the development of core 

mathematical concepts. We photographed and video recorded children, aged 9–10, as they learned 

to build and program Lego MindstormsTM EV3 robots over four days. Our findings suggest that 

programming supports children’s understandings of decimal numbers and their transitions from 

additive to multiplicative thinking.  

Keywords: Coding, robotics, arithmetic, number concepts, elementary education. 

Introduction 

In recent years there has been a growing recognition that information and communications 

technologies (ICT) are a major contributor to innovation and economic growth. For instance, the 

Organization for Economic Cooperation and Development (OECD, 2016) considers computer 

programming a necessity for a highly skilled labour force. Shortages are already felt across the 

world and demand for highly skilled ICT professionals is expected to rise. In our home country of 

Canada, for instance, there are predicted shortages of more than 150,000 skilled ICT workers in the 

next few years. This shortage is impacting IT innovations and revenues (see Arellano, 2015; 

Clendenin, 2014). 

Canada is hardly unique on this count, as evidenced by major pushes around the world to include 

coding as a core part of school curriculum. In response, some educators and educational systems are 

shifting from teaching “how to use” software programs toward “how to code.” Estonia and England, 

for example, have implemented a national curriculum that makes computer programming 

mandatory for all school-aged students across all grades, and other nations appear to be moving in 

this direction. For instance, it is currently a topic of political debate in Australia, where the 

opposition party is calling to have computer programming taught in every primary and secondary 

school in the country (Roumeliotis, 2015; Sterling, 2015). 

In North America, national-level discussions and calls have yet to gather the same sort of 

momentum, but more and more initiatives are emerging at the local level. For example, the Chicago 

school district is adopting computer science as a core subject in all public high schools – prompted 

in large part by support from Google and Microsoft and through initiatives such as Code.org and 

Hour of Code, which are dedicated to expanding access to computer science for all U.S. students. 

Despite the absence of a national strategy in the U.S., messages on the importance of learning to 

code are frequent, with some emanating even from the President’s office. In fact, coding skills have 



been associated not only with empowering individuals and meeting employment needs, but with 

many aspects of the country’s future and security (Pearce, 2013).  

Trends toward including coding in school curriculum were preceded by a broadly effective 

worldwide push to get computers in schools. In 2011, most students (71%) in OECD countries 

reported having access to computers and the Internet at school. However, most students reported 

using the computers at school for email, browsing the Internet, word processing or doing individual 

homework. For the most part, such activities require low-level cognitive thinking and do not 

challenge students to develop more than basic user skills. Learning how to program a computer, it is 

typically argued, involves higher-level cognitive processes and provides opportunities for 

developing higher-level ICT skills.  

These sorts of arguments for teaching computer coding parallel long-standing rationales for 

teaching mathematics. Similarly, many of the structures and strategies within coding bear strong 

resemblances to elements of mathematical concepts (Papert, 1980). We discuss a few of these 

resemblances in this paper, focusing on arithmetic.  

Conceptual metaphors are one of the ways we understand mathematics (Núñez, 2000).  With regard 

to the concept of number, Lakoff and Núñez (2000) describe “four fundamental metaphors of 

arithmetic”: arithmetic as object collection, arithmetic as object construction, the measuring stick 

metaphor, and arithmetic as object along a path. The metaphor of arithmetic as an object collection 

is based on a one-one correspondence of numbers to physical objects. With this metaphor a greater 

size corresponds to a bigger number. For instance, 5 is greater than 2 because it forms a bigger 

collection. The metaphor of arithmetic as object construction is based on fitting objects/parts and 

arithmetic operations. For instance, 5 is greater than 2 because an object comprising 5 units is larger 

than one comprising two. The measuring stick metaphor maps numbers onto distances, whereby 5 

is greater than 2 because it is longer. The metaphor of arithmetic as an object along the path is 

based on arithmetic as motion, by which 5 is greater than 2 because it entails moving further from a 

common starting point (i.e., zero). Programing robots provides opportunities for illustrating and 

experiencing these arithmetic metaphors.  

Context 

In this interpretive study we asked what mathematics children learn by building and programming 

Lego MindstormsTM EV3. Interpretive research is about what meaning individuals construct in their 

lived experiences (Bhattacharya, 2008). We co-designed learning tasks with a graduate engineering 

student and co-taught the tasks with the classroom teachers over a course of four sequential days in 

three-hour daily sessions. The study’s participants were 22 children, Grades 4-5 (aged 9–10), at 

Pakan School at Whitefish Lake 128 First Nation in rural Northern Alberta. Once the children knew 

the basic coding blocks for moving the robot, they were given Papert’s (1980) task of programming 

a robot to follow a trace out of a triangle, square, pentagon or hexagon. On the third day, they were 

given the final challenge of building a robot that could find and douse a fire in any of four rooms in 

a building. Data included video-recordings, GoPro digital images, field notes, and artifacts 

including saved computer programs. 

We video-recorded the four sessions to obtain rich contextual detail of children’s mathematical 

interactions when programming the robots. Using interpretive video analysis (Knoblauch, 2013) we 



selected videos and GoPro digital images that exemplified instances of children’s mathematical 

thinking. Video data enables repeated viewing, slow motion, fast motion and frame-by-frame 

analysis. The selected videos formed the basis for emergent understandings of the children’s 

experiences. The analysis developed through an iterative process of rereading the literature, 

reviewing the video and GoPro data, and rewriting. As is evident in our analysis, below, video data 

was vital. In particular, it permitted us to slow down the process and identify the integrated/nested 

processes of learning that occurred. The three instances that we use to focus our discussion were: 

(1) a trio of girls learning to program their robot for the final challenge to move a certain distance 

into the hallway to illustrate a developing understanding of number, (2) a boy tapping the vertices 

and sides of a triangle to count the number of programming steps necessary for the robot to move 

around the triangle as an example of additive thinking, and (3) a boy learning how the number of 

sides and angles of a polygon connects to the number of repeats in a loop, which illustrates a 

developing shift from additive to multiplicative thinking.  

Findings 

In the numberline video (see https://vimeo.com/144996708video), Krista was helping the pink team 

program their robot to move into the building. This action required manipulating one block of EV3 

code to move the wheels a specified number of rotations. The team members started out with a 

guess of 0.4 rotations to move the robot into the first corridor of the building. After testing how far 

the robot moved and observing that the robot needed to move a considerably greater distance, Krista 

prompted the girls by asking what they should try next. Celina suggested they try 0.5. The small 

incremental change was still not enough, so Krista suggested they try 2. Two rotations moved the 

robot too far. 

Krista: What is between 0.5 and 2?  

Celina: 5.  

Suspecting that Celina’s response indicated that she and her teammates were unable to summon an 

appropriate interpretation of decimal numbers, Krista drew a simple number line on the whiteboard. 

Krista: What is between 0.5 and 2? 

Celina: Oh! 1.8.  

The number Celina chose was close to the number of rotations actually required, which indicated 

she understood the meaning of 1.8. In the exchange above, we take Celina’s immediate and 

satisfactory response to the repeated question as evidence that Krista was justified in her suspicion 

that the learners were lacking an appropriate interpretation for understanding decimal numbers – or, 

at least, were unable to extend whatever interpretations that had available to a situation in which 

distance was measured in wheel rotations. Coding the robot to move compelled the learners to 

elaborate their understandings. Invoking the number line appeared to provide an appropriate 

metaphor for helping Celina understand.  

In the following sequence of images and descriptions, we summarize how the task of coding the 

robot to move into a room calls for all four of Lakoff and Núñez’ (2000) representations of 

arithmetic. To begin, the metaphor of arithmetic as an object collection is used in most counting 

situations, whenever the forms being counting are perceived as discrete objects. It is by far the most 

https://vimeo.com/144996708
Numberline.mp4


common interpretation of number through the task of assembling a robot, by simple virtue of the 

fact that the robots begin as large collections of separate items. Less obviously, it is also called for 

in coding moments as programmers translate complicated actions into discrete steps or instructions. 

And more obscurely too, such conceptual moves as the discretizing of wheel turns, so that they can 

be counted and thus used as a tool in programming, might be argued to rely on this metaphor. 

Figure 1 (left) presents an instance of this metaphor, showing that 2 turns is less (i.e., forms a 

smaller set than) 5 turns. 

 

Figure 1: Arithmetic as object collection. Number of wheel rotations | Arithmetic as Object 

construction – combining portions of wheel rotations into single objects 

Figure 1 (right) shows how the metaphor of arithmetic as an object construction might be 

encountered when programming a robot to move. Celina wanted a larger wheel rotation than 0.4, so 

she added an incremental amount of 0.1 wheel rotations to make 0.5 wheel rotations. Contrasted to 

the previous metaphor, in this instance, wheel turns are not perceived as discrete objects, but as 

parseable continuities. Those parsed elements can then be assembled into an appropriate object to 

move the robot a precise distance. 

The measuring stick metaphor also featured prominently in the children’s programming, and was 

particularly prominent in the frequent need to interpret wheel turns in terms of actual distances (e.g., 

when the phrase “1 wheel turn” was deployed not as a description of movement but was a reference 

to a distance of roughly 12 cm). Figure 2 (left) in reference to the instance in which the room of the 

hall was shorter than approximately 1.8 wheel turns. In this instance, programming the code block 

requires understanding measurement. 

 

Figure 2: Measuring Stick: The length of hall | Arithmetic as an object along the path. The robot 

travels further with 2 than 0.5 

Figure 2 (right) shows how programing the robot to move draws upon the metaphor of arithmetic as 

on object along the path. In this case, starting place becomes a critical element is that, for example, 

occurs when the robot enters the room and recurs in the opposite direction when the robot leaves.  



To re-emphasize, we observed each of Lakoff and Núñez’ four metaphors of arithmetic to be 

present in programming the robot to move a required distance in the room. The ability to identify to 

the particular metaphor(s) that a situation is calling for is a critically important teaching 

competence, as Krista demonstrated in the interaction with Celina. Re-interpreting that brief 

episode, Krista recognized that Celina was not interpreting number as a distance (i.e., she was not 

using a measuring stick metaphor), and thus reminded her of that metaphor by offering the image of 

a number line. No explanation other than an image of number that fitted the application at hand was 

required. 

Arithmetic Topic 2 – Moving from “additive” thinking to “multiplicative” thinking. 

The need for appropriate metaphors and images of number isn’t sufficient for making sense of that 

entire episode, however, closer analysis reveals a further issue with the children’s arithmetic, 

namely the tendency to default to additive actions rather when multiplicative actions would have 

been more suitable. That episode began with the group’s realization that an entry of “0.4” moved 

the robot only a small portion of a desired distance. Asked what else they might try, they increased 

the distance only incrementally by 0.1 (to 0.5) rather than the necessary factor of (roughly) three. 

This same tendency to default to additive actions when multiplicative action would have been more 

productive was witnessed many times across many groups over the four-day project. The additive 

thinking video (see https://vimeo.com/144820583) provides a window into any instance of the same 

phenomenon. In this case, Gene, who was on the floor in orange, is figuring out how many blocks 

of code were needed for the program. As he counted “one, two, three, four, five, six,” he tapped 

each vertex and side of the yellow triangle, finally announcing that six steps are needed. Gene’s 

step-by-step of the same two steps (straight, turn, straight, turn, straight, turn sequence) is an 

example of additive thinking – that is, of construing the situation in terms of a sequence of 

increments rather than a repetition. 

Phrased in terms of coding, Gene opted to repeat the same line of instructions six times rather than 

employing a loop that ran six times. This happened in spite the fact that he and his group mates had 

learned how to use loops the day before when they programmed their robot to dance. 

In fact, only one of the 8 groups in the class used a loop for the polygon task – suggesting that the 

move from additive/increment-based thinking to multiplicative/loop-based thinking is more 

conceptually demanding than is often assumed. The additive to multiplicative thinking video (see  

https://vimeo.com/144826969) further illustrates this point, as the classroom teacher along with 

Krista attempted to help Liam program with loops. Liam, on the left, identified that a pentagon has 

three sides. When asked to count the sides, he walked around the pentagon counting aloud and 

announced “5 times.” Krista explains that 5 times is the number of times to repeat the two block 

codes (go straight and turn) in the loop. In response, Liam exclaimed excitedly, “Yes!” 

In the same clip there are two boys who were fine-tuning their robot’s program to follow a triangle. 

Their robot never stopped, which indicates that they are using an infinite loop – suggesting that they 

are making use of a concept of “repeating,” but likely not a concept of multiplication. After three 

attempts at tracing out a triangle, they still hadn’t crafted a program that would stop their robots. 

Davis and Renert (2014) have identified a number of common instantiations for multiplication that 

are encountered in elementary school classrooms, including grouping, hopping, repeated sums, 

https://vimeo.com/144820583
https://vimeo.com/144826969)


stretching and compressing, array- and area-making, and making combinations. Looping, it seems, 

is another, distinct instantiation of multiplication that is particularly powerful in the activity of 

programming – in a manner, we suspect, that might be used reflexively to support mathematics 

learning. Figure 3 below, illustrates two programs for following a triangle. Additive thinking is 

found with the sequential accumulation of six programming blocks: move forward, turn, move 

forward, turn, move forward turn. Multiplicative thinking requires recognizing that the triangle can 

be traced by repeating the move forward and turn blocks three times in a loop. In the exchanges 

above, Liam appeared to be developing fluency with multiplicative thinking.  

 

Figure 3: An additive and a multiplicative program for moving a robot in a triangle 

Across the participants there was a pervasive tendency to program robots to trace out polygons as a 

sequence of same-steps rather than as a repetition of a set of steps (i.e., as enabled with a loop). This 

tendency was not easily interrupted through instruction, which provides evidence of the complexity 

of thinking multiplicatively. Even at the end of the four days, during the final challenge, only two of 

the teams had managed to appreciate the power of loops sufficiently to incorporate them into their 

programs. Not surprisingly, theirs were also the robots that performed the best. In one of these 

cases, the code for the winning robot (see https://vimeo.com/145404678) involved a loop 

determining if a fire is present, announcing “Yes” or “No” as appropriate, and activating an arm 

motion to dump retardant if “Yes.” 

Part of the reason that we dwell on this point is that the operation of multiplication is, arguably, the 

most important concept in grade-school mathematics. Multiplicative thinking is the cornerstone of 

proportional thinking, which is foundational to advanced mathematics for reasons that include the 

access it affords to an extended range of numbers (for example, larger whole numbers, decimals, 

common fractions, ratio and percent), its role in recognizing and solving a range of problems 

involving direct and indirect proportions, and the power it offers with its prominent place in school-

based concepts and processes (Education and Training, 2013). In brief, multiplicative thinking is a 

key in the transition from early ideas to later ideas (see, e.g., ACME, 2011, p. 20).  

Closing remarks 

Our preliminary findings suggest programming robots can support learning mathematics. In the 

episodes reported, the tasks of programming robots required more than parsing complicated actions 

into singular direction; they entailed flexible engagement, Lakoff and Núñez’ (2000) conceptual 

metaphors and mathematical models.  

Computer programming aligns closely with concepts and structures in mathematics and we suspect 

that it might provide other powerful instantiations for mathematical concepts that have not yet been 

noticed. That suggestion is perhaps not surprising, given the mathematical roots of computer 

programming. However, to our reading, it is not an aspect of programming that has garnered much 

consideration in either mathematics education or the technology education literature. Considering 

https://vimeo.com/145404678


that mathematics literacy and competency with coding are of growing relevance, engagement with 

emergent technologies can complement and co-amplify mathematics learning, and contribute to 

evolving understandings of what “basic” mathematics might be for our era. 

With regard to important complementarities between learning mathematics and learning to code, the 

Lego MindstormsTM EV3 robots and the associated programming language provide a powerful 

instance of multiple solutions. They afford tremendous flexibility for accomplishing a range of 

tasks, from the trivial to the complex. None of the coding tasks set for the children in our study had 

pregiven or optimal “solutions.” Despite that – or perhaps because of that – the children were able 

to engage in manners that they could recognize as successful, even when “complete” solutions were 

not reached. With incremental tasks and iterative refinements, children were able to learn more 

sophisticated and efficient methods for programming the robot. It is not difficult to imagine a 

mathematics class with similar standards of success. 

That said, it is not a coincidence that the winning robot had the most efficient and sophisticated 

program of the group. Some answers are better than others, and those answers appear to reflect 

powerful mathematical thinking. Our future longitudinal research will investigate how children’s 

understandings of mathematical concepts and programming robotics develop over several years.  

We believe that the results of this study underscore the importance of developing and implementing 

a computer programming curriculum in schools. Coding is an emergent literacy that can amplify 

other critical literacies, while affording access to a diverse range of cultural capitals. The reasons to 

teach coding go beyond the technical and economic; for us, they are fundamentally ethical. 
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This paper explores the potential impact of a full teacher-driven design and implementation cycle of 

an electronic book (c-book). We analyse data gathered from a school case study and identify the 

potential of the affordances of the c-book technology that allow the integration of various 

mathematical widgets and reflective activities. Our conjecture is that encouraging flexibility on 

playful tasks and reflection on ‘bridging’ activities early in the structure of the book prepared the 

students to more complex constructionist tasks around the concept of Reflection. Looking into the full 

cycle from design to evaluation this study demonstrates a successful integration of a digital resource 

in the mathematics classroom and highlights some of the successful components of the resource 

namely: playful activities for students, matched with carefully designed bridging activities, followed 

by constructionist activities that allow deeper exploration of the subject matter. 

Keywords: Mathematical creativity, e-books, transformations, reflection, bridging activities.  

Introduction 

There is a lot of research and many projects that focus on developing digital resources for the teaching 

and learning of mathematics. Issues though regarding their successful use and integration in the 

mathematics classroom still remain (Clark-Wilson, Robutti & Sinclair, 2014; Geraniou & Mavrikis, 

2015). One of the issues is whether and how students who may become experts in using a digital tool 

reflect and consolidate their mathematical knowledge (Geraniou & Mavrikis, 2015). Teachers then 

may not be convinced of the potential value of using digital tools in their mathematics lessons. In our 

view, a successful integration of such tools also involves the successful transition from interacting 

with a digital tool to a metacognitive understanding on behalf of the students that the interaction can 

support their knowledge ‘outside’ the tool.  

Our work continues to focus on building ‘bridges’ to the maths involved (and may be ‘hidden’) in 

digital resources. We are looking into how we can encourage the consolidation of knowledge within 

digital tools and the ‘transfer’ of knowledge aiming at finding strategies to integrate them successfully 

into the classroom and the learning process. We define bridging activities as short tasks or questions 

that are used to intervene and encourage students to reflect upon mathematical concepts and problem-

solving strategies they use throughout a sequence of activities (or simple interactions) with a digital 

tool. Such activities could take various arrangements from questions or prompts within the digital 

tool to paper-based worksheets or verbal teacher’s interventions. In this paper, we focus on an 

electronic book resource and, particularly what the Mathematical Creativity (MC) Squared project 

(http://mc2-project.eu/) calls ‘c-books’, which are extended electronic ‘creative’ books that include 

widgets i.e. objects, other than text ranging from simple hyperlinks or videos to a broad range of 

interactive digital environments for mathematics such as GeoGebra and other microworlds (c.f. 

Kynigos, 2015). The project also includes an authorable intelligent support and data analytics engine 

that allows designers (e.g. teachers) to author the feedback that the system could provide to a student 

and the data they would like to see from their interaction (Karkalas & Mavrikis, 2016). The idea 

http://mc2-project.eu/


 

behind the MC Squared project is to focus on social creativity in the design of digital media intended 

to enhance creativity in mathematical thinking (CMT). Researchers collaborating with math 

educators and teachers join Communities of Interest (COI) that work together to creatively think and 

design c-book resources reflecting 21st-century pedagogy for CMT. 

The focus of the small study presented in this paper has been on designing a c-book including 

appropriate resources, such as bridging activities (Geraniou & Mavrikis, 2015) with the aim of 

enabling students to make connections to the mathematical concept the c-book is designed to teach 

them, in this case, Reflection1. We conjecture that designing resources that encourage flexibility on 

playful tasks and reflection early in the structure of the book prepared the students to more complex 

constructionist tasks. Looking into the full cycle from design to evaluation we demonstrate a 

successful integration of the c-book in a mathematics classroom and highlight some of its key 

components namely: playful activities for students, matched with carefully designed bridging 

activities, followed by constructionist activities that allow deeper exploration of the subject matter.  

Theoretical framework 

CMT has been given many definitions by various authors (e.g. El-Demerdash & Kortenkamp, 2009; 

Mann, 2005). In the MC Squared project, CMT has been drawn on Guilford’s (1950) model of fluency 

(the ability to generate a number of solutions to a problem), flexibility (the ability to create different 

solutions), originality (the ability to generate new and unique solutions), and elaboration (the ability 

to redefine a problem). CMT has also been approached as a thinking ‘process’ that takes place in the 

context of a mathematical activity in order to produce a ‘product’ (e.g. a solution to a mathematical 

problem). As such the product and process are intertwined. For example, the construction of a 

geometric artefact is seen as a product that was started as a response to a task (problem), continued 

with the identification of a set of points, lines etc. that are underpinned by some properties that provide 

an answer to the task (product). Taking the above CMT’s aspects as a starting point, we align our 

views to Papadopoulos et al.’s (2015; 2016) who consider CMT as the (i)‘construction’ of math ideas 

or objects, in accordance to constructionism that sees CMT being expressed through exploration, 

modification and creation of digital artefacts (Daskolia & Kynigos, 2012), (ii) Fluency (as many 

answers as possible) and Flexibility (different solutions/strategies for the same problem) and (iii) 

novelty/originality (new/unusual/unexpected ways of applying mathematical knowledge in posing 

and solving problems). Even though CMT seems to be at the core of mathematical thinking, its 

development through the use of exploratory and expressive digital media hasn’t been thoroughly 

investigated (e.g. Healy & Kynigos, 2010) and the question about the best possible strategies for 

developing appropriate resources for integrating such digital media and promoting CMT inside and 

outside of the classroom remains. 

  

                                                 

1 To distinguish between ‘reflection’ as a thought process and the mathematical concept ‘Reflection’, we will use capital 

letter ‘R’ for the mathematical concept. 



 

Authoring c-books 

As mentioned above, c-books are special electronic books that are designed within the Digital 

Mathematics Environment (DME)2 which has been designed to allow teachers to create sequences of 

activities involving a number of widgets. It allows teachers to change the feedback messages students 

receive during their interactions with the c-book and stores all user interactions and scores. As part 

of a teacher training course, and based on our previous work, we encourage teachers to use DME’s 

affordance to design bridging activities that promote students’ reflective thinking on their interactions 

aligned with the various widgets. We expect these activities to ‘bridge’ the students’ transition to the 

mathematical concepts, which the digital resource is designed to support  (Geraniou & Mavrikis, 

2015). These are questions presented and directly linked to the widget’s tasks and can be viewed as 

interventions that encourage students’ reflections on their interactions throughout a sequence of tasks, 

but also introduce and encourage the use of mathematical notation, not necessarily presented within 

the widgets. Authoring bridging activities within the digital medium of a c-book and recognising the 

potential value to students’ learning progress and outcomes may encourage teachers to use such 

digital media more often. 

The case of a c-book on reflection 

The c-book on Reflection consists of a number of pages involving different tasks mostly in GeoGebra. 

This c-book (as opposed to others created in COI meetings, during which COI members brainstormed 

about ideas and activities that could be part of a c-book on a specific mathematical topic), was initially 

created by the class teacher in this study, who already had a number of prepared resources, which 

they put together using the affordances of the DME platform to form the c-book. These were resources 

like book chapters and GeoGebra worksheets. The c-book was also shared with the COI in an effort 

to gain constructive feedback and improve it. 

The learning objective for the c-book was to remind students of the definition of Reflection, which 

had already been introduced about seven months before, define the Reflection (‘mirror’) line, 

consolidate students’ prior knowledge and develop their understanding of the concept of Reflection. 

Even though the c-book technology allows a non-linear browsing of the c-book and students can work 

on any activity they want, this c-book was designed (and used) as a linear progression for constructing 

students’ knowledge on Reflection by: (i) revising prior knowledge on Reflection through a series of 

multiple choice questions on certain reflected images where students had to decide which of the four 

images was the correct reflected image, (ii) revising and practicing on the GeoGebra widget (Figures 

1A and 1B), (iii) challenging their understanding of Reflection through a competition task (Figures 

1C and 1D) that promoted ‘flexibility’ in their solving approaches, (iv) challenging further their 

understanding of Reflection through a problem that challenged further their understanding and took 

them away from the standard style of questions such as ‘Reflect this shape across the given Reflection 

line’ (by not giving them the Reflection line, adding a constraint of the squared frame and giving 

them a story context to think about) (Figures 1E and 1F), and finally (v) a final assessment task mostly 

for those who finish faster aimed at recapping what students should know at the end of this c-book 

unit. We need to emphasize that all GeoGebra tasks were presented as bridging activities through the 

                                                 

2 See http://ws.fisme.science.uu.nl/dwo/site/index_en.html and http://mc2-project.eu/ 

http://mc2-project.eu/


 

use of added text and reflective questions (see Figures 1A, 1C and 1E) on the side. These were 

designed as such to challenge students’ thinking and understanding of Reflection and help them 

consider carefully their interactions rather than simply undertake the tasks. The feedback provided to 

students was of different types: (i) as a tick or cross for correct and incorrect responses, (ii) as a score 

for the GeoGebra competition task, which identified the number of correct Reflections students 

reached within the 5 minutes timeframe set by their teacher (Figure 1D) and (iii) as a written text to 

provoke their problem solving. 

 

Figure 1: (A – F) Excerpts from the Reflection c-book and (G) a sample solution of (F) 

Data collection 

The aim of this case study was to explore the potential of both the Reflection digital book in the light 

of the affordances of the overall c-book technology i.e. beyond the ability to sequence activities, the 

potential for automated feedback and reflection that could be used to support bridging activities. The 

methodological tool used was that of a “design experiment” (Collins et al., 2004), that could act both 

as a way to ‘engineer’ and support the didactical situation and to systematically study it (Cobb et al., 

2003). In this case, we, as a research team, collaborated with a teacher but left the decisions and 

responsibility of the classroom to the teacher. 

Twenty-one 11-12 year old (Grade-7) students together with their class teacher and two researchers 

participated in the study, which was completed in two lessons in the school’s computer lab. The 

students had been introduced to the concept of Reflection earlier in the year by working on some 

simple activities involving reflecting 2D shapes across the Reflection line. According to the teacher, 

the aim of these two sessions was to revise and consolidate their knowledge, but also to challenge 

their mathematical thinking against the concept of Reflection. The plan for the first lesson was (i) to 

remind them of what Reflection is and introduce the mathematical term of ‘Reflection line’ as 

opposed to ‘mirror line’ when they were first introduced to Reflection, (ii) introduce the c-book 

technology and (iii) allow students to familiarize themselves with GeoGebra through a challenging 

task, which acted as a bridging activity to recap prior knowledge. It involved working on some 

bridging activities, which included mathematical questions (such as ‘find the coordinates’) and 

reflective questions (such as ‘what was your strategy?’) within the platform. At the end of the first 

lesson, most students had reached the ‘Church Challenge’ task (see Figure 1E and 1F). During the 



 

second lesson, students continued to work on the ‘Church Challenge’ and then answered a 

questionnaire to evaluate the c-book.  

In addition, at the end of the second lesson, they were given a questionnaire to share their feedback 

on their learning experience with the Reflection c-book. The questionnaire was a Likert multiple-

choice questionnaire consisting of questions such as: (1) How satisfied were you after completing the 

c-book activities?, (2) How easy to use do you think the c-book is?, (3) How free did you feel to 

experiment with the c-book and try out your ideas?, (4) I feel I understand Reflection now. Another 

two questions (5 and 6) gave them options to pick on their thoughts on the c-book and their preferred 

features. The questionnaire finished with three more questions to request suggestions from students 

(out of the scope of this paper).  

Researchers took the role of ‘participant observers’ focusing on students’ interactions with the digital 

medium and taking field notes. Besides working with the researchers and other COI members to 

design the Reflections c-book, the teachers’ role was to offer assistance in technical issues when 

required during the two lessons and ensure that all students were on task and answered the bridging 

activities. Our data consists of the logged answers in DME and voice recordings as students 

elaborated on their interaction and answers. The data analysis was carried out by retrieving students’ 

interactions with the c-book from the system and interpreting their responses against the CMT criteria 

presented earlier and by going through their answers on the questionnaire.  

Results 

The main outcome based on the data from the bridging activities, in particular, was that students were 

encouraged to reflect on the GeoGebra task from the start of their interactions. The teacher reminded 

students of the reflective questions (Figure 1A) and encouraged them to record their answers. The 

designed automated feedback supported all students to identify correctly the missing coordinates for 

the ‘F’ shape, its Reflected image and the equation of the Reflection line. In this first bridging activity, 

students were reminded of what Reflection is and the definition of the ‘line of Reflection’. Both these 

terms were also introduced to the whole class and discussed with the class teacher at the start of the 

first lesson. But, we envisaged the repetition would give students a sense of familiarity and they would 

eventually start using mathematical terms in later tasks and would adopt mathematical ways of 

thinking. Fourteen (14) of the students provided sensible answers to the bridging question in relation 

to their strategy. Looking at students’ responses to the bridging activity questions for the first couple 

of GeoGebra tasks, students were mostly using informal terminology: 

Student: we have to flip the shape. 

Student: count how many down from the mirror line. 

But, in later bridging activities questions, students started to use mathematical terms, such as “the 

reflected church” or the “reflection line”. For the question on what they notice when they move the 

‘F’ shape, their responses were rather superficial: 

Student: if you move the green shape, the orange shape moves with it. 

They seemed to have noticed that the two shapes (green and orange ‘F’) are linked, but only 2 were 

able to articulate that they maintain the same distance from the Reflection line. Retrospectively, 

observing the students talking about their strategies, it might have been better to include some explicit 



 

scaffolding questions here such as “What is the distance from the ‘F’ shape to the reflection line?”, 

“What do you notice?” etc. These could be followed up by the teacher to clarify what reflection is 

and how the reflected images are defined. 

The bridging activities questions revealed students’ solving strategies and consequently their CMT. 

For the Competition task, students claimed to use three different strategies: (i) counting boxes across 

and down, (ii) tilt their head so that the reflection line becomes vertical and (iii) imagine using tracing 

paper on the screen. In this way, students demonstrated not only that they can come up with some 

original (for them) solutions but that they can also provide elaborate reflections on their strategies, 

which is linked to the originality/novelty CMT criteria described earlier. In retrospect, the c-book 

could have been designed to ask students for different strategies after they come up with one to 

challenge further their CMT in terms of the fluency and flexibility criteria.  

Asking students about their strategy seems to promote reflection on their actions that helped them 

reach a solution. In particular, the Church Challenge (Figures 1E and 1F) posed a problem that ignited 

students’ thinking ‘process’ and resulted in a ‘product’, i.e. the reflected church image. In all the 

previous activities, students were given the Reflection line and their aim was to reflect a given shape. 

On the contrary with the Church challenge, students had to find the Reflection line and reflect the 

church image within the square town (see Figure 1G). By writing down their strategy, they recognised 

the solution ‘steps’ they took, questioned their actions and corrected them when needed. This open-

ended problem allowed for exploration, construction of mathematical ideas and flexibility, which are 

all aspects we used to define CMT earlier (e.g. Papadopoulos et al., 2016).  

Sixteen students (16/21 or 76%) managed to complete the task, whereas the rest ran out of time in the 

lesson. 10 of those got a correct answer. To reach the solution or the ‘product’, students produced 

creative solving strategies, which they were asked to justify. These strategies involved imagining a 

tracing paper used on the screen to reflect the church (14% or 3/21), which could be considered 

original in this context; trial and error technique by reflecting the church in all 4 quadrants and then 

thinking about reflecting each image within a quadrant to the corner of that quadrant to see which one 

fits within the square town (33% or 7/21); or another trial and error technique by constructing different 

Reflection lines and reflecting the church in one or more quadrants (52% or 11/21, see Figure 1G). 

These two latter strategies demonstrate students’ flexibility through the CMT criteria lens.  

As far as the questionnaire is concerned, we are mostly interested in this paper on question #4 where 

most of the students (85% or 18/21) responded with an answer above 4 in the Likert scale. In relation 

to their thoughts on the c-books about 60% (13/21) answered that it helped them see the idea of 

reflection in different ways. This is really encouraging as one of our objectives was indeed to help 

students expand their understanding. About 43% (9/21) said that it included problems that they would 

not have tried to solve. This is also interesting as we want to encourage students to appreciate their 

mathematical abilities. In the open-ended questions, most students complimented the affordances of 

the c-book by commenting on enjoying the free explorations, testing of their ideas, experimenting, 

working on new questions and being challenged. While some students had comments for aesthetic 

improvements (fonts, games, colours etc.) three (3) students made comments that showed that they 

appreciate the advantages of digital technologies: 



 

Student: the digital book help[s] because you could have actually test[ed] out your ideas and 

improve if it’s wrong or not. 

They recognised the dynamicity of such resources and how seeing the immediate feedback on their 

actions helps them validate their solution. At the end of the two lessons, the teacher also shared his 

reflections with the researchers and later with the COI. The teacher was impressed with how students 

were so engaged with the c-book, compared to past lessons without any digital resource and 

commented on the value of bridging activities and shared ideas on how to improve them. 

Conclusion 

This paper provides a good indication of the value of having a digital medium that combines free 

exploration, but encourages students to reflect upon their actions and make a link between their 

interaction in a digital environment and their mathematics through bridging activities. Such activities 

focus on mathematical terms, the definition of concepts, but also the justification for their solutions, 

throughout their work and ‘bridge’ the actions to solving a problem in the digital tool to the underlying 

mathematics (which could otherwise be ‘lost’).  

Authoring activities using various widgets, designing Bridging Activities and in general, participating 

in the creation of the Reflection c-book re-enforced the teacher’s keenness to continue to use digital 

technologies in their classroom. As a result of this study, the teacher and the COI revisited the c-book 

that led to further improvements in the book. The most notable of those was breaking down the 

bridging questions to smaller questions with guidance, and using the feedback affordances to 

encourage flexibility in terms of the strategies, as an aspect of CMT. 

To conclude, this case study demonstrates how the c-book technology can be integrated into the 

mathematics classroom and promote a positive learning experience through the use of playful 

activities for students, matched with carefully designed bridging activities, followed by 

constructionist activities that allow deeper exploration of the subject matter.  
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In this paper, we report on a project about developing mobile applications for learning mathematics 

through game playing. Several different types of applications were developed in a collaboration 

between universities in Norway and Slovakia, and between teacher education and information 

science. We give some preliminary results on how two of these applications were received and used 

by Slovakian pupils. 
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Introduction 

Mobile devices, such as smartphones, tablets and laptops, have become an integral part of our lives. 

Teachers and pupils use them daily for communication, searching for information or for 

entertainment. Pupils today, born from 1990 to 2010 and recognized as generation Z, are the most 

technologically advanced generation, often known as digital natives. They were born into the era of 

the Internet and Facebook; they always want to stay connected with their friends and to use high-

speed digital devices (Baker & Evans, 2016). Hence, the wide spread of mobile devices causes a 

natural social pressure and challenge for educators to include these devices into education, to support 

learning. Computers, laptops, and netbooks have all been added to classroom settings with the hopes 

of revolutionizing education, promising vast improvements to pupil outcomes. These technologies, 

largely, have left education unchanged and in a continual state of need for improvement (McQuiggan, 

Kosturko, McQuiggan & Sabourin, 2015). Mobile learning offers a novel approach to reach current 

pupils. By the term mobile learning we follow McQuiggan, Kosturko, McQuiggan and Sabourin 

(2015, p. 31).  

It is anywhere, anytime learning enabled by instant, on-demand access to a personalized world 

filled with the tools and resources we prefer for creating our own knowledge, satisfying our 

curiosities, collaborating with others, and cultivating experiences otherwise unattainable. Mobile 

learning implies adapting and building upon the latest advances in mobile technology, redefining 

the responsibilities of teachers and students, and blurring the lines between formal and informal 

learning. 

Mobile learning offers flexibility in when learning takes place, personalization of content, and gives 

pupils experience with contemporary technology and relevant skills for the future. So unsurprisingly, 

mobile learning has been considered as the future of learning or as an integral part of any other form 

of educational process in the future (Trifonova, 2003).  

In June 2016, gaming apps were the most popular apps based on availability, as about 23 % of all 

apps available in the Apple App Store fit in this category. The second most popular category was 



Business (10.22 %), closely followed by the Education category (9.21 %) (‘Most popular’, 2016). 

Shuler (2012) has analyzed the Education category from Apple App store. In 2011, more than three 

quarters (77 %) of the top selling apps targeted preschool or elementary aged children. Early learning 

was by far the most popular subject/skill-set (47 %), followed by mathematics (13 %). Drigas and 

Pappas (2015) have analyzed the most representative studies of recent years (2002 - 2013), involving 

online and mobile applications and tools for mathematics as well as their effect in the educational 

process. The results of the studies revealed that online and mobile learning applications motivated 

pupils, making mathematics instruction more enjoyable and interactive than ordinary teaching 

practices. The analyzed applications were targeted towards one specific area of mathematics, like 

graphs and functions, arithmetic, algebra, geometry, problem solving or mathematical programming 

and they were available only in English or Spanish. In light of this, we see it as an important 

contribution to ongoing research into mathematics education to engage in projects that examine the 

process of developing applications for mobile technologies as well as studying the effects they could 

have on learning. Also, providing tools readily available for school teachers was an important factor 

for running the Apps in Math project, as detailed in the next section. 

Design and implementation of the Apps in Math applications 

The main goal of the Apps in Math project (AiM) was to develop 25 applications in 15 months for 

supporting teaching and learning mathematics in lower and upper secondary schools in Slovakia and 

Norway. In Norway, pupils have relatively good access to technology, compared with European 

countries. Almost 90 % of pupils use Internet in schools but the most common use is probably the 

computer and not mobile platforms. After school hours, as much as 94 % of all children aged 9-16 

have access to a mobile phone, and 83 % have a smartphone. (Medietilsynet & Trygg bruk, 2014) 

Several schools have a policy of buying one laptop for each child in school. Most publishing houses 

have their own apps and games connecting to their textbooks, and there are usually many choices 

teachers can do regarding software for their pupils. Much is not translated into Norwegian, but this is 

generally not seen as a big difficulty. 

In Slovakia not all pupils have their own smartphone or tablet; the further east one goes, the less 

pupils have their own mobile device (Michálková, 2016). In the primary and secondary schools – the 

typicality is to have three computer rooms per school, in which Informatics is mainly taught, so there 

is rarely room for mathematics lessons in these specialized classrooms. Pupils usually do not have 

their own PC. During 2013-2015, thanks to national project supported by EU funding, 22 000 tablets 

were given to Slovak schools, which usually meant set of 30 tablets per school. Pupils in one school 

are sharing those tablets; teachers bring them for lesson, at the end of the lesson pupils have to return 

them, because they will be used in other classrooms. In Google Play or App Store there are very few 

mathematical apps in Slovak language that are intended to be used in mathematics classes at lower 

or upper secondary schools. So there is a need for applications, which teachers could use in math 

classes and for different levels of schooling. 

The applications (modules) developed within Apps in Math project focus on various mathematical 

topics that are part of Slovak or Norwegian curriculum for pupils aged 9-19. The development of 

modules went in coherence with Design based research (Wang & Hannafin, 2005) and its iterative 

cycles. The mathematics teacher educators from Trondheim and Bratislava have cooperated with 

academics and bachelor students of applied informatics at the Comenius University in Bratislava. 



Slovak bachelor students in Applied Informatics have programmed the modules based on the 

specifications from mathematics teacher educators and master and PhD students, as part of their 

bachelor thesis in informatics. The modules were tested extensively within the local participating 

groups in Slovakia and in Norway, as well as with pupils in Slovak and Norwegian schools. Reflective 

analysis of problems and obstacles was done and changes were implemented after each testing. All 

modules are part of one framework application called Apps in Math and they are divided into five 

main categories: Numbers, Functions, Geometry, Chance and Logic. Apps in Math is available for 

Android and iOS1 platform and in Slovak, Norwegian and English language. Ebner (2015) has 

divided applications into four categories: stand-alone learning apps, game-based learning apps, 

collaborative apps and learning analytics apps. Apps in Math has the characteristics of being game-

based learning application. Diah, Ehsan and Ismail (2010) have introduced the framework for mobile 

educational games consisting of four important segments: Learning Theories, Mobile Learning 

Approach, Games Development Approach and Learning and Education Medium. Most of the 

modules in Apps in Math apply the constructivism as the learning theory and for the mobile learning 

approach the games use activity-based themes for informal and lifelong learning.  

Case studies 

This section describes two case studies (Study 1 and Study 2) that were conducted to evaluate the 

effectiveness of mobile learning with Apps in Math application in real-world settings, with lower and 

upper secondary school pupils. We have chosen the SAMR-model for a quick categorization of the 

modules, where digital technologies can be placed on a scale from just replacing already existing 

practicing to facilitate types of tasks that could not have been done without the digital tools (Hudson, 

2014). Limited resources and limited time made it necessary to choose for evaluation those modules 

that were closest to being finished. The module Lucky Hockey is based on the classic learning game 

Green Globs (Dugdale, 1982), and several versions of this game has been implemented over the years. 

The pupils who play the game are going to shoot a hockey puck across an ice hockey arena in order 

to collect as many coins as possible. The coins are shattered around the play field, sometimes in a 

random manner, sometimes to provoke a particular shot. The pupil shoots by entering a function 

expression, using the touch screen controls to alter the parameters of the function (Figure 2). By 

playing this game pupils should understand what impact the parameters of the function have on a 

graph. Using the SAMR-model we can say that Lucky Hockey acts as a direct tool substitute, but that 

the functional improvement allows for a more dynamic and dual view of the representations of a 

linear graph and the corresponding expression. Hence we can say this app is an augmentation of 

traditional instruction. 

                                                 

1 http://www.project-aim.eu/eng/download 



   

Figure 1: Learn mode of Lucky Hockey  Figure 2: First level of Lucky Hockey 

The module House of cards focus on arithmetic and geometric sequences in two separated 

submodules called Arithmetricks and Geometricks. By playing this game pupils should discover 

relations between the terms of the sequence and be able to write down basic formulae related to these 

relations. The number sequences are displayed on playing cards. Both submodules have a Learn 

mode, in which basic principles of the sequence are explained. The pupil has to determine the number, 

which is added/multiplied to/with each of the following sequence terms (Figure 3). The pupil has to 

answer five tasks correct within the time limit. After 3 incorrect attempts the correct answer is shown. 

In the next three levels the pupil should select the card, which belongs to the empty red spot in the 

given sequence within time limit (Figure 4). In the first level first 3 terms are given and the pupil 

should select the missing card for 4th and 5th term. Again, using the SAMR-model on Arithmetricks 

and Geometricks, we note that the effectiveness and readiness of the app makes work with sequences 

easier than in traditional teaching, or teaching done with real cards. Hence this app too provides an 

augmentation over traditional instruction. 

  

     Figure 3: Learn mode of Arithmetricks        Figure 4: Third level of Arithmetricks 

The target group for the Lucky Hockey game study was Slovak pupils between the age 14 and 15 

(grade 9), who had had no experience in linear functions yet. The goal of Study 1 was to determine 

which aspects of the linear function concept students seem to approach more effectively through the 

use of the Lucky Hockey game. Time limited gaming (25 minutes) was meant as an adidactical 

situation (Brousseau, 1997). The adidacticity was promoted by giving the students full responsibility 

for the technology-supported exploration of mathematical tasks by retroacting only with the milieu 

and not the teacher (Sollerval, de la Iglesia, 2015). All together 54 pupils from 2 different schools in 

Slovakia participated in Study 1 in November and December 2015.  

The target group for the House of Cards game study was Slovak pupils between the age 16 and 17 

(grade 11), who had not learned about sequences yet and had no previous knowledge about arithmetic 



and geometric sequences. The goal of Study 2 was to determine which aspects of the 

arithmetic/geometric sequence concept students seem to approach more effectively through the use 

of the House of Cards game. All together 49 pupils from schools in Bratislava participated in Study 

2 in March 2016. They first played the Arithmetricks game (starting with Learn mode and 

consequently going through all three levels) for 25 minutes. The next lesson (in the same day) they 

played the Geometricks game with the same conditions. During both Studies 1 and 2 all pupils used 

an iPad. No pre-test was conducted since pupils did not have any knowledge on these topics. The 

post-tests were used to determine the level of acquired knowledge. All pupils of Study 1 and 2 

completed the post-tests as part of the evaluation, right after playing the game. The phase of 

institutionalization took place a few months after Studies 1 and 2, due to prescribed curriculum.  

A preliminary study was conducted in September 2015 with 77 pupils of different age (7 - 16), in 

order to introduce them the early versions of five different games, including the Lucky Hockey game. 

At this stage, the game was more or less fully working, apart from minor graphical issues. Part of the 

group (about 20 pupils) tested the Lucky Hockey game. During the testing pupils thought (while 

playing the Learn mode – Figure 1), that the expression is always y = 0x + b, because they were able 

to hit the goalie only by changing parameter b. This was an obstacle in Level 1, so we had to refine 

Learn mode and control the possible movements of a shooting player. Most of the pupils liked the 

game and did grasp the notion of linear function. In the preliminary study we also asked all the pupils 

about their interest in using smartphones or tablets to learn mathematics in school. Figure 5 shows 

their answers. 92.3 % of pupils, who answered positively on this question, also said that they would 

like to play tested games at home. Out of them 46.7 % in the situation when they are bored, 28.3 % 

for practicing mathematics and 25 % when doing homework. 

 

Figure 5: Interest of pupils to learn mathematics with mobile devices 

Results 

Figure 6 shows that pupils performed quite well in the post-test of Study 1. The average score was 

5.11 and median score of 5. Pupils could obtain a maximum of 7 points, which were obtained by 13 

pupils (24 %). Half of the pupils (50 %) scored 4-6.5 points, but there was also one pupil whose score 

was 0. The results indicate that most pupils learned the slope and intersection-aspects of the function 

concept on an acceptable level. The lowest score performance they had occurred in the last task, in 

which they were asked to explain what impact the parameters a and b in the expression y = ax + b 

had on the corresponding linear graph. Only 46 % of pupils explained it correctly. Nevertheless, they 

performed better in tasks in which they were supposed to draw a line in correspondence with a given 

equation (76 %) or select the correct line/equation out of four possibilities that is corresponding to a 

given equation/line (86 %). 



 

Figure 6: Box and Whisker Chart of Lucky Hockey Post-test Results 

Figure 7 shows the results of pupils in the post-test of Study 2. It is clear that these pupils performed 

better in the Geometricks post-test. Here, 50 % of the pupils obtained 8-10 points, while 10 was the 

maximum. 18 pupils (36.7 %) obtained maximum score, and one pupil obtained the minimum score 

of 2. The second lowest score was 5, also obtained only by one pupil. The lowest performance was 

in the last task in which they had to write down the formula for how to find the 10th term, if they knew 

the quotient (𝑞 =
1

3
) and the 1st term was given as 𝑎1. Only 51 % of the pupils wrote the correct 

formula and explained their answer correctly. The most frequent error was made by 7 pupils (8.2 %), 

claiming that 𝑎10 = 𝑎1.
1

310
. In all the other tasks pupils were able to determine the unknown term, if 

they knew specified values of the 1st term and the quotient, or specified values of two consecutive or 

two nonconsecutive terms, with successfulness of 89 % - 100 %. The scores in the Arithmetricks 

post-test were slightly lower, with an average 6.82 and 6 as a median score. 8 pupils (16.3 %) obtained 

the maximum score and two pupils obtained the minimum score of 3. Distribution of scores within 

the box chart shows that approximately one quarter of the pupils obtained the same score, 6 points.  

  

Figure 7: Box and Whisker Charts of Arithmetricks and Geometricks Post-tests Results 

Discussion and conclusive remarks 

We note from the results that most of the pupils did learn the important principles of linear functions 

or sequences at an acceptable level. However, only about 50 % of the pupils were able to answer the 

last questions correctly. This might have improved if the pupils were to play the games additional 

times. This hypothesis also arises from differences between how the pupils scored in Arithmetricks 

and Geometricks post-tests. The pupils did play the Geometricks game after playing the Arithmetricks 

game and since the principle is not very different, it could cause that they performed better in the 
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Geometricks post-test. As mentioned above, the phase of institutionalization took place 6 months 

after the Studies 1-2. While pupils who participated in Study 1 did not remember much about the 

linear function, it was different with pupils of Study 2. Pupils recalled the main principles of 

arithmetic/geometric sequence and told the teacher that it was not needed to explain it again: “It’s 

like in that game we have played.” From observation of the teacher we also note that traditional 

teaching of sequences went this time easier, probably also due to the mobile learning. The low 

performance on the last task of the Lucky Hockey post-test could be caused by the nature of the task. 

In all the previous questions we used numerals instead of parameters a and b, whereas on the last 

question some generalization and explanation were expected. While some pupils may have 

misunderstood the meaning of the parameters, some didn't give any reply at all or they only explained 

the role of one parameter. If the phase of institutionalization in form of, say, a discussion among 

pupils and a teacher took place right after the gaming activity, pupils’ understanding of the 

parameters’ role might have been better. The interest of pupils to learn mathematics with a mobile 

device was visible during testing both in Slovakia and in Norway. According to the results of the 

questionnaire it seems that most of the Slovak pupils would like to include mobile learning in their 

schooling. Testing of the other various applications from the project, not mentioned in this paper, also 

confirms that Slovak pupils and teachers consider mobile learning as a motivational way of learning 

and teaching mathematics (Michálková, 2016; Kapitulčinová, 2016). Mobile phone games in 

classroom is a novel idea and it might still cause the engagement of being a contemporary, “fresh” 

way of learning mathematics, which could be the reason of pupils’ and teachers’ enthusiasm.  

The results of Study 1 and 2 suggest that mobile learning can be both motivational for pupils when 

learning mathematics, and helpful when acquiring new knowledge effectively. Gamification of 

education has also reached mathematics instruction but resources and research are just beginning to 

surface. Ideas from the project are being further developed at both participating institutions. Current 

issues can include utilizing the small touch screen sensibly and also collecting data from how and 

when pupils use the applications. The mobile phone is a tool we can expect to see more in 

mathematics education as learning becomes further individualized and online. One lesson learned 

from this project is the difficulty of communicating mathematical ideas from the idea stage to the 

actual implementation. This became quite apparent when collaborating with different countries, 

different levels of study and different study branches. Another lesson from the project is that it turned 

out to be much easier to develop ideas with a narrow mathematical theme, than to make applications 

that facilitates exploration and discovery. 
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Khan Academy1 (KA) is an online learning system of videos and exercises that is freely available and 

widely used. In this study, 131 students in a mathematics education class were split into two groups. 

Both groups followed normal instruction, but the treatment group was introduced to KA and given 

the opportunity to substitute their compulsory mathematics assignment with exercises in KA. This 

paper presents the results of students' performance on a mathematics pre- and post-test. The results 

show a statistically significant learning gain for both groups, but there were no statistically 

significant differences between the two groups on either test. This suggests that using the free and 

automated KA for self-study and assigned work was as effective for students' learning as other 

standard resources. Student usage of KA beyond the compulsory exercises, however, did not correlate 

with results on the mathematics test, possibly due to the limited focus of the test.  

Keywords: Mathematics education, electronic learning, teacher education. 

Introduction 

Pre-service teachers in many countries struggle with mathematics. In Norway the TEDS-M study 

concluded that “a big problem in Norwegian teacher education is the poor academic skills of students 

in mathematics” (Grønmo & Onstad, 2012, p. 55, our translation). To address this challenge, the 

mathematics entry requirements for all Bachelor of Education students were increased from 2 to 3 

(where 2 is the passing grade and 6 the highest grade) in 2005 (UFD, 2005), and increased again to 4 

in 2016 (KD, 2014). 

Fluency in school mathematics is essential for studying mathematics education. A consequence of 

pre-service teachers’ weaknesses in mathematics is that class time has to be devoted to learning 

mathematics rather than mathematics education material. Khan Academy (KA) is one of many recent 

online resources offering structured sequences of videos and exercises. This paper reports on a first 

attempt to integrate KA as part of the mathematics instruction in a mathematics education class. More 

specifically, the research questions were: How do the learning gains of KA users compare to those in 

a control group? How much did the students use KA, and what were the associated learning gains? 

Khan Academy 

Khan Academy began as a collection of YouTube videos made by the founder Salman Khan to help 

his cousins with their schoolwork. These videos were later integrated into an online learning tool, 

which had 10 million unique users a month in 2014 (Murphy, Gallagher, Krumm, Mislevy, & Hafter, 

2014). Beginning in 2010, the Bill and Melinda Gates Foundation and Google made a significant 

                                                 

1 https://www.khanacademy.org/ 



investment in KA to develop new content and to translate it into other languages (Murphy et al., 

2014). 

One of the features of the tool is “missions”, which are suggested sequences of videos, exercises and 

other materials. Learners can reach a level of “practiced” on an exercise by correctly answering 3–5 

(depending on the exercise) questions correct in a row without using any hints. The level “mastered” 

is achieved by answering a mixed selection of questions a set time after the student has achieved the 

level “practiced”. Gaming features, such as “badges” and “energy points”, are designed to further 

incentivise completion of exercises and missions. 

A KA user can also be a “coach” for other users, such as a class of students. A coach can see the time 

used by each learner, exercises practiced and mastered, and suggest other exercises, which then 

appear on the learners’ KA home page.  

Related research 

There is a small but growing amount of research literature on use of videos for learning mathematics. 

These report that students see them as useful learning resources (Kay & Kletskin, 2012; Loch, Gill, 

& Croft, 2012; Loch, Jordan, Lowe, & Mestel, 2014; Wilson, 2013) and there is some indication that 

such videos can improve exam performance (Jordan, Loch, Lowe, Mestel, & Wilkins, 2012).  

Wilson (2013) reports on the use of a flipped classroom approach with a university level statistics 

class, which resulted in increased student examination performance. KA was one of the resources 

used by Wilson to supply content to the students. A similar flipped classroom approach was employed 

by the second author in a physics course for pre-service science teachers (Lindstrøm, 2015). KA was 

found to have added value to the course based on the following: student compliance with using KA; 

positive student attitudes to KA; a learning gain measured using a pre-test–post-test design; and useful 

data in KA for the instructor to tailor teaching to the students’ needs. 

In California, (Murphy et al., 2014) conducted an implementation study using KA in nine schools. 

Schools were of varying type (public, charter and independent) and level (elementary, middle and 

high schools), and were located in areas with a spread of social-economic profiles. The amount of 

class time spent on KA varied, and KA was not used outside of school hours. The teachers who used 

KA reported positive outcomes for student engagement, and an increased capacity to meet the 

mathematical needs of all students. There was a positive relationship between KA use and test scores 

as well as students’ attitudes towards mathematics. 

In all of the studies mentioned above, the learning gains cannot be uniquely attributed to the online 

resources, because a control group was not used and there may have been other unreported factors 

that influenced the learning. This project is a first attempt at a controlled study of mathematics 

learning with KA. 

Context 

The requirements to qualify as a primary teacher in Norway are a four-year Bachelor of Primary 

Education or a relevant bachelor degree and a one-year Diploma of Education. The majority of 

primary teachers take the Bachelor of Primary Education. In this programme, students must take 



courses in mathematics education equivalent to half a year of full time study, and have the option of 

taking additional courses in mathematics education to become a mathematics specialist teacher. 

The students in this study were in their second year of the Bachelor of Primary Education. By the end 

this year, the students had completed the compulsory mathematics education requirement, which was 

spread evenly over the first two years. Teaching comprised of 22 sessions of 2 hours and 45 minutes 

over the course of the academic year with occasional breaks for study trips, thematic weeks and two 

placement periods (of two and four weeks duration). There were also four 2 hour and 45 minute 

plenary lectures for the whole year group. 

Methodology 

Four of the five parallel classes were included in the study, and two instructors each taught two 

classes. The first author held two of the four plenary lectures and taught the fifth class that was not 

included in the study, but was otherwise not involved with the instruction of the students. The other 

authors were not involved in the instruction of the students in any way. 

One class from each of the two instructors was selected at random to be the KA group (the treatment 

group). There were 59 students in the KA group and 72 in the control group. In the third week of the 

first semester, the first author gave these two classes a short introduction to KA (10–15 minutes), 

which included showing how to set up an account, and an example of the videos and the exercises. 

The students were encouraged to get an account with the first author as coach. Only four students 

created an account in the first half of the semester, however, so the first author visited these classes a 

second time in the tenth week of the first semester to remind the students of how to set up an account. 

Throughout the first semester, the first author sent suggestions to the students for exercises related to 

the content in their mathematics education course both in KA and through the students’ online 

learning management system, which was the main portal for communicating with the students. At the 

end of the semester there was still only four students with an account. 

During the second semester, the students in the KA classes were given the option of completing  their 

obligatory mathematics assignment in KA or as a written assignment. The KA assignment consisted 

of reaching the level “practiced” in the following KA exercises2: Recognizing fractions 2; Finding 1 

on the number line; Equivalent fraction models; Naming the whole; Understanding multiplying 

fractions by fractions; Percentage word problems 1; Ordering fractions; Multiplying fractions by 

fractions word problems; and Converting multi-digit repeating decimals to fractions. The written 

assignment consisted of eight multi-part questions covering the same topics. For example two of the 

questions were: 

Write a number story for the following calculations and illustrate the last two:  

a) 13 × 0.8         b) 10,5 ÷ 0.3        c)  
1

2
+

1

3
        d)  

1

2
×

1

3
 

Convert to a fraction or a mixed number. Show your working.  

a) 0.375      b) 0.545454…      c) 1.88888…      d) 2.16666…      e) 0.461538461538̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

                                                 

2 KA is under constant development. These were the names of the exercises in the spring semester of 2015. 



The assignment included instructions on how to set up an account (identical to that given in the first 

semester), and included the names of the KA exercises. The first author also sent the exercises as 

suggestions (three per week for three weeks corresponding to when the topics were covered in class). 

For the final submission, 42 students chose the KA assignment and 17 the written assignment. The 

control classes submitted the written assignment. 

Progress was measured in all classes by a pre-test–post-test design using a 24-item mathematics test 

developed by the authors. The items were on mathematical topics associated with the second year 

mathematics education course, and all were within the scope of the grade 10 Norwegian mathematics 

curriculum (KD, 2013). The test contained: 11 items on fractions, decimals and percentages; 3 items 

on multiplication and measurement; 4 items on functions; and 6 items on algebra. There was an 

emphasis on fractions, decimals and percentages because that was the focus of the assignment. The 

authors wrote eight of the items and used published sources for the other items (Brekke, 1995; Brekke, 

Grønmo, & Rosén, 2000; Gjone, 1997; McIntosh, 2007; Utdanningsdirektoratet, 2011). Here are two 

examples of the questions on fractions: 

Which of these fractions is half of the value of 3/8?    A: 3/4   B: 6/4    C: 3/16    D: 6/16 

Place in ascending order: 5/8    7/6    1/2    2/3    4/9 

The pre-test was administered during the first teaching session of the first semester for each class. 

The same test was used for the post-test and was administered in the second semester during a session 

for the whole year group approximately one month before the final exam and after the compulsory 

mathematics assignment was submitted. The students had 30 minutes to complete the test on both 

occasions. On the cover page of the post-test, there were four brief questions about the students’ use 

of KA, including an estimate of how many hours the student had used KA during the academic year. 

This information served as a check on the data collected from KA, and to see if anyone in the control 

group had used KA. The students filled out this information before the 30-minute testing period 

began. The first author marked the pre-test and post-test according to a marking key written by all the 

authors. Every item was allotted 2 points, so there was a maximum possible score of 48. 

Matched pre- and post-test data were available for 51 students in the KA group and 58 students in the 

control group. Of the 51 students in the KA group, six students did not register any activity in KA or 

report using KA on the post-test cover sheet and were thus omitted from the analysis. Of the 58 

students in the control group, two students reported on the post-test cover sheet that they had used 

KA during the trial period, and were also omitted. 

The student data from KA on time usage was inconsistent (e.g. some students had completed many 

exercises but had a time usage of 0 minutes) and was thus discounted. On the post-test cover-sheet, 

not all of the students gave an estimate of their KA usage. In the KA group, those who did, reported 

an average of 4.4 hours total usage (SD = 3.6; N = 45). Historical self-reporting of work time is very 

unreliable (see e.g. Chambers (1992), so this estimate is only a very rough indication. 

Results 

The average score on the pre-test for the KA group was 24.1 (SD = 8.3; N = 45) and for the control 

group 25.9 (SD = 7.2; N = 56). This difference was not statistically significant (t(99) = 1.17; p = 

0.246). The average score on the post-test for the KA group was 28.8 (SD = 8.1; N = 45) and for the 



control group 31.4 (SD = 7.8; N = 56). Again, the difference was not statistically significant (t(99) = 

1.63; p = 0.107). However, the gain for both groups was statistically significant: the gain for the KA 

group was 4.7 (t(44) = 5.86; p = 0.000) and for the control group was 5.5 (t(55) = 7.74; p = 0.000). 

Corresponding results were obtained when just the items on fractions, decimals and percentages were 

analyzed: there was a statistically significant improvement for both groups, but the difference 

between the groups was not statistically significant on either the pre-test or the post-test. 

 

Figure 1: Post-test vs. pre-test results for KA and control groups 

Analyzing the post-test versus pre-test scores, the linear regression lines for the two groups show 

similar trends (Figure 1). Again, corresponding results were obtained when performing the analysis 

using only the items on fractions, decimals and percentages. 

“Improvement” refers to be the pointwise improvement on the mathematics test from pre to post. 

When compared with the pre-test results (Figure 2), there is no discernable difference between the 

two groups. 



 

Figure 2: Improvement vs. pre-test results for KA and control groups. The diagonal line shows the 

ceiling for the scores, i.e. the total number of available marks minus the pre-test score. 

Of the 59 students in the KA group, 49 set up a KA account with the first author as a coach by the 

end of the trial period, of which 44 registered activity by watching videos or doing exercises. Since 

the data on time usage was unreliable, “KA usage” refers to number of exercises in which the 

students achieved the level “practiced”. The average KA usage was 44 exercises (SD = 21; N = 44).  

 

Figure 3: Improvement in raw marks on the mathematics test vs. KA usage, as measured by number 

of exercises completed. 



Of the students who registered KA activity, there were 39 who submitted both the pre-test and the 

post-test. In Figure 3, KA usage is plotted against improvement for these students. The "vertical line" 

corresponding to 36 exercises represents completing the compulsory assignment. There were 21 

students whose KA usage was greater than 36 exercises. It is clear from Figure 3 that there is no 

correlation between KA usage and improvement on the mathematics test. A similar analysis for the 

subset of items on fractions, decimals and percentages also showed no correlation. 

Discussion 

There were no statistically significant differences between the groups on either the pre-test or the 

post-test. Both groups had statistically significant gains over the trial period and they showed similar 

patterns in the scatter plots in Figures 1 and 2. Thus, in this study, KA was equally beneficial to the 

students as the other learning resources available to them. This non-significant result is of interest 

because KA has practical advantages over other learning materials (e.g., it is free and easily 

accessible) and the marking time saved by the instructor can be invested in other learning activities. 

In addition, Lindstrøm (2015) found KA to be beneficial for the instructor as a tool for formative 

assessment. KA may have yet other advantages for the learners, which could be investigated using 

qualitative methods. We are aware that the similar gains of the two groups may be due to the testing 

instrument being too coarse. However, addressing this is outside the scope of this study, and would 

require a qualitative analysis of students’ learning processes with KA to develop a new testing 

instrument. 

In the first semester, despite encouragement from the first author and messages with links to relevant 

topics, only four students set up an account. In the second semester, without any additional 

interventions, 45 students set up an account when the compulsory mathematics assignment could be 

completed using KA. This is consistent with the findings of Lindstrøm (2015) and Murphy et al. 

(2014) that high KA use is associated with a well planed integration into the course, including using 

it as part of the compulsory assigned work with consequences for non-compliance.  

There were 21 students whose KA usage was greater than 36 exercises (which corresponded to the 

compulsory assignment), and some of these made extensive use of the tool (Figure 3). It may be 

surprising that there is no correlation between KA usage and improvement, with no indications of 

additional gains for the students who completed additional exercises. This may indicate a failure of 

the test to detect the learning gains; however, it may also be that the students worked on topics not 

covered by the test. Further qualitative research may be conducted to investigate what motivated these 

students and what possible learning gains resulted from the additional exercises completed. 

Conclusions 

A group of students who used KA showed similar learning gains to a control group that had no 

restriction on their learning resources but were not encouraged to use KA (and indeed did not, with 

two exceptions, use KA). As has been seen in earlier studies with KA, high use of KA was associated 

with a well-planed integration in the course. Some students made extensive use of KA, but there were 

no correlations between KA usage and measured learning gain. This raises the questions of what 

motivated the students to complete more exercises than required and whether there were other 

benefits not detected by our test. 
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Digital media warrant a reappraisal of established conceptual fields and a search for new ones 

densely providing access to powerful mathematical ideas. This study reports secondary students' 

meaning making around the notion of intrinsically defined curvature in space by means of a tool 

integrating programming, dynamic manipulation of variable values and a simulation of 3D space. 

The study involved 15 ninth grade school students’ attempt to design the shortest path between two 

points on a cylindrical surface are presented in this paper. Camera perusal and zoom allow for a 

change of viewpoints of the constructed figure. The findings yield meanings around concepts 

notoriously difficult even in undergraduate mathematics, such as differential stereometry, limits and 

curvature as systematic trihedron state change.   

Keywords: Curvature, helix, stereometry, meaning-making, programmable media. 

Introduction  

Although curves appear in abundance in primary and secondary curricula, they are given the status 

of an auxiliary mathematical object to diverse structures either from geometry, e.g. circles-arcs, 

stereometry, e.g. cylinders-conic sections, or from algebra where the focus is of course on functions. 

Curvature is hardly discussed as a central notion, particularly in 3D space. Yet, in real physical 

space curves are truly abundant, in navigation they are key. Representations and notations from the 

pre-digital era are certainly one of the obstacles for students to access conceptual fields with 

curvature at their centre (we are intentionally using Vergnaud's construct, 1988). Here we use a 

digital medium integrating programmability with dynamic manipulation in simulated 3D space to 

get a sense of the meanings high school students may generate around differential curvature in 

space.  

Curvature can be uniquely defined (apart from its position in space) by three elements of its arc, 

length, curvature and torsion (Lipschutz, 1969). The notion of curvature, the study of the properties 

of a curve and of the ways it can be approached consist one of the most important issues in tertiary 

education, as, for example, in differential geometry. The pre-digital formalism as well as the 

complicated formulas required consist a significant obstacle so that these notions and differential 

geometry in general can become approachable to many a student even at the tertiary level 

(Henderson, 1995; Kawski, 2003).  

The encoding of the knowledge about curves, has historically gone through different stages. Euclid 

defines the curve as 'length without width' or 'end of a surface', without giving its definition in a 

general form restricted by general findings. But with the emergence of analytic geometry by 

Descartes, curves were defined as a mathematical sequence of points uniquely identified by two 

values. Later, the prevalence of the concept of  function as a central concept in the curricula of 

secondary education, established functions as an umbrella under which large parts of mathematics 



can be interpreted. As a consequence the only curves introduced in secondary education are 

graphical representations, namely curves which are represented only as secondary data 

representations or equations. The appearance of Turtle Geometry (Papert, 1980) constituted a first 

but most significant suggestion to consider restructuring knowledge (Wilensky, 2010) about 

curvature.  

Papert proposed an intrinsic approach to geometry as a way to use digital media to provide kids with 

access to powerful ideas in environments rich in opportunity for meaning making (Kynigos, 1993). 

The intrinsic definition of curve on the plane was thus by means of the 'turtle', the cybernetic 

programmable unit vector (heading, position, zero length), making alternative state changes with a 

value approaching zero. So, this geometry addresses the problem of the local description of a curve 

using the kinematic picture of the curve as the line resulting from position changes (Loethe, 1992). 

But what about curvature in space? The first digital tool to simulate programmable turtle geometry 

in space appeared relatively early by Reggini in 1985, so it may be surprising that there was no 

further epistemological or pedagogical analysis regarding curvature represented with this medium. 

In space, the intrinsic description of a curve can be achieved by using a mobile system of 

perpendicular vectors describing the tangent vector and the osculating plane of a curve. The turtle 

moves only in the direction of the nose and 'sits' on the osculating plane (Loethe, 1992, p.72). 

Rotation of the trihedron as it moves is given by the curvature and torsion. Precisely, as the rate of 

change of the tangent is characterized by the curvature, thus the rate of change of the osculating 

plane is characterized by the torsion of the curve (Aleksandrov et al., 1969, p.75). Our research 

group has been interested in identifying meanings generated by students around the field of 

intrinsically defined curvature on the plane, using a tool we developed (we called it 'Turtleworlds') 

to integrate programmable turtle geometry with dynamic manipulation of variable procedure values 

(Kynigos & Psycharis, 2003). In this paper we address meanings of intrinsic curvature in space with 

a new version of the tool which we now call 'MaLT-Turtlesphere' (Kynigos & Latsi, 2007) and start 

from giving students the problem of the shortest path between two points on a cylinder.  

The theoretical frame 

Vergnaud (1988), introduced the notion of conceptual field as a set of situations the mastering of 

which requires mastery of several concepts of different nature. He claims that “a single concept does 

not refer to only one type of situation, and a single situation cannot be analyzed with only one 

concept” (p. 141), and he argues that teachers and researchers should study conceptual fields rather 

than isolated concepts. In our study we wanted to study meaning making on curvature by giving 

students the problem of finding the shortest path between two points on a cylinder. We thus 

perceived the problem as belonging to the conceptual field of ‘curvature in space’ as the notions, for 

example, of rate of change and arc length which are involved in the procedure of designing a curve 

based on the polygonal approximation, are directly related to the notions of curvature and torsion in 

space. With our basic aim being to examine the meanings the students develop (Noss and Hoyles, 

1996) in relation with the notions of differential geometry we designed activities based on 

constructionism (Kafai and Resnick, 1996). Students would engage in meaning making through 

bricolage with digital artefacts. In recent years, we have developed a pedagogical design construct 

and method where we start students off by providing them with a 'half-baked microworld' (Kynigos, 

2007). It is a specially designed digital artefact with one or more built in bugs resulting in some 



faulty appearance and/or behavior when it is manipulated dynamically. It is designed to challenge 

students to decompose, change and debug the artefact and then construct something by using the 

correct version as a building block. Half-baked microworlds serve as starting points for the user to 

be acquainted with the ideas hidden behind the procedure of their construction.  

The computational environment  

The computational environment we used in our present research is MaLT-Turtlesphere 

(http://etl.uoa.gr/malt2) integrating Logo-based turtle geometry with dynamic manipulation of 

variable values resulting in DGS-like continuous change of the turtle figures at hand. This version 

of turtlesphere also afforded the insertion of stereometrical objects one of which was a cylinder, 

dynamically manipulable with respect to some key properties. The turtle movements are determined 

by following commands: fd(:n) and bk(:n) which command the turtle to  take steps forwards or 

backwards, lt(:n) and rt(:n) move the turtle n degrees to the left or the right in its plane (osculating 

plane), and borrowed from Reggini's definition, dp(:n) and up(:n) turn the turtle upwards or 

downwards and rr(:n) , rl(:n) move the turtle around its axis. The basic tools of MaLT-Turtlesphere 

are the uni-dimensional variation tool (1DVT) which enables the user to dynamically manipulate the 

values of variables in a represented object and the 2d variation tool which is a two dimensional 

orthonormal system and is used to determine the co-variation of the values of two variables. An 

additional characteristic is its 3d Camera Controller which gives students the ability to dynamically 

manipulate the camera by means of the active vector and observes the object in the simulated 3d 

space from any side and direction he/she wishes. We should also point out the ability the user has 

got to insert ready-made 3d objects, such as a sphere or a cylinder, in a 3d virtual space and 

dynamically manipulate them. 

The problem 

The students were given the following problem: ‘Calculate and design the shortest path between 

two points on a cylindrical surface’. Our students were informed that this program would enable 

them to work out the way they could design such a path and that, at the end, they themselves could 

use it in order to construct their own models. The students were told that they were allowed to use 

any method and materials they liked (for example, paper and scissors) and the following half-baked 

microworld under the name the ‘shortest path’: 

to shortestpath :n :s :dx :c 

repeat :n  [rl(:s)  lt(:c)  fd(:dx)] end ('end' is on a separate line, placed here to save space).  

This microworld comprises a program with four variables each of which express the following: n 

expresses a number of repetitions, s expresses the turning of the turtle around the directions of its 

path, dx defining the length of the turtle step and c defining the turning of the turtle in its plane. The 

execution of the above code produces a polygonal line (either in space or in plane) or a straight line. 

But in the case when dx is very small, three kinds of curves can result from the aforementioned 

microworld, with the characteristic of stability of proportions ‘turning and twisting relative to 

traveled space’. If s=0, then we have a curve on a plane. For s=0 and c=0 line segments. For s=0 

and 0c   circle arcs. Solving the problem requires finding the shortest path between two points on 

a cylindrical surface, which means that the target is achieved when dx tends to zero. This leads to 



limit procedures:
 0
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k

dx
 which gives the curvature of the circle. If s is different from zero, 

helical lines are generated in space and similar conclusions are drawn (in case c = 0, a straight line 

arises). So, this code for creating a helix around the surface of a specific cylinder is half-baked in 

that it does not contain the property of each of the two turns being a function of the value of 

displacement (fd) and that the value of dx needs to tend to approach zero. If in the preceding code, 

we replace arguments with suitable functions and introduce a tail recursion, any line in space can 

occur. For example, if we replace the arguments of turning and twisting with trigonometric 

functions, a closed curve in space can occur. 

The method 

We adopted a design research method (Cobb et al., 2003). In this paper we discuss part of a broader 

research, which was developed in three phases: the first phase involving two students 3rd grade 

secondary school, in the second phase with the participation 15 students (a class 3rd grade secondary 

school) and which lasted 24 hours, and finally, in the third phase involving five higher education's 

students. These particular students of the second phase had already been familiarized with 

constructions in the logo programming language in the Turtleworlds environment. A sound and 

picture software (HyperCam 2) was used to record data and enabled the researcher to record the 

students’ actions and the conversations amongst the participants. In order to analyze the students’ 

mathematical thinking we were interested in the ways the students interacted with the available 

components of the software and in the ways they constructed mathematical meanings. We centrally 

used the notions of meaning making and situated abstractions, which enabled us to describe how the 

students construct mathematical meanings based on the functions of the particular software they 

were using and on the conversations between them (Noss & Hoyles, 1996). We also found the 

construct of 'instrumentalization' taken from the theory of instrumental genesis (Guin and Trouche, 

1999, Kynigos & Psycharis, 2013) helpful in showing us was how the students were trying to 

change the functionalities of the ‘faulty’ microworld they were given aiming to produce a different 

artefact which automatically gives a circle and a helix with the shortest length. 

Findings 

The circle approach through limiting curvature  

Even if the majority of students at first turned to the software they had been given in their effort to 

give an answer, they soon realized something else should be done first to make sense of the 

problem. They decided to use tangible objects first, paper, pen and the scissors, they had also been 

given. By selecting two points on the cylindrical surface and then rolling a piece of paper to form a 

cylinder and un-rolling it, they came to the conclusion that the shortest path could be a circle, a 

helical or a straight line. Upon un-rolling the cylinder they noticed that the line which was formed 

would be a straight line on the plane (geodesic in plane) but when they re–rolled up the cylinder, a 

helix or a circle was formed. Nevertheless, this conclusion, although it seemed to be the solution, 

did not seem to satisfy the students at all. Here is a typical answer from two students: 

Student 1: If we could suppose that the cylinder opens, then okay it is a straight line 

Student 2: But if the cylinder could not open? (Meaning: then how could we design the helix?) 



They then started exploring the half-baked code firstly by dragging the variable values. All students 

decided to focus first on getting the code to create a circle around a fixed cylinder. Some kept the 

value of the rl command to zero, some decided to chuck it out of the procedure, starting to work on 

the formalism. The students at hand took the latter option and tried out dragging to understand the 

behavior of the turtle path (Brunström & Fahlgren, 2015). For this circle, a common technique was 

the winding of the polygonal line at a constant circle or at the bottom of an inserted cylinder from 

the software library. The completion of the first winding lead students to put values dx =1, c = 29. 

But when the researcher asked the question about the kind of path that was formed, students 

concluded by zooming that it was a polygonal line, and a further reduction of dx was needed. 

Students, with the help of changes decreased the value of dx from dx = 1 to dx = 0.1, and then did 

the same for dx = 0.01, while modifying the value of c as well, as the polygonal line continued to 

wind in a solid circle. Their attempts brought them to conclude that the turn value should be 

dependent on the displacement value if the turtle trace was to be a good fit to the base of the given 

cylinder. They then decided that the code should contain a proportional relation of the variables c 

and dx, and modified the half-baked microworld engaging in an intrumentalization activity. The 

result for these students and, as it turned out, for the majority of the participants, was a code like the 

following, with a differentiation in the arguments of the turtle turn: 

to shortestpath  :n  :dx 

repeat :n  [lt(29*:dx)  fd(:dx)] end 

The dialogue continued yielding that the students considered the circle as a polygon with 

sides that are constantly decreasing in length: 

Researcher: so, for which rates do you get the requested circle? 

Student 1: for small dx, for example 0.1 

Researcher: ie for dx = 0.1 will we have a circle? 

Student 2: we will have a polygon 

Researcher: and which may be the required rates? 

Student 2: we can’t be exact because as we put smaller numbers, it will be approaching the 

solid circle (at the same time the student zoom and manipulate the slider of dx to 

continuously lower numbers to prove their claim) 

The students' efforts show a change in the way they thought about curvature, starting from a static 

approach (with dx equaling a constant value of 1) to a dynamic (the more dx diminishes, the better 

approach to curvature). This was evident in their correction of the code initially achieved with dx to 

be small (usually teams chose for dx a tenth or hundredth approach). Thus, initially the circle 

formed by the mean curvature (c / dx = constant) determined the forward movement of the turtle in 

relation to the dx. This instrumentalization action resulted in a modification of the shortest path 

code and provided us researchers with a lens to students' development of a situated abstraction on 

the concept of curvature. The problem that was given to find the shortest path, thus led them at first 

to think of  curvature as a limit and the circle as resulting from a limiting process and not simply by 

dx small. Although a strictly symbolic form of a limit was unknown to the students, the role of the 

limit process seemed to be played by the slider of dx. 

From a static to a dynamic aspect of the helix  

For the construction of the helix with Turtlesphere, students at first could not implement a technical 

approach as in the circle, since there was not a preplanned helix on the cylindrical surface. So they 



resorted to properties discovered during the deformation process of the flat surface and the situated 

abstraction for the notion of helix which was delivered by them as follows: ‘helix is a curve that is 

wrapped in a cylindrical surface and if it unfolds, a straight line emerges’. The designing of such a 

curve though without the use of tangible materials, and the ability to generalize such a procedure 

demand the use of differential geometry notions which reflect the Frenet-Serret frame movement in 

space. The students appeared to realize the limitations of tangible materials, and the inability to 

generalize the procedure in situations when their use is impossible. 

The students’ speculation stimulated the researcher to turn their attention to the half–baked code 

they had already had at their disposal. The students chose again to insert a model cylinder with 

specific dimensions, and by dragging the variation tools they tried to achieve the construction of a 

helical line which twisted round the cylinder with its two ends being the ends of the generator of the  

cylinder with the above characteristics. Their initial suppositions referred to values which, although 

at first sight seemed to have achieved their goal (that is the helical line to twist round the cylinder), 

the use of the perusal camera proved wrong. Thus, from that time on each and every attempt of 

theirs initially comprised finding the values for n, c, s and dx with the simultaneous use of the 

camera and change of the values of the variables. A group of students, at their first correct attempt 

(with dx=1), came to the following values: n=14, c=25, s=5 and dx=1. Although they seemed to be 

satisfied with the result of their experimentations, they continued to experiment after the following 

questions on the researcher’s part: 

Researcher: Is this a helix? (They play with the camera, zooming in at the same time) 

Student 1: They look like lots of straight lines (they are referring to the line segments which the 

helical line is composed of and with the execution of the half –baked microworld 

provides them with) 

Researcher: What can you do so that you can turn it into a helix? 

Student 1: Eliminate the angles 

Researcher: How can you eliminate the angles? 

Student 1: If we decrease dx, let’s say to 0.1 

Students' instrumentalization initially started by dragging the slider of dx and with the help of 

graphical feedback. Since dragging dx to dx = 1 gave a polygonal line and not the curve as the 

paper-folding approach, the students started to drag the slider of s. Their attention now concerned 

the discovery of the relationship between the three variables (c, dx, s) and the consequent changes to 

the half-baked code. The situated abstractions that this particular group of students seemed to have 

built arise from the need to prevent the distortion of the figure and satisfy the 'definition' that had 

created for the concept of helix based on the paper- folding approach. As dx took smaller and 

smaller values a line was given which looks like a helix with a length constantly decreasing and that 

the ratios c/dx and s/dx remain invariant and equal to 25 and 5 respectively. In fact, the rate of 

change of directions of the segments the turtle is moving on and its plane remain invariant. The 

replacement of the ratios they discovered in their initial code provided them with what they claimed 

was the 'correct' code and the solution in demand: 

to shortestpath :n :dx 

repeat :n [rl(5*:dx)  lt(25*:dx)  fd(:dx)]  end 

Researcher: Which values provide us with the helix we are looking for?  

Student 1: The smaller dx is the better. 



The students seemed to realize that the solution they were looking for did not only consist of the 

specific values of the variables but it should also combine a limited procedure for dx.  

Conclusions 

The purpose of the present research was dual: Firstly, to study the degree to which this particular 

digital tool and microworld could form the basis for secondary level students to study notions in the 

conceptual field of curvature in space and secondly, to study the meanings developed by these 

particular students in their attempt to design the shortest path between two points on a cylindrical 

surface. The students expressed mathematical meanings for a number of notions of differential 

calculus (rate of change, limit) as well as of differential geometry (curvature, torsion and geodesic) 

which has been shown to be notions difficult to be approached by even math students. One of the 

major advantages of the method applied is the fact that, not only were students able to visualize the 

way a normal curve is constructed by the motion of a movable trihedron in space (the role of which 

was replaced by the 'turtle') but the students were also given the ability to study, explore and 

symbolically represent these movements via programming and dynamic manipulation. For example, 

the circle is constructed by the turtle avatar with the characteristic of working stability, and not just 

through the stability of the ratio c / dx, i.e. the curvature formula in Logo. The dynamic 

manipulation resulting in figural change helped the students focus on the limiting process of this 

ratio which reflects the notion of curvature. The students changed their conception of helix from a 

static approach to a dynamic aspect, i.e. as a line made from an avatar with the characteristic of 

stability in both its turning and rotating around the line of motion. Although the way they used to 

design the helix did not tally with the strict formalism of differential geometry, the answers the the 

meanings they generated are indicative of the fact that a restructuration of the notion of curve 

relying on concepts of curvature and torsion, and with the turtle replacing the role of the moving 

trihedron to create a curve in space, is feasible in secondary education.  
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This paper reports on a current case study about the use of dynamic worksheets in a middle school 

in Austria. These worksheets were designed based on typical problems and misconceptions outlined 

in the literature concerning functional thinking, and they focus on the representational transfer 

between situational model and graphical representation. Grade 7 students were video recorded while 

working on these worksheets, pre- and post diagnostic tests and diagnostic interviews were conducted 

to examine their conceptions in relation to functions. This case study particularly pays attention to 

the intuitive conceptions of students, the influence of the dynamic worksheets on these conceptions, 

and whether or not dynamic worksheets are able to support students in developing appropriate 

mathematical conceptions. In this paper, some preliminary results are to be discussed. 

Keywords: Functional thinking, technology, representational transfer, lower secondary school. 

Introduction 

Functional thinking is an important concept in mathematics education. For students, a variety of 

problems arise while working with functions and thus functional thinking has been widely 

investigated by numerous researchers. Considering the development of dynamic mathematics 

software, additional aspects of functional thinking appear. It needs to be examined whether or not 

dynamic mathematics tasks are able to support students in an early stage of learning functions in 

developing appropriate conceptions. Based on these issues, we developed dynamic worksheets 

visualizing the transfer between situational and graphical representations and integrated them into a 

qualitative case study to examine their influence on students’ conceptions. 

Theoretical background 

Working with functions is a usual activity in mathematics lessons in school. Vollrath (1989) describes 

functional thinking as a typical way of thinking when dealing with function and he mentions different 

aspects of functional thinking. Malle (2000) refers to it and specifies the following aspects in a slightly 

altered version, which is better suited than Vollrath’s (1989) description for the purposes of this 

research project: Relational aspect (each argument x is associated with exactly one function value 

f(x)) and co-variational aspect (if the argument x is changed, the function value f(x) will change in a 

specific way and vice versa). The relational aspect represents a static perspective of functional 

thinking whereas the co-variational aspect describes dynamic processes; particularly in this project, 

functional thinking comprises of both aspects.  

In the context of functional thinking, various difficulties have been found and examined in the 

research literature. The graph-as-picture error occurs in various forms and means that students see 

function graphs as photographic images of a real situation (Clement, 1989; Schlöglhofer, 2000). 

Illusion of linearity means the preferable use of linear or direct proportional models for the description 

of relations, even if they are not appropriate (De Bock, Van Dooren, Janssens, & Verschaffel, 2002). 



Difficulties arise also in the interpretation of slope and growth, for example, if the point of maximum 

growth is confused with the largest function value. This slope-height-confusion leads also to 

difficulties in the interpretation of path-time graphs (Clement, 1989). These problems can cause 

students’ misinterpretations of functions and especially of graphs of functions. Vosniadou and 

Vamvakoussi (2006) suggest – to avoid that intuitive conceptions develop to misconceptions – 

considering the introduction of mathematical concepts at an earlier stage in mathematics education. 

Vogel (2007) stresses that multiple representations of functions, such as graphs, situational 

representations, terms, and tables are able to represent aspects of functional thinking (relational as 

well as co-variational aspect) externally, and they have the potential to support students’ ability to 

interpret functions. According to Duval (2006), only the flexible alternation between different 

representations allows a differentiated approach to mathematical content and forms the basis for 

sustainable acquisition of skills. But representations have to be considered critically as they influence 

ways of thinking, they may constrain students’ thinking about the concepts involved and are 

interpreted by students according to their prior knowledge (Vosniadou & Vamvakoussi, 2006).  

Dynamic mathematics software such as GeoGebra may support students’ development of functional 

thinking, because it is suitable to emphasize different functional aspects through interactive 

representations (Barzel & Greefrath, 2015). Research findings in relation to the use of technology in 

teaching often only show small positive effects on students’ learning achievements (Drijvers et al., 

2016). Results concerning dynamic representations are more encouraging, because these 

representations can help students in understanding mathematical concepts (Hoyles, Noss, Vahey, & 

Roschelle, 2013). Thus, we need to examine in more detail the influence of technology on students’ 

individual conceptions. 

Conceptions in a dynamic mathematics environment 

Based on problems and examples concerning misconceptions mentioned in literature several dynamic 

GeoGebra worksheets were designed reflecting multimedia design criteria (Clark & Mayer, 2011). 

We chose GeoGebra for this study, because it is the most widely employed mathematics software in 

Austrian schools. Due to the prior knowledge of selected students (experiences mainly with path-time 

diagrams, direct and inverse proportionality including their graphical representations, but none with 

the explicit function concept), these worksheets primarily address the representational transfer 

between situational model and graphical representation. Figure 1 displays a typical worksheet based 

on a task of Schlöglhofer (2000) addressing a graph-as-picture error.  

This GeoGebra worksheet consists of a situational model, in particular an iconic representation of the 

situation, as well as a Cartesian coordinate system displaying the corresponding graph. In the 

situational representation on the left side a triangle is displayed. The shaded area left of the dotted 

line inside the triangle is treated as a function of x, which is the horizontal distance between the vertex 

A and the dotted line. Students can move the line and change the size of the coloured area. Afterwards 

they should formulate a hypothesis about the shape of the graph. In the diagram the coloured area is 

a function of the distance x. After clicking the checkbox, the size of the area is displayed. At the end, 

students should display the graph in order to examine their assumptions about the shape of the graph. 

In this research project, accompanying tasks assist the students in working with the representational 

transfer, which is considered particularly difficult conceptually. 



 

Figure 1: “Triangle”, http://ggbm.at/GYeY4ayO 

As the situational model shows an iconic representation, the corresponding task is likely to trigger a 

graph-as-picture error (Schlöglhofer, 2000). It is especially interesting if the dynamic worksheet has 

the potential to support students’ ability to comprehend the graph. 

Such problems concerning functional thinking and theoretical considerations have led to the research 

questions below. The first two offer a basis for research question three, as we believe this third 

question contributes the most to the field of inquiry about technology use related to misconceptions. 

Due to space restriction this paper focuses only on the first and third research question. Future papers 

will offer further details on research question two as well as more in-depth analyses. 

1: What conceptions, with particular attention to pre- or intuitive conceptions, emerge concerning 

functional thinking of students in an early phase of learning functions (grade 7/8)? 

2: How should dynamic materials addressing to this topic be designed to support students in 

developing appropriate mathematical conceptions? 

3: What kinds of influence of these dynamic materials exist on conceptions and internal 

representations of students of lower secondary school concerning functional thinking? 

Research design  

To offer answers to the research questions, we selected a qualitative research approach. The 

overarching methodology for this research project is an exploratory and collective case study 

research, but integrating elements of Grounded Theory (Eisenhardt, 1989). The study was conducted 

in a 7th grade classroom of a rural middle school1 in Austria with 28 students aged 12 to 13, who had 

some experience in working with graphs (mainly distance-time-graphs) but none with the function 

concept itself. 

Figure 2 shows an overview of the research design. Piloting A was the first phase of the study aimed 

to evaluate the technical details of the recording procedure, to choose the tasks for the diagnostic tests 

and the worksheets for the intervention. The second phase – piloting B – consisted of one complete 

                                                 

1 Rural middle schools in Austria usually have the most diverse student population concerning achievement levels. This 

is especially true for the selected school in this study, thus this choice offers us the possibility to examine as many different 

students and their conceptions as possible. 

http://ggbm.at/GYeY4ayO


data collection process. After the data collection, the data was transcribed and analysed with 

qualitative methods described later in detail.  

The data collection included five stages. First, all students participated in a diagnostic test based on 

ten different tasks from literature concerning conceptions (Schlöglhofer, 2000; De Bock et al., 2002) 

as well as a test instrument called CODI (Nitsch, 2015). Afterwards, eight students were chosen for 

diagnostic interviews (Hunting, 1997) depending on their test responses so that their – incorrect – 

results represent a wide range of different conceptions related to the various test tasks to obtain an in-

depth view of their individual conceptions. 

 

Figure 2: Research design overview 

During the three-lesson-intervention, students worked in pairs with GeoGebra worksheets addressing 

different topics guided by accompanying tasks. While working, ten students were audio- and 

videotaped and the screens of their laptops were recorded. Also, students’ paper worksheets were 

collected. After completing the intervention, another diagnostic test with slightly altered tasks was 

conducted. Based on the observational data and an analysis of the test results, eight students were 

selected for diagnostic interviews to investigate the influence of the worksheets on the students’ 

conceptions. 

Data analysis and preliminary results 

The collected data is divided by the data source to address different research questions (the first test 

results and the corresponding interview data to approach the first research question, the recordings 

from the intervention and students’ paper worksheets, the second test results and the corresponding 

interview data to focus on the second and the third research question). 

Based on the research methodology, we conducted, for each student or pair of students, a within-case 

analysis using initial (or open) coding, then compared cases and searched for cross-case patterns using 

focused coding (Eisenhardt, 1989; Saldaña, 2013). 

Further qualitative analysis of the observational data and the interview recordings will give an insight 

into the conceptions of the students concerning functional thinking as well as the influence of dynamic 

worksheets on these conceptions. In this section, preliminary results concerning the task “Area” from 

both diagnostic tests are to be presented, because both task and results exemplify the process of the 

research.  



Diagnostic test 1 

Figure 3 displays a task from the diagnostic test 1 that is similar to the GeoGebra worksheet in Figure 

1 and was based on a standard test example concerning the graph-as-picture error from Nitsch (2015). 

The picture shows a trapezoid, and in the exercise students had to choose one diagram out of four that 

showed the grey marked area left of the dotted line as a function of the distance x, and to explain their 

decisions.  

 

Figure 3: Screenshot task “Area” from diagnostic test 1 

Students’ explanations reveal different levels of conceptual 

understanding. A categorization of students’ solutions and 

argumentations is visualized in Figure 4. The arrows represent 

the direction of the representational transfer from the situational 

model to the function graph, and the categories are arranged 

according to the correctness and elaborateness of students’ 

understanding.  

The first two categories represent the choice of the first graph 

addressing the graph-as-picture error. Either the students 

marked the similarity between both representations, or they 

already recognized an increase of area but ‘remained’ at the 

shape of a trapezoid. These answers reveal reasoning from a 

situational perspective of students, who did not manage to 

transfer the situational model into a function graph. 

Students with explanations of the next three categories 

achieved transfer to a graphical representation by recognizing 

an increasing function value, and these explanations were essentially correct. The third category of 

students, who selected the linear function, did not recognize the irregular change of the function value. 

Students who chose a correct graph form the last two categories. They either reasoned their choice 

with an increasing area or – the most elaborated explanation – with an irregular growth of area.  

In the next section, we present three student answers to the corresponding task from the second 

diagnostic test. Students were chosen from the first category (Graph as Picture, Similarity) to 

 

Figure 4: Categorized solutions 

task “Area” 



demonstrate the range of possible developments of their conceptions. The answers represent different 

extent of influence, also based on the achievement level of these students. 

Diagnostic test 2 

In the second diagnostic test after the intervention, the corresponding task was slightly altered – a 

trapezoid of another shape is displayed (see Figure 5).  

 

Figure 5: Trapezoid of task “Area” of diagnostic test 2 

Corresponding to the four function graphs in diagnostic test 1, there are four possible choices for the 

solution. These function graphs represent the graph-as-picture error, the correct solution, a 

combination of graph-as-picture and correct graph, and a linear function.  

Table 1 presents three students’ solutions and explanations from the diagnostic test 1 category “Graph 

as Picture (Similarity)” exemplifying a possible diverse influence of the applets. These students were 

chosen because all three students changed their answers after working with the dynamic worksheets, 

and due to their different achievement levels they gave a wide range of changes in their results.  

Achievement level Solution Explanation (translated from German) 

High (student 1) 

 

“In the beginning it [the area] increases 

strongly, then a bit more slowly, …” 

Average (student 2) 

 

“The area is always increasing, except in … the 

middle of the trapezoid, it [the area] remains 

the same.” 

Low (student 3) 

 

“You have to consider the x-axis, and because 

the x-axis is straight, the last … ought to be 

correct.” 

Table 1: Students’ answers concerning task “Area” of diagnostic test 2 

Student 1 (high achiever) chose the correct solution, and the explanation reveals a correct 

understanding of irregular changes of the function value. Also student 2 (average achiever) described 

the change of area correctly, but he decided for the graph representing a combination of correct graph 

and graph-as-picture error.  

Unlike in the diagnostic test, the GeoGebra worksheet displayed only a triangle and not a trapezoid. 

Student 2 managed to translate corresponding parts of the situation correctly to the graphical 



representation, but was not able to transfer his knowledge to the part of the situational model where 

the dotted line is moved over the ‘horizontal line’ of the trapezoid. 

The explanation of student 3 (low achiever) reveals a lack of understanding concerning the 

representational transfer and the meaning of Cartesian coordinates. It refers to the students’ look for 

visual similarities, a solution strategy sometimes used by students during the intervention when 

confronted with a problem. Further results about students’ test answers, their discussion during the 

work with the dynamic worksheet (Figure 1) as well as a detailed description of this worksheet and 

included instructions will be presented in upcoming research papers. 

Discussion 

For each task in the diagnostic test, several intuitive and incorrect conceptions appeared. For example, 

different levels of students’ conceptual understanding have emerged during analysis of the diagnostic 

test answers. These levels are representing the translation process from situational to graphical 

representation. Concerning the graph-as-picture error, explanations also made visible that 

standardized multiple-choice test items were not always able to detect a corresponding incorrect 

conception. Other results reveal different tendencies of students to use relational or co-variational 

aspects of functions for explanations. Also the influence of everyday experience is visible in the data, 

and the influence of formal and informal language (e.g., when students interpret ‘highest speed’ as 

‘leading’ or ‘winning’ in distance-time-diagrams) is especially interesting.  

The dynamic worksheets have different purposes, for example, visualization, experimentation, and 

testing hypotheses. The visualization function is supporting students in translating the text into a 

situational model or into a correct identification of the interesting variable (e.g., the meaning of ‘area’ 

in the corresponding task in Figure 3). Also, the worksheets have an adaptational influence on 

students’ conception (e.g., from linear to non-linear increase of function value). In other words they 

did not alter the conceptions but changed them partly to the direction of a correct conception. 

Preliminary results seem to reveal that the extent of influence of these worksheets on students’ 

conceptions depends on the intuitive conceptions of students and their achievement level. The 

interpretation as well as the perception of the GeoGebra worksheets is based on the prior knowledge 

of the students. The observational data repeatedly demonstrated that students tried to connect new 

content to their experience and knowledge. Considering that students worked without teacher 

instructions, for high achieving students the dynamic worksheets seem to be more appropriate, 

whereas lower achieving students would probably profit of teachers’ assistance to reflect their 

perceptions and interpretations or to draw the attention to the important features of the worksheets.  
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The concept of function has a central role both at school and in everyday situations. A dynamic 

algebra and geometry software program allows students to experience the dependence relation and 

to explore functions as covariation. In this paper we propose a description of different dragging 

madalities and the analysis of a protocol in which two students work together on a problem that 

involves coordinating two covarying quantities. The analysis has been carried out through this 

classification of dragging modalities, that can be efficiently used to observe, describe and analyze 

students' processes involved in the exploration and solution of dynamic activities. 

Keywords: Function, variation, dynamic algebra and geometry software, dragging. 

Introduction and conceptual framework 

The concept of function is very important both in secondary school and university mathematics but 

it also has a central role in everyday situations. For a long time, this notion has been at the core of 

several studies in mathematics education, and a rich literature has revealed students’ difficulties in 

understanding the concept in all its aspects (Vinner & Dreyfus, 1989; Tall, 1991; Dubinsky & Harel, 

1992; Carlson & Oehrtman, 2005). Difficulties in interpreting the dependence relation as a dynamic 

relation between covarying quantities are widely reported (Goldenberg et al., 1992; Carlson et al., 

2002). Falcade et al. (2007) suggest that the use of a dynamic algebra/geometry software, such as 

GeoGebra, allows students to experience functions as covariation, that is a crucial aspect of the idea 

of function (Confrey & Smith, 1995; Tall, 1996). According to these assumptions we are interested 

in studying students' cognitive processes involved in approaching functions represented in a specific 

dynamic environment. 

Our study is an exploratory study aimed at analyzing students' use of movement in the exploration 

processes of the dynamic functions. We have adopted the idea of analyzing the movement because 

several studies have revealed that it can support a cognitive analysis of students’ reasoning processes. 

In order to analyze students' appropriation of movement Arzarello et al. (2002) identified different 

types of dragging which students use investigating a geometric problem, according to their different 

purposes. Antonini & Martignone (2009) proposed a similar classification in the case of physical 

artifacts. They introduced a classification of students' utilization schemes of pantographs, that are 

particular mathematical machines designed for geometrical transformations. Although the differences 

due to the different nature of the instruments these two studies concern, there are certain similarities. 

Especially the common purpose is to identify students' utilization schemes in order to analyze the 

cognitive processes involved in the investigation of geometric problems. 

In this paper we shall present the first steps of our research: a classification of dragging modalities 

and the analysis of a protocol, that has been carried out through this classification. Some of our 

descriptions echo the classifications presented in the above-cited studies, but they have been 

completely transformed in order to suit the use of particular function representations in a specific 

dynamic environment. This is the original contribution of this paper. Indeed, while in literature we 



can also find other studies on the use of dragging (Baccaglini & Mariotti, 2010; Robutti, 2013) they 

concern in particular the dynamic geometry.  

Contextualization of the study 

We analysed a sequence of classroom activities, 14 hours in total, implemented in an Italian high 

school for Math and Science, in which students explore the functional relationship in dynamic 

interactive files (in GeoGebra). The subjects of this investigation are 16 years old students who never 

met the concept of function before. The activities were led by the teacher and they have been video-

recorded by three cameras present in the classroom simultaneously. The analysis is mainly based on 

the transcripts of the activities and it was led by paying a special attention to the use of dragging, the 

language employed and the gestures. 

In this paper we present one of the activities carried out by two students. The activity selected 

concerns The Bottle Problem: an open problem about bottles filled with water (the task is reported in 

Figure 1), which involves coordinating the variations of two quantities. Students are asked to work 

in pairs so that they can form conjectures and explain their reasoning to each other. They have no 

time limits and are video-recorded through a camera behind them pointing at the computer screen. 

They are given the following task with an interactive dynamic file (in GeoGebra) for the explorations 

and some sheets of paper for the answer.  

Figure 1: The task of the Bottle Problem   

Figure 2: The dynamic file 

Figure 2 shows a part of the GeoGebra file in which are presented the graphs of five functions 

representing the height with respect to the volume of water. They are not the “usual” graphs in the 

Cartesian plane: there is an unnamed horizontal line with a black point attached to it that represents 

the x-axis and five other horizontal lines, parallel to it and labelled “Bottle1, Bottle2, ...” with blue 

points moving on them. The motion of the blue points, bounded at the lines, is an indirect motion 



because these points can not be dragged directly: they represent the dependent variables so their 

movement is determined by the dragging of the black point, that represents the independent variable. 

The height of each bottle is fixed equal to six, for this reason the blue points move in the interval [0, 

6] and there are six notches on the lines which they move on. The black point can be dragged 

everywhere along the line without the magnetism, that is a property that GeoGebra allows to give to 

a point and makes it move on the real axis as if it has a magnet that attaches it to the whole numbers; 

and disabling this tool the dragging of the point is more uniform.  

Dragging modalities 

In this section we introduce a classification of dragging observed during students' exploration of 

dynamic interactive files. It can be efficiently used to observe, describe and analyze students' 

cognitive processes, involved in the exploration and solution of problems about functions represented 

in a specific dynamic environment.  

The identified dragging modalities are divided into two families: the first one describes the quality of 

the movement, this type of dragging could be also recognized by a computer that captures how the 

mouse moves on the screen (Table 1) and the second one describes the use of dragging with regard 

to an aim, that is associated through the study of the language employed, the sight and the gestures 

(Table 2).  

One of the potentialities of this classification is the fact that the two families of dragging modalities 

can be combined and, for example, keeping an element from the first one and an element from the 

second one allows a complete description of a students' process in solving problems.  

First of all we observe that in our cases it is always a bound dragging, that according to Arzarello et 

al. (2002) consists of moving a semi–dragable point (a point which it is already linked to an object). 

Because the only point that students can move is bound to the x-axis, all the other points move 

depending on it. 

 Description 

Continuous dragging Continuous movement 

Discrete dragging Movement with jumps, associated with counting 

Impossible dragging Trying to move a dependent1 point that can not be dragged 

Table 1: Types of dragging  

 

 Description 

Wandering dragging Random movement, exploring the construction  

Dragging test Movement aimed at testing a possibly implicit conjecture 

                                                 
1 We use this term to identify the point but we do not know if the students are aware of this dependence relation. 



Handle dragging Movement of the object as if it was a handle, in order to observe 

other objects’ movements 

Guided dragging Movement aimed at reaching a particular configuration 

Table 2: Dragging with an aim  

A protocol 

In this section we present an activity in which two students, Luca and Mara, work together at the 

bottle problem and we can identify some of the dragging modalities described before. 

Their first approach to the problem involves dragging the black point, representing the volume of 

water filling the bottle, with a continuous movement (continuous dragging) and without apparently 

paying attention to the dragging of such point: it is used as a sort of handle that allows them to see 

the movement of the blue point, representing the height of the water in the bottle (handle dragging). 

Indeed, as we can see in Figure 3, during the dragging the arrow representing the mouse does not 

overlap the black point in every moment, suggesting a weak haptic control because the students’ 

attention seems not on the dragged point.  

Figure 3: An example of handle dragging 

The students do not express, through their words and gestures, awareness that as one variable changes, 

the other variable changes; they seem more concentrated on the differences between the movements 

of the blue points than on the relation that links the movement of a blue point to the movement of the 

black point. For example, they look for which one is the fastest in order to associate it to the tightest 

bottle, because the speed of blue points represents the speed at which the height increases if the water 

is poured in at a constant volume per time, and the tighter the bottle is, the faster the height increases; 

in the same way the slowest blue point will be associated to the widest bottle. 

For example, the following dialogue takes place while students explore the file, dragging the black 

point very slowly and trying to keep a constant speed (continuous dragging): 

Luca: The bottle three is the steepest in the lower part. 

Mara: The bottle one goes very slow, also the bottle two. 

Luca: Also the fifth, the bottle two is the slowest respect all the others. 

Mara: No the five, the five does not move! 

Luca: Yes and then it is steeper at the end. 



What we can infer from this excerpt is that the students’ attention is on the blue points and the 

independent black point is used as a handle (handle dragging), they compare the speed of these points, 

observing for example that the second is the slowest, or probably the fifth. Luca, in the last sentence, 

says “is steeper” instead of “goes faster” and this suggests that he mixes up the trend of the height of 

water in the bottle with the shape of the bottle. 

Their initial approach changes: when they have to decide which one of the blue points represents the 

bottle B, shown in Figure 1 (that in the lower part has a cylindrical shape). They search for a point 

that has a constant speed and, in doing this, they compare the movements of the black and the blue 

points. So, first of all, they look at the picture of the bottle on the sheet of paper and imagine how the 

height of the water in the bottle should evolve, then they drag the point representing the volume of 

water in order to see whether there is a point, representing the height, with the needed properties 

(guided dragging).  

In particular, they count how many notches of volume are necessary to let the blue point reach the 

first notch of height and then to let it reach the second and finally the third and finally they compare 

these numbers: if they are equal to each other they conclude that the bottle has a cylindrical shape. It 

is an example in which the two quantities that are varying are coordinated in order to establish the 

average speed of the blue point. This seems an attempt to make a continuous situation discrete and it 

is also suggested from their use of dragging: they drag the black point with jumps, while counting the 

notches (discrete dragging). 

The following excerpt shows this combination of discrete and guided dragging. Luca summarizes 

their idea about how the blue point representing the bottle B should behave and searches for it: 

Luca: So we have to find a point that is constant till the third notch and then it goes faster. 

I would see the bottle one, look: first, second, third more or less goes in the same 

way. 

He drags the black point counting 1,2,3 and stops, 1,2,3 and stops, finally 1,2,3 and stops and during 

this process the mouse makes some jumps (discrete dragging). 

Luca: We could say that it is constant till the third notch and then... 

He drags the black point again, this time with a continuous movement and an almost constant speed 

(continuous dragging). 

Luca: Then it goes faster! 

The last part of the analysis reports students' explorations and conjectures when they have to draw 

the bottle looking at the movements of the points: the black point seems no longer to be only a handle 

for them. Indeed, as the next excerpts show, the students relate the changing values of height and 

volume in order to find whether the speed of the blue point is constant; their question is: how many 

notches of volume are necessary to have one notch of height? They fix the amount of change of the 

height (uniform increments) and find out the relative rate of change of the volume. In doing this, they 

consider the average rate of change locally, for a specific interval of the domain of the function.  

It is not so clear how they conclude that “it is constant till the first notch” and this could be considered 

as an advanced statement because it requires an awareness that the instantaneous rate of change results 



from smaller and smaller refinements of the average rate of change. From what they say it seems that 

at the beginning they observe a constant speed from the zero to the second notch:  

Luca: Slowly at the beginning, it is wide, then it seems a constant velocity, then it is tighter 

and then wider again: this is a clepsydra. But a clepsydra that in the upper part is 

wider than in the tighter part. Wait, go back for a moment (she goes back with the 

black point onto the zero again: dragging test). How many notches of volume do 

you have to do, to have one notch of height? 

Mara drags the black point very slowly and they count how many notches it crosses till the blue point 

reaches the first notch. 

Luca: Five and a half, say five. Are these (notches) five again to reach the second notch? 

The black point is dragged slowly again and they count how many notches it crosses till the blue point 

reaches the second notch. They count five notches, more or less. Therefore they conclude: 

Luca: Yes, at the beginning it has a constant velocity. 

Then by a similar process (discrete dragging) they observe that from the first to the second notch the 

average speed of the blue point is greater than from the zero to the first notch; so they decide that the 

bottle has to shrink at the first notch of height and before that point it has a cylindrical shape.  

Luca: Now, count how many notches of volume: one, two, three, four, five let's round off 

(for a moment he stops dragging the black point, the blue point is on the first notch). 

Then from the first notch: one, two, three, four so it is tighter (for a moment he 

stops dragging the black point, the blue point is on the second notch), I mean the 

lower part is bigger than... 

Finally, they check what they found out and they start drawing the bottle on the sheet of paper: 

Luca: Therefore, constant till the first notch, then it is tighter and the third notch is the 

point in which it is the tightest. So: the first notch constant like this (he draws a 

vertical segment) then it starts to be tighter (he draws an oblique segment) up here. 

This is the tightest point (indicating the third notch on the sheet of paper). 

Mara drags the black point (continuous dragging) without apparently paying attention to its 

movement, indeed the arrow representing the mouse is far from the point (handle dragging). She 

probably wants to find out where the blue point moves faster, because she puts the point on the second 

notch and explores a neighborhood of the third notch, that is the point suggested by Luca (dragging 

test). 

Mara: It is in this passage that it is steeper (she stops dragging and indicates with the arrow 

of the mouse an interval between the third and the fourth notch). 



Therefore they agree that the bottle has a choke point at half height. They conclude that in the upper 

part the bottle widens and it is wider than in the lower part because the height increases ever slower. 

Figure 4: Luca's drawing of the bottle 

Discussion 

The studies on the interaction between a subject and a software have to take into account a variety of 

aspects because several components are involved. In this paper we have presented a study to better 

understand the explorations of functional dependence in a dynamic algebra and geometry 

environment: in particular, we have identified different dragging modalities and we have shown an 

analysis carried out through this classification. The analysis highlights how the proposed description 

of dragging modalities allows an insight into students' problem solving processes. 

We noticed that the handle dragging is often recognizable through the observation of the mouse's 

position: if the attention is placed on an object that is not dragable, it is possible that the arrow 

representing the mouse does not overlap the dragged point in every moment, suggesting a weak haptic 

control of the solver. But this is not a generalization, because there could be some cases of handle 

dragging, recognizable for example from student’s words, in which the student seems to reveal a 

good haptic control. We observe that there are two types of continuous dragging, in some cases it 

reveals a movement of the object trying to keep a constant velocity, in other cases the object is 

dragged with a continuous movement, without jumps, but with a variable velocity, for example a 

point that is dragged back and forth on a line. In the selected protocol there are no examples of 

impossible dragging, probably because the task says explicitly that the only dragable point is the 

black one; but we identified various examples of this type of dragging in other activities that we 

analyzed. 

One of the potentialities of this classification is that, in order to better describe students' problem 

solving processes, it is possible to combine two dragging modalities, one indicating the quality of the 

movement and the other associated with an aim. It could be interesting to develop this study to 

investigate how a description of students' use of movement in a dynamic algebra and geometry 

environment is intertwined with the processes involved in conceptualization of functions, that could 

give an insight into covariation in the concept of function. 
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This paper examines the potential of using screen casting with an iPad to enhance learning in 

mathematics.  Data are presented from two seven-year-old students as they use the Explain 

Everything app to solve a division with remainder problem (DWR). A social semiotic perspective was 

used to interpret students’ use of multiple modes as they represented the mathematical ideas within 

the context of the problem. We consider how a social semiotic perspective has the potential to draw 

attention to the students’ interests and emerging expressions in representing mathematical 

relationships. We further consider how the use of representations in the app might relate to student 

learning.  

Keywords: Mobile technologies, multimodality, primary mathematics, representations, social 

semiotics.  

Introduction 

Several decades ago, Kaput (1987) predicted that the opportunities afforded by new digital 

technologies would mean “students of the near future … will be choosing how to represent given 

relationships” (p.21), and that students’ choice in building and interpreting their own representations 

would be seen as important as the calculations themselves. With the recent introduction of mobile 

devices into mathematics classrooms, student choice in creating, selecting, and using representations 

has continued to widen and such new media has been seen to have the potential to “augment and 

enhance” student learning (Clark & Luckin, 2013, p. 2). In this paper we present data from part of a 

larger project that examined teacher and student use of iPad apps in primary mathematics classrooms 

in New Zealand. In particular, we focus on Explain Everything, a screen-casting app, with two 

students (aged seven years old) as they represented their solutions to a problem involving division 

with remainder (DWR).   

Screen casting involves the use of a digital white board screen, which the user can write or draw on. 

The user can also add images and text. The digital board can then be recorded to capture the images, 

static or dynamic, along with a vocalisation of the user’s thoughts. As such, in mathematics, students 

can create and present their solutions in real time and in a multi-modal format using text and images 

along with voice recording. Such apps are generally used as a tool for students to show their 

explanations in solving problems (Soto, 2015) as they have the appeal of exposing the students’ 

thinking.  

Screen casting enables multiple modes of communication, and can provide teachers with further 

insight into students’ thinking and identification of misconceptions (Soto & Ambrose, 2015). Hence, 

their use as a tool for formative assessment. But might the creation of a screen cast go further than 

providing insight into thinking? Students can select from a range of modes, including writing, 

drawings, downloaded images, mathematical symbols, spoken and written language, so there is the 



potential for choosing, creating and interpreting different representations for a given relationship (as 

predicted by Kaput). Furthermore, the use of the screen interface on iPads means that the students 

can manipulate representations by touch and hand actions (Sinclair & de Freitas, 2014). If the students 

are choosing to build and create their own representations along with hand actions, can such use go 

beyond the reporting of solution strategies? We also query whether screen casting, as an example of 

new media, has the potential to augment and enhance learning.  

Theoretical framework: Social semiotics and multimodality 

In order to understand the potential for learning with this new media we require a way of 

understanding how representations are selected and used by students in creating their screen casts. 

Whilst previous representational theories in mathematics education have been based on an 

epistemological view of learning as a constructive activity (e.g. Janvier, 1987), further theorising on 

representations in mathematics has focused on semiotics as intrinsic to mathematical thinking (Duval, 

2008; Ernest, 2006). Ernest proposed that a study of mathematics teaching and learning from a 

semiotic perspective follows sociocultural Vygotskian theories in studying the appropriation of 

cultural signs and the underlying meaning structures that embody the relationships between signs.   

In mathematics, signs are related to mathematical relationships and can only be understood as part of 

a complex system; there is a “pull towards abstraction” (Ernest, 2006, p.71). If mathematical signs 

become isolated as purely structural systems they lose meaning. A fundamental view of semiotics 

refers to representations, as sign production in a broader sense, standing for something else in order 

to make meaning. Ernest referred to such sign production as “primarily an agentic act” that “often 

has a creative aspect” (p.69). The students’ use of representations in a screen cast may indicate this 

agentic, creative act, where the sign relates to a form that “strongly suggests the meaning [we] want 

to communicate.” (Kress, 2010, p. 64). Rather than using a sign that pulls to abstraction, the student 

may choose a representation that indicates what he or she sees as critical in regard to their ‘bit of the 

world’ and the mathematical relationship in the context of a problem. As such, we can determine the 

interest and agency of the sign-maker, and what they attended to, in order to make meaning. 

Drawing on both Ernests’ theorisation in relation to semiotics in the teaching and learning of 

mathematics, and to broader theorists, such as Kress and social semiotics, students’ choices of 

representations (text, image, verbal explanations, and hand actions) could be interpreted as sign-

making with the potential to make meanings of mathematical relationships within their view of their 

world. These new meanings may then have the potential to change their understanding of 

mathematical relationships within a given problem.  If we see learning from a social semiotic 

perspective as generating meaning through sign making (Kress, 2010) then screen casting may have 

the potential for students’ representations to have a role as social and material resources “in and 

through which meaning is made and by which learning therefore takes place” (Kress, 2010, p.178).  

Furthermore, direct interaction with the screen of an iPad allows students not just to choose 

representations, but to manipulate them through hand actions. The screen cast app also enables 

students to record verbal explanations. As such, the use of the app allows for students to be agentic 

in creating signs across a multiplicity of modes. In this paper we consider how a multimodal social 

semiotic theoretical perspective (Jewitt, 2013) can inform the interpretation of students’ choices and 

dynamic use of symbols, and images along with their use of language. Social semiotics has been used 



as a theoretical tool to explain phenomena by revealing things, which might not be evident otherwise 

(Jewitt & Oyama, 2001). In this paper, the intention is to examine the students’ choices of 

representations, how they manipulate them, and to consider what they see as critical between their 

world and the mathematical relationship in the context of the problem.  

In following a social semiotic theoretical perspective, the intention was to interpret the students’ 

syntactic positioning of images as a source for representational meaning as well as temporal 

components (Jewitt & Omaya, 2001). That is, how the students placed images on the screen. For 

example, how the centrality of their placements and connections of objects showed some elements as 

held together, in contrast to more marginal or disconnected elements. In addition, the intention was 

to interpret the students’ narrative and hand actions as syntactical temporal components. For example 

how the students’ verbal explanations related to how they moved images or drew on the screen.  

The study 

Two seven-year-old students’ use of the Explain Everything app are presented in this paper. These 

data come from a larger research project investigating how iPads apps were used in primary 

mathematics classrooms. The project involved researcher observation and the collection of video data 

over one year with three teachers experienced in using iPads in their mathematics classrooms. Further 

data was collected through student and teacher interview to investigate their views of using the apps. 

The research team met with the three teachers throughout the year for collaborative analysis and 

critical reflection of classroom practice and student learning. The use of screen-casting apps such as 

Explain Everything featured several times in the teachers’ classrooms and in comments made by 

students and teachers as they were seen as beneficial for reporting solution strategies.  

The data presented here come from one class of seven-year-old children. The problem was set by the 

class teacher and regarded sixteen dog biscuits shared equally among three dog bowls. The students 

were given five options, as shown in Figure 1. They were asked to determine which option gave the 

correct solution, and to explain their reasons using the Explain Everything app. The teacher projected 

the problem onto the screen in the classroom. The students took a photo of the problem to insert into 

a screen on their iPad, so that they could refer back to the five options.  

 

Figure 1: The division with remainder problem 

Students worked individually on the problem with the intention to create a screen cast of their solution 

process for the teacher for her assessment. As they worked in the classroom, six students were selected 

at random by the researchers to explain more fully their solution strategies in relation to the 

representations on the screen cast they were developing.  As Soto and Ambrose (2016) suggested, the 

completed screen casts of students may not “capture all the intricacies of students’ explanations” 



(p.282). As the research team was interested in gaining as much insight as possible, the researchers 

asked the students to elaborate on their thinking in representing their solutions in the screen cast. 

These elaborated explanations were videoed to show the iPad screen and students’ hand actions, and 

to capture the students’ explanations and responses to the researchers’ questions. In this short paper, 

data from two of the students are presented. These two students are presented here because they 

showed contrasting approaches in relation to their mathematical solution using partitive and quotitive 

models. In the partitive or sharing model, the divisor indicates the number of groups and the quotient 

indicates the number of objects in each group. In the quotitive or grouping model, the divisor indicates 

the number of objects in each group and the quotient indicates the number of groups (Roche & Clarke, 

2009).  

Student 1: Fred 

Fred downloaded images of dog bowls and biscuits from the internet and positioned five dog biscuits 

onto each bowl, see Figure 2.  

                   

Figure 2: Fred’s screen with his solution (a sketch is also provided as the iPad screen is not clear) 

Fred:  This shows that the answer is (d) because five and five and five is fifteen with one 

more it’s sixteen. So this is the one up here left over. (Fred circled the biscuit in the 

top right hand of the screen.) So they each get five. (Fred circled the five written 

above each dog bowl). So that makes it fair and there’s one left over for nobody, so 

nobody has that because they’re all full. 

Researcher:  Did you try any other questions using the bowls? Did you try (a) with the bowls?  

Fred:  No, I basically knew it was (d) from the start because there were three bowls and 

you have sixteen biscuits and you have to have one left over. 

Fred chose to use realistic images. The dog biscuits were piled onto the dog bowls in a realistic 

fashion. Fred had also given different names to the dogs. Fred wrote the numeral five above each dog 

bowl as if in a ‘bubble,’ and placed the left over biscuit in the top right hand corner of the screen. As 

Fred said, the dog bowls were “full and fair” and the remaining biscuit was for “nobody.”  When 

talking to the researcher Fred used dynamic recordings and hand actions in circling the five numerals 

and the one biscuit left over in the top right hand corner. 

Student 2: Jan 

Jan had drawn three circles at the top of the screen. She downloaded images of dog biscuits from the 

internet and grouped them at the bottom of the screen. Then Jan moved each biscuit one by one to 

line up underneath each circle (see Figure 3). 



Jan:  I’m doing five and then I’ve got one left over. (Jan moved the left over biscuit 

around the screen with her finger.) 

Researcher:  Why do you think that is? 

Jan:  Ummm, I don’t know. (Jan scanned back to the screen with the original problem 

and the options). Because (a) and (b) are not going to be right, but I haven’t tried 

six (referred to the last option). So if I put six… 

 

Figure 3: Jan’s screen with her solution  

Jan placed six biscuits under two bowls but then moved one biscuit from the middle line to the line 

of four to make five in two of the lines. She then counted the third line as six and moved the sixth 

biscuit away. Jan then moved the left over biscuit around the screen (Figure 3).  

Researcher:  What could you do with the spare one? What would you do if they were your dogs? 

Jan:  Ummm… I’d probably cut it in half so they’d have equal numbers. 

Researcher:  If you cut it in half how many pieces would you have? 

Jan:   (Jan used her finger to draw two lines on the left over biscuit) I’d have three halves. 

One for that one, one for that one, and one for that one (Jan indicated with her finger 

to the three lines of biscuits). 

Jan used realistic images of the dog biscuits but drew circles for the bowls, and placed the dog biscuits 

in a vertical line underneath each bowl. Jan did not use any numerals, but she referred to the numbers 

in her oral explanation. Jan seemed in a quandary about the one left over, to the extent that she tried 

six biscuits, only to find she needed to redistribute them. Jan also moved the left over biscuit around 

the screen. She then marked the biscuit into three “halves” in order to share the remainder, pointing 

to each line as she did so. Whilst she used the term ‘halves’ incorrectly she was attempting to further 

divide the left over biscuit between the three dogs.  

Discussion 

In relation to the students’ use of models of division, Fred used repeated addition to explain his 

solution; “five and five and five is fifteen with one more it’s sixteen.” Fred’s solution demonstrated 

a quotitive model, in that he focused on the quotient as the size of the subset from one of the solutions 

in the options (i.e. five in each bowl). Jan, on the other hand, used a partitive strategy to share out the 

dog biscuits. Jan focused on the divisor as the number of subsets, that is the three dog bowls, and so 

she shared out each of the dog biscuits by counting. Jan then moved to the use of rational numbers 

by including fractions in further dividing the left over biscuit, although maybe she was influenced by 



the reviewers’ question. It is noted that neither of the students wrote their solution using mathematical 

symbols formally, such as 16 ÷ 3 = 5 remainder 1, and this may have been due to the way the problem 

was set where the options were stated verbally.  

In relation to the use of representations, Fred used realistic images and features, along with the 

mathematical symbols. Fred’s ‘bubbles’ over the dog bowls with the number five suggested a close 

connection between the number symbol and the quantity of dog biscuits in each bowl. Furthermore, 

he centralized the dog bowls, piled the dog biscuits onto the bowls and then positioned the left over 

dog biscuit in the corner of the screen, stating it was for nobody. Interpreting the positioning of the 

representations from a spatial syntax perspective, it could be said that Fred marginalized the left over 

dog biscuit both in positioning it on the screen and in verbally stating it was for no one and so 

indicating his own perspective of the remainder in the context of this problem. Interpreting the 

temporal syntax, Fred’s hand actions in circling each of the five numerals and the left over biscuit, 

along with his explanation, suggested an emphasis on key features, and mirrored a formal recording 

of the solution. 

Jan also used realistic images for the dog biscuits, but used drawn circles for the dog bowls. These 

circles represented a container in a more general sense, focusing on the shape but not the features. 

Jan did not include any number symbols, although she referred to the numbers in explaining her 

solution. Jan also centralized the circles and dog biscuit images as key features of the problem but 

she placed the circles at the top of the screen and aligned the biscuits under each bowl. This 

positioning was not as realistic as Fred’s as he piled the biscuits onto the bowls.  Interpreting the 

temporal syntax, Jan’s movement of the biscuit around the screen suggested a dynamic visual 

‘doodle’ as she thought about the remainder.  Her uncertainty in where to position the dog biscuit was 

reflected in her comment “Ummm I don’t know.” Unlike Fred she did not seem satisfied that the left 

over biscuit should be for no one. In the end, Jan solved this problem in a realistic context that made 

sense to her, and used hand actions in drawing lines to show how the biscuit could be cut into three 

pieces.  

In interpreting the students’ use of representations in creating the screen cast, the intention was to see 

further into the students’ placing of different semiotic modes (symbols, images and drawings) 

alongside temporal narrative and dynamic movements. As the students chose to use mathematical 

symbols and ‘made up’ the signs, they were being critical in relating the mathematics with their ‘bit 

of the world’, in order to make meaning. Fred already knew the solution and selected realistic 

representations to show this solution, tying the key mathematical signs, the chosen images and the 

quotient closely together. The remainder was redundant and hence placed marginally representing his 

understanding of the relationships in regard to his bit of the world. Jan chose a less real life 

representation of the problem but appeared to explore the solution with these representations. Her 

exploration then led her to the use of fractions in relation to sharing as her bit of the world.  

Concluding remarks 

The interpretation of the students’ use of representations in relation to spatial and temporal syntax 

may provide further insight into what students attended to in order to make meaning of the 

mathematical relationships. In this regard, this paper has, arguably, presented an illustration of 

Kaput’s prediction that students will choose to build and interpret their own representations, and that 



their choice of representations will be seen as important as the calculation. However, how these 

choices relate to or augment learning is less clear.  

It has been possible to consider how Jan was ‘settling’ an understanding of the mathematical ideas in 

solving a problem, maybe by virtual ‘doodling’ with the remainder. Her use of the representations 

was agentic and indicative of how she related to the problem, but they also appeared to change her 

understanding of the mathematical relationships in the problem. For Fred the representations were 

used to explain thinking that was already formed. He knew the solution. It is not clear that the use of 

these representations, whilst agentic and indicative of his bit of the world within the context of the 

problem, changed his understanding of the mathematical relationships. Although, they may have 

helped him explain or report his thinking.  

In these examples it would seem that for Fred, as an example of a student who appeared to understand 

the mathematical relationships within the problem, the meaning making of the representations in the 

screen casting referred to an explanation or reporting of a solution strategy, and that this would relate 

to studies by Soto (2015) and Soto and Ambrose (2016). However for Jan, as an example of a student 

less certain of the mathematical relationships within the problem, the meaning making of the 

representations in the screen casting may also have changed her understanding and hence may have 

augmented her learning about the mathematical relationships in the given problem.   

The intention of this paper was to consider whether screen casting, as a way of agentic sign making 

across multiple modes, has the potential for students’ representations to make meaning and hence 

augment learning. Only two examples are presented here, and whilst a social semiotic approach may 

shed light on what the students attended to, the use of the screen casting app as new media to augment 

learning needs further investigation. 
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An essential condition to use mathematics to solve problems is the ability to recognize, imagine and 

represent relations between quantities. In particular, covariational reasoning has been shown to be 

very challenging for students at all levels. The aim of the project Interactive Virtual Math (IVM) is to 

develop a visualization tool that supports students’ learning of covariation graphs. In this paper we 

present the initial development of the tool and we discuss its main features based on the results of 

one preliminary study and one exploratory study. The results suggest that the tool has potential to 

help students to engage in covariational reasoning by affording construction and explanation of 

different representations and comparison, relation and generalization of these ones. The results also 

point to the importance of developing tools that elicit and build upon students' self-productions. 

Keywords: Visualization, virtual reality, interactive tool, mathematical modeling, reasoning. 

Introduction 

Students’ difficulties with constructing graphs that model dynamic events are well documented in  

literature (e.g. Thompson, 2011; Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Carlson, Oehrtman, & 

Engelke, 2010). When modeling a dynamic situation into a graph (e.g. the speed variating with time 

or the height of water in a bottle variating with volume), it has to be conceptualized as a covariation 

relation, that is a relationship between two variables that vary simultaneously (Thompson, 2011; 

Carlson et al., 2002). However, students have a tendency to view functions in terms of symbolic 

manipulations and procedures rather than as relationships of dependency between two variables. 

These students might encounter difficulties imagining how the output values of a function are 

changing while imagining changes in function input values. And therefore they might fail in 

successfully construct a graph of a function modeling a dynamic situation.   

Research has revealed that traditional approaches have not been successful in overcoming the above 

described difficulties. Technological tools can however afford alternative approaches to the subject. 

Also, most of the research that provides insight in students difficulties with understanding graphical 

situations is done in clinical environments. We need to develop a better understanding of students 

learning in classroom settings.  

In our research we developed a tool that intends to provide an alternative way to approach the learning 

of graphs by dynamic events and an opportunity for examining its learning in the classroom. The tool 

Interactive Virtual Math (IVM), which can be found at https://virtualmath.hva.nl, is designed to 

support 14-17 years old students at secondary school to understand the graphical representation of 

relations between variables in dynamic situations. IVM supports this process by addressing the 

visualization of these relationships. The aims of this paper are to introduce a prototype of the tool, its 

https://virtualmath.hva.nl/


main features and design and, to discuss its added value for students' learning based on the results of 

one preliminary study and one exploratory study. 

Theoretical framework 

Covariational reasoning 

An example of a mathematical task that requires understanding of covariational reasoning is Task A 

from Figure 1. The task is about a dynamic situation involving the height of water in a bowl and the 

volume and, it was taken from Carlson et al. (2010), who used it to diagnose students’ understanding 

of graphs of this type of events.  

Figure 1: tasks used in preliminary study 

Task A 

Imagine this bowl is steadily being filled with water.  

Sketch a graph of the water height in the bowl as a function of 

the amount of water in the bowl. 

Explain the thinking you used to construct your graph.  

Task B 

Assume that water is poured into a spherical bowl at a constant rate.  

a) Which of the following graphs best represents the height of water in the bowl as a function of the amount of water in the 

bowl? 

b) Explain the thinking you used to make your choice. 
 

 

Task C 

Assume that water is poured into a bowl at a constant rate. The 

graph in the figure represents the height of water in the bowl 

as a function of the amount of water in the bowl. Describe the 

filling in of the bowl in words, 

 

a) Explain the thinking you used to make the 

description. 
b) Draw a possible bowl 

 
 

 

To solve task A, students will need to consider how the dependent variable (height) changes while 

imagining changes in the independent variable (volume). The coordination of such changes requires 

the ability to represent and interpret relevant features in the shape of the graph (Carlson et al., 2010). 



Carlson et al., (2002, 2010), developed a framework that allows to investigate students’ covariational 

reasoning abilities when responding to dynamic function tasks. The framework describes 

covariational reasoning as entailing five mental actions, which are successively more complex: (M1) 

coordinating the value of one  quantity with changes in the other; (M2) coordinating the direction of 

the change; (M3) coordinating the amount of change of one quantity while imagining successive 

changes in the other quantity; (M4) coordinating the average rate of change of the function with 

uniform increments of change in the input variable; (M5) coordinating the instantaneous rate of 

change of the function with continuous changes in the independent variable for the entire domain of 

the function. We used this framework to evaluate the quality of students' graphs and explanations in 

our study.  

Guiding principles and main features of the tool 

There are many technological tools available for learning graphs from dynamic events, but very few 

request students’ own productions. They are often simulation-tools, which involve whole figures or 

part of figures that have to be moved, changed or dragged. When students are asked to construct a 

graph with these kind of tools, construction actually means using representations that are already 

given or can be synthesized by putting parts together. In this case there is not a true visualization of 

students’ concept image (Vinner, 1983), since part of the representation is already given. A 

distinguishing feature of the IVM is that it builds solely on students’ graphical productions.  

The tool Interactive Virtual Math allows students to draw, analyze and compare graphs for themselves 

and improve the graphs if they conclude this improvement is needed. At CERME 10 we presented a 

second prototype version of the tool in which the students work on an assignment involving a single 

graphic situation: the dynamic event described in task A (Figure 1). In later versions we expect it to 

be possible to use more contexts and varied assignments so that all students can practice at their own 

level. In Table 1 we present a short description of the main features of the tool: Self-construction, 

Contrast, Help 1 and Help 2, Reward and flow. These features are based on general learning principles 

that include building on students’ previous knowledge, interaction and feedback. We expect that the 

use of the tool will  challenge students to create their own graphs and explanations, to make 

assumptions, conjectures and to reflect upon these (feature Flow).  

The tool was also built according to topic specific learning principles. Thompson (2011) states that it 

is critical for students to first engage in mental activity to visualize a situation and construct relevant 

quantitative relationships prior to determining formulas or graphs. Therefore, the graphs in the tool 

must be drawn by the student themselves and the tool elicit students to imagine relationships from 

scratch, without presenting any (partial) graphical representation that has not been drawn by the 

student themselves (feature Self-construction).  

A second guiding idea behind the tool-design is the focus on visualizing quantities. Results from Ellis 

(2007) indicate that instruction encouraging a focus on quantities can support generalizations about 

relationships, connections between situations, and dynamic phenomena. To help students to focus on 

the relation between the height of the water and the volume we provide two kinds of help with the 

tool: the features Help and Help 2. In Help 1 the student visualizes the increasing height of the water 

in the bowl and he can start and stop the water falling in bowl.  In Help 2 students must assume the 

height of the water in the bowl and represent it in the graph with dots. We expect that the students, 



while guessing where to put the dot for the height, will notice that the difference in height between 

consecutive dots (values of the height) decreases in certain situations and increases in others.  

Another guiding principle was to provide constructive feedback to the students’ final graph and to 

give them a way to evaluate their production. The students get to see, after submitting their graph, the 

corresponding bowl-figure to the graph they draw (feature Reward).  

Finally, the tool also includes the use of Virtual Reality (VR), which is still limited to Help 1. Here 

the use of VR (sound, movement, interaction) is expected to improve the experience of the graphic 

situation. 

 

Table 1: main features of Interactive Virtual Math 

Feature Description 

 

 

Self-construction 

The student is given two assignments. The first assignment is task A from Fig.1 and the 

second assignment is a variation of the same task with a cylinder instead of a bowl. In 

both assignments they are requested to draw a graph that describes the relationship 

between two variables in the corresponding dynamic situation. The student constructs 

the graph with a finger, a digital pen or a mouse.  

 

Contrast 

The student compares her/his own graph and explanation of the two situations, referred 

to as a and b. The student can then submit the graphs or improve them. 

 

 

 Help 1 

The student visualizes the increasing height of the water in the bowl. He listens to the 

water he moves the platform with the ball and he can start and stop the water falling. 

Using a mobile device and a cardboard, Help 1 can be experienced as Virtual Reality 

 

 Help 2 

The student connects the graphical representation to the context representation. A  

Cartesian coordinate system in the plane and the bowl appear next to each other. The 

student must construct a dot graph that represents the height of the water in the 

Cartesian graph. He does this by dragging and dropping dots into the graph.  

 

Reward 

The student gets the corresponding form of the bowl.  

 

 

  



Methodology 

Preliminary study 

Previous to the development of the first version of the IVM tool, we conducted a preliminary study 

to explore students’ knowledge, skills and difficulties with constructing covariation graphs. The study 

(February-March 2016) involved N=98 students from 4 classes age 15-17 years old and we used three 

versions of the same task with different questioning (Figure 1). The students in each of the four classes 

were divided into three groups and each group was presented with one of the three versions.  

Analyses of students’ written answers showed that the majority of the students (64%) failed to 

successfully solve task A (see also Table 2). Nineteen of them presented an increasing but incorrect 

graph, suggesting that they understand that the water increases or that the height increases with the 

amount of water but they don’t have a consistent concept image of this process. Most of these students 

(13 out 19) produced one straight line (9 students) or a combination of two/three straight lines (4 

students). These findings point that the majority of students that solved the self-construction tasks 

(tasks A and C) could not construct for themselves an acceptable representation. These results 

motivated the importance of engaging students in self-construction assignments and the development 

of the IVM-tool. 

Table 2: results of preliminary study 

 Task A (self-construction graph) Task B (multiple choice ) Task C (self-construction bowl) 

Acceptable 12 (36%) 25 (66%) 3 (11%) 

Incorrect 19 (58%) 11 (29%) 22 (79%) 

No answer  2 (6%) 2 (5%) 1 (4%) 

Exploratory study about the first version of the tool 

The first version of the tool was developed in February –April 2016 by a team composed by one 

researcher-math educator (first author), a high school teacher (second author) and ICT -designers. We 

decided to use task A (Fig.1) that we considered suitable to explore students’ understanding of 

covariation and within a broad age group. To explore its learning potential and usability we 

investigated through a small qualitative study the learning of four students age 14-15 years old (two 

boys and two girls) with different school performance for mathematics. Kevin1 has high grades for 

mathematics, Lisa and Anton have average grades and Wilma has low grades. We observed and 

interviewed the students while working with the tool. The aims of the exploratory study were: (i) to 

understand how the students construct a graphical representation with IVM; (ii) to identify features 

of the tool that support or constrain students' successful construction; (iii) to get a better understanding 

about how the guiding principles work and can be used to develop later versions of the tool. The 

collected data consisted of video records and students’ written work and it was collected at two 

different moments in April 2016. In both situations the students were asked to go first through the 

whole application on their own. Lisa was the first student to be interviewed; she used the application 

on a computer. The other three students Kevin, Wilma and Anton were interviewed together at their 

                                                 

1 The real names of the students were modified 



school. Wilma and Anton use a tablet and Kevin a mobile device. The data was first organized 

chronologically with relation to each student's attempt to construct the graph and use of the tool. 

Secondly, a global description of how each student attempted to construct and transform the graph 

was made and how they used the main features of the tool. We used the covariational framework 

(Carlson et al., 2002) to get insight in students’ covariational reasoning abilities. A summary of the 

results are presented in Table 3. These results and the data were shared and discussed with the ICT-

team and used to evaluate the tool and to make decisions for the development of a next version.  

Results and discussion 

As we can see in Table 3, all four students improved their graphs on basis of the tool. Kevin produced 

in the first trial an incorrect graph with three straight lines and he improved it in second trial after 

comparing the form of the bowl he got in the Reward with the bowl in the bowl-assignment. Wilma 

produced in the bowl-assignment, in the first trial two incorrect graphs: a straight line and afterwards 

a raising curve. She ‘improved’ the graph after seeing the cylinder- assignment (Contrast). Through 

consulting Help 1 and Help  2 she constructed in a second trial a final acceptable graph. Anton 

produced in the bowl-assignment several incorrect graphs. His final graph in the first trial is a curve 

raising slowly. He consulted Help 1 several times and, based on that, he produced a graph with three 

straight lines and adapted the length of the line segments. Anton’s improvement did not lead to a final 

acceptable solution and the student remained in doubt whether the pieces of the  graph should be 

curved or not.   

Table 3: students’ use of the features of the tool during the exploratory study 

Features  Kevin  Wilma  Anton  Lisa  

Construction   
(round bowl) 

 Acceptable final graph 
after two trials 

Acceptable final graph 
after two trials 

Incorrect final graph 
after two trials 

Acceptable final 
graph after two trials 

Construction  
(cylinder bowl) 

 All students have produced an acceptable graph at first trial (straight line) 

Contrast   First, all students draw a straight line at assignment one but improve their drawing after 
constructing the graph of assignment two. 

Help 1: Bowl is 
being filled up 

 Doesn’t consult help 1 
in first trial 

changes a straight line 
into a rising curve  

changes the middle 
line of the graph,  

Consults but doesn't 
improve the graph 

Help 2: relation 
figure - graph 

 Doesn’t consult Help 
2 in first trial 

changes a rising curve 
in an acceptable curve  

 Consults Help 2 Does not understand 
how it works 

Reward  Improves straight line 
to a curve. 

Not observed Not observed Does not understand 
the reward  

Flow   Constructs graphs 
without consulting 
Help 1 and 2. 

Consults Help 1 and 
Help 2 

Consults Help 1 and 
Help 2 several times 

Consults Help 1 and 
Help 2 

VR (Help 1 with 
cardboard) 

 Not used Not used Not used rich experience  

  

Based on the analyses of students reasoning while constructing and explaining their graphs, we 

identified a number of aspects through which students could be brought to a better understanding of 



graphical situations, while working with the tool. One aspect is students engagement in covariational 

reasoning and their progression through the mental actions (Carlson et al., 2002). For instance, Wilma 

identifies and represents the two quantities changing together (M1). She draws initially a straight line 

which suggests that she attends only to the direction in which the height changed while imagining 

increases in the amount of water (M2). After consulting help 1 she changes her straight line into a 

rising curve and then into a curve-down followed by a curve- up graph and she is able to explain how 

changes in the amount of water were related to changes in the height of the water at various locations 

in the bottle (M3).  

Another aspect is students' involvement in actions that underpin mathematical reasoning such as the 

construction and explanation of different representations and, comparing, relating and generalizing 

these ones. Examples that we observed include students comparing their own graph and bowl filling 

up with water, which was the case of Wilma when she used Help 1 or Anton switching from Help 1 

to his own graph several times; students evaluating the relation between the reward and initial graph. 

Visualizing the bowl of the reward made Kevin to think about the relation between the form of the 

bowl and the form of the graph. He used the reward to improve the smoothness of the graph curve; 

students contrast the relation between graphical situations of assignment one and two. For instance, 

Anton switches between one and two and adapt the graph one after seeing assignment two.  

As Table 3 shows, different students used different features to improve their graph, which suggests 

that tool with possibilities to choose to view additional help or not and to be able to switch between 

the graphical situations, allows for diversity. Furthermore, all students had difficulty with 

constructing a graph, even with the tool support. This result suggests that self-construction tasks are 

needed to reveal these difficulties, which can remain unnoticed when using simulation-tools or tools 

in which the representations are already given. 

A final aspect concerns the usability of the tool. Students valued the opportunity of choice and the 

interactivity of Help 2 (one can drag and decide where to put the point). And, one student (Lisa) who 

view Help 1 in VR with the cardboard valued this experience as a more enriching one.  

There are also some critical issues with regard to the methodology of the study and the tool design. 

The small amount of students involved in the use of the IVM tool allowed for a fairly detailed study 

of their interaction with the tool. But, we should carefully interpret our findings since they regard 

only 4 students. We need to experiment more with the tool in classrooms,  in combination with other 

tasks and forms of interaction and teacher support to better understand its potential and to what extend 

these findings can be generalized. With regard to the tool design, a number of aspects should be 

improved in follow up versions. One challenge concerns the self construction- and reward-features. 

It is left to the tool to decide what is an acceptable representation and how accurate it can be. We 

programmed the tool to accept any sketch of concave up followed by a concave down graphs starting 

at the origin. And, for the graph to be considered accurate, the line must be smoothly drawn. 

Sometimes the tool rejects answers that are accepted by the researchers and teachers. Another concern 

is the amount of variables involved in the assignments (height, accumulated volume, time, volume 

per unit of time, shape of the bottle). It is reasonable that the students should focus on one or two 

variables but not so many that are changing simultaneously. At the CERME conference we also 

received useful suggestions to improve the tool. For instance the time-counter in Help 1 can be 

replaced by a volume-counter and, students could fill the bowl by adding themselves cups of water. 



This could help students to focus on the relation between height and volume rather than height and 

time. Another suggestion was allowing students to change the shape of the bottle as this might afford 

students’ awareness of the phenomenon.  

Concluding, this paper reports on the experiences of students learning graphical representations by 

dynamic events with the aid of a new learning technology (IVM); a topic which many students 

struggle to understand. We have learned that the prototype-tool has potential to engage students in 

covariational reasoning and we identified a number of aspects that could bring the students, while 

working with the tool, to a better understanding of graphical situations. Namely, the tool affords 

construction and explanation of different representations and, comparison, relation and generalization 

of these ones. The results also point to the importance of elicit and build upon students self-

productions.  

References 

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while 

modeling dynamic events: A framework and a study: A Framework and a Study. Journal for 

Research in Mathematics Education, 33(5), 352-378. 

Carlson, M., Oehrtman, M., & Engelke, N. (2010). The precalculus concept assessment: a tool for 

assessing students’ reasoning abilities and understandings. Cognition and Instruction, 28(2), 113-

145. 

Ellis (2007). The influence of reasoning with emergent quantities on students’ generalizations. 

Cognition and Instruction, 25 (4), 439–478 

Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. Hatfield, S. 

Chamberlain & S. Belbase (Eds.), New perspectives and directions for collaborative research in 

mathematics education. WISDOMe Mongraphs (Vol. 1, pp. 33-57). Laramie, WY: University of 

Wyoming" 

Vinner, S. (1983). Concept definition, concept image and the notion of function. International 

Journal of Mathematical Education in Science and Technology, 14(3), 293-305. 



Meaning-generation through an interplay between problem solving 

and constructionism in the C-book technology environment 

Ioannis Papadopoulos1, Dimitris Diamantidis2, and Chronis Kynigos3 

1Aristotle University of Thessaloniki and CTI & Press Diophantus, Greece, ypapadop@eled.auth.gr 

2 University of Athens and CTI & Press Diophantus, Greece, dimitrd@ppp.uoa.gr  

3University of Athens and CTI & Press Diophantus, kynigos@ppp.uoa.gr   

 

Starting from Silver’s (1997) approach for the importance of the interplay between problem solving 

and posing in the agenda of creativity, a new kind of e-book, aiming to promote creative 

mathematical thinking to students, in which its designers enriched the posing element with a 

constructionist approach, is used and examined in a real classroom. The paper follows a pair of 

Grade-8 students while they are working on this book. The contribution of this new interplay in the 

meaning-generation process around the concept of covariation is examined and the change in the 

creativity landscape by the analogy between problem posing and constructionism is discussed.  

Keywords: C-book technology, meaning making process, constructionism. 

Introduction 

According to Silver (1997) deep flexible knowledge is closely related to creativity and emerges 

during the interplay between problem solving and problem posing. On the other hand, new 

exploratory and expressive digital media provide users with access to and potential for engagement 

with creative mathematical thinking and meaning-generation activities (Hoyles & Noss, 2003). 

However, education systems fail to rise this challenge due to restrictions stemming from the 

emphasis given on conformity and standardization in testing (Chevallard, 2012). So, new designs 

are needed to support students’ engagement with dynamic digital media that aim to foster creative 

mathematical thinking. In this spirit, a pair of students are working collaboratively to solve a 

problem using a new digital medium, we call ‘c-book’, (‘c’ for creativity), a new genre of 

authorable e-book, extending e-book technologies to include diverse dynamic widgets, 

interoperability and collective design. In this paper we draw on end-users’ interactions examining 

their interplay between problem solving and constructionism as enabler of meaning-making and try 

to analyze the effect of this affordance of the medium to the meaning making process of the pair as 

well as to comment on this new role of Constructionism as facilitator/substitute of problem posing.         

Theoretical framework 

The close connection of mathematical knowledge with the interplay between problem solving and 

problem posing flows from the fact that most of the mathematicians do their research, mainly by 

formulating their own questions and problems and then trying to solve them, rather than solving 

problems posed for them by others (Borwein, Liljedahl, & Zhai, 2014). In this sense, the generation 

of new mathematical meanings for students, as an action, may be related with this kind of interplay. 

Cai and Cifarelli (2005) further refined this link between problem solving and problem posing, 

considering the posing and solving process to be mathematical exploration structured by this 



recursive process. In the context of technology Abramovich and Cho (2015) found that a 

technological environment facilitates problem posing and turns it into discovery experience. And it 

is possible for meaning-generation processes to take place during such experience. Obviously, the 

affordances of the digital environment determine so much the kind of interplay that takes place as 

well as the meaning-generation process. Papadopoulos, Diamantidis and Kynigos (2016) describe 

how specific affordances of an expressive digital medium (c-book) led students to meaning-

generation process around the concept of angle. However, in their study a possible relation between  

constructionism and posing is hardly examined. Constructionism is a theory that examines design 

and learning processes focusing on the ways in which these are part of individual or collective 

construction of digital artefacts. It illuminates how the representations, the affordances, the rules 

behind the behaviour of digital objects and the fields in which they reside and the ways in which 

these representations can be manipulated can all constitute representational registers around which 

meanings are generated, shared and developed (Kynigos & Psycharis, 2003). It thus provides an 

analytical lens to study the design and construction process in close interaction with the changes 

made to the artefact in question and the meanings those changes carry (Papert & Harel, 1991). In the 

case of a jointly constructed artifact by a group of students, the changes made to the artefact 

constitute externalization of the group’s knowledge. Microworlds are such environments, allowing 

at the same time personal construction of objects and new meaning. C-books exploit half-baked 

microworlds which are incomplete by design, challenging students to fix them fostering thus 

learning through tinkering (Healy & Kynigos, 2010). Students have to solve problems that they 

encounter, in between and may come up, as a result of students’ efforts to make new constructions, 

in order to fix the initial bug of the microworld. So, the question now is: How the affordance of the 

c-book technology to support the interplay between problem solving and problem 

posing/‘Constructionism’ might contribute to a process of meaning-generation?   

The digital medium and the Don Quixote c-book unit 

C-book is a new expressive medium that affords the design of modules named c-book units. Each c-

book-unit is based on a storyline, and includes diverse ‘widgets’ between the lines of the narrative. 

The term ‘widgets’ is used for objects, such as hyperlinks, videos and mostly instances, or activities, 

from a range of educational digital tools such as Geogebra and MaLT2, a web-based Turtle 

Geometry environment that affords Logo-mathematics symbolic notation and dynamic manipulation 

of 3D geometrical objects, using sliders as variation tools. Most of the widgets refer to 

mathematical inquiries, constructions and problems. Students can navigate through the pages of the 

c-book unit and be involved in the included tasks through experimentation, reconstruction and 

problem solving.  

The c-book unit used in this study presents a different twist of Don Quixote’s story. It begins with 

Don-Quixote confronting 30-40 windmills he mistakenly considers giant enemies (first pages of the 

c-book unit). But, after being close to them he realizes that they are damaged windmills and he 

wants to repair them. Half-baked logo codes in MaLT2 represent the windmills’ fans and sails in 

various geometrical figures and Don Quixote has to modify the codes so as to repair and reconstruct 

the fans and the sails.   



The study 

This study presents an educational intervention designed and implemented in a classroom. Adopting 

the methodology of “design experiments” (Collins et al., 2004) the focus was on seeking 

relationships between the learning process and the use of digital media used by the students during 

the implementation phase. Twenty-four students (18 from Grade-8 and 6 from Grade-9) from a 

public Experimental School in Athens participated in the study which took place in the pc-lab of the 

school during after-class mathematics courses for totally eight teaching hours within four weeks. 

The students were divided into pairs. Most of them were familiar with the usage of 2D E-slate 

Turtleworlds. Two teachers served as facilitators for technical issues, when necessary, whereas two 

researchers undertook the role of observers recording instances of the students’ interactions with the 

digital medium. Voice recorders and a screen-capture software (HyperCam2) were used to record 

students’ interactions with the c-book unit tools and their discussions, since both of them 

constituted our data. The students’ interactions were transcribed and the protocols were parsed into 

episodes with emphasis on the transitions between episodes since these were the points at which the 

change from solving problems to creating new ones used to happen (Schoenfeld, 1985).   

 

Figure 1: The ‘buggy windmill’s fan’ task in the c-book unit environment 

In this study, we follow two students as they are coping with a task asking them to fix a broken 

windmill. A Logo program was already developed producing a buggy and half-complete fan of 

windmill (Figure 1, left). It was needed to make changes in the Logo program, to fix the bug and 

shape up the fan.  

Results 

The students initially had to fix the bug on the windmill (Figure1, left). The fan was ill-constructed 

since its wings had not been joined in a proper way. So, they started using the variation tool to 

observe changes and identify the role/function of each slider/variable. The initial Logo-code 

construction contained three variables a, b and k, for the ray of the fan, the angle between two 

consecutive wings of the fan, and the total number of wings, respectively (Figure 1, right). 

There are two procedures in this code. The “wing” which uses variable “a” to make an equilateral 

triangle with side length “a”, and the “sail” (main procedure) which constructs the whole fan using 

“wing” as sub-procedure. Fixing the bug, is an open-ended problem with a variety of solutions (for 

example, for a polygon-shaped fan a feasible solution would be to replace b with 360/k).  



After some back-and-forth of changing dynamically the values of all variables in the code, and 

examining the results of their actions on the screen the students found a pair of values that made the 

figure to look like a windmill’s fan:  

S1-23:  We managed to make it well shaped, but only for a certain pair of values; 12 for k 

and 30 for b. We must put certain values instead of variables. 

S2-24: It is not a fair solution; we should find a way to keep the fan well shaped, for any 

set of values. Is there a possibility that a, b and k vary analogous to each other?  

S1-25: What do you mean by “analogous”? 

S2-26: I mean that the change of only one value through the variation tool, results to 

changes for all of them, without our intervention. 

S1-27: Let’s see [she changes dynamically the value of a]. It is not worth dealing with a. 

It only changes the length. We should find a relation between k and b. 

In the extract above, it seems that according to Student-2 the specific pair of the variable values 

cannot be considered as a proper solution. The references to “analogous” and “without our 

intervention” are indicative of the student’s confidence that a more generic solution such as a 

relation between the variables, is needed. Therefore, they started actually talking about covariation.   

 

Figure 2: Three pairs of values that make the shape look like a fan. 

Thus, in order to find the relation between “b” and “k”, students went on with their investigation 

through dynamic manipulation, identifying pairs of values for b and k that made their construction 

to look like a proper fan (Figure 2). Their investigation resulted to the conclusion that “b” and “k” 

might be inversely proportional. Although they reached a conclusion about the kind of relation 

between “b” and “k”, they did not take the next step to express this finding as a formula, so as to use 

it for fixing the bug, reducing thus the number of the necessary variables. On the contrary, they 

decided to go on with their investigation, adding a new variable in the sub-procedure “wing”: 

S1-33:  We found the solution. But I think that we must go further. You see, in the 

program “wing”, there is a right turn by 120 degrees, which means that our 

solution works only for this amount of turning. 

S2-34: Yes, we should put a variable instead of 120, let’s use the letter “k” again, in order 

to find out what is going on, and solve the problem for every case of turning right. 



 

Figure 3: The role of right turn by 120o (left) and by ko (right) 

Variable “k” now refers to the right turn for each new wing (instead for the total number of wings). 

Students made their own construction, by adding a variable in the ‘wing’ sub-procedure, which 

actually made the problem more complicated. The choice of a constant right turn by 120o is crucial 

for having the wings evenly delivered across the fan, since right turn by 120 degrees means that the 

sails will be equilateral triangles. Substituting the constant right turn by the new variable “k”, has an 

impact on the angles of the triangular wing (Figure 3). Technically, this choice results to a fan even 

buggier than the original one. However, students did not see it as an obstacle. On the contrary, they 

accepted the challenge to solve a new problem that seemed to be more challenging to them: 

S1-46:  Let’s use the same variable k, for both, the number of wings in ‘sail’ and the 

amount of right turn in ‘wing’. [They ran the program and moved hastily the 

slider that stands for k. This action changed not only the number of wings, but the 

shape of each wing of the fan as well.] What a strange shape!  

S2-47: Are b and k still inversely-proportional or proportional amounts? [They moved the 

sliders, in order to find pairs of values, as they had done before (Figure 4).] 

S1-48:  Variables b and k do not seem to be proportional. 

S2-49: Nor inversely proportional. This is not fair! 

S1-50: Is it possible that there is no connection, no relation between b and k?  

S2-51: What other kind of relation other than proportional and inversely proportional may 

exist between them? 

This question became the starting point for the students to be engaged in a new inquiry, about a new 

meaning that seemed to emerge. They started speaking about the notion of covariation in a more 

abstract sense than before (S1-25, S2-26). The spirit of this negotiation is mirrored in the final 

remark they made in order to solve the problem: “We think that there must be a relationship 

between b and the new k. We found that for b=30, if k equals to 120 or 240 or 480 or 960 the sail 

stays well-shaped, so there is a relation like k=120∙2x. We also discovered a pattern for the values of 

b that is much more complicated.” They refer to their observation that if for example b=45 then the 

most ‘acceptable’ shapes are the ones with k multiple of 5 (Figure 4). 



 

Figure 4: Snapshots for pairs of values of b and k 

Discussion 

The Don Quixote c-book unit is designed in alignment with the view that creativity lies in the 

interplay between problem-solving and problem-posing, an idea which is very much in accordance 

with Silver’s approach (1997), arguing that it is in the interplay of formulating, attempting to solve, 

reformulating, and eventually solving a problem where creative activity may lie in. Indeed, as 

Papadopoulos et al. (2016) describe, students who used this c-book were able to show creative 

mathematical thinking that did not emerge instantly but was the result of the above mentioned 

continuous interplay combined with the provided affordances. In this paper we focus on the 

meaning-generation processes that took place before the creative moment, relating them with the 

entrance of constructionism in the agenda of creativity. The members of the designing team of the c-

book unit showed an inclination to connect creativity with constructionist activities due to their 

background and familiarization with this theoretical tradition (Papadopoulos et al., 2015). This 

resulted to a fostering of the problem-posing element by a constructionism view. So, in this c-book 

unit the students were working in a context that enabled a continuous and more distinct interplay 

between problem solving and posing/constructionism and this interplay is examined in relation to 

whether it operates as enabler of meaning-making in mathematics. As we presented above, the 

students had initially to explore the problem of an ill-structured windmill and find the part of the 

problem that is ill-defined. The problem seemed to be solved for a specific set of values (S1-23, S2-

26) but this does not ensure the generality of the solution. So, the new problem was to keep the fan 

well-shaped for any set of values. To solve this task, it was deemed necessary to identify the role of 

each variable in the solution of the problem which resulted to the knowledge that variable ‘a’ is not 

related to the bug (S1-27). This actually transformed the last problem to a new one, asking for the 

relation between variables ‘b’ and ‘k’. This new problem contributed to the shift of the focus 

towards the notion of covariation. In order to find the relationship between the variables, a series of 

new constructions took place. They resulted to a collection of pairs of values for ‘b’ and ‘k’ that 

made the fan look like a proper one. This made the students think that the two variables were 

inversely proportional. However, the formula was still missing and this became their next problem. 

Therefore, a new variable was added to the code (S1-33, S2-34). A new, more complex construction 

took place. The feedback on their screen from their constructions made them doubt their claim for 

the proportionality of the variables (S1-48, S2-49) and the phrase “This is not fair!” (S2-49) opened 

the discussion about possibly another kind of relationship (S1-50, S2-51). That was the new 



problem which resulted to the more focused discussion on covariation and the possible formula that 

might fix the bug. 

It seems that students made a step further. They tried to answer two interim questions they 

themselves posed and which came up as they tried to fix the buggy windmill, reconstructing it in a 

way consistent and meaningful for them. So, they reformulated the initial problem, starting from 

their reconstructing efforts and came back to solve it anew in a process where new and perhaps 

more creative aspects of mathematical knowledge were expected to emerge. Thus, the interplay 

between problem solving and constructionism was apparent, while the interplay between problem 

solving and posing was not direct. The formulation of new inquiries by students indicates that 

constructionism facilitated problem posing. Actually, this view of constructionism is close to what 

Brown and Walter (1990) argue about the problem-posing process: the solver first makes a list of all 

attributes included in the statement of the original problem, and then, he proceeds in negating each 

of them formulating thus an alternative proposal, a new problem. However, negating an attribute 

makes the original problem ill-defined (or ‘half-constructed’), and so the solver is challenged to 

proceed to the ‘construction’ of a ‘new’ problem. It is in this sense, we argue, that an interesting 

connection between problem-posing and the Constructionism perspective arises within the context 

of the c-book technology and c-book units, never having been identified in the literature so far. At 

the same time there is evidence that during this interplay a meaning-generation process takes place. 

The problem of finding the bug of an ill-structured windmill’s fan, which seemed to be mostly 

related to spatial observation and Geometry, turned to be investigated by the students through 

algebraic procedures, use of symbols and looking for relationships between variables. Students 

while trying to understand what was going on with the shape of the fan by reconstructing it, actually 

moved back and forth between processes of problem solving and construction. It was during this 

interplay that students started moving from the specific notions of proportional and inversely 

proportional variables to the more abstract notion of covariance. 

Conclusions 

The problem solving and posing approach in creativity (Silver, 1997) attributes creative moments in 

the interplay between them. The entrance of Constructionism in the agenda of creativity seems to 

have an impact in the creativity landscape and perhaps opens new research challenges. The new c-

book units that aim to foster creative mathematical thinking in students are based on a design 

principle that is characterized by ‘Constructionism fostering/substituting problem posing’. Then the 

whole story is evolved around the continuous interplay between problem solving and 

posing/constructionism. So, on the one hand some new research questions arise about the role of 

Constructionism in fostering creative mathematical thinking. On the other hand, there is evidence 

that this interplay between problem solving and posing/constructionism in the path towards creative 

moments facilitates meaning-generation processes by the students.  
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How can the academic success of students be better ensured? Many math teachers ask this question. 

Educational researchers have proposed multiple solutions. In our own works we have considered 

three of them: diversifying the taught knowledge's sources of references and re-contextualize it, 

involving students in their learning process by giving them various responsibilities, enriching the 

class's didactical “milieu” with resources and digital tools. In this report we will focus on the second 

and third propositions with one main question: how can information and communication technologies 

help increase students' responsibilities in learning? We will expose three examples of how this aim 

could be achieved. 

Keywords: Cooperative learning, teaching methods, computer assisted instruction, students’ topos, 

anthropological theory of didactics. 

Focus and rationale 

Giving responsibility to students for their learning is a concern that educational researchers have taken 

for many years. For example Barnes (1977) or Lee and Smith (1996) show that achievement gains 

are significant when teachers enhance collective responsibilities, Scardamalia (2002) explores some 

possibilities of computer-supported environments and Coffman (2003) proposes strategies to increase 

students' roles. Theories also exist that give a frame to this issue, such as the Joint Action Theory in 

Didactics (Sensevy, 2010) or the Cooperative Learning theory (Slavin, 1995). Our purpose in this 

paper is to expose three examples of how web resources and digital intelligent systems allow math 

teachers to involve their students in cooperative activities where they are authors of the lesson tracks, 

where peer learning is promoted and where curricula are individualized. The intelligent system that 

will be used in the classroom is the web platform LABOMEP (http://www.labomep.net/). We will 

show that it is a tool likely to foster student-to-student monitoring, autonomous training and self-

evaluation. 

Theoretical framework 

We will use in this paper concepts from the Anthropological Theory of Didactics (ATD) (Chevallard, 

2006; Wozniak et al., 2008; Winslow, 2011), In ATD, learning and teaching are interpreted as 

ordinary human activities that can be described and analysed through the general concept 

praxeologies: “A praxeology is, in some way, the basic unit into which one can analyse human action 

at large.” (Chevallard, 2006). At first a praxeology is built around a type of task which is usually 

expressed by a verb and a precise object. For example, “to climb a staircase” is a type of task, but to 

climb, short, is not one” (Chevallard, 1998, our translation). Secondly a praxeology precise a 

technique, a way to realize the type of task, a know-how. This technique is then often justified and 

lightened by a technology, a reasoned discourse which states that the technique is suitable for the type 

of task and explain how to perform it. “At his turn, the technological discourse contains some 

http://www.labomep.net/


statements, more or less explicit, for which one can ask the reason. We then reach a higher level of 

justification-explanation-production, the theoretical one” (Ibid.).  

Another theoretical concept on which we rely in this paper is that of topos: 

In some contexts, didactic tasks actually are cooperative, meaning that they must be performed 

together by several persons x1,…,xn, the actors in the task. It will be said that each of the actors xi 

must in this case perform certain gestures, the whole of which constitutes its role in the 

fulfillment of the cooperative task t, these gestures being both differentiated (according to the 

actors) and coordinated by the collectively implemented technique τ. Some of these gestures will 

be seen as separate tasks, t’, in the accomplishment of which xi will act (momentarily) in a 

relative autonomy compared to the other actors in the task. The set of all these tasks, which is a 

subset of the role of xi when t is performed according to τ, is then called the topos of xi in t. 

(Chevallard, 1998, p. 108, our translation) 

A student’s topos is thus the set of all of the gestures he will have to accomplish in didactic autonomy. 

In his dictionary of didactic, Chevallard (1996) describes at least three types of student’s or teacher’s 

topos: 1/ the math disciple/pupil who just listens and observes what is done by the master/teacher; 2/ 

the math practitioner who masters some techniques in order to realize some tasks and is guided by 

the animator/teacher; 3/ the math student/researcher who masters the theoretical and technological 

parts of the praxeologies and has a relative didactic autonomy when studying research question under 

the direction of its director/teacher. A way to look at the students' topos is to focus on what happens 

with their public speeches or texts. Most of time, these discourses are just communicated and appear 

in the milieu (Brousseau, 1997), but they are not included in the shared praxeologies which constitute 

the lesson and that is here termed the class's praxeological equipment (Salone, 2015b). Writing the 

class's praxeological equipment is usually a type of task reserved to the teacher; it is an element of 

his topos. The topos of the students relatively to the class's praxeological equipment is then just to 

copy and memorize it.  But, in some contexts, it may be a cooperative work, so we proposes a four 

levels scale to analyse how students’ public discourses evolve in a classroom: 1/ they are 

communicated; 2/ they are discussed; 3/ they are included in the class’s praxeological equipment; 4/ 

they program the study. At first level, students’ public discourses exist in the class’ milieu. At second 

level, they become a local reference: students and teachers refer to them when debating. At third 

level, excerpts of the students’ public discourses constitute the class's praxeological equipment and 

excerpts of them are directly inserted, with no rewording by the teacher; at fourth level, their function 

is to organize the study 

In order to give the teachers some tools to go through these for levels, we develop some didactic 

plans. A didactic plan is a teaching technology, a way to conduct the study in a classroom. Chevallard 

(2006) proposes some examples: a lecture course is “teaching by giving a discourse on some subject”, 

a seminar is “a small group of advanced students […] engaged in original research or intensive study 

under the guidance of a professor […]”. Thus a didactic plan aims to shape the didactic relation 

between the teacher’s topos and the students’s topos; in this respect it contributes to the evolution of 

the didactical contract (Brousseau, 1997).  



In this paper we describe didactic plans where students are involved in cooperative tasks with a 

relative autonomy, where they have a math practitioner topos and where their public discourses are 

at second and third levels (see above).  

Methodology 

Our research was conducted from 2010 to 2016 in math classes ranging from primary school to high 

school levels. It began with a team of three teachers, including myself, and twelve classes in middle 

school (students aged from 11 to 15 years), with two classes per grade (from grade 5 to grade 9). 

Later the team was joined by three more teachers from middle school (four classes per teacher), two 

teachers from high school (grade 10 to 12, three classes per teacher) and five teachers from primary 

schools (grade 4 and 5, one class per teacher). In addition two teacher’s trainers joined the team. All 

the teachers involved in the research project agreed to implement study and research activities on 

specific topics and various didactic plans designed by an upstream engineering in order to diversify 

knowledge's sources of reference and to open classes on their surrounding world (Salone, 2015a). 

Teachers remained free to adapt and insert these activities and plans into their own mathematical 

progressions. For the research needs, they collected data in their classes:  lectures, students’ 

documents, teacher’s online textbooks1, students' notebooks. Twice or three times a year, we visited 

one of these teachers (that means we observed their classes without interacting) in order to make 

audio recordings of sessions, to take photographs of the classrooms and to interview some students 

that were chosen randomly. We did informal interviews with open questions on how the students 

appreciated the course and where notes were taken. From 2014 to 2016, the whole team also met 

twice a year in order to share teaching experiences. This was an opportunity to improve the didactic 

plans and to realize informal interviews of the teachers or to refine some of our a posteriori analysis. 

Learning the Pythagoras’ theorem 

In France, the Pythagoras’theorem is studied in grade 8. The Ministère de l’Éducation Nationale 

(2008) imposes two abilities: 1/ to characterize the right-angled triangle with the Pythagorean 

equality; 2/ to calculate the length of a side of a right-angled triangle from the lengths of the two 

others. It states also that the direct theorem must not be distinguished from its reciprocal (nor from 

its contraposed form). The case we report here concerns a class at third level of the middle school, 

with pupils aged 13-14 years (grade 8). The objective was the study of the Pythagoras' theorem. The 

teacher’s online textbook shows his progression: 1/ a survey, at home, of the Pythagoras' theorem; 2/ 

group works to product synthesis on what is the Pythagorean theorem and its uses; 3/ a tutored training 

with Labomep; 4/ a selection of exercises' models 

Exploration of the theorem and of its uses 

As already said, the study began with an exploratory survey conducted at home, on the web and by 

asking the close family. In the first session students had realized written presentations on Pythagoras 

and his theorem (Salone, 2015a, p. 323): 

                                                 

1 In France, teachers are required to write each day a summary of what they have taught in an online textbook. This 

textbook can be consulted by the students and their parents. 



 

The questions we ask about Pythagoras’ theorem 

What are its uses? 

It is used to calculate the length of a right-angled 

triangle. It is also used in architecture. 

Who invented it? 

Pythagoras from Samos invented the Pythagoras’ 

theorem 

What is it?  

Figure 1: Excerpt of a presentation on Pythagoras (left) and our translation (right) 

Four of these presentations were exposed on the blackboard and orally presented by their authors (10 

minutes). The teacher then asked some questions: “Does someone have found some more information 

about Pythagoras?”, “Do you agree with these statements of the theorem?”, “What the Pythagoras' 

equality allows us to calculate or to do?” Then he invited the students to freely constitute six peer 

groups (4 to 6 students per group) to answer these questions and to produce a shared synthesis. In the 

groups, the students collected and compared their presentations. Their works lead to the emergence 

of shared statements of the theorem, some uses of it and some problems in line with the official 

programs. After 30 minutes, the teacher ordered each group to copy one single statement on the 

notebooks. He had a glance to these statements but, since they all were right, he did not reword them. 

His first teaching objective was thus reached. In addition, he exposed five of the students’ synthesis 

on the classroom's walls. In this session, the students' topos was thus quite unusual; indeed they were 

first responsible at home of their own first encounter with the theorem (Chevallard, 1998); second 

they produced a synthesis in peer groups, by reviewing collaboratively one another's works, while the 

teacher facilitated their work; third they were the authors of the theoretical part of the class’s 

praxeological equipment (third level on the students’ public discourse scale). In this didactic plan, 

the ICT were a tool to access web resources. In the interviews, some students reported being 

pleasantly surprised by all the uses of the theorem. 

Tutored training with a digital media 

During a second session, the teacher animated a computer training shaped by a didactic plan we call 

a “tutored training” (Salone, 2015a). It’s a moment where students perform training exercises and 

where they help each other and self-evaluate. In this didactic plan a digital media, here the web 

platform for math teachers Labomep (http://www.labomep.net), provides series of type of tasks. The 

teacher has to subscribe and then he is allowed to access and deposit resources to organize his courses. 

Many exercises are thus available, sorted by school grades, chapters and themes. Students may access 

Labomep freely, without subscription. But the teachers of our team preferred to enrol their students 



so that they could control their works (see further). At first the teacher video-projected one problem 

from the series (Figure 2, left). Each student then individually sought an answer for it. Then the first 

students who had one consulted with the teacher who evaluated them. After a few minutes, some of 

the students who had correct responses were invited to help others. At this moment, these students 

had a topos enlarged with teaching task: they gave technological-theoretical explanations and 

methodological advices, they realized assessments. Meanwhile the teacher too had a specific topos: 

he regulated the activity, reminding some rules, giving some advices. When everyone had come to 

an answer techniques were finally discussed by the whole classroom and a common solution was 

chosen and copied in the notebooks (Figure 2, right). The process could then start again with a new 

exercise from the same set or from another one. In a third session, not observed, the students had also 

to gather in a file the problems along with their solutions (one problem from each Labomep series). 

Thus in these sessions several types of mathematical tasks associated with the Pythagoras' theorem 

appeared through problems and techniques gradually emerged. The students' topos was enlarged with 

monitoring tasks usually reserved for teachers and with writing tasks in order to constitute the class’s 

praxeological equipment. ICT were at the heart of this didactic plan as they provided sequences of 

problems and allowed the existence of a joint action. In interviews, students often reflected the feeling 

they had that tutored trainings, with peer to peer exchanges, improve their understanding of 

mathematics. Teachers also highlighted that a long-term regular use of such a didactic plan enables 

students with learning difficulties to keep up with their classmates.  

 

 

Figure 2: An exercise from Labomep (left) and a shared one (right) 

Self-training and assessments 

Websites as Labomep are not only resources for interactive exercises. They are also intelligent 

systems that assess the performance of individual students. In several of the classes involved in our 

research, teachers took advantage of this potential to develop training sessions in relative autonomy. 



Each student had a personal account on Labomep and trained alone or with a classmate. The sets of 

exercises are either freely decided or defined in advance by the teacher. At the end of a series, 

Labomep assigns a score and suggests trying again if needed. Video animations reminiscent of 

technological-theoretical elements are also directly accessible or proposed. The greatest advantage of 

this didactic plan is that it can be continued outside the class. Indeed each student can extend the 

studies conducted in classroom by training, revision or exploratory sessions at home. Figure 3 shows 

an example of individual assessment which is made by Labomep and which the teacher can view. 

The first column is the name and first name of the student (here a generic one), the second column 

contains the title of the series, the third one is a score, the forth and the fifth ones are day and time. 

In the third column, the score is at first a mark (1 over 5 here) and the five rectangles corresponding 

to the five exercises of the series are coloured: when the colour is red, that means the student didn't 

succeed at all (he had two attempts to succeed), when it is light green he succeeded at the second try, 

when it is green he succeeded at the first try, and when it is blue he didn't answer the exercise. 

 

Figure 3: An individual assessment with Labomep 

To go back to Pythagoras’ theorem, Figure 4 shows the activity of two students on it and on the 

Pythagorean triples. This is an extract from a page with global statistics generated by Labomep that 

informs us about the different issues they addressed, adding scores or achieved grades, and the dates, 

times and durations of sessions. The two students, which we will call here Ali and Ame, had different 

profiles: Ali was ranked among the top students in his class, whereas Ame was facing some learning 

difficulties. Data on dates and hours show that both have used Labomep 3 times: twice during 

classroom sessions, on 24/09/2012 and 01/10/2012, and once outside the classroom on 03/10/2012. 

In class, within an hour and forty minutes of activity (rows 1 to 7), Ali mastered the first two types 

of tasks (applying the theorem and showing that a triangle is not right-angled). For the first type of 

task (rows 1 to 4), his score is three times 0/5 and then it becomes 5/5. For the second task (rows 5 

and 6), his scores are 1/5 and 5/5. But he only achieved a score of 1/5 for the third type, at row 7 (use 

the Pythagorean triplets). Within the same time frame, Ame successfully completed the first two types 

of tasks, with a maximum score of two out of five for the first one (rows 13 to 18) and one out of five 

for the other (row 19).  



Figure 4: Excerpt from statistical assessments of students in Labomep 

Out of the classroom the path differences are even more marked. Ali returned to Labomep, two days 

later, more than two hours in the evening (rows 8 to 12); he trained himself to solve the third type and 

didn't succeed (his best score is 2/5). After that he went on working on two other types of more 

complex problems (rows 11 and 12). Ame just spent a quarter of an hour taking the first two types, 

in the afternoon one day after the second session (rows 20 and 21). He partially succeeded the second 

type of tasks, reaching a score of three out of five. Thus, with intelligent digital systems such as 

Labomep in such a didactic plan, courses and students' paths can be individualized. According to 

teachers, it is very beneficial for learning: it consolidates the skills of all students. Those who have 

difficulties have tools to progress at their own pace and perform better evaluations, those who already 

have a good level complement their knowledge. Some teachers have also chosen to look at these 

individual activities outside the classroom so that everyone's work is rewarded regardless of the initial 

or achieved levels in mathematics. Quarterly average scores are thereby increased, which greatly 

helps to maintain students' motivation. 

Conclusion and perspectives 

Through these examples we have therefore tried to identify some benefits on learning induced by the 

use of didactic plans including ICT and which enlarge students’ topos. The first one concerns the 

class’s praxeological equipment: students become authors of the lecture, of its content and its 

programming. The second benefit is related to the joint action: ICT facilitate peer exchanges in 

didactic plans where students endorse teaching tasks that are usually assigned to teachers. The third 

benefit is the differentiation of learning: intelligent tutoring systems such as Labomep allow tasks to 

be performed in individualized ways and to be continued at home. Can we conclude that students are 

more motivated when using ICT? And does this improve their learning of mathematics? The general 

consensus amongst the participating teachers and students was yes. But there are other factors that 

might explain this conclusion. First we worked with an extremely motivated team of teachers who 

were very dynamic and keen on interesting their classes. Second today’s students easily understand 

and appreciate ICT related activities. So it is not sure that these methods would ensure success for all 

students. Our research objectives are now to study the conditions and constraints of implementing 

such didactic plans in regular classes. 

  



References 

Barnes, D. (1977). Communication and learning in small groups. London: Penguin. 

Brousseau, G. (1997). The theory of didactical situations in mathematics. Dordrecht (The 

Netherlands): Kluwer Academic Publishers. 

Chevallard, Y. (1996). Dictionnaire de didactique des mathématiques 1996-1997. Marseille (France): 

Institut Universitaire de Formations des Maîtres. 

Chevallard, Y. (1998). Analyse des pratiques enseignantes et didactique des mathématiques : 

l'approche anthropologique. In IREM de Clermont-Ferrand (Ed.), Actes de l'université d'été de 

didactique de La Rochelle (pp. 91–120). Clermont-Ferrand (France) : Institut de Recherche sur 

l’Enseignement des Mathématiques. 

Chevallard, Y. (2006). Steps towards a new epistemology in mathematics education. In Bosch M 

(Ed.) Proceedings of the 4th Conference of the European Society in Mathematics Education (pp. 

21–30). Sant Feliu de Guíxols, Spain: FUNDEMI IQS – Universitat Ramon Llull and ERME. 

Chevallard, Y. (2007). Passé et présent de la théorie anthropologique du didactique. In Ruiz-Higueras 

L, Estepa A, Javier Garcia F. (Eds.) Sociedad, Escuela y Mathematicas : aportaniones de la Teoria 

Antropologica de la Didactico (pp 705-746). Baeza (Spain): Universidad de Jaen. 

Coffman, S. J. (2003). Ten strategies for getting students to take responsibility for their learning. 

College Teaching, 51(1), 2–4. 

Lee, V. E., & Smith, J. B. (1996). Collective responsibility for learning and its effects on gains in 

achievement for early secondary school students. American journal of education, 104(2),103–147. 

Ministère de l'Education Nationale (2008). Bulletin officiel spécial n°6 du 28 août 2008, programmes 

de l'enseignement des mathématiques. Paris (France). 

Salone, J-J. (2015a). Les références praxéologiques dans les systèmes didactiques (PhD dissertation, 

Aix-Marseille Université, France). Retrieved from https://www.theses.fr/191848212 

Salone, J-J. (2015b). L'équipement praxéologique de la classe : une référence co-construite et 

partagée. Recherche en Didactique des Mathématiques, 31(1), 105–135. 

Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. 

Liberal education in a knowledge society, 97, 67–98. 

Sensevy, G. (2010). Outline of a joint action theory in didactics. In Durand-Guerrier V, Soury-

Lavergne S., Arzarello F (Eds.) Proceedings of the 6th Congress of the Europena Society for 

Research in Mathematics Education (pp. 1645–1654). Lyon (France) : Institut National de 

Recherche Pédagogique. 

Slavin, R.E. (1995). Cooperative learning: theory, research and practice. London (United 

Kingdom): Pearson. 

Winslow C. (2011). Anthropological theory of didactic phenomena: some examples and principles 

of its use in the study of mathematics education. In M. Bosch et al. (Eds.) Un panorama de la 

TAD, (pp. 117–138), Barcelone, Espagne: CRM.  



Wozniak, F., Bosch, M., & Artaud, M. (2008). The anthropological theory of the didactic. Retrieved 

from http://www.ardm.eu/contenu/yves-chevallard-english. 



Nature and characteristics of digital discourse in mathematical 

construction tasks 

Florian Schacht 

Universität Duisburg-Essen, Didaktik der Mathematik, Germany; florian.schacht@uni-due.de 

This paper introduces the concept of digital discourse in Mathematics using a philosophical 

framework by Alexander Galloway. The notion of the digital is discussed and the concept of digital 

discourse is elaborated on that basis. The empirical data shows its value by reporting on transitions 

in language when working with digital tools on geometrical tasks. Existing research findings show 

effects of DGS on language changes referring to geometrical objects and actions. The present study 

analyses qualitatively both students’ language referring to mathematics as well as to the digital tool 

in the context of geometrical constructions. The empirical results give insights into processes and 

transitions in the language use (by students) from a tool-oriented language (e.g. referring to 

buttons) to a mathematical-oriented language (referring to mathematical concepts) and aim to 

explore the nature and the characteristics of digital discourse. 

Keywords: Language, digital tools, geometry, discourse. 

There are substantial research results concerning the changes in language used for describing 

mathematical actions and objects when working with DGS (Kaur, 2015; Sinclair & Yurita, 2008). 

This paper shows results focusing on empirical phenomena concerning a language that students use 

in order to describe actions and objects referring to the digital tool. The interplay between these two 

layers referring to the tool as well as to the mathematics is analyzed in detail. The analysis will give 

empirical insights into the transition-process between the language of mathematics and technology 

and, by doing so, will examine a central facet of digital discourses.  

Etymological and philosophical aspects of digital discourse 

What is digital discourse? Initially one might think of SMS-chats, of instant messaging via Skype or 

WhatsApp, of blogging or the like of tweets, of posting messages on social network sites, or of 

video-based online-discussions (e.g. Llinares & Valls, 2009). There is no doubt that all these forms 

of discursive practices have their roots in the way new media is used. But is it adequate to use the 

predicate digital for such discursive practices? For the examples above, this paper will rather use the 

term discourse “in the New Media” (Thrulow & Mroczek, 2010) to differentiate it from the term 

digital. But what is the digital? This paper wants to stress the notion of the digital in the 

mathematics classroom, especially the notion of what can be seen as digital discourse in 

mathematics. To do so, we will follow a philosophical path drawing on a work by the philosopher 

Alexander Galloway (2014), in which he gives an introduction to the work of the philosopher 

François Laruelle and—by doing so—tracing back the notion of the digital in philosophy to Plato 

and Sokrates and, especially, to Hegel’s work. For Galloway, rather than distinguishing zeros and 

ones (the digital) compared to continuous variation (the analog), the “digital is the basic distinction 

that makes it possible to make any distinction at all. The digital is the capacity to divide things and 

make distinctions between them. Thus not so much zero and one, but one and two.” (Galloway, 

2014, p. xxix) In that sense, the digital is closely connected to the notion of difference. This 

philosophical perspective on the digital is used here to discuss its value for the mathematics 



classroom and especially for discursive practices and processes of concept formation in it. By doing 

so, this approach does not claim to adopt Galloway’s perspective on philosophy and his non-

standard philosophical approach drawing on Laruelle (c.f. Laruelle 2010). It rather uses perspectives 

he offers to introduce the concept of digital discourse in mathematics and to better understand its 

nature and characteristics. 

The understanding of discursive practices and the underlying norms have been a major subject of 

study in mathematics education. And yet there is a need for reactivating such analytical approaches 

in the light of the use of digital tools since digital tools “give rise to new ways of thinking that may 

conflict with the established discourse of formal mathematics” (Sinclair et al., 2016a). In their 

analysis, Sinclair and Yurita (2008) outline the way in which the use of dynamic geometry changes 

discourse, e.g. transitions from static to dynamic forms of discourse. Also, Schacht (2015a; 2015b) 

reports on shifts in language regarding student’s documentations, in which the students use a 

language that clearly refers to the digital tool and not to mathematics. Both examples show—in 

different ways—that the digital tool affects the discursive practices in class. And still we know little 

about normative rules affecting the discursive practices: the conceptual (mathematical) norms 

involved, the social- and socio-mathematical norms, the norms established and the norms brought in 

by the technology in use. By introducing the concept of digital discourse, this paper approaches an 

understanding of discursive processes by using Galloway’s perspective on the digital in order to 

distinguish different discourses referring to the tool or to mathematics with specific underlying 

norms. Therefore, we will first briefly highlight Galloway’s (2014) notion of the digital, then 

introduce the definition of digital discourse in mathematics before applying it to the empirical data. 

What is the digital? 

Building on the broad definition of the theoretical concept of the digital that points at the notion of 

difference (see above), Galloway describes the operation of the digital as follows: “the making-

discrete of the hitherto fluid, the hitherto whole, the hitherto integral. Such making-discrete can be 

effected via separation, individuation, exteriorization, extension, or alienation. Any process that 

produces or maintains identity differences between two or more elements can be labeled digital.” 

(Galloway, 2014, p. 52) Although the digital can be seen as an archetype of philosophical thinking 

in general (tracing it back to Plato and Sokrates), Galloway (2014) describes the digital as 

fundamental to the dialectics of Hegel with its two moments: “the (digital, F.S.) moment of 

analysis, where the one divides in two (12, F.S.), and the (analog, F.S.) moment of synthesis, 

where the two combines as one (21, F.S.)” (Galloway, 2014, p. xxix). Galloway also attributes 

analog and digital to both moments (p. xxxi). Although Galloway (2014) does not focus on 

computers or new media in this work but rather on discussing the theoretical concept of the digital 

in general, the (digital) process of discretization and of computation however, of extending the one 

(or, in a mathematical context: the mathematical concept) “beyond its own bounds, thereby 

branching the one, splitting it” (Galloway, 2014, p. 52) is inherent to computers and hence to digital 

tools. In this sense, the dialectic idea is existentially present and closely related to the digital: “Hegel 

is dead, but he lives on inside the electric calculator.” (Laruelle, Introduction aux sciences 

génériques, 28, cited in Galloway, 2014, p. xxxiv) 



Digital discourse in mathematics 

Following Galloway’s discussion of the digital, the following definition is used here: Any discourse 

that produces or maintains differences between two or more elements can be labeled digital. This 

definition does not necessarily focus on technology. Also, the notion of digital discourse presented 

here certainly differs from studying discourses in the new media (Llinares & Valls, 2009). As a 

theoretical concept, this notion can be applied to any discursive practice. However, the analysis of 

the empirical data will demonstrate that the concept of digital discourses can be used to structure 

and describe conceptual processes and transitions underlying the work with digital tools because the 

(digital) distinction between expressive reference to the mathematics and to the digital tool and, in 

line with that, the corresponding underlying norms seem to play a central role in these processes. In 

this sense, the approach follows the “need to study the transition phases in the progress of 

geometrical concept formation” (Sinclair et al., 2016b, p. 696).  

The term discourse is used here in a pragmatic (more precise: from an inferential) perspective 

(Schacht & Hußmann, 2015): Individual conceptual processes and mastering mathematical concepts 

is understood as being able to give reasons for the use of concepts within discursive practices 

(=master the inferential relations), similar to Wittgenstein’s idea of mastering the rules of the 

language game. In this perspective, individual conceptual acting is highly normative since the 

individual acknowledges the reasons one has for applying a concept to be true or at least to be 

adequate in a certain situation. Hence, it is one of the tasks of this analytic approach to reconstruct 

the (normative) rules that the individuals (as concept-appliers) follow. Discursive practices, in this 

perspective, give access to individual conceptual processes and the underlying social and individual 

norms. Galloway’s notion of the digital is used here for digital discourses to differentiate between 

different (normative and conceptual) discursive layers, and especially between the following two 

layers discussed in this paper concerning the mathematics and the tool. In this sense, it is the aim of 

this paper to introduce the concept of digital discourse and to better understand its characteristics 

and nature when working with digital tools exemplified by an example from geometry class.  

Language, written documentations and digital tools in geometry 

Before analyzing the digital discourse in the empirical example from a dynamic geometry 

environment (DGE), this paragraph will briefly highlight research findings on the changes in 

language when working with digital tools. Such tools affect the conceptual thinking and acting with 

the mathematical objects as well as the written solutions (Ball et al., 2005; Weigand, 2013). In 

geometrical contexts, DGS can support the grasping of both the geometrical objects as well as the 

actions conducted with these objects (Jore & Parzysz, 2005). Also, the use of DGS changes 

language and discourse in various ways. Hölzl reports that students tend to use active verb forms 

while working with the dragging mode (Hölzl, 1996) which mirrors the movement and the dynamic 

actions. Also young children (ages 7–8) tend to change forms of reasoning using action verbs 

influenced by dynamic and temporal elements of the DGS like the dragging tool (Kaur, 2015). In 

line with that, changes in discourse and vocabulary could be observed regarding the transition from 

static to dynamic forms of discourse about geometrical objects: “[S]hapes were discussed as if they 

were a multitude of objects, changing over time, rather than as a single object” (Sinclair & Yurita, 



2008). Hence, not only the understanding of the objects and actions change, but also the language 

used in order to make actions and objects explicit.  

Whereas most of these findings report on transitions of language regarding mathematical actions 

and objects when working with DGS, Schacht (2015) shows that students also use a rather 

naturalistic language to describe the manual actions precisely to get to their solution as well as 

objects referring to the tool like buttons or commands. This paper focuses on the way in which 

students describe actions and objects both referring to the mathematics and referring to the digital 

tool as well as on the transitions between these layers when working on geometrical constructions. 

These different referential units—the mathematics and the digital tool—each reflect certain 

conceptual—and, following the pragmatic approach, also normative—layers e.g. it makes a 

difference whether one describes the solution process in terms of the mathematical process or in 

terms of the manual actions conducted with the digital tool.  

This paper studies the transitions of using tool language to using technical language. This paper 

reports on results of a qualitative study, in which processes like these were studied based on 

students’ involvement on construction tasks using DGS (GeoGebra) with respect to the following 

underlying research question and the overarching interest to explore the nature and characteristics of 

digital discourses: Which language transitions can be observed between a tool- and a maths-

oriented language when working on construction tasks? 

Methods and design 

The empirical study was conducted with N=20 students (age 13–15) from different schools. All 

students worked in pairs with GeoGebra within clinical interviews. This paper uses some of the data 

of this bigger project in order to demonstrate the potentialities of digital discourses as a way to 

understand lexical transition processes better . A systematic analysis of such lexical processes is 

given in Schacht (in revision). All pairs that did the construction tasks were videotaped during the 

construction and afterwards. The interviews were analyzed qualitatively focusing on the oral and the 

written language by using lexical categories (Schacht, 2015). The written documents were also 

analyzed. Three to four geometrical tasks were given to each pair; the duration of working on these 

tasks ranged between 40 and 80 minutes. All students were introduced to the DGS first and they 

were encouraged to explore some main functionalities since most of the students had not have much 

experience working with GeoGebra. Most tasks had an explorative character, meaning for example 

that the students were asked to construct certain objects and try to formulate a description. Within a 

task aiming at exploring the concept of symmetry, the students were asked to describe and give 

reasons for their findings. In this sense, the information the experimenters were trying to obtain 

from the interviews focused on the way the students work on such geometrical tasks and the 

language they use when speaking and writing. A detailed description of the tasks relevant to this 

paper is given below.  

Results and discussion: Transitions in language  

The pairs of students were given a geometrical configuration and they were first asked to 

(reconstruct) the given Figure 1 with ruler and compass (on a sheet of paper) and formulate a 

written description of the given construction by using ruler and compass for themselves (line 1 



below shows the description of student 1 (S1)). After that the students worked in pairs with a DGS. 

They were then asked to construct the same figure with GeoGebra and then formulate a description 

of the construction together (lines 2 & 3 shows the common description of S1 and S2 with the 

DGS).  

Line 1  S1 (r&c):  Draw a 5,7cm 

straight line (German: Linie) from A. 

Line 2 S1&S2 (DGS):  Click on the button 

“segment” at the top. 

Line 3 S1&S2 (DGS):  Segment from the center to 

each point of intersection. 

 

Figure 1: The given geometrical configuration 

The analysis focuses on the language the students use to describe the objects they deal with. Using 

ruler and compass, S1 refers to a term from everyday language (line (German: Linie)) which is—in 

the German translation—not considered to be a proper mathematical term. When the students work 

with the DGS, they document their manual action (line 2) precisely by describing which button to 

click on. In this case, they choose the segment-button. In the version of GeoGebra they use, the 

name of the button “segment” is shown. Hence, the term segment refers to a button (c.f. Schacht 

2015a) which is an object that refers to the digital tool. It is important to note that although segment 

can be considered as a mathematical object, the students describe a button, hence an object referring 

to the tool. On the other hand, in line 3 the students refer to the segment from the center to the 

intersection points. This description refers to the mathematical object of segment.  

This analysis shows two transitions in the students’ language within their documentations. First, 

there is a change from the description of a given object in everyday language (line 1) to the 

description of a certain button (line 2). For the students in line 2, segment is a signifier of the button 

that they use for their documentation. The second transition shows in which way this signifier is 

used as a mathematical term to refer to the mathematical object of the segment (line 3). The students 

do not refer to a button. They rather use the term segment within a mathematical description. Hence, 

the analysis gives insights into the process of the description of buttons (as objects referring to the 

tool) to the description of segments (as mathematical objects). This is a central characteristic of 

digital discourses: The distinction between the tool-oriented and the mathematical language offers a 

possibility for the students to use terms common in mathematical discursive practices. The example 

shows that digital discourses can follow a linear structure in which the difference between the tool 

oriented layer and the mathematical layer can even be bridged by the digital tool since it offers 

expressive resources that students adopt.  

This first example has limitations though: The students can easily adopt the term segment because it 

connects to a colloquial use of the term. As the following contrasting example will show, obstacles 

may occur when students use terms that do not connect easily to a colloquial understanding. In this 

task, the students explored the phenomenon of symmetry. The students were given a GeoGebra file 

with two quadrilaterals, where one quadrilateral was the image of the other under a line reflection. 

The line itself was not depicted. By dragging the one quadrilateral, the other one moves according to 

the line reflection. The students were asked to construct a new geometrical figure by starting with 

the two rectangles (Figure 2) and the two students S3 and S4 formulated a description for a 

construction he made with the DGS afterwards.  



   ⇒    

Figure 2: Exploring the properties of a line reflexion. By dragging ABCD (left) the image moves correspondingly 

In the next step, only the written description was given to the other student who then had to (re-

)construct the original figure with the DGS. In the following example, student S3 draws a triangle 

by using the polygon-button . He had seen the signifier of the button during his 

construction. In both descriptions below the student S3 refers to the triangle using the term polygon. 

 

 

line 2  S3 (DGS): 2. Choose polygon 

(toolbar) 

lines 6-8  S3 (DGS): 5. Colour the polygon 

green  

Transcript of the oral description:  

Turn 1  S3 (DGS): By pulling at the left polygon, here at the points, coordinates, in order to have three 

rectangles. 

First, the student refers to the polygon-button (line 2) in order to describe a manual action precisely 

and the objects (referring to a button) needed in order to handle the DGS. Next, the student adopts 

the signifier in order to refer to the mathematical object (lines 6–8). In lines 6–8, the polygon is seen 

as a static object that has to be colored in green. Third, this mathematical object is used dynamically 

since the student describes how to pull at it (turn 1). Hence, this example shows a transition from 

the description of an object that refers to the tool (polygon button) to the description of first a static 

and then a dynamic mathematical object (polygon).  

Although this transition seems to mirror the process that could be observed in the first example, 

there are significant differences. It is important to note that student S3 does not refer to the term 

triangle at all. Instead he sticks to the term polygon throughout the interview. When (his partner) S4 

has difficulties with the description and asks S3 to describe precisely what he meant by choose 

polygon, S3 does not refer to the three points that his specific polygon (as a triangle) has (turn 1). 

Hence, this example shows that although S3 uses the signifier to deal with the mathematical object, 

he has difficulties with grasping the concept to distinguish between a polygon and a triangle since 

he has no conceptual understanding of this term. This analysis shows interesting obstacles. First, 

S3’s description to choose a polygon is viable, but it is not precise enough for S4 to understand that 

he has to create a triangle. There are several other scenes in this interview, which lead to the 

conclusion that S3 does not grasp this concept as he cannot connect it to other mathematical 

concepts. Especially, it is not obvious for S3 that a triangle is a certain polygon. This example raises 

the question of how it is possible to support a semantic connection to the students’ knowledge by 

using the digital tool and the given signifier. In terms of the characteristics of the digital discourse, 

the student does not manage to make the mathematical concept explicit by giving reasons for it in 

the course of the interview. He rather incorporates the expression polygon offered by the user 

interface. The second example gives insights into a divergent digital discourse because there is no 

mediation between the two layers in order to establish a commonly shared mathematical 



understanding of the construction. The reason for that is the missing conceptual transition between 

the two layers mathematics and tool.  

Final remarks 

The two examples discussed in this paper show similar transitions in students’ language when 

working with digital tools and give insights into digital discourses. They give insights into the 

process of the descriptions from objects related to the tool (e.g. buttons) to mathematical objects. 

Regarding the research question, the examples show different lexical phenomena when working on 

construction tasks. Example 1 reveals that digital tools can support lexical processes by adopting the 

signifiers’ names in the description of the construction. The students manage the shift from a 

language that focuses on technology to a rather mathematical language. In other cases this can lead 

to obstacles which show the need for a conceptual connection to concepts the students already know 

(example 2). These different lexical transitions show that the use of a rather calculator-oriented 

language has potentialities as well as limitations. Although it is important for the mathematics 

classroom to support the use of both language referring to the tool (e.g. in exploration situations) as 

well as to the mathematics, it remains a challenge to develop means to bridge and support language 

processes in a way that students not only adopt signifiers but rather grasp a conceptual notion of the 

mathematical objects and actions. Hence, studying language processes like these shows the 

importance of a lexical consciousness of the different lexical norms of adequacy when language is 

used in specific situations (Schacht, 2015).  

Studying such language transitions illustrates the role of the notion of difference in discursive 

practices when working with digital tools. The two examples in this paper show two different digital 

discourses, understood as discourses that produce or maintain differences between the mathematical 

and the technological discursive layer. On the one hand, a digital discourse can have a linear 

structure in which the difference between the mathematical and the technological discursive layer is 

bridged. On the other hand though, that difference between these two layers maintains throughout 

the discussion. Regarding the characteristics of such digital discourses, the examples show that it 

makes a difference if the students use expressions referring to the mathematics or to the digital tool. 

One the one hand, each layer implies specific underlying norms and specific conceptual aspects, 

which refer either to the mathematics or to the digital tool. On the other hand, the processes above 

show the dynamic of such discourses and the way in which these—linear or divergent—transition 

processes can have implications on the individual concept formation processes.  

The results also show possibilities for further studies of the digital discourses in respect (i) to the 

underlying conceptual processes, (ii) to a deeper insight into the nature and characteristics of digital 

discourses and (iii) to the potential for classroom practices to foster digital discourses within 

conceptually supporting environments.  
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Mathematics education researchers have been interested in students' understanding of the equality 

as equivalence relations. Doing so, they pointed out that the notion of equality is difficult for students 

to perceive. We provided one pair of 16-year-old low-achieving students with a productive 

environment (technological tool, supportive teacher and an authentic activity) to support their 

learning of equality sentences as equivalence relations. We examined the pair of students’ routines 

in this environment. The research results indicated that the students followed a sequence of routines 

where the teacher and the technology had an effective role. Moreover, students’ substantiation 

routines relied on empirical argument that utilized concrete realizations afforded by the applet. 

Keywords: Commognition, dynamic technology, low-achieving students, equation, equivalence. 

Introduction 

The mathematics education of low-achieving students has attracted educators' attention for a long 

time. To support the mathematics learning of these students, one of the recommendations is to conduct 

a classroom environment that is conducive to learning (Leone, Wilson, & Mulcahy, 2010). This can 

be done, among other things, by giving students authentic tasks and dynamic tools (National Council 

for Curriculum and Assessment, 2003; National Council of Teachers of Mathematics, 2000), and, at 

the same time, by maintaining effective teaching (Ball, 2003), for example through questions. By 

authentic tasks we mean, tasks that are situated in meaningful contexts that reflect the way tasks might 

be found and approached in real life. In the present research, we tried to follow these principles by 

giving low-achieving students authentic activities related to equivalence relations. At the same time, 

the students worked with an applet suited for learning equations as equivalence relations; issues that 

have been indicated as critical to algebra (e.g., Stacey & Chick, 2004).      

Students' understanding of the equivalence relations  

Mathematics education researchers have been interested in students' understanding of the equivalence 

relations (e.g., Kieran, 1981, 1992; Knuth, Alibali, Hattikudur, McNeil, & Stephens, 2008). Knuth et 

al. (2008) argue that the notion of equality is often complex, and thus difficult for students to perceive. 

Furthermore, Kieran (1992) considered the equivalence relations as a pre-requirement for 

understanding structural representations such as equations. 

Knuth et al. (2008) examined middle school (grades 6-8) students' definition of the equal sign. They 

found that those students had three types of conceptions: a relational conception (when the student 

expressed the idea that the equal sign represented an equivalence relation between two quantities), 

operational conception (when the student expressed the idea that the equal sign meant "add the 

numbers" or "the answer"), and other conceptions; for example, when the student used the word 



"equal" in the definition. Several researchers expressed the view that helping students acquire a 

relational conception of the equality sign would help them succeed in algebra and beyond (e.g., 

Hunter, 2007; Knuth et al., 2008). Generally, this concept, together with the related concepts, as 

equivalence and equation, are complex ones and difficult for students to understand (Hunter, 2007; 

Kieran, 1981). 

A productive environment for students' learning of the equivalence relations 

Students' difficulties in understanding the equivalence relation could be lessened in a learning 

environment that includes authentic tasks (Taylor-Cox, 2003), technology (Jones & Pratt, 2006) and 

teacher's guidance. As to the use of technology to assist the learning of the equivalence relations, 

Jones and Pratt (2006) report an experiment in which two students connected an onscreen '=' object 

with other arithmetic objects, which supported them in developing relational conceptions of the equal 

sign. As to the use of authentic activities to assist the learning of the equivalence relation, Taylor-Cox 

(2003) describes the Pan Balance scales as a tool to demonstrate equality, where students need to use 

and make scales. As to the teacher's guidance as means to facilitate students' learning of the 

equivalence relation, researchers have indicated the importance of the teachers' role and guidance in 

learning mathematics in general (NCTM, 2000), and learning the equivalence relation in particular 

(e.g., Taylor-Cox, 2003). Taylor-Cox (2003) describes the mathematics teacher's role in enhancing 

students' learning, for example by asking questions that promote mathematical dialogue and 

understanding. The mathematics teacher’s actions are part of the classroom routines (using Sfard's 

terms) that assist the students in their mathematics learning.  

We designed the learning environment taking into consideration the role of technology, the role of 

the teacher, and the type of the tasks. To better understand the students' learning in this environment, 

we analyzed this learning using Sfard’s commognitive approach. Especially, we concentrated on the 

evolution of routines’ use. In the following section, we briefly outline the commognitive approach.   

Routines in the mathematics classroom   

Sfard (2008) presents four components of the mathematical discourse that help analyze it: words, 

visual mediators, narratives and routines. Mathematical words are used by the participants in a 

mathematical discourse to express and communicate with the other participants about mathematical 

ideas. In this discourse, a student learns new uses of previously encountered mathematical words, but 

may also learn new mathematical words. Visual mediators are visual objects and means with which 

participants of mathematical discourses identify mathematical ideas. They include symbols such as 

numerals, algebraic letters, tables, graphs and diagrams. A narrative is a spoken or written text that 

describes objects, or relations between objects or activities with or by objects, and that could be 

accepted or rejected within the mathematical discourse. Mathematical examples of narratives could 

be theorems, definitions and equations.  

Sfard (2008) defined Routines as “repetitive patterns characteristic of the given discourse” (p. 134). 

They characterize the use of mathematical words and visual mediators or the creation, substantiation 

or change of mathematical narratives. Examples on typical mathematical routines are methods of 

calculations and of proof (Sfard, 2008). She divides routines into explorations that aim to further 

discourse through producing or verifying endorsable narratives (as verifying a mathematical 

conjecture or proving a mathematical relation); deeds that aim to change the actual objects, physical 



or discursive, not just the narratives; and rituals that aim to create and sustain social approval with 

other participants in the mathematical discourse. Furthermore, rituals could involve imitations of 

other participants’ routines (Berger, 2013). Sfard further divided explorations into three types: 

construction that aims to create new endorsable narratives, substantiation that aims to decide whether 

to endorse previously created narratives, and recall that aim to summon narratives endorsed in the 

past. 

Previous research has used the commognitive framework in different ways to examine the four 

components of the mathematical discourse, or just some of them (e.g., Berger, 2013; Viirman, 2012). 

Little research has been done on students' routines while learning the equality sentences as 

equivalence relations, where most of the research was done on students' word use or narratives related 

to these concepts. The present research intends to study the routines of low-achieving students while 

learning equations as an equivalence relations between quantities. The main research question is: 

what are the characteristics of low-achieving students' routines in the course of learning equations as 

an equivalence relations between quantities in a productive learning environment? 

The design of the study  

To answer the research question we analyzed approximately three hours of learning by Noha and 

Maha, one pair1 of 16-year-old low-achieving students in the math class taught by the third author. 

The experiment took place in a school of low-achieving students who want to graduate as car 

mechanics or house/car electricians. The students volunteered to participate in four after-school 

meetings that aimed to teach the equations as an equivalence relations. In this study, we concentrated 

on the third meeting, which dealt with learning the equivalence between the two sides of an equation 

when performing arithmetic operation. The students who participated in this study had prior 

knowledge in operator precedence and the substitution of numeric values in algebraic expressions. 

They were not familiar with using technological software in learning mathematics. The two students 

shared a single computer, and the third author briefly introduced them to the functions of the software.  

The students were video-recorded and their computer screens were captured. The video recording 

was performed with a computer program that captured the footage in two different windows; one for 

the computer screen and the other for the student’s body. The third author conducted the learning 

activity. His main role was to ask clarification questions. The pair of students carried out four tasks 

presented in Figure 1.  

 

 

 

 

 

                                                 

1 For reasons of space, we decided to perform the micro-analysis of the learning process with one pair of students from 

the three pairs participating in the research project.    

Task 1 

 Enter the expression 6x in the red pan and 18 in the blue. What happened to the pans? 

Why?  

 Change the slider until the pans have equal values. Why do the pans have equal value? 

 Add the value 2 to the red pan. What happed and why? What should you do now to make 

the pans balanced? 

 Subtract the value 2 from the red pan. What happed and why? What should you do now 

to make the pans balanced? 

Task 2  

 Enter the expression 2x in the red pan and 10 in the blue pan. What 

happened to the pans? Why?  

 Change the slider until the pans balance. Why did the pans balance? 

 Multiply the expression in the blue pan by 2. What happened to the pans 

and why? What should you do to make the pans balance?  

 Divide the expression in the blue pan by 2. What happened to the pans and 

bword://BAB!ALL!,substitution/


 

 

 

The technological tool used in the experiment  

The technological tool used in our study is the interactive applet Pan Balance Expressions (PBE; 

NCTM, 2015; Fig. 2). The interactive applet PBE allows numeric or algebraic expressions to be 

entered and compared. Students can "weigh" the expressions they want to compare by entering them 

on either side of the balance. Using this interactive applet, students can investigate the equivalence 

of equation. PBE consists of four main windows: a) the slider window, which allows the student to 

vary the x- values; b) the pans window, which contains symbolic expressions entered by the users; c) 

the keyboard window, which enables the student to enter and edit expressions in the pans; d) the 

graphic window, which represents the graphs of the expressions entered in the pans.  

Data analysis 

To analyze the data, we categorized the routines, as suggested in Sfard (2008). We considered a 

routine to be an exploration when the student's goal, from performing the routine, was to arrive at a 

narrative. More specifically, we considered a routine to be an exploration of the type 'construction', 

when its goal was to arrive at a mathematical relationship. Moreover, we considered a routine to be 

an exploration of the type 'construction', its goal was to verify a relationship that was arrived at or 

conjectured. Other categories that we found are: teacher’s request (when the teacher requested the 

students to do an action), and students’ actions with the applet (when the students worked with the 

applet for different reasons). 

 

 

 

 

 

 

 

Results   

The pair of low-achieving students worked with three groups of narratives; (a) Solving the equation 

Ax=B using the applet; (b) constructing the equivalence equations resulting from performing the 

same allowed operation on both sides of the equation; (c) solving linear equations using the 

equivalence principle. In the present paper, we will present students’ routines related to constructing 

the equivalence concept resulting from performing the same allowed operation on both sides of the 

equation. 

Figure 1. Example of a task given to the students 

Figure. 2: The interface of the Pan Balance applet 

http://illuminations.nctm.org/activity.aspx?id=3529


Transcript 1 describes the pair of students' work while adding the same number to both sides of an 

equation. At this phase, the expression 6x was in the red pan and 18 in the blue one. The slider was 

at x=3, which mean the pans were in balance.  

25  T: Add the number two to the blue pan  

26 N: (she added two to the blue pan causing the red pan to rise) 

27     T:          What did you see? 

28     N:         Eighteen plus two 

29     T:          What happened? 

30     M:         It rose. 

31     N:         It is not equal; the red pan rose and the blue fell. 

32     T:          Why did this occur? 

33     M:  (Looking at the Pan Balance) Because we added the number two to the blue 

pan. They are not balanced; one pan is higher than the other. 

34     T:          Could they balance now? 

35     M:            (adds 2 to the red pan) 

36     M:         Yes, if we added the number two to the red pan. 

37     N:         Yes they are balanced now. 

38     T:         Why are they balanced now? 

39     N:        Previously there were 18 on both sides. Thereafter, we added two to the blue 

pan. It totaled 20. Now I added two to the 6x and it also totaled 20. It is now 

equal. 

Transcript 1: Adding the same number to the two sides of an equation 

This transcript illustrates the pair of students' routines, which led to the endorsement of the narrative 

"Yes, if we added the number two to the red pan" [36]. Students' routines started with a teacher’s 

request [26] with an overall intention to allow the student to construct a narrative related to adding a 

number to an equation. The students got engaged in actions with the applet [26]. The teacher then 

started a construction routine, with the intention to make the students aware of the effect of adding a 

number on one pan [27-31]. Then the teacher started a routine of substantiation [32-33]. It can be 

seen that the students’ exploration constituted of the following sequence of routines: teacher’s 

request, students’ actions with the applet, students' construction of a narrative, teacher's questioning, 

and students' substantiation of the narrative. The pair of students performed again the same sequence 

of routines to explore how to make the two pans equal: teacher’s request [34], students’ actions with 

the applet [35], students' construction of a narrative [36-37], teacher's question [38] and students' 

substantiation of the narrative [39].  

In their exploration of the narrative related to subtracting a number from the two sides of an equation, 

the pair of students needed just one sequence of routines. Moreover, in their exploration of the 

narrative related to multiplying the two sides of an equation by the same number, the pair of students 

skipped performing actions with the applet to construct the narrative. However, and as transcript 2 

shows, they performed these actions with the applet to substantiate the narrative about the equivalence 

of an equation under multiplication.  



86      T:        What would happen if you multiplied the expressions in the pans by the same 

number? 

87      N: When multiplying, the balance of the two pans would remain unchanged.   

     88      N:                 [she inserted the expression 6x on one pan and 18 on the other; thereafter she 

fixed x=3 to balance the pans].            

89      N:       I will multiply both sides by 2. 

90      N:           [She multiplied both sides by 2]. 

91      N:        I got it right. 

Transcript 2: Multiplying the two sides of an equation by the same number 

This transcript illustrates a modified sequence of routines: teacher’s request [86], conjecture (as a part 

of a construction) [87], actions with the applet [88], substantiation [89-91].   

The data analysis revealed some characteristics of students' routines. First, routines started with a 

teacher’s request or questioning. It seems that one of the teacher’s routines in the low-achieving 

classroom was to start the learning process by requesting the students to act or to answer. Second, the 

pair of students followed a sequence of routines to arrive at each of the narratives. This sequence 

consisted of teacher’s request, students’ actions with the applet, constructing a narrative, and 

substantiating it. This sequence of routines was not kept as is for every narrative, but a variation of it 

was followed. Third, students’ actions with the applet, what we could call deed routines, supported 

the low- achieving students in their exploration routines, whether they were constructions or 

substantiations. Fourth, the data analysis revealed a pattern of evolution of the routines associated 

with the successive narratives, where the number of routines needed for the students to endorse 

narratives was decreased for each group of narratives.  

Discussion 

The goal of the present research was to examine the routines of a pair of low-achieving students, 

while learning the equivalence relations in a productive learning environment. The students worked 

with the Pan Balance, which illustrate the equation concept. Working with it, they actually worked 

with visual mediator which signifying the mathematical objects and relations (Sfard, 2008, p. 224). 

Moreover, the students' routines regard using the visual mediator were visual and dynamic, where 

they could scan the Pan Balance and manipulate it, and consequently watch the effects of this 

manipulation on the equivalence relations. It could be claimed that these visual and dynamic routines 

helped the low-achieving pair of students to signify the equivalence relation through construction and 

substantiation routines. Furthermore, the applet constituted for the pair of low-achieving students a 

prompt for construction and substantiation routines.   

It was observed that the pair of low-achieving students used a sequence of routines:  teacher’s request, 

students’ actions with the applet, students' construction of a narrative, teacher's questioning and 

students' substantiation of the narrative. Moreover, students' use of the sequence of routines satisfied 

the variability and flexibility principles (Felton & Nathan, 2009; Sfard, 2008, pp. 202-205), i.e. the 

students varied their use of the sequence to meet their needs. This happened for example, when they 

engaged with multiplying the two sides of an equation by the same number. Constructing the 

appropriate equivalence narrative, they skipped performing actions with the applet, but performed 

these actions to substantiate the narrative. 



The sequence of routines described above shows the effect of the teacher's routines and of technology 

affordances on students' routines. It seems that the teacher’s initiation of students’ construction and 

substantiation routines was a prompt for them to follow routines that supported their successful 

construction of equivalence narratives. As for the technology affordances, the Pan Balance applet 

allowed the pair of low-achieving students to perform actions that supported them in their 

construction and substantiation of the equivalence narratives (e.g., scanning the equilibrium of the 

Pan Balance). Moreover, we argue regarding the pair of students’ substantiation routines, that they 

relied on empirical argument that utilized the "concrete realizations of the focal signifiers and relies 

on their perceptually accessible features" (Sfard, 2008, p.233). This type of substantiation is probably 

expected of low-achieving students.  

The present research reports the routines of one pair of low-achieving students. It shows that a 

productive learning environment that combines teacher’s initiation and questioning, technology and 

authentic tasks will support these students’ routines for arriving at mathematical narratives. Research 

that engages more low-achieving students’ is needed to confirm this research findings regarding their 

routines in similar environments.     
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Students’ reasoning on linear transformations in a DGS: A semiotic 

perspective 
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The aim of this paper is to analyze students’ reasoning on linear transformations while using a 

Dynamic Geometry System (DGS) from a semiotic mediation perspective. Considering design 

heuristics of Realistic Mathematics Education and the semiotic potential of certain tools and 

functions of DGS, I have developed a hypothetical learning trajectory and have designed a task for 

inventing fundamental properties of linear transformations. The task was field-tested in a case 

study with pair of undergraduate linear algebra students. An analysis of the task-based interviews, 

with a semiotic mediation lens, shows that the students managed to (re–)invent the fundamental 

properties of linear transformations. 

Keywords: Semiotic mediation, linear algebra, DGS. 

Introduction 

One major issue in the teaching and learning of linear algebra is providing students with ready–

made mathematics using different representations and different contexts (Dorier, 1998) without 

considering the students’ intellectual needs for learning (Harel, 1998). An example might be to 

introduce the notion of linear transformations with two fundamental properties as in numerous 

textbooks, where such introduction to the topic could trigger epistemological issues for students’ 

conceptualization of non–linear transformations (Dreyfus, Hillel, & Sierpinska, 1998). In this paper, 

I acknowledge a contrary introduction to the topic and consider a research question: Is it possible 

for students to (re–)invent fundamental properties of linear transformations? To answer this 

question, I consider a dynamic geometry system (DGS), which invite students into a progressive 

process of epistemic exploring, conjecturing and generalizing (Leung, Baccaglini-Frank, & 

Mariotti, 2013). Consequently, I focus on specific tools and functions of GeoGebra, such as 

dragging and grid functions, ApplyMatrix command and slider tool of the DGS as a tool of semiotic 

mediation for students’ reinvention of proposed mathematics. 

Theoretical Perspectives 

In this work, I consider two theoretical insights: (i) Realistic Mathematics Education and (ii) Theory 

of Semiotic Mediation, for designing instructional activity and analyzing the teaching–learning 

process. 

Realistic Mathematics Education (RME) 

RME is a domain–specific instructional theory developed by Dutch researchers (Van den Heuvel-

Panhuizen & Drijvers, 2014). The word realistic, here, does not directly refer to real–world task 

situations, but to paradigmatic situations that invite the development of meaningful mathematics. 

The problem situations do not necessarily come from real life directly, they can be related to an 

imaginary world or to real mathematics that students experience as meaningful: task situations have 

to be experientially real (Gravemeijer, 1999) to students. In parallel to such views, RME offers 

three interacting design heuristics for curriculum developers and educational designers 



(Freudenthal, 1983; Gravemeijer, 1999; Van den Heuvel-Panhuizen & Drijvers, 2014): guided 

reinvention, didactic phenomenology, and emergent modelling. Guided reinvention means 

providing students with an environment for their exploration, elaboration and inventing of 

mathematics. Didactic phenomenology refers to finding certain experientially real phenomena, 

which might form an environment where students create mathematics. The objective of emergent 

modelling is to enable students to shift from informal task situations to formal mathematics through 

support, enabling them to create their own informal mathematics.  

Theory of Semiotic Mediation (TSM) 

TSM was presented by Bartolini Bussi and Mariotti (2008) with the following main idea: to 

construct mathematical meanings, the teacher intentionally uses artefacts as a tool of semiotic 

mediation, which are used in carefully–designed tasks. The aim of the TSM is to transform 

students’ personal meanings to mathematical meanings. The teacher exploits the semiotic potential 

of the artefact, in which he or she uses an epistemological and didactical analysis to picture out 

possible learning steps from personal meanings to shared conventional mathematical meanings. 

Here, taking into account the didactic goals, the teacher considers what students know, what their 

experience with the artefact is and how they will accomplish the task by using the artefact. As a 

next step, the teacher designs a didactic cycle for classroom interventions. 

Students’ interaction with the artefact produces a complex semiotic process. Artefact signs (aS) 

appear when students who use the artefact relate in some way to the activity; specifically, to the use 

of artefact. Mathematical signs (mS) appear, when the students make a definition, conjecture, 

generalization or proof corresponding to didactic goals. Pivot signs (pS) have an interpretative link 

between personal meanings and mathematical signs and can appear in the accomplishment of the 

task. In the application of the didactic cycles, the teacher’s role is orchestrating students’ learning. 

Methodology 

This paper, in which I focus and present the results of a single task, is part of an extensive Design–

Based Research (project) (Bakker & van Eerde, 2015). Due to page limitation, I will present a case 

limited to a pair of students (A male, B female), who were sophomore level undergraduate linear 

algebra students, aged twenty. The students had experience solving linear equations, matrix algebra, 

(geometric) vector spaces and subspaces, and they had learned that every linear transformation can 

be represented through matrices. They also had experience in the use of GeoGebra’s main 

functions, specifically forming a slider and a matrix, and applying the ApplyMatrix construction 

tool from previous task sequences, where they constructed meaning of a transformation and linear 

transformation. However, the students did not know the fundamental properties of linear 

transformations. Task–based interviews were video–recorded and lasted around half an hour. The 

data was analyzed through a semiotic lens using categories of signs (Bartolini Bussi & Mariotti, 

2008): aS, mS and pS.  

Mathematical context, semiotic potential of DGS and task design 

A linear transformation is a specific transformation between V  and W can be represented as 

WVT :  for vector spaces V  and W , where T  satisfies: (i) )()()( vuvu TTT   for all 

vectors Vvu, , and (ii) )()( uu kTkT   for all Vu  and all scalars Rk  (Lay, 2006). Here, I 



took 
2

RWV  because of DGS availability (for example as in GeoGebra) and considered the 

semiotic potential of the following tools and functions of DGS for students’ (re–)invention of the 

fundamental properties above: (i) the dragging function allows the user to manipulate figures and 

explore independency–dependency of drawings and constructed objects, (ii) the grid function 

activates specific lines for integer values on the x and y axes and this function enables the user to 

observe variations of the coordinates of the objects in different windows, (iii) the slider tool offers a 

means to define a parameter and this may evoke meaning for dynamic (co)variation (Turgut & 

Drijvers, 2016), (iv) the ApplyMatrix tool works through an input line that enables the user to apply 

certain matrix transformations to geometric figures. I postulate that students’ dragging sliders 

connected to a matrix and applying matrix transformations to arbitrary vectors could provide an 

understanding for a meaning: matrix (and therefore linear) transformations preserve vector addition 

and scalar multiplication. 

The synergy between the definitions of guided reinvention and didactic phenomenology heuristics 

and the notion of semiotic potential in TSM implies the construction of a possible learning route, in 

other words, a Hypothetical Learning Trajectory (HLT) (Simon, 1995) which has to be elaborated 

on by the designer before the experiment by following four points (Bakker & van Eerde, 2015): (i) 

learning goals, (ii) students’ pre-knowledge, (iii) assumptions for students’ learning, and (iv) the 

teacher’s role (also in our case, the role of artefacts). Therefore, in Table 1, I express (i), (ii) and 

(iii) points of a HLT for invention of fundamental properties of linear transformations in a DGS.  

Associated 

Concepts 

Expected Steps in 

the DGS 
Exemplary Task 

Epistemic 

Artefacts in 

DGS 

Expected 

Mathematical 

Meanings 

–Geometric 

vectors 

–Addition of 

vectors 

–Multiplication 

with scalars 

–Matrix 

transformations 

–Fundamental 

properties of 

linear 

transformations 

–Exploring the 

effects of sliders on 

(arbitrary) linear 

transformations of 

arbitrary vectors 

–Comparing the 

initial and final 

versions of vectors 

while moving 

sliders or dragging 

the objects 

–Form sliders 

–Construct 

2´2 matrix 

–Form arbitrary 

vectors  

–Use Apply 

Matrix 

command 

–Move the 

sliders and drag 

the objects 

–Dragging 

–Grid 

function 

–Apply 

Matrix 

construction 

tool 

–Slider tool 

–Comprehending that 

the situation is 

independent from 

matrix entries or 

vectors  

–Formulating the first 

rule situation, 

T(u+v)=T(u)+T(v)  

–Formulating the 

second T(ku)=kT(u)  

–Proving such results 

in terms of matrix 

representations 

Table 1: HLT for the inventing of fundamental rules for linear transformations 

As aforementioned before, students worked on GeoGebra interface in the previous didactic cycles, 

which were about transformation of geometric vectors, figures, and constructing meaning for linear 

transformation. Consequently, the tools and functions of GeoGebra and proposed concepts were 

experientially real for them. Following Table 1 and considering guided reinvention heuristic, the 

task was formulated as follows (a possible interface for the task steps is presented in Figure 1), and 

also for students’ making their own models (cf. emergent modeling). 

Step 1: Open GeoGebra and activate grid function. Next, form two sliders a and b and, using a and 

b, form an arbitrary 22  matrix. Step 2: Form two arbitrary vectors vu,  and construct vu   



through an Input line. Step 3: Apply matrix transformation to vu,  and vu  . Name these vectors, 

respectively: u , v and w respectively, and then calculate vu  . Move the sliders and drag u  

and v  in itself. Discuss with your pair and explain your observations. Step 4: Form a new slider k . 

Now, obtain matrix transformation of uk  and also compute uk . Drag the vector u  and explain 

your observations, and make conjectures. What happens when you move the sliders? 

 

Figure 1: An expected DGS interface for the task 

Teacher’s (possible) underpinning questions in the interview are: What is the role of sliders here? 

What is the role of the matrix? What are the relationships between initial vectors and 

transformations? How do you prove this? [In case they make a generalization with matrix notation]. 

Within this task, I hypothesized that students would observe that the transformation of vu  , 

denoted by )( vu T , always overlaps on the )()( vu TT   vector and similarly, )( ukT  also always 

overlaps on )(ukT  vector, where situations were independent from the choice of matrix and/or 

choice of vector. This could be made possible through the semiotic potential of the aforementioned 

functions and tools of DGS and teacher’s (T) guidance role for reinvention of the mathematics. 

Analysis: Emergence of signs 

Students followed the line of the task. First they constructed two sliders, a and b. Next, using such 

values in the spreadsheet window of Figure 1, they defined a 22  matrix as 









ab

ba
A . Through 

the Input line, they formed two vectors  2,1u  and  3,1v . They first obtained the sum of the 

vectors and thereafter applied matrix transformation by the ApplyMatrix command. The software 

assigned u  for )(uT , similarly, v  for )(vT , and wvu   and dvu  . For a while, the 

students discussed the steps of the task to determine which matrix application is the first, the second 

or the third, which seemed rather confusing for them. After they had completed the three steps, 

while dragging the sliders, they were surprised because a number of vectors and some 

transformation vectors overlapped. At this moment a few aS appeared (see 18–20):  

18 A: … [pointing on the grid (see Figure 2a)] look, how this happened, these are 

overlapping…  

19 B: No. I think, it is because of matrix, look, [dragging sliders and pointing 

matrix entries with pencil (see Figure 2b)] it is changing. 



20 A: Let’s analyze them, which is which and why overlaps… [They are trying to 

separate the vectors (see Figure 2c) and taking notes] 

   

(a)        (b)            (c) 

Figure 2: a, b, c Emergence of aS during analyzing the overlapping situation 

Next, the teacher intervened to make the students focus on the transformations of the vectors, 

because they had spent a lot of time dragging sliders, changing matrix entries (i.e., trying a unit or 

zero matrix and so on) to figure out why some overlapped (see Figure 3a). Then students re–

checked the steps and wrote up the findings in their own way. Some pS appeared here, reflecting 

the students’ new meanings through the semiotic potential of the artefact (37–38), and also 

appeared on the students’ productions (Figure 3b). 

26 T: … what about the transformations of vectors? What did you observe? 

… 

37 B: … I think we will find a relationship between these [pointing on the notes 

(see Figure 3b)]. Here, we have the sum vector’s transformation and sum of 

each vector’s transformation. 

38 A: However, this could be dependent on the choice of matrix? What will 

happen for the matrices where their determinants are zero? … 

                

   (a)      (b) 

Figure 3: a, b Students’ productions as pS 

Interestingly, once more, they focused on the entries of the matrix, because in the previous step they 

had employed a unit or a zero matrix, and they began to check other possibilities for the cause of the 

overlapping situation. Consequently B figured ‘they always overlap’. Here, aS ‘overlaps’ in the 

previous analyses, and can now be considered a pS (see 63, 86), because it is mediating the 

transformation of personal meanings to mathematical meanings. 

63 B: It is clear that they always overlap … Why is this happening? 

64 A: Exactly… but why? 

… 



86 B: d  and w  always overlap and they are the same. I could not analyze the 

others.  

87 A: … because of matrix transformation, I think. 

As a next step, aS and pS interlaced with the students’ personal meanings associated with matrix 

transformations. They re–analyzed their findings, and finally, mS corresponding to students’ 

reinvention of the fundamental properties appeared (93-97). 

93 B: Just a second. What was the meaning of w? It was a transformation of 

vu ? … [moving sliders and thinking]…  

94 A: We also applied matrix transformation to vu ? 

95 B: Because, they are overlapping, this means, we have obtained the same 

vector. … Does transformation of the sum vector [meaning vu ] equals 

the sum of the separate transformations? 

96 A: Absolutely, right. …  

97 B: … [First, she is writing her conclusion, but not mathematically (see Figure 

4a), then she is trying to write it mathematically with her partner’s help (see 

Figure 4b)] …  

            

   (a)        (b) 

Figure 4: a, b Students’ conclusions for the first fundamental property as mS 

Next, while trying to express the situation mathematically, which was under the teacher’s 

orchestration, the students reinvented the first fundamental property (see Figure 5a). However, the 

teacher was orienting students to prove their result considering their pre–knowledge on representing 

linear transformations with matrices. Student B immediately related the situation with her pre-

knowledge and proved her conclusion (119 and Figure 5b). 

114 T: Ok right. Please remember the matrix representations of linear 

transformations. Considering this, how do you prove your result? 

… 

119 B: … [She is writing matrix representations (see Figure 5b), then explains], yes 

… I now realize why this is happening. We can show every linear 

transformation with a matrix and matrix algebra has distribution property. 

Then I can do like this [writing expressions in Figure 5b]… 



                

   (a)       (b) 

Figure 5: a, b Emergence of mS in relation to the task’s goal 

As a final step, the teacher asked the students to consider Step 4. As expected they placed a slider 

for k, and applied a matrix transformation to uk and also computed vector uk . As soon as one 

student saw that the transformation of uk  and uk  overlapped and were exactly the same, by the 

help of the first property she invented, B expressed her views. The final mS emerged in the 

discourse (129).  

129 B: … Oh yes, I think this is obvious; this is also a result of property of matrix 

algebra. For a matrix, k can be multiplied with each entry of a matrix or it 

can be expressed a factor [writing )( uu kfk  ]. Therefore, their [meaning 

uk  and uk ] transformations are the same. 

Conclusions 

In this paper, I consider the research question, ‘Is it possible for students to (re–)invent fundamental 

properties of linear transformations?’ Students work on the task formed through the design 

heuristics of RME and the semiotic potential of some tools and functions of GeoGebra provide an 

affirmative answer, but with some doubts and limitations. For instance, the students spent much 

time determining vectors when they overlapped. This issue to be considered is the students’ 

frequent analysis of matrix entries, where they think that an overlapping situation depended on this. 

I think that such frequent analysis of matrix entries stems from previous experience, where the 

students were continually trying to find matrices of linear transformations. Interestingly, in the 

students’ analyses for characterizing the matrix, different semiotic resources beyond aS, pS and mS 

appeared; for instance, gestures and mimics attached to students’ analyses process. A multimodal 

perspective (Arzarello, 2006) could provide a detailed view for our case. However, in the present 

case within a TSM perspective, I observe a semiotic chain (Bartolini Bussi & Mariotti, 2008), 

which shows the connection between semiotic resources of students’ learning, for inventing 

fundamental properties of linear transformations as follows (Figure 6). 

 

 

Figure 6: A semiotic chain for inventing fundamental properties 
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Homework is a routine practice in maths classes, and research has shown that the immediate 

feedback and acknowledgement of effort is important for students. Unfortunately, the traditional 

classroom setting does not allow for this degree of feedback. Khan Academy offers a free tool that 

allows teachers to monitor students’ activity and provide them with feedback and guidance. In this 

study, we investigated one Czech high school’s use of Khan Academy as a homework platform, 

focusing specifically on language barriers and their impact on the ability of non-native English-

speaking students to benefit from Khan Academy. We found that students who faced a lower 

language barrier were able to make better use of Khan Academy’s educational resources. 

Surprisingly, we also found that a reported language barrier does not significantly correlate with a 

student’s English grades.   

Keywords: Homework, online assessment, language barrier, electronic resources. 

Introduction 

Every student does maths homework during his or her high school studies. I remember doing most 

of mine on the way to school or during the break before my maths classes. At the beginning of each 

maths class, my teacher would walk around the classroom, checking some notebooks randomly to 

see if there was anything that looked like homework. Since I really enjoyed maths, I did most of my 

maths homework by myself and then lent it to others to copy. We did not receive much feedback on 

our homework, so it was no wonder that many students were not very motivated to do their 

homework on their own. Unfortunately, maths teachers in large classes did not have much of a 

choice back then. Today, however, new online technologies, such as Khan Academy (KA), offer 

individualisation, guidance and immediate feedback for students, as well as a great amount of data 

about student activity for teachers (Khan Academy, 2016a). 

The Khan Academy (KA) is a non-profit organisation that runs the website www.khanacademy.org. 

Since 2008, it has undergone a great deal of development. What started as a list of instructional 

maths videos has developed into a network of vast educational resources, including interactive 

exercises covering mathematics, the natural sciences and more, from the elementary to the 

undergraduate level. Thanks to generous donors, KA is able to provide all of its content for free, and 

it probably will not be cancelled or monetised any time soon. At the moment, KA’s exercises and 

most of its educational videos are offered in English only, as is the case with many other online 

resources. We therefore decided to investigate the effects of language barriers on the preferences 

and attitudes towards KA of students who practise maths using KA exercises.  



Theory 

Homework and feedback 

Homework assignments are routine in most mathematics classes, including those in high schools in 

the Czech Republic. There is a great deal of evidence suggesting that monitoring students’ work and 

acknowledging their efforts is very important for students, as it increases the effort they put into 

their homework (Strandberg, 2013). When teachers do not grade a homework assignment and return 

it promptly, students report feeling like they have wasted their time on this activity (Strandberg, 

2013; Wilson & Rhodes, 2010). Students need to believe that their homework is meaningful and 

that teachers value their efforts (Bempechat, Neier, Gillis & Holloway, 2011).  

When it comes to feedback, there are still important gaps in our understanding (Shue, 2008). There 

is some evidence suggesting that when a task requires material or procedural understanding and 

analytical problem solving (e.g. mathematics), providing hints and allowing multiple attempts may 

lead to a greater increase in student performance than simply revealing the correct solutions (Clarina 

& Koul, 2003; Attali, 2015).  

Students benefit greatly from timely and meaningful homework feedback. Unfortunately, it is often 

beyond a teacher’s capacity to provide this to every student in a traditional classroom setting. 

However, technology might be able to help teachers with this. Moreover, technology can prevent 

misunderstandings between students, teachers and parents about the amount of time students spend 

on homework, as accurately estimating this can be difficult for teachers in the traditional classroom 

setting (Strandberg, 2013). 

Language barriers 

We did not find many recent studies investigating English language barriers in terms of learning 

mathematics or learning in general. There have been some studies that have investigated non-native 

English-speaking students in an English-speaking environment, both at the high school (Adams, 

Jessup, Criswell, & Weaver-High, 2015) and university (Variawa & McCahan, 2012) levels. 

However, these are not very relevant to our investigation, as they study foreign students in English-

speaking communities and focus on different subjects (e.g. chemistry, engineering). 

For the purposes of this study, we define a language barrier as English language difficulties, as 

perceived by students when interacting with the Khan Academy website. 

Khan Academy 

KA has been providing interactive exercises for only a few years, so it has not yet been heavily 

researched. However, videos have been used for educational purposes for decades. Two recent 

studies have investigated data from several Massive Open Online Courses to determine the 

attributes of the more engaging videos (Guo, Kim, & Rubin, 2014; Kim et al., 2014). In our 

previous study, we concluded that KA’s videos align well with most of the aforementioned 

recommendations (Vančura, in press). Our investigation into the possible impact of KA as a 

homework platform on student attitudes towards mathematics demonstrated that negative impacts 

are very unlikely (ibid). 

A large study was also conducted concerning the implementation of KA in U.S. classrooms 

(Murphy, Gallagher, Krumm, Mislevy & Hafter, 2014). The results revealed that only 45% of 



American students reported being able to learn new skills using KA without teacher assistance. We 

found similar results (46%) in our previous study (Vančura, in press). 

Context 

In this study, student participants were assigned homework on a weekly basis in the form of KA’s 

interactive exercises.  

 

Figure 1: Interactive exercise (Khan Academy, 2016b) 

Every exercise consists of a series of problems related to very specific topics. In the exercise shown 

in Figure 1, students are asked to practise estimating equation solutions using graphs. Specifically, 

students are required to select the shape of the graph for function g [1]; to graph the function g using 

the interactive graphing tool [2]; and to estimate the lower solution of equation f(x) = g(x), where 

function f is given by the graph. Students cannot move on to the next problem until they solve the 

exercise correctly. If they cannot solve the problem, there are hints [4] that demonstrate step-by-step 

solutions. Even after the whole solution is revealed, students are still required to graph the function 

g and estimate the solution correctly. Only then can they continue on to the next problem. Students 

can also watch instructional videos that explain the solutions to a sample problem in detail [5]. Each 

student’s progress is captured and displayed at the bottom of the screen [6]. Students receive a 

check mark for solving the problem correctly on the first try without any hints. They get an x mark 

for entering the wrong solution and a light bulb icon for solving the problem correctly on the first 

try with some hints.  

In order for students to successfully finish an exercise, they must get five (or sometimes three) 

check marks in a row (i.e. solve five problems on the first try without any hints). This multiple-try 



mechanism aligns well with the findings on feedback (Attali, 2015). However, this feedback does 

not tell students where they have made their mistakes, and it usually provides only one way to solve 

a problem. Some exercises consist of multiple-choice answers, and students might be tempted to 

guess the solutions—although the requirement of solving five problems in a row makes guessing 

time consuming. For example, even if students were able to narrow the choices down to two, they 

would still need to answer 62 questions on average in order to get 5 in a row correct. If students 

guessed blindly from 4 choices, they would need to answer 458 questions on average.  

Another important tool that KA offers is the teacher dashboard, which allows teachers to monitor 

student activity. Teachers can see when students work on exercises, which exercises they work on 

and how well they solve the problems. Teachers can even see the amount of time students spend on 

each problem, as well as the total time they spend on KA. This data allows teachers to monitor, 

acknowledge and assess students’ homework objectively and meaningfully. Moreover, in our study, 

these attributes allowed teachers to grade homework on a weekly basis. 

Based on the results of one SRI study (Murphy et al., 2014), student participants were not required 

to learn new skills on KA; rather, they had to practise skills they had already acquired. 

Methodology 

Research questions 

1. Does a student’s language barrier influence whether he or she prefers KA homework over 

homework from traditional textbooks? 

2. How does the language barrier influence students’ attitudes towards KA and their ability to 

learn maths while using it? 

As the research progressed, we saw that language barriers did play an important role, which made us 

add a third question of interest: 

3. Can the language barriers of individual students be easily and reliably estimated (i.e. by 

asking the student’s English teacher)? 

Data collection 

We developed two surveys based on the surveys used in the SRI study (SRI, 2015), although we 

added some questions about English language usage and omitted some questions that were 

irrelevant to our investigation. The first survey was administered in December 2015, and the second 

was administered in June 2016. Both surveys contained several pairs of verification questions to 

detect inconsistencies or carelessly filled-out surveys. To measure the language barrier, we used 

Likert-scale questions, such as, “My limited English knowledge prevents me from using Khan 

Academy effectively.” To measure the preference for the KA homework platform, we used Likert-

scale questions, such as, “I prefer to solve examples from common textbooks rather than from Khan 

Academy.” Surveys were administered during an ordinary maths class so that the students had no 

reason to hurry. We also collected students’ midterm and final grades in mathematics and English 

for the 2015–2016 school year. 

At the beginning of September 2016, we asked the students’ English teachers to estimate the 

reading and listening abilities of the participating students, as well as the effects of the students’ 



language barriers when using English mathematical software. The teachers were asked to use the 

Common European Framework of Reference for Languages (A1–C2) for their estimations (Council 

of Europe, 2016), which were then recoded on a scale of 1–6. 

Participants and criteria of analysis 

The first survey was administered to 141 non-native English-speaking students aged from 15 to 20 

years old from 7 maths classes in 2 Prague high schools. For the second survey, the participants 

included 83 students from 5 out of the 7 classes that participated in the first survey. All of the 

students were learning English as their second or third language. A total of 64 students participated 

in both surveys. The students in our study were taught by six different English teachers, who were 

asked to estimate the students’ language barriers. The author of this paper was the maths teacher for 

two of the seven classes. Therefore, we looked for relative patterns (i.e. connections between the 

students’ language barriers and their learning independence) rather than for absolute results. When 

investigating absolute results, such as student preference for KA over traditional textbooks, we also 

considered the differences between the students who were taught by the researcher and those who 

were not.  

To measure the language barriers, we required Cronbach’s alpha to be greater than 0.7, which is 

generally considered to be an acceptable level of consistency. When it came to correlations and 

hypothesis testing, we used the 5% significance level. 

Results 

In the first survey, students reported a strong preference for KA over traditional textbooks (Vančura, 

in press). This preference decreased significantly in the second survey, although KA was still 

preferred. In both surveys, the students who were taught by the researcher did not report a stronger 

preference for KA than the other students. Students’ preference for KA was significantly correlated 

with reported language barriers (see Figure 2). Students with greater language barriers tended to 

prefer KA less. Even so, students who reported significant difficulties with English preferred KA 

over traditional textbooks.  

Both surveys revealed a significant connection between the students’ reported language barriers and 

several other factors. In both surveys, students with lower language barriers 

a. found KA videos and exercises to be more helpful for them (correlations 0.18–0.45); 

b. reported higher autonomy when learning new skills using KA (0.17–0.28); and 

c. reported a more adequate understanding of their skills while working in KA (0.22–0.29). 

The reported levels of language barriers decreased slightly between the two surveys, but this 

decrease was not statistically significant. Surprisingly, the reported language barriers did not 

significantly correlate (-0.02, 0.14) with the English grades. We assumed that different teachers 

would have different grading strategies and standards, so we normalised the English grades within 

the groups of students taught by each teacher. The resulting correlation increased slightly to 0.16, 

which is still insignificant in our case. We also calculated the correlation between English grades 

and the decrease of language barriers between the two surveys; again, the correlation was 

insignificant (0.02). 



 

Figure 2: Student preference for the KA homework platform by language barrier in the first survey 

Driven by these results, we asked the English teachers to evaluate the students’ English listening 

and reading skills, which correlated moderately (0.45, 0.48) with the language barriers reported by 

the students.  

Conclusions and discussion 

Homework remains an important part of mathematics education in the Czech Republic. KA can 

provide students with guidance and immediate feedback, which we believe is the main factor that 

leads students to prefer KA over traditional textbooks. The decrease in KA preference over time 

may be attributed to the novelty of this new system wearing off. Still, it is worth noting that even six 

months (and many working hours) later, KA remained the preferred choice of the majority of the 

student participants.  

We found that language barriers play an important role in both preference and reported utilisation of 

KA. Students with greater English-language capabilities reported a higher ability to use KA learning 

resources, which we believe to be a strong factor behind their stronger preference for KA over 

traditional textbooks. We can assume that similar patterns would appear with other online 

educational resources—the number and quality of which continues to grow rapidly, and which 

would take a great deal of time to translate into Czech. Notably, KA is one of the most-translated 

educational resources in the Czech Republic. However, despite great effort from the non-profit 

organisation Khanova Škola (Khanova škola, o.s., 2016), only about 35% of KA’s videos have 

subtitles, while fewer than 1% have Czech dubbing. If we want students to benefit from these 

growing resources, then we need to prepare our students for learning in English.  

The last result of our study was that students’ English grades did not significantly correlate with 

their reported language barriers (i.e. the ‘best’ English students did not typically feel better able to 

overcome their language barriers than the struggling students). This pattern held true even after six 

months of using KA. We assumed that the students would learn to overcome these barriers over 

time, as they used the English resources over the course of the study. Our study did indeed show 

that the reported language barriers decreased slightly, albeit insignificantly.  

The teachers’ evaluation of the students’ English reading and listening skills correlated significantly 

(0.45, 0.48) with the language barriers reported by the students, so such evaluation could provide a 



very rough estimate of the language barriers faced by a group of students. However, this correlation 

was not strong enough to provide a reliable estimate of the barriers faced by the individual students, 

as it only explained about 23% of it (0.482 = 0.23). Ultimately, we were unable to find a quick and 

reliable way to estimate the individual students’ self-reported language barriers. 

Limitations and future research 

The small size of our sample made it impossible for us to find small correlations or inconspicuous 

patterns. Larger samples would have also allowed us to verify our results at a higher confidence 

level. The disconnection between the reported language barriers and the students’ English grades 

could also be a local phenomenon, since every Czech school has its own curriculum. 

In this study, we relied mostly on students’ opinions, which might not have been completely 

accurate (i.e. even though students reported that they could make good use of KA resources, that 

does not necessarily mean that they did). 

The results also showed that the English courses currently being offered to students might not be 

sufficient to prepare them to learn mathematics in English using tools like KA. Therefore, 

determining how to help students learn in English might be an interesting question for researchers 

and a challenge for both maths and English teachers. 

While KA offers a great variety of exercises, its narrow focus (i.e. graphing quadratic functions in 

vertex forms) and repetitive nature might produce very formal knowledge that cannot be transferred. 

In future study, we would like to investigate what students actually learn using KA and how it might 

be affected by their language barriers. 

As with every digital resource, KA sometimes experiences technical problems. Exercises can fail to 

load properly and data might not show up in the teacher dashboard. Therefore, it is a good idea to 

consider possible technical problems before judging students too quickly.  
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In 2012, the University of Namur (Belgium) launched the PUNCH project (‘PUNCH’, 2012). Within 

this framework, many experiences to rethink our teaching practices were sponsored.  Among many 

others, the POD-EN-MATH project aims to help students in computer science to complete 

praxeologies (Chevallard, 2006; Winslow, 2008) when learning mathematical concepts and doing 

this with the help of high-quality podcasts. Students will gain experience by analyzing step-by-step 

our own procedure to make the link between theory and technics. Doing so would permit us to make 

the didactic contract more explicit (Brousseau, 1984). Indeed this procedure is not documented but 

only transmitted orally. The next step of the project is that students themselves provide content to our 

podcast database. This experience put into evidence the difficulty we had to help students to 

communicate, to teach their own knowledge focusing on a more didactic point of view.  

Podcast we proposed  

At the end of their graduate program, Computer Science students should be able to model the 

customer’s need, compute the complexity’s program (in terms of number of needed operations to 

perform) and prove that proposed program architecture fulfills the customer’s demand. Discrete 

mathematics is mandatory as a corner stone to reach these outcomes. However, our students have 

great difficulties in building up the connection between theory and practice due to, among others, our 

ex cathedra teaching habit, as mentioned by Winslow (2008). Our podcasts aimed at filling this gap. 

We proposed high-quality podcasts of five to ten minutes. Our objective is to explain step-by-step, 

the reasoning that permits us to obtain the solution of a problem. Indeed the difficulty they often 

mention is to translate the problem into a mathematical model that needs to be solved, and not the 

theory they should use once the mathematical model is obtained. As proposed in Houston (2009), we 

want them to build up their mathematical reasoning and one way to do it is by viewing our own 

podcasts. As future analysts, the mathematical reasoning is of crucial interest for our computer 

scientists. Indeed they will have first to analyze the customers’ needs and next to rephrase them in 

terms of programming objects and methods to programmers they manage. Mathematical reasoning is 

using the same skill.  

Podcast they had to build 

Our final objective was that students should be able to build up their own podcast in the second level 

of discrete mathematics program. They were expected to build these podcasts, with the same level of 

quality and accordingly contribute to the podcast database. The problem they have to solve is on 

building up a podcast explaining their proof using the so-called recursive method. A specialist in 



mathematics education was available to answer all their questions via personal meetings. Our students 

did present almost all the difficulties reported by Grenier (2012) as explained in the poster. In the 

light of the personal didactic supervising, some have been corrected and others have unfortunately 

not. The question then arises on how to improve our methodology to give them the ability to discuss 

about how to build up an inductive proof.   

Return on experience 

None of the submitted podcasts reached our didactic quality requirements and could not be shared 

between peers. However, students greatly enjoyed producing podcasts as well as the personal 

coaching. They mentioned their understanding of the recursive approach increased in quality. Grades 

obtained at the final examination confirmed their belief.   

This experience has highlighted to us the difficulty students have when building up their own 

expertise independently, as well as the difficulty they have to explain to their peers how to build up 

their own mathematical reasoning. The question that remains is to decide what kind of approach 

should be used to let our students become more and more autonomous in their learning of 

mathematics. 
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Introduction/Literature review 

Previous studies of courses with both face-to-face lectures and online lectures/videos (Inglis, 

Palipana, Trenholm, & Ward, 2011) have identified clusters of students based on their resource 

engagement. They found that students who attended face-to-face lectures or the maths support 

centre achieved higher grades than students who predominantly used online lectures. Inglis et al. 

(2011, p. 490) furthermore discuss how “what remains poorly understood is the overall pattern of 

study choices made when students are presented with many options”, and comments on how 

valuable research into examining student choices would be. Other studies have made suggestions as 

to why students might opt for a particular engagement pattern including: performance in course to 

date; proficiency of IT; convenience; and personality type (Bassili, 2006). Bassili found that both 

promotion and prevention factors influence students’ engagement decisions. This study seeks to 

expand on the literature by explaining reasons behind students’ choices. Subsequently, the research 

questions for this study are: 

 Which resources do students engage with when studying the course content? 

 Why do students choose to engage with these resources? 

Method 

This study took place in University College Dublin (UCD). Data was collected from a large first 

year undergraduate module, Maths for Business. This is not a traditional, blended or e-learning 

course. Maths for Business is a unique course in that students have a choice of whether to complete 

the course material through lectures, online videos or a combination of both. The e-learning 

segment of the course consists of 68 short videos with average length of 7.6 minutes. The module 

co-ordinator has chosen to offer online support for students in response to: the large class sizes; 

acknowledging differences in learning styles and abilities of students; and additional support needed 

by ‘weaker’ students. This form of online learning is particularly suited for procedural mathematics 

courses of large mixed ability cohorts. For our study, we combine quantitative and qualitative 

survey data to identify engagement clusters based on resource usage, and explain the reasons behind 

students’ engagement clusters. 

In order to develop a complete understanding of students' engagement, the data for this study 

broadly covers three areas: survey response data, background information of students, and 

engagement data. Students’ data was linked together from each of the sections. The first stage was 

cluster analysis. Rather than cluster students under total videos and lectures, we decided to cluster 

students based on what resources they engaged with for the lecture material they covered. We 

developed three variables to describe this; lecture usage, video usage and overlap of resources. 

Subsequently, cluster analysis was performed on the three variables; lecture usage, video usage and 

overlap of resources using model-based clustering. Qualitative data analysis is currently being 



performed under the Braun and Clarke (2006) framework. Themes are considered to be semantic as 

students’ responses are direct. 

Initial results 

Cluster analysis has identified four distinct clusters: high lecture usage cluster; high video usage 

cluster; a cluster with high lecture, high video usage and high overlap between resources; and a 

cluster which features both lecture usage and video usage but with little overlap. Initial qualitative 

analysis has suggested the high lecture usage cluster is formed by students who perceive videos as a 

secondary tool; they find the lecture content has more depth, and enjoy the interactive lecture 

environment. In comparison, the high video usage cluster is formed by students who have issues 

with the lecture environment, and find little if any benefit from lectures. Videos offer these students 

an efficient and flexible method to study. The third cluster, the cluster with high overlap, has 

occurred owing to weak students accessing all available resources and needing extra support. The 

final cluster with little overlap of resources is formed by students who have switched from lectures 

to videos during the semester or are avoiding a specific lecture every week owing to the 

inconvenience of the timetable.  

Mathematical procedural courses differ in their nature and design from other disciplines. Maths for 

Business use of e-learning allows ‘stronger’ students to progress at a fast, flexible pace while 

supporting the ‘weaker’ students through providing access to multiple resources which can be 

repeatedly used. Students can choose their resources to suit their learning. Overall there is an 

opinion from students that “[online learning] works very well for maths however [students] don’t 

know if it would work well for other modules”. Understanding students’ reasons for choosing their 

engagement pattern may help in the future design of resources, and identifying whether online 

resources are particularly beneficial for large mathematics classes of mixed abilities. 

The poster will expand on the initial qualitative analysis of the survey responses by explaining in 

detail the reasons behind each engagement cluster. We would like to thank UCD IT services for 

providing the Virtual Learning Environment data. 
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Scope and objective of the presented project 

Based on the assumption that activity (as opposed to the passive consumption of verbal instruction) 

supports learning, and accompanying the rise of learning theories that take into account the bodily 

grounding of the brain and its development, the usage of manipulatives – tangible learning materials 

– enjoys widespread trust among algebra teachers. Over the last two decades a variety of virtual 

adaptations of such manipulatives on personal computers and touch devices has been developed. 

The potential of such programs lies in the possibility to discover a range of configurations that 

would not be feasible in the real world, and to get automatic feedback about the correctness of the 

chosen manipulations. However, these qualities come at the price of abandoning the materiality of 

the manipulatives. The miniaturization of existing technologies and the creation of new input and 

output channels raise the question if and how manipulatives in mathematics education could be 

conceptualized as smart objects or tangibles – manipulatives that have the ability to interact with its 

users. Such objects have already been designed for learning purposes in other domains (Marshall, 

2007). For the field of school algebra, the possibilities and challenges of their implementation is to 

be investigated in the MAL (Multimodal Algebra Learning) project, a collaboration between 

mathematics education and digital media researchers, experts in data collection and evaluation, and 

commercial enterprises. This contribution focuses on the didactical conceptualization that underlies 

the work of the consortium. 

Theoretical framework 

Many theoretical approaches assume bodily action to be beneficial or even defining for learning 

processes. Bruner’s well-known model proposing the distinction between enactive, iconic and 

symbolic action offers a starting point. Following Nakahara (2008), a distinction can be made at the 

enactive level (between hands-on manipulation and other real(istic) settings) and at the symbolic 

level (between natural and mathematical symbolic language). Although neither Bruner’s nor 

Nakahara’s terminology implies a strict proceeding order, the progression from concrete action with 

the smart objects to symbolic algebraic language follows from the pedagogical setting at hand. 

Design ideas and questions for investigation 

Because research regarding traditional manipulatives suggests that only prolonged engagement with 

such objects reliably supports learning (Sowell, 1989), the MAL project wants to design one set of 

smart objects that can be used for a whole range of topics (e.g., for the generation of algebraic 

expression from pattern sequences, for transforming expressions, building relations, and for solving 



equations). To achieve this, we turn to algebra tiles, which are already integrated in some North 

American algebra textbooks (e.g., Dietiker, Kysh, Sallee, & Hoey, 2010). 

Marshall (2007) offers a framework that allows for the systematic design analysis of tangibles in 

learning environments. For example, he points to possible learning benefits: the playfulness that can 

be designed, the potential novelty of links, enhanced accessibility, chances of collaboration, and the 

learning benefits that may arise from physicality itself. Furthermore, he proposes a distinction 

between expressive and exploratory activities, which reminds of the more algebra-related work by 

Drijvers, Boon, and van Reeuwijk (2011), who distinguish between (technological) tools for doing 

algebra and tools for learning algebra, with the latter being subdivided into practicing skills and 

developing concepts (p. 185). It seems that the existing implementations of algebra tiles are more in 

the expressive realm of doing algebra, as they always start with a given definition of variables as 

unknowns, opposed to the possible exploration of their potential in describing change. It is a central 

goal of the MAL project to bring these two together. In the process, the following questions can be 

addressed: How do the physical and technical features of the designed objects interact with the 

didactical goals? To what extend is the integration of many algebraic concepts into one system of 

smart objects helpful in creating a multi-faceted image of the role of variables in algebra? What are 

limitations of the smart algebra tiles that could be resolved by either returning to traditional 

manipulatives or going virtual? 
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Theoretical background 

Roth (2015) defines computer-based learning environments based on mediawiki software as a 

structured pathway with a well-matched sequence of tasks. Central contents are interactive materials 

like for instance GeoGebra-applets. Roth adds that learners are encouraged to work self-regulated, 

self-reliant and activity-oriented within these pathways. In Germany suchlike learning environments 

are for example available on the website of ZUM-Wiki (https://wiki.zum.de/wiki/Hauptseite), a web 

page that is called on to yield a well-kept surrounding in which everybody is invited to add 

something (Vollrath & Roth 2012). In our study, we will focus on quadratic functions. The area of 

functional relationships is a central theme during secondary education in Germany in which 

commonly occur some learning difficulties as for example on figuring out the meaning of 

parameters (Nitsch 2015). A computer-based preparation is called to promote the understanding of 

the parameters due to the option to easily include dynamic and interactive visualizations (Vollrath & 

Roth 2012). Furthermore, the importance of feedback for learning is mentioned in several 

publications (e.g. Black & Wiliam 1998; Vollrath & Roth 2012; Hattie & Gan 2011). Hattie and 

Gan (2011) for example identified feedback as one of “the top 10 influences on achievement” 

(Hattie & Gan 2011, p. 249). Thereby the dimension of this influence would vary depending on 

different kinds of feedback. Apart from this, we are interested in the influence of feedback on self-

assessment as a specific component of metacognition (cf. Ibabe & Jauregizar 2010). More specific 

we will look at students’ self-rating ability. In our study, we will focus on feedback, which is 

typically encountered in computer-based learning environments. Suchlike feedback concerns the 

right answer and, in some cases, comments on how to get to this conclusion. Beside it “help me”-

buttons with hints about how to proceed are added. Both the right answer and the hints can be 

activated by mouse click.  

Research questions  

1. Is students’ self-assessment better if they work with a computer-based learning environment, 

including immediate feedback, than it is when they get the feedback outside the learning 

environment (research based on quadratic functions)? 

2. Does a computer-based learning environment, including immediate feedback, have greater benefit 

on students’ math achievement in comparison to their achievement when they get the feedback 

outside the learning environment (research based on quadratic functions)? 



Method 

 
Main study (QUANT) 

 
We are currently conducting some preliminary studies, including a qualitative (pre-study I) and a 

quantitative part (pre-study II). The quantitative pilot study includes testing the self-assessment 

scales and the achievement test. Within this study, self-assessment is used in a context of self-rating 

the expected performance in the upcoming achievement test. The achievement test includes items 

about functional thinking as anchor items and items about linear functions (pretest) alternatively 

quadratic functions (posttest). In the qualitative pre-study, we are proving the designed computer-

based learning environment about quadratic functions. Our aim is to reveal problems and 

misunderstandings and thus to rework and improve the learning environment.  

The main study will be a quantitative research study with a quasi-experimental between-subject 

design. Students will work with the computer-based learning environment. The experimental group 

receives the learning environment including immediate feedback and hints for the tasks. The control 

group gets the same learning environment with absent feedback. Instead, this group gets correct-

answer-feedback in outlying paper-sheets. Students’ self-assessment as well as math achievement 

will be measured in a pre- and posttest design. The achievement test will measure the students’ prior 

knowledge about linear functions (pretest) and their concepts on functional thinking (pre- and 

posttest) as well as their increase of learning after the self-regulated learning with the different types 

of feedback (posttest). As further research interest, we are going to compare the self-assessment 

ability of both groups related to the passage of time.  
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Introduction 

The aims of this project are to design and develop formative assessment resources for first year 

undergraduate mathematics modules and to evaluate the impact of these resources. The types of 

resources that have been developed to date include: targeted Khan Academy playlists and mastery 

challenges, a smart phone based audience response system that allows mathematical input, Moodle 

lessons, student generated screencasts and interactive tasks using Geogebra. The mathematical 

topics which are the focus of these resources were chosen based on the results of surveys of staff 

and students (Ní Shé, Mac an Bhaird, Ní Fhloinn, & O’Shea, 2016). In this poster we will present a 

snapshot of the resources, the evaluation methods and initial results. Augmented reality software 

and/or QR Codes are used in the poster to demonstrate the resources. 

Theoretical framework 

The National Research Council (National Research Council, 2001, p. 116) defined mathematical 

proficiency as comprising of five interwoven and interdependent strands: conceptual understanding, 

procedural fluency, strategic competence, adaptive reasoning, and productive disposition. This 

description of mathematical proficiency guided our design of resources. We used the Black and 

Wiliam (Black & Wiliam, 1998, pp. 7–8) definition of formative assessment: ‘encompassing all 

those activities undertaken by teachers, and/or by their students, which provide information to be 

used as feedback to modify the teaching and learning activities in which they are engaged’ to advise 

our implementation of formative assessment techniques. We used technology to design and deliver 

the formative assessment in this project. This is not a new idea; according to the JISC report (JISC, 

2010, p. 9) the benefits of using technology in assessment include allowing a greater range of types 

of assessments, a greater flexibility on timing and location of assessment; improved student 

engagement especially with interactive tasks which incorporate instant feedback, timely evidence on 

the effectiveness of course design and delivery.  

Methodology 

The resources were developed by researchers affiliated to five different higher education institutes 

in Ireland who lecture on first year undergraduate mathematics. The resources were trialed in the 

2015/2016 academic year. According to McKnight et al. (Mc Knight, Magid, Murphy, & McKnight, 



2000, p. 10) mathematics education research is ’inquiry by carefully developed research methods’ 

that provides evidence of the nature of teaching and learning. For the evaluation we chose to 

conduct student surveys, resources usage, student grades and think aloud interviews. The 

questionnaires, developed from similar questionnaires (MacGeorge et al., 2008; Zaharias & 

Poylymenakou, 2009) contained 4 dimensions; confidence when learning mathematics; impact on 

engagement, impact on learning and usability of the resource.  

Results, analysis and conclusions 

Students were generally positive about the use of the resources, though there were differences 

between students’ opinions on the different resources. For example students using the audience 

response system found that the resource encouraged them to engage more in class (over 80%) 

whereas only 32% of students using the interactive tasks reported accessing the extra resources 

when not assigned on homeworks. Based on the results of this analysis the resources are currently 

being modified for use in the next academic year, 2016/2017. The data from the evaluations will be 

further analysed to answer the research questions that we have: What are the benefits of using 

technology in formative assessment design? How effective are the resources in developing 

mathematical proficiency? 
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Relevance 

Living in a world strongly influenced by intelligent technology, it is indispensable to know in which 

contexts this technology can be beneficial and in which contexts the ‘real world’ should be used for 

teaching mathematics. Considering the topic of functional relationships, the need to foster pupils’ 

functional thinking (FT) from the very first beginning arises. Even though the topic is important for 

mathematics education in every grade, pupils show a lot of misconceptions (Leinhardt et al., 1990). 

Therefore and because of our multimedia life, we need to ask, if FT should be fostered with 

computer-simulations (GeoGebra) or real materials (like cubes, pencils…). 

Theoretical background 

FT consists of three fundamental aspects: mapping, covariation, and function as object (Vollrath, 

1989). Previous research shows that the use of real materials as well as the application of computer-

simulations can lead to a learning progress in this complex topic. On the one hand, real materials 

make it possible to experience functional relationships physically (Ludwig & Oldenburg, 2007). 

Learning in such a setting has long-lasting effects, i.e. pupils can recall results and working methods 

better (Vollrath, 1978). On the other hand, simulations enable pupils to explore functions in 

different ways. Pupils can vary variables systematically and use the multiple-representation system 

(Balacheff & Kaput, 1997). Thus, e.g. covariation gets perceptible. Summing up, simulations 

become a mediator between pupils and mathematical phenomena (Hoyles & Noss, 2003).  

Methodology 

After constructing a test to measure FT we derived topics that can be used to foster FT with real 

materials and simulations from theory: the relationship between volume and fill height of vessels, 

edge length and volume of a cube, diameter and circumference of discs, rotation-number while 

sharping a pencil and its remaining length. 

 

 

 

 

 

 

 
 

Figure 1 Interfaces of the used simulations done with GeoGebra  

Then we designed an intervention-study (pre-post-control-group-design, randomized experimental-

groups) that was implemented in grade 6 (age 11-12, N = 282). During the intervention (4 lessons) 

pupils had to work on learning-tasks individually to foster their FT. They were not instructed or 



supported by a teacher. While part of them were using real materials (experimental-group 1, N = 

111) the others worked with computer-simulations (experimental-group 2, N = 123). The learning-

tasks in both groups were equivalent, only the medium differed. The control-group (N = 49) worked 

on pre- and posttest, only. Data analysis was done with item-response-theory (IRT). First, we 

estimated item difficulties by use of virtual persons. Then we did a 2-dim. Rasch-model (dim. 1: 

pretest, dim. 2: posttest) with fixed item difficulties to estimate the person ability FT. Finally, a 

mixed ANOVA (Field et al., 2013) using 10 sets of plausible values to compare pupils’ FT in pre- 

and posttest was conducted.  

Results 

The mixed ANOVA (between: intervention, within: time) leads to the result, that there is a 

significant main effect of time (F(1, 22.71) = 68.16, p < .001, ² = .089) and also a significant 

interaction effect of time and intervention (F(1, 23.69) = 7.65, p = .003**, ² = .044) . A pairwise t-

test showed that real materials as well as computer-simulations lead to a significant increase of FT 

(real materials: p < .001, Cohen’s d = .49, computer-simulations: p < .001, Cohen’s d = .83). In 

contrast, the control groups’ FT increases not significantly (p = 1, Cohen’s d = .22). Thus, it needs 

to be concluded that FT can be fostered by use of real materials as well as computer-simulations. 

Nevertheless, effect sizes show that computer-simulations should be the method of choice for 

fostering FT.  
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This poster refers to a project concerning an educational teaching experiment that focuses on the 

development of the curriculum on the 7th grade of basic education, by integrating technology. Using 

a learning environment with an exploratory nature, based on diversified tasks involving the use of 

graphing calculator, we aim to create an innovative curriculum in this level of education.  

The teacher is the mediator of all the curricular decisions, having the responsibility to reorganize the 

main curriculum proposal, adapting, transforming, innovating and setting methodological teaching 

strategies that foster motivation and improve student outcomes (Pacheco, 2001). 

According to several authors, the implementation of technology in the teaching of mathematics, 

namely computers and calculators (Domingos, 1994; Lee & McDougall, 2010; Tan & Tan, 2015) 

influences the way in which it is taught and enhances students' learning, for they build themselves 

their knowledge by premise creation. There are several benefits that emphasize the incorporation of 

technology in learning environments, namely, the increase of motivation, involvement, cooperation, 

hands-on learning opportunities, confidence and technological skills of students (Costley, 2014). In 

addition, those tasks are tools that generate activity in an interactive form, supporting the 

mathematical knowledge (Ainley et al., 2013). 

This study is supported by the Activity Theory and seeks to understand how students, in solving 

specific tasks with the aid of the graphing calculator, builds their mathematical knowledge 

embedded in a learning community. Being the activity system within the classroom the unit of 

analysis, the third generation of the Activity Theory (Engeström, 2001) allows us to understand 

what happens when different activity systems interact. More specifically we seek to understand the 

instrumental genesis (Rabardel, 1995) and the semiotic potential played by technology in a student’s 

activity system, developing the process of semiotic mediation (Bussi & Mariotti, 2008). In this 

sense, we intend to investigate how the graphing calculator influences, reinforces and facilitates the 

quality of teaching and learning and promotes the processes of instrumental genesis and semiotic 

mediation in the performance of tasks in curriculum development. We seek to get answers to the 

following research questions: Which are the instrumental action schemes created by students when 

they use a graphing calculator? How does the teacher promote the process of semiotic mediation? 

How does the graphing calculator act as semiotic mediation tool? How does the integration of 

technology in the curriculum influence the process of teaching and learning? What is the quality of 

the achieved learning? 

Based on research of an interventionist nature, using innovative practices that aim to promote new 

ways of learning, enabling improvements on an educational level, a qualitative paradigm based on a 

Design Research process will be adopted. The techniques used to collect the data shall be based on 

the planning of the study units, the elaboration of reports by the students as a result of completing 

the tasks and reports resulting from the participant observation of the teacher as a mediator. We will 



also consolidate the structured observation of lessons, using a logbook, photographs of the graphic 

representations in the calculator, videos and audio recordings, during the performance of the tasks 

(Cobb, Confrey, diSessa, Lehrer, & Schaube, 2003). Empirical data will be collected in the school 

year of 2016/17 in a public school in the district of Setúbal, in Portugal. 

We therefore intend to present an innovative curriculum development project, that integrates a 

strong technological component in an educational level where traditionally this kind of approach is 

not commonly used. The use of tasks permeated by graphic technology seek to highlight the 

semiotic dimensions present in the instrumental genesis that are activated in different activity 

systems. 
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Line of thought of the previous working groups in CERME5 to CERME9 

Since CERME4 in 2005, theoretical approaches and perspectives have been the topic of an ongoing 

CERME working group. The idea of the “networking of theories” emerged at CERME 4 and was 

explored in the subsequent conferences. At CERME 5 (Arzarello et al., 2007), the diversity of 

theories in the field of mathematics education was regarded as a source of richness, and the 

networking of theories as a multi-theoretical approach which preserves theoretical identity but also 

while allowing to bridge the boundaries of theories for a better understanding of teaching and 

learning. Thereby, the effort was made to make hidden assumptions and relationships of theoretical 

approaches visible. Principles and heuristics of handling the diversity of theories in empirical 

research were explored as a new possibility to better grasp the complexity of empirical situations of 

teaching and learning mathematics, such as the interplay between the individual and the social. 

Typical heuristics to network theories were to relate different approaches based on research: 

bottom-up on the one hand and starting from theoretical views top-down on the other, but also 

mixed types were presented. One interesting result was that not only theoretical principles may be 

hidden in the use of theories but also the view on the nature of mathematics can be an implicit but 

relevant feature in the specific theoretical approach.  

The central theme of TWG 9 of CERME 6 (Prediger et al., 2010) was investigating how the use of 

networking strategies may lead to a more comprehensive understanding of the empirical world, 

what kind of limits have to be faced, and what kind of difficulties have to be considered. In this 

respect, the questions of commensurability and complementarity of theories came into play. 

Radford’s conceptualizing of theories (2008) as a triad of principles, methodologies and research 

questions built as a cultural entity of research practice in the semiosphere, a cultural-semiotic space 

of research as activities, was applied to structure the way networking strategies were used as 

guiding heuristics which link different aspects of theories. Examples showed that through the 

networking of theories new questions of ‘balance’ can be posed, concepts at the boundary of 

theories may become relevant to solve problems, and theoretically “zooming-in and zooming-out” 

can be a strategy when theories of different grain size are coordinated. The discussion in this TWG 

was captured by a dynamic view on theory “as a ‘living entity’ embedded in the researchers’ social, 

cultural and institutional heritage” (Prediger et al., 2010, p. 1533). 



Two years later, the TWG 16 at CERME 7 (Kidron et al., 2011) re-addressed meta-theoretical 

views on the networking of theories and recognized the need for a meta-theoretical frame for the 

networking of theories. Projects began to implement the networking of theories as a research 

practice following the new research aim of building a relationship between corresponding concepts 

of different theories. Besides the semiosphere (Radford, 2008) which was re-used in the paper 

presentations as a space where the networking of theories may be conducted, Artigue, Bosch and 

Gascón (2011) applied the Anthropological Theory of the Didactics to investigate the networking of 

theories as a research praxeology leading to specification of the relevance of problems and 

phenomena. Monaghan (2011) described Theoretical Genesis as an analogy to instrumental genesis 

on the part of the researcher adopting a theoretical view. It is a meta-view on the process of 

theorizing through the practice of “writing, learning, engagement with research and other voices” 

(ibid., p. 2498). The interesting point was the insight that also meta-theoretical views on theories 

largely depend on the cultural-semiotic way (meta-)theories are considered in the specific 

community. The contributions and discussion of this TWG substantiated the view that the 

networking of theories may advance the quality of research and lead to more linked and 

comprehensive results of research.  

Whereas teaching and learning mathematics has been the main focus before, in TWG 16 of CERME 

8, teacher education provided new directions of considering theories that involve new ways of 

theorizing on new research objects. This new topic also renewed the understanding of theories as 

epistemological tools: “the theoretical approaches need to be considered by what they enable 

researchers and practitioners to do, the questions raised, the regularities identified and described, 

that is, in a sense the results obtained” (Kidron et al., 2013, p. 2788). Besides addressing goals and 

practices of networking theories in research, the aspect of time as an additional dimension was 

emphasized; for example, because the networking strategy of coordinating theories may be 

executed as an intermediate step in time when theoretical elaborations have reached a particular 

status, or because coordinating theories may be executed fruitfully in a sequential way.  

Although the networking of theories has also been an ongoing topic in TWG 17 of CERME 9, the 

main focus of this working group was on the notion of theories (Bosch et al., 2015). The 

discussions once more emphasized that theories are living entities that develop through processes of 

theorizing in research, beginning with local models, and developing towards more global entities 

dependent on the requirements of research. These processes result from exploring specific research 

questions, which may or may not broaden the theories’ scope in mathematics education and beyond.   

The Thematic Working Group 17 of CERME 10 

The TWG 17 of CERME 10 continued the discussion on multi-theoretical approaches (the use of 

more than one theory in research, see the paper of Chan and Clark in the proceedings), particularly 

on the networking of theories, but also shifted its attention towards multi-theoretical approaches in 

design research and the problem of transfer inherent in the tension between home-grown and 

borrowed theories. The latter aspects have been an ongoing theme, already addressed by Steiner in 

the conferences on Theory of Mathematics Education of 1985 (Steiner, 1985). The description of 

the call of TWG 17 of CERME10 showed what kind of contribution was expected: 



This networking of theories approach is also addressed in the TWG 17 of CERME 10. With this working 

group we want to build on previous work of the group but this time we also want to address more specific 

topics: theories as prerequisite and result of design research, theorizing in research which involves technology, 

theories involved in interdisciplinary research with mathematics education. We want to explore how theories 

are used and built to better understand their role in and beyond mathematics education and the use of theories 

to inform practice. 

Twelve papers and five posters were presented in the TWG 17. All but one poster abstract are 

published in the proceedings. They are grouped in three topics, the essentials of which will be 

extracted in the subsequent summary. 

Networking of theories approaches  

As in previous CERMEs, the discussion within this TWG has addressed the question of how to deal 

and work with theories, particularly concerning multi-theoretical approaches, which respect the 

theories’ identities and at the same time are able to connect them fruitfully to solve problems in the 

field and understand the complexity of teaching and learning mathematics better. In terms of the 

networking of theories approach, the subsequent contributions witness a growing methodological 

maturity of handling the diversity of theories in research. This maturity is strongly related to 

deepening and broadening insight about the complex nature of the teaching and learning settings on 

two intertwined levels, the level of data analysis as well as the level of methodological and 

theoretical considerations and decisions, both being intertwined. 

For example, Tabach, Rasmussen and Dreyfus conduct research to understand how learning in 

inquiry-based classrooms takes place individually and collectively and how these two learning 

planes are linked. They coordinate two theories, namely Abstraction in Context and Documenting 

Collective Activity, in a way that represents an innovative methodological step of research within 

the networking of theories strand that allows to identify how specific ways of coordinating may lead 

to in-depth insights into the functioning of inquiry-based learning, individually and collectively.  

The effect of using networking strategies is directly investigated by Shinno, who has undertaken 

two case studies following two consecutive networking strategies; namely, coordinating and locally 

integrating. His research reveals: While coordinating preserves the meanings of the concepts 

involved as parts of theories, locally integrating theory elements changes the meanings of concepts. 

The reason for this seems to be that the concepts were integrated into a new theoretical framework, 

with new kinds of issues, questions, and aims. This result substantiates the fact that the meaning of 

a concept is deeply determined by the theory to which it belongs.  

The mathematical workspace (MWS) presented by Nachache and Kuzniak even requires to be 

networked with further theory elements. The MWS originates in practical work with teachers, 

preserving its pragmatic character in linking semiotic, epistemic and cognitive genesis. Kuzniak et 

al. illustrate the plasticity of the model by connecting it to several theories or models for teaching 

mathematics. The reason why this connection is possible is the empirical load: The mathematical 

workspace model is empirically empty, and therefore allows models with high empirical load to 

complement it according to the three components offering ways to navigate through them. 

Chan and Clarke’s purpose in using a multi-theoretical approach is to explore the notions of 

complementarity and commensurability in an empirical way, a theme that has repeatedly been 



addressed in previous working groups. They have instantiated a research project allowing to clarify 

the concepts of complementarity and commensurability based on analysis of the same data sets of 

problem solving activities from three different theoretical perspectives. Thus, the common data sets 

function as boundary objects (Star, 2010), objects that can function in different practices for 

different purposes, even without the need for consensus (Star, 2010).  

In the fifth example, Behrens and Bikner-Ahsbahs add the perspective of the indexicality of signs to 

their theoretical framework for analyzing gestures related to speech, representations, and a 

technological tool. This choice is driven by the need to better understand the development of 

gestures from hand movements on the iPad’s digital place value chart towards epistemic gestures, 

contributing to build knowledge. They show that the process of conceptualizing decimal fractions 

proceeds as an epistemic shift from gesture-of towards gesture-for, thus justifying their choice by a 

methodological result: The indexical nature of signs is a fruitful theoretical perspective for the 

analysis of epistemic processes as it allows tracing these processes back to their origins.   

(Multi-)theoretical approaches in design research  

The call explicitly asked for examples of theory use; specifically, in design research. This is 

particularly challenging because the purpose of theory use in this area is different from that in 

studies considered before in the networking of theories cases in the previous CERME-TWGs and 

the previous section. What is special about design research is that the justification of an educational 

goal requires normative theories, and the ways in which means are implemented to reach the goal – 

for example in design principles – require prescriptive theories. Finally, there is also a need for 

theoretical tools to analyze the empirical data of the implementation of the design, using descriptive 

or explanatory theories (Prediger, 2015). The normative and prescriptive theories developed, for 

example in the form of design principles, conjecture maps or hypothetical learning trajectories, raise 

the issue of methodology in relation to theory (cf. Radford, 2008). Kelly (2004) challenged design 

researchers to come up with what he calls an argumentative grammar – the reasoning from methods 

via analysis to warranted conclusions, which in the case of randomized controlled trials largely 

relies on the structure of argumentation.  

Bakker takes up the challenge and argues that in design research, as in many other qualitative and 

mixed methods approaches, scholars cannot rely purely on the structure of argumentation. They 

need to account for the content too (content of the learning goals, content of core concepts used, 

context etc.). Bakker argues that design research may need several argumentative grammars and 

proposes elements of an argumentative grammar that he proposed to experts in design research 

during an interview study.  

Given the multi-theoretical focus of the TWG, it was interesting to see how theories could play 

different roles in the design of curriculum or learning activities. For example, Johnson and 

colleagues used different theories for the design of their learning activities and for analyzing the 

resulting learning processes. The authors show how making theories of different grain sizes — 

grand theories (Piagetian theory), intermediate theories (Marton’s variation theory), and domain 

specific theories (Thompson’s theory of quantitative reasoning) — interact with each other allows 

designing effective dynamic computer environments and tasks to promote students’ learning. 

Kouropatov and Dreyfus, on the other hand, used two theories for the design of a task-based 



curriculum and for analyzing resulting learning processes to feed back into improved design. The 

two theories – Abstraction in Context and Proceptual Thinking – were of different grain size and 

had different focuses, which made them complementary. The authors argue that in the process of 

designing learning units, the different theories have been interwoven while keeping different roles 

from stage to stage.  

Simon and his colleagues, building on constructivist theory and their empirical research, developed 

an elaboration of Piaget’s construct of reflective abstraction for the purpose of undergirding an 

instructional design theory for promoting mathematical concepts. In conjunction with this 

elaborated construct, they have articulated an instructional design approach that fosters reflective 

abstraction of particular concepts. In doing so, they have afforded a change in design research (i.e., 

teaching experiment methodology) from a focus on students’ mathematical reasoning and 

operations to a focus on the conceptual learning process and designs for promoting that process. 

Transfer of theory elements: The tension between home-grown and borrowed theories  

The tension between home-grown and borrowed theories was one question previous working 

groups have dealt with by several contributions. In this working group, the discussion focused on 

two main interrelated issues. On the one hand, home-grown concepts may bear with them meanings 

specific to the social and cultural context or the field in which they have been elaborated, and that 

raises the question how to transfer them into a foreign context or field. Research is needed to 

address the viability of adapted concepts. On the other hand, theoretical tools or perspectives which 

are borrowed from other fields must either be adapted to mathematics education or particularized or 

complemented with content-related theoretical tools in order to be fruitfully put to work. Some of 

the contributions presented in the working group faced one of these two issues.  

For example, Roos’ contribution shows how a home-grown concept which emerged in specific 

cultural context may be difficult to transfer or translate into a different one. More specifically, Roos 

presents an overview about the concept of Grundvorstellungen. This concept emerged in German-

speaking countries as a practical tool for teaching. It is impossible to translate and even difficult to 

explain in English, even if one can recognize the existing links with the notion of concept image or 

with Vergnaud’s theory of conceptual fields. This difficulty raises the question of how ideas, or 

even entire theories, which emerge within a specific cultural context and therefore bear cultural-

historical meanings, can be communicated on an international scale.  

In other cases, home-grown concepts seem to have the potential to be more easily tranferred and 

adopted in foreign contexts. This is shown in Liljekvist’s contribution. She uses the concept of 

prosumer, which stems from sociological research, to understand mathematics teachers re-sourcing 

and using social media in a Web 2.0 world, linking the two activities of consuming and producing. 

Even if the concept of prosumer bears meanings and values from its native context and has to be 

futher developed for mathematics education purposes, it has the potential to be easily translated and 

spread outside as it carries its ‘origins’ in the term itself. 

Adapting borrowed concepts and theories from other fields is not only a question of translation. 

Mathematics and mathematics education have their own specificities, which must be taken into 

account when borrowing theoretical tools and concepts from other fields. How that can be done is at 

the core of the tension between home-grown and borrowed theories. For example, Haspekian and 



Roditi faced the issue of adopting general concepts from the field of assessment research in 

education to a specific research study in mathematics education. The authors developed a 

methodological tool for analyzing teacher-student interactions in mathematics classes as an adaptive 

dynamic process. The discussion on their uses of concepts from the assessment field illustrates a 

way of locally connecting research areas via a shared methodological tool. 

Similarly, Georget and Sabra draw on general sociocultural theories to investigate the professional 

development process occurring in mathematics teachers’ communities; however, their study 

emphasises the need to resort to a complementary theoretical focus addressing specifically the place 

of mathematics in such communities in order to account effectively for the dynamics which take 

place in the community. The same tension is also present in the contribution of Zerafa. Zerafa 

developed an intervention programme addressed to children experiencing mathematics learning 

difficulties. The design of this programme relies upon the adoption of a large number of borrowed 

theoretical tools. That raises the question of how to complement borrowed theoretical framework in 

order to take into account the specific mathematical content at stake.  

Researchers can also meet problems concerning the adaptability of theories in context or for 

purposes different from those in which and for which theories have been developed, even within a 

given specific field. For example, Benedicto, Gutiérrez and Jaime faced such a problem when 

applying an existing model, developed to analyse cognitively demanding tasks in the areas of 

arithmetic and algebra, with the aim to analyse tasks in different mathematical topics. In fact, the 

original model revealed not to fit adequately their research needs. Their contribution illustrates the 

processes of analysing the model and the difficulties emerged. Thus, they adapted the model to the 

new needs and obtained an improved model that did not lose its core meaning while being more 

widely applicable.  

Issues to be considered in future meetings 

For future development, several participants expressed the wish to make progress on broader 

themes that superseded individual presentations. One way to do so is by proposing themes that 

participants commit themselves to for the next TWG, as was done in previous groups. This would 

allow the working group to continue working by themes, and discuss the studies in relation to a 

central theme (say one per day). This can make each author’s contribution a case of a more general 

issue, and allows us to do cross-case analyses in the working group. However, the challenge of this 

theory group is to balance concreteness and generality in the discussions to make the huge number 

of theories (48 theories in TWG17) being presented in this working group accessible to all the 

participants even if they are familiar with some of them. Suggestions for central themes are: 

1. Progress and quality: On what grounds can we decide whether the networking of theories is 

a contribution to the field? Concepts often used are: complementarity, commensurability, 

consistency, usability, and fit to purpose. What methodologies for research with networking 

theories are suitable? What criteria are suitable for selection and adaptation when 

networking theories? Criteria may be different for researchers who have a fundamental 

interest than for educators who work with models that teachers need to work with. Theories 

can be placed in a framework of different levels (diSessa & Cobb, 2004); are there any 

heuristics we can derive on good practices of how to coordinate multiple theories; and what 



do disciplines outside mathematics education have to offer us in this respect (history and 

philosophy of science?) 

2. What work do you do with theories to be able to use them for your purposes? In what 

respect do you have to adapt a theory or combine it with others? What is the nature of 

theories used: Describing and explaining learning processes versus offering design heuristics 

or guidelines? The incompleteness of theoretical models (discussed by Kuzniak et al.) can 

be an advantage because generality or emptiness can make a model or construct easy to 

transport (transportable). However, there are also risks when there is a lack of specificity. 

An issue raised was how theories are insensitive to differences that may matter.  

3. What are appropriate argumentative grammars for types of research that explicitly have a 

normative and/or prescriptive element, such as design research? How do we ensure that 

design embodies theoretical ideas, and how to study the resulting learning as a consequence 

of the design?  

4. How can we deal with concepts that are hard or even impossible to translate into English 

(milieu, Grundvorstellung, Stoffdidaktik, types of participation in Asian countries, …)? The 

Lexicon Project will have a lot to offer in this respect.  

To deepen the understanding of theory and methodology in European research, this thematic 

working group of CERME should in the future address the issues of quality of the networking of 

theories in research practice, of the specificities of theories, of identifying different argumentation 

grammars and scientific ways of communicating culturally bound concepts and theories on the 

international plane. 
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In this report we advance the methodological and theoretical networking for documenting 

individual and collective mathematical progress. In particular, we draw together two approaches, 

Abstraction in Context (AiC) and Documenting Collective Activity (DCA). The coordination of 

these two approaches builds on prior analysis of grade 8 students working on probability problems 

to highlight the compatibility among the epistemic actions that ground each approach and drive the 

respective methodologies. The significance of this work lies in its contribution to coordinating what 

might otherwise be viewed as separate and distinct methodologies.  

Keywords: Methodology, theories coordination, individual cognition, collective meaning making.  

Background 

In this report we advance the methodological and theoretical networking (Bikner-Ahsbahs, & 

Prediger, 2014) of two different approaches, the Abstraction in Context (AiC) approach with the 

RBC+C model commonly used for the analysis of knowledge construction by individuals or small 

groups; and the Documenting Collective Activity (DCA) approach with its methodology commonly 

used for establishing normative ways of reasoning in classrooms. In previous work related to this 

goal (Hershkowitz, Tabach, Rasmussen, & Dreyfus, 2014; Tabach, Hershkowitz, Rasmussen, & 

Dreyfus, 2014) we demonstrated how this coordination can illuminate the processes by which ideas 

shift from individuals and small group to the classroom community as a whole or vice versa. This 

combination revealed that some students functioned as “knowledge agents,” meaning that they were 

active in shifts of knowledge among individuals in a small group, or from one group to another, or 

from their group to the whole class or within the whole class. 

We take the coordination between AiC and DCA a step further by explicating theoretical and 

methodological commonalities between the two approaches. These commonalities, which we first 

pointed to at CERME9 (Tabach, Rasmussen, Hershkowitz, & Dreyfus, 2015), drives further the 

integration of the two approaches, including what we refer to as environmental, underlying, and 

internal commonalities. The analysis in the present case led us to enhance the theoretical 

commonalities with data driven ones. We explicate these commonalities to set the stage for the 

analysis of students’ work, but first begin with a brief summary of the AiC and DCA approaches. 

Abstraction in Context and the RBC+C model  

Abstraction in Context (AiC) is a theoretical framework for investigating processes of constructing 

and consolidating abstract mathematical knowledge (Hershkowitz, Schwarz, & Dreyfus, 2001). 

Abstraction is defined as an activity of vertically reorganizing previous mathematical constructs 

within mathematics and by mathematical means, interweaving them into a single process of 



mathematical thinking so as to lead to a construct that is new to the learner. According to AiC, the 

genesis of an abstraction passes through three stages (ibid): (i) the arising of the need for a new 

construct, (ii) the emergence of the new construct, and (iii) the consolidation of that construct. AiC 

includes a theoretical/methodological model, according to which the description and analysis of the 

emergence of a new construct and its consolidation relies on a limited number of epistemic actions: 

Recognizing, Building-with, Constructing, and Consolidating (RBC+C). 

These epistemic actions are often observable as they are expressed by learners verbally, graphically, 

or otherwise. Recognizing takes place when the learner recognizes a specific previous knowledge 

construct as relevant to the current problem. Building-with is an action comprising the combination 

of recognized constructs in order to achieve a localized goal, such as the solution of a problem or 

the justification of a claim. The model suggests Constructing as the central epistemic action of 

mathematical abstraction. Constructing consists of assembling and interweaving previous constructs 

by vertical mathematization to produce a new construct. It refers to the first time the new construct 

is expressed by the learner. Recognizing actions are nested within building-with actions, and 

recognizing and building-with actions are nested within constructing actions. Therefore, the model 

is called the nested epistemic actions model of abstraction in context, or simply the RBC+C model. 

The second “C” stands for Consolidation. The consolidation of a new construct is evidenced by 

students’ ability to progressively recognize its relevance more readily and to use it more flexibly in 

further activity. 

Documenting Collective Activity 

The methodological approach of documenting collective activity (DCA) is theoretically grounded in 

the emergent perspective (Cobb & Yackel, 1996), a basic premise of which is that mathematical 

progress is both an individual constructive process and a process of enculturation into the emerging 

norms and practices of the local classroom community. That is, the personal and collective 

mathematical progress can be seen as two sides of the same coin. Collective activity of a class refers 

to the normative ways of reasoning that develop as students work together to solve problems, 

explain their thinking, represent their ideas, etc. These normative ways of reasoning can be used to 

describe the mathematical activity of a group and may or may not be appropriate descriptions of the 

characteristics of each individual student in the group. A mathematical idea or way of reasoning 

becomes normative when there is empirical evidence that it functions in the classroom as if it is 

shared. The empirical approach makes use of Toulmin’s model of argumentation (1958), the core of 

which consists of Data, Claim, and Warrant. Typically, the data consist of facts or procedures that 

lead to the conclusion that is made. To further improve the strength of the argument, speakers often 

provide more clarification that connects the data to the claim, which serves as a warrant. It is not 

uncommon, however, for Rebuttals or Qualifiers to arise once a claim, data, and warrant have been 

presented. Backing provides further support for the core of the argument. 

The following three criteria are used to determine when a way of reasoning becomes normative: 1) 

When the backing and/or warrants for particular claim are initially present but then drop off, 2) 

When certain parts of an argument (the warrant, claim, data, or backing) shift position within 

subsequent arguments, or 3) When a particular idea is repeatedly used as either data or warrant for 

different claims across multiple days (Cole et al., 2012; Rasmussen & Stephan, 2008). 



Environmental commonalities 

The use of both methodologies, RBC+C and DCA, requires quite specific classroom social norms 

(Yackel & Cobb, 1996). First, they require classrooms in which students routinely explain their 

thinking, listen to and indicate agreement or disagreement with each other’s reasoning, etc. If such 

norms are not in place, then evidence is unlikely to be found of challenges, rebuttals, and 

negotiations that lead to ideas where knowledge is constructed and starts functioning as if shared by 

the whole class. We call such classrooms “inquiry-oriented classrooms” (Rasmussen & Kwon, 

2007). Second, these classrooms require the intentional use of tasks designed to offer students 

opportunities for constructing new knowledge by engaging them in problem solving and reflective 

activities allowing for vertical mathematization. Both methodologies focus on the ways in which 

mathematical progress is achieved and spreads in the classroom. RBC+C focuses on individuals or 

small groups working in the classroom and DCA focuses on group or whole class discussions. In 

this sense, the two methodologies complement each other in analyzing a sequence of lessons 

including individual and group work and learning in whole class discussion and in tracing how 

knowledge is constructed and becomes normative.  

Underlying commonalities 

Other characteristics of a classroom culture in which DCA and RBC+C methodologies might be 

enacted together are that the tasks are designed to afford inquiry and the emergence of new 

constructs from previous constructs by vertical mathematization (Treffers, & Goffree, 1985); such 

learning materials allow for interweaving collaborative work in both small-group work and whole-

class discussions, where the teacher adopts a role that encourages inquiry in the above sense. 

Another underlying characteristic relates to the centrality of the shared knowledge. RBC+C 

characterizes shared knowledge as a common basis of knowledge which allows the students to 

make further progress. We find its counterpart in sociological terms, in the phrase “function as if 

shared” used by the DCA approach. What is common between the two constructs is the point that 

each operationalizes when particular ideas or ways of reasoning are, from a researcher’s viewpoint, 

beyond justification for participants. At the collective level, ideas or ways of reasoning that function 

as if shared have the status of accepted mathematical truths for the group. At the individual level, 

consolidation results in individuals accepting something as a mathematical truth. 

Internal commonalities 

DCA analysis helps illuminate what is happening on the social plane, while RBC+C analysis helps 

illuminate what is happening on the cognitive side. To elaborate, we highlight relationship between 

constructs suggested by the cognitive RBC+C analysis and their sociological counterparts suggested 

by the DCA analysis. We do that from a theoretical perspective and from an empirical perspective. 

To achieve this goal we begin with the following excerpt 1, used also in Hershkowitz et al. (2014) 

but for different purposes. It is a discussion between Noa and Gil, two eighth grade students 

working on a probability problem (see turn 95) during a group work period taken from the third 

lesson on this topic, and a bit of whole class discussion. This excerpt includes a DCA analysis, in 

particular classification of the marked parts of students talk (shaded) according to Toulmin’s model 

as data [D], claim [C], warrant [W], backing [B], rebuttal [R] or qualifier [Q]. In addition, RBC+C 

actions were identified in students’ talk (italic), and marked as recognizing (R), building-with (B), 



end of the constructing action (C) or consolidating (CC) with respect to two knowledge elements: 

Exp - experiment is needed in order to determine the chances and Exd – experiment detailed. 

No.  Utterance [DCA analysis] RBC

+C 

95 Noa (reads) ‘Is it possible to determine without experimenting what the chances 

are that we will take out a defective match from a matchbox? If yes, what is 

it?’ You can’t know! [D1] Unless … you have to experiment [C1]! You can’t 

know! You need to experiment! I’m writing “You need to experiment!” 

 

RB 

96 Gil You don’t have to! [C2, counterclaim]  B 

97 Noa Of course you do!  

98 Gil “What the chances are of taking out a defective match from a matchbox?” 

It’s 1 out of the number of matches in the box. [D2] 

R 

100 Noa Right, so you take many boxes, how many, if, in the box [W1]… B 

101 Gil Noa, it depends on how long you have been using the box, if you used it once 

then maybe it will be less … [Q1] 

B 

102 Noa No! If it’s defective! You have to take many boxes [D1] and see in each one if 

there is … if there are let’s say 50 matches in each box and 1 is defective so 

it says on the box 1 out of 50 [W1], so you have to experiment! [C1, referring 

back to turn 95] 

B 

103 Gil So it’s 1 per the number of matches in each box [W2]. R 

104 Noa Not 1, there may be 2 defective matches in the box [R2]. B 

105 Gil But what are the chances?  

106 Noa But with 2 defective ones?  

107 Gil But Noa, you are speculating … you can say 50 out of 50 [R to 104]. B 

108 Noa But you can’t say 1 out of 50! Out of … whatever! [W to 104] What is the 

probability? It’s not correct what you are saying! 

B 

109 Gil What isn’t correct?  

110 Noa Because just like you can’t say 2 out of the matches because you don’t know 

that it’s 2 or that it’s 1 [W1 = R2]. 

B 

111 Gil (writes) “can’t determine without experimenting.” [C3] Cxp 

112 Noa We can, if we experiment. [C, slightly new claim of how to do the 

experiment] 

CCxp 

113 Noa Ok, so what is the probability? It’s, we have to write that we won’t know 

[D1] until we experiment [C1]. 

RB 

114 Noa Let’s write at the bottom, that we need a few boxes [D4], suggest an 

experiment (dictates: “we need to take a few boxes of matches and see out of 

them  [D4]…” [Dictate together].) 

B 

115 Noa No, wait! How many matches does the box contain, and see how many 

defective matches are in it [D4]… [Dictate together]. 

B 



116 Gil (continues to dictate) “then, check how many defective matches are in the 

box [W4]” [Dictate together]. 

B 

117 Noa Then we will write “the probability is the number of defective matches in the 

… [C4, together with turn 123]” [Dictate together]. 

Cxd 

…    

122 Gil Noa, each box will come out differently. R 

123 Noa So it’s average [C, note Data is previous argument], not precise [Q4]!  CCxd 

  Back to whole class discussion  

135 Noa In my opinion you need to experiment [C10]!  

136 T Why?  

137 Noa I don’t know. I can suggest an experiment [Q10]  

138 T Friends, listen, you need to express your opinion on what they said  

139 Gil [addressing Noa] Why can’t you say why you need an experiment, you can’t 

know how many matches there are in the box [D10]. 

B1 

140 T Let’s say I can reveal to you that there are 45 matches in the box.  

141 Gil And inside you have to [check]. B 

142 Noa [you need to take some] matchboxes [D11], you need to see how many 

matches are in each box, and how many of them are defective [W11]. 

 

143 T Let’s say we know that information, what do I do with it?  

144 Noa So …  

145 Gil So I do the average [C11, with 147] B 

146 T What average?  

147 Gil Of the defective matches in each box [C11, with 145] Cxd 

148 T And how is that going to help us know what the probability is that we take 

out a defective match? 

 

149 Noa Let’s say we have 2 defective matches in a box with 50 matches, so it’s 2 

divided by 50. 

 

150 T 2 to 50, what do you think?  

151 Gil We are saying that you can’t do it without an experiment [C10]. You can’t 

know how many defective matches there are because we don’t know how 

many matches are in the box and we don’t know either … We can’t speculate 

how many defective matches there are [W10]. We wrote that we need to take 

a number of matchboxes and see how many matches they contain, then count 

how many out of them are defective and do an average of how many 

defective matches in each box [C11]. If we got 3 then it’s 3 divided by 50. 

CCxd 

Table 1: Excerpt 1, Transcript from the class 

                                                 

1 From this point on it is Gil who does the B and C actions 



RBC+C and DCA analysis 

We begin by relating elements of the RBC+C and DCA analyses to each other, and then we relate 

the three criteria of the DCA approach to consolidation. 

Relationship between Recognizing and Data. Theoretically, we argue that Recognizing actions are 

largely associated with Data. One uses some piece of information as Data because that piece of 

information makes sense to him/her. That is, this piece of information is relevant for the person; it is 

what the person selects for use (as Data). In the above excerpt, we see that Recognizing actions are 

primarily associated with Data. In some cases (e.g., turn 103), Recognizing actions can be 

associated with Warrants. In carrying out the DCA analysis, disentangling Data and Warrant is at 

times non-trivial, in which cases Recognizing actions can be sensibly associated with Warrants. 

Relationship between Building-with and Warrants. Theoretically, Warrants establish a connection 

between data and claim; in order to establish such a connection, one needs to build-with what one 

has recognized. In the above excerpt this commonality is largely the case with some exceptions that 

need clarification. In turns 95/96 we had claims associated with building-with. These are the first 

building-with actions of this excerpt and thus the first ones of the part where the students are 

working on the present task. As a consequence, the building-with actions are somewhat shallow and 

make only claims without really warranting them. As such, this example does not pose a substantive 

threat to the theoretical conjecture. Similarly, turns 114 - 116 and 139 do not pose a substantive 

threat to the conjecture. These are the final utterances belonging to a constructing action; as such, 

they complete the constructing by explicitly stating the claim that was constructed. As we noted 

above, at times data and warrant are difficult to disentangle with certainty, hence building-with can 

be associated with data. Empirically, this is the case for turns 114 and 115. 

The relationship between Constructing and Arguments as a whole. Constructing requires vertical 

mathematization. Constructing actions are usually much more extended than Recognizing or 

Building-with actions; they incorporate sequences of interweaving Recognizing and Building-with 

actions (plus the ‘glue’ between them). Similarly, arguments interweave data-claim-warrants and 

backings as a whole. Hence, in a line by line coding it is not feasible to indicate the holistic nature 

of an argument and it is typically indicated after a line by line coding (see for example Tabach et 

al., 2014). Moreover, arguments are usually co-constructed by several participants over several 

turns. Such interaction is also frequent in constructing actions. 

Consolidating and the three criteria for identifying function-as-if-shared ideas. In consolidating 

actions as well as across the three DCA criteria for identifying when an idea functions as if shared, 

repetition, reuse, revisiting, or repurposing of earlier ideas frequently occurs. To clarify, in Criterion 

1 there is a repetition, but the repetition is partial in the sense that some parts of the argument (Data, 

Warrants) cease to be explicitly stated. In Criterion 2 there is repurposing of previous part of an 

argument (e.g., Claim) as either Data or Warrant. In this sense there is a repeating and reusing, but 

for a different purpose. In Criterion 3 there is a revisiting of either Data or Warrants to establish 

new Claims. In consolidation, previous constructs are recognized as relevant (i.e., revisited), and 

then built-with, which means they are reused, often for a new purpose such as a new constructing 

action. Hence there are strong parallels between consolidation and the three DCA criteria. For 

example, in 151, DCA analysis shows that W10 (the warrant for Claim 10) turns into D11 (i.e. the 



data for Claim 11); hence Criterion 2 is satisfied: the same part of the argument is reused with a 

different function. RBC+C analysis shows that knowledge construct xd is consolidated by being 

used again, and at the same time elaborated. 

Further commonalities between consolidating and the DCA criteria can be seen by considering the 

characteristics of consolidation: awareness, self-evidence, flexibility, immediacy, and confidence 

(Dreyfus & Tsamir, 2004). Self-evidence links to Criterion 1 because the evidence is the Data, 

which drops off in subsequent arguments. The subsequent argument also then relates to immediacy 

and confidence in the validity of the idea. Flexibility links to Criterion 2 because components of an 

argument are being reused and repurposed (as sign of flexibility) in subsequent arguments. 

Similarly, Criterion 3 relates to flexibility, but in a different way. Here the flexibility lies in the fact 

that one is able to use an idea (e.g, Build-with) as Data or Warrant for a variety of different Claims. 

Hence close relationships exist between the criteria and characteristics of consolidation.  

We conclude this report by returning to vertical mathematization, which was highlighted as an 

Environmental commonality. We also see vertical mathematization as an Internal commonality. 

Both methodologies work from the premise that vertical mathematization is core to mathematical 

progress. In the RBC+C approach, consolidation is vertical mathematization and, as we argued 

above, the consolidation is closely linked to the three criteria. 

Conclusion 

We now turn to discussing some implications for research. In addition to offering a theoretically 

and empirically grounded approach for coordinating methodologies for individual and collective 

mathematical progress, there exist specific ways in which this coordination can play out. For 

example, one could choose an individual student within the classroom community and trace their 

constructing actions for the ways in which they contributed to the emergence of various normative 

ways of reasoning. Alternatively, when considering a normative way of reasoning, a researcher 

could investigate who the various individual students are that are offering the claims, data, warrants, 

and backing in the Toulmin analysis used to document normative ways of reasoning. How do those 

contributions coordinate with individual student constructions? For instance, does a student ever 

utilize an utterance that a different student authored as data for a new claim that they are authoring, 

and in what ways may that capture or be distinct from other students’ individual mathematical 

meanings? Future research could take up more directly the role of the teacher in relation to 

individual and collective level mathematical progress. More generally, however, this report 

contributes to an emerging discourse on theories and ways in which different theoretical approaches 

can be profitably networked (e.g. Bikner-Ahsbahs & Prediger, 2014). 
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Networking strategies and the present study 

In the past decade, strategies for connecting theories have been intensively discussed (e.g., Prediger et 

al., 2008). According to Prediger et al. (2008), the networking strategies are structured as follows: 

understanding and making understandable; comparing and contrasting; combining and 

coordinating; and integrating locally and synthesizing. The purpose of this study is to show my/our 

two case studies related to the networking theories in order to consider some meta-theoretical aspects 

of these studies. I will briefly introduce the two case studies, which have been developed by myself 

(Shinno, 2016) and by a Japanese research group (Shinno et al., 2015). The first study is concerned 

with combining and coordinating, and the second study is concerned with locally integrating. 

By reflecting the researchers’ practice on the two case studies at meta-theoretical aspects, I attempt to 

reconsider different treatments of theoretical terms in different strategies. This may allow us to 

analyse transition between pre/post statuses of the networking, although different strategies can be 

utilized for different purposes. Comparing the two studies, by focusing on the treatments of terms, I 

discuss how the elaboration of the original terms may influence the degree of integration. 

The two case studies: Overview 

Case study 1: Combining and coordinating 

Shinno (2016) aims to characterize the development of mathematical discourses in a series of lessons 

in terms of the model of semiotic chaining by Norma Presmeg and the commognitive framework 

(Sfard, 2008). One of the research questions of this study is as follows: In what ways can the model of 

semiotic chaining be combined with the commognitive framework in the analysis of reification in the 

learning of square roots? For gaining multi-faceted insight of the reification phenomenon, Shinno 

(2016) attempts to coordinate the commognitive terms (such as keywords, visual mediators, endorsed 

narratives, and routines) with the semiotic terms (such as signifier, signified, and interpretant). By 

doing so, Shinno (2016) intends that the implicit meta-discursive rule (routine) may become 

explicitly identified as the semiotic component (interpretant). 

Case study 2: Integrating locally 

Shinno et al. (2015) aims to construct a theoretical framework for curriculum development for 

teaching proof by means of integrating different theoretical constructs related to proof. In developing 

a framework, the notion of Mathematical Theorem comprised of the three elements – statement, 

proof, and theory – is used as the foreground of the framework. Some other theoretical constructs, 

such as mathematical proof by Nicolas Balacheff and local organization by Hans Freudenthal, are 

locally integrated into the framework in order to consider the wide range of contents and levels of 



statement, proof, and theory in curriculum. As a result, Shinno et al. (2015) elaborate some additional 

categories by introducing new terms, for example, real world logic, local theory, and quasi-axiomatic 

theory, which are included in a category of ‘nature of system’ based on the concepts of local 

organization. 

Discussion: Meta-theoretical aspects 

In the first study, when coordinating the semiotic and discursive terms, it seems that a theoretical term 

is interchangeable with another term (e.g., “an interpretant” with “a routine”). Therefore, even after 

the coordinating, it seems that the treatments of the terms can be preserved in both theoretical 

contexts. In other words, the results of the empirical studies can feedback to the original theories. In 

the case of Shinno (2016), it allows to analyse the reification phenomenon from the two different 

perspectives and to gain a deeper understanding of the phenomenon. In the second study, it seems that 

the basic constructs to be networked are ‘concepts’ rather than ‘theories’. Some original concepts 

such as local organization can be elaborated and integrated locally into new terminologies or 

categorizations in the constructed theoretical framework. Since elaborated terms have a consistency 

within the new framework and these can create new meanings, such terms cannot preserve their 

original senses. Thus, this networking strategy may contribute to establish a new theoretical discourse 

rather than to understand a certain empirical phenomenon. It seems that this strategy also can be 

utilized for developing or elaborating a new theoretical model. 
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In this communication, we address the specific relationships between the Mathematical Working 

Space model (MWS model) and practice in the teaching and learning of mathematics. The strong 

and positive interactions existing between these two aspects are illustrated with two examples from 

geometry and probability teaching. They show how some theoretical constructs as MWS diagram 

can enlighten practice and, conversely, how studies on practice nourish the model with new tools 

such as “comics”, “complete mathematical work” or “emblematic tasks”. 

Keywords: Mathematical work, MWS model, emblematic task, mathematics teaching. 

A decade ago, the Mathematical Working Space (MWS) model has been introduced as a theoretical 

and methodological framework dedicated to identify and shape the mathematical work in schooling. 

Developed by researchers working collaboratively in various countries with, sometimes, very 

different educational approaches in Europe (France, Spain, Cyprus), Latin America (Chile, 

Mexico…) and North America (Canada), the model is deeply rooted in the teaching of mathematics 

in real classrooms. This communication aims at showing dynamics and dialectics between the 

MWS model and relevant questions to education practice. After a short presentation of the MWS 

model, we show first how it can be used to deal with the question of planning series of tasks in the 

teaching and learning of geometry. That leads us to introduce two new constructs: the 

methodological tool of “comics” used to describe the evolution and circulation of the mathematical 

work and the more theoretical idea of “complete mathematical work” which allows qualifying the 

final nature of this circulation within the diagram. Then, these two new tools are used for the study 

of the teaching of probability and statistics. In France, this teaching is relatively new and it is now 

initiated on modeling tasks with use of technological tools. This leads us to check the relevance of 

the above constructs and identify two kinds of incompleteness of mathematical work and, in 

addition, to draw out certain specific tasks, named “emblematic tasks”. Designed on these former 

results, our present research aims at tracking transformations made by teachers when they adapt 

these “emblematic tasks” to their classrooms.  

A short insight in the MWS model 

Extending the research work developed by Houdement and Kuzniak (2006) in didactics of 

geometry, the MWS model emerged during the last decade. The model, especially in geometry, had 

already been presented during former CERME meetings (Kuzniak and Nechache, 2015). A recent 

issue of ZDM-Mathematics Education (48-6, 2016) is devoted to this model and we refer the reader 

to this issue for further details and discussions about the MWS model. Some elements of the 

introduction (Kuzniak, Tanguay and Elia, 2016) to this issue are used to present the framework. 



The theoretical model of Mathematical Working Space (MWS)  provides a tool for the specific 

study of the mathematical work in which students and teachers are effectively engaged during 

mathematics sessions. The abstract space thus conceived refers to a structure organized in a way 

that allows the mathematical activity of individuals who are facing mathematical problems. It 

establishes the reference to the complex setting in which the problem solver acts. In this approach, 

the crucial function of educational institutions and teachers is to develop a rich environment which 

enables students to properly solve mathematics problems. To describe the specific activity of 

students solving problems in mathematics, the idea of organizing the MWS into two articulated 

planes is retained: one of an epistemological nature in close relation to the mathematical content in 

the field being studied; the other of a cognitive nature, related to the thinking of the individual 

solving problems. Three components in interaction are characterized for the purpose of describing 

the work in its epistemological dimension, organized according to purely mathematical criteria: a 

set of concrete and tangible objects, the term sign or representamen1 is used to summarize this 

component; a set of artifacts such as drawing instruments or software; a theoretical system of 

reference based on definitions, properties and theorems.  

The second level of the MWS model is centered on the subject, considered as a cognitive subject. In 

close relation to the components of the epistemological level, three cognitive components are 

introduced as follows: visualization related to deciphering and interpreting signs, and to internally 

building (psychological) representation of the involved objects and relations; construction 

depending on the used artifacts and the associated techniques; proving conveyed through processes 

producing validations, and based on the theoretical frame of reference. Furthermore, the 

development by communities or an individual, whether generic or not, of appropriate mathematical 

work is a gradual process by which a suitable MWS is settled through a progressive approach and 

fine tuning. Therefore, analyzing mathematical work through the lens of MWSs allows tracking 

down how meaning is progressively constructed, as a process of bridging the epistemological plane 

and the cognitive plane, in accordance with different specific yet intertwined genetic developments, 

each being identified as a genesis related to a specific dimension in the model: semiotic, 

instrumental and discursive geneses. This set of relationships can be described proceeding from the 

elements of the following diagram (Figure 1) which, in addition, shows the interactions between the 

two levels with three different dimensions or geneses: semiotic, instrumental, and discursive:  

 The Semiotic genesis is the process associated with representamen (or signifiers), and 

accounts for the dialectical relationship between the syntactic and the semantic perspectives 

on mathematical objects, displayed and organized through semiotic systems of 

representation. 

 The Instrumental genesis enables making artifacts operational in the construction processes 

contributing to the achievement of mathematical work.  

 The Discursive genesis of proof is the process by which the properties and results organized 

in the theoretical reference system are being actuated in order to be available for 

mathematical reasoning and discursive validations.  

The epistemological and cognitive planes structure the MWS into two levels and help to understand 

the circulation of knowledge within mathematical work. How then, proceeding from here, may one 



articulate efficiently the epistemological and cognitive levels in order to make possible the expected 

mathematical work? How may one organize and describe interrelationships existing between our 

former three geneses? In order to understand this complex process, the interactions that are specific 

to the execution of given mathematical tasks will be associated to the three vertical planes, naturally 

occurring in the diagram of Figure 1: the [Sem-Dis] plane, conjoining the semiotic genesis and the 

discursive genesis of proof, the [Ins-Dis] plane, conjoining the instrumental genesis and the 

discursive genesis of proof, the [Sem-Ins] plane, conjoining the semiotic genesis and the 

instrumental genesis (Figure 2). The three planes are valuable tools for describing the 

interrelationships between the different geneses, for identifying and characterizing phases in the 

solving processes, for analyzing the shifts occurring in the course of these processes when specific 

aspects are, unexpectedly or gradually, either left aside or given more prominence.  

 
 

Figure 1: The Mathematical Working Space Diagram Figure 2: The three vertical planes in the MWS 

The exact definition and precise description of the nature and dynamics between these planes during 

the solving of a series of mathematical problems remains a central concern for a deeper 

understanding of the MWS model. They vary with the mathematical field at issue, with the tasks, 

with the schooling level, with the type of work promoted or expected, etc. 

Planning of a teaching sequence in geometry at primary school 

In France, at primary school level, numerous and interesting tasks in geometry are available and 

relatively easy to access. By contrast, few resources are available to help teachers to plan a series of 

geometrical tasks and activities for elementary schools students. To move forward on this issue, the 

MWS model (Kuzniak & Nechache, 2015) was used to identify some key points in organizing a 

long teaching sequence on a specific topic. Designed by two well-known French researchers in the 

domain (Fenichel & Taveau, 2009), the selected sequence “Le cercle sans tourner en rond” is 

dedicated to Grade 4-6 students. The sequence includes eight sessions from half an hour to one 

hour. Its main objectives are the introduction of the global notion of circle as the set of all points 

equidistant from a given point, named the center; to use this property for solving distance problems 

and make constructions with compass used also to transfer distances. The MWS diagram was used 

to analyse each of the sessions and to observe various circulations of the geometrical work through 

the different planes of the MWS diagram (Figure 2). For example, in session 1, the objective is to 

identify the circle as the set of all points equidistant from a given point, the centre. Students are 



asked to place a point A on a white sheet and then a point B (semiotic dimension). After that, they 

have to place 15 points “situated at a distance from A which is the same as the distance of B from 

A” (semiotic dimension). They may use various artifacts: blank and tracing paper, twine, square set, 

compass (instrumental dimension). The geometric work starts in the [Sem-Ins] plane. Then, during 

a formulation phase, some students’ productions are displayed on the blackboard and discussed. 

The strategies used by the students to carry out the task are clarified and formulated. The notion of 

equidistance from a given point is expected to emerge. Some geometric terms are institutionalized 

and the characteristic property of the circle is given by the teacher and enriches the theoretical 

referential (discursive dimension) in the MWS. In summary, the geometric work starts in the [Sem-

Ins] plane and is concluded in the discursive dimension (Dis). The same analysis has been made on 

five sessions and allows describing the dynamic evolution of geometric work. This evolution is 

visualised with the following “comics” which highlight the key-points of the sequence.  

 

Session 1 Session 2 Session 3 Session 4 Session 5 

Figure 3: The dynamic evolution of the mathematical work during the five sessions 

The analysis, supported on “comics”, demonstrates a comprehensive circulation through the three 

vertical planes of the MWS model (figure 2) leading to what we identify as a “complete geometric 

work”. More generally, a mathematical work is considered “complete” when both conditions (A) 

and (B) are satisfied:  

(A) A genuine relationship between the epistemological and cognitive planes. This aspect means 

that students, be they generic or not, are able to select the useful tools to deal with a problem and 

then to use them appropriately as instruments to solve the given task.  

(B) An articulation of a rich diversity between the different geneses and vertical planes of the 

model. This aspect means that various dimensions of the work related to tools, techniques and 

properties are taken into account.  

Identifying blockages and misunderstandings and checking if the mathematical 

work is complete and coherent 

Identifying blockages and misunderstandings requires observing how teachers implement tasks in 

their classroom. That allows us to describe what we call suitable MWS which depends on the 

institution involved, and is defined according to the way the knowledge must be taught, in relation 

to its specific place and function within the institutional curriculum. 



Identifying blockages and misunderstandings through the study of circulation within the 

MWS diagram 

Our analysis is based on a classroom session at Grade 10 (age 15) (Kuzniak, Nechache & Drouhard, 

2016) in which a task is given to the students with two questions on the probability values of an 

event. The statement of the exercise is written as follows in the textbook used by the teacher:  

Two identical wallets are at disposal. The first contains 3 banknotes of 10 euro and 5 

banknotes of 20 euro. The second contains 2 banknotes of 10 euro and 4 banknotes of 20 

euro. One wallet is chosen randomly and a banknote is drawn “blindly” from this wallet. 

What is the probability of choosing one banknote of 10 euro? One banknote of 20 euro?  

The underlying probabilistic model is that of equal probability. This model is not explicit, but the 

text makes reference to it with the following terms: identical, randomly, blindly. Moreover, this 

exercise involves a random experiment with two successive and not independent draws. The use of 

a weighted tree to solve the problem would be the most effective way to solve the problem. But, this 

particular type of tree only appears officially in Grade 12, the introduction of this kind of tree is 

something that is left for teachers to do. In the textbook, weighted trees are introduced before the 

exercise which is not the case in the observed class. 

After some time left to search for a solution, a 

student is invited by the teacher to write his answer 

on the blackboard. He draws a non-weighted tree 

semiotic dimension to represent the situation and 

then gives his answer in the form of a fraction 

(Figure 4). The student gives numerical results 

without any justification and the tree is not only 

used for representing the situation but also as an 

implicit support for calculation instrumental 

dimension. His mathematical work starts in the 

semiotic dimension, which allows him to convert 

the problem into the form of a tree, the latter being 

then used to get the solution of the given problem. 

The student has performed his work in the [Sem-

Ins] plane.  

 

 

 

 

 

 

 

 

Figure 4: The student’s tree on blackboard 

Unsatisfied with the student's solution, the teacher asks him to explain his answer, and in particular, 

to explain the two results written on the blackboard (namely 5/14 and 9/14). Arguments given by 

the student are uniquely grounded on the semiotic dimension and the teacher is expecting one based 

on the discursive dimension, using properties. Then, asking various questions to the whole 

classroom, he attempts to shift the mathematical work to discursive dimension in order to develop a 

discursive proof of the results. The teacher emphasises strongly the importance of justification 

based on tools coming from the theoretical system of reference and this focus prevents him to notice 

the non-validity of the results provided by the student (the right results are 17/48 and 31/48). In fact, 

the mistake is linked to the student’s insufficient knowledge about the nature and use of the tool 

“tree”. The student draws a choice tree which allows counting the outcomes, but which is not a 



weighted tree. At this Grade, the teacher avoids the use of probability trees which are spontaneously 

used by his students. The mathematical work done by students remains in the [Sem-Ins] plane while 

the teacher confines it in the discursive dimension to promote a discursive proof. Thus, this leads to 

a misunderstanding and blockages among some students which can be related to the two different 

forms of mathematical work expected to solve the task.  

Mathematical work: Completeness and mathematical coherency  

The following example is based on the analysis of a class session at Grade 9 (Kuzniak, Nechache & 

Drouhard, 2016) in which students are asked to solve the following task taken from Education 

Ministry resources:  

On a segment S, two points A and B are taken randomly. The following outcome is 

considered “The length of segment [AB] is strictly superior to half the length of segment S”. 

What is the probability of this event?  

The event “The length of segment [AB] is strictly superior to half the length of segment S” is 

labelled D. The solution suggested into the resource document is divided in two parts. In the first 

part, the reasoning work starts with an visual exploration on the segment (semiotic dimension) 

which is closely related to the use of an artefact (here a spreadsheet) for calculating numbers 

randomly with the random function (instrumental dimension). So, the mathematical work begins in 

the plane [Sem-Ins]. Then, based on the results given by the artefacts, an estimated value, closed to 

0.25, is given and the estimation process is justified with the law of large numbers. The work done 

in this phase ends in the plane [Ins-Dis].  

 

 

 

 

 

 

 

                 Figure 5: Geometric solution 

 

 

 

       

 

 [Sem-Ins][Ins-Dis]            [Sem-Dis] 

  Figure 6: The evolution of the mathematical work  

In the second part, the exact value (0.25) is justified with a 

discursive proof. It is first suggested to find all the couples 

(X ;Y) such that |X-Y| > 1/2, where  X and Y are two 

random variables with a continuous uniform distribution 

on the interval [0 ;1] (use of the theoretical referential). 

The inequation is solved graphically (Figure 5) on the 

square [0 ;1] [0 ;1] (semiotic use of the square). Thus, the 

suitable couples (X ; Y) belong to the gray zone (Figure 5), 

hence the probability of the event D is equal to ¼ (based 

on visualisation). The mathematical work, really 

implemented, is placed in the [Sem-Dis] plane. 

In summary, the analysis, with the MWS 

model of the solution given by authors, of the 

resource document, serves to identify a 

circulation of the mathematical work through 

the three vertical planes of the diagram 

(Figure 2). Thus, a priory, the mathematical 

work can be regarded as potentially complete 

and mathematically coherent.  

 



 

In the session we observed, the suitable MWS implemented by the teacher, and, thus, the resulting 

mathematical work, is really different from the potential one described above. The teacher asks the 

students to realize the random experiment first. They have to draw a segment with a given length, 

place two points randomly on this segment and, measure the distance between this two points and, 

compare the measure to half the length of segment S. Then, the teacher engages students to use a 

discrete model of the experience with throws of two six-sided dice to get an experimental value of 

the probability of D and, they get 0,3. Finally, the teacher gives the students a table (6 6) with 36 

cells to complete and asks them to calculate the probability of D, which is equal to 1/3.  

In figurative terms, we can say that each phase favors one of the MWS vertical planes (Figure 2) 

moving from the [Sem-Ins] plane to help the understanding of the random experiment, to the [Ins-

Dis] plane to obtain an experimental value of the probability, and finally to the [Sem-Dis] plane to 

give a theoretical validation based on counting numbers. In summary, the mathematical work 

proposed by the teacher provides an articulation between the various working contexts and can be 

considered complete. But, the probability of D in the model chosen by the teacher is 1/3 and is 

different from that expected in the official resource, which is 1/4. This difference is due to the fact 

that the teacher wants to adapt the task to his classroom and changes the initial task by using a 

discrete model instead of a continuous model. This difference highlights the contradiction between 

the reference MWS expected by the authors of the resource document and the suitable MWS 

developed by the teacher. The consequence is that the mathematical work is not mathematically 

coherent according the expectations of the reference MWS, at this level, even if the mathematical 

work can be considered complete. 

On mutual influence of theory and practice on the MWS development 

In this paper, we intend to show how analysis of tasks and teaching-learning sessions can benefit 

from and participate in the development of the MWS model. Is it possible to generalize our results 

to other theoretical approaches? We cannot assert, because the MWS model is still an emerging and 

growing model that is difficult to compare with mature theories. As Artigue (2016) underlines, one 

of the current characteristics of the model is precisely its plasticity and adaptability that, according 

her, big and mature French theories do not have. Moreover, conceived to describe and ensure the 

dynamics of mathematical work, the MWS model cannot be improved without a close and dialectic 

link with researches on tasks and activities favoring the tuning of the mathematical work. 

Research perspective: Teaching trajectory and mathematical work 

In the previous section, we have shown how, in some cases, teachers have transformed tasks in such 

a way that students have been blocked or engaged in mathematical work far from the intended one. 

In our present research and using the MWS model, we address the following questions: When do 

some blockages arise in the mathematical work? How can they be characterized? What is their 

origin? Which kind of teachers' adaptations and changes allows keeping (or not) a complete and 

mathematically coherent mathematical work? The research objective is to identify 

misunderstandings or resistance points or, instead, favorable rebounds which allow that an activity 

goes on nicely in the classroom. It is also possible to focus on tasks transformations leading to 



denaturing when the intended mathematical objective is lost and questions of reproducibility and 

didactic obsolescence can be addressed. 

To do this, some specific tasks, named “emblematic tasks” and verifying several conditions, are 

chosen. They must benefit first from an institutional recognition which ensures their compatibility 

with the intended mathematical work. Then, they are already provided by textbooks and, above all, 

implemented in some regular classrooms. Lastly, they may convey a complete mathematical work 

as defined above. We make the assumption that adequate and solid learning can result from the 

implementation of these tasks in classrooms if they are not too distorted through the teaching 

process. To study this assumption, these emblematic tasks are first implemented in pre-service 

teachers training by experienced teachers trainers and their transformations by the pre-service 

teachers are studied. The teachers training framework helps us to monitor the development and 

implementation of tasks in classrooms and makes easier the study of teaching trajectories according 

our research objectives. Moreover, two other specific objectives related to teacher training can be 

added to our research program: the use of “emblematic tasks” may initiate students to new and 

interesting forms of mathematical work for those who are not familiar with; the assessment of the 

impact of this approach on students' belief by analyzing the different transformations and 

adaptations of the tasks. In a way, emblematic tasks can help to understand the link between 

teaching and learning. 
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For more than a decade, a theoretical approach focusing on mathematical work in schooling has 

been developed by an international community of researchers. Grounded on geometry education 

research, the Mathematical Working Space (MWS) model emerged from this collaborative work 

and has been developed during symposia, the fifth of which being held in Florina in July 2016. 

Recent publications in English, French and Spanish (Relime 17(4), 2014; Bolema 30(24), 2016) and 

in English (ZDM-Mathematics Education 48(6), 2016) may be helpful for discovering this model 

and its current state.  

This poster aims at illustrating and discussing one of the specificities of the model, which means 

that it was conceived to interact with other approaches. As Artigue (2016, p. 938) underlies: 

But the MWS construction is an object of a very different nature, at least in its current 

state. Its logic seems more that of an assembly that would incorporate, possibly with 

adaptation, a diversity of constructs and perspectives developed in the field, without 

privileging any of them. This gives the MWS structure a plasticity that big theories (...) 

do not have, and certainly contributes to its accessibility and attractivity. 

Conversely, this plasticity and attractiveness pose the challenging question of the real nature of its 

relationships with other theoretical approaches, which may be grounded on very different 

epistemological and methodological principles. In this poster our purpose is to address this question 

through some examples. For that reason, some key-points of the model will be presented and, in 

particular, how the study of mathematical work in schooling is framed. Then, some examples will 

be given to illustrate possible interactions with other theoretical and exogenous frameworks. All the 

examples come from special issues on MWS model and MWS symposia. The list of examples is not 

complete and other frameworks have been used, although they do not appear in the poster 

(Didactical Situation Theory, Anthropological Didactical Theory, Semiotic registers, etc.). 

Naturally, all the examples cannot be considered in detail but the fact that the model is supported on 

a diagram assists to illustrate interactions. The poster is organized around diagrams showing the 

findings of the different papers and questioning the openness and adaptability of the MWS model.  

Combining the model with Drouhard's epistemography. Drouhard's epistemography use has 

changed the view on tool and instrument in the MWS model (Kuzniak, Nechache & Drouhard, 

2016). Depending on their nature and on the way they are being exploited to solve the problem, 

tools may be situated in any of the three poles of the epistemological plane. In the cognitive plane, 

one speaks of an instrument whenever a subject interacts with a tool in order to tackle a task 

effectively. Thus, a tool is associated with a corresponding instrument in the cognitive plane.  

Interactions with Activity Theory. Hitt, Saboya and Cortés (2016), investigate the articulation 

between arithmetic thinking and early algebraic thinking, through the analysis of an experiment 



which focuses on secondary school students’ spontaneous productions. The experiment is 

conducted within a research methodology based on Activity theory. The MWS model, used as a 

framework, is here adapted into an ‘Arithmetic-Algebraic Working Space’ (A-AWS), whose 

cognitive plane displays an articulation between arithmetic and algebraic thinking.  

Completing APOS theory with the MWS model. Camacho Espinoza and Oktaç (2016) provide a 

study, using APOS Theory, on an University teacher in Mexico solving a task in linear Algebra. 

APOS helps to understand the work at a micro level using the mental mechanism of 

desencapsulation of an Object into a Process, and the authors use the MWS model to understand the 

global logic of this work at a macro level. 

Integrating the MWS model in cognition and affect studies. In a technological (with Dynamic 

Geometry Software) collaborative setting, Gómez-Chacón, Romero Albaladejo and García López 

(2016) study the interplay between cognition and affect in geometrical reasoning. Their study 

integrates the MWS frame to enable a detailed exploration of the transitions from instrumental to 

discursive geneses of reasoning, within teacher-student and student-student interactions, and also of 

the cognition-affect dynamics in this process, with a focus on mathematical attitudes.  

Coordinating the MWS and MTSK model to understand teachers' knowledge and the role of 

the teacher in the classroom. The MWS model describes the mathematical work development by 

teachers through the teaching implemented. Carrillo et al. (2016) suggest an articulation between 

the MWS model and the MTSK theoretical model (Mathematics Teacher ́s Specialised Knowledge) 

to emphasize the specific role of Teacher’s Knowledge in this learning process.  

See the poster: www.irem.univ-paris-iderot.fr/~kuzniak/publi/ETM_EN/2017_Cerme10_poster.pdf 
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The utilisation of multiple theories in a single research study requires careful consideration with 

respect to the complementarity of the theories and the commensurability of the associated research 

accounts in relation to the specific setting or research site. This paper proposes that 

commensurability is constructed to facilitate the comparison that researchers are trying to make. 

The Social Unit of Learning project is conducted in a laboratory classroom facility equipped with 

10 built-in cameras and up to 32 audio channels allowing structured, rigorous, fine-grained 

investigation of the social aspects of classroom practice. The rich and detailed data generated 

allows parallel analyses predicated on different theories. Complementarity of theories is 

distinguished from commensurability of research accounts, which requires the identification of 

operationalised constructs (e.g., categories or measures) common to the accounts generated. 

Keywords: Classroom research, video technology, research methodology, research design. 

Comparability as a challenge in learning research 

With the abundance of theories and perspectives that have been generated through research over the 

years, a continuing challenge that researchers face relates to the difficulty of navigating the 

multitude of theories available (Bikner-Ahsbahs & Prediger, 2014; Cobb, 2007). In this paper, we 

consider the conditions under which multiple theories might be deployed for the simultaneous, 

parallel analysis of a single social setting, with a specific focus on the roles of complementarity and 

commensurability in undertaking comparison of either the theories or the analytical accounts arising 

from any such multi-theoretic research design. 

Clarke and his colleagues (e.g., Clarke, Emanuelsson, Jablonka, & Mok, 2006) have advocated 

“complementarity” as central to the contemporary conceptual management of theory and 

methodology, particularly in their use of “complementary accounts” (Clarke, 1997). In the same 

way that two research accounts of a social situation may be different but equally legitimate and 

informative, so two theories may be complementary in their foregrounding of different constructs. 

Like the accounts, both may be simultaneously “true” within their own coherent conceptual 

framework so that they are disjoint but separately coherent. Tensions between theories emerge 

when we juxtapose the analytical accounts derived from two different theories in relation to the 

same research setting and the coherent body of practice that occurs there. A specific difficulty with 

juxtaposing and connecting existing theories and their associated constructs is the possible 

incommensurability of the accounts generated by their application, particularly because theories 

arise historically from observations based on different research designs, settings and participants.  

Direct comparison of analyses employing different theories, without considering the contexts or 

settings in which the theories are being applied and the intended purpose of their application, 

empirically undermines the integrity of the comparison and the legitimacy of the conclusions drawn 
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from the comparison. Consideration of “the right to compare” (cf Stengers, 2011; Clarke, 2013) 

must take into account differences between findings or interpretive accounts that relate to different 

physical spaces, different times, and/or involve different actors, activities, or cultural contexts. 

Clarke (2013) expressed an analogous concern regarding international comparative research, where 

a single theory is applied across multiple culturally distinct settings for the purposes of comparison 

with respect to a specific construct (e.g., student achievement). In such studies, researchers can risk 

compromising the validity of the comparison made in their study by misrepresenting the valued 

performances, school knowledge, classroom practice, etc. that are differently conceived by the 

communities being compared. A construct such as “student participation” can be conceived so 

differently (both theoretically and in practice) in different cultural settings that it cannot be 

employed as a “boundary object” (Akkerman & Bakker, 2011), that is, as a point of connection by 

which classroom practice in the different settings might be compared. In the application of a single 

theory across different cultural settings, it is the questionable validity of application of the same 

construct in the compared settings that renders the accounts incommensurable. 

We are employing commensurability in the sense of the construction of common points of 

distinction1, which can be seen as related to the notion of boundary objects. Boundary objects have 

been described as “artifacts that live in different practices, but can be used in different ways” 

(Bakker, 2016, p. 272). Consistent with Akkerman and Bakker (2011), we caution against the 

identification of a boundary object simply on the basis of similarity of name without an empirical 

grounding suggesting functional equivalence. In the case of “participation,” such assumed 

functional equivalence can conceal profound differences in nature. To illustrate the extent of such 

differences, the significance attached to student talk as facilitative of learning in Western theories 

(and practice) is contested by theorists writing from a different cultural and theoretical position 

(e.g., Kim & Markus, 2004), leading to entirely different theorisations of the constitution of student 

participation. Attempts to connect theories in which definitions of student participation were 

predicated on such different epistemologies would lead to accounts that not only lacked 

comparability, but were in fact incommensurable, since the connecting construct “student 

participation” would admit no common points of distinction in the application of the two theories to 

any setting. In this sense, one might describe the two theories as being incommensurable in their 

application, but we suggest that the theories are better thought of as complementary (disjoint, but 

separately coherent), and it is the accounts arising from their application that are incommensurable. 

Accounts, like theories, can be complementary (disjoint but separately coherent), but 

commensurability is an attribute of accounts alone, implying consideration of context and purpose. 

We argue that the commensurability of two theories cannot be meaningfully examined except in so 

far as they are “put to work” in the analysis of data. The interpretive accounts generated by such 

analyses (whether qualitative or quantitative) can then be compared and assessment made of the 

points of correspondence or dislocation in the accounts (e.g., through the identification of common 

points of distinction). Such points of correspondence take the form of operationalised constructs 

                                                 

1 Our usage of “points of distinction” draws on the comments of John Mason during a conversation on 10 February 

2017. 



having similar meaning within both theories and which therefore serve to align the interpretive 

accounts for the purposes of comparison and connection. Such operationalised constructs may be 

thought of as boundary objects (Akkerman & Bakker, 2011). A “boundary object” in this discussion 

is an operationalised construct that has conceptual legitimacy and similar meaning in both theories 

being applied, connected, and compared. Where no such constructs exist, the theories are disjoint 

and each may be applied independently of the other to investigate the same or different settings 

(Clarke et al., 2012). In such a case, the disjoint theories are complementary, although 

incommensurable with respect to any setting to which they might be applied analytically, sharing no 

constructs by which comparison of the resultant accounts might be undertaken.  

How might different theoretical perspectives be juxtaposed and connected in a way that allows the 

commensurability of the analytical accounts to be examined? This paper proposes as one solution 

the construction of research designs that involve the generation of data, which are complex and rich 

in detail, while sufficiently structured to allow systematic investigation of both the research setting 

and the multiple theoretical perspectives employed. The affordances of such research designs are 

illustrated with examples from the Social Unit of Learning Project, which utilises the newly 

established laboratory classroom facility to generate data amenable to multi-theoretical analysis. 

The Social Unit of Learning Project 

The recent development of a laboratory classroom at the University of Melbourne (see 

https://pursuit.unimelb.edu.au/articles/high-tech-classroom-sheds-light-on-how-students-learn) has 

made possible research designs that combine better approximation to natural social settings, with 

the retention of some degree of control over the research setting, task characteristics, and possible 

forms of social interaction. Such designs allow conclusions about connections between interactive 

patterns of social negotiation and knowledge products (learning) to be made with greater 

confidence. The Social Unit of Learning Project used the Science of Learning Research Classroom 

(SLRC) at the University of Melbourne to examine individual, dyadic, small group (four to six 

students) and whole class problem solving in mathematics and the associated/consequent learning. 

The project aims to distinguish the social aspects of learning and, particularly, those for which “the 

social” represents the most fundamental and useful level of explanation, modelling and instructional 

intervention. The project conforms to an experimental rather than a naturalistic paradigm. The 

caveats for the experimental approach are discussed in greater depth elsewhere (Chan & Clarke, in 

press). The SLRC has the capability to capture classroom social interactions with a rich amount of 

detail using advanced video technology. The facility was purposefully designed to allow 

simultaneous and continuous documentation of classroom interactions using multiple cameras and 

microphones. The project collected multiple forms of data for analysis including student written 

products and high definition video and audio recordings of every student and the teacher in the 

classroom. This allows the examination of data from multiple perspectives by multiple researchers 

as well as the reciprocal interrogation of the different theoretical perspectives through answering 

research questions such as the following: 

1. What commonalities and differences in process and product are evident during problem 

solving activities undertaken by learners as members of different social units (individual, 

pairs, small groups and whole class groupings)? 



2. Which existing theories best accommodate the documented similarities and differences in 

process and product and in what ways do the accounts generated by parallel analyses 

predicated on different theories lead to differences in instructional advocacy? 

The following presents work currently being carried out to lay the foundation for considerations of 

complementarity and comparability in a multi-theoretic research project. 

Data generation 

The SLRC is equipped with 10 built-in video cameras and up to 32 audio channels. Intact Year 7 

classes were recruited with their usual teacher in order to exploit existing student-student and 

teacher-student interactive norms. Two classes of Year 7 students (12 to 13 years old; 50 students in 

total) provide the focus for this report. Each of the classes participated in a 60-minute session in the 

laboratory classroom involving three separate problem solving tasks that required them to produce 

written solutions. The students attempted the first task individually (10 minutes), the second task in 

pairs (15 minutes), and the third task in groups of four to six students (20 minutes). 

The problem solving tasks used in the project were drawn from previous research (e.g., Sullivan & 

Clarke, 1991). All three tasks had multiple possible solutions, included symbolic or graphical 

elements, and afforded connection to contexts outside the classroom. These features can make the 

thinking and/or social processes of the problem solving activity more visible, as the students can 

express their thinking through multiple modes (e.g., verbal, graphical, textual, etc.) and approach 

the task using different strategies or prioritise different forms of knowledge or experience. 

Nonetheless, despite sharing some similar features, the content foci of the three tasks were 

deliberately disconnected to avoid carry-over effects between tasks. 

Task 1 provided students with a graph with no labels or descriptions with the following instructions: 

“What might this be a graph of? Label your graph appropriately. What information is contained in 

your graph? Write a paragraph to describe your graph.” Task 2 was specified as follows: “The 

average age of five people living in a house is 25. One of the five people is a Year 7 student. What 

are the ages of the other four people and how are the five people in the house related? Write a 

paragraph explaining your answer.” Task 3 stated that “Fred’s apartment has five rooms. The total 

area is 60 square metres. Draw a plan of Fred’s apartment. Label each room, and show the 

dimensions (length and width) of all rooms.” 

The resulting data collected in the project include: all written material produced by the students; 

instructional material used by the teacher; video footage of all of the students during the session; 

video footage of the teacher tracked throughout the session; transcripts of teacher and student 

speech; and pre- and post-lesson teacher interviews. 

Parallel data analyses 

As an entry point for analysing the project data, the written solutions, transcripts, and video record 

are used to understand the social process that took place to produce the written solution. The 

instructional material and teacher pre- and post-lesson interviews provide insights about the class 

capabilities and social relationships that the researchers would not otherwise be able to access. 

Several parallel analyses are currently being undertaken drawing on the established research 

expertise of classroom research communities in three countries. For example, in Australia, Clarke 



and Chan are conducting an analysis which identifies the negotiative foci of the students’ social 

interactions during collaborative problem solving taking the social negotiation of meaning as a key 

constitutive element of learning (e.g., Clarke, 1997); in Spain, Díez-Palomar is conducting an 

analysis of the dialogic character (Mercer & Howe, 2012) of the spoken interactions of students 

working in collaborative groups; and in Finland, Tuohilampi is carrying out an investigation of the 

affective enablers and disablers of student participation in collaborative group work that uses 

Goldin’s motivating desires (Goldin, Epstein, Schorr, & Warner, 2011) to explore the extent to 

which a group of students established a productive affective micro-culture. A theory is recruited to 

this study for its capacity to address constructs, artefacts or situations distinct from those addressed 

in other theories being employed – that is for its capacity to complement those already selected. 

Connection of these three analyses is made possible by their application to a common set of social 

events occurring in the same research setting. The validity of any connections between the parallel 

analyses is heightened by their grounding in data from the same source and their application to a 

common interactive sequence. For example, consider the following excerpt when Anna and Pandit 

were writing up their response to Task 2 (pair task): 

Anna: Okay. So let's explain it here. 

Pandit: So - so 7 ... //One kid... 

Anna: //Because we have to write it in words. (Note. // indicates overlapping 

speech.) 

Pandit: So one kid has to be four... 17. 

Anna: No, no, no. So ... 

Pandit: (Laughs) 

Anna: I'm going to write it. 

Pandit: One kid has to be 17. 

Anna: So ...   

Pandit: So wait, no, no, no, no. 

Anna: ... because ... 

Pandit: Oh a seven - a Year 7 is 13. 

Anna: I'm ignoring you. 

Pandit: You can't - So - So sad. I’ll draw. 

From the excerpt, we can examine the focus of the students’ negotiation on the task requirements or 

sociomathematical focus (Anna: “Because we have to write it in words.”), the coordination of the 

mathematical components of the task or mathematical focus (Pandit: “One kid has to be 17.”), and 

the social obligations of the participants or social focus (Anna: “I am ignoring you”; Pandit: “You 

can’t.”). 

At the same time, the transcript allows the investigation of the dialogic character (García-Carrión & 

Díez-Palomar, 2015) of the participants, where the excerpt began with Pandit offering information 

to Anna for her writing up of the results and ended with Anna rejecting Pandit’s contribution. The 

conversation shifted from the dialogic interaction initiated by Anna (“So let's explain it here … 

because we have to write it in words.”) to non-dialogic or authoritarian talk (Anna: “I’m ignoring 

you.”; Pandit: “You can’t.”). 



From an affective perspective, Anna and Pandit both appeared to share the same motivating desire 

to “Get the Job Done” (Goldin et al., 2011, p. 553). However, Pandit appeared to also appeal to the 

motivating desire of “Let Me Teach You” (p. 554) by dictating the information to be written down 

by Anna (“So one kid has to be four... 17 … One kid has to be 17. … Oh a seven - a Year 7 is 13.”). 

Her attempt to take on the higher epistemic role did not appear to be well received by Anna. Upon 

being rejected by Anna, Pandit’s desire quickly changed to “Don’t Disrespect Me” (p. 553) by 

being disengaged from the task and switched to off-task drawing. 

Although all three analyses focus on the same interactive episode during collaborative problem 

solving, each analysis highlights different aspects of the social interaction. The multitheoretic 

research design of the project provides the context for the consideration of how commensurability 

may be conceptualised in relation to the parallel analyses. 

Discussion and conclusion 

This paper presented three analyses that are currently being applied to the data that have been 

generated from the laboratory classroom concerning the same interactive episode of collaborative 

problem solving. The approach allows direct comparisons to be made between the applications of 

the three analyses (negotiative foci; dialogic theory; and motivating desires) in terms of what 

constitutes evidence within the realm of each analytical framework, the unit of analysis, and the 

conclusions that can be drawn from the analyses, all of which could form the basis for the 

evaluation of the commensurability of the separate analyses. In the case of the project, 

commensurability can be evaluated in relation to a common construct with respect to which each of 

the analyses might be employed to make comparative distinctions (either descriptive or evaluative).  

For example, for the purpose of distinguishing between different interactive episodes with respect to 

the construct of “student engagement”, the analytical accounts derived from dialogic theory and the 

theory of motivating desires can be seen as commensurable, whereas it is more difficult for an 

analysis with respect to negotiative focus to make useful distinctions with respect to engagement. 

The analyses based on dialogic talk (in terms of the ways in which students put forward their 

arguments) and on motiving desires (in terms of the fulfilment of goals or beliefs through social 

interactions) can each be seen as potentially capable of distinguishing between interactive episodes 

in terms of some conception of the quality of “student engagement” during collaborative problem 

solving, even though the premises on which the two analyses might make such evaluative 

distinctions would be different. On the other hand, the consideration of the negotiative foci of 

particular interactive episodes distinguishes between types of “student engagement” in a descriptive 

but non-evaluative way. In this sense, the account provided by the analysis of negotiative focus 

does not suggest any points of evaluative distinction in terms of student engagement, in the way that 

is possible with the accounts provided by the other two analyses. This renders it incommensurable 

with the other two analyses with respect to the construct "student engagement". 

We want to emphasise that commensurability between theoretically-grounded analytical accounts 

should not be seen as “an ideal state” but as a reference point for examining the connections 

between theories. Stengers (2011) makes the essential point: “Commensurability is created and it is 

never neutral, always relative to an aim” (p. 55). In the case of multi-theoretic research designs, 

researchers are obliged to construct commensurability to facilitate the comparison that they are 



trying to make between theoretically-grounded analytical accounts. The utilisation of multiple 

theories is enhanced through the identification of shared operationalised constructs (such as 

“student engagement”), intrinsic to or derivable from the interpretive accounts in question, the 

existence of which is prerequisite for their commensurability. Complementarity between the 

theories discussed can be accommodated independently of arguments concerning 

commensurability. The emphasis on complementarity removes the obligation that interpretive 

accounts should converge to a single truth. We posit that theories can be complementary in their 

conceptual totality (having different epistemological and ontological bases) but nonetheless invoke 

operationalised versions of specific constructs common to both theories which could be used to 

interrogate the setting, and form the basis for interpretive accounts which can then be juxtaposed 

with respect to their implications for practice. The viability of multi-theoretic designs does not 

demand that all accounts be commensurable. Some accounts may be simultaneously coherent and 

consistent with the data, but disjoint, in that they employ different operationalised constructs. 

In conclusion, this paper argues for the importance of considering the roles of complementarity and 

commensurability in multi-theoretic research designs. We suggest that the consideration of 

complementarity resides between theories while commensurability can only be examined in relation 

to the interpretive accounts arising from the application of the theories. By juxtaposing theories 

applied analytically to data generated from the same setting, the research design of the Social Unit 

of Learning Project accommodates the complementarity of theories and affords an informed 

judgement of the commensurability of the parallel interpretive accounts. The consideration of 

commensurability obliges researchers to articulate the nature of the comparability between 

theoretically-grounded interpretive accounts when juxtaposing theories. We feel that the explication 

of complementarity and commensurability in this paper should contribute to the further theorisation 

of multi-theoretical research approaches.  
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In this paper we apply the theoretical perspective of indexicality to gesture use on a digital place 

value chart on the iPad and show that this perspective allows for explaining how mathematical 

meaning is accumulated linking specific gestures to the actions performed on the digital devise. 

Thus, practical dragging leads to structural dragging via operational dragging, resulting in a shift 

of the representational function of gesture (gesture-of) to the epistemic function of gesture (gesture-

for). 

Keywords: Digital tool, indexicality of gesture, gesture-of and gesture-for, modes of dragging.   

Introduction 

De Freitas and Sinclair (2013) have proposed to adopt a new materialistic view in research on learn-

ing mathematics, specifically for technology use. In this respect, the indexicality of signs is relevant 

(Sinclair and de Freitas, 2014). This paper investigates the added value of the theoretical perspec-

tive of indexicality while adopting it to the analysis of technology-based epistemic processes in the 

design project DeciPlace, to understand more deeply how acting based on a multi-touch surface 

contributes to building mathematical knowledge. 

DeciPlace is a design-based research project. Its main goal is to develop a task sequence for concep-

tualizing decimal fractions as structures in small groups of students by the use of a digital place 

value chart (DPC) on the iPad (Behrens, 2016; Behrens & Bikner-Ahsbahs, 2016). The core ap-

proach is to act tool-based with the DPC. Thereby, conceptualizing is not considered as a pure indi-

vidual cognitive process but as a collective communicative process of constructing mathematical 

structures in an embodied and multimodal way (see Krause, 2016). For this kind of learning, the 

instrumental approach (see Drijvers, Kieran & Mariotti, 2010), which is often used for research on 

technology learning settings, fails to attain insight into the epistemic process in all its aspects. Our 

focus is on tool-based acting and interacting. However, the way this contributes to knowledge con-

struction is not yet understood in-depth. In this paper, we will first present the tool, then outline 

what we mean by indexicality and finally apply this perspective in the analysis of some episodes 

from the DeciPlace data corpus to show how the adoption of this perspective deepens insight into 

tool-based collective learning.  

The digital place value chart (DPC) 

The digital place value chart on the iPad (designed by Ladel & Kortenkamp, 2013; itunes-App: 

“Place Value Chart”) can represent a number on three different levels in parallel: In the bottom row 

of the chart tokens can be displayed by tapping on the screen. In the upper row the name of the 

place value as well as the number of tokens in each column of the place value chart is indicated. 

Additionally the standard notation of the represented number can be displayed above the chart. 

When the user drags a token to the next (after next) column to the right, the token is de-bundled 



automatically into ten (hundred) tokens and so on (see Figure 1). The other way around, by drag-

ging a token to the next (after next) column to the left, either nine (99) tokens move along with the 

dragged token bundling together to one token in the new column or – if there are not enough tokens 

to come along with – the dragged token slides back to its origin. Hence, in contrast to traditional 

place value charts (paper and pencil or material tokens) this digital version de-bundles and bundles 

(if possible) automatically, while the represented value is kept constant, and it gives feedback if the 

intended manipulation is impossible.     

 

Figure 1: De-bundling a token from ones to tenths in the digital place value chart 

Recent results: Three modes of dragging  

In the analysis of activities on the DPC by a pair of grade 6 students who were introduced to the 

extension of the place value system from natural to decimal numbers, we noticed a shift in the stu-

dents’ activities from dragging-actions on the iPad to dragging-gestures (incorporated by the char-

acteristic movement to the right or left), becoming more and more independent from the representa-

tion on the screen during the course of interaction with the DPC (see Behrens & Bikner-Ahsbahs, 

2016).  

Using an epistemic analysis based on ideas developed by Krause (2016) we were able to distinguish 

three modes of dragging:   

 Practical dragging comprises actions of dragging tokens performed directly on the digital place 

value chart, when students use the function of bundling or de-bundling by dragging with a prac-

tical aim without scrutinizing the underlying principle. 

 Operational dragging can be observed when students are able to foresee the result of bundling 

or de-bundling or when they want to test something by dragging a token intentionally in the 

chart, so that they use both transformations to fulfil a particular goal. This mode of dragging can 

be manifested either as a direct act of dragging in the digital place value chart or as a dragging-

gesture referring directly to the chart. 

 Structural dragging becomes apparent, when a particular mathematical structure is being de-

scribed generally and the movement of dragging is represented in a gesture from left to right or 

vice versa performed independently from any concrete representation.  

Aim of this paper 

Using these three modes of dragging, we were able to describe the epistemic role of gestures in pro-

cesses of building the decimal fractions’ concept, which is mainly based on the principle of bun-



dling and debundling (see Behrens & Bikner-Ahsbahs, 2016). However, we were not able to under-

stand in detail how these three modes of dragging contributed to processes of learning based on the 

digital artifact. In this paper, we will address this topic by answering the following research ques-

tion:  

How do actions and gestures “regarded as indices” contribute to conceptualizing the decimal frac-

tions’ concept based on the digital place value chart on the iPad?  

Describing the theoretical approach: Actions and gestures regarded as indices 

In this paper, we focus on the connection between the digital place value chart and a pair of indi-

viduals interacting with each other with regard to the device. To examine this interaction we focus 

on signs which are produced in the setting, such as gestures, inscriptions, tokens on the display, the 

artifact itself and so on. 

The students’ collective epistemic process is manifested in their actions (based on the tool), their 

verbal utterances and other semiotic resources. These actions can be analyzed in a multimodal way 

based on the concept of the semiotic bundle (Arzarello, 2006), which consists particularly of ges-

tures, speech, inscriptions and relations among each other. To emphasize the influence of tool-based 

actions on speech, gesture and inscriptions, we adapt the perspective of the indexicality of actions 

on multi-touch devices described by Sinclair and de Freitas (2014). This perspective draws on 

Peirce’s notion of semiotics, “in which signs (icons, indices and symbols) differ in terms of the na-

ture of the relationships between the signifying sign and the signified” (Sinclair & de Freitas, 2014, 

p. 355). According to Peirce, a sign is defined by a triadic relation between sign, object and inter-

pretant:  

A sign, or representamen, is something which stands to somebody for something in some respect 

or capacity. It addresses somebody, that is, creates in the mind of that person an equivalent sign, 

or perhaps a more developed sign. That sign which it creates I call the interpretant of the first 

sign. The sign stands for something, its object. It stands for that object, not in all respects, but in 

reference to a sort of idea, which I have sometimes called the ground of the representamen. 

(Peirce, 1932, 2.228, emphasis in the original)1.  

As a consequence, a sign comes into being when there is an individual who produces an interpretant 

according to the relation between the sign and the object. This relation distinguishes a sign to be an 

icon, an index or a symbol (Peirce, 1994, p. 239).  

While an icon is characterized by producing the idea of resemblance of sign and object in individu-

als and symbols are defined to be conventionalized signs, an index  

refers to its object not so much because of any similarity or analogy with it, […] as because it is 

in dynamical (including spatial) connection both with the individual object, on the one hand, and 

with the senses or memory of the person for whom it serves as a sign, on the other (Peirce, 1932, 

2.305, cited in Sinclair & de Freitas, 2014, p. 355f.). 

                                                 

1 This refers to Peirce in terms of ‘(section/page)’, where 2.228 stands for ‘volume 2, paragraph 228’.   



By this, indexical signs “show something about things, on account of their being physically con-

nected with them” (Peirce, [1894] 1998, p.5; cited in Sinclair & de Freitas, 2014, p. 355). 

Sinclair and de Freitas (2014) emphasize that also the action that resulted in the emergence of an-

other sign may be included in the concept of indexical signs:  

For instance, the chalk drawing of a parallelogram on a blackboard is often considered to be an 

iconic reference to a Platonic conception of parallelogram, but it is also an indexical sign that re-

fers to the prior movement of the chalk. This latter indexical dimension is usually not empha-

sized in the semiotic study of mathematical meaning making, since we tend to focus on the com-

pleted trace and dislocate it from the labour that produced it. (Sinclair & de Freitas, 2014, p. 356) 

Taking this assumption into account, we can further assume that every process of producing a sign 

is an indexical sign referring to the sign and the sign itself refers indexically back to the effort 

which produced it.  

They conclude that “indexation becomes part of an experience that exceeds itself, and is thus self-

generative” (p. 359). Thus an action on multi-touch screens leaves traces, hence, these traces as well 

as a hand gesture may refer to the original action when this gesture is produced in a similar way to 

the action on the device. Taking up this theoretical perspective we want to examine the above de-

scribed modes of dragging with respect to “how they function as indexical, material actions” (p. 

360) trying to explain how dragging movements contribute to build the concept of decimal frac-

tions.  

Applying the theoretical approach: Indexicality in dragging modes 

We are re-analyzing episodes of our design-study DeciPlace (Behrens & Bikner-Ahsbahs, 2016) in 

order to answer the above posed research question. This way we will investigate the added value of 

this indexicality perspective. 

As described above, practical dragging takes place when tokens are dragged directly in the digital 

place value chart from one column to the other either to the right or to the left without observable 

intention. The digital place value chart reacts to this practical dragging of one token to the next col-

umn on the right by de-bundling this token into ten tokens. Likewise, the DPC can bundle ten to-

kens to one in the next column, when one token is dragged into the next column on the left. Bun-

dling and de-bundling by dragging keeps the value of the decimal number the same. This way, 

dragging can be linked to bundling or de-bundling in a material way being performed as an action 

of dragging from right to left or vice versa on the DPC. According to Sinclair and de Freitas (2014) 

an action of dragging leaves traces – e.g. the new arrangement of tokens within the chart – which 

refer back to the original action of dragging and vice versa.  

In the following scene, two students are asked to find different representations for the number 101 

in the place value chart: 

1 Bella:  I’ll just try (drags a token from hundreds to tens within the digital place 

value chart on the iPad (in the tens’ column ten tokens emerge), see Figure 

2) Woah 

2 Hanna:  Ten and One. 



 

Figure 2: De-bundling as dragging from hundreds to tens  

In this scene of practical dragging the newly emerged bunch of ten tokens in the tens’ column can 

be seen as an iconic sign representing ten tens and therefore the number 100. Additionally the 

bunch of ten tokens refers back to the action of dragging a token from the hundreds’ column to the 

tens’ column on the DPC and at the same time to the DPC’s reaction by letting the token explode 

into ten tokens without changing the represented number (concept of de-bundling). Thus, a new 

sign emerged by indexation linking the action of dragging on the DPC with a visual representation 

of de-bundling. This in turn produced a reaction of astonishment expressed by Bella (“Woah”), 

again referring back to the DPC’s reaction on her dragging. 

When the students get more and more familiar with the DPC in phases of practical dragging, they 

may apply movements of dragging intentionally for a specific purpose, for example while making a 

conjecture or predicting what will happen in the case of dragging directly in the DPC. Operational 

dragging can take place as an action of dragging on the surface of the device and also as a gesture 

directly above the surface referring to the DPC but without touching it (the so-called potential level, 

see Krause, 2016, p. 134–139). Because of the material link between dragging actions and dragging 

gestures both being performed by a similar movement from left to right or vice versa, dragging ges-

tures may refer to previous actions of dragging and what is already linked with them. In this respect, 

operational dragging being conducted as a gesture on the potential level of reference is materially 

linked to the performance of dragging in the DPC and at the same time linked to the traces which 

are potentially and materially produced by that.  

In the following situation the place value “tenth” is just introduced by the interviewer adding the 

new column named “tenth”. The students are asked to find further representations for the number 4. 

At first, the students tap in four tokens into the ones’ column of the DPC.  

3 Bella:  Can I drag over one (moves her right hand at the bottom of the iPad from 

the ones’ column to the tenths’ column; see Figure 3) and see what gets out? 

4 Interviewer: Try. 

5 Bella:  (drags a token from the ones’ to the tenths’ column, where ten tokens 

emerge; see Figure 4) 

6 Hanna:  Ohh. 

7 Bella:  So ten are (1 sec.) one one (pointing to the ones’ column) are ten tenths 

(moves her hand to the right flexing and extending her index finger pointing 

to the tenths’ column).  



 

Figure 3: Dragging-gesture to the right from ones to tenths above the chart 

 

Figure 4: De-bundling ones to tenths by dragging 

In this scene Bella intentionally exploits the DPC’s function of de-bundling to get insights into the 

relation between ones and tenths (lines 3 & 7). Thus, the two dragging-gestures (lines 3 & 7) as well 

as the dragging-action (line 5) represent operational dragging. From the perspective of indexicality, 

both dragging-gestures from left to right (acc. to the view of the students) can be assumed to be 

linked to previous actions of dragging from left to right on the DPC and their traces, because of the 

close resemblance between gesture and action. By this, dragging-gestures become indices of drag-

ging-actions including the experiences and assumptions that have been made by dragging tokens on 

the DPC from left to right, e.g.: “when I drag a token to the right, the number of tokens changes / 

increases” or “when I drag a token to the right, the represented number remains the same”.  

Although both dragging-gestures are executed more or less equally, in relation to speech they func-

tion differently. The first dragging-gesture seems to focus on the movement of dragging to the right 

from ones to tenths specifying “what” and “where” (Krause, 2016, p. 125) to “drag over” (a word-

ing frequently used by the students). In contrast, the second dragging-gesture adds the way by 

which the insight that “one one are ten tenths” (line 7) was gained, referring back again to the expe-

riences and assumptions made by the action of dragging rightwards on the DPC just before (line 5). 

Similar to the notion of model-of and model-for (van den Heuvel-Panhuizen, 2003, p. 14) we have 

identified the development from a gesture-of (representing the action of dragging) to a gesture-for 

(representing the procedure of arriving at this particular conclusion) mediated by operational drag-

ging.  

Structural dragging is done when a dragging-gesture is conducted in the gesture space without visi-

ble references to any concrete representation of a place value chart. This was used particularly when 

describing the concept of bundling within the digital place value chart, which is a main step of con-

ceptualizing the decimals’ structure. Assuming that the characteristic movement from left to right or 

vice versa indicates the material link between dragging-actions and dragging-gestures, we can con-



sider structural dragging to be an indexical sign on the traces left by practical and operational drag-

ging including all experiences, intentions, and conjectures made before.  

During the whole design experiment, the two students established a shared context where they ob-

served the other student dragging and negotiated shared answers to the tasks. In the first situation 

here, Bella performs the dragging (line 1), while Hanna sums up the emerged result (line 2). In the 

second scene Hanna reacts to Bella’s dragging on the chart (line 5) and the chart’s reaction by 

astonishment (line 6) and is therefore likewise involved in conceptualizing de-bundling. Thus, a 

dragging-gesture of one student can also be taken as an index to previous dragging-gestures by the 

other student. This way, both students and the device constitute an ecology of tool-based interaction 

to build the concept of decimal fractions.   

Discussion: Reflections and consequences 

Applying the theoretical perspective of indexicality we have reconstructed how the action and the 

gesture of dragging can accumulate more and more aspects about bundling and de-bundling. This 

process of mutual reference between indexical actions and gestures brought forward the conceptual-

ization of bundling and de-bundling as the basis for the concept of decimal fractions. At the same 

time the dragging-gestures detached more and more from the concrete dragging-actions on the DPC 

and became shared signs by enriching indexical references.  

Similar to the shift from model-of to model-for (van den Heuvel-Panhuizen, 2003, p. 14), a shift 

from gesture-of to gesture-for was observed, that is: A dragging gesture first represents the action of 

dragging (gesture-of), later the dragging-gesture is used as an epistemic means to structure the de-

scription of the base-ten structure (gesture-for). Operational dragging can be considered as an in-

termediate state. It produces a change of view from dragging tokens to bundling and de-bundling as 

the underlying concept. Hence, adding indexicality to gesture analysis may improve our understand-

ing in how epistemic processes progress.   

Whether or not this theoretical perspective keeps being fruitful for tool-based learning in general 

can only be answered by further empirical research. The main issue will be how this perspective can 

be fruitfully linked with local theories and models for learning specific contents, such as expanding 

natural numbers to decimals fractions. For that, we will apply the indexicality perspective to addi-

tional data from design experiments with another 15 student pairs in the DeciPlace project, attempt-

ing to prove our results and gain further insight into the role of tool-based dragging-actions and -

gestures for contributing to conceptualize the decimal fraction’s structure.  
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Design research is considered a valuable but demanding methodological framework that continues 

to generate theoretical and methodological reflection. An important topic to address is that of 

argumentative grammar, the logic guiding a method and supporting warranted claims, because 

critics consider it a weak spot of design research. With reference to the history of logic, I challenge 

these critics’ demand of an argumentative grammar that relies solely on structure rather than also 

on content. The purpose of this paper is to think through what argumentative grammars of design 

research could look like. Because the literature is so limited on this topic, I draw on interviews with 

experts in design research to evaluate and discuss my own attempt to formulate an argumentative 

grammar in relation to possible research questions. One conclusion is that design research 

requires multiple argumentative grammars depending on the design and the research focus. 

Keywords: Design-based research, expert interview study, methodology. 

The need for an argumentative grammar of design research 

In a special issue on design research, Kelly (2004) argues that design research (DR) is a valuable 

emerging set of methods in education, but he has methodological concerns. In his view, “[t]he next 

task is to establish the logos of design research so that we can argue, methodologically, for the 

scientific warrants for its claims.” (p. 105) For design research to become a methodology (method + 

logos), he proposes, we need an “argumentative grammar,” which he defines as “the logic that 

guides the use of a method and that supports reasoning about its data” (p. 118).  

A methodology that already has a clear argumentative grammar is that of randomized field trials as 

introduced by Sir Ronald Fisher in the 1920s for agriculture. In such trials, also called randomized 

controlled trials, researchers randomly attribute objects or subjects to an experimental or control 

condition so that they can assume that these two groups are equal on average except for receiving 

the treatment or not. Any differences between these two groups as measured by means of pre- and 

posttests can therefore be attributed to the difference in treatment. One advantage of this 

methodology is that its argumentative grammar is a structure that can be 

described separately from its instantiation in any given study so that the logic of a proposed 

study and its later claims can be criticized. Thus, many reviewers reject studies not on the choice 

of method (procedure), but on their violation of the underlying logos that one expects to see with 

that choice of method. (Kelly, 2004, p. 118, emphasis in the original). 

Kelly and other critical friends such as Shavelson et al. (2003) thus push design researchers to make 

warranted claims and go beyond purely narrative accounts. With Cobb et al. (2014), I think design 

researchers should indeed work towards an argumentative grammar (or grammars) to increase DR’s 

methodological quality. However, drawing on the history of logic, I problematize the preference for 

a separate logical structure for design research (DR) that is irrespective of content. The purpose of 

this paper is then to think through what an argumentative grammar for design research could look 

like instead. Because the literature is so scant on this topic, I decided to interview experts in DR on 

a provisional grammar that I formulated myself.  



Problematizing the need of a separate argumentative structure 

This section first addresses randomized field trials (RFTs) as the best known example of a 

methodology with an argumentative grammar that relies on the structure of argumentation. Next I 

use the history of logic to argue that logic that is based only on the structure and not on its content is 

of limited scientific value. I argue that DR requires argumentative grammars that acknowledge 

content as part of their logic, where content can refer to many things including key concepts used in 

the research, information on local circumstances (context), and the content of what is learned or 

aimed to achieve. 

Randomized field trial 

With respect to RFTs, I highlight three themes to prepare the discussion of an argumentative 

grammar of DR. Theme 1: In an RFT the design of an intervention and the evaluative research are 

separate. From some theoretical perspective or hypothesis, educational design with particular 

characteristics is developed and then evaluated. When the effects of its implementation are positive, 

these are attributed to characteristics of the design, operationalized in particular variables. Where 

does this leave the design researcher who typically intertwines intervention and evaluation? 

Theme 2: Typical research questions reveal the type of knowledge that RFT are often after: What 

are the effects of intervention I on D? Is intervention I1 better than I2? The design researcher 

typically asks how particular learning can be supported or how some problem can be resolved (of 

course RFTs can also focus on mechanisms rather than just effects). 

Theme 3: RFTs have a clear argumentative structure that is separate from the content of what is 

researched. This allows the audience, even those who may not have the expertise to engage with the 

content of the studies (e.g., key concepts, learning content, situation, mechanisms) to judge the 

structure of the procedure and the scientific reasoning. What could an argumentative grammar of 

DR look like if it, as I argue later, cannot depend on structure alone?  

Despite their power, RFTs also have their limitations (MRC, 2000). To know “what works” in 

general is of little value if it is unknown “how and under what conditions things work” or what the 

mechanisms or “active ingredients” are that make an intervention work (Biesta, 2007). It is further 

acknowledged that valid measurement is difficult and that RFTs typically have good internal but not 

necessarily good external validity (cf. Shavelson, 2008).  

Logic: Content matters as much as structure 

I now use examples from logic to clarify that Kelly’s (2004) and others’ focus on the structure of 

argumentation may hold back educational research. The discipline of logic started in Aristotle’s 

Prior Analytics with syllogisms such as “All men are mortal; Socrates is a man; therefore Socrates 

is mortal.” This logic purely depends on the structure of the inference: The non-logical terms such 

as “mortal,” “Socrates,” and “man” can all be replaced by other terms without loss of validity. The 

interpreter does not even need to know the meaning of these terms to judge the validity of the 

reasoning. This reasoning is thus rigorous but irrelevant in scientific reasoning: 

This kind of logic based on syllogisms came into disrepute in the seventeenth century when 

science was born. Scientists like Descartes found that all interesting propositions, all interesting 

inferences are in fact nonsyllogistic. (Lakatos, 1999, p. 39) 



Logic has developed in multiple ways. One nonsyllogistic type of reasoning relevant to science is 

what Brandom calls non-monotonic. This means that new conditions can turn a valid inference into 

an invalid one. Brandom (2000, p. 88) gives an example from physics: 

1. If I strike this dry, well-made match, then it will ignite. (p→q) 

2. If p and the match is inside a very strong electromagnetic field, then it will not ignite." 

(p&r→¬q) 

3. If p and r, but the match is in a Faraday cage, then it will light. (p&r&s→q) 

4. If p and r and s and the room is evacuated of oxygen, then it will not light. (p&r&s&t→¬q) 

Scientific reasoning in educational research is clearly non-monotonic: There are overwhelming 

numbers of factors that can influence learning. Any relevant positive factor can probably be 

counteracted by a negative one. Given the pragmatic nature of education, it is also worth 

mentioning progress on pragmatic reasoning: Walton et al. (2008), for example, identified 96 

argumentation schemes that people use in reasoning. It has also become evident that valid 

argumentation does not depend purely on structure but also on content (and context). So-called 

material inferences even purely depend on content rather than on their structure. Brandom (2000, p. 

85) uses the inference from “Pittsburgh is to the west of Philadelphia” to “Philadelphia is to the east 

of Pittsburgh,” as an example of an inference that is materially valid because it depends only on the 

content of the concepts of east and west. 

These brief observations from logic suggest that scientific progress relies not only on the structure 

of argumentation but also on content. Why then should research methodology in education be 

judged by the separate structure of its argumentation? But what would an alternative look like? 

Design researchers are faced with the challenge to come up with an alternative grammar or, more 

likely, grammars. One attempt is that by Cobb et al. (2014):   

1. Demonstrating that the students would not have developed particular forms of 

mathematical reasoning but for their participation in the design study.  

2. Documenting how each successive form of reasoning emerged as a reorganization of 

prior forms of reasoning. 

3. Identifying the specific aspects of the classroom learning environment that were 

necessary rather than contingent in supporting the emergence of these successive forms 

of reasoning. (p. 490)  

The function of such grammars is that they “link research questions to data, data to analysis, and 

analysis to final claims and assertions” (p. 489). Given that little has been written about this, I 

formulated an argumentative structure myself based on discussions with Karel Stokking and my 

own experience with doing and supervising DR. The most efficient and sensible way to gauge its 

quality seemed to be an interview study with expert design researchers. In this way I could explore 

what they thought about the need for an argumentative grammar of DR, what they thought of my 

attempt, and how it could be improved.   

Method: Interview study with experts 

I interviewed eighteen well-known international design researchers on argumentative grammars of 

DR and related themes for about 60-90 minutes. These experts represent a variety of different 



disciplines and traditions in DR (seven were mathematics educators). Before presenting my own 

grammar proposal, I asked them about issues that might elicit their view on the logic accompanying 

DR and the type of claims it renders. First, I asked about the intertwinement of design and research 

because it can make particular claims difficult: In line with the argumentative structure of RFTs and 

thinking in terms of variables, many researchers prefer to keep design of an intervention and the 

(evaluative) research separate. Second, I asked experts’ views on Kelly’s (2004) claim that DR has 

no clear argumentative grammar. Third, I asked if they had a preference for types of research 

questions (what- vs. how-questions). An example of a what-question I showed to the interviewees 

is: “What are characteristics of a valid and effective teaching and learning strategy to teach students 

about correlation and regression in such a way that they experience coherence between mathematics 

and the natural sciences?” (Dierdorp, 2013). A how-question I presented is: “How can students be 

fostered in their connecting of gene as a molecular-level concept to phenomena at higher levels of 

biological organization?” (reformulation of Van Mil’s, 2013, question). Fourth, I asked experts 

about the argumentative grammar I propose in the next paragraphs. 

The focus on how to support learning in DR implies that in my view at least four things need to be 

captured in an argumentative grammar of a DR project. First, learning goals need to be underpinned 

(or a problem or needs analysis should be done). A design criterion could be relevance and a 

research criterion content validity (Plomp & Nieveen, 2013). Several existing methods (review 

study, expert interviews, Delphi study) can be used to this end. Second, a design (e.g., tool, 

teaching-learning strategy, or program) could be described in relation to theoretical and empirical 

considerations. Criteria here can be “empirically and theoretically underpinned” and 

“innovativeness,” but some may want to emphasize “feasibility or practicability.” Third, only if 

intentions are realized, particular intended phenomena can be studied (e.g., whole-class scaffolding; 

Bakker & Smit, 2017). In RFTs, the criterion would be formulated as “implementation fidelity,” 

necessary to check if any effects can be attributed to the intervention having particular 

characteristics (cf. Sandoval, 2014). Fourth, information about to what extent learning goals are 

achieved, or a problem solved, needs to be given in order to answer the main question. The main 

criterion here is effectiveness. 

The structure of a DR project presented to all interviewees for their feedback was the following: 

How can goal X be achieved for a particular group of learners (in particular conditions or under 

particular constraints)? To answer this main question, a sensible list of research questions could 

be: 

1. What is an appropriate learning goal for….?  

2. What is a design that would help students/teachers to achieve this goal? 

3. How well was this strategy/trajectory implemented? 

4. What were the effects of this intervention? 

In discussing this structure, several topics arose that are related to aspects of argumentative 

grammar such as links between different parts of research (data, claims), in particular in contrast to 

RFTs. I summarize the experts’ responses in three themes. 



Theme 1: Intermingling design and research 

A key feature of DR is that design and research progress hand in hand. In response to this issue, the 

interviewees noted the following points. First, any natural scientist knows that scientific practice, in 

particular the context of discovery, is much messier than presented in textbooks or reports of 

experiments. Of course, there is a place for experiments, but a large part of science—even in 

physics—is trial and error with set-ups, designing new arrangements, philosophizing, thought 

experiments et cetera. In certain disciplines, take astronomy, experiments are even impossible. 

Serendipity (e.g., the discovery of penicillin) also points to the importance of the context of 

discovery. The relative importance of RFT as a methodology rests on the side of justification. 

Several experts said that RFT-type research often produces “false security” or that it struggles with 

similar issues as other types of research, but somehow it has become common practice to ignore 

particular problems or trust researchers on doing it well (e.g., validity of measurement, identifying 

relevant variables). However, many noted there is also a place for RFT as it helps for example 

policymakers to decide between various well-established options to be implemented.  

Second, two interviewees emphasized that DR is about how education could be. Where much 

research is about current educational practice, and some about its past, DR is about its future. 

Design researchers may argue that educational goals should be different from current educational 

practice, and design for these new goals. Such DR is thus after proofs of principle, not proof of 

doing better than current practice which may have very different goals. Comparison with a control 

group that worked towards different learning goals would be unfair. The argumentative grammar of 

this type of “proof of principle” DR is thus clearly different from DR that aims for causal claims 

about effectiveness of particular means of support. This points to the need for multiple grammars. 

Third, several interviewees noted that DR conceptualizes learning environments as ecologies rather 

than systems that can be captured with a few manipulable and unmanipulable variables. Attributing 

an effect to particular variables then becomes challenging. Rather the focus should in the experts’ 

view be on design principles, hypothetical learning trajectories, or mechanisms of learning, in line 

with DR’s intention to produce knowledge about how things work (cf. Sandoval, 2014). 

Theme 2: Research questions 

Most interviewees considered the examples of what- and how-questions presented to them as too 

broad. Some did not have a strong preference for either formulation: The researcher wants to know 

similar things in both cases. However, most experts preferred the how-questions because these 

emphasize the process of achieving particular learning goals or solving a particular problem. In 

terms of Cobb et al. (2003), DR typically aims to provide insight into how particular means can 

support particular learning. This hints at the type of knowledge claims that DR purports to deliver.  

A view, expressed by Abrahamson and diSessa, was that DR is a methodological framework (not a 

method or a strategy) that provides a generative context (about how education could be). Because 

new types of learning are promoted, new phenomena may emerge and thus in turn become objects 

of investigation. This view fits with the image of DR as a context of discovery for researchers. Once 

such phenomena are implicated and objectified, they can be studied as interesting in their own right, 

with little or no reference to the broader design research context (e.g., Abrahamson et al., 2016). In 



line with the generativity of DR, many interviewees emphasized that interesting research questions 

often emerge rather late in the research process. They are hard to formulate in advance.  

Theme 3: Argumentative grammar 

The interviewees were overall positive about the proposed grammar. The elements of 

learning/educational goals, design, implementation, and effects are key to DR, and can be studied 

empirically, perhaps even in separate publications. One interviewee expressed some resistance to 

categorizations and structures in research because each project is unique and requires flexibility and 

creativity. Yet structures could be useful to early career researchers as a starting point.  

The experts’ further comments were matters of detail. With regard to the learning goals, diSessa 

noted that he sometimes preferred learning goals that colleagues thought were impossible to achieve 

with certain age groups (e.g., comprehending velocity and acceleration as vectors in Grade 6). 

McKenney pointed out that design researchers often encounter obstacles that can become the topic 

of research. She tends to do a lot of “front-end” work in the early phases of DR in areas where too 

little is known to arrive at effective designs. 

Judging the quality of implementation was considered a good idea, although several experts noted 

that the implementation process could be interesting to study even without judging its quality. 

diSessa remarked that failure can be interesting from a design perspective. In his experience, many 

colleagues respond with surprise when he reports failure, but as long as important lessons can be 

learned, contributions to the knowledge base can be made. 

The terms “interventions” and “effects” elicited some resistance due to connotations with the RFT 

paradigm of thinking in terms of variables. Several experts preferred to talk in terms of learning 

ecologies instead. However, some found it important to measure what was achieved and thought 

that design researchers had measured too little in the past. Many noted that there is certainly a place 

for RFTs, as well as for quantitative measurement, in DR. Some indicated that RFT ideally gives 

insight into mechanism too, and can be part of DR. 

Ruthven suggested a fifth element, namely an improved re-design, which is indeed in line with 

DR’s emphasis on the hypothetical status of any claims. Citing Cronbach, Plomp emphasized this 

holds for any type of research: “When we give proper weight to local conditions, any generalization 

is a working hypothesis, not a conclusion” (Cronbach, 1975, p. 125). 

Plomp noted that although he did not write about argumentative grammar, his approach with 

Nieveen (Plomp & Nieveen, 2013) has such a function. For each phase of a DR project one 

criterion was central: relevance for the exploratory phase (e.g., problem analysis), consistency (of 

the design), practicability (of using the design), and last effectiveness. 

An issue raised was whether different criteria were needed for DR than for some other research 

approaches. Because many readers and reviewers are used to different commissive spaces, experts 

such as Cobb stressed that DR has to become clear on the criteria on which it wants to be judged. 

For example, we have to acknowledge that design researchers are part of the research, and that their 

qualities as designers and researchers matter. As Confrey noted in the interview: “You build a 

reputation for doing good work (…), but that’s not great for newcomers because they don’t have the 

track record yet.” It certainly goes against the more conventional norm of reliability that research 



should be independent of the researcher. Hence it seems necessary to think through the criteria by 

which design researchers want to be judged. However, McKenney preferred the research part of DR 

to be treated with the same criteria as other qualitative or mixed-methods approaches. Kelly 

suggested DR can learn from other research approaches such as single-subject and repeated-

measures designs. 

Not only the design researcher, but the audience has to make judgments as well. Where RFTs can 

yield results that sometimes seem to require little understanding of the topic at hand, DR asks for an 

audience that can appreciate the relevance of the educational goals chosen, the innovativeness of the 

design, and the learning processes reported. diSessa noted that the typical reasoning in DR is to 

show what types of reasoning can be promoted in a particular way, for instance by using particular 

software. Any well-informed domain-specific educational researcher with knowledge of the 

disciplinary (e.g., mathematical) content will know how rare or relevant such types of reasoning are 

for particular age groups, so will appreciate qualitative examples of even small samples. 

Conclusion 

In this paper I have argued that it is unreasonable to expect that educational research including DR 

should use an argumentative grammar that depends solely on structure rather than also content (key 

concepts, mathematical learning content, context etc.). Examples from logic illustrate the 

importance of types of reasoning that are also based on content. Argumentative grammars for DR 

should thus acknowledge content too. Cobb et al. (2014) offered an argumentative structure that can 

help convince readers about the development of students’ mathematical reasoning and the aspects 

of the learning environment that supported them (see also Sandoval, 2014). My own proposal 

focused on the grammar of a DR project with the aim to contribute to knowledge about how 

particular educational goals could be achieved in general (or problems solved). Based on the 

interviews with experts, my proposal—after some modification—seems to make sense as a starting 

point for design researchers when they write a proposal or want to demarcate phases in their overall 

project (cf. McKenney & Reeves, 2012; Plomp & Nieveen, 2013) with criteria that are central in 

each phase. However, there is a need for more explicit argumentative grammars, for instance for 

“proof of principle”-type DR and for smaller-scale design studies that focus on interesting 

phenomena that are discovered during a larger DR project. 
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We explicate how we used different theories of learning to design dynamic computer environments 

and tasks to promote secondary students’ discernment of covariation—central to students’ study of 

fundamental mathematical ideas such as rate and function. Using Marton’s variation theory, we 

designed task sequences to foster students’ discernment of the critical aspect of covariation. Using 

Piaget’s constructivist theory, we defined the critical aspect, covariation, in terms of students’ 

conceptions of a relationship between attributes whose measures vary. Using Thompson’s theory of 

quantitative reasoning, by quantities we mean attributes of objects that students can conceive of as 

being possible to measure. We provide data to demonstrate how a student’s discernment of 

covariation advanced during her work on a task sequence. We discuss implications for the design of 

dynamic computer environments and tasks focused on the mathematics of change and variation. 

Keywords: Secondary school mathematics, instructional design, computer simulation, learning 

theories. 

By drawing on more than one theory of learning, researchers can combine tools and lenses to 

investigate complex phenomena (e.g., Cobb, 2007; Sfard, 1998; Simon, 2009). Cobb (2007) 

recommended that researchers “act as bricoleurs by adapting ideas from a range of theoretical 

sources” (p. 29). Sfard (1998) argued that researchers should not assume that theoretical “patches of 

coherence” somehow would combine to form a single, unifying theory of learning. Yet, using 

multiple theories can pose challenges, particularly if researchers view theories as competing, rather 

than complementary (Simon, 2009). To address challenges, it is useful for researchers to take into 

account the grain sizes of different theories (Kieran, Doorman, & Ohtani, 2015; Watson, 2016). 

By distinguishing between the grain sizes of theories, researchers can more effectively interpret and 

use theory for task design purposes (Kieran et al., 2015; Watson, 2016). Broadly, grain sizes include 

grand theories (e.g., Piaget’s constructivist theory), intermediate theories (e.g., Marton’s variation 

theory), and domain specific/local theories (e.g., Thompson’s theory of quantitative reasoning). 

Furthermore, it is useful for researchers to acknowledge interrelationships between theories of 

different grain sizes. Theories of smaller grain size depend upon or address particular aspects of 

theories of larger grain size (Watson, 2016). For example, Thompson’s theory of quantitative 

reasoning depends upon Piaget’s constructivist theory to define quantities in terms of students’ 

conceptions. By drawing on theories of different grain sizes, researchers can adapt and interpret 

grand theories for task design and implementation (e.g., Cobb, 2007; Kieran et al., 2015; 

Thompson, 2002; Watson, 2016). 

When researchers engage in task design, they should make explicit how their theory choice informs 

their task design (Watson, 2016). Using Marton’s variation theory (2015), we designed task 
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sequences to engineer opportunities for students to discern critical aspects central to fundamental 

mathematical ideas, such as rate and function. We posit that one such critical aspect is covariation. 

Using Piaget’s constructivist theory (1985), we define covariation in terms of individuals’ 

conceptions. Using Thompson’s theory of quantitative reasoning (1994, 2002), we articulate the 

conception; by covariation we mean a conception of a relationship between attributes whose 

measures vary. Students’ conceptions of covariation impact their understanding and use of function 

(Thompson & Carlson, 2017).  

We build on the work of researchers who have designed dynamic computer environments and tasks 

to foster students’ study of the mathematics of change and variation (e.g., Kaput & Roschelle, 1999; 

Saldanha & Thompson, 1998; Thompson, 2002). In this paper, we explicate how we used theories 

of different grain sizes to design dynamic computer environments and tasks to promote secondary 

students’ discernment of covariation. To avoid remaining only in the abstract, we provide data to 

demonstrate the utility of our approach in fostering students’ discernment of covariation. 

Theoretical and conceptual framework 

We use Piaget’s constructivist theory to orient our research. We foreground students’ conceptions to 

explain how researchers might design dynamic computer environments and tasks to foster students’ 

development of difficult to learn mathematical ideas such as function and rate. We focus on 

students’ mental operations, which refer to actions that individuals can enact in thought or in the 

physical world (Piaget, 1985).  

We use Marton’s variation theory to guide the design of our dynamic computer environments and 

related task sequences. Broadly, Marton (2015) argued that instructional designers should develop 

task sequences that provide students opportunities to discern critical aspects. The task sequence 

should involve patterns of variation, then invariance in the critical aspects (Marton, 2015). We draw 

on Piaget’s constructivist theory to orient our interpretation of the critical aspect that we intend for 

students to discern. By critical aspect, we mean a conception. The critical aspect—covariation—

refers to a conception of a relationship between attributes whose measures vary. 

When using variation theory it is important for instructional designers to determine if the critical 

aspect is comprised of a single aspect or of interrelated aspects (Marton, 2015). For example, 

suppose a designer intends for students to discern the color blue, which students could conceive of 

as being comprised of a single aspect. A task sequence should begin with variation in color and 

invariance in some unrelated feature (e.g., blue ball, green ball, red ball), then invariance in color 

and variation in the unrelated feature (e.g., blue ball, blue block, blue cone), and then variation in 

both. In contrast, if a designer intends for students to discern the depth of blue color, students would 

need to conceive of interrelated aspects (depth, color) that comprise the critical aspect. In this case, 

the task sequence should include variation and invariance in each interrelated aspect (e.g., different 

colors of the same depth, then different depths of the color blue), then move to variation in both 

aspects. A conception of covariation necessitates a conception of a relationship between interrelated 

aspects (attributes whose measures vary). For example, in a situation involving the varying height 

and distance of a car in a turning Ferris wheel, the height and distance are the interrelated aspects, 

and students’ conceptions of a relationship between measures of height and distance (covariation) is 

the critical aspect. 



We found Marton’s variation theory and Piaget’s constructivist theory to complement each other for 

the purposes of our task design. From a constructivist perspective, we do not assume that a 

relationship between attributes whose measures vary (covariation) is something that is “out there” 

for students to perceive. Marton (2015) argued that researchers should not assume that students 

already attend to the critical aspect prior to encountering a task sequence; therefore, task sequences 

should include variation in critical aspects (contrast) prior to variation in noncritical aspects. To 

foster students’ discernment of covariation, we incorporated variation in the types of interrelated 

aspects (height, width, distance) prior to variation in the representation of those aspects.  

We use Thompson’s theory of quantitative reasoning to explain what we mean by the attributes 

whose measures vary—the interrelated aspects comprising the critical aspect of covariation. 

Drawing on Piaget’s constructivist theory, Thompson (1994) defined quantities in terms of 

individuals’ conceptions of attributes of objects. Therefore, quantities are not “things” that exist in 

the physical world. Following Thompson (1994), we claim that an individual conceives of some 

attribute as a quantity, if the individual can conceive of the possibility of measuring that attribute. 

For example, we would claim that a student conceived of “height” as a quantity if the student 

provided evidence of envisioning the possibility of measuring the height of some object.  

We selected Thompson’s theory of quantitative reasoning because we found it to be useful for 

interpreting Piaget’s constructivist theory. Accordingly, the mental operations on which we focus 

are quantitative operations, which involve actions on attributes that students can conceive of as 

measurable, or in other words, actions on quantities (Thompson, 1994). Specifically, we focus on 

students’ conceptions of covariation, which entail the quantitative operations involved in forming 

and interpreting relationships between attributes whose measures vary. For example, a student 

conceiving of covariation could form and interpret relationships between the varying measures of 

height and distance for a Ferris wheel car traveling around one revolution of a Ferris wheel.  

The diagram in Figure 1 illustrates how we used different theories to inform our task design.  

 

Figure 1: Relationships between the different theories we used to inform our task design 

We placed Marton’s variation theory at the top to foreground our intention to design a task sequence 

to foster students’ discernment of a critical aspect comprised of interrelated aspects. We placed 

Piaget’s constructivist theory in the center to communicate how we used this grand theory to define 

the critical aspect, covariation, in terms of individuals’ conceptions. We placed Thompson’s theory 



of quantitative reasoning at the base to show how we used this local theory to explain what we mean 

by covariation—a conception of a relationship between attributes whose measures vary. 

Ferris wheel dynamic computer environments 

Using Geometer’s Sketchpad software, Johnson developed two dynamic computer environments for 

use with the task sequence. The environments consisted of a Ferris wheel animation and linked 

graph, each of which students could control separately or in conjunction. The environments related 

either the height of a Ferris wheel car from the ground or the width of the car from the center to the 

distance traveled around one revolution of the wheel (Figure 2 shows height and distance). See 

Johnson (2015) for more details about the environments. 

 

Figure 2: Ferris wheel dynamic computer environment, distance and height 

The Ferris wheel environments contained three affordances particularly relevant to our use of 

variation theory. First, students could vary each of the interrelated aspects (e.g., height and distance) 

individually by dragging or animating the dynamic segments on the vertical and horizontal axes. 

Second, the environments included different interrelated aspects—height and distance (Figure 2), 

and width and distance (not shown). Third, the environments included variation in the axes used to 

represent the interrelated aspects on the Cartesian plane (e.g., height and distance represented on the 

vertical and horizontal axes [Figure 2], then horizontal and vertical axes, respectively [not shown]). 

Our use of Piaget’s constructivist learning theory and Thompson’s theory of quantitative reasoning 

informed our choices about the types of quantities to include on each of the axes. Specifically, we 

included quantities measurable with linear units, because it is less difficult for students to conceive 

of using linear units to measure quantities (see also Piaget, 1970). Furthermore, Thompson (2002) 

recommended students use their fingers as tools to represent change in individual quantities. In the 

Ferris wheel environments, students could use either their fingers or the dynamic segments on the 

vertical and horizontal axes to represent change in individual quantities. 



The Ferris wheel task sequence 

Purpose and setting 

We view tasks as problems designed for particular audiences and settings (see Sierpinska, 2004) 

Johnson designed the Ferris wheel task sequence to provide students opportunities to discern 

covariation. In a small neighborhood school in an industrial region of a large U.S. city, Johnson 

conducted a series of small group interviews with five ninth grade students (~15 years old), enrolled 

in an introductory algebra course. Interviews occurred approximately once per week. During the 

interviews, students completed the Ferris wheel task sequence (see Table 1). Johnson designed the 

task sequence for a small group interview setting; however, teacher/researchers could adapt the 

tasks for use in different settings (see Johnson, Hornbein, & Azeem, 2016).  

Variation and invariance in the Ferris wheel task sequence 

To foster students’ discernment of critical aspects comprised of interrelated aspects, Marton (2015) 

recommended that instructional designers begin with task sequences containing variation in 

individual interrelated aspects, then variation in the both interrelated aspects, against a background 

of invariance. In the Ferris wheel task sequence, we intended for the situation of a turning Ferris 

wheel to provide a background of invariance. Furthermore, Marton (2015) recommended variation 

in features (or dimensions) of those interrelated aspects. We provided two types of variation in 

features: the type of interrelated aspects (width, height, or distance), and the representation of each 

aspect on the Cartesian plane (horizontal or vertical axis). Table 1 shows the Ferris wheel task 

sequence, including variation in interrelated aspects and representations on the Cartesian plane. 

Task Interrelated aspects Representation on axes on Cartesian Plane 

1 Height, Distance Distance – horizontal, Height – vertical 

2 Width, Distance Distance – horizontal, Width– vertical 

3 Height, Distance Height – horizontal, Distance – vertical 

4 Width, Distance Width – horizontal, Distance – vertical 

Table 1: Ferris wheel task sequence: Variation in interrelated aspects and representation 

Covariation and quantity in the Ferris wheel task sequence 

When the critical aspect is a mental operation, instructional designers should provide students 

opportunities to engage in activities in thought as well as action. Each task in the Ferris wheel task 

sequence contained five parts: (1) Explain what the interrelated aspects measure in the Ferris wheel 

situation; (2) Sketch a graph relating both aspects; (3) Use dynamic segments to represent change in 

individual aspects (e.g., height or distance); (4) Predict a car’s location on the Ferris wheel given 

only dynamic segments representing the changing individual aspects; and (5) Compare the computer 

generated graph to the sketch in (2). Through each of the five part tasks, Johnson provided students 

multiple opportunities to discuss and represent their thinking about how the interrelated aspects 

(height and distance or width and distance) were changing individually and together. For example, 

students sketched a graph relating the interrelated aspects prior to viewing any facets of the dynamic 

graph. Furthermore, Johnson provided students opportunities to discuss and show the possibility of 



measuring interrelated aspects of the Ferris wheel situation (e.g., “height” represents the vertical 

distance from the car to the base of the Ferris wheel, see Figure 2).  

A case of a student’s discernment of covariation 

We use the work of one student—Ana—to demonstrate the promise of this design approach for 

fostering students’ discernment of covariation. Ana’s work demonstrates the range of reasoning of 

all five students who completed the Ferris wheel task sequence. Building from Ana’s work, we 

present a case of a student’s discernment of covariation.  

We share data from Ana’s work for Part 2 of Tasks 1 and 3: Prior to viewing the dynamic graph, 

sketch a graph relating both aspects. We selected data from Part 2 to illustrate how Ana’s sketches 

changed prior to viewing aspects of the dynamic graph. We attribute the changes in her sketches to 

changes in her conceptions of a relationship between varying measures of height and distance. 

Figure 3 shows Ana’s written work for Part 2 of Tasks 1 and 3. For Part 2 of Task 1 (left), Ana drew 

the curved graph, labeling it “height,” and then drew the line graph, labeling it “distance” (Figure 3, 

left). When asked what her labels meant, Ana stated: “This (points to the curved graph) would be 

the graph shape if we were dealing with the height, and this (points to the line graph) would be the 

shape if we were dealing with the distance.” For Part 2 of Task 3, using one continual motion, Ana 

sketched a single graph (Figure 3, right). When asked to explain her thinking, she stated that the 

“distance keeps on going,” but the height will reach “a certain amount,” and then “it goes back 

down.” To illustrate, she drew an arrow along the left of the distance axis. Next, she drew a small, 

darkened segment on the graph, and two arrows extending along the graph. 

 

Figure 3: Ana’s graphs in Part 2 of Task 1 (left) and Part 2 of Task 3 (right) 

For Part 2 of Task 1, we interpret that Ana represented individual variation occurring in the 

measures of height and distance. Not only did she sketch two graphs, she labeled the actual 

sketches, rather than the axes. We use Ana’s work for Part 2 of Task 1 to demonstrate that Ana did 

not enter the Ferris wheel task sequence already conceiving of a relationship between the varying 

measures of height and distance, or in other words, conceiving of covariation. Moving forward to 

Part 2 of Task 3, Ana used a single graph to represent a relationship between the varying measures 

of height and distance. Not only did she sketch a single graph, she annotated the graph to show how 

the single graph represented variation in the measures of both height and distance. Therefore, we 

claim that Ana demonstrated discernment of covariation during her work for Part 2 of Task 3 



(conceived of a relationship between attributes whose measures vary). Furthermore, Ana’s 

discernment of covariation was not limited to the aspects of height and distance. She also 

demonstrated discernment of covariation when working with width and distance in Tasks 2 and 4. 

Discussion/Implications 

When critical aspects involve interrelated aspects, Marton (2015) recommended that instructional 

designers develop task sequences that include different backgrounds. In our task sequence, we used 

only a Ferris wheel situation, and we recommend that researchers designing task sequences to foster 

students’ discernment of covariation also include different situations. However, we provide our 

recommendation with a caveat—the different situations should include interrelated aspects 

measurable with linear units. For example, if we were to design a task sequence for a filling bottle 

situation, we might ask students to relate the height of the liquid in the bottle to the diameter of the 

liquid in the bottle. Our caveat stems from our use of Piaget’s constructivist theoretical perspective. 

It is less difficult for students to conceive of the possibility of using linear units to measure 

attributes (e.g., Piaget, 1970). Therefore, we recommend that task sequences designed for students 

to discern covariation (a critical aspect involving interrelated aspects) should include interrelated 

aspects measurable with linear units. Researchers have shown that even successful university 

students have difficulty using graphs to represent relationships between height and volume in a 

filling bottle situation (e.g., Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). If students have difficulty 

conceiving of the possibility of using a three-dimensional unit to measure volume, it may impact 

their discernment of covariation for situations involving such attributes. 

By using theories of different grain sizes, we were able to employ multiple, compatible lenses to 

engage in task design that looked both across and within the sequence of tasks. By guiding our 

variance and invariance of interrelated aspects, Marton’s variation theory informed design across 

the task sequence. By fostering our choices about the kinds of aspects to vary, Thompson’s theory of 

quantitative reasoning informed our design within tasks in the sequence. The ability to view a task 

sequence from different perspectives—in our research, looking both across and within—is a 

productive result emerging from the use of multiple theories to do compatible explanatory work to 

augment the design of task sequences intended to foster students’ discernment of critical aspects. 
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Introduction 

Designing learning units involves decisions about the transition from syllabus to curriculum 

(Dreyfus, Hershkowitz, & Bruckheimer, 1987); Mathematics Education offers home-grown theories 

supporting this transition; curriculum designers use these theories when design is a main goal.  

Here, we present a case study of using theories for the design of a didactical tool – a learning unit 

intended for students’ construction of a specific mathematical notion. This study is part of a larger 

research project (Kouropatov, 2016) offering a didactic approach supporting high school students in 

acquiring a conceptual understanding of the integral. For this purpose, we asked ourselves: a) What 

does "a conceptual understanding of the integral" mean? and b) How can we support students in 

acquiring such understanding? Answering question (b) required design. The design was preceded 

by a thorough didactical-mathematical analysis of approaching integration via the idea of 

accumulation (Thompson & Silverman, 2008). A tight interrelationship developed between the 

design process and the relevant theories, Abstraction in Context and Proceptual Thinking. In this 

paper, we exhibit this relationship via the need for and effect of these theories in the design process 

and hence the contribution of these theories to a basis for the transition from syllabus to curriculum.   

Theoretical frameworks and their influence on the design 

We follow Tabach, Hershkowitz, Arcavi, and Dreyfus (2008) in distinguishing 

 a pre-design stage involving considerations before starting the actual development and 

research work with students; 

 an initial design-research-redesign stage of sporadic and isolated activities, and the 

observation, data collection, and analysis of their implementation with a few students; 

 a final stage that comprises further redesign, for the creation of a coherent, complete task-

based curriculum, and its implementation )limited, in our case, to four pairs of students(. 

These stages indicate what to do but not how to do it. Design decisions require theories. For our 

study, we have adopted Abstraction in Context (AiC) because its roots in constructivism and in 

activity theory make it suitable to design for and analyse the construction of abstract knowledge 

during the learning process (Hershkowitz, Schwarz, & Dreyfus, 2001). We have also adopted the 

theory of Proceptual Thinking (PT) because of the proceptual nature of the mathematical notions in 

focus, in particular accumulation (Gray & Tall, 1994). The theories are compatible but different: PT 

deals with how students see mathematics; AiC deals with how students acquire knowledge.  



Theoretical considerations at the pre-design stage 

AiC as basis for design 

AiC takes abstraction to be a learner’s activity of vertical (in the sense of Freudenthal) 

reorganization of previous mathematical constructs in order to arrive at a new (to the learner) 

construct. Abstraction leads from an initial, vague first form, which may lack consistency, to an 

elaborated form (Davydov, 1990). The activity is interpreted in terms of epistemic actions 

performed by a learner, or a group of learners, for a specific purpose, in a particular context. The 

context includes the social setting as well as the learners’ personal background, in particular the 

previous mathematical constructs resulting from previous processes of abstraction. ‘Reorganization’ 

includes establishing new connections between previous constructs, making mathematical 

generalizations, and discovering new strategies for solving problems. ‘Vertical’ implies building a 

new level of abstraction on top of a previous level. For the researcher, the question arises how to 

support and unveil the processes by which the students’ new constructs may emerge as a vertical 

reorganization of previous constructs in the current context. AiC argues that for this purpose, it is 

crucial to carry out an a priori analysis. This theoretical content analysis aims at identifying the 

elements of knowledge (mathematical facts, notions, claims, strategies, representations, etc.) that 

together constitute ‘learning a concept’ and have a didactical perspective, namely can be 

constructed by learners in a suitable context using appropriate didactical tools. The results of the a 

priori analysis are descriptions of the elements of knowledge that belong to the world of 

mathematics but may be linked to the current context, and operational definitions that constitute 

descriptions of observable student behaviour: utterances or actions that provide criteria for assessing 

whether a student’s constructing action corresponding to the said knowledge element has occurred.  

AiC has originally been proposed in the framework of a curriculum development project, in which 

abstraction was a central concern, and Hershkowitz et al. (2001) have already then expressed the 

hope that it will be useful not only for analysing students’ processes of abstraction but also for 

designing sequences of activities supporting students in such processes. At the pre-design stage, 

AiC requires a sequence of activities, each intended toward the construction of an appropriate 

element of knowledge, while the sequence is hierarchically structured as imposed by verticality. In 

other words, AiC helps us find a structure of the subject knowledge that is appropriate for 

implementation in the design. For example, based on the a priori analysis of the mathematical 

content, we decided that the unit should be designed as a four level vertical structure of the 

following conceptual components: Approximation in the context of given geometrical objects; 

Accumulation Value (the definite integral) in the context of given analytical objects or situations; 

Accumulation Function (the definite integral with varying upper bound); and Integration-

Differentiation interplay, mainly the Fundamental Theorem of Calculus (FTC). Further analysis of 

each level provided the vertical structure of the elements of knowledge intended to be constructed 

by the students. We present two of the four levels in some detail.  

For didactical reasons and based on verticality, Approximation was interpreted as Geometrical 

Shapes Approximation (GSA) with the following three knowledge elements:  

APG "General approximation": The size of a given object can be approximated by replacing the 

given object with known objects; 



APR "Refined approximation": The approximation can be made more precise by decreasing the 

size of the replacing objects and increasing their number;  

APL "Approximation limit": The size of a given object can be determined as precisely as one 

wants by continued refinement. 

The corresponding operational definitions are that we will say students have constructed  

APG if they explicitly (verbally and/or graphically) replace a given object with known objects; 

APR if they explicitly (verbally and/or graphically) refine the approximation by decreasing the 

size of the replacing objects and increasing their number; 

APL if they explicitly (verbally and/or graphically) identify a value as the exact size of a given 

object by continued refinement. 

Knowledge elements for the other three conceptual components were similarly described and 

defined (Kouropatov, 2016; Kouropatov & Dreyfus, 2014). These descriptions and definitions 

constitute the framework for the design of activities in the learning unit. In other words, by means 

of the description of the elements of knowledge, AiC informs the decisions of what should be 

designed and in what hierarchy it should be organized. AiC does not inform how to design for each 

notion by means of micro-tasks. For that purpose we used PT.  

PT as basis for content design  

Gray and Tall (1994) defined the notion of procept as an aggregate of three things: process, concept 

(or object), and symbol. For example, the symbol 
0

( )

x

f t dt  is meant to evoke both the process of 

accumulation (integration) and the concept of accumulation function (integral), with the cognitive 

combination of all three, process, concept, and symbol, being called a procept. This stance has 

crucial didactical implications: students might first meet a process; later, a symbol is introduced for 

that process and/or its product, and this symbol takes on the dual meaning of the process and the 

object created by the process. Proceptual Thinking is then defined as the ability to switch one's 

focus between these dual roles of the symbols as is useful and efficient in the current context, for 

example solving a problem. Someone who has the ability to think in this way may be described as 

versatile (Tall & Thomas, 1991). Versatility includes a global picture of a concept as well as the 

ability to break it down into a process, seeing each stage as part of the whole concept. According to 

Hong and Thomas (1998) versatility is critical for comprehension of the integral concept. 

We see the integral as a multilevel, hierarchic procept, which is composed of (in the sense of AiC, 

and hence intended to be constructed by students from) other procepts including function, graph, 

approximation, sum, and accumulation; hence, we continue the pre-design stage by 

 using the result of the above a priori analysis in order to identify and describe the main sub-

procepts of the integral procept; 

 identifying the hierarchic structure of the integral as an aggregate of procepts.  

The main didactical flow of ideas was derived directly from the procept hierarchy of the 

mathematical notion of the concept of the integral. In particular, the didactical goals are: to create 

an opportunity for the learners to carry out a process that is meaningful for them (e.g., to 



approximate an unknown area of some shape by accumulating the known areas of small parts of this 

shape); to give the learner the possibility to internalize this process as a concept (e.g., by 

quantifying the process, by discussing the characteristics of this process); to introduce the learner to 

the common mathematical symbol as encapsulation of the completed process and the internalized 

object; these considerations became the leading considerations of the initial stage of design. In other 

words, PT allows us to answer the question of how the learning activities should be designed.   

We present two examples from the learning unit that show how we took into account the proceptual 

nature of the intended elements. The first one, is the initial activity for introducing Approximation 

via GSA. And the second one is from the middle of the unit, and is intended to lead students to 

constructing the concept of Accumulation Function. As mentioned above, these two concepts, 

together with the Accumulation Value and the FTC, are the four components of the vertical structure 

of the suggested design of the unit.  

Regarding GSA, students carried out the process of approximating the length of a given (sketched) 

curve (interval, semicircle, non-standard curves) using a ruler, compass, protractor, square paper 

(with two different mesh sizes) and calculator. Then, students discussed the "quality" of the 

resulting approximation and were asked to refine it (for example by using more sophisticated 

measurements) with the intention to lead to internalization of this process as a concept. Finally, 

students were asked to find the length as precisely as possible (the existence of such a value was 

taken as intuitively obvious). This “process, concept, existence” triad constitutes the GSA procept 

according to the above analysis. 

Regarding the notion of accumulation function, the activities offered students opportunities to carry 

out the process of co-variational change of the accumulation value according to the value of the 

right end-point of a certain sub-interval (using approximation or algebraic considerations); students 

dealt with a table and/or graph and/or verbal representation of this change with the intention to lead 

to internalization of this process as a concept; finally, the symbol ( ) ( )

x

a

A x f t dt   was introduced. 

This “process, concept, symbol” triad constitutes the accumulation function procept. 

Theoretical considerations at the initial stage of design  

The influence of AiC and PT on the design of the unit could, in principle, best be demonstrated by 

the design of activities about the procept of accumulation, the central notion of the learning unit. 

Because of space limitations, we concentrate instead on a small part of this: When describing a 

process of accumulation, one should know "how to start accumulating" - in other words, how to 

calculate an initial quantity. Then, one should know how to calculate further pieces of the 

accumulating quantity. The general answer to this problem is approximation. Here, the proceptual 

nature of approximation is particularly important: We see approximation as a process, and the result 

of this process, of calculating (as accurately as required) some unknown value (length, area or 

volume) by using known values. 

While approximation refers to many kinds of quantity, verticality suggests a sequence of activities 

that starts with concrete geometrical shapes (lines, 2-dimensional and 3-dimensional shapes) 

followed by geometrical shapes that are given analytically (using elementary functions) in a 

coordinate plane (space); only then, more general quantities, given analytically, are considered. 



Such a sequence allows students to construct their knowledge, starting in a concrete context of 

geometrical drawings and bodies that is intuitively clear to them, and where all quantities (i.e. 

length, area, volume) have positive values. This context requires relatively little previous 

knowledge and allows for rather linear and smooth vertical reorganization. Next, follows a more 

formal context of analytically given objects or situations (all quantities still having positive values). 

And finally, students are asked to deal with general quantities. Practically, approximation may be 

made by measurement, by geometrical consideration (with known formulas), or by algebraic 

considerations (analysing some algebraic term). In light of these considerations we have designed a 

sequence of activities, which we now, following an a priori analysis, interpret as focusing on (i) 

GSA with its three elements of knowledge ‘General Approximation’ (replacing the given object by 

known objects), ‘Refined Approximation’, and ‘Approximation Limit’; and (ii) parallel elements of 

knowledge for ‘Analytical Shape Approximation’. 

Similar considerations apply to the concept of accumulation function. We see the accumulation 

function as a process of change (e.g. the change of accumulating area beneath the graph of the 

function while "the upper bound is moving") and the product corresponding to this process (e.g., a 

graph of this process demonstrating the ability to characterize it). This approach to the accumulation 

function immediately leads to the following conclusions: for constructing the accumulation function 

element of knowledge, students should know (even if only intuitively) that if we change the upper 

end-point of some sub-interval of the function domain, the appropriate value of the given function 

and the accumulation value of the given function will also change; and they should know how to 

characterize the process of the changing of the accumulation value. In light of these considerations, 

we have designed a sequence of activities, focusing on the Accumulation Function element of 

knowledge via its component elements (not specified in this paper). 

On the basis of the above we claim that the combination of AiC and PT allows us to make decisions 

regarding the design of activities for the learning unit.   

Theoretical considerations at the final stage of design  

As a result of the two previous stages (pre-design and initial design) we developed a sequence of 

activities that were organized according to the above four component vertical structure. Each of its 

four components constitutes a hierarchical procept that is vertically composed of sub-procepts. We 

interpret this whole structure as the procept of Integral. 

At the final stage of the design we analysed the developed activities with the purpose of avoiding 

inconsistent usage of terms, symbols, and visual representations. Another important issue we took 

into account at this stage was adaptation of the unit to students' previous knowledge. Thus, for 

example, at the previous stages we had used the number e for some of tasks. We recognized that 

this notion is not familiar to the students, so at the final stage of the design certain activities have 

been changed (e.g., by using π instead of e). 

The implementation of the unit was organized in the form of learning sessions of pairs of students 

with in the presence of a researcher. The time interval between the sessions was typically between 

one and two weeks. We considered that for every part of the unit, students need some introductory 

and some summarizing activities. These activities aimed to provide a smooth flow of the learning 



process and were developed (in the form of a short discussion that was led by researcher) at the 

final stage of design. 

As a result of the final stage, we created a task-based curriculum unit introducing the concept of 

integral via the idea of accumulation with a fair measure of internal coherence. This unit has been 

implemented with four pairs of students. 

AiC as a tool for design evaluation  

An essential component of AiC is the nested epistemic actions model for describing and analysing, 

at the micro-level, processes of abstraction by which learners construct new knowledge. The model 

uses the three epistemic actions of Recognizing (previous constructs as relevant in the present 

situation, R), Building-with (the recognized constructs to achieve a local goal, B), and Constructing 

(assemble and integrate previous constructs so that a new construct emerges by vertical 

mathematization, C). In processes of abstraction, R-actions are nested in B-actions, and R and B-

actions are nested in C-actions.  

Following Dreyfus, Hershkowitz and Schwarz (2015) the core of the method is the analysis, 

utterance by utterance, of transcripts to identify R, B and C epistemic actions as building blocks of 

abstraction. The RBC methodology helps making processes of knowledge constructing observable. 

This claim is based on empirical results regarding many content areas including integration 

(Kouropatov & Dreyfus, 2014). 

RBC analysis of the learning sessions has been successfully used for evaluating the design of the 

activities by identifying problems with the implementation; this evaluation has uncovered instances 

where the design (or micro-design) of activities or their sequencing needed to be improved. We 

present two examples. 

The first example concerns the concept of approximation limit (APL) referred to above. The RBC-

analysis of the performance of one pair of students (A and B) supplied empirical evidence about 

students' constructing processes of APG and of APR but not of APL, which is a crucial component of 

approximation. Therefore, the design of the activity for the following groups of students has been 

refined in a way that supports the constructing process of APL. The elaboration consisted of adding 

questions leading the students to intuitively distinguish between overestimates (decreasing to the 

exact value) and underestimates (increasing to the exact value) of the approximated value. The 

revision was successful in the sense that all following student pairs succeeded in constructing APL. 

The second example relates to the issue of lacking previous constructs assumed by the design. For 

example, when constructing the procept of approximation via GSA, students M and N demonstrated 

a lack of previous constructs such as identifying coordinates of points on a graph, or calculating 

lengths of segments. For example, in the activity of finding the length of a quarter-circle, the 

students quickly recognized the relevance of approximation. They replaced the curve with a set of 

chords but then got stuck because they didn't know how to calculate the chord-lengths. The idea of 

choosing the segment endpoints according to some division of the given interval was new them and 

outside their current grasp. The teacher's intervention was needed and was locally helpful. So, we 

can argue that there was a need for an additional element of knowledge that our design did not take 

into account: division of the given interval creating an appropriate division of the graph.  



Conclusions and further questions 

We presented a case study of using theories for design decisions; this case dealt with learning the 

integral concept in high school via constructing knowledge about accumulation. The theories were 

most significant but not the only resource for decision making. The decisions were inspired by 

theory (e.g., in the case of verticality of the structure of the elements of the intended knowledge), by 

practical experience (e.g., in the case of assumption regarding intuitive accessibility of some 

elements of knowledge for students), or by both (e.g., in the case of building the system of sub-

procepts of the procept of the integral or in the case of designing the sequence of learning 

activities). However, we argue that in the process of designing the learning unit on integrals for high 

school students, the theories have been interwoven and have played crucial roles in the process of 

development and implementation of the unit at all stages: the pre-design, the initial, and the final 

stages, as well as for fine-tuning the design after its evaluation.  

The theories that we adopted for the purpose of the design are Abstraction in Context (AiC) and 

Proceptual Thinking (PT). These theories were adopted on two levels: AiC on a cognitive-

epistemological level with the purpose of coming to design decisions regarding the nature and the 

structure of knowledge be learned (at a macro-level, which seems to be efficient in a more general 

context); PT on a didactic-implementation level with the purpose of coming to design decisions 

regarding how to help learners to achieve this knowledge (at a micro-level, which seems to be 

efficient in the context of mathematics procepts). The role of the theories differed from stage to 

stage: AiC was more essential at the pre-design stage while PT was more fruitful at the initial stage. 

However, the synergy of the theories was more influential than their diversity: Our design aims at 

supporting students in constructing proceptual knowledge of the Integral that we interpret as a 

hierarchical procept that is vertically composed of sub-procepts. Our research allows us to follow 

how students acquire a proceptual view while they construct their knowledge. We speculate that 

students' behaviour that is coherent with the suggested operational definitions (in terms of AiC) can 

be interpreted as evidence for the acquisition of a proceptual view (in terms of PT).  

Following the research, we find ourselves in a better position to pose two relevant yet unsolved 

problems, a practical and a theoretical one. The practical problem is how to optimally profit from 

theory when designing instruction. The findings of the research show that the AiC and PT 

frameworks can be used for development and evaluation of an important instructional instrument – 

a learning unit. What about other instructional instruments, such as homework assignments, tests, 

and so on? Could we also use these theories for the design of such instruments? Additional research 

and experiments are needed in order to suggest the adaptation of the discussed theories for these 

types of instrument. The theoretical problem concerns the consistency of theories: Could we have 

used other theoretical frameworks instead or in addition to AiC and PT, what consistency issues 

would have arisen, and how different a design would have resulted?  
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Sociocultural theory (Vygotsky, 1978) has left the process of internalization relatively unexplored. 

In the Learning Through Activity (LTA) research program, we use basic constructs of 

constructivism to address this issue. The goal of our empirical and theoretical work has been to 

elaborate an integrated theory of mathematics learning and teaching. Towards this end and 

grounded in our empirical research, we have engaged in explicating reflective abstraction for 

mathematical concepts and developing a design approach for fostering reflective abstraction. The 

LTA approach is complimentary to a problem-solving approach; learning engendered by the LTA 

approach is not dependent on the uncertainty inherent in solving authentic problems. 

Keywords: Constructivism, learning theories, task design, mathematical concepts, learning 

trajectories. 

In Simon (2009), I argued that different theories of learning can be thought of as different tools for 

research affording different kinds of work. It is the job of mathematics education 

researchers/theorists to not only develop and articulate theories, but to specify the work for which 

they are designed. Such specification allows fruitful discussion about the relationship of different 

theories and the possibilities of particular multi-theoretical approaches. In this paper, I describe a 

developing theory and the work for which it is intended. 

Background 

In the Learning Through Activity (LTA) research program, we use multiple theories. In particular, 

we use sociocultural theories to think about cultural factors and the role of artifacts, social theories 

to think about the norms negotiated in situations of learning and teaching, and cognitive 

(constructivist) theories to think about the development of particular concepts. The latter has been 

our primary theoretical tool and the theoretical area to which we have been contributing.  

Sociocultural theory views all knowledge as socially constructed. Knowledge development 

proceeds from a social level to an individual level through a process termed “internalization” 

(Vygotsky, 1978). Bereiter (1985) wrote, “How does internalization take place? It is evident from 

Luria’s first-hand account (1979) of Vygotsky and his group that they recognized this as a problem 

yet to be solved (p. 206). My colleagues and I see constructivism as a theory that has the potential 

to explicate internalization. 

Constructivism, particularly the work of Piaget (1985), is a major theory of learning and has been 

the basis of important research on the learning of mathematics (Steffe & Kieren, 1994). However, 

Piaget’s work has not had a comparable effect on mathematics pedagogy.1 DiSessa and Cobb 

(2004) observed, “Piaget’s theory is powerful and continues to be an important source of insight. 

However, it was not developed with the intention of informing design and is inadequate, by itself, to 

                                                 

1 I use “pedagogy” to refer to all contributions to instruction, instructional design, instructional planning, and teaching. 



do so deeply and effectively” (p. 81). We believe that it is Piaget’s later work on reflective 

abstraction, rather than his earlier work on equilibration, that has the potential to be the basis for 

pedagogical theory development.  

The goal of our empirical and theoretical work is to elaborate an integrated theory of mathematics 

learning and teaching. This involves articulating a theory of conceptual learning that is useful for 

orienting mathematics pedagogy and building on that theory to explicate mathematics instructional 

design and teaching. Towards this end and grounded in our empirical research, we have engaged in 

explicating reflective abstraction for mathematical concepts and developing a design approach for 

fostering reflective abstraction. This empirical and theoretical work has focused on the learning and 

teaching of mathematical concepts (as opposed to problem solving or other areas of mathematics 

learning), and on the generation of hypothetical learning trajectories (Simon, 1995), including the 

design of task sequences. 

The term “mathematical concept” is an underspecified construct. Because it is central to our 

empirical and theoretical work, I have characterized the construct for research and development 

purposes (Simon, 2017). I refer to one aspect of that characterization here: 

A mathematical concept is a researcher’s articulation of intended or inferred student knowledge 

of the logical necessity involved in a particular mathematical relationship. 

Elaborating reflective abstraction 

Outline of the theory2 

One challenge that we accepted in explaining the development of new mathematical concepts was 

that the explanation must account for building more advanced concepts from prior concepts. Thus, 

we endeavored to describe a recursive structure in which the result of conceptual development at 

one level serves as a building block of a concept at the next level. Piaget (1980, p. 90) described 

reflective abstraction as a “coordination of actions.” We built on this idea in the following way. 

1. We specify a concept as a complex of a goal and an action (represented as Gn-An) 

constructed through reflective abstraction. We represent the prior concepts of the learner as 

G0-A0 and the concept whose development we are attempting to explain as G1-A1.   

2. The learning process begins with the learner setting a new goal (generally in response to a 

mathematical task) and calling on a sequence of available actions to achieve that goal. This 

sequence of available actions is what we call an activity, represented as (A0a → A0b → A0c). 

An activity is the precursor to a new concept.  

3. The actions that are part of the activity do not exist in isolation. Each is part of an existing 

concept (e.g., G0a-A0a), and each is called upon, because the goal of that existing concept 

(e.g., G0a) is a subgoal of the activity used to solve the task. Thus, the set of actions that 

make up the activity are part of a set of concepts that are activated to achieve the goal 

(solution of the task). Thus, whereas Piaget defined reflective abstraction as a coordination 

                                                 

2 This description has been abbreviated. In particular, there is no discussion of the stages of concept development. For a 

full treatment of reflective abstraction and discussion of the stages, see Simon, Placa and Avitzur (2016). 



of actions, we assert that this coordination takes place in the context of a coordination of 

concepts. This point is important, because it allows us to explain how concepts build on 

concepts recursively. 

4. The coordination of actions results in a new, higher-level action linked to a goal (G1-A1). 

Reflective abstraction results in a learned anticipation. That is, the learner can now solve the 

task without going through the sequence of actions that was originally necessary, but rather 

by enacting the higher-level action. (This will be demonstrated in the example.)  

Example from data 

The following example is taken from Simon, Placa and Avitzur (2016). The data derived from a 

single-subject teaching experiment focusing on learning fraction concepts. Kylie was 10 years old at 

the time of the study. “R” refers to the researcher, Simon, and “K” to Kylie. 

In this example, Kylie is developing an abstraction of recursive partitioning (i.e., a unit fraction 

of a unit fraction). Hackenberg and Tillema (2009) defined recursive partitioning as “partitioning 

a partition in service of a non-partitioning goal, such as determining the size of 1/3 of 1/5 of one 

yard in relation to the whole yard” (p. 2).  

• Task 4.1: [Using JavaBars, R draws a bar on the screen.] This is one third of a unit. Make a 

bar that is one sixth of a unit. Kylie made it clear that she did not know how to just “cut up” the 

bar on the screen. She made the whole by iterating the third three times and then cut the first 

third in half. She indicated immediately that one of the small pieces is one sixth. 

• Task 4.2: This is one fifth of a unit. Make one tenth of a unit. Kylie used the same process. 

She iterated the one fifth 5 times to make the whole and then partitioned the first fifth into two 

subparts. She reported, “Here, you have one tenth of a unit.” 

• Task 4.3: This is one third of a unit. Make one ninth of a unit. This time Kylie immediately 

divided the one-third bar into three pieces (without iterating to make the whole). 

K: One of those is one ninth. 

R: How do you know? 

K: Because, um. How many times does three go into nine? . . . Three times. And it’s one third! 

So. Three times three is nine, and one of—if you cut it up into thirds again. That is, um. . . . And 

you take one, it would be . . . one third. . . . But that’s really one ninth of a unit. 

Kylie seemed to indicate that she thought about what number of parts would iterate three times 

to the whole. She therefore knew that one third of the one third would iterate nine times in the 

whole. 

• Task 4.4: This is one fifth of a unit. Make one twentieth of a unit. She immediately cut the 

fifth into four pieces. She went on to complete two more tasks in this way. (pp. 77-78) 

In this example, Kylie developed an abstraction that taking 1/m of 1/n creates 1/mn, that is, a part 

that when iterated mn times recreates the unit. The example illustrates several aspects of the theory 

discussed above. Initially, Kylie had no way to think about making 1/mn by simply partitioning 1/n. 

However, she did have knowledge that allowed her to make 1/mn. That is, she had concepts that she 



was able to call on producing a sequence of actions (an activity) to achieve her goal. She 

conceptualized 1/n of a unit as a part that can be iterated n times to make the unit. She also knew 

that she could partition the unit to make any unit fraction. In Task 4.1, she called on these two 

concepts. She sequentially iterated the original part, 1/3, three times to make the unit and then 

partitioned the unit to make 1/6 of a unit. However, because the unit bar that she created was 

already partitioned into three parts, she called on her concept of partitive division (6 divided by 3) 

to determine how many times to partition each of the three parts. Thus, Kylie created an activity 

made up of three actions involving three extant concepts: iterating the part to make the unit, using 

partitive division to determine the number of subparts per part, partitioning a subpart. 

The activity Kylie employed for Tasks 4.1 and 4.2 led to the abstraction that was apparent in Task 

4.3 and beyond. In Task 4.3, Kylie no longer needed to go through the sequence of actions used in 

the preceding tasks. The actions that made up the activity were now coordinated into a single 

higher-level action. She knew immediately in Task 4.4 that cutting 1/5 into 4 subparts allows a 

subpart to iterate 5x4 times to the whole.3 That is, she had developed an anticipation that the 

denominator of the part has a multiplicative effect on the number of times the subpart iterates to the 

unit. 

Building a pedagogical theory: the LTA instructional approach 

As stated our goal was to generate a theory of mathematics concept learning that can serve as a 

basis for mathematics pedagogy. In this section, I describe how we have built an instructional 

design approach on the basis of the explication of reflective abstraction, discussed above.  

The first two steps in our design of instructional sequences are part of various design approaches. In 

Step 1, we specify the prior knowledge needed to engage with the sequence. This is particularly 

important in our design approach, because it identifies the concepts that students can call upon as 

components of their activity. In Step 2, we identify specific learning goals
 

for the students, that is, 

we articulate the particular abstractions we intend to promote. 

Step 3 makes direct use of our explication of reflective abstraction. In this step, we specify an 

activity (sequence of concepts/actions) available to the (actual or hypothetical) students that could 

serve as the raw material for the intended abstraction. There are two requirements here. First, the 

students must be able to call on the activity. Second, the researchers/designers must be able to 

describe how the students could come to the abstraction as a result of engaging in the activity. In 

our example above, the activity would be iterating the part to make the unit and then partitioning the 

unit by subdividing each part – the number of partitions determined through partitive division.  

Step 4 involves generating a sequence of tasks designed to elicit the activity specified in Step 3 (in 

our example Tasks 4.1-4.4) and promote reflective abstraction. Sometimes the tasks that promote 

the activity are sufficient as in the example presented (by the third task, Kylie had made the 

abstraction). In some cases, subsequent tasks are created that restrict the student’s ability to carry 

out the sequence of actions in the activity – prompting the students to use developing anticipations 

                                                 

3 Although Kylie’s justification was given for Task 4.3, I refer to the numbers from Task 4.4, because in Task 4.3, the 

use of 1/3 as both the fraction of the unit and the fraction of the part makes articulation of the ideas confusing. 



if available. For example, in our work on promoting a reinvention/abstraction of the multiplication 

of fractions algorithm, Kylie had developed a reasoned activity beginning with thinking through the 

effect of the denominator of the multiplier on the denominator of the multiplicand. Her reasoning 

then included the numerator of the multiplicand and finally the numerator of the multiplier. Each 

step was dependent on the prior one. To promote and elicit use of a developing anticipation, we 

gave her tasks with the denominators hidden and asked for the numerator of the product. She was 

only able to do these tasks when she had developed sufficient anticipation of the effect of the 

numerator of the multiplicand in the context of her activity. In other cases, particular tasks are 

sequenced to increase the probability that students will attend to the commonality in their activity. 

In Simon et al (2010), Erin was reinventing/abstracting a common-denominator algorithm for 

multiplication of fractions. She had developed diagram solutions to division tasks whose dividend 

and divisor had common denominators. She had also developed the ability to talk through a diagram 

solution (without drawing). For example, she was able to talk through 37/31 ÷ 17/31. However, she 

also made it clear that without talking through the solution, she could not come up with the 

quotient. At this point, I gave her consecutively two tasks with the same pair of numerators, but 

different common denominators (e.g., 7/167 ÷ 2/167 and 7/103 ÷ 2/103). Although she needed to 

talk through the first, she was able to give the answer immediately to the second. Not only that, she 

was able to elegantly explain the abstraction she had made and do subsequent tasks (involving 

common denominators) simply by dividing the numerators. 

I have highlighted the first four steps. However, as in other approaches to instruction, these steps 

might be followed by symbolization, introduction of vocabulary, and institutionalization of ideas.4 

A couple of clarifications are in order. First, when we refer to a task, it includes the resources 

available to the students for solving it. Second, the goal of our research is to specify a sequence of 

tasks that can promote a particular abstraction. Thus, the sequence should work without the 

instructor asking leading questions, telling or showing solutions, or giving hints or suggestions. 

Also, the sequence should allow students to make the abstraction without needing to hear the 

solutions of others. This does not mean that there is not a role for teachers. The teacher is important 

in developing norms for the mathematical work, promoting justification at appropriate times, 

introducing symbols and vocabulary, and leading discussions that institutionalize the learned 

abstraction. Also, teachers should be able to monitor student progress and modify task sequences in 

response to student progress. 

Affordances of the LTA instructional approach 

To provide a context for discussing the affordances of the LTA instructional approach, I first 

discuss a commonly used and important approach to instruction, a problem-solving approach. I will 

then highlight some of the contrasts and complementarities between the LTA approach and a 

problem-solving approach.5 

                                                 

4 See also Simon (2016). 

5 Discussion of contrast with Harel’s DNR can be found in Simon (2013). 



Although there is no single problem-solving approach, I will discuss some typical features. One of 

the main strengths of a problem-solving approach is the engagement of students in the critical 

activity of mathematical problem solving, attacking a problem for which the student has no solution 

at the outset. I will not highlight here the abilities and dispositions that can be developed through 

regular engagement in problem solving; these have been well documented. Rather, I will focus on 

one feature of this approach that provides a contrast with the LTA approach. Problem solving is by 

definition uncertain. There is no assurance that those who engage in solving an authentic problem 

will succeed in solving it. When a diverse set of students in a mathematics class attempt to solve a 

problem, it is likely that only those who are the stronger problem solvers and who have the more 

powerful mathematical concepts will succeed in solving the problem. The other students must try to 

follow the reasoning (in small groups or whole class discussions) of their more able peers.  

The LTA approach is intended to provide a complimentary approach, one in which learning of a 

concept is not dependent on the uncertainty inherent in attempting to solve authentic problems. If an 

LTA sequence is designed effectively, students should be successful in solving every task in the 

sequence.6 In the LTA approach the learning (the new abstraction) is not the ability to solve the 

task. Rather it is the insight that is gleaned through the students’ solutions to tasks using available 

activity. In our example, Kylie was successful in solving each of the four tasks.  She was not trying 

to learn anything – just to solve the tasks presented. However, by the third task, she understood 

something that she had not understood at the beginning of the instructional sequence. 

We conceive of the LTA instructional approach as a technology for engendering the construction of 

particular mathematical concepts on the basis of particular prior knowledge. I call attention to two 

potential contributions of this approach: 

1. For concepts that tend to be difficult to teach and learn, the LTA approach provides a 

technology for building up those understandings (promoting particular abstractions). 

2. For students who have previously been unsuccessful in learning mathematical concepts, it 

provides a specific methodology for building up their conceptual foundation.    

Affordances of the LTA theory for research and development 

The elaboration of reflective abstraction discussed above provides a lens for looking at conceptual 

learning in different situations, not just in situations designed using the LTA instructional approach. 

For example, the LTA elaboration of reflective abstraction could be used to understand conceptual 

learning in the context of a problem-solving approach to instruction. How do we explain the success 

or failure of a lesson for particular students? Of course, the students’ prior knowledge and problem 

solving skills are important. But how can we consider the usefulness of the problem or problems? 

The LTA elaboration of reflective abstraction allows for analysis of the students’ activity and its 

relationship to the abstraction that they make. 

                                                 

6 Of course, there is no curriculum that works flawlessly for all students. The issue is not whether we can create a 

sequence in which every student can solve every task. Rather the issue is that we intentionally create tasks that we 

predict students will be able to solve. This is in contrast to putting them in a problem-solving situation. 



In Simon (1995), I postulated the construct of a hypothetical learning trajectory (HLT). An HLT 

can describe a hypothesized trajectory for a single lesson or for a sequence of concepts in a 

conceptual area (also referred to as a “learning progression”). Learning trajectories has become a 

hot area for mathematics education researchers. HLTs are not just a series of conceptual steps 

through which learners progress, they involve articulation of sequences of learning situations and 

hypotheses of how these situations will be used by the students to learn the target concepts. 

The LTA integrated theory of teaching and learning can provide the framework for learning 

trajectories in various conceptual areas. As a framework, it provides a basis for selecting and 

sequencing tasks and for hypothesizing how the students will abstract from their activity in working 

with those tasks. In our current project, we designed, enacted, and modified in teaching experiments 

nine trajectories for different concepts involving fractions.7 This work has been grounded in and 

contributed to the LTA theory of teaching and learning. Also essential to the design and 

modification of the trajectories has been (but beyond the scope of this short paper) our work on 

reversibility (Simon, Kara, Placa, & Sandir, 2016) and on the stages of concept development 

(Simon, Placa, & Avitzur, 2016). Both build on the theory described in this paper. 
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In this article, we discuss the German construct of Grundvorstellungen and highlight the 

connection with mathematical aspects. After recalling the definition of these terms, we compare it 

with similar notions used in the literature such as “concept image/concept definition”, and 

“metaphors”, pointing out some common features and differences. Moreover, we use 

Grundvorstellungen and aspects for the analysis of the concept of extreme points. Finally, we 

briefly sketch how it may be used for the discovery and interpretation of students’ misconceptions.  

Keywords: Grundvorstellung, calculus, extreme point, misconception. 

Motivation 

There exists a vast literature on problems, mistakes, and misconceptions of mathematical topics in 

school. In order to discuss these misconceptions in connection with “correct” ideas, several 

approaches have been proposed, such as the construct of so-called “Grundvorstellung” (or GV, for 

short), which is mainly used in German literature (e.g. vom Hofe, 1995; Greefrath et al., 2016b). In 

this article, we briefly recall this construct and compare it with similar constructs appearing in the 

literature. In particular, we show how the GV construct can be applied to extreme points, with an 

emphasis on the transition from school to university. To this end, we give a short overview over 

GVs for extreme points, which helps us to classify students’ problems concerning extreme points.  

Theoretical background 

Let us first explain the notion of Grundvorstellungen. Grundvorstellungen originate from the 

traditional German didactical approach of subject-matter didactics and have a long tradition in 

German mathematics education (see vom Hofe, 1995). Vom Hofe extended the subject matter 

didactics approach by his understanding of Grundvorstellungen: he suggested to additionally take 

into account the learners’ perspectives (see Straesser, 2014, p. 569). As a consequence, he 

distinguishes between GVs from a normative viewpoint, on the one hand, and GVs from a 

descriptive viewpoint, on the other hand. Vom Hofe (1992, p. 347) recalls the main characteristics 

of this construct: It gives meaning to a concept by connecting it with already known facts or 

experiences. It brings along the development of corresponding representations and the ability to use 

the concept. Scrutiny reveals that it is useful to introduce different types of GVs, which read as 

follows: A primary GV is a GV which gives meaning to a concept by connecting it with concrete 

experiences and objects from everyday life. A secondary GV is a GV which gives meaning to a 

concept by connecting it with ideas and representations of other mathematical concepts (see e.g. 

vom Hofe & Blum, 2016, p. 234). 

To clarify the connection between GVs and the mathematical content of a concept, Greefrath et al. 

introduce a distinction between aspects and GVs of a mathematical concept: 

“A Grundvorstellung of a mathematical concept is a conceptual interpretation that gives meaning to 

it.” (Greefrath et al., 2016a, p. 101). However, an aspect of a mathematical concept is a part of this 



concept, which refers to its mathematical content, like its definition, theorems related to the 

concept, its properties, or connections to other concepts. It is a part of this concept, which can be 

used to characterize it (see Greefrath et al., 2016a, p. 101).  

Another distinction is given by Greefrath et al. (2016b, pp. 18–19) who introduce the notions 

universal and individual GVs: A universal GV works as a normative guidance for teachers and 

answers the question what students should think of a concept, i.e. a universal GV refers to vom 

Hofe’s normative viewpoint. Universal GVs refer to mathematical aspects. However, there is no 

one-to-one correspondence between GVs and aspects: One GV can refer to several aspects, and one 

aspect can be the basis for several GVs (see ibid., p. 17–18). On the other hand, an individual GV 

answers the question what a special student actually thinks of a concept, i.e. an individual GV is 

related to vom Hofe’s descriptive viewpoint. Individual GVs can be detected by watching students 

solving problems or by analyzing their explanations with regard to certain questions. Therefore it is 

a GV that an individual person possesses regarding a certain concept. 

For our purposes–to find reasons for students’ misconceptions–it is necessary to introduce yet 

another kind of GV which we call partial GV. A partial GV is an idea that gives meaning to a 

concept in a limited context. It also goes back to mathematical aspects of a concept, and thus to a 

normative viewpoint. However, it loses its generality through restrictive premises. Depending on 

the goal, it could also serve as a (preliminary) educational objective. An example is the idea 

“multiplication makes bigger” which is correct only in certain cases, e.g. the natural numbers 

(larger than 1). To highlight the differences between these types of GVs, we want to add the 

following point to the description of a universal GV: “Universal” means that it works in every given 

context. Consequently, we categorize an individual GV either as a universal GV, as a partial GV, or 

as a part of them. The following graphic puts the characterization of the GVs in a nutshell: 

 

Figure 1: Connection of universal, partial and individual GVs  

The notion Grundvorstellung could be translated, loosely speaking, as “basic idea”, “basic notion” 

or “basic mental model” (see vom Hofe & Blum, 2016, p. 226; Greefrath et al. 2016a, p. 101). 

However, we decided not to translate the notion to not mix it up with other (mainly in Germany 

used) constructs like fundamental ideas, universal ideas, central ideas, big ideas, leading ideas (for 

further details see Vohns, 2016). 

GVs are especially interesting regarding misconceptions. These “erroneous conceptions” have 

different names (preconceptions, alternative conceptions, misconceptions) and are defined in 

various ways in the literature (see e.g. Leinhardt et al., 1990; Hammer, 1996). We just recall the 

main facts: They are a repeatable, robust, “well-formulated system of ideas” (Leinhardt et al., 1990, 

p. 5) and they are cause for errors, although they do not need to constitute a complete theory (ibid., 

p. 5–6). If one takes a closer look at these, one can categorize some as so called epistemological 



obstacles (see e.g. Brousseau, 1989), or overgeneralizations, like in our background as partial GVs 

used in the wrong context. Vom Hofe (1996, p. 259) describes the importance of GVs regarding 

misconceptions as follows: Firstly, GVs as a normative guidance should help during the learning 

process so that individual ideas become individual GVs and not misconceptions (see vom Hofe, 

1996, p. 259). In this respect, GVs work as a prevention of misconceptions. Secondly, GVs should 

work as a plausible alternative to already existing misconceptions. If learners already have 

misconceptions they need not just be dissatisfied with the former idea, but also need to be given an 

intelligible, plausible and fruitful alternative by the teacher (see Posner et al., 1982, p. 214). In this 

respect, GVs work as a remedy for misconceptions. 

The purpose of this article is to give a survey on universal and partial GVs at university level that 

refer to aspects of the concept of extreme points. To begin with, let us briefly recall the role of GVs 

in the existing literature. 

GVs and concept image/concept definition 

One of the most important and popular works on the properties of concept image, concept 

definition, and their distinction is due to Tall and Vinner (1981). A concept definition consists of 

the words used to specify a concept. The definition of a concept given by the mathematical 

community is called formal concept definition, whereas the definition given by an individual is 

called a personal concept definition. A concept image consists of all non-verbal connections to and 

connotations inferred by an individual regarding a certain concept. These connections and 

connotations may include all kinds of representations. There exists some literature describing 

similarities and differences between concept image/concept definition and GVs: vom Hofe and 

Blum (2016, p. 237) state that GVs refer to the concept image from both a normative and 

descriptive level. Greefrath et al. write: 

“A concept image may contain several individual Grundvorstellungen that conceptualize different 

perspectives of that concept. Individual Grundvorstellungen are central components of a valid 

concept image[…].” (Greefrath et al., 2016a, p. 103) 

However, for some learners, also misconceptions may be part of their concept image. The 

individual GVs can either be partial GVs or universal GVs. As Greefrath et al. write: 

“These Grundvorstellungen give meaning to mathematical concepts that may be studied with 

respect to various aspects. Each of these aspects may be expressed with one of the various [formal] 

concept definitions that one reads in textbooks. Thus, a [formal] concept definition is a specific 

realization of an aspect.” (Greefrath et al., 2016a, p. 103) 

The personal concept definition could either be similar to the formal concept definition or differ 

from it. It also has a relationship to the concept image. 

GVs and metaphors 

Apart from concept image/concept definition tools, metaphors have also been used to describe 

mathematical cognitive processes (see Lakoff & Núñez, 1997, 2000).  First, we recall some facts 

about the concept of metaphors used by Lakoff and Núñez. They analyze the (conceptual) structure 

of mathematics and therefore use results of metaphor theory of cognitive linguistics. This theory is 

about how mathematics is constructed. To describe mathematics, they distinguish several kinds of 



metaphors, the two crucial ones being grounding metaphors and linking metaphors, which are 

defined as follows: 

“Grounding metaphors ground mathematical ideas in everyday experience.” In addition, “[...] 

linking metaphors allow us to link one branch of mathematics to another. For example, when we 

metaphorically understand numbers as points on a line, we are linking arithmetic and geometry.” 

(Lakoff & Núñez, 1997, p. 34) 

Let us now point out some similarities and differences between the concepts of GV and metaphor. 

Both GVs and metaphors reveal several perspectives of one concept through a detailed analysis of 

it. GVs and metaphors suggest using this analysis for educational purposes. Grounding metaphors 

resemble primary GVs, since they connect everyday life experiences with mathematics. Linking 

metaphors resemble secondary GVs, because they connect different domains within mathematics. 

However, a fundamental difference is the aim of these theories: finding of GVs through a subject 

matter analysis aims at making the most important aspects of a concept comprehensible and giving 

them meaning, respectively. Referring to metaphors in the sense of Lakoff and Núñez (1997, p. 31), 

this educational aim is named “peripheral” for the theory of metaphors. The discussion about 

metaphors tends more toward revealing the structure of mathematics and unconscious connections 

to non-mathematical concepts as mentioned above. Metaphors are used to explain our linguistic 

vocabulary when talking about mathematical contents. 

There are also connections with other theories like the theory of conceptual fields of Vergnaud 

(1996), which also works as a framework for organizing didactic situations. For lack of space we do 

not go into detail, but just remark that an exact analogue to the GV construct does not exist in the 

literature, but constructs which exhibit some similarities with GVs. 

Aspects and GVs of extreme points 

After defining the concept of GVs and comparing it with other concepts from the literature, we are 

now going to use it for the concept of extreme point, which is the major topic of this article. The 

following GVs were identified by both discussions with lecturers of analysis courses and a subject 

matter analysis of the concept of extreme point. 

Aspects of extreme points 

We will discuss three aspects of the concept of a (local) extreme point: 

The aspect of “largest/smallest value” 

Extreme points are the points (x,y) with the largest/smallest y-value with respect to a 

neighbourhood  of x. 

This aspect refers directly to the definition of an extreme point. It illustrates the connection of an 

extreme point (of a graph of a function) with the maximum/minimum of a (totally ordered) set: 

extreme points are the points, whose y-values coincide with the maximum/minimum of the range 

(on a given domain). Already children have some experience with this aspect. 

Non-mathematical examples: 

 Searching for the highest point (of a mountain) 



 Searching for the best object of category (fastest car, most expensive house, highest 

building) 

Mathematical examples: 

 Interpretation and discussion of graphs: where is the highest/lowest point? 

The aspect of “largest/smallest value” is the most fundamental one for the concept of extreme point. 

The aspect of “derivative zero”  

Extreme points are located at points where the derivative becomes zero. 

In this connection, however, one has to be careful and take into account two important points. First, 

there are points, which are not extreme points, although the derivative becomes zero at these points. 

Second, since this aspect refers to the necessary condition for the existence of (local) extrema, one 

has to impose two additional premises: the point must be an interior point of the domain, and 

differentiability of the function is required. By dropping one of these premises, one can easily find 

examples of extreme points where the derivative does not become zero (e.g. boundary points of an 

interval). 

Non-mathematical examples: 

 From a physical viewpoint: searching for the points where the velocity becomes zero. 

Mathematical examples: 

 The algorithm for the identification of extreme points most frequently taught at school: find 

the zeros of the first derivative. Afterwards, check the sign of the second derivative at these 

zeros to detect maxima and minima. 

The aspect of “change of monotonicity” 

Extreme points are located at points where the sense of monotonicity of a function changes, i.e., 

from increasing to decreasing or vice versa. 

It is, in fact, easy to see that a change of monotonicity always implies the existence of an extreme 

point. The converse, however, is false: not every extreme point induces a change of monotonicity 

(consider again extreme points at the boundary of an interval). 

Non-mathematical examples: 

Change of the direction of movement: 

 Activities: mountain climbing (change of uphill to downhill), bike riding (change from 

pedaling to idling). 

Mathematical examples: 

 At school (premise: differentiable functions): a table of sign changes for the first derivative 

(distinguishing extreme points from saddle points). 

GVs of extreme points 

Let us now study three GVs of the concept of (local) extreme points of a real function (defined on a 

nondegenerate interval). The first GV is universal, the second and third are partial. 



Universal GV 

The GV of “largest/smallest value” 

This GV refers directly to the aspect of largest/smallest value and may be interpreted in a concrete 

geometrical way: extreme points are the points with the largest/smallest y-value with respect to a 

certain neighbourhood. The students should: 

 Identify extreme points through analyzing y-values of points of a function graph 

algebraically or graphically. 

 Demonstrate the connection between a maximum/minimum of a (totally ordered) set and an 

extreme point of a function by projecting (pieces of) the graph onto the y-axis. 

Table 1: Subcategories of extreme points  

Once the students understand this GV correctly, they can specify different subcategories of extreme 

points, such as those sketched in the synoptic Table 1. 

This GV is universal and should thus be emphasized when introducing the concept of extreme 

point. For applications, however, it is not that useful: it would take an infinite long time to analyze 

every point with regard to the value of its y-component, because the domain of definition is a 

continuum. However, there exist another two GVs, which are more helpful in applications. 

Partial GVs 

The GV of “slope zero” 

This GV reflects the fact that the graph of a function has slope zero at an extreme point. Since this 

idea is intimately related to the aspect of “derivative zero”, it should be assumed that the function is 

differentiable at the (interior) point in question. As this is usually the case for functions dealt with at 

school, it is mainly consolidated as a consequence of math classes. The GV of “slope zero” calls 

upon the GVs of the derivative of a function like the GVs “Tangent slope” or “Amplification 

factor” (see Greefrath et al., 2016a, pp. 106–113): 

 Tangent slope: slope zero entails the existence of a horizontal tangent at the extreme point in 

question that approximates the graph locally. This means that the graph is also almost 

horizontal. 

 Amplification factor: slope zero implies here that a change of the independent variable x 

leads to almost no change in the dependent variable y. 

The reason, why this is just a partial GV is the fact, that neither the argument “extreme point 

implies slope zero” nor the converse argument “slope zero implies extreme point” is true. 

A B C D   E 

Extrema as hill/valley 

(differentiable 

function) 

Extrema as hill/valley 

(not differentiable 

function) 

Extrema at the 

boundaries of an 

interval 

Extrema of a constant 

function 

Extrema at a 

discontinuity point 



The GV “change of monotonicity” 

If you look at the graph of a function and see that it is strictly increasing up to a certain point x0, and 

then strictly decreasing, you could intuitively argue that x0 is a (local) maximal point. This idea 

exhibits an analogy to the curvature of a graph at inflection points; if a function changes at some 

point from left curvature to right curvature, or vice versa, this is an inflection point. As far as 

differentiable functions are concerned, passing from an increasing piece to a decreasing piece can 

be interpreted as the transition of the first derivative from the upper half-plane to the lower half-

plane. The GV of “change of monotonicity” goes back to a specific “dynamical” experience of the 

students: if you regard the graph as trajectory of a moving particle, the movement changes in the y-

direction precisely at minimal or maximal points. The students should: 

 Partition the graph of a function into monotonically increasing and decreasing pieces and 

identify extreme points as boundary points of the partition intervals. 

The reason, why this is just a partial GV is the fact that it works only “in one direction”, because the 

logical converse is again false: not every extreme point leads to a change of monotonicity. 

Discussion 

These GVs play an important role when analyzing mistakes of students in their first semester at 

university concerning the concept of extreme point. The partial GVs especially can lead to mistakes 

when their restrictive premises are not considered. Our study aims, on the one hand, at finding 

mistakes and misconceptions of mathematics students after their first analysis course and, on the 

other hand, at giving insight into possible reasons for these mistakes. It turns out that the concept of 

GVs helps to find normative education objectives of extreme points, and it supplies–used in a 

descriptive way–an orientation of what ideas students have of extreme points. 
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Poster summary 

The interrelated roles of social media as both a platform and a phenomenon of interactivity, invite 

teachers to produce and consume knowledge of teaching and learning mathematics (e.g., Liljekvist, 

2016; van Bommel & Liljekvist, 2015, 2016). The availability and user-friendliness of the social 

media platform alter the behaviour of the mathematics teacher, and ‘stories’ of the good 

mathematics teaching are made (e.g. kinds of curricular material, or kinds of questions raised, see 

e.g., Liljekvist (2016)). Analysing the affordances of this new environment is necessary to 

understand how the subject didactical discourse on learning and teaching is simultaneously 

constructed and consumed in mathematics teachers’ digitalized every-day practice. It is a matter of 

probing the characteristics of the interaction, that is, the ways in which the activity on the Internet 

supports knowledge development and re-sourcing in mathematics teaching (cf. Liljekvist, 2016; 

Ruthven, 2016).  

The primary aim of this poster is to initiate a discussion in the TWG17 that elaborates on theoretical 

constructs that may be fruitful in the research of mathematics teachers’ digitally extended every-day 

practice and collaboration. This arena for teacher learning and collaboration is under-researched 

(see, e.g., Robutti, Cusi, Clark-Wilson, Jaworski, Chapman, Esteley, Gnoos, Isoda, & Joubert, 

2016)). 

The prosumer concept, that is, people as producers and consumers of products and services (cf. 

Beighton, 2016; Ritzer, Dean, & Jurgenson, 2012; Zajc, 2015) shows some possibilities to 

theoretically model mathematics teachers’ re-sourcing on social media as it centres on the 

phenomenon per se (i.e., producing and consuming ‘value’ for the user). Thus it is closely tied to 

the raison d’être of social media (Zajc, 2015) and mathematics teachers’ activities there (van 

Bommel & Liljekvist, 2015, 2016). However, the concept needs to be operationalized in an 

educational setting and in a mathematical discourse in order to have sufficient explanatory power 

for our purposes. Here are some examples; In business and sociology, the driving forces for 

investigating ‘prosuming’ is to understand consumers’ behaviour (e.g., Ritzer et al. 2012; Zajc, 

2015), but in educational research mathematics teachers’ performance, for instance, as a learner and 

as a colleague is of interest (e.g., Liljekvist, 2016; Ruthven, 2016; van Bommel & Liljekvist, 2015, 

2016). Further, Beighton (2016) discusses in his article how the prosumeristical behaviour can also 

work as a tool for control, where creativity and knowledge development, and professional learning 

may not be supported. This aspect of mathematics teachers’ online activities is relevant, as it, for 

instance, may explain some of the quality problems in the curricular material shared (e.g., 

Liljekvist, 2016). 

mailto:email@google.com


Mathematics teachers nowadays use social media to re-source and collaborate. This is an arena 

where the every-day practice of subject didactics is made (Liljekvist, van Bommel, & Olin-Scheller, 

2017). Analysing this activity is to understand teachers as both producers and consumers of subject 

didactical contributions and of peer-learning. The core research question, then, is how we can 

theoretically describe mathematics teachers’ simultaneous processes of producing and consuming 

subject didactical knowledge on social media. 
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Analyzing verbal interactions in mathematics classroom: Connecting 

two different research fields via a methodological tool 
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This paper presents a small case of junction of two research fields that remained, until recently, 

relatively cut off from each other. Using concepts of the Assessment field, specified in a didactic 

approach, we develop and test a methodological tool on the analysis of students-teacher interac-

tions in mathematics classroom. We discuss then its potential in the Assessment field. This illus-

trates a way of locally connect research areas, via a shared methodological tool. 

Keywords: Mathematics teaching practices, evaluation, interactions, formative regulation. 

Introduction 

Initially inscribed in a particular research area of the didactics of mathematics field, the Double 

Approach (didactic and ergonomic) theory (Robert & Rogalski, 2005), our study aims at investigat-

ing the teacher’s coherence in the processes of information-adaptation, when adjusting the situa-

tions, making decisions on the spot. Research on Assessment, a field traditionally cut from didactic 

ones, though with some exceptions (Vantourout and Goasdoué, 2014; Veldhuis, 2015), handles 

these questions with concepts as formative assessment or regulations. How can we describe these 

regulations and understand the way interactions guide them?  

To study these questions, we thus went beyond the specific fields of didactics theories and carried 

out a literature review on formative interactions in Assessment, a research field in education, with 

its own models and conceptual frames1. Our review briefly summarized in section 1 shows needs 

for didactic references on learning and teacher activity, and led us to a theoretical and methodologi-

cal development (reported in section 2) to support our analyses regarding the teacher-students 

interactions in mathematics as an adaptive dynamic process. The last part tests potentialities and 

limits of this tool on a short episode, before coming back to theoretical questions.  

Literature in the field of assessment: Needs for a didactic approach  

Various theoretical concepts relate to teacher-students interactions, for instance the “diagnosis and 

responsiveness” of “scaffolding”, (Bakker et al., 2015). In Assessment research, they relate to three 

overlapping concepts we focus on: feedback, formative assessment (or for learning), and regulation.  

Theoretical needs for a didactic approach  

The teachers’ feedback to learners’ activities constitute an element of the process of formative 

evaluation, and research has been deepened to understand their different effects according to their 

nature. Yet, Crahay (2007) notes that research on this concept is full of opposed results. He propos-

es to focus on the processual aspect of the link between teachers’ reactions and students’ learning 

considered as an activity rather than a product, and taking into account the characteristics of the 

                                                 
1This includes research on measurement in education, psychometric and edumetric approaches. 



tasks, the school disciplines or the taught objects.  

As for the concept of formative assessment, initially restrained to dedicated moments, it has been 

extended to “all those activities undertaken by teachers, and/or by their students, which provide 

information to be used as feedback to modify the teaching and learning activities” (Black & Wiliam 

(1998, p.10). Research points out a new concept, that of regulation, which can be interactive, retro-

active or proactive. In this widened sense, the interactive regulations that may happen in didactic 

situations make a junction between evaluation and teaching-learning situations. This also fits the 

idea of “whole-class scaffolding” (Smit et al.). Crahay’s synthesis (2007) or that of Allal and Motier 

Lopez (2005) evoke a strong dependence between the formative evaluation and the very organiza-

tion of teaching, encouraging research to integrate didactic issues (task, disciplinary contents…) in 

the analyses. More recently, Vantourout and Goasdoué (2014, p.142) claim the need for taking into 

account both didactical and psychological approaches by arguing that willing to foster learning 

requires understanding students’ cognitive functioning with a task. Although some attempts exist in 

mathematics education, they stress the lack of research investing in this joint perspective. 

The theoretical needs addressed in this review join our didactic concerns, i.e. to pay particular 

attention to specificities of the taught and evaluated contents by analyzing the teacher-students 

interactions. In this perspective, the concept of interactive regulation described in research on 

formative assessment seems an interesting object regarding our didactical concern. 

Regulation in formative assessment  

Formative assessment research has been driven by two underpinning teaching and learning theories: 

originally the neo-behaviorism, then the cognitivist one with its strong necessity to consider class-

room interactions, particularly real-time regulations. In Allal and Mottier Lopez’s synthesis (2005), 

the concept of regulation is a process referring to the features of the concept of formative evaluation 

(collect, interpret, decide). Our didactic concerns relate to one of the five distinguished conceptual 

forms of regulations they bring out from literature: the online regulations resulting from interac-

tions. Their model of regulations includes the situation; the teachers’ interventions; and the interac-

tions between students based on a Vygotskian approach using the ZPD concept, which makes again 

a link with scaffolding. Aligned with this, recent research on assessment for learning (e.g., Pryor & 

Crossouard, 2008) is referring to Activity theory (Leontiev, 1975/84) in order to consider the forma-

tive assessment as a cultural historical activity shaped by teachers’ and students’ reciprocal acting, 

and co-determined by the subject and situation, which should not be considered separately. 

The Double Approach also borrows from Activity theory, exploited in the field of ergonomics, but 

with a different unit of analysis, there the term “activity” focuses on that of an individual subject 

(Leplat, 1997). This didactic approach considers not only the mathematical knowledge to be taught, 

but also the procedures and the student’s activity to solve problems. Also considered as cultural-

historical processes, the activity of a subject is here again co-determined by the subject herself and 

the situation carried out, which includes socio-cultural interactions with other subjects (Robert & 

Rogalski, 2005). In these interactions, we are interested in how the teacher’s activity depends on 

that of the students; particularly while adapting, adjusting teaching to optimize learning. Activity 

theory constitutes thus a theoretical link, enabling us to articulate teaching practices and students’ 

learning. The next part clarifies these links and outlines our theoretical and methodological tool.  



Connecting with a didactical approach of regulations of students learning 

Towards tools for a didactic analysis of the formative regulations  

We consider two “sub-activities” of one activity system, reciprocally influencing each other: that of 

teacher, whose result is a situation for the students, impacting them; that of the students, co-

determined by the students and the situation produced by the teacher. The teachers’ activity there-

fore involves two levels: the double regulation, resulting from the activity they address to them-

selves (to teach) and that resulting from the activity they address to the students (to make learn). 

As for Crahay, in the Double Approach, teachers’ feedbacks should not be studied independently of 

student’s activity that creates them. From the didactic point of view, the analysis of the students’ 

activity needs to consider the situation at stake, including the task and possible elements of the 

didactic contract; the students’ knowledge and procedures (that are contextual elements), needed to 

solve the task; and the product (oral or written) of students’ activity (answer and any element on 

how the task has been realized). Aligned with research on assessment, we consider that the teach-

er’s activity in class interactions, is formative when he/she takes information on the students’ activi-

ty in order to act on the learning. Our analyses of the teacher’s regulations therefore need to specify 

the nature of information she collects and the actions (in Leontiev’s sense, 1975) she subsequently 

carries out to reduce the gap she can observe with her learning objectives.  

Our research is therefore guided by the principle of identifying what is the gathered information 

about: a product (answer, result), a procedure, or a piece of knowledge; and what the feedback 

directly aims at (again a result, procedure or knowledge). Even if we do not have hierarchical 

assumptions on these types of intervention as for learning, not all interventions are equivalent. In 

case of an error for example, some interventions aim at correcting by giving the expected result 

(this lets the student the responsibility to find the underlying mathematical concept). Other interven-

tions address the underlying procedure or knowledge (conforms or not with what was aimed at). All 

constitute forms of accompaniment of the student’s learning. 

Results, procedures, knowledge  

Activity theory (Leplat, 1997) distinguishes the result of the activity from the procedure implement-

ed and from the state of knowledge of the subject. This framework adapted to teaching, leads to 

associate to the student (the subject) a state of knowledge, which allows him to analyze and redefine 

the task prescribed by the teacher, to implement a procedure leading to an answer, guided by some 

knowledge (explicit or implicit). This student’s activity (generally carried out in thought, but possi-

bly verbal or written) can thus be observable in what it produces: an answer/ a mathematical result... 

Among the possible feedback of the teacher, one can also distinguish those addressing the result 

only (indicating for example that the answer is false), or the procedure (indicating for example that 

the theorem used does not correspond to the hypotheses of the statement), or the student’s state of 

knowledge (indicating for example confusion between a theorem and its reciprocal etc.). The choice 

of a type of feedback depends on various factors (time, prior explanations/examples, teacher’s 

experience, etc.). In the same way, if the student says he ignores how to apply such theorem, the 

teacher perceives information on the procedure thought by the student. The possible feedback varies 

here again. It can remain on the procedure level, for example explain that the rule is not adapted; or 

change level by giving the solution (or begin the resolution and let the student finish), or it can 



approach the student’s difficulty by clarifying the mathematical knowledge.  

This way of analyzing interactive regulations leads to identify in each student-teacher interaction a 

couple information-feedback where the information, as well as the feedback, could be associated to 

a result (R), procedure (P) or knowledge (“connaissance”, C), leading to 9 possible types (table 1). 

A qualitative didactic analysis of each interaction in a class session allows reporting the dynamics at 

play in these interactions by associating each of them to one of the nine possible types of regulation.  

Action 
Information 

Result Procedure Connaissance 

Result RR RP RC 

Procedure PR PP PC 

Connaissance CP CP CC 

Table 1: Information-Action: 9 possible pairs 

In some case, the “coding” could depend on what has been previously done, so that there is a need 

for interviews to support the coding.  

The following section implements this tool to analyze an effective classroom episode.  

A minute of verbal interactions in class of mathematics  

We use a classroom video, collected from the French research project NEOPRAEVAL on evalua-

tive practices in mathematics to analyze there the students-teacher interactions with the “RPC tool”. 

The extract, situated at the beginning of a one-hour session with Grade 8 (14 y.o.), consists of 

“Flash”, a series of calculations ritual in this class, intended to be treated quickly. A slide titled 

“Mental calculus” then five calculations are successively displayed 30sec each, during which the 

students carry out calculations. Their written answers/calculations are neither collected nor looked 

at by the teacher. After the fifth calculation, the teaching undertakes a collective correction, ques-

tioning students and writing the answers herself on the board. Our analysis concerns the collective 

1min dialogue-correction of the very first calculation displayed: 3x10-2. We aim at identifying 

verbal interactions that can be interpreted as moments of formative regulation, based on an a priori 

analysis of the task, of the knowledge concerned (presented in Appendix), of possible interventions; 

and an a posteriori analysis of the effective interactions (presented in the next section). 

Analysis a priori of the teacher’s interventions 

In situations of interaction, the teacher faces various cases (answers are correct or not, wished or 

not, expected or surprising…), which could raise various types of regulation (explicitly agree or not, 

develop the procedure or not, indirectly disapprove by repeating an explanation/ not reacting/ 

questioning someone else…), depending, among others, on the objectives fixed by the teacher prior 

to the session and/ or on the spot. In all cases, the intervention is said formative if it enables the 

student to recognize whether a behavior, answer, is correct or not2. 

For the calculation 3x10-2, answers a or b, or even f (Annex) would be the acceptable correct ones 

(expected/not). Answer a could bring a simple approval or a development to clarify the procedure, 

for example by an oral explanation on the product by 10-2, leading 3 at the hundredths digit by a 

                                                 
2 The exactness of an answer does not prejudge the teacher’s reaction. A correct and awaited answer could still draw to 

repeat the solution, to develop a procedure, take the opportunity to review some concepts, etc. 



technique on the rows of the decimal writing, or by using one of the other possible answers b, f, g, 

h, i, j or k as intermediate calculus. As for the answer b, it contains already a calculative step of 

procedure, but here again; the teacher could accept it or add an explanation via the answer c, even d 

or e. These a priori reactions not only depend on the mathematics aimed at but are to be adjusted 

with the context where the task takes place. As already underlined, neither the task alone, nor the 

students’ answers (correct or not) suffice to explain the feedbacks. Here, the mental calculations 

context, in the “flash” ritual, requires not to spend too much time on the task; therefore answers c, d, 

e, or j, k (fractional answers) are less likely to be acceptable (even if the teacher may want to expose 

them during the correction). We assume that these answers will lead the teacher to some “negative” 

feedback, i.e. indicating, by a way or another, that it’s not the expected answer in such context.  

Analysis of the 1 minute interactions 

Table 2 transcribes the turns to speak that occurred during the minute of this correction. The two 

last columns indicate whether the information (I) brought by the student’s relate to result (R), 

procedure to obtain it (P), or subjacent knowledge (“connaissance”, C); the same for the resulting 

teacher’s action (A). The coding actually limits the researchers’ inferences by addressing the facts: 

the nature of the feedback (from a mathematical point of view: a result, a procedure or knowledge). 

This feedback can be done by addressing the result level, others the procedure, still others the 

knowledge. When the teacher does not react verbally to an answer3, we consider this silence an 

information too about the validity (or not) of the student’s answer.  

N Turns of speak I A 

01 P : so / Camélia ?   

02 Camelia : three times one over ten times ten/ P  

03 P : what is ten to the negative two ?  P 

04 Camelia : one over ten times ten P  

05 P : and we know how to calculate it ?  P 

06 E2 : one over three hundreds R  

07 E3 : what’s that ?   

08 P : you don’t know how to calculate one over hundred??  R 

09 Camelia : Ah yes ///   

10 E2 : it makes one over three hundreds.   P: -- R R 

11 E3 : it’s not possible R  

12 P : Orlane  R 

13 Orlane : one over three hundreds.    P: -- R R 

14 E5 : three hundreds…  one over three hundreds R  

15 P : there is indeed a negative here [showing the sign of the exponent – 2 on the statement]  P 

16 E5 : bah / negative one over three hundreds. P: -- R R 

17 E6 : zero point zero three R  

18 P : Yasmine  R 

19 Yasmine : zero point zero three R  

20  P : [writing on board 0,03 then 10-2 = ] So ten, negative two/ indeed Camélia 
/ this is one / over ten times ten / so / one over hundred / one hundredth / you know how to write this? 

 P 

21 Camélia : yes    

22 E8 : this is one percent ! R  

23 P : [she writes 0,01 after 1/100] It is 0,01 / so if one asks to make 3 times this/ 0,03  P 

Table 2: A minute of verbal interactions 

The pairs (I; A) then constitute basic units of formative evaluation and finally, the analysis of the 

interactions in this extract results in the following table: 

                                                 
3 We consider only obvious cases (the student action is clearly audible and the teacher takes a time “not paying atten-

tion”) and we count only utterances directly linked to the task as R, P or C, no other ones (as lines 7 or 21). 



 

Information/Action Result Procedure Connaissance (knowledge) 

Result 6 3 0 

Procedure 0 2 0 

Connaissance 0 0 0 

Table 3: Synthesis of the interactions 

Several observations can be made: 1) a majority of pairs remain on the same level, with a majority 

of RR among these. Only 3 feedbacks are changing the student’s level of information making it 

pass from result R to procedure P; 2) Very few student intervention are situated at the P level in this 

particular case; 3) No interactions from students, nor from teacher, directly address knowledge. 

Many of these remarks could reasonably be explained by the specific nature of this episode: mental 

calculation, intended to be already mastered by students, the correction of which should be easy and 

short. Yet, we can notice a swift along teacher’s interactions. After a time respecting the students’ 

“result” level, she switches feedbacks towards procedural level. Indeed, the rare RP events occur all 

at the end of the exchange (line 15/20/23). This can reflect teacher’s up-taking of information from 

the students’ speeches. Seeing numerous mistakes instead of the expected answer, she adapts her 

feedback by entering into a procedural level. She does not always verbally react when the answer is 

wrong (see E2; repeated twice; or E3; E5); she possibly prolongs the interaction when the answer is 

acceptable even if not expected (it is the case for Camelia’s answer, but not for the answer “1%” of 

E8) and writes on the board what is correct and acceptable (“10-2=0,01 and 0,03”). Thus, when 

Camelia starts an answer that could lead to d (fractional expression) or g or j (decimal expression), 

she interrupts her to orient the discourse towards the meaning of the powers of 10 (here 10-2) that 

lead to decimal notations (“0,01”). Referring to our a priori analysis, we assume that the teacher 

thus expects the answer b (direct decimal expression) not f, nor i that have intermediate fractional 

steps. Yet, the student goes on with fractions. The expected answer turns to be long delayed. Stu-

dents make the classical mistake which is not picked up by the teacher (E5), then an answer using 

percentage is expressed, not much taken into account by the teacher, who seems to get eager for the 

expected decimal. Observing the mistakes and students’ difficulties, she reconsiders the change of 

the power of ten into decimal notation via fraction calculation, in accordance with the procedure 

suggested by Camelia, thus finally accepting to align with the cognitive path taken by her students. 

Discussion and perspectives on didactic regulations 

Aiming at analyzing, in a didactic approach, teachers’ practices of formative regulation, we re-

viewed literature, which characterize these practices as both very few and little diversified. We thus 

looked for a theoretical and methodological tool that enables comparison between teachers and also 

various contents, in order to agglomerate results from various data and seek correlations. The analy-

sis of the short episode above brings up many questions on the observed session as on the RPC. On 

the data, it suggests to test longer episodes, other contexts, other mathematical contents, and with 

other teachers. In the purpose of describing and understanding the teachers’ adaptive activities to 

the students’ one, it would be interesting to enrich analyses with various mathematical contents, and 

various didactical contexts of learning (application of former knowledge, problem solving, institu-

tionalization…). The RPC tool makes possible the determination of trends in the regulating practic-

es (between-variability of teachers or within-variability of teacher). On the theoretical tool, it results 

in prolonging the use of these RPC tables by devising tables being “average” of many same contex-



tual tables, to characterize the regulation types for a given teacher. One could indeed calculate a 

table of the variations to the average of the tables corresponding to several sessions for the same 

teacher (intra-variability, to characterize the regulation practices for a given teacher), or examine 

the variations to the average for several teachers on a given content (inter-variability to characterize 

the profession, or how regulating practices depends on the specific knowledge). 

Similarly, the other few analyses we have carried out with this tool look quite promising for re-

search on teaching regulations. They confirm the variability of the practices observed in former 

research. Yet, they also reveal some tendencies: 1) the couples information-feedback observed are 

not of the same type but distributed among five or six of the nine possible types; 2) these regula-

tions were not numerous in our data; 3) the couples RR are dominant for all the teachers, a result 

converging with research on evaluative practices quoted in our literature review; 4) the distribution 

of interactive regulations, for a given type of information (R, P or C) is higher along the diagonal, 

i.e. pairs RR are more frequent than RP or RC; pairs PP are more frequent than PR or PC. This 

suggests that teachers generally produce feedbacks on the same level as the students’ answers. They 

rarely turn a R-answer onto a procedure level; or help a student, who is indicating a procedure, to 

formulate the underlying knowledge C. Therefore, are these specific cases of regulation (when the 

teacher’s feedback and received information are not on the same level) fostering the students’ 

learning? And are the ascending ones (RP, RC, PC) more supportive for learning?  

In conclusion, the joint perspective taken here led us to a tool to analyze the mechanisms of forma-

tive regulation in classroom interactions. If the tool appears fruitful here, could it be applied more 

largely to other forms of formative assessment in mathematics education? Indeed, “formative” 

evaluation requires means from the teacher to collect information on the students’ learning. Identi-

fying results, procedures or knowledge in interactions could a priori be means of taking into ac-

count the specificity of the savoirs in the forms of formative assessment set-up by the teacher 

(questioning, discussions, peer/ self-assessments…). Such considerations lead to reflections about 

the nature of the beginning networking case here. The connection between didactic fields of re-

search and the assessment one is realized here by elaborating a possible common methodological 

tool that possibly informs both research fields. This case of networking is rather original, although it 

is justified in Radford’s remark: Using the semiosphere’s spatial metaphor, theories Ti and Tj can 

be visualized as being “closer” or “further” depending on their own (Pi, Mi, Qi) and (Pj, Mj, Qj) 

structures. The connection ck of Ti and Tj requires the identification of research questions Qij 

(tasks, problems, etc.) that guide the enterprise as well as the building of a new methodology Mij to 

answer the research questions under consideration. (Radford, 2014, p. 284). 
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Appendix: Excerpt of the a priori analysis of the task  
Possible answers and procedures: Various categories of correct procedures and answers can be discerned following 

the knowledge used. I) Use of the scientific notation: directly move from this notation to the decimal one: a.3x10-2 =0,03 

(note that the lack of explicit calculation can lead students to reject this procedure by didactic contract effect). II) Use of 

the decimal notation in calculation: b.3x0,01=0,03 III) Use of the fractional notation: different procedures according to the 

fractional form applied to ten powers: c.  d.  e. . 

IV) Mix fractional/ notation: various procedures depending on the forms applied to ten powers: 

f.  g.  h.  

i.  j.  k. .  

Mathematical knowledge at stake: The task could be legitimately interpreted in multiple ways. Yet, in the context here 

(a series of quick calculus), short procedures (and short corrections), mentally easy, might be awaited by the teacher, so 

a, b, c, f or i. There, the passage from 10 powers to decimal or fractional form, do not explicitly rely on the definition of 

the exponent. This is important to interpret her feedbacks taking into account professional constraints as the time factor.  

http://dspace.library.uu.nl/handle/1874/289266


 

 

Networked theories for a didactical study of communities of 

mathematics teachers 

Jean-Philippe Georget1 and Hussein Sabra2 

1Normandie univ, Unicaen, Cirnef EA 7454, Caen, France; jean-philippe.georget@unicaen.fr 

2Université de Reims Champagne Ardenne, Cérep EA 4692, Reims, France; hussein.sabra@univ-

reims.fr 

Existing research about communities of mathematics teachers mainly draws on sociocultural 

theories. In complementarity, our project consists in studying more deeply the place of mathematics 

within communities of teachers. We also define the notion of didactical study of communities of 

mathematics teachers to focus on a general research project on the place of mathematics in teacher 

community dynamics. We propose a theoretical model to analyze the problems of the community 

stemming from the network of several theoretical frameworks and approaches. The theoretical 

model is particularly based on arguments given by the members of the community and mathematics 

teaching resources. Two contrasted case studies show the relevance of our focus on mathematics.  

Keywords: mathematics teaching, teacher communities, problem of a community, argumentation, 

mathematics teaching resources. 

Introduction  

This paper focuses on communities of mathematics teachers. We are particularly interested in the 

role of mathematics in community dynamics, its epistemological characteristics, its validation 

modes and its conditions of teaching. We wonder about the singularity of a community of 

mathematics teachers: in what way the study of a community of teachers in mathematics education 

is different from the same study in physics education, in geographic education and so on? 

In this contribution, we discuss a general question which is the focus of our research project: “What 

network of theoretical approaches is needed to determine the singularity of communities of 

mathematics teachers?” We are in an exploratory stage in which we develop theoretical constructs. 

In the three last CERME workgroups about networks of theoretical approaches, two authors 

discussed the issue of communities of mathematics: Palmer (2013) and Castela (2013). Palmer 

notes that Wenger´s (1998) theory of communities of practice does not focus on mathematics 

education and/or teaching. Castela (2013) stresses the fact that the activity of communities of 

teachers and different modes of validation of mathematical knowledge in these communities are 

determined by the institutional conditions and constraints. For instance, teacher’s communities do 

not have the same role as the researcher communities in the knowledge validation process. These 

researchers mainly draw on sociocultural theories in order to understand some phenomena. In 

complementarity to these research works, we aim to determine the singularity of communities of 

mathematics teachers. Our research also contributes to the French ReVEA1 project, which concerns 

                                                 

1 ReVEA is a project funded by the French National Agency for Research www.anr-revea.fr/ 



 

 

the interactions between teachers (individual and collective aspects of their work) and their 

resources in four disciplines, including mathematics.  

Before presenting the kind of networking needed to study the communities of mathematics teachers, 

we shall define the way we use some words in the following. Many researchers use communities of 

teachers to talk about the forms of collaboration between teachers (Robutti et al., 2016). In the same 

line, we use the term community, loosely defined and not aligned with particular theoretical ideas. A 

community of teachers designates several teachers engaged together professionally to achieve a 

common project related to mathematics teaching. We propose also to characterize “community 

dynamics” as the role of the members and their individual projects, the verbal interactions, and the 

interactions with the resources for teaching. 

Communities of mathematics teachers: Networking of theories needed 

For a didactical study of communities of mathematics teachers 

Several researchers on the practices of mathematics teachers have already studied the issue of 

communities of teachers (Graven, 2004; Gueudet, Pepin, Sabra, & Trouche, 2016; Jaworski, 2006; 

Krainer, 2003).  

Some researchers explore the place of collective work in teacher training (Llinares & Krainer, 2006; 

Jaworski, 2006) and more recently its place in online teacher training (Borba & Llinaras, 2012). 

Furthermore, relying on the theory of CoP, Jaworski (2006) develops the communities of inquiry 

approach. She stresses that developing critical thinking on teaching practice takes place in long-

term processes of collaboration between teachers, trainers and researchers. This approach takes the 

specifics of mathematical epistemology in teaching and learning practices into account. However, 

from the standpoint of research, the communities of inquiry approach only allows the study of 

communities determined by the particular operational process of this approach. 

Other researchers in mathematics education characterized different forms of communities but the 

place of mathematics is not always considered as central in the theories mobilized and developed 

(for example, see Krainer, 2003).  

In order to identify the singularity of communities of mathematics teachers, we define the notion of 

didactical study of a community of mathematics teachers as the study of the conditions and the 

constraints of learning and sharing knowledge related to mathematics education through the design 

of resources and interaction between members of this community. Let us specify each element of 

this definition:  

 The conditions and constraints of learning and sharing knowledge are those that allow, 

encourage, restrict or inhibit learning in the community.  

 Knowledge related to mathematics education consists of subject matter knowledge and 

pedagogical content knowledge (Ball, Thames, & Phelps, 2008) that affect the condition of 

mathematics diffusion. 

 Resources are anything that is developed and used by teachers (and students) in their 

interaction with mathematics to teach or learn inside/outside the classroom (Pepin, 



 

 

Gueudet & Trouche, 2013). This element is preponderant in the study of a community and 

plays the role of a mediation and communication tool.  

 By “interaction between members”, we do not only mean simple verbal, oral or written, 

exchanges but also sharing resources and experiences through online activities.  

The next sections discuss the theories and approaches that help us to take into account each of the 

elements above. 

Learning and sharing knowledge in CoP: through problems of the community? 

Wenger (1998) proposes a general theory built in the context of knowledge management to study 

communities of practice (CoP) defined as apprenticeship communities. He emphasizes that learning 

takes place during the exchanges between members, especially those exchanges related to their joint 

(community) problems. The treatment of these problems leads to new knowledge emerging from 

the participation process.  

Wenger’s theory does not give specific tools to consider mathematics, though we rely on this 

general idea proposed by Wenger of considering the problems of the community. We distinguish 

between problems of the community – identified by the researcher – and community problems – 

identified by the members – even if both can sometimes be the same. In this contribution, according 

to our focus on mathematics, a problem of the community is a phenomena or event that prevents or 

hinders the achievement of the common project and that is linked with mathematics as a science or 

as a teaching field.  

At this point of our contribution, we hypothesize that the study of the problems of a community 

permits to determine a part of the community dynamics. We propose to realize it by following up 

the resources and the argumentation process. 

Resources for teaching mathematics 

The documentational approach of didactics (Gueudet & Trouche, 2012) attempts to frame the 

process of the design of teaching from the point of view of the teachers’ work. It is a socio-cultural 

approach that permits us to study the interleaving between the community resources and the 

teachers resources that are involved (Gueudet et al., 2016). The teacher interacts with resources, 

selects them, and works on them (adapting, reviewing, reorganizing, etc.) in some processes where 

design and enacting are intertwined. The intertwining of new resources and interactions with other 

actors in the educational system creates new teaching knowledge and carries teachers’ professional 

development (Gueudet & Trouche, 2012).  

In order to achieve common projects, the different individual documentational geneses interact 

(Gueudet et al., 2016). The consideration of resources in the community of teachers should take into 

account: 1) the gathering, creating and sharing of resources in order to achieve the mathematics 

teaching goals of the community; 2) the result of this process, the shared resources and shared 

associated knowledge (what teachers learn together from conceiving, implementing, and discussing 

resources).  

In the documentational approach, we use the definition given by (Pepin, Gueudet, & Trouche, 

2013): “all the resources which are developed and used by teachers (and pupils) in their interaction 



 

 

with mathematics in/for teaching and learning, inside and outside the classroom”. The advantage of 

this definition is that it determines the documentation work in terms of interaction with 

mathematics. In this perspective, the resources of the community could be considered like a highly 

structured system, where resources are linked according to the level of teaching, the mathematical 

topic, the teaching mode, and the evolution of the curricula. 

The documentary approach is a framework designed to articulate with some other ones. To answer 

our question, we need a complementary framework to consider the epistemological characteristic of 

mathematics. 

Interaction between members: the place of argumentation 

Taking into account the interaction between the members of a community implies taking the oral or 

written verbal exchanges into account. We have chosen to identify the arguments given by the 

members during the exchanges and to interpret them with the help of the resources that were 

mobilized or designed. We define argument as the reason that one presents to defend a certain point 

of view (Plantin, 1990). It is always oriented toward the decision that speaker wants to take (Ibid.).  

Pedemonte (2007) stresses, in the case of mathematics, what can be considered an argument. She 

notes that is necessary to look at the proposition and at the context, which allows us to remove 

misunderstanding. More specifically, she distinguishes between arguments to convince – based on 

rationality – and arguments to persuade – for example based on authority.  

Plantin (1990) and Pedemonte (2007) considered argumentation in the learning processes. Which 

kind of transfer could we make in the case of teachers? Some aspects need to be developed and 

clarified in our future work: typology of arguments, impact on the community dynamics.  

Emerging model for analyzing a problem of the community: criss-crossing of 

several theories and approaches  

Problems of the community that we consider are linked to mathematics as subject matter knowledge 

and as pedagogical content knowledge (Ball et al., 2008). We hypothesize that the treatment of 

these problems is related to: (1) the role of members in the community of teachers; (2) the 

arguments given by members; and (3) the use of resources that the teachers mobilize or produce to 

support the process of argumentation. We aim to determine the articulation between these 

components that could emerge (or not) in the treatment of these problems (members, arguments, 

resources) and the decision-making. We consider two case studies. 

Problem of the community treatment: two contrasted case studies of a didactical study of a 

community 

We developed the model on two contrasting cases to: 1) highlight the importance of considering the 

problem of the community; 2) extend the validity of the model.  

We conducted the first case study at high school level. The community is spontaneous. The 

mathematical knowledge considered is the notion of “function”. The researcher is outside of the 

community.  



 

 

We conducted the second case study at the primary level. The community is intentional. The 

mathematical knowledge considered are research situations and proof. The researcher is within the 

community. 

In both cases, we present some elements of context, the arguments given by the members of the 

community and their role in the treatment process of the problem of the community. Finally, we 

present the interpretation of the arguments exchanged by specifying the determining factors in the 

decision-making. We provided the details of the analysis in another paper (Georget & Sabra, 2015). 

First case study: grade 10 textbook project 

Sesamath is a mathematics teachers association founded in 2001. It aims to design and disseminate 

free and open resources. Interactions between the Sesamath members take place on online platforms 

and by mailing lists. Sesamath is structured around several project communities. We consider one 

of these communities: the grade 10 textbook project.  

The chosen corpus corresponds to a thread of discussion about the progression of the topic 

“functions” in the textbook it is intended to design. “Functions” is the main topic to introduce in 

mathematical analysis at secondary level in France. The curriculum introduces functions for the first 

time at the grade 10 (15-16 years old), which generates a problem of the community that led to a 

controversy that we formulate by the following words: “What progression of the topic 'functions' 

must be adopted?”  

Three members of the community are mathematics teachers with more than ten years of experience 

each. They play a particular role in the discussions: Mr W as a designer and a commentator and 

reviewer of resources, Ms A as a designer and a reviewer and a commentator of resources, and 

Mr H as a coordinator for several Sesamath projects and coordinator between Sesamath and other 

external communities.  

This first case study illustrates arguments given to treat a problem of the community: (1) 

mathematical arguments with a discussion on the mathematical contents (connectivity between 

some concepts); (2) epistemological arguments about “functions” with a level of abstraction, 

depersonalization, and decontextualization of associated concepts; (3) didactical arguments coming 

from a personal experience or by consideration of the topic “functions” in the different level of 

teaching; and (4) arguments mainly linked to the design of resources. 

The interpretation of the arguments during the discussions cannot be made independently of the 

context of the problem (structuring of the "functions" topic in the textbook). The mathematical 

argument takes importance in the formulation of the decision. We consider some arguments made 

by Mr H (argument to persuade) as a strong determinant factor in the decision. Mathematical 

arguments launched by Mr W and confrontation of his proposal with existing textbooks are also a 

second determinant factor in the decision. The members formulated the decision in terms of 

mathematical arguments.  

Second case study: CoP and situations of research and proof at the primary level 

The second case study is about an experiment of an intentional CoP during three years. We 

implemented a CoP to develop the practice of situations of research and proof between peers in 



 

 

some classes at the primary level. It was composed of teachers and the researcher-coordinator of the 

CoP. We proposed several “mathematical situations” on online resources to the teacher and the 

design of these resources has been a key point in this CoP. 

The data analyzed are about an extract of transcription of a meeting at the end of the second year 

with three teachers and the researcher-coordinator. One of the teachers, Mr D, does not understand 

the proof of a mathematical problem. He brings the usability of the resources into question by 

pointing out that the resources do not take his lack of mathematical knowledge into account.  

For Mr D, the introduction of the proposed situations in his practice is rather exceptional. Ms S is 

voluntary in her implication in the CoP and for practicing these situations with her pupils. Mr H is 

more experienced than Mr D and Ms S, who have also problems of understanding for several 

resources, especially Mr D about a certain resource which Ms S understands well. Some exchanges 

help Mr D to understand the proof of the mathematical problem after which Mr H closes the debate 

implicitly. Mr D and Ms S do not rekindle it. Following some controversies about the usability of 

several resources, there is therefore an implicit decision not to modify them.  

During the interactions, both kinds of arguments are exchanged: (1) resource design arguments 

about the usability of the teaching resources given by Ms S and Mr D who launch the interactions; 

and (2) mathematical arguments given by Mr H and the researcher/coordinator that permit the 

understanding of the proof by Mr D. 

At the end of the exchanges, the decision is implicitly validated by mathematical arguments: the 

proof presented by the resource is valid and understood by the majority of those present at the 

meeting, so it is not necessary to modify the resource once the explanations have been given. 

Results and discussions 

In both cases studied, community members use mathematical arguments to validate the final 

decision. Mathematics appears to have at least two different roles. In the first case, the validation by 

some mathematical arguments seems to be essential to legitimate the decision-making even if the 

determining factor concerns the design of teaching resources. In the second case, the decision-

making is implicit and validated by mathematical arguments while the common project of the 

community concerns the design of “pertinent” teaching resources. 

Thus, from a methodological point of view, it is relevant to analyze the specific role of mathematics 

in the exchanges about a problem of a community. From the study of both case studies, a model 

emerges (see figure 1) as a proposal for understanding the community dynamics. We base this 

model on three components: (1) The members of the community depending on their role and their 

implication in the treatment of the problem, (2) the arguments, and (3) the resources for 

mathematics teaching that support the argumentation. The model gives the opportunity to analyze 

the problem of all type of communities.  



 

 

 

Figure 1: Model to analyze the role of mathematics (didactical, epistemological, etc.) in the treatment 

of a problem of the community 

Conclusion 

Existing research about mathematics teacher communities draw mainly on sociocultural theories. In 

complementarity, our project consists in studying more deeply the role of mathematics within 

communities of teachers. We propose a model of analysis resulting from articulation of several 

theories and approaches. We have also defined the notion of didactical study of communities of 

mathematics teachers to clarify the frame of this general research program. We have presented a 

model based on (1) the identification of a problem of the community, (2) the analysis of this 

problem in terms of community dynamics, (3) the characterization of the specific role of 

mathematics among arguments and resources for mathematics teaching. Both contrasted case 

studies contribute to show the relevance of our proposals. The model of analysis allows us to 

distinguish two roles of mathematics in the treatment of problems: 1) to explicitly formulate a 

decision already taken; 2) to implicitly validate a decision that might even be against the goal of the 

community. However, the model must now be tested on other data and on other kinds of 

communities. We also aim to test it in the perspective of identifying other roles of mathematics in 

community dynamics. 

References 

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it 

special? Journal of Teacher Education, 59(5), 389–407. 

Borba, M. C., & Llinares, S. (2012). Online mathematics teacher education: Overview of an 

emergent field of research. ZDM – The International Journal on Mathematics Education, 44, 

697–704. 

Castela, C. (2013). Workers’ communities as potential institutions: A convergence issue to 

anthropological and sociocultural theories. In B. Ubuz, Ç. Haser & M.-A. Mariotti (Eds.) 

Proceedings of the eighth Congress of the European Society for Research in Mathematics 

Education CERME8 (pp. 2890–2891). University of Ankara, Turkey. URL: 

www.mathematik.uni-dortmund.de/~erme/doc/CERME8/CERME8_2013_Proceedings.pdf  

(27.04.2017) 

http://www.mathematik.uni-dortmund.de/~erme/doc/CERME8/CERME8_2013_Proceedings.pdf


 

 

Georget, J.-P., & Sabra, H. (2015). Pour une étude didactique des collectifs d’enseignants des 

mathématiques, EM TEIA - Revista de Educação Matemática e Tecnológica Iberoamericana, 

6(3). URL: http://periodicos.ufpe.br/revistas/index.php/emteia/article/view/2249/0  

Graven, M. (2004). Investigating mathematics teacher learning within an in-service community of 

practice: The centrality of confidence. Educational Studies in Mathematics, 57, 177–211.  

Gueudet, G., Pepin, B., Sabra, H., & Trouche, L. (2016). Collective design of an e-textbook: 

Teachers’ collective documentation. Journal of Mathematics Teacher Education, 19(2-3), 187–

203. 

Gueudet, G., & Trouche, L. (2012). Communities, documents and professional geneses: Interrelated 

stories. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From Text to ‘Lived’ Resources: 

Mathematics Curriculum Materials and Teacher Development (pp. 305–322). NY, USA: 

Springer. 

Jaworski, B. (2006). Theory and practice in mathematics teaching development: Critical inquiry as 

a mode of learning in teaching. Journal of Mathematics Teacher Education, 9(2), 187–211. 

Krainer, K. (2003). Teams, Communities & Networks. Journal of Mathematics Teacher Education, 

6(2), 185–194. 

Llinares, S., & Krainer, K. (2006). Mathematics (student) teachers and teacher educators as 

learners. In A. Guttierez & P. Boero (Eds.), Handbook of Research on the Psychology of 

Mathematics Education. Past, present and future (pp. 429–459). Rotterdam (The Netherlands): 

Sense Publishers. 

Palmer, H. (2013). Connecting theories in a case study of primary school mathematics teachers’ 

professional identity development. In B. Ubuz, Ç. Haser & M.-A. Mariotti (Eds.), Proceedings of 

the eighth Congress of the European Society for Research in Mathematics Education CERME 8 

(pp. 2850–2859). University of Ankara, Turkey. URL: http://www.mathematik.uni-

dortmund.de/~erme/doc/CERME8/CERME8_2013_Proceedings.pdf (27.04.2017) 

Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? 

Educational Studies in Mathematics, 66(1), 23–41. 

Pepin, B., Gueudet, G., & Trouche, L. (2013). Re-sourcing teacher work and interaction: New 

perspectives on resource design, use and teacher collaboration. ZDM-The International Journal 

of Mathematics Education, 45(7), 929–943. 

Plantin, C. (1990). Essais sur l’argumentation. Paris, France: Kimé. 

Robutti, O., Cusi, A., Clark-Wilson, A., Jaworski, B., Chapman, O., Goos, M., Isoda, M., Joubert, 

M., & Esteley, C. (2016). ICME international survey on teachers working and learning through 

collaboration: June 2016, ZDM-The International Journal on Mathematics Education, 48(5), 

651–690. 

Wenger, E. (1998). Communities of practice, Learning, Meaning and Identity. Cambridge, UK: 

Cambridge University Press. 

http://periodicos.ufpe.br/revistas/index.php/emteia/article/view/2249/0
http://www.mathematik.uni-dortmund.de/~erme/doc/CERME8/CERME8_2013_Proceedings.pdf
http://www.mathematik.uni-dortmund.de/~erme/doc/CERME8/CERME8_2013_Proceedings.pdf


An analytical tool for identifying what works with children with 

mathematics learning difficulties 

Esmeralda Zerafa 

University of Malta, Malta; esmeralda.zerafa@hotmail.com 

Keywords: Analytical tool, Vygotsky’s perspectives, mathematics learning difficulties. 

As a theoretical framework I chose to use social constructivism on development and learning, 

mainly Vygotsky’s perspectives. As highlighted by Ernest (1998), social constructivist theorists 

propose that knowledge is constructed through socially situated interactions or conversations. My 

study is underpinned by social constructivism because in this paradigm: 

 The teacher has a fundamental role as the more knowledgeable other in guiding the learner 

through the learning process; 

 Rich social interaction can enhance learning especially through the rich tool of social 

conversation and other forms of language; and  

 Resources and language can be used to facilitate learning and thus to take the learner from 

the current point of learning to that which s/he has the potential to get to. 

In Vygotsky’s works the learner’s developmental trajectory is often referred to as the Zone of 

Proximal Development (ZPD), “the distance between the actual development level as determined 

by independent problem solving and the level of potential development as determined through 

problem solving under adult guidance, or in collaboration with more capable peers” (1978, p. 86).  

In this journey, the role of the More Knowledgeable Other (MKO) is thus crucial. Vygotsky 

frequently makes use of specific terms in his works. In the poster, I intend to provide a brief 

explanation for each term. Vygotsky’s perspective accentuates that a child develops through a 

transformative collaborative practice which involves cultural tools, cultural influences, and other 

significant adults (Vianna and Stetsenko, 2006). This process, known as ‘cultural mediation’ 

underlies my use of an intervention programme to support learners with MLD. The programme 

sought to provide the participants with meaningful interactions that would help them to master the 

ten numeracy components (Catch Up, 2009). Vygotsky (1978) suggests that the analysis of the data 

collected by himself and his team “accords symbolic activity as a specific organizing function that 

penetrates the process of tool use and produces fundamentally new forms of behaviour” (p. 24).  

Therefore, whilst analysing the initial data I looked closely at situations in which the interactions 

provided would have altered the child’s behaviour to such an extent that they now have mastered a 

specific concept, skill or knowledge vis-à-vis a specific numeracy component being focused on. 

Dunphy and Dunphy (2003) suggest that there are four stages within the ZPD, the first being that in 

which performance is assisted by the MKO, hence the choice of a teacher-led intervention 

programme. Based on Vygotsky’s works, Tharp (1993) identifies seven means of supporting the 

learners to develop within their Zone of Proximal Development. These are: modelling, feedback, 

contingency management, instructing, questioning, cognitive structuring “explanations” and task 

structuring (Tharp, 1993, p. 271-272). Internalisation might take place through the use of what 

Vygotsky names as “cultural tools”. Vygotsky (1978) distinguishes between technical tools and 

psychological tools. Technical tools “serve as the conductor of human influence on the object of 

activity; it is externally oriented” (p. 55).  Such tools include the use of a ruler or protractor, for 



example. Psychological tools are directed inward and gear the mind and the process of thinking 

such as language.  In my programme I made use of both forms of tools.   

Poster format chosen 

The study focuses on exploring effective strategies for helping 9 – 10 year old Maltese children 

struggling with mathematics. Six participants were selected through standardised tests for numeracy 

and reading. Three children were identified as having only mathematics learning difficulties (MLD) 

and three having comorbid difficulties in mathematics and reading (MLDRD). In the poster, I 

present some crucial theoretical perspectives and the process of data collection. Its focus is to 

present the analytical tool developed to analyse the data collected through the multiple case studies 

carried out as part of an intervention programme conducted on a one-to-one basis with each of the 

participants. 

Possible implications for existing research in the area 

Research about what works with children having MLD is still very limited. Hence the importance of 

this study and the process of analysing the data gathered from the multiple case studies. Through 

the data analysed so far some important annotations have been made. These include the observation 

of two other modes of assistance that had not been mentioned by Tharp (1993). These I decided to 

label as ‘recapturing’ and ‘role inversion’. Moreover it also seemed evident that interaction between 

the learner, the MKO and Cultural Tools was fundamental in providing the necessary assistance in 

guiding the learner within the ZPD to towards the potential zone of development.  This means that 

this interplay was crucial in supporting the internalisation process. Therefore strategies that are 

effective with learners having MLDRD seem to be those that bring together all these aspects.  This 

is represented in the analytical tool developed, which shows this symbiosis and its facilitation of 

internalisation. 
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Some theoretical models emerged from specific mathematical contents or educational levels, so 

they are well adapted to the context where they were created but, sometimes, they do not fit well in 

a different context. Related to the issue of the need to go beyond a specific theory when researching 

a phenomenon, to solve the tension between home-grown needs and borrowed theories, we present 

the reasons for and steps of an adaptation we have had to do of the Cognitive Demand model so 

that it fits the requirements of our research questions, methods and data. We systematized the defi-

nition of the model stated by its authors, and completed this definition with some necessary state-

ments. Then, we re-stated some characteristics of the model to avoid inconsistencies when using it. 

Finally, we particularized the general model to several specific mathematical topics. 

Keywords: Theoretical framework, adaptation, cognitive demand, mathematical problem solving. 

Introduction 

The choice of a specific theoretical framework is a key decision for researchers when they start 

working on a new research project. However, sometimes, researchers wish to use a theoretical mod-

el in a context that the model does not fit well, and they decide to modify the theoretical model to 

adapt it to the new requirements. We present our experience of fitting a theoretical model with flex-

ibility so it can be adapted to contexts and used in ways the model had never been used. 

We are developing a research project1 aimed to better understand the cognitive processes of primary 

and lower secondary mathematically talented students (i.e., students showing mathematical abilities 

clearly over average students) when solving problems. A characteristic of those students is that they 

demand problems making them engage in high level of reasoning. A way for teachers to succeed in 

it is by posing them that kind of problems. Then, we had to find a way to determine the cognitive 

effort required by problems and done by students when solving them. The Cognitive Demand model 

(Smith & Stein, 1998) fitted our requirements, so we integrated it in our theoretical and methodo-

logical research frameworks. However, when we used this model to analyze our data, we found 

some difficulties in applying it due to ambiguity or inconsistency of results, so we decided to adapt 

it to our needs. We detail in next pages the steps in the process of adaptation, the reason for each 

step, and the resulting theoretical model. We present a reconstruction of the main parts of the real 

recurrent process, which has taken several years and still has not been finished. 

The next section presents the characterization of the Cognitive Demand model as stated by its au-

thors. Third to sixth sections present examples of the difficulties we found and the steps we fol-

lowed to adapt the original model: organizing the original characterization, completing such charac-

                                                 

1 The results presented are part of the R&D&I research projects EDU2012-37259 (MINECO) and EDU2015-69731-R 

(MINECO/FEDER), funded by the Spanish Government and the European Fund for Regional Development. 



terization with some new statements, re-wording some characteristics of the model to avoid incon-

sistencies when using it, and particularizing the new general characterization of the model to differ-

ent specific mathematical topics. Due to space limitations we cannot show the details for all levels 

of cognitive demand, but only an example of each step for certain levels. 

The starting point: The levels of Cognitive Demand 

The Cognitive Demand model resulted after a process of characterization of mathematical tasks ac-

cording to their “potential to engage students in high-level thinking” (Smith & Stein, 1998, p. 344). 

It includes four levels of cognitive demand that assess the cognitive effort required from students to 

solve a mathematical task. These levels are labelled (Smith & Stein, 1998) as memorization, proce-

dures without connections to concepts or meaning, procedures with connections to concepts and 

meaning, and doing mathematics, when complex mathematical thinking is required. Each level is 

defined by a set of characteristics paying attention to different aspects of the solutions of problems. 

We present in Table 1 the characteristics of two levels that are the ground for the rest of the paper. 

Procedures without connections 

2.1. Are algorithmic. Use of the procedure either is specifically called for or is evident from prior 

instruction, experience, or placement of the task. 

2.2. Require limited cognitive demand for successful completion. Little ambiguity exists about what 

needs to be done and how to do it. 

2.3. Have no connection to the concepts or meaning that underlie the procedure being used. 

2.4. Are focused on producing correct answers instead of on developing mathematical understand-

ing. 

2.5. Require no explanations or explanations that focus solely on describing the procedure that was 

used. 

Procedures with connections 

3.1. Focus students’ attention on the use of procedures for the purpose of developing deeper levels 

of understanding of mathematical concepts and ideas. 

3.2. Suggest explicitly or implicitly pathways to follow that are broad general procedures that have 

close connections to underlying conceptual ideas as opposed to narrow algorithms that are 

opaque with respect to underlying concepts. 

3.3. Usually are represented in multiple ways, such as visual diagrams, manipulatives, symbols, and 

problem situations. Making connections among multiple representations helps develop meaning. 

3.4. Require some degree of cognitive effort. Although general procedures may be followed, they 

cannot be followed mindlessly. Students need to engage with conceptual ideas that underlie the 

procedures to complete the task successfully and that develop understanding. 

Table 1: Definition of the levels of cognitive demand of procedures without connections and procedures 

with connections (Smith & Stein, 1998, p. 348). Order numbers are added for easy reference 

To attain our research objectives, we created rich problems intended to be posed to whole-class 

groups, consisting of several related questions of increasing complexity, in such a way that all stu-

dents should be able to solve the first questions but only the more able students could solve all of 

them. The levels of cognitive demand allow us to classify the questions in a problem and decide 

whether each question is more appropriate for average students or for talented students. 



The Cognitive Demand model was created after the analysis of problems that, most of them, were in 

the quite algorithmic areas of school arithmetic and algebra (Stein & Smith, 1998; Stein et al., 

2009), but we are trying to use the model to analyze problems in mathematical topics very different 

from the previous ones, as are plane geometry, geometric patterns (pre-algebra) and visualization. 

Identifying inconsistencies between the characteristics of the levels 

After using the model to analyze different problems, a difficulty related to lack of consistency be-

tween some levels arose. We exemplify it by analyzing a problem consisting of several questions 

guiding students to discover and prove a formula to provide the number of diagonals of any poly-

gon. The problem has two parts: the first one can be seen in Figure 1; the second part asks students 

to draw and count all the diagonals of the same polygons and to fill in a table, to calculate the num-

ber of diagonals of a 20-sided polygon, to generalize the procedure of calculation of the diagonals 

to any given polygon, and to prove this relationship. We present our analysis of question 1a (Figure 

1) by considering typical average students’ solutions that do not go further than what is asked to do. 

 

1a) In each polygon, draw all the diagonals starting from the marked vertex. Change the shape of the 

polygons by dragging that vertex. Count the number of diagonals. Fill in the table below. 

Polygon Nº of sides Nº of diagonals from one vertex 

Triangle   

Quadrilateral   

Pentagon   

Hexagon   

Heptagon   

1b) What is the relationship between the number of sides of a polygon and the number of diagonals from 

one vertex? Why? 

Figure 1: First part of a problem focused to discover the number of diagonals of any polygon 

Regarding the level of procedures without connections, question 1a is algorithmic and the statement 

suggests the procedure to be used, namely to draw the diagonals from a given vertex and count 

them to fill in the table, so it fits characteristic 2.1 in Table 1. The polygons drawn in the statement 

guide students to draw the diagonals from a specific vertex, so there is little ambiguity about what 

they have to do and how to do it (it fits 2.2), and it does not require explanations (it fits 2.5). On the 

other hand, the procedure to be used has connections with the relationship between the number of 

sides and diagonals from a vertex of polygons (it does not fit 2.3), although question 1a is focused 

on producing correct answers, not on developing understanding of that relationship (it fits 2.4). 

Regarding the level of procedures with connections, question 1a does not fit 3.1, since it is not fo-

cused to make students develop understanding of the underlying relationship. However, it fits 3.3, 



since, to answer it, students use geometric and numeric representations of information about poly-

gons and diagonals: the numeric representation shows the general relationship between number of 

sides and diagonals, while the geometric representation may help students understand why it is true. 

So the question has the potential to let students connect both representations, which would help 

them develop the meaning for the relationship. Question 1a fits 3.2, since it explicitly suggests a 

procedure that is closely connected to the underlying concepts, the number of sides and diagonals 

from a vertex of polygons. Question 1a does not fit 3.4 since its procedure may be followed without 

need of being mindful, and a correct solution to it does not require understanding the underlying 

relationship between number of sides and diagonals from a vertex of polygons. 

The epistemological conception of the levels of cognitive demand is that they are mutually exclu-

sive. We see that question 1a fits several characteristics of each level procedures without connec-

tions and procedures with connections, so it is unclear to which level of cognitive demand should it 

be assigned. This happens because some characteristics of these levels, as stated in Table 1, are not 

precise enough, which can lead to errors when trying to assign a level of cognitive demand to some 

problems. The most evident vagueness, or contradiction, happens with characteristics 2.1 and 3.2. 

Organizing the characteristics of the levels and filling their gaps 

After having identified the difficulty analysed above, we made a detailed comparison of the charac-

teristics of each pair of consecutive levels, to identify possible weaknesses and modify their word-

ing to correct them. We noted that the characteristics of levels (see examples in Table 1) focused on 

six domains of objectives of a problem or its process of solution. These six domains of characteris-

tics are: Procedure of solution, objective of the problem, required student’s cognitive effort, mathe-

matical contents implicit in the problem, kind of explanations required, and types of representations 

used in the solution. The domains helped us arrange the characteristics of the levels of cognitive de-

mand provided by Smith and Stein (1998) and identify some gaps in the definitions of the levels. 

Levels of cogn. 

demand 

Domains Memorization 

Procedures 

without  

connections 

Procedures 

with  

connections 

Doing  

mathematics 

Procedure of solution 1.2 2.1 3.2 4.1, 4.5 

Objective 1.1 2.4 3.1 4.2 

Cognitive effort 1.3 2.2 3.4 4.3, 4.6 

Implicit contents 1.4 2.3 3.4 4.4 

Explanations -- 2.5 -- -- 

Representations -- -- 3.3 -- 

Table 2: Domains of the characteristics of the levels of cognitive demand in Smith and Stein (1998) 

Table 2 shows the assignation of the characteristics of the levels to the domains. It also shows that 

two domains are considered only in the definitions of a level, and that 3.4 includes references to two 

domains, while several characteristics of the level doing mathematics refer to a same domain. 

Next step to improve the usability of the original definition of the Cognitive Demand model was to 

complete the definitions of the levels, by including characteristics referring to the missed domains, 

taking care that each new characteristic is consistent with the corresponding characteristics of the 

other levels. Table 3 shows the new characteristics, to be added to those in Table 1 to make a more 



complete description of the levels of cognitive demand. 

Procedures without connections 

2.6 (representations). One or more representations may be used (arithmetical, geometrical, visual 

diagrams, manipulatives, etc.). When several representations are used, students use them inde-

pendently, i.e., without establishing connections neither between them nor with the underlying 

concepts and ideas. 

Procedures with connections 

3.5 (explanations). Require explanations that focus on the underlying relationships by using specific 

examples. 

Table 3: Characteristics added to the levels of procedures without and with connections 

Having completed the definitions of the levels by merging Table 1 and Table 3, we were ready to 

refine the characteristics that induced wrong or multiple identifications of the cognitive demand in 

some problems, like the problem analysed above (number of diagonals of polygons). 

Refining the characteristics of each level 

A necessary feature of any set of disjoint categories is that their definitions have to make it clear the 

border between adjacent categories. As we showed above, this is not the case for the levels of cog-

nitive demand. To refine the definitions of the levels, we made a systematic comparison of the char-

acteristics in the same domain and decided to do some changes in their wording to make them more 

explicit and to clearly raise the particularities of each level. 

The key difference between the levels of procedures without connections and procedures with con-

nections is that, in the lower level, students do not need to be aware of the mathematical relation-

ships implicit in the problem to solve it correctly but, in the higher level, students need to use con-

sciously such relationships to solve correctly the problem. Table 4 shows the result of the compari-

son between those levels, where we have italicised the new characteristics (see Table 3) and the 

characteristics in Smith and Stein (1998) that we re-worded. Characteristic 3.4 was split because it 

included parts corresponding to two domains. The new wording of the characteristics of the levels 

has highlighted this key difference and now the border between those levels is clear. 

If we repeat now the analysis of the problem in Figure 1, question 1a fits new characteristics 2.1, 

2.3 and 2.4, because it focus students’ attention to draw the diagonals from a vertex of each polygon 

and count them, so it can be easily solved without being aware of the relationship between the num-

ber of sides and diagonals from a vertex. 

Levels of cognitive demand 

Domains Procedures without connections Procedures with connections 

Procedure of 

solution 

2.1. Are algorithmic. The procedure to 

be used either is specifically called 

for or is evident from the context. It is 

a simple procedure that students can 

follow without the need to connect to 

underlying concepts and ideas. 

3.2. Are algorithmic. They suggest ex-

plicitly or implicitly pathways to fol-

low, that are general procedures that 

students can follow only if they have 

established a close connection to un-

derlying concepts and ideas. 



Objective 2.4. Focus students’ attention on pro-

ducing correct answers. Students can 

solve them correctly without the need 

to understand underlying concepts 

and ideas. 

3.1. Focus students’ attention on the use 

of procedures for the purpose of de-

veloping deeper levels of under-

standing of underlying concepts and 

ideas. 

Cognitive 

effort 

2.2. Require limited cognitive effort for 

successful completion. Little ambigu-

ity exists about what needs to be 

done and how to do it. 

3.4a. Require some degree of cognitive 

effort. Although general procedures 

may be followed, they cannot be fol-

lowed mindlessly. 

Implicit 

contents 

2.3. There may be implicit connection 

between the algorithms used and un-

derlying concepts or ideas. However, 

students do not need to be aware of it 

to solve the problem correctly. 

3.4b. Students need to engage with con-

cepts and ideas that underlie the 

procedures to complete the problem 

successfully and that develop under-

standing. 

Explanations 2.5. Require explanations that focus 

solely on describing the procedure 

that was used. 

3.5. Require explanations that focus on 

the underlying relationships by using 

specific examples. 

Representa-

tions 

2.6. One or more representations may 

be used (arithmetical, geometrical, 

visual diagrams, manipulatives, etc.). 

When several representations are 

used, students use them independent-

ly, i.e., without establishing connec-

tions neither between them nor with 

the underlying concepts and ideas. 

3.3. Usually are represented in multiple 

ways, (arithmetical, geometrical, 

visual diagrams, manipulatives, etc.). 

To solve correctly the problem, stu-

dents have to establish connections 

between different representations by 

using underlying concepts and ideas, 

which help them develop meaning. 

Table 4: Comparison between the characteristics of problems in two levels of cognitive demand 

Question 1a also fits new characteristics 2.2 (since there is no ambiguity about how to solve it) and 

2.6 (students will use geometrical and arithmetical representations but without needing to connect 

them), but it does not fit characteristic 2.5, since this question does not ask for an explanation (so, 

this analysis is also useful to uncover flaws in the statements of problems). On the other hand, ques-

tion 1a does not fit new characteristics 3.1, 3.2, 3.3, 3.4a, 3.4b and 3.5. So, now it is clear that ques-

tion 1a requires a cognitive demand in the level of algorithms without connections, which agrees 

with our experimental analysis of real students’ answers. 

Particularizing the new cognitive demand model to specific topics 

As mentioned above, the Cognitive Demand model was generated after analysing problems that, in 

most cases, were related to school arithmetic or algebra. When we tried to use it to analyze prob-

lems in other areas of mathematics (plane geometry, geometric pattern problems and visualization), 

we found that the wording of quite characteristics of the levels were too generic and they did not 

help us to give meaning to the levels specific to those contexts. This forced us to re-word those 

characteristics of the levels to mention specific features of a given topic. We present here the par-

ticularization we have made to the context of geometric pattern problems. 



Geometric pattern problems have proved to be a very fruitful way to introduce basic algebra to stu-

dents (Amit & Neria, 2008; Rivera, 2013). A typical geometric pattern problem presents (Figure 2) 

a graphical representation of the first terms of a sequence of whole numbers, and asks students to 

calculate the value of certain terms of the sequence, to verbalize a general procedure to calculate the 

value of any given term, and to write an algebraic expression to calculate the value of any term. 

You can see below a shape made with one dot, another shape made with three dots, and so on. 

 

1. How many dots has the shape in the 4th position? 

2. How many dots has the shape in the 6th position? 

3. How many dots has the shape in the 20th position? How do you know it? 

4. Is there some rule that could allow us calculate the number of dots of any given shape, for in-

stance the one in the 100th position? Justify your answer. 

5. Is there some rule that could allow us calculate the number of dots of the shape in the nth po-

sition? Justify your answer. 

Figure 2: A typical statement of a geometric pattern problem 

We are interested in analysing the relationships among the geometric patterns and the cognitive de-

mand required by different kinds of students’ answers. When we first used the definitions of the 

levels of cognitive demand (Tables 1 and 4) to classify answers to geometric pattern problems, we 

found that some characteristics were meaningless in this context, so we made a complete particular-

ization of the characteristics of the levels to describe the answers to this specific type of problems. 

Table 5 presents, as an example, the characteristics of the level of procedures without connections 

for the context of geometric pattern problems. It may be noted that most characteristics include ref-

erence to peculiar and unique aspects of those problems. 

Procedures without connections (question 2) 

Procedure of  

solution 

• Are algorithmic. The procedure consists in drawing a few terms by following 

the pattern of the terms in the statement, and counting the items. It can be fol-

lowed without the need to connect to the arithmetic structure of the sequence. 

Objective • Focus students’ attention on producing a correct answer, the number of items 

in an immediate or near term, but not on developing understanding of the struc-

ture of the sequence. 

Cognitive effort • Solving it correctly requires a limited cognitive effort. Little ambiguity exists 

about what has to be done and how to do it, because the statement clearly 

shows how to continue the sequence. 

Implicit contents • There is implicit connection between the underlying structure of the sequence 

and the procedure used. However, students do not need to be aware of it and 

they may answer the question by drawing terms and counting their items. 

Explanations • Require explanations that focus only on describing the procedure used. It is 

not necessary to identify the relationship between the answer and the term. 

Representations • A geometric representation is used to get the number of items and an arithme-



tic one to write the result. Students use the representations without establishing 

connections neither between them nor with the structure of the sequence. 

Table 5: Particularization of the Cognitive Demand model to the geometric pattern problems 

This description of the levels of cognitive demand has proved to be very useful to analyze this kind 

of problems and students’ answers to them. 

Conclusions 

We have presented a case of modification of a theoretical model to adapt it to the specific require-

ments of the analysis we had to do of our data. The Cognitive Demand model was a pertinent theo-

retical framework for our research project, with the potential to ground a deep analysis of our data, 

although the practice showed that the initial definition of this model, as formulated by its authors, 

did not fit well the requirements of our analysis. We have shown some difficulties that arose when 

we tried to apply the initial model. The way to overcome these difficulties was to analyze the theo-

retical model, to identify and understand the origin of and the reason for the difficulties, and to 

make adequate changes in the definition of the levels of cognitive demand to make it more accurate 

and useful. Finally, we had also to particularize the new definition of the levels to the specific con-

text of geometric pattern problems. This general way of proceed may be applied, perhaps after an 

adequate adaptation, to modify other theoretical models not fitting adequately researchers’ needs. 
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Rationale  

The study of mathematics teacher education and professional development has been a central focus 

of research during the last decades. Various research activities have focused on this topic. Within 

TWG 18, we focus on mathematics teacher education (pre-service and in-service), professional 

development and teachers’ professional growth, teachers' professional development practices, 

collaboration and communities of practice, models and programmes of professional development 

(contents, methods and impacts) and the professional development of teacher educators and academic 

researchers. TWG 18 offers a communicative, collegial and critical forum for the discussion of these 

and other related issues, which allows diverse perspectives and theoretical approaches and which 

contributes to the development of our knowledge and understanding as researchers, educators and 

practitioners. 

Participants 

52 papers were originally submitted to TWG18. 22 of them were re-directed to other TWGs. Thus, 

30 papers underwent a peer review process in TWG18: during this process, all papers were revised 

by authors, according to reviewers’ remarks. 29 papers were accepted as paper presentations, one was 

re-submitted for a poster presentation. One of the accepted papers was withdrawn. Finally, 28 papers 

were presented during the TWG sessions. 

Two posters were originally submitted and underwent a peer review process in TWG18: both authors 

revised their posters, according to the reviewers’ remarks; both posters were accepted. Together with 

the re-submitted poster (see above), finally, 3 posters were presented during the conference poster 

session. 

Organisation 

TWG sessions comprised both plenary and sub-group working phases. During the plenary phases, 

two (or three) papers were presented for a maximum of five minutes each, in which the authors 

provided their paper’s central message(s) and challenging questions for discussion. These plenaries 

were followed by parallel sub-groups, which were each managed by one of the presenting authors. 



Participants were free to choose and join one sub-group, where they discussed the paper for 20-30 

minutes. Afterwards, the TWG’s participants met in plenary to hear reports of each sub-groups’ 

central topics and to summarise emerging issues.  

Topics 

The presentations were categorised into four main topics:  

• Noticing Students’ Work 

• Teacher Instructional Practice 

• Impact of Professional Development 

• Pre-Service Teachers.  

Open questions and emerging issues 

This section provides several questions and issues, which emerged during the sessions of TWG18: 

Noticing Students’ Work: 

• Open questions: 

o How do we guide pre-service student teachers to notice particular things such as 

children’s learning? 

o How do the different global country contexts and the constraints of each system 

locally, make a difference when you apply a learning trajectory? 

o Is there a connection between different teachers’ views, what they see and their beliefs, 

based on noticing?  

 

• Emerging issues: 

o Use of the language of the teacher educators in talking about errors e.g., concept 

image. 

o Different points of views about errors in different teacher education programmes and 

how we use/ understand errors in our teacher education programmes. Also differences 

in practices of ‘noticing’. 

o Importance of context of the countries and coming to understand these to understand 

the organisation of the different teacher education programmes. 

Teacher Instructional Practice: 

• Open questions: 

o How to motivate teachers to document more of their work? 

o How do we change teachers feeling judged when getting feedback? 

o How do we understand the different notions of inquiry? What are the effective 

strategies to implement this approach in mathematics lessons? 

o How do we get to the mathematics? What mathematical knowledge do teachers need 

for inquiry approaches in mathematics lessons? 

o When we do our research, we use different tools such as philosophical perspectives 

and analytical frameworks. Is it the different tools that lead to different results? Is it 

the analytical framework that produces the results? What do we learn as teacher 

educators? Is that dependent on the frameworks used? Does working with multiple 

perspectives help us? 



 

• Emerging issues: 

o Ethical and practical issues of using children to make interventions in the professional 

development of teachers e.g. use of video. 

o There might need to be different kinds of innovation dependent on the teachers. 

o Publishing negative cases as well as positive ones. 

 

Impact of Professional Development: 

• Open questions: 

o How could we ask questions to measure impact (e.g. changing of beliefs)? Are there 

other ways to what we do now? 

o What impact do ‘we’ want to sustain? Static image of change or dynamic change of 

teachers? 

o In discussing professional development, how do you track development/ learning, 

through the discourse, through anecdotes and, or? 

 

• Emerging issues: 

o Comparing behaviour of teachers in lessons and in PD raises lots of ideas to consider, 

such as the perceived gap between what teachers do in classrooms and how they 

articulate their practice in PD.  

o The challenge is how to sustain the impact of professional development beyond its 

delivery. 

o There are differences in language and discourses between teachers, teacher educators 

and politicians. There is the need to define what is a good argument in the different 

contexts. 

o Describing frameworks when they are not familiar. 

 

Pre-Service Teachers: 

• Open questions: 

o Of the language use, such as theory, used in professional discussions at the university, 

what do pre-service teachers learn? Are they just naming names rather than gaining a 

deeper understanding of pedagogical concepts? 

o Can we measure the process of pre-service teachers’ development and conclude 

something from it? Do we want to measure these kinds of dimensions? 

o What does it take for one to become explorative both in learning and in teaching? 

 

• Emerging issues: 

o Using videos and not having access to videos in the language of the teachers e.g. any 

non-English language. Resource implication for creating a local bank of videos. 

o The relationship between the mathematics that a teacher has to teach and the 

mathematics learned by pre-service teachers in education courses offered by the 

teacher educator focused on conceptual development. 



o Finding ways to disrupt previous experiences of teaching and learning mathematics 

that pre-service teachers bring with them.  

 

Moreover, some further general questions and issues concerning mathematics teacher education and 

professional development were discussed during the TWG sessions: 

• Open questions: 

o Can we observe the development of teachers in their pupils’ learning? 

o Does research in mathematics teacher education support the work in schools? Are we 

critical about our own practices? 

o How do we recruit participants for professional teacher development? How do we 

promote PD effectively? Use of social media? 

 

• Emerging issues: 

o Complexity of appropriation of frameworks, the language across cultures does not 

always transfer.  

o Writing scientific and professional journal papers with teachers that address teachers’ 

communities. 

o There is work to be done to create dynamical relationships between theories. 

o In researching with teachers, we attend to different things, such as the teacher might 

be focusing on the learning of the children and the teacher educator the development 

of the teacher, and we need to find ways to understand each other. 
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In 2013 the German Centre for Mathematics Teachers Education (DZLM) developed a professional 

development course called “stochastics compact”. This course was held three times during the 

period from 2013 to 2015 and reached more than 270 teachers. One of their goals was to increase 

the upper secondary teachers’ competence of teaching probability and statistics in combination 

with the use of graphic calculators (GC). A part of the research was to examine the stages of 

concern (SoC) linked to the implementation. Questionnaires were used as a survey method. In this 

paper, we present two selected and preliminary findings. At first we point out the development of 

SoC from 2013 to 2015. After that we will present the changes of SoC while participating in the 

course of 2015.    

Keywords: Professional development, stages of concern, probability and statistic, graphic 
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Context of the professional development course 

Our research is related to a four-day long (spread over several months) professional development 

course on teaching probability and statistics at upper secondary schools (grade 10-12) in the German 

federal state of North Rhine-Westphalia (NRW) from 2013 to 2015. About 270 teachers participated 

in this course. Due to new national standards (KMK, 2012) and subsequent new state curricula in 

NRW, probability and statistics became an obligatory part of the curriculum and the final 

examination (Abitur). Moreover, the use of graphic calculators became obligatory in the classroom 

and in the examinations. This was a challenge for many teachers and caused a high need for 

professional development. The German Center for Mathematics Teacher Education (DZLM) 

recognized this need and gathered a team of experienced school teachers and researchers to 

originate a professional development course called “stochastics compact” (Biehler, 2016). The 

design of this course was based on results from stochastics education (Biehler, Ben-Zvi, Bakker, & 

Makar, 2013; Burrill & Biehler, 2011; Oesterhaus & Biehler, 2014), their interpretation of the 

standards and the design principles of the DZLM (Barzel & Selter, 2015). The first implementation 

was done in 2013 and was followed by the second in 2014 and a third one in 2015. Accompanying 

research addressed the change of competences and beliefs of the participating teachers as well as 

teachers’ feedback to the courses they attended. Moreover we were interested in the teachers’ stages 

of concern related to the innovation. The main purpose of this article is to present results of the 

stages of concern questionnaire (SoC), which may be a relevant instrument for doing research on 

professional development courses and on teachers’ attitudes to innovations.  

Theoretical framework and related research on the Stages of Concern 

The research of interests and concerns of teachers described in this article is based on the Concern-

Based Adoption Model (CBAM). This model was developed by the Research and Development 
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Center for Teacher Education at the University of Texas in the early 1970s (Hall, Wallace, & 

Dosset, 1973). This model is partly based on Fuller’s work on concerns of teachers (Fuller, 1969). 

One of the three diagnostic dimensions of CBAM is the Stages of Concern Model.1 It is a 

framework which helps to understand the personal aspects of adopting an innovation and the 

connected change progress. The researchers of the University of Texas identified seven stages (see 

Table 1) which a person runs through while implementing an innovation. There are several 

techniques to monitor the SoC such as one-legged interviews, open-end concerns statements or the 

SoC questionnaires. For several reasons the most rigorous method for measuring SoC is the 

questionnaire (Hall & Hord, 2006). The team around Hall developed a SoC specific questionnaire 

with 35 questions, 5 per stage (Hall, George, & Rutherford, 1977). As Hall points out, changing 

anything besides the word “innovation”2 will risk the reliability and validity of the items (see 

Schaafsma and Athanasou (1994) as a negative example).  

Stages of Concern Label Typical items 

S
el

f 

0 Unconcerned I am more concerned about another innovation. 

I Informational I would like to know how this innovation is better than what 

we have now. 

II Personal I would like to know the effect of the innovation on my 

professional status. 

Task 
III Management I am concerned about time spent working with non-academic 

problems related to this innovation. 

Im
p
ac

t 

IV Consequence I am concerned about how the innovation affects students. 

V Collaboration I would like to develop working relationships with both our 

faculty and outside faculty using this innovation. 

VI Refocusing I now know of some other approaches that might work better. 

Table 1: Typical items of the different Stages of Concern, based on George et al. (2008) 

The course “stochastics compact” took place in Germany, so there was a need for a German 

translation of the English SoC Questionnaire. We used the translation that was used by Pant, Vock, 

Pöhlmann, and Köller (2008a)3. There are three international studies and three German studies 

which we compared our data to and whose results we will shortly summarize. 

One of the first studies of SoC was executed by Hall et al. (1977). Hall’s team identified several 

profiles and their characteristic graphical shape. These profiles were the basis for other SoC 

                                                 

1 The development process of the SoC-Model is in greater detail described in George, Hall, Stiegelbauer, and Litke 

(2008). 

2 The innovation can be replaced by the name of the innovation or other phrases which respondents are more familiar 

with. 

3 We are grateful to Doreen Prasse for providing a copy of the German version of the questionnaire. 
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research like Liu and Huang (2005), who examined American teachers and their problems related to 

the integration of technology. They found out that the greatest concerns depend on the teachers’ 

experience. Inexperienced teachers tend to have personal and informational concerns, while 

experienced teachers were mainly concerned about the consequences for their students, and 

renewing4 educators placed their focus on collaboration and refocusing concerns. A second finding 

was that the strongest concerns were in the early stages of personal, informational and refocusing 

concerns. The three SoC profiles that were re-identified by  Liu and Huang were first constructed by  

Hall et al. (1977). A second survey regarding concerns of 659 American pre K-12 teachers about the 

use of technology like computers in school was conducted by Casey and Rakes (2002). Peaks in the 

SoC profiles were found in informational, personal and collaboration concerns. The interpretation 

was that school teachers are still uncomfortable and in an initial stage of understanding the benefits 

of technology in school. Pant, Vock, Pöhlmann, and Köller (2008b) came to the conclusion that 

most German elementary and middle school teachers of their study have high self and impact 

concerns regarding the recently implemented national standards, thus they show a typical M-shaped 

profile (see Figure 1) of a cooperator. This profile was also found by other researchers like Bitan-

Friedlander, Dreyfus, and Milgrom (2004) or Pöhlmann, Pant, Frenzel, Roppelt, and Köller (2014). 

Bitan-Friedlander et al. were able to identify five types of primary school science teachers which 

were confronted with the implementation of an innovation. Another result was that most of the 

participants were able to “adopt”5 the innovation and developed a personal perception. Pöhlmann et 

al. (2014) chose a control group design to measure the efficiency of a new developed intervention to 

help teachers who are dealing with the new German national standards for the first time. The SoC 

Questionnaire shows that control and test groups were on a comparable level at the beginning and 

the participants show a high level of self-concerns. Impact concerns were secondary in both groups. 

After a year of training an increase in impact concerns as opposed to self-concerns was observed. 

This can be interpreted as consequences for teachers, for pupils, and for their mutual cooperation, 

which resulted in different foci. The control group also showed a different SoC profile, similar to 

one of an earlier test. There were no peaks recognizable, which might be due to a feeling of 

exaggerated demands.  

Research question 

We will address the following research questions in this paper: 

1. How does the SoC differ when a PD course is backed up by an official obligatory innovation 

and not only by an innovation suggested by the PD course designers? 

2. How are the SoC towards probability and statistics (including the use of the GC) change 

distributed before and after a professional development course on the topic?  

3. Does a professional development course change the stages of concerns of the participants? 

                                                 

4 Liu and Huang defined renewing teachers as persons who understand the innovation and are adopting or thinking about 

different kinds of use of the innovation based on their experience.  

5 For primary school teachers the meaning of adoption needed to be redefined, because they did not challenge the 

theoretical knowledge or ground or mentioned a personal opinion about the implementation of the innovation.  
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Those questions are just one facet of a wider research project. We used our access to the participants 

not only to determine their SoC levels but also to identify other important aspects which we plan to 

associate with the SoC-profiles in our future research.  

From a methodological point of view we were interested how well the SoC scales can be used to 

identify important characteristics and sub-groups of teachers, which are important to take into 

account, when designing and evaluating PD courses. 

Design of the intervention 

There was a fundamental difference between the 2013 course and the 2014 and 2015 course. The 

2013 course was run before the new curricula became obligatory and the GC was prescribed. The 

2013 focused in day 3 and 4 on an approach to the teaching of hypothesis testing that was 

innovative for most German teachers, focusing on p-value hypothesis testing as a start, using 

authentic examples from real statistical studies instead of artificial problems, and discussing 

possible misinterpretations of hypothesis testing that are well known from studies in school and in 

statistical practice. We called our approach Best@Kontext (Oesterhaus & Biehler, 2014). The 2014 

and 2015 courses (after the new state curricula) build on this approach but included more 

systematically the use of GC for interactive visualizations, simulations and calculations not only on 

day 3 and 4, where hypothesis testing remained the focus. Day 1 and day 2 was completely revised 

and restructured using simulation and the GC technology. 

The SoC in 2013 was related to day 3 and 4 of our course and “our own” innovation Best@Kontext, 

the SoC in 2014/2015 was related to the whole course and to the state innovation “Teaching 

Probability and statistics with graphic calculators”. We communicated to the teachers that our 

course is compatible with the new state innovations, but that our specific foci are based on research 

in probability and statistics education related to student difficulties, valuable teaching approaches 

but also on normative aspects concerning the fundamental ideas in probability and statistics that 

should structure the course. 

Data collection and data analysis 

In our study we collected 38 questionnaires in 2013 (post test), 55 in 2014 (post test) and 74 in 2015 

(pre and post test) which were accepted for evaluation. The others had incomplete SoC 

Questionnaires or were not traceable in the pre and post test design of 2015.  

We used the manual of Hall et al. (1977) as a guideline for the program SPSS 23 for analyzing our 

data. Therefore our statistical analysis is comparable to the above mentioned studies.  For the 

determination of SoC subgroups, we used a cluster analysis of the individual subscale means. The 

ward method was chosen with the squared Euclidean distance as measure in every step of our 

analysis to divide the participants as recommended by Bortz and Schuster (2010). The clusters were 

created with the data of all four measurements so that we are able to analyze shifts in the 

distribution of participants into the identified clusters  

Results 

The reliability of the SoC subscales (see Table 2) can be compared to other studies like Pant et al. 

(2008b) or George et al. (2008).  
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Subscale 0 I II III IV V VI 

 Unconcerned Informational Personal Management Consequence Collaboration Refocusing 

Cronbach’s α 0.717 0.560 0.729 0.727 0.782 0.836 0,765 

Table 2: Cronbach’s α of the seven SoC subscales in our sample 

To answer research question 1, we constructed average SoC-profiles for the three years (including 

pre- and post test in 2015). Figure 1 shows that the subscale means of the 2013 questionnaire are 

considerably different to all other years. This observation is supported by t-test for every 

combination of subscales except for stage III of 2014 (p=.057) and 2015’s post test stage 0 (p=.176). 

The graph shape of  2013 belongs to an interested nonuser (George et al., 2008).  

The differences of stages I, II and IV in 2014 compared to the pre test 2015 and stage 0 of the  

post test 2015 are above the significance threshold of p=.05. In the comparison between the pre and 

post test of 2015 stages 0 and IV are the only stages without a significant difference (p>0.35). 

Therefore it is unsurprising that those three measurements’ graph shapes only deviate slightly and 

can be interpreted as cooperators (Bitan-Friedlander et al., 2004). Attendants of those three years 

have got a split attention focus in self (peak at stage I informational) and impact concerns (peak at 

stage IV collaboration) regarding the implementation of statistics and the GC at school and show an  

M-shaped profile.  

This very clear difference can be related to different kind of innovations (related to our project in 

2013 – state based innovations in 2014/2015). We have to be aware that below the  

average there is a lot of variability in the individual SoCs. We will discuss this 

below.

 

Figure 1: Subscale means divided by measurement 

With regard to research question 2 and 3 we do not see a substantial difference between 2014 and 

2015 (although one might have expected this because the teachers had been aware of the state 

innovations for one more year. On the level of the average profile we see a systematic difference, 

which however is not statistically significant. 

Related to research questions 2 and 3 we did a cluster analysis to identify different types of 

participants and how often they occur in the various points of measurement. We decided to put all 

data (n = 167) together for identifying clusters. This is useful, when the distribution into the clusters 

is to be compared for the different measurement points. At first six clusters were identified by our 
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cluster method and upon closer inspection of these groups, two times we found two clusters that 

were identical in their graph shape and were shifted by one scale point. So we decided to combine 

those two similar clusters into a bigger group. Finally, we worked with four clusters, which had 

been identified in a very similar way before in other studies (George et al., 2008; Pant et al., 2008b) 

These clusters can be labeled as unconcerned innovation user (n=4), typical nonusers (n=29), 

information seeking cooperator (n=59) and self-orientated cooperator (n=93) after their 

characteristic graph shapes (see Figure 2).  

 

Figure 2: Subscale means profile by cluster  

 

 

Figure 3: Distribution of persons of one measurement into clusters in percent.  

It is noteworthy that all four people belonging to the unconcerned innovation user cluster were 

found in 2013, see Figure 3. Also the majority of the typical nonuser group attended the course in 

2013. As mentioned before, the 2013 year differed from the other years. This impression continues 

for the distribution of persons into clusters. The differences to the others measurements are below 

the significance threshold (p<0.001). Participants in 2014 and 2015 are often assigned to one of the 

two cooperator clusters. The 2014 distribution shows an insignificant difference (p=0.444) to both 

tests from 2015.  The pre and post test from 2015 show a slight deviation of the cluster distribution 

(p=0.057). In 2015 there is a migration of 14 persons into different clusters. 71.42% of those (n=10) 

shift from the information seeking cooperator cluster to the higher self-orientated cooperator 
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cluster. Another person switched from typical nonuser to information seeking cooperator. Only 

three swapped to a “lower” cluster. 

Discussion and remarks 

According to the study we can distinguish two main groups in the 2014 and 2015 course, the 

information seeking cooperator and the self-orientated cooperator. One of the “effects” of the 

course is the shift from the first to the second. We have to study in more detail in which respect 

these two groups differ and what factors influence to which cluster teachers belong. The design of 

the course can take this into account by addressing specific course elements to the two different 

groups. As mentioned before, our further goal is to combine the SoC profiles with other parts of our 

study. Doing so will allow us to validate our results, gain new insights and recognize a correlation 

between to aspects. In 2016/2017 we are implementing a fourth course. We also intend to expand 

our study by adding questions to the level of use (Hall, Loucks, Rutherford, & Newlove, 1975), 

interviewing participants and conducting another surveys six months after the course’s end in order 

to measure the long term effects. 
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The aim of this research is to characterise how pre-service primary teachers notice students’ 

reasoning related to the fraction concept sub-constructs: part-whole, measure, quotient, ratio, 

operator and reasoning up and down. 82 pre-service teachers analysed primary school students’ 

answers to five fraction problems. Each student’s answer shows different characteristics of 

students’ reasoning in each sub-construct of the fraction concept. Five profiles of pre-service 

primary teachers have been identified according to how they used the mathematical elements to 

recognise students’ reasoning.  

Keywords: Fraction, students’ reasoning, noticing. 

Introduction and theoretical background 

The study reported here is part of a larger study focused on how pre-service primary school teachers 

notice characteristics of students’ proportional reasoning (Buforn, & Fernández, 2014). Several 

studies have indicated that the development of primary school students’ fraction concept is 

important in order to develop relational thinking and proportional reasoning (Empson, & Levi, 

2011; Lamon, 2007; Naik, & Subramaniam, 2008). However, the fraction concept is complex since 

it consists of multiple sub-constructs: part-whole, measure, quotient, ratio and operator (Behr, 

Harel, Post, & Lesh, 1992). In this paper, we are going to focus on how pre-service primary teachers 

notice students’ reasoning related to the fraction concept sub-constructs. We also include the sub-

construct reasoning up and down since it is an important component to develop proportional 

reasoning (Lamon, 2007; Pitta-Pantazi & Christou, 2011). 

The skill of noticing students’ mathematical reasoning 

Recent research has shown that being able to identify relevant aspects of teaching and learning 

situations and interpret them to take instructional decisions (Mason, 2002) is an important teaching 

skill (professional noticing). Focusing on the skill of noticing students’ mathematical thinking, 

Jacobs, Lamb and Philipp (2010) characterise this teaching competence as three interrelated skills: 

(1) attending to students’ strategies that implies identifying important mathematical details in 

students’ strategies; (2) interpreting students’ mathematical reasoning taking into account the 

mathematical details previously identified; and (3) deciding how to respond on the basis of students’ 

reasoning. 

Studies, in this line of research, have indicated that identifying the relevant mathematical elements 

of the problem plays an important role to recognise characteristics of students’ mathematical 

reasoning and also to take instructional decisions (Bartell, Webel, Bowen, & Dyson, 2013; Callejo, 

& Zapatera, 2016; Sánchez-Matamoros, Fernández, & Llinares, 2015). In the last years, researchers 



have focused on different mathematical domains such as the derivative concept (Sánchez-

Matamoros et al., 2015), classification of quadrilaterals (Llinares, Fernández, & Sánchez-

Matamoros, 2016), algebra (Magiera, van den Kieboom, & Moyer, 2013) and ratio and proportion 

(Son, 2013) showing that the development of the noticing skill is not easy for pre-service teachers 

during teacher education programs.  

Our study is embedded in this line of research and focuses on analysing how pre-service teachers 

interpret students’ reasoning related to the fraction concept and how they use their interpretation of 

students’ reasoning to propose new activities to help students progress in their reasoning. 

Sub-constructs of the fraction concept 

In our study, we consider the following sub-constructs of the fraction concept: 

 Part-whole: it is defined as a situation in which a continuous quantity or a set of discrete 

objects is partitioned into parts of equal size (Lamon, 2005). 

 Measure: it can be considered as a number which expresses the quantitative character of 

fractions, its size; or the measure assigned to some interval (Behr, Lesh, Post, & Silver, 

1983; Pitta-Pantazi & Christou, 2011). 

 Quotient: it can be seen as a result of a division situation (Pitta-Pantazi & Chrsitou, 2011) 

and interprets a rational number as an indicated quotient (it is exemplified by sharing 

contexts).  

 Operator: it is seen as a function applied to a number, an object or a set (Berh et al., 1992). 

 Reasoning up and down: it is a particular case of the part-whole sub-construct where the unit 

in a task is implicitly defined (Lamon, 2005) and students need to reason up from a rational 

number to the unit and then back down from the unit to another rational number. 

Participants and the task 

The participants in this study were 82 pre-service primary teachers (PTs) during their third year in 

an initial teacher education program at the University of Alicante (Spain). In previous years, pre-

service teachers had attended a subject focused on numerical sense (first year) and a subject focused 

on geometrical sense (second year). In the third year, they were attending a subject related to the 

teaching and learning of mathematics in primary school. One of the units of this subject was about 

teaching and learning of the fraction concept and proportional reasoning. The aim of this unit is 

focusing pre-service teachers’ attention on how primary school students learn the fraction concept 

including features of students’ understanding of the different sub-constructs. Data were collected 

after this unit. 

Pre-service teachers solved a professional task focused on interpreting three primary school 

students’ answers to five primary school problems related to the five sub-constructs of the fraction 

concept (part-whole, measure, quotient, operator, and reasoning up and down) (Table 1).  



 

Problems Characteristics 

1. How many spots are in 2/3 of the set?  

Explain your answer. 

Part-whole. Partitioning the set in 3 

equal groups and selecting 2. 

2. Indicate which number is X in the following number 

line. Explain your answer.  

Measure. Identifying a unit fraction 

(for instance 1/10) and iterating it to 

find X. 

3. Four people are going to share three identical 

pepperoni pizzas. How much pizza will each person get?  

Quotient. Result of a division situation 

in which it is required the division of 3 

pizzas between 4 people. 

4. The teacher asked Nicolas to make some photocopies. 

Nicholas made a mistake and pressed the button that 

reduce the size of each copy by ¾. By how much should 

Nicholas increase each of the reduced copies to reproduce 

the original size? 

Inverse operator. Inverse function has 

to be applied: ¾·x=1.  

5. The shaded portion of this picture represents 3+2/3. 

How much do the 4 small rectangles represent?           

 

Reasoning up and down. Reasoning 

that implies identifying the unit “3 

small rectangles” and then, 

representing a fraction. 

Table 1: Problems related to the five sub-constructs of the fraction concept considered in the task 

Each student’s answer shows different characteristics of students’ reasoning in each sub-construct 

of the fraction concept. In Figure 1, the three primary school students’ answers to the part-whole 

problem presented to pre-service teachers are given. To interpret students’ answers, pre-service 

teachers answered the following four questions (Table 2). 

Questions Aim 

a) What mathematical concepts must a primary school student know 

to solve this problem? Explain your answer. 

Identifying the learning 

objective of the primary 

school problem 

b) What are the characteristics of students’ mathematical reasoning 

involved in each student’s answer? Explain your answer. 

Recognising characteristics 

of students’ mathematical 

reasoning 

c) How would you change the problem to help students progress in 

their mathematical reasoning if they have had difficulties solving 

the problem? Explain your answer. 

Responding on the basis of 

students’ mathematical 

reasoning, supporting 

(question c) or extending 

(question d). 

d) How would you change the problem to help students progress in 

their mathematical reasoning if they have not had difficulties 

solving the problem? Explain your answer. 

Table 2: Questions of the task  



 

Figure 1: Primary students’ answers to the part-whole problem 

Analysis 

Data of this study are pre-service teachers’ answers to the first two questions (a and b) of the 

professional task (Table 2). Therefore, we focus on how pre-service teachers interpret students’ 

reasoning related to the fraction concept in this paper. The answers to each question were analysed 

individually by three researchers and agreements and disagreements were discussed. We observed 

how pre-service teachers identified the mathematical elements involved in each problem and how 

they used them to recognise characteristics of students’ mathematical reasoning. 

From this analysis, we have identified six different profiles of pre-service teachers considering how 

they used the mathematical elements of the problem to recognise students’ reasoning (Table 3).   

Results 

Results show that 41 out of 82 pre-service teachers had difficulties in recognizing characteristics of 

students’ reasoning (Profiles 0 and 1). However, 19 out of these 41 pre-service teachers identified 

the mathematical elements involved in each problem. This data suggests that recognising the 

important mathematical elements of the problem is not enough to recognise characteristics of 

students’ reasoning.  

 

 



 How pre-service teachers identified and used the mathematical elements of the 

problem to recognise students’ reasoning 

Number 

of PT’s 

Profile 0: They do not identify the mathematical elements and do not recognise 

characteristics of students’ reasoning in any task 
22 

Profile 1: They identify the mathematical elements related to all sub-constructs of 

fraction concept but do not recognise characteristics of students’ reasoning in any task 
19 

Profile 2: They identify the mathematical elements and recognise characteristics of 

students’ reasoning related to part-whole, measure, quotient, and operator  
8 

Profile 3a: They identify the mathematical elements related to all sub-constructs of 

fraction concept and recognise characteristics of students’ reasoning related to part-

whole, measure, quotient, operator and reasoning up and down (but not related to the 

inverse operator) 

25 

Profile 3b: They identify the mathematical elements related to all sub-constructs of 

fraction concept and recognise characteristics of students’ reasoning related to part-

whole, measure, quotient, operator and inverse operator (but not related to reasoning 

up and down) 

5 

Profile 4: They identify the mathematical elements related to all sub-constructs of 

fraction concept and recognise characteristics of students’ reasoning related to all sub-

constructs of the fraction concept 

3 

Table 3: Profiles of pre-service teachers identified 

Pre-service teachers of Profile 0 did not identify the mathematical elements and used general 

expressions such as “fractions and operations with fractions”. Pre-service teachers of Profile 1 were 

more specific, identifying the mathematical elements implied in all the problems. For example, pre-

service teachers of Profile 1 indicated: “In problem 1, the mathematical element involved is part-

whole. In problem 2, the idea of measure or number line. In problem 3, quotient. In problem 4, the 

idea of operator. In problem 5, part-whole and unit”. However, pre-service teachers in these both 

profiles did not recognise characteristics of students’ reasoning. These pre-service teachers provided 

general comments based on the correctness of the answer: “answer 1 is correct; answer 2 is correct; 

answer 3 is not correct, the student doesn’t understand the concept”; gave a description of the 

student answer “the student 1 divides in 3 groups and choices 2 groups, student 2 makes a 

multiplication and then a division, and student 3 doesn’t understand the problem”; or interpreted 

incorrectly students’ answers “the three students solved the problem correctly but using different 

strategies”. 

Pre-service teachers of profiles 2, 3a, and 3b identified the mathematical elements involved in each 

problem and recognised evidence of students’ reasoning in some sub-constructs. Particularly, pre-

service teachers of Profile 2 recognised characteristics of students’ reasoning related to the sub-

constructs part-whole, measure, quotient and operator. For instance, the next excerpt is a pre-service 

teacher’s answer to the part-whole problem (problem 1): “Answer 1: the student shows the 

understanding of the part-whole concept because identifies the whole and re-group the spots in 

equal groups (dividing the whole in equal parts). Answer 2: the student identifies the total of spots 

(whole) and selects 2/3. He interprets the fraction as an operator. Answer 3: He doesn’t identify the 

whole and doesn’t re-group in equal groups”; to the measure problem (problem 2): “Answer 1: he 



solves the problem correctly because he identifies the unit fraction (1/5) in the number line. Answer 

2: he solves the problem iterating 2/5 and then uses the idea of operator to obtain ½ of the interval. 

Answer 3: he doesn’t identify the unit fraction and doesn’t take into account what means 2/5 in the 

number line”; and to the quotient problem (problem 3): “In answers 1 and 2, the student 

understands the fraction as a quotient because he divides the pizzas in equal parts. Answer 3: he 

doesn’t understand the meaning of quotient because he divides the pizzas in different parts”.  

Pre-service teachers of Profile 3a identified the mathematical elements and recognised 

characteristics of students’ reasoning related to the sub-constructs part-whole, measure, quotient, 

operator and reasoning up and down (but not related to the inverse operator). The difference with 

pre-service teachers of Profile 2 is that pre-service teachers of Profile 3a recognised characteristics 

of students’ reasoning related to the reasoning up and down sub-construct: “In answer 1, the student 

doesn’t identify the unit and the unit fraction. In answer 2, the student identifies the unit but doesn’t 

identify the fraction that represents 4 small rectangles. In answer 3, the student identifies the unit 

and identifies correctly which fraction represents 4 small rectangles”; and pre-service teachers of 

Profile 3b recognised characteristics of students’ reasoning related to the inverse operator instead of 

the reasoning up and down sub-construct “A1: he uses an additive wrong strategy. A2: he doesn’t 

know how to make the reduction and the enlargement. A3: he knows how to obtain the original 

paper multiplying by the inverse fraction of 3/4”. 

Finally, only 3 pre-service teachers (Profile 4) identified the mathematical elements and recognised 

characteristics of students’ reasoning in all the sub-constructs of the fraction concept. 

The different sub-constructs of the fraction concept were used by pre-service teachers to recognise 

characteristics of students’ reasoning in different ways. The way in which pre-service teachers used 

the sub-constructs operator (and its inverse) and the reasoning up-and-down promoted the 

emergence of different pre-service teachers’ profiles. 

Conclusions 

The five pre-service teachers’ profiles show characteristics of the way in which pre-service teachers 

notice students’ fractional reasoning. The difference between profile 0 and profile 1 is that pre-

service teachers start to identify the mathematical elements of the problems but continue giving 

general comments based on the correctness of answers. The difference between profile 1 and 2 is 

that pre-service teachers of profile 2 are able to recognise characteristics of students’ reasoning 

related to part-whole, measure, quotient, and operator sub-constructs. However, these pre-service 

teachers were not able to recognise characteristic of students’ reasoning in problems where the unit 

was implicit (inverse operator and reasoning up and down). The difference between profile 2 and 

profile 4 is the fact that pre-service teachers of profile 4 recognise characteristics of students’ 

reasoning in all the sub-constructs. However, there are two possible profiles between the profile 2 

and profile 4 characterised by: recognising characteristics of students’ reasoning related to the 

inverse operator (but not related to the reasoning up and down, Profile 3a), and recognising 

characteristics related to the reasoning up and down sub-construct (but not related to the inverse 

operator, Profile 3b).  

These results provide information about different pre-service teachers’ stages in the development of 

the skill of interpreting students’ mathematical reasoning related to some sub-constructs of the 



fraction concept. This information provides data to conjecture a pre-service primary teacher’s 

hypothetical learning trajectory of noticing students’ mathematical reasoning related to those sub-

constructs (Figure 2). This hypothetical learning trajectory could inform us about the pre-service 

teachers’ learning process of the skill of interpreting students’ mathematical reasoning in the 

particular mathematical domain of the fraction concept. 

 

Figure 2: A pre-service primary teacher’s hypothetical learning trajectory of noticing students’ 

mathematical reasoning related to the fraction concept 
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Lesson Study and models of knowledge for teaching 

Lesson study is a collaborative model of professional development which supports teacher learning 

(Huang & Shimizu (Eds.), 2016). Originating in Japan, this model has grown in international 

popularity over the past two decades, particularly in the field of mathematics education, and much 

research has detailed evidence of mathematics teacher learning through lesson study (e.g. Lewis et 

al., 2009; Murata et al., 2012; Ni Shuilleabhain, 2016). 

Lesson study provides teachers with opportunity to contextualize representations of their classroom 

activities, while also making their implicit knowledge and practices explicit through their 

conversations within the group (Fujii, 2016). Each lesson study cycle consists of a number of steps 

where teachers begin by studying the curriculum and deciding on a research theme, planning a 

research lesson according to that theme, conducting and observing the live research lesson, and 

reflecting on student learning within the lesson (see Fig. 1) (Lewis 2016; Lewis et al., 2009) 

With increased international educational research on lesson study, there have been calls to deepen the 

knowledge base of the development of teacher knowledge within this model in order to provide a 

solid theoretical foundation for its use in teacher education (Clivaz, 2015; Miyakawa & Winsløw, 

2009). In this paper, we hope to contribute to the literature on professional development for 

mathematics teachers by analysing the mathematical knowledge utilized by teachers in their 

participation in lesson study, utilizing our proposed theoretical framework.  

The two authors of this paper, in their analysis of teacher knowledge and learning in lesson study, 

seek to deliberately build on previous existing frameworks of teacher knowledge: Mathematical 

Knowledge for Teaching (Ball et al., 2008) and the Levels of Teacher Activity (Margolinas et al., 

2005). Through analysis utilizing a combination of these frameworks (Prediger et al., 2008), we will 

detail features of the mathematical knowledge for teaching utilized by teachers in their participation 

in lesson study and will also track the movement of this knowledge.  



MKT/ levels in LS: Towards a coordinated model  

In this paper, we propose a framework which was developed  based on data generated in two case 

study sites - with eight participating primary (grade 3-4) teachers in Switzerland and five lower 

secondary (middle school, grade 7) teachers in the Republic of Ireland. Analysis began by utilizing 

the Mathematical Knowledge for Teaching framework (Ball et al. 2008) to investigate the 

contributions by teachers in a lesson study cycle. However, we found that this model did not fully 

incorporate all the elements of teacher knowledge included in the lesson study cycle, particularly in 

capturing the educational values and conceptions of teaching and delineating between the layers of 

planning sequenced content of instruction, while also attending to students’ thinking during the 

lesson. At this point in the analysis, Margolinas et al.’s (2005) Levels of Teacher Activity was 

identified as a framework which could encapsulate these elements of teachers’ knowledge. Building 

on qualitative data generated through audio/video recordings of teacher conversations during lesson 

study meetings, teacher notes from lesson study meetings, researcher field notes, and selected samples 

of student work from research lessons, we present an extended model of the categorization of 

knowledge required for the teaching of mathematics. Our first example of analysis presented is from 

the Swiss case study and future work will present further analysis from the Irish case study data. In 

analysing and comparing these sets of local data, we attempt to demonstrate a more global sense of 

this proposed framework of mathematics teacher knowledge in lesson study. 

Mathematical Knowledge for Teaching 

In their ground-breaking work in 2008, Ball, Thames and Phelps addressed the concepts of content 

and pedagogical content knowledge in their model of Mathematical Knowledge for Teaching (MKT 

- see upper part of Figure 1). In this paper, they identified domains of Subject Matter Knowledge 

(SMK) and Pedagogical Content Knowledge (PCK) used in teaching, which further defined the 

knowledge and skills required of mathematics teachers in relation to student learning and to 

mathematics content.  

Research on these different categories of MKT has demonstrated direct links between teacher 

knowledge and high-level teaching practices (Clivaz, 2014; Hill, Ball, & Schilling, 2008) and with 

subsequent student learning outcomes (Hill, 2010). 

Incorporating this model of MKT with teacher learning in lesson study, research has shown that 

Knowledge of Content and Students and Knowledge of Content and Teaching (features of PCK as 

defined by Ball et al. (2008)) are important elements of teacher knowledge utilized in lesson study 

cycles (Leavy, 2015; Ni Shuilleabhain, 2015b; Tepylo & Moss, 2011). However, considering the 

multitude of teacher knowledge and practices incorporated within each lesson study cycle in planning, 

conducting, and reflecting on a mathematics lesson, this model may not capture all the decisions, 

actions, practices, and skills required of mathematics teachers participating in lesson study. 

Levels of teacher activity and MKT 

To describe teacher activity, both in and outside of the classroom, Margolinas developed a model of 

the mathematics teacher’s milieu based on Brousseau (1997). This model was designed to take into 

account the complexity of teachers’ actions and to capture the broad range of activities contained in 

teaching and learning (Margolinas et al., 2005, p. 207). 



+3 Values and conceptions about learning and teaching 

+2 The global didactic project 

+1 The local didactic project 

  0 Didactic action 

- 1 Observation of pupils’ activity 

Table 1: Levels of a teacher’s activity (Margolinas et al., 2005, p. 207) 

At every level of environment (or milieu) the teacher must consider all that is occurring at the current 

level as well as those levels that are directly above and below. These multidimensional tensions relate 

to a non-linear and non-hierarchical interpretation of teacher’s work (Margolinas et al., 2005, p. 208). 

In addition to commonplace professional opportunities where teachers speak about their beliefs and 

experiences on general educational concepts or about teaching and learning mathematics (level +3), 

about teaching and learning of a particular mathematical subject (level +2), or about the lesson they 

are preparing (level +1), during the phases of planning and reflection in LS teachers also have 

opportunity to discuss their classroom activities (level 0) or observations of student activity from a 

lesson (level -1). 

This activity model was used by Clivaz (2014) and aligned with the MKT model in order to capture 

the movement of didactical situations, beyond the possible static characterisation which may be 

interpreted in the MKT model (Ball et al., 2008, p. 403). The combination of these frameworks 

allowed teacher knowledge to not only be analysed in terms of mathematical knowledge for teaching, 

but also mathematical knowledge in teaching (Rowland & Ruthven, 2011). Similarly, Ni 

Shuilleabhain (2015a) used the MKT model to analyse teacher learning in lesson study, but combined 

this with the idea of the ‘student lens’ (as suggested by Fernandez, Cannon, & Chokshi, 2003, p. 180), 

in proposing an additional layer of the model put forward by Ball et al. (2008). This concept of a 

‘student lens’ incorporated the PCK a teacher utilises in seeing mathematics “through the eyes of 

their students” (Fernandez et al., 2003, p. 179). 

When aligned with Margolinas et al.’s (2005) model, this layer of teacher knowledge relates partly to 

the -1 ‘Observation of pupils’ activity’ which can be anticipated and interpreted, but extends this 

observation to thinking of the mathematical content from the students’ perspective. In our proposed 

framework, we therefore see this view of the mathematics through the eyes of the student as a layer 

below the observation of a students’ work and include a new level of -2 level relevant to teacher 

knowledge titled the “student lens” (see Figure 1). 

Proposed theoretical framework 

Explicitly combining these two approaches to analyse the knowledge utilized by mathematics 

teachers during lesson study, the authors here present a new theoretical framework (see Figure 1). 

This framework attempts to capture the knowledge required of mathematics teachers, in the broad 

and complex range of teaching and learning activities, and represents teacher knowledge and 

activities incorporated during each phase of a lesson study cycle (see Lewis & Hurd, 2006, p. 4). 



 

Figure 1: MKT and levels of teacher activity at lesson study phases 

We first utilize the model to categorize the knowledge (MKT and levels of activity) appearing during 

the lesson study cycle. The knowledge about a particular mathematical topic will then be tracked over 

each phase of lesson study and the relations between the occurrence of this knowledge examined. At 

this stage, ‘knowledge’ is considered as collective (e.g. Ni Shuilleabhain, 2016). 

Analysis  

In this paper, data generated though video recordings of the Swiss case study are analysed utilising 

the proposed framework. Eight primary generalist teachers, new to lesson study, and two facilitators 

(one specialist in teaching and learning and the other a specialist in mathematics didactic (first author 

of this paper)) participated in the research which occurred over two academic years. Four cycles of 

lesson study were undertaken in this time, with a meeting held on average every two weeks during 

the school year (Clivaz, 2016). Each of these 37 meetings (about 90’ each) were videotaped and 

transcribed and form the base of the analysis utilizing the framework outlined above (Figure 1) and 

incorporating defined features of KCS and KCT as utilized in lesson study (Ni Shuilleabhain, 2015b). 

We present analysis of the first lesson study cycle where teachers chose to focus on the topic of 

integers and place value. The main reason for choosing this subject was the difficulty students had 

with whole numbers. In the first session, teachers discussed a particular difficulty their students had 

with counting through to new groups in base 10: 

Océane: The counting through to the next ten. 

Caroline: But each time they have to count through to (tens, hundreds, …) 

Stéphane (facilitator): What’s happening with counting through to the next ten? 

Caroline: It’s… that we have no more to write here! We have to use the digits which already 

exist. So, we count through to come back to one… In fact… Yes, it is the 

abacus, in fact, we need to move by one each time we arrive at a nine at the 

end. We need to move by one. 

Océane: We exchange one packet of ten. 



In this passage, during the study curriculum phase, teachers are at level of the global didactic project 

(+3) and this unpacking of mathematical knowledge is a Specialised Content Knowledge (SCK) i.e. 

the mathematical knowledge needed to perform the recurrent tasks of teaching mathematics to 

students (Ball et al., 2008, p. 399). At this stage, the place aspect of number system was predominant 

in teachers’ discourse and, when the value aspect appeared, it was linked with the value. To further 

address this knowledge, the facilitators suggested working on students’ actual mistakes. Teachers and 

facilitators proposed mistakes like:  

5 hundreds + 12 tens + 3 units = 515 

This work prompted teachers to do the task as if they themselves were students. At some moments 

during the activity teachers even spoke like students - placing them at the level of student lens (-2). 

This allowed the teachers to go deeper into potential difficulties for students and by further studying 

curriculum materials (referred to as kyozai kenkyu by Takahashi & McDougal, 2016), teachers had 

opportunity to clarify this aspect for the research lesson. This passage is situated at the same phase, 

level and type of MKT as the previous excerpt above.  

Anne (facilitator):  […] It’s a particular type of exchange since it’s in the place value system. So, 

we can distinguish the two dimensions: the dimension of the place and the 

dimension of the decimal value which is revealed in the exchanges. 

Stéphane: In fact, I prefer to talk about grouping/ungrouping instead of exchanging. 

Océane: Oh, I see! 

Following these two excerpts, we will briefly summarize the work undertaken by these teachers 

planning the second research lesson and focus on this phase for analysis. The group chose a task in 

the form of a board game involving the exchange of “1 hundred”, “1 ten” and “1 unit” cards. 

Following a planning exploration of the task, this research lesson was taught by one of the group and, 

during the post lesson discussion, teachers agreed that the task should be modified to allow students 

practice the exchange of values and relate these to aspects of the number system. This revised lesson 

was taught by another member of the group to a different group of students. 

At the beginning of the game a student, Julie, arrived on the square “give 35”. She had three cards of 

“1 unit”, three cards of “1 ten” and four cards of “1 hundred”. In order to get three cards of “1 ten” 

and two cards of “1 unit”, Julie wanted to exchange two “1 hundred” cards. The teacher, Edith, wanted 

to explain to Julie that two “1 hundred” cards were worth more than these three cards of “1 ten” and 

two cards of “1 unit”. 

Edith: So, two hundreds - that’s how many? 

Julie: Two hundred. 

Edith: That’s two hundreds. If you tell me: “I want three tens and two units.” Three tens, how 

many is that? 

Julie: Thirty. 

Edith: You told me three tens makes thirty. And what about two units? 

Julie: Two. 

Edith: If you put the thirty and the two together? How many is that? 

Julie: Thirty-two. 



Edith: So you swap two-hundred for thirty-two! You’re very generous! 

In this passage situated during the conduct lesson phase, at level 0 (didactic action), the teacher 

converted all cards into numbers to compare them, instead of doing direct exchanges. Julie followed 

the teacher without expressing her own way of reasoning (which can be observed in another passage 

and demonstrates a ‘direct exchange’ way of thinking). In this case, we categorize the MKT in two 

ways. First as a KCS, where Edith did not notice or interpret Julie’s mathematical thinking or 

strategies. Second as a SCK, related to the unpacking of mathematical knowledge, as detailed in the 

following excerpt.  

During her dialogue with the class, Edith had to explain that one hundred is the same as ten tens. 

Here, again, her argument is to convert to units - which requires students to already understand place 

value. This argument can be summarized as follows: 

1 hundred = 100 units 

and 10 tens = 100 units 

therefore, 1 hundred = 10 tens 

In the final lesson plan, the group of teachers reflected on this strategy and argued against it: 

“Often exchanges are not really carried out and we go through the number. For example, when 

asked to exchange 12 hundreds into tens, many students (and adults) will go through the number 

1200, namely 1200 units, to say that that 1200 is 120 tens, without being able to make a direct 

exchange from hundred to tens. Teachers also often explain this exchange in this way. In this case, 

we are in a type of vicious circle, since it means that it is necessary to have understood number 

system to understand the grouping/ungrouping in the place value system.” 

This episode appears in our data in the research lesson (conduct and observe lesson phase, level 0), 

in the notes of the observing teachers (conduct and observe lesson phase, level 0), in the post lesson 

discussion (reflect on lesson phase, level 0) and, in the above extract, in the lesson plan (reflect on 

lesson phase, level +2) where observations and analysis of the group were generalized and 

decontextualized from the particular lesson to the level of a global didactic project. In each case the 

knowledge represents a typical SCK. 

The final example of this knowledge was found at the end of the reflect on the lesson phase. After 

discussing the lesson and the mathematical difficulty of directly converting hundreds into tens, 

Valentine (a teacher with over 30 years of teaching experience) realized she had observed a similar 

difficulty her own students in this topic, outside of the lesson study group. As a result of their 

collaborative reflection conversations, she began to realize that her students’ errors were likely due 

to her use of only one strategy in teaching this topic:  

Valentine: But, I’ve got a question. For example, in nine-hundred-sixty-three - how many tens 

are there? Ninety-six. But my students, they learned a trick - they write the number 

963 and just go to the tens digit and write what is left: 96. I’m convinced they just 

use this trick. I probably didn’t know how to explain that to them! Myself… I 

always convert in money! You will have nine hundred and sixty three one-franc 

coins. If you need to only have ten-francs notes… then you will have ninety-six ten-

francs notes. 



Although this observation was not directly related to observations during the research lesson, we still 

categorize it as level -1 since Valentine put herself in the position of observing her students converting 

963 into tens. This conversation incorporates teacher KCS in interpreting students’ responses and is 

situated at level -1 (observation of pupils' activity). 

Utilising our proposed framework and building on our analysis of teachers’ collective conversations, 

we can detail the types and levels of knowledge incorporated by mathematic teachers in their 

participation of lesson study. Utilising this framework provides us with opportunity to track the 

knowledge included in the planning and reflection of mathematics research lesson over various phases 

of lesson study. 

Conclusion 

This paper proposes an extended theoretical framework of mathematics teacher learning in lesson 

study combining the existing frameworks of Mathematical Knowledge for Teaching (Ball et al., 2008) 

with Levels of Teacher Activity (Margolinas et al., 2005). In this paper the proposed framework is 

situated as a tool used to detail and analyse the use and movement of mathematics teacher knowledge 

in planning, conducting, and reflecting on research lessons. Based on case study data generated 

through mathematics teachers’ participation in lesson study, we have analysed teachers’ qualitative 

conversations and considered the potential evolution of mathematics teacher knowledge over a cycle 

of lesson study. Analysis to date has demonstrated that in planning and reflecting on research lessons, 

teacher knowledge of various forms (e.g. SCK and KCS (Ball et al., 2008)) and across varying levels 

of activity (Margolinas et al., 2005) are incorporated in these separate phases of lesson study. 

We hope this model will contribute to the literature on professional development of mathematics 

teachers and may serve to underpin further evidence of teacher learning in lesson study. 
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This paper aims to potentiate the teaching of mathematics through hands-on experimental activities 

at the primary school level and by promoting teachers’ professional development, using innovative 

practices. A Teacher Design Research cycle involving a group of primary school teachers during 

one school year was performed. This cycle consists in teacher training sessions, including an 

introduction to science and mathematics content, hands-on workshops for teachers and also 

classroom interventions in order to promote experimental activities and observe teachers in action.  

A particular case study of teacher Luísa will be presented. It was found that she gained motivation 

and self-confidence to innovate her practices, showing enhanced ability to perform experimental 

activities with her students. 

Keywords: Teacher professional development, training practices, hands-on, teacher knowledge, 

primary school. 

Introduction 

This paper aims to potentiate the teaching of mathematics, through hands-on student-centered 

experimental activities at the primary school level and by promoting teachers’ professional 

development using innovative practices. 

Several studies show the importance of teaching mathematics and science through experimental 

activities in the early years of schooling to motivate the younger generations to scientific and 

technological areas, considered crucial for economic development and scientific literacy (Coll, 

Dahsah, & Faikhamta, 2010; Hallstrom, Hulten & Lovheim, 2014; Osborne, 2009; Perera, 2014). 

Treacy and O'Donoghue (2014) also refer to scarce research about the integration of mathematics 

and science in classroom contexts as well as the lack of a widely-adopted teaching model. These 

authors advocate that “hands-on, practical, student-centered tasks should form a central element 

when designing an effective model for the integration of mathematics and science” (p. 1). 

This study is part of a first round of a Teacher Design Research programme involving a group of 

primary school teachers in a cluster of schools of a region of central Portugal, held during the 

2015/2016 school year. This experiment was carried out in the framework of a pedagogic 

intervention project that aims at introducing new methodologies to promote the learning of 

mathematics and science through hands-on experimentation and using the "inquiry" method.  

To achieve this purpose, a lifelong training course was designed, with the collaboration of university 

researchers and a formation center, to include mathematics and science hands-on workshops, in 

order to help teachers develop their teaching skills and update their knowledge on these topics.  



In this study, a particular case of a teacher, who used one of the proposed science experimental 

activities, to explore mathematical concepts and student-centered tasks, using the inquiry-based and 

problem-solving approach, will be presented. 

Literature review 

The great lack of professionals in the STEM (Science, Technology, Engineering and Mathematics) 

areas must be countered with an intervention at the level of the early years of schooling, being 

crucial to provide quality scientific practices (DeJarnette, 2012; Eshach & Fried; 2005; Johnston, 

2005). The incorporation of hands-on experimental activities into the classroom, with scientifically 

well-prepared adults, lead to significant improvements in performance and produce positive 

attitudes towards science and learning (Mody, 2015; Myers Spencer & Huss, 2013).  

The inquiry approach calls on the natural curiosity of children and develop their creativity and 

critical questioning at an age when they have the urge to discover the world around them (Alake-

Tuenter et al., 2012; Krogh & Morehouse, 2014; Rocard et al., 2007).  

Teachers are the cornerstone of any renewal of science education and being part of a network 

motivates them, contributes to improve the quality of teaching and promotes the sustainability of 

their professional development (Abell & Lederman, 2007; Rocard et al., 2007; Zehetmeier & 

Krainer, 2011). Martins (2006) claims to be a priority to strengthen investment in scientific research 

in the field of science education in the early years of schooling and continuing teacher training. 

Murphy, Varley and Veale (2012) recommend a professional development for teachers that will 

allow them to enhance their conceptual and pedagogic knowledge on the inquiry-based approach. 

Ball (2003) says that an intervention to combat failure in math’s performance will only be effective 

if it is focused on teaching methods: "No curriculum teaches itself and standards do not operate 

independently of professionals’ use of them" (Ball, 2003, p. 1).  

Ball, Thames and Phelps (2008) investigated competences that are required to teach and developed 

an empirical approach to determine the content knowledge needed for teaching (figure 1). 

 

Figure 1: Mathematical knowledge needed for effective instruction (Ball, Thames, & Phelps, 2008)  

Ball (2003) concludes that to improve children's mathematical learning, it is crucial to provide 

learning opportunities to teachers such as tailored courses, workshops and well-designed and taught 

materials. Afonso, Neves and Morais (2005) recommend that teachers should be given the 

opportunity to explore and experiment the contents to be developed in class in a reflective, 

collaborative environment where they feel supported. Also, Kuzle and Biehler (2015) sustain the 



importance of “stimulate cooperation among the participants, and between the participants and the 

professional developer” (p. 2849). 

Methodology 

Teacher Design Research 

Teacher Design Research (TDR) (Kelly, Lesh, & Baek, 2014) aims to promote the development of 

teachers as adaptive experts, using inquiry. This approach involves a collaborative work with 

research teams and teachers participating in the process, with the main objective to promote their 

professional development, leading them to innovate their practices and improve the whole teaching 

and learning process. The TDR premise is that the involvement of teachers in long-term (e.g. one 

year) design research periods can promote in-depth content learning and improve their ability to 

adapt to classroom environment and rethink their teaching beliefs and practices. 

The pilot experiment: First cycle of the TDR 

A pilot experiment with primary school teachers has been conducted in the academic year 

2015/2016. This experiment included continuous training sessions where proposals of new content 

and experimental mathematics and science hands-on activities, to be used in the classroom, have 

been put forward. The teachers had the opportunity to explore the content and manipulate the 

materials to be able to apply them later with their students. In addition, the instructors also visited 

the trainees' own classroom to carry out experimental activities to exemplify them, and observe the 

teachers in action with their students. The teachers have also been encouraged to develop their 

autonomy by creating and implementing their own experimental activities. 

Focus Group (FG) (Williams & Katz, 2001) was one of the working methodologies used throughout 

the training sessions to support the teachers and improve their practices. The last session was mainly 

focused on FG to promote reflection on the practices developed and make proposals for the 

following cycles of TDR. “Innovations need to be owned by the person implementing them on a 

personal level and transformed into their own practice in order to have practical effect” (Zehetmeier, 

Andreitz, Erlacher, & Rauch, 2015, p. 168). 

This paper describes the case study of teacher Luísa (fictitious name) who participated in the study, 

proposed and carried out math-based activities using the inquiry method. 

Participants 

The participants in the pilot project comprised 14 teachers of 5 primary schools. These teachers 

participated in a first round of design research beginning in September 2015 and ending in July 

2016. In this paper, we will study teacher Luísa who is 56 years old, has 37 years of service and is in 

charge of a third-year grade class with 25 students aged 8 and 9 years. 

Data collection   

Data collection consisted in observations (first author of the paper was a participant observer), semi-

structured interviews, written records, and video (Cohen, Lawrence, & Keith, 2007). The action 

took place in two main moments: workshops with the teachers (to learn and practice what they are 

expected to implement) and at their classrooms (to support and observe them in action). At the end 



of the training action, the participant teachers presented a written report, with a critical account on 

the pilot experiment and their proposals of innovative practices. 

Data analysis and discussion 

Teacher Luísa participated in the first TDR round. For about nine months, she attended the 

continuing training programme that consisted of seven workshops with, 3 to 4-hours duration, 

which introduced content, hands-on activities and methods of implementation in the classroom.  

The first experimental activities carried out on the workshops was about electricity 

(http://www.academiacap.ipt.pt/pt/atividades/ciencia/fisica/77/). Before the intervention, Luísa 

completed a questionnaire that characterized her and her class. On the questionnaire, she refers that 

"the experimental aspect was not addressed in my graduation course" and "in the complementary 

training program (BA-equivalent degree) I attended it was dealt with only too briefly". Although she 

has attended several training sessions throughout her career, none of them was about electricity. 

In the course of the training programme, Luísa was very participatory showing a great interest in the 

tasks performed. However, on several occasions she stated that: “I’m not comfortable to teach some 

of the content because I don't have full mastery of concepts and techniques and don’t know how to 

apply them”. She also admitted that: “I’m not able to handle some of the materials used in the 

experimental activities”. As early as in the first sessions she posed a series of questions such as: 

“What if the students ask me a question about this theme and I don't know the answer?” or “And 

what if an experiment does not yield the expected results?” 

In addition to concerns about specialized content knowledge, the teacher also reveals concerns about 

pedagogical content knowledge. These insecurities have led us to rethink the approach to content 

and experimental activities, because we realized that it was very important to adapt training to the 

knowledge and the needs of the teacher, to make her feel secure and motivated to implement the 

tasks. We also realized that she gives great importance to specialized content knowledge and that 

she hardly will perform experiments that involve concepts she does not fully understand.  

Given the great commitment of teacher Luísa to learn and her pedagogical concerns, she has been 

selected to receive the trainers in her own classroom to carry out experimental activities with her 

students, to exemplify the experiments, support the teacher and observe her in action.  

During the intervention in the classroom, we have observed that teacher Luísa had a posture of 

inquiry, making questions to her students to guide them through the tasks, leading them to 

investigate, in order to find answers to the questions. It was interesting to observe Luísa making a 

reflection with her students, questioning them about the classroom hands-on activities, what they 

had learned, and what they would like to explore in the next experiments. Observations and 

interviews revealed she has a good knowledge of her students and knows how to introduce and 

adequate the content to each of them, according to their individual needs (KCS and KCT). 

Two more sessions with teacher Luísa's students have been held which included tasks not covered 

by the training course with the other teachers. She again felt insecure and reported that she wouldn't 

be able to implement it without the support of the instructors. This shows the importance of the 

training workshops with the teachers before going to their classroom. 

http://www.academiacap.ipt.pt/pt/atividades/ciencia/fisica/77/


It has been suggested to her that she should propose activities involving mathematical content. Due 

to the difficulty shown by the teacher to achieve this objective, the researchers proposed a 

worksheet in which, based on experimental records like weigh, fruit diameter, potential difference 

measurements, it was possible to address the topic “organization and processing of data” that is part 

of the primary school syllabus.  With this proposal, the teacher created some tasks (figures 2, 3 and 

4). Figure 2 shows the method used by the teacher to propose mathematical problems, based on the 

classroom experiment performed by the team of instructors. In writing "electromagnet" she is 

showing that she knows the content acquired in training but she chooses to present mainly math 

specific content: problems involving operations, specially multiplication. 

When you used the nail in the electromagnet it was wrapped 
in copper wire. 
I unwrapped one and measured the wire. It measured 40 cm. 

 
1. How many meters of wire were 
needed for the whole class? 

2. One meter of wire costs 5 euros. How much was spent 
to wrap all the nails?  

Figure 2: Math exercises suggested and implemented by teacher Luísa inspired by the activity 

performed in the classroom by the instructors  

Based on the same experiment Luísa was invited to suggest tasks for data handling and processing, 

but she decided to collect data with her students (Figure 3) for further processing (Figure 4). 

OCTOBER 2015  APRIL 2016 

NAME WEIGHT HEIGTH  NAME WEIGHT HEIGTH 

Adriana 30,7 Kg 129 cm  Adriana 32,2Kg 133 cm 

André 31 Kg 139 cm  André 31,9 Kg 142 cm 

António 36,4 Kg 139 cm  António 38,4 Kg 142 cm 

Figure 3: Recording of heights and weights of the students in teacher Luísa's class 

 

I grew ________kg                                                             I gained ________kg 

In October, the tallest in my class was________________________________________ 

In May, the heaviest in my class was______________________________________ 

Which student grew the most? _____________________________________________ 

Which student gained more weight between October and May? __________________ 

Build a chart with the weights of the students in the class (October-May)  

Figure 4: Math activity suggested and implemented by teacher Luísa 

This attitude shows some autonomy on the part of the teacher to propose activities that are not 

provided for, in the school books. It also shows ability to adapt content to the specific needs of 

students. On the other hand, this could mean some resistance in using an experiment that was not 

familiar, preferring to use a context where she felt more comfortable, i.e. collecting data from the 

students.  A possible explanation can be drawn from her report, where she shows lack of SCK: 

However, and given the nature of the subject matter addressed and the tools used, I do not 

feel comfortable to implement, in a natural/individual and consolidated process, many of the 

tasks proposed. (Teacher Luísa final report) 



It also appears that she realized the importance of finding new ways of teaching math as she says in 

her report that math is part of day-to-day life: “The math activities performed in the class gained a 

new meaning as it was applied to practical real-life situations of individual students to complete the 

tasks proposed” (Teacher Luísa final report). 

Luísa gained SCK and KCT, showing ability to do research, particularly on the internet, collecting 

information that she uses to make new approaches on teaching: 

(…) finding new ways of teaching math so that people understand that we think 

mathematically all the time and solve problems at several moments during the day (…) Math 

is thus part of our life and can be learned in a dynamic, challenging and funny way. (Teacher 

Luísa final report) 

Finally, the teacher recognizes the impact of the project on her students: 

The class revealed very motivated when completing the tasks proposed by the instructors. 

The students adopted a cooperative, experimental attitude in which failure was regarded as a 

part of the scientific process. (Teacher Luísa final report) 

In fact, student’s comments such as "this is the best experience of my life" "this is awesome", "you 

should come more often", among others, had impact on teacher Luísa motivation, contributing to 

make her recognize the importance of implementing hand-on experiments. 

Final considerations 

Visits to the classroom to support the teacher during the implementation of the experimental 

activities revealed very useful to improve teacher knowledge and confidence. Also, the enthusiasm, 

involvement and participation of the students in the classroom activities (mentioned in the teacher's 

final report) served to raise her awareness to the importance/relevance of these approaches. Such 

motivation has been observed in teacher Luísa who gained confidence to innovate her practices after 

receiving training and guidance. This teacher developed and implemented hands-on experimental 

activities with her students in classroom context, exploring their curiosity (using inquiry) and 

proposing problems requiring the use of math.  

Although she created mathematics hands-on experiments, there still was, on the part of the teacher, 

some lack of confidence to innovate without the support of instructors. Like her, almost all teachers 

who participated in the continuous professional course suggested, during the final FG, that some of 

the experimental activities should be carried out by the instructors in their classrooms. All teachers 

were reluctant to propose innovative activities promoting by resorting to the inquiry method. It was 

noted that strong encouragement and responses on the part of the instructors were required to make 

the teachers change habitual teaching practices. However, throughout the sessions increased trust of 

teachers on their instructors and a better response to the tasks proposed has been observed.  

It follows therefore that it is necessary to invest more in training and monitoring of teachers to 

further engage them in these approaches and improve their confidence and autonomy. Special 

mention should be made to the importance of getting the teachers to work out the activities before 

implementing them. Finally, it is concluded that this is a process that takes some time to be 

implemented and further work is needed to achieve the desired results. 
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As part of a larger research project, we asked third-year PSTs to reflect on what they had learned 

about being mathematics teachers of the teacher education programme. The reflections were 

intended as presentations for first-year PSTs. In this article, we analyse the films by the third-year 

PSTs to understand the messages more experienced PSTs choose to communicate to novices. 

Concepts from Gert Biesta are the framework for the content analysis, and we find a complex 

picture of how qualification, socialization and subjectification interact in the narratives. 

Keywords: Preservice teacher education, mathematics education, mentors. 

Introduction 

This article presents partial results from a research project examining pre-service teachers’ (PSTs) 

developing identities as mathematics teachers, and, in particular, their experiences of mathematics 

in school placement. Previously published results from the project report how first-year PSTs value 

what they learn from mentors in practice more than the ‘theoretical’ input of the university based 

courses, not seeing the theoretical knowledge as transferable into teaching practices (Bjerke, 

Eriksen, Rodal, Smestad, & Solomon, 2013). In one intervention addressing the challenge, third-

year PSTs presented to the first-year PSTs films describing experiences of becoming mathematics 

teachers in the course of the first three years of the programme. In this article, we analyze the third-

year PSTs’ presentations to understand how they view their own emerging professional identities. 

Our research question is: What domains of their educational experiences do PSTs highlight in their 

presentations of their first three years in mathematics teacher education? 

Research background and theoretical underpinnings 

While learning to teach is about acquiring professional knowledge and skills, it is also about 

developing a teacher identity (Haniford, 2010). Adding to the identity work of experienced teachers, 

PSTs have the responsibility of successfully positioning themselves in relation to their teacher 

education programmes and cooperating teachers (Haniford, 2010). Identity formation is driven by 

the individual’s goal state of what he/she wants to become (Smeby, 2007). Biesta (2012) discusses 

these processes under the headings of qualification, socialisation and subjectification, and we 

choose his concepts as the starting point of our analyses of PSTs’ narratives. 

For Biesta (2012), all education (including teacher education) is a question of judgement, because 

educators' decisions about the purpose of what they do occur within domains that may be in synergy 

with each other, but may also be in conflict. He notes three such domains, which interact and 

overlap: the domains of qualification, socialisation and subjectification. Qualification is about 

knowledge, skills and dispositions; socialisation and subjectification can be seen as opposites: while 



socialisation applies to the induction of novices into existing practices, subjectification denotes how 

education contributes to a process of individuation, of becoming an independent subject. 

Educational judgements are underpinned by an understanding of the interdependencies between the 

three domains. In teacher education, the situation is more complex still: the purpose should not just 

be PSTs own qualification, socialisation and subjectification, but also to enable PSTs to become 

‘educationally wise’, aspiring towards virtuosity in making educational judgements themselves. 

Such judgements are situated: they are made during the practice of teaching, and cannot be set out in 

advance, or in general - they are rooted in concrete situations and relate to the need to handle 

tensions and see possible synergies. To become ‘educationally wise’, one needs experience, together 

with opportunities to see more experienced others in action, and to discuss those actions in terms of 

the virtuosity of judgement which underpins them.  

Method 

The 32 PSTs in this study were enrolled in a four-year programme for primary school teachers 

(grades 1-7, ages 6-13) in Norway. They had chosen to continue with mathematics beyond the 

compulsory course spanning the two first years in teacher education, and were asked to look back on 

their mathematics education course and four school placements and to prepare group presentations 

describing their development as mathematics teachers in grades 1-7. They were asked to reflect on 

what they know now which would have been good to know in their first year; how they plan their 

mathematics teaching now compared to in their first year; what they have learned along the way; 

and what are the pitfalls and experiences to bear in mind for future mathematics teachers. 

Six presentations were made - all short films (F1-F6) incorporating line drawings and sometimes 

photographs, with voice-over commentary and music. Five of the six films were organised as 

developmental stories from their novice anticipation and preparation of their first placement, to their 

reflective  stance as third-year PSTs. The remaining film focused on four pitfalls for novice PSTs. 

To analyse the data, we operationalised Biesta’s (2012) concepts in terms of: descriptions of their 

knowledge, skills and dispositions; processes and accounts of making educational judgements and 

justification of judgement; and accounts of being and becoming a mathematics teacher, as 

exemplified below: 

Qualification:  References to knowledge, skills and dispositions, processes and practices from the 

teaching profession. 

Socialisation:  References to learning and to expectations in the school context. 

Subjectification: References to inner feelings, identity and becoming a teacher and to perception of 

self (as a teacher). 

The presentations were transcribed and analysed in several steps. First, they were coded according 

to Biesta’s terms qualification, socialisation and subjectification, synergies and conflicts between 

these domains, and professional judgement. Then disagreements among the researchers were 

resolved, and all presentations were re-read and coded by another member of the group. A decision 

was made to organise the analysis in two parts - one around PSTs’ novice anticipation, and one 

around their reflective stance in third year. Finally, we re-read each presentation to make sure that 

important longitudinal messages were not lost in our attempt to organise the analysis in two parts. 



Looking back at early experiences in school placement - Emergency sirens 

Qualification 

In the films, there are a few examples of what PSTs learned in the first year, for instance pieces of 

‘theory’, such as the importance of using multiple representations, giving feedback, and using the 

“didaktisk relasjonsmodell” (F1) (a hexagon connecting elements relevant for lesson planning: 

topic, learning objectives, the pupils in that class, etc.). The first-year PSTs are, however, uncertain 

about how to put the knowledge into practice. The uncertainty about effective use of manipulatives 

is most usual (F1, F4, F5), but other dilemmas are also identified: 

I also thought about all the theory I learned at university: Piaget’s theory of stages of 

development, Bruner’s representation theory and theory of scaffolding, Vygotsky’s focus on 

cooperation, Bandura and his theories on motivation and self-efficacy. How should I use these 

theories to plan a lesson on fractions? [...] Which pupils should work together: the ones that are 

on the same level in terms of subject knowledge, or should the strong ones help the weak? (F1) 

Several of the films show students meeting concepts as an overwhelming mass of words (Figure 1). 

At the same time, there are many statements about elements of qualification the PSTs perceive as 

lacking, both in terms of knowledge (“Do I know enough about this topic?” (F5)) and of processes: 

Just think if I have to explain several ways of doing something, to support conceptual 

understanding! It won’t work. It just won’t work. Manipulatives, manipulatives. (F5) 

It’s only natural to carry on from where we left off [in the textbook]. It’s not like I have other 

suggestions on what to do from here onwards. (F2) 

   

Figure 1: Knowledge in overwhelming amounts in the first year (F1, F4, F5) 

Socialisation 

The mentor is, naturally, the main role model for students in their first year of teacher education, 

and the mentor features in most of the (few) examples we find of socialisation when describing the 

first year. The PSTs are uncertain about what the mentor expects of them, other than using the 

“didaktisk relasjonsmodell” (mentioned above) which is common in Norway: 

As first-year students we used it [the didaktisk relasjonsmodell] slavishly (F6) 

...I have to carry on from here [in the textbook], that must be what [the mentor] expects (F2) 

The mentor can be viewed as an evaluator:  

Shit! This took the entire hour. The mentor glares at me. It didn’t go as planned. (F3) 



However, the anxiety of seeing the mentor write “like there was no tomorrow” is followed by “I had 

so many questions” - suggesting that the mentor is regarded as a person to ask for advice, as well.  

Subjectification 

A basis for subjectification is the development of a certain degree of self-confidence. In the 

description of the first year, we see little self-confidence - uncertainty and fear dominates: 

What if I don’t succeed? (F5) 

I went from being one of the best in mathematics to being perplexed when the pupils asked me 

questions about the subject. (F1) 

Conflicts and synergies between domains 

The three domains of education overlap. These non-empty intersections are implicitly present in the 

films. There are clear examples that a perceived lack of qualification (being overwhelmed by new 

concepts and by making sense of these in practice) leads to a lack of self-confidence - “I felt unsure 

and very, very small” (F1) - which we regard as part of subjectification. This can also work the other 

way: lack of confidence leads to lack in qualification:  

In the first school placement, I struggled a lot with getting the class to settle down. Later on I 

came to think it was because I did not feel like a confident and clear classroom manager. (F1) 

There can also be a conflict between qualification and subjectification, in the sense that learning 

more makes you aware of your shortcomings:  

The more I learnt, the more I discovered what I didn’t know. [...] Based on Piaget’s theory I 

knew most of the pupils were at the concrete-operational stage. But which of Bruner’s 

representations should I use? [...] Or should I use the strange Cuisenaire rods that I still haven’t 

really gotten to grips with? (F1)  

Drowned in the curriculum he feels puzzled. What is most important? (F4)  

Inside the domain of qualifications there are interactions between elements. In one case, the 

confidence in mathematics is shaken by the practice of teaching:  

I went from being one of the best in mathematics to being perplexed when pupils asked me 

questions. (F1) 

At the same time, during the first year the process of lesson planning is weighed down by the 

awareness that there are many considerations to be taken. This is visible in form of the time that 

goes into writing a lesson plan (shown with clocks in the films), and the number of books that fill 

the desk in the process (Figure 2).  

There can be a tension between socialisation and subjectification in meeting the mentor: in one 

example, the role model (supposed to provide socialisation) is so impressive that the PST’s self-

confidence suffers:  

The meeting with the mentor was scary. I saw him as a Superman who really knew his work. He 

was confident, clear and, not the least, had strong subject knowledge. (F1) 



   

Figure 2: Lesson planning during first-year school placements (F1, F4, F6) 

In another example, a PST’s attempt at making a choice outside of the textbook is struck down by 

the mentor: 

Hmmm….I think maybe we should stick to the textbook. (F3) 

With an emerging sense of agency, the PST questions the mentor’s view and asks herself: “Should 

we always stick to the textbook?” (F3). 

To conclude, there are synergies between (a lack of) qualification and (a lack of) subjectification, 

but also a conflict between qualification and subjectification, as well as between socialization and 

subjectification. 

Practicing educational judgement 

Judgement is difficult. A lack of self-confidence leads to a very detailed plan with little room for 

judgement on-the-fly.  

As a first-year PST the plan for the lesson was a long script. We had written down word for word 

what to say during the lesson. We were dependent on this script and could not improvise along 

the way. We even planned how to explain simple mathematical things that we actually knew 

well. This is also about lack of experience and confidence as a teacher. (F6)  

At the same time, a lack of qualification translates into constraints on opportunities for judgement in 

the process of lesson planning:   

It’s natural to continue from where we left off, it’s not like I have other suggestions. (F2)  

Looking at their recent experiences in school placement - Birdsong 

Qualification 

Changes from first to third year are visible in all aspects of qualification, from subject knowledge 

and knowledge of students and teaching, to the practices of teaching. In terms of knowledge, some 

films refer to knowing more mathematics, but, in terms of mathematics pedagogy, the films stress 

that the understanding is deeper, the knowledge can be operationalised to a greater extent.  

The process of lesson planning during the first year involved long hours dedicated to the task (F1, 

F4, F6), and resulted in long scripts produced for each lesson (F4, F6). The films highlight, in 

comparison, how much quicker lesson planning goes (F1, F6), and how much shorter the scripts 

become (F1, F4) by third year, but the films give different suggestions on how to take advantage of 

the reduced burden, from watching TV and playing with the dog (F6) to investing time and energy 

on the ‘frills’ of differentiation and using a variety of teaching methods (F1).  



Teaching practices out of reach during the first year are now on the agenda (F1): motivating pupils, 

providing them with opportunities to feel both confident and challenged, seeing the individuals as 

well as the class as a whole, giving more room to children’s contributions, and encouraging enquiry. 

Socialisation 

The main presence that embodies the socialisation component is the teacher mentor, although some 

PSTs also mention peers and other colleagues playing a role. At this stage the mentor has 

transitioned from a feared judge to a colleague (F1), in some cases a role model (F2, F4), although 

disagreements between the views of PSTs and their mentor may occur, for example regarding the 

role of textbooks (F3). However, adopting established practices of the teaching community, such as 

body language (F1) or ways of saying or doing things in the classroom, seems to be perceived by 

PSTs as a sign of having become teacher-like: 

I’ve even put together extra handouts [for those who might need another type of challenge]. (F2) 

Subjectification 

Through the journey from first to third year, the PSTs have grown into teachers who are aware that 

teaching is not just about what you know, it is about making choices about complex situations. As 

there are no deterministic answers to these dilemmas, neither objectively speaking nor in terms of 

what is the established way of the teaching community, these choices come down to the individual, 

they are drawing on the domain of subjectification: “We're more aware that there should be a reason 

behind our choices” (F4), “I understand my own thoughts” (F5). In their third year, we hear the 

PSTs stress the importance of trusting their own choices (F1, F2, F4), and being yourself (F2).  

Planning lessons is now an altogether more positive experience, described with attributes such as 

joy, and belief in oneself. Importantly, some of the PSTs realize that becoming a teacher is a 

continuous process, and experimenting is a part of it:  

Don’t be afraid to try out new things. (F2) 

A lesson plan can never be too good. It’s like a piece of silverware that you take out and polish 

from time to time. (F4) 

Conflicts and synergies between domains 

As PSTs become more comfortable as teachers (subjectification), some find reassurance in their 

theoretical knowledge (qualification) as well as their awareness of what is acceptable among 

teachers (socialisation): 

Not everything has to be perfect [...]. The theory I used to think about while planning lessons in 

my first year is now under my skin. (F1) 

The routines of teachers (socialisation) also contribute to being more successful in the practices of 

teaching, such as lesson planning (qualification): “You don’t have to reinvent the wheel (F1)”. 

There is an aspect of growing confidence (subjectification) when the PSTs reuse lesson plans they 

have had positive experiences with (F1).  

Unlike in their first year, lesson planning in the third year takes less time (F1, F6) and the scripts for 

the lesson are shorter (F1, F4) or even disappear altogether (“We’ve thrown out the script”, F6). The 



change is attributed in general to an increase in confidence (subjectification) but in some cases also 

to an aggregated influence of all three domains:  

… more confident in myself and the mathematics, I know more about the pupils’ level in 

mathematics, I have become a clear leader, I dare to make mistakes, I am better at dealing with 

things as they happen. (F1) 

In another film, the three domains come together in synergy to express the PSTs’ development:  

By contrast with first year, when we used the the syllabus for the course a lot, we now have more 

knowledge of the subject and of pedagogy. We’ve become better at making use of our own 

knowledge, we cooperate more closely with colleagues. (F6) 

The way these sentences are linked, makes it possible to interpret it as meaning that better 

qualification leads to better self-confidence (subjectification) which again leads to better 

cooperation with others (socialization).  

Practicing educational judgement 

Increased self-confidence by the third year is not synonymous with knowing just what to do:  

How can I connect algorithms and conceptual understanding? I need to be able to show them 

different strategies, to be sure as many as possible understand. How many strategies for division 

are there? Maybe they come with some I haven’t thought of? Maybe some misconceptions will 

surface during the lesson? How can I then, in the best possible way, deal with this? (F4) 

The difference from the first year is being able to deal with dilemmas, to practice professional 

judgement, guided by what they see as the goals of teaching: 

There’s still a lot to think about, but I understand my own thoughts now, I know where I’m 

heading (F5) 

In the third year practicing educational judgement features as a defining factor of the PST-mentor 

relationship at this stage: the detailed scripts for lesson plans that were in the first year in part 

written for the sake of the mentor (and in part to boost one’s confidence, to feel prepared) are now 

shorter. A mentor’s voice sets expectations: 

Just show me that you are aware of the choices you make, and that you can argue for them (F2) 

During the third year, educational judgement is visible in reflections on one’s own teaching:  

I’ve become better at assessing myself, and I can more readily explain what went well and what 

could have been done better in class (F1) 

Teaching analysis draws on and at the same time feeds into the domain of qualification and perhaps 

also socialization. This way of assessing oneself - and the knowledge that you do it well - can be 

regarded as an engine for development also after graduation, it feeds into subjectification.  

Concluding remarks 

The titles of two subsections of the analysis reflect the soundtrack of a film where the experiences 

of first- and third-year school placements are introduced with emergency sirens and birdsong 

respectively. In terms of Biesta's (2012) framework, the overall picture the presentations paint is 



that, looking back on their first-year school placement, PSTs remember a combination of a lack of 

qualifications, unclear expectations from mentors and low self-confidence. The fear many PSTs 

report on, seems rooted in their low self-confidence and the unclear expectations. Although first-

year PSTs are allowed to try different approaches and to fail, the same combination of a lack of 

repertoire, uncertainty of the mentor’s role and lack of self-confidence holds them back. By the third 

year their qualifications have increased, their role as PSTs is clearer and their self-confidence has 

grown. Because of this, they also find themselves practicing educational judgement more often.   

Such narratives, perhaps in combination with logs from early placements, could be part of 

educational experiences, supporting PSTs' identity work. First-years might also benefit from 

watching the films, as not all challenges discussed can be dealt with by the teacher educators. While 

teacher education can and should make explicit what is expected of PSTs in their school placement, 

it cannot rush becoming educationally wise. However, we hypothesise that creating spaces where 

first- and third-year PSTs can discuss their experiences would contribute to the domain of 

socialisation and subjectification for both groups. Analyzing the students’ contributions in terms of 

Biesta’s concepts reveal the complex relationships between qualification, socialization and 

subjectification in teacher education. The three domains are interdependent, with conflicts and 

synergies which influences PSTs overall experience. More insight into these conflicts and synergies 

may contribute to better understanding of PSTs’ experiences of their school placements.  
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In order to successfully carry out ambitious mathematics teaching, awareness about the underlying 

mathematical tasks of teaching involved is necessary. This paper presents the case of Martin, who 

started mathematics teacher education because he likes mathematics and feels that he knows the 

subject. We observe him in a period of field practice where he is supervised by an experienced 

mathematics mentor teacher. While planning, conducting and reflecting on a lesson on multiplication 

of fractions, neither Martin nor his mentor teacher focus on core tasks of teaching mathematics. We 

use this case as a starting point for discussing challenges and possibilities of increasing the emphasis 

on core practices and the embedded mathematical tasks of teaching mathematics in teacher 

education.  

Keywords: Core practices, mathematical tasks of teaching, teacher education. 

Introduction and theoretical background 

Mathematics teaching is complex, and different attempts have been made to decompose it. Some have 

tried to identify the most critical practices involved in the work of teaching mathematics, and they 

describe them as “core practices” (e.g., McDonald, Kazemi, & Kavanagh, 2013) or “high-leverage 

practices” (Ball & Forzani, 2009; Forzani, 2014). These practices are fundamental for supporting 

students’ learning. Others emphasize the mathematical tasks of teaching that are embedded in the 

professional work of teaching mathematics (e.g., Ball, Thames, & Phelps, 2008; Hoover, Mosvold, 

& Fauskanger, 2014). In this paper, we focus on skills necessary to carry out the work of teaching 

mathematics by emphasizing mathematical tasks of teaching that are embedded in core teaching 

practices in teacher education. High-leverage practices and the underlying mathematical tasks of 

teaching “are essential for skillful beginning teachers to understand, take responsibility for, and be 

prepared to carry out in order to enact their core instructional responsibilities” (Ball & Forzani, 2009, 

p. 504). It is thus important to develop these practices during teacher education (TeachingWorks, 

2015). The mathematical tasks included in these practices are instructional tasks that are mathematical 

and not pedagogical. When referring to “mathematical tasks of teaching”, we follow the 

conceptualization by Ball et al. (2008). 

Researchers have made various attempts to categorize core practices (Forzani, 2014). In the 

TeachingWorks project (2015), a register of high-leverage practices is presented to serve as the basis 

for a core curriculum for the professional training of teachers. For instance, the first two of the 

nineteen high-leverage practices are: 1) “leading a group discussion”, and 2) “explaining and 

modeling content, practices, and strategies.” Both of these practices contain some mathematical tasks 

of teaching. For instance, the second practice obviously involves the task of “presenting mathematical 

ideas.” It may also involve “finding an example to make a specific mathematical point” (Ball et al., 

2008, p. 400), a mathematical task of teaching that has proven to be difficult for pre-service teachers 

(Zodik & Zaslavsky, 2008). This practice may also involve the tasks of “recognizing what is involved 



in using a particular representation” and “linking representations to underlying ideas and to other 

representations” (Ball et al., 2008, p. 400). Other mathematical tasks of teaching—some are 

embedded in more than one high-leverage practice—include using language carefully, highlighting 

core mathematical ideas while sidelining potentially distracting ones, and make their own thinking 

visible while modeling and demonstrating. The third high-leverage practice presented by 

TeachingWorks (2015) is “eliciting and interpreting individual students’ thinking.” This practice may 

involve asking and responding to questions, or presenting the students with exercises that provoke or 

allow them to share their mathematical thinking in order to evaluate student understanding, guide 

instructional decisions, and surface ideas that will benefit other students. When engaging in these 

practices, the teacher is faced with several mathematical tasks of teaching. For instance, teachers are 

challenged to ask “productive mathematical questions” and to evaluate “the plausibility of students’ 

claims” (Ball et al., 2008, p. 400). The mathematical tasks of teaching included in various core 

practices may vary depending on the context. 

In Norway, the new national guidelines for primary and lower secondary teacher education use “core 

practices” as a term of reference (Ministry of Education and Research, 2016). Our study aims at 

discussing challenges and possibilities of implementing core practices and identifying underlying 

mathematical tasks of teaching mathematics in mathematics teacher education. 

The Norwegian teacher education context 

Norwegian teacher education is politically controlled (Hammerness, 2013), and national curriculum 

guidelines direct the focus and content of all teacher education programs. There are differentiated 

teacher education programs for primary (years 1–7) and lower secondary (years 5–10) levels; both 

are four-year bachelor programs. In the primary teacher education program, a mathematics course of 

30 ECTS is compulsory for all pre-service teachers, whereas the lower secondary teacher education 

program requires 60 ECTS in mathematics for pre-service mathematics teachers.  

Field practice is a compulsory part of teacher education, but studies indicate that pre-service teachers’ 

opportunities to learn in this context are not sufficiently utilized (Hammerness, 2013). Pre-service 

teachers are required to complete 100 days of field practice at partner schools. The aim is that field 

practice should focus on the subject that pre-service teachers study on campus the current year. In 

field practice, pre-service teachers normally work in groups that are supervised by an experienced 

mentor teacher. Prospective mentor teachers are required to take a training course of 15 ECTS, and 

they are employed by the universities as teacher educators. From 2017, the Norwegian teacher 

education will be a five-year master program, and the field practice component will be extended to a 

minimum of 115 days spread across five years (Ministry of Education and Research, 2016). 

Methods 

In order to discuss challenges and possibilities of implementing high-leverage practices (e.g., 

TeachingWorks, 2015) and identify underlying mathematical tasks of teaching (e.g., Ball et al., 2008), 

we consider an empirical case from a cross-disciplinary project in Norwegian teacher education 

entitled Teachers as Students (TasS). The TasS project has a focus on pre-service teachers’ learning 

in field practice.  

Data collection includes video recordings of group interviews held with each group of pre-service 

teachers before and after their period of field practice. Based on analyses of these interviews, Martin 



(pseudonym) stood out as a special case. He was one of only two pre-service teachers in the project 

who selected mathematics because they liked it and were good at it. A recent literature review 

suggests that being good at mathematics is important for pre-service teachers, for instance in 

perceiving and interpreting students’ work (Stahnke, Schueler, & Roesken-Winter, 2016). In this case 

we only know that Martin sees himself as good, and this was a criterion for selecting him as a case. 

We observed Martin in a period of field practice in his fourth semester. In the previous semester, he 

had completed the 60 study points (ECTS) in mathematics/mathematics education that is required to 

teach mathematics in grades 5–10. Even though Martin enjoyed mathematics, his teaching practices 

cannot be seen as ambitious teaching practices (Lampert et al., 2010) fundamental for supporting 

students’ learning (e.g., McDonald et al., 2013). In the following, we first show some glimpses from 

a lesson where Martin teaches multiplication of fractions in grade 7, followed by his discussions with 

the mentor teacher in the post-lesson mentoring session. The selected episode was typical for Martin’s 

lessons in his three weeks of field practice. The lesson lasted for 38 minutes (we only focus on the 

whole class teaching in the selected episode), whereas the mentoring session lasted for 13 minutes.  

The case of Martin 

After a brief repetition from the previous lesson, Martin introduces multiplication of fractions as the 

focus of this lesson. He writes 
1

3
 of 

3

4
 =  

1

3
 × 

3

4
 on the blackboard and emphasizes that we say “one third 

of three quarters” when we write an expression like this. “What this means,” he continues, “is that 

we first have a fraction of one third and split it into three by using two horizontal lines.” He draws a 

quadrilateral on the blackboard, partitions it and shades the top third part. He draws another 

quadrilateral, partitions it vertically into fourths and shades three of these (see Figure 1). He then 

draws a third quadrilateral and says, “If we now want to take a third of this, we partition it into three 

[draws two horizontal lines in the figure]. How much is one third now?”  

 

Figure 1. Martin’s illustration of 
𝟏

𝟑
 × 

𝟑

𝟒
 

When the students struggle to respond, Martin points at one of the parts in the figure. “It is one of 

these. And then we only have a third of what is shaded—look at this one! Did you understand that?” 

Some students say no, whereas others shake their heads. Martin tries again: “What we can also do, is 

to say that we put the two fractions on top of each other.” He points at the first figure, pretends to 

move it over to the second figure and draws two horizontal lines in the middle figure. “What we focus 

on,” he continues, “is that which has been shaded twice.” When noticing that the students still do not 

seem to understand, he writes the expression. “It is as simple as taking this one [pointing at the first 

numerator] times this one [pointing at the second numerator], and then we take the first denominator 

times the second denominator.” While saying this, he writes it out on the blackboard. “Do you see 



that 
3

12
 is the answer?” When the students are still hesitant, he quickly wipes everything out. “Let’s 

take one more example,” he continues.  

In the next example, Martin writes 
1

2
 of 

1

3
 on the blackboard and draws two figures that he partitions 

and shades—this time by using colored crayons. The figures are of different sizes. “How much of 

this is both red and blue?” he asks. A girl presents 
4

6
 as an answer, whereupon Martin repeats, “That 

is both blue AND red?” When a boy provides the answer, 
1

6
, Martin confirms. “We have one part that 

is both blue and red, meaning both fractions. There are six parts altogether, and then we get one sixth,” 

he continues. Martin tries to point the students’ attention to the procedural approach. “If I want to 

solve this expression [pointing at 
1

2
 × 

1

3
 on the blackboard], the operation, how do I do it?” A boy 

mumbles that you are supposed to multiply, and Martin continues, “We are going to multiply 

denominator by denominator [pointing at the numerators (!) in the expression], and numerator by 

numerator [pointing at the denominators (!)].” He writes it out on the blackboard, seemingly ignorant 

about the fact that he has just mixed numerators with denominators. “Do you think you can make it 

if you try the tasks for yourselves now?” He then turns to the blackboard again and emphasizes how 

important it is to remember that although we write 
1

2
 × 

1

3
, we say one half of one third. “Important to 

remember,” he says. “If we don’t remember this, it will be very, very hard to solve the word 

problems!” Then he writes down 
3

7
 × 

10

2
 as another example. “How many of you know how to solve 

this one?” he asks. “The very operation,” he continues, “forget about the figures!” After this 

introduction (14 minutes into the lesson) the students start working on similar tasks from their 

textbooks. When realizing that many students still have problems, Martin presents another example 

on the blackboard (after 18 minutes). Towards the end of the lesson, when summing up, he tells the 

students that he forgot to mention that the quadrilaterals (in Figure 1) are supposed to be equal in size.  

Martin introduces the post-lesson mentoring session by saying that he can see what went wrong. 

When asked to elaborate, he points out that he should have used different colors from the beginning, 

and that he should have presented more examples before letting the students work individually on 

tasks. He continues to say that in his figures (e.g., Figure 1) he should have “mentioned that they [the 

quadrilaterals] were equally big”. The mentor teacher supports this by saying: “When you don’t show 

on the blackboard that they are equal, you cannot expect the students to understand it.” In the next 

part of the mentoring session, they discuss what different students managed to do during the part of 

the lesson that involved individual work on textbook tasks. This part of the lesson is not the focus of 

attention in this paper. Towards the end of the mentoring session, the mentor teacher ends the 

discussion about the figures used to illustrate fraction multiplication by saying, “I think they [the 

quadrilaterals] would have worked out very well, as you are pointing out, if you had used colors. And 

if you had thought about making them equal in size, it would have worked out very well.” Martin 

agrees, and adds that it is important to be careful about how you draw such figures. 

Learning from the case of Martin 

The case of Martin illustrates the core practice of “explaining and modeling content, practices, and 

strategies” (TeachingWorks, 2015). A simplified response to the presented episodes and vignettes 

could be that Martin does not carry out the core practice of explaining and modeling content, 

practices, and strategies well, and he needs more practice. Based on research indicating that pre-



service teachers do not necessarily learn from their field practice (Hammerness, 2013), we believe 

there is more to it than this. Although Martin and his mentor teacher discuss his explanations and 

modeling of the content, they do not appear to get to the heart of the issue. Ball and Forzani (2009) 

suggest that certain mathematical tasks of teaching are embedded in these core practices (e.g., Ball et 

al., 2008; Hoover et al., 2014). In our discussion of challenges and possibilities of implementing core 

practices, we identify four challenges and discuss the possibilities for highlighting some of the 

embedded mathematical tasks of teaching.  

First, and most importantly, Martin is faced with the mathematical task of “recognizing what is 

involved in using a particular representation” (Ball et al., 2008, p. 400). In his attempt to use the area 

model to represent multiplication of fractions, Martin draws three quadrilaterals (Figure 1). The area 

model for multiplication of fractions requires use of one rectangle only as unit. Martin does, however, 

say that the third rectangle illustrates the two others “on top of each other”, and he points at the first 

rectangle and pretends to drag it over the second rectangle. Still, this use of the model appears to 

confuse the students, and it would have been natural to focus on this mathematical task of teaching 

in a post-lesson mentoring session. In the given example one can draw three horizontal lines to show 

four equally large horizontal strips and then divide an area of three of these in three columns by 

drawing two vertical lines. Then there is still some work to do in order to understand that numerators 

can be multiplied as well as denominators. Martin tries to help the students develop this understanding 

by drawing two horizontal lines in the middle figure to illustrate how the four parts have now been 

divided into three and saying: “what we focus on, is that which has been shaded twice.”  

In the post-lesson mentoring session, Martin starts by stating that he can see what went wrong. He 

points out that he should have used different colors (instead of double shading) and that he should 

have presented more examples. He continues to say that he should have “mentioned that they [the 

rectangles] were equally big.” The mentor teacher expresses his agreement. The area model requires 

use of one rectangle only as unit, but this is not discussed. “Recognizing what is involved in using a 

particular representation” (Ball et al., 2008, p. 400) is a mathematical task of teaching which might 

be fruitful in order to facilitate student teachers’ learning to carry out the core practice of explaining 

and modeling content in teacher education. This mathematical task of teaching is, however, not 

discussed in the post-lesson mentoring session. 

Second, and related to the first, Martin consistently reads the product as “
1

3
 of  

3

4
” indicating another 

model for multiplication of fractions than the area model: the multiplicative comparison model. In 

this model, one of the fractions is an operator, one is represented as a portion of the area of one 

rectangle, and the result is represented as another portion of the area of the same rectangle. In this 

case the rectangles might well be drawn separately, but Martin’s comment that the two first rectangles 

in Figure 1 should be placed on “top of each other” to make the third indicates that he does not have 

this model in mind. This is also not discussed in the post-lesson mentoring session.   

Third, and related to the mathematical task of selecting appropriate examples “to make a specific 

mathematical point” (Ball et al., 2008, p. 400), Martin could have selected more appropriate examples 

when presenting the students with the area model for multiplication of fractions. In using this area 

model, it is necessary to not only use simple fractions as one-third and three-fourth. One can clarify 

much better that numerators can be multiplied as well as denominators with say three-fifth of four-



seventh. This illustrates an embedded mathematical task of teaching related to finding examples to 

make specific a certain mathematical point. In the post-lesson mentoring session, only the number of 

examples is discussed. For instance, they discuss that Martin should have presented more examples. 

Selection of examples, which has proven to be difficult for pre-service teachers (Zodik & Zaslavsky, 

2008), is not discussed. One way to meet this challenge of randomly generated examples, when 

careful choices should be made, is to exemplify and discuss carefully selected examples in 

mathematics teacher education 

Fourth, Martin is faced with the mathematical task of using correct mathematical language when 

presenting the mathematical idea of multiplication of fractions. On a couple of occasions, we observe 

that he mixes numerator with denominator. This might be regarded as a minor mistake of speaking 

mathematics, and we do not believe it is the most critical issue in the case of Martin. Correct use of 

mathematical language and notation is still important, however, and we suggest that this is a 

mathematical task of teaching that the mentor teacher could have discussed with Martin.  

Martin is using a model for representing multiplication of fractions (Figure 1), but the students 

struggle to understand it. The high-leverage practice of eliciting and interpreting students’ thinking 

(TeachingWorks, 2015) focuses on teachers’ practice related to posing questions or tasks that provoke 

or allow students to share their mathematical thinking in order to evaluate student understanding and 

guide instructional decisions. To do this effectively, a teacher needs to draw out a student’s thinking 

through carefully selected questions and tasks and to consider and check alternative interpretations 

of the student’s ideas and methods. Although Martin knows the mathematical content himself, he 

struggles to understand the problems faced by the students. This illustrates the importance of pre-

service teachers’ mathematical knowledge in order to perceive and interpret students’ work (Stahnke 

et al., 2016). In his communication with the students, Martin does not invite the students to engage 

in mathematical discussions and reasoning. Instead, the students are invited to give short and 

confirmative responses only. During the 14-minute whole-class introduction, as well as in the brief 

wrapping up of the lesson, the students were mostly invited to answer yes or no questions. Two 

examples of such questions are: “Did you understand that?” and “Do you think you can make it if 

you try the tasks for yourselves now?” Some questions are asked when the answer is already visible 

through the example presented on the board, like: “How much is one third now?” and “How much of 

this is both red and blue?” These questions invite students to answer by single words. Only once were 

the students invited to answer a how-question, and this question was related to how to carry out a 

routine procedure. Based on our analyses of how Martin invites the students to participate, we 

conclude that they are not invited to speak or reason mathematically. This kind of communication 

does not allow Martin to elicit students’ thinking. We thus suggest that the core practice of eliciting 

and interpreting students’ thinking is important to develop in teacher education. 

Conclusion 

Learning to successfully carry out high-leverage practices in mathematics teaching requires 

awareness about the underlying mathematical tasks of teaching involved (Ball et al., 2008), and 

mathematics teaching is a professional practice that requires training (Hoover et al., 2014). In this 

paper, we have used illustrative data from field practice in Norwegian mathematics teacher education 

as a starting point for our discussion. From this challenging case, we observe that neither the pre-

service mathematics teacher (Martin) nor his mentor teacher appear to be conscious about the 



mathematical tasks of teaching that are embedded in the high-leverage practices that have been 

analyzed and discussed in this paper—all of which are involved in the planning, conducting and 

reflecting on a lesson on multiplication of fractions.  

What challenges and possibilities of implementing core practices and identifying underlying 

mathematical tasks of teaching mathematics in mathematics teacher education can be identified by 

analyzing Martin’s lesson? In this lesson, the pre-service teacher was challenged to carry out the 

practice of “Explaining and modeling content, practices, and strategies” (TeachingWorks, 2015). 

Previous research indicates that strong teacher knowledge supports teachers in using representations 

to attach meaning to mathematical procedures (e.g., Charalambous, 2010). Although he has 

completed all of his coursework in mathematics, Martin does not appear to be prepared to carry out 

this core practice. Martin is also challenged to elicit students’ thinking (TeachingWorks, 2015), but 

he does not seem prepared to carry out this core practice of teaching mathematics either, at least not 

in an ambitious way (Lampert et al., 2010). From these illustrative data, it appears that there is a lack 

of awareness about the underlying mathematical tasks of teaching, and the post-lesson mentoring 

session includes little discussion of these underlying mathematical tasks of teaching.  

At least four lessons can be learned from the case of Martin. First, the task of recognizing what is 

involved in using a particular representation challenges teacher education to include detailed 

discussions of the area model for representing multiplication of fractions, highlighting the importance 

of using only one rectangle and how this model relates to numerators are multiplied as well as 

denominators. Second, selecting appropriate examples using carefully chosen numbers is important 

in order to clarify that numerators can be multiplied as well as denominators, and therefore important 

to discuss in teacher education. Third, Martin could have selected better examples when presenting 

the students with the area model for multiplication of fractions. Fourth, and finally, the case of Martin 

illustrates the mathematical task of presenting mathematical ideas using correct mathematical 

language. These mathematical tasks of teaching all seem related to the high-leverage practice of 

explaining and modeling content (TeachingWorks, 2015).  

Mathematics teacher education needs to focus more on preparing prospective teachers to carry out 

high-leverage practices. Discussions of the embedded mathematical tasks of teaching are then 

necessary. The vignettes and episodes discussed in this paper indicate that the “unnatural” and 

complicated work of teaching needs to be explicitly taught in teacher education. One way of 

approaching this is to practice carrying out the mathematical tasks of teaching on campus as well as 

in field practice. The national guidelines for current primary and lower secondary teacher education 

that are now being developed focus on core or high-leverage practices (Ministry of Education and 

Research, 2016). More research and development efforts are needed to ensure a high-leverage 

implementation of these ideas in teacher education.  
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The aim of this study is to describe changes in the way that prospective secondary school teachers 

notice students’ mathematical thinking related to the limit concept in a learning environment 

designed ad hoc. The learning environment progressively nests the skills of attending to, 

interpreting and deciding as three interrelated skills of professional noticing. Results show 

characteristics of how prospective teachers gained expertise in the three skills since four out of five 

groups of prospective teachers interpreted students’ mathematical reasoning attending to the 

mathematical elements of the dynamic conception of limit. The links between attending to and 

interpreting helped prospective teachers justify the teaching activities proposed to support the 

progression of students’ mathematical reasoning: from a mathematical point of view or considering 

mathematical cognitive processes involved.  

Keywords: Noticing, prospective teachers’ learning, learning environment. 

Introduction and theoretical background 

Research has shown that noticing is an important component of teaching expertise (Mason, 2002). 

Teachers need to attend to students’ mathematical reasoning and make sense of it in order to teach 

in ways that build on students’ thinking (Choy, 2016; Sherin, Jacobs, & Philipp, 2011). Noticing has 

been conceptualised from different perspectives. One of them consists of two main processes: 

attending to particular teaching events and making sense of these events (Sherin et al., 2011). 

Jacobs, Lamb, and Philipp (2010) particularise the notion of noticing to children’s mathematical 

thinking, conceptualising this notion as a set of three interrelated skills: attending to children’s 

strategies, interpreting children’s mathematical thinking, and deciding how to respond on the basis 

of children’s mathematical thinking. 

Previous research has focused on pre-service teachers’ ability to interpret students’ mathematical 

thinking (Bartell, Webel, Bowen, & Dyson, 2013; Callejo, & Zapatera, 2016; Fernández, Llinares, 

& Valls, 2012; Llinares, Fernández, & Sánchez-Matamoros, 2016; Magiera, van den Kieboom, & 

Moyer, 2013; Sánchez-Matamoros, Fernández, & Llinares, 2015) showing that the identification of 

the mathematical elements involved in the problem (mathematical content knowledge) plays a 

significant role in interpreting students’ mathematical reasoning. Furthermore, previous research has 

shown that some contexts can help pre-service or prospective teachers develop the noticing skill: 

watching video clips (Coles, 2012; van Es, & Sherin, 2002), participating in online debates 

(Fernández et al., 2012) or participating in learning environments (interventions) designed 

considering specific mathematical topics. For example, Schack et al. (2013) in the area of early 



numeracy; Magiera et al. (2013) in algebra; Callejo and Zapatera (2016) in pattern generalization; 

Llinares et al. (2016) in classification of quadrilaterals; Sánchez-Matamoros et al. (2015) in the 

derivative concept; and Son (2013) in the concepts of ratio and proportion. These previous studies 

underline that the skill of deciding how to respond on the basis of children’s mathematical thinking 

is the most difficult one to develop in teacher education programs. As Choy (2013) pointed “the 

specificity of what teachers notice while necessary, is not sufficient for improved practices” (p. 

187). In other words, teachers can be very specific about what they notice without having a teaching 

decision in mind. So, the relation between how prospective teachers develop the skills of 

interpreting students’ mathematical thinking and deciding how to respond on the basis of students’ 

mathematical thinking deserves further research. 

On the other hand, the concept of limit of a function is a difficult notion for high school students 

(16-18 years old) and is a key concept in the Spanish curriculum (Contreras, & García, 2011). 

Cottrill and colleagues (1996) indicated that the difficulty of students’ understanding of the limit 

concept could be the result of a limited understanding of the dynamic conception. A way of 

overcoming this difficulty is by coordinating the processes of approaching in the domain and in the 

range in different modes of representation. Knowing these characteristics of students’ understanding 

could provide prospective teachers with information to interpret students’ mathematical thinking 

and to make instructional decisions based on students’ reasoning.  

Therefore, our study analyses changes in the way that prospective teachers notice students’ 

mathematical thinking (attending to, interpreting and deciding) in relation to the limit concept when 

they participate in a learning environment designed ad hoc. The learning environment designed 

progressively nests the skills of attending to, interpreting and deciding and its relations. We 

hypothesise that the structure of the learning environment help prospective teachers to decide how 

to respond taking into account their previous interpretations of students’ mathematical thinking. 

Method 

Participants and the learning environment 

The participants were 25 prospective secondary school teachers (mathematics, physics and 

engineering) who were enrolled in an initial secondary mathematics teacher training program. One 

of the subjects of this program is focused on developing the skill of noticing students’ mathematical 

thinking in different mathematical topics and on planning the instruction attending to students’ 

mathematical thinking. One of the mathematical topics considered was the limit concept.  

The learning environment consisted of 5 sessions of two hours each and was designed taking into 

account the nested nature of the skills of attending to, interpreting and deciding (Jacobs et al., 2010). 

Prospective teachers were divided into five groups of 5 persons to perform the tasks of the learning 

environment. Firstly, prospective teachers solved three problems related to the limit concept 

selected from high school textbooks (Figure 1) in order to unpack the important mathematical 

elements of the limit concept (session 1). Then, prospective teachers had to anticipate hypothetical 

students’ answers to these problems reflecting different characteristics of conceptual development 

(session 2). That is, they had to anticipate what students are likely to do. Prospective teachers had a 

document with the definition of the dynamic conception of limit and its mathematical elements 

(Pons, 2014): (i) approaches from the right and from the left (in the domain and in the range), and 



(ii) coordination of the processes of approaching in the domain and in the range considering 

different modes of representation (graphical, algebraic and numerical).  

 

Figure 1: The three problems related to the limit concept 

The aim of the tasks of identifying the mathematical elements in the resolution of the problems and 

anticipating hypothetical students’ answers was to help prospective teachers focus their attention on 

the relationship between the specific mathematical content and students’ mathematical thinking. We 

conjecture that focusing on this relationship is needed to develop the skill of noticing in a first step. 

Next, prospective teachers analysed a set of four high school students’ answers (Pablo, Rebecca, 

Luiggi and Jorge) to the same problems. Prospective teachers had to attend to students’ strategies, 

interpret students’ mathematical thinking and propose new activities (or modify them) to help 

students progress in their conceptual reasoning (according to their previous interpretations of 

students’ mathematical thinking) (session 3 and 4). The high school students’ answers, provided to 

prospective teachers, reflected different levels of high school students’ reasoning of the limit 

concept (Table 1; Pons, 2014). We also provided prospective teachers with theoretical information 

that summarise the characteristics of high school students’ reasoning of the limit concept from 

previous research to solve the task (Cornu, 1991; Cottrill et al., 1996; Swinyard, & Larsen, 2012). In 

figure 2, the answers of Pablo to the three problems are given. 

Prospective teachers had to answer the next three questions: (i) which mathematical elements has 

the student used in each problem? Indicate if he/she has had difficulties with them; (ii) identify 

some characteristics of how the student understands the limit of a function. Explain your answer 

using the mathematical elements identified before; (iii) considering the student reasoning, propose 

an activity that helps the student progress in their conceptual reasoning of the limit concept. 

Therefore, the objective of sessions 3 and 4 was that prospective teachers focus their attention on 

the relation between identifying-interpreting and between interpreting-deciding. We conjecture that 

these relationships are necessary to develop the skill of noticing. Finally, in the session 5, 

prospective teachers had to answer a similar task individually. 



High 

school 

students 

Level Levels of students’ reasoning about the dynamical conception  of the 

limit concept 

Pablo and  

Luiggi 

High Pablo and Luiggi coordinate the processes of approaching in the domain 

and in the range in the three modes of representation 

Rebecca Low Rebecca coordinates the processes of approaching in the domain and in 

the range in the graphical mode of representation when limits coincide 

Jorge Intermediate  Jorge coordinates the processes of approaching in the domain and in the 

range in the algebraic and graphical mode of representation (when limits 

coincide in this last mode of representation) 

Table 1: Characteristics of high school students’ answers 

Answer to Problem 1 

 

 

 

Answer to Problem 2 

a1) x1 is approaching to 1 from 

the left and from the right and x2 

is approaching to 1 from the left 

and from the right 

a2) The images of f(x1) are 

approaching to 2 from the left 

and from the right 

a3) The images of g(x2) are 

approaching to 2 from the right 

and is approaching to -1 from 

the left 

b1) when x1 is approaching to 1, 

images of f(x1) tend to 2 

b2) when x2 is approaching to 1, 

the images of g(x2) tend to -1 

from the left and tend to 2 from 

the right. 

Answer to Problem 3 

a) Graph 3 because the limit of 

the function in x=2 from the 

right and from the left is 2. 

b) Graph 2 because the limit of 

the function in x=2 from the 

left and from the right is 5. 

c) Graph 1 because the limit of 

the function in x=2 is not the 

same from the right and from 

the left. 

Figure 2: Pablo’s answers to the three problems  

Data and analysis 

Data of this study are prospective teachers’ answers to the tasks of session 2 (anticipation) and 

sessions 3 and 4 (interpretation). Through an inductive analysis (Strauss & Corbin, 1994), we 

generated similarities and differences about how prospective teachers conceived high school 

students’ reasoning of the limit concept and the type of activities they provided to help students 

progress in their conceptual reasoning. To carry out this analysis, five researchers analysed 

individually prospective teachers’ answers to the anticipation and interpretation tasks and then, the 

agreements and disagreements were discussed to reach a consensus on these issues.  

This analysis let us identify two ways of how prospective teachers conceived high school students’ 

reasoning: as dichotomous (right or wrong) and as a progression (identifying different levels of 

students’ reasoning). The type of activities that prospective teachers provided were categorised in 

three categories: general decisions, decision based on curricula contents and decisions based on 

cognitive processes. Examples of these categories are presented in the results section. 



Finally, we compared categories obtained in the anticipation task with the categories obtained in the 

interpretation task to identify changes in the way of how prospective teachers conceived high school 

students’ reasoning and proposed activities to help students progress in their conceptual reasoning. 

Results 

Our results show that prospective teachers changed the way that they conceived students’ reasoning 

from a dichotomous to a progression way and this shift influenced the type of activities that they 

proposed to help students progress in their conceptual reasoning. 

Changes in the way that prospective teachers conceived students’ reasoning: From a 

dichotomous to a progression  

In the anticipation task, three out of five groups conceived students’ reasoning as dichotomous 

(right or wrong). For example, the group of prospective teachers G2 anticipated that a high school 

student with high level of reasoning of the limit concept (Maria) would coordinate in all modes of 

representation. For example, this group of prospective teachers anticipated the next answer for the 

algebraic representation: 

 

Furthermore, these prospective teachers (G2) anticipated that a high school student with a not 

suitable level of reasoning of the limit concept (Pedro) would not coordinate in any mode of 

representation pointing out: “Pedro only approximates (from the left or from the right) when the 

function is defined”. 

Then (in the interpretation task), four out of five groups of prospective teachers were able to 

interpret students’ mathematical reasoning. They linked students’ reasoning with the mathematical 

elements of the dynamic conception of limit: the approaches from the right and from the left (in the 

domain and in the range), and the coordination of the approaches in the domain and in the range 

considering different modes of representation (graphical, algebraic and numerical). For instance, the 

group of prospective teachers (G2) interpreted the student’s answer of problem 1 (Figure 2) as: 

 The resolution of the student is correct (Pablo). We can notice that the student has identified the 

kind of function (piecewise function) since he (the student) has approximated in the range (he has 

calculated the approximation to x=1 from the left and from the right and the approximation to x=2 

from the left and from the right) and in the domain (taking the correct definition of function in 

each interval). Furthermore, he has coordinated the processes of approaching in the domain and in 

the range since he has written, for example, that when x tends to 1 from the left, the image of the 

function tends to 3 (using the function 2x+1).    

Maria understands the limit concept. The idea of approximation in 

the domain corresponds to the fact that she properly selects the 

branch of the function and uses the notion of approximation in the 

range adequately. It is demonstrated when she replaces on the 

limit the approach of the independent variable. This student also 

coordinates the approximations to establish the value of the limit 

according to the branch.  



This group gave similar comments for the student’s answers to the other two problems linking 

students’ reasoning with the important mathematical elements in the other two modes of 

representations (problems 2 and 3). Afterwards, they wrote a summary about this student level of 

reasoning: 

 This student understands the limit concept since he approaches from the right and from the left (in 

the domain and in the range), and coordinates the processes of approaching in the domain and in 

the range in the three modes of representation (graphical, algebraic and numerical). This student 

would be in the high level of reasoning. 

These prospective teachers were able to identify different levels of students’ reasoning. Therefore, 

they conceived students’ reasoning as gradual. 

Changes in the type of activities they proposed to help students progress in their conceptual 

reasoning 

Prospective teachers who conceived students’ reasoning as dichotomous did not propose specific 

activities to help students progress in their reasoning. These prospective teachers gave general 

comments about teaching as instructional actions. For instance, the group of prospective teachers 

G2 proposed to Maria (in the anticipation task) the representation of the graph of the function of 

problem 1. This decision was not based on the conceptual progression of the student. 

When prospective teachers interpreted students’ mathematical thinking identifying different levels 

of students’ reasoning (linking students’ mathematical reasoning with the important mathematical 

elements), they were able to provide specific activities to help students progress in their conceptual 

reasoning. For the students who only coordinate the approaches in the domain and in the range in 

one mode of representation, they proposed new activities to integrate these mathematical elements 

gradually in the different modes of representation. The proposed activities required a coordination 

of approaches in the domain and in the range in the different modes of representation. For the 

students who coordinate the approximations in the domain and in the rage in all modes of 

representation (such as the student of Figure 2), they also provided activities to help students 

progress in their reasoning.  

We have identified two ways in which they justified their new activities: some justifications were 

based on the mathematical elements and others on the cognitive processes involved. In the first case, 

prospective teachers focused their attention on introducing a new mathematic content. In the 

following example, they introduced a new type of discontinuity – an avoidable discontinuity. The 

justification of this type of activities was based on the use of new mathematical elements (in this 

case, introducing other type of functions). 

The activity: We would modify the function of problem 1 and we would use: 

 

Our justification: The student (Figure 2) seems to understand the limit concept in the three modes of 

representation, so we would provide him a more difficult function with an avoidable discontinuity. 



In the second case, prospective teachers focused their attention on the cognitive processes involved 

to understand the limit concept. In the next example, prospective teachers focused on the reversal as 

a cognitive mechanism that leads students to a new reasoning level. That is to say, prospective 

teachers justified the proposed activity by the need of generating learning opportunities to develop 

the reverse mechanism that allows the construction of cognitive objects.  

The activity: Represent a graph of a function which limit in x=-1 is 4 and that there is not limit in x=1.    

Our justification: with this activity students need to do the inverse process that is, they need to use all the 

important mathematical elements to build that function. 

Discussion and conclusions 

Results show that after the participation in a learning environment that progressively nests the three 

interrelated skills of professional noticing (attending to, interpreting and deciding), prospective 

secondary school teachers gained expertise in noticing. Four out of five groups of prospective 

teachers were able to interpret students’ mathematical thinking linking students’ reasoning with the 

important mathematical elements of the dynamic conception of limit. These findings support the 

claim that some characteristics of the learning environment such as considering the nested nature of 

the skills help prospective teachers develop the skill of noticing (Sánchez-Matamoros et al, 2015; 

Schack et al., 2013). 

Furthermore, prospective teachers were able to provide specific activities to help students progress 

in their conceptual reasoning. Therefore, the characteristics of the learning environment in which 

prospective teachers were engaged in the analysis of mathematical elements of limit problems, in 

the analysis of students’ reasoning and in proposing new activities to support students’ conceptual 

development enable them to gain more accurate understanding of the relation between the 

mathematical content and students’ mathematical thinking. This new understanding provides 

prospective teachers with the needed knowledge to give their teaching decisions based on the 

progression of students’ reasoning: from a mathematical point of view or considering the cognitive 

processes involved.  
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The program Math.Researchers (“Mathe.Forscher”) funded by the German foundation “Stiftung 

Rechnen” has the goal to implement discovery, inquiry- and project-based learning in mathematic 

school lessons. The students are meant to explore and discover mathematics in their every-day-life 

with the help of their teachers. The teachers are well educated in supporting their students by in-

service education organized by the program. In addition to finding out if the in-service education is 

well established and if any correlation between the students’ or the teachers’ view on mathematics 

and the positive identification with the program is detectable, an evaluation was planned. The goal 

is to investigate if while taking part in the program Math.Researchers teachers’ beliefs concerning 

mathematics are influenced and if an effect on the students’ view on mathematics is detectable. 

Keywords: In-service education; secondary school mathematics; discovery, inquiry- and project-

based learning; beliefs. 

Theoretical framework 

The program Math.Researchers (“Mathe.Forscher”) funded in 2010 by the German foundation 

“Stiftung Rechnen” has the goal to implement discovery, inquiry- and project-based learning in 

mathematic school lessons. One motivation is that inquiry-based learning may increase the students’ 

mathematical achievement (Hattie, 2015). Bruner considers the benefit of learning through 

discoveries that one makes for oneself in the 60’s (Bruner, 1961). His discussed main benefits are 

similar to Winter’s arguments consisting the thesis that active discoveries by students themselves are 

the more effective way of especially learning mathematics (Winter, 1989, p. 1–3).     The students are 

meant to explore and discover mathematics in their every-day-life with the help of their teachers. The 

program Math.Researchers supports the teachers in several sessions, with training, booklets and 

material for best-practice-activities. In addition a team of scientific assistants and process assistants 

support the program members. One example for a Math.Researcher activity is “Mathematics at the 

Zoo” (Ludwig, Lutz-Westphal, 2016). The pupils have to leave their classroom and visit the zoo to 

develop their own research questions there. The teacher supports the students’ ideas with 

mathematical knowhow. Back at school they work on their research questions and present their 

results. A reflection on the presented solutions completes this Math.Researcher activity.Although the 

teachers were supported in the terms of the program they were insecure whether their lessons were 

Math.Researchers-lessons. To improve transparency in this respect five special normative program-

dimensions were developed by experts of the program in 2014 that can be used as a kind of checklist. 

Math.Researcher-dimensions 

Derived from the program goals, the following five Math.Researcher-dimensions were determined in 

2014: using the Math.Researcher-principles (MRP), opening the classroom (OC), working with 

researchers’ questions (RQ), acting as a learning guide (LG), and visualizing mathematics (VM).  



Each dimension consists of three main elements (Table 1). The more elements considered, the more 

Math.Researcher-like is the planned unit. The table can be used as a checklist so that the teachers are 

able to find out whether their planned lessons are conforming to the program. An ideal 

Math.Researcher-activity contains a minimum one element of each dimension.  

Dimension Main Elements 

Using the Math. 

Researcher 

Principles (MRP) 

Inquiry-based 

learning 

discovery learning project-based 

learning 

Opening the 

Classroom (OC) 

interdisciplinary 

instruction 

inviting experts outdoor lessons 

Working with 

Researcher’s 

Questions (RQ) 

including the 

students living 

environment 

exercising asking 

questions with the 

students  

allowing multiple 

approaches 

Acting as a Learning 

Guide (LG) 

enable active 

students role 

constructive 

handling with 

students ideas 

working out 

milestones together 

Visualizing and 

presenting 

Mathematics (VM) 

documentation of 

mathematics 

using mathematical 

language 

talking about ideas 

Table 1: The five dimensions and its main elements 

Considering the above-mentioned Math.Researcher activity’s example “Mathematics at the Zoo” 

elements of all dimensions can be found here. The activity is project-based (MRP) and includes 

outdoor lessons at the zoo (OC). The pupils develop their own mathematical questions in an 

environment they usually do not connect to an educational context (RQ). The teacher enables student 

activities and supports them in mathematizing their ideas (LG). The phase of presentation and 

reflection at the end of this project represents the fifth dimension (VM). 

To establish the dimensions a special PD course was conducted (figure 1). At a kick-off-meeting in 

December 2014 with all participating teachers the dimensions were introduced. The following months 

the teachers were meant to implement the dimensions in their teaching to get more familiar with them. 

So called process-assistance visited the teachers at school, watched the lessons, gave feedback. At 

the Math.Researchers’ camp in May 2015 concrete activities were planned. 17 teachers met with 

program’s scientific and process assistance to develop units focusing the dimensions. These units 

were conducted in May, June and July 2015. Every unit should be documented by a uniform document 

tool provided on the internet platform. The assistants analyzed these documentations and gave 

individual feedback.  



 

Figure 1: Timeline of treatments 

While carrying out the Math.Researcher program with a special focus on the dimensions it was not 

sure whether and how the terms and ideas of the program were implemented in mathematical school 

lessons after May 2015. The dimensions can be seen as a kind of program characteristics. So a natural 

research question came up: Did the development and application of these dimensions succeed 

sustainable? That means on the one side that they are helpful for the teachers to plan their 

Math.Researcher lessons, and on the other side that the included main elements are recognizable by 

the students in the way the teachers planned it. Furthermore, we wanted to know if there is any effect 

on the view on mathematics of the teachers and also the students. By taking part in the program the 

students are meant to explore and discover mathematics in their every-day-life. Does this goal reach 

the students, or is the main opinion after they have taken part in the program that mathematics is still 

a school topic where you have to learn formulas and not necessary for every-day-life?  

Presenting  the design principles of in-service education by the German Centre for Mathematics 

Teacher Education (DZLM) Barzel and Selter (2015) reviewed the current state of research on in-

service education with a special focus on mathematics. The effectiveness of in-service education is 

possible on different levels: Among other things there can be an impact on the acceptance of the 

training, an impact on the professional competencies and an impact on the classroom teaching (Barzel 

& Selter, 2015, p. 266). To improve transparency in the respect which impact can be found with the 

Math.Researcher-program an evaluation was planned with a focus on the following research 

questions: 

- Are the dimensions well established, do the teachers identify with them and integrate 

belonging elements in their classroom teaching? (1)  

- Which view on mathematics has been built up by the participants identifying with the 

Math.Researcher program? (2) 

July 2015

Evaluation

May - July 2015

Documentation Tools

May 2015

Camp

Dec - May 2015

support by process assistance

Dec 2014

Kick-Off



Therefore the dimensions were related to the mathematical beliefs. The mathematical world view of 

teachers (Törner, 1997) can be described by a belief system including four main aspects: the aspect 

of formalism (F), the schematic aspect (S), aspect of process (P) and the aspect of application (A). 

The aspect of formalism and the schematic aspect can be interpreted as a static view on mathematics 

education: mathematics as a system. The dynamic process character allows understanding facts, 

recognizing connections and building knowledge: mathematics is an activity. This belief system is 

also part of the competencies framework for in-service education of the DZLM (Barzel & Selter, 

2015,p. 263).   

The pilot study 

A pilot study was conducted from May to July 2015 in the region Rhein-Neckar to find out whether 

the dimensions are well established and if any correlation between the students’ or the teachers’ view 

on mathematics and the positive identification with the dimensions are detectable. The program 

started in this region in 2012 in ten secondary schools. All respondents – students and teachers – of 

the pilot study have taken part in at least one Math.Researcher-activity within the last two years and 

especially in the PD course focusing the dimensions listed above. 

Methods 

The questionnaire contained belief-questions (taken from surveys by Grigutsch/Raatz/Törner, 1998), 

questions belonging to the  program and its dimensions and some general questions (mostly 

developed by ourselves and taken from an earlier Math.Researcher evaluation in the region Nord 

conducted by the TU Berlin, Lubke et al., 2011). The teachers (n=20) answered an online-

questionnaire containing 139 questions. The students (n=168) answered a paper print-version with 79 

questions. The items were scaled with 1=”totally don’t agree” to 5= “totally agree”. The higher the 

scale of questions belonging to the dimensions the higher is the identification with the program. All 

questions were formulated to be understandable for students not familiar with the dimensions. For 

example the students were asked whether they liked talking about their own mathematical ideas, 

which can be related to the dimension visualizing and presenting mathematics (VM). Or if they 

sometimes do outdoor mathematics, which is related to the dimension opening the classroom (OC). 

Compared to that the teachers were asked whether their students’ have to present own results at the 

end of a project (VM). Or if they sometimes do outdoor mathematics with their students (OC). The 

items were related to the dimensions by an experts’ rating.   

Additionally, some teachers (n=14, 8 congruent with the respondents of the questionnaire) and some 

of the students (n=31, all of them also filled a questionnaire) were interviewed. The interviews only 

contained questions about the program. For example both groups were asked to characterize 

Math.Researcher lessons by identifying features or describing which special Math.Researcher-

activity they did. 

Results 

The analysis of the data (factor analysis and experts’ rating) showed that the identification of the 

separate Math.Researcher dimensions was not possible. So in the following results the dimensions 

are considered in total, the belief aspects are separate. The five resulting factors formalism (F), 

scheme (S), process (P), application (A) and Math.Researcher-Dimension (Dim) can be seen as 

reliable (Cronbachs Alpha ,728 to ,800, Table 2).   



 
F S P A Dim 

Number of Items 11 8 10 7 25 

Cronbachs α  ,728 ,764 ,798 ,800 ,769 

Table 2: Number of items and Cronbachs Alpha of each main factor 

Figure 2 shows the means of the four belief-aspects and the mean of the Math.Researcher-dimensions 

of all teachers in total. Comparing them, application (A), process (P) and the Math.Researcher-

Dimensions (Dim) are rated similarly positive. 

 

Figure 2: Means of the teachers’ belief aspects and the M.R-dimensions in total (1= do not agree at all, 

5= totally agree) 

The exact scales can be seen in Table 2.The aspect of formalism (F) is rated not as positive as these, 

but considerably better than the scheme aspect (S). Scheme (S) is rated worse. (P) and (Dim) show a 

significant correlation of r= .59 so 35 % of the processes variance can be explained by the dimensions. 

The other beliefs cannot be explained significantly by the dimensions. Comparing the standard 

deviations of the beliefs and the dimensions in total shows that the teachers have rated the single 

items reasonably homogeneously (Table 2). The scheme aspect rated average worse is perceived the 

most ambivalent.  

n=20 F S P A M.R-Dim 

M 3,51 2,26 4,35 4,34 4,22 

SD 0,44 0,56 0,42 0,51 0,35 

Table 3: Mean and standard deviation of the teachers’ belief aspects and the M.R-dimensions in total 

(1= do not agree at all, 5= totally agree) 

Comparing the teachers’ results with the students’ a decline in the values of the scheme aspect is not 

recognizable (Figure 3). The five means do not differ that noticeably. Comparing the standard 

deviations (Table 4) shows that the students’ answers differ a lot. The process aspect has the highest 

standard deviation of nearly 1. 



 

Figure 3: Means of the students’ belief aspects and the M.R-dimensions in total (1= do not agree at all, 

5= totally agree) 

The process aspect has the highest standard deviation of nearly 1.The students´ values are much more 

ambivalent than the values of the teacher´s evaluation. 

n=164 F S P A M.R-Dim 

M 3,55 3,39 2,91 3,02 3,01 

SD 0,69 0,68 0,91 0,85 0,47 

Table 4: Mean and standard deviation of the students’ belief aspects and the M.R-dimensions in total 

(1= do not agree at all, 5= totally agree) 

The students were also asked whether they would recommend the Math.Researcher program. It is 

noticeable that the students who would recommend the program to friends and other students (values 

of 4 and 5) show a significantly higher identification with the Math.Researcher dimensions. The 

correlation of students’ (P) and (Dim) is low but highly significant (r= .43).  

In order to answer the question whether the dimensions are well established (1) the dimensions have 

also been considered separately. The analysis revealed that the dimension “working with researchers 

questions” (RQ) could not be identified separately. Items of this dimension (RQ) were assigned to 

the dimension “using the Math.Researcher principles” (MRP) or the dimension “acting as a learning 

guide” (LG). That’s why in the following (RQ) is not included.  

N=20 MRP OC LG VM RQ 

M 4,26 3,56 3,99 4.43 - 

SD 0,43 0,43 0,33 0,41 - 

Table 5: Mean and standard deviation of the teachers’ M.R dimensions separated (1= do not agree at 

all, 5= totally agree) 

The dimensions “using the Math.Researcher principles” (MRP) and “visualizing mathematics” (VM) 

were high and homogeneously rated (Table 5). The identification with the dimension “opening the 

classroom” (OC) is the lowest. This assumption gets strengthened by the students’ data. In interviews 

they were asked to characterize Math.Researcher lessons by conspicuous features. Compared to the 

teachers who are familiar with the dimensions, the students have not been educated in the 

Math.Researcher dimensions. Features belonging to the dimension (OC) with its main elements 



“interdisciplinary instruction”, “inviting experts” and “outdoor lessons” were only rated by 10 % of 

the interviewed students. Features belonging to the dimensions (MRP), (LG) or (VM) were more 

often mentioned noteworthy. 

Discussion 

In summarizing these results we can say that the dimensions are well established (1). During the 

interviews the teachers often answered that the Math.Researcher program became more structured 

and concrete since the dimensions were introduced. They reported that the dimensions made them 

more certain about their planned lessons.  

We can also say that a dynamic view on mathematics is more predominant if the participants identify 

with the Math.Researcher program (2). 

However, the pilot study gives no data about a sustainable impact of the Math.Researcher program. 

So the researched questions of the evaluation of the pilot study were reused and extended into a main 

study.  The main study still wants to investigate whether the dimensions are well established (1) and 

which view on mathematics is connected to the participants’ identification with the Math.Researcher 

program (2).  Additionally, the main study wants to find out whether taking part in the program 

influences the students’ or the teachers’ view on mathematics (3). This third question is similar to 

previous research questions, for example of Cooper and Touitou (Cooper, Touitou, 2013). They 

wanted to find out, which beliefs can be found and how these identified beliefs change during a one-

year PD course.  

 

Figure 4: Three survey periods 

The program-region Heilbronn-Franken joined in the Math.Researchers program in December 2015 

and started activities in February and March 2016. Three survey periods from 02/2016 to 06/2017 are 

planned:  one before, one during and one after taking part in the program (figure 4). The experimental 

group (EG) fills in a questionnaire in all of the three periods. In addition, teachers and students of the 

experimental group get interviewed in the second and third survey period. The control group (CG) 

gets the same questionnaire as the experimental group in all the three survey periods, but the control 

group will not be interviewed. If the control group and the experimental group show the same results 

at all of the three times of measurement, it is not possible to attribute any influence on the view on 

mathematics to the Math.Researcher program. 

The questionnaires of the pilot study were shortened with the help of factor analysis and expert 

ratings. Items that were rated clearly by the experts, items with loadings exceeding ,39 and some 

June 2017

EG: Questionnaire, Interview CG: Questionnaire

October 2016

EG: Questionnaire, Interview CG: Questionnaire

February 2016

EG: Questionnaire CG: Questionnaire

Math.Researcher Activities 

 

Math.Researcher Activities 

 



items of special interest stayed in the questionnaires. For example, the students’ questionnaire had 79 

content-related questions in the pilot study. Their questionnaire in the main study only has 29 content-

related questions.   

The next step is the second survey period in October 2016. First comparisons to the results of the first 

survey period and further details of the pilot study will be presented at CERME 10 in Dublin. 
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Early career primary school teachers in the UK enter a varied and complex situation in terms of 

professional development opportunities and support for their ongoing career progression as teachers 

of mathematics. Literature suggests that the professional development a teacher receives impacts on 

both their subject knowledge for teaching and their beliefs and attitudes to the subject. This multiple 

case study looks to fill gaps in the research undertaken in this area through detailed analysis of the 

personal perspectives of the participants over a two year period. This paper reports on the initial 

findings of a comparative analysis of the trajectory of two teachers to date. These teachers were in 

seemingly similar contexts for their first year of teaching, yet had very different experiences and held 

very different perspectives on their development.   

Keywords: Teacher characteristics, professional development, elementary school mathematics.  

Introduction 

Students start a primary teacher education course in England with a range of qualifications in 

mathematics, a range of experiences in school mathematics and a range of attitudes and beliefs about 

the subject. During the course student teachers develop their subject and pedagogical knowledge and 

gain experience in mathematics teaching. They then enter a complex and changeable situation in 

schools in terms of provision for their ongoing development (Advisory Committee on Mathematics 

Education, 2013). Using a multiple case study approach, the aim of this study is to gain a deeper 

understanding of how the effectiveness of early career primary school teachers’ mathematics teaching 

develops and what impacts on this, with a particular focus on each teacher’s own perspective.  

Theoretical background 

The notion of effectiveness as applied to mathematics teaching is complex and ideas vary about what 

this looks like and even what its impact should be (Cai, 2007). Although generally agreed that 

teaching can only be considered effective if there is an impact on those being taught, i.e. effective 

teaching leads to effective learning and gains in understanding (Bryan, Wang, Perry, Wong, & Cai, 

2007), the notion of ‘understanding’ is complex. Skemp (1976) made a clear distinction between 

instrumental understanding, simply knowing rules and procedures at a shallow level, and relational 

understanding which enables pupils to build conceptual schemas. Most mathematics educators agree 

that this second type of understanding is the most desirable and teachers internationally agree that an 

indicator of mathematical understanding is that pupils can use this understanding to problem solve 

flexibly in a range of situations (Byran et al., 2007). The significance of understanding the connected 

nature of mathematics is very apparent (e.g. Askew, Brown, Rhodes, Johnson, & Wiliam, 1997) and 

is consistent with the notion of relational understanding. The concept of effective learning in 

mathematics being based on this type of understanding within the context of appropriate intellectual 

challenge is endorsed by current policy makers and teacher inspection systems in the UK (Department 

for Education (DfE), 2013; Ofsted, 2012) and is the definition used in this study. 



The literature suggests that teachers’ effectiveness is impacted by their subject knowledge and by 

affective dispositions including beliefs, attitudes, motivations and emotions.  Definition of these 

constructs are debated in the literature and indeed there are a range of ideas as to how they overlap 

and directions of influence (Lewis 2016). In agreement with Hannula (2011) I consider beliefs are 

both cognitively and affectively situated. As a starting point for discussions of attitude and emotion, 

I am adopting the three dimensional model of attitude from Di Martio and Zan (2010): emotional 

disposition towards mathematics, vision of mathematics (relational/instrumental) and perceived 

competence in mathematics. 

Many studies, e.g. Ernest (1989) and Askew et al. (1997), have looked at teachers’ beliefs about the 

nature of mathematics and the impact these beliefs have on their teaching. Ernest (1989), for example, 

argues the most effective teachers see mathematics as a dynamic, creative, problem solving subject 

and adopt a ‘Facilitator’ teaching approach.  

Teachers’ attitudes to the subject, including their emotional disposition, also impact on effectiveness. 

Particularly in primary teaching, teachers and student teachers find themselves teaching subjects that 

they have not necessarily enjoyed or been particularly successful at learning themselves. Many feel 

insecure with their subject knowledge in mathematics and recount their experience of mathematics at 

school as a subject that caused difficulties and even “real emotional turbulence” (Brown, 2005 p. 21). 

For many teachers therefore, mathematics is linked with negative emotions, particularly anxiety, and 

this can impact on their wider attitudes to it. It seems that teachers even protect pupils from 

mathematics and, in seeking to simplify it, emphasise the step by step procedures that are likely to 

lead pupils into developing instrumental understanding and potentially negative attitudes (Hodgen & 

Askew, 2007), reducing their effectiveness.  

A further influence on the effectiveness of teaching of mathematics is subject knowledge. Indeed, 

evidence suggests that the impact of beliefs and attitudes and subject knowledge are interdependent 

(Askew et al., 1997). Most recent research on teachers’ subject knowledge for mathematics uses 

Shulman’s (1986; 1987) seminal papers as a starting point. Others have applied his ideas to 

mathematics teaching, debated which aspects are most essential and relevant, and sought to measure 

or evaluate them. Ball, Thames & Phelps (2008) argue that there is knowledge that is specific to 

teachers of mathematics and that might have an identifiable impact on the effectiveness of their 

teaching; Specialised Content Knowledge. This includes, for example, the understanding needed to 

be able to explain procedures, to analyse errors and strategies, and to consider appropriate examples. 

Baumert et al. (2010) conclude that pedagogical content knowledge (PCK) makes the greatest 

contribution to pupil progress, but weaknesses in mathematical content knowledge are not offset by 

greater PCK. Askew et al. (1997) found that it was not the formal qualifications or the amount of 

subject knowledge that the teachers had which was significant in the effectiveness of their teaching, 

but rather the connectedness of their subject knowledge “in terms of the depth and multi-faceted 

nature” of the meanings and uses of concepts in mathematics (p. 69). Other authors highlight the 

importance of pupil voice and the ability of the teacher to choreograph classroom discourse as key 

characteristics of effective teaching in mathematics (e.g. Schoenfeld, 2013), and Barwell’s (2013) 

discursive psychology perspective emphasises that knowledge is contextual and can be changed or 

reconstructed accordingly.  There is much critiquing of Shulman’s and Ball’s ideas but there seems 



to be general agreement that the subject knowledge needed for effective teaching goes further than 

just having a strong conceptual knowledge of the subject being taught.   

There is considerable evidence that a teacher’s depth of reflection and their beliefs and attitudes 

towards mathematics are a crucial influence over their trajectory of development (Di Martino & Zan, 

2010; Turner, 2008). Hodgen and Askew (2007) and Schoenfeld (2013) suggest that the development 

of some teachers is hindered by their linking of mathematics with emotion and that, for some teachers, 

professional development activities and goals should be much more about changes in their beliefs 

and attitudes than about improving their subject knowledge.  

Teachers’ work is within a social context, (Levine, 2010), and this can have a significant impact on 

the nature of a teacher’s professional development. The community within the school might have a 

range of different foci and agendas and there seems to be a wide variation in practice between schools. 

The very structured collaborative approach to teacher development in China seems high effective 

although dependent on the considerable time given to teachers to discuss, prepare and analyse their 

work (Paine & Ma, 1993). In contrast Ball, Ben-Peretz &Cohen (2014) consider that in the US most 

teachers work in isolation and the potential benefits of sharing good practice are lost. In England, 

although the need for quality on-going professional development opportunities for primary teachers 

is recognised and highlighted by Ofsted (2012), the current context is of variable provision in formal 

professional development (ACME, 2013).   

In summary, the literature suggests that a teacher’s trajectory as a teacher of mathematics is influenced 

by the interaction of their beliefs and attitudes, their subject knowledge and the professional 

development they receive, through both formal education opportunities and personal reflection, and 

these factors therefore influence the effectiveness of their teaching and the effectiveness of their 

pupils’ learning. My study sits within this theoretical framework and seeks to extend the existing 

literature particularly though highlighting teachers’ own perspectives on this process.   

Methodology 

A multiple case study approach is being employed to follow the trajectories of a small sample of 

teachers as they progress into their first two years as a qualified teacher. Four participants were chosen 

for the pilot study, two with mathematics qualifications beyond the minimum required for primary 

school teachers in England.  An initial interview at the end of their one year postgraduate teaching 

course focused on their relationship with, and attitude to, mathematics and their progress in teaching 

the subject as a student teacher. To facilitate discussion, Lewis’s (2016) idea of a graphic display was 

adopted; participants were asked to draw and explain their relationship with mathematics over time. 

This gave insights into participants’ attitudes to mathematics and their perspectives as learners of the 

subject as well as in their student teacher role. Participants were able to reflect on how their 

relationship with the subject influenced their current teaching approaches. Twice yearly interviews, 

including further graphing at the end of each year, and discussion of documentation related to their 

progress as early career teachers, such as formal observation feedback, provide evidence of their 

ongoing development as teachers of mathematics. Interview questions have been designed to probe 

about the participants’ beliefs, attitudes and subject knowledge for teaching mathematics, what they 

perceive to be the characteristics of effective teachers of mathematics and their perspectives on their 

development as teachers of the subject. Within each interview they also describe two particular 



lessons: their chosen ‘best’ and ‘most challenging’ lessons since the previous interview, providing 

insights into what they consider to be effective and ineffective teaching and their subject knowledge. 

In addition, they keep records of their professional development in teaching mathematics.  

To begin to analyse the data, a mind map has been drawn of each data collection point for each 

participant. The mind map contains evidence of the participants’ changing context and development 

as a teacher of mathematics, including both factual and non-factual information, and also the 

participant’s interpretation and my interpretation of this evidence. The mind maps allow for a 

thematic approach, enabling identification of concepts and themes such as ‘awareness of self as a 

mathematician’ and ‘priorities in teaching mathematics’. In regard to their relationship with 

mathematics and their development as teachers of the subject, the participants have stories to tell and 

thus narrative analysis techniques are being used to support analysis of these stories. Whilst these 

techniques have enabled useful analysis of the early findings, the next stage is to further research and 

develop these analysis methods so that data can be analysed increasingly effectively and efficiently.  

Results and discussion 

In this paper the focus is on the early findings of a comparative analysis of the trajectory in the first 

year of the study of two of the teachers, Gina and Rama (pseudonyms), who in their first year as 

qualified teachers were in seemingly similar contexts: they both taught children aged 5-6 years in 

schools with a two class entry, working alongside more experienced colleagues and teaching 

mathematics to their own, mixed attainment, classes. Rama has a stronger mathematics background 

and also chose to study a mathematics specialism as part of the teaching course, but both students 

achieved the highest teaching course grade in all areas of the Teachers’ Standards (DfE, 2011). In 

their interviews, both were able to identify many ways in which they had evolved as teachers of 

mathematics to date, but they answered questions in ways that revealed very different perspectives 

on their development. In addition, their professional development records indicated that they received 

very different opportunities and approaches to their professional development. This raises questions 

about why these are so different and the extent to which this is school dependent or dependent on the 

approach and philosophy of the teachers themselves. 

Descriptions of each participant’s relationship with mathematics and how this had evolved over time 

revealed interesting and complex relationships (Figure 1) and it was clear that past experiences 

impacted their current thinking. Whilst the graphs drawn are not directly comparable as the 

interpretation of the vertical scale was left open, the trajectories illustrated and discussion of these 

provide some scope for comparison. The two peaks in Gina’s relationship with mathematics indicate 

two different perceived aspects of success in mathematics.  Firstly she recalls being successful in the 

subject in Year 9 (aged 13-14) when she felt she responded well to the high expectations her teachers 

had of her. The second period of success, during the teaching course, was due to her own development 

of the conceptual understanding that the literature suggests is essential for learners to gain for long 

term, secure understanding of mathematics. This enabled her to reflect on her previous period of 

‘success’ which she then realised was based on superficial learning:  

   Gina: I could do the methods, but I didn’t understand them.   



       

Figure 1: Gina and Rama’s relationship with mathematics, drawn at end of teaching course  

Gina’s personal experience seems to have given her a particular focus in her own teaching of 

mathematics, particularly how strategies she is aiming to use in her teaching could prevent the 

children taking the path of superficial learning that she had followed.  Discussing how she developed 

her teaching in her first few months as a qualified teacher, for example, she identified the use of 

representations as significant and something that she perceived as missing in her own learning: 

Gina: And the pictorial things, definitely.  I don’t think I’ve ever done that as a maths learner myself 

and I think maybe if I had it would have been much more easy.   

Rama’s mathematical background also seems to have impacted on her priorities in teaching 

mathematics. Although she finished her studies with a degree where she used mathematics, she 

finished primary school not enjoying the subject and lacking in confidence. She seems to have been 

a shy and hesitant learner, fearful of getting the wrong answer in a subject she saw as right or wrong. 

At secondary school she was initially placed in lower sets but talked with great enthusiasm about her 

Year 11 class (aged 15/16), a top set, where the environment of the classroom was such that she felt 

she could make mistakes without fear. She described too a change at this point from memorising how 

to do certain methods to taking ownership of her learning and finding her own ways of solving 

problems. Priorities identified by Rama in her teaching include the importance of children enjoying 

mathematics alongside gaining conceptual understanding, both aspects that for her were missing until 

the later stages of her schooling.   

It seems that Gina and Rama entered two very different teaching communities with different agendas 

which also impacted on the nature of their professional development (Levine, 2010), and graphs 

drawn at the end of their first year of teaching revealed very different perspectives on their year (see 

Figure 2). Rama’s saw her journey as a teacher of mathematics as a smooth upward trend, with 

occasional dips when she taught poorer lessons. Whilst having few formal professional development 

opportunities, she indicated that she is confident in her own subject knowledge and in independently 

planning and teaching the subject. Gina described a much more structured and intensive programme 

with regards to the support she received. However, her graph illustrates her perspective that she has 

had a sometimes difficult year and narrative analysis revealed, interestingly, that the intense 

involvement of her school in her professional development seems to have led to a crisis in her 

confidence and a turbulent second half of her first year of teaching. 



    

Figure 2: Gina and Rama’s relationship with mathematics during their first year of teaching 

This analysis highlights the emotional impact on Gina of the series of intervention events that 

followed on from a formal observation of her teaching that she labelled several times as a ‘disaster’, 

and then her subsequent recovery. In her story particular emphasis is evident of the impact on both 

the perceived competence and emotional disposition aspects of her attitude (Di Martino and Zan, 

2010), with a consequent impact on her confidence in her ability to teach mathematics: 

 Gina: It seemed no matter what I was doing to change, I was still getting negative feedback and it 

was disheartening. There was a big period of time when I literally dreaded every single lesson, 

because you just think “What could happen? I don’t know what I’m doing” 

The records of professional development kept by Gina and Rama over the year confirm that Rama’s 

in school support has been much more informal and she places a high priority on targets she generally 

sets for herself, seeking to improve the quality of her teaching through a reflective approach (Turner, 

2008).  In contrast to Gina’s record of events, her record is a series of targets. Contrasts in their 

priorities in planning and teaching of mathematics, and indications of their subject knowledge have 

been evident through different ideas about the characteristics of effective teachers and descriptions 

of their best and most challenging lessons. It seems that both teachers are seeking to teach with a 

relational approach, with Rama at this stage in a stronger position regarding subject knowledge. It is 

interesting that end of year assessment information indicates that children in both Rama and Gina’s 

classes progressed well in their mathematical understanding over the year; this seems to have 

contributed to Gina finishing the year in a more confident frame of mind.  

Conclusion 

The findings of these case studies to date confirm my analysis of the literature in that there are two 

related and interwoven, but distinct, categories of factors that might influence an early career 

teacher’s trajectory in relation to the effectiveness of their mathematics teaching - those that are 

related to the teacher themselves, in terms of beliefs, attitudes and subject knowledge and those that 

are related to their teaching context. Gina’s experience during her first year of teaching provides a 

particularly interesting example of professional development that impacts in complex ways on beliefs 

and attitudes to the subject. Although it is too early to draw more than very tentative conclusions, it 

is interesting to ponder to what extent Gina and Rama’s trajectories would have been different had 

they been in one another’s school, and this leads to potential implications for initial teacher education.  

These case studies align with current professional documentation (ACME, 2013) to suggest that there 

is a lack of uniformity in teachers’ professional development experiences despite there being systems 

in place in the UK promoting uniformity. The existence of these issues has implications for the 



preparation of student teachers in Initial Teacher Education (ITE) and suggest that ITE providers 

could seek to more explicitly discuss differences and similarities in primary school approaches to 

teacher development and further strengthen their policies of students gaining experience in a range 

of contrasting placements, within which they can not only participate in whole school professional 

development events, but also talk with teachers about their development experiences.  

References 

Advisory Committee on Mathematics Education. (2013). Empowering teachers: success for learners. 

London: ACME. Retrieved from http://www.acme-uk.org/media/14054/acmepdreport2013.pdf 

Askew, M., Brown, M., Rhodes, V., Johnson, D., & Wiliam, D. (1997). Effective teachers of 

numeracy: Report of a study carried out for the Teacher Training Agency 1995-96, by the School 

of Education, King's College London. London: King's College London. 

Ball, D. L., Ben-Peretz, M., & Cohen, R. B. (2014). Records of practice and the development of 

collective professional knowledge. British Journal of Educational Studies, 62(3), 317-335. 

doi:10.1080/00071005.2014.959466. 

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching what makes it 

special? Journal of Teacher Education, 59(5), 389-407. doi:10.1177/0022487108324554 

Barwell, R. (2013). Discursive psychology as an alternative perspective on mathematics teacher 

knowledge. ZDM, 45(4), 595-606. doi:10.1007/s11858-013-0508-4 

Baumert, J. et al. (2010). Teachers' mathematical knowledge, cognitive activation in the classroom, 

and student progress. American Educational Research Journal, 47(1), 133-180. 

doi:10.3102/0002831209345157 

Brown, T. (2005). The truth of initial training experience in mathematics for primary teachers. 

Proceedings of the British Society for Research into Learning Mathematics, 25(2), 19-24. 

Retrieved from http://www.bsrlm.org.uk/publications/proceedings-of-day-conference/ 

Bryan, C. A., Wang, T., Perry, B., Wong, N., & Cai, J. (2007). Comparison and contrast: Similarities 

and differences of teachers’ views of effective mathematics teaching and learning from four 

regions. ZDM, 39(4), 329-340. doi:10.1007/s11858-007-0035-2 

Cai, J. (2007). What is effective mathematics teaching? A study of teachers from Australia, Mainland 

China, Hong Kong SAR, and the United States. ZDM, 39(4), 265-270. doi:10.1007/s11858-007-

0029-0 

Department for Education. (2011). Teachers' standards. London: DfE. Retrieved from 

https://www.gov.uk/government/publications/teachers-standards 

Department for Education. (2013). Mathematics Programmes of Study: Key stages 1 and 2. National 

Curriculum in England. London: DfE. Retrieved from  

https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-

programmes-of-study 

Di Martino, P., & Zan, R. (2010). ‘Me and maths’: Towards a definition of attitude grounded on 

students’ narratives. Journal of Mathematics Teacher Education, 13(1), 27-48. 

doi:10.1007/s10857-009-9134-z. 



Ernest, P. (1989). Mathematics teaching. New York; London: Falmer. 

Hannula, M. S. (2011). The structure and dynamics of affect in mathematical thinking and learning. 

In M. Pytlak, E. Swoboda, & T. Rowland (Eds.) Proceedings of the Seventh Congress of the 

European Mathematical Society for Research in Mathematics Education (pp. 34–60). Rzeszów, 

Poland: University of Rzeszów and ERME. 

Hodgen, J., & Askew, M. (2007). Emotion, identity and teacher learning: Becoming a primary 

mathematics teacher. Oxford Review of Education 33(4), 469-487. doi: 

10.1080/03054980701451090 

Levine, T. (2010). Tools for the study and design of collaborative teacher learning: The affordances 

of different conceptions of teacher community and activity theory. Teacher Education Quarterly, 

37(1), 109-130. Retrieved from http://www.jstor.org/stable/23479301 

Lewis, G. (2016). Disaffection with School Mathematics. Rotterdam: Sense. 

Ofsted. (2012). Mathematics: Made to measure. Manchester: Ofsted. Retrieved from 

https://www.gov.uk/government/publications/mathematics-made-to-measure 

Paine, L., & Ma, L. (1993). Teachers working together: A dialogue on organizational and cultural 

perspectives of Chinese teachers. International Journal of Educational Research, 19(8), 675-697. 

doi:10.1016/0883-0355(93)90009-9 

Rowland, T., & Turner, F. (2008). How shall we talk about "subject knowledge" for mathematics 

teaching? Proceedings of the British Society for Research into Learning Mathematics, 28(2), 91-

96. Retrieved from http://www.bsrlm.org.uk/publications/proceedings-of-day-conference/ 

Schoenfeld, A. H. (2013). Classroom observations in theory and practice. ZDM, 45(4), 607-621. 

doi:10.1007/s11858-012-0483-1 

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 

15(2), 4-14. Retrieved from http://journals.sagepub.com/home/edr 

Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational 

Review, 57(1), 1-22. Retrieved from http://hepg.org/her-home/home 

Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics 

Teaching, 77, 20-26. 

Turner, F. (2008). Growth in teacher knowledge; individual reflection and community participation. 

Proceedings of the British Society for Research into Learning Mathematics, 28(2), 109-114. 

Retrieved from http://www.bsrlm.org.uk/publications/proceedings-of-day-conference/ 



A theoretical framework for analyzing training situations in 

mathematics teacher education 

Claire Guille-Biel Winder1 and Frédérick Tempier2 

1COPIRELEM, CAFEP-ESPE de Nice Université de Nice, France; claire.winder@unice.fr 

2COPIRELEM, LDAR Université de Cergy-Pontoise, France; frederick.tempier@u-cergy.fr 

The thoughts on the primary schoolteacher training have led to the production of many resources 

for primary schoolteachers. Faces of the abundance of such documents, teacher educators need 

some tools to identify the knowledge potentially at stake in training situations and to allow them to 

implement such situations according to their own objectives and context. We present a five-level 

analysis framework that characterizes the training tasks, taking account of the activities induced by 

the task, according to the expected posture of the prospective teacher, to the type of the knowledge 

at stake and to possible degrees of decontextualization. We illustrate this analysis framework by 

presenting an example of a training scenario based on the principle of role-play. 

Keywords: Teacher education, professional development, primary education, knowledge for 

teaching, analysis framework. 

Introduction 

The research about primary schoolteacher education in mathematics and professional development 

has led to the production of many resources for educators. In France, the COPIRELEM1 group 

produced many of them. These resources provide “training situations” based on various training 

strategies (Houdement & Kuzniak, 1996), and are generally accompanied with information about 

their implementation (phases, steps, instructions, elements of institutionalisation) with regard to the 

stakes of the training. But their quality does not guarantee an accurate appropriation by teacher 

educators. Our questioning is: how is it possible to help teacher educators to exploit any “training 

situations” in a relevant way, according to their objectives? 

The research literature usually provides studies about knowledge for teaching, teacher conceptions, 

and their evolution (Shulman, 1986; Houdement & Kuzniak, 1996; Ball, Thames, & Phelps, 2008). 

Other studies present one training situation, and generally focus on its effect on the prospective 

teachers. For example Horoks and Grugeon (2015) “analyse the contents and methods of an 

initiation course in research in mathematics education, and […] how it can influence the beginner 

teachers’ practises” (p.2811). To our knowledge, no study focuses on the characteristics of training 

situations nor provides specific framework in order to analyse any training situation. This led us to 

develop an analysis framework for training situations. The paper presents this COPIRELEM’s work 

in progress. 

                                                 

1 The COPIRELEM is a commission dedicated to the education to the primary school. It is stemming from the network 

of IREM (French institute of research on mathematical education). 



Presentation of the analysis framework 

We define a training situation as a situation that involves prospective teachers (students, pre-service 

or in-service teachers) and educators within an institution of teacher education. It is composed of a 

set of tasks that could be conducted by a teacher educator. We take into account all the tasks 

proposed by the teacher educator. From a training situation, the educator may elaborate a training 

scenario that is to say a set of chronologically organized tasks chosen among all the tasks that 

constitute the training situation. We voluntarily distinguish situations from “scenarios” because we 

intend to underline the dynamic aspect of the scenario.  

In response to each task of a training situation, prospective teachers develop an activity that 

corresponds to “what [they engage] in during the completion of the task” (Rogalski, 2013, p.4). We 

distinguish five different types of activity: “mathematical activity” (doing maths during the 

completion of a mathematical task), “mathematical analysis activity” (analysing the maths at stake 

in a mathematical task), “didactical and/or pedagogical activity” (highlighting didactical and/or 

pedagogical choices related to the mathematical task), “didactical and/or pedagogical analysis 

activity” (analysing didactical and/or pedagogical choices related to the mathematical task), 

“problematisation activity” (identifying and investigating professional issues by mobilizing 

mathematical, didactical and pedagogical concepts). For each type of activity we take into account 

three dimensions (Fig. 1): the type of knowledge at stake; the degree of decontextualization of this 

knowledge; the posture of the prospective teachers expected by the teacher educator. These 

dimensions are specified in the next sections. 

 

Figure 1: Three dimensions for characterizing a type of activity 

Three types of knowledge 

We rely on the three types of knowledge for teaching mathematics identified by Houdement and 

Kuzniak (1996): mathematical knowledge, pedagogical knowledge and didactical knowledge. 

“Mathematical knowledge corresponds to mathematics that a teacher needs to know in order to 

prepare, regulate and evaluate his lesson and his students” (Houdement, 2013, p.12). It “includes 

and specifies the content knowledge” identified by Shulman (1986). It roughly can be related to 

Subject Matter Knowledge (Ball and al., 2008), and the specific didactical nature of mathematical 

knowledge can be identified to the Specialized Content Knowledge (SCK). According to 

(Houdement, 2013), didactical knowledge is linked to the mathematical content and fed by research 

in the field of mathematics didactics. It corresponds to analysis of teaching and learning 

phenomenon and to propositions of engineering. Therefore it can be associated with at least two 

categories (Ball and al., 2008): Knowledge of Content and Students (KCS) and Knowledge of 

Content and Teaching (KCT).  



Pedagogical knowledge2 is characterised as “knowledge of experience” (Portugais, 1995). It is 

related to teaching and learning conceptions and to the organisation and management of the class. It 

is less dependent of the mathematical content than other types of knowledge. It is important to take 

this knowledge into account because schoolteachers deal with various school subjects. 

Three degrees of decontextualization 

Brousseau (1997) and Douady (1985) identify three degrees of decontextualization of a 

mathematical knowledge: implicitly mobilized, explicitly mobilized in context or decontextualized 

(to become available in other contexts). We extend this notion to didactical and pedagogical 

knowledge. A mathematical knowledge is (implicitly) mobilized in context (in act) if it is used as 

tool (Douady, 1985) in a mathematical task. This task can be carried out: what is asked is effectively 

achieved (manipulation, elaboration and writing a solution for example). But the task can only be 

evocated: it is mentally achieved. A mathematical knowledge is explicit in context if its use (as tool) 

is identified and formulated. At least, a mathematical knowledge is decontextualized if it is 

identified as an object of learning: a status of object is given (by the educator) to the concept used 

previously as tool, usually during an institutionalisation phase3 (Brousseau, 1997). The 

didactical/pedagogical knowledge is mobilized in context when the didactical/pedagogical choices 

are made for the considered mathematical task. It is explicit in context during the analysis about the 

consequences of these choices. At least, it is decontextualized when the underlying 

didactical/pedagogical concepts are highlighted. 

Four postures of the prospective teachers 

In conjunction with the teacher trainer’s relationship to the prospective teachers identified by Sayac 

(2008), we define four specific postures of prospective teachers, which are expected by the educator 

during a training situation4. Prospective teachers are in a posture of student relatively to the 

mathematical knowledge when they have to perform mathematical activity or when they are 

concerned with the mathematical knowledge of this activity. They are in a student/teacher posture 

when they investigate mathematical tasks for students or students’ works, or when they analyse the 

conditions of implementation of a task in the classroom. They are in a teacher posture when 

entering in a broader questioning on classroom practices and issues of mathematical learning. 

Finally, they are in a practitioner/researcher posture when they problematize a professional issue 

related to mathematical learning or teaching.  

Five study levels 

In order to analyse a training situation, we define five study levels. To each level corresponds a type 

of activity, that induces (implicitly or explicitly) a posture of the prospective teacher (expected by 

                                                 

2 According to (Houdement, 2013), Ball’s, Phelps’ and Thames’ typology doesn’t seem to take into account this type of 

knowledge. 

3 In institutionalisation phase (Brousseau 1997), the teacher gives a cultural (mathematical) status to some knowledge 

emerging from students’ actions during the situation. 

4 We notice that prospective teachers are not always aware of these postures. 



the educator), and that involves different types of knowledge in a certain degree of 

decontextualization (see Fig. 2). 

  

 

Figure 2: Characteristics of the five study levels 

Level 0. A task may induce a mathematical activity. This activity can be performed or evocated 

(mentally performed). The mathematical knowledge is mobilized (implicitly or explicitly) in 

context. The prospective teachers are in a posture of student (relatively to the mathematical 

knowledge). 

Level 1. A task may induce a mathematical analysis activity related to the activity of level 0 when it 

highlights decontextualized mathematical knowledge and the prospective teachers are in a posture 

of (learning mathematics) student. In this task, the didactical and/or pedagogical knowledge can be 

implicitly mobilized in context and then initiates the change toward a student/teacher posture of 

prospective teachers.  

Level 2. A task may induce a didactical and/or pedagogical activity related to the activity of level 0 

when it corresponds to the analysis of implementation conditions - actual or anticipated only of the 

mathematical task. The didactical and pedagogical knowledge is explicit in context. The prospective 

teachers are in a student/teacher posture. 

Level 3. A task may induce a didactical and/or pedagogical analysis activity related to the activity of 

level 2 when it is for example a questioning on classroom practice (specific learning tasks, 

professional actions...) or on issues of mathematical learning for one or several contents 

(curriculum, progressions...), or even a highlighting of didactical analysis concepts (didactic 

situation phases, types of tasks...). This analysis leads to the decontextualization of didactical and/or 

pedagogical knowledge. The prospective teachers are in a posture of teacher. 

Level 4. A task may induce a problematisation activity when it corresponds to the problematisation 

of professional issues related to classroom practices, learning issues and/or didactical analysis tools. 



The prospective teachers are in a posture of practitioner/researcher, especially when it comes to 

developing an analysis methodology of this issue and to infer results.  

Each study level is based on the study of the activity of previous levels and involves some 

mathematical, didactical and/or pedagogical knowledge. The change from study level n to study 

level n + 1 is linked either to a change of the prospective teachers’ posture or to a change of degree 

of decontextualization for at least one type of knowledge (from implicitly mobilized in context to 

explicit in context, from explicit in context to decontextualized). But the different activities induced 

by a training situation don’t usually appear in a chronological order (from level 0 to level 4). For 

examples, see the analysis of various training situations developed in French context by the 

COPIRELEM group (Guille-Biel Winder, Petitfour, Masselot & Girmens, 2015; Bueno-Ravel and 

al., 2017). We think that the analysis could be extended to situations based on different training 

strategies. That is why we present here the analysis of a training scenario based on the principle of 

role-play developed in an international context (Lajoie and Pallascio, 2001; Lajoie and Maheux, 

2013; Lajoie, accepted).  

An example of use of the analysis framework 

Definition of role-play 

As Lajoie and Pallascio (2001) state “role-play involves staging a problematic situation with 

characters taking roles”. It is used over many years in mathematics education course in UQAM 

(University of Québec in Montréal) and is organized as follows: 

First, the ‘theme’ on which students will need to role-play is introduced (introduction time). 

Second, students then have about 30 minutes to prepare in small groups (preparation time). Third 

comes the play itself (play time), where students chosen by the educator come in front of the 

classroom and improvise a teacher-student(s) interaction (sometimes, like in the case reported 

here, involving the whole class). Finally, we have a whole classroom discussion on the play 

(discussion time). (Lajoie, accepted)  

We designed a role-play on the teaching of proportions based on a problem from a textbook. We use 

the analysis framework to illustrate an example of analysis aimed at highlight the potential of this 

situation. 

An example of role-play 

The role-play presented below is intended for pre-service schoolteacher education. We describe the 

different phases. 

Introduction time. The educator distributes to prospective teachers an excerpt from a fifth grade (10-

11 year old pupils) handbook presenting a problem of proportions (Fig. 3), and various productions 

of pupils. The teaching issue announced by the educator is the following: to manage a class 

discussion about the pupils’ strategies and about their ideas and solutions, in order to share them in 

the class community and to determine their validity and efficiency. 

Preparation time. The prospective teachers have to prepare the discussion class about the pupils’ 

strategies. 



Play time. At the end of the preparation time, the educator chooses prospective teachers to play the 

game: some of them play pupils, one of them plays the teacher, while the others are watching the 

discussion class and taking notes. 

Discussion time. The debate intends to highlight and to analyse the choices of the « teacher » during 

the play game: what worked well during the implementation of the discussion class? What was 

difficult? What seemed to be important? What alternative implementations could be realized? 

Institutionalisation time5. The educator institutionalizes the knowledge at stake: he generalizes 

some elements about how to manage a discussion class or about proportion problems solving. 

 

Figure 3: A proportion problem  

Analysis of this role-play 

The initiating task is a professional situation and corresponds to a level 2 activity: the prospective 

teachers are initially in a student/teacher posture. But they will need « to go down » to a student 

posture and « to go up » to a teacher posture during the phases of the scenario. The preparation time 

of the discussion class leads the activity of the prospective teachers “to go back and forth” to the 

study levels 0, 1 and 2. The problem solving corresponds to a level 0 activity and the mathematical 

analysis of the problem solving to a level 1 activity. Moreover there are various strategies to solve 

this proportion problem. Preparing the discussion class of the pupils’ strategies (level 2 activity) 

hence needs to analyse and rank them (from the least to the most elaborate). This analysis 

corresponds to a level 2 activity. The prospective teachers don’t have the same activity during the 

playtime. The study level is different according to the role to play: mostly levels 0 and 1 for the 

students’ roles and level 2 for the teacher’s role. The discussion time corresponds to a level 2 

activity when the prospective teachers analyse how the discussion class has been managed. But it 

can also correspond to lower levels activities, when they discuss about pupils’ strategies, 

difficulties, mistakes and their exploitation during the discussion class. Various institutionalisations 

can be considered, according to the knowledge that was developed at different study levels. The 

institutionalized elements will be more or less developed according to the teacher educator’s 

objectives and progression, the prospective teachers’ knowledge, etc. Here are some propositions 

organized in ascending order of study levels. The teacher educator can institutionalize some 

                                                 

5 We add this new time to the four ones proposed by Lajoie and Pallascio (2001). 



mathematical knowledge at stake (level 1) and related to the proportionality field: various methods 

to solve a proportion problem, mathematical justifications and mathematical theories they are relied 

on. He can situate the proportion problems in the more general category of multiplicative problems, 

or he can explicit some didactical variables usually at stake in proportion problems (level 3). He 

also can identify some difficulties or mistakes revealed by the pupils’ productions as « usual » and 

highlight mistaken conceptions: identification of quantities, choice of an adapted strategy, 

persistence of an « additive model », etc. At least, in regard of the announced objective of the role-

play, the teacher educator also can institutionalize some didactical knowledge, relatively to the 

organization of a discussion class (level 3): formulation and validation in mathematics; teacher’s 

tasks before, during and after the discussion class… 

Conclusion 

The example of role-play situation shows how the analysis framework can be a tool for an a priori 

analysis. Moreover this example shows that the organization of the study levels is not a 

chronological but a hierarchical one: the initiating task can induce an activity of level 0, 1, 2, 3 or 4. 

But the transition to lower levels activity is often necessary. The conceptual maps of the knowledge 

for teaching developed by Houdement and Kuzniak (1996) or by Ball and al. (2008) have a 

descriptive, predictive and prescriptive dimension (Ball & al., 2008, p.405). But beyond their 

interest, (Houdement, 2013, p. 21) stressed the importance of the knowledge reconfiguration in 

connection with the mathematical content. The analysis framework reports how, during a training 

situation, the types of knowledge for mathematics’ teaching are dynamically hinged to one another 

in connection with the mathematical content. The analysis framework allows teacher educators to 

identify the potentialities of a full range of training situations. We intend to extend its use to study 

other types of training situations (for example e-learning situations). By clarifying the stakes of the 

various phases of the implementation, the analysis framework reveals various possible strategies for 

the teacher educator. Thereafter it could be a useful tool for elaborating different training scenarios. 

Hence, the teacher educator should be able to implement situations in a specific context according 

to his objectives and constraints (time and period of training, place in a progression which take into 

account the mathematical, didactical and pedagogical knowledge ever studied…). Besides it is 

possible to consider a sequence of successive scenarios. The analysis framework could also 

highlight various possible “training paths”, which should reveal the educator’s training strategy at a 

more global scale. A perspective is now to study how teacher educators appropriate this framework 

and how it supports their teaching practises.  
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In this paper, we discuss results of a qualitative part of a research project aiming to investigate the 

impact of a professional development course with a specific focus on reflecting of students’ learning 

results on teachers’ beliefs towards teaching and learning of mathematics. We refer briefly to some 

aspects of teachers’ professional development. Afterwards, we discuss teachers’ beliefs as the main 

theoretical construct for our research. Data for this paper about teachers’ beliefs were collected by 

semi-structured interviews with three teachers after the professional development course. Results 

show that teachers report in interviews changes referring to teaching and learning of mathematics 

from a transmission-oriented view to a more constructivist-oriented view. 

Keywords: Beliefs, belief change, professional development, reflecting students’ learning results. 

Introduction 

There is a consensus that university studies and internships are not enough to prepare future teachers 

for all challenges in their professional career (Mayr & Neuweg, 2009). For this reason, professional 

development (PD) is understood as being a key factor for innovating and reforming mathematics 

teaching in school (Garet et al., 2001). However, every change seems to be dependent on specific 

characteristics of PD: Desimone (2009) summed up five key features of high quality teacher PD. She 

described that PD will be effective, if a PD course is content-focused, enables active learning, is 

coherent, has a critical duration and if teachers take part in a PD course collectively. In addition, 

Franke et al. (1998) reported that reflecting students’ learning results makes teachers’ learning 

sustainable. Reflecting students’ learning results means, that teachers collect in distance phases of a 

PD course students’ results when working in a specific learning environment or working on a specific 

task developed in the PD course. Afterwards these students’ learning results were the basis of the 

next face-to-face meeting in the PD course.  

Although research identified several features of PD, in most cases the effectiveness is not clear (Yoon 

et al., 2007). In addition, it is not clear how they influence teachers’ learning. For example, Franke et 

al. (1998) could show that a mix of several characteristics including reflecting students’ learning 

results is effective for teachers’ learning, but they did not focus on reflecting students’ learning results 

as a single variable. In a qualitative design, for example also Strahan (2003) found that teachers 

reflecting on students’ learning results increased students’ achievement on elementary school level. 

In addition, Schorr (2000) showed that students’ achievement increases when teachers completed a 

PD including the analysis of students’ problem solving processes. Like a conclusion, Little et al. 

(2003) state that reflecting students’ learning results has the potential to bring students more explicitly 

into deliberations of teachers. However, more research is needed to understand how teachers learn 

from reflecting students’ learning results and whether it impacts on teachers’ professional competence 

including particularly teachers’ beliefs. 

To investigate the efficiency of reflecting students’ learning results in PD courses on the teachers’ 

knowledge, beliefs or motivation, the study as a whole considers two PD courses with a quasi-



experimental setting. Content, teacher trainer and learning time were mostly the same in both courses. 

However, we integrated reflecting students’ learning results in the first PD course, but not in the 

second. In this paper we will not refer to quantitative results of our research that we reported 

elsewhere (e. g. Hahn, & Eichler, 2016). We further do not refer to differences between the effects of 

the two PD groups, but we emphasize results of a qualitative interview study including three teachers 

of the PD course with reflecting students’ learning results. In these interviews, we primarily refer to 

the teachers’ beliefs concerning the teaching and learning of mathematics. 

Beliefs about teaching and learning of mathematics 

Beliefs can be defined as “psychologically held understandings, premises, or propositions about the 

world that are thought to be true. […] Beliefs might be thought of as lenses that affect one’s view of 

some aspect of the world or as dispositions toward action.” (Philipp, 2007, p. 259).  

For our research a crucial question is whether beliefs could be viewed to be stable or changeable. 

Partly, researchers use stability as a part of their definition of beliefs (Fives & Buehl, 2012; Liljedahl, 

Oesterle, & Bernèche, 2012). In contradiction to that, there are studies which demonstrate belief 

change by a special intervention. For example, Decker, Kunter, and Voss (2015) reported changes 

referring to teaching and learning of preservice teachers and teacher trainees. Liljedahl et al. (2012) 

analyzed related literature and conclude that there is a different meaning of stability in research 

studies. As a result, they propose to avoid stability in the definition of beliefs. For them, belief change 

is a natural process that requires a sufficient extent of time. For this reason, in this research study 

beliefs are described as changeable. 

A further crucial question concerns the definition of the belief object that should be changed by PD. 

Beliefs can refer to a special subdomain of mathematics (Eichler & Erens, 2015), to mathematics 

itself, teaching and learning of mathematics or an overachieving orientation that is independent from 

a subdomain (Staub & Stern, 2002). Beliefs referring to teaching and learning of mathematics can be 

divided into two paradigms: the transmission-oriented and the constructivist-oriented view of 

learning (Fives, Lacatena, and Gerard, 2015). Transmission-oriented beliefs of teaching imply that 

knowledge is directly transmitted from teacher to the learners and learners absorb all information. In 

this case, learners are passive recipients. For this reason, teachers’ role is to prepare all information 

for students to enable an effective storing and an optimal recall. In contradiction, the constructivist-

oriented view of learning reflects the active role of learners as constructers of their own knowledge 

structures. In this case, students learn new information based on their existing knowledge and beliefs 

to enable an integration of information in their mental networks (Decker et al., 2015; Staub & Stern, 

2002). For this reason, teachers take a role as constructor of learning environments that enable 

students to learn self-directed.  Voss, Kleickmann, Kunter, and Hachfeld (2013) proposed evidence 

that these two dimensions are not the endpoints of a continuum. Instead of this, the authors proposed 

to understand these two dimensions as two distinct, negative correlated dimensions. These 

dimensions can be assessed on different scales. For this reason, it is possible that teachers have a high 

extent of both views on teaching and learning of mathematics.    

Based on the definition of beliefs and the two main aspects of beliefs for our research, we primarily 

focus on the following research question: 



Which influence show the PD course with reflecting on students’ learning results on teachers’ 

beliefs referring to teaching and learning of mathematics out of teachers’ perspective? 

Methods 

We regard three groups of teachers in our study as a whole. Two groups of teachers were enrolled in 

a PD course that focused on problem solving and modelling in secondary school. An ongoing task 

for both PD courses was to develop tasks that meet different criteria of problem solving and 

modelling. The first group further was asked to give these tasks to their students and to collect the 

results of students’ work that we call results of students’ learning. These results of students’ learning 

were the basis of the next face-to-face phase of the PD course. Teachers of second group were asked 

to improve problem solving tasks and a third group of teachers did not get any intervention.  

We conducted pre- and posttests to measure the efficiency of the mentioned specific aspect of 

teachers’ PD, i.e. reflecting students’ learning results. Further we conducted interviews with the 

teachers. In this paper we regard three teachers of the first group who took part in the interview session 

voluntarily. The interviews took place about one month after the last meeting of the PD course. In 

semi-structured interviews the teachers were asked to report about their changes towards beliefs of 

teaching and learning of mathematics. All teachers are teachers of upper secondary schools and at the 

age of 40 to 50 and were women. These teachers could be representative for the whole group, because 

it consists of 21 teachers at the mentioned age. In addition, seventeen of these teachers were women. 

We analyzed the interviews with a coding method including deductive and inductive codes (Mayring, 

2015). The deductive codes were based on existing research referring to teaching and learning of 

mathematics considering the transmission-oriented and the constructivist-oriented beliefs. According 

to both types of beliefs, we created codes for teachers’ answers. In this context, we distinguish 

between teachers’ beliefs before and after the professional development course. The distinction is 

based on hints in teachers’ statements which enables us to match beliefs to the appropriate point in 

time. In addition, we analyzed the role of “reflecting students’ learning results” for teachers’ learning 

during the PD course. 

Results   

The results section is structured into three parts. At first, we want to show how teachers’ statements 

are coded according to beliefs about teaching and learning of mathematics. Second, we sum up beliefs 

of the three teachers. And third, the effects of “reflecting students’ learning results” are considered. 

In the interviews teachers were asked to report about their beliefs before and after taking part in the 

professional development course. In particular, they should consider changes in their statements. For 

example, Mrs. B states: 

Mrs. B: […] it has changed that the tasks are different. Students should argue more and I do 

not have to work off stacks of tasks. I can work off all facets more determined and 

I do not have to say that I must work off a model and then practice, practice, practice 

…. 

Mrs. B reported about changes in her beliefs about teaching and learning mathematics. We interpreted 

her statement as follows: At the end of her statement, she mentioned that she now does not have to 

introduce a mathematical model followed by many exercises in the lessons. Furthermore, she reported 



on working off stacks of tasks before the PD course. Both parts of the statement are coded as 

transmission-oriented beliefs, because she emphasized practicing as repetition of information or 

procedures which is represented in stacks of tasks. In addition, the mentioned parts of the statement 

were coded as beliefs at the beginning of PD course, since she reported about changes during the PD 

(see table 1). In the first part of her statement, she considered a change in tasks and argumentation in 

her classroom. She also mentioned that she can work off the mathematical ideas more determined. 

These parts of the statement were coded as constructivist-oriented beliefs, because Mrs. B reported a 

student centered teaching style where students are asked to argue about mathematical concepts and 

to talk about mathematical problems with each other (see student-oriented perspective in teaching in 

table 2). In addition, these parts of the statement were coded as beliefs after taking part in the PD 

course, because in the whole statement Mrs. B reported about changes. In conclusion, the statement 

of Mrs. B shows a belief change from a transmission-oriented view to a constructivist-oriented view 

of teaching. 

The three teachers showed similarities in reporting aspects of a transmission orientation and a 

constructivists orientation. A code that seemed to be crucial for all three teachers, but was not included 

in the quotation of Mrs. B, was expressed by Mrs. C: 

Mrs. C: Students should do more and I have to restrain myself a little bit more. 

We interpret the statement as following: Mrs. C also reported changes in her beliefs. The whole 

statement was coded as constructivist-oriented belief, because she wanted the students to be more 

active in her classroom when they are learning mathematics. In addition, Mrs. C reports on restraining 

herself in lessons. This is in line with the constructivist view, because on this perspective, teachers 

are creators of learning environments and students shall learn self-directed. For this reason, it is 

necessary that teachers shall restrain themselves in lessons. This statement was coded as beliefs after 

taking part in PD course, since “more” indicates that she had other beliefs at the beginning of PD. In 

particular, the beliefs at the beginning compared to those reported in the statement included that Mrs. 

C was more in the center of the lesson and students were more passive which are in line with 

transmission-oriented beliefs. 

The results of the analysis of the three teachers’ beliefs showed that they were transmission-oriented 

before they took part in the PD course. However, they seem to change their beliefs towards a 

constructivist-orientation during the PD course. The teachers also reported existing constructivist-

beliefs they had at the beginning of PD course, but they stated changes towards more constructivist 

beliefs while they reduced the strength of transmission-oriented beliefs. Table 1 shows the results of 

coding for beliefs before teachers take part in the PD course: 

 Mrs. A Mrs. B Mrs. C 

repetition of information (practicing) X X X 

frontal teaching X X X 

exact instruction X X  

teacher is in center of lesson X X X 

Table 1: Predominant beliefs before taking part in PD course (mentioned by teachers) 



Teachers reported in the interviews that they changed their beliefs referring to teaching and learning 

from a teacher-centered perspective to a more constructivist-oriented teaching perspective. The 

following table shows statements of teachers referring to beliefs of teaching and learning of 

mathematics after taking part in the PD course. 

 Mrs. A Mrs. B Mrs. C 

active role of students X X X 

knowledge construction X   

teacher withdrawing in lessons X X X 

students’ discussions are important X  X 

students should analyze own mistakes X  X 

tasks with a meaningful context within real life   X 

cooperative learning (group work, …) X  X 

student-oriented perspective in teaching  X  

pool of teaching methods  X X 

Table 2: Predominant beliefs after taking part in PD course (mentioned by teachers) 

Both tables show different beliefs of teachers before and after the PD. These tables do not imply that 

all teachers had only teacher-centered beliefs at the beginning of the PD. They reported also that they 

had constructivist beliefs. For example, the statement of Mrs. C shows that she has more constructivist 

beliefs about teaching. This does not imply that she has not had constructivist-oriented beliefs at the 

beginning of the PD course. In her statement, Mrs. C only reported about more constructivist-oriented 

beliefs after taking part in PD. In addition, all the coded statements show that they also have 

transmission-oriented beliefs after PD course, but they report to think of teaching with more student-

centered beliefs. Note, both tables only show predominant beliefs of teachers before and after PD. 

For this reason, peripheral beliefs about teaching and learning of mathematics are left out. 

The results about beliefs show changes. For this reason, we want to know how reflection of students’ 

learning results impact on teachers learning. In this context, Mrs. A and Mrs. C state: 

Mrs. A: […] I have learnt a lot about my students and I have also learnt a lot about myself 

and for this reason I have tested some things. 

Mrs. C: I think it was good. The students’ learning results show how other teachers proceed 

in teaching, which approach they use and how they describe. Within this action, 

you could take new ideas that I found in students’ solutions. […]. 

The statements of the three teachers show that “reflecting students learning results” were used to 

reflect the own practice of teaching. In this context, these teachers learnt about characteristics of their 

students and about themselves as teachers. As a consequence, Mrs. A tested some ideas contained in 

the PD course. In addition, the three teachers recognized other teaching styles when they reflected on 

students’ learning results. For this reason, they also reflected about the practice of other teachers and 

their teaching approaches. In particular, they also reflected about their own practice compared to the 



one of others to get new ideas (Mrs. C). These statements are typical for all three teachers. According 

to this, the reflection of teaching style could be understood as one factor that result in changes of 

beliefs about teaching and learning. 

Discussion 

The data from the interviews indicate that the three teachers changed their beliefs from a more 

transmission orientation to a more constructivist orientation of teaching and learning of mathematics. 

This is shown by statements of teachers after taking part in the PD course. The phrases in both tables 

consider the aspects of both beliefs about teaching and beliefs about learning. Based on the analysis 

in the results section, statements of table 1 refer to transmission-oriented beliefs and statements of 

table 2 to constructivist-oriented beliefs (e.g. Fives et al., 2015). In fact, teachers focused on 

constructivist-oriented beliefs, but they still expressed some transmission-oriented beliefs. This is in 

line with research findings of Voss et al. (2013), who supposed that both types of beliefs can co-exist. 

The statement of Mrs. C supports this assumption. Although she expressed transmission-oriented 

beliefs before the PD, she said that students should be more active, which indicates that she has had 

constructivist-oriented beliefs at the beginning of the PD. 

Belief changes in teacher education are also shown in the study of Franke et al. (1998) for teachers 

on primary level who examined a student-centered framework in their PD. In this context, our results 

are similar to those of Franke et al. on secondary level, because we also used reflecting students’ 

learning results to emphasize student-centered teaching. Furthermore, the teachers reported that they 

used students’ solution to reflect their own teaching and to get to know information of other teachers’ 

approaches and also about their students. This is in line with the results of Little et al. (2003), because 

teachers consider the ideas of their students in their deliberations more strongly after taking part in 

the PD course. In addition, belief change caused by reflection is reported by Decker et al. (2015) in 

the way that there is a relationship between the extent of reflection and teachers’ belief change. For 

this reason, it is possible that all teachers of this study changed beliefs because they reflect intensively 

about their own practice. Skott (2015) stated that substantial new experiences are necessary to change 

beliefs. Concerning our research, we hypothesize that the intensive reflection of the own classroom 

practice includes the mentioned new experiences.  

There are some limitations of this research. At first the interviews took place after the whole PD 

course. For this reason, teacher reports about the practice before the PD course can be influenced by 

the experiences of the PD. For a more precise research approach it would have been necessary to 

interview the teachers at the beginning of the PD. Considering the external circumstances in this 

research project, it was not possible to interview teachers, because they took part in PD voluntarily 

and the first meetings last about the whole day. In addition, these qualitative data provide no proof 

for “reflecting students learning results” as a feature of effective PD, but there are hints that beliefs 

can change and teacher reflect their own practice during this part of PD. Furthermore, the teachers of 

the second group were not interviewed. For this reason, it is not possible to indicate whether the 

teachers of the second group also changed their beliefs. In addition, we do not know whether second 

group teachers reflect on their own practice as deep as teachers of the first group.  



Future research 

This part of the whole research project considers qualitative data of the first PD course. Future 

research should use also quantitative data (measured by items of Staub & Stern (2002)) to support the 

results of teachers’ belief change during PD. This could also show whether reflecting students 

learning results is one element that is connected with teachers’ belief change empirically. In addition, 

it is necessary to link the qualitative data analyzed in this paper and the quantitative data which will 

we analyzed in the future. Combination of both resources can show the positive impact of reflecting 

students’ learning results on teachers’ knowledge, beliefs and motivation. 
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The case of one middle school teacher’s change in practice is examined through the lens of “shifting 

frames” from ritual to explorative instruction. These frames are collection of coherent mathematical 

as well as subjectifying (people-related) meta-rules. The teacher, who participated in a year-long PD 

program, started out in a ritual frame and gradually shifted to a more explorative frame. The shift 

was not uniform, and could be seen first in the subjectifying meta-rules, and only later (and very 

partially) in mathematical meta-rules of exploring objects. In addition, newly learned practices were 

partially distorted through the old ritual frame. 

Keywords: Mathematics instruction, professional development, frames, explorative practice. 

 

Classrooms where students engage in explorative mathematical learning produce more robust, 

conceptual learning, and more positive mathematical identities (Schoenfeld, 2014).  Despite these 

findings, teaching in the US and worldwide still provides mostly opportunities for ritual participation, 

where learning is made up of reciting procedures and facts (McCloskey, 2014; Resnick, 2015). Efforts 

at changing mathematical instruction, have shown ritual instruction is difficult to change (e.g. 

Santagata, Kersting, Givvin, & Stigler, 2011). However, the complex processes of change that do 

occur in teachers’ practice, in the context of certain professional development (PD) programs, have 

largely remained obscure, perhaps because of the lack of theoretical frameworks for examining such 

complex processes. In this study, I offer the concept of “frames” for tracking subtle changes in one 

teacher’s practice over a period of a school year.  

Theoretical background 

I take as a starting point Sfard’s (2008) view, that the gist of mathematical activity, both in the 

classroom and over history, is the construction and exploration of “mathematical objects.” These 

discursive objects, like numbers, triangles, and functions are not existing objects in the physical 

world, yet the “metaphor of object” is used by any skilled mathematician to talk about them as though 

they were indeed such physical objects. Mathematical objects can have many realizations, or physical 

symbolic representations. A function, for instance, can be represented as a graph, a table, an algebraic 

expression or a verbal statement. In the process of learning, according to Sfard, students come to see 

all these realizations as signifying one object. Once they do that, they start talking about it as an object 

existing of itself, a process termed “objectification.” 

Within this view, Sfard and Lavie (2005) theorize the process of mathematical learning as moving 

from a ritual, peripheral phase, where activity is first and foremost aimed at pleasing the experts of 

the discourse (e.g. the teacher), to an explorative phase where new mathematical narratives are 

produced by oneself for the sake of the activity itself. In contrast to explorative participation, the 

focus of ritual participation is activity itself, not the mathematical narrative produced by it. Ritual 

participation is often characterized by syntactic mediation, where instead of using mathematical signs 

as signifiers of objects, these signs are manipulated according to prescribed (often memorized) rules. 



Ritual and explorative participation are governed by certain meta-rules or “patterns in the activity of 

the discursants” (Sfard, 2008, p. 201). These rules can be divided into mathematical meta-rules, which 

dictate how mathematical narratives are to be derived from each other (for example, by proof or by 

computation) and subjectifying meta-rules which govern the actions of people (e.g. asking questions, 

giving directions, talking with each other).  To capture the fact that meta-rules have a certain structure 

and coherence, Heyd-Metzuyanim, Munter & Greeno (in review) suggested the term “frames”, 

borrowed from socio-linguistic and socio-cognitive research to describe “a set of expectations an 

individual has about the situation in which she finds herself that affect what she notices and how she 

thinks to act” (Hammer, Elby, Scherr, & Redish, 2005, p. 9). Accordingly, they defined “frames” in 

mathematical classrooms as a set of meta-rules, both mathematical and social, which includes 

appropriate questions, answers, justifications and other discursive actions in a situation of solving a 

mathematical problem or performing a mathematical task. Whereas frames of explorations would be 

sets of meta-rules that cohere around the goal of producing mathematical narratives based on logical 

justifications, ritual frames would be more aligned with goals such as performing a procedure 

accurately according to a prescribed set of steps, and adhering to external authority. 

Method 

The case of Mr. M is taken from a larger study, where we followed 7 teachers and 5 teacher leaders 

throughout 8 months of professional development (PD) during 2014 – 2015. The PD was led by 

Margaret Smith and Victoria Bill from the University of Pittsburgh. It centered on Smith & Stein’s 

(2011) “5 Practices for Orchestrating Productive Mathematics Discussions” and on Accountable 

Talk™ (see http://ifl.pitt.edu/index.php/educator_resources/accountable_talk). Teachers were 

supported via four full-day PD sessions and in-school individual coaching sessions. 

Mr. M was chosen for closer inspection because he showed a steady growth in the “implementation” 

score of the Instructional Quality Assessment tool (Boston, 2012), used in the larger study (Heyd-

Metzuyanim, Smith, Bill, & Resnick, 2016) to score lessons for cognitive demand. Mr. M’s lesson 1 

scored a 1, lesson 2: 2, lesson 3 & 4: 3 (where 4 is highest). Though his lessons never achieved the 

highest level of cognitive demand, in the last two lessons cognitive demand was partially preserved.  

Data collection included four cycles (September, December, February and May), each containing: 1. 

Pre-lesson and post-lesson interviews with the teacher; 2. Lesson recording and students’ worksheets. 

Frames of mathematical instruction were searched in four data categories: 

(1) The potential of the task to engage students with different realizations of mathematical objects 

and with mathematical meta-rules of justification and generalizations. (2) Teacher’s plans as collected 

from the pre-lesson interviews, as well as his post-lesson reflections. In these we looked for evidence 

of mathematical and subjectifying aspects of explorative frames. (3) Students’ work: evidence of 

engagement with different realizations of objects and with connecting between them. Evidence for 

justifications and explanations based on mathematical logic. (4) Whole-classroom discussions: 

evidence for ritual vs. explorative meta-rules. Is there only talk about routines for manipulating 

symbols detached from their meaning, or are the symbols also related to mathematical objects? 

Findings 

During the first, introductory interview, Mr. M declared himself to be aligned with what may seem 

to be explorative instruction. Describing quality instruction, he said: 

http://ifl.pitt.edu/index.php/educator_resources/accountable_talk


… where groups get together in giving a situation in which they come up with strategies on their 

own, as opposed to a teacher standing up in front of the room and just saying “okay, this is how 

you do this, this is how you do this, now just take this problem and solve it”. So … I keep trying 

to look for my own stuff that I’m doing, so I would look to see that in other peoples. 

Notably, in remarking that such instruction was “my own stuff that I’m doing”, Mr. M attested for 

practicing quality instruction. To this, he added: 

one of my philosophies (is that) there’s never, ever, only one way to solve a problem, that there’s 

many different strategies and many different pathways you can take to find different problems … 

Mr. M also described his challenges in encouraging students to take on agency and not rely ritually 

on his guidance. 

I would say a majority of the students I’ve worked with over the last 7, 8 years pretty much when 

they were on a challenging problem, their first shot is to ask me to give them help and guidance 

along the way. I used to do that more often, …, so I tried to step back away from that for a moment, 

getting to know the kids a little bit better helps me understand those that are just being lazy and 

those that truly don’t know it.  

Thus, in his introductory interviews, Mr. M seemed to be well aligned with “reform” mathematical 

pedagogy, especially with regard to letting students struggle and encouraging them to look for 

“different strategies” for solving problems.  

Lesson 1 

Despite these declarations, the first lesson revealed Mr. M’s actual practices were not well aligned 

with the explorative frame. For the main task of the lesson, Mr. M chose the task seen in Figure 1:  

 

  

Figure 1 - Pythagorean Task given in lesson no. 1 

The task was part of a module that introduced irrational numbers through the Pythagorean Theorem. 

The EngageNY1 teacher guide encourages explicitly to present the task only after students had 

become familiar with this Theorem. The task was taken verbatim from the module, which assumed 

this previous experience, thus including the “use what you know” phrase. However, Mr. M. was well 

aware of the fact that his students were probably not familiar with the Pythagorean Theorem. In the 

pre-conference of the lesson he said: 

                                                 

1 See https://www.engageny.org/resource/grade-8-mathematics-module-7 

The triangle below is an isosceles triangle. 

Use what you know about the Pythagorean 

Theorem to determine the approximate 

length of the isosceles triangle (EngageNY, 

Module 8.7) 



The first challenge that I’m expecting is that we’ve not introduced Pythagorean Theorem at all last 

year. …. Um, I’d like to hear where their conversation goes and what they’re focusing on –… 

when they’re trying to find an opposite base, … given the a2+b2=c2 idea, do they put the numbers 

in the right place – do they remember the square numbers, do they remember to take the square 

roots of numbers to get themselves back to what the – the single variable would be? … So I’m 

looking to see – what kind of challenges working with square roots and squares creates. 

Though Mr. M was anticipating “challenges” in working with the problem (aligned with the PD 

encouraging letting students struggle), the way he talked about students coping with these challenges 

was through “remembering”. Thus, meta-rules belonging to the explorative frame (student agency) 

were distorted through the ritual frame into meta-rules of fact-retrieval, and memorizing procedures.   

During the lesson, the launch of the task proceeded as follows: 

90. T Okay, so when we take a look at this (pointing to a right triangle on the board, the sides 

of which are labeled ‘a’, ‘b,’ and ‘c’) I'm going to give you a little bit of a formula. And 

it may help you today in doing some of your work (writes a2+b2=c2  on the board) ... 

Who can read this out loud for me, please?  

91.-95.  Three students are prompted to read the formula ”in different ways”. One reads “a two 

plus b two equals c two”. The second “a to the second power, b to the second power, 

and b to the second power”, the third “a squared plus b squared equals c squared” 

96. T You see, all three of those ways that they said say the exact same thing. … So when 

we're looking at this, can you now start to see that knowing two of the three sides will 

allow me to figure out the third side? … I'm gonna have you work in groups today to 

see if you can't use …any knowledge that you have plus anything that you've seen today. 

Alright?  

The subjectifying meta-rules enacted in this excerpt bore resemblance to explorative frames. Students 

were asked to provide “different ways” of saying the “exact same thing”, and were directed to “figure 

out” and “work in groups” to “use any information” they have to solve the problem. Yet the 

mathematical meta-rules, that is, the ways to derive one mathematical narrative from another, were 

obscure at best. a2+b2=c2 was written on the board, detached from the right triangle, with no indication 

of a2, b2, and c2 signifying the geometrical squares adjacent to the triangles sides. By that, Mr. M was 

treating the a2+b2=c2 Pythagorean Theorem syntactically, as a series of signifiers, detached from their 

meaning as signifying geometrical objects. 

Not surprisingly, since students had no access to the meaning of the Pythagorean Theorem mediated 

by geometrical objects, they struggled over where to place the a, b, and c labels given by the formula, 

on the newly presented triangle. After some leading questions from Mr. M. students concluded they 

should label the base of the triangle as ‘C’ or ‘C2’. They subtracted 92-72=32, but then were unsure 

as to what to do with that result.  Some students thought it should simply be divided between the two 

halves of the base, labeling the whole base as ‘32’ and halves of it with ‘16’. Others simply labeled 

the whole base as ‘16’ or went another step and labeled the halves with ‘8’. Only 3 or 4 students, out 

of 24, figured out that the 32 should be square-rooted and multiplied by 2. However, even they did 

not label the triangle’s base with the resulting number 11.4 (or estimated 12). The mathematical meta-

rules governing the classroom activity were thus primarily ritual. They could be summarized as 

“apply a set of symbols, somehow related to a right-triangle, to a new triangle”.  



It was not that Mr. M was intending students to apply the ‘a’,’b’, and ‘c’ symbols randomly. He did 

have a certain type of reasoning he was looking for. After having asked a student to come to the board 

and present her solution, and while the student was labeling the triangle sides, he said: 

289. T Yeah, please notice - … if we looked at that formula - A squared plus B squared 

equals C squared, and then I asked this question of some of you: Does it make a 

difference where C is? …( Student answers C has to be bigger than A and B) 

291. T  So if it's bigger than all the other ones, then the question becomes where does the 

C have to go - which side? 

292. Student On the longest side. 

293. T The longest side. Now the one misconception I saw that I didn't expect was that 

some of you thought that this (the base) was the longest side, the whole way 

across. Just be careful about that, you're focusing on just one of those two 

triangles, okay?  

The meta-rules of the activity, as gleaned from Mr. M’s words were thus “figure out where the C is 

according to it being bigger than a + b. Then figure out the longest side and label it as C”. However, 

this was detached from the physical meaning of the Pythagorean Theorem. In relation to the confusion 

or “misconception” the students had, regarding where to place the C, Mr. M did not have much advice 

besides “be careful about that” [293]. There was no other indication why they should be focusing on 

one of the right triangles, and not the whole triangle.  

In the post conference, Mr. M seemed reasonably content with the results of the activity. He explained 

that since students were unfamiliar with the Pythagorean Theorem, he expected them to struggle, but 

that that wasn’t the focus of the lesson. Rather the focus was discussing imperfect squares, to which 

they got at the end of the discussion, when one student said 32 should be rooted and Mr. M led 

students to estimate the root between 5 and 6. Yet having detached the geometric, physical realization 

of the Pythagorean Theorem from its algebraic formula, the rationale behind the existence of 

imperfect squares had no way of being foregrounded. The fact that Mr. M was not concerned with 

students struggling considerably with something that was not “the focus of the lesson”, indicates that 

through his frame, the whole process of working in groups and discussing solutions was not a central 

measure for achieving the mathematical goal of the lesson. Rather, it was a sort of a “side effect”, 

performed for the sake of the lesson recording or for students to practice working in groups.  

I now move to a similar examination of the last lesson. A description of the two middle lessons is out 

of the scope of this paper. However, evidence for movement from a ritual frame to a more explorative 

frame were starting to show during the 3rd lesson, where Mr M received, together with the rest of the 

teachers of the PD, a high-level task selected by the PD leaders and directed explicitly on the different 

solution paths that should be sought in the lesson. Lesson no. 4 seems to have reaped the benefits of 

this process, though as we shall see, the shift between frames was still very fragile. 

Lesson 4 

The first indicator that Mr. M’s practice was starting to align with an explorative frame could be seen 

in his choice of a task. This task involved modeling of real-life processes with a quadratic equation. 

Following is the task as presented on the worksheet (taken from EngageNY, Algebra 1): 

The baseball team pitcher was asked to participate in a demonstration for his math class. He took 

a baseball to the edge of the roof of the school building and threw it up into the air at a slight angle 

https://www.engageny.org/file/.../algebra-i-m4-mid-module-assessment.pdf


so that the ball eventually fell all the way to the ground. The class determined that the motion of 

the ball from the time it was thrown could be modeled closely by the function: h(t) = -16t2 + 64t 

+ 80, where h(t) represents the height of the ball in feet after t seconds.  

Students were then asked to find the behavior of the function (maximum, minimum, vertex), to graph 

it and to indicate how many minutes passed until the ball fell to the ground and what was the meaning 

of h(0). The task thus had ample potential for using different realizations for a mathematical object – 

namely the quadratic formula.  

The next indication for Mr. M’s movement between frames was his talk about expectations for 

students' work during the pre-lesson interview. This is how he presented the choice for the task: 

I’ve been working on questions … like “how do you know that that’s where your graph crosses 

the X axis?” So more than just– what is that value, how do you know what it is. How did you 

figure it out. Um, why does your graph continue past zero? In the context of the problem, what 

does that mean? … And try to gain some understanding of their understanding. 

Instead of “remembering”, Mr. M now talked about students’ “understanding”. He was also working 

hard on preparing questions that would assess students' understanding, a skill specifically taught in 

the PD sessions. 

Examination of students’ worksheets showed that most students performed the calculations involved 

in the problem correctly. 4 out of the 27 students wrote that h(0) indicated the height in which the 

ball was thrown was 80 feet, and 3 more related h(0) to the initial stage, before the ball was thrown 

in the air. Other students, however, either left this question blank, or stated that h(0) means “the ball 

is on the ground” indicating incongruence between the physical situation and the graphical 

realization. Thus, in contrast to the first lesson, there was evidence that a small part of the classroom 

was able to flexibly move between different realizations of the quadratic function.   

During the whole classroom discussion, students’ explanation on the board were mostly concentrated 

on the calculations involved in the problem. Mr. M encouraged this by calling on students to present 

“different ways to solve the problem” which referred to factoring by dividing the expression by 16 or 

by 8. He also referred to finding the value of h(0) by substituting t=0 or by just “looking” at the last 

term in the equation, as two different ways to find h(0). Yet these two “ways” were, in fact, both 

tending to the algebraic realization and could be considered as “different” only when looking at the 

function’s expression syntactically. There was no mentioning in the whole classroom discussion of 

the graphical realization of the function or the physical “real life” story modeled by it. It was thus still 

mostly characterized by meta-rules of carrying out prescribed procedures using syntactic mediation, 

rather than meta-rules of exploring mathematical objects. However, some slight changes could be 

observed. One of the students who talked in the whole classroom discussion did, even if very briefly, 

mention the physical “real life” situation that the function was modelling. He talked about the ball 

(“the ball hasn’t been thrown yet”) and hinted at the height of the roof in “throw the ball at 80”. Also, 

there was brief mentioning of the physical realization when Mr. M elicited from one student that the 

maximum was at “2 minutes”.  

In terms of social meta-rules, there were many more prompts for students to “restate” what other 

students have done. Mr. M made every effort to use this talk move, taught in the PD, albeit somewhat 

inflexibly, whenever a student made a mathematical statement he deemed as important. 



Discussion 

In this paper, I have used the concept of “framing” to examine subtle changes in one teacher’s practice 

over a period of one school year, through which the teacher was receiving support both through PD 

sessions and through in-school coaching. These changes, including the different aspects of frames, 

are summarized in table 1. 

Table 1 - Social and Mathematical aspects of frames in two lessons 

 Social (subjectifying) meta-rules Mathematical meta-rules 

Lesson 

1 

Beginnings of explorative social 

meta-rules through teacher’s 

declarations (students expected to 

persevere, work together). In 

practice, most of the talking is 

done by the teacher.  

Ritual: Meta-rules only have to do with recalling 

facts and procedures from memory. Mathematical 

signifiers are detached from the object they are 

representing. Students’ work indicates syntactic 

mediation with no connection to geometrical 

realizations.  

Lesson 

4 

Explorative social meta-rules 

are more dominant. Students 

are asked to restate each other’s 

ideas. Two students explain their 

thinking to the whole class. 

Evidence that some student listen 

to each other. 

Beginnings of explorative mathematical meta-

rules: Teacher seeks students “understanding”, 

not just rule following. A small portion of 

students’ work indicates connections between 

multiple realizations of the quadratic function. 

Still ritual meta-rules in teacher’s discourse still 

dominate instruction. 

As can be seen from Table 1, the shift from ritual to explorative frames in Mr. M’s case was not 

uniform. The shift occurred first in the social meta-rules and only later in mathematical meta-rules. 

Also, both shifts seemed to occur first at the level of declarations and only later in practice. Thus, talk 

about social meta-rules aligned with explorative participation was evident already in the first 

interview, but enacted mostly in the last lesson. Talk about expectations for explorative mathematical 

meta-rules was evident in the last lesson pre-conference interviews, and only very slightly evident in 

the enactment of the lesson. This finding corroborates earlier findings showing that teachers are 

quicker to adopt declarations about explorative instruction than they are to enact it (Cohen, 2001) as 

well as our previous findings regarding social meta-rules of teachers trying to enact “dialogic” or 

“reform”  instruction being more aligned with explorative instruction than mathematical meta-rules 

(Heyd-Metzuyanim et al., in review). Most importantly, the findings reveal that teachers’ learning of 

new practices is not a matter of acquiring new practices on a “tabula rasa” of non-existing former 

practices. Rather, at first, new practices are seen through the old frame. As such, they gain 

unpredictable “twists”, such as perceiving different syntactic procedures as “different solutions” 

sought after, or encouraging students to restate unimportant mathematical ideas.  
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Abstract: One main facet of teachers’ professional competences is diagnostic competence. While 

diagnostic competence of teachers becomes relevant in several situations within teaching and 

learning, this paper focuses on situation-specific diagnostic competence required by teachers within 

class. In a qualitative supplementary study of the TEDS-Follow-Up project, this situation-specific 

diagnostic competence is analysed using the video instrument of the TEDS-Follow-Up study. 131 

primary level mathematics teachers participated in the primary study of this project and examined 

specific learning situations in the video instrument. These instances were analysed using qualitative 

text analysis (Mayring 2015). Results indicate that teachers notice very different aspects in those 

teaching situations. Two different diagnostic types can be differentiated: content-related and judging 

diagnostic type versus student-related and action-oriented diagnostic type. 

Keywords: Professional competences of mathematics teachers, diagnostic competence, mathematics 

teachers’ knowledge, situation-specific skills of mathematics teachers, video study. 

 

Introduction 

Teachers are faced with many challenges in the context of teaching and learning. In order to plan and 

to conduct teaching sequences that enable students to achieve their best possible learning results, 

teachers need several characteristics such as professional knowledge and situation-specific skills. 

According to Weinert et al. (1990, p.172), diagnostic knowledge is one of the “four areas of 

knowledge […] as constituting the cognitive components of teacher expertise” in addition to 

classroom management subject matter knowledge and instructional competence. With this 

perspective, this article focuses on the diagnostic competence of primary school mathematics 

teachers, more precisely on their diagnostic competence that becomes relevant during class – the so-

called situation-specific diagnostic competence.  

Theoretical background 

Theoretical background of the study is the discussion on mathematics teachers’ professional 

competences, which will be described specifically focusing on their diagnostic competence. 



Professional competences of teachers 

According to Weinert (2001), competence involves two main facets: a cognitive facet as well as an 

affect-motivational facet. The cognitive facet is often differentiated following Shulman (1986, 1987) 

into (Mathematics) Content Knowledge (MCK), (Mathematics) Pedagogical Content Knowledge 

(MPCK) and General Pedagogical Knowledge (GPK). Several empirical studies that deal with 

teachers’ professional competences use 

this conceptualization of competence 

(see for example Mathematics Teaching in 

the 21st Century (MT21); Blömeke et al. 

2008, Teacher Education and Development 

Study in Mathematics (TEDS-M); Blömeke 

et al. 2014 and Cognitive Activation in the 

classroom (COACTIV) Kunter et al. 2011). 

In addition to teachers’ knowledge, these 

studies assess affective-motivational 

aspects such as epistemological beliefs, 

motivational aspects and those about the teaching profession (cf. Blömeke et al. 2008, Blömeke et al. 

2014, Baumert and Kunter 2011). Thus, cognition and affect-motivation are hypothesized to build 

the basis of competent performance in classroom situations. 

More situated approaches to assess teachers’ professional competences are based on models of 

competence that also include more situated facets such as teachers’ perception, interpretation and 

decision-making that become especially relevant during classroom interaction. According to 

Blömeke et al. (2015), competence is a continuum from personal traits such as cognition and affect-

motivation that underlie and affect situation-specific skills which again determine the actual 

performance or behaviour in specific situations. Here, the perception, interpretation and decision-

making in concrete situations “mediate between disposition and performance” (ibid., p. 7). A content-

based specification of this broader concept of competence is the diagnostic competence (Abs 2007). 

Diagnostic competence 

Diagnosis and diagnostic tests are usually associated with medicine. Doctors need to diagnose 

illnesses on the basis of symptoms. However, teachers need diagnosis in their profession as well. 

They may use diagnostic (clinical or standardized) tests to detect learning disabilities (Ketterlin-

Geller and Yovanoff 2009) but they also need to diagnose students’ achievements and learning 

processes during class without using standardized educational or psychological tests. Both described 

instances require teachers’ diagnostic competence. However, we describe the process of diagnosing 

in the course of teaching and learning as teachers’ situation-specific diagnostic competence as 

opposed to the facet of diagnostic competence that becomes relevant in adequately choosing, using 

and evaluating diagnostic tests (see Hoth et al. 2016). 

For this situation-specific diagnostic competence, teachers’ situation-specific skills become relevant 

as proposed by Blömeke et al. (2015) in their model of competence (see figure 1). On the basis of this 

theoretical background, the study presented in this paper focuses on the following research questions: 

Figure 1: Modeling competence as a continuum (Blömeke et al. 2015, p. 7) 



1. How do the perception, interpretation and decision-making of primary mathematics teachers 

differ? 

2. Can different diagnostic types be reconstructed? 

3. How do these diagnostic types relate to their professional knowledge regarding the three 

knowledge facets mathematics content knowledge (MCK), mathematics pedagogical content 

knowledge (MPCK), general pedagogical content knowledge (GPK)? 

To address those research questions, the methodological approach that was used to analyze the data, 

will be described. 

Methodological approach 

The study presented in this paper is a qualitative supplementary study of the TEDS-Follow-Up project 

(Follow-Up to the international Teacher Education and Development Study in Mathematics, TEDS-

M). For the specific purpose of analysing teachers’ situation-specific diagnostic competence, the 

focus of the supplementary study lay on the video instrument of the TEDS-FU study. TEDS-FU, its 

conceptualisation and design will be described in the following, prior to the outline of the 

methodological approach that was realised in this specific supplementary study. 

The TEDS-FU study 

The TEDS-FU study is the German Follow-Up-study of the international comparative study about 

mathematics teacher education TEDS-M. A subsample of primary and secondary school mathematics 

teachers who participated in TEDS-M was reassessed after four years of work experience. A total of 

300 mathematics teachers participated in the primary school study, including 131 primary school 

teachers who are at the focus of this paper. Therefore, the TEDS-FU study analyses the teachers’ 

development in their first years of work experience. 

The study is based on an understanding of competence as a continuum (Blömeke et al. 2015, figure 

1) and closely refers to research in the field of teachers’ expertise (cf. Li & Kaiser 2011) and the 

concept of ‘Teacher Noticing’ (cf. Sherin, et al. 2011). In order to assess more situated facets of 

teachers’ professional competences, three situated facets are distinguished in TEDS-FU in addition 

to knowledge-based facets of teachers’ professional competencies (MCK, MPCK, GPK): 

 “(a) Perceiving particular events in an instructional setting, (b) Interpreting the perceived activities 

in the classroom (c) Decision making, either as anticipating a response to students’ activities or as 

proposing alternative instructional strategies” (Kaiser et al. 2015, p. 373). 

Therefore, different test instruments are used in the study. An online-survey assessed different 

contextual components such as beliefs, working conditions and school characteristics, a newly 

developed video analysis instrument assessed teachers’ situation-specific skills and a shortened 

version of the TEDS-M proficiency test was used to assess teachers’ MCK, MPCK and GPK. In 

addition, a time-limited test was included where teachers had to identify typical student errors (see 

Pankow et al. 2016). 

With the aim to analyse teachers’ situation-specific diagnostic competence, all tasks were focused 

from the TEDS-FU primary school study that required situation-based diagnostic competence. This 

was ensured by the video analysis test instrument as well as in some verbally described situations of 

the reduced proficiency test. The video test consisted of three short video clips of a primary school 



mathematics classroom and corresponding questions concerning didactical and pedagogical aspects 

of the teaching sequence. A total of 19 questions were selected for the analyses, 14 questions from 

the video analysis test and five questions concerning verbally described situations in the MPCK 

proficiency test. Teachers’ answers to the selected questions were analysed using qualitative text 

analysis (Mayring 2015; Kuckartz 2014). All answers of all teachers to all 19 selected questions were 

analysed using reducing and structural procedures (Mayring 2015).  

To exemplify the coding process, one example item will be introduced as well as teachers’ responses 

to the item and the result of their analysis. The example item refers to the video analysis instrument, 

more specific, it refers to the video ‘real world problem’ that shows a third grade mathematics 

classroom in Germany dealing with a real world mathematics problem that is shown in figure 2. In 

the video, three students’ working groups are shown who discuss their working results. The students 

use very different approaches, one student produces a symbolic result while another student solves 

the task using a visual drawing of the situation. Referring to this scene, the teachers were asked to 

characterise the two solution approaches contrastingly. Teachers’ responses to this task were coded 

using reducing processes of qualitative 

context analysis, capturing the content 

of the teachers’ answers. In this 

regard, the following teacher’s answer 

was categorised as ‘contrasting the 

students’ form of representation’: 

Teacher 1: “Lea does mental 

arithmetic and uses a symbolic approach. She does not have to use an iconic or enactive solution 

while Kim needs an iconic approach. She should try an enactive approach to see that Lea’s 

approach is correct as well.” 

This coding approach categorized each of the teachers’ answers with regard to their content. In 

another coding process using structuring procedures, the teachers’ answers were coded with regard 

to judgments. A teacher’s response that contained a judgment of the two students’ solutions is the 

following: 

Teacher 2: “Lea’s approach is more practical and more advanced than Kim’s approach 

because she already subtracted the amount that the girl has to give to the boy. 

Finally, in another structuring coding procedure, all teachers’ responses to the selected questions were 

coded with regard to proposed alternatives or continuations. A teacher’s response that proposes a 

possible continuation of the presented situation is the following: 

Teacher 3: “Lea does mental arithmetic and uses a symbolic approach. She does not have to 

use a visual or acting solution while Kim needs a visual approach. She should try an acting 

approach to see that Lea’s approach is correct as well.” 

Figure 2: Real world mathematics problem that is discussed in the video 

vignette 



These coding processes resulted in a category system that built the basis for type-building text 

analysis (Kuckartz 2014). Here, three dimensions emerged which further constructed a feature space 

to generate diagnostic types: the perspective that teachers’ chose on the teaching sequences, their 

tendency to judge and their tendency to propose alternatives and continuations. In order to reconstruct 

ideal diagnostic types, connections between these three dimensions were analysed and idealised. 

Finally, these diagnostic types were interrelated using contingency analyses in a Mixed-Method-

Design (Kelle & Buchholtz 2015) with the teachers’ knowledge scores that resulted from the reduced 

proficiency test of the TEDS-FU 

study. The teachers’ mathematics 

content knowledge, their mathematics 

pedagogical content knowledge and 

their general pedagogical knowledge 

is given in scale scores resulting from 

the TEDS-FU proficiency test. 

Contingency analyses between the 

teachers’ knowledge facets and the 

dimensions presented above give 

insight into connections between 

teachers’ situation-specific skills and their professional knowledge. Table 1 shows this contingency 

analysis between the perspective chosen and the professional knowledge for the example item. 

However, since the perspectives were coded in every selected question, these connections were also 

analyzed independent of specific teaching sequences. 

Results 

Resulting from the reducing and structuring procedures, teachers’ responses differed with regard to 

several aspects. On the one hand, teachers chose different perspectives on the classroom incidents. 

While some teacher focused on the content, other teachers focused on the students, their 

understanding, motivation, behaviour etc. On the other hand, it became obvious that teachers had 

varying tendencies (a) to judge the classroom events which they observed and analyzed and (b) to 

anticipate teaching alternatives or continuations. 

Relating the three dimensions that resulted from the coding processes–(1) the perspective chosen (2) 

the tendency to judge (3) the tendency to anticipate teaching alternatives or continuations and–showed 

that teachers who often chose a content-related mathematical perspective in classroom situations also 

often judged these incidents. In addition, the more often teachers chose a student-related perspective, 

the more teaching alternatives and continuations were anticipated. These connections between the 

three dimensions formed the basis for building diagnostic types. In this regard, the following two 

ideal diagnostic types could be identified:  

“Content-related and judging: This diagnostic type is characterized by a content-related 

perspective in the phases of perceiving and interpreting relevant incidents. These noticed 

criteria are subsequently used to judge the relevant incidents. The phase of decision-

making is also characterized by a content-related focus. Here, the teaching continuation 

is conducted by the subject’s (here mathematical) content.  

 
Didactical 

perspective 

Didactical 

AND 

mathematical 

perspective 

Mathematical 

perspective 

Average 

MCK 
519 567 597 

Average 

MPCK 
536 552 543 

Average 

GPK 
647 640 683 

Table 1: Contingency analysis between teachers' professional knowledge and 

their perspective 



Student-related and action-oriented: This diagnostic type is characterized by a student-

related perspective in the phases of perceiving and interpreting relevant incidents. This 

means that the students, their learning processes, understanding, motivation and 

behaviour are the noticing focus. If classroom situations show deficits with regard to 

students’ understanding and learning, this phase is automatically followed by a phase of 

deciding on alternatives that improve the given situation or possibilities to optimally 

continue the situations. The phase of decision making is primarily characterized by 

considering teaching methods and the instructional organization.” (Hoth et al. 2016, p.50) 

Connecting to these results concerning different diagnostic types, a Mixed-Methods Design was 

realised that interrelated the different perspectives chosen with the teachers’ knowledge that was 

assessed by the proficiency test in the TEDS-FU study. In this regard, connecting the perspectives 

chosen by the teachers to their professional knowledge showed the following results: 

- Teachers who often choose a mathematical perspective on teaching situations have average or 

above average mathematics content knowledge while their mathematics pedagogical content 

knowledge is below average.  

- The more often teachers choose a didactical perspective on teaching situations, the higher is 

their mathematics pedagogical content knowledge.  

- The general pedagogical knowledge of teachers who often choose a pedagogical perspective 

exceeds their content specific knowledge. 

- Teachers who often judge teaching instances have high mathematics content knowledge.  

- Teachers who often propose teaching alternatives and continuations possess high mathematics 

and mathematics pedagogical content knowledge while teachers who seldom do this have below 

average general pedagogical knowledge. 

With regard to specific teaching instances, the results indicate that teachers with comparatively high 

content-related knowledge (MCK and MPCK) plan their teaching with regard to the content while 

teachers with comparatively high general pedagogical knowledge focus to a greater extent on 

pedagogical facets while planning their teaching. Furthermore, other connections indicate that 

teachers with only little content knowledge more often miss aspects in teaching and learning that are 

relevant for the students’ learning processes but focus on behavioural aspects if they are very striking. 

Teachers who focus on aspects of understanding and learning despite of the striking student behaviour 

have above-average mathematics content knowledge. 

Summary and discussion 

In this paper, mathematics teachers’ situation-specific diagnostic competence is analysed. This is the 

diagnostic competence that teachers require during class. For this purpose, the answers of 131 

mathematics teachers are analysed who took part in the TEDS-Follow-Up study. In this video-based 

study, the teachers are asked to answer questions referring to video scenes of mathematics classroom. 

Analyses showed that teachers focus on very different aspects in the same teaching scene and two 

diagnostic types were differentiated: the content-related and judging type on the one hand and the 

student-related and action-oriented type on the other hand. In addition, contingency analyses showed 

that there are connections between the teachers’ professional knowledge and their focus on and 

analysis of teaching sequences. 



The results enrich the already existing findings in the field of teacher noticing (cf. Sherin et al. 2011). 

The proposed connection between teachers’ noticing and their knowledge is verified empirically. As 

a consequence, teachers’ practice is essentially influenced by their professional knowledge which in 

turn emphasizes the importance of mathematics teacher education. However, following questions 

arise about further connections between teachers’ identification, their beliefs and the perspectives that 

were distinguished in this paper. In addition, developing and implementing teacher education courses 

to foster teachers’ situation-specific diagnostic competence may give further insight into the 

development of this specific facet of teachers’ diagnostic competence. 
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The changes concerning the final state examination, determined by the novelty of Slovak university 

law, stimulated us to make serious changes in the examination model of Didactics of Mathematics at 

our university. Moreover, we have observed significant gaps in pedagogical content knowledge 

(PCK) of our secondary pre-service teachers during the last years. These two stimuli led us to an 

improvement of the course of Didactics of Mathematics. In this paper, we present our new approach 

which was mainly focused on the assessment of the lesson plans presented by the pre-service teachers. 

The assessment was based on the rubrics which were developed through the course. After the 

application of the new approach, we have observed growth in PCK. We have partially confirmed 

reliability of the rubrics as well. 

Keywords: Secondary pre-service teacher, pedagogical content knowledge, lesson plan, rubrics for 

PCK assessment.  

Introduction 

Before we introduce our new approach to secondary pre-service mathematics teacher PCK 

development, we bring a short description of the system of pre-service teachers’ preparation at our 

university. First, all the secondary pre-service teachers (PSTs) study two disciplines in various 

combinations, including combinations of natural and humanistic disciplines. Second, pedagogical, 

psychological and didactics studies are reduced to the minimum for the bachelor level. Therefore, we 

speak about the joint degree study of the particular two subjects (e.g. mathematics and physics) at the 

bachelor level. Most of the pedagogy is concentrated at the master level of university studies, where 

we talk about the teacher preparation program. Third, complex state exam from both disciplines and 

their didactics, Pedagogy and Psychology and the thesis defense are required for successful finish of 

the study. The aim of our university was to make state exams more efficient and foster mutual 

relationships of all parts of state exams. Moreover, we had found out serious gaps in the PCK of our 

PSTs, so the bigger pressure for its growth was necessary. Implementation of the PCK assessment 

into the state examination seemed to be a way, because “what you test is what you get,” is the broadly 

accepted quote (attributed to Lauren Resnick). As we realized, when the assessment is changed, the 

instructions should be changed as well. Therefore, we have prepared a new model of state exams and 

apply inevitable changes at the classes of Didactics of Mathematics. To be sure that the new approach 

has the positive impact on the PSTs’ learning, we posed following research questions: (1) Are the 

rubrics reliable tool to assess PSTs? (2) Was the pre-service teachers’ PCK developed effectively? 

Which of its components were developed?  

The novelty of the approach can be understood geographically - there are no serious studies on PCK 

development in Slovakia or even in neighbor countries (Depaepe, 2013). Moreover, we have not 

found any study which would consider utilization of general – not thematically specific – rubrics for 



development of PCK of secondary PSTs. The new approach is described and discussed below; 

however, some theoretical underpinnings are necessary to be stated first. 

Theoretical background 

Knowledge areas, in which should a good teacher of mathematics systematically grow and achieve 

a certain standard, are named for several decades. Shulman (1986) explained pedagogical content 

knowledge (PCK) which is beyond subject matter knowledge and  

„includes an understanding of what makes the learning of specific topics easy or difficult. Teachers 

need knowledge of the strategies most likely to be fruitful in reorganizing the understanding of 

learners, because those learners are unlikely to appear before them as blank slates” (p. 9).  

Furthermore, Shulman (1986) emphasized the importance of curricular knowledge, familiarity with 

the instructional materials and tools available for teaching distinct concepts at different levels. PCK 

in the domain of mathematics comprises mathematical knowledge a different kind to that used in 

everyday life and in other professions which need mathematics (Ball & Bass, 2000). 

Hill et al. (2008) built on Shulman’s (1986) definitions of different types of knowledge and proposed 

the model with three types of content knowledge and three types of PCK: 

Subject matter (content) knowledge 

(1) Common Content Knowledge (CCK) – knowledge which is used in the classroom in ways 

common with how it is used in other professions that also use mathematics. (2) Specialized Content 

Knowledge (SCK) – knowledge how to accurately represent mathematical ideas, provide 

mathematical explanations for common rules, procedures, understand unusual methods of solution. 

(3) Knowledge at the mathematical horizon – awareness of the large mathematical landscape in 

which the present experience and instruction is situated (Zazkis & Mamolo, 2011). 

Pedagogical content knowledge 

(1) Knowledge of Content and Students (KCS) – knowledge how students in general learn 

a concept, what mistakes and misconceptions are common, it involves understanding of students’ 

thinking and what makes the learning of particular concepts easy or difficult. (2) Knowledge of 

Content and Teaching (KCT) – knowledge about how to develop students’ thinking and how to 

deal with student errors effectively, ‘‘knowledge of teaching moves’’ (p. 378). (3) Knowledge of 

Curriculum (KC) – knowledge about the content of curriculum and knowledge how to utilize the 

content of curriculum to present. 

In our approach we suggest an authentic assessment in order to make bigger pressure for the growth 

of each component of PCK and to move forward PST beliefs about mathematics. There are four 

features of authentic assessment (Darling-Hammond, Ancess & Falk, 1995): (1) “they are designed 

to be truly representative of performance in the field” (p. 11); (2) “the criteria used in the assessment 

seek to evaluate “essentials” of performance against well-articulated performance standards.” (p.12); 

(3) “self-assessment plays an important role in authentic tasks” (p.12), (4) “the students are often 

expected to present their work publicly and orally.” (p.12). 



The course design 

Ten PSTs attended mandatory class in Didactics of Mathematics led by the second author and assisted 

by the first author. Total time of every week meeting was two hours and 15 minutes, the course lasted 

for 10 weeks, 5 of them were designed as follows: 

(1) All PSTs picked randomly one of the topics which were prescribed by the second author. They 

were asked to create a lesson plan due to a particular date. The lesson plan had to be focused on the 

mastering a new curriculum. The template they were asked to fill as the front page of the preparation 

contained following items: topic, grade, goals, necessary entry knowledge, didactics problem and 

misconceptions, tools, methods and forms. Only the front page was fixed, the rest of the preparation 

was in the hands of the PSTs. (2) The PST who was up to present his/her preparation the next week, 

sent his/her lesson plan in one week advance to the whole group. Everybody was expected to raise 

some questions. (3) The PST had 30 minutes for the presentation of the lesson plan. Next 20 minutes 

were reserved for discussion. The PST explained the main line of the new curriculum mastering, 

underlined the important connections between the information from the front page and the tasks and 

subsequently, in the discussion, clarified inconsistencies pointed out by the teachers or the PSTs. (4) 

Everybody who was actually present at the class was asked to assess the presentation and provide the 

feedback and score for the PST who presented the preparation. To minimize subjectivism of the 

assessment, following rubrics (Table 1) were created and used for the scoring. The PSTs were 

instructed how to use it, examples for the particular levels were supplied. 

Rubrics for lesson plan assessment 

The base for the initial rubric version was the observations which were conducted by the second 

author in the previous academic year. The PSTs were asked to fulfil the similar assignment. 

Nevertheless, the scoring was not conceptualized; everybody was expected to assess presenting PST 

an appropriate number of points. Such assessment did not produce pressure for specific part of PCK 

growth. That was the reason why we, for the next academic year, developed five rubrics that we 

believe to enhance PCK of PSTs during the preparation of the lesson. 

(1) Rubric Learning Objectives is defined as the ability to formulate and clarify essential objectives 

of the unit and to link them with the rest of the preparation. Learning objectives result from 

curriculum. The rubric is connected with KC. We assess whether PST applies this curriculum content 

to appropriate learning activities for students. (2) Rubric Motivation shows PSTs’ potential to present 

mathematical ideas in an attractive way, to provide reasons and mathematical explanations for the 

topic. It is linked with SCK. (3) Third rubric – Correctness - pertains to mathematical correctness of 

the lesson plan. It is associated with CCK and SCK. (4) Rubric Didactic Means (Tools) includes 

chosen didactic method, tasks and materials.  Using this rubric we assess PST knowledge about how 

to build on students’ thinking and how to address students’ errors effectively. The aim is to identify 

the level of KCT. (5) Last Rubric we called Didactic Problems and it contains assessment of the 

level of PST knowledge of how students think about the topic, how students typically learn a concept 

from the topic, what mistakes and misconceptions are common. Rubric is designed to determine the 

level of KCS. 



Level Learning objectives Motivation Correctness Didactic Means 
Didactic problem  

and misconceptions 

0 A PST cannot explain the 

objectives of the unit, or the 

explanation is only formal (there 

are only weak connection between 

the objectives and the preparation 

and/or the objectives are not 

appropriate for the students age 

group). 

There is no explicit motivation 

within the lesson plan, or the stated 

motivation is very formal (neither 

students’ activity nor questions 

cannot be expected).  

The unit curriculum is introduced incorrectly 

(mathematics terms definitions, mathematics 

statements or tasks assignments are not 

formulated correctly or comprehensively or they 

are not appropriate for the students age group,) 

and/or the learning trajectory is not respected at 

all.  

Chosen didactic means clearly support 

instructive approach to mathematics 

education, there is no prompt for 

students’ activity and/or the tasks are 

chosen superficially.  

A PST does not realize 

didactic problem and 

misconceptions connected 

to the unit topic or he/she 

realizes only marginal or 

general problems and 

misconceptions. 

1 A PST explains the objectives of 

the unit partially, and/or he/she 

does not propose certain of the 

important goals, and/or certain 

objectives are not appropriate for 

the students’ age group. 

The motivation stated in the lesson 

plan probably would be interesting 

only for a few students, and/or there 

are no tight relations between the 

motivation and the objectives.  

Language inaccuracies in oral or written 

communication are observable and/or the 

learning trajectory is respected only partially. 

Chosen didactic means lead to rather 

instructive approach, there is small 

prompt for students’ activity. The 

structure of the teaching unit is not well 

thought out and/or some important 

cognitive phase is missing and/or 

selection of the tasks is only partly 

thought out. 

A PST can name the 

didactics problem and 

misconceptions connected 

to the unit topic and he/she 

resolve them within the 

preparation just partially. 

2 A PST formulates and clarifies 

essential objectives of the unit, 

links them with the rest of the 

preparation and the objectives are 

appropriate for the students’ age 

group.  

The motivation stated in the 

preparation probably engages most 

of the students and it is linked with 

the objectives. If possible, the 

motivation suggests connection of 

mathematics and everyday life. 

The unit curriculum is introduced correctly 

(mathematics terms definitions, mathematics 

statements and tasks assignments are formulated 

correctly and comprehensively and they are 

appropriate for the students age group,) and the 

learning trajectory is respected. 

Chosen didactic means leads to a 

creative environment where activity of 

students dominates and the proposed 

teaching unit has a coherent structure, 

no important cognitive phase is 

missing.  Task selection is thought out. 

A PST can name the key 

didactics problem and 

misconceptions connected 

to the unit topic and he/she 

resolve them within the 

preparation. 

Table 1: Rubrics for PCK assessment



In the rubric Correctness, the term learning trajectory is not conceptualized, it is used in simplified 

meaning concerning the important entry knowledge before the new one is going to be taught and 

learnt. 

The presented lesson plans were not the first ones created by the PST. They had prepared and taught 

18 lessons during their practice teaching before the course started. Additionally, they developed 15 

lessons plans for the state examination, which was scheduled 5 months after the course finished. Some 

of PSTs worked on these lesson plans in groups. All these lessons plans were taken in account to 

track the PCK development. 

Each of the rubrics also provides three general development levels: Beginning, Developing, and 

Advancing (see table 1). In order to explain more precisely authors’ approach to assessment, we 

present two examples for the rubric Motivation from level 0 and level 1.  

Level 0 - Example for “the stated motivation is very formal (neither students’ activity nor questions 

cannot be expected)”: Lesson plan for the Topic: How to multiply decimal by decimal numbers 

PST: For the motivation, I chose the following task: A farmer stored fuel for the tractor in canisters 

of 0.5 hl. He has a) 10, b) 5, c) 2, d) 1, e) 0.5 canisters full of fuel. How much fuel 

does he have for the tractor (write result in hl)? 

T (teacher – the author): Explain the reasons why you consider this task as motivating one.  

PST: I think, in fact, this is not very motivating task. Maybe students could solve the last case of 

the task and found out how to multiply decimal by decimal number. 

Level 1 - Example for “there are no tight relations between the motivation and the objectives”: Lesson 

plan for the Topic: Definition of the concept Limit of a sequence 

PST: Motivation task: In the hotel we have an infinite number of single rooms. Rooms are 

sequentially numbered by natural numbers. The hotel is fully booked. To the hotel, 

however, added three other tourists who would like to stay. Is it possible to 

accommodate them? 

T: What is the connection between this task and the definition of the concept Limit of a sequence? 

PST: The task is about infinity and when we count limit of a sequence we work with infinity. 

Preliminary results and discussion 

We try to answer the research questions mentioned in the Introduction. 

(1) The concept of inter-rater reliability was used to find the answer to the first research question. The 

Table 2 depicts numbers of consistent and inconsistent decisions for each particular rubric.  

Only the authors’ assessment was taken in account because the PSTs’ assessment was obviously 

loaded by the social norms and the relationships within the group. Some inconsistencies between the 

authors were caused by the usage of the rule, that for one deficiency only one point should be get off 

and the authors included the same mistake in the different rubrics. As we can see, the rubrics worked 

well and after precise preparation of their user, they can be considered as reliable tool. The certain 

vagueness of the developing levels formulations does not seem to be a problem when comes to its 

identification within the actual presentation. 



The rubric Match One level differences Two level differences 

Learning objectives 9 1 0 

Motivation 9 1 0 

Correctness 9 1 0 

Didactics Means 7 3 0 

Didactics Problem 8 2 0 

Table 2: Inter rater reliability 

(2) At the beginning, PSTs filled the front page formally (see The course design). Most of the PSTs 

had no idea about how the front page tailors to remaining part of lesson plan. As the course continued, 

we could see how PSTs were moving forward in the development of their PCK. We explain it using 

examples from 3 rubrics (Learning objectives, Didactic Means, Didactics Problem). 

(2a) Development of PCK within the group of PSTs - Learning objectives 

At the beginning of the course, PSTs did not formulate any learning objectives or formally mention 

some objectives of prepared lesson but were not able to explain how to achieve it. Also, some of PSTs 

did not meet the learning objectives they have formulated.  

Example from the lesson plan for the topic: The Binomial Theorem 

PST: The student is able to formulate the binomial theorem and to write the binomial theorem by 

using the summation operator. 

T: Formulate the binomial theorem and write it by using the summation operator. 

PST: (Started to write on the blackboard, but did not remember correct formulation, then started 

to look for the correct formulation in the hard copy of the lesson plan.)  

T: The student should be able to formulate the theorem and the teacher is not? 

At the end of the course, PSTs started to formulate learning objectives in connection with chosen 

tasks and their solutions and they also explain more precisely what they expect. 

Learning goals for the topic: Increasing and decreasing function 

The student is able to identify whether the function is increasing or decreasing from the graph, 

from the table. The student is able to draw graph of increasing and decreasing function. The student 

is able to define increasing and decreasing function. The student is able to prove from the formula 

whether the function is increasing, decreasing or neither one nor the other.  

Additionally, in the prepared lesson plan we can found tasks as means to meet the formulated 

objectives.  

(2b) Development of PCK within the group of PSTs - Didactic Means 

In the first stage, PSTs chose the tasks superficially, e.g. the PST prepared lesson plan for the Topic: 

Law of sines and he explain the task selection as follows: 



PST: (Presents some task where students have to calculate side or angle of triangle using law of 

sines.) 

T: Explain us, why did you choose exactly these tasks.  

PST: I found them in the textbook. 

T: Did you solve them? 

PST: Only the last one because it looked hard.  

T: Do you think these tasks will help your students to understand deeply methods of solution using 

Law of sines? 

PST: Maybe some types of tasks are missing. (He started to draw on the blackboard.) 

At the last stage the PST who prepared for the topic Definition of the concept Limit of a sequence 

explained precisely the reasons for each selected task.  

T: Why did you solve the absolute-value inequality:|x − 4| ≤ 2” at the beginning of the lesson? 

PST: I chose this task because I wanted to recall the geometric properties of absolute-value which 

students meet in the definition of the limit.  

T: You suggest dividing students into 6 groups and each group will work with different sequence. 

Explain your reason. 

PST: Two groups will get increasing sequence, two groups decreasing and two groups oscillating 

sequence. I chose these sequences in order to prevent the following misconception: 

Only decreasing sequence has limit. Oscillating sequence cannot have a limit. 

During the presentation of the lesson plans on the state exams the most of students showed that they 

are better able to intertwine all the items from the front page of the lesson plan with the tasks and 

their solutions, activities, mathematical explanations. Students were also able to explain better their 

reasons for selecting the particular tasks and activities for the lesson.  

(2c) Development of PCK within the group of PSTs - Didactics Problem 

Firstly, most of PSTs did not see any didactic problem and misconception with the most of the topics, 

some PSTs wrote the most common misconceptions, such as problem with negative sign during 

working with algebraic expression, or they formulated didactic problem very generally such as 

students have problems while working with fractions.  Later, when PSTs were trying to identify 

didactics problems and misconceptions, they started to utilize experience from their life (this 

task/concept/method was a problem for my sibling, friend, me) and also from their teaching practice. 

The next example illustrates formulation of the misconception based on PST experience.  

PST: Students think that the following scalar products (1,1) ∙ (3,2) & (2,2) ∙ (3,2) are equal. To 

prevent this misconception I formulated the following task: Find out if following 

scalar products have the same value: 

A. �⃗� = (1,1); 𝑣 = (3,2);  𝜑 = 60° B. �⃗� = (2,2); 𝑣 = (3,2);  𝜑 = 60° 

Although the task is incorrect it shows PST’s effort not only to formulate the misconception but also 

to look for the way how to prevent it. 



Our experience indicates that the authentic assessment focused on PSTs’ lesson plans and 

objectivized by five rubrics, tied with the content knowledge and three types of PCK, can help PSTs 

to develop their PCK. Presented examples demonstrate development of KCS (identification of 

didactic problems and misconceptions), KCT (precise selection of tasks) and KC (formulation of 

learning objectives).  
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In this paper, we discuss a research project to measure prospective mathematics teachers’ beliefs 

towards their perceived disagreements between mathematics at university level and school 

mathematics that is known as double discontinuity. Firstly, we introduce the double discontinuity 

problem. Secondly, we refer to the construct of beliefs as the main part of our theoretical framework. 

Afterwards, we outline our method including a brief discussion on our approach of bridging the 

double discontinuity problem with so-called teacher-oriented tasks that are appropriate to illustrate 

connections between university mathematics and school mathematics. Furthermore, our results of 

pilot studies aiming to measure prospective teachers’ beliefs are provided. 

Keywords: Beliefs, double discontinuity, prospective teachers, teacher education. 

 

Introduction 

Over 100 years ago, Felix Klein coined in the preface of his textbook “Elementary Mathematics from 

a Higher Standpoint” the term of a “double discontinuity” (Klein, 1908, p. 1). This notion embodies 

the challenges of transitions in the mathematical socialization of mathematics teachers. The first 

discontinuity, i.e. the transition from secondary to tertiary education, became a main topic in research 

on university mathematics education during the last decades (e.g. Gueudet, 2008; Thomas et al., 

2015). A challenge that accompanies the second discontinuity is the transformation of academic 

mathematics gained at university into educational forms of school mathematics (Prediger, 2013; 

Winsløw & Grønbæk, 2014). As a consequence of both discontinuities, teachers may lose sight of 

academic mathematics after university studies and, thus, teach on the basis of experiences from their 

own schooldays (Bauer & Partheil, 2009; Hefendehl-Hebeker, 2013).  

Although mathematics instruction in schools as well as teacher education in universities changed 

considerably since Klein’s claim, the phenomenon of a double discontinuity still seems to exist and 

prospective teachers nowadays frequently believe that the topics of university mathematics do not 

meet the demands of their later profession in school (cf. Ableitinger, Kramer, & Prediger, 2013; 

Hefendehl-Hebeker, 2013). The prospective teachers’ perception of the mentioned relationships 

between school mathematics and university mathematics could be regarded as part of teachers’ beliefs 

(Eichler & Isaev, 2016). Considering this background, we primarily rely on teachers’ beliefs as the 

main construct of our theoretical framework in the next paragraph. Subsequently, we outline the 

method for our research project with a specific focus on pilot studies. Finally, we use the results of 

these pilot studies to explain the development of our instrument aiming to measure prospective 

teachers’ beliefs concerning the double discontinuity.  



Theoretical framework  

Prospective teachers’ beliefs 

On the construct of beliefs we refer to the definition of Philipp (2007, p. 259), who defines beliefs as 

“psychologically held understandings, premises, or propositions” affecting an individual’s view of 

the world or a special part of it, such as filters for receiving information. Beliefs can be considered as 

a component of teachers’ mathematics related affect (Hannula, 2012), which itself can be defined as 

“a disposition or tendency or an emotion or feeling attached to an idea or object” (Philipp, 2007, p. 

259). Thus, in our research we regard prospective teachers’ beliefs as their propositions concerning 

the relationships between school mathematics and university mathematics. Following Calderhead 

(1996), teachers’ beliefs are understood not only to impact on teachers’ professional knowledge but 

also to potentially have an effect on teachers’ classroom practices (cf. also Skott, 2009). Therefore, it 

seems essential to tackle the issue early and to investigate, how beliefs concerning the double 

discontinuity develop in secondary teacher education. 

In related literature, beliefs are partially seen and sometimes even defined as relatively stable 

dispositions. In contrast, several studies provided a change of beliefs due to interventions, especially 

concerning prospective teachers (e. g. Decker, Kunter, & Voss, 2015). In this paper, we aim to provide 

an instrument in order to investigate, whether and how prospective mathematics teachers change their 

beliefs concerning the double discontinuity phenomenon based on our intervention project. From this 

background, we address beliefs being changeable and consider change as “a natural part of the 

development of beliefs and the reaction of beliefs in the face of experiences” (Liljedahl, Oesterle, & 

Bernèche, 2012, p. 35).  

Related Research 

Although numerous projects and institutions across the world aimed to overcome the perceived gap 

between school mathematics and university mathematics in recent years, not much research has been 

done on the perception of prospective teachers’ concerning the double discontinuity problem. 

Winsløw and Grønbæk (2014) distinguished three dimensions of Klein’s double discontinuity, which 

are not independent but important to separate: the institutional context (i.e. school vs. university), the 

difference in the subject’s role within the institution (i.e. student at university or school vs. teacher of 

mathematics), and the difference in mathematical contents (i.e. elemantary vs. advanced). In our 

research, we primarily refer to the content aiming to figure out possibilities of “building bridges” 

(Winsløw & Grønbæk, 2014, p. 64) and to investigate the effect of bridging activities on the 

prospective teachers’ beliefs referring to the double discontinuity.  

Becher and Biehler (2016) used narratives in order to ask prospective secondary teachers in their third 

year of university studies about what benefits they see in learning university mathematics for their 

future career as a school teacher and which aspects are articulated by the prospective teachers in their 

evaluation of benefits of university mathematics. The results revealed a wide range of prospective 

teacher’s beliefs on benefits of learning university mathematics with regard to school mathematics. 

Most of the statements can be matched with one of four levels of mathematical content knowledge 

based on Krauss et al. (2013), i.e. “A deep understanding of the content of the secondary school 

mathematics curriculum (e.g., ‘elementary mathematics from a higher standpoint,’ as taught at 

university)” (Krauss et al., 2013, p. 155). Taking these studies into account, we developed a 



questionnaire for measuring prospective mathematics teachers’ beliefs towards their perceived 

disagreements between mathematics at university level and school mathematics. 

 

Method 

The institutional frame 

Referring to this theoretical framework, the main target of our project is to investigate changes in 

prospective teachers’ perception of a double discontinuity that could be explained by our approach 

of building bridges. Prospective secondary mathematics teachers in Germany are usually enrolled in 

the same mathematics courses as mathematics majors (e.g. analysis), particularly in the first 

semesters. A big challenge for all students in the initial phase of the studies is the task to complete a 

range of exercises every week as homework (Ableitinger & Herrmann, 2013). These tasks can be 

solved on the basis of the plenary lectures (by usual four hours per week) and are reviewed in 

additional small courses (by two hours per week) which are organized by student assistants. Our aim 

is to develop and establish the desired bridges in these introductory mathematics courses for 

prospective secondary teachers. Our focus is here to enrich the set of tasks for homework with so-

called “teacher-oriented tasks” that are appropriate to illustrate connections between university 

mathematics and school mathematics to prospective secondary teachers.  

Teacher-oriented tasks 

We conceptualize specific tasks which potentially demonstrate bridges between school mathematics 

and university mathematics to a model of domains of teacher knowledge according to Ball, Thames, 

and Phelps (2008). More precise, we differentiate our teacher-oriented tasks referring to the 

subdomains of specialized content knowledge (SCK), knowledge of content and students (KCS), 

knowledge of content and teaching (KCT) as well as curriculum knowledge. One example that 

represents specialized content knowledge (SCK) within the notion of mathematical tasks for teaching 

is provided below. In this exercise, “Evaluating the plausibility of students’ claims” and “Giving or 

evaluating mathematical explanations” (Ball et al., 2008, p. 400) are requirements which can be used 

well to describe the setting. 

In the subsequent task from a mathematics contest for students (“Känguru der Mathematik 2009”) 

the participants were asked to solve which of the following figures is the greatest one. 

(A) √2 – √1  (B) √3 – √2  (C) √4 – √3  (D) √5 – √4  (E) √6 – √5 

A student in grade 12 chose answer (E) and stated: 

“√6 – √5 is the greatest figure, because roots are monotone. So, the greater is x, the greater is f(x). 

Thus, their difference is the greatest, as well (by going more to the right).” 

1. Analyze the student’s answer. Where do you see problems with the argumentation? 

2. Provide an own student-oriented answer to this topic. 

3. Show in general: lim
n→∞

√n – √n − 1 = 0 

Figure 1: Task “roots” for prospective secondary mathematics teachers 



The design 

In order to gain empirical evidence for the efficiency of our method, prospective teachers in the 

relevant mathematics courses are assigned at random to a treatment group and a control group. While 

the control group is taught traditionally, the treatment group gets an extra teacher-oriented task for 

homework every week that focuses on bridging mathematics at university level and school 

mathematics. Our main research question is whether and how prospective teachers change their 

beliefs about the double discontinuity phenomenon based on our intervention in the introductory 

mathematics courses. In this paper we only refer to pilot studies where prospective teachers got 

homework including an extra teacher-oriented task on a trial basis. The main aim of these pilot studies 

was to develop an instrument for measuring teachers’ perception of a double discontinuity. 

During the winter semester 2015/16, two basic mathematics courses at the University of Kassel were 

selected in which the mentioned teacher-oriented tasks bridging mathematics and mathematics 

education was administrated: “principles of mathematics” and “analysis”. Prospective mathematics 

teachers attend these courses usually in the first or in the third semester of their university studies. 

Three prospective teachers from the third semester were interviewed at the end of the semester. The 

data was analyzed by qualitative content analysis. We also developed a questionnaire with 16 items 

for measuring prospective teachers’ beliefs concerning their perceived disagreements between 

mathematics at university level and school mathematics. The questionnaire was piloted in a 

mathematics course for prospective secondary teachers (N = 60) and is outlined in the following 

paragraph.  

 

Discussion of results 

The analyses of the interviews revealed that all prospective teachers took the contents dimension into 

account when reflecting their university studies. For example, the first prospective teacher (PT_1), 

believes, that in university mathematics, there are too little relations to school with regard to the 

content. 

PT_1: “There are not many connections - direct contents connections, so - as well as in 

the other lectures. And also in analysis I notice, that it - that the university stuff of 

the mathematics lecture - almost simply goes beyond school and it is more or less 

by chance, if there are contents, which fall together with school mathematics - I 

have the feeling.“ 

Further, two of the prospective teachers also mentioned another aspect of the double discontinuity 

problem, i.e. their beliefs concerning the relevance of learning university mathematics with regard to 

school mathematics, such as can be found in the proposition of PT_2. 

PT_2: „If I finished school, I would have the same status, which I want to teach the 

students. And if now deeper questions arise, I would not be able then to answer 

them, for instance, because I myself have never had this and then - such a teacher 

one also did not want formerly, who could only tell, what he has just done.“ 



Indeed, Klein (1908) addresses both aspects in the double discontinuity phenomenon since on the one 

hand the problems at university may not suggest the things at school, and on the other hand, university 

studies may remain only a memory with no relevance upon teaching.  

The collected data from the interviews also supported the development of our current questionnaire. 

Our first version (cf. Eichler & Isaev, 2016) contained 9 items using a 6-point Likert scale to assess 

students' beliefs about the double discontinuity problem. The questionnaire was piloted in a 

mathematics course for prospective secondary teachers (N = 60) and seemed to provide good internal 

consistency (Cronbach's alpha 0.782). Interestingly, a higher reliability (Cronbach's alpha 0.831) was 

achieved when regarding only the prospective teachers in the course (N = 35) and not all university 

students in the mathematics course. As a possible reason for this phenomenon, we identified two 

theoretical discernable domains in our questionnaire. On the one hand, we asked items which 

contained a personal statement including the words “I” or “me” like “I think that I require a deep 

understanding of mathematics in order to teach mathematics in school.” On the other hand, we 

provided a few statements such as “University mathematics has mostly little relation to school 

mathematics”, which were rather matter-of-fact. These items might have led to a different extent of 

identification within the different groups of university students. To provide useful information, we 

applied both dimensions in our current questionnaire containing 16 items. 

Taking into account the four levels of mathematical content knowledge based on Krauss et al. (2013), 

we derived further items from the interviews such as “By the use of university mathematics, gaps are 

filled in the mathematical knowledge that is required in school”. We grouped all items into three 

subscales which we identified through our development process: “contents relationship”, “relevance 

for profession” and “higher standpoint”. In a further pilot study with prospective secondary teachers 

in higher semesters (N = 24), we approved these subscales to be internal consistent1 with a total 

reliability value of Cronbach's alpha .911. Moreover, we used our qualitative approach in order to 

validate our survey afterwards. 

 

Contents relationship – beliefs concerning the connections between university mathematics 

and school mathematics on the contents dimension (4 items; Cronbach's alpha .821): 

4. University mathematics offers many parallels to school mathematics with regard to 

contents. 

9. School mathematics and university mathematics are applied to each other in contents. 

11.* In university mathematics, there are too little relations in contents to school. 

12.* School mathematics and university mathematics are two different worlds with regard to 

contents. 

Relevance for profession – beliefs concerning the relevance of university mathematics for the 

later profession as a school teacher (6 items; Cronbach's alpha .814): 

                                                 

1 7 Personal items with Cronbach's alpha .845 and 12 non- personal items with Cronbach's alpha .858. 



1. University mathematics is very useful for the teaching profession. 

3.* I will hardly ever need university mathematics after studying. 

5. By the use of university mathematics, I am well prepared to the job profile of a mathematics 

teacher. 

10. Without university mathematics, I could hardly teach mathematics in school. 

15.* Learning mathematics at university is not so important for the teaching profession. 

19. The relevance of university mathematics for the teaching profession is2 

Higher standpoint – beliefs concerning the usefulness of university mathematics as a higher 

standpoint for elementary mathematics (6 items; Cronbach's alpha .818): 

2. University mathematics helps me to get deeper into school mathematics. 

6. By the use of university mathematics, gaps are filled in the mathematical knowledge that is 

required in school. 

7. By the use of university mathematics, I gain a deeper understanding of concepts in school. 

8. By the use of university mathematics, I understand relationships within school mathematics 

much better. 

14. Learning mathematics at university promotes me to be in thinking “one step ahead” of the 

students. 

16. As a mathematics teacher, an in-depth mathematical content knowledge is required. 

Table 1: questionnaire for measuring prospective teachers’ beliefs concerning a double discontinuity 

The possible range of scores for each component is between 1 and 6. Higher scores correspond to 

more positive beliefs (by reversing the responses to the negatively formulated items indicated with 

an asterisk*). 

Concluding remarks 

The main topic of this paper was to discuss our approach of measuring prospective mathematics 

teachers’ beliefs towards their perceived disagreements between mathematics at university level and 

school mathematics that is known as double discontinuity. In order to be able to investigate changes 

in prospective teachers’ beliefs referring to the double discontinuity problem, we chose a mixed 

methods design and developed a questionnaire including 16 items that actually seems to measure 

these beliefs. Grounded on our preliminary results, the following steps of our research will be a 

comparison between two groups of prospective teachers - one group in a traditional course and one 

group in a course using the mentioned teacher-oriented tasks to prove if the type of the course has an 

effect of the prospective teachers’ beliefs. Since a variety of other factors may be related to our 

outcomes, we also collect among others data to study interest (Schiefele, Krapp, Wild, & Winteler, 

                                                 

2 Whereas in the previous items the prospective teachers may choose an option in a scale from “strongly disagree” to 

“strongly agree”, the last item refers to a scale from “very low” to “very high”. 



1993) and study satisfaction (Dargel, 2005) in a pretest and a posttest as well as additional items 

referring to relevant demographic and academic background information. 
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Since noticing has been identified as a critical skill that teachers must develop, research on how 

pre-service teachers develop this skill in teacher education programs has emerged. In this study, we 

focus on how pre-service teachers notice students’ fractional reasoning through a task designed 

taking into account a students’ Learning Trajectory of fractional reasoning. Our results show that 

pre-service teachers’ learning of the Learning Trajectory helped them to notice students’ fractional 

reasoning in a structured way: identifying important mathematical elements of the problems and, 

establishing relationships between the mathematical elements and students’ fractional reasoning 

levels of the Learning Trajectory to help students progress in their fractional reasoning. 

Keywords: Noticing, fractional reasoning, learning trajectories. 

Noticing and learning trajectories 

Noticing has been shown as an important skill for teachers. This skill has been conceptualised from 

different perspectives (Jacobs, Lamb, & Philipp, 2010; Mason, 2002, 2011; Sherin, Jacobs, & 

Philipp, 2011) but all of them emphasise the importance of identifying the relevant aspects in 

teaching and learning situations and interpreting them to make teaching decisions. Mason stated that 

“noticing is a movement or shift of attention” (Mason, 2011, p. 45) and identified different ways in 

which people can attend (p.47): 

Holding wholes is attending by gazing at something without particularly discerning details. 

Discerning details is picking out bits, discriminating this from that, decomposing or subdividing 

and so distinguish and, hence, creating things. 

Recognizing relationships is becoming aware of sameness and difference or other relationships 

among the discerned details in the situation. 

Perceiving properties is becoming aware of particular relationships as instances of properties that 

could hold in other situations. 

Reasoning on the basis of agreed properties is going beyond the assembling of things you think 

you know, intuit, or induce must be true in order to use previously justified properties as the 

basis for convincing yourself and others, leading to reasoning from definitions and axioms. 

This perspective emphasises the importance of identifying the relevant aspects of the teaching-

learning situations (discerning details) and interpreting them (recognising relationships) to support 

instructional decisions (perceiving properties).  

On the other hand, research has shown that when pre-service teachers attend to students learning 

progressions in a particular mathematical domain, they are better able to make decisions about next 



instructional steps (Wilson, Mojica, & Confrey, 2013). In this context, students’ learning trajectories 

(Battista, 2012) can assist pre-service teachers in identifying learning goals for their students, in 

anticipating and interpreting students’ mathematical reasoning and in responding with appropriate 

instruction (Sztajn, Confrey, Wilson, & Edgington, 2012). Our study is embedded in this line of 

research and analyse how pre-service teachers’ learning of a fractional reasoning Learning 

Trajectory supports their development of noticing students’ fractional reasoning. Our research 

question is: how do pre-service teachers interpret student’ fractional reasoning and respond with 

instructional actions using a learning trajectory of fractional reasoning? 

A learning trajectory of fractional reasoning 

A Learning Trajectory consists of three components: a learning goal, learning activities, and a 

hypothetical learning process (Battista, 2011). A Learning Trajectory includes descriptions of 

learning activities that are designed to support students in the transition through intermediate stages 

to a more sophisticated level of reasoning. 

The learning goal of the fractional reasoning Learning Trajectory used in this study is derived from 

the Spanish Primary Education’s curriculum: the meaning of fraction and its different 

representations and, the meaning of fractions operations. This learning goal highlights two key 

aspects: a) the transition from an intuitive meaning of splitting into equal parts to the idea of 

fraction as part-whole taking into account different representations, and b) the construction of the 

meaning of operations with fractions. 

The student’s learning process takes into account how the student reasoning about fractions 

develops over time (Battista, 2012; Steffe, 2004; Steffe, & Olive, 2009). We have considered six 

different levels of students’ fractional reasoning (learning trajectory proficiency levels): at level 1, 

students have difficulties in recognising that the parts of the whole must be congruent; at level 2, 

students recognise that the parts could be different in form but congruent in relation to the whole. 

This allows them to identify and represent fractions in a continuous context but they have 

difficulties with discrete contexts. They also begin to use unit fractions as an iterative unit (i) to 

represent proper fractions (although they have difficulties with improper fractions) and (ii) to solve 

some fraction addition problems with the same denominator; at level 3, students identify and 

represent fractions in discrete contexts recognising that the groups must be equal. They also 

recognise that a part could be divided into other parts. When comparing fractions, they recognise 

that the size of a part decreases when the number of parts increases. They can use a part (not 

necessarily the unit fraction) as an iterative unit to represent proper (f<1) and improper (f>1) 

fractions. They can also reconstruct the whole using any fraction as an iterative unit (continuous and 

discrete contexts). In addition, they use intuitive graphical representations to add/ subtract fractions 

with different denominators; at level 4, students can solve simple arithmetic problems with the help 

of a guide or support. They can do equivalent fractions so that operations can be graphically 

represented. When they add or subtract fractions with different denominators, they understand that 

the parts must be congruent to join/separate although they need a guide that allows them to choose 

the unit correctly. When they multiply, they understand the fraction as an operator “a/b of c/d” and 

when they divide, they develop two types of reasoning; (i) division as a measure and (ii) division as 

a partition; at level 5, students can operate and solve arithmetic problems symbolically, identifying 

patterns. They can graphically justify what they do but only in simple situations. At this level, they 



are able to interpret the remainder of a division of fractions; at level 6, students can explain 

operations graphically. They do not need a guide to represent fraction operations. 

Method 

Participants and context 

Participants were 31 pre-service primary school teachers (PT) enrolled in a degree to become 

primary school teachers. They were enrolled in a subject of 150 hours (60/90 

attendance/nonattendance) related to teaching and learning of mathematics in primary school. In 

previous courses, these pre-service teachers had participated in a subject related to Numerical Sense 

and in a subject related to Geometrical Sense.  

Instrument: The task  

The task consists of three pairs of primary school students answers, with different learning trajectory 

proficiency levels of fractional reasoning, to a problem that implies the identification of a fraction  

(adapted from Battista, 2012) (Figure 1). These answers reflect characteristics of the first three 

levels of the Learning Trajectory. The answers of Xavi and Victor show characteristics of the level 1 

since they are not able to identify that the parts of a whole must be congruent. The answers of Joan 

and Tere reflect characteristics of the second level since they are able to identify that the parts of a 

whole must be congruent in continuous contexts but they still do not recognise that a part can be 

divided into other parts. This last characteristic is evidenced when they say that Figure E is not three 

quarters because it is divided into 24 equal parts and there are 18 shaded. Finally, the answers of 

Álvaro and Félix show that not only they are able to recognise that the whole must be divided into 

congruent parts but also they acknowledge that a part could be divided into other parts. 

Pre-service teachers had to answer the next four questions. To answer them, we provided pre-

service teachers with theoretical information about the mathematical elements of the fraction 

concept and about the Learning Trajectory of fractional reasoning used in this study.  

Q1- Describe the problem taking into account the learning objective: what are the mathematical 

elements that the student needs to know to solve it? 

Q2- Describe how each pair of students has solved the problem identifying how they have used 

the mathematical elements involved and the difficulties they have had with them. 

Q3- What are the characteristics of students’ reasoning (Learning Trajectory) that can be inferred 

from their responses? Explain your answer. 

Q4- How could you respond to these students? Propose a learning objective and a new activity to 

help students progress in their fractional reasoning. 

These questions and the theoretical information given (Learning Trajectory of fractional reasoning) 

focus pre-service teachers’ attention on relevant aspects of students’ answers (discerning details) 

identifying the relevant mathematical elements; on interpreting these answers (recognising 

relationships between the mathematical elements and students’ reasoning) and on supporting 

instructional decisions (attending students’ mathematical reasoning). 



 

Xavi and Victor’s answers 

Víctor: Mmmm, well we think Figures A, B, C and D represent three-quarters. 

Teacher: Xavi, do you agree with Víctor? 

Xavi:  Yes, A, B, C and D are divided in 4 parts, and 3 are shaded. 

Joan and Tere’s answers 

Tere: We believe that Figures B and D are three quarters because they are divided into 

four equal parts and three are shaded. Figures A and C have 3 parts of 4 shaded, 

but the parts are not equal... 

Teacher: And Figure E? What do you think about Figure E? 

Joan: Figure E is not three quarters because it is divided into 24 equal parts and there 

are 18 shaded. 

Tere: Sure, it is not three-quarters. 

Teacher: And the F? 

Both  It is not a fraction. In figure F, there are only 6 shaded squares.  

Felix and Alvaro’s answers 

Félix:  Well ... yes. We agree with Joan and Tere answers related to figures A, B, C, and 

D but we think differently about figure E... 

Teacher:  What do you think? Could you explain your answer?  

Álvaro:  Well ... mmm sure. If you look each line of Figure E, each line has 6 squares, and 

as there are 3 lines shaded of the 4 total lines then it is three quarters. In addition, 

Figure F also represents three quarters because if you group the squares in groups 

of 2, you get 4 groups of 2, and there are three groups shaded. 

  
Álvaro and Félix answer to Figure F 

Figure 1: Task to support pre-service teachers’ learning of a fractional reasoning Learning 

Trajectory to notice students’ mathematical reasoning 

Analysis 

Taking into account Mason’s work and the Learning Trajectory of fractional reasoning, we analysed 

pre-service teachers’ answers according to if they had (i) identified relevant elements of fractional 

reasoning in the student’s answers (discerning details); (ii) interpreted the student’s reasoning 

considering the characteristics of students’ fractional reasoning from the Learning Trajectory 

(recognising relationships between the elements identified and the different levels of students’ 

learning progress of fractional reasoning); (iii) made instructional decisions (reasoning about next 

steps providing different activities that promote students’ progression in the Learning Trajectory).  



To carry out the analysis, initially a subset of pre-service teachers’ answers was analysed by three 

researchers independently considering the points mentioned above. Then, we put together our 

respective analyses and compared and discussed our discrepancies until reaching an agreement. 

Afterwards, new data samples were added to review our allocation.  

Results  

From the analysis, we have identified three groups of pre-service primary school teachers according 

to the way that they used the Learning Trajectory to interpret students’ fractional reasoning and 

make teaching decisions. These results show that 20 pre-service teachers were able to use the 

Learning Trajectory to interpret students’ fractional reasoning, while the other pre-service teachers 

(group 1) had difficulties in using the Learning Trajectory to interpret students’ answers. The 

characteristics of the different groups of pre-service teachers are: 

 Group 1. Pre-service teachers who used some mathematical elements of the Learning 

Trajectory but in rhetoric way or without sense (11 PT). 

 Group 2. Pre-service teachers who used the mathematical elements of the Learning 

Trajectory to recognise different levels of students’ fractional reasoning, but they were not 

able to propose new activities considering the learning trajectory proficiency levels (11 PT) 

 Group 3. Pre-service teachers who used the mathematical elements of the Learning 

Trajectory  to recognise different levels of students’ fractional reasoning, and  proposed new 

activities to help students progress in their fractional reasoning taking into account the 

learning trajectory proficiency levels (9 PT) 

Group 1: Pre-service teachers who used some mathematical elements of the Learning 

Trajectory but in rhetoric way or without sense 

Pre-service teachers of this group used the mathematical elements implied in the problem (the parts 

of the whole must be congruent and a part can be divided in other parts) in a rhetoric way when they 

described students’ answers but they did not recognise characteristics of the different Learning 

Trajectory proficiency levels in students’ answers. For instance, the pre-service teacher E27 

answered question 3 of the task, pointing out (emphasis has been added underlying the 

mathematical elements):  

Víctor and Xavi: They are at Level 1 of the Learning Trajectory because they do not know the concept of 

congruence and they do not know that a part could be divided in other parts 

Joan and Tere: They are at Level 1 because they have difficulties in recognising that the part must be 

congruent and they do not recognise that a part could be divided in other parts. 

Félix and Álvaro: They are at Level 1 because, related to congruence they know the same that Joan and 

Tere, although they recognise that a part could be divided in other parts in continuous and discrete 

contexts. 

This pre-service teacher did not recognise differences between students’ fractional reasoning saying 

that all pairs of students have difficulties with the mathematical element the parts of the whole must 

be congruent although he used the mathematical elements to describe students’ answers.  



Group 2: Pre-service teachers who used the mathematical elements of the Learning 

Trajectory to recognise different levels of students’ fractional reasoning, but they were not 

able to propose new activities considering the Learning Trajectory proficiency levels 

Pre-service teachers of this group used the mathematical elements of the Learning Trajectory that 

correspond with the problem (the parts of the whole must be congruent and a part can be divided in 

other parts) to recognise the different levels of students’ fractional reasoning. However, these pre-

service teachers did not justify a new activity taking into account the students’ fractional reasoning. 

For instance, the pre-service teacher E09 answered to question 2 and 3 for each pair of students 

(emphasis has been added underlying the mathematical elements): 

Víctor and Xavi have difficulties in recognising that the parts must be congruent as they identify as a ¾ 

figures A and C whose parts are not equal. Another characteristic that we can identify is that they have 

difficulties in recognising that a part could be divided in other parts. They do not notice that figures E 

and F are divided in 4 parts, maybe they notice that E has 24 squares and F has 8 squares. Thus they do 

not realise that both are equivalents. So, these students are at Level 1. 

Joan and Tere are able to identify and represent fractions in a continuous context recognising that the 

parts must be congruent as they recognise that, although figures A and C are divided in 4 parts and 3 are 

shaded they do not represent ¾ because the parts are not congruent. They also identify that B and D are 

¾. They are not able to recognise that a part could be divided in other parts/consider a group of parts as a 

part since they do not identify that even though E and F are divided in more parts, they represent ¾. So, 

these students are at Level 2. 

Félix and Álvaro agree with Joan and Tere about figures A, B, C, and D, thus they recognise that the 

parts must be congruent. Furthermore they recognise that a part could be divided in other parts and they 

identify fractions in discrete contexts since for figure E they say that, although it is divided in 24 squares, 

it represents ¾ because there are 4 lines with 6 squares each and 3 of those 4 are shaded (they recognise 

the equivalence 18/24=3/4). Besides of that, in figure F they group in pairs the eight squares of the whole 

to represent the ¾. So, these students are at Level 3. 

Nevertheless, this pre-service teacher was not able to propose a specific activity considering the 

Learning Trajectory in order to help students progress in their conceptual reasoning. For instance, 

this pre-service teacher proposed for the first pair of students: “With Víctor and Xavi we would work 

with the recognition that the parts must be congruent. To do that, we could propose the same task but with 

other figures and they (students) could represent 4/6”.  

The answers of this group of pre-service teachers indicated the difficulty of making instructional 

decisions considering the Learning Trajectory proficiency levels. 

Group 3: Pre-service teachers who used the mathematical elements of the Learning 

Trajectory to recognise different levels of students’ fractional reasoning, and proposed new 

activities to help students progress in their fractional reasoning taking into account the 

learning trajectory proficiency levels 

Pre-service teachers of this group, after using the mathematical elements (the parts of the whole 

must be congruent and a part can be divided in other parts) to recognise different levels of students’ 

fractional reasoning, proposed new activities focused on helping students progress in their fractional 



reasoning according to the learning trajectory proficiency levels. For example the pre-service 

teacher E25 proposed the next objective and activity to help Victor and Xavi progress in their 

fractional reasoning: 

Objective: In order to progress from Level 1 to Level 2, students have to recognise that the parts of a 

whole must be congruent (although they could be different in form). 

Activity: Represent in the following figure (square) 2/4 in three different ways 

This group of pre-service teachers used their knowledge of the Learning Trajectory to interpret 

students’ fractional reasoning, and proposed new activities to help students develop their fractional 

reasoning. 

Discussion and conclusions 

The aim of this research was to analyse how pre-service teachers’ learning of a Learning Trajectory 

of fractional reasoning supports their development of noticing students’ fractional reasoning. We 

focus on how pre-service teachers interpret student’ fractional reasoning and respond with 

instructional actions using a learning trajectory of fractional reasoning. 

Twenty out of thirty-one pre-service teachers who participated in the task were able to use the 

mathematical elements to interpret students’ fractional reasoning considering the characteristics of 

the students learning progression of fractional reasoning and identifying different levels of students 

reasoning. This result indicates that the information about a Learning Trajectory of a particular 

mathematic topic can be used by pre-service teachers to begin to notice features of students’ 

mathematical thinking in a particular domain and therefore, to develop the skill of noticing. The 

Learning Trajectory can be seen as a powerful tool that help pre-service teachers focus their 

attention on important mathematical aspects of the problem, on the students’ mathematical 

reasoning and on making instructional decisions on the basis of students’ mathematical reasoning. 

The other eleven pre-service teachers had difficulties in using the Learning Trajectory to interpret 

students’ answers. This result is in line with other studies that have shown that interpreting students’ 

mathematical reasoning is a challenging task for some pre-service teachers (Llinares, Fernández, & 

Sánchez-Matamoros, 2016; Sánchez-Matamoros, Fernández, & Llinares, 2015). 

However, only nine out of these twenty pre-service teachers could use their interpretations of 

students’ fractional reasoning to propose new activities according to the Learning Trajectory in 

order to help students progress in their fractional reasoning. Previous research has pointed out that 

the skill of making instructional decisions is the most difficult one to develop in teacher education 

programs (Callejo & Zapatera, 2016; Ivars & Fernández, 2016; Llinares, Fernández, & Sánchez-

Matamoros, 2016; Sánchez-Matamoros, Fernández, & Llinares, 2015). Nevertheless, approximately 

one third of the participants, in our task, were able to design an activity to promote students’ 

progressions of fractional reasoning according to the Learning Trajectory. Therefore, we think that 

the task of our study, designed according to a Learning Trajectory, seems to have a relevant paper in 

the development of the skill of providing activities that could help students progress in their 

learning. The Learning Trajectory could be seen as a referent or guide for pre-service teachers that 

could help them to link the mathematical domain (mathematical elements), the student’s reasoning 

and the instruction that considers students’ learning progressions.  
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Teachers in Iceland are faced with challenges to differentiate teaching as they implement a policy 

of inclusive education. This collaborative inquiry into teaching of mathematics aims at learning to 

understand how teachers develop their mathematics teaching through participating in a 

developmental research. Seven primary teachers worked at improving their mathematics teaching 

and researched their practice together with a teacher educator for three years. Narrative inquiry 

was used as an analytical tool to study the teachers’ learning. In this paper the focus is on one of 

the teachers and her learning from participating in the project. The results indicate that she gained 

confidence in teaching mathematics in diverse classrooms while participating in workshops and 

that collaborative research can support teachers in developing their practice when meeting new 

challenges in their work.  

Keywords: In-service teacher education, developmental research, collaborative inquiry. 

Introduction 

This paper reports on findings from a three-year qualitative collaborative inquiry into mathematics 

teaching and learning with the purpose of deepening our understanding of how teachers meet new 

challenges in their classrooms. The aim was to learn about the processes that emerge through 

collaborative inquiry between classroom teachers and a teacher educator. In this paper the focus is 

on one of the teachers’, Pála, and her development in teaching mathematics while participating in 

the project. The research question that will be answered is:  

In what way did Pála affect the learning developed within the project and how is her 

participation reflected in her mathematics teaching?  

The study built on earlier research on teacher development in mathematics teaching in Iceland that 

revealed that teachers take a passive role in their mathematics teaching and lack experience in 

creating meaningful learning environments for all children (Guðjónsdóttir, & Kristinsdóttir, 2011; 

Savola, 2010). They have particularly focused on instrumental understanding as opposed to 

relational understanding (Skemp, 1976) and emphasised that their pupils learn to carry out the steps 

of the ‘traditional’ algorithm (Fosnot & Dolk, 2005). My fellow teacher educators and I have found 

that if teachers are given opportunities to collaboratively investigate ‘with’ mathematics and solve 

mathematical problems, they discover how the different experiences they bring into the community 

can contribute to their own understanding of the mathematics involved, as well as how individuals 

learn mathematics (Guðjónsdóttir & Kristinsdóttir, 2011; Gunnarsdóttir, Kristinsdóttir, & Pálsdóttir, 

2013). In our work with pre- and in-service teachers, we found that they must be offered 

opportunities to experience learning that enhances inclusive education. Our results correspond with 

those of Bredcamp (2004) and Moore (2005), who emphasised that if teachers’ work is expected to 

be aimed at diversity and mutual understanding, they require the opportunity to develop and 

enhance their knowledge about teaching and learning in an environment that reflects the very same 

aspects that they are expected to foster in their own classrooms.  



Teacher development in inclusive settings 

Teaching children mathematics requires teachers to understand how their students learn 

mathematics and they need to be skilled both in mathematics and pedagogy as well as the 

knowledge that combines knowing about teaching and knowing about mathematics. In recent years 

the Nordic countries have emphasized mathematical competences of which eight specific 

mathematical competences were identified. These form two clusters; the ability to ask and answer 

questions in and with mathematics; and the ability to deal with mathematical language and tools 

(Niss & Højgård, 2011). Niss & Højgård also outlined a model for mathematics teacher competency 

where the ability to develop one’s competency as a mathematics teacher as well as the competencies 

of working with students and others towards professional development were identified. It is 

important to note that development of teaching in classrooms is dependent both on the teachers’ 

knowledge and their ability to learn together with others, both their students and colleagues. 

Attention and awareness are important features of mathematics learning. Mason, (1998) holds that 

teaching is fundamentally about attention and teachers can enhance pupils’ attention by attending to 

their own awareness. When someone else points something out to us our awareness changes 

slightly; we become more explicitly aware of some features, and less aware of others. Thus in 

collaborating with colleagues, teachers are afforded the ideal conditions in which work on their own 

awareness, which can provide conditions for their students to experience them too.   

When gaining competence in teaching mathematics teachers build on their knowledge and 

experience and an essential factor in this process is the participation in learning communities. In 

order to be able to support learners in their classrooms in acquiring mathematics competence, 

teachers need to urge their pupils’ to ask probing questions, take risks and learn from their mistakes.  

In communities of learning the individual learner draws on knowledge in the community as well as 

on personal knowledge. Nevertheless the main emphasis has been on individualized learning in 

response to diversity in classrooms. Schools have thus adopted what Ainscow (1995) called 

integration by making only a limited number of arrangements for including all learners in classroom 

activities. Askew (2015) argued that learning communities are more inclusive than taking the 

individual as the starting point for planning learning experiences. In these communities teachers 

work with the collective construction of mathematical knowledge while still ultimately addressing 

the needs of the individuals within that community. This is the same position I took in working with 

teachers, attending to their diverse needs for improving their teaching and finding ways to work in 

inclusive ways with diverse groups of learners.  

Through collaborative activity a community learns from the thinking, practices, and development of 

the individual. Important features of such communities are discussions about the mathematics 

attended to in the classroom. In the communities learners listen to each other’s solutions and think 

about connections to their solutions while helping each other refine their methods and explanations. 

When learners participate in mathematical practices in whatever way they can diversity is no longer 

an obstacle to classroom talk. It is thus being enriched through the diversity of learners’ 

contributions (Askew, 2015).  



Methodology and methods 

The study is a collaborative inquiry into mathematics teaching and learning (Goos, 2004), and the 

aim is to build a co-learning partnership between teachers and a researcher in order to support 

classroom inquiry (Jaworski, 2006). The methodology of developmental research (Gravemeijer, 

1994) and the ‘developmental research cycle’ (Goodchild, 2008) guided the cyclic process of the 

research.  

In an attempt to make explicit the ‘practice’ in which teachers and researchers participate when 

collaborating, Jaworski (2003) suggested shifting from the notion of community of practice 

(Wenger, 1998) to that of ‘community of inquiry’, where teaching is seen as learning-to-develop-

learning. In such a community, teachers and researchers both learn about teaching through inquiring 

into it. In this project the vision was that all the participants would learn about teaching mathematics 

in diverse classrooms.  

For three years I worked with seven teachers at 90-minute workshops on monthly basis. They taught 

10 to 12 years old pupils in two neighbouring schools, four were homeroom teachers and three were 

support teachers that joined them in mathematics classes. The focus of the workshops was on 

reflection on mathematics, and on mathematics teaching and learning. To help the teachers develop 

their own understanding of mathematics, we worked with problems that had the potential to 

promote mathematical activity and thinking as well as to stimulate collaboration where discussions 

and sharing thinking were meaningful. We also discussed new research on mathematics education 

and stories from the teachers’ classrooms, reflected on their pupils’ mathematics learning and 

considered how their mathematical thinking developed. To learn about the teachers visions for the 

project and the cultures in their mathematics classrooms I interviewed them and observed their 

classrooms at the outset of the project, after the first year, and one year after the last workshop. Data 

was collected of videotapes from workshops, audiotapes from interviews and notes from classroom 

observations.  

Narrative inquiry was used as an analytical tool to study the teachers’ learning in participating in 

this project. It is a way of understanding and researching experience through collaboration between 

a researcher and participants and to research with practitioners their lived experience as a source of 

their knowledge and understanding (Clandinin, 2013). The stories the teachers told about their 

work, at the workshops and in interviews, are the basis of the narrative inquiry. The teachers read 

the drafts of their narratives and commented on them, and then on the final version.  

Findings 

Pála had been a general classroom teacher over 30 years in grades 5-7 when she participated in the 

collaborative project. In her teacher education her focus was on language skills and she had attended 

many in-service courses about language teaching but only a few about mathematics teaching. As a 

classroom teacher she taught mathematics to 10-12 year old children. 

Emphasis on instrumental understanding 

When I observed Pála’s classroom at the outset of the study her emphasis on carefully describing 

the steps of algorithms was dominant. She started the lesson by reviewing homework and then 



discussed the content of the lesson. She described carefully to her pupils how to work through the 

problems in their textbook that she wanted them to solve.  

Pála worked closely together with her colleague Dóra, at teaching pupils in their 5th grade 

classrooms. At our first workshop Dóra wanted to discuss the teaching of ‘traditional’ algorithms 

(Fosnot & Dolk, 2005). She had discussed the algorithm of long division with Pála and questioned 

her belief that is necessary for their pupils to learn the steps of the algorithm. Pála added: 

What we have been reflecting on is, is it bad, does it spoil anything for them? Does it destroy 

their thinking process, does it stop anything? 

Pála was eager to learn more about how to teach children to calculate. She had emphasised the 

memorising of facts and at her school children were regularly tested on multiplication facts. Dóra 

had also questioned this tradition and Pála was starting to review her beliefs about instrumental 

understanding (Skemp, 1976).  

Reviewing her own way of calculating 

Pála was eager from the beginning to improve her own way of solving mathematical tasks. When 

we at our forth workshop discussed how many cans there were needed to build a ten storey tower of 

cans she said: 

There would be 10 here [points to the bottom row of the 10 storey tower she drew]. Then I would 

count 9 and 1, 8 and 2, 7 and 3, 6 and 4. Then I have 10, 20, 30, 40, 50 and then add these 5 

[points to her drawing for each step] and have got 55. I do this to be quick at counting. 

Pála was reflecting on her own way of calculating when she said that she did this to be quick at 

calculating thus attending to her own awareness of learning (Mason, 1998).  

As the project developed Pála brought in problems she had been solving with her pupils and wanted 

to discuss her understanding of the problems with us. At Workshop 15 she told us about her 

discussions with her pupils about how many handshakes there would be in their class if they all 

shook hands with each other. The children decided to try this and were quick to realise that they 

would only shake hands once with each person. They developed a rule that could be used to 

calculate the handshakes in their group of 15 pupils: 14+13+12+ … +2+1. They then split into 

smaller groups to test if their rule could be applied to a group of any size. Pála had not thought 

about the solution of this problem before it was discussed in her class and therefore took an active 

part in the solution process. By comparing the total handshakes for different number of pupils, they 

then had developed a formula together. Pála was keen to discuss with us whether the formula n(n-

1)/2 could be applied to calculate the handshakes for a group of any size. Pála said:  

I do not understand why this equation works, why this connection. I know it works, we have tried 

it for many cases. Can you help me to understand why it works? I would like to proceed to work 

with the children in this way.  

By asking us to discuss her experience with us Pála was adding to her competence of learning 

together with colleagues and in discussing with her pupils she was developing her competence in 

learning with them. She was also supporting her pupils in developing their the ability to ask and 

answer questions in and with mathematics (Niss & Højgård, 2011). 



I reminded Pála on her earlier addition of consecutive numbers in relation to the tower of cans. Pála 

said that she remembered it but she still could not understand why the formula she had developed 

with her pupils worked. We then discussed their formula and why it could be used to calculate the 

handshakes and in doing so we were inquiring into our own mathematics learning (Goos, 2004) and 

cultivating our learning community (Jaworski, 2003). I pointed out that she took an active part in 

the learning process in the classroom. Not only did she learn about the children’s thinking but also 

about her own thinking about the problem. She had given them a problem that neither she nor they 

knew beforehand how to approach. Then they all started to investigate and look for patterns and 

developed a rule together. Through these discussions our co-learning partnership was cultivated as 

we focused on classroom inquiry (Jaworski, 2006). 

Learning together with her pupils 

Pála was starting to learn together with her pupils by exploring with them in the classroom as 

opposed to the beginning of our collaboration when she had carefully explained to her pupils, how 

to solve problems. At our final workshop she shared with us her discussions with her pupils. They 

had worked with different kinds of word-problems in their textbook. They were required to write 

their solutions to the problems with algebraic expressions. She gave examples of the pupils’ 

discussions about the problems and how they wrote the expressions. She had recorded these 

examples in her notebook and now wrote on the whiteboard to show us how the pupils calculated 

and how she interpreted their thinking about the problems.  

We discussed two of the problems:  

Klara is 4 years younger than her brother Kári. Their total age is 18 years. How old is Kári? 

A large apple costs 11 ISK more than a small apple. The total price of a small apple and a large 

apple is 59 ISK. What is the price of a large apple? 

Pála had solved the problems herself and her thinking was different from her pupils’ but they all 

came to the same conclusions. She wanted to discuss this experience with us and hear my 

interpretation of the different ways they solved the problems. She was particularly keen to hear my 

opinion with regard to the way she had accepted her pupils’ way of solving a problem instead of 

telling them to think about it in the same terms she did. 

Jónína: Pála, you said that the children wrote x+x+4=18 and you wrote x+x-4=18. 

Pála: Yes. And for the apples they wrote x+x+11=59 and I wrote x+x-11=59. 

We discussed how the value of the unknown variable in Pála’s equation was different from the 

value in the children’s equation. Still in both cases they came to the same conclusion about the age 

of the siblings and the price of the apples. Pála said that all the children in her class were able to 

solve the word problems by first trying some numbers and then adjusting them until they found the 

right numbers. Many of them could write the equations and they then supported each other in doing 

so. Finally Pála concluded: “These were just my thoughts. I found it interesting to see how they 

understood and thought about this”.  

When Pála shared this story with us she was cultivating our learning community (Askew, 2015; 

Jaworski, 2006). But she had also attended to her pupils’ way of learning and was now focusing on 

their way of expressing themselves instead of describing carefully to them the steps they needed to 



take as she did to begin with thus making herself aware of her pupils diverse ways of learning 

(Mason, 1998).  

Grouping pupils into ability groups 

In Pála’s school it had been the custom for many years to group children into groups in mathematics 

classes based on the outcomes of an end of term test. When the project began Pála and Dóra had 

divided the 43 children in fifth grade into three groups in mathematics classes. A special education 

teacher taught the pupils who got the lowest grades, Dóra taught those who got the highest grades 

and Pála taught the middle group. With this arrangement they were responding to diversity by 

making only a limited number of arrangements for including all learners in classroom activities 

(Ainscow, 1995). To begin with Pála was concerned that the pupils in her group were not capable of 

solving problems without her leading them step by step. Gradually as she became more confident 

with exploring with mathematical problems herself she started to listen to them and allow herself to 

join them in their explorations with problems as discussed above.  

When Pála shared her experiences of working with her pupils with us we discussed how her 

approach supported the children’s learning like the case with the handshake problem. She told us 

that some of her pupils understood why the formula could be applied to solve this problem and 

others did not. They though all understood that they could calculate the total number of handshakes 

by adding (n-1) + … + 1. We then related to our former discussions of tasks that can be solved at 

many levels and are therefore suitable to work with in diverse classrooms. Pála was satisfied with 

this experience and found that she was beginning to trust that all her pupils were capable of more in-

depth learning than she had realized before thus acknowledging that diversity is no longer an 

obstacle (Ainscow, 1995; Askew, 2015).  

The final year the project was running Pála and her close colleague, Dóra, had decided not to group 

their pupils into ability groups any more. They had become confident in investigating in 

mathematics with their pupils and found that all the children in their classes were capable of 

learning together and gained from sharing experiences with each other.  

Professional development and influence on our project 

Pála took an active part in using the tools for professional development that I offered the teachers in 

our learning community. She visited her colleague’s classrooms and discussed with them what they 

learned from their visits and she recorded her lessons to learn from her communication with her 

pupils. She also shared her experience from her learning in the classroom with us and gradually 

started to lead what to focus on at our workshops. Not only did she share this experience with us she 

also brought in problems she had found elsewhere and asked us to solve them with her.  

The project was only planned for one year to begin with. As we approached the end Pála expressed 

her wish to meet for a second year. She felt that she and the other teachers were just starting to 

develop their teaching and could not stop when they felt that they were gaining so much from our 

collaboration. The other teachers agreed with her and our project ran for three years as the teachers 

wished to extend it for the third year. With her willingness to share her thinking with us and take 

lead in what to focus on at the workshops Pála shaped the developmental process of the project and 

affected the ‘developmental research cycle’ (Goodchild, 2008). 



Conclusions 

Based on the narratives of Pála’s participation in the collaborative project I have concluded that she 

gained confidence in teaching mathematics in diverse classrooms and that collaborative research can 

support teachers in developing their practice when meeting new challenges in their work. The 

sketches from our collaboration are representative for the learning that emerged during our 

collaboration. In the communities of inquiry we managed to build at the workshops we supported 

each other in learning-to-develop-learning (Jaworski, 2003) by reflecting collectively on the stories 

the teachers told of their classroom experiences. From the stories Pála told us we learned how her 

pupils’ competences in dealing with mathematical language and tools were developing as well as 

their ability to learn about their own learning in working with their pupils (Niss & Højgård, 2011).  

By offering the teachers opportunities to experience learning that enhances inclusive education 

Bredcamp, 2004; Moore, 2005), the teachers were empowered to develop their teaching as was 

reflected in Pála’s learning.  

During our three years of collaboration I, as a teacher educator and a researcher learned about 

teachers’ capabilities to develop their own teaching if they are supported in reflecting on their 

learning of mathematics as well as their pupils’ learning. In reflecting on their learning about 

mathematics teaching my understanding has deepened of the opportunities and challenges teachers 

meet when including all learners in meaningful mathematics learning.   
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After a sketch of our ArAl project devoted to teaching/learning early algebra, we introduce our 

‘Progetto ArAl’ group in Facebook, conceived not only to share and discuss among teachers 

didactical experiences, theoretical questions and materials but, more in general, to educate in 

informal way teachers in early algebra. For its features it can be said a non standard group (NSG) 

in Fb. The main question we put ourselves is: may a NSG become a community of practice? To find 

an answer to this question we compared our group with a larger Italian group devoted to mathematics 

at primary school analyzing the interactions in the two groups launched by some common members. 

On the base of this comparison we delineate some hypotheses for the management of a NSG as a 

community of practice, where well known mentors and transparent theoretical guidelines allow the 

teachers consciously to approach the theory for the practice. 

Keywords: Early algebra, community of practice, informal on line education, teachers’ professional 

development. 

Introduction 

The ArAl project belongs to the stream of studies devoted to the renewal of the teaching in the 

arithmetic-algebraic area in the perspective of early algebra. It is characterized by the intertwining 

among: a) the activation in the classes of innovative didactical paths on early algebra; b) educational 

processes of teachers based on the critical analysis of the mathematical discussions developed inside 

the didactical paths. It promotes a relational approach to arithmetic of linguistic and metacognitive 

type, to be realized through socio-constructive modalities. The classroom activities are based on the 

negotiation of a didactical contract for the solution of problems according to the principle: “first 

represent, then solve”. For room questions we cannot discuss deeply our theoretical frame (we refer 

to Cusi et al. 2011 and related references), here we simply recall some key aspects of it: (i) the 

plurality of representations of a given quantity, beyond the canonical decimal representation1; (ii) the 

identification and making explicit algebraic relationships and structures underpinning concepts and 

representations in arithmetic2; (iii) the initiation to the essential algebraic cycle: representing, 

                                                 

1 For instance, the number twelve, has a canonical representation in base 10, i.e. 12, but expressions such as 3×4, (2+2)×3, 

36/3, 10+2, 3×22  are other ways to express the same quantity, we call them non-canonical representations of 12, each has 

its sense related to the process that characterizes it and offers pieces of information about the number. Being able to 

fluently shift among these forms allows pupils to easier recognize structural similarity among different numbers and  to 

build the basis for understanding scriptures as a.b, -4p, x2y, k/3). 

2 For instance to see the equal sign, in writings such as 3+4=7, not only in its procedural sense of connection between an 

operation and a result, but in its relational sense, as an indicator of equivalence between two different representations of 

the same number). 



transforming, interpreting (Bell 1996) through the devolution to the students of: a) the formalization 

of verbal relationships individuated during explorative numerical activities (process named by us 

algebraic babbling); (b) the interpretation of simple algebraic sentences both in themselves and with 

reference to a given context3; (v) the stress on natural language as didactical mediator in the slow 

construction of syntactic and semantic aspects of algebraic language4. 

Our work with and for teachers has always been realized in a community of practice, or better of 

inquiry in Jaworski sense5, where the practice of the researchers and the one of the teachers meet, 

compare and develop in co-partnership and where, in addition to theory, methods and aims, values 

and expectations are shared (Cusi & Malara 2015). Because of the teaching in an early algebra 

perspective requires in the teachers, mainly the ones of primary school, a deep rebuilding of 

knowledge, beliefs, behaviours, and manners in the class, we have conceived specific modalities and 

apposite tools for teachers education. We simply recall here our Multicommented Transcripts 

Methodology, we have enacted to promote in teachers awareness of their own ways of being in the 

class and to guide them in managing mathematical discussions. Key tools of this methodology are the 

teacher’s transcriptions of the classroom discussions enriched by written multiple comments (by 

tutors, maths educators and other teachers), the MTs. The joint reflections on each MT attain a shared 

development of the theoretical frame, of the classroom methodologies and of the teaching materials 

that shall create the basis for the teachers’ professional evolution. The productions of MTs became in 

the time a distinctive character of the Project Aral membership. 

The ArAl Project Group in Facebook 

Along the years many times we have been asked to make available ArAl materials to a greater number 

of teachers; for this in 2014 we opened the ‘ArAl Project’ group in Facebook. Fb is mainly used as a 

way to share experiences, practices and materials among teachers and other professionals (see for 

                                                 

3 For instance, to recognize that the sentence 85=4×21+1 represents 85 through the quotient and the remainder of its 

division by 4 (or by 21), and in the same time - looking for the letter which stays at the 85° place in a sequence generated 

by the ABCD module – to recognize that the same sentence allows to understand what the letter is (the pupils have to 

interpret the term 4×21 as the part of the sequence done repeating 21 times the module and the remainder as the number 

of place of the letter in the successive module). 

4 For instance, two pupils express in natural language, and then translate in mathematical language, their different ways 

to calculate the number of pearls in the necklace : the first 

pupil says “I counted white and black pearls and I added them” and translates: 2×6+3×6; the second says: “I saw that 

there are 6 groups, each group has 2 white and 3 black pearls and I multiplied 2 plus 3 by 6 and wrote (2+3)×6. The 

comparison of the two sentences allow the pupils to gain experience about the distributive property. 

5 We recall that a community of practice (CP) is constituted by a group of people who share a craft and/or a profession. 

The group can evolve because of the members' common interest in a particular domain or area, or it can be created 

specifically with the goal of gaining knowledge related to their field (Lave and Wenger, 1991). Jaworski (2003), referring 

to the joint work developed between maths educators and in service teachers about classroom teaching-learning processes, 

introduces the construct of Inquiry Community (IC) and underline that what distinguish a CI from a CP is that all the 

participants engage with inquiry as a tool to develop meta-knowing, a form of critical awareness that manifests itself in 

inquiry as a way of being. 



example Bodell & Hook 2011, Manca & Ranieri 2014), but in the last years it has also been used in 

educational activities for teachers (Staudt et al. 2013, Van Bommel & Liljekvist 2016). In our case, 

the initial idea was to spread themes and principles of early algebra among teachers and to motivate 

and help them in approaching it in the class but also to observe new, spontaneous didactical 

experiences, arising under the stimuli offered by the ArAl institutional courses. We believe that the 

Fb group can be a way to integrate institutional and informal education offering the teachers new 

occasions to promote their professional development. We started inviting expert  teachers 

collaborating since long time in our project to become supporters of the group and to share their 

experiences with the teachers, recently involved in ArAl courses promoted by the schools, who have 

been invited to become followers of the Fb group. The fundamental methodological choices in 

managing the group are: our daily on line presence and prompt reactions to the teachers posts; the 

stimuli offered by the expert teachers posts through videos or pictures of classroom activities; our 

periodical posts about: mathematics questions and related theoretical references; examples of 

innovative activities, equipped by MTs, papers, powerpoint presentations for deepening the discussed 

questions and stimulating free experiments among the followers. The posts in Fb are classified in: 

‘like-agree’ interventions; ‘propositive-constructive interventions’, doubtful-skeptical interventions; 

moreover meaningful sets of interventions related to interesting mathematical teaching questions are 

collected and commented in files put in our website. Periodical analysis of the data allowed us to 

highlight the interplay between our interventions and the teachers’ ones, and to reflect on the teachers 

change. We discuss their evolution according to three temporal phases.  

First phase (scholastic year 2014–15). In this first period, in front of a small group of teachers (in 

most part coordinators in the schools of the ArAl project activities), who were very active in posting 

documents related to their class activities as well as in commenting other posts, the other members 

were not so active, and their comments often were short and superficial. These teachers appeared 

awed: the most part of them had a feeble or null control over the early algebra topics and the strong 

difference among the competence of the expert teachers in the group and their knowledge in the 

arithmetic-algebra area did not encourage them to do more ‘important’ interventions. At the same 

time every day new members enrolled to the group. Some more expert teachers, members both in our 

group and in other groups for maths teaching, suggested us to visit them and in particular invited us 

to take part into the group ‘Mathematics at primary school’ (one of the most numerous and active 

Italian groups on maths teaching in the web, more than 5000 members), to offer our interventions 

whenever we seemed appropriate to do so. We call this last group a Standard Group (SG), in the sense 

that there are not pre-established leaders and that the exchange takes place freely through the sharing 

and negotiation of the individuals’ knowledge. The comparison with the SG and other groups dealing 

with teaching issues brings in evidence that ArAl Project group is different from them, mainly for 

two reasons: (a) it deals with a well defined subject area, early algebra, it is structured according to a 

clear theoretical perspective for facing it, and it proposes methodologies, problematic situations, tools 

fitting with this framework; (b) it is daily supported by us and it is animated by experts teachers who 

may act as mediators among the members. Therefore we call it a non-Standard Group (NSG). 

Second phase (scholastic year 2015-16): In this period we had continued to enter, as previously, 

examples of didactical activities, MTs, papers, powerpoint presentations but, at the same time - on 

our initiative or invited by the teachers - we had become more active in intervening on posts both in 

SG and in NSG. By way of example of this change in our strategy we focus on an episode: a post 



inserted by a teacher which received great attention (154 likers and 75 comments), started in the SG 

and developed, through reciprocal sharings, also in the NSG. The initial post contained a link to a 

note inserted in the Unit 12 of ArAl project and presented in the form of FAQ in www.progettoaral.it 

site. In this post it is developed a critical analysis of a typical Italian school practice, supported also 

by many textbooks, for introducing in primary school the decimal system of representation of the 

natural numbers: the indication of the units with the letter 'u', the tens with 'da', the hundreds with 'h' 

and so on (the so-called ‘marks'); thus there follow improper equalities such as 653=6h+5da+3u. 

Because of the impasse generated in the SG, a follower - a member of both groups - asked us for an 

intervention on this topic. In a comment of a theoretical and linguistic type Malara wrote: 

“The symbols h, da, u represent words of Italian language. They are categorical terms that refer to 

orders of magnitude and they are used as ‘indicators of quantity’. They are useful for bringing the 

pupils to shift from the experience with the abacus - where an assigned quantity is split into opportune 

multiple of powers of 10, operating for successive groupings of 10 – to the representation of the result 

of this operation through a string of symbols, each between 0 and 9 (extremes included), from which 

the name of the given quantity was born. This means that, for example the string 6h, 5da, 3u 

synthetizes the verbal sentence ‘the quantity is constituted by six hundreds, 5 tens and 3 units’ which 

generates the name of the number 653. The translation into the arithmetical language of this verbal 

sentence requires the conversion of the term ‘hundreds’ in the arithmetic operator ‘×100’, the term 

‘tens’ in ‘×10’ and the ‘units’ in ‘×1’ and the conversion of the connector ‘and’ in the operation of 

addition ‘+’. So, the total verbal sentence is translated into ‘3×100+5×10+3×1’. The sentence 

653=6h+5da+3u is improper because it mixes the two languages, verbal and arithmetic, and confuses 

the metacognitive plan with the operational one”. 

While the debate on this issue was developing in the GS, many teachers did not understand why in 

the ArAl project sentences as 653=60+50+3, 653=6×100+5×10+3×1, 653=6×102+5×101+3×100 were 

proposed as correct and not the one they used, and opposed resistance to accept the explanation that 

653=6h+5da+3u is to be discarded because it is not a correct representation in mathematical language. 

To facilitate this understanding, the improper mingling between verbal and arithmetic languages has 

been pointed also using examples of verbal sentences with words in two languages; the discussion 

then focused on the correct and incorrect representations of a natural number, the concept of ‘equality’ 

and on the meanings of the symbol ‘=’.  

Third phase (June 2016 to now) The analysis of the dynamics arisen and the kind of the comments 

posted in NSG and SG led us to the identification of some thematic questions who have given us 

valuable indications on a question that we did with increasing frequency: may a group with the 

characteristics of ArAl group become a community of practice? If the answer is yes, in which ways 

may this happen? How may a gradual constitution of a library of shared knowledge be put in place? 

This leads us to identify some answers to these questions concerning the prevailing attitudes of 

teachers who enroll in these groups. We discuss them articulating in the following points. 

Features of a SG and of a NSG 

Members of a SG feel all equal: they exchange information, questions, requests without demanding 

to receive in-depth and substantive answers; they hope to share with their peers working suggestions 

which are at the level of their knowledge and of their willingness to get involved. Individual growth 

stems from the strength of exchanges and the wealth of experiences put into circulation. Internal 



leaders emerge, who often are recognizable more by the diligence than by the quality of interventions; 

they often are the most convincing not for their knowledge but because they expose themselves more 

than others, writing frequently comments. Members may find appealing ideas for new activities but 

their enthusiasm is not supported by an adequate knowledge; they express insecurity when discussing 

their colleagues’ proposals of those embryos of new ideas. Everyone feels free to comment on 

impulse. On the contrary, a NSG as ‘Progetto ArAl’ gives the majority of subscribers some (cultural 

and psychological) constraints that limit them in exposing their contributions. The same dynamics 

occur in a working-group in which an expert is present. But then: if it is understandable, for the 

reasons explained, that a GS exceeds 5000 subscribers, how has to be interpreted the success of our 

NSG that in two years is approaching 1000 members? The answer could be given with a metaphor: 

the members have the impression of living a moment of institutional training. They know that in the 

NSG there are experts involved in the discussions, extemporary comments should be avoided and the 

participants are invited to put forth questions and to interact with others. At the same time they know 

that there are not ‘free rounds’ (as often happens in the SGs, where a rich variety of cues are offered 

but they often remain at a messy, unspecified, superficial level) and should deal with the theoretical 

aspects through an individual study. In fact, at the base of ArAl Project there is an organic vision that 

aims to propose a framework on early algebra, offering the participants opportunities to reflect on 

knowledge, beliefs, stereotypes. They accept a commitment which attracts them: to avoid free, trivial 

conversations or Pindaric flights. 

How can personal experiences, beliefs, inclinations be influenced by interventions based on strong 

theoretical references? 

The interventions on SG highlight different objectives between mathematics educators and teachers: 

basically, specialists focus their interest on the discipline, the teachers on their pupils. These different 

perspectives can create misunderstandings or misinterpretations. Then, in the NSG, mediations 

between them are necessary, that is: on one side the founding principles of mathematical knowledge 

– in our case of early algebra - have to be respected, but on the other side, at the same time, it has to 

be offered to the teachers a certain ‘serenity’ about the fact that deepenings and changes of 

perspectives in teaching do not affect learning, but on the contrary pave the way for subsequent 

extensions of mathematical concepts. There is a strongly felt concern that pupils do not understand 

or that a concept is too difficult or inappropriate (of course this concern is correct because teachers 

have the responsibility of the learning of their students, so they constantly consider the difficulty and 

feasibility of new proposals). 

Limited capacity to distinguish between different types of knowledge 

The posts and comments put in evidence that most teachers, along the years, reach their convictions 

grounding them more on the accumulation of heterogeneous strategies, methods, tools than on their 

consistency. One of the consequences of this behavior is that teachers confront themselves 

superficially with the theoretical references. For example: 

Elena: I think sometimes that famous ‘didactic contract’, of which we all partake the negative 

effects on pupils, has been moved up on teachers: “It is so, Tom said, Dick reiterated it”; someone 

makes it [i.e. the didactical contract] arguing and expressing his/her opinion (experience counts, 



anyway!); someone else makes it ‘getting on the chair'. But: be they teachers or pupils or 

propagandists or colleagues, always 'didactic contract' is. 

To what is Elena referring when she writes “the negative effects on pupils”? Her so peremptory 

statement was not reconsidered in the later comments: what does this mean? It could indicate that it 

has not been understood, or that it has been read superficially, or that it is not shared, or that it is an 

unfamiliar concept and no colleague wants to explore it. This short episode shows indeed that there 

are interactions between members, but in general they go on without reaching a real conclusion; at 

most, members achieve a superficial agreement, or a generic praise, or they remain on their positions. 

It would have been important to ask Elena what she means with this term (originally it is a theoretical 

construct by Guy Brousseau). Probably such statements would not have been made in our NSG. This 

might be a limit for the group because many convictions would not be expressed for a kind of 

compliance towards the coordinators experts. A low understanding of the key aspects of mathematics 

education (at the primary-secondary school level) favours the choice of cues - references, materials, 

paths, methods - that fit with the convictions and the personality of the teachers more than with the 

organicity of the knowledge taught. In this way, those facilitators that favour the perspective of 

making are privileged. The weak capacity to connect effectvely the suggestions of experts and 

mentors implies that one prefers a ‘do-it-by yourself’ shared with those who are felt as fellow-

travellers: if an activity, a text, a method are exalted or defended by other members of the group, they 

may be adopted, or at least tested. Often, the length of an experiments is short because the activities 

are heterogeneous, have ‘little oxygen’ (the interest on them goes out early); almost immediately they 

are put aside without any reflection in general terms, mostly on the basis of local success achieved 

by pupils (or, more trivially, because they appear ‘nice’). 

New characters emerging in NSG 

The dense interactions developed in the NSG together with the offered theoretical and practical 

supports brought some new attitudes and awarenesses in the members of NSG. The members begin 

to understand that a new approach to the arithmetic and algebra teaching lies on a different role of the 

teacher. As to this a decisive importance assumes what J. Mason has called the art of noticing the 

classroom micro-situations for being ready to adopt the opportune micro-decisions (Mason 2002), 

intertwined with the attention to the languages and  to the continuous recourse to the argumentation. 

Thanks to our frequent interventions where we underline that: a) a math teacher has to control a 

plurality of languages and that also a formal language must be monitored at two levels, the semantic 

one about the meanings and the syntactic one about the structure of the sentences into play; b) the 

weak control over grammatical/syntactical aspects of a sentence in mathematical language leads to 

temporary and unstable jargons in which the meanings assigned to the symbols are dictated by an 

apparent common sense that reduces the difficulties, promotes an immediate but feable understanding 

that leaves the problem unsolved; we observed in the activities posted by many members a bigger 

attentions forwards the translations questions between verbal and fromal languages and the increasing 

use of argumentations in their students. From a methodological point of view, thaks to our 

suggestions,when the teachers publish at the NSG the post of an activity, they begin to understand 

that it is not enough to insert some captivanting images, but that it is necessary to equip them with a 

presentation that synthetically shows the activated competencies and that includes  the most 

meaningful protocols, the path in which the activity is inserted, how it develops in the next steps, the 



theoretical references (ArAl Units, items on the website, Powerpoint presentations, papers). Our idea 

is to slowly bring them to approach the MTs methodology. An important contribution in this sense is 

offered by an increasing number of members the NSG, who are not involved in ArAl 

experimentations but following the project in a convincing way (teachers educators, mentors, 

collaborators of publishing houses, members of other research groups). Thanks to this people the 

posted comments begin to be richer and meaningful; the authors express their ideas also asking for 

experts’ suggestions aimed at promoting new and more adequate behaviours for teaching 

arithmetic/algebra in a relational perspective. So, posts and comments begin to produce virtuous 

relations which gradually enhance the system: the posts induce comments of increasing quality, which 

generate important feedbacks in the organization of the succesive posts. 

The recent mutations observed in the NSG members’ posts delineates a new character of their 

participation which appears in tune with our aim to build a shared identity in the NSG and effective 

in offering contributions which can bring it to become a community of di practice. As to this, 

particularly meaningful appear the recent initiatives generated by the NSG discussions concerning  

the publication in the ArAl project website (http://www.progettoaral.it/) of two documents, 

respectively devoted to: (1) the most interesting classroom episodes presented by the NSG members, 

with the main related comments; (2); the early algebra papers written by members external to the 

project and inspired by our previous productions. Next to this we have to consider the request 

expressed on the web by several members of NSG to organize some ArAl meetings of one or few 

days to allow the participant know themselves de visu and to plan some common work. It seem us 

that these new tends in NSG may generate inside the group, mainly with the more sensitive and expert 

members, an embryo of a community of inquiry. In this frame institutional and informal ArAl 

educational initiatives are developing important merging points. 

Final considerations 

A NSG as ‘Progetto ArAl’ may initially disorient new participants, but its own structure can be 

considered its force because many of them declare that they appreciate the possibility to join to a 

group where experts favor an organization of knowledge according to transparent and shared 

principles. On the base of the observations made, we formulate some key points related to early 

algebra for the management of the NSG so that it can become a significant community of practice in 

this field: (a) to help teachers understand not only merits and limitations of instruments and didactical 

strategies that they implement along the years, but above all the importance of their coherence and 

adherence to a set of theoretical principles, such as: the importance of languages and, consequently, 

of the translation between them; (b) to bring teachers to consider the perspective of the generalization 

since the first years of primary school, highlighting the structural analogy between representations of 

the various occurrences of a phenomenon and guiding their modeling; (c) to propose any time, during 

the discussion on the issues raised by the members, gradual general frameworks, accompanying them 

with clarifications, insights, extensions which give answers for doubts, perplexities, conflicts 

emerging from the discussion. The basic idea is that the theory should be gained through a gradual 

process of refinement of knowledge in a continuous exchange among the members of the group, 

adapting explanations and deepenings to the difficulties or to the resistances and injecting now and 

then proposals of mini-workshops.  
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We present a study about the development of interpretative skills in prospective teachers. In 

particular we discuss a kind of tasks designed by us for teacher education, containing the request of 

interpreting students’ answers. The task in this study was built on an item concerning the sum of 

powers of 10 and was proposed to a group of prospective secondary teachers who were attending a 

Math Education course. The task was first faced individually by them and then discussed in group. 

We present the interpretations proposed by two prospective teachers before and after the collective 

discussion, in order to reflect on the differences in terms both of mathematical knowledge put in 

play and of attitudes exhibited. 

Keywords: Teacher education, prospective secondary teachers, interpretation of students’ answers, 

arithmetic and algebra.  

Mistakes are the portals of discovery (James Joyce) 

Introduction 

In their daily practice, teachers are required to continuously interpret students’ responses and 

productions. This not only assists them in evaluating their difficulties and achievements, but also 

allows to plan the next steps of the teaching activities. Therefore, this “interpretation activity” is one 

of the most crucial (and often most difficult) tasks teachers perform. Empirical evidence suggests 

that the true quality of a mathematics teacher stems largely from his/her ability to interpret students’ 

productions, along with a flexible attitude to redesign the teaching approach based on them. 

However, the ability to make sound and accountable interpretations is rarely recognized as a crucial 

goal in teacher training. Moreover, in a previous research study (Ribeiro, Mellone, & Jakobsen, 

2013), we observed that teachers do not naturally develop this ability as they gain work experience. 

So, presently, our research questions are the following. Is it possible for a teacher to acquire these 

interpretation skills or is it a matter of innate talent? In the first case, how can a prospective teacher 

develop this ability? Should we engage prospective teachers in mathematical discussions 

concerning the interpretation of students' reasoning? 

Guided by our conviction that it is possible for a teacher to develop this ability, as a part of a joint 

research project, we explored a particular type of tasks we have conceptualized. In one part of these 

tasks, we asked the prospective teachers to interpret some students’ responses to a problem and 

reflect on possible feedback they could provide to each student. This exercise had a twofold aim: to 

support prospective teachers in developing the skills required for interpreting and commenting on 

student work, and to investigate to what extent the particular mathematical knowledge and skills 

possessed by the (prospective) teachers support or hinder them in their interpretations and 



“constructive” reactions. Our analysis shows that the abilities to interpret and to design an 

educational activity based on students’ productions are inhibited in prospective teachers with a poor 

mathematical knowledge, due to their limited understanding of the subject and lack of appreciation 

of various ways that problems can be solved (Ribeiro, Mellone, & Jakobsen, 2013). In particular, 

this is true for prospective primary teachers, many of whom have poor mathematical knowledge. 

However, we have also observed that prospective secondary mathematics teachers—who have 

studied more advanced mathematics during the three years of their Bachelor in Mathematics degree 

(Jakobsen, Mellone, Ribeiro, & Tortora, 2016)—also struggle with this kind of work. This led us to 

posit that the ability and knowledge to interpret student work depends not only on (prospective) 

teachers’ mathematical knowledge and its components, but also on their attitudes and beliefs toward 

mathematics and its teaching. 

The tasks described herein are presently used in our Mathematics Education courses in three 

different modalities. First, we ask prospective teachers to individually solve the problem, before 

interpreting and reflecting on some selected students’ productions, and finally engaging in group 

discussions on the mathematical aspects involved in these students’ productions. Given that the 

prospective teachers (both primary and secondary) have difficulties in interpreting and in giving 

meaning to some students’ answers, it was necessary to first assess their ability to solve problems 

that these students are given. This was informative, as some prospective teachers struggle with 

providing constructive feedback to the students even when they do not encounter any difficulties in 

solving the given problems for themselves. The findings yielded by this first phase of our research 

were utilized in the subsequent mathematical discussions of students’ solutions and corresponding 

teachers’ interpretations. These group discussions were helpful to most prospective teachers, as they 

were able to gain new perspectives on students’ work and strategies that can be employed in 

teaching.  

In this paper, we present the interpretations, given by a group of Italian prospective secondary 

teachers, of students’ responses concerning a problem where sums of powers of 10 are involved. 

(see Jakobsen et al. (2016) for details). Here, we present analysis of the interpretations teachers 

gave before and after the mathematical discussions, in order to document their progress, as most 

demonstrated more sophisticated attitudes and greater mathematical knowledge following group 

discussions.  

Theoretical framework 

In order to characterize and study the features of teachers’ interpretations of students’ productions, 

in some of our previous work (see for example Ribeiro, Mellone, & Jakobsen, 2016), we have 

introduced the notion of interpretative knowledge, framed within the general Mathematical 

Knowledge for Teaching (MKT) framework (Ball, Thames, & Phelps, 2008). We define 

interpretative knowledge as the knowledge that allows teachers to give sense to pupils’ answers, in 

particular to “non-standard” ones, i.e., adequate answers that differ from those teachers would give 

or expect, or answers that contain errors. We posit that interpretative knowledge is closely related to 

the ability of teachers to support the development of pupils’ mathematical knowledge, starting from 

their own reasoning, even if students’ ideas are incomplete or non-standard. Some similar ideas are 

implied in the notion of discipline of noticing (Mason, 2002). In particular, our construct 

encompasses the idea of teachers working “on becoming more sensitive to notice opportunities in 



the moment, to be methodical without being mechanical” (Mason, 2002, p. 61). The development of 

pupils’ mathematical knowledge starting from their own reasoning is, in our view, only possible if 

the teacher activates a real process of interpretation, shifting from a simple evaluative listening to a 

more careful hermeneutic listening (Davis, 1997). 

In this sense, the notion of interpretative knowledge incorporates into the MKT framework the idea that 

errors and non-standard reasoning are considered as learning opportunities (Borasi, 1996). Moreover, 

the content of interpretative knowledge shapes teachers’ ability to make informed choices in 

contingency moments (as defined by Rowland, Huckstep, & Thwaites, 2005), in order to respond to 

and deal with non-planned situations. In that sense, we felt the need to incorporate the role of 

beliefs and attitudes pertinent to the use of mathematical knowledge (Carrillo, Climent, Contreras, 

& Muñoz-Catalán, 2013).  

With the goal of better understanding (prospective) mathematics teachers’ act of interpretation, we 

characterized their interpretations of students’ productions and attitudes, using the following three 

categories: (i) Evaluative interpretation: a process through which the teacher determines congruence 

between pupils’ productions and the mathematical scheme of correct answers he/she has; (ii) 

Interpretation for the educational design: the manner in which the teacher designs educational steps 

based on the work produced by the students; (ii) Interpretation as research: teacher’s willingness 

and ability to revise his/her mathematical formalization in order to ensure that it is coherent with 

students’ productions (even when these seem in conflict with the traditional mathematics taught in 

school).  

In Webster dictionary, “interpretation” is defined as “The act of interpreting, explanation of what is 

obscure”; however, it is also defined as “An artist's way of expressing his thought or embodying his 

conception of nature.” This last definition stresses the potential creative nature of the act of 

interpreting that is in our context perceived as the potential new mathematical knowledge that can 

be developed owing to the process of analyzing students’ productions.  

Context and method 

For several years, we have been studying the nature of (prospective) teachers’ interpretative 

knowledge (e.g., Ribeiro et al., 2013; Jakobsen et al., 2016) by exploring the manner in which 

prospective teachers respond to specific interpretation tasks. In this design study the tasks are 

developed after the typical cycles of redesign of the design study method (Cobb et al., 2003). In 

their present form, essentially consist of three steps: (i) the teachers are initially required to solve a 

mathematical problem by themselves; (ii) they are given several students’ productions in response 

to the same problem, some containing errors and some mathematically valid but following less 

standard procedures, which they are asked to interpret; and (iii) teachers are prompted to provide 

what they deem would be appropriate feedback to these students based on their solutions. The 

teacher trainees are asked to address these requests individually and in paper format (they are 

usually given 90 minutes to complete all three steps). In the next phase of the study, the educator 

engages all prospective teacher participants in a collective mathematical discussion (which again 

typically lasts about 90 minutes). The framework of the mathematical discussion is based on that 

proposed by Bussi (1996), as the aim is to allow the group of prospective teachers create a 

polyphony of articulated voices on the mathematical object starting from the interpretation of a 

http://www.webster-dictionary.org/definition/An
http://www.webster-dictionary.org/definition/artist
http://www.webster-dictionary.org/definition/s
http://www.webster-dictionary.org/definition/way
http://www.webster-dictionary.org/definition/of
http://www.webster-dictionary.org/definition/expressing
http://www.webster-dictionary.org/definition/his
http://www.webster-dictionary.org/definition/thought
http://www.webster-dictionary.org/definition/or
http://www.webster-dictionary.org/definition/embodying
http://www.webster-dictionary.org/definition/his
http://www.webster-dictionary.org/definition/conception
http://www.webster-dictionary.org/definition/of


student’s production. Upon completion of the group discussion, the prospective teachers are asked 

to provide in writing a new individual interpretation of the students’ productions, allowing the 

researchers to determine if any progress has been made.  

The task utilized in the present study is depicted in Figure 1, and was adopted from the annual 

Italian national assessment (2010-2011) for grade 10 released by INVALSI (Istituto Nazionale per 

la VALutazione del Sistema educativo di Istruzione e di formazione). A group of 34 fourth-year 

master students of mathematics enrolled in a Mathematics Education course took part in this 

investigation. Since most of these students are going to become secondary school teachers, we 

consider them prospective secondary teachers. 

In our previous study, we focused on the interpretation these prospective secondary teachers gave to 

their students’ productions (Jakobsen et al., 2016). Our analysis revealed that they experienced 

problems in mobilizing their mathematical knowledge for interpreting students’ work. Indeed, while 

they were able to “see” some of the mathematical aspects involved in the solutions to the problems 

their students proposed, they seemed unaware of many important aspects relevant to mathematics 

teaching and problem solving.  

 

Figure 1: Item given to students to solve 

In the next section, we will present two out of seven students’ productions that were included in the 

task given to the study participants (for their selection, see Mellone, Romano, and Tortora (2013)). 

This will be followed by the interpretations of these students’ productions, provided by two 

prospective teachers—to whom we refer as Rossella and Gennaro (pseudonyms)—before (BF) and 

after (AF) the mathematical discussion.  

Interpretation of two students’ productions 

The following brief analysis of the students’ productions included in the task aims to elucidate our 

reasoning behind the decision to deem these two students’ productions effective for exploring 

prospective secondary teachers’ ability to interpret the work of others.  

Emanuela (Figure 2a) obtained the correct result, despite making three errors in her work: the first 

and the last can be described as lack of use of parenthesis and the second can be seen as a wrong 

application of linearity. Ciro (Figure 2b) arrived at the right answer using the arithmetical algorithm 

of the arrangement of the decimal representation of the numbers in column. In his responses, we can 

also recognize his perception of the algebraic structure connected with more general ideas implicit 

in calculus. Indeed, Ciro’s use of the ellipses reveals the potentiality of generalization of his 

The expression 10
37
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38
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also equal to: 

A. 20
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B. 10
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37

 

D. 10
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response to other two consecutive powers of ten, and not only to the particular case given (as one of 

the mathematics students that took part in our study noted during the collective mathematical 

discussion).  

 

 

 

(a) – From Emanuela’s protocol 

 

 

(b) – From Ciro’s protocol 

Figure 2: Two out of seven students’ productions 

Prospective teachers’ comments on students’ productions before and after 

mathematical discussion 

Reflections on Emanuela’s work 

When individually interpreting Emanuela’s response, prospective teachers seemed to experience 

difficulty in trying to understand the steps she used in arriving at the solution (see Jakobsen et al., 

2016). Here, we focus on the interpretations given by a secondary prospective teacher —Rossella—

before (BF) and after (AF) the discussion1:  

The second prospective teacher, Rossella, shared the following: 

Rossella (BF): There is no application of rules; it is pure invention. I don’t know what I would 

say to the girl, but I would think that she had copied the solution and then tried to 

invent a justification. 

Rossella (AF): Even if Emanuela’s answer is correct, her arguments are far from being 

mathematically founded. Still, we can observe an interesting aspect in them, 

namely that if we repeat the steps with two powers having the base different from 

10 and the exponents differing by one, we get the correct result. I followed this 

approach using different numbers, just to test this reasoning, which allowed me to 

assert that Emanuela’s thought process appeared to work. More specifically, when 

you change the bases and use two consecutive numbers as exponents, or even not 

consecutive, her logic gives the correct result. 

3725 + 3726 = 3725 + (1369)25 = 140625 = (38  37)25 = 38  3725 
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2-3+2-2 = 2-3+4-3 = 6-3 = 3  2-3 

xn + xn+1 = xn + (x2)n = (x+x2)n = ((x+1)x)n = (x+1)xn 

                                                 

1 Of course, the students' words were translated from Italian into English. We tried our best to retain the exact 

expressions, including some errors, but some nuances are inevitably lost. 



    In other words, the above three errors, made in sequence, yield a correct result that 

does not depend on the particular numbers used. This observation has prompted 

our reflection on how mathematics is usually managed. We are used to judge, 

without hesitation, arguments such as those mentioned above as wrong and 

completely invented. However, after our discussions, we were of view that errors 

should be seriously considered and, if possible, exploited as a stepping stone 

toward the construction of new knowledge. This is exactly what I tried to do in 

order to bring out something new from Emanuela’s reasoning. Indeed I also tried 

to build a new system of rules for powers according with her reasoning. Several 

attempts have convinced me that this is not possible. Thus, my conclusion is that 

no new knowledge about the rules of powers can be derived from Emanuela’s 

suggestions. However, her errors can be an invaluable tool to stimulate 

discussions and to highlight the need for a true comprehension of the rules of 

powers, which are often hard to grasp for students.  

Reflecting on Rossella’s BF and AF words, we can observe a change in the attitude when 

interpreting student’s work. The first interpretation is an evaluative one—there is no effort to 

understand the rationality of Emanuela’s steps. This results in Rossella’s bias towards a solution 

like that Emanuela offered (referring to an her possible unfair behavior), which can be due to fear of 

moving toward an educational path she cannot (immediately) control. 

The interpretation given by Rossella after the discussion is markedly different. She not only made 

an effort to derive a generalization from the errors in Emanuela’s production, but further concluded 

that the three steps Emanuela used in solving the problem will give the right answer with other 

bases and exponents. Rossella thus went beyond the simple observation that Emanuela’s steps are 

not mathematically sound, as she investigated the possibility to build “a new system of rules for 

powers according with her reasoning.” For this reason, her second interpretation can be considered 

a form of interpretation as research. 

Reflections about Ciro’s work 

Gennaro (BF):  Ciro reached the correct answer by a more practical method than those employed 

by his peers. In addition, the formalism seems original. He appears to have a 

strong expertise in the calculations with powers of 10, which highlights their 

significance and the importance of handling them correctly. Still, his method 

seems limited to powers of 10. It would be interesting to see how Ciro would 

proceed if presented with a different base. I think that Ciro’s protocol could be 

used as an opportunity to explore differences between the properties of powers of 

10 and those of other bases. 

Gennaro (AF): Ciro’s argument is of an arithmetic character. Nonetheless, it allows us to 

appreciate some deep algebraic insights. Moreover, although it seems confined to 

powers of 10, it can actually be generalized to any base, if one represents the 

number in the base of the power. Hence, from Ciro’s production going further, it 

would be possible to study the tables of operations in different bases, or even the 

divisibility rules in bases other than 10. 



In his first interpretation of Ciro’s protocol, Gennaro appreciates the originality of his method, 

while noting that it is limited to powers with base 10. Based on this observation, Gennaro proposed 

possible questions and issues that could be explored with Ciro and the rest of the students in the 

classroom, starting from his production. For this reason, Gennaro’s first interpretation is aimed at 

educational design. 

As with Rossella, whose interpretations we analyzed previously, the comments Gennaro gave on 

Ciro’s protocol after the discussion shifted in focus. First, there is a subtle distinction between 

arithmetic and algebra that could be investigated and debated endlessly. Moreover, Gennaro’s 

comments reveal his awareness that Ciro’s method can be applied to other bases (indeed, 100…0 

always represents the n-th power of the base). This fact was observed during the collective 

discussion by another prospective teacher, and for Gennaro, this discovery was so important that it 

became part of his new written interpretation. In other words, Gennaro’s knowledge and 

interpretation benefitted from the mathematical discussion on Ciro’s production. He reconceived the 

systems of representing numbers in different bases, which motivated him to explore the true 

meaning of digits, as well as of strings of digits. For this reason, Gennaro’s second interpretation is 

perceived as interpretation as research. 

Conclusive remarks 

We started this paper by asking if mathematics teachers can develop the ability to interpret their 

students’ productions in order to flexibly redraw the mathematical learning path, or if this should be 

considered as an innate talent. We are convinced that it is not only possible to develop this skill but 

is highly desirable. The observed difficulties these prospective teachers experienced when giving 

sense to student productions, along with the findings yielded by extant studies, indicate that the 

development of this ability requires a special attention in teacher education. These first results about 

our proposed method of working with prospective teachers appear to support its effectiveness. It 

stimulates prospective teachers’ interpretive and critical skills and increases knowledge they must 

possess in order to teach effectively, taking into consideration the specificities of such knowledge. 

The value of our method stems from the nature of interpretive tasks involving student productions, 

as well as subsequent discussions among peers under the guidance of an expert on these 

interpretation tasks.  

Our analysis of the interpretations given by two prospective teachers, before and after the collective 

discussion led by the educator, clearly demonstrates changes in terms of both their attitude and 

mathematical knowledge or awareness. We can hypothesize that the collective discussion mobilized 

mathematical knowledge that was previously present, but probably not put in play, and it also 

support the development of new mathematical knowledge, like for Gennaro. However, the 

improvements we witnessed were also due to the change in attitudes and beliefs supported by the 

discussion, and of course by the attitudes and beliefs incorporated in the educator’s practice. 

Still, our work leaves many questions to be answered in future research. It would be interesting to 

evaluate the sustainability of these changes, for example, by following the work of these 

prospective teachers in their future educational practices. Moreover, analysis of the mathematical 

discussion on interpretative task needs to be developed in order to clarify its features and dynamics. 
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This paper reports from a project where Lesson Study (LS) was implemented in the field practice 

component in four subject areas of two teacher education programs at one Norwegian university. 

Previous analyses of data from interviews and mentoring sessions indicate that mathematics was a 

challenging case that makes it interesting to investigate further. In the present study, we analyze 

classroom observations with the Classroom Assessment Scoring System (CLASS) in order to 

investigate potential improvements from the intervention. The results indicate that there were no 

significant differences between the control group and the intervention group. Possible explanations 

for this are discussed and implications for future implementations of LS in field practice are 

suggested. 

Keywords: Mathematics teacher education, field practice, Lesson Study. 

Introduction 

This paper has a focus on developing student teachers’ ability to teach mathematics through LS. When 

Stigler and Hiebert (1999) published the results from their comparative study of mathematics teaching 

in Japan, Germany and the USA, they argued that there was a “teaching gap” among these countries. 

The teaching quality of the Japanese classrooms appeared significantly higher than in German and 

US classrooms, and Stigler and Hiebert suggested that a main explanation for this teaching gap could 

be found in the incremental developments of teaching through LS in Japan. In the aftermath of this 

study, LS continues to gain popularity as a practice-based approach to professional development 

outside of Japan. There is also growing interest among researchers to adapt and use LS in teacher 

education (e.g., Ricks, 2011).  

In mathematics education research, numerous studies focus on how LS might increase mathematics 

student teachers’ knowledge and understanding of the mathematical content. For instance, Cavey and 

Berenson (2005) argue that their adapted version of LS has a potential to increase student teachers’ 

understanding of the mathematical content. Drawing upon the idea that knowledge for teaching must 

be learned in and from practice (Ball & Cohen, 1999), one might argue that LS has a potential to 

serve as a “professional development tool when faced with the challenge of providing high-quality 

learning experiences for student-teachers” (Murata & Pothen, 2011, p. 104).  

From an ongoing review of literature on LS in mathematics teacher education, we notice that, while 

several studies attempt to measure the effects of LS on student teachers’ knowledge and 

understanding, few studies report on effects of LS on the quality of instruction. Chassels and Melville 

(2009) suggest that LS “provides opportunities for teacher candidates to build professional learning 

communities, to deepen understanding of curriculum and pedagogy, and to develop habits of critical 

observation, analysis, and reflection” (p. 734). When investigating mathematics student teachers’ 

development of lesson plans, Fernandez (2010) suggests that implementation of LS appears to 

influence their development of professional knowledge. Jansen and Spitzer (2009) focus on 



mathematics student teachers’ reflective thinking, and their study includes analyses of student 

teachers’ own interpretations of their teaching. Although the issues raised in these studies are of 

importance, neither of them focus directly on effects of LS implementations on the quality of 

teaching. Leavy’s (2010) study includes a focus on observing teaching, but the analyses emphasize 

student teachers’ reflections and development of knowledge rather than their actual teaching. Ricks 

(2011) reports from an intervention study, but his focus is on mathematics student teachers’ 

reflections rather than on their teaching. With this as a background, the aim of this paper is to 

investigate possible effects of LS implementation on the quality of student teachers’ mathematics 

teaching. We consider the following research question: What potential influences can be observed 

from a LS intervention on the quality of classroom interactions in the field practice of mathematics 

student teachers? In order to approach this research question, we analyze classroom observations 

from a time-lagged design experiment where LS was implemented in the field practice of two 

Norwegian teacher education programs. Videos of classroom teaching are analyzed by using the 

Classroom Assessment Scoring System (CLASS). 

The Classroom Assessment Scoring System  

CLASS scores are related to students’ academic performance (Teachstone, 2012), and research 

indicates that substantial gains in measured student achievement is mediated by teacher-student 

interaction qualities (Allen, Pianta, Gregory, Mikami, & Lun, 2011; Teachstone, 2012). An important 

mediator for academic outcome is the extent to which the students’ interactions with their teachers 

motivate them (Pianta & Allen, 2008). Based on this, student-teacher interactions in the classroom 

are the focus of attention when observing classrooms using the CLASS instrument. This instrument 

is designed to assess the fit between teacher-student interactions and students’ developmental, 

intellectual, and social needs, i.e. elements of high-quality teaching that have been identified as 

central to student achievement (Allen et al., 2011). The CLASS instrument consists of three major 

domains that provide behavioral anchors for describing and assessing critical aspects of classroom 

interactions (Teachstone, 2012): 1) Emotional Support, 2) Classroom Organization, and 3) 

Instructional Support. Student Engagement is also included, due to the importance of observing 

student behavior in addition to behavioral anchors on the classroom and teacher level.  

The first domain, Emotional Support, relates to students’ social and emotional functioning in the 

classroom and is highlighted in the CLASS instrument because “relational supports and connections, 

autonomy and competence, and relevance are critical to school success” (Teachstone, 2012, p. 2). 

Second, Classroom Organization is included in the instrument based on research, highlighting the 

relationship(s) between aspects of organization and students’ opportunities to learn. The foundation 

for the third domain, Instructional Support, is constituted by the following teaching strategies that 

enhance learning: “consistent, process-oriented feedback, focus on higher-order thinking skills, and 

presentation of new content within a broader, meaningful context” (Teachstone, 2012, p. 4). 

These three domains can be further divided into twelve dimensions or CLASS indicators that are 

defined in the CLASS manual (see Tables 1, 2 and 3). In addition to these observable indicators of 

effective interactions, the CLASS manual includes behavioral markers that provide clear examples 

of how teacher-student interactions in the classroom can be observed and assessed. These descriptions 

are specified and examples of justifications are provided on the basis of concrete classroom videos, 

coded by CLASS experts.  



Method  

This study is situated within the larger, cross-disciplinary project, Teachers as Students (TasS), which 

involved mathematics, science, physical education, English as a second language, as well as 

pedagogy. The TasS project (2012–2015), supported by the Norwegian Research Council (grant 

number 212276), investigated student teachers’ learning during field practice, aiming at learning 

more about how student teachers develop the knowledge and skills required to promote student 

learning in schools. LS was used in a time-lagged design experiment (Hartas, 2010) in two Norwegian 

teacher education programs, both four-year integrated programs, one for grades 1–7 and one for 

grades 5–10. Subject matter and didactics (pedagogy) should thus be integrated in all subjects, and 

there should be a close relationship between what was taught on campus and in schools when student 

teachers had field practice (100 days within the four years). The mentor teachers have an important 

role and are considered teacher educators in field practice.   

The student teachers were organized in groups of three or four during a three-week period of field 

practice both in the Business as Usual condition (BAU) and in the LS intervention (INT). The TasS 

study recruited student teachers during the spring term of their fourth semester (except the science 

groups in the BAU condition, who were in their sixth semester). The TasS project includes data with 

two groups of student teachers from the four subjects in both data collection periods (see Munthe, 

Bjuland & Helgevold, 2016 for an overview). In this paper, we mainly report from analyses of 

classroom recordings of lessons taught in mathematics from the BAU and INT condition, using the 

CLASS (Classroom Assessment Scoring System) observational instrument (Allen et al., 2011; 

Teachstone, 2012). We also draw upon findings from previous analyses in the discussion section 

based on conversations in mentoring sessions and pre- and post interviews (before and after the field 

practice in both conditions).   

In the BAU condition, the mentor teachers were asked to conduct their mentoring sessions the way 

they normally did without any influence from the researchers in the project. In the LS condition (INT), 

it was crucial that mentor teachers were introduced to essential principles about LS since “they played 

the role as facilitator and knowledgeable other for the group of student-teachers who made up the 

Lesson Study group” (Munthe et al., 2016, p. 145). This required another approach. Three afternoon 

seminars were organized (from November 2012 to January 2013) for mentor teachers and the research 

group in order to discuss important characteristics within the LS cycle and to establish a shared 

understanding of implementing LS in student teachers’ field practice. An important component of 

these afternoon sessions was to develop a “Handbook for Lesson Study”, which included a text about 

important principles in LS and a list of questions which could support both the mentor teachers and 

the student teachers through pre- and post-lesson mentoring sessions.  

Three researchers (the authors of this paper) took part in the coding of videos from the four lessons 

in both conditions (INT and BAU). We divided the videos into 19-minutes sections. This resulted in 

22 sections (12 BAU and 10 INT). After watching a video section, we started the scoring for each 

dimension individually, using the 7-point range that is described in the CLASS manual, Low (1, 2), 

Mid (3, 4, 5) and High (6, 7). We made our judgements based on the general scoring guideline. Our 

scores were then discussed before we started to observe a new video section. The results that are 

presented in the three tables below illustrate the scores given by the three researchers (see Tables 1, 

2 and 3). Where two scores are given, our individual coding differed.  



Results 

The CLASS domain of Student Engagement intended to capture “the degree to which all students in 

the class are focused and participating in the learning activity presented or facilitated by the teacher” 

(Teachstone, 2012, p. 109), was coded as Mid for both BAU and INT. This code means that either 

the students are listening to, or watching the student teacher, rather than actively engaging in 

classroom discussions and activities, that there is a mix of student engagement, or they are engaged 

part of the time and disengaged for the rest of the time. Across all the videos, there is a lack of off-

task behavior and the students appear to be engaged.  

Emotional support 

The domain of Emotional Support is divided into three dimensions (Table 1)1. Across the first two 

dimensions, the code Mid was given by all three coders. A Mid score on the first dimension, Positive 

climate, indicates that the student teacher and students sometimes provide positive comments and 

appear quite supportive and interested in one another. A Mid score on the second dimension, Teacher 

sensitivity, indicates that the student teacher sometimes monitors students for cues and generally 

attempts to help students who need assistance, but these attempts are not always effective in 

addressing student concerns.  This code also indicates that some of the students sometimes seek 

support, respond to questions and share their ideas.   

CLASS dimension BAU INT 

Positive climate MID MID 

Teacher sensitivity MID MID 

Regard for adolescent perspectives LOW/MID LOW/MID 

Table 1. Results from CLASS analysis of Emotional Support. 

The third dimension, Regard for adolescent perspectives, was coded as Low/Mid, illustrating that 

individual coding differed among the coders. Low to Mid on this dimension indicates that the teaching 

is the teacher’s show. The students are rarely provided opportunities for autonomy and leadership.  

As can be seen from Table 1, the LS intervention did not affect the coding for any of the dimensions 

included in this domain.  

Classroom organization 

The domain of Classroom Organization is composed by three dimensions (Table 2). Behavior 

management encompasses the student teacher’s use of methods to maximize the learning time for the 

students. The code Mid indicates that there is some evidence that the student teachers encourage 

desirable behavior and prevent misbehavior. Productivity, the second dimension, does not relate to 

quality, but rather deals with the students’ opportunity to get involved and the extent to which the 

teacher makes sure that everyone has something to do. A Mid score on Productivity indicates that 

most of the time there are tasks for the students and some routines are clearly in place. However, 

transitions could be more efficient and the student teachers could be better prepared. 

                                                 

1 The CLASS domains are written with capital letters in both words (e.g., Emotional Support), whereas the CLASS 

dimensions are written with one capital letter (e.g., Positive climate). 



CLASS dimension BAU INT 

Behavior management MID MID 

Productivity MID MID 

Negative climate LOW LOW 

Table 2. Results from CLASS analysis of Classroom Organization. 

The dimension Negative climate is scored in reverse. A low score indicates that the overall level of 

negativity among student teachers and students is low or absent. This code counts for more than the 

others in this domain, indicating that the classroom processes related to the organization and 

management of time, student behavior and attention in the classroom provide the students with 

opportunities to learn. As can be seen from Table 2, the LS intervention did not affect the coding for 

any of the dimensions included in this domain.  

Instructional support 

The domain of Instructional Support is divided into five dimensions as shown in Table 3. The first 

dimension, Instructional learning formats, was coded Mid in both conditions, illustrating that learning 

objectives may be discussed, but they are not clearly communicated in order to support student 

attention which is an indicator for a high score. 

It is only in the second dimension, Content understanding, that there are indications of a possible 

effect, from discrete pieces of depth of lesson content to sometimes finding meaningful discussions 

in order to help students comprehend the mathematical content. The three last dimensions, which 

emphasize higher-order thinking among the students with a purposeful use of a content-focused 

discussion in the classroom, are all coded Low or Low/Mid. The focus on mathematical content is 

not strong in the teacher-student classroom interactions. A Low score on Analysis and inquiry 

indicates teaching that does not let the students think, or that students are neither engaged in higher-

order thinking, metacognition, nor have opportunities for novel application. The teaching is in a rote 

manner. A Low/Mid score on the dimension of Quality of feedback indicates that the feedback 

provided to the students neither expands or extends learning nor encourages student participation. A 

Low/Mid score on the dimension of Instructional dialogue indicates that the student teachers do not 

involve the students in content-based discussions in class. 

 

CLASS dimension BAU INT 

Instructional learning formats MID MID 

Content understanding LOW/MID MID 

Analysis and inquiry LOW LOW 

Quality of feedback LOW/MID LOW/MID 

Instructional dialogue LOW/MID LOW/MID 

Table 3. Results from CLASS analysis of Instructional Support. 

The results illustrate that our LS intervention had little effect on the quality of classroom interventions 

(Table 3). Across the videos, and in both BAU and INT, the classes are mostly dominated by student 

teachers’ talk. 



Concluding discussion 

Many studies suggest that LS has potential to contribute to mathematics student teachers’ 

development, but few studies analyze potential effects of LS interventions in mathematics teacher 

education on the quality of classroom interactions. CLASS analysis of classroom videos from a 

control group and an intervention group indicates that our LS intervention did not increase the quality 

of classroom instruction. One might argue that the challenging results that arise from this study are 

problematic since one would hardly expect the results to show any variance based on one LS cycle 

only. However tempting it is to bypass the reporting of such challenging results, we do the opposite. 

The majority of research reports in mathematics teacher education appear to be success stories, but 

we suggest that it is also important to discuss results that were not as positive as desired. In the 

following, we highlight three issues that might have influenced the results of this study: 1) experience 

and time, 2) lack of focus on critical aspects of LS, and 3) personal factors. 

First, we discuss the issues of experience and time. Stigler and Hiebert (1999, p. 109) describe LS as 

a “system that leads to gradual, incremental improvements in teaching over time.” Japanese 

improvements in teaching happen through systematic work over several decades, and it is unfair to 

expect significant improvements in teaching from groups of student teachers who have just been 

introduced to LS. Most implementations of LS in mathematics teacher education seem to involve 

participants with little or no previous experience with LS (e.g., Bjuland & Mosvold, 2015; Leavy, 

2010). In addition, most of these studies are short-term studies that often report results from 

participants who have completed one LS cycle only (e.g., Bjuland & Mosvold, 2015; Chassels & 

Melville, 2009; Leavy, 2010). It is not realistic to expect significant long-term effects from studies 

like this.  

Second, a possible explanation for the challenging results in this study might be that the participants 

failed to implement some important aspects of LS. Previous analyses of data from mentoring sessions 

and interviews support this. For instance, Bjuland and Mosvold (2015) identified four indicators of 

why the implementation was challenging in mathematics. First, the student teachers reported about a 

lack of emphasis on pedagogical content knowledge on campus before field practice, and they called 

for more focus on students’ difficulties and teaching strategies. A second indicator was related to a 

lack of formulating a research question. In a LS cycle, the student teachers should collaboratively 

plan, conduct and evaluate a research lesson with a focus on students’ learning, but they should also 

formulate a research question that focuses on their own learning. No signs of this were found in the 

mentor sessions in the mathematics groups (Bjuland & Mosvold, 2015). Third, there was little focus 

on student learning and structured observation – both of which are decisive in LS. The mentor 

teachers’ questions did, however, focus more on planning, observation and student engagement in the 

LS intervention (Bjuland, Mosvold, & Fauskanger, 2015). A fourth indicator was that student teachers 

organized research lessons around individual work with textbook tasks – making observation of 

student learning difficult (Bjuland & Mosvold, 2015). These observations may explain why the LS 

intervention was not successful and why the quality of classroom interactions did not increase.  

Third, other factors like the student teachers’ background, motivation and support may have 

influenced the results of this study. From analyses of data from mentoring sessions as well as focus-

group interviews, we learned that one group of student teachers in the intervention may have had a 

lack of motivation for participating in the study. In the other group of student teachers from the 



intervention, the mentor teacher was absent for a period of time, and the resulting lack of support 

from the mentor teacher might have influenced the quality of classroom interactions. Similar factors 

were also observed in the BAU groups. For instance, one of those groups struggled to collaborate 

(Bjuland & Mosvold, 2014), and we cannot revoke the potential influence of such problems. Although 

many problems can be avoided or taken care of in a research project, there will always be a potential 

influence of human factors that cannot be controlled by the researcher.  

Further long-term studies are called for in mathematics teacher education to investigate participants 

who have completed more than one LS cycle, emphasizing that teaching develops through 

incremental improvements over time (Stigler & Hiebert, 1999). We observe that many studies focus 

on potential effects of a LS intervention on student teachers’ understanding of the mathematical 

content. More studies are called for to investigate effects of LS implementations on classroom 

instruction.   
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In this paper we follow preservice elementary school mathematics teachers learning processes in a 

course that was organized around problem solving and aimed at providing opportunities for students 

to participate exploratively. The goal of this study is to characterize pre-service teachers' 

participation on the "ritual-explorative" continuum, to understand better what opportunities for 

explorative participation are given and taken up by students. Findings show that the request to 

suggest various solution paths seems to help students focus on the explorative question of "where do 

I want to get at?" rather than at the ritual question of "how do I proceed?".  

Keywords: Rituals, explorations, preservice mathematics teachers. 

 

Introduction 

This paper focuses on learning processes of pre-service elementary school mathematics teachers 

during a course whose goal was to promote students' mathematical thinking by engaging them in a 

discourse which is closer to that of mathematicians, and thus to provide our pre-service teachers 

opportunities to participate exploratively in doing mathematics. This resonates with Blanton (2002): 

“The development of a cadre of classroom mathematics teachers whose practices reflect current 

research on teaching mathematics rests in part on how pre-service teachers, as students, experience 

mathematics” (p. 117).  

In a former study about opportunities for learning in a prospective mathematics teachers’ classroom 

(Heyd-Metzuyanim, Tabach & Nachlieli, 2015), we found that despite what seemed to be an 

explorative environment, pre-service students still participated mostly ritually in a mathematics 

course. Since we believe that the opportunities to learn that preservice teachers provide their future 

students should be more explorative, it is obvious that they themselves should participate 

exploratively. We therefore designed a course that would provide opportunities for explorative 

participation. The course was taught in two separate groups by two instructors simultaneously. We 

are now starting to learn about what actually happened in those courses - could the participation of 

students be characterized as, at least sometimes, explorative? What characteristics of the course 

design and instruction seems to provide explorative learning opportunities? In the current study we 

focus only on one group of students, working on one type of tasks during two lessons, and follow 

learning processes in an attempt to characterize pre-service teachers' participation on the "ritual-

explorative" continuum.  

Theoretical framework 

In this study we adopt Sfard's socio-cultural approach to conceptualize and study learning – the 

communicational framework (Sfard, 2008), and refer to the on-going development and refinement of 

the discourse on rituals and explorations )Sfard & Lavie, 2005; Nachlieli & Tabach, 2012; Heyd-



Metzuyanim, Tabach & Nachlieli, 2015; Heyd-Metzuyanim & Graven, 2015; Sfard & Lavi, in 

process(.  

One of the main characteristics of a discourse is the routines participants perform. Routines are 

repetitive patterns that are repeated in similar situations. That is, when one views a situation as similar 

to one he had participated in, and performs the same action. This could be social – e.g. when entering 

your home and placing the keys at a particular place. It could also be a cognitive action – e.g., in a 

mathematics classroom, when a student refers to a certain problem as similar to one performed earlier, 

and adopts the same procedure to solve the problem. The participant is not always aware of this 

repetitiveness. That is, a routine is such in the eyes of the researcher. Sfard & Lavie (in process) 

define the term explorations as "routines whose success is evaluated by answering the single question 

of whether a new endorsed narrative has been produced". That is, the task of an exploration is to 

produce new "historical facts" or a new "truth" about mathematical objects. Exploration is hence an 

act of production. Performers of explorations focus on the question: "what it is that I want to get?".  

Rituals are "routines performed for the sake of social rewards or in an attempt to avoid a punishment." 

(Sfard & Lavie, in process). Ritual performance is usually initiated by, and addressed at, somebody 

else. Usually, the performance is an imitation of someone else's former performance. The procedure 

is rigid and the performer of the ritual never tries to make independent decisions. Performers of rituals 

ask themselves: "how do I proceed?".  

It is important to stress that the same procedure performed (even simply multiplying 26 by 31) could 

be an exploration or a ritual, depending solely on whether the participant is engaged in trying to 

produce a new narrative, or, simply socially engaging in class, doing what she is expected to do using 

given procedures.  

Former studies suggest that while explorative participation is desired, rituals are inevitable. Especially 

in the process of objectification, of developing new mathematical objects (such as the development 

of numerical discourse by children (Sfard & Lavie, 2005; Sfard & Lavie, in process) or the 

development of the discourse on function of 7th grade students, (Nachlieli & Tabach, 2012).    

In mathematics classrooms, students' participation is usually neither purely ritual nor explorative. 

Those could be seen as ends of some continuum that differ in the performer's ability to separate the 

procedure and the task. As long as the performer does not just strive to arrive at a particular outcome 

but also feels compelled to do this by performing a specific procedure, the routine cannot count as a 

pure exploration. 

The goal of this study is to characterize pre-service teachers' participation on the "ritual-explorative" 

continuum so that we could understand better what opportunities for explorative participation are 

given and taken up by students. 

Method 

Data collection 

The data for this paper are taken from a course about "promoting mathematical thinking", for 

prospective elementary school mathematics teachers studying at a college of education in Israel. The 

course was a one-semester course which was taught in 2014. It included 13 lessons, each lasting an 

hour and a half. During the first lesson, the project was described to the students and consent forms 



were collected and hence the lesson was not videotaped. The remaining 12 of the 13 lessons were 

videotaped and transcribed. Lesson plans and all of the students' written work (exams and the planned 

unit) were collected. The language of the data was Hebrew. This data was analyzed in its original 

language and parts were translated to English by the authors. To learn about students' ritual and 

explorative participation, we focus on their studying a specific type of problems - serial tasks 

(calculating sums of sequences). This topic was discussed in lessons 2 and 3. Assuming that students' 

participation may change when shifting to a new subject, we chose to focus on one specific topic in 

its entirety. The data analyzed include all whole class discussions that took place during each of the 

lessons. 

Participants 

The research participants include a group of 18 prospective elementary school mathematics teachers. 

The students are studying at their final academic year in a college of Education in Israel. The course 

instructor, the first author, has a B.Sc in mathematics and PhD in mathematics education. She had 

been teaching in this college for 15 years.  

The course 

Over the past two decades, accumulating evidence has shown that classroom environments that 

support “explorative” participation, that is, that encourage students' authority (Herbel-Eisenmann, 

Choppin, & Wagner, 2012); engage students in tasks that are cognitively demanding and are open to 

different solutions and procedures (Boston & Smith, 2009); and foster a community of learners that 

listen to each other and build on each other's ideas (Resnick, Michaels, & O’Connor, 2010) promote 

conceptual understanding. The aim of the designed course was for students to deepen their 

mathematical thinking by working on high cognitive-demand problems (Smith & Stein, 2011), 

solving problems in various ways and making connections between the different solutions as well as 

between the mathematical ideas related to the problems and the solutions. During the lessons, students 

worked in small groups to solve the problems and were encouraged to come up with as many solutions 

as possible. Whole-class discussions about the different solutions followed. The instructors chose to 

provide students with as much time as needed to work on certain problems alone or in groups, 

focusing entire lessons on discussing different solution paths suggested by the students. The students 

had to take three exams during the course and were required to plan a 3-lesson unit about any topic 

for elementary school students, which aim was to promote their students' mathematics thinking. Two 

groups (of around 20 students each) were taught simultaneously – by each of the two authors. This 

study refers to Talli's group only. 

Data analysis 

To identify whether students' participation is more ritual or more exploraitve, and to identify shifts in 

participation we followed all whole-class discussion around a specific type of tasks. The discussions 

were analyzed by addressing the questions in Table1.  

  Ritual Exploration 

1.  What is the question the 

performer is trying to address? 

How do I proceed? What is it that I want to 

get? 



2.  How does the performer 

evaluate its' success? 

Performing a specific task-

related procedure 

A new narrative had been 

produced  

3.  By whom is the routine 

initiated? To whom it is 

addressed? 

Initiated by former performer 

of a similar task. Addressed at 

the teacher (or other superior). 

oneself 

4.  Flexibility Applies a rigid routine. Seldom 

makes independent decisions  

Could consider various 

routines. Makes 

independent decisions on 

the way. 

5.  Separation between procedure 

and task 

Not separated as the main task 

is to perform a (certain) 

procedure. 

Separated 

6.  Authority  The teacher One's own 

Table 1: Rituals and explorations 

Findings and discussion 

To understand what opportunities for explorative participation were given and taken up by students, 

we present our findings about students' participation while working on a specific type of tasks 

(calculating sums of sequences). This learning took place during lessons 2 and 3.   

The first problem that the students solved was calculating the number of Hanukkah candles one lights 

during the 8 days of the Holiday (2 candles on the first evening, 3 on the second, … and 9 candles on 

the eighth night): 2+3+4+5+6+7+8+9 = (2+9) + (3+8)+ … = 4 ∙ 11 = 44 (following Gauss's idea of 

pairing elements of the sequence: first element with the nth, second element with the one in the (n-1) 

place, and so on. The sums of each of the pairs are equal.). Then, after quickly calculating the sum of 

integers between 1 and 99, the students were asked to calculate the following sum: 1+3+5+7+…. 

+997+999 = . 

The following conversation took place: 

1 Maya I remember that there's something, a formula, I don't remember it now. To find 

the element in the middle. 

2 Inst. To find a formula for finding the middle element? 

3 Maya no, no, there is a formula 

4 ….. [the class discusses a solution path suggested by a student] 

42 Sonya it could be factorial, right? 

43 inst. Factorial? 

44 Sonya yea, factorial, I remember something, I think this could be related. 

45 inst. [to the class] do you what factorial is? Remember what it is? 

  

The first student's (Maya) saying refered to the existence of a formula that could, perhaps, be helpful 

in this situation. Shse also talked of remembering.  That is, Maya's first reaction was to seek a formerly 

learned routine that could be helpful in this situation. Maya followed Gauss's idea to add pairs of 



numbers. As the number of elements in this sequence is even (500 numbers), Maya's search for the 

"middle number" is surprising. It is possible that either Maya mistakenly thought that there actually 

is an odd number of elements in the sequence. A different interpretation is that as all the problems 

that the students have worked on in the course so far have been of an odd number of elements, Maya 

looked for the "middle element" as part of performing a given routine practiced earlier.  

After Maya's remark, a whole-class discussion arose about the number of elements in the sequence, 

whether it was even or odd. After agreeing that there are 500 elements (half of the elements in the 

sequence 1, 2, 3, … ,1000), the students used Gauss' idea and calculated: (1+999)∙250 = 250,000. The 

instructor asked for a different solution when Sonya replied: "it could be factorial, right?" she then 

added: "I remember something, I think this could be related". That is, similar to Maya, Sonya seeks 

a formerly learned and used routine to be applied here. She does not remember the routine or what 

the idea behind "factorial" is, but something about this problem reminds her of this formerly learned 

idea. Considering Maya and Sonya's communication about the given problem, it has strong ritual 

characteristics:  

  Ritual Exploration 

1.  What is the 

question the 

performer is 

trying to address? 

How do I proceed? 

There is evidence of the students' attemps to seek a 

ready-made formula that could help them proceed. In 

Maya's case, the formula is not needed as there is an 

even number of elements. In Sonya's case – the idea 

she thiks of (factorial) is not relevant. Sonya is not 

sure what it actually is, but she does find some 

connection between the procedure and the problem 

at hand.   

What is it that I 

want to get? 

2.  How does the 

performer 

evaluate its' 

success? 

Performing a specific task-related procedure 

Although not yet performing the procedure, Maya & 

Sonya seek a task-related procedure to follow. Both 

turn to memory (1, 3, 44).   

A new narrative 

had been 

produced  

3.  By whom is the 

routine initiated? 

To whom it is 

addressed? 

Initiated by former performer of a similar task. 

Addressed at the teacher (or other superior). 

The routine was learned sometime in the past (not 

during this course). They do not try to develop a 

routine for the specific task by analyzing where it is 

they want to get at (1, 3, 44).  

oneself 

4.  Flexibility Applies a rigid routine. Seldom makes independent 

decisions  

The students do not make any decisions at this 

moment. They turn to the instructor to remind them 

of the formula / concept that they thought was 

relevant (42 ).  

Could consider 

various routines. 

Makes 

independent 

decisions. 

5.  Authority  The teacher (42) One's own 

Table 2: Analysis of Maya & Sonya's participation 



During the rest of the lesson, the students worked in groups and came up with three ways to solve the 

problem. Later in the second lesson, the students suggested and discussed different solutions paths 

different series.  

During the lesson the students learned: (1) that a problem could be solved by different solution paths; 

(2) that Gauss' idea could be helpful to solve sums of certain sequences; (3) to apply Gauss' idea, one 

needs to know the number of elements in the sequence. If the number is odd, then either the element 

in the middle should be identified or, the first or last element should be sided and later returned to the 

series. The students were encouraged to come up to the board to suggest solution paths, to make 

certain that they understand others' ways of solving the problem and ask questions when things were 

not understood.  

At the beginning of the 3rd lesson students were asked to suggest ways to calculate: 

20132012201120102009...87654321    

Solution paths suggested by two students (Nur and Sara): 

1 Nur so, I put the 1 aside, and saw that (in) each two pairs, the first gives me minus 

1 and the second pair gives me plus 1. So I have 2012 numbers here and then, 

if I divide this to pairs, I have 1006 pairs. So half of them give me 1, 503 

altogether, and the other half gives me minus, so it's (-503) and it cancels and 

so I have 1 left. 

2 Inst. Do you see what Nur did? Any questions? 

3 Ziv no. it's perfectly clear 

4 Nur now I found another one. After... I left the 1 aside here too, then I saw that if 

I take the 2 and the 2013, it gives me 2015. If I take then the minus 3 and the 

minus 2012 it will give me (-2015). So I have the sum of two negative 

numbers that give me (-2015) and the sum of two positive numbers give me 

(+2015). So it still cancels out and I have the 1 left. 

5 inst. What do you all say? yes? 

6 Sara I have another one. I saw here, my language is not that well, correct me, ok? 

like a sort of continuum, that every four, every three operations give (-4) each 

time, then its repeated.  

7 Inst. Every three operations, you mean, the sum of four numbers? 

8 Sara yes, the sum is (-4). So it's repeated till number 2012. So 2012 is divided by 

4 and I get 503 times that it's repeated. … then I multiplied 503 by (-4) cause 

every such part is, mm…. (-4). And this is the result so far [-2012]. Then I 

have plus 2013 and it's 1.  

The analysis of Nur and Sara's suggested solution-paths is in Table3.  

  Nur (2 solution paths) Sara 

1.  What is the question 

the performer is 

trying to address? 

What is it that I want to get? The student is trying to solve the 

given problem and create a new solution path.   

2.  How does the 

performer evaluate its' 

success? 

By creating narratives of two types 

– (1) the sum of the series (equals 

1), and (2) new solution paths to 

By creating narratives of two 

types – (1) the solution (the 

sum is 1). However, this 



solve the problem. In both, the 

first number of the sequence is left 

aside. In the 1st solution, adjacent 

numbers are paired. The sum of 

each pair is 1 or (-1) alternately. 

Therefore the solution is 1.  In the 

2nd solution, Gauss' principle is 

applied to create pairs of numbers 

whose sum is 2015 or (-2015) 

alternately. Therefore, the total 

sum is 1. 

narrative is already known 

from previous answers. (2) a 

new solution path to solve the 

problem: the sum of every 4 

adjacent elements is (-4). The 

sum of all quadraplets is 

503∙(-4)= (-2012). The last 

element of the sequence 

(2012) is added. Therefore, 

the sum of the sequence is 1.    

3.  By whom is the 

routine initiated? To 

whom it is addressed? 

The routine used by the student to solve the problem (placing the 

first or last number aside and checking sums of sets of numbers), as 

well as Gauss's principle were used by the class in the previous 

lesson. However, this is not simple mimicking of previously 

performed routines by others, as those routines have not been used 

together for the same problem yet. Some adaptation needed to be 

done. Therefore, the routine is initiated by the student.   

4.  Flexibility The student used previously perfomed procedures to create a new 

solution path to solve this problem. Considering the students' 

decision making – the student made all decisions for adapting 

previously used routines to this problem.  

5.  Separation between 

procedure and task 

It is not clear whether for the student the procedure is a part-and-

parcel of solving this problem or not.  

6.  Authority  One's own 

Table 3: Analysis of Nur and Sara's participation 

It seems that Nur and Sara participated exploratively: they produced narratives that include new 

solution paths for the task and reaching a solution. They articulate their solution path in a way that 

makes clear that they have made independent decisions while adapting different formerly performed 

routines to solve the given problem.  

Discussion 

In this study we tried to characterize students' learning while solving a specific type of tasks on the 

ritual towards exploration continuum. In the discussed course, in which students were constantly 

asked to work on problems on their own or in small groups, and suggest various solution paths to 

each problem, there is evidence of students shifting from more ritual to more explorative 

participation. It may seem obvious - the course was designed in a way that would invite students to 

engage exploratively. Yet, studies show that even when teachers design lessons that aim at certain 

opportunities to learn, this does not always happen. We found that when faced with a task that is of a 

new type (to the learner), the learner's immediate response is of a ritual type - to seek related 

procedures that would assist her in solving the task. The request to suggest various solution paths 

seems to help students focus on the question of "where do I want to get at?" and not remain focused 

on the question of "how do I proceed?". Also, once a student chooses a certain routine as a solution-

path, it is sometimes followed blindly, ritually, thus getting farther away from the task at hand. 
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In this paper, we present results of an inquiry based teaching implementation carried out on a 

teacher training course in the University. The framework of the Anthropological Theory of 

Didactics (ATD) is adopted, and a co-disciplinary Research and Study Course (RSC) whose 

generative question requires studying physics and mathematics together is carried out by N=25 

training teachers of Mathematics at University. Some conclusions concerning on the conditions, 

restrictions and relevance of introducing the RSC in teachers training courses at the university are 

performed.  

Keywords: Inquiry based teaching, pre-service teachers training, modelization; research and study 

course. 

Introduction 

The Anthropological Theory of the Didactic (ATD) has proposed the Paradigm of Research and 

Questioning the World (Chevallard, 2012, 2013 a) advocating an epistemological and didactic 

revolution (Chevallard, 2012) of the teaching of mathematics and school disciplines, where 

knowledge should be taught by its usefulness or potential uses in life. The present work shows 

results obtained in two courses of pre-service mathematics teacher education (N=25) during a 

teaching inspired in the paradigm of questioning the world, by means of a Research and Study 

Course (RSC). To learn what an RSC is, and which kind of teaching is involved in, the trainee 

teachers (TT) must deeply experience a genuine RSC. Thus, a physics and mathematics co-

disciplinary RSC is designed, implemented and analyzed with the students. Co-disciplinary means 

that in this case, physics does not only trigger the study of mathematics, but rather that both 

disciplines play a central role, being necessary to study both as well. The starting point of the RSC 

is the question Q0: Why did the Movediza stone in Tandil fall? Which, to be answered – in a 

provisional and unfinished way- needs study Physics and Mathematics jointly. The rationale of the 

paper is to describe the trainee teachers’ activities and their difficulties when they must experience a 

genuine RSC and to face a strong question. Some reflections on the ecology an economy of this 

kind of didactic devices for the pre-service teachers training are performed.  

The research and study courses (RSC) 

The ATD defines the RSC as devices that allow the study of mathematics by means of questions. 

The RSC establish that the starting points of mathematical knowledge are questions called 

generative questions, because its study should generate new questions called derivative. Teaching 

by means of RSC is complex and demands rootle changes in the roles of the teacher and students. 

The RSC are defined by the developed Herbartian model (Chevallard, 2013 b):  

[S(X;Y;Q){R◊
1, R

◊
2, R

◊
3,…, R◊

n., Qn+1,…, Qm+1,…,Om, Om+1,…,Op }] R♥ 



Where Q is a certain generative question; S is a didactical system around of the study of Q. S is 

formed by a group of people trying to answer the question (X) and by people helping the study (Y). 

In classrooms of mathematics, X represent the students and Y represent the teacher and other 

instruments helping in the search of answers to Q. S has to build a didactic medium M to study Q, 

whereas M is composed by different knowledge, expressed by R◊
i, Qj and Ok. The R◊

i are any 

existing answer or “socially accepted answer”, the Qj are derivative questions of Q, and the Ok are 

any other knowledge that must be studied developing the answers. Finally, R♥ is some possible and 

partial response to Q given by S. In the a priori analysis stage, the specific and didactic knowledge 

which could be involved within an RSC is set up and the Praxeological Reference Model (PRM) is 

elaborated. The researchers analyze the potential set of questions which the study and the research 

into Q might encompass together with the knowledge, mathematics and physics in this case, 

necessary to answer those questions (Chevallard, 2013). The PRM underlies the whole of the 

teacher, student and researcher´s activity, being always likely and desirable to identify and clarify it, 

emphasizing the dynamic nature of the PRM.  

Methodology 

This is a qualitative and exploratory research that aims to carry out inquiry based teaching as it is 

proposed by the ATD, in a mathematics teacher training course at the University. The RSC was 

implemented in a state university, in the city of Tandil, Argentina, in a discipline which is part of 

the didactic studies within the Mathematics Teaching Training Course, in which the researchers are 

also the teachers, where N=12 and N=13 students from the last year (4th), aged 21-33 took part in it. 

The students had studied the ATD in two Didactic courses; however, they had problems to 

understand what an RSC is, and how it works? To emphasize the inquiry dimension of the RSC, the 

lessons were carried out in the University Library, given the wide availability of books and internet-

based searching, during 10 weeks (the half of the course extension), with a total of 7 weekly hours 

provided in two lessons. Six work groups were organized with approximately 4 members each. 

During the lessons students and teachers interacted permanently. In a RSC, the generative question 

Q0 has to be pointed out by the teacher, and this was made in the first lesson. Then, the students 

started their research in the library, by selecting some texts, documents etc. as possible R◊
i. At the 

end of this class, each group presented and discussed with the teacher and the other groups their 

findings and possible ways to face Q0. In the second class, many emergent questions Qi were made 

explicit, and the teacher and students groups selected which questions Qi and their related 

knowledge Ok were to be studied. This was the regular dynamic during the RSC. Recordings of each 

meeting were obtained and the students’ productions were digitalized and returned in the 

subsequent meeting. The data analysis was performed by using the categories provided by the 

developed Herbartian model (Chevallard, 2013) summarized before, and all derivative questions Qi, 

all “socially accepted answers” R◊
i found by the students, together with the Ok studied were 

described and analyzed. 

The Praxeological model of reference (PMR) and the RSC 

The starting question Q0 is: Why did the Movediza Stone in Tandil fall down? This enormous basalt 

stone has remained the city’s landmark, providing it with a distinctive feature. Many local people 



and national celebrities visited the place to watch closely the natural monument. It was a 248-ton 

rock, sitting on the top of a 300-meter-high hill (above sea level), which presented very small 

oscillations when disturbed in a non-arbitrary spot, as shown in Figure 1. Unexpectedly, on 

February 28, 1912, the stone fell down the cliff and fractured into three pieces, filling the town with 

dismay at the loss of their symbol. For over 100 years the event produced all kinds of conjecture, 

legends, and unlikely scientific explanations for the causes of the fall. Within the two groups where 

the RSC has been performed, there existed a certain curiosity and interest in finding a scientific 

answer to this question.  

Once in contact with the available information, the question evolved into: What conjectures are 

about the causes the Movediza Stone fall, and which is the most likely from a scientific viewpoint? 

Considering that the fall can be explained by means of the Mechanical Resonance phenomenon, 

several questions Qi arose which are linked to the physical and mathematical knowledge necessary 

to understand and answer Q0. 

 
Figure 1: Photography of the Movediza Stone (Photo Archivo General de la Nación Argentina, available in: 

http://bibliocicop.blogspot.com.ar/2012/02/piedra-movediza-100-anos-de-su-caida.html) 

If we consider that the real system is an oscillating system, the study can be carried out within the 

Mechanic Oscillations topic, starting from the spring or pendulum models which are ideal at the 

beginning. In this case, frictionless systems are used, in which the only force in action is the 

restoring force depending in a linear way on the deviation respect to the equilibrium position, and 

which produces oscillating systems known as harmonic, whose motion is described by a second-

order linear differential equation, called by the same name. In the case of the pendulum, the 

restoring force can be considered depending on the oscillating angle (for small angles).  

Progressively, the system becomes more complex. If friction-produced damping is considered, it 

provides a new term to the differential equation connected to the first derivative of the position 

(speed). Finally, it is possible to study systems that apart from being damped, they are under the 

action of an external force, and therefore called driven systems. Whenever this given force is 

periodic and its frequency coincides with the natural (free of external forces) frequency of the 

oscillating system, a maximum in the oscillation amplitude is produced, generating the phenomenon 

known as mechanical resonance. By increasing the complexity of the model, it is possible to 

consider a suspended rotating body, instead of a specific mass. This leads to the study of the torque 

and the moment of inertia of an oscillating body. Here again, the linear system is for small 

amplitude oscillations and the damped and driven cases can be also considered, corresponding to 

the same mathematical model, but in which the parameters have a different physical interpretation.  

http://bibliocicop.blogspot.com.ar/2012/02/piedra-movediza-100-anos-de-su-caida.html


However, as it refers to a suspended oscillating body, this is not a suitable physical model for the 

Movediza stone system. Since that the base of the Stone was not flat, it is necessary to consider 

more precise models of the real situation. This leads to the mechanics of supported (and not 

hanging) oscillating rigid solids. In this case, we consider a rocker-like model in which the 

movediza stone base is curved and it lies on a flat surface, where the oscillation is related to a roto-

translation motion (Otero, Llanos, Gazzola, Arlego, 2016 a, b). The application of Newton Laws to 

the rocker model of the movediza stone leads to a differential equation of the type harmonic 

oscillator, where the parameters are now specific of the movediza system: mass, geometry, inertia 

moment, friction in the base, external torque, etc. It leads to the following effective Harmonic 

oscillator mathematical model of the movediza physical system: 
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0  ww . The parameters: M0 (external torque), I (inertia moment), 

w0 (natural oscillation system frequency) and  (friction coefficient), must be estimated. Detailed 

data about the shape, dimensions and center of mass position of the movediza stone are available 

(Peralta, et al 2008) after a replica construction and its relocation in 2007 on the original place 

(although fixed to the surface and without possibility to oscillate). These data bring us the 

possibility to fix some parameters in our model, as e.g. mass, inertia moment, and the distance of 

7.1 m, from which the external torque could be exerted efficiently by up to five people (per 

historical chronicles) to start the small oscillation. By using these values, it is possible to study the 

behavior of the )(wM  function for w0 in a range of frequencies between 0,7 Hz and 1 Hz, 

historically recognized as the natural oscillation frequencies in the movediza stone system and 

calculate for each case the maximum amplitude )( mM w  that occurs for 22

0m γww  .The Stone 

would fall if )( mMc w  , being  IwMwmM 00 /)(  the maximum value of the amplitude 

function, that is to say )/( 00  IwMc  . The value of c  can be determined by an elementary 

stability analysis, which according to the dimensions of the base of the stone and the center of mass 

position is estimated to be approximately of 6°. In the present model, we cannot estimate . If we 

adopt “ad doc” for this parameter, a magnitude order 210 , we obtain in the various situations 

considered with different torques and the interval frequencies previously mentioned, that all the 

scenarios support the overcoming of the critical angle, i.e., predict the fall. Later, in search of a 

more appropriate approximation of the physics model for the damping that is clearly not due to air, 

we can consider the stone as a deformable solid, where the contact in the support is not a point, but 

a finite extension. Therefore, the normal force is distributed on such a surface, being larger in the 

motion direction and generating a rolling resistance, manifested through a torque contrary to the 

motion due to friction. The rolling resistance depends on the speed stone, giving a physical 

interpretation to the damping term. Therefore, the physics behind the damping is the same that 



makes a tire wheel rolling horizontally on the road come to a stop, but in the case of the stone, the 

deformation is much smaller. Although the deformable rocker model has extra free parameters, 

tabulated values of rolling resistance coefficient for stone on stone, which are available in the 

specialized literature, allowed us to estimate and justify the damping values that we incorporate 

otherwise ad-hoc in the rigid rocket movediza model.  

Some results obtained in the two implementations 

During the implementations, the students aim at answering how and why the stone fell down the 

cliff. At the beginning, the TTs searched in the elementary physics textbooks for an “already-made” 

mathematical and physical model, which allowed them to solve a differential equation in a specific 

way. In both implementations, several physical and mathematical questions arose; the main 

preoccupation of the TTs was to study the oscillations subject, because it was a new knowledge to 

them. The implementation was carried out in parallel with a Differential Equations course, and none 

of the groups seemed to have difficulties with the underlying mathematics. In both implementations, 

the TTs tried to find a physical model suitable for the situation and they decided on the physical 

pendulum model initially, whose mathematical model might be adequate to the problem, although 

physically inadequate. However, the path performed in the first implementation was different from 

the second. In the first case, the TTs did not question the physical model, and spent most of the time 

to the study of inertia moment concept and their calculation for regular solids, which would result in 

an appropriate model for the irregular shape of the stone. Several interesting questions were 

therefore generated, for which the answers were provided by the teacher and the students together. 

After, the students calculated by themselves the characteristic frequency of the system, making use 

of the moment of inertia previously obtained. Thus, only a parameter resulted undetermined: the 

damping. But in the end, the physical pendulum model became an obstacle, because the stone was a 

supported body, and not hanged. On the other hand, the damping they considered was due to air-

friction, whereas in the case of the movediza stone the main source of friction is the contact with the 

support surface. 

At this point, the external torque (there were different trials to analyze and estimate it) and the 

solution of the equation remained unstudied. Until this moment, the solution for the differential 

equation did not seem to present any obstacles to the students, who considered they were facing an 

initial value problem. Once they had obtained the parameters, which they considered fixed, the 

solution seemed simple. However, they had problems to arrive at a final solution, even though this 

can be found in the physics textbooks (without its deduction). For this reason, it was discarded and 

they decided to do the calculation on their own. This event complicated the quantification they 

aimed to obtain, as well as the physical interpretation. Some groups in this cohort removed the term 

of damping, to reduce degrees of freedom; thus, the stone would have been in perpetual motion. 

This did not create any contradiction to them. Other ones adopted a damping value due to air-

friction, which also led to wrong results. In summary, instead of adopting and adapting the solution 

that was presented in physics books, the TTs in this cohort dismissed it and did not interpret the 

answer in the texts concerning the Stone. The decision of the teachers to delay their intervention 

was with the purpose to make students live the dynamics of progress and drawbacks typical of the 

research and study courses. In addition the TTs had problems to understand the utility and necessity 



of mathematical models, due to an epistemological conception close to pure or formal mathematics. 

The TTs did not understand how to use the mathematical models, neither the role that the 

parameters could play, which were considered as fixed and universal. In consequence, they failed to 

establish different sets of parameters and did not generate the feasible families of functions and 

values, whose compatibility with the physical situation could have been analyzed. These difficulties 

were considered for the second implementation of RSC. In the second cohort (TT2), the teachers 

had already perceived that the fundamental problem seemed to be in the models and in the 

modelization. For this reason, it was decided to devote 8 sessions to the development of two intra-

mathematical RSCs (Chappaz & Michon, 2003; Ruiz, Bosch, Gascón, 2007), that the TTs could 

experience by themselves, therefore emphasizing the role of the modelization and the use of devices 

as spreadsheets and plotters. Besides, in this case, the teachers intervener as soon as the students 

proposed the physical pendulum and spring models. One group studied the AMS for the simple 

pendulum, the spring, and the physical pendulum, another group studied the spring model in all its 

possibilities and the third one did not develop further than the AMS in simple pendulum and spring. 

The synthesis stage corresponding to that class allowed the production of a complete answer for the 

three models and its possibilities, from which the TTs and the teacher arrived at the conclusion that 

the same mathematical model represented (9) nine different physical systems (Figure 2). A large 

amount of time was devoted to pondering on the differences and similarities between the 

mathematical and physical models and their connection with the real system we aimed at modeling. 

Then, the answers to the equations presented in the books were checked out. 

 

Figure 2: Protocol of the student E17. Implementation 2 

In both cohorts, as a fixed route that is inevitably set by the books, the TTs came across the physical 

pendulum. However, in the second cohort some students presented strong objections to the 

possibility of using it in the case of the stone, not so much in relation to a body that is supported but 

as an “inverted” pendulum. This drew the discussion once more towards the real system and the 

standing point, so that the path went through the models which refer specifically to the system and 

that are not, usually in elementary books, like a rocker. 



Firstly, the equilibrium was analyzed and the critical angle was calculated, and then, the model of 

the base of the movediza stone was sophisticated. For the study of the rigid solid physical model, 

the teacher proposed to the students a little text, as a new Ok that could be introduced into the 

didactic medium M. Finally, the students and the teacher calculated and estimated the parameters of 

the differential equation solution, and the classroom elaborated an answer that allows the 

explanation, by means of a model, of the plausibility of the fall. 

Conclusions 

Despite of the difficulties, the TTs experienced a genuine RSC within its means. There is a visible 

initial reluctant attitude on the part of the TTs: Why physics should be studied if we are teachers of 

mathematics? Later, it was gradually understood that the idea was to experience a genuinely co-

disciplinary RSC, to analyze it and comprehend the teaching model supporting an RSC.  

Even though the TTs had studied the ATD and other didactic theories, they did it in a traditional 

way comparable to the traditional training they get. This is reflected in the difficulties they have to 

understand and to use both physics and mathematical models. It was not expected that the TTs 

developed the models by themselves, but it was expected that they used the mathematical answers 

presented in the physics textbooks in a pertinent and exoteric manner. This fact did not occur in the 

first group and improved in the second one from the didactic decision to make a previous incursion 

into mono-disciplinary RSC particularly suitable for evidencing the role of the functional 

modelization. In addition, this allowed teachers to discuss the relationship between the 

mathematical model and the physical model and the meaning and role of the parameters. 

The TT’s behavior is interpreted from the fact that although they have experienced four years of 

“hard” university studies, the utility of the science they aim at teaching had never been visible. The 

epistemological conception about the mathematics produced by the traditional paradigm is so 

ingrained, that it is complex to reverse it. This would be, in our view, the most relevant drawback to 

permit the TTS at least understand what an RSC is and how the modelization activity works? 

However, it is important to notice that the sporadic incursions in the modelization activity do not 

seem enough to allow the TTs develop such school practices. Although the predominant teaching is 

mainly traditional, the TTs will face increasing demands for a change to a mathematic teaching 

based on the research, questioning and modeling. It is unlikely that a teacher whose training has 

been answers-based teaching can teach by means of questions. Then the training of teachers has to 

change profoundly. 
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Writing fictional mathematical dialogues as a training and 

professional advancement tool for pre-service and in-service math 

teachers 
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Pre-Service and In-Service Math Teachers are often surprised to find themselves at a loss for words 

in the mathematics classroom.  This feeling is not limited to the first day of class or to beginning 

teachers.  Even experienced teachers describe unexpected classroom situations in which they 

cannot find the proper words to respond or to explain or mediate ideas. The teaching routine is 

fraught with on time decisions teachers must make. The objective of the current study was to 

promote the development of spoken and written mathematical discourse among pre-service and in-

service math teachers in the context of classroom scenarios they considered unexpected and 

complex. The training was directed toward developing argumentative mathematical discourse skills 

through writing, with emphasis on writing fictional dialogues. The research focuses on the 

characteristics of fictional mathematical dialogues written by pre-service and in-service math 

teachers and seeks to show that these dialogues can used as a professional advancement tool.   

Keywords:  Writing fictional mathematical dialogues; professional advancement tool; pre-service 

and in-service math teachers. 

Introduction 

Teachers make decisions based upon knowledge, goals, beliefs and orientations. Accordingly, 

developing all of these factors can help promote decision making in the mathematics classroom. 

For many years, I have been seeking creative ideas that will enable in-service and pre-service 

teachers to predict scenarios and unexpected situations in the mathematics classroom. Thus, they 

will be able to practice mathematical discourse before coming to class and to learn to provide 

argumentative responses that are quick, accessible and flexible.  Teachers' responses in class and 

their responsibility in developing mathematical discussions and discourse have been the topics of 

much investigation (e.g., Schoenfeld, 2008-2011). The literature has placed less emphasis on 

examining training methods for developing discourse management for predicting unexpected 

classroom situations in advance, particularly training all that through writing.  

Zazkis and Koichu (2015) describe a fictional dialogue on infinitude of primes between Euclid and 

Dirichlet and use this as a research method. The current study focuses on pre-service and in-service 

math teachers who write "fictional dialogues" as part of their training. The goal of this writing is to 

develop their ability to explain, respond and engage in argumentative mathematical discourse in a 

learning situation characterized by unexpected situations. The results of the current study indicate 

that the task of writing fictional dialogues has several advantages. One advantage relates to 

professional development and renewal. Veteran teachers tend to feel less challenged and less 

interested in preparing lessons in advance. Writing fictional dialogues challenges them to formulate 

unexpected mathematical situations for mathematical topics and ideas that for them are seemingly 



simple and trivial. In writing fictional dialogues, they discovered both mathematical and didactic 

innovations. Another advantage applies to training. In writing the dialogues, beginning teachers 

learned to develop written mathematical discourse that explains the essence of mathematical terms. 

Further, they learned to use visual or other representations in context and practiced giving 

explanations to learners with a variety of learning styles.  

Theoretical background 

Unexpected situations in the mathematics classroom differ from teacher to teacher due to 

differences in the extent and depth of their mathematical knowledge, their ability to identify such 

situations and their ability to make decisions in real time about the didactic concepts appropriate for 

each situation. Hence, I examined the research literature on major topics related to the current 

research. These include training pre-service and in-service math teachers by means of writing, the 

role of the teacher in discourse development and management in the mathematics classroom, 

mathematical argumentation as a teaching tool and interaction in the mathematics classroom 

(Malaspina, Mallart, Font, , & Flores, 2016). The conclusions of these studies led me to formulate 

ideas for a unique intervention "training" program with the potential to promote mathematical 

discourse in the classroom in general and argumentative mathematical discourse in unexpected 

situations in particular. In the following sections, I review the relevant literature in these fields and 

explain how these studies relate to the current research.  

Professional development and learning through writing 

Teacher training usually incorporates writing through writing assignments about ideas learned in 

class or as reflection on learning (Korkko et al., 2016). Turning writing into a goal in and of itself is 

an innovation in the training of mathematics teachers. Therefore, in order to construct an 

intervention program that emphasizes writing, I surveyed and studied research that examines the 

advantages of writing in teaching math and of pedagogy based on writing in general. 

In the study by Bostiga, Cantin, Fontana and Casa (2016), the students learned by writing diaries on 

mathematical argumentation. The research indicates that the process of writing develops students' 

in-depth thinking about mathematical concepts as well as underlining erroneous or other perceptions 

of concepts or phenomena. The writing process and the accompanying feedback prompted the 

students to write more precisely about mathematics, directed them to give arguments, explanations 

and reasoning in their writing and taught them to edit and rethink mathematical ideas. From this 

study among students, I decided to try to generalize the method for adults and to examine the 

results. Adults with a common professional interest often write together in a process that advances 

their shared understanding and learning in the field (Lowry et al., 2004). 

Griffin and Beatty (2010) examined the attributes of shared writing among adults with a common 

professional interest. Their research pointed to several advantages, including professional and 

personal growth among the writers, a greater degree of creativity, the generation of new ideas and 

understandings, diversification in areas of specialization, increased documentation and output 

abilities, and shared knowledge. Shared writing generates a unified voice, increases feelings of 

satisfaction and pride in integrating the personal voice into the voice of the group and expresses 

respect for individual knowledge. Therefore, in this study the writing took place in pairs or in small 

groups as part of the process of developing skills in argumentative mathematical writing. 



Read (2010) proposed the IMSCI model for supporting the writing process, with writing serving as 

a pedagogical tool for assimilating learning. In the IMSCI acronym, "I" stands for inquiry, "M" for 

modeling, "S" for shared writing, "C" for collaborative writing and "I" for independent writing. This 

scaffolding model was integrated into the intervention process in the current study. 

Spoken or written mathematical discourse 

According to Sfard (2008a; 2008b), discourse has four characteristics: vocabulary, visual mediators, 

unique routines and customary utterances. In the communicative approach, thinking constitutes an 

individual's discourse with the self. Such a discourse can yield ideas that express the thinking of 

those participating in the discourse. In contrast to those who talk, some people express themselves 

through writing and symbolic mathematical representations and have difficulty expressing their 

ideas verbally. Such individuals may eventually become teachers whose skills in developing and 

conducting mathematical discourse are not sufficiently developed. In most cases, this does not point 

to a lack of mathematical knowledge but rather to the difficulty teachers experience in translating 

this knowledge, which perhaps is represented in their minds through nonverbal symbols, into verbal 

tools. Mathematics teachers must generate significant discourse in their classrooms. Such discourse 

constitutes an organized and connected collection of all their students' and their own intellectual 

ideas. The job of the teacher is to conduct a discourse that reflects ideas and encourages participants 

to discuss these ideas, to endorse or refute them and to arrive at valid and agreed-upon mathematical 

rules that can be implemented in new situations that are similar or different. How can we promote 

and cultivate teachers who have the awareness and skills to cultivate this type of classroom reality? 

Wagganer (2015) proposed five strategies for supporting meaningful math talk in class. First, 

teachers must talk with their students and arrive at common insights regarding the importance of 

math talk in the classroom. Second, teachers are responsible for teaching their students to listen and 

respond appropriately to one another. Third, teachers must teach their students to write sentence 

stems to emphasize their responses. Fourth, teachers must teach and demonstrate the difference 

between explaining and justifying what someone else says. Finally, teachers must provide examples 

of all these actions in class. The current study implemented all of Wagganer's ideas with pre-service 

and in-service teachers in the general context of group mathematical discourse and the particular 

context of written mathematical discourse in unexpected situations in the mathematics classroom. 

Methodology 

Participants  

The research participants included undergraduate students taking a course that taught didactic and 

pedagogic skills for teaching math in elementary and junior high school and graduate students in 

mathematics education who teach math to all ages and at all levels. The two groups together totaled 

35 students, as half of them were teachers were in fact teachers. 

The research tool  

Intervention design –The two courses comprised the same several stages. First, the students read the 

article by Zazkis and Koichu (2015) about fictional dialogues in order to understand and define 

fictional dialogues in the context of their unique methodological role in the original article. Next, 

we adopted the skill of writing fictional dialogues as a tool for developing spoken and written 



mathematical discourse in lesson planning for unexpected situations in the math classroom. We 

embraced the following quote with the understanding that we as students also seek interesting 

learning methods.  "People are eager for stories. Not dissertations. Not lectures. Not informative 

essays for stories" (Haven, 2007, p. 8). 

Third, we defined and formulated conditions determining whether a potential fictional dialogue met 

the objective. In this stage, we read mathematical dialogues from various sources that resembled 

fictional mathematical dialogues and we reworked their mathematical discourse so it matched our 

definition of a fictional dialogue. Fourth, the students independently wrote fictional mathematical 

dialogues. In the fifth and final stage, the students showed their dialogues to their classmates. This 

generated an evaluative argumentative discussion and, if necessary, led to redesigning the dialogues. 

Throughout the course, we documented the sessions and their outcomes focuses on fictional 

Mathematical dialogues. 

Definition of "fictional dialogue" in the current study 

The definition of fictional dialogue emerged from agreement among all course participants and 

included the following characteristics: The dialogue must take place between two people with some 

sort of major gap between them. This gap may be rooted in culture, age, expertise, historical period 

(e.g., one speaker lives in contemporary times and the other lived 700 years ago), mathematical 

knowledge and more. One speaker is an expert in the field and should be able to bridge the gap 

through argumentative dialogue that leads the two speakers to understanding, definition and 

agreement on the mathematical topic they are discussing. The expert presents the mathematical 

explanation using formal intra-mathematical tools and extra-mathematical or other simple, practical 

and concrete examples and explanations. The non-expert participant's dialogue develops in 

unexpected directions, so that this participant can surprise the expert with questions or examples 

that seemingly contradict the mathematical concept under discussion or that present a challenge to 

the clear, simple and popular explanation. In the dialogue, the two participants express their 

perceptions of the mathematical topic being discussed, and each attempts to enrich the other's world 

through the mathematical knowledge at his or her disposal. Through the dialogue, the gap between 

the speakers becomes smaller in that all the relevant mathematical nuances in the field find 

expression in the dialogue. 

Data analysis  

The data analysis focused on the process of establishing the conditions for fictional dialogue. 

Findings  

In this paper, I describe one mathematical event representing two stages of the intervention period. 

Because the research focuses on the final product—"writing"—I give two examples of writing and 

discuss the processes involved in creating them. These two examples show that writing fictional 

mathematical dialogues can serve as a training and professional advancement tool for pre-service 

and in-service math teachers. The first finding refers to the third stage of the intervention period, in 

which we redesigned a dialogue and rewrote it as a group fictional dialogue. At this stage, each 

student individually redesigned the dialogue by writing a new dialogue based on the existing 

dialogue and thus creating a new personal product that conformed to the required conditions. In the 

next stage in the joint group work, the students showed their dialogues to their classmates for 



evaluation, leading to writing an agreed-upon group product. The dialogue is the unified product 

after the group discussed their differences and went through the entire learning process. 

Group design of a given dialogue and its transformation into a fictional dialogue 

The given dialogue is from an Abbott and Costello movie titled Buck Privates: 

Abbott:  You're 40 years old, and you're in love with a little girl, say 10 years old. You're four 

times as old as that girl. You couldn't marry that girl, could you? 

Costello:  No. 

Abbott:  So you wait 5 years. Now the little girl is 15, and you're 45. You're only three times as 

old as that girl. So you wait 15 years more. Now the little girl is 30, and you're 60. 

You're only twice as old as that little girl. 

Costello:  She's catching up? 

Abbott:  Here's the question. How long do you have to wait before you and that little girl are the 

same age? 

Costello:  What kind of question is that? That's ridiculous. If I keep waiting for that girl, she'll pass 

me up. She'll wind up older than I am. Then she'll have to wait for me! 

In order to determine whether this qualifies as a fictional dialogue, we mapped it to see whether it 

fulfills the conditions for fictional dialogues formulated in the second stage of the course. The 

mapping results indicate that the dialogue does not meet the conditions to qualify as a fictional 

dialogue. Hence, we redesigned the dialogue to fulfill the necessary conditions. Each course 

participant individually designed and wrote a fictional dialogue. In the next stage, the students as a 

group combined these individual dialogues into a fictional group dialogue. The group dialogue 

features an expert "player" called Achilles, provides intra- and extra-mathematical explanations, 

stresses the perceptions of each of the speakers so that it is clear who represents the erroneous 

perception and who represents the appropriate perception and stresses the unexpected situation. 

Using the ideas from the individual dialogues, the group wrote an argumentative fictional dialogue 

that gap the discrepancy between the speakers to the point of generating an unexpected situation in 

which the speakers "reverse" their roles, so that the rookie, Costello, triumphs over the expert, 

Achilles. The following lines from the dialogue demonstrate compliance to condition (4) as written 

by the group.  

…………….. 

Achilles: I, Achilles, run at a speed of 10 meters per second. My friend the turtle runs 1 meter per 

second. I decide to give the turtle a head start of 100 meters at the beginning of the race. 

Costello: Wait a minute. This is a fable, right? So I want to convert it to apply to me. I gave the 

girl a forty-year head start. Wow, that's a lot. I am four times older than she is! And you 

run ten times faster than the turtle. Great, I get it. 

………………… 

Costello: So let's assume I'm 240 years old. How old will she be??? She will always be 30 years 

younger than me, so she'll be 210 years old. So her age will be seven-eighths of my age. 

It appears we are slowly advancing to the point where we're the same age. 

Achilles: No. That's not right. Let's go back to my turtle. 



Costello: I'm not going back to your turtle because I've discovered the problem and also the 

solution. The girl and I will never get married because there will always be a fixed 

difference of 30 years in our ages. But there is not a fixed difference of 100 meters 

between you and the turtle because around 12 seconds after the beginning of the race 

you will already catch up with the turtle. In ten seconds you run 100 meters and in 

another two seconds you run another ten meters, so the race is over because the turtle 

continues to trail behind you. 

Achilles: Does that mean that the age difference problem is not representative of infinity. 

Costello:    Now we've switched roles. I'm the mathematician. What are you? The concept of infinity 

can be represented if the beautiful girl and I live forever and do not die. From a situation in which 

I'm four times her age and then three times her age, we get to a situation where the ratio is 7:8, and 

we can go on to 8:9 and even further. While the discrepancy in our ages is still thirty years, with 

time the relative difference in our ages gets smaller. In contrast, when you race against the turtle, a 

quick calculation tells me that you'll overtake your opponent after 12 seconds. The 100-meter 

difference between you is not fixed because you "grow at different rates" That is, you each run at a 

different speed and you are ten times faster than the turtle. 

Dialogue analysis "Age difference problem" 

In the above dialogue, the students completed all the conditions that were missing from the original 

given dialogue. They created two fictional characters and delineated a significant historical and 

mathematical gap between them. They defined an expert speaker who led the dialogue. They 

formulated intra-mathematical explanations (e.g., speed as the ratio between distance time) and 

extra-mathematical explanations (e.g., representing the concept of infinity by means of the girl and 

Costello, who grow forever and never die) for the age problem and for the paradox of Achilles and 

the tortoise. Furthermore, they created two unexpected situations in the dialogue. One was the 

comparison between the age problem and the Achilles paradox. The other was that Costello 

understood the difference between the problems and claimed that the turtle problem differs from the 

age problem ("Now we've switched roles. I'm the mathematician. What are you?"). They created a 

specific explanation for the problem and its concepts and accurately differentiated between the two 

problems. Using the dialogue, they understood that the age problem demonstrates Costello's 

misconception about the age gap, as he thought the gap would decrease over time. 

In contrast, the turtle paradox shows that the gap between the turtle and Achilles is not fixed and 

that the distance decreases with time. Using numbers, the students demonstrated the two situations, 

showing that the gap in the age problem remains constant while the distance between the turtle and 

Achilles continues to diminish. At this stage, they reduced the gap between the speakers' dialogue. 

During the group formulation, the students explored ideas and mathematical explanations. They 

designed and formulated the dialogue as a group exercise, so that in cases of disagreement they 

stopped and sought a consensus in the group. 

Discussion and conclusions 

The current study is a pioneer in this field. The research was inspired by studies that examined 

student writing in math classrooms (Bostiga et al., 2016) and writing-based pedagogies (Korkko et 

al., 2016; Zazkis, at el 2009). The study implemented Read's (2010) method using the IMSCI 



model. Implementing this model one-step at a time was found to be effective and to validate the 

results of studies claiming that only theories that are practically applied in the training process can 

be properly implemented in the field (Anderson & Stillman, 2013; Bråten & Ferguson, 2015; 

Cheng, Tang, & Cheng, 2012; Gomez Zwiep,. & Benken, 2013). That is, it would have been more 

effective to teach the theory of fictional dialogue in the course and then to practice it step by step 

(IMSCI) through actual writing.  
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The use of mathematics coaches as a means of professional development for teachers is an increasing 

phenomenon in North American schools. The research presented here identifies tensions experienced 

by mathematics coaches and how they cope with those tensions. Utilizing a framework that 

characterizes tensions as dichotomous pairings, the results indicate that there are tensions that are 

unique to mathematics coaches. This adds to a growing body of research into the role of mathematics 

teachers. 
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Introduction and background 

In their search for school-wide models that support improvements in the teaching and learning of 

mathematics, districts are, “embracing coaching as a model of authentic professional development 

wherein teachers can learn in the context of their schools and their instructional practice” (Campbell 

& Malkus, 2014, p. 213). Underlying this development is the recognition that schools need to become 

places where both students and teachers can learn (Hawley & Valli, 1999). With this in mind, districts 

have begun placing mathematics specialists in their schools to work directly with practicing teachers 

(Anstey, 2010).  

Bearing a variety of labels, such as mathematics specialist, numeracy specialist, lead teacher or 

learning coach, a mathematics coach is generally a highly knowledgeable teacher hired to support the 

improvement of mathematics teaching and learning within a district (Anstey, 2010). An effective 

mathematics coach would have a deep understanding of mathematical content combined with 

pedagogical expertise and strong interpersonal skills. Usually they are former classroom teachers, 

recognized for their abilities and promoted from within (Campbell & Malkus, 2011).  

Mathematics coaches are responsible for providing ongoing professional development of the 

inservice teachers in their districts by “advocating for their change, nurturing their performance, 

advancing their thinking, increasing their mathematical understanding, and saluting their attempts” 

(Campbell & Malkus, 2011, p. 459). To reach this goal, mathematics coaches’ work varies from 

modeling mathematics lessons in a teacher’s classroom to observing and supporting a teacher as they 

teach (Campbell & Malkus, 2014). This is a varied, demanding role that Campbell and Malkus (2011) 

suggest “the profession does not understand and is only beginning to examine” (p. 449).  

The tensions experienced by mathematics coaches is one such unexamined area. A review of the 

literature reveals little information about the dilemmas mathematics coaches face. Literature 

regarding generalist coaches is much richer and suggests several common tensions. For instance, 

Neufeld (2003) identified a series of tensions experienced by generalist coaches that begins with a 

lack of time. This is a frequently experienced tension, whether it is a lack of time to conference with 

teachers or lack of time to prepare for working with teachers. Leaving the classroom environment 

causes tensions for some generalist coaches, as does the switch to working with adults. Tensions also 

occur when teachers are slow to uptake change or are actively opposed to its implementation. Finally, 

Neufeld (2003) suggests tensions for generalist coaches arise from working with uncooperative 



school cultures or administration and from a lack of opportunities for personal professional 

development. While there are perhaps some commonalities between these tensions experienced by 

learning coaches in general and those experienced by mathematics coaches in particular, it would be 

of benefit to identify whether there are any tensions specific to mathematics coaches. Jones (1995) 

suggests that “members of the mathematics education community, whether in schools, colleges, or 

universities, have a responsibility to help one another recognize and deal with tensions in a productive 

way” (p. 233). The intent of this paper then, is to identify some of the tensions experienced by 

mathematics coaches.  

Theoretical background 

Endemic to the teaching profession, tension encompasses the inner turmoil teachers experience when 

faced with contradictory alternatives for which there are no clear answers (Adler, 2001; Berry, 2007). 

Building on the work of Berlak and Berlak (1981) who identified sixteen dilemmas that illuminated 

the relationship between everyday school events and broader social, economic, and political issues, 

it was Lampert (1985) who first suggested the notion of teachers as dilemma managers who accept 

conflict as useful in shaping both identity and practice.  

For the purposes of this study, I turn to the work of Berry (2007) whose self-study of tensions in her 

role as a teacher-educator resulted in a binary categorization of tensions. Seeking to depict the inner 

turmoil she experienced from the competing pedagogical demands in her practice, she proposed a 

framework for both identifying and understanding tensions. Isolating the following six pairs of 

interconnected tensions, Berry used these as a lens to examine her practice: (1) Telling and growth–

between informing and creating opportunities to reflect and self-direct (2) Confidence and 

uncertainty–between exposing vulnerability as a teacher educator and maintaining prospective 

teachers’ confidence in the teacher educator as a leader (3) Action and intent–between working 

towards a particular ideal and jeopardising that ideal by the approach chosen to attain it (4) Safety 

and challenge–between a constructive learning experience and an uncomfortable learning experience 

(5) Valuing and reconstructing experience–between helping students recognise the ‘authority of their 

experience’ and helping them to see that there is more to teaching than simply acquiring experience 

6) Planning and being responsive–between planning for learning and responding to learning 

opportunities as they arise in practice (Berry, 2007, pp. 32–33). 

Although initially used as a framework to isolate tensions in the work of teacher education of pre-

service teachers, Berry’s (2007) framework has been used in other contexts as well. As part of a 

larger, ongoing project, of which this paper is a part, Liljedahl, Andrà, Di Martino, and Rouleau 

(2015) applied Berry’s tensions framework to a fictional composite of a mathematics teacher that 

comprised a collection of data sets. Their work expanded Berry’s framework by identifying new 

tension pairs and they concluded that some tensions may be the driving force behind a teacher’s 

pursuit of professional development by fueling a desire for change in practice.  

While considered relative newcomers, mathematics coaches are part of a mathematics community 

that includes both pre-service and inservice teachers. Given that developing a shared understanding 

of the tensions teachers face gives them the power to shape the course and outcomes of their teaching 

practice (Adler, 2001); it is likely the same would be true for mathematics coaches. Bringing the 



challenging aspects of their work to light would offer mathematics coaches the opportunity to 

recognise, talk about, and act on the tensions in their practice. 

My goal then, in this article, is to isolate some of the tensions experienced by mathematics coaches. 

Specifically, using Berry’s (2007) framework, I will identify and describe the tensions they face and 

how they cope with them. Thus, my research questions are as follows: (1) What are some of the 

tensions experienced by mathematics coaches? (2) How do mathematics coaches cope with those 

tensions? 

Context and method 

This study is part of an ongoing research project regarding tensions in teaching. In particular, it is the 

first look into the tensions experienced by mathematics coaches. This is a small scale, qualitative 

study that involves only three participants. As such, I am focusing on proving the existence of a 

phenomenon rather than its prevalence. It is important to note, however, that I chose to report only 

on those tensions that were experienced by more than one participant. While aware that a single 

instance of a tension can be as revealing as multiple instances, it is less likely to be seen as 

representative of a generalizable pattern. In keeping with that, the data corpus comprises interviews 

with three mathematics coaches working in three separate school districts. 

Tara is employed by a small urban school district that employs 430 teachers in 17 schools. She has 

been in the role of K-12 District Numeracy Coordinator for 4 years. Prior to that, she worked as an 

elementary classroom teacher for 18 years. Having had negative experiences as a learner of 

mathematics, Tara’s interest in math was only ignited 14 years ago after attending a mathematics 

professional development workshop. During the ensuing years, she attended every mathematics 

professional development opportunity offered and developed a passion for the teaching and learning 

of mathematics. She is about to begin a Master’s degree program with a numeracy focus.  

Pam works for a small rural school district with 23 schools and 320 teachers. Employed as a classroom 

teacher for over 30 years, she has taught all grades K-7. Pam completed a Master’s degree with a 

numeracy focus in 2011 and left the classroom in 2012 to take on the role of Numeracy Helping 

Teacher. She has always enjoyed and had a passion for math.  

Ray is employed by a large urban school district that employs over 1000 teachers in 49 schools. He 

worked for his district for 18 years as a secondary math teacher before taking on the role of Math and 

Science Program Consultant 4 years ago. During his time in the classroom, Ray completed a Master’s 

in secondary mathematics education and was involved with his province’s math teachers’ association. 

Ray went on to serve a term as the association’s president, while working as his district’s math 

consultant. Like Pam, Ray has always enjoyed math and wants to recreate that experience for the 

teachers and students in the classrooms he supports. 

Data was collected from the participants during semi-structured interviews that were transcribed in 

their entirety. The data corpus was then scrutinized using Berry’s (2007) framework as an a priori 

frame for identifying and coding tensions. To begin this was done by searching the interview 

transcripts for evidence of tensions. In particular, I looked for evidence of utterances with negative 

emotional components such as “I think what’s been difficult…” or utterances that conveyed doubt or 

uncertainty such as “I wasn’t 100% sure, but…”. The identified tensions were then grouped according 



to the pairings described by Berry. Additionally, the framework was extended to encompass a tension 

that did not fit within her established framework.  

Analysis 

In the following analysis, Berry’s (2007) framework will be used to identify and analyze the tensions 

experienced by the three participants in their roles as district mathematics coaches. During the 

analysis, the following four tensions pairs were evident. 

Safety and challenge - Unwelcome in the classroom 

All three of the participants mentioned the conflict they experienced between their desire to be 

working with teachers in their classrooms and not having that support seen as threatening. They 

describe the teachers as uncomfortable in having someone observe them and therefore are unable to 

utilize this valuable learning opportunity. A tension arises for the mathematics coaches who, like 

Berry (2007), want the teachers to feel safe, but who also recognize the value in challenging the 

teachers to open their doors. This is evident in the following excerpts: 

Ray: And I think that teachers are a little reluctant to have people in their classroom and do, sort 

of team teaching or have someone observe them… that hasn't happened as much as I kind of 

thought it would or as much as I’d sort of like. 

Pam: The kind of biggest piece, I think, for us, is how do you support those teachers that are too 

nervous or too anxious about having someone come in? 

Tara: If I get invited in, I'm in, I go. Absolutely. But unless I'm invited in, it doesn't, like, I don't 

just, well, I shouldn't say I don't just show up…. but to be actually modelling in a classroom and 

doing observations, that's all by invite. 

As a rationale for the teachers’ reluctance, both Pam and Ray offer related possibilities. Pam suggests 

that the teachers’ reluctance stems from a fear of being evaluated even though she feels she makes it 

clear that her role is one of mentorship and has no evaluative elements stating, “They haven’t shifted 

away from that fear yet, that I’m there to judge. I’m not, I’m there to support them.” Ray suggests 

that the teachers are concerned with the overall quality of their lesson, which then becomes a barrier 

to observation, “When it comes down right to it, you know, we’re all a little bit unhappy with every 

lesson we ever do so I don’t really want you seeing me because, you know, it's got its warts and all 

that stuff. And so, a lot of good people, but not necessarily wanting people in their classrooms.” 

For all three, this appears to be an unresolved, ongoing tension in that none have successfully found 

ways to make classroom visits an accepted part of their roles. Pam, in particular, mentions that this 

tension leads her to consider ways of presenting this opportunity to learn as risk-free noting, “Well, 

I’d really like to be in more rooms and influencing more teachers. I’m trying to think of ways I can 

do that to support them.” 

 

Valuing and reconstructing experience - Resistance to change 

Another of the tensions that was apparent for all three participants was similar to Berry’s (2007) 

tension of valuing and reconstructing experience. The mathematics coaches experienced a dilemma 

between acknowledging the authority of the teachers’ experience and helping them to see that there 



is more to teaching than simply having acquired a requisite amount of experience. This is best 

exemplified by Ray in the following excerpt: 

Ray: I think the biggest barrier tends to be, as teachers, we’ve gone through a system a certain way 

that we can visualize how it looks in the classroom. We’ve taught that way and we see successes 

in that, in either ourselves or some students, and we hang onto those successes as sort of validation 

for doing what we do. And we tend to say, ‘Well, those other kids just aren’t being successful. 

They’re not working hard enough. They’re not trying hard enough. They need to do things 

differently. They need to change.’ And I don’t think a lot of teachers are as good at saying, ‘Well, 

what do I need to do differently? What do I need to do to change?’  

The mathematics coaches value the experience their teachers have, but know that experience can 

always be broadened and improved. None of data from the participants suggest they use a deficit 

model approach to coaching teachers, but rather they believe there is always room for growth. This 

belief perhaps stems from their own experience with life-long learning. They want the teachers they 

work with to consider which areas of their practice would benefit from further learning and support. 

As Ray suggests, “And, I think if teachers just come out a little bit more with the willingness that, 

you know, as good as I am, (laugh) I probably could be a lot better. That would be very helpful.” 

The data suggests that all three mathematics coaches see this tension as a resistance to change and 

this manifests in different ways. For Tara, who described her own career in terms of ongoing growth 

and change, the tension stems from the assumption that her colleagues would be open to similar 

experiences. She finds it difficult to accept that change is slow stating, “So I made the assumption 

that was once other teachers kind of have these a-ha moments [as she did], they would just fly and 

I've come to realize that's not the case.” 

Ray also experiences tension in slow change, but notes that, while “teachers can be very confident 

about some things and don’t necessarily challenge themselves as much as they could”, it is possible 

that “as much as we sometimes want to change, it’s a lot of work to change and people only have so 

much time in the day so they sometimes just don’t even get started.” Ray’s view suggests that outside 

influences play a role in teachers’ readiness or willingness to change. 

Pam views the resistance to change as more of a readiness factor. Her tension lies in the fact that the 

teachers she works with are not as ready to reconstruct their teaching experiences as she would like 

them to be. She recognizes that she “wants them to try more than they’re capable of trying” and is 

aware that she’s “not giving them time to slowly implement what they’re comfortable with”. She 

values the experience they bring, but struggles to encourage them the consider new practices. 

This too appears as an unresolved tension that all three mathematics coaches deal with on an ongoing 

basis. Pam was the only participant to offer a partial solution, albeit unsatisfactory to her. She 

approaches this tension with perseverance tinged by frustration saying, “Well, I think, you kind of 

got to persist, but it can kind of get a little frustrating at times.” 

Confidence and uncertainty - Questioning role and ability 

A tension that surfaced for both Tara and Pam correlates closely with Berry’s (2007) tension pairing 

of confidence and uncertainty. Both coaches mention having had colleagues question their role and 

their qualifications. This created a tension between the necessity of exposing their vulnerability and 



maintaining the confidence of the teachers they mentor. Tara mentions, “You get the naysayers in the 

room that might, you know, question you on things. The biggest thing I get is what are your 

qualifications to do this job. That's what I get all the time.” And Pam adds: 

Pam: I've had people that have said to me, I know enough that I don't really need you and I don't 

understand why the district is wasting money on your job. It's the senior math people, the 10, 11, 

and 12, that are the hardest to influence and they don't want to be influenced by me. I've been told 

many times by them that I have not the experience. 

For both Pam and Tara, this appears to be a managed tension. Although the questions regarding their 

qualifications continue to be asked, neither seem to regard it as an ongoing source of tension. Both 

admit to limiting their role to elementary and junior high school and, for Pam, holding a Master’s in 

Numeracy was perhaps sufficient to manage any remaining tension. Tara chose two other methods, 

which appear to offer the credibility she needs to answer any questions—she outlines her credentials 

and acknowledges the research behind best practice in mathematics: 

Tara: So what I started to do more of after that was, whatever I was giving a recommendation for, 

I always had research to back up my recommendation. So I was always presenting what the 

research was saying. Always. […] I lay out what courses I've taken, the journey I talked to you 

about, and why it's a passion. They seem to be a little better once they hear that story. 

Initiative and systemic barriers - Working with learning assistants 

This is a tension pairing that extends Berry’s (2007) framework as it does not have a counterpart 

within her original set of tensions. It surfaced when the mathematics coaches were asked what they 

would like to implement in their role but have not been able to as of yet. Both Pam and Ray mentioned 

working with learning assistants. A strong desire to support every adult involved in the learning of 

students in their district drives them to want to work more closely with the learning assistants. Yet to 

do so would disrupt an existing functioning system. Ray expresses this clearly in the following 

excerpt: 

Ray: I’ve got a few things that are sort of happening, but not as deeply as I’d like. One of them is 

the learning support group in our district. They all work a little bit differently and it’s kind of hard 

to connect with them the way we’re set up in the system. 

Their initiative meets with resistant in the form of systemic barriers. In Pam’s case, it is a result of an 

administration system that limits her contact with colleagues to only classroom teachers. For Ray, it 

is a result of different priorities. Like Pam, the learning assistants in his district provide both numeracy 

and literacy support — and that support tends more towards literacy. Ray notes, “They tend to be 

very heavily focused on reading recovery/writing kind of stuff over the years and they just haven’t 

had a lot of time to get together and talk about anything around math.” 

Both Pam and Ray mention wanting to circumnavigate the systemic barriers and provide professional 

development to the assistants, who, in their respective districts, tend to work one-on-one in pullout 

environments with students. Ray wants the opportunity to offer more effective resources. Pam agrees, 

adding, “They are sending these support people out to work with students, but they’re working same 

old, same old. The child gets the same kind of repetitive practice over and over again and it never 

moves them forward.” 



This is an unresolved tension that has both mathematics coaches searching out solutions. Ray offers 

the vague “hope” that he will be able to connect with the learning assistants this coming school year, 

but does not go deeper into his plan. Pam plans on speaking with her assistant superintendent to seek 

her assistance in convincing the learning assistant teachers that she is capable of providing them with 

support. 

Discussion and conclusion 

The first goal of this study was to identify tensions experienced by mathematics coaches. Three 

tensions emerged that closely aligned with the tension pairings in Berry’s (2007) framework. The 

fourth was a tension the mathematics coaches experienced in their desire to support learning 

assistants. With no obvious parallel in Berry’s work, likely due to her role as a pre-service teacher 

educator, the presence of this tension requires the framework to be extended when considering 

tensions experienced by mathematics coaches.  

The findings also revealed tensions that could be considered unique to mathematics coaches, as there 

were two tensions they experienced that were not included in the list of tensions identified by 

generalist coaches. The first finding suggests that mathematics coaches may experience tension 

regarding their qualifications. This could be explained by the expectation that a specialist in one 

subject would be expected to have specific skills that a generalist, who works across all subjects, 

would not be expected to have. Additionally, given that many of the mathematics coaches are pulled 

from teaching positions within their districts (Campbell & Malkus, 2011), their former colleagues 

might question their abilities. Interestingly, Ray, who was a secondary mathematics teacher has never 

experienced this tension. Despite having no elementary experience, he stated that he has always been 

“well received” by the elementary staff. His status as a high school mathematics teacher appears to 

offer him credibility across all grade levels. The second tension experienced by mathematics coaches, 

but not generalists, was working with learning assistants. This might be the result of the relative 

newness of the role of mathematics coaches (Anstey, 2010). Districts are still in the process of 

determining the scope of the responsibility of the mathematics coaches in their employ. As Tara 

suggests, “As for the job itself, it was pretty much I just had to build the airplane as I was flying it.” 

The second goal of this study was to identify how the mathematics coaches coped with the tensions 

they experienced. The findings suggest that they appear to fit Lampert’s (1985) image of dilemma 

managers who accept and cope with continuing tension. This means that the mathematics coaches 

initially manage the tensions that surface while never fully resolving their competing conflicts. What 

was interesting was the managed tension that Pam and Tara, both of whom are elementary trained 

teachers, experienced regarding questions about their role and qualifications. Their method for 

managing this tension was avoidance of interactions at the high school level. Similarly to the finding 

in Liljedahl et al. (2015), this suggests that this tension is managed on some levels but there is a 

possibility it could resurface at some point. While both are only required to work with teachers who 

volunteer and are willing, both of their roles encompass grades K to 12. 

While the small number of participants in this study may limit its generalization, the findings do 

indicate the presence of tensions experienced by mathematics coaches. This language of tensions 

could be useful as a means for discussion and reflection on the practice of mathematics coaches. 

Whether managed or unresolved, identifying and describing these tensions will contribute to a small, 



but growing body of research into mathematics coaching. If employing mathematics coaches in 

schools is to be a viable complement to professional development, more study will be necessary. 
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Students often have difficulties with the content area of functions. If their teachers are not aware of 

these problems and lack of adequate teaching methods, they cannot counteract pointedly in their 

classrooms. This paper presents a project developing and evaluating a coaching to foster teachers’ 

pedagogical content knowledge about several learning difficulties with functions and about how to 

respond to them. As this work is still in progress, we here focus on the project description as well as 

on the development of the survey to measure teachers’ corresponding knowledge. 

Keywords: Mathematics education, teachers’ professional development, functions, learning 

difficulties, teacher survey. 

Introduction 

Being able to adequately reason with functions is considered to be a central goal of mathematics 

education (e.g. Eisenberg, 1992; KMK, 2003; NCTM, 2000). More precisely, reasoning with 

functions characterizes a specific way of thinking in interdependencies, relationships or changes 

(Vollrath, 1989) that is especially required when working on inner- and extra-mathematical 

problems (Hinrichs, 2008; NCTM, 2000). 

However, several studies show that learners have particular difficulties in this domain (see for an 

overview Nitsch, 2015 or Vogel, 2006). For instance, they may experience problems with the 

meaning of the parameters (e.g. Schoenfeld et al., 1993), conceive graphs as pictures (e.g. Monk, 

1992), confound the slope and the height of graphs (e.g. Hadjidemetriou & Williams, 2001) or have 

difficulties with word problems in the sense of the word-order-matching-process (e.g. Clement, 

1982). Often, their teachers are not aware of these difficulties (Hadjidemetriou & Williams, 2002; 

Sproesser et al., in press) and therefore cannot counteract explicitly. Moreover, the study of Nitsch 

(ibid.) revealed systematic differences between school classes referring to learning difficulties with 

functions. She concludes from this finding that some teachers are more successful than others in 

responding to such difficulties.  

Theoretical background 

The findings mentioned above raise the assumption that teachers’ professional development (TPD) 

focusing on such typical learning difficulties may enhance teachers’ pedagogical content knowledge 

(PCK, see e.g. Shulman, 1987), their instruction and mediate also students’ learning in this field. 

This is also in line with the general understanding that teachers need TPD in order to meet the 

challenges that they encounter in their professional lives as university studies cannot satisfy all of 

demands from practice (cf. Mayr & Neuweg, 2009). To our best knowledge, there is no empirical 



evidence about the effects of a TPD related to learning difficulties with functions, especially taking 

into account the interplay between the teacher and student level, yet. 

Particular TPD-characteristics that have already proven to be effective in general can be 

implemented in a TPD referring to dealing with learning difficulties in the domain of functions. In 

this context, Lipowsky (2013), for instance, found that TPD should be related to one specific 

domain instead of focusing on different domains. Furthermore, long-term TPD courses enable to 

integrate input, practice and reflection phases. The study of Lipowsky (ibid.) additionally confirmed 

that giving feedback (e.g. Shute, 2008) supports learning also in the context of TPD. Teacher 

coaching represents a specific form of TPD that can also implement the mentioned characteristics. 

In adaptive (teacher) coaching (Leutner, 2004), the coach refers back to the teachers’ statements and 

activities. If teacher coaching focuses on a concrete classroom situation, it is, for example, possible 

to encourage teachers to reflect on this situation (West & Staub, 2003) or to train them in giving 

supportive feedback to students showing a particular learning difficulty.  

In several studies, such a focus on responding to students’ difficulties or errors (e.g. through giving 

feedback) has already shown to be useful in order to measure or promote teachers’ PCK concerning 

different mathematical content areas: For instance Biza et al. (2007) propose to measure (pre-

service) teachers’ PCK by requesting them to analyze wrong student solutions and to formulate 

supportive feedback. The study of An & Wu (2012) revealed that teachers’ PCK can be fostered 

through asking them to analyze students’ errors and to develop approaches how to correct them.  

Research goals 

The teacher coaching developed in this project aims at building up teachers’ pedagogical content 

knowledge related to learning difficulties with elementary functions and hence to support also their 

instruction and students’ achievement in reasoning with functions. As a narrow content focus has 

proven to be a characteristic of effective TPD (Lipowsky, 2013), we here refer to specific PCK 

components as defined by Ball et al. (2008): In the case of 1) knowledge of content and students 

(KCS), we focus at fostering teachers’ knowledge about typical learning difficulties and about 

students’ thinking related to functions; in the case of 2) their knowledge of content and teaching 

(KCT), we train them in “adequately” responding to such specific learning difficulties. Within the 

content area of functions, we concentrate on linear functions and on the understanding of the 

concept of a bivariate functional relationship in order to assure a narrow content focus. The 

emphasis on this subdomain also takes into account that viable concepts about elementary functions 

appear to be crucial for understanding higher-order functional classes later on. 

As the majority of existing TPD courses is not carried out in an experimental design, it cannot be 

clearly identified which of their characteristics would be responsible for a certain effect (e.g. Yoon 

et al., 2007). Therefore, this teacher coaching is brought out via two variations, namely with and 

without focus on feedback. This procedure takes into account findings from other studies showing 

positive effects of giving feedback (see above) but additionally evaluates the effectiveness of this 

characteristic (explicitly training to give feedback to students showing concrete learning 

difficulties). In this sense, the main goal of the project described in this paper is to prove what 

effective aspects of an adaptive teacher coaching are.  

More precisely, we evaluate the following research questions:  



 What do teachers know about typical learning difficulties in the domain of functions and 

what ideas do they have how to react to them (pretest)? 

 To what extent can teachers’ KCS and KCT related to functions be fostered through two 

variations of teacher coaching (pre- and posttest)? 

 Which impact do the coaching treatments have on students’ domain-specific competence? 

Methods 

Pilot study 

The content of the coaching was identified via a pilot study in the academic year 2014/15 (see 

Figure 1 for an overview of the project’s structure): Part I of the pilot study revealed that all of the 

learning difficulties derived from the literature (see Introduction) occurred among students within 

our learning settings (paper-and-pencil-tests in 4 classes of grade 7 and 8). Moreover, we found that 

their teachers only knew some of these learning difficulties and that their knowledge about them and 

about how to respond to them was very heterogeneous (interviews with 4 teachers). Therefore, TPD 

in this domain appears to be useful. A summary of these results can be found in Sproesser et al. (in 

press). As to our knowledge there is no consensus about how to “accurately” respond to such 

learning difficulties or how to largely prevent them, teacher trainers and university educators were 

interviewed about these issues within part II of the pilot study. Via these expert interviews, we 

collected and further developed teaching ideas, methods and material for the coaching.  

Main study 

Within the main study, the teacher coaching (3 modules) accompanies the instructional unit of linear 

functions in grade 7 or 8, respectively: Module 1 is held before, module 2 during and module 3 after 

this unit. This structure enables to implement the content of the coaching in the teachers’ classroom 

as well as to reflect on the teachers’ experiences within the TPD. About 60 teachers of grade 7 or 8 

are assigned to one of two treatment groups or to a control group. Both treatments contain input, 

reflection and activity phases in order to foster teachers’ KCS and KCT related to learning 

difficulties concerning elementary functions. Only in one of the two treatment groups, teachers are 

specifically trained in giving supportive feedback to students facing a particular learning difficulty.  

In order to gain empirical evidence about effective characteristics of the coaching, the teachers’ 

PCK as well as their students’ knowledge related to elementary functions are assessed before and 

after the coaching / teaching unit. This data structure allows using analysis tools such as multilevel 

analyses and hence to evaluate the interplay between the two levels. The student survey (pre-, post- 

and follow-up-test) contains large parts of the test instruments developed by Nitsch (2015): Via a 

number of tasks referring to elementary functions, several learning difficulties (see above) can be 

identified. Moreover, covariates such as students’ cognitive abilities (Heller & Perleth, 2000) or 

motivational variables (Pekrun et al., 2002) are gathered.  

In order to measure KCT and KCS of the participating teachers, we developed a survey that 

particularly refers to several tasks of the student test. The development and the structure of the 

teacher survey will be presented in more detail in the next section. 

 



 

Figure 1: Outline and content of the project 

Teacher survey 

The participating teachers are requested to complete before and after the coaching a structurally 

identical paper-pencil-survey. This procedure allows directly investigating teachers’ KCS and KCT 

developed in the course of the coaching. The PCK items of the teacher survey are all structured in 

the same way (see Figure 2 for a sample item): The teachers are shown a task of the student test and 

they are asked about typical mistakes or learning difficulties referring to this task (questions a) and 

b) in Figure 2) and how they would respond to them (question c) in Figure 2). Hence, according to 

the classification of Ball and colleagues (2008) the questions a) and b) are part of the knowledge 

component KCS as “Teachers must anticipate what students are likely to think and what they will 

find confusing” (ibid., p. 401). These authors propose to measure teachers’ KCS for instance via 

questions about what students may find difficult or about interpreting students’ thinking. Within our 

survey, teachers in question a) are asked which mistakes and learning difficulties they had already 

noticed concerning the given type of task; in question b), on the basis of a wrong student solution 

they have to put theirselves in a student’s position in order to make transparent his or her thinking 

process when working on the task. Hence, these tasks require knowledge of typical student 

(mis)conceptions and errors as well as about students’ thinking. The third PCK item (question c) in 

Figure 2) corresponds to the knowledge component KCT (Ball et al., ibid.): Teachers need to know 

about mathematics and about teaching in order to sequence their instruction and hence to promote 

students’ understanding. For instance, they need to know different methods and procedures and 

choose appropriate ones for their instruction. This means that KCT is particularly relevant when 

teachers respond to students’ mistakes and difficulties or when they aim at building up viable 

concepts through their instruction. Ball et al. (ibid.) propose to measure KCT e.g. by asking for 

examples for simplifying particular content or how learning of a specific content can be facilitated. 

As displayed in Figure 2, such KCT items are also included within our test instrument: In question 

c), teachers are asked to outline how they would react to a concrete student mistake. 

Within the whole survey, the sequence of PCK items is always as displayed in Figure 2: The first 

question a) is open-ended in order to collect the teachers’ ideas and experiences without being 

influenced by specifications of the survey. Afterwards (question b)), teachers are confronted with a 

concrete students’ mistake referring to this task and they are requested which (mis)conception could 

cause the mistake. As in real classroom situations, responding to a student mistake (cf. KCT) 

happens after its noticing (cf. KCS), the question sequences are always ended up by the KCT item 

(question c) in Figure 2).  

This sequence of questions (a) open-ended, b) referring to a concrete mistake) was chosen to gather 

data about teachers’ knowledge and experience concerning several student problems in general and 

related to specific mistakes. Within the teacher interviews of the pilot study, this sequence was also 



used and proved to provide essential findings. However, one particular limitation of this sequencing 

should not be disregarded: Teachers could add the mistakes and learning difficulties displayed in b) 

to the open-ended question in a) even if they had not thought of them without the indication of the 

survey. We decided to accept this possible drawback that may occur in field studies as the our rather 

than in laboratory studies because interviews instead of the paper-pencil-survey would be extremely 

time-consuming for the numerous participants of the main study and could irritate them; 

furthermore, a digital survey with time markers could hardly be implemented as the coaching is 

brought out in different schools where we cannot count on a safe internet-connection. In the teachers 

writings it can mostly be identified if they have come back to a previous item or not.  

We consider the relevance and the validity of these PCK items as relatively high because of several 

issues: First, empirical studies show that the presented learning difficulties are common among 

students and hence they are relevant for teachers. In their research Ball et al. (2008) similarly have 

drawn typical student mistakes and learning difficulties from the literature. Furthermore and as 

pointed out above, the kind of questions that we use are also proposed by these authors. Hence, our 

approach is not arbitrary but systematical and can also be applied in other content areas.  

Student task 

Draw the graph according to the functional equation    

y = 5x – 2   

in the given coordinate system.  

Explain briefly how you proceeded.  

a) Which typical mistakes or learning difficulties would you expect from your experience in 

this student task? 

b) A student solved the task as displayed on the right. Which 

concept could underlie this solution? Please justify your 

answer.  

 

 

c) Imagine you would be confronted with this learning difficulty. How would you respond to it 

in your mathematics classroom? 

Figure 2: Sample item of the teacher survey 

In addition to the mentioned PCK items, the teacher survey contains covariates for instance about 

their professional background (e.g. university degree, teaching experience), beliefs related to 

mathematics education (e.g. their constructivist conviction (Stern & Staub, 2002), assumed 

determinants for mathematical ability (Stipek et al., 2001) or their experience with and motivation 

for TPD (see several scales in Jerusalem et al., 2007).  



Current status and future steps of the project 

As mentioned above, the pilot study has already been carried out in the academic year 2014/15 and 

its evaluation is almost concluded. Student assessment and teacher interviews revealed that a TPD 

referring to dealing with learning difficulties related to elementary functions would be useful for 

teachers within our learning settings. Moreover, the expert interviews were helpful to gather “best-

practice-methods” and material for the coaching.   

Concerning the content of the coaching, both treatments focus on the same learning difficulties 

(problems with the parameters, graphs-as-picture-mistake, slope-height-confusion, emphasis on the 

word-order in word problems). Teachers get information about their prevalence in empirical studies. 

Moreover, we illustrate the best-practice-methods and material how to prevent or overcome them 

that we have gathered through the pilot study. There are also active phases for the teachers: On the 

basis of the presented methods / material, they are asked to further develop tasks and material for 

their own classroom. Moreover, based on described classroom-situations showing concrete student 

mistakes, they are requested to think up a reaction to support the student to overcome his problem. 

In these tasks, the variation with / without focus on giving feedback comes into play: In the 

treatment with focus on feedback, teachers are asked to concretely formulate the feedback and 

explicitly explain the hints that they would use when being confronted with the corresponding 

student difficulty (e.g. “How would you respond to this learning difficulty in your mathematics 

classroom? Please be explicit: Verbalize your feedback and illustrate other ways to support the 

student.”). In the treatment without focus on feedback, teachers are simply requested to mention 

adequate ways of responding to these learning difficulties in a more general way (e.g. “How would 

you respond to this learning difficulty in your mathematics classroom?”). Furthermore, in both 

treatments teachers’ experiences in the course of the learning unit are discussed and reflected as 

well as their classes’ results - if the teachers agree with students testing before and after the unit.  

The coaching has already been carried out in the academic year 2015/16 and it is still offered in the 

year 2016/17. Hence, the main study is in progress at the moment and data will be gathered at the 

student and teacher level. Results are expected from the end of the academic year 2016/17 onwards. 
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This paper draws from a qualitative exploratory case study that aimed at exploring the learning 

experiences of teachers as they engage in professional learning project. The case study involved 

three elementary school teachers’ professional learning experiences as they engaged in developing 

a practical, research-based approach to differentiated instruction using a flipped classroom  and 

student-centered pedagogical approaches that would result in enabling students to be engaged with 

mathematics..  

Keywords: Professional learning, flipped classroom, student-centered, engagement, intermediate 

mathematics. 

Introduction 

Research indicates that professional learning, which is job-embedded (Joyce & Showers, 2002), 

collaborative (Garmston & Wellman, 2003), occurs over time, and is driven by the needs of the 

teachers involved (Fullan, 1995; Lawler &King, 2000; Little, 2002), is effective. Furthermore, 

effective professional learning is focused on student outcomes, integrated into the teacher’s day-to-

day culture, and often tied to the school’s improvement process (Way, 2001). The paper draws from 

a study that aimed at exploring the  learning experiences of three teachers engaged in a professional 

development project in Ontario at an Intermediate level (grade 6, grade 7 and grade 8). The 

professional development project is part of an initiative of The Elementary Teachers Federation of 

Ontario (ETFO). ETFO invited and provided support for teams of teachers from the same school or 

in similar roles at different schools to come together and conduct professional learning projects 

relevant to their specific professional needs, circumstances and interests.  In addition to the three 

teachers a university researcher was invited to collaborate with the group and conduct a case study 

of the professional development project. The three teachers in the professional development project 

collaborated in developing a practical, research-based approach to differentiated instruction using a 

flipped classroom approach and student-centered pedagogical approach that would result in 

enabling students to be engaged with mathematics. This flipped classroom approach and student-

centered approach involved the use of grade-appropriate math centers where students would engage 

in a variety of math problems and/or topics; have opportunities to practice and consolidate basic 

facts and operational skills; use technology and manipulative as learning tools; become efficient 

communicators in math; and develop a sense of self-awareness toward their own math skills. 

Students would also grow in their ability to work independently and cooperatively as they work 

through various math centers, allowing the teacher(s) to conference with individuals and small 

groups of students. In this paper we describe some of the findings from the case study. The case 

study is guided by two questions:  How did the professional development project facilitate teachers’ 

understanding of the use of math centers in a flipped classroom and student-centered approach for 



teaching and learning mathematics? How did the teachers negotiate constraints and possibilities as 

they engaged in their professional development project? . 

Research has demonstrated that engaging students in the learning process increases their attention 

and focus (Jonathan & Aaron, 2012). Further it motivates students to practice in higher-level of 

critical thinking while promoting meaningful learning experiences. Chickering & Gamson (1987.), 

states that  

“learning is not a spectator sport. Students do not learn much just by sitting in classes 

listening to teachers, memorizing pre-packaged assignments, and spitting out answers. They 

must talk about what they are learning, write about it, related it to past experiences and apply 

it to their daily lives. They must make what they learn part of themselves”.  

In this sense, a flipped classroom and student-centered learning is essential. Educators who adopt to 

a flipped classroom and student-centered approach as a pedagogical method find that it increases 

student engagement, which allows for learners to successfully achieve the learning objectives 

(Jonathan & Aaron, 2012). For a flipped classroom and student-centered mathematics class to be 

effective, a shift in the role of the teacher and students in the classroom must be adapted.  On the 

one hand, teacher’s role is viewed as a guide for students’ constructive processes towards 

mathematical meanings and mathematical ways of knowing. On the other hand, learning is viewed 

as an active, constructive activity in which students wrestle through problems that arise as they 

participate in the mathematical practices in the classrooms (Cobb, Yackel & Wood, 1992). Recently, 

there has been an upsurge of interest in instruction that focuses on flipped classroom approach for 

teaching mathematics.  

Type of Math Centers 

There were various types of math centers that each participating teacher used in their classroom. The 

choice of a math center was based on teachers’ professional judgment of the students and students’ 

needs.  

Inquiry based Center: - A group of 4-5 students rotated from one station to another to learn about 

various topics. Examples of these topics included: explore and connect station, “what happens 

when…”, various word problems, “Reflection on this”, “Test your knowledge.” Each station had the 

option of students either working by themselves and/or in their respective groups. Teachers used as 

one or more of inquiry based centers to develop curiosity of a given topic among the students. 

Resource Center: - This center was available for students all the time. This station consisted  of 

graph papers, blank papers, mathematics dictionaries, mathematics textbook (e.g. Math on call, Math 

on hand, and Math makes sense 8). This center also included measuring tools such as meter -sticks, 

rulers, weight measuring scale and measuring tape.  This center gave student the opportunity to select 

an appropriate tool for themselves in order to learn a topic/concept at hand.  

Online Research Center: - Students had the opportunity to use their own technology or/and the 

computer station located in class to deepen their understanding of topic/concept at hand. Students 

also had the option of exploring a given topic at home via online research. 

Debriefing Center: - This is usually available at the end of a lesson, where students come back into 

their respective groups. Here students are given the opportunity to consolidate their learning as a 

group, clarify any misunderstandings and learn from one another. 



 An example of inquiry based math center 

Students were given the opportunity to solve a real life problem, using a task called, “how big is a 

trillion?”. In this problem, students were asked two open-ended questions: 1) Is it possible for trillion 

rice to fit into this room? Explain your solution 2) How much distance around the Earth can the rice 

cover if each rice is lined up in a line? Compare this with another non-metric unit. Students were 

asked to solve this problem in group of 4-5. Each group was given 6-7 classes (40 minutes each) to 

solve the problem in class. Students were allowed to do any background inquiry that they thought 

was necessary at home. The purpose of working on this problem in class was to have a common 

working place as a group, where they negotiated their learning and solution. At the end of the 7th 

class, groups were asked to submit their solution in form of poster which each group presented in 

the following class. Mathematically, this problem required students to learn about how to measure a 

unit in real life, length, metric versus non-metric units, volume, and capacity. Other than the 

mathematical knowledge, students had to discuss their ways of solving the problem, which means 

selecting appropriate tool to solve the problem in most efficient way, while self-regulating their 

learning and progress as a group. By the time this particular problem was given, students often 

became competitive. Teacher noticed that while students helped members of other groups with 

background mathematical knowledge, groups often tried to keep their solution a secret. This was 

because groups often wanted their solutions to be a unique solution. 

Preparing the students for flipped classroom with math-center included teacher presenting and 

discussing math center code of conducts, where the purpose and the importance of self-regulation 

for one’s own learning was discussed in depth as a class. In order to utilize various centers, students 

were divided in groups of 4-5 students, these groups were often changed and redesigned either by 

the teacher or the students. Students were informed that they may seek help support from their 

teacher at any point, however they are encouraged to first discuss it with the members of their 

respective groups.  

 

Flipped classroom 

Flipped classroom approach for teaching mathematics is considered as an effective way for engaging 

students in active learning as well as in meaningful peer-to-peer and peer-to-teacher interactions 

during the in-class learning process (Forsey, Low, & Glance, 2013; Pluta, Richards, & Mutnick, 

2013). Moreover, Bergmann and Sams (2012) indicated that flipped classrooms enable teachers to 

take individual students’ needs into account as well as to facilitate more interactions among peers 

and teachers in the classroom.  The teaching and learning context of flipped classroom approach 

consists of two kinds of activities: in-class  and out-class. In-class time is utilized for inquiry, 

application and assessment in order to better meet the needs of the individual learners. Technology-

assisted out-of-class time involves personal instruction, where students acquire responsibility for 

their own learning, through studying course material on their own, using various sources (self-

discovered and/or provided by teacher). The main goal in flipping a class is to cultivate deeper, 

richer, and active learning experiences for students where the instructor is present to coach and guide 

them.  Further, emphasis is on higher-order thinking skills and application to complex problems, and 

which might include collaborative learning, case-based learning, peer instruction and problem set. 

In this sense the role of the teacher is to facilitate the learning process by helping students 



individually and in groups.  According to Bergmann & Sams (2012), there are many ways of 

implementing a flipped classroom approach. For this study, the participating teachers utilized 

various math-centers (discussed previously in the article) where students self-regulated their own 

learning in a math class. 

Methodology 

A qualitative research methodology was used to conduct this case study. According to Yin (2003) a 

case study design should be considered when: (a) the focus of the study is to answer “how” and 

“why” questions; (b) the behavior of those involved in the study cannot be manipulated; (c) you 

want to cover contextual conditions because you believe they are relevant to the phenomenon under 

study; or (d) the boundaries are not clear between the phenomenon and context. A case study was 

chosen because the study could not be considered without the context of flipped classroom approach, 

and more specifically the math centers classroom settings.  

This case study involved three mathematics teachers at a Canadian middle school, who taught 

intermediate level (grade 6, 7 and8) students. Two of the teachers were intermediate level  

mathematics teachers with their own classroom. One teacher was the resource teacher assigned  by 

the district school board. The role of the resource teacher was to support the two classroom teachers 

by finding necessary resources needed to run the project. The two classroom teachers applied the 

flipped classroom approach in their mathematics classes. In preparation for the project, all three 

teachers sought opportunities to enhance their professional knowledge of using technology in  

mathematics teaching and learning. Further, each teacher read a number of monographs provided by 

the Ontario Ministry of Education in order to develop efficient knowledge of the Ontario elementary 

school mathematics  curriculum, in particular knowledge of the mathematical processes such as 

problem solving, communicating, reasoning and proving.  

Data was collected from: 

1) Participating teachers’ observation of their teaching and learning experiences. Each teacher 

recorded field notes based on their own reflections  as well as observation of their students in-class 

events related to math- centers (e.g., counting the number of students being engaged per center, how 

teachers guided the off track students to get back to work, etc.). In addition to these data was 

collected from teachers’ notes of their conferencing with students as individuals and in groups.  

2) Transcriptions and field notes of group meetings (selectively audio-recorded). Each teacher’s 

observations were shared, discussed and reflected upon by teachers as a group for professional 

growth while focusing on their own professional growth and their students’ engagement in respective 

mathematics class.  

3) Teachers’ artifacts such as lesson plans and assessment rubrics, and the teacher team’s final 

project report. 

Findings and discussion 

All transcribed data, field notes and teachers’ artifacts were analyzed by the university researcher 

and one teacher independently to identify major themes related to the guiding questions— How did 

the professional development project facilitate teachers’ understanding of the use of math centers in 



a flipped classroom and student-centered approach for teaching and learning mathematics? How did 

the teachers negotiate constraints and possibilities as they engaged in their professional development 

project?  The findings will be discussed in the following themes which emerged from the analysis: 

time for teachers to meet; awareness of initial resistance from parents and students; enhancement of 

student learning; and challenges. Findings from the study suggest that in order to sustain a 

collaborative professional development project teachers need time and need to meet. Teachers in 

this study were able to plan collaboratively and develop a practical, differentiated math program 

based on flipped classroom and student-centered pedagogical approach using math centers. The 

flipped classroom approach using math centers allowed students to engage in purposeful practice 

while freeing up the teacher to meet with individual and/or small groups of students for teaching 

and/or learning. However the two participating teachers taught different grades in different buildings 

of the same school, which became somewhat challenging to coordinate schedules for sit-down 

meetings. Often, the conversation between the three teachers would occur either in between classes 

(as the teachers would pass by each other’s classroom) or through email (keeping each other 

informed on their status with the project).  Although the teachers planned collaboratively, they had 

fewer time to compare what they had initially planned. This however, had an unexpected positive 

outcome which ended up by providing teachers with two different ideas of math- centers and student 

engagement. Both classroom teachers did utilize flipped classroom, student-centered pedagogical 

approach, however during their final group meeting, teachers discovered that they had each taken a 

different approach to the math center idea. This allowed for each teacher to talk about their thought 

process behind their choice for developing the math centers the way they did. Further, this provided 

both teachers to learn from one another’s professional learning experience with their respective math 

centers. As different as each participating teachers’ math centers were, the participating teachers 

observed that there were common themed categories to the math centers (these categories were 

presented earlier in this paper).   

Another theme that emerged from the case study is that the professional development project 

provided opportunity for participating teachers to be aware of and understand about the initial 

resistance from the students and their parents toward flipped classroom and student-center 

pedagogical approach. Teachers developed awareness of the fact that both the students and their 

parents perceived mathematics teaching and learning in a traditional manner. And that for both the 

students and their parents, mathematics was a subject where the teacher taught a lesson, the students 

completed assigned tasks like doing practice questions from a mathematics textbook related to the 

lesson, followed by an assessment in form of a test. The students in participating teachers’ classes 

and their parents’ perception of how mathematics should be taught presented with complex 

challenges. This resulted in the professional development project allowing teachers to learn about 

strategies for alleviating these challenges including having to do a lot of community building 

exercise in class, while also having conversation with parents through emails, phone calls and/or 

one-on-one meeting, about the importance of math centers for their child’s learning. These 

conversations with parents often revolved around the topic of how math centers not only helped 

students to become more engaged with mathematics but also helped to develop importance skill set 

of becoming more self-regulated toward their own learning. 

Another theme that emerged is how the professional development provided opportunity for teachers 

to enhance students’ learning and development through using math centers. Teachers noticed that 



after the initial resistance, the students began to be engaged with math centers and by the end of 

school year, they began to self-regulate their learning. One teacher noted about a grade 8 student 

who reflected on his journey with math centers and stated that it helped him to become more resilient  

to mathematics learning. 

First, I did not know why we were doing math centers. I felt that the teacher did not want to 

teach anything…. but now, when I go through different centers in class I know that I am able 

to do things on my own…I feel happy…. I have done these many [math centers] 

today…which means I can do math…I just have to take my time with each center and not 

worry about how much time my group members are taking with centers. 

In relation to the same theme, another teacher expressed how her grade 8 student commented, 

 I used to think that my teacher should know everything…you know, like all the 

answers…but now I know that I can find all the answers…and if I am stuck, I can take help 

from my friends…which is okay, because we are learning together 

Both of the participating teachers experienced a sense of fulfillment in terms of their professional 

development experiences in relation to their impact on growth in their students in terms of both 

mathematical understanding and self-regulation toward their own learning. Teachers noted that 

many of their students grew stronger in their ability to self-regulate, as they had to make choices 

toward their learning in terms of what to work on, how long to work for and with whom. Teachers 

expressed satisfaction on how the one-on-one time with the teacher allowed the struggling learners 

to take risk and seek clarification without feeling restricted by the classroom environment. 

Given the many positive outcomes of the professional development project that focused on flipped 

classroom and student-centered pedagogical approach through math centers, there were some 

challenges. These were mainly due to the fact that teachers became aware that some students needed 

more time with this approach, which was not possible given that there was a limited time that these 

students were with their mathematics teachers and that the teachers were expected to cover the 

curriculum expectations. Also teachers in the professional development project realized that for a 

small number of students, it was extremely difficult to adapt to this approach, even if they loved 

mathematics. This was because these students had only experienced learning only from a textbook 

teaching approach in mathematics, and flipped classroom and math  centers approaches were a 

significant departure from their past mathematics learning experiences. 

Implications 

This project utilized a case study research design and was conducted at one Canadian middle school.  

Hence, the findings of the study should not be read in terms of generalizability, but of transferability 

to other cases (Creswell, 2008). Recently, mathematics educators have realized the potential for a 

flipped classroom and student centered pedagogical approach for enhancing student engagement and 

learning.  However, very little is known in terms of the implementation of this approach in 

elementary schools. This study explored the mathematics professional learning experiences of 

elementary school teachers as they implement the flipped classroom and student centered 

pedagogical approach. The professional development project provided opportunity for teachers to 

enhance their understanding of flipped classroom and its impact on students’ learning. Teachers 

noted that their students became engaged with mathematics and self-regulated toward their own 



math learning.  The findings suggest that given opportunity to learn in a professional development 

setting that ensures autonomy, teachers learn and are capable of teaching through flipped classrooms 

and student centered pedagogical approach. The study also suggests that professional development 

project provides opportunity for teachers to be aware of the need for communication and 

collaboration among teachers, parents and students regarding the benefits and implementation of 

flipped classroom. As a result, further research is needed on how professional development can 

facilitate teachers’  learning about how to communicate and collaborate with parents and students in  

flipped classrooms. 
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This paper investigates promoting knowledge of example use in mathematics education by way of 

analyzing a case using theoretical tools. Participants were both prospective and practicing teachers 

attending a university course. An event taken from a tenth grade geometry class was analyzed in 

terms of example use, and then discussed. Participants related to the type of example given, the 

timing of the example, agency, what the example was an example of, and the aim of giving the 

example.  
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Introduction 

Examples and non-examples are an integral part of learning and teaching mathematics. They are 

used in concept formation, when seeking relations between elements, abstraction, and generalization 

(e.g., Smith & Medin, 1981; Watson & Chick, 2011). Acknowledging the importance of example 

use in mathematics education, Shulman (1986) included knowledge of examples within the category 

of pedagogical content knowledge (PCK). This knowledge, he claimed, is essential for representing 

the subject, so that it will be comprehensible to others. Rowland, Huckstep, and Thwaites (2005) 

also included teachers’ use of examples in their description of ‘the knowledge quartet’, a framework 

for thinking about the ways subject matter knowledge comes into play in the classroom. In their 

framework, the ways teachers use examples and the types of examples they use, are manifestations 

of teachers’ own content knowledge, their meanings and descriptions, being transformed and 

presented in order for students to learn the mathematics. Ball, Thames, and Phelps (2008) also noted 

the importance of teachers’ knowing how to sequence examples. 

Although example use is a complex matter and promoting teachers’ knowledge of example use 

could be quite challenging, few studies specifically investigated this aspect of teacher education. 

This study proposes fostering prospective and practicing teachers’ knowledge and awareness of 

example use by applying research and theoretical tools to analyze cases, helping to bridge theory 

and practice for mathematics teachers. The material, which is the focus of this paper, is a case based 

on a classroom event, and used as an exemplar. The case material consisted of a classroom 

transcript, along with guiding questions to be answered by each participant. This was followed by a 

group discussion with the teacher educator. Specifically, we ask: What aspects of example use do 

individual participants notice when studying an authentic case? Can those aspects be traced back to 

theories learned during the course? What additional aspects arise during group discussion?  

Example use in mathematics education 

There are many aspects of example use which have been investigated. To begin with, there are 

different types of examples. Arcavi (2003) discussed visual representations, while Tabach et al. 



(2010) focused on numerical examples. In addition to the form of the example, studies have 

categorized examples by how they are identified. For instance, there are intuitive and non-intuitive 

examples and non-examples (Tsamir, Tirosh, & Levenson, 2008). Intuitive examples are those 

examples which students immediately identify as such and are often derived from practical 

experience. Likewise, intuitive non-examples may encourage visual, rather than analytical thinking. 

On the other hand, it seems that non-intuitive examples and non-examples can encourage students 

to use reasoning based on critical attributes. Tsamir, Tirosh, and Levenson (2008) also discussed the 

sequencing of examples and non-examples and its effects on students’ learning. 

The difference between examples and non-examples is dependent on the mathematical lens one is 

looking through. When looking for polygons, a triangle is an example; when looking for 

quadrilaterals, a triangle is a non-example. In other words, another aspect of example use to 

consider is the way an example is being used. Zazkis and Chernoff (2008) introduced the idea of 

pivotal examples which can cause the learner to change his or her cognitive perception or way of 

approaching a problem. Rowland (2008) differentiated between two uses of examples in teaching. 

The first is when examples are used to motivate generality. In this case, the examples are examples 

of something where the aim is to teach a general procedure or to support abstraction and concept 

formation. The second type of example use is for students to practice what was taught. That is, 

students are given many examples to practice some procedure. This type of example use allows 

students to experience variation and can lead to additional awareness and understanding. Watson 

and Chick (2011) found that examples can be used as templates for dealing with other class 

members, indicating a relation between classes or to express equivalence. 

If we take into account that the way an example (or non-example) is used by a learner is determined 

by the focus of that learner, then it becomes the teacher’s task to choose examples and set them up 

in such a way that students will view those examples through the intended lens and focus on the 

intended pedagogical aim. Zodik and Zaslavsky (2008) identified six types of considerations 

employed by teachers when selecting or generating examples: starting with a simple or familiar 

case, attending to students’ errors, drawing attention to relevant features, conveying generality, 

including uncommon cases, and keeping unnecessary work to a minimum. They found that the most 

frequent consideration was choosing to begin with the simple or familiar example. They also found 

that on the spot, teachers often choose an example that will attend to an error which arose in class, 

whereas pre-planned examples tend more to consider uncommon cases. 

To notice something means to make a distinction, to stress some perceived feature and ignore others 

(Mason, 1991). As shown above, various aspects of example use can be considered when analyzing 

a classroom event. In this study we investigate which of these aspects, and perhaps other aspects of 

example use, practicing and prospective teachers notice when analyzing a case. 

Methodology 

The participants in this study were 13 practicing teachers (denoted as T) with between 1 and 11 

years of experience (mean years of experience was four) and 10 prospective teachers (PTs) who had 

completed their first degree in mathematics or a mathematically rich field of study, such as 

engineering. The specific course which is the context of this study, aimed to promote participants’ 

knowledge of explanations and examples, and the relationship between them in mathematics 



education. The course consisted of a total of 13 lessons which took place once a week for a period 

of 90 minutes each. The first six lessons were devoted to explanations in mathematics education. 

Different types of explanations were reviewed, such as conceptual, procedural, mathematically-

based and practically-based explanations (e.g., Levenson, Tsamir, & Tirosh, 2010), and theories 

concerning the roles of explanations in mathematics education were discussed (Levenson & Barkai, 

2008). The last seven lessons were devoted to examples in mathematics educations. Theoretical 

perspectives of examples, like those described in the background of this paper, were read and discussed.  

During the fourth course lesson on examples (lesson #10), the teacher educator handed out a 

transcript of a geometry lesson which took place in a tenth grade classroom. The geometry lesson 

had taken place within a few weeks of the course lesson and was observed by three of the 

prospective teachers attending the course, lending the case authenticity and relatedness. The overall 

aim of the geometry lesson was to introduce students to Thales’ theorem and show its connection to 

similar triangles. The students had previously learned about similar triangles in ninth grade. The 

case transcript began with the classroom teacher stating Thales’ theorem. This was accompanied by 

a drawing on the board, made by the teacher, of two similar triangles, under the headline: Geometry 

– Thales’ theorem. Next to the drawing it says that if the given is BC║DE then from Thales’ 

theorem we conclude proportional line segments (see Figure 1).  

 

 

 

 

Figure 1: Presenting Thales’ theorem on the board 

The case transcript was handed out in the beginning of the course lesson with instructions to read it 

from beginning to end, without interruption, in order to understand the context and get a feel for the 

classroom. After reading through the transcript, participants were asked to reread the transcript and 

fill out a worksheet with the following questions: What did you learn about the use of examples 

during mathematics instruction from the examples given in the case presented? What would you do 

the same as the teacher did with regard to examples? What would you do differently from the 

teacher with regard to examples? After the participants wrote their answers and handed them in, a 

discussion followed. This discussion was audio-recorded and transcribed. 

Data analysis 

When analyzing participants’ responses to the worksheet, our guiding question was, what aspects of 

using examples did the participants relate to when studying the case. We then used the literature 

background to help form a categorization scheme of those aspects. For example, we examined 

participant’s responses for comments related to various types of examples that were discussed in 

class and were present in the case, such as intuitive examples, non-examples, familiar examples, 

and uncommon examples. Participants also commented on didactical aims of giving examples, such 



as responding to a student’s error. Because participants wrote freely, it happened that one sentence 

could encompass more than one aspect of example use. For instance, one teacher (T12) wrote “the 

teacher gave a numerical example, which in my opinion served the purpose of making it easier for 

the students to understand and generalize the idea.” T12 refers to the type of example (numerical) as 

well as the purpose of the example (to help students generalize). Participants’ comments that were 

thought not to be related to the giving and use of examples were categorized as ‘unrelated’. Table 1 

lists the categories along with examples from the data of each category. 

Aspect of example use Sample data 

Type: What type of example is 

given? 

The example uses simple numbers; it is a visual 

example of Thales’ theorem. 

Agency: Who is giving the example? Only the teacher gives examples. 

Aim: what seems to be the aim of 

giving the example? 

The example is given to explain it again; the example 

shows the students how the theorem works. 

Timing: When is the example given? The example is good for the beginning of a lesson. 

Example of: What is the example an 

example of? 

The teacher gives examples of proportions.  

Unrelated The teacher presents a dry definition of Thales’ 

theorem. 

Table 1: Categorizing participants’ comments 

Findings 

This section analyzes participants’ comments from the worksheet on two segments of the case along 

with excerpts from the discussion which focused on those case segments. Thus, we review what 

participants noticed individually and what they discussed collectively. Analysis of participants’ 

comments is carried out according to the aspects of examples listed in Table 1.  

Segment one- Introducing Thales’ theorem 

The case transcript began a picture of the teacher at the board presenting to his students an example 

(see Figure 1). Accompanying the picture were the following lines from the case transcript: 

1 T: In Thales’ theorem, it is given that BC is parallel to DE. The conclusion is… 

wait, guess. If the length here (pointing to AB) is 6 and here (pointing to 

BD) is 2. And let’s say that the length here (pointing to AC) is 12, what is 

the length of CE? 

2 S: 4! 

3 T: Right! 

There are several ways to look at the examples in the above segment. One way is that there are two 

explicit examples. First, there is the drawing on the board (see Figure 1). Second, there is the 

numerical example given by the teacher in Line 1. However, the drawing on the board can be an 

example of Thales’ theorem or an example of similar triangles, and indeed, that is what the teacher 

is trying to convey. In addition, depending on one’s point of view, the example on the board and the 



numerical example may be considered one complete example, with the example on the board 

written in a general matter, using parameters (a, b, c, and d), and the oral example, a specific 

example given with numbers.  

The most frequent aspect of examples mentioned by participants was example type. Participants 

used such descriptions as: a simple example (PT2), an unfinished example (T8), a visual example 

(T12), a numerical example (T12, T13), and an intuitive example (PT 22). Although most 

participants wrote that the teacher gave the example, we do not take this as commenting on the 

agency, but rather as a description of what is going on. On the other hand, for a different segment, 

one participant wrote, “Only the teacher gives examples… but he should have requested examples 

from the students.” This participant is not merely describing the situation, but commenting on who 

is and who should be giving the examples. The aim of giving the examples was mentioned by T8 

who wrote, “In Line 1, the teacher gives an example that students have to finish. He is checking to 

see if the students are listening and if they understand.” T13 wrote, “The teacher gave a numerical 

example so that the students could understand the example and draw on their previous knowledge of 

similarity and proportional triangle sides.” Timing of the example, that the example was appropriate 

for the beginning of the lesson, was noted by PT2. Two participants commented on what the 

example was an example of – T12 wrote that it was an example of the theorem, meaning that the 

example showed how the theorem could be applied. PT22, referring to the numerical example in 

Line 1, wrote that it was an example of equivalent ratios. 

Segment two – Proportional segments 

The following case segment is a direct continuation of the first one: 

4-6.   (The teacher and students review the concept of similar triangles.) 

7.  T:  So, what is the ratio of their corresponding sides (referring to the example 

given in Line 1)? 

8-10. Students:  1 to 3. 3 to 1. It depends on how you look at it. 

11.  T:  The ratio is … 3 to 4 because BD and CE are not sides of the triangle. So 6 

is to 8 like 12 is to 16. Now, …, what came first in Euclidian geometry? 

First, there was Thales’ theorem and only after that came the similar 

triangles theorems. So, let’s say we are in ancient Greece and we don’t know 

yet about similar triangles, but we do know Thales’ theorem. With that 

theorem, we can prove proportional sides in similar triangles. 

In lines 4-11, no new examples are given. Instead, the teacher and students still refer to the first 

examples given on the board. Like the comments on the first segment, here too, most comments 

related to the types of examples being given: simple numbers (PT7), a non-intuitive example (T11), 

a general example with parameters (T17), and a numerical example with familiar numbers (T19). 

None of the participants mentioned aspects of agency, aim, or the timing of examples. T11 noted 

that the example was an example of ratios. Two PTs wrote remarks connected with the story of 

ancient Greece. PT23 wrote, “There is an example from real life that I like – in ancient Greece.” 

PT16 wrote, “In Line 11, the teacher made the material come alive when she told the story about 

Thales’ theorem from ancient Greece ... This example raises the question of why the students first 

learn about similarity and then about Thales.” T23 calls it an example from real life. Yet, it is not a 



mathematical problem related to real life. The term ‘example’ when describing the ancient Greece 

story is not in line with the notion of examples discussed in the course. 

Discussing the case 

After the worksheets were handed in, the teacher educator (TE) opened up the discussion by asking 

who wished to comment on the case. After nine minutes of discussing general ideas, the discussion 

turned to the example given in Line 1 of the case transcript. Note that PT21 was present during the 

geometry lesson as part of their field work.  

TE: Let’s look at Line 1. 

PT21: But it’s not complete… He wanted to give an example of a ratio, but… Instead, he 

asked the students... He told the students to guess. And they did. He didn’t really 

give an example, in my opinion. But, in the next example... 

TE: Where is the next example, in your opinion? 

PT21: Line 11… In my opinion, it’s an explanation with a few numbers and that’s so you 

can see… I can’t decide. It’s, like, a numerical example. Here (in Line 11) is what 

was missing beforehand (in Line 1). 

TE:  Is it an explanation or an example? Can an example also be an explanation? 

PT21: No. An explanation can be accompanied by an example. There can be an example 

and then the explanation generalizes it. 

T8: I felt that way about Line 1. It feels like an explanation, and also like an example. 

On the one hand, there are numbers. On the other hand, it’s not complete. 

The above excerpt gives us a glimpse into PT21’s and T8’s concept image of an example. Both 

infer that an example has numbers, but it must be complete, without any missing parts. There is also 

the question of the different roles an example may play in the classroom. Can an example be an 

explanation? Must all examples be specific and only the explanation can generalize it? These are 

some of the questions that the participants are grappling with. In the following excerpt, PT22, who 

was also present as an observer of the geometry lesson, tells what he observed.  

PT22: He was trying to show how Thales’ theorem is really intuitive. That is, he gave an 

intuitive example. 

TE:  An intuitive example of what? 

Many voices: Equivalent fractions. 

PT22: And most answered correctly. The teacher was trying to show how easy it is. 

TE: But what was it an intuitive example of? 

T12: Of proportions. I know that it’s proportional because I know, I recognize it. It 

doesn’t really have anything to do with Thales’ theorem. Simply, 6 is to 2 as 12 is 

to 4. That’s it. That’s the example. 

As stated in the background, what an example is an example of, depends on your focus and point of 

view. PT22 claims that the examples in Line 1 and Line 11 are examples of Thales’ theorem and 



that the teacher used intuitive examples to simplify the concept for his students. However, other 

participants, those not necessarily present during the geometry lesson, see those examples as 

intuitive examples of equivalent fractions or of a proportion.  

Discussion 

During teacher preparation and professional development, participants are introduced to various 

theories. While field work is important, theories can help prospective and practicing teachers make 

the most of their field work by focusing their attention on different elements of practice. Findings 

showed that analyzing the case gave participants a chance to apply their knowledge of example 

theory when examining a classroom situation. Findings also showed that participants did not 

necessarily draw on the same theories when analyzing the same event. The example given in Line 1 

of the case transcript was described alternatively as simple, numerical, visual, and intuitive. Each of 

these types can be traced back to different theories discussed in the course, but they focus on 

different issues. An intuitive example may also be numerical, but if the prospective teacher 

specifically comments on its intuitiveness, then that participant is remarking that a student will 

easily recognize it as an example (Tsamir, Tirosh, & Levenson, 2008). In other words, that 

participant is integrating knowledge of students (Ball, Thames, & Phelps, 2008) when analyzing 

example use and has appropriated a specific theory to accompany this integration. As teacher 

educators, we wish to encourage such integration of knowledge. 

During the discussion, additional aspects of example use arose. Participants grappled with the 

nature of examples, and whether or not an example can be an explanation. This link between 

examples and explanations could have stemmed from the first half of the course which dealt with 

the topic of explanations in mathematics education. In any event, this question can help teachers and 

prospective teachers focus on the roles examples may play in the greater picture of teaching and 

learning mathematics. Finally, we also note how the integration of an authentic case, one that at 

least some participants actually observed, can help bridge theory and practice. In the discussion, 

participants held different views regarding what the example in Line 11 was an example of. Those 

who had actually observed the lesson had a chance to review the lesson again, focusing now on 

example use. They were also able to share with others some background of the lesson, perhaps 

adding to everyone’s sense of ‘being there’. This excerpt illustrates how fieldwork may be 

integrated into course work. It also reminds us, as teachers and as teacher educators, that it is not 

enough to offer examples. As Goldenberg and Mason (2008) said, exemplification is dependent on 

one’s point of view. Analyzing a case using theories, and then discussing these analyses with 

participants, can raise awareness of how students may view examples and encourage planning 

example use in mathematics classrooms.  
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Impact analyses and evaluations of professional development programmes are mainly scheduled 

during or at the end of a particular programme. They aim at and provide results regarding 

immediate and short-term effects. However, apart from and beyond that, an analysis of sustainable 

effects is crucial. To address this issue, this contribution deals with the central question: What is the 

sustainable impact of professional development programmes? Theoretical models and empirical 

findings are introduced. In particular, this contribution provides two case studies’ results regarding 

Austrian professional development programmes’ impact. Here, the factors which foster or hinder 

the sustainability of impact are in the focus. Finally, implications for professional development 

programmes’ implementation and research are discussed. 
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Introduction 

The question of how to promote mathematics teachers’ professional development has been 

discussed in various papers (e.g. Krainer & Zehetmeier, 2013; Loucks-Horsley et al., 1996; Sowder, 

2007; Zehetmeier, 2010, 2014a, b; Zehetmeier & Krainer, 2011). In this context, the question of 

impact is of particular relevance. Evaluations and impact analyses of professional development 

programmes are mostly conducted during or at the end of a project and exclusively provide results 

regarding short-term effects. These findings are highly relevant for critical reflection of the 

terminated project and necessary for the conception of similar projects in the future (Fullan, 2006). 

However, apart from and beyond that, an analysis of sustainable effects is crucial (Loucks-Horsley 

et al., 1996). Despite its central importance for both teachers and teacher educators, research on 

sustainable impact is generally lacking within teacher education disciplines (Datnow, 2006; Rogers, 

2003). This kind of sustainability analysis is often missing because of a lack of material, financial 

and personal resources (McLaughlin & Mitra, 2001; Hargreaves, 2002). 

Theoretical framework  

The expected impacts of professional development  programmes are not only focused on short-term 

effects that occur during or at the end of the project, but also on long-term effects that emerge (even 

after some years) after the project’s termination. Effects that are both short-term and long-term can 

be considered to be sustainable. Sustainability may refer to both system and/or individual level. 

Sustainability can be defined as the lasting continuation of achieved benefits and effects of a project 

or initiative beyond its termination (DEZA, 2002). 

Empirical evidence concerning the impact of professional development programmes points to the 

finding that “prior large-scale improvement efforts (…) have rarely produced lasting changes in 

either teachers’ instructional practices or the organization of schools” (Cobb & Smith, 2008, p. 



232). Thus, it seems reasonable to focus on factors which might foster the broad effects and scale-

up of professional development programmes’ innovations. Cobb and Smith (2008) highlight 

networks, shared vision and mutual accountability as key factors. 

Teacher networks are described, for example, as groups of colleagues who provide social support in 

developing demanding instructional practices; this affords time built into the school schedule for 

collaboration among teachers and access to colleagues who have already developed relatively 

accomplished instructional practices.  

Moreover, a shared vision of high quality instruction fosters the scale-up of impact: this includes a 

shared vision concerning the question of instructional goals (what pupils should know and be able 

to do) and the question of how pupils’ development of these forms of knowing can be supported.  

Another key factor which fosters the scale-up of innovations and impact in teacher education is 

mutual accountability. This means, for example, that if school leaders hold teachers accountable for 

developing high-quality instructional practices, then – in turn – school leaders are mutually 

accountable to teachers for supporting teachers’ learning.  

Examples of Austrian professional development programmes 

This paper deals with the analysis of sustainable impact of professional development programmes. 

In particular, two Austrian professional development programmes are in the focus: the IMST project 

and the PFL courses: 

IMST project 

In Austria, a national initiative with the aim to foster mathematics and science education was 

launched in 1998: the IMST project. Since then, this initiative has undergone several adaptions and 

is still running. 

IMST was implemented in three steps: 

1. The task of the IMST research project (1998–1999) was to analyse the situation of upper 

secondary mathematics and science teaching in Austria and to work out suggestions for its further 

development. This research identified a complex picture of diverse problematic influences on the 

status and quality of mathematics and science teaching: For example, mathematics education and 

related research was seen as poorly anchored at Austrian teacher education institutions. Subject 

experts dominated university teacher education, while other teacher education institutions showed a 

lack of research in mathematics education. Also, the overall structure showed a fragmented 

educational system consisting of lone fighters with a high level of (individual) autonomy and action, 

but little evidence of reflection and networking (Krainer, 2003; see summarized in Pegg & Krainer, 

2008). 

2. The IMST² development project (2000–2004) focused on the upper secondary level in response to 

the problems and findings described. The two major tasks of IMST² were (a) the initiation, 

promotion, dissemination, networking and analysis of innovations in schools (and to some extent 

also in teacher education at university); and (b) recommendations for a support system for the 

quality development of mathematics, science and technology teaching. In order to take systemic 

steps to overcome the “fragmented educational system”, a “learning system” (Krainer, 2005) 

approach was taken. It adopted enhanced reflection and networking as the basic intervention 



strategy to initiate and promote innovations at schools. Besides stressing the dimensions of 

reflection and networking, “innovation” and “working with teams” were two additional features. 

Teachers and schools defined their own starting point for innovations and were individually 

supported by researchers and project facilitators. 

3. The IMST3 support system started to continuously broadening the focus to all school levels and 

to the kindergarten, and also to the subject German language (due to the poor results in PISA). The 

overall goal of IMST is to establish a culture of innovation and thus to strengthen the teaching of 

mathematics, information technology, natural sciences, technology, and related subjects in Austrian 

schools (see e.g. Krainer et al., 2009). Here, culture of innovation means starting from teachers’ 

strengths, understanding teachers and schools as owners of their innovations, and regarding 

innovations as continuous processes that lead to a natural further development of practice, as 

opposed to singular events that replace an ineffective practice (for more details see e.g. Krainer, 

2003). 

For the future, the ministry expressed its intention to continue IMST. The overall goal is setting up 

and strengthening a culture of innovations in schools and classrooms, and anchoring this culture 

within the Austrian educational system. 

PFL courses 

In Austria, in-service professional development courses (PFL - Pedagogy and Subject-specific 

Methodology for Teachers) support teachers in developing their teaching skills and updating their 

knowledge of the subject they teach. The participants systematically reflect their professional work. 

PFL started in 1982, has undergone several adaptations, and is still running (for more detail, see 

Rauch et al., 2014). The programme is designed for teachers from all types of schools across the 

nation, including all age groups of pupils. The overall focus of PFL is on the professional 

development of teachers in the fields of content, didactics and pedagogy. School development plays 

a central role without losing sight of classroom instruction. The PFL concept is based on the 

implicit knowledge, which teachers possess concerning their work in class, their experience and 

their individual strengths. The course is intended to contribute to the further development of the 

teachers as professionals. Teachers are introduced to the methods of action research (Altrichter & 

Posch, 2009). They investigate different aspects of their teaching by defining research questions of 

relevance to their work, by collecting data, interpreting and drawing conclusions and writing down 

their findings in reflective papers.  

The major goals of the teaching process should be primarily achieved through – and not detached 

from – the subject-related design of teaching and learning. PFL takes two years and focuses on the 

individual teachers’ own reflective practice using action research methods (Altrichter & Posch, 

2009). By the end of the course, each participant is obliged to write a reflective paper using the data 

he/she has gathered throughout the process using qualitative and quantitative research methods. 

Participants are part of a community of practice (Wenger, 1998), since their work is embedded in a 

structure of mutual assistance and external support. 

Case studies 

Within both professional development programmes (IMST and PFL) several case studies were 

conducted, with the aim to research the sustainability of the programmes’ impact. The case studies 



presented here were based on data from various sources and time periods to gain validity by 

“convergence of evidence” (Yin, 2003, p. 100): data collection contained documents (e.g. teachers’ 

project reports, which were written during and at the end of teachers’ participation in the project) 

and archival records (e.g. author’s field-notes, which originate from author’s activities as teacher 

educator in the project). Moreover, interviews were conducted from an ex-post perspective with 

former participating teachers, teachers’ colleagues, principals, and project facilitators and teacher 

educators. Data analysis included both inductive and deductive elements (Altrichter & Posch, 2009) 

to analyse both the impact and the respective fostering (or hindering) factors. For example: 

document analysis aimed at gathering information concerning short-term impact which (a) occurred 

during and/or at the end of the teachers’ participation and (b) might hold the possibility of 

sustainability and scale-up. Subsequently, this document analysis formed the basis for the interviews 

series. The interviews were semi-structured, since they were based on the analysis of existing data 

(document analysis), which identified various levels of short-term impact which occurred during 

and/or at the end of teachers’ participation. The interviews were designed accordingly (a) to gather 

data concerning the sustainability and scale-up of impact and (b) to reveal other types of impact 

which were not already coded. Data was analysed by qualitative content analysis (Mayring, 2003) in 

order to identify common topics, elaborate emerging categories, and gain deeper insight into 

teachers’ professional growth over time. The case studies’ results were validated by means of 

member checking. 

Exemplary case study from IMST 

The case of Barbara, a former participant of the IMST² project, provides exemplary results 

concerning the issue of sustainable impact: 

Barbara’s beliefs regarding inquiry based learning (IBL) and open learning environments were 

changed during her participation in IMST²: Due to her participation in the project, she regularly 

used IBL settings (which she did not before her participation) and experienced positive effects on 

students’ content knowledge, as well as on their self-confidence. In particular, she stated that there 

were positive changes regarding low-performing students’ self-esteem, as well as the further 

development of high-performing students’ competencies. This change was evidenced by data (both 

document analysis and interviews). In the interview, Barbara highlighted that this impact was 

sustained and enabled her to create and implement innovative teaching methods in a long-term way.  

Besides this impact, she also developed (due to her participation in the IMST²) an inquiry stance 

towards the content and the method of her teaching. This inquiry stance was mirrored by her new 

belief about the value of feedback: due to the teacher education programme, topics such as 

classroom atmosphere and teaching quality were discussed with and evaluated by her students on a 

regular basis. This impact on her own IBL was sustained: Barbara stated in the interview, that she 

was convinced of the importance of critically evaluating her teaching. Even after the programme’s 

termination, she continued to actively facilitate her students’ communication and discussion about 

her teaching practices.  

One of the central factors that fostered the sustainability of impacts was the engagement of the 

school’s principal. The school had an efficiently organized management and school development 

structure, which represented another fostering factor. Additionally, Barbara experienced personal 



benefit, which also helped the impact persist after the programme’s termination. Both the teacher 

and principal highlighted (in the interviews) the role of the IMST² project facilitator as a fostering 

factor. Yet another fostering factor was represented by the IMST² workshops and seminars, where 

Barbara (according the interview data) got support and opportunities to share her experiences and to 

make her success and remaining challenges visible. 

Exemplary case study from PFL 

Eve participated in the PFL course and had the goal to promote open learning settings by 

implementing new teaching approaches in her mathematics classes. Document analysis showed that 

she aimed at enhancing pupils’ inquiry-based learning opportunities. During her participation in 

PFL, Eve changed her teaching practices and implemented innovative teaching approaches to 

enhance her pupils’ self-directed and independent learning. Interview data clearly shows that this 

impact was sustained: the changes in Eve’s teaching practices stayed effective even after the 

termination of PFL. Core fostering factors were the school principal’s support and a high level of 

mutual appreciation within the school staff, and pupils’ benefit. In particular, Eve highlighted in the 

interview that the pupils’ joy and success are core reasons for her to keep this impact sustained. 

Document analysis further showed that Eve conducted various self-evaluations during her 

participation in PFL and gained new knowledge concerning action research methods. In the 

interview, she stated that she continued to reflect on her teaching practices, even after the end of her 

participation. This impact was sustainable, due to Eve’s direct advantage (by getting information on 

her classroom performance) and the support of the school’s principal (who was convinced that 

reflections and self-evaluations are important steps on the journey to school quality). This impact 

was also fostered by Eve’s colleagues’ joint reflection and communication. Interview data shows 

that teachers cooperated beyond school subjects and held similar values and standards concerning 

pedagogical or subject-related issues. The school’s principal showed great interest in, and provided 

support for, the teachers’ activities. He participated in the school’s mathematics study group and 

shared his perspective with the teachers. 

Discussion  

The factors that fostered the sustainability of the case studies’ impacts are mirrored by the 

theoretical framework (see above):  

IMST and PFL enabled networking (Cobb & Smith, 2008) by community building, mutual 

appreciation and joint reflection. A particular factor was the principals’ content knowledge (Cobb & 

Smith, 2008). Teachers’ colleagues provided communication and social support in developing and 

reflecting instructional practices (Cobb & Smith, 2008). Moreover, a shared vision (Cobb & Smith, 

2008) of values and standards regarding high quality mathematics instruction was established. In 

particular, the case studies’ results highlight that the promotion of reflection and networking as key 

interventions (Krainer, 1998) turned out to be supportive for the sustainability of the professional 

development programmes’ impacts.  

 



NOTE 

Parts of this paper are based on Krainer & Zehetmeier (2013), Zehetmeier (2015) and Zehetmeier, 

Erlacher, Andreitz, and Rauch (2015). 
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Description of the research topic  

The benefits to student academic and dispositional outcomes when exposed to autonomy supportive 

learning environments have been acknowledged for more than a decade (Assor, 2012; Reeve, 2009). 

Autonomy supportive teaching practices nurture students’ internal motivations to learn, resulting in 

learning that is self-directed and both cognitively and emotionally engaging (Wolters & Taylor, 

2012). While research affirms the benefits of instruction incorporating autonomy-supportive 

practices (e.g., Assor, 2012) it also shows that the mathematical beliefs of teachers can be an 

impediment to their commitment and enactment of such practices (Bobis, Way, Anderson, & 

Martin, 2016). With this in mind, an intervention study was conducted with mathematics teachers 

(grades 5-7) that aimed to enhance their use of engagement supportive teaching strategies in their 

mathematics classrooms. The intervention was a year-long professional development program that 

focused on shifting teachers’ beliefs about student engagement and building knowledge of 

instructional strategies for promoting student autonomy in the mathematics classroom. The specific 

research question addressed was: What impact did the professional development program have on 

teachers’ beliefs and practices that promote learner autonomy in mathematics? 

Theoretical framework and methodology 

Self-determination theorists (SDT, Deci & Ryan, 1985) advocate that autonomous motivation will 

improve students’ academic and dispositional outcomes because activities undertaken for 

autonomous reasons are likely to increase students’ willingness to apply effort when learning. 

According to SDT, students will be more intrinsically motivated to learn when teachers adopt 

autonomy-supportive pedagogy rather than controlling pedagogical approaches. SDT was used to 

guide our examination of self-reported data regarding mathematics teachers’ instructional beliefs 

and practices as a result of their involvement in the professional development program. 

Pre- and post-intervention data were collected from 32 grade 5 to 7 teachers of mathematics from 

four secondary and ten elementary schools located in Sydney, Australia. Participants included five 

male and 27 female teachers. Data were collected via focus groups and a 20 Likert-type item 

questionnaire that measured the extent to which teachers were committed to instructional beliefs 

and practices considered supportive of student engagement, including learner autonomy.  

mailto:email@google.com
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Findings and conclusion 

Dependent T-tests were used to determine whether there were significant differences between 

teachers’ pre- and post-intervention responses on each dimension of the questionnaire. Results for 

two dimensions pertaining to teachers’ autonomy supportive beliefs and practices—discovery (the 

construction of ideas through student discovery) and teacher’s role (co-learner and constructor of a 

learning community) are presented on the poster. During the pre-intervention focus groups, most 

teachers described their roles as a ‘giver’ of knowledge to students. However, in the post-

intervention focus groups, teachers reported how they now tried to develop more autonomous 

learning strategies in their students and to encourage them to take greater responsibility for their 

own learning. The results indicate that teachers expressed beliefs and practices that were more 

supportive of student autonomy at the end of the intervention than prior to undertaking the 

professional development program. 

Presentation of the poster 

The poster is structured in four major sections: Section one provides a succinct introduction to the 

literature, providing a justification for the study and presents the research question. Section two 

presents a visual representation of the theoretical framework (SDT) underpinning the study and our 

analysis of results. Section three presents results from the questionnaire and focus groups. The final 

section presents implications of the findings and argues that such shifts in teachers’ beliefs/practices 

can have practical consequences in terms of improving students’ autonomy for learning 

mathematics. 
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The poster describes preliminary results from ongoing professional development with two U.S. 

mathematics teachers, one Algebra 1 and one eighth grade mathematics teacher, designed to 

increase and enhance teachers’ content knowledge and transform their classroom instruction by 

embedding the author (i.e., researcher) in teachers’ practices. The poster also articulates the 

embedded PD model. Preliminary results show participating teachers are engaging their students 

in more rigorous mathematics, teachers are demonstrating increased self-efficacy and are more 

frequently engaging students in mathematical sense making, reasoning, modeling, generalizing, and 

communicating. 
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Description of research topic 

The poster describes ongoing professional development (PD) in the United States with one eighth 

grade math teacher (students 13-14 years) and one ninth grade Algebra 1 teacher (students 14-15 

years) designed to increase and enhance teachers’ content knowledge and transform their classroom 

instruction by embedding the author (i.e., researcher) in teachers’ practices. The poster focuses on 

the following research questions: How does embedding a mathematics teacher educator in a 

mathematics classroom (embedded PD) impact (1) participating teachers’ content knowledge, (2) 

participating teachers’ instruction, (3) students’ self-efficacy, and (4) student achievement?  

Theoretical framework 

The embedded PD model is grounded in a constructivist approach to learning mathematics and 

aligns with Simon’s (1995) Mathematics Teaching Cycle and Thompson’s (2013) interpretive 

framework for the development of powerful Mathematical Meanings for Teaching (MMT).   

Method 

Throughout embedded PD, the author (i.e., researcher) and participating teachers relied on: 

participating teachers’ prior assignments, assessments and notes; textbooks and district generated 

documents (e.g., curriculum maps); state-level standards and documents; and a variety of Internet 

resources (e.g., GeoGebra, NRICH Project). Throughout the planning of a lesson, which may take 

multiple in-person or online meetings (or both), the researcher attempts to motivate the teacher to 

make explicit (and objects thought, discussion and subsequent reflection) her (i.e., teacher’s) 

understandings of: the mathematics inherent in the lesson, hypotheses of their students’ knowledge, 

theories of mathematics learning and teaching, activities and assessments (Simon, 1995; Thompson, 

2013). As such, notions of meanings, ways of thinking and the need for the teacher and her students 

to articulate their meanings, thinking, and reasoning are consistently addressed (Thompson, 2013).  

Participants 

Participating teachers reported on the poster involve Tami (eighth grade math) and Jeremy (Algebra 

1). Tami’s eighth grade class contained 15 students of both genders and multiple races. Five (of the 



15) students were on individual education plans. Jeremy’s Algebra 1 class contained 25 students of 

both genders and multiple races. 

Data and analysis 

Data consisted of: (1) video- and audio-recordings of and physical documents related to lesson co-

planning sessions; (2) video- and audio-recordings of lesson implementations (i.e., co-teaching); 

and, (3) video- and audio-recordings of and physical documents related to teachers’ reflection on 

student work and classroom instruction. Two embedded co-teaching descriptions will be described 

on the poster, one involving a co-planning session with Tami, the other involving co-teaching with 

Jeremy. Analysis will serve to characterize some of the differences exhibited in tasks, activities, and 

classroom interactions highlighted as a result of the embedded model.  

Preliminary results 

Teachers engaged in embedded PD have indicated their participation has provided them the support 

to do what they believe is best for their students and their practice while not feeling constrained by 

district and state demands. Rather than feeling the need to rush through content and focus on skills 

and procedures, embedded co-teaching has allowed participating teachers to focus on 

understanding, coherence, and discourse. Preliminary results show participating teachers are 

engaging their students in more rigorous mathematics and both students and teachers are 

demonstrating increased self-efficacy and are more frequently engaging in mathematical sense 

making, reasoning, modeling, generalizing, and communicating.  

References 

Clarke, D. (1994). Ten key principles from research for the professional development of 

mathematics teachers. In D. B. Aichele & A. F. Coxford (Eds.), Professional Development for 

Teachers of Mathematics. 1994 Yearbook (pp. 37–48). Reston, VA: National Council of 

Teachers of Mathematics. 

Ingvarson, L. (2005). Getting professional development right. Retrieved from 

http://research.acer.edu.au/professional_dev/4 

Loucks-Horsley, S., Stiles, K. E., Mundry, S., Love, N., & Hewson, P. W. (2010). Designing 

professional development for teachers of science and mathematics (3rd ed.). Thousand Oaks, 

CA: Corwin. 

Silverman, J., & Thompson, P. W. (2008). Toward a framework for the development of 

mathematical knowledge for teaching. Journal of Mathematics Teacher Education, 11(6), 499-

511. 

Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal 

for Research in Mathematics Education, 26(2), 114-145. 

Thompson, P. W. (2013). In the absence of meaning... . In Leatham, K. (Ed.), Vital directions for 

research in mathematics education (pp. 57-93). New York, NY: Springer. 

http://research.acer.edu.au/professional_dev/4


Teachers learning through participatory action research – developing 

instructional tools in mathematics primary classrooms 

Margareta Engvall 

Linköping University, Department of Behavioural Sciences and Learning, Linköping, Sweden; 

margareta.engvall@liu.se 

Keywords: Mathematics education, action research, teacher professional development, multilingual 

classrooms, instructional tools.  

Introduction 

In many classrooms, from first grade through the whole school system, there are many students 

whose mother tongue is not the same as the teachers’ language used for instruction (Khisty, 2001). 

In Sweden, newly arrived immigrant children with limited Swedish language knowledge are 

learning Mathematics together with children who have spent their entire life in a Swedish context. 

Considering the large number of students with limited knowledge in the language of instruction one 

of the most important tasks for teachers in Swedish primary education is to create conditions to 

support the development of mathematical knowledge in these students.  

Lately, the role of language in mathematics education has received a profound interest in 

educational research. Researchers have emphasized the importance of teachers using specific 

strategies to facilitate the classroom communication to and support students’ mathematical thinking 

(O’Connor & Michaels, 1993).  

Specifically, in the syllabuses (Skolverket, 2011) it is particularly prominent that mathematics is 

dominated by discourse-intensive approaches, and the use of instructional tools such as talk moves, 

give ample opportunities for student learning (Chapin & O’Connor, 2007). Similar strategies for 

supporting students’ learning in mathematics have received attention among effective teachers of 

second language learners in mathematics (Khisty, 2001).  

This study uses action research which is characterized by ongoing processes of self-reflection, 

which can be thought of as a spiral of self-reflective cycles on planning a change, followed by acting 

and observing the process and reflecting on the process and then re-planning and so forth (Kemmis 

& Wilkinsson, 1998). Using PAR gives an attempt “to help people investigate and change their 

social and educational realities by changing some of the practices which constitute their lived 

realities” (Kemmis & Wilkinsson, 1998, p.22).  

Method 

The poster gives a brief presentation of a one-year research project where four primary teachers at 

the same school (year 2, 4 and 5) have been working together with a researcher, using participatory 

action research (PAR) (Kemmis & Wilkinsson, 1998) to develop their instructional tools in order to 

support students' mathematical development in multilingual classrooms. Data collection has 

continued throughout the whole action research process during the academic year. The empirical 

data includes teachers’ logs, teacher questionnaires with open answers, researcher’s notes, audio-



recorded discussions from the meetings twice a month in the project group and 3-4 video-taped 

mathematics lessons in each classes, 14 lessons altogether  

Results 

Although the focus in this project has been on instructional tools for supporting students’ talk in 

order to enhance their development in communicating and reasoning mathematically, it is 

noteworthy that the teachers express their development, not only in terms of (1) instructional tools 

but also regarding other aspects such as (2) classroom organization and (3) focus on mathematical 

content. 

Methods structured in these three themes above constitute a teacher tool kit to support students’ 

learning mathematics in multicultural classrooms. 

Conclusions 

By using PAR, the teachers had the opportunity to reflect critically, analyze and act as coparticipants 

in the challenge to change the practices in which they interact, which also challenged their approach 

to teaching. 

When teachers act and reflect on their use of specific strategies of classroom talk they also start 

reflecting and acting on other aspects of teaching, such as classroom organization and how to keep 

attention to the taught content. Thereby, the change in practice became more than just temporary  

changes. 
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Introduction 

TWG19 is one of three TWGs at CERME10 dealing with issues related to teaching and teacher 

education (the others being TWG18 and TWG20). The group is particularly interested in studies 

that aim to understand the development of classroom practices and teachers’ contributions to them. 

This includes the roles of other factors such as the available teaching-learning materials, modes of 

teacher collaboration at and beyond the school(s) in question, and school cultures as they relate to, 

for instance, teacher-student relationships, teachers’ individual and communal responsibilities, and 

the role of curricular materials and testing. Finally, studies concerned with how micro-level 

interactions are informed by macro-level structures (society, culture and the political) are also of 

TWG19’s interest. 

A total of 27 contributions were initially submitted (26 papers and 1 poster), involving authors from 

at least 14 different countries, primarily in southern or northern Europe. The papers were grouped in 

five thematic areas, each assigned to one of the five team leaders for overseeing the reviewing 

process. Each proposal was reviewed by a team leader and two authors, and 24 contributions (22 

papers and 2 posters) were accepted for presentation at the conference. Participants were expected 

to read the papers before the conference sessions. In the time slot allocated to each group of papers, 

the authors each gave a short presentation (5–7 minutes), sketching the key ideas of the work 

reported. This was followed by a reflection by the group leader on common themes and cross-

cutting issues (15 minutes), which were subsequently discussed by the participants in small groups. 

Ultimately, 22 papers and 1 poster are included in the conference proceedings.     

The five thematic areas according to which the TWG19 contributions were grouped are: (a) 

problem solving and general issues related to teaching practice, (b) lesson planning, lesson study 

and curriculum, (c) instructional quality and assessment, (d) in-the- moment teaching actions and 

decision making and reflection and (e) instructional practices. In the next two sections, we discuss 

the contributions first within and then across these thematic areas. 



Substantive issues 

In this section we present research considerations and concerns in the papers in each group, 

including the range of theoretical perspectives and methodologies employed. 

(a) Problem solving and general issues related to teaching practice 

Dominant perspectives on the teachers’ knowledge have changed and now focus on content 

knowledge closely connected to the profession. This is fueled by current reform initiatives that 

emphasise processes of mathematics, for instance in terms of problem solving. 

Three of the four papers in this section deal with problem solving. The paper by Kleve and Ånestad 

concerns a Norwegian teacher, who seems inspired by a process view of mathematics. The class 

works with subtraction and initially uses informal mental strategies. The authors argue that there is 

a need to link such methods to a standard algorithm, that the flexible use of both methods is needed, 

and that it should become socio-mathematical norm that both are acceptable. However, the 

teacher’s mathematical knowledge for teaching seems too weak for her to support the students in 

the transition from informal strategies to standard procedures. This makes it impossible for her to 

support socio-mathematical norms in line with the reform. 

Odindo’s study from Kenya is based on the expectation that problem-solving approaches may 

alleviate secondary students’ difficulties with their final exams. He uses Learning Study (LS) to 

support teachers in using problem solving when teaching algebra. The paper to some extent focuses 

on the students, but mainly asks what the learning opportunities are for the teachers. Odindo argues 

that the LS format allows teachers to consider general issues of, for instance, time management, but 

also to focus on patterns of task variation closely related to the contents. At least implicitly, then, 

the paper is concerned with how LS may support mathematical knowledge for teaching. 

The study by Villalonga and Andrews is also on problem solving, but less on mathematical 

knowledge for teaching. In fact, the teacher is conspicuously absent, as the paper deals with how 

Catalan students may self-scaffold when engaged in problem solving. The students use a resource, 

an Orientation Base (OB), which is to help them monitor their problem solving. The teacher is 

almost obsolete, and the OB may be read as a response to the problem that many teachers find it 

difficult to support their students’ problem solving. OB may be seen as an attempt to circumvent 

this difficulty and transfer responsibility to the students.   

The last paper in this group, by Mosvold and Hoover, report on a literature review of studies on 

mathematical knowledge for teaching.  The 12 studies in the review address questions of what, how 

and why such knowledge plays a part for the quality of instruction. The studies argue that 

mathematical knowledge for teaching is important for instance for teachers’ selection and 

adaptation of tasks, for their planning of instruction, and for how they listen to students and pursue 

student thinking. Based on the review, however, Mosvold and Hoover argue that the results are 

mixed and that there is a need to shift the emphasis towards more dynamic understandings of the 

relationship between mathematical knowledge for teaching and teaching. 

The discussions of these papers focus on what it may mean to adopt a dynamic perspective on the 

knowledge-teaching relationship. How, then, we may change the emphasis from teacher 

characteristics (e.g., their knowledge or beliefs) to the acts of teaching? The latter perspective 



requires greater attention to issues of context, to what we mean by practice, and possibly to 

alternative frameworks that allow us to reconsider what we mean by knowledge. 

 (b) Lesson planning, development and curriculum 

This group of papers focuses on planning for teaching, utilizing lessons learned in other contexts, 

and dealing with curricula and textbooks. Four papers approached these issues. 

In her case study of a Swedish mathematics teacher, Grundén targets the practice of planning. 

Reflecting on her own planning, the teacher conceptualizes planning as making informed decisions 

regarding the teaching of the mathematical content in different contexts, and she relates planning to 

other practices of the teacher as well as practices of other teachers. Relating to the practice of other 

teachers is also an issue in the study of Runesson Kempe, Lövström and Hellqvist, who investigate 

how experiences from a Learning study can be shared and used by teachers in other contexts. 

Applying the results from a previous Learning study in new classrooms, the authors investigate 

some necessary conditions for learning about negative numbers and indicate possibilities for 

cultivating more effective professional practice in mathematics classrooms. 

Although development and change in mathematics teaching might be teacher-driven, it is 

sometimes prescribed by curriculum reforms. Klothou and Sakonidis investigate the 

implementation of a new curriculum reform among primary mathematics teachers in Greece. They 

argue that contradictions in teachers’ own discourses can be explained by recontextualization 

procedures that appear when teachers attempt to implement the reform, and inconsistencies may 

abide in the very discourses that teachers draw upon. Whereas some countries have official 

textbooks that everyone must use, French teachers are free to decide if they want to use a textbook 

and how – if they adhere to the national curriculum. In their study on how two experienced French 

teachers use and adapt the content of mathematics textbooks and teacher manuals, Priolet and 

Mounier analyze how the teachers use the same textbook when teaching the same mathematical 

content. None of them follow the recommendations from the textbook completely in their lesson, 

and the adjustments they make tend to reduce the difficulty of textbook tasks. 

These four papers provide compelling glimpses into the complex work of teaching mathematics. 

They discuss how authorities, schools and other teachers may provide resources that are intended to 

support the work of teaching, and how adapting and using such resources introduces mathematical, 

didactical and social demands on teachers’ work. Mathematical knowledge for teaching can be 

described as knowledge required to deal with such demands (Ball et al., 2008), and these four 

papers thus indirectly contribute to investigating more dynamic relationships between knowledge 

and teaching.  

(c) Instructional quality and assessment 

The five papers in this thematic group describe qualities of teaching. Three papers concern 

instrument development for assessing qualities. One such instrument is the Realization Tree 

Assessment tool (Weingarden, Heyd-Metzuyanim & Nachlieli). This tool is particularly interesting 

in the way it reduces the complexity of the lesson into a picture of the mathematical concepts 

discussed in order to describe qualities of the lessons. This picture organizes mathematical ideas 

related to what Sfard (2008) calls saming and objectification. A second instrument presented is an 

innovative tool to observe, describe and evaluate metacognitive practices in mathematics 



(Nowinska & Praetorius). Six out of the seven dimensions developed had highly reliable ratings. A 

third instrument developed by Jentsch and Schlesinger starts from three established dimensions 

(classroom management, personal learning support, cognitive activation) and aims at adding a 

subject-specific dimension. This dimension includes nine characteristics – such as teachers’ 

mathematical correctness, explanations and mathematical depth – and produces results with good 

interrater agreement and satisfying reliability measures. 

In addition, two papers study qualities of teaching using observation and interviews. Tuset 

investigates pre-service teachers trying ambitious teaching, allowing students to exercise authority 

while staying accountable to the discipline. The study finds that the pre-service teachers are able to 

create opportunities to engage in explorative discourses, but that their talk moves seem to be 

ritualized and therefore constrain students’ participation. Kaldrimidou, Sakonidis and Tzekaki 

attempt to identify crucial elements shaping classroom mathematical meaning construction. To 

achieve this, they study three highly motivated and professionally active teachers’ instructional 

practices and reflections. Findings reveal that the teachers’ choices restrict the mathematical 

meaning because they desire to provide an easy, safe and pleasant learning environment. 

These five papers illustrate two main issues for further research. The first issue regards the 

challenges of low and high inference observations. Low inference observations, like talk moves, 

explain little in themselves. On the other hand, high inference observations require extensive rater 

training that might result in simplification and even ritualization of the rating. What could we lose 

then? The second issue is that these articles illustrate the need for an instrument review. Which 

instruments are available for assessing qualities of teaching, what do they intend to measure, what 

theories do they build on, how reliable are they, and how much data and extent of rater training is 

needed to make them reliable? 

(d) In-the-moment teaching actions and decision making and reflection 

The studies in this group address mathematics instruction in a variety of ways: as teachers’ 

management of actions and moments determining students’ learning (Ferreira & da Ponte); as an 

activity shaping and being shaped by teachers’ professional enactment in intervention or reform 

settings (Stouraitis; Sterner); as a practice being intentionally problematized to support teachers to 

develop (Potari & Psycharis; NicMhuirí). A different approach is to distinguish between papers that 

look at mathematics instruction as a learning-to-teach site through scrutinizing yourself or others 

acting it (Ferreira & da Ponte; Potari & Psycharis), as a professional activity developed through 

collaborative action (Sterner; Stouraitis), or through individual reflection via literature (NicMhuirí). 

A range of theoretical or conceptual frameworks – mostly of sociocultural origin – are at work in 

the studies reported, and reflection (on teaching practice) and collaboration are at heart of these 

frameworks. In particular, NicMhuirí employs a reflective practitioner’s perspective in combination 

with a model allowing for levels of teachers’ reflection to be identified.  Reflection is also of 

concern in Potari and Psycharis’ work operationalized through the construct of ‘critical incidents’ 

within a community of inquiry framework. The theoretical underpinnings of the community of 

practice approach are adopted by Steiner, with reflection being seen this time as a professional 

learning enterprise developing collaboratively.  Drawing on a CHAT perspective, Stouraitis views 

reflection as an aspect of teachers’ decision making which interacts with teaching activity.  Finally, 



the study by Ferreira and Ponte employs features related to tasks assigned to the students and the 

communication established in the classroom to evaluate teaching actions. 

Most papers in the group report on small, qualitative studies. Empirical data include observations of 

teaching, meetings and/or interviews audio-taped and transcribed. These data are predominately 

analyzed based on categories indicated by the literature (content analysis) or by the data themselves 

(grounded theory like analysis). One study uses no data, but analyzes two empirically tested 

constructs to exemplify the tool indicated (NicMhuirí). The results of the studies highlight various 

levels of mathematics teaching interacting with teachers’ professional activity. 

Overall, the studies in the group seek to understand how mathematics classroom teaching feeds 

teachers’ professional practice, focusing on teachers inquiring into specific aspects of it. The 

relevant discussions carried out during the conference sessions raised concerns about the clarity of 

the terms and constructs used, the appropriateness and the functionality of the theoretical 

frameworks employed, and the boundaries between teaching action/practice and teacher practice.  

(e) Instructional practices 

The four papers in this thematic group approach instructional practices from different sociocultural 

perspectives. Two papers investigate teacher change during professional development programs. In 

particular, Venkat and Askew employ variation theory and example spaces to understand how 

teachers mediate primary mathematics, mainly how they generate and validate solutions as well as 

build mathematical connections. Şeker and Ader, on the other hand, focus on maintaining the 

cognitive demand of mathematical tasks, teachers’ attention to students’ mathematical ideas and 

intellectual authority in the classroom. Using the aforementioned frameworks makes it possible to 

illuminate different aspects of teacher practices that seem to improve based on research 

recommendations. Future research concerning both papers may entail a close look into the nature of 

professional development that influences instructional practices. 

The paper by Baldry focuses on the development and viability of an analytical framework aiming to 

understand a ‘typical’ mathematical classroom in the United Kingdom. The analytical framework 

Orchestration of Mathematics portrays the quality of mathematics orchestration combining several 

theoretical constructs including cognitive demand of mathematical tasks, sociomathematical norms, 

hypothetical learning trajectories and professional noticing. The framework thus seems closely 

related to the scheme of analysis adopted by Şeker and Ader. A common theme of the two studies is 

teachers’ difficulty in noticing and building on student thinking as well as maintaining cognitive 

demand of the tasks.  

The importance of discourse in understanding instructional practices is evident across all papers. 

Drageset and Allern use drama as an innovative tool, allowing students to gain mathematical 

authority and engage in productive discourse patterns in making sense of mathematics. Instructional 

practices shaped and were shaped by student participation and responses. Future consideration for 

this work is to explore how teachers might implement such drama-based interaction patterns in their 

classrooms with the help of teacher educators.  

A general trend identified in this group is using interviews together with observational data to 

understand teacher instructional practices, including teacher decisions and professional noticing 

abilities, closely connected with student participation and sociocultural norms. It would be 



productive to define boundaries of instructional practices and how to incorporate pre- and post-

observation interviews with teachers in analysing relevant data. 

Trends and developments 

The studies in TWG19 address a wide range of features and factors that regulate the quality and 

development of classroom mathematics teaching as well as its relation to teachers’ professional 

growth. A systematic attempt to understand, assess and trace contributions to teacher and classroom 

practices can be identified across the papers. Issues pursued along each of these three directions are 

discussed below. The section concludes with some critical considerations related to the studies 

hosted by TWG19. 

In trying to understand teachers and classroom practices, some of the studies look at mathematics 

teaching in challenging circumstances (e.g., Kaldrimidou et al.; Kleve & Ånestad; Priolet & 

Mounier). Their results suggest that adapting teaching to effectively respond to such occasions is a 

difficult endeavor often leading to poor and even contradictory teaching practices. Teaching is also 

seen in relation to teachers’ professional knowledge and practices/perspectives, with the relevant 

studies indicating a complex but dynamic and fertile relationship (e.g., Mosvold & Hoover; 

Grundén; Stouraitis). Finally, some studies consider the influence of contextual factors upon 

teaching practices (e.g., Baldry; Venkat & Askew). The findings reveal teachers’ difficulties in 

administering the mediational role of these factors in order to develop effective teaching practices.  

The qualities of teachers and classroom practices are assessed by focusing quantitatively or 

qualitatively on subject-specific rather than generic features. Studies adopting quantitative 

instruments highlight the value of such approaches when able to assess high inference valuations 

with the necessary inter-rater agreement (e.g., Jentsch & Schlesinger; Nowinska & Praetorius). The 

qualitative instruments, like interviews and observations (e.g., Weingarden, Heyd-Metzuyanim & 

Nachlieli; Tuset), found to face the same challenges of assessing high inference valuations. To do 

this with trustworthiness, the qualitative research typically focuses on depth of scrutiny rather than 

inter-rater agreement. 

Certain ways of contributing to teachers and classroom practices are identified in the papers, mainly 

in some form of collaboration, reflection or intervention. In particular, opportunities to collaborate 

with other teachers to explore various aspects of teaching mathematics seem to offer possibilities 

for teachers to develop their professional practice (Sterner; Runesson Kempe et al.; Odindo). 

Teachers’ reflection on classroom practice is a central constituent of this collaboration facilitated by 

inquiry tools. When exercised on varied levels and at specific aspects of classroom practice, 

affordances and constraints of this practice become evident (NicMhuirí; Psycharis & Potari). The 

latter appears to be also the outcome of intervention studies supporting teachers to transfer more 

learning responsibilities to students (Drageset & Allern; Şeker & Ader; Villalonga & Andrews). 

The research activity on teachers and classroom practices included in TWG19 reflects some 

interesting steps forward, but it also reveals at least five sets of issues in need of critical 

consideration. Firstly, issues related to the methods adopted, for instance, the issue of generalizing 

across contexts, the role of using multiple methods, and the (dis-)advantages of different teacher-

researcher relationships. Secondly, concerns about the theoretical frameworks employed, for 

example, selection criteria, levels of generality targeted, issues of compatibility, questions (not) 



addressed, ‘own’ frameworks. Thirdly, there is a need to carefully consider concepts and terms 

used. For instance, terms like ‘practice’, ‘context’ and even ‘teaching’ need clarification, whereas 

constructs like ‘stability of knowledge’ require further consideration. Fourthly, it is important to 

adopt clearly defined criteria for assessing the quality of teaching with reference to the learning of 

mathematics achieved as well as the wider educational goals targeted. Finally, it is necessary to 

consider quality criteria for research adopted, contribution to theory or practice, coherence, and 

sufficiency of evidence to warrant an empirical claim. 

Concluding remarks 

The work reported in TWG19 is part of the research on mathematics teachers and classroom 

practices developed in recent years employing a predominately sociocultural perspective. Within 

this perspective, teaching is seen as a social practice in which teachers are practitioners (Jaworski, 

2006). Classroom practices are viewed as regular activities and norms continually developed by 

teachers’ involvement in multiple simultaneous activities, “taking into consideration working 

contexts, meanings and intentions (…) the social structure of the context and its many layers – 

classroom, school, community, professional structure and educational and social system” (Ponte & 

Chapman, 2006, p. 483). These activities mutually structure and frame each other to constitute the 

practice of the classroom (Skott, 2013). 

There is a range of issues addressed by the studies reported that concern teachers’ contribution to 

classroom practice in various contexts, mostly related to critical aspects of instruction-in-action and 

teachers either inquiring into their own teaching or working towards developing it. Collectively 

these contributions appear to suggest that it is valuable to shift the emphasis in this line of research 

from teachers to teaching. Several theoretical and analytical frameworks are used often in 

combination (rather than in coordination) providing multiple lenses through which certain 

constructs (rather than structures) are examined within particular contexts. Along the same line, 

different methodological approaches are pursued, mainly qualitative, seeking to capture the 

complexity and richness of the practices unfolding within mathematics classroom life shaping 

students’ learning of mathematics and teachers’ learning to teach mathematics alike.  The findings 

of the studies offer some notable insights into this shaping, highlighting the importance of focusing 

on the micro-level of classroom practice, on the resources teachers draw on as they engage in it, and 

their (intentional or unintentional) professional activity. 

The plurality of theoretical perspectives, constructs and analytical tools employed in the studies of 

teacher and classroom practice reported in TWG19 underline the dynamics of the research activity 

aiming at ‘unpacking’ teaching practice. It might be the time for the research community working in 

this area to consider what is already known, what is to be further examined and to develop on the 

basis of this evaluation a research agenda to fill the gaps. How different tools may be used 

considering different theoretical perspectives, decisions of whether to use an existing tool or to 

develop a new one and how to report the added value of using different tools require special 

attention in moving forward. To this end, the emphasis should be on teaching rather than on 

teachers, as suggested by the work presented and discussed in the context of the conference 

sessions. 
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A teacher’s orchestration of mathematics in a ‘typical’ classroom 
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This paper explores the complexity of interpreting teachers’ practice in relation to mathematical 

meaning making in ‘typical’ classrooms in England. An observation framework has been developed 

to interpret classroom activities that draws on a range of theoretical perspectives, including 

variation theory (Marton & Pang, 2006) and notions of classroom norms (Cobb, Gresalfi, & 

Hodge, 2009). This paper focusses on the analysis of two lessons in order to discuss the potential of 

this framework to foreground the mathematics made available to students and the pedagogical 

moves made by the teacher to bring this about. In England, class composition for secondary 

mathematics is usually decided by measures of prior attainment, with students of similar ‘ability’ 

grouped together. A wider study is exploring shifts in teachers’ pedagogical approaches when they 

teach classes with different attainment profiles. Consideration here is given to whether observation 

of a few lessons using this framework can identify stable mathematical characteristics, so that in 

future the framework would allow comparisons between classes to be made. 

Keywords: Observation, teaching methods, sociomathematical norms, variation theory. 

Introduction  

In England, ongoing attention is paid by politicians and educators to the mathematical attainment of 

students, and this includes analysing the progress of different groups (Easby, 2014). At secondary 

level, class composition in mathematics is often determined by measures of prior attainment, with 

students grouped with others of similar ‘ability’ and is referred to as setting (Ireson, Hallam, & 

Hurley, 2005). Whilst findings from research into the impact of setting do vary, the predominant 

view is that setting does not improve overall attainment and may indeed act as a suppressant (e.g. 

Hattie, 2002). Moreover, setting does increase the spread of attainment, resulting in students placed 

in lower attaining sets being disproportionally affected. Issues of equity are raised further as 

students from lower socioeconomic groups are over-represented in low sets, even when prior 

attainment is taken into account (Muijs & Dunne, 2010). In spite of these concerns, setting in 

secondary mathematics classrooms appears to be firmly entrenched, with many teachers perceiving 

setting as the only practical way to teach a range of ‘abilities’ (Wiliam & Bartholomew, 2004).   

There is a tendency for the teaching of sets with different attainment profiles to have distinctive 

pedagogical characteristics; for example, contextualised language is more common in low attaining 

sets, shifting to more formalized mathematical language in higher attaining sets (Dunne et al., 

2011). The aim of a wider ongoing study is to explore how individual teachers shift their pedagogy 

when they teach classes with different attainment profiles. It is anticipated that this will offer 

insights into how they tailor practice for different sets and the impact this has on the mathematics 

made available to students. In that larger study, a conceptual framework has been developed to 

interpret teachers’ actions in relation to their orchestration of mathematics (figure 1); in this study 

the framework is employed to capture practice that the teacher considers typical for them with a 

particular class (set).  



Theoretical framework 

Classrooms are widely acknowledged as dynamic environments, where the complexities cannot be 

captured in a simple model (e.g. Potari & Jaworski, 2002). Goodchild and Sriraman (2012) argue 

that the didactic triangle, where vertices represent teachers, students and mathematical content, 

“serves as a starting point to theorise the dynamics of teaching–learning” (p. 581). For researchers, 

this raises a question as to how that practice could be understood without taking into account the 

actions of individual students. This study utilises the notion of classroom norms as a mechanism for 

taking into account student activity whilst maintaining a focus on the teacher.     

Underpinning much of the recent research relating to teachers’ practice appears to be the notion that 

good practice is related to an inquiry orientation (Boesen et al., 2014; Schoenfeld, 2013). Termed 

the ‘reform agenda’ in the US, an inquiry orientation is associated with the development of 

conceptual understanding through the use of rich mathematical tasks, discussions and problem 

solving approaches (Stein, Engle, Smith, & Hughes, 2008). This is often contrasted with a 

‘traditional’ approach, characterised as students working on individual tasks that focus on the 

efficient application of algorithms, and delivered through transmission style teaching. Many of the 

existing analytical frameworks are linked to inquiry-oriented goals for the professional development 

of teachers (e.g. Boesen et al., 2014; Schoenfeld, 2013). Others focus on particular aspects of 

classroom practice that are considered important, such as the design of rich tasks and the 

management of discussion (M. Simon et al., 2010; Stein et al., 2008). However, with evidence that 

traditional approaches to teaching are still common in England (S. Watson & Evans, 2012), the 

applicability of affordances of inquiry-oriented frameworks to the analysis of ‘typical’ lessons has 

to be questioned. For example, inquiry-orientated contexts place more value on discussion, 

explanation and justification, with the potential to make students’ meaning making more visible, 

than do more traditional approaches. 

The Orchestration of Mathematics Framework (OMF) was developed as a tool to build a picture of 

teachers’ classroom practice (figure 1). Whilst there is insufficient space here for a detailed 

discussion, an iterative process of development was undertaken, where concepts with traction in 

interpreting classrooms were considered from the teachers’ perspective, and their relationship to 

each other. For example, Stein, Grover, and Henningsen (1996) tracked the cognitive demand of 

tasks as lessons unfold; a notion that has subsequently been drawn on by many researchers (e.g. 

Schoenfeld, 2013). Here, the focus was on linking the teachers’ activities with other theoretical 

perspectives, such as relating problems with multiple solution strategies with variation theory 

(Marton & Pang, 2006) or the press for explanations with patterns of discourse (Imm & Stylianou, 

2012). In addition to demonstrating that a wide range of classroom features can have a critical effect 

on the learning of mathematics, research has indicated that it is not the presence or absence or 

particular features per se that influences the mathematics experienced by students, but rather the 

nuances of implementation and interdependency (Hiebert et al., 2003). The OMF has been designed 

to offer a range of lenses that can be brought into play as classroom activity unfolds. As part of this 

development process, the OMF was used to analyse three publically available video lessons from 

the TIMSS studies. Whilst not reported on here, the OMF orientated the data analysis and distinct 

lesson profiles were identified. 



 

Figure 1: Orchestration of Mathematics Framework 

The central dimensions relate to in-class activity, and in particular the teacher’s orchestration of 

mathematics: that is, the mathematics made available in the shared space of the classroom and the 

actions taken by the teacher to bring this about. Two significant elements of teachers’ practice are 

the selection of tasks and the management of classroom discourse (e.g. Ainley, Pratt, & Hansen, 

2006; Stein et al., 2008). Within each dimension, there is a range of significant elements, such as 

the role of multiple representations and management of student responses. Variation theory draws 

on the idea that learning requires variation set against a backdrop of invariance (Marton & Pang, 

2006); A. Watson and Mason (2006), amongst others, have drawn on this theory to explicate how 

the sequencing of questions or activities can make visible critical features of a concept and hence 

support generalisation. Moreover, variation theory also offers a mechanism as to how other 

previously identified beneficial features could support learning. For example, multiple 

representations and multiple solution strategies could be seen as holding the concept constant whilst 

varying representations and processes. 

The notion of cognitive demand offers a way to categorize the “the level and type of thinking that a 

task has the potential to elicit” (Boston & Smith, 2009, p. 122).  Stein et al. (1996) introduced a 

rubric where ‘memorization’ and ‘procedures without connections to concepts’ are classified as low 

demand, whereas ‘procedures with connections to concepts’ and ‘doing mathematics’ are classified 

as high demand. As such, this can be viewed as potential of the teacher’s orchestration of 

mathematics to influence student learning. Cobb, Stephan, McClain, and Gravemeijer (2001) offer 

an interpretative framework that coordinates social and psychological perspectives, where the social 

aspect is framed in terms of norms. All lessons and all interactions are unique, but norms offer a 

way to interpret interactions as typical or atypical, which offers the possibility of generalising 

beyond particular incidents. In particular, their notions of sociomathematical norms and 

mathematical practices can identify what is considered legitimised mathematical activity in that 

particular context.  

The lesson image, activity and interpretation cycle draws on Simon’s (1995) work on hypothetical 

learning trajectories, but extends the focus to include performance and engagement goals, as 

evidence indicates that not all teachers focus on learning (Amador & Lamberg, 2013). This captures 
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the iterative planning, activity and interpretation that starts before the lesson and continues as the 

lesson unfolds. Teachers’ interpretations of mathematical activity are predicated on what they 

notice; the conceptualisation of professional noticing by Jacobs, Lamb, and Philipp (2010) is one 

construct drawn on here. Taken together, the dimensions offer a way to build a picture of the 

classroom based on the features as they occur and interact in the course of a teacher’s normal 

practice.  

Methodology  

This paper reports on a section of a pilot study, undertaken is part of a larger ongoing qualitative 

case study, following the interpretative tradition. The research question explored in this paper is 

how viable the OMF is as an analytical tool for charting a teacher’s pedagogical approaches and the 

mathematics made available to students.  

For a pilot study, two secondary mathematics teachers known to the author have been recruited. 

Decisions regarding selection of classes and the timing of observations resides with the teachers, in 

order to minimize the imposition on them and their schools. So far, data have been gathered from 

one teacher and two lessons with a year 8 class (12 to 13 years old), taught ten days apart. The 

author acted as a non-participant observer, with the OMF used as an observation pro forma. The 

lessons were recorded by two static video cameras and lesson artifacts, such as students’ work and 

teaching resources, were collected. Pre- and post- lesson semi-structured interviews were conducted 

with the teacher, focusing on how and why the lesson was planned in the manner chosen, and on 

moments the teacher thought important for learning, including whether these were as anticipated or 

unexpected.   

The audio data from lessons and interviews was transcribed. Lesson activities were coded as being 

mathematically relevant, organisational or not mathematically relevant. The mathematically 

relevant sections of the videos were then reviewed; interactions were mapped to the OMF and 

cross-referenced with the observation notes. The interviews were analysed for evidence of the 

teacher’s interpretation of classroom activities and their lesson image. The analyses of the two 

lessons were compared; consistencies and contradictions in the dimensions of the OMF were 

sought, to see whether there was evidence that observation of a few lessons could build a 

sufficiently representative picture of a class to allow comparison with others (Staub, 2007). All the 

analysis in this pilot study has been conducted by the author; it is anticipated that another researcher 

will review the dimensional analysis before the next stage of the wider study.  

Findings and discussion 

In this section, two linked extracts from the first lesson will be used to illustrate how the dimensions 

of the OMF were populated (figure 3). Then the comparison of the two lessons will be discussed. 

Lesson 1 

The students individually attempted to calculate the areas of six different shapes. The numerical 

answers were shown, in a mixed order, alongside the questions at the start. After nine minutes 

solutions were discussed as a whole class. 



 

Figure 2: Questions projected onto classroom whiteboard 

78 Teacher:  OK number one, what did you do and what answer did you get? 

79  Azariah: I got five times two.. ten meters.. centimeters meters squared 

80   Teacher:  Ten centimeters squared, perfect, units are really important ok. Finley 

second one then. 

81 Finley:  I did four add eight, twelve divided by two, six.. times five makes thirty 

centimeters squared.  

⁞ [the last question] 

113 Teacher:  Sixteen centimeters squared, what did you do to get it? 

114 Sam: It was just the last… 

115 Teacher: Just the last answer, did anyone manage to do it with the maths? Raj 

116 Raj: Three times.. three times four so it’s the bottom rectangle 

117 Teacher: Yep  

118 Raj: and that’s 12 meters squared, but then you triangle the top bit, which is three 

times four meters and divide by two 

119 Teacher: So what Raj did, and I’m guessing what most people did who managed to 

get that was to draw a little line there to do our 3 times 4 which is 12 meters 

squared and work out the triangle on top which was 4 meters squared ok 

good. 

Analysis of Lesson 1  

Line 78 is an example of the teacher indicating that a procedural explanation was expected as part 

of a response. When answering subsequent questions, most students provided a procedural 

explanation without prompting but other types of explanations were not offered, indicating an 

established sociomathematical norm. Line 78 was also the start of an IRE sequence (teacher 

initiation, student response, teacher evaluation), which was the predominant form of teacher-student 

interaction in the whole class context. In lines 80 and 113, the teacher repeated correct answers, and 

in line 119 reworded a more complex student explanation, claiming understanding of student 

reasoning. In terms of social norms, this contributed to accountability residing with the teacher. 

Interpretation of 

activity: errors, 

explanations not 

explored  

Tasks: Examples; Explanations: Multiple solution strategies 

possible but no acknowledgement. All questions standard format. 

Classroom Norms:  

Social Norms: Agency and 

accountability: resides 

largely with the teacher. 

SM norms: procedural 

explanation counts as 

explanation. Mathematical 

practices: area equates to 

multiplication; units vital 

Sequencing: Unsystematic variation and links were not explored. 

Organisation: Individual working  

Cognitive 

Demand: 

Potential- high; 

As enacted- low 

Discourse: Teacher led; Teacher requested (procedural) 

explanation (line 78), followed up when not provided (line 113) 

IRE with teacher evaluation (lines 78-80, 80-81, 113-119) 

Teacher re-voiced contributions; repeating correct answer (lines 

80, 113), rewording more complex explanations (119) 

Figure 3: Extract from lesson 1 OMF summary 



Integrated OMF for Lesson 1 and 2 

When the two lessons were compared the overall profiles were very similar, and the differences in 

use of context and mathematical practices could be explained by the different lesson topics. More 

important is the fact that contradictions between the two lesson analyses were not apparent. From 

these profiles a summary OMF was formed (figure 4) specific to this class. The central core, 

consisting of tasks, sequencing, organisation and discourse, located specific instances of the 

teacher’s activities, with their impact interpreted in the wider framework. For example, questions 

were posed that could have been solved in multiple ways or with the integration of multiple 

representations. However, the IRE pattern of interaction, focusing on a single procedural 

calculation, was mirrored by the students in their work and led to the categorization of low 

cognitive demand.   

Links between dimensions did emerge. For example, there were two occasions where pseudo-

contexts were used: that is real-world objects such as cars or apples were introduced, but in 

contrived and unrealistic ways. Students made errors in the whole class discussion that were not 

explored; the teacher focused on explaining the abstracted mathematical procedure whilst the 

students involved focused on interpreting the context. Follow-up questions were asked by the 

teacher, but when students’ responses did not conform to the abstracted mathematical solution the 

teacher moved on by offering a direct demonstration of the ‘correct’ procedural answer. In the post 

lesson interview, the teacher expressed surprise that errors were made on those questions and was 

unclear as to why this had occurred. The activities related to the use of pseudo-context can be traced 

through the dimensions, contributing to the conclusion that the teacher did not explore student 

thinking and that mathematical competence equates to efficient production of standard solutions.   

OMF Lesson Image 

Interpretation of 

classroom activity:  

Professional noticing -

no evidence of 

exploration of student 

thinking when it was 

not directly relatable to 

a standard solution. 

Goal: Performance Plan: Exam style questions Hypotheses: Familiarisation  

Tasks: Multiple solution strategies were possible, but 

rarely explored. (4 occasions students offered 

alternative calculation-  not evaluated or compared) 

Lesson 1: No context; Lesson 2: Pseudo-context 2/6  

Classroom Norms:  

Social Norms: Agency and 

accountability: resides 

predominantly with the 

teacher.  

Sociomathematical norms: 

procedural explanation 

counts as explanation. 

Mathematical competence 

equates to obtaining correct 

answers efficiently (errors 

to be avoided).  

Mathematical practices: 

Lesson 1: Area equates to 

multiplication. Lesson 2: 

Proportional reasoning 

equates to multiplication 

Sequencing: Questions sets unsystematic variation. All 

questions dealt with in isolation; links between 

questions were not explored [Dimensions of variation 

and range of permissible change not made explicit] 

Cognitive demand: 

Potential - high 

As enacted - low 

Organisation: Individual working- tables in groups of 

four; peer to peer discussions were had.  

Discourse: Registers: teacher used colloquial language 

with no evidence of inducting students into a ‘vertical 

discourse’. Patterns: IRE dominant form of interaction. 

Correct answers acknowledged, often repeated or 

extended. Errors often ignored; when acknowledged 

focused on moving to standard solution, reverting to 

direct explanation if initial follow-up failed.  Extended 

student explanations taken over by the teacher.   

Figure 4: Summary OMF for lesson 1 and 2  



Conclusion 

When the dimensions of the OMF are considered, distinctive patterns of discourse consistent across 

both lessons were identified, and the classroom norms indicated that these were regular patterns of 

interaction. Moreover, the same restricted range of task features were utilised throughout both 

lessons and the sequencing of questions was classified as unsystematic variation. This provides 

some evidence that the framework was effective in characterising a teacher’s pedagogical 

approaches. However, whilst the teacher indicated that these lessons were ‘typical’, the timing of 

the data collection meant that they were focused on reviewing previously met material. As such, 

there may be features that are part of the teacher’s usual repertoire but are not captured here. For the 

larger study, when comparisons between classes is sought, collecting data at the same time of year 

and when the classes are being taught similar material could ameliorate some of these issues.  

All elements of the lesson that were classified as being mathematically relevant were mapped to the 

OMF. It may be tempting, therefore, to say that the model is sufficient to capture mathematically 

significant classroom events. However, the dimensions of the framework have been populated by 

features identified as significant in the literature and these have orientated the data collection and 

analysis, therefore a complete mapping could be anticipated. Instead, the question is whether the 

orientation this framework offers provides insights into the characteristics of teachers’ pedagogical 

moves more powerful than a list of features and with sufficient validity to allow comparison. The 

evidence presented here indicates that this may indeed be the case, but further research is needed.  

References 

Ainley, J., Pratt, D., & Hansen, A. (2006). Connecting engagement and focus in pedagogic task 

design. British Educational Research Journal, 32, 23-38. doi: 10.1080/01411920500401971 

Amador, J., & Lamberg, T. (2013). Learning Trajectories, Lesson Planning, Affordances, and 

Constraints in the Design and Enactment of Mathematics Teaching. Mathematical Thinking and 

Learning, 15, 146. doi: 10.1080/10986065.2013.770719 

Boesen, J., Helenius, O., Bergqvist, E., Bergqvist, T., Lithner, J., Palm, T., & Palmberg, B. (2014). 

Developing mathematical competence: From the intended to the enacted curriculum. The 

Journal of Mathematical Behavior, 33, 72-87. doi: 10.1016/j.jmathb.2013.10.001 

Boston, M.D., & Smith, M.S. (2009). Transforming secondary mathematics teaching: Increasing the 

cognitive demands of instructional tasks used in teachers' classrooms. Journal for Research in 

Mathematics Education, 40, 119-156. Retrieved from http://www.nctm.org/publications/ 

Cobb, P., Gresalfi, M., & Hodge, L.L. (2009). An interpretive scheme for analyzing the identities 

that students develop in mathematics classrooms. Journal for Research in Mathematics 

Education, 40, 40-68. Retrieved from http://www.nctm.org/publications/ 

Cobb, P., Stephan, M., McClain, K., & Gravemeijer, K. (2001). Participating in Classroom 

Mathematical Practices. Journal of the Learning Sciences, 10, 113-163. doi: 

10.1207/S15327809JLS10-1-2_6 

Dunne, M., Humphreys, S., Dyson, A., Sebba, J., Gallannaugh, F., & Muijs, D. (2011). The 

teaching and learning of pupils in low-attainment sets. Curriculum Journal, 22, 485-513. doi: 

10.1080/09585176.2011.627206 

Easby, J. (2014). GCSE and equivalent attainment by pupil characteristics in England: 2012/13. 

Department for Education Retrieved from https://www.gov.uk/government/statistics. 

Goodchild, S., & Sriraman, B. (2012). Revisiting the didactic triangle: from the particular to the 

general. ZDM, 44, 581-585. doi: 10.1007/s11858-012-0449-3 

http://www.nctm.org/publications/
http://www.nctm.org/publications/
https://www.gov.uk/government/statistics


Hattie, J.A. (2002). Classroom composition and peer effects. International Journal of Educational 

Research, 37, 449-481. doi: 10.1016/S0883-0355(03)00015-6 

Hiebert, J., Gallimore, R., Garnier, H., Givvin, K.B., Hollingsworth, H., Jacobs, J., . . . Stigler, J. 

(2003). Understanding and improving mathematics teaching: Highlights from the TIMSS 1999 

video study. Phi Delta Kappan, 84, 768-775. Retrieved from 

http://journals.sagepub.com/home/pdk 

Imm, K., & Stylianou, D.A. (2012). Talking mathematically: An analysis of discourse communities. 

The Journal of Mathematical Behavior, 31, 130-148. doi: 10.1016/j.jmathb.2011.10.001 

Ireson, J., Hallam, S., & Hurley, C. (2005). What are the effects of ability grouping on GCSE 

attainment? British Educational Research Journal, 31, 443-458. doi: 

10.1080/01411920500148663 

Jacobs, V.R., Lamb, L.L., & Philipp, R.A. (2010). Professional noticing of children's mathematical 

thinking. Journal for Research in Mathematics Education, 169-202. Retrieved from 

http://www.nctm.org/publications/ 

Marton, F., & Pang, M.F. (2006). On Some Necessary Conditions of Learning. Journal of the 

Learning Sciences, 15, 193-220. doi: 10.1207/s15327809jls1502_2 

Muijs, D., & Dunne, M. (2010). Setting by ability–or is it? A quantitative study of determinants of 

set placement in English secondary schools. Educational research, 52, 391-407. doi: 

10.1080/00131881.2010.524750 

Potari, D., & Jaworski, B. (2002). Tackling complexity in mathematics teaching development: 

Using the teaching triad as a tool for reflection and analysis. Journal of Mathematics Teacher 

Education, 5, 351-380. doi: 10.1023/A:1021214604230 

Schoenfeld, A.H. (2013). Classroom observations in theory and practice. ZDM, 45, 607-621. doi: 

10.1007/s11858-012-0483-1 

Simon, M., Saldanha, L., McClintock, E., Akar, G.K., Watanabe, T., & Zembat, I.O. (2010). A 

developing approach to studying students’ learning through their mathematical activity. 

Cognition and Instruction, 28, 70-112. doi: 10.1080/07370000903430566 

Simon, M.A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. 

Journal for Research in Mathematics Education, 26, 114-145. Retrieved from 

http://www.nctm.org/publications/ 

Staub, F.C. (2007). Mathematics classroom cultures: Methodological and theoretical issues. 

International Journal of Educational Research, 46, 319-326. doi: 10.1016/j.ijer.2007.10.007 

Stein, M.K., Engle, R.A., Smith, M.S., & Hughes, E.K. (2008). Orchestrating productive 

mathematical discussions: Five practices for helping teachers move beyond show and tell. 

Mathematical Thinking and Learning, 10, 313-340. doi: 10.1080/10986060802229675 

Stein, M.K., Grover, B.W., & Henningsen, M. (1996). Building student capacity for mathematical 

thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. American 

Educational Research Journal, 33, 455-488. Retrieved from 

http://journals.sagepub.com/home/aer 

Watson, A., & Mason, J. (2006). Seeing an exercise as a single mathematical object: Using 

variation to structure sense-making. Mathematical Thinking and Learning, 8, 91-111. doi: 

10.1207/s15327833mtl0802_1 

Watson, S., & Evans, S. (2012). Observing changes in teachers' practice as a consequence of taking 

part in professional development: developing a protocol for the observation of lessons. BSRLM 

Proceedings, 32, 88-93. Retrieved from http://www.bsrlm.org.uk/ 

Wiliam, D., & Bartholomew, H. (2004). It's Not Which School but Which Set You're in That 

Matters: The Influence of Ability Grouping Practices on Student Progress in Mathematics. 

British Educational Research Journal, 30, 279-293. doi: 10.2307/1502225 

http://journals.sagepub.com/home/pdk
http://www.nctm.org/publications/
http://www.nctm.org/publications/
http://journals.sagepub.com/home/aer
http://www.bsrlm.org.uk/


Using drama to change classroom discourse 
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This article provides insights about a project studying how process drama can be used to change 

classroom discourse in mathematics. The idea is to use process drama to help students practice with 

roles relevant for mathematics discourse, and then use these roles to help students become active 

participants of learning during regular mathematics lessons. This article reports from the first lesson 

conducted after the process drama, and finds a lesson where the students dominate talk, especially 

asking for and explaining methods and reasons, and where the teacher acts as a moderator.  

Keywords: Classroom discourse, process drama, communication.  

Introduction 

Based on our own studies (Drageset, 2014; 2015) we have observed that mathematics teaching in our 

area is typically teacher dominated with students rarely contributing to the discourse beyond 

answering questions. We wanted to find ways to activate students as participants of the mathematical 

work of the classroom. In drama methods we found tools to develop roles and then rehearse them 

during a process drama. To develop and rehearse, we designed a process drama called Out of Syria 

with the students grouped as families. The play was set in Damascus and the families had to escape 

the war. Although process drama may be used as a subject of its own, emphasizing the artistic process 

more than the learning outcome, change of attitudes and knowledge will always be important. Thus, 

applied drama often deals with topics in need of change, and the purpose of drama is to empower the 

participants (Bolton, 1998; Landy & Montgommery, 2012; O’Neill 1995).  

During the travel the families had to solve both practical and mathematical tasks. Simple scenery, 

sound effects, music, costumes and the physical actions of the participants were used to create fiction. 

Different rooms were used for home, bus, apartment in Egypt, border crossing and boat travel. 

Dramatic effects were used by lightening contrasts, sound effects and by the researchers playing 

different roles such as police, smugglers and coastal guards. An important goal for the process drama 

was to create a reference among the pupils to role aspects such as the authority, the skeptical, the 

curious, and the mediator. Each member of the families was assigned one of these roles. We wanted 

to examine if and how the reference to these roles would contribute to a change in classroom 

discourse, i.e. to create discussions, argumentation and reasoning. The elder should always ask all 

members of their meaning, and try to enlighten their reasoning for this, before deciding. The curious 

should ask why as often as possible, while the skeptic should try to oppose and suggest alternative 

solutions or decisions. Using the situation of refugees from Syria as our topic might seem insensitive. 

It was, however, conducted with care and related to learning about other areas than mathematics.  

A few weeks after the process drama, the researchers returned to the classrooms to use the roles in 

ordinary teaching. An important point is also to change the teacher role, avoiding to play the elder 

(authority) and thus open a space for the students to use. The aim with this article is to do an analysis 

of the first lesson after the process drama in order to characterize the lesson as a whole and describe 

qualities of the discourse.  



Theoretical framework 

Studies related to classroom discourse often describe different ways teachers dominate the discourse. 

Normally these fit into a pattern described as IRE (initiation-response-evaluation) where the teacher 

initiates the questions, the students respond to them, and the teacher evaluates the response (Cazden, 

1988; Mehan, 1979). IRE is often related to procedure-bound discourse, with little emphasis on 

‘students explaining their thinking, working publicly through an incorrect idea, making a conjecture, 

or coming to consensus about a mathematical idea’ (Franke, Kazemi, & Battey, 2007, p. 231). Other 

teacher-dominated patterns are described, such as uni-directional communication (Brendefur & 

Frykholm, 2000) and conventional text-book classroom culture (Wood, Williams, & McNeal, 2006). 

However, the teacher domination appears in different ways, which might be illustrated by the four 

types of communicative approaches suggested by Mortimer and Scott (2003). Three of these 

approaches can be seen as illustrations of different types of teacher dominance. In B – the non-

interactive / dialogic approach – several points of view are paid attention to but without allowing 

others to participate. This could occur when a teacher presents several points of view and discusses 

these without allowing students to participate actively. In C – the interactive/authoritative approach - 

the participants are allowed to participate but only one point of view is paid attention to by the teacher. 

In D – the non-interactive / authoritative approach - only one point of view is attended to and the 

teacher does not allow others to participate. 

The alternative to teacher domination is found in A – the interactive / dialogic approach - where 

several points of view are paid attention to and people are allowed to participate actively. Others have 

also described communicative approaches where students are actively engaged. One such type of 

approach focus on sharing ideas, such as strategy-reporting classroom culture (Wood et al., 2006, and 

reflective communication (Brendefur & Frykholm, 2000). Another type of classroom communication 

reported is where the students work alongside the teachers solving problems, such as 

inquiry/argument classroom culture (Wood et al., 2006) and instructive communication (Brendefur 

& Frykholm, 2000). 

While the above are examples of characterizing entire practices, other scholars have studied single 

utterances in more detail. In one such approach, Alrø and Skovsmose (2002) identified eight 

communicative features: getting in contact, locating, identifying, advocating, thinking aloud, 

reformulating, challenging and evaluating. While all these eight communicative features were present 

in both student-student and teacher-student interactions, others describe different types of student 

participation, such as Drageset (2015) describing five types of students interactions; initiatives, 

explanations, partial answers, teacher-led responses, and unexplained answers. Students explanations 

might be particularly interesting, consisting of explaining reason (why), explaining concept and 

explaining method (how and what).  

There also exists frameworks and concepts describing how teachers orchestrate discourses in the 

classroom. Ponte and Quaresma (2016) suggest a framework to analyze discussions that distinguish 

between management actions and actions related to mathematics. The four teacher actions related to 

mathematical aspects are inviting, informing/suggesting, guiding, and challenging. Fraivillig, 

Murphy and Fuson (1999) also focus on similar teacher actions by describing how a teacher use 

students’ ideas to lead them towards more powerful, efficient and accurate mathematical discussion 

by eliciting, supporting, and extending children’s mathematical thinking. While Fraivillig et al. 



(1999) developed the concepts from a study of a particularly skillful teacher, Drageset (2014) 

developed a framework based on a study of five rather ordinary teachers. The result was that the 

redirecting, progressing and focusing framework (Drageset, 2014) that describes actions where the 

teacher actively involves the students (such as enlighten details and justify), and also describes actions 

where the teacher is more authoritative and less interactive (such as simplifying, closed progress 

details and demonstrating) than described by Fraivillig et al. (1999). Teacher dominance is also 

described by others, such as through funneling (Wood, 1998), the Topaze effect (Brousseau & 

Balacheff, 1997) and guided algorithmic reasoning (Lithner, 2008).  

Method 

This study is part of a larger study on how the use of drama and roles can change the classroom 

discourse. The study includes classes from primary, secondary and pre-service teachers. The data in 

this article comes from a primary classroom.  

The long term goal of this project is to develop knowledge that can be used to educate teachers in 

changing classroom discourse. With the lesson reported in this article, we wanted to try out a lesson 

with the students to understand what is possible using roles exemplary. To achieve this, the lesson 

was led by one of the researchers. This means that we are exploring the potential to change students’ 

participation using roles, analyzing qualities of students’ participation. We will also look at the 

teacher’s (researcher’s) actions in order to understand the reason for any changes in student 

participation. To see how students normally participated, we filmed a few lessons before the process 

drama. 

The selected classroom was chosen of convenience and consisted of 17 students from a typical upper 

primary school in Norway aged 11-12. None had been refugees or had any first-hand knowledge of 

Syria or refugees. Their teacher has a typical Norwegian four-year teacher education with some 

specialization in mathematics. 

The lesson was filmed and transcribed. The data was then analyzed using conversation analysis 

(Linell, 1998), describing qualities of single utterances from student and teachers, grouping them 

together to establish categories. 

Findings 

The lessons before the process drama showed a traditional IRE-classroom. The students answered 

the questions they were asked, often answering tasks and sometimes explaining concepts and 

methods. The teacher dominated the talk. 

The lesson in focus here is the first lesson after the process drama. The teacher of this lesson, which 

was one of the researchers, started by discussing the roles learned during the process drama. The 

students suggested important features from each role, especially the elder, the skeptic and the curious. 

They then agreed to use these roles actively during the coming lesson. Sometimes during the lesson, 

the teacher reminded the students of their roles, or challenged some of them to use one specific. The 

following excerpts are carefully chosen to illustrate the typical discourse of the lesson. 

The students were given two tasks about decimals and told that they should use two different methods 

to solve them. Prior to this, the students had worked with informal methods to operate on decimals. 

The tasks used names from the process drama, Omar and Samira, and told them that Omar had 3,2 



liters of water while Samira had only 2,6 liters during a travel in the desert, and asked how much 

Omar had to give to Samira to get level. The other task was similar, but with Omar and Samira having 

0,7 and 5,3 liters, respectively. Early in the lesson, one student volunteered to tell how he solved the 

first task of sharing water (figure 1): 

Student:  Here I only thought, first I made a number line, and then I thought… what was it? 

Two comma … six? (draws a number line with 2,6 to the left and 3,2 to the right)… 

And then I took as many markers as it was… between the two (points out 2,6 and 

3,2, and draws a marker for every tenth, see figure 1)… three comma zero, three 

comma one, and then three comma two (points)… and then… and then I just jumps 

like this, this, this, there (draws three jumps from each side towards the middle, 

marks the middle with a vertical line). And then I see how long it was from the 

middle to there (points out 3,2), it was three… or it was three to the middle. And 

then I thought that it just were zero comma three. 

 

Figure 1: Solving the first task – first strategy 

When explaining an alternative method for solving the same task as above, a student said this: 

Student:  2,6 and 3,2 (writes them on the blackboard, look at figure 2) then I just jumped… 

then it became 3,0 there (writes it below 3,0) and 2,8 there (writes it below 2,6, and 

draws and arrow from 3,2 to 2,6 with 0,2 above the arrow). And after that I just 

jumped one there (draws a line between 2,8 and 3,0). And then it became 2,9 and 

2,9 (writes 2,9 below both 2,8 and 3,0, and writes 0,1 above the line between 2,8 

and 3,0). And then I just added these two (0,2 and 0,1) and then I got 0,3 (writes 

=0,3 to the right). 

 

Figure 2: Solving the first task – second strategy 



These two explanations are similar as they seek to explain every step from task to answer, telling 

others how the answer was found. Such explanations naturally occur following a request to tell what 

had been done or how a solution were found, and were the most common type of explanations during 

the lesson. 

However, this was not the only type of explanation observed during the lesson. An interesting 

exchange of meaning came when a student disagreed to the first solution (figure 1): 

Student A:  Yes, but I found another answer 

Student B:  What did you get? 

Student A:  0,6 

Student C:  Me too, but then I found out that I had got wrong 

Student D:  0,3 

Student B:  Why did you get 0,6? 

Student A:  Because I counted on both sides 

Student E:  Me too 

Student B:  Yes, but in the middle. Thus when you jump with both of them then you should not 

count it and, because, the question was thus, the question was not how much was 

between them, it asked how much it was, how many liters Omar had to give Samira 

then. You should not count how far, it was only like, when they met. Where they 

met you should stop counting, you should not continue counting… and down. That 

was only therefore. 

There are several things worth noticing in this discourse. First of all, a student challenges another. 

When the two opposing answers are presented, student A is asked why she got 0,6. The answer is 

short, but explains the reason for the answer clearly as the student points at the drawing on the 

blackboard. We can also see two instances of support for the answer 0,6, even though one had 

changed meaning. In the end student B explains the reason why he means 0,3 is correct and 0,6 is 

incorrect. It is a long explanation, and the student struggles to find the words, but ends up convincing 

the other students that 0,3 is correct. And during all this, the teacher is not participating.  

Explaining reason is different from explaining method (Figure 1 and 2) as explaining reason seeks to 

argue for and justify the solution, explaining why instead of how or what. Explaining reason occurred 

frequently during the lesson. Sometimes the reason was explained quite clearly, other times more 

struggling (like the long explanation of 0,3 being the correct answer), and some times the explanation 

was insufficient. Explaining reasons naturally came as a result of someone asking why a solution is 

correct, or as above as an argument when challenged with an alternative solution.  

The examples above illustrate the discourse of the lesson, where the students frequently ask questions 

to each other (why, how, what) and frequently explains method and reason. Also, student challenges 

and clarifications are observed. 

The teacher did participate during the lesson in different ways, mainly by asking questions such as 

these five examples from different parts of the lesson: 



1) On the first task, is there anyone that wants to tell the method used on that one? 

2) Can you show us on the blackboard? 

3) Were there anyone else that got three comma zero? 

4) Okay. Are there anyone that has done it in another way? 

5) Yes. And what was the answer then? 

The first two is about enlightening details, either by asking a student to tell the method or by using 

the blackboard so that it is easier to follow the line of thought. The third and fourth are examples of 

how the teacher asked for alternative strategies, and the fifth is an example of how the teacher 

sometimes requested clarifications. Evaluations or support from the teacher were observed, but rarely. 

Funneling and guided algorithmic reasoning were simply not observed at all.  

Conclusion 

This first lesson after the process drama contained considerably more student than teacher talk, as 

exemplified by the excerpts. The most frequent types of student interactions were questions (why, 

what, how) and explanations of method and reason. The questions can be related to the roles of skeptic 

and curious, and the result of these were explanations and arguments. These questions and 

explanations played out as a discourse where the teacher acted as a moderator. The teacher did not 

take the typical role of the elder (authority) but instead allowed the students to take this role. This 

type of discourse has similarities with both interactive/dialogic communication (Mortimer & Scott, 

2003), strategy-reporting classroom culture (Wood et al., 2006) and reflective communication 

(Brendefur & Frykholm, 2000) as the focus is on sharing different strategies. But the lesson goes 

beyond these where the students’ request explanations and the discourse goes on with explanations, 

questions and clarifications without teacher participation. In these cases, the lesson might be defined 

as instructive communication (Brendefur & Frykholm, 2000), where the teacher requests details, asks 

for alternative strategies, and requests clarifications. However, it is not an inquiry/argument 

classroom (Wood et al., 2006) as the teacher is not really working together with the students to solve 

problems. 

Reduction of complexity, such as funneling, guided algorithmic reasoning and the Topaze effect, 

which are the most frequently used teacher actions in other classrooms at upper primary level in the 

same area (Drageset, 2015) were not observed at all. It is also evident that the lesson does not follow 

an IRE-pattern, as students both initiate (ask questions) and evaluate (agrees, requests explanations, 

and challenges). 

A majority of the student interactions, especially their ability to ask, explain and challenge, is similar 

to the roles practiced upon during the process drama, especially the curios through the students’ use 

of questions (why, how, what), but also the elder through the willingness to listen to alternative 

strategies and assess which is the best, and occasionally the skeptic through questions and 

challenging.  

The role of the teacher was withdrawn and might seem of little importance. But this change does not 

happen by itself, the teacher is the key to the change. First by leaving the typical ‘elder’ role and 

inviting students to fill this role by asking them to decide right and wrong and assess each others’ 



suggestions. Secondly, by acting as a moderator to encourage the use of other roles such as being 

curios and skeptic. 

Further study of the process drama itself, and the lessons filmed before the process drama, is needed 

to understand how much the students’ involvement changed and if it is possible to explain any 

changes by our use of process drama. In general, there is a need for research related to the use of roles 

to establish different types of discourse, and also how teachers can learn, rehearse and use roles to 

develop their practice. 
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In different moments of teaching, such as in launching, exploring and discussing a task, teachers 

carry out different actions, which have a critical influence on the classroom dynamics. Our aim is to 

identify and understand the actions that Berta, a prospective teacher, undertakes in instructional 

practice to promote students’ conceptual learning of rational numbers. For this paper, data were 

collected and analyzed from classes observed and videotaped. To promote and organize an 

exploratory environment, Berta launched the task, strived to promote interactions, organized 

students’ solutions, and attempted to promote a discussion environment with inviting, supporting and 

challenging actions in order to lead students to learn rational number concept.  

Keywords: Teachers actions, moments of practice, prospective teachers, rational numbers. 

Introduction 

Rational numbers are a topic that raises many difficulties for students. Teaching rational numbers 

leading to conceptual learning is a challenging task for teachers. This topic, very important in the 

elementary mathematics curricula, requires the exploration of different representations to support 

students’ learning. In fact, the complexity of these numbers is related to the different meanings (such 

as part-whole, quotient, measure, and operator) and representations (such as decimals, fractions, 

percent, active and pictorial representation) that they may assume (NCTM, 2007). To foster students’ 

understanding of mathematics concepts teachers are challenged to promote an exploratory learning 

environment (Ponte, 2005). Research has given attention to prospective teachers’ knowledge about 

how and why to teach rational numbers in different ways. For example, a study by Isiksal and 

Cakiroglu (2011) indicates that prospective teachers have different perceptions of children’s mistakes 

and different suggestions of strategies that may be followed including using multiple representations, 

using problem solving strategies, making clear explanations of questions, and focusing on the 

meaning of concepts. However, it is important to understand the practice that prospective teachers, 

with these teaching views, accomplish and what kind of action takes place in the classroom. There 

are few studies focusing on the teaching practice of prospective teachers, paying attention to their 

actions in different moments when they explore different tasks with their students and to the 

communication that entails. So, in this paper we aim to identify the actions that a prospective 

elementary school teacher (Berta) accomplishes in different moments of instructional practice, as she 

strives to promote students’ conceptual learning of rational numbers. 

Prospective teachers instructional practice 

Teachers’ practice could be analyzed with different approaches (cognitive or sociocultural). Ponte, 

Quaresma and Branco (2012) reconciling the two approaches attend to curricular and social context, 

teacher knowledge, actions and teachers reflection.  In this regard they propose to analyze teachers’ 

practice with reference to two main aspects: the tasks proposed to students and the communication 
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established in the classroom. In respect to tasks, teachers may choose to just offer simple exercises 

or also propose challenging exploratory tasks, problems and investigations in which the students need 

to design and carry out solving strategies based on their previous knowledge (Ponte, 2005). 

Communication may be oral or written, and it includes both linguistic and mathematical 

representations. One important aspect of communication is questioning, involving confirmation, 

focus, and inquiry questions (Ponte et al., 2012). Communication also includes those representations 

that are used to aid in solving a task, such as building or illustrating objects, concepts, and 

mathematical situations (NCTM, 2007). Another important aspect of communication is explanations. 

Instructional explanations may have different purposes and characteristics and may be carried out at 

different times during a lesson (Charalambous, Hill & Ball, 2011).  

Shaped by communication we have the teachers’ actions that influence the classroom dynamics. In 

different moments of work the actions address the development of mathematical concepts and 

processes (Ponte, Mata-Pereira & Quaresma, 2013) and management of the learning environment 

(NCTM, 2007). In an exploratory environment the work with a task may develop in three fundamental 

moments: Launching, exploration and discussion (Stein, Engle, Smith & Hughes, 2008). In launching 

the teacher organizes the students and the materials (NCTM, 2007) and proposes the task informing, 

inviting and guiding (eliciting) the students to solve it (Lobato, Clarke, & Ellis, 2005). The students 

have to understand the task, identify conditions and data. To promote the quality of the discussion of 

the task and knowledge that may be built, the teacher must discuss key aspects of context and verify 

if the students recognized them. Further, the teacher must discuss and relate mathematical ideas with 

key contextual characteristics and build a common language clarifying the unknown or confusing 

vocabulary for students. Note that teachers should take care of maintaining the challenge of the task 

(Jackson, Garrisson, Wilson, Gibbons & Shahan, 2013). When students begin their work, in pairs or 

groups, it is important that the teacher guides and challenges them to build together their solutions, 

promoting productive interactions, and register solutions in an organized way (NCTM, 2007). During 

this time the teacher monitors students’ work, questions them and clarifies doubts related with content 

or the task context informing. Again, the teacher supports students, questioning or even explaining, 

but must not decrease the level of demand of the task and give the opportunity to different solutions 

to emerge by challenging students. During this moment the teacher selects solutions and structures 

the sequence of the discussion with a focus on the purposes of the task (Stein et al., 2008). The third 

moment is the discussion of the task where the teacher orchestrates students’ ideas, organizes and 

supports oral and written communication, promotes interaction between students, connects ideas and 

guides students towards a powerful mathematical solution (Stein et al., 2008). Addressing the 

development of mathematical concepts and processes Ponte, Mata-Pereira and Quaresma (2013) 

consider four main types of actions: inviting, to begin the discussion; supporting/guiding, leading the 

students through different kinds of questions; informing/suggesting, giving information or validating 

students’ ideas; and challenging, encouraging students in interpreting situations, finding new 

representations, making generalizations and justifications, making connections, and evaluating their 

work. At the end of the discussion, the teacher must promote reflection on the work accomplished, 

the new concepts and procedures that emerged, and institutionalize the expected learning. The teacher 

may also review other concepts and connect with other situations reinforcing the main ideas (Stein et 

al., 2008). 



Research methodology 

This paper emerged from a larger study of an exploratory nature and takes a qualitative and 

interpretative approach, following a case study design (Stake). We analyze the supervised practice of 

three different prospective elementary school teachers to characterize it and to understand the 

challenges and options that they face in different moments of instructional practice, as they strive to 

promote students’ conceptual learning of rational numbers. Data were collected from semi-structured 

interviews and video-stimulated recall interviews after class. Four lessons were observed, videotaped 

and fully transcribed. We also collected documents produced (lesson plans and written reflections). 

For this paper we analyze one prospective teachers and her instructional practice in one of her lessons. 

Data were analyzed based on categories that emerged from the above framework, namely teachers 

action in launching, exploring the task and in discussion of the task combining the actions invite, 

inform, guide and challenge. Bertas’ case, a prospective elementary school teacher, could represent 

the teachers that suggest an exploratory approach to develop conceptual knowledge of their students. 

So, we aim to identify the actions that she accomplishes in different moments of instructional practice, 

as she strives to promote students’ conceptual learning. In the Teacher College last semester, Berta 

considered important that students understand the concepts and develop mathematical 

communication through an exploratory approach, valuing contextualized situations and open tasks. 

In the mathematics education course she analyzed the video of a class and its teacher’s plans and 

reflections. When she was about to teach the notion of percentage selected the task of the video to 

explore with her students. We should note that her practicum takes place in a 6th grade class with 20 

students who don’t have experience in discussing open tasks. Comparing the knowledge and skills of 

her students with the students of the video, she defined her teaching purpose and decided to promote 

her students’ conceptual learning of percentage, the development of mathematical communication, 

and problem solving skills.  

Actions of a prospective teacher in different moments of teaching practice 

Launching the task 

 Berta introduced the task “Petrolex” distributing the worksheet to each student and asking one 

student to read it (figure 1). In order to promote “a short discussion with students about the thematic 

of fuels price” (WR), she highlighted key aspects of the context of the task, ensures that the students 

recognize them, and reinforces the main question: 

Figure 1: Berta Percentage Task 

Let’s see. The gasoline has a price… Next you will discuss that but… The gasoline has a price, 

right? You will increase the price in 10%. But the drivers don’t like the new price and protest… 

Then the director decreased again the price in 10%. What does this mean… Diana [as others] is 

telling us that gasoline returned to the same price … And they say no… Who thinks that the price 

returned to the same value? 



Berta invites, informs and guides the students in understanding the task and feel challenged. In 

response to some students said that the price went back to the original price and others disagreed. The 

discussion began and Berta provided information about the organization of the work and stressed the 

importance of making written records of the solving processes to support the discussion. The 

prospective teacher invited the students to solve the task, organized students’ time and reinforced the 

importance of recording their different ideas about the challenge proposed. Berta ended the initial 

discussion and emphasized that it has to be made in pairs: 

So what will you do? We will not say more and join your partner and try to understand what would 

be the price of gasoline be… Will it return or not to the initial price? We have five minutes and I 

will circulate between the tables to try to understand… Attention, what you have written. Say yes, 

say no, do not erase anything! Leave everything as it is! Then we will see what you thought, what 

do you see and what is the final decision. 

Exploring the task 

The students began to work in the task and Berta circulated around the pairs, observing solutions and 

supporting struggling students. One student requested her help and she highlighted the main question 

posing different questions: 

Student 1:  This is a tricky question! 

Berta:  Why? I do not say anything... I’m only asking if it is the same value of the 

beginning? There is no trick! 

Student 2:  It returns to the initial price! 

Berta:  So we can see it... Can you try a way to view it? 

Student 2:  Calculating! 

Berta:  You can do it! 

Student 2:  Can I make up a price? 

Berta:  You can make up a price! But look carefully what the price is... 

Student 1:  60 euros. 

Berta:  You did not have to say an actual price but do you think that this price is so...?  

In this dialogue Berta posed an inquiry question reinforcing the main question. The students’ idea 

was not right and the prospective teacher guided students’ work by suggest/informing them to try 

different values and verify the conjecture. The students suggested a price, she confirmed the idea and 

reinforced and focused students on the nature of the price. Before Berta letting the students work on 

their own, she tried to promote students’ interactions and warned the class about the importance of 

the written record of the solution: 

Okay... So you are working in pairs and therefore you can talk about that and make up a price . . . 

[To the class] Attention of what you write down... Do not erase so we can see how you thought! 

Berta wanted the students to discuss their options and insisted that they had to work in pairs, 

promoting interactions. Anticipating and preparing the moment of whole class discussion, she 



emphasized the importance of recording all the ideas. As she asked not to erase any solutions we can 

assume that she wanted the wrong solutions so that the errors and different ideas could be discussed. 

Berta observed the students’ work and supported and guided, in a provoking way, other students. 

However the class ended and the discussion happened in the next day. 

Discussing the task 

Berta began the class by organizing the students in the same pairs and distributing back the solutions 

that she had already analyzed at home. One pair had a good solution but it was not well organized. 

The prospective teacher numbered the different steps and checked with the students her proposed 

organization. She informed the pair of the importance of organizing written communication to clarify 

their ideas to others and skipped the opportunity to discuss it with all students. After this, she began 

the discussion of the task.  

To promote a discussion environment and to invite students to the work, Berta recalled the first idea 

of many students. She asked a student to present his first idea and then the second solution he built 

when he realized the error. We notice the sequence of solutions presented: 

Most of you [initially] considered that the price of gasoline would return to the initial value. After 

the increase and after the decrease! So your colleague will start by explaining the first part. Why 

did you think that the price returns to the same? . . . Do not copy anything, first let’s see... 

After the students registered their solution in the white board, one student explained their idea (figure 

2): 

 

Figure 2: Tomas first solution 

I did... a friend and I... I lent pens [to a friend] and I went back and ask him for the pens. [It is the 

same situation] and so the price is back to the same!!  

Berta guided the presentation and asked the students if they tested their idea with a value. She 

challenged the students by asking “Have you verified if it gives you the same value!?” establishing 

connection with the second solution of the same pair. The student recorded the second solution with 

10 euros as a starting value and explained his ideas with the support of Berta: 

 

Figure 3: Tomás’ second solution 

Tomás:  The gasoline costs 10 euros and 10% of 10 euros is 1€. 



Berta:  . . . Why did you do 10% of 10? 

Tomás:  To know how much is the value we have to add up to 10 €. 

Berta:  Exactly! And then? 

Tomás:  Then I added 1 euro to 10 and gave 11 euros. And then people protested... 

Berta:  . . . How much was the increased value of fuel? . . . 

Tomás:  It increased 1 euro.  

After Berta made a supporting question the student replied: 

Tomás. Then it decreased by 10% and 10% of 11 is 1.10 euros. 

Berta:  And here Tomás did very well... Because Tomás calculated 10% of 11 euros and did 

not calculate (as some students did) 10% of 10 €? . . . Because we had to see 10% of 

what we had again! Right? So the amount of the discount is 1.10 €. OK? So the fuel is 

9.90 €. If you were a driver, would you prefer this to happen or not? 

The students presented their work and to support their presentation Berta posed an inquiry question, 

challenging Tomás to explain why he and his partner did multiply 10% of 11 euros. After that she 

focused the students to the specific procedure. At the end she recalled Tomás’ explanation and 

reinforced the students’ focus on the main question. Others pairs of students presented their work 

with a more realistic value. To help students’ presentations, Berta organized their computations and 

clarified issues related to mathematical language. At the end of the presentation, she recalled the task 

and the two solutions and focused students’ attention on the reference unit. For that, she built a 

representation in hard paper and related it to the students’ solutions. However she struggled with the 

students’ difficulties in “seeing” the difference between before and after the rise of gasoline. Berta 

first explained the conceptual idea of the difference between 10% of the first unit (brown) before of 

the increased price and the 10% of the second unit (pink) after the decrease of the price: 

 

Figure 4: Final synthesis scheme  

The 10% will now relate to another unit, not the same as before? Now we have a different unit . . . 

And this 10% is bigger than that one . . . We have a new price with plus 10%. You are thinking 

well! I stay with this unit but now I have to withdraw the 10%. But the 10% are not the same! . . . 

Because the value of the unit is different.  

Given the difficulty of some students in understanding the explanation, Berta assumed that maybe 

other percentages would allow the students “to see better” and presented a new representation with 

20% making more evident the difference between the increase and the decrease in the final price. In 

the synthesis she said: 



Berta:  If you noticed the starting price was up here (bigger heavy paper). But the final 

price is already here (less heavy paper). What does it mean? The final price will 

always be lower than the initial price, right? . . . We had seen it here for € 1.5 that 

gave us € 1.48, right? 

Student1:  And this part here, brown, is the 0,15€. 

Berta:  Yes! This part here, brown, is the 0,15€…  

Student1:  And this one is 0,02€… 

Berta:  And this piece is the 0,02€! Very well! 

For the synthesis, to guide students on building the percentage concept, Berta prepared a hard paper 

in order to represent the problem situation. She struggled with the representation prepared and 

students had difficulties in realizing the difference between the rectangles. Some students understood 

the explanation but others did not. The prospective teacher was referring to the problem posed and 

connected her representation with the procedural solution of the students. We notice that she was 

returning to essential aspects like reasonability of the price value and the influence of the unit of 

reference on percentage. 

Conclusion 

Bertas’ lesson was based on launching, exploring and discussing one task. She organized students 

and materials, encouraged and valued students’ ideas and discussion among pairs. She combined 

invited, informed and guided actions reinforcing the main question and focusing students; attention 

on the fuel value and the impact of the increase and decrease of fuel by 10%. During the exploration, 

she suggests students to try real values of the fuel, supported, guided and challenged students’ ideas 

and finally promoted solution recording. Berta also highlighted the importance of the discussion 

among students but, in this lesson, we couldn’t see students posing questions to each other or actions 

consistent with the idea of developing mathematical argumentation. So, during students’ autonomous 

work, Berta mainly challenged students. Berta organized and selected several solutions sequencing 

them for the discussion. We cannot say that Berta accomplished a dialogic discourse and students 

really discussed the task but as it is her first teaching practice, her effort can be valued with respect 

to sequencing students’ presentations to enable connections among solutions (incorrect, correct and 

mathematically powerful). During the task exploration and discussion she posed put different 

questions with different focuses: from more open and challenging to more supportive and focused. In 

the final synthesis, although the main ideas were not recorded on the board, she focused the students’ 

attention on the solutions of the task, establishing connections and explaining the main idea but not 

discussing the percentage concept. So, at different moments of the instructional practice, Berta carried 

out different management of the learning actions and of the learning environment actions. Berta’s 

actions in launching and exploration moments created opportunities to learn when she supported 

students in solving the task and didn’t decrease the task demand. As a result different solutions 

emerged to be presented and analyzed in whole-class discussions (Jackson et al., 2013). In different 

moments of practice we can identify different actions combined. Bertas’ aim was to challenge 

students to build their knowledge together. However maintaining the mathematical demand during 

questioning and promoting the task discussion could be a complex practice for prospective teachers 

as we can see with Berta’s case. 
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Understanding the complexity of teaching also means understanding issues outside classrooms, 

including planning in mathematics. Although planning is part of a mathematics teacher’s everyday 

life, there is no shared understanding of it, and little is known about how teachers’ planning is related 

to other practices. In response, to explore what planning means to mathematics teachers and 

planning’s relations to other practices, interviews were conducted with teachers and their contents 

analyzed in several steps to generate a story of each teacher’s experiences with planning. For one 

teacher, Fia, planning meant decisions and considerations about mathematical content and teaching 

situations, as well as navigating the decisions and opinions of other actors. Fia’s planning is related 

to practices of management, mathematics teaching, and mathematics teachers, all of which 

influenced her planning and how her students encountered mathematics in the classroom.  

Keywords: Planning, teaching, meaning, practice, interview. 

Introduction 

Teaching in mathematics is complex and cannot be isolated from students’ learning or context. To 

acknowledge that complexity, “deeper explanations of teacher’s decisions and actions” (Potari, 

Figueiras, Mosvold, Sakonidis, & Skott, 2015, p. 2972) are necessary. The decisions that mathematics 

teachers make and the considerations they take into account before entering teaching situations 

influence what happens in the classroom and thereby students’ opportunities for learning. To explore 

those considerations and decisions, the planning in mathematics teaching is vital in order to 

understand the complexity of teaching and to improve students’ possibilities to learn. However, 

research has demonstrated a lack of consensus about the concept of planning in mathematics. Former 

studies focus mainly on the planning itself and not how planning in mathematics is a part of a complex 

whole and related to other practices. The lack of shared understanding, as well as of studies addressing 

the complexity of teaching and planning, are thus inevitable stumbling blocks when studying planning 

in mathematics. Still, knowledge about what teachers actually do when they plan and their constructed 

meaning about planning might be important information that contributes to an understanding of 

teachers’ work. However, examining only individual aspects of teachers’ work is not enough to 

overcome gaps in research. Teaching is complex not only because it consists of many parts, but also 

because those parts are framed by “contextual, epistemological, and social issues” (Potari et al., 2015, 

p. 2972). To elucidate those issues, it is helpful to conceive planning in mathematics as a practice in 

which individual teachers act in a specific time and place, and in which their habitual ways of acting 

are related to other practices within “a network of practices” (Chouliaraki & Fairclough, 1999, p. 23). 

By acknowledging planning in mathematics as a practice, the aim of this study was to explore that 

practice as a part of a network of practices. To that end, it was necessary to know how teachers 

construct meaning while planning and reflecting upon their planning in mathematics, to what 

practices they relate planning and reflection, and how they express them in stories about their 

planning. An interview study with six teachers was designed to answer those questions. This paper 

recounts the story of one teacher, Fia, that includes several of the aspects and relations described by 

the other teachers interviewed.    



Background 

Planning in mathematics teaching 

Although planning done by mathematics teachers bears consequences for students’ learning, studies 

in the topic remain scarce. Research about planning in mathematics that does exist address three chief 

aspects: design research including learning and lesson studies, teachers’ mathematical knowledge in 

relation to their planning, and models and templates for planning. Few studies, none of them 

conducted in Sweden, have focused on what teachers do in their everyday lives as teachers. National 

documents based on the Swedish curriculum advocate that planning should be done in a systematic 

way (Skolverket, 2011) similar to that in models emphasized in research (e.g. Gomez, 2002; 

Superfine, 2008). However, conversations with Swedish teachers and student teachers have indicated 

that planning means deciding what to do with a focus on activities, not goals or mathematical content. 

Such a focus on activities also appears in international research on the topic (Akyuz, Dixon, & 

Stephan, 2013; National Research Council, 2001). In sum, when people talk about planning in 

mathematics teaching, they demonstrate no shared understanding of what it means.  

Practice 

One way of describing the complexity of teaching is to use the term practice, which captures both 

individual people’s actions and more habitual, common ways of acting within a practice (Chouliaraki 

et al., 1999). Accordingly, conceiving planning in mathematics as a practice can afford a way to 

conceive teachers’ actions both as individual actions and actions shared by other mathematics 

teachers, as well as a way to conceive the relationship between those actions and abstract structures, 

that is how social structures govern people’s possibilities to act (Lund & Sundberg, 2004). Since each 

practice is determined from others within a network of practices and since power relations always are 

present (Chouliaraki et al., 1999), knowing more about teachers’ planning practice becomes a way of 

knowing more about how the process of planning is related to other practices and how power relations 

are working within the network of practices. In that sense, using practice as a concept to explore 

planning in mathematics is a way of considering “contextual, epistemological, and social issues that 

frame mathematics teaching” (Potari et al., 2015, p. 2972).  

Meaning  

In this study, meaning referred to “a (collectivity of) subjects’ way of relating to – making sense of, 

interpreting, valuing, thinking, and feeling about – a specific issue” (Alvesson & Karreman, 2000, p. 

1147). How teachers relate to planning, makes sense of planning, interprets planning, values planning, 

and thinks and feels about planning were thus of interest in interviews and their analysis. The meaning 

that teachers expressed was both transient – that is, constructed and emergent in interactions in 

interview situations – and durable – that is, connected to cultural and individual ideas. By conceiving 

meaning as partly durable, it was possible to explain how previous experiences and more habitual 

ways of acting formed part of the meaning that teachers expressed in interviews.  

The study  

An important starting point when designing the study was an interest in considerations that teachers’ 

have and the decisions that they make that precede and influence what happens in the mathematics 

classroom, here called planning in mathematics teaching. With the notion that planning is both a 



focused, time-bound activity and what emerges from reflections and thoughts that can occur at any 

time, as well as given the aim to explore a concept about which there is no shared understanding, it 

was necessary to approach the phenomenon as unprejudiced as possible. Since all teachers have heard 

about and applied the concept of planning it was important to listen to the voices of teachers, hence 

the decision to use interviews as a method. In the larger study, from which Fia’s story was taken, 

teachers’ reflections on planning were explored. Each of six participants was asked to keep a 

notebook for a period of two weeks before the interview in which they were asked to record actions, 

reflections, and thoughts that for them were related to planning in mathematics. In the interviews, 

teachers referred to their notebooks and chose topics to talk about. The interviewer’s role was to listen 

affirmatively by uttering encouragement and nodding, asking for clarification when something was 

unclear, and asking follow-up questions. By not using predetermined questions, teachers were 

afforded freedom in the discussion about planning, which made it possible to see beyond pre-

understandings and the normative speech of planning that dominates mathematics education research. 

The use of notebooks provided a possibility for each teacher to return to the notebook on several 

occasions, and the interview situation where the notebook was used as stimuli, was a way to 

experience meaning as durable. In the interview situation, transient meaning was constructed and 

emerged in interactions both with the interviewer and with the notebook.  

Analysis 

Conducting interviews with notebooks as stimuli was a way of foregrounding teachers’ experiences 

and meaning. To continue in that spirit, analysis needed to be based on the material, not predetermined 

categories. Along with reviewing the stories of each teacher separately, aspects hidden in stories as a 

whole were also sought. Those somewhat contradictory motivations required staying close to the 

material and keeping a distance from it. Consequently, analysis proceeded in several steps, the first 

of which involved reading each utterance per se, and noting what discursive action was performed by 

making the utterance. During that initial coding memos were written to record spontaneous reflections 

and ideas, as inspired by Charmaz (2014). In another version of the transcripts, meaning units (that 

is, units considered relevant to considerations and decisions that preceded and influenced what 

happens in the mathematics classroom) were marked. Each unit was paired with the activity belonging 

to the unit in the first transcript, and by interpreting the meaning unit and the activity together an 

aspect of planning, considering, or decision-making emerged (Table 1). 

  



Meaning unit (from step 2) Activity (from step 1) Aspect 

We have a template that we should 

stick to. 

Expresses 

requirements from 

school administration 

Formal 

requirements 

…that talented students and parents 

would say that it [special 

educational approach] was wrong… 

or the parents of those students 

Expresses unspoken 

expectations from 

parents and students 

 

Discourse of 

mathematics 

education 

Why have I not talked about… 

talked with colleagues about this 

movie before? 

Reflects on telling 

each other  

Colleagues 

Table 1: Examples from analysis step 1 

To see aspects hidden in the stories as a group, distance from the material was necessary. Inspired by 

Szklarski (2015), meaning units were therefore transformed from the first- to the third-person 

perspective (Table 2).  

 

Meaning unit Transformed meaning unit 

When will I be able to plan with my 

colleagues? The work turns into working 

alone although I don’t want it to. It is a 

lot… We make these big, long-term 

plans, but we never have time to see each 

other once we’ve started [implementing 

the plans]. 

When will she be able to plan with her 

colleagues? The work turns into working 

alone although she doesn´t wants it to. It 

is a lot… They make these big, long-term 

plans, but they never have time to see 

each other once they’ve started. 

Do I dare consider it [special education 

approach] from the beginning? Do I have 

the energy? Do I have the time? 

Does she dare consider it from the 

beginning? Does she have the energy? 

Does she have the time? 

Table 2: Examples from analysis step 3 

The transformed meaning units were organized so that units dealing with the same aspect were 

grouped and read as a whole. As a result, meaning was identified and could be expressed as a product 

of synthesis (Table 3).   

 

 

  



 

Sorted and transformed meaning units 

(per aspect) 

Synthesis of transformed meaning 

units 

Content In her planning Fia sees that there are 

several parts to decide upon: what 

mathematical area the planning 

should cover, how to connect that to 

the everyday lives of students, and 

how to work with and make 

assessment in relation to students. 

Good activities can be reused with 

different foci. Fia thinks about how 

she will be able to apply an overall 

special education approach to her 

long-term plans. 

 

Area [mathematical] 

Planning in detail and thinking… how 

Relation to everyday life: How to get it 

[mathematics] related to the students. 

At examination, it [thoughts about students] 

comes  

How does Fia apply a special educational 

approach in her long-term plans? 

They watched a movie again. Fia has done 

that several times… The story of 1[name of 

the movie], but that one focuses on different 

things. Finding… find activities that you can 

say, that you can get the most out of… and 

maybe dare to weed out those that really do 

not give anything. 

Table 3: Examples from analysis step 4 

The synthesis of the transformed meaning units were organized and assembled into stories, one of 

each teacher. This paper presents the story of Fia, since it emphasizes several aspects visible in the 

other stories. 

Fia’s story 

Fia is a mathematics-, science-, and technology teacher in compulsory school grades 7–9. She used 

the notebook for reflections on her planning, teaching, and decisions. In the interview, she referred to 

her notebook and chose topics to discuss. At several times, she also reflected upon her reflections and 

reached new insights – for example, when she referred to “pedagogical plans” in her notebook and 

discussed how constrained she feels when she has to do her planning with a template.  

Fia: I have had exactly that [referring to the template] content before, but it has not been 

so formal… That formality… everything has to look the same. It makes me 

constrained, or I don’t feel free to think, or… 1,2,3,4: that must come first, then 

that, then that… But actually… It is also up to me! I can start to think about 

paragraph 4 if it’s about how we should work. 

In her story Fia referred to the template several times. She discussed how her school management has 

decided that a specific template has to be used when planning, largely to be able to collect the plans 

and thereby “see what is happening”. Time is another constraining factor for Fia, regarding both 



individual and collaborative planning. Colleagues are resources in Fia’s planning, and she would like 

more cooperation with them, also in her short-term planning. She also highly values spontaneous 

exchanges of ideas and experiences.  

Fia’s work with planning varies throughout the year. At the beginning of the school year she generally 

has more energy, but in the final weeks, particularly for the for the ninth graders, Fia tends to perform 

what she calls “spontaneous planning” – that is, decides immediately before lessons what she will do. 

Fia argues that “spontaneous planning” can be good; the creativity that she sacrifices with templates 

can bloom in “spontaneous planning”, and this also affords greater opportunities for student 

participation.  

Having two groups of the same grade level at different times of the day has made Fia aware of how 

much the schedule influence her planning. She has also experienced how other activities planned for 

the students (including field days, theater visits, project periods) steal time from her mathematics 

teaching and thereby affect her planning. If Fia were allowed to decide upon the schedule, then she 

would plan for more teaching situations with one or two students. One year she had opportunities for 

such occasions in her schedule and felt that they helped the students very much.  

The availability of materials is another factor that influences her planning. Fia discussed an occasion 

when she was sitting with a small group of students in a room beside the main classroom while the 

rest of the class was supposed to work in pairs with problem solving and show their solutions on 

small white boards. However, since there were enough white boards for all students, each student 

took one and worked individually instead. For Fia, that occasion exemplified how a teaching situation 

is a meeting between planning and reality and how the outcome can differ from what was intended.  

When planning, Fia makes several decisions, including what mathematical content to cover, how to 

relate that content to students’ everyday lives, and how to work with the content. Referring to a film 

that she has shown several times, she expressed how good activities can be used several times with 

different focuses. Besides decisions directly related to the concrete teaching situation, Fia has 

considered how to adopt an overall special education perspective in her long-term planning, which 

she thinks can benefit all students’ learning. Planning can help to “play it cool” and break norms 

about mathematics teaching. Fia gave examples when she has planned for working with a couple of 

students at a time although she had a lesson for the whole class, or when she has used the same film 

on several occasions for the same students. For Fia, planning is always about prioritizing and is related 

to feelings. She expressed how care for the students and their learning is critical when making 

decisions and how her own fears and energy level influence how the planning is done. Fia is 

constantly reflecting on previous experiences and how those experiences can be applied in future 

plans. She believes that even more reflection for example, after spontaneously planned lessons can 

be a good way to take advantage of good experiences instead of letting them go to waste.  

Fia describes a practice in which the way of talking about planning in mathematics is frustrating. 

Some ways of planning are more valuable than others, and Fia almost excuses herself for sometimes 

doing what she calls spontaneous planning. Knowing that other actors might have comments 

influence her way of thinking, and, according to Fia, changes in teaching can lead to questioning from 

for example parents and students. In her notebook, she had written about how she wanted to include 

a special education approach in her long-term planning. She had also written: “Do I dare? Do I have 



the energy?” Fia said that those considerations represented fears that not all students will be 

challenged and that she will have to argue for her choices. Fia thinks that she has the authority to 

make decisions about the teaching, but that exercising that authority takes energy.  

Analysis and discussion 

Reading Fia’s story in the light of meaning defined as “a (collectivity of) subjects’ way of relating to 

– making sense of, interpreting, valuing, thinking, and feeling about – a specific issue” (Alvesson et 

al., 2000, p. 1147) makes it possible to conceive how she constructs meaning and makes sense of 

planning in mathematics by choosing topics to discuss, by interpreting the practice of planning, and 

describing what she is doing and what is important for her. She discussed how choosing mathematical 

content and ways to present and work with that content always are part of her planning, as well as 

how good activities can be re-used with a different focus. Also related to the practice of planning is 

how she uses, and wants to use, reflections to benefit from past experiences, and how planning can 

help her break norms about mathematics teaching.  

Besides describing the practice of planning itself, Fia constructed meaning by, for example, 

discussing how decisions by school management regarding schedule, availability of materials, and 

templates influence her planning. From her story it is clear that she perceives models often 

emphasized as a support for planning (Goméz, 2002; Superfine, 2008) as constraints. This is possible 

to interpret as she is referring to a practice of management.  

Visible in Fia’s story are also norms about how mathematics teaching “should be done.” Those norms 

influence her considerations and decisions and emerged in her story as an invisible idea of what 

counts as teaching in mathematics, but also as concrete examples related to opinions of students and 

parents. Interestingly, Fia has ideas that she thinks would benefit students’ learning, but she 

contemplates to abandon them because she worries about parents’ and students’ reactions. When 

referring to thoughts of mathematics teaching, Fia relates the practice of planning to a practice of 

mathematics teaching.  

Closely connected to practice of mathematics teaching are the colleagues that Fia referred to several 

times. She talked about a desire to make more collaborative planning, and how colleagues can be 

resources also in spontaneous exchange of ideas and experiences. Those parts of the story can be 

interpreted as her referring to a practice of mathematics teachers, in which she sees herself as a part.  

In reality, the practice of management and the decisions made there to some extent determines how 

she can participate in the practice of mathematics teachers. The degree to which co-planning is valued 

in the practice of management clearly affects Fia’s schedule and how much time she has with her 

colleagues.  

Fia’s story makes it clear that her actions and reflections within the practice of planning relate to other 

practices in different ways. Some of those relations are constraining and hinders Fia from planning 

the way that she wants, whereas others contribute positively to her planning in mathematics. Since 

those other practices influence her planning they also implicitly influence her students’ possibilities 

to learn. Although the teacher is ultimately responsible for the teaching, results show that there are 

other aspects that influence the planning and, in turn, what happens in the classroom. That dynamic 

needs to be taken into account when discussing mathematics teaching and  forming development 

initiatives. Viewing teachers and situations in the classroom as isolated entities poses the undesired 



consequence that other important aspects that also influence students’ possibilities to learn 

mathematics are neglected.  
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Instructional research has recently become more important within the framework of teaching 

effectiveness research. Various instruments have been developed within this research discipline in 

order to gain a better insight of what is really happening in the classroom. Most of these 

instruments mainly focus on generic aspects of instructional quality. In this paper we first describe 

a subject-specific dimension of instructional quality. Second, we show how these subject-specific 

aspects could be measured empirically with a standardized observational instrument. The results 

point out both good interrater agreement and satisfying reliability measures. The presented 

observational instrument has been developed within the study TEDS-instruct in which relations to 

teachers’ competencies and students’ achievement are analyzed.  

Keywords: Mathematics instruction, instructional quality, classroom observation techniques, 

instructional improvement. 

Introduction 

In German instructional research, subject-specific aspects of instructional quality have been 

investigated rarely until now. Three generic dimensions have been introduced which are classroom 

management, personal learning support and cognitive activation (e.g. Lipowsky et al, 2009). 

Although these basic dimensions were developed for mathematics instruction in the first place, they 

are now deemed relevant for every subject at school (Baumert et al., 2010; Helmke, 2012). Other 

important aspects of mathematics instruction were apparently disregarded then (e.g. representations, 

examples, modelling, proof). Blum and others (2006) therefore ask for a high mathematical quality 

of the lesson beyond the three basic dimensions. 

At the same time, several instruments for measuring subject-specific aspects of instructional quality 

have been developed within the American debate (e.g. Learning Mathematics for Teaching Project, 

2011). However, some of these instruments do not contain generic aspects even though the 

prognostic validity of the three basic dimensions of instructional quality has been shown empirically 

more than once (see Baumert et al., 2010; Kunter et al., 2013; Lipowsky et al., 2009). In conclusion: 

to our knowledge there is no standardized instrument in existence that is based on a sound 

theoretical framework (e.g. the three basic dimensions) covering also subject-specific aspects 

regardless of the mathematical content discussed in class. Starting from these three basic 

dimensions, we would like to point out subject-specific characteristics of instructional quality that 

are deemed relevant in the literature and show how these characteristics can be measured with a 

standardized instrument. The purpose of this paper then is to describe the development of an 

observational protocol that is used to assess instructional quality in secondary mathematics classes 

and to present first empirical results.    

Theoretical framework 

In recent years educational research has shown a great scientific interest in teacher knowledge and 

instruction (see Hattie, 2012). At the same time, the relation of teacher competencies and students’ 



achievement has been analyzed (Baumert et al., 2010; Hill, Rowan & Ball, 2005; Scheerens, 2004). 

The so-called process-mediation-product-paradigm is regarded as a theoretical framework in which 

these research questions are grounded. This framework describes a relation between students’ 

learning and instruction which has to be offered by teachers and used by students (Brophy, 2000; 

Brophy, 2006; Helmke, 2012; Oser, Dick & Patry, 1992).  

Three basic dimensions of instructional quality 

As mentioned before, three generic dimensions of teaching quality have been developed in recent 

instructional research which are classroom management, personal learning support and cognitive 

activation. These dimensions were shown to have a positive impact on both students’ learning and 

their motivation in class (Baumert et al., 2010; Lipowsky et al., 2009).  

Classroom management focuses on quality-oriented learning time provided for students and on how 

effectively the teacher deals with disciplinary conflicts (Brophy, 2000). Effective classroom 

management is also characterized by a lesson that is organized well and has clear routines 

(Lipowsky et al., 2009). The second dimension, personal learning support, includes the individual 

support provided by the teacher, the relationship between students and teacher as well as 

constructive feedback (e.g. Rakoczy, 2008). Finally, cognitive activation refers to how problem-

solving tasks are used to activate learning processes (Baumert et al., 2010; Brophy, 2000). This 

dimension includes the activation of previous knowledge and whether challenging tasks and 

questions are presented that foster students in high-level thinking activities (Lipowsky et al., 2009; 

Praetorius et al., 2014).  

Although the three basic dimensions focus on generic aspects of instructional quality, the question 

remains whether they could be operationalized in subject-specific way. This holds specifically for 

cognitive activation (Drollinger-Vetter, 2011; Schlesinger & Jentsch, 2016). Moreover, it is not 

clear which subject-specific aspects are missing in this framework and how its dimensionality 

changes when generic and subject-specific aspects are measured simultaneously (Drollinger-Vetter, 

2011). Due to these concerns, most instruments that have been developed for the analysis of 

instruction are only suitable for a very small number of situations (e.g. regarding the mathematical 

content, see Steinweg, 2011; Schoenfeld, 2013).  

Measuring instructional quality 

We will now focus on the question how instructional quality can be measured both reliably and 

validly. Praetorius and colleagues (2012) see classroom observations as a straight-forward way to do 

so, especially compared to the analyses of material or minutes conducted during the lesson. Helmke 

(2012) even claims that one can only speak of instructional research in a narrower sense when 

classroom observations are performed. The reliability of classroom observations is always an issue 

since observer ratings are often heavily biased and the stability of the measurement is sometimes 

questioned (for an overview see Praetorius, 2014). Most authors suggest analyzing variance 

components beyond measures of interrater agreement to understand better which sources of error 

have added to the variance of the observed score (e.g. Praetorius et al., 2012; Praetorius et al., 

2014).  

Observational instruments may contain both low and high inference items (Praetorius, 2014). 

Codings with low inference are operationalized in a way that is strictly observable. High inference 



items, in comparison, need the observer to interpret what he or she sees which makes the 

observation much more complex (Hugener, 2006). However, at the same time one gains a higher 

validity because instructional research has shown that low inference items explain only little 

variance when students’ achievements are measured as outcome variables (e.g. Baumert et al., 

2010). This is because the surface structure of instruction (e.g. which method is used by the teacher) 

and its quality may sometimes vary independently from each other (Kunter & Voss, 2013).  

Developing an instrument for measuring instructional quality 

The observational instrument that is presented in this paper was developed within the study of 

TEDS-Instruct which is a Follow-Up Study of TEDS-M (Teacher Education and Development 

Study in Mathematics). The main goal is to empirically investigate teachers’ competencies in 

mathematics education at the secondary level and their influence on students achievement mediated 

by instructional quality. As a matter of fact, students’ achievements will be collected to describe the 

prognostic validity of both teachers’ competency tests and the observational protocol that is 

presented here. 

Subject-specific aspects of instructional quality 

For developing a subject-specific dimension of instructional quality we first analyzed which subject-

specific aspects of instruction are assumed to have an impact on students’ learning which has to be 

examined empirically. The main goal for developing a fourth dimension with subject-specific 

aspects was hence to extend the existing generic theoretical framework of instructional quality. 

Such an extension with subject-specific aspects is not established until now (e.g. Steinweg, 2011). 

During the development of the fourth dimension it became apparent that it is necessary to discuss 

the subject-specifity of some aspects that are included within the former three-dimensional generic 

framework. This discussion leads to the assumption that the three basic dimensions of instructional 

quality are not completely generic. However, in the fourth dimension there were included only such 

subject-specific aspects that were not already used to operationalize the other three dimensions. 

For conceptualizing this dimension, a systematic literature survey within the databases of Web of 

Science, ERA and ERIC was conducted (see Schlesinger & Jentsch, 2016 for more detail). At the 

same time, the national debate on mathematics education and the German common core standards 

was reviewed. Based on the described approach, the following aspects were operationalized for the 

observational instrument: 

 the teacher’s mathematical correctness 

 the use of representations 

 mathematical competencies (modelling, problem-solving, the use of mathematical 

language, argumentation and proof, training mathematical tools and operations) 

 a constructive approach to students’ mathematical errors  

 the quality of exercises and tasks 

 sense-making 

 teachers‘ mathematical explanations 

 appropriate examples 

 mathematical depth (e.g. generalizations) 



Method 

Based on the three basic dimensions of instructional quality and the subject-specific aspects that 

were condensed into a fourth dimension, we developed an observational instrument that can be used 

for in vivo ratings without needing videos of the lesson and that can be utilised independently from 

both the specific mathematical content and the academic year. Instructional quality was rated by 

assessing the items on a four-point scale (1=“not at all true“; 4=“completely true“). The 

instrument consists of four dimensions which are classroom management (five items), personal 

learning support (seven items), cognitive activation (five items) and mathematics educational 

quality of instruction (nine items). The data for TEDS-Instruct was collected in Hamburg from a 

sample of 38 teachers at the secondary level. The teachers participated on a voluntary basis. 

Therefore it can be assumed that they were greatly motivated to have their lessons observed. Each 

teacher was observed for two lessons (90 min each). Within one lesson, the instructional quality was 

assessed four times (every 22.5 min). 

Example items Indicators 

Mathematical depth 

 The teacher provides generalizations 

 The teacher provides mathematical connections 

 The teacher deepens and structures mathematical knowledge 

Representations 
 The teacher provides various representations for mathematical objects 

 The teacher illustrates the linking between different representations 

Table 1: Two example items for the subject-specific dimension 

  

Altogether, there were six observers involved in the classroom study, all of which held at least a 

university degree from a mathematics teacher program. The observers were trained for the 

classroom observations in advance which took around 20 hours. The training had three main goals: 

1) a joint understanding of the theoretical underpinnings of each rating dimension, 2) familiarizing 

with the observational protocol, 3) ensuring a satisfactory amount of interrater reliability. By doing 

so, all items and indicators were discussed thoroughly with the help of a rating manual. The goal of 

a joint theoretical understanding also involved the object of measurement, i.e. instructional quality. 

Based on the process-mediation-product-paradigm, instruction is regarded as a learning opportunity 

that is individually adapted to students’ skills and dispositions. Even though the focus of the 

observations lies mainly on the teachers’ behaviour, the latter is dependent of the students’ 

behaviour and student-teacher-interactions. Students’ reactions to the learning opportunities are 

crucial to understand and assess the quality of instruction and are hence part of the observation, too. 

Nonetheless, due to pragmatic reasons no student self-reports or cognitive tests have been collected.  

Before stepping into real classrooms, the observers trained their skills on videotaped lessons until 

they reached a certain amount of interrater agreement. Finally, a pilot study was conducted with 13 

teachers in three German federal states. After each observation, the ratings were discussed 

intensively between the two raters. For the data collection the lessons were observed directly 

without using videotapes, i.e. the raters assessed all items within the lesson in vivo. Two raters were 

chosen randomly and rated the lesson independently from each other. For this reason it was possible 

to avoid systematical agreement between certain raters. In addition to these ratings, there were also 

produced minutes for every lesson. These minutes included teaching methods, teacher-student-



interactions, students’ behaviour and reactions, the mathematical content and provided materials 

and tasks from the lessons for a detailed description of the learning opportunities.  

Results 

As a first step we calculated descriptive statistics for the data that was collected by external 

observers. The following table contains the results of all items from the three basic dimensions and 

the newly developed subject-specific dimension. For ensuring interrater reliability Spearmans ρ was 

calculated. This is a common measure since in educational research one is more often interested in 

relative than in absolute decisions (Praetorius et al., 2012; see also Shavelson & Webb, 1991). In the 

present study we reached satisfying results of .75 ≤ ρinter < .97 which can be interpreted as high or 

very high correlations between both observer ratings. In order to calculate the descriptive statistics 

the data was aggregated to a single datum per person (N = 38). By doing so, we first took the 

average rating of both observers and then calculated the mean of all eight measurement points per 

teacher.  

Items M SD rit 

Classroom management (α = .83) 

Effective use of lesson time 3.58 .33 .59 

Clear rules and routines 2.97 .19 .66 

Preventing disruptions 3.39 .45 .83 

Advance organization 2.89 .49 .55 

Working atmosphere 3.23 .51 .77 

Personal learning support (α = .714) 

Students’ individual support 2.05 .45 .37 

Approach to heterogeneity/differentiation 1.26 .38 .64 

Self-regulated learning 1.48 .35 .58 

Teacher’s feedback 3.07 .37 .49 

Teacher approval 3.10 .38 .49 

Students’ feedback 1.05 .11 .22 

Fostering cooperative learning 1.75 .46 .27 

Cognitive activation (α = .821) 

Challenging tasks and questions 2.54 .47 .79 

Supporting metacognition 1.25 .29 .42 

Activating prior knowledge and co-construction 2.66 .37 .76 

Quality of teaching methods 2.81 .41 .66 

Securing knowledge 2.43 .48 .50 

Mathematics educational characteristics (α = .820) 

Constructive approach to students’ errors 2.79 .56 .69 

Teacher’s mathematical correctness 3.64 .37 .54 

Representations 2.29 .65 .39 

Exercises and tasks 2.37 .52 .63 

Examples 2.99 .42 .54 



Mathematical competencies 1.62 .15 .44 

Sense-making 2.09 .49 .32 

Teacher’s explanations 2.93 .54 .62 

Mathematical depth 2.34 .40 .69 

Table 2: Descriptive statistics for all items 

When looking at the measures in table 2, we see that correctness has reached the highest values in 

the subject-specific dimension. Even though this could be seen as a ceiling effect, the statistical 

discrimination is quite high. The same holds for the items in the first dimension. Nonetheless, these 

ceiling effects are not surprising as the sample consisted of professional teachers only (Baumert et 

al., 2010; Blömeke et al., 2010). On the other hand, the average individual support that was 

observed in the lessons is quite low which is also supported by the low measures of the items “Self-

regulated learning” and “Differentiation”. Finally, the standard deviation of most items is high 

enough to conclude that a decent amount of variance was measured.  

Altogether we can conclude that an acceptable internal consistency could be reached for all four 

dimensions. When rit = .25 is regarded as a threshold for acceptable measures of statistical 

discrimination, the item “Student’s feedback” did not reach acceptable values and was thus 

excluded from further analyses which is also due to a floor effect. All other items show at least 

mediocre correlations to the corresponding scale which supports the claim of three generic 

dimensions. This is, however, supposed to be confirmed by factor analyses. Recent both exploratory 

and also confirmatory approaches once again support the hypothesis of three generic dimensions but 

suggest dividing the subject-specific dimension into two sub-dimensions which will be discussed in 

more detail in the presentation (Blömeke et al., submitted). 

To sum up, this present study has mainly an explorative character concerning the mentioned 

subject-specific aspects. However, from a more content-related standpoint one can conclude that 

fostering specific mathematical competencies like modelling or proof has often been disregarded 

during lessons. Precise analyses of the used material might then be fruitful to understand better what 

has happened in the classroom.  

Discussion and outlook 

The presented instrument for measuring instructional quality shall finally be discussed concerning 

advantages and disadvantages compared to other instruments in the field. Since this instrument has 

been developed in order to be used in classrooms without analyzing video there is a chance that it 

could possibly be used in a broader way than instruments from video studies. Second, measuring 

instructional quality more than once in a given lesson may describe the learning process in more 

detail and can lead to more reliable data because certain aspects of instructional quality may change 

a lot during the lesson. The ratings then tend to be biased heavily since the observer has to give a 

single rating for the whole lesson (Praetorius et al., 2012). Third, the instrument is suitable for most 

mathematics classes, academic years and mathematical contents. Finally, in this instrument generic 

and subject-specific aspects are combined which, in addition, can then be analyzed on their relation. 

The question remains whether the present instruments’ prognostic validity can be shown by 

analyzing the relation of instructional quality and students’ achievements. It should be tested 

whether instructional quality can be seen as a mediator variable between teachers’ competencies and 



students’ learning, too. This might especially be interesting for mathematics educational scholars 

since the impact of generic aspects of instructional quality has already been shown in some studies 

(Baumert et al., 2010; Helmke, 2012; Lipowsky et al., 2009). The important mathematical or 

mathematics educational aspects of instructional quality and their impact on both learning and other 

outcome variables as motivation or metacognition have still to be found. Here, our study could help 

to gain a little more insight. 
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Research on classroom teaching practices is mainly focused on teachers’ knowledge, beliefs and 

practices paying limited attention to a crucial aspect of the instructional activity, that is, on the 

mathematical meaning constructed in the classroom. The present study examines three highly 

motivated and professionally active primary teachers’ instructional practices and their reflections on 

them in an attempt to identify critical elements shaping classroom mathematical meaning 

construction.  The results show that all three teachers, intentionally or not, make instructional 

choices, which tend to restrict the mathematical meaning under negotiation. These choices could be 

attributed to their desire to provide children with an ‘easy’, ‘safe’ and ‘pleasant’ learning 

environment. 

Keywords: Teacher practices, teachers’ reflections, epistemological features 

 

Introduction 

Significant research has been carried out on classroom teaching practices. An important part of this 

research examines teachers’ mathematical knowledge, beliefs and practices employing different 

theoretical as well as empirical lenses and aiming to understand its impact upon students’ learning. 

Although the importance of the mathematical meaning constructed in the classroom is widely 

recognized and implicitly implicated in all the different approaches, relatively little attention has been 

paid to a detailed analysis of this construction.  

In previous studies, we attempted to systematically examine this important aspect of mathematics 

teaching and learning, analyzing teaching episodes of different teachers, mathematical topics or age 

students. Lately teachers’ reflections on their teaching decisions and practices drew our attention, 

because of the interest in understanding the value teachers attribute to the nature of the mathematics 

knowledge shaped in the classroom (Linares and Krainer, 2006). Thus, in this study, after analyzing 

three primary teachers’ classroom practices with respect to the mathematical meaning constructed, 

we focus on their reflections on this construction. Our aim is to examine each teacher’s decisions and 

practices related to the mathematical meaning construction process.  

Classroom mathematical meaning construction 

We first attempt to define “classroom mathematical meaning construction” and then present 

framework related to the epistemological features of this meaning used to analyze teaching practices. 



Mathematics is a very special discipline and the nature of the mathematical knowledge and the way 

it operates are among the main objectives of the subject matter curriculum worldwide. The 

mathematical way of developing (ideal, theoretical) objects and processes reveals ideas’ attributes 

and relations as well as definitions and theorems to identify objects, to produce new, to relate them 

and to justify properties and relations. One of the most significant aspects of mathematics education 

is the understanding of this mathematical way of operating to which students gradually become 

acquainted by the way teachers manage mathematics within the classroom. Thus, the mathematical 

meaning construction concerns the significance that teachers’ classroom management attaches to 

different mathematical contents and procedures. How does this construction appear to be omitted 

from different studies? 

The considerable body of research focusing on the so called ‘mathematical quality’ of teaching 

employs terms such as ‘connection to worthwhile mathematical ideas’, ‘richness of the mathematics’, 

‘accuracy’ and so on (Ball, et al., 2008) to describe various dimensions of the mathematical meaning 

shaped in the classroom. Kilday and Kinzie (2009) report on different dimensions related to the 

‘quality of mathematics instruction’ for classroom observation verifying the absence of clear 

designation for these terms. They report on various tools used to examine this quality summarized 

along the following dimensions:  teaching aspects (roles, strategies, classroom setups, tasks, time, 

etc.), not necessary related to mathematical content; teachers’ knowledge (e.g., mathematical 

content); teachers’ and students’ functioning (for example, interactions, behavior, engagement, 

expectations, etc.) and learning aspects (such as cognitive demands). Only one rather unclear term 

can be identified among the above referring to the mathematical meaning constructed in the classroom 

that could be seen as relevant, ‘clarity and correctness’, without though any specific relation to the 

mathematical content. 

Within our perspective (Kaldrimidou et al, 2008; 2013), the term ‘mathematical meaning 

construction’ is oriented to the epistemological features of mathematics. These features concern 

‘definitions’ to identify and differentiate the theoretical mathematical objects, ‘attributes and 

relations’ to study them and special ‘processes’ for the management of these objects and relationships. 

Students are expected to gradually approach these ideas, objects and properties through the meaning 

assigned to them by the teacher’s classroom management. This aspect of the classroom ‘mathematical 

meaning construction’ is only partly approached by the research, which examines the mathematical 

quality of teaching.  

Theoretical Perspectives 

Most of the studies examining the mathematical knowledge at play in the classroom focus indirectly 

on this knowledge, often adopting a teachers’ knowledge perspective. This section discusses some of 

these studies with respect to the way these examine the shaped mathematical meaning.  

Ball et al (2008) studied teachers’ mathematical knowledge for teaching (ΜΚΤ) arguing that this 

special knowledge, in addition to other, like the knowledge of content and students, content and 

teaching, content and curriculum and so on determine the quality of teaching and thus the learning 

outcome. They propose a framework for examining this quality including features like richness and 

rigor of the lesson, presence of mathematical explanation and justification, mathematical 

representation, etc. Their approach allows the study of certain features of the mathematical 



knowledge present in teaching practices but not the exact mathematical meaning shaped in the 

classroom.  

Turner & Rowland (2010) focus on teaching practices and examine teachers’ mathematics knowledge 

based on their instruction. Four categories of situations revealing teachers’ mathematics knowledge 

are identified: ‘foundation’ referring to the knowledge, beliefs and understanding acquired during 

teachers’ education, ‘transformation’ and ‘connection’ explaining the ways teachers present the 

relevant mathematical topic and ‘contingency’ related to the ways teachers react to ‘unanticipated 

events’. Their framework named Knowledge Quartet (KQ) mostly relates the mathematical 

knowledge in teaching to teachers’ mathematical expertise or to principles of classroom management 

in different types of situations. Thus, it is less connected to the mathematical meaning shaped in the 

classroom as a result of teachers’ management of this meaning. 

Some studies attempted to examine teachers' knowledge based on teaching practices, errors and 

teachers’ reflection on these, the use of representations and examples (Lin & Rowland, 2016) without 

deepening, however, into the impact of this knowledge in the classroom management of the 

mathematical meaning. Also others examined teachers’ knowledge from a cognitive point of view, 

without concentrating on specific contexts and the nature of mathematics (Davis & Simmt, 2006). 

From a decision making perspective, Schoenfled (2013) proposed a framework for classroom 

observations related to effective instruction analyzed along three basic dimensions: access, 

accountability and productive dispositions. Here the focus is on mathematics and opportunities for 

their learning, thus on mathematical meaning construction: “Students are given a chance to learn 

mathematics… This requires making mathematics learning practices explicit and accessible … 

Mathematical exploration and discussion should be accurate. Reasoning and justification should be 

tied to mathematics” (p. 611).  Terms like ‘mathematical reasoning’, ‘mathematical accuracy’, 

‘richness and integrity’ are used to describe the mathematical character of the knowledge built. 

However, although the framework is thoroughly and accurately presented, it leaves unclear the 

meaning of each term and its connection to the epistemology of mathematics. 

Mathematical meaning and the understanding of the nature of the mathematics constructed in the 

classroom have been also seen as an important aspect of classroom management encountered as a 

complex multi- dimensional phenomenon and studied in varied ways. Relevant research indicates 

that teachers make decisions based on multiple perspectives, often less mathematical and mostly 

pedagogical or didactical (Bednarz & Proulx, 2009). 

For a number of years, our studies have been looking at teachers’ classroom management, teaching 

practices in various mathematical contexts and students’ learning in relation to the epistemological 

status of the knowledge under construction in the classroom. The results indicate that “in most cases 

the activity developed in the classroom had none of the epistemological features characterizing 

mathematics, thus affecting students’ mathematical understanding” (Kaldrimidou, Sakonidis & 

Tzekaki, 2013, p. 306).  Below, an episode from our data is analyzed within different perspectives to 

exemplify the aspects of the mathematical meaning under consideration. In this episode, a primary 

teacher offers an introduction to fractions and deals with definitions: 

T(eacher). … Tell me, what is the difference between fractions and natural numbers? … How do 

they differ? … Are they the same numbers? 



S(tudent).  The fractional numbers ... can b… That is, we have a cake and we cut it in six pieces 

and take one. This is 1/6. The natural numbers are 1, 2, 3, … up to infinity! 

T.  Good! … 

The student presents fractions using a specific example making reference to descriptive 

characteristics and then simply names natural numbers; the teacher accepts his answer (although a 

description rather than a definition is provided) and even praises him. What is the meaning of 

definitions constructed by the students? Is at all connected to the mathematical meaning of definition? 

The teacher’s urge to offer a familiar context to the students destroys the accuracy of the definition, 

and, thus students’ understanding of it. 

What could we detect examining this episode through the mathematical quality lenses? Error, 

richness, rigor, or presence of mathematical explanation (Ball, et al., 2008)? There is no error, while 

the student’s explanation (accepted) has no rigor or any other mathematical quality. Similarly, using 

Schoenfeld’s framework we could identify less opportunities for mathematics learning.  However, 

both analyses cannot explain the meaning constructed by the students. In an analogous manner, the 

KQ lenses would examine the connection between the initial question, the specific response, the 

descriptive explanation and the teacher’s decision to accept it, but wouldn’t explain the meaning 

constructed by the students. Examining the episode from the teacher’s knowledge perspective (Davis 

& Simmt, 2006), her management provides no hints about this knowledge, because her decisions are 

consciously aiming to create a familiar environment for the students. 

The above suggest that studies examining teachers’ classroom management of the epistemological 

features of mathematics as well as the ways in which they understand and interpret this management 

play a central role in the improvement of mathematics teaching and learning. In the present study we 

look at teachers’ reflections, interpretations and justifications related to the teaching decisions shaping 

the mathematical meaning constructed in the classroom. 

Methodology 

The data presented here come from a large project following the development of a new mathematics 

curriculum promoting mathematical literacy through active learning in social contexts. Here the focus 

is on three primary teachers, members of a small group chosen on the basis of their substantial 

teaching experience and promising professional development record, implementing units of the new 

syllabus over a school year. There were all females with more that fifteen years of experience each, 

teaching in an experimental primary school in the northern part of the country. Over the year, they 

discussed, designed, implemented and evaluated a series of lessons in collaboration and under the 

supervision and support of an advisor/consultant. The lessons, the meetings as well a number of 

interviews were taped and transcribed providing the data for the study. For the purposes of this report, 

three transcribed lessons and a follow up semi-structured interview on certain aspects of the teaching 

session for each teacher are considered.   

The research problem pursued was to explore different meanings constructed in these teachers’ 

classrooms related to mathematical objects, their definitions, attributes and relations to other 

mathematical objects based on their teaching actions/ management as well as reflections on them. 



A combination of content analysis and grounded theory techniques were used to analyze the 

transcribed lessons and the discourse developed in the interview. In particular, we first identified 

critical episodes in the teachers’ practices related to the above mentioned features and then analyzed 

their reflections on these, seeking to identify teachers’ acknowledgement of the mathematical nature 

of this knowledge. 

Results - Analysis 

In this section, the results for each teacher participant according to the aforementioned scheme of 

analysis are presented.  Due to the limited space, for each teacher, a critical episode is first provided 

and commented and then her reflection on it is discussed. 

(1) Teacher A (5th graders): The episode below concerns the notion of percentage. Classroom activity 

concentrates on the completion of a 2x2 table, its rows representing games and its columns the number 

of students out of 100 voting favorably for each game, in three forms (fraction, decimal or 

percentage), partly completed. Teaching management focuses on the calculation procedure needed to 

move from one number representation to the other, especially on division, paying no attention to the 

equivalence of these representations. 

T(eacher):  Because, 100 divided by 4 makes 25!! Hence, we have 25 out of 100! … Do you 

agree?... She had the fraction ¼ and wanted to turn it to decimal… Because here 

we have 100 students.  

T:  Danae said before that the decimal fraction is what? 

Danae:  A fraction with denominator 10, 100, 1000 …! 

T:  And since I want 100 as denominator, what am I going to do? 

Thanassis:  I will multiply it by … 

S(tudent):  By hundred!! 

T (to Thanassis): By what? (She writes on the board simultaneously)  

Thanassis: … (noise increasing in the room) … By 25! I will do the same with the numerator 

T:  (She writes on the board) That is, 25/100! ... 

T:  How did you come up with this 0,25? Thano? 

Thanos:  We got 0,25 from the fraction 25/100 

T:  It was very easy for you to do the decimal number from the decimal fraction … 

Adriana:  We will perform the division of 1 by 4 and we will find 0,25! 

Teacher:  Why shall I divide 1 by 4?  

S:  Because, if I divide the numerator by the denominator, I make decimal! 

T:   Because it is very easy to make decimal fractions, but it suits me to get numerator 

with denominator, to divide them, because I am very good at division! … The 

percentage! ... Have we met the percentage only in graphs so far, eh? We haven’t 

really worked with percentages … What does 25% mean? This is the new idea that 

came up there!  

Teacher A claims that the mathematical focus of her session is on % and then on pupils becoming 

able to see the three different number representations (fraction, decimal, percentage).  However, the 

way in which she manages group work and outcomes (dominance of question - answer practice and 

vague transitions between representations) destroys the mathematical equivalence between 

representations envisaged by the task. Nevertheless, in her reflection on this she appears unaware that 

this equivalence should be at the heart of her teaching. At the end of the interview, explaining why 



children tended to ‘calculate the decimal to be able to deal with the number’s, she even argues that 

this might be her fault as she also does this in everyday life. 

(2) Teacher B (2nd graders): The episode comes from an introductory session on fractions. The task 

here focuses on fair/even sharing of certain objects and materials depicted on paper, including a loaf 

of bread, a lolly-pop, some candies and a pizza. Children adopted strategies of folding and measuring, 

with the latter being mostly praised by the teacher. 

Fotini:  I took the ruler and I measured it! I found its half! 

T:  That is, how much is the biscuit … Take first the biscuit … Let your co-students 

see… The way the biscuit is, what did you measure? (She shows) … Aaaa! You 

measured this side from above!  And how much did you find that the biscuit is? 

Fotini:  Twelve centimeters! 

T:  Oh, you found that the biscuit is 12 centimeters! 

Fotini:  I cut it into six! … 

T:  Ah! Go and bring your notebook and show us how you shared your loaf! … Because 

I haven’t seen many to share this way! … Look, please how did George share his 

loaf!!  Do you agree? 

S:  Yes! 

T:  Did he share into two equal pieces? 

Students:  Yes! 

Joanna:  Yes!  And then I cut it in the middle! 

T:  How did you cut it in the middle?  What did you think? … 

Joanna: …  I cut it! … 

Teacher B explained in her interview that she wanted pupils to ‘explore and discover’ for themselves 

how this even sharing is carried out, almost forgetting that this was all about fractions.  Although we 

tried to draw her attention to the interesting strategies pupils came up with while trying to share, she 

insisted in the interview on the importance of children getting familiar with the ‘sharing procedure’ 

which they had recently discussed in the class. She was stuck with material and kinesthetic activities 

promoting no connections and generalizations related to the idea of fractions, because “they were 

familiar, manageable by the children” and therefore appropriate. This interpretation is apparently 

context-specific, that is, concerns this particular occasion of the teacher’s management. Nonetheless, 

it is difficult to deny that this occasion can frame students’ conceptions specifically and possibly 

inappropriately with respect to the mathematical meaning under construction. Even if this is seen as 

an 'effective' introduction to the concept of fractions, it is possible to keep both the teacher and the 

students stuck to this action driven approach in the future, which allows for a  partial 

conceptualization of the concept at hand. 

 (3) Teacher C (5th graders): The episode selected comes from a teaching session on comparing 

fractions.  The teacher is closing the lesson by attempting to help students generalize and draw a 

conclusion. However, both she and the students remain faithful to referring to pizzas and to the 

quantity “we eat”.  

T:  But there must be something in order to be able to compare! What have you 

noticed? How did I place the fractions in order to be able to compare?  What is 

common in each case? 

S:  Either the denominators or the numerators are the same!  



T.  When the numerators are the same, which fraction is larger?  

Spyros:  When the numerators are the same, you eat more when there are fewer pieces! 

T:   Listen … When the denominators are the same, when do you eat more?  

S:  When the denominator is smaller! 

T:  Smaller!! Whereas, when the denominators are the same, when do you eat more? 

S:  You look whether the numerator is bigger!  

The episode above is typical of what we would call a classroom ‘destruction of the mathematical 

meaning’ case. While working on ordering fractions, teacher C (a Mathematics degree holder, 

actively involved with research) keeps holding on to pieces and pizzas. Reflecting on this in her 

interview, she appears aware of the epistemological issues related to the knowledge managed in the 

classroom, but she is prepared to “sacrifice them", to deal loosely with these, because of her priority 

to motivate students, to allow them accessing the mathematical idea to “any cost really" even though 

distorted (Kaldrimidou, Sakonidis & Tzekaki, 2013, p. 309). 

Discussion and concluding remarks 

We presented the cases of three professionally active and highly motivated teachers with different, 

however, mathematics education background and varied awareness related to the nature of the 

mathematical meaning emerging in the classroom during instruction. The first of these teachers seems 

to be unaware of this aspect, while the second attempts to allow for mathematical elements to emerge, 

but through teaching practices of practical and partial character. Teacher C knows the importance of 

the mathematical content but prioritizes accessibility and manageability. In other words, all three 

teachers, intentionally or not, make choices concerning tasks, elements to highlight and approaches 

to manage which tend to reduce the mathematical meaning under teaching negotiation. These choices 

could be attributed to their desire to provide children with an ‘easy’, ‘safe’ and ‘pleasant’ learning 

environment. Their reflections on their teaching practices indicate that these decisions are strongly 

influenced by their own experience, regardless of their training and involvement with the pilot project 

and in accordance with Ponte & Champan’s (2006) position that “teachers eventually develop their 

own PCK … shaped by their own experiences” (p.469). 

In concluding, we would highlight two issues. First, that an analysis revealing classroom construction 

of the mathematical meaning requires, in addition to the study of teachers’ knowledge, of the 

mathematical content elaborated and of the tasks employed (Ball, et al., 2008) as well as of the 

management of students’ actions and thinking (Turner & Rowland, 2010; Davis & Smitt, 2003), a 

detailed analysis of the epistemological features of the content under construction (Kaldrimidou 

Sakonidis & Tzekaki, 2013). Teachers need to be aware of the importance of such an analysis of the 

mathematical meaning construction because they tend to either ignore or underestimate it.  It is 

imperative to become aware that their management of the mathematical objects within the classroom 

connects or dissociates students from what should be at the heart of their instruction, that is, learning 

epistemologically legitimate mathematics. 
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In a year 4 classroom, we studied students’ presentations of their solutions of problem-solving 

tasks. Sitting in pairs (learning-partners), they solved the tasks before presenting their solutions 

orally in class. Based on transcripts from video recordings of the lesson, students’ written notes and 

post interview with the teacher, the role of sociomathematical norms related to students’ use of 

informal mental strategies and standard algorithm for subtraction is discussed. For students 

flexibly to carry out arithmetic operations, we suggest to develop switching between informal 

mental strategies and standard algorithm as a sociomathematical norm. In that respect, attention is 

put on mathematical knowledge for teaching (MKfT) and emphasis on place value system is 

suggested as amalgam between different strategies.  

Keywords: Subtraction, place value system, learning-partners, mathematical knowledge for 

teaching,  

«Ah, mental (informal) algorithms are all very well, but they must learn the standard methods 

sooner or later» Or must they? Plunkett (1979, p 4). 

Background and introduction 

This paper is based on a study which purpose was to identify situations in a classroom where 

development of existing sociomathematical norms or establishing new norms may create potential 

for students’ learning. A video research study was carried out in a year 4 classroom (9-10 years). 

An earlier publication reported situations in the classroom related to argumentations, and 

development of existing sociomathematical norms and establishing new norms were suggested in 

order to increase the potential for students’ learning. (Kleve & Ånestad, 2016).  

Based on students’ (learning partners’) written and oral presentations of a problem-solving task, 

where a three digits subtraction had to be carried out, sociomathematical norms (Yackel & Cobb, 

1996) are identified and we discuss development of sociomathematical norms in light of 

mathematical knowledge for teaching (Ball, Thames, & Phelps, 2008; Rowland, Huckstep, & 

Thwaites, 2005). Our research question is: What role does mathematical knowledge for teaching 

play in order to develop sociomathematical norms, which can bridge the gap between informal 

mental strategies and standard algorithm for subtraction so the children can flexibly switch between 

different strategies? 

Raveh, Koichu, Peled and Zaslavsky (2016) presented an integrative framework of knowledge for 

teaching the standard algorithm of four arithmetic operations. Studying connections between the 

four basic algorithms for arithmetic operations, they encouraged teaching the standard algorithm 

with emphasis on conceptual understanding, putting weight on connections between the four 

algorithms. In our study, the focus is on the relation between informal mental strategies and the 

standard algorithm for subtraction.  



Torbyns and Verschaffel (2016) analyzed students’ use of mental strategies and standard algorithm 

on subtraction. They found that when having been introduced for the standard algorithm:  

Children presumably became gradually more efficient in this algorithm, while their mastery of 

mental computation in general, and compensation in particular, may have stagnated or even 

declined (p. 112, italics in original). 

Even when numbers involved were suitable for and “strongly invited to mental computation 

strategies”, (ibid.) they found that students, when first having been introduced to the standard 

algorithm for subtraction, used this instead of mental strategies.  

Torbyns and Verschaffel (2016) suggested that when the standard algorithm was introduced, the 

students would think that this newly introduced method was “the superior way to subtract larger 

number” (p.112).   Referring to Yackel and Cobb (1996) they linked this to socio-cultural classroom 

norms in the classroom. Furthermore they referred to international efforts to reform elementary 

mathematics education which emphasizes children’s abilities to flexibly apply informal mental 

strategies before they are introduced to the standard algorithm, and the claim that children then will 

continue to efficiently apply informal strategies. Torbyns and Verschaffel therefore encouraged 

research in more reform-oriented classrooms, comparing children from these with children taught in 

traditional oriented classrooms.  

The classroom, in which our study took place, was reform oriented. There was a strong focus on 

children’s use of own informal strategies and an extensive use of learning partners. The focus in this 

paper is on sociomathematical norms related to their use of informal mental strategies and/or use of 

standard algorithm for subtraction. Related to sociomathematical norms we also discuss what role 

mathematical knowledge for teaching play in the development of children’s flexibility in using 

different mental strategies and the standard algorithm.    

Theoretical perspectives 

“Sociomathematical norms are normative aspects of mathematical discussions that are specific to 

students’ mathematical activity” (Yackel & Cobb, 1996, p. 458). Yackel and Cobb focused on 

sociomathematical norms when studying “how students develop specific mathematical beliefs and 

values and consequently become intellectually autonomous in mathematics [ ] how they come to 

develop mathematical dispositions” (p. 458). They distinguished sociomathematical norms from 

general classroom social norms in that they are specific to the mathematical activity carried out in a 

classroom. In our study, we focus on an episode where use of informal mental strategies and/or 

standard algorithm for subtraction as mathematical activity is discussed.  

Sociomathematical norms can be what counts as an efficient mathematical solution, different 

mathematical solution and a sophisticated mathematical solution (Cobb, Stephan, McClain, & 

Gravemeijer, 2001). Cobb et al. emphasized that both social norms and sociomathematical norms 

are dealing with what is «Taken as shared» in the classroom.  

Classroom norms are developed in collaboration between the teacher and students or between 

students. However, the teacher is the key person when norms are changing or new norms are 

established (McClain & Cobb, 2001). In our study, we consider that the teacher has great influence 

on sociomathematical norms, whether the norms are already established, in the process to  be 



weakened or under development in the classroom. We therefore want to link development of 

sociomathematical norms to mathematical knowledge for teaching.  

Ball, Thames and Phelps (2008) developed a framework for mathematical knowledge for teaching, 

MKfT. They distinguished between Common content knowledge, which is mathematical knowledge 

possessed not necessarily for teaching, and Specialized content knowledge for teaching, which is 

about the teacher’s way of ‘unpacking’ mathematics, neither necessary nor desirable for others to 

do. They also included a third category, Horizon content knowledge, which is about making 

connections between different areas and topics. “Horizon knowledge is an awareness of how 

mathematical topics are related over the span of mathematics included in the curriculum [ ]. It also 

includes the vision useful in seeing connections to much later mathematics”. (Ball et al. 2008, p. 

403).  

In order to investigate how aspects of the teacher’s mathematical knowledge surfaced in the lesson 

observed, the Knowledge Quartet (KQ) developed by Rowland, Huckstep and Thwaites (2005) has 

been a valuable tool. The KQ has four dimensions: Foundation, Transformation, Connection, and 

Contingency. Foundation is informing the other three dimensions, and Connection is the dimension, 

which we see as linked to “Horizon content knowledge”.   

Plunkett (1979) discussed pros and cons with regard to use of informal mental strategies and 

standard algorithm in school, and questioned whether standard algorithms necessarily have to be 

taught and learned. He claimed that unlike standard algorithms, which only deal with separated 

digits, informal mental strategies are holistic in that they work with complete numbers and thus 

requires understanding. Liping Ma (2010) emphasized regrouping rather than technical use of 

standard algorithm. When regrouping, the subtraction algorithm will be understood on a holistic 

number level, rather than as separate digits.  False mathematical statements as “we can’t subtract a 

bigger number from a smaller” will be avoided. Such false statements are related to teachers’ 

horizon content knowledge (Ball et al., 2008).  

Anghileri, J., Beishuizen, M., & Putten, K. v. (2002) compared the Dutch approach to written 

division calculations in school, which extensively built on children’s own informal strategies, to the 

English approach which was schematic and focused on separate digits. Based on the results from 

their study Anghileri et al. (2002) warned against replacing informal strategies with standard 

algorithms. Rather one should give support to structuring informal approaches in a written record. 

Referring to Plunkett (1979) and that calculations are carried out in real life, Anghileri (2006) 

emphasized children’s mental strategies as a starting point for developing more formal methods.  

Based on the above, one can suggest that when introducing a standard algorithm, teachers should 

focus on regrouping numbers and take children’s informal mental strategies as a starting point. This 

puts demands on the teacher’s mathematical knowledge for teaching, which again will constrain the 

sociomathematical norms in the classroom. 

Referring to among others Ball et al. (2008), Raveh et al. (2016) proposed a framework consisting 

of four components: Procedural Knowledge (PK), Knowledge of Underlying Concepts (KC), 

Knowledge of Similarity between the algorithms (KS) and Knowledge of Representations (KR). In 

our analysis, we will use components from this framework, mainly PK and KC, and some of KR. 

PK is about carrying out the steps correctly in the (subtraction) algorithm, while KC refers to 



knowledge about mathematical concepts underlying different algorithms as place-value and number 

regrouping. Rather than analyzing different representations of the subtraction algorithm as KR 

refers to in Raveh et al’s framework, we emphasize the relationship between informal mental 

strategies, and the standard algorithm for subtraction.  

In our study, we will not argue for not introducing the standard algorithm. However, we consider 

bridging between informal mental strategies and standard algorithm as valuable features of 

mathematics, which may influence students’ mathematical beliefs. Development of flexibility and 

children’s ability to switch between informal strategies and standard algorithm are linked to 

sociomathematical norms and to the aspects pf teachers’ mathematical knowledge for teaching.  

Methods 

We observed two mathematics lessons in a 4th grade (mixed ability, 9-10 years old) classroom. 

Prior to the classroom observations, we had come to know the teacher. Her educational background 

was a pre-school teacher. She described her teaching as being reform oriented and that her students 

performed well on “transition tests”. She had established an extensive use of learning partners in her 

classroom. She put her students together in pairs at random, same partner in all subjects, and 

changing partners every week. According to the teacher, the students never complained or protested 

against whom they received as their partners. This was established as a social norm in the class. 

With regard to Eli’s view on mathematics teaching and learning, she emphasized the process rather 

than the product, saying: “For me it is not so important if the answer is correct. I am more interested 

in the strategy they use, that they have understood the principle behind solving such tasks”. She also 

told us that she encouraged students to develop their own strategies in solving arithmetic problems 

and to discuss their strategies with their learning partner. Against this background, we wanted to 

study sociomathematical norms in Eli’s class.  

During our first visit in the class, we observed and wrote field notes. The second time we video 

recorded a 90 mins mathematics lesson. We used two cameras. The students were sitting in pairs 

and should solve different tasks, which were written on the board. After having solved the tasks, 

and written down their solutions, they presented their solutions orally. Towards the end of the 

lesson, they had some (‘warm ups’) whole class activities where they “worked with concepts” 

(teacher’s expression). One of the activities was linked to the place value system.  

Our analysis here is based on transcriptions of video recordings of their oral presentations and on 

their written work, which we collected. We also studied the video recordings together with the 

teacher several weeks afterwards. We interviewed the teacher and asked her to comment the 

different pairs’ written sketches and oral presentations. 

The task, on which we base our analysis, was written on the board: 

Tobias has two 200 NOK notes and six 10 NOK coins. He spends half on a gift, 142 NOK on a 

book and then he buys “pig ears” to Doffen. One ear costs 11 NOK. How many ears can he buy? 

Analysis 

The subtraction 230-142 had to be carried out to solve the task. Eleven out of twelve pairs of 

students had used the standard algorithm, however with different degree of detail in their oral 

presentations. The standard algorithm had become the  “taken as shared” method (Cobb et al., 



2001). First, we discuss four pairs’ written calculations (sketches) together with their oral 

presentations, illuminated with the teacher’ comments to the presentations, then we go further into 

the teacher’s comments from the interview. The teacher did not comment on any of the 

presentations in the lesson.   

 

Figure 1: Four pairs’ written calculations 

The pairs’ oral presentations: 

Pair 5: 230, it was easier to do 230 minus 130 equals 100 and then we did minus 12 

because 130 plus 12 is 142, and that made 88 

Pair 9: 230 – 142 is zero minus two, doesn’t work. We have to exchange from the three, 

and ten minus two is eight and then we have two left there. So then we take, 

however four minus two doesn’t work either, so then we will have to exchange 

from the two. Ten minus four is six plus two is eight and then we have only one 

left, which makes one minus one is zero. So then it is 88”.  

Pair 8: We did 230 minus 142 using the standard algorithm. We got 88 

Pair 7: 230 minus 142 is 88 

Studying Pair 5’s calculation, both their written work and oral presentation, we see that they did not 

use a standard algorithm for subtraction. The students regrouped the subtrahend 142 into 130 and 

12. This way of calculating is flexible and requires understanding and a holistic way of thinking. 

They treated the complete numbers rather than separated digits (Plunkett, 1979).  

The interview with the teacher Eli, with regard to Pair 5, revealed that she did not see the way of 

solving and presenting this as a potential for further development. The teacher expressed her 

acknowledgement of different ways of doing subtractions, but that this was a cumbersome and 

much lengthier way.  She considered one of the students in the pair as a “funny one”, and that “you 

need to be much sharpened to follow his thoughts. However, I keep telling him that he ought to start 

using another strategy in order to make things go faster. So after a while you’ will have to do that”. 

This is in line with Plunkett’s (1979) characterization of informal mental strategies: “often difficult 

to catch hold of “(p. 3). This comment revealed that the teacher did not see the potential in her 

students’ mental calculations for further development. She now looked upon the standard algorithm 

as the most efficient and sophisticated way of carrying out subtraction, and using the standard 

algorithm was in the process of being established as a new sociomathematical norm.   



As we can see from figure 1, the three other pairs used the standard algorithm for subtraction. All 

correctly written out, displaying decomposition (exchange or borrowing). This can also be 

interpreted as regrouping of the minuend based on the place value system. However, the students 

did not express any regrouping. Studying their oral presentations reveals that the students were on 

different levels in using the algorithm. “Standard algorithms are not easily internalized. They do not 

correspond to ways in which people tend to think about numbers” (Plunkett, 1979, p. 3, italics in 

original). The pairs only referred to digits between 0 and 10. We suggest that this is why Pair 9 

presented a detailed explanation of the algorithm as such. Their claims: “zero minus two, doesn’t 

work” and “four minus two doesn’t work reveal either”, reveal a misconception or a “false 

mathematical statement” (Ma, 2010, p. 3). These students have not been presented for negative 

numbers yet, and false mathematical statements like these may lead to later misconceptions about 

negative numbers. The students in this class (except Pair 5) used the term “exchange” when 

regrouping the minuend 230 into 220 + 10, and when they later regrouped 220 into 120+100. 

A question here is whether the students know what they are doing. According to Plunkett, use of 

standard algorithms encourage suspended understanding.  Pair 9’s explanation reflects procedural 

knowledge in carrying out an algorithm rather than conceptual understanding. Ma (2010) 

encourages regrouping rather than exchanging or borrowing (decomposing) when introducing the 

standard algorithm. Because then they will be working on a holistic number level rather than with 

separate digits.  

With regard to Pair 8, they only said they had used the standard algorithm, whereas Pair 7 only 

presented the answer. They can be considered as having internalized the algorithm, and as Plunkett 

(1979) puts it: “While the calculation is being carried out, one does not think much about why one 

does it in that way” (p. 3).  

In the interview with the teacher, Eli said that when starting a new arithmetic operation, she 

encouraged everyone to do it his or her own way, and that she used to present all students’ different 

informal strategies on the board. She expressed a great concern about these differences when a new 

arithmetic operation was being introduced. Thus, we consider that use of mental strategies for 

subtraction was earlier established as a sociomathematical norm. However, after having introduced 

the standard algorithm, this sociomathematical norm was in the process of disappearing, or at least 

fading, and a new sociomathematical norm was about to be developed. About the introduction of 

the standard algorithm, Eli said, “We practiced memory numbers and exchange in detail”. 

Consequently, we consider such detailed explanation as a new sociomathematical norm. This 

sociomathematical norm is also in the process of disappearing. Everybody was now expected to use 

the algorithm without further explanations or comments. As we see from our data, some students 

used the standard algorithm naturally without further explanation, while others still explained the 

procedure in detail. Only one pair (5) explained the subtraction as use of mental strategies without 

mentioning the standard algorithm. Hence, eleven out of twelve pairs looked upon the newly learnt 

algorithm “as a superior way” (Torbeyns & Verschaffel, 2016, p. 112). 

Discussion 

Our findings suggest that although Pair 5’s way of doing subtraction was not acknowledged (“he 

ought to start using another strategy in order to make things go faster”), the students displayed both 



number sense and a well-developed subtraction concept. Of those who had used the standard 

algorithm, some explained the procedure in detail, Pair 9, while others just referred to the algorithm. 

Although they might have had conceptual understanding, they did not display it. Their focus was on 

the skill carrying out the subtraction procedure. According to Eli, the students who used the 

standard algorithm had developed a more mature number sense than those still using mental 

strategies. Although being influenced by reform-oriented working methods, Eli expressed the 

necessity of learning the standard algorithm, both as a tool, an assurance to always have a method to 

use, and as an efficient way of doing subtraction. She looked upon standard algorithms as a 

supplement to informal mental strategies. However, she was not aware what research has shown; 

when first have been introduced to the standard algorithm for subtraction and exposed to instruction 

emphasizing mastery of the standard algorithm, children will gradually become more efficient in 

using the standard algorithm, while their use of informal and mental strategies will fade (Torbeyns 

& Verschaffel, 2016). The challenge is to bridge or close this gap. A goal must be to develop 

sociomathematical norms where students are able to switch between different strategies dependent 

on the nature of the numbers involved. This puts demands on the teacher’s MKfT, and especially 

the Horizon knowledge. 

There was no indication in what the teacher said in the interview that the informal mental strategies 

the children earlier had used had been taken as a starting point when introducing the standard 

algorithm. The teacher’s mathematical knowledge for teaching seemed too fragile to give her 

courage to rely on students’ mental strategies, and thus to bridge the gap. The mathematics 

presented for her students seemed to be fragmented. During the place value activity towards the end 

of the lesson students should answer questions as “what value does 1 have in 5129?” If this had 

been linked to the standard algorithm for subtraction, regrouping, based on place value system, 

could serve as an amalgam between informal strategies and the formal algorithm. This refers to 

Raveh et al.’s (2016) KR, which we see as knowledge about connections between informal 

strategies and mental strategies. Attention could here be brought to the foundation and connection 

aspects  of the teacher’s knowledge (Rowland et al., 2005). Knowledge of the mathematical 

concepts underlying the algorithm, KC (Raveh et al., 2016) did not surface in what she said. 

However, she demonstrated procedural knowledge (PK) related to correct computations and the 

steps in the algorithm.  

Our findings suggest that the teacher did not see the potential in taking earlier established 

sociomathematical norms about students’ use of mental strategies as a starting point. We claim that 

linking informal mental strategies to the place value system in introducing the standard algorithm 

for subtraction would enhance students’ ability to switch between informal strategies and the 

standard algorithm, dependent on the numbers involved. Regrouping based on the place value 

system could then serve as an amalgam between informal mental strategies and the standard 

algorithm.  

Based on our data, we cannot say anything about the sociomathematical norms related to other areas 

of the mathematics in this classroom. However, the students had not yet been introduced to the 

standard algorithm for division. We saw that in carrying out the necessary division operation to 

solve the task (how many ears can he buy?) 88:11, the students used either repeated subtraction or 

repeated addition as (informal) mental strategies.  



Encouraging teachers to rely on and see the potential in earlier established sociomathematical 

norms where students use informal mental strategies, are important issues for further research. In 

that respect, attention must be directed towards to teachers’ mathematical knowledge for teaching, 

with special focus on Horizon knowledge and the connection dimension of the teacher’s 

mathematical knowledge (Ball et al., 2008; Ma, 2010; Raveh et al., 2016; Rowland et al., 2005).  
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The recontextualizationstaking place during the implementation of a new curriculum are identified 

through different discourses teachers draw on in order to attribute meaning to the ideas promoted by 

the new curriculum. The paper studies the ways in which thirteen Greek primary school teachers who 

participated in aone-year pilot implementation of a new mathematics curriculum recontextualized its 

innovations through the discourses they drew on. The analysis of the data revealed contradictions 

within the teachers’ discourse that can be attributed to the recontextualization procedures activated 

during the implementation of the new curriculum and indicate inconsistencies within or/and between 

the various discourses available to them. 

Keywords: Curriculum, mathematical processes, reform, recontextualization, teachers. 

Introduction 

A number of studies examining mathematics curriculum reforms reveal the complex nature of the 

change in theteaching practices and the agentsoperating at the institutional level (State) as well as at 

the individual level (teachers), constituting obstacles to the implementation of the innovations 

promoted. The results of these studiesindicate distortion of the innovations promoted, mainly because 

of the dominance of traditional teaching approaches and only partial adoption of innovative features, 

usually of those that can be painlessly integrated into existing teaching practices. While teachers’ 

beliefs can be consideredcritical for the implementation of a mathematics curriculum, there are 

difficulties in using beliefs to interpret effectively the outcomes of the implementation. According to 

Lerman (2002), research should keep distances from such “personalized” views on the relations 

between beliefs and practices, so that the “conflicting” ways in which promoted reforms are reflected 

in the practices of teachers can be understood and interpreted as social phenomena (e.g. Morgan, 

Tsatsaroni&Lerman, 2002). Research to this direction, althoughstill very limited, is of particular 

importance for making sense of the problems arising while implementing a mathematics curriculum 

that goes beyond the concept of belief. We argue in this paper that Bernstein’s concepts of 

recontextualization and recontextualization fields have much to offer in understanding how 

intervention programs employing socio-cultural approaches succeed or fail because of teachers’ ways 

of interacting dynamically with curriculum reforms (e.g. Jaworski, 2007). 

Implementing a new mathematics curriculum: recontextualization in practice 

Each new curriculum is unavoidably being ‘altered’ during its implementation by the action of 

institutional factors as well as of the teachers themselves. This situation does not differ from that of 

the distortion of academic mathematics during their transformation to school mathematics and of the 

academic knowledge related to mathematics education when ‘translating’ it the knowledge needed to 



support mathematics teaching in practice (Morgan, 2010). More specifically, the actions of those 

involved with school mathematics aim to develop students’ relevant knowledge rather thantoextend 

mathematical knowledge itself. Moving from academic mathematics (production field) to school 

mathematics (reproduction field) presupposes a reframing process of the discourse established both 

in the first and in other areas (e.g., in relation to learning theories) [the term ‘discourse’ refers to a 

social construction that establishes a person’s social hierarchy (Koulaidis&Tsatsaroni, 2010)]. This 

is similar to the transition from mathematics education research and theory production field 

(academic) to the reproduction field (school). Teachers are generally not engaged in producing new 

knowledge about teaching and learning, but are expected to acquire knowledge and skills that enable 

them to teach effectively. The development of curricula, the production of teaching materials that 

support a curriculum and the professional development activities play an important role to this. The 

field of reproduction here is embedded in many fields of teachers’ professional life, creating a more 

complex environment for developing discourses related to their practices. 

The adoption of a sociological agenda for examining the process of implementing a new curriculum, 

which prioritizes the notion of ‘recontextualizing knowledge’, could provide an operational 

framework for understanding and interpreting problems arising because of the complexity of the task. 

Such a framework is being proposed by Bernstein (2000), who focuses on a pedagogical mechanism 

that structures and organizes the educational contents and their distribution based on the dominant 

process of recontextualizing. That is, the transfer of knowledge through selection procedures from 

the fields where it is produced (e.g., universities) to areas of formal or informal training (e.g., 

classroom). Bernstein (2000) distinguished the Official Recontextualizing Field (ORF), established 

and dominated by the State for the construction and supervision of the State pedagogical discourse, 

and the (official) Pedagogic Recontextualizing Field (PRF), in the formulation and management of 

which agents such as teachers’ trainers, more or less independent of the State, are involved. The 

relationship between the two fields and the curriculum reform processes depends on the degree of the 

PRF autonomy, the extent to which the discourses produced by these fields differ and the source of 

reproduction of the revised curriculum (Morgan, 2010). Teachers act as agents in the PRF, 

reproducing the official pedagogical discourse established in the ORF. However, their practices 

cannot be completely regulated externally. What is being reproduced at school and in classroom 

depends on the principles of recontextualization that arise from “the specific context of a particular 

school and the effectiveness of the external control in the reproduction of the official pedagogical 

discourse” (Bernstein, 2000). That is, from the operation of the complementary resources that are 

being produced locally (Local PRF, in distinction to Official PRF). This suggests that, despite the 

independence between them, the recontextualization fields influence each other, with the agents 

playing an important role in more than one fields (e.g., researchers who teach in universities, in 

professional development programs, in the formation of a new curriculum etc). This complex 

relationship creates differences between pedagogical discourses established in different fields of 

recontextualization and, consequently, between the practices adopted on the basis of these discourses. 

The interaction between the fields of recontextualization on the one hand and the interpretations of 

the discourse developed in these fields on the other generates the resources used by teachers to 

legalize their practices in classroom.  

In the Greek educational system the State has almost absolute control over the curriculum, its 

implementation at school level, the production of educational materials and teachers’ professional 



development. There isnot, therefore, a truly independent PRF. However, there are differences 

between individual fields of recontextualization and the discourses these produce, providing diverse 

resources of curriculum interpretations for teachers in the field of reproduction. Teachers draw on 

discourses arising from teaching and learning processes experienced during their own mathematics 

education and within the context of their professional activity. The absence of a discernible 

pedagogical recontextualization field, independent of the Greek State’s control, influencing 

mathematics classroom teaching practices and the meaning attached to them by teachers as well as 

the occasion of a new mathematics curriculum being implemented in the country, offered a situation 

seen as worth studying. 

A new mathematics curriculum in Greek schools 

Studying the curriculum reform of Mathematics undertaken in Greece, various levels of the 

development and the structure of the administrative control exercised by the State can be identified. 

It appears that different agents occupy different positions within this structure and are involved in 

recontextualizing the curriculum, having different interests and different relationships with schools 

and teachers. The Greek recontextualization field can be considered to consist of three official sub-

fields: (a) the Official Recontextualization Field (ORF) - the curriculum itself and its authorities are 

set up at a national level by the Ministry of Education, (b) the Official Pedagogical 

Recontextualization Field (OPRF), where the production of all educational materials like textbooks 

is directly controlled by the Ministry of Education, (c) the Local Pedagogical Recontextualization 

(LPRF) field related to the implementation at the school level, where schools and teachers interpret 

the new curriculum through training and additional resources produced locally. Although both the 

OPRF and the LPRF have a degree of autonomy, this is quite limited. The discourses produced by 

the agents in these two fields (e.g., in the form of mathematics textbooks, public examinations or 

teachers’ training programs) should be approved by the Ministry of Education. Unlike the educational 

systems in most Western countries, there is no Recontextualization Pedagogical Field independent 

from the Greek State to influence the adoption of instructional practices. However, even when the 

State does not encourage the development of independent discourses relating to the curriculum, the 

different individual fields that make up the field of recontextualization and the generated discourses 

act as sources on which teachers can draw to ‘interpret’ the curriculum in the field of reproduction. 

In addition, teachers can draw on previous discourses related to mathematics, for instance produced 

locally, at school and in the wider community.  

As it has been already mentioned, the Greek educational system is highly complex, its administration 

is being exercised centrally and the hierarchical structure of its organization and management are 

characterized by high concentration of powers at the top. Every educational activity, be it the 

identification of educational objectives, the implementation of the curriculum, the educational 

materials used to support teaching and learning or the evaluation of teachers’ work, is centrally 

controlled. The heavily complex and centralized nature of the Greek educational system creates 

differences between the pedagogical discourses produced at different levels of the recontextualization 

fields. In turn, differences between the pedagogical texts, between the practices adopted by these 

different pedagogical discourses and between the ways in which teachers might legitimize their 

practices are evident. Morgan (2011) states that the interaction between recontextualization fields and 

the interpretations resulting from the production of different discourses create space for teachers to 



place themselves in the position of a ‘good teacher’, legitimizing a number of different classroom 

practices.  

The above situation is quite different from that met in well knowneducational systems like the British, 

where the curriculum is strongly controlled by the State and is being regulated by tests and 

inspections. There is an organized pedagogical recontextualization field that holds a high degree of 

autonomy and is being developed mainly at universities and educational communities. The 

Pedagogical Recontextualization Field produces alternative discourses related to the curriculum by 

setting up different sets of recontextualization authorities and plays an important role in reframing 

the discourse of the curriculum produced in the Official RecontextualizationField (Morgan & Hu, 

2011). Despite the fact that the two fields are independent in structure, they affect one another (for 

example, mathematics education academics participate in working groups for the design of the 

mathematics curriculum or in national exams committees using State-defined standards). Given the 

tight control exercised by the Greek State on the whole educational process, no independent 

Pedagogical Field can be ever expected. 

The study 

The context of this study is provided by a recent reform effort in the Greek compulsory education 

system concerned with the development of new curricula, completed in 2011, piloted for two years 

and presently utilized primarily in experimental schools. A central innovative element with respect 

to mathematics education has to do with students’ active involvement with activities that enhance 

processes such as a) mathematical reasoning and argumentation, b) creating bonds between concepts, 

c) communicating through the use of different tools and d) promoting metacognitive awareness 

(Institute of Educational Policy, 2014). Utilizing Bernstein’s theoretical framework, the study focuses 

on the impact of this reform on teachers’recontextualization practices. In specific, the aim of the study 

is to examine the ways in which primary teachers participating in a one-year pilot implementation of 

the new curriculum recontextualized its innovations, especially the mathematical processes promoted, 

based on their pedagogical discourse.  

The sample consisted of 13 primary teachers who worked in three schools in the north-western part 

of the country. Most of the teachers had considerable teaching experience (10–25 years) and were 

involved in professional development activities, such as participating in in-service training programs 

and research projects. During the study, five teachers were teaching to upper, four to middle and four 

to lower primary school classes. The teachers were all involved in the implementation process of the 

new mathematics curriculum because their schools were selected by the State as pilot units. The 

extent of their involvement was determined by their sense of ‘duty’ tomeet the requirements set by 

the new curriculum but also by their interest to participate in activities promoting their students’ 

learning and their professional development. 

The study included two phases. In the first, a non-participant observation of teachers’ reformed 

mathematics teaching took place. The teachers were observed for two teaching sessions and were 

then interviewed mainly in relation to the ways they exploited the mathematical processes promoted 

by the new curriculum in designing and implementing their instruction. The second phase included a 

semi-structured interview with each of the teachers aiming to study the pedagogical discourse 

developed and through that the recontextualized process that possibly took place in relation to the 



mathematical processes promoted by the new curriculum. Each teacher was interviewed for four 

hours in four meetings.  

To describe the procedures of recontextualization of the mathematical processes taking place, 

techniques of Grounded Theory and Content Analysis were utilized. In particular, articulations 

associated with each of the recontextualization fields were identified, coded, grouped and merged, 

providing meaning to its content and structure. Specifically, the analysis of the data from the semi-

structured interviews was carried out at two levels.  First the researchers held multiple and careful 

readings of the interview transcripts, identifying phrases for each mathematical process within each 

recontextualization field. The recorded phrases in each recontextualization field were then coded and 

those indicating a ‘special’ aspect of the corresponding field were identified and marked with a new 

code. When a phrase that reflected a field reappeared, it was also noted. So, gradually, the phrases 

that were part of each first level domain were organized into second level categories, based on the 

‘special’ theme. In the following, some results from the second phase of the study are presented and 

discussed. 

Results and discussion 

In the following, the participant teachers’ conceptualizations of each of the four mathematical 

processes promoted by the new curriculum as emerging through their discourse are briefly presented 

and discussed. 

(a) Mathematical reasoning and argumentation: Teachers interpreted mathematical reasoning and 

argumentation in a way that is consistent with the official discourse, as aiming to promote classroom 

interaction. This interpretation is related to the professional official discourse and is supported by 

tasks demanding cooperation and communication included in the mathematics textbooks produced 

and distributed by the State. Consistency in the recontextualization between the Official Pedagogical 

Recontextualization Field and the Local Recontextualization Field with respect to this process is 

identified (e.g., difficult to apply in practice).  

But there is a problem ... it is the textbooks we use, they do not help us at all. We must follow 

the material and we do not anticipate. Of course, I give more exercises; beyond the textbook 

... the textbook does not cover us. And moreover, you know something? We have the pressure 

from parents who want more exercises. They are pushing us and they do not understand what 

we do (teacher with 11 years teaching experience, moderate professional activity, teaching to 

a lower primary class). 

Time often forces me not to be able to give the time needed so that the student loses the 

opportunity to communicate, but communication is essential (teacher with 19 years of 

teaching experience, moderate professional development activity, teaching to a middle 

primary class). 

The ‘objections’ raised drew mainly on a local discourse concerning classes, especially size of 

classes, the time pressure and parents’ demands. Teachers also drew on elements from the 

conventional discourse facing mathematics as a ‘discipline’ which is not always available for 

discussion because of its ‘absolute nature’. 



(b) Creating bonds between concepts: Teachers appeared to be aligned with the official discourse 

with respect to this process, giving however little value to it. They only deviated from it when 

referring to opportunities of exploiting this process in classroom. To this direction they made 

reference to a pedagogical recontextualization often governed by informal, local factors (e.g., the 

importance of knowing ‘good’ mathematics, of repetition, of continuous emphasis on conceptual 

understanding) and not by official “routes” (e.g., attending courses on issues of teaching 

mathematics). 

I’m not sure about what you mean ... relate to other mathematical concepts, that is what? Now 

we do fractions, what should I do, then? It sounds important …. Solving exercises, repetition, 

this must be done, otherwise mathematics would be forgotten (teacher of 21 years of teaching 

experience, moderate professional development activity, teaching to a lower primary class) 

(c) Communication through the use of different tools: Teachers’ discourse concerning mathematics 

classroom communication utilized different tools mainly related to the importance of tasks requiring 

the use of manipulatives, through which students are able to use their hands to ‘do things’ (for 

example, to cut a piece of paper, to take cubes from a bag etc).  

We are working with manipulatives in the class every day. But if you do maths in an 

experimental way, when will you understand that maths is not a game? We need to be accurate 

(teacher of 11 years of teaching experience, moderate professional development activity, 

teaching to a lower primary class) 

The same idea seems to prevail when reference is made to the use of technology and digital materials. 

No distinction was made between the presence and functionality of colors, virtual objects, sounds and 

other digital ‘goodies’ that do not have themselves any mathematical meaning but exist to invigorate 

the general ‘elegance’ of software (Institute of Educational Policy, 2014). As argued in the “Teacher’s 

Guide” (2014), in cases where digital technology ‘provides’ a patchwork of mathematical and non-

mathematical representations, the importance of mathematical representation deteriorates. 

I personally deal successfully with technology because I like it. It facilitates our work when 

we are going to teach difficult mathematical concepts. It is impressive with all these shapes, 

colors, the environment, but also it is functional, a tool to work (teacher of 21 years of teaching 

experience, moderate professional development activity, teaching to an upper primary class) 

Teachers’ discourse drew also on their own mathematical education and the experience gained from 

the previous curriculum.  

We are the generation of the book, but we can do things with the computers. It would be nice 

for us to be familiar with it, but so far it was not provided, nor from the previous curriculum 

(teacher of 17 years of teaching experience, moderate professional development activity, 

teaching to an upper primary class) 

This mix of ‘conformity’ to the official discourse with opposition to it was expressed implicitly by 

teachers who were resisting to the official discourses (but one teacher), although they seemed to be 

in favor of it.  

(d) Metacognitive awareness: Teachers argued for this process and ‘wished’ they could foster more 

of its components into their teaching. On the whole, they aligned with the relevant official discourse. 



However, they deviated from it when referring to the conditions set for the use of this process in class, 

moving to a pedagogical recontextualization determined predominately by informal, local factors 

(e.g., the effectiveness of mathematics learning and the coverage of the appropriate content) and less 

by official agents. 

For me it is important for students to really have the desire to explore and then teachers will 

guide them effectively…However, for students who are less ‘comfortable’ with this, it is a 

great challenge, but I’m disappointed...If these conditions are met, then it is a good idea, but 

I can say that especially for my class, to be honest, it is difficult (teacher with 16 years of 

teaching experience, university degree, moderate professional development activity, teaching 

to a lower primary class). 

Concluding remarks 

Teachers drew mainly on the resources provided by the official discourses when arguing about the 

four mathematical processes promoted by the new curriculum and tended to align to these discourses.  

However, they deviated from them when interpreting these processes in relation to their own classes. 

The official discourses shape the range of the new curriculum interpretations in relation to teaching 

and learning, while the conventional and local discourses fuel teachers’ pedagogical discourse with 

further resources for understanding the new mathematics curriculum having an impact on the options 

available to teachers and adopted by them in the classroom practice. This finding raises the question 

why some discourses are more powerful than others regarding the influence they have on teachers. 

The strength of the local school discourse of other teachers, parents and pupils can also be related to 

the regulatory effect exerted by the school administration, which requires certain standards in student 

performance. As the official discourses, such as the discourse promoted by a curriculum, do not 

‘recognize’ the difficulties in implementing key curriculum principles or the recontextualizations 

activated during classroom implementation in different students or groups of students, teachers need 

a ‘way of facing’ the difficulties experienced in their classroom, seemingly provided by the resources 

of the local discourse.  

In the Greek educational reality is evident the parallel operation of recontextualization fields, often 

mutually incompatible, which influence contradictory ways in which teachers select and transform 

the official discourse. Teachers utilize the discourses produced in these fields and place themselves 

in relation to them, being affected by their official or non-official nature, thus creating the potential 

for resistance and for the use of alternative discourses. The study of the implementation of a new 

mathematics curriculum will benefit from the analysis of the structures that rule the recontextualized 

fields and their discourses as this will help us understand the ways in which the choices and the 

transformations taking place within these discourses shape teachers’ professional practices in 

educational contexts similar to but also beyond the ones studied here. 
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This paper reports on a review of 12 empirical studies framed to address the problem of whether and 

in what ways mathematical knowledge for teaching influences teaching practice. From a larger 

review of literature on mathematical knowledge for teaching, this qualitative synthesis examines the 

theoretical foundations, methods applied and claims made. Most of the studies reviewed are small-

scale qualitative studies. There is variability in the language to describe teaching and in how focused 

the studies are on teaching. We suggest that the tendency has been to focus on the question of the 

knowledge that teachers need, but that it would be more useful to focus on the mathematical 

entailments of doing teaching, which will require more detailed and shared conceptualizations of the 

mathematical work of teaching.  
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Introduction 

In a review of literature on mathematical knowledge for teaching from 2006 to 2013, with colleagues 

we identify a number of studies that argue that mathematical knowledge for teaching influences 

teaching practice (Hoover, Mosvold, Ball, & Lai, 2016). The connection between mathematical 

knowledge for teaching and the quality of instruction is, however, complex. Hill, Umland, Litke, and 

Kapitula (2012) report evidence that weak mathematical knowledge for teaching predicts low 

instructional quality, and strong mathematical knowledge for teaching predicts high instructional 

quality, yet they also report that there is much more variation in teaching quality as well as in student 

achievement with teachers who perform in the midrange on measures of mathematical knowledge for 

teaching. Likewise, Hill et al. (2008) suggest that professional development, supplemental curriculum 

materials and teacher beliefs are all factors of potential influence, but these factors may cut both ways 

depending on the teachers’ mathematical knowledge for teaching. In addition, efforts to clarify the 

conceptualization of mathematical knowledge for teaching continue to be concerned with the 

dynamic nature of mathematical knowledge for teaching, the usefulness of knowledge, and whether, 

when, and how it plays in teaching (Ball, 2016; Kersting, Givvin, Thompson, Santagata, & Stigler, 

2012). From these different lines of work, it seems clear that decisions about teacher education or 

policy cannot be made simply by establishing that mathematical knowledge for teaching correlates 

with teaching practice. Although these correlational studies are arguably important, in this review we 

draw attention to the need to refine our understanding of how mathematical knowledge for teaching 

influences teaching practice.  

The literature review 

The present paper draws on results from a larger literature review of empirical research on 

mathematical knowledge that is specific to teaching (Hoover, Mosvold, Ball, & Lai, 2016). That 



review included a total of 190 articles that were coded for the following categories: 1) genre of study, 

2) research problem used to motivate the study, 3) variables used, 4) whether or not and how causality 

was addressed, 5) findings. A research problem is an issue, topic, or question that motivates a study, 

indicating why the results would be of interest and how an investigation is linked to the literature. In 

most instances, the research problem was the same as what was specifically investigated, but at times 

there were tensions between the research problem and the research questions or the specific focus of 

the analysis. Distinguishing between research problems and the genre of the study helped us 

understand what a paper argues and how. In coding the research problem, we paid specific attention 

to the introduction and conclusion as opposed to the statement of the research questions or the 

specifics of the research design. In general, differences between the research problem and the research 

genre or design reflected inevitable tensions in the interrelated components of empirical research 

publications and provided useful insight into the approaches used in the study and the arguments 

made in the article. When considering the research problems that motivated the studies in our larger 

review, 12 studies focused on the ways in which teachers’ knowledge contributes to practice. In this 

paper, we analyze these 12 studies with a particular focus on the theoretical frameworks of the studies, 

the methods applied and the claims made.  

Studies of the influence of mathematical knowledge for teaching on teaching 

The 12 studies framed to address the problem of whether and in what ways mathematical knowledge 

for teaching influences teaching practice have different characteristics. Seven studies investigate 

effects of mathematical knowledge for teaching on teaching practice (absent a specific intervention), 

one is an intervention study and four studies investigate mathematical knowledge for teaching as a 

construct in relation to teaching. Only one of the studies is quantitative, whereas most studies are 

small-scale qualitative studies. The participant teachers in the studies teach mathematics in primary, 

middle, and secondary schools, as well as at the university level — most of them are practicing or 

experienced teachers (see table 1).  

Study 
Sample 

size 
Type 

Causal 

design 

Experience 

and level of 

teachers 
Region Teaching studied 

Bansilal (2012) Small 

(n=1) 

Effect Qualitative Practicing 

secondary 

Africa Identifying key ideas, organizing 

explanations, listening to students 

Cengiz et al. 

(2011) 

Small 

(n=6) 

Effect  Qualitative Experienced 

primary 

North 

America 

Extending student thinking 

Charalambous 

(2010) 

Small 

(n=2) 

Effect  Qualitative Practicing 

primary 

North 

America 

Using representations, giving 

explanations, Interpreting and 

responding to student thinking 

Choppin 

(2011) 

Small 

(n=1) 

Nature None Experienced 

middle school 

North 

America 

Engaging students with 

challenging tasks 

Izsák et al. 

(2008) 

Small 

(n=1) 

Effect Qualitative Practicing 

middle school 

North 

America 

Using number lines for fraction 

addition 

Johnson & 

Larsen (2012) 

Small 

(n=1) 

Effect Qualitative Practicing 

tertiary 

North 

America 

Listening to student thinking 



Nardi et al. 

(2012) 

Medium 

(n=11) 

Nature None Practicing 

secondary 

Europe Identifying task objectives, 

interpreting and responding to 

student thinking 

Rowland 

(2008) 
Medium 

(n=24) 
Nature Qualitative Future 

primary 
Europe Selecting and using examples 

Speer & 

Wagner (2009) 
Small 

(n=1) 
Nature Qualitative Practicing 

tertiary 
North 

America 
Social and analytic scaffolding 

Steele & 

Rogers (2012) 

Small 

(n=2) 

Effect Qualitative Practicing 

secondary 
North 

America 

Integrating different ideas of proof 

and positioning students as 

observers, creators, and explainers 

Sullivan et al. 

(2009) 
Large 

(n=97) 
Intervention Statistical  Practicing all 

levels 
Oceania Converting tasks to lessons 

Tanase (2011) Small 

(n=4) 

Effect Qualitative Practicing 

primary 

Europe Connecting place value to other 

mathematical concepts, setting 

objectives, challenging students  

Table 1: Studies investigating influences of mathematical knowledge for teaching on teaching 

Next, we describe these studies with a focus on what they investigate, their methods, how teaching is 

conceptualized, and what we can learn from them. Cengiz, Kline and Grant (2011) focus on how 

teachers’ MKT supports their teaching. They develop an extending-student-thinking framework 

based on analysis of instructional actions within episodes. In their investigation of six experienced 

elementary teachers, they draw upon Ball et al.’s (2008) conceptualization of mathematical 

knowledge for teaching. It is assumed that the participating teachers, due to their experience, have 

well-developed MKT. From analysis of video-recorded classroom observations and teacher 

interviews, these researchers provide detailed accounts of teaching and “demonstrate that MKT 

matters in the way teachers pursue student thinking” (Cengiz et al., 2011, p. 372). Their analysis of 

data from one of the participating teachers “provide evidence that a lack of certain aspects of 

knowledge can negatively impact a teacher’s pursuit of student thinking” (p. 372). Similarly, Izsák, 

Tillema and Tunç-Pekkan (2008) provide fine-grained details in their analysis of the cognitive 

structures used by a teacher and her students when using number lines as a representation for fraction 

addition. Audio- and video-recorded interactions of a practicing middle-school teacher and her 

students formed a starting point for interviews with three pairs of students. Excerpts from lesson and 

student interviews were then used in a video-elicited interview with the teacher. They argue that 

subtle variations in the teacher’s approach to partitioning unit intervals matter for the students’ 

opportunities to learn. 

Several studies are situated in the teaching of particular mathematical content. Steele and Rogers 

(2012) investigate the relationship between mathematical knowledge for teaching proof and teaching 

practice by combining clinical assessments with classroom observations of two secondary teachers 

— a novice and an expert teacher. Data collection included lesson observations, pre- and post-lesson 

interviews, written assessments and semi-structured interviews after the observation. The authors 

argue that the more experienced and MKT-knowledgeable teacher not only enacts a stronger and 

more nuanced lesson on mathematical proof, but her students end up having more mathematical 

authority. They argue that their use of MKT as a frame for examining practice provides an innovative 



method for investigating both MKT and features of instruction, such as student positioning as a key, 

mediating factor between MKT and opportunities to learn. 

A study by Tanase (2011) investigates the connection between four Romanian first grade teachers’ 

mathematical knowledge for teaching place value and their classroom practice. The participants are 

selected from a well performing and an average performing school in Romania. One experienced and 

one less experienced teacher from each school is selected for participation, and data collection 

includes teacher interviews, classroom observations and student assessments. Although all four 

teachers display good understanding of place value, Tanase suggests that teachers’ knowledge goes 

beyond their own mathematical understanding. Differences are observed in teachers’ ability to make 

connections between place value concepts and other mathematical concepts, how they set different 

objectives for students as well as the extent to which they challenge students in their mathematical 

work. Tanase also observes that although teachers have strong mathematical knowledge for teaching, 

and this knowledge impacts the quality of their instruction, their students may still not perform well. 

She suggests that student achievement is also influenced by external factors inside and outside of 

school.  

Among these initial investigations of the specific influence of mathematical knowledge for teaching 

on teaching, most studies focus on teachers in primary, middle or secondary school. Two studies 

focus on mathematics teaching at university level. Speer and Wagner (2009) examine one 

undergraduate instructor’s use of constructs of social and analytic scaffolding as a frame, the authors 

argue that aspects of pedagogical content knowledge are important for helping students find 

productive ways of solving particular problems and for understanding which student contributions, 

whether correct or incorrect, are important to emphasize in a discussion. They trace ways in which 

teachers’ particular knowledge of students’ understanding aids them in assuring that the lesson 

reaches intended mathematical goals and in understanding the role of particular mathematical ideas 

in students’ development.  

Another example is Johnson and Larsen’s (2012) study of how a university teacher’s mathematical 

knowledge influences her ability to listen when teaching abstract algebra. Their investigation focuses 

on how this particular aspect of mathematical knowledge for teaching supports mathematics teachers’ 

listening when implementing a reform curriculum. Their theoretical framework distinguishes among 

three types of teacher listening: hermeneutic, interpretative and evaluative. Drawing on Speer and 

Wagner’s (2009) argument that teacher listening requires particular types of mathematical knowledge 

for teaching, Johnson and Larsen examine the role of knowledge of content and of students in hearing 

tertiary students as they engage in reinventing the group concept in abstract algebra. Based on 

analyses of three teachers’ classroom interactions when implementing a particular reform curriculum, 

Johnson and Larsen report on a teacher whose classroom interactions contained several episodes 

where the students were confused and the teacher was unable to make sense of their struggles. They 

observe that this teacher’s ability to listen to her students draws on her knowledge of content and 

students. Johnson and Larsen posit that teachers need not only knowledge of students’ 

misconceptions, but also knowledge of when and why students are likely to be confused and display 

misconceptions and of the consequences of such misconceptions when students engage in new 

activities.  



The focus on teacher listening is also prevalent in Bansilal’s (2012) investigation of how a South-

African mathematics teacher’s poor mathematical knowledge influences her classroom interactions. 

In this case study, the focus is on the process-object understanding of ratio. Based on narrative 

analysis of field notes and transcripts from five lesson observations with interviews, Bansilal 

organizes her claims around three emerging themes. First, she argues that the teacher displays limited 

understanding of ratio in her teaching. Second, she argues that the teacher fails to identify key ideas 

and organize her explanations in a way that enables the students to notice the big ideas involved in 

the mathematical task. Third, Bansilal points to the stressful environment that the teacher experiences 

in this classroom and suggests that this environment is caused by her lack of knowledge of the 

students as well as her preference for evaluative rather than interpretative listening.  

In his study of mathematics teacher knowledge and its impact on how teachers engage students with 

challenging tasks, Choppin (2011) explores pedagogical content knowledge as situated in an 

instructional sequence. From his study, he aims at exploring teachers’ “local theory of instruction”. 

Choppin investigates an experienced middle-school mathematics teacher while she is teaching a 

particular curriculum unit over two years. In order to investigate the teacher’s knowledge, interview 

data are analyzed with a focus on her articulation of “(1) how student thinking develops over time, 

(2) the process by which that thinking develops, and (3) the resources that facilitate the development 

of student thinking” (p. 12). Based on his analysis of data, Choppin claims that the teacher develops 

her local theory of instruction from teaching. The teacher’s knowledge appears to influence her 

teaching in several ways, for instance in her adaptation of tasks.  

Engaging students with challenging tasks is an important component of the work of teaching 

mathematics, and so is the selection and use of appropriate examples. Rowland (2008) focuses on 

mathematics teachers’ purposes for using examples in elementary mathematics teaching. Video 

recordings from 24 lessons taught by 12 pre-service elementary teachers are analyzed from a 

grounded approach, and codes are developed that focus on aspects of their teaching practice. The 

resulting 18 codes — one of the most common codes is “choice of examples” — are then placed in 

four overarching categories that constitute Rowland’s conceptualization of mathematical knowledge 

in teaching, commonly referred to as the knowledge quartet.  

Although eight of the studies reviewed investigate effects of mathematical knowledge for teaching 

on mathematics teachers’ classroom practice, only one applies standardized measures of mathematics 

teacher knowledge. In his exploratory study, Charalambous (2010) investigates the connection 

between two primary teachers’ mathematical knowledge for teaching and their use of mathematical 

tasks. The two primary mathematics teachers had different levels of mathematical knowledge for 

teaching — as measured by MKT measures — and notable differences were found in how they 

planned, presented and implemented mathematical tasks. Charalambous applies Stein and colleagues’ 

mathematical tasks framework to examine the cognitive level of enacted tasks, and he formulates 

three tentative hypotheses about mechanisms of how mathematical knowledge for teaching impacts 

teachers’ selection and use of mathematical tasks. First, he hypothesizes that strong mathematical 

knowledge for teaching may contribute to a use of representations that supports students in solving 

problems, whereas weaker mathematical knowledge for teaching may limit instruction to memorizing 

rules. Second, he proposes that mathematical knowledge for teaching appears to support teachers’ 

ability to provide explanations that give meaning to mathematical procedures. Third, he proposes that 



teachers’ mathematical knowledge for teaching may be related to their ability to follow students’ 

thinking and responsively support development of understanding. 

The study of Nardi, Biza and Zachariades (2012) differs from many of the other studies on how 

teachers’ knowledge influences their teaching practice in that they do not study observed teaching. 

Instead, these researchers analyze teachers’ argumentation about hypothetical classroom scenarios in 

task-based interviews. From their analysis of eleven teachers, they suggest that the teachers’ warrants 

for the claims made about these classroom scenarios are not always mathematical. Their argument, 

which has potentially interesting methodological implications, is that analysis of the argumentation 

provided by teachers in such task-based interviews may provide insight into how the teachers’ 

knowledge and beliefs influence their classroom interactions.   

Sullivan, Clarke and Clarke (2009) also investigate the influence of teacher knowledge on the 

planning phase of teaching. In particular, they investigate the assumption that teachers are able to 

convert tasks to lessons easily. From their analysis of 107 primary and secondary teachers’ responses 

to questionnaire items — and interpreting the responses by using the subcategories of MKT — they 

observe that many teachers find it difficult to translate tasks to lessons. For instance, many teachers 

find it difficult to convert the task of determining which of 
2

3
 and 

201

301
 is larger into a worthwhile 

learning experience for students. 

Discussion 

With regard to research design and choice of methods, we observe that most of the studies are small-

scale qualitative studies that explore the connections between mathematics teacher knowledge and 

teaching practice in different ways. Although many studies draw on a similar conceptualization of 

mathematical knowledge for teaching, only one study applies one of the existing standardized 

measures of such knowledge (Charalambous, 2010). Several studies present innovative methods to 

investigate contributions of teachers’ mathematical knowledge to teaching practice, such as video-

elicited interviews and hypothetical classroom scenarios in interview prompts. As we have argued 

elsewhere (Hoover et al., 2016), given that research is this arena is in early development and to date 

we lack clear, replicable methods, scholars’ efforts to innovate seem well placed. Ideas proposed in 

these dozen papers contribute to that development.  

Each of the 12 studies reported is concerned with uncovering what, how, and why mathematical 

knowledge for teaching matters for teaching, yet the overall picture is unclear. One issue may be that 

an effort to show that mathematical knowledge for teaching matters (a focus on impact) may lead to 

holding knowledge and teaching at arms length in ways that obscure the dynamic nature of the role 

of that knowledge in teaching. For instance, several papers argued that teachers’ lack of knowledge 

constrained what they were able to see, hear, and do, without taking the additional step of elaborating 

what knowledge arises in the work, when, where, and how. We suggest that the field would profit 

from studies that examine the interplay between knowledge and teaching practice and that impact 

studies are better conducted at a larger scale once clear conceptual and measurement tools are in 

place. Another issue may be that the conceptualization of and focus on teaching in these studies is 

underdeveloped. Some of the studies examine what might be better described as features of 

instruction than as teaching practice. For instance, Steele and Rogers (2012) examine the degree to 

which different ideas of proof are integrated into instruction and how students are positioned in 



relation to mathematical explanation. We agree that these are important, but would like to understand 

more fully what it is that teachers need to do to integrate ideas and position students and what the 

mathematical entailments are for doing so. Some of the studies address constrained, specific tasks of 

teaching (cf. Hoover, Mosvold, & Fauskanger, 2014), such as selecting and using examples, while 

others are broad and general, such as engaging students with challenging tasks. What is meant by 

“teaching” and its role in these studies vary.  

Progress on the problem of whether and in what ways mathematical knowledge for teaching 

influences teaching practice will require building more shared language for talking about teaching, 

starting with more explicit attention to how it is conceptualized and continuing through the 

development of more widely shared conceptualizations of the work of teaching. It will require more 

focused examination of what it takes to do teaching, conceptualized as meaningful work, supportive 

of learning and doing the work in professional community. As we have argued elsewhere (Hoover et 

al., 2016), this may need to go hand in hand with developing the theoretical foundations of research 

on teaching. Teaching is a professional practice engaged in human improvement work. While there 

are other important aims of education, teaching is centrally about supporting the learning of subject 

matter. Understanding the theoretical implications of these observations and acting on them may 

strengthen research and practice.  
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Considering research frameworks as a tool for reflection on practices: 

Grain-size and levels of change  
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Reflection is widely recognized as essential to teachers’ learning but questions remain about what 

exactly teachers should reflect on and how effective reflection might be facilitated. This paper 

considers how research frameworks might be used as a tool to facilitate reflection on mathematics 

classroom practices. It will be argued that frameworks which facilitate planning and analysis of 

classroom practices at different levels of specificity may also target reflection at different levels. This 

will be illustrated with reference to frameworks which relate to talk in the mathematics classroom. It 

will also be argued that for research frameworks to be effective in facilitating reflection on 

mathematics classroom practices, they must target different levels of reflection.  

Keywords: Reflection, research framework, classroom practice(s), grain size. 

Introduction  

A growing body of literature recognizes the importance and complexity of the practices involved in 

effective mathematics teaching (e.g., Ball et al., 2009; Potari et al., 2015). Classroom practices have 

been described as “the repeated actions in which students and teachers engage as they learn” (Boaler, 

2002, p. 114). Dooley, Dunphy and Shiel (2014) identify five overarching practices as essential in 

promoting mathematical thinking and understanding. These meta-practices are the development of a 

productive disposition; emphasis on mathematical modelling; the use of cognitively challenging 

tasks, formative assessment, and the promotion of mathematical talk. In each of these areas, research 

frameworks exist which may hold potential for teacher development. By ‘research framework’, I 

mean either a theoretical framework or methodological tool which ‘frames’ or structures a coherent 

set of understandings about a particular theme. For example, consider how the Math Talk Learning 

Community (MTLC) framework (Hufferd-Ackles, Fuson & Sherin, 2004) might offer a coherent set 

of understandings about the nature of talk in classrooms or how the Mathematical Tasks Framework 

(Stein, Grover, & Henningsen, 1996) offers a similar set of understandings for the use of cognitively 

demanding tasks. Such frameworks illustrate teacher actions that contribute to desirable meta-

practices for mathematics teaching and learning.   

The growing emphasis on mathematics classroom practices is occurring at a time when reflection has 

been widely established as a guiding principle within teacher education (Hatton & Smith, 1995; 

Zeichner, 2008). Mathematics education research frameworks have been used to facilitate teachers’ 

reflection (e.g., Stein & Smith, 1998). However, there is little literature to offer guidance on how 

frameworks might be used as a tool for reflection on mathematics classroom practices, or to guide 

researchers investigating this area. This paper offers a consideration of this theme. First, I will outline 

some key issues from the literature on reflection and will discuss the theoretical perspective from 

which teachers’ use of research frameworks is understood. Then I will outline Korthagen’s (2004) 

model of levels of reflection and change. Finally, I will argue that grain-size, or level of specificity, 

is of key importance when research frameworks are used to facilitate teachers’ reflection on practices. 

I will illustrate this with reference to two frameworks relevant to the practices involved the promotion 



of mathematical talk. I will argue that for frameworks to be effective in facilitating reflection on 

classroom practices, they must target different levels of reflection.  

Reflection and research frameworks 

It is generally accepted that experience alone may not result in learning and reflection is considered 

to be integral to learning from practice (Loughran, 2002; Schön, 1983; Zeichner, 2008). The 

widespread adoption of reflection in teacher education programs has resulted in conflicting 

conceptualizations and many efforts to develop reflective practitioners are often underpinned by 

different ideological stances (Hatton & Smith, 1995; Zeichner, 2008). Despite the multiplicity of 

interpretations, there is some agreement that reflection should involve finding solutions to real 

problems of practice (Hatton & Smith, 1995) with some authors suggesting  that the initial stimulus 

should be a problem arising from practice (e.g., Jaworski, 1998). Loughran (2002) maintains that 

learning arises from framing and reframing the initial problem. Research frameworks may be helpful 

in the reframing process and towards the goal of problematizing teaching, a key component of 

reflective practice (Jaworski, 1998). This problematizing of teaching may arise from considering a 

situation from another point of view (Loughran, 2002). Research frameworks can facilitate 

consideration of alternate or multiple viewpoints. For example, the MTLC framework (Hufferd-

Ackles et al., 2004) addresses both the student and teacher experience.   

The reflective practice literature includes much attention to the process of reflection. Eraut (1995) 

critiques and extends Schön’s (1983, 1987) stages of reflection-in-action and reflection-on-action to 

also include reflection-for-action. The extent to which research frameworks might inform teachers’ 

reflections-in-action is limited due to the many pressures of real-time teaching but frameworks can 

be used to support reflection at both the planning and post-teaching phase either as a tool for formal 

analysis, or as a means of troubling accepted understandings of practice. The literature also highlights 

links between reflective practice and action research. Jaworski (1998) describes a mathematics 

teacher research project where the theory of the teachers’ research activity aligned with a view of 

action research being connected to critical reflective practice. Critical reflective practice has also been 

conceptualized in different ways (Hatton & Smith, 1995). Larrivee (2000) maintains that critical 

reflection is an essential part of becoming a reflective practitioner and defines it as encompassing 

critical inquiry and self-reflection. Critical inquiry is described as “the conscious consideration of the 

ethical implications and consequences of teaching practice” (p. 293).  

Theoretical perspective 

Zeichner (2008) suggests that often the obligatory content of reflection is around how well practice 

conforms to what is expected. This issue might arise when using research frameworks for the 

purposes of teacher reflection. If a research framework is considered to be an example of what has 

been sanctioned as ‘acceptable,’ then teachers’ interactions with frameworks might actually serve to 

undermine their agency. This is not the stance that I adopt. Instead, I understand reflective practice 

as “the making explicit of teaching approaches and processes so that they can become the objects of 

critical scrutiny” (Jaworski, 1998, p. 7). I view the teacher as knower and agent for educational and 

social change (Cochran-Smith & Lytle, 2009). The research framework is understood as a tool for 

teacher inquiry and reflection rather than a prescription for action. Inquiry is taken to be “a critical 

habit of mind that informs professional work in all its aspects” where the data arising from practice 



is continually interrogated (Cochran-Smith, Lytle 2009, p.121). It is from this perspective that a 

teacher’s use of research frameworks is understood.   

Levels of reflection  

Models of reflection often emphasize process or chronological phases, e.g., Gibbs (1988). In contrast, 

Korthagen’s (2004) model (Figure 1) emphasizes the teacher as person. Korthagen describes the 

levels as “different perspectives from which we can look at how teachers function” (p. 80). This 

model should be of interest to researchers seeking to investigate the nature of teacher reflection and 

teacher-educators seeking to support the same process. For teacher-researchers, it may offer an 

overview of the landscape of reflection and serve to frame and contextualize the inquiry process. The 

umbrella-nature of the model is powerful because the individual levels commonly exist as distinct 

research domains within mathematics education. This scope is challenging to address and only key 

issues and contradictions are highlighted here. Korthagen explicates his model largely with reference 

to the literature of psychology. Some concepts may not align with sociocultural approaches present 

in much current mathematics education literature.  

 

Figure 1: Korthagen’s (2004) model of levels of change  

Korthagen maintains that the inner levels influence the outer levels just as the outer levels can 

influence the inner levels, e.g., behavior can be influenced by external environmental factors as well 

as personal competencies, beliefs, identity and mission. A teacher’s competencies will determine the 

behavior he/she is able to show but Korthagen suggests that competencies contain also the potential 

for behavior though this may not be enacted. He maintains that competencies are determined by 

beliefs. The mathematics education literature has also explored links and discontinuities between 

teacher beliefs, competencies and classroom practices (e.g., Stipek et al., 2001). Korthagen suggests 

that compete alignment between the levels may take a lifetime to achieve and is unlikely to occur 

without careful reflection on practice and self. Recently, the mathematics education literature has 

questioned the value of research on beliefs without due attention to teachers’ participation in social 

practices (Skott, 2013). Though Korthagen’s model does not address this directly, he does situate 

teachers’ beliefs within a complex framework, with the levels of environment and mission in 

particular premised on the individual’s engagement in a social world.  



Recent research emphasizes the importance of understanding mathematics teacher competencies as 

personally, situationally and socially determined (Blӧmeke, 2016). Where ‘situational’ might be 

connected with the environment, ‘personal’ and ‘social’ suggest links with the identity and mission 

levels respectively. The identity level is concerned with the personal singularity of the individual, and 

the mission level (or spirituality level in earlier versions of the model) is intended to acknowledge the 

individual’s participation in both local and global communities. Korthagen (2004) describes mission 

as being “about becoming aware of the meaning of one’s own existence within a larger whole, and 

the role we see for ourselves in relation to our fellow man” (p. 85). Reflection at this level necessarily 

encompasses consideration of the short and long term influence of teaching on students and the larger 

goals of mathematics education or education more generally. This level must be considered to be 

important in relation to critical reflection (Larrivee, 2001). Some commonalities also exist with 

critical mathematics education or values education (e.g., Bishop, 2008).  

While noting the importance of identity, Korthagen admits to a certain ‘vagueness’ around the 

definition of professional identity as the concept has been informed by many different research 

traditions. The concept has also been understood in different ways in the mathematics education 

literature though Boaler (2002) and others contend that the identities students develop are strongly 

related to the classroom practices they have opportunities to participate in. In relation to teacher 

identity, it is likely that a more complete understanding of teachers’ engagement with research 

frameworks might arise from a perspective which foregrounds the social and situated nature of 

identity, and acknowledges that teachers engaged in such work may be working at, or across, the 

boundaries of various communities of practice (Lave & Wenger, 1991).   

Korthagen positions his model as particularly useful to the teacher-educator. He suggests that a 

teacher’s behavior may imply reflection is needed on a particular level and the teacher-educator can 

orchestrate his/her interactions with the teacher accordingly. It is likely that relevant research 

frameworks could be introduced to focus a teacher’s reflection on a particular level. It has long been 

accepted that research frameworks may provide an impetus to question taken-for-granted 

assumptions and a language to describe, analyze, and interpret practice (e.g., Erikson, 1986). The 

novel element here is that the grain size, or level of specificity of a research framework, becomes 

important as this may determine which of Korthagen’s levels the framework will relate to. Existing 

mathematics education research frameworks range from broad general theories about (mathematics) 

learning to very finely grained, highly structured frameworks concerned with the teaching and 

learning of particular mathematical content. Korthagen’s model provides a structure for considering 

how such differing frameworks might be used to facilitate effective reflection.  

The model is particularly useful in the specific case where research frameworks are being used to 

facilitate reflection on and development of mathematics classroom practices. Despite classroom 

practices being enacted at the outer level of behavior, they are connected to both inner and outer 

levels and arise from a complicated interaction between mission, identity, beliefs, competencies and 

environment. Larrivee contends that a “deliberative code of conduct” (2000, p. 293), or conscious 

adoption of particular practices, results from the infusion of personal beliefs and values into a 

professional identity. If research frameworks, or teachers’ interactions with research frameworks, 

confine reflection to the outer levels of Korthagen’s model, there is a danger that rationalization of 

practice (Loughran, 2002) may occur rather than inquiry and development. While an appropriate 



research framework may provoke reflection across and between levels, frameworks which focus 

attention only on the outer levels are likely to have limited effectiveness. Teachers should have 

opportunities to question the relationship between inner and outer levels and reflect on how their 

practices align (or not) with inner levels such as beliefs, identity and mission.   

A researcher interested in investigating teacher reflection who adopts the perspective outlined by 

Korthagen is likely to be interested in the relationships between the different levels of reflection and 

change. For example, if reflection appears to be occurring as a result of a perplexing situation arising 

from practice, then the researcher may be interested in attempting to track this to a particular level or 

a possible conflict between levels (e.g., a teacher is perplexed because she is struggling to implement 

in practice (behavior) what she believes (beliefs) to be true about ‘good’ mathematics teaching or in 

line with her mission. Similarly, a researcher investigating the extent to which research frameworks 

facilitate reflection may be interested in considering the extent to which a teacher’s interaction with 

the framework(s) aligns with the various levels of Korthagen’s model. 

An illustration  

Two research frameworks that might be used to develop the practices involved in the promotion of 

math talk are discussed below. This topic has been chosen as classroom interaction emerged as a 

strong theme in TWG19 at CERME9 (Potari et al., 2015). The MTLC framework arises from research 

which tracked a classroom community transitioning from a traditional model to one in which students 

helped each other learn by engaging in meaningful talk about mathematics (Hufferd-Ackles et al., 

2004). The framework describes four levels of mathematical talk and the overall community 

trajectory is described as growing “to support students acting in central or leading roles and shifts 

from a focus on answers to a focus on mathematical thinking” (p. 88). Associated with the levels are 

developmental trajectories for teacher and student actions across the areas of questioning, explaining 

mathematical thinking, source of mathematical ideas, and responsibility for learning. Table 1 shows 

teacher actions at the highest level of the framework.   

The MTLC framework may facilitate reflection at all levels but it raises particular challenges at the 

levels of beliefs, identity and mission because it presents an alternative to traditional teaching. It may 

challenge the idea of teacher as sole-mathematical authority and it disrupts traditional 

conceptualizations of teacher and student roles by emphasizing student agency. In doing so, it may 

provoke reflection on personal beliefs about mathematics and the teaching of mathematics. It may 

also foreground issues of teacher identity and mission. I used this framework in previous research and 

while I never formally stated my ‘mission’, it did help me clarify what I wished to achieve as a teacher 

of mathematics: students who could think mathematically, and who valued their own thinking and 

their responsibilities within the classroom community. The framework details teacher actions and 

gives some direction as to how this mission might be achieved. However, used on its own, it is 

unlikely to provide sufficient support for developing the complex network of teacher competencies 

and behavior necessary for the promotion of productive math talk.  

  



 

Table 1: Teacher Actions at level 3 of the MTLC framework (Hufferd-Ackles et al., 2004, p. 88 -90) 

Table 2:  Boaler and Brodie’s (2004) Teacher Question Categories 

The second framework I will discuss is Boaler and Brodie’s (2004) teacher question categories (Table 

2). This framework arises from analyses of practice and was developed to allow researchers 

investigate multiple lessons at a relatively fine grain-size. The framework directs attention to the level 

of behavior, specifically the questioning practices of the teacher, with scope for consideration of the 

learning opportunities that arise for the student. It may allow for consideration of the emphasis on 

relational (type 3 questions) and instrumental understanding (type 1 questions) or the opportunities 

created for student discussion (type 5 questions). This framework might be used as a tool for 

reflection, either to support planning of effective questions or to support analysis or reflection on 

practice. However, it is unlikely that this framework alone will hold meaning for the teacher unless 

its use is mediated by consideration of the ‘bigger picture’. Teacher questions can only be considered 

effective or ineffective with reference to the overall goal for learning. This refers both to the specific 

mathematical goals for a lesson or unit of work, as well as goals that might be considered part of 

mission, such as the development of student agency and mathematical authority.  

Description of Teacher Actions 

Questioning: Teacher expects students to ask one another questions about their work. The 

teacher’s questions may still guide the discourse. 

Explaining Mathematical Thinking: Teacher follows along closely to student descriptions of their 

thinking, encouraging students to make their answers more complete. Teacher stimulates students 

to think more clearly about strategies. 

Source of Mathematical Ideas: Teacher lets students explain and “own” new strategies. (Teacher 

is still engaged and deciding what is important to continue exploring.) Teacher uses student ideas 

as the basis for lessons or mini-extensions 

Responsibility for Learning: Teacher expects students to be responsible for co-evaluation of 

everyone’s thinking. She supports students as they help one another sort out misconceptions. She 

helps and/or follows up when needed 

Teacher Question Categories 

1. Gathering information, 

leading students through a 

method 

4. Probing, getting students to 

explain their thinking  

7. Extending thinking: 

2. Inserting terminology 5. Generating  discussion  8. Orientating and focusing: 

3. Exploring mathematical 

meanings and/or relationships 

6. Linking and applying  9. Establishing context: 

 



The frameworks described above are of different levels of specificity. The MTLC framework 

attempts to describe teacher and student interactions at a broad level while Boaler and Brodie’s 

framework facilitates fine-grained analysis of teacher questions. For this reason, they offer different 

affordances and constraints when considered in relation to Korthagen’s levels of reflection. It is 

argued, that for the purposes of facilitating teacher reflection, the use of either of the frameworks 

alone has limitations. Potential for reflection is maximized when such frameworks are combined. It 

is in the interplay between reflection at the inner levels and reflection at the outer levels that more 

profound development may occur.    

Conclusion 

Many national curricula have begun to emphasize the practices, as well as the content, of mathematics 

education (e.g., Dooley et al., 2014). In this context, it is worth considering to what extent research 

frameworks might be used to support and develop teachers’ reflection on practices. I have argued that 

any such work must strive to take into account the level(s) of reflection that a research framework 

might target. I also contend that the perspective outlined is of relevance to both teacher-educators and 

researchers. Further consideration of the methodological implications of a researcher adopting such 

a stance on teacher reflection is necessary. Theoretical and empirical work is also needed on teachers’ 

use of broad and finely grained research frameworks. Such work should seek to identify the 

characteristics of research frameworks, and teachers’ interactions with frameworks, that enable their 

use as tools for effective reflection.  
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Metacognition plays an essential role in learning mathematics. However, due to the lack of 

observational systems for evaluation of metacognition in mathematics instruction, rarely anything 

is known about how metacognition is practised and fostered when teaching and learning 

mathematics in class. This paper presents an observational system (a rating system) developed to 

reliably assess metacognitive activities in mathematics instruction. It also explains the methodology 

used to evaluate the reliability of ratings achieved with this tool and to investigate the stability of 

metacognitive-discursive practices between lessons of an individual teacher/class. Despite the high 

inference of conclusions needed to assess metacognitive-discursive instructional quality in seven 

dimensions, highly reliable ratings have been achieved for six dimensions. The paper discusses 

reasons for and consequences of the high reliability. 

Keywords: Metacognition, discourse, rating system, generalizability study, decision study. 

The role of metacognition in teaching and learning mathematics 

Metacognition has been ascribed an essential role in regulating students’ cognitive processes in 

problem solving as well as in learning mathematics in general, in particular when constructing, 

organising, systematising, and connecting (pieces of) knowledge (cf. Schraw & Moshman, 1995; 

Wilson & Clark, 2004). However, hardly anything is known about how metacognition is practised 

and fostered in mathematics instruction. Assuming that enhancing learners’ metacognition is 

essential for promoting learning, research on metacognition in this area definitely merits future 

research (cf. Mevarech & Kramarski, 2014; Depaepe et al., 2010). For this kind of research a tool is 

needed that allows to reliably assess metacognitive practices when teaching and learning 

mathematics in a class. This paper reports on a research project that aimed at developing such a tool, 

named the rating system for analysing and assessing the metacognitive-discursive instructional 

quality (Nowińska, 2016). This tool can be used to first describe metacognition during class 

discussion, and to second evaluate how metacognitive activities are used to foster understanding in 

mathematics, in particular by elaborating students’ ways of thinking and reasoning, and by 

discussing them in a coherent and comprehensible way. One important research question underlying 

our work on developing and evaluating this tool was how stable metacognitive-discursive 

instructional quality is across lessons of an individual teacher in one class. In addition to advancing 

our knowledge about the occurrence of metacognitive-discursive instructional quality, investigating 

its stability allows identifying the number of lessons per teacher/class which would be needed to 

reliably measure metacognitive-discursive instructional quality.  

Metacognition is often understood as knowledge about cognition and regulation of cognition 

(Flavell, 1976; Schraw & Moshmann, 1998). The groundwork for investigating metacognition in the 

domain of teaching and learning mathematics in a class has been done by Cohors-Fresenborg and 



Kaune (2007) as they developed a category system for an interpretative, transcript-based analysis of 

metacognitive and discursive activities (CMDA)1. This category system decomposes metacognition 

in planning, monitoring and reflection. Examples are planning the structure of a proof or definition; 

monitoring the correctness of an argumentation; and reflecting on misconceptions or on difficulties 

experienced in interpreting a definition or in solving an equation. According to studies suggesting 

that the effects of metacognition on students’ understanding when learning in class seem to depend 

on the quality of the class discussion (cf. Mevarech & Kramarski, 2014; Depaepe et al., 2010), it 

was necessary to combine the analysis of metacognition with a deep analysis of precision, coherence 

and accuracy of teacher’s and students’ contributions. For this purpose, CMDA also includes the 

categories discursivity and negative discursivity. Discursivity means activities enhancing precision, 

accuracy and coherence in a class discussion, e.g. by making connections between different 

answers, or between external concept representations and students’ conceptions. Negative 

discursivity means activities with a negative influence on precision, accuracy and coherence. The 

results of many years research conducted on metacognitive and discursive activities led the authors 

of CMDA to the conviction that discursive ways of practicing metacognition are crucial for 

supporting students’ understanding when learning mathematics in class. The term “discursive” does 

not simply mean “in a discourse” but is meant as a characteristic of discussions elaborating, 

explaining and linking students’ ways of thinking in a coherent and comprehensible way.   

The category system CMDA allows a detailed interpretation and categorization of local, single 

metacognitive and discursive activities, but it does not provide any additional tool for the global, 

comprehensive assessment of their instruction-related quality, thus of the extent to which they 

facilitate understanding of the mathematical subject discussed in class. The new rating system 

discussed in this paper is a result of extending2 the category system CMDA to a video-based 

observational system aimed to analyse and measure ‘metacognitive-discursive instructional quality’ 

in a comprehensive way. For this aim, several dimensions of the metacognitive-discursive 

instructional quality as well as evaluation criteria to rate them have been developed (for details see 

Nowińska, 2016). To allow its application, the rating system needed to be valid and reliable despite 

the complexity and high inferences required for rating metacognitive-discursive instructional 

quality.  

In the following, we first explain the design of the rating system. Second, we describe the 

methodology used to evaluate its reliability (G study), present the achieved results, and discuss their 

consequences for generalizable evaluation of metacognitive-discursive instructional quality. Finally, 

we discuss consequences of our study for further research aimed to deepen our understanding of 

metacognitive-discursive instructional quality and to improve teaching and learning practices in 

class. 

                                                 

1 The complete German version of CMDA is presented in Cohors-Fresenborg, Kaune, & Zülsdorf-Kersting (2014). 

2 www.mathematik.uni-osnabrueck.de/fileadmin/didaktik/Projekte_KM/Kategoriensystem_EN.pdf 



The design of the rating system 

Our conceptualization of metacognitive-discursive instructional quality and its decomposition in 

seven dimensions is based on research literature concerning relations between metacognition and 

learning gains (e.g. Mevarech & Kramarski, 2014; Depaepe et al., 2010), and on the preliminary 

research work related to the category system CMDA (e.g., Cohors-Fresenborg et al., 2010; 

Gretzmann, 2011). Furthermore, we analysed more than 20 videotaped lessons to deepen our 

understanding of these dimensions. Each dimension is described by means of a guiding question 

(GQ) focusing raters’ attention on aspects to be analysed and evaluated, as well as of several 

answering categories. For each GQ, the answering categories describe particular aspects of 

classroom discussions that differ in quality. The categories are ordered so that they reflect increasing 

quality of the classroom discussion with regard to the relevant aspects, and constitute a rating scale. 

In the following, the seven guiding questions are described briefly (for the detailed version see 

Nowińska, 2016). 

GQ 1 puts the focus on using metacognitive activities for an elaborate discussion of mathematical 

content and on supporting learners’ autonomy in practicing such activities. To answer this GQ, the 

rater has to distinguish, among others, between metacognitive activities limited to monitoring 

results of calculations, on the one hand, and extended to reflection on mathematical ways of 

reasoning, methods, definitions, and conceptions related to them, on the other hand. Due to the 

essential role of argumentation in learning and understanding mathematics, GQ 2 focuses on 

justifications combined with metacognitive activities, and on supporting learners’ autonomy in 

providing and analysing justifications. To answer this GQ, the rater has to distinguish between 

fragmentary justifications, on the one hand, and efforts made in class to orchestrate single 

justifications in order to produce precise comprehensive argumentations, on the other hand. GQ 3 

aims at assessing to which extent the interplay of metacognitive and discursive activities foster 

students’ understanding of subject-specific issues discussed in the particular lesson. The answering 

categories for this GQ distinguish among others between situations without any productive use of 

metacognitive and discursive activities, and situations in which (at least in the case of one single 

learner) metacognitive and discursive activities foster and express learners’ understanding of the 

subject-specific issues discussed in the class. GQ 4 analyses the use of discursive activities in 

producing precise and coherent discussion. Such discussion is an essential precondition for an 

effective use of metacognition in class in order to foster learners’ understanding. GQ 5, on the 

contrary, evaluates to what extent negative discursivity (e.g., not taking notice of inadequate 

mathematical vocabulary or of fragmentary answers as well as of answers not related to the 

discussed question) leads to ignoring students’ cognitive and metacognitive processes, and hinders 

the reciprocal understanding in class as well as the understanding of subject-specific issues. GQ 6 

evaluates to what extent metacognitive and discursive activities are used to build coherent and 

stringently guided discourse units (i.e., debates). The answering categories for this GQ distinguish 

between classroom situations without any debates, and situations with at least one remarkable 

debate led by the teacher or by students. GQ 7 aims at assessing to which extent metacognitive and 

discursive activities are related to challenging and complex subject-specific issues (e.g., related to 

meta-mathematics), used to elaborate such issues, and to foster learners’ understanding of them. 



To ensure reliable ratings despite the high level of inference needed to answer the guiding questions, 

the rating procedure was designed as a two-step procedure. In the first step of the rating process, the 

rater categorises each of the teacher and student contributions. Hereby, the rater uses the category 

system adopted from Cohors-Fresenborg and Kaune, and works with special software which at the 

end of the categorisation generates a graphic representation (i.e. category line; for more details see 

Nowińska, 2016). The category line includes all codes for metacognitive and (negative) discursive 

activities set by the rater, and distinguishes between codes for teacher and student activities. It 

serves as a basis for interpreting relations between teacher’s and students’ metacognitive and 

discursive behaviour, and for assessing students’ autonomy in practicing these activities. Thus, the 

purpose of the first step is to get insight into the kind and quality of each single metacognitive and 

(negative) discursive activity, and to prevent the rater from rushed and inadequate ratings. In the 

second step, the rater uses the category line and the video transcript to evaluate the lessons by means 

of the seven rating scales elaborated on above.  

In order to be able to carry out these tasks, three raters (students at the end of their master study 

course in mathematics education) participated in an intensive rater training (6 months, 180 h in 

sum). They were qualified to understand the purpose of the rating system, the foci of the seven 

rating scales, and the use the rating system. During the rater training (and also after it) the raters 

were obligated to justify their decisions regarding their interpretation of each single metacognitive 

and (negative) discursive activity as well as their final evaluation of the instructional quality. This 

allowed the trainer to discuss the answers given by the raters in detail, to discuss reasons for 

differences between the raters, and to provide each rater with detailed feedback. The videos and 

transcripts used during the training were separate from the ones used in the current study.  

Methodology 

In the current study, sequences from 24 videotaped mathematics lessons (6 teachers/classes with 4 

lessons per teacher/class) were analysed. For each teacher, four lessons were videotaped within two 

weeks, and should represent “normal” lessons in these classes. From each lesson, a 10-minute video 

sequence showing a discussion in the class was chosen. This was done by two independent experts 

who first analysed each lesson, and suggested the sequence in which the main topic of the lesson 

was discussed, and in which the students actively participated in the discussion. Finally, the experts 

agreed on one sequence. In many cases, however, only one 10-minute discussion could be indicated, 

whereas in the remaining time the students worked individually or in pairs. Each video sequence 

was evaluated by three independent raters, who had taken part in the rater training.  

Generalizability theory was used (Shavelson & Webb, 1991; for an application to the instructional 

context, see Praetorius et al., 2012) for assessing the generalizability (which can be interpreted 

similarly to reliability in classical test theory) of the rating instrument. The reported relative G 

coefficient can be interpreted analogously to a reliability coefficient in the classical test theory. 

Thus, a coefficient ≥ 0.7 is needed for a satisfactory reliability. In addition to providing these G 

coefficients, generalizability studies (G studies) allow decomposing the variance in rating scores 

into different components (e.g., teachers, lessons, and raters), their interactions, and measurement 

error. Therefore, G study results provide more detailed and precise information regarding reliability 

than reliability coefficients used in classical test theory. Furthermore, decision studies (D studies) 



can be conducted to estimate the reliability under multiple hypothetical measurement conditions, 

thus also allowing to analyse numbers of lessons per teacher/class higher than the number actually 

evaluated by the raters in our study. In the present study, it was investigated how many lessons per 

teacher/class would be necessary for a reliable assessment of the aspects of the metacognitive-

discursive quality determined be the seven dimensions. 

Results 

The results of the G studies indicated satisfactory reliability of ratings concerning six out of the 

seven dimensions of the metacognitive-discursive instructional quality (guiding questions 1 to 6), 

for which the relative G coefficient varied between 0,78 and 0,98 (see Table 1). The ratings 

concerning dimension 7 were not reliable, with a relative G coefficient of 0,38.  

Table 1: Relative G-coefficients and variance decomposition (in %) for the seven dimensions 

Based on the rating data, the variance in the ratings was decomposed in variance components 

attributable to the teacher/class (t), lessons nested in teachers (l:t), raters (r), the interaction between 

teachers and raters (r×t), and the unexplained variance, i.e. residual (r×(l:t),e). Table 1 shows the 

percentage of variance explained by the different variance components.  

For dimensions 1 to 6, the amount of variance attributable to rater bias was very small (between 1% 

and 3% of the entire variance); this indicates that the raters do rarely differ in their ratings. 

However, further rater training would be needed to eliminate the very high amount of the variance 

(55%) attributable to rater bias for dimension 7 in order to get reliable ratings  

The ratio of t to l:t, which describes the stability of the given dimension across lessons of an 

individual teacher/class, indicates partly very high stability (see e.g., GQ 1) and partly very low 

stability (see e.g., GQ 7). 

To determine how many lessons per teacher/class are necessary to measure metacognitive-

discursive instructional quality in a stable and reliable way, D analyses were conducted with the 

hypothetical number of lessons per teacher/class varying between 1 and 10. The number of raters 

was fixed to the actual number in the study (i.e., three). Figure 1 illustrates the results of the D study 

for each of the seven dimensions. 

  GQ 1 GQ  2 GQ  3 GQ 4 GQ  5 GQ  6 GQ 7 

Lesson-unspecific (stable) component t 89 45 60 52 71 50 6 

Lesson-specific component     l:t 0 46 21 39 22 30 14 

Rater bias components r 0 1 0 0 0 0 5 

 r*t 3 0 0 2 1 3 51 

Residual r*(l:t); e 8 9 19 8 7 16 25 

Relative G-coefficient  0,98  0,78  0,90  0,83  0,92  0,83  0,38 



 

Figure 1: Relative G coefficients for D studies with 1-10 lessons per teacher/class for GQ 1–7 

To obtain relative G coefficients greater than 0.7, one lesson is needed for the dimensions related to 

GQ 1 as well as GQ 5. Two lessons are needed for the dimensions related to GQ 3, GQ 4, and 

GQ 6, and three lessons for the dimension related to GQ 2. Thus, three lessons are sufficient to 

achieve a G coefficient of 0,7 for GQ 1 to GQ 6.), whereas 5 lessons per teacher/class would be 

needed for the reliability greater than 0.8. Due to the high amount of the variance attributable to 

rater bias for GQ 7, no satisfactory reliability concerning this dimension could be reached, even with 

10 lessons per teacher/class without further rater training. 

Discussion  

The aim of our research project was to develop a reliable rating system for assessing metacognitive-

discursive instructional quality. For this purpose, seven dimensions of metacognitive-discursive 

quality had been developed. Despite the high amount of inferences needed to rate these dimensions, 

highly reliable ratings were achieved for six of them. This rather unusual result (for an overview on 

the amount of rater effects found in prior studies, see Praetorius et al., 2012) can likely be explained, 

among others, with the intensive rater training, and with the two-steps procedure of the rating 

process. Both aspects prevented the raters from a superficial analysis, and instead forced well-

reasoned scoring.  

No satisfactory reliability could be achieved for the seventh dimension. The reliability analyses 

showed that this is due to high rater bias. Obviously, the meaning of “complex subject-specific” 

issues, which is at the core of the seventh dimension, has not been interpreted in the same way by all 

raters. Thus, additional rater training or other raters with a more substantial background in 

mathematics education would be needed to get reliable ratings for this dimension. Such efforts seem 

highly desirable as the seventh dimension plays an important role in a long-term evaluation of the 

metacognitive-discursive quality in a class. In general, complex subject-specific issues are discussed 

in mathematical instruction rarely. Discussing such issues indicates teacher’s efforts to deepen and 

systematise students’ cognition related to (meta-)mathematical questions, methods or ways of 

reasoning, and therefore it is a significant characteristic of instructional quality.  



The seven dimensions of the metacognitive-discursive instructional quality vary in their stability 

between lessons in a particular class. The lowest variability could be determined for the dimension 

concerning the extent to which metacognition is practised in a class, in interactions between the 

teacher and the students (GQ 1), and the highest for this concerning metacognitive activities 

combined with justifications (GQ 2). The quite stable first dimension is based on GQ 1 which also 

takes some observable aspects of patterns in interactions between metacognitive and discursive 

teacher and students activities, whereas GQ 2 focuses more on metacognitive activities in relation to 

the content discussed in class and to students’ reasoning concerning this content. The results 

indicate that the quite stable observational patterns in practicing metacognition do not necessarily 

imply the stability of metacognitive efforts to elaborate the mathematical issues discussed in class 

and to foster students’ understanding. A deep analysis of videos is needed to explain this 

observation. Our preliminary analysis shows that in some classes, providing justification seems to 

be well established as a social norm. This means that the learners and the teacher are used to justify 

their answers, i.e. to practice monitoring or reflection. However, by doing so, not always the 

necessary attempts are made in the class to reflect on these justifications, to control and correct 

them, and to orchestrate single and fragmentary justifications in order to produce a coherent global 

explanation related to mathematical issues discussed in the class. This can be observed in particular 

when new concepts, definitions or strategies are introduced. Despite the high number of single 

justifications combined with metacognition, the lack of a well-orchestrated mathematical 

justification related to the new issues may hinder understanding. Consequently, this leads to a low 

score for the second dimension of the metacognitive-discursive instructional quality (GQ 2). The 

score can be higher when the tasks discussed in the class do not require a global well-orchestrated 

mathematical justification, and the lack of it cannot be evaluated negatively, with very low scoring. 

Thus, the variability of the second dimension seems to be related to the complexity of the 

mathematical content. This observation seems plausible but it must be investigated more deeply. 

Considering only the number of justifications combined with metacognitive activities would most 

likely enhance the reliability of the ratings in the second dimension but it would distort the validity 

of the instructional quality.  

Our D studies are of crucial importance for further research on metacognition in mathematics 

instruction. Due to the variability of metacognitive-discursive practices between lessons in a 

particular class, at least three lessons per teacher/class and three qualified raters would be needed for 

reliable (generalizable) evaluation of the metacognitive-discursive quality with regard to six 

dimensions of this construct. Thus, given these relative small numbers, the rating system can be 

considered as a practicable research tool although intensive rater training is needed.  

Given this result, a pivotal next step for research on metacognitive-discursive instructional quality is 

to investigate the effects of each of the six dimensions on students’ mathematics achievement. In 

doing so, the empirical relevance of metacognitive-discursive instructional quality can be 

investigated, and implications for supporting metacognition to foster mathematical understanding 

can be suggested. Thus, continuing this research is highly desirable. It would shift the focus from 

measurement and evaluation to development and improvement. This would require the work with 

teachers, and not only research on teachers’ instructional practices. Thereby, the rating system 

presented in this paper can be used as an analytical tool in teacher trainings for guiding teachers’ 

reflection on their own practices and on learners’ metacognitive and discursive behaviour. 
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Performance in mathematics national examinations in Kenya has been weak and raises questions 

about the pedagogical approaches adopted by teachers. The purpose of this paper is to report on 

teachers’ experiences of the application of a problem-solving teaching strategy in a Learning Study 

design to teach factorization of quadratic expressions. The study follows a qualitative and 

interpretive research approach with data collected through questionnaires, classroom observations, 

video replays and reflection sessions after lessons. The findings reveal teachers’ appreciation of the 

application of problem-solving teaching in a Learning Study design, saying it helped them to 

observe the difficulties students experience in learning algebra and the shortcomings in their lesson 

preparation. In addition, they noted the importance of reflection in that it helped them improve the 

second lesson. 

Keywords: Learning Study, variation theory, problem-solving, teamwork.     

Introduction 

Teaching is an activity that involves engagement of the teacher, the student and the content (Loef 

Franke, et al., 2007; Stigler, & Hiebert, 1999). In mathematics teaching, this engagement needs to 

be effective to create a productive learning environment for both teachers and students (Loef 

Franke, et al., 2007). However, Stigler and Hiebert (1999) note that levels of engagement among the 

three is not uniform due to different classroom cultures and teaching strategies in different 

countries. They observed, for example, that in some US classrooms, teaching strategies are so 

procedural and teacher-directed that students are passive recipients of knowledge, and that there is 

little interaction between student and content.  

Stigler and Hiebert’s (1999) finding concerning US mathematics classrooms seems to be relevant in 

other classroom cultures in countries such as Kenya (CEMASTEA, 2010). Based on past 

performances, the Government of Kenya initiated an in-service education programme for high 

school teachers of mathematics and science in 1998. Among the strategies employed was Lesson 

Study approach, which implicitly applies constructivist theory (Elliot, 2014). However, a survey 

conducted to check the extent of the implementation of the programme, reported that about 65% of 

the teachers were not implementing the programme and were applying the teacher-directed method 

of teaching (CEMASTEA, 2010). Teachers cited lack of clear guidelines and workload among 

reasons. Students continued to post weak results in mathematics in 2012 and 2013 from the Kenya 

national examinations (KNEC, 2014). This study adopts a Learning Study (LS) design which 

explicitly applies Variation Theory to support classroom learning. Little is known about LS in 

Africa, and the outcome of this present study may support the further development of LS in Kenya 

in particular.  

The purpose of this study is to solicit teachers’ views and experiences of the application of a 

problem-solving teaching strategy in a LS design to teach factorization and solution of quadratic 



equations, one of the topics poorly performed by students (KNEC, 2014). My intention is to 

eventually extend the approach to other mathematics topics. The research question of the present 

study is “What are the teachers able to learn about the students learning of factorization of quadratic 

expressions in a Learning Study design?”  

Variation theory 

Variation Theory is a theory of learning which asserts that to learn something entails experiencing it 

in a variety of ways. The theory proposes that learning is always directed towards an object, which 

could be a skill or a concept referred to as the object of learning in the ‘what’ and ‘how’ aspects of 

learning (Marton & Booth, 1997). The ‘what’ aspect is the content to be learnt while the ‘how’ 

aspect is concerned with the process of learning that enhances a student’s ability to apply the 

learned concept in a new environment (Elliot, 2014; Lo, 2012). The theory postulates that learning 

takes place when students focus on a critical feature of the object of learning. For example, suppose 

the solution of simultaneous linear equations by elimination were the object of learning: a critical 

feature to be discerned can be the collating of the equations so that one variable has the same 

numerical coefficient in both equations. To achieve this, Lo (2012) and Marton (2015) propose that 

teachers need to create learning opportunities by explicitly or implicitly offering patterns of 

variation in which some parts remain invariant as others vary. Four patterns of variation are 

identified, namely: contrast, separation, generalization and fusion. For example, to discern the 

concept of quadrilateral, a type of quadrilateral would be kept invariant and contrasted with other 

polygons such as triangles and pentagons. To discern a particular type of quadrilateral, for instance 

a kite, it is kept invariant as other types such as rectangle, trapezium are varied. The kite is 

separated from the whole and focused on. To generalize that the total sum of interior angles of a 

quadrilateral is 360°, each type of a quadrilateral is varied with its sum of interior angles calculated. 

To compare properties of different types of quadrilaterals, such as a kite and a rhombus, the two and 

their properties are brought into focus simultaneously, the fusion pattern of variation.  

Learning Study  

Learning Study (LS) provides a framework for supporting learning in the classroom by applying 

aspects of Variation Theory, in which all the three categories of persons participating in the lesson 

(the teachers, the students and the researchers) could learn in the process (Marton, 2015; Pang, 

2008). LS adopts a Lesson Study organizational structure in which a group of teachers prepare a 

lesson together, then one teaches the lesson while others observe as they collect research data and 

thereafter converge for a reflection session (Pang, 2008). LS focuses on the object of learning 

which points to the beginning of the learning process with learning ‘what’ and learning ‘how’ 

aspects (Lo, 2012). In this study, the topic of quadratic expressions and equations is the ‘what’ 

aspect while the ‘how’ aspect is addressed by small group discussion approach to learning. For ease 

of monitoring the learning process, the object of learning is categorized into: (a) lived object of 

learning 1, (b) lived object of learning 2, (c) intended object of learning and (d) enacted object of 

learning. Part (a) is concerned with prior experiences and awareness that students have about the 

concept and is monitored through a student’s diagnostic pre-test or interview whose outcome is 

considered in lesson preparation. Part (b) is the acquired experiences after the teaching of the lesson 

and is monitored through a student’s post-test or interview. Part (c) is the planned lesson and part 



(d) is the taught lesson (Pang, 2008). Parts (c) and (d) are monitored through a post-test or interview 

and reflection session.  

Methodology 

The study on which this paper is drawn follows a qualitative and interpretive research approach in a 

LS design conducted in two classes in Kenya. Three teachers planned the lesson together as 

explained earlier. Prior to the first lesson, a diagnostic pre-test was given to the students in both 

classes; a post-test identical to the pre-test was given to each class at the end of each lesson. The 

teachers will be addressed by pseudonyms as Dominic – head of mathematics, Peter – teacher of the 

first lesson and John – teacher of the second lesson. The two classes were for third year high school 

students (age 16-18 years) comprising 68 students altogether.  

Data were collected through classroom lesson observation, pre-post questionnaires, video 

recordings of the lessons and transcribed reflection sessions. Teaching was approached through a 

small group discussion by the students. The object of learning was factorization of a quadratic 

expression with a unit coefficient of x2 (i.e. x2 + bx + c). The critical feature was the identification 

of factors of the constant term of a quadratic expression that sum to the coefficient of x, often 

expressed in textbooks as “sum and product”.  

The items in the questionnaire, whose outcomes were considered in the preparation of the lesson, 

included: (1) Why is 652  xx called a quadratic expression? (2) What do we consider in 

attempting to factorize a quadratic expression such as the one given above? (3) How many factors 

do we expect from a factorized quadratic expression? Frequent student responses included: (1) the 

given expression is called a quadratic expression because it has unknowns, (2) we consider like 

terms, (3) two factors (considered the correct answer). The questionnaire responses were scored 1 

for a correct answer and 0 otherwise. 

   

 

 

 

  

Figure 1: Paper cuttings for a hands-on activity aiming at the factorization of 652  xx  

Based on the students’ responses, the teachers prepared for the intended object of learning in a 40-

minutes lesson, incorporating a hands-on activity intended to raise students’ curiosity, and to 

motivate them to discuss in small groups as the approach was new to them. The first task on the 

activity was to form a rectangle using the pieces of paper shown in Figure 1, and to find the product 

of the sides of the rectangle formed. This was intended to lead to the factorization of 652  xx . 

The second task was to explain the relationship between the numerical terms from their expression 

of the area, (x + 2) (x + 3); and the coefficient of x and the constant term in the quadratic expression. 
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First lesson 

The first lesson was taught by Peter in his class of 40 students. Prior to this lesson, students had 

been taught the expansion of quadratic factors of the form (p + q) (p + r). Peter introduced the 

lesson by asking the students to identify the coefficients of x2 and x in the expression x2 + 4x + 3. 

Whereas all the students could correctly identify the coefficient of x as 4, most of them were unable 

to correctly identify the coefficient of x2. Students gave responses that included: x × x, x and 2 - 

presumably from the exponent 2. The teacher asked them to discuss in pairs and seek a correct 

solution. After a while, a student correctly identified the coefficient as 1, but could not explain her 

answer. The teacher explained why it is 1.  

Peter then asked the students to factorize the expression 652  xx . After about five minutes, he 

asked the students to form eight groups of five members each and he distributed the pieces of paper 

in Figure 1 to each group. He explained the first task of the activity and allowed 15 minutes for the 

task. After 15 minutes, only two groups had formed the rectangle. Peter allowed a further 10 

minutes for discussion before calling upon groups to present their work. The teacher grouped the 

students’ work in categories as shown in Table 1.  

Category No. of Group(s) Rectangle Area 

One  4 Correct rectangle  Correct working 

Two 1 Correct rectangle  Wrong working  

Three 2 Correct rectangle No area worked out 

Four 1 No rectangle formed No area worked out 

Table 1: The categories of groups and how they carried out the task   

One group from category one and the category two group were asked to present their work shown 

in Figure 2 and Figure 3 respectively.  

  

  

 

 

 

 

 

Figure 2: Correct working                                            Figure 3: Incorrect working 

The Figure 2 representative explained thus, 

Student 1:  Length, L = 1+1+1+x = (3+x) and width, W = 1+1+x = (2+x). Area, A = L×W = 

(3+x) (2+x)  

The Figure 3 representative explained, 



Student 2:  The width has two pieces of x each giving an area of x × x = x2. The length has a 

piece of x at the bottom and the upper part has two pieces of x plus the big piece 

whose length is x giving a total of 4x2. Total area, A = x2 + 4x2. 

Due to pressure of time, Peter summarized the lesson by explaining task two procedurally, thus, to 

factorize a quadratic expression such as 652  xx , identify the factors of the constant term, 6, that 

sum to 5, the coefficient of x. Thereafter he told the students to factorize x2 + 3x + 2 as homework, 

before administering the post-test. The results of the pre-test and the post-test are shown in Table 2. 

Items Percentages of correct responses 

Diagnostic pre-test Post-test 

Question 1 3 30 

Question 2 3 10 

Question 3 70 43 

Table 2: The percentage correct responses of the pre-test and post-test from the first lesson 

First lesson’s reflection session 

Peter felt that his introduction took more time than he had expected: as he remarked, 

Peter: I would have taught how to get the coefficient first before I look at this lesson.  

Other highlights during the reflection include: 

Dominic: The students had some fear I do not know what they were fearing [...] 

John: I think we should have done some peer teaching. We forgot how the students 

would present their work and this became unexpected challenge. 

Researcher:  Peter gave students a long time for discussion because he wanted everybody to 

obtain the correct answer not knowing that the strength of learning at times is in 

the few mistakes made by students. 

Based on the reflections, the post-test results and the fact that the lesson was not implemented as 

planned, the teachers modified the lesson, which was retaught in John’s class (second lesson). 

Second lesson 

John introduced his lesson by asking students to expand the expression, (x + 2) (x + 1), which they 

did to obtain x2 + 3x + 2. He then asked them to identify the coefficients of x2 and x from x2 + 3x + 

2. The majority answered the question correctly. John then asked the students to factorize the 

expression 652  xx . After about five minutes, he asked the students to form seven groups of four 

members each. The class had 28 students present. He distributed the pieces of paper shown in 

Figure 1 to each group and stated the tasks for the activity as: (1) Form a rectangle with all the 

pieces of paper given and work out the area of the rectangle formed. (2) Find the relationships 

between the constant terms of the factors of your worked-out area and i) the coefficient of x in the 

expression 652  xx , ii) the constant term in the same expression 652  xx . This was part of 

modification made on the lesson. After 15 minutes, he stopped the group work and asked some 

groups to discuss their work with the whole class. Table 3 shows how groups carried out the tasks, 

with same categories as in Table 1.  



Category No. of Group(s) Rectangle Area 

One  3 Correct rectangle  Correct working 

Two 1 Correct rectangle  Wrong working  

Three 3 Correct rectangle No area worked out 

Table 3: The categories of groups from the second lesson and how they carried out the task 

One group from category one and the category two group were asked to present their work. The 

representative of the category one group explained the working thus, 

Student 1:  Width = 1 + 1 + 1 + x = 3 + x, Length =1 + 1 + x = 2 + x  

 Area, A = L × W = (2 + x) (3 + x) = x2 + 5x + 6 

The representative of category two explained her work referring to a figure similar to Figure 3.  

Student 2:  The two strips above are multiplied to obtain x2 and the four pieces on one side 

(pointing at the width with 1 unit by x units strip and the three 1 unit by 1 unit) are 

counted and multiplied by x to obtain 4x. Area, A = x2 + 4x. 

After the presentation, John discussed task two with the whole class. With the help of the students 

and referring to student 1’s expression, John simultaneously presented the factors of 6, {(1 × 6), (2 

× 3), (-1 × -6), (-2 × -3)} and the addends of 5, {(0 + 5), (1 + 4), (2 + 3) and so on}. He introduced 

the second activity that asked the students to factorize, x2 + 3x + 2. The students correctly factorized 

the expression. The teacher summarized the lesson and administered post-test questionnaire. Both 

pre-post results are shown in Table 4. 

Items Percentages of correct responses 

Diagnostic pre-test Post-test 

Question 1 26 86 

Question 2 0 71 

Question 3 48 86 

Table 4: The percentage correct responses of the pre-test and post-test from the second lesson 

The teachers prepared the lesson to apply the generalization of patterns of variation and invariance. 

This was realized fully in the second lesson.  

Varied Invariant Discernment 

x2 + 5x + 6 Working out the 

area of rectangles 

formed. 

Factorization of a quadratic expression with a unit 

coefficient of x2 depends on the factors of the constant 

term that sum to the coefficient of x 
x2 + 3x + 2 

Table 5: Generalization pattern of variation and invariance applied in the enacted object of learning 

The two different expressions were varied to help the students to generalize the process of 

factorizing a quadratic expression with a unit coefficient of x2 such as x2 + bx + c. The students 

applied the cuttings to form the rectangles whose areas represented the factorizations of the given 

quadratic expressions, that is, x2 + 5x + 6 and x2 + 3x + 2.  



Discussion and conclusion 

The activities proved challenging as students took time to discuss and explore ways of factorizing 

the expression x2 + 5x +6 (Lester et al., 1994). At the end of the discussion, eight groups out of 15 

did not factorize the expression, and one group even failed to form the rectangle, as shown in Table 

1 and Table 3. Peter even allowed more discussion time but still some groups could not form the 

rectangles. Peter therefore, did not apply fully the patterns of variation and invariance. Marton’s 

(2015) cautioned teachers to take control of students’ own work during learning to implement the 

planned patterns of variation. The effect was reflected in post-test results of Table 2. A comparison 

of pre-post results (lived objects of learning 1 and 2) of the two lessons, Tables 2 and 4, show that 

at the pre-test, Peter’s class had higher scores in questions 2 and 3 but at the post-test, John’s class, 

where the pattern of variation was fully applied, had a notable improvement in all the questions than 

Peter’s class. Question 2 that addressed the critical feature had a slight improvement of 7% in 

Peter’s class compared with 71% in John’s class.  

The content of the lessons addressed the “what” aspect of the object of learning. Eight groups had 

difficulty expressing the sides of their rectangles in algebraic form, thus failing to factorize the 

expression x2 + 5x + 6 as shown in Tables 1 and 3. The expected algebraic expressions for the sides 

of the rectangle fall within the topic of formation of algebraic expressions taught in the first year of 

high school according to the Kenyan mathematics syllabus for high schools. Also, in the 

introduction of the first lesson, the students could not identify the invisible 1 as the coefficient of x2 

from the expression x2 + 4x + 3, which suggested that students either did not understand 

multiplicative identity property of real numbers or they did not know the term coefficient. These 

cases show that students could not recall what they had been taught earlier. These were learning 

moments for teachers to realize that the problems that students experience in quadratic expressions 

and equations originate from the introductory contents of the algebra.  

The planning gaps identified during the lessons contributed to the time management issues 

especially, the first lesson where students did not work on the second activity as was planned; and 

they also had a short time to discuss the second task of the first activity. The effect was reflected in 

the post-test outcome from the first lesson’s class as shown in Table 2. From these observations 

teachers learned that LS design is helpful in focusing the teachers in every aspect of the lesson that 

improves students learning. They also learned that a good implementation of a lesson by applying 

patterns of variation can improve students’ learning as suggested in the second lesson’s post-test 

result Table 4. The teachers appreciated the implementation of the second lesson where students 

were able to generalize the conditions for factorization of a quadratic expression with a unit 

coefficient of x2.  

Peter:  Yeah the lesson was good. I am sure now they are aware that they can use that 

formula without the cuttings and factorize any quadratic expression. 

Dominic:  The fact that the two activities were discussed helped the students to see the 

relationship and I am sure they can now factorize the quadratic expression without 

any problem.  

The teachers also learned the need for explicit preparation of all activities and for good time 

management, as they stated during the reflection session after the first lesson and confirmed the 



same after the second lesson through the post-test result. This supports Hiebert, Morris and Glass’s 

(2003) suggestion that lessons should be treated as experiments with explicit preparation of all 

activities. The teachers learned that the LS design through its post-test aspect helps monitor 

students’ learning progress, which enables a teacher to address students’ errors/misconceptions in 

the immediate subsequent lessons.    
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This article focuses on the relations between the activity of the teachers and the contents of textbooks 

and the teacher’s manuals. Through the observation of lessons, we analyse and discuss how the 

teachers follow the recommendations written by the authors of teacher’s manuals. We describe the 

adjustments made by these teachers, comparing them to the recommendations written by the authors 

of teacher’s manuals. The observations lead us to point out some didactic obstacles and to mention 

the major role of an epistemological and didactic teacher training. 
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Introduction 

The present study constitutes a part of a larger research project investigating the place of mathematical 

textbooks in the French publishing market and the role teachers assign them in the daily practice 

(Mounier & Priolet, 2015). In France, teachers may decide for themselves and in each of their classes 

whether they want to resort to textbooks or not, and which resources they wish to use, on the condition 

of respecting the national curricula. The resources and their uses have been already the object of 

plentiful scientific literature (Pepin, Gueudet, & Trouche, 2013; Fan, Zhu, & Miao, 2013; Matić & 

Gracin, 2015; Lenoir et al., 2001). This paper examines how two teachers interact with mathematics 

textbooks in teaching the same topic; it focuses on the use of number lines. The choice of this theme 

seems to us relevant, with regard to the works of Hamdan and Gunderson (2017, p. 587) that show 

how “the number line plays a causal role in children’s fraction magnitude understanding, and is more 

beneficial than the widely used area model”.  

Theoretical framework and research question  

The teaching activity  

The teacher has “to prepare the course”, “to handle the class” and “to teach the class” (Amigues, 

2003, p. 11). His activity results from a compromise between his objectives, his own purposes, his 

constraints, and the resources of his work environment (Goigoux, 2007, p. 47). So, it exceeds the 

context of the classroom. Then, the teaching activity has to be considered outside and inside the 

classroom, but, in this article, we mainly reserve the expression “teaching activity” for the activity of 

teaching in the presence of pupils. 

Resources, textbook and teacher’s manual 

Within the framework of his teaching activity, the teacher interacts with a set of resources. To define 

the concept of resource, Adler (2010, p. 25) refers to two meanings of a word: a “reserve” from which 

the teacher can draw, and the action “to be nourishing again”. We define the resource as “product of 

the human activity, developed to join a finalized activity” (Rabardel, 1995, quoted in Gueudet & 

Trouche, 2010, p. 58). As produced by an author, the textbook and the teacher’s manual are resources 

for the teacher. The resource “Textbook” is intended for the pupils in the class and it is in connection 

with the curricula. The “teacher’s manual” is the documentation annexed to the textbook, intended 



for the teacher and who allows “to understand better the transactions of the teachers with the curricular 

resources in mathematics” (Remillard, 2010, p. 201).  

Teacher-resources relation 

The teachers are differently positioned with regard to the use of the resources according to “modes 

of commitment” (Remillard, 2010, p. 214) being able to be shaped by particular expectations, 

convictions, habits or past experiences. This positioning may have an important effect when the use 

of the resource leads to the adoption of a didactic device structuring the session. The didactic devices 

in a primary class come down to three devices (Rey, 2001, pp. 31–35). In the first one named 

“explanation-application”, some part of knowledge, for example the definition of a mathematical 

object, is presented to the pupil. Practical exercises follow the presentation of this knowledge. In the 

second named “observation-explanation-application”, in the first instance the pupil is asked to 

observe an object, for example a geometrical figure then to generalise from this observation. Practical 

exercises are then proposed. In the third named “problem-explanation-application”, in the first 

instance the pupil starts with the active manipulation of material or conceptual resources is brought 

in to the apply to problem-solving. This phase is followed by the shaping of the knowledge and then 

by the series of exercises. Some teachers sometimes make some adjustments. If the teacher’s degree 

of expertise and the level of training are not sufficient, these adjustments can lead to “problems of 

coherence between objects of teachings, processes and activities” (Arditi, 2011, p. 361). Besides, 

from a generative document, expert teachers can proceed to relevant adjustments whereas, for lack of 

self-important training, the novice teachers are sometimes going to bring modifications going against 

the intentions of the authors of textbooks, the specialists of didactics (Margolinas & Wozniak, 2009; 

Priolet, 2014).  

Research questions 

Considering the above research, we question the relations between the activity of the teachers and the 

contents of mathematics textbooks and of teacher’s manual. Do teacher-users of a medium operate 

different types of adjustments during the activity of teaching in the presence of their pupils, and do 

they follow the model led by the teacher’s manual?  

Methodology  

In order to answer our research questions, we provide a qualitative approach based on observation of 

practices used by teachers or semi-structured interviews with them. 

Participants 

This case-study involves two female teachers, Teacher B and Teacher A. Both of them teach at the 

4th level of elementary school (9–10 year-old pupils), in two schools located in two small towns in 

the centre of France. Teacher B has been teaching for 15 years and Teacher A for 10 years. None of 

them has studied higher education in mathematics. They both teach all school subjects. 

Both teachers belong to a sample of 10 teachers of the 4th level of elementary school who declared 

using mathematics textbooks and being volunteers to participate in our research. We had chosen this 

level regarding the introduction of fractions and decimal numbers. The ten teachers had agreed to be 

observed, by one of the two researchers, in their class, during a lesson of mathematics concerning the 

numbers, then to be interviewed during a semi-directive interview. For this case-study, we chose 



Teacher B and Teacher A among these 10 teachers for two reasons. Firstly, Teacher B and Teacher 

A have the same textbook1 in their class. Secondly, when we observed them teaching in their 

classroom, both presented a lesson on the theme of fractions and decimal numbers. 

Method 

In the classroom of Teacher B, the observation lasted 57 minutes and the interview 36 minutes. In the 

classroom of Teacher A, the observation lasted 33 minutes and the interview 44 minutes. We did not 

film the learning sessions, but some photographs have been taken, related to the use of the textbook 

or other artefacts. An observation table has been assigned in two parts : 

 The observation of the classroom with identification of the different moments of the learning 

session (total duration, duration of each phase), duration of the phases of use of the texbook 

by the pupils, identify the moments while the teacher uses her teacher’s textbook. 

 The database about pupil and teacher documentation.  

Following this observation of sessions, a second data collection was made through semi-structured 

interviews. An interview guide was set up on these subjects: preparation of the observed session, 

place taken by the manual during the session, manual’s choice, general use of the teaching and pupil’s 

guide and during the session, and finally, teacher training. The interviews often relied on the 

photographs that we had taken during the session concerning the use of the manual by the teacher or 

by the pupils. They can be linked in a methodological way with the self-confrontation method 

(Theureau, 2010). 

For the “fractions and decimal numbers” topic, the classroom manual has eight sessions numbered 

from five to twelve in its summary. The selected lessons for the analysis are lessons 8 (Teacher B) 

and 9 (Teacher A), because both of these lessons refer to the use of number line.  

Both interviews were transcribed. All the data collected through observation and interviews have 

been analysed (Bardin, 2007) in order to extract those concerning the presence and frequency of use 

of the textbook and the resources used by the teacher for the conception of his teaching. The times of 

effective use of the textbook by the pupil have been converted in percentages of the total duration of 

the lesson.  

Results  

For each teaching activity, we present below a lesson in which we can spot the relation that each 

teacher has with the textbook and with the teacher’s manual in her teaching activity. 

Teacher B 

Teacher B herself chose the textbook given to each of the pupils of her classroom. She reports using 

it frequently in class, mainly for the exercises. The Teacher’s manual is present in the classroom. 

Teacher B reports that she doesn’t use it because she has been disappointed by its general contents. 

She organizes the distribution of the lessons of the year herself.  

                                                 
1 Whereas in our study (Mounier & Priolet, 2015), there are at least 23 different textbooks in France for this level of 

teaching.  



Today, she proposes the following situation: she shows on the board a big number line she has 

prepared herself (Figure 1). 

 

Figure 1: number line showed on the board (Teacher B) 

In the first part of the lesson, she explains to the pupils how she made this number line: “the unit is 

here (u), so here between 0 and 1 there are 10 parts”. She tells them that point A is equivalent to four-

tenths of one. Then she asks pupils to write on their board the fractional numbers to which the points 

placed on the number line are associated. In the second part of the lesson, pupils open their textbook 

to do the 4th exercise (Figure 2). 

 

 

Figure 2: Exercise number 4, page 43 of the pupil’s textbook 

For this lesson related to session 8 of the manual (À portée de maths CM1) page 42–43 and named 

“decimal fractions”, the teacher’s manual first planned a research path with an individual preparatory 

report (Figure 3) to the activity “Let’s look together” in the pupil’s manual (Figure 3). 

  

Figure 3: teacher’s manual page 37 

Teacher A  

In Teacher A’s classroom, each pupil has got a textbook. This textbook has been chosen by one of 

the colleagues predecessors of Teacher A in that school. She declares to have adopted this textbook 

which was already present in the class before she came. Teacher’s manual is present in the classroom. 

Teacher A reports: “Mathematics is absolutely not my field. I refer a lot to the teacher’s manual but 



after this I try to appropriate it”. She says that she follows the annual distribution of the lessons in the 

manual. She also uses the manual’s exercises. 

For this lesson related to session 9 of the manual (À portée de maths CM1) page 44–45 named 

“Decimal fractions”, the teacher’s manual first planned a research path with the number line drawn 

at the board (Figure 4) to prepare the activity “Let’s look together” in the pupil’s manual (Figure 4). 

 

Figure 4: Teacher’s manual p. 39 (Beginning of the research path) 

Teacher A reports referring to the teacher’s manual to build the “Let’s look together”. While the 

teacher’s manual suggests as support for each exercise a number line increased without digital marks, 

this teacher writes a number line increased in tenth marks-units from 0 to 3, on the blackboard.  

 

Figure 5: Photography of the board during the lesson (Teacher A) 

Then she asks the pupils to indicate which fraction corresponds to such a graduation (yellow arrow). 

On the board, she writes two answers  and  (Figure 5) proposed by two pupils. She asks them to 

explain their process. Then Teacher A asks all the pupils to open their textbook to individual work 

on exercise number 2. In this second part of the lesson, and especially with this exercise number 2, 

the pupils have to use a number line (Figure 6). 

 

Figure 6: Exercise n°2 page 44 of the pupil’s textbook 

 

During the interviews, Teacher A and Teacher B report that they want to do the best to help their 

pupils to understand the fractions and the decimal numbers. So, Teacher A decided to write a number 

line increased in tenth marks-units on the blackboard instead of the number line increased without 



digital marks which was suggested by the teacher’s manual. Teacher B decided to explain to her 

children what each graduation means on the number line.   

Analysis and discussion 

We use Rey’s model (2001) to analyse the didactic set up plan in each of these two classes. We 

compare it with the model underpinned by the instructions provided by the teacher’s manual’s 

research path. 

Although the authors declare in the preface (page 3, pupil’s textbook) that the “teacher is a 

professional that chooses and assumes his pedagogy” and in the preamble (page 3, teacher’s guide) 

that “the guide is conceived in order to give the teacher the freedom of his own ways”, the instructions 

which are supplied in the scenario of the teacher’s manual about the research path of both consider 

lessons, seem to lead an approach of the “observation, explanation, application” type. 

Our observations show that Teacher B operates the didactic device “explanation-application”, 

whereas Teacher A tends to use the “observation-explanation-application” device. Teacher A 

modifies the starting situation support by converting the teacher’s manual (number line increased 

without digital marks on a number line increased in tenth marks-units from 0 to 3). 

This modification of the support does not favour the devolution (Brousseau, 1998) of this problem to 

the pupils. It has transformed, by reducing it, the difficulty of the task planned by the authors’ 

textbook: to question on the density of decimal numbers which constitutes an epistemological 

obstacle to the pupils’ understanding.  

Although the authors of the textbook declared that teachers keep their pedagogic freedom, in both of 

the observed situations, both teachers do not commit the pupils in an approach of type “problem-

explanation-application”.  

Conclusion 

In order to analyse the relations between the teaching activity and the contents of mathematics 

textbooks and of teacher’s manual, we have referred to the didactic model of Rey (2001). Our purpose 

was to detect the adjustments operated by two 4th level of elementary school teachers who use the 

same mathematics textbook. We observe that both do not follow all the recommendations of the 

authors of the teacher’s manual. For example, the teachers redefine the task planned by the authors 

of the textbook, then changing the planned didactic device, from a model of “observation-

explanation-application” led by the teacher’s manual, into a model of “explanation-application” (Rey, 

2001). This change may reduce, in a way, the pupils of the understanding of the density of the order 

of decimal numbers. Thus, our analysis reveals a problem of coherence, already pointed by Arditi 

(2011) between the adjustments operated by the teacher-user and the authors-designers of the 

textbook. This echoes the question of the validation of the collected knowledge (Bruillard, 2010), in 

particular in the context of the development of the recourse to the digital resources.  

In conclusion, we notice that the logic of the teacher and the logic of the textbook cannot be the same. 

We observe that this gap can interfere with the aimed knowledge, from which we conclude in the 

necessity for the teacher to exercise an epistemological and didactic vigilance on pupils’ 

understanding. It seems to us essential, following the example of Charles-Pézard (2010), to include 

this issue in the training of the teachers.  
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Critical incidents as a structure promoting prospective secondary 

mathematics teachers’ noticing 
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This study builds on the idea of using “critical incidents” as a tool for inquiry and reflection in the 

context of mathematics teacher education. The analysis was based on 22 prospective teachers’ 

portfolios reporting and interpreting selected critical incidents on the basis of their observations of 

mathematics teaching conducted by other teachers and by themselves in the context of their field 

experiences. The critical incidents addressed a multiplicity of issues related to mathematics 

teaching and learning. Prospective teachers’ noticing developed in terms of what and how they 

notice indicating a more relational way of conceptualizing mathematics teaching and learning. 
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Introduction  

In this paper, we study prospective teachers’ (PTs’) noticing of mathematics teaching in their initial 

field experiences through their engagement in identifying and interpreting critical incidents taken 

from everyday classroom situations in the context of a teacher education course. Critical incidents 

are everyday classroom events which have significance for the teachers, make them question their 

practice and seem to provide an entry for their better understanding of teaching-learning situations 

(Hole & McEntee, 1999). To observe and question mathematics teaching is a rather demanding task 

for both practicing and prospective teachers. A number of research studies have indicated that PTs 

face difficulties in identifying salient aspects of classroom instruction. For instance, they tend to 

describe the lesson as a chronological order of disconnected events (Sherin & van Es, 2005), they 

keep their attention primarily on the teachers rather than on the learning students (e.g., Van Es & 

Sherin, 2002) and they have difficulties in developing interpretative analysis of classroom 

instruction (Jacobs, Lamb, & Philipp, 2010).  

Research suggests the need for the development of structures that foster teachers’ systematic 

reflection on teaching practice and help to make the act of noticing critical aspects of classroom 

interactions more concrete (Mason, 2002). Examples of such supportive structures are: the use of 

theoretical tools to code teaching (Mitchell & Marin, 2015); the decomposition of video lessons in 

small parts (McDuffie et al., 2014); the identification of critical incidents from classroom teaching 

(Goodell, 2006). These structures have been exploited in situations where prospective mathematics 

teachers analyze teaching of others mainly through video noticing (e.g., Sherin & van Es, 2005) 

while few studies refer to PTs’ reflection on their own teaching (e.g., Goodell, 2006). However, 

there is an open discussion on if and how reflecting on other teachers’ practice transfers for 

reflecting on PTs’ own practice (Stockero, 2008). Many research studies prioritize helping PTs to 

focus on students’ mathematical thinking (e.g., Jacobs et al., 2010) while few studies aim to 

facilitate PTs’ attention to other important features of mathematics teaching and their interrelation 

to students’ learning (McDuffie et al., 2014). Linking students’ learning opportunities to teacher’s 



discourse moves is a rather demanding task and it poses a research challenge in the area of 

prospective mathematics teachers’ noticing. 

In our study, we attempt to explore how critical incidents can be used as a structure to support PTs 

in reflecting on mathematics teaching recognizing interrelationships between teaching and learning. 

Our research questions are: (a) What is the nature of critical incidents that PTs identify while 

reflecting on mathematics teaching conducted by other teachers and by themselves? (b) How does 

PTs’ noticing develop when identifying and interpreting critical incidents related to students’ 

mathematical activity? 

Theoretical framework  

Under a community of inquiry perspective, Jaworski (2006) introduced the concept of critical 

alignment, in which participants align with the practice of mathematics teaching while critically 

questioning aspects of it.  Critical alignment is promoted through the tool of inquiry. Inquiry is a 

process of encouraging critical reflection and promoting critical alignment (Jaworski, 2006). In this 

perspective, reflection is considered as a tool that allows participants to be engaged in a continual 

reconstitution of the practice of teaching. The reflective process involves “firstly, a recognition of 

questions to address, identifying some perplexity, making some aspects of teaching problematic; 

and, secondly, through some processes of enquiry, to seek solutions, or resolutions to, or new ways 

of understanding, the problems identified” (Jaworski, 1998, p. 7). This perspective is close to our 

view of a critical incident as a continuum involving identification, interpretation and potential 

action where critical questioning is a constituent element of it.  

Researchers have been concerned about the introduction of sufficient structures for making the act 

of inquiry into teaching practice more concrete. An example of a structured framework for reflection 

on classroom episodes, are critical incidents. In mathematics education, the idea of critical 

events/moments in mathematics teaching has been used as an analytical tool in studying 

mathematics teaching and learning. Skott (2001) used the term “critical incidents of practice” to 

describe moments of a teacher’s decision-making in which multiple and possibly conflicting 

motives of his activity evolved that challenged the teacher’s own school mathematics images and 

provided learning opportunities for students. As a developmental tool, critical incidents have been 

used by Goodell (2006) in pre-service mathematics teacher education. She analyzed PTs’ reports of 

critical incidents and she found that the issues raised concerned: teaching and classroom 

management; student factors; issues concerning relationships with colleagues, parents and students; 

and school organizational issues. She also identified that PTs fruitfully addressed important aspects 

of teaching for understanding such as the necessary conditions, factors facilitating teaching for 

understanding and barriers to teaching for understanding.  

Noticing has been introduced to mathematics teacher education to study shifts in the structure of 

teachers’ attention and, through this, to address different levels of awareness both in mathematics 

and in mathematics teaching (Mason, 2002). According to van Es and Sherin (2002), noticing is a 

more complicated action than just observing teaching. Rather, it requires teachers to notice what is 

significant in a classroom interaction, to interpret this noteworthy incident on the basis of their 

knowledge and experiences, and to link these with broader principles of teaching and learning. Van 

es (2011) proposed a framework for learning to notice students’ thinking constituted of four levels 



of noticing according to “what teachers notice” and “how teachers notice.” As regards to what the 

teachers attend to, the four levels include: making general observations about the whole class 

environment (Level 1 – Baseline Noticing); focusing on teacher pedagogy and begin to attend to 

students’ thinking (Level 2 – Mixed Noticing); attending to particular students’ mathematical 

thinking (Level 3 – Focused Noticing); and interrelating particular students’ mathematical thinking 

and teachers’ teaching strategies (Level 4 – Extended Noticing). When it comes to how the teachers 

notice and provide interpretations, the four levels include: providing general impressions and 

descriptive comments (Level 1 – Baseline Noticing); providing primarily evaluative with some 

interpretative comments and beginning to refer to specific events and interactions as evidence 

(Level 2– Mixed Noticing); providing interpretative comments, referring to specific events and 

interactions as evidence and elaborating on events and interactions (Level 3 – Focused Noticing); 

and making connections between events and principles of teaching and learning and suggesting 

alternative pedagogical actions (Level 4 – Extended Noticing). This framework provides a base for 

teacher reflection as well as a tool to describe the development of teachers’ noticing. The above 

studies indicate that noticing critical aspects of mathematics teaching of others and prospective 

mathematics teachers’ own teaching seems to constitute a basis for professional learning.  

Methodology  

The research took place in the context of a 14-week mathematics education undergraduate course 

(taught in one semester by the second author) included in a university program of a mathematics 

department leading to a first degree in mathematics. Enrolling in the course in which the study took 

place, PTs had already successfully passed at least four courses on pedagogy and mathematics 

education. The aim of the course was to engage PTs in critical consideration of aspects of 

mathematics teaching as they emerge from the complexity of teaching practice in schools. Every 

second week for the entire semester PTs were asked to participate in a number of field activities 

(over six field activities-weeks) while each week following the activities in schools included a 

three-hour meeting at the university. PTs’ field activities consisted of observing other teachers’ 

mathematics teaching for six hours in total (first three field activities-weeks), designing and 

teaching a lesson in one group of students outside the classroom for one teaching hour (fourth field 

activities-week), and designing and teaching lessons in the whole classroom for two teaching hours 

(fifth and sixth field activities-weeks). The 22 PTs (9 males, 13 females), who served as participants 

in this study, were divided into pairs and carried out collaboratively the field activities under the 

supervision of eight postgraduate students of mathematics education who acted as mentors. 

Inquiry into mathematics teaching was a rather new practice for PTs and was supported through the 

discussions in the university meetings and the field activities. Critical alignment with the practice of 

the mathematics teaching in which they were engaged through observing and teaching, was 

expected to be developed through the process of inquiry and questioning aspects of practice. Critical 

incidents were expected to facilitate this process. PTs’ field activities were based on the cycle 

observing-reflecting-designing-implementing-reflecting. For instance, PTs were asked to: identify 

the specific content of a lesson in the curriculum and to trace it throughout the different grades; look 

for possible research evidence related to potential students’ difficulties; keep systematic notes from 

and/or record the lessons; reflecting on their classroom experiences; and analyzing lessons. In this 

context, PTs were asked to select critical incidents and provide a reflective account on the basis of 



justifying their selection, interpreting them and proposing potential teaching actions. Instructional 

practice in the university sessions aimed to support PTs’ reflection on their recent field experiences 

and to link emergent issues with existing mathematics education research in order to develop deeper 

levels of awareness. PTs were introduced to the idea of critical incidents through (a) a brief 

presentation of Goodell’s (2006) study (including the meaning of critical incidents, the classification 

of them and examples from PTs’ written reports), and (b) analysis of transcripts of lessons to 

identify critical incidents and discuss/justify in the class their criticality. The teacher educator 

facilitated the discussion, but also challenged the PTs to justify their selection of the critical events, 

to provide evidence of their claims, to make interpretations, and describe their potential teaching 

decisions. The PTs themselves presented the analysis of the critical incidents and their reflections in 

the university meetings. Overall, PTs’ field activities and the discussions in the university meetings 

revolved around the idea of critical incidents and thus they were compatible with our research focus. 

The data for this study consisted of: (a) PTs’ personal portfolios including their written accounts of 

critical incidents, and material related to the design, implementation, and presentation of the field 

activities in the classroom (e.g., worksheets, lesson plans, presentation files); (b) video recordings of 

all meetings at the university (8 in total) and (c) researchers’ field notes. In this paper we analyse the 

data from the PTs’ portfolios. The analysis was carried out in three levels. In the first level, we 

adopted a grounded theory perspective (Charmaz, 2006) and indentified thematic areas indicating 

what the PTs noticed (first research question). In the second level, we analysed the critical incidents, 

their interpretation and the potential actions that PTs reported in their portfolios for each week’s 

assignment in terms of the levels of van Es’ (2011) framework. Finally, we traced PTs noticing over 

time looking for shifts in what they noticed in students’ activity and how they interpreted it. 

Results  

The nature of critical incidents from PTs’ portfolios 

In Table 1, we present a categorization of the critical incidents that the PTs identified in their reports 

in two cases; one is while reflecting on the observations of other teachers’ teaching and the second 

while reflecting on their own teaching. The total number of critical incidents in the first case was 72, 

while in the second 54. In both cases, the incidents reported most often were related to students’ 

activity (35 out of 72 - 49% in the first case, and 21 out of 54 - 39% in the second) and in particular, 

to their conceptual difficulties. Another category of incidents focused on teaching - especially on the 

interaction between teacher and students (e.g., how the teacher responded to students’ questions and 

answers). Thirty-three out of seventy-two (46%) incidents in the first case fell in this category and 

eighteen out of 54 (33%) in the second case. A third category appeared mainly when PTs reflected 

on their own teaching, concerned students’ learning in relation to teaching (5% in the observations 

and 22% in the personal teaching). A fourth category that emerged only in the second case included 

three incidents focusing on epistemological issues.  

Below, we present some illustrative examples of the above categories and we elaborate on the issues 

emerging from the analysis of the critical incidents in relation to our research goals. Focusing on 

students’ activity, the PTs recognized misconceptions and difficulties in using mathematical 

language, performing procedures, connecting representations, and developing problem solving 

strategies. For example, the confusion between perimeter and area was noticed by one prospective 



teacher, Marina, while observing a lesson in an eighth grade class: “The teacher asked the students 

to draw a triangle and then to name the sum of the sides. One student answered ‘area’ and another 

one ‘perimeter.’ The first one seemed to confuse area and perimeter”. As regards to the unexpected 

students’ responses, one prospective teacher, Leonidas, reported students’ innovative approaches in 

finding triangular numbers in the Pascal triangle: “One student discovered a personal algorithm to 

calculate triangular numbers only by observing the arrangement of numbers in the Pascal triangle”. 

Incidents from classroom observation (72) Incidents from personal teaching (54) 

Students’ activity 35 (49%) Students’ activity 21 (39%)  

Difficulties 29  Difficulties 18 

Unexpected responses 5  Unexpected responses 3 

Motivation 1 Motivation 0 

Lesson planning and teaching  33 (46%) Lesson planning and teaching  18 (33%)  

Teacher-students interaction 19  Teacher-students interaction  10 

Classroom norms  5  Classroom norms 3 

Quality of tasks and mathematical 

content 

8 Quality of tasks and 

mathematical content 

2 

Teaching versus planning 0 Teaching versus planning 2 

Dynamic character of teaching 1 Dynamic character of teaching 1 

Linking teaching and students’ 

learning 

4 (5%) Linking teaching and students’ 

learning 

12 (22%)  

Relating interaction and learning  0 Relating interaction and learning 8 

Relating task and learning  3 Relating task and learning 3 

Relating norms and learning 1 Relating norms and learning 1 

Epistemological issues 0 (0%) Epistemological issues 3 (6%) 

Table 1: Categorization of the PTs’ critical incidents 

Concerning teaching and in particular teacher-student interaction, the PTs commented on positive 

and negative ways that the teacher or PT reacted to students’ contributions. A positive example was 

when Vassilis noticed that the classroom teacher acknowledged different solution strategies and 

discussed those in the classroom. Stella referred to a negative example from her own teaching: “One 

student proposed to find the requested area through transformations, which is a good approach. 

However, I directed her to follow the approach described in the textbook”. Stella also noticed the 

classroom norms and their effect on the mathematical communication: “Although the students 

provided repeatedly wrong answers, the teacher did not evaluate them and encourage further 

discussion”. The quality of the tasks in relation to the mathematical content was related to the 

teacher’s choices of the content, its integration in the designed tasks, and its transformation in the 

classroom teaching. Anthi reported: “I was impressed by the way that the teacher introduced 

students to the idea of limit in the context of geometry. … This experience can help students to get 

an intuitive sense of the idea of limit”. By being involved in designing and teaching, PTs started to 

consider the complexity of teaching. In particular, they started to recognize the gap between 

planning and teaching and the dynamic character of teaching as it is indicated in the following 

example from Sofia’s reflection:  “Although I had designed a realistic problem with the aim of 

engaging students in making sense by themselves of the notion of circle, during the implementation, 

I ignored the design. Actually, I took a directive stance to secure that the task would lead the 

students to the expected conclusions”.  



Moreover, the PTs started to relate different aspects of teaching such as classroom norms, classroom 

interaction, and nature of tasks to students’ learning. For example, Alexandros, recognized the 

mediation of digital tools in supporting students’ understanding while reporting on his classroom 

observations: “I noticed a student who had difficulty realizing that the ratios in Thales’ theorem 

remain constant independently of the position of the non parallel lines. She understood this property 

through dragging these lines in Sketchpad”. Another example is about the relation between the 

presentation of a task and students’ engagement. In an application of the Thales theorem, Leonidas 

noticed that the complexity of a geometrical figure in the task he designed posed barriers to 

students’ participation: “Students’ participation dropped vertically when they were asked to discern 

ratios of segments in the shape. So, the weak students could not consider at all even simple 

questions such as ‘Show me a line that intersects the parallels’”.  

Finally, in the category “epistemological issues” we include critical incidents that refer to the nature 

of mathematical content from an epistemological point of view. For example, Anna noticed in her 

teaching that some students did not verify the validity of their findings, a process that she considers 

important in mathematics: “I chose to discuss this incident because verification constitutes an 

important process in mathematics. However, students often are not engaged in this”.  

The growth of prospective teachers’ noticing 

Here, we use the van Es’ (2011) framework to trace PTs’ development of what and how they notice 

when observing teaching and reflecting on their own teaching. The analysis of the portfolios 

indicated that most PTs progressed to higher levels of the van Es’ developmental trajectory where 

relations between teaching and learning were noticed and connections between events and principles 

of teaching and learning were made. Below, we illustrate this shift through a representative case of a 

PT (Katia).  

Katia provided a written account of the critical incidents she selected as part of the course 

assignments involving observations and designing and teaching. During the observations, Katia 

offered general descriptions of the whole class environment and incidents related to students’ 

difficulties. She shifted from a baseline noticing in her first two observations (level 1) to mixed 

noticing (level 2) in the third one both in what and how she notices. For example, in her written 

account based on the second observation she gave as a critical incident the students’ lack of 

motivation to participate in the lesson due to the fact that some of them would not have been 

examined in mathematics in the university entry examinations. As regards how she notices the 

above critical incident, she provided descriptive and evaluative comments considering teaching 

independent of students’ behavior. In reflecting on her potential teaching actions, she mentioned 

that she would insist on inviting students to pay attention. In her account based on the third 

observation, Katia focused on students’ difficulty to transform the formula of the area of a 

trapezium E = (B+b)×h/2 to an equivalent expression in terms of another variable (e.g., the height 

h). This time she provided evidence of this difficulty by specifying students’ errors in algebraic 

manipulations. She also noticed that the teacher used numerical examples with the same structure to 

address these difficulties. Commenting on this critical incident, she wrote: “Although students do 

well with numbers and equations with one variable, they get confused when more variables are 

involved and they panic”. It appears that Katia begins to notice students’ thinking and refer to 

teacher-students interactions in the teacher’s attempt to address students’ difficulty. While she was 



challenged by the teacher educator to look for further evidence to support and interpret her 

observation (by discussing with the classroom teacher and one student who demonstrated this 

difficulty after the lesson, and by reading a relevant research paper), she still confirms students’ 

difficulty without offering an explanation. 

Katia’s noticing was further developed while reflecting on incidents selected from her own teaching.  

She started to attend to subtle aspects of tasks and the way they influence students’ activity, to 

develop interpretations based on her classroom experiences and research readings and to deviate 

from her planning at contingency moments. Our analysis provides evidence that while reflecting on 

her own teaching she was able to consider teaching and learning in a relational way and to provide 

justified arguments and alternative pedagogical solutions reaching focused noticing (level 3) and 

extended noticing (level 4). The following example illustrates this finding. Katia designed a lesson 

for the teaching of area measurement in grade 7 by taking into account research findings on 

students’ strategies on area measurement. Her main goal was to engage students in calculating the 

area of irregular figures by developing as a main strategy the dissection of the shape in other shapes 

whose area could be calculated by the known formulas. The students were really engaged in the 

process and developed different strategies. Katia reported as a critical event the fact the use of the 

word “irregular” in the given worksheet raised a lot of questions in the classroom: “I did not expect 

that the word “irregular” would create questions and negotiations. However, I exploited to see how 

students think about these figures”. In her analysis of the phenomenon, Katia refers to specific 

student’s ideas about the meaning of the word “irregular” and how this influenced students’ work.  

Discussion  

The critical incidents that PTs identified in their portfolios addressed a multiplicity of issues related 

to mathematics teaching and learning focusing mainly on students’ activity and on student-teacher 

interaction. A similar picture was also formed in the study of Goodell (2006) where students’ 

conceptual understanding and classroom interaction were the most dominant categories of the 

selected critical incidents. As regards the context in which the selected incidents emerged, there 

were not distinct differences in the nature of critical incidents that the PTs selected through their 

observations of other teachers’ teaching and of their own. At the level of classroom management, 

the PTs found it more difficult to focus on the teacher-student interaction in their own teaching than 

in other teachers’ teaching. Nevertheless, when PTs reflected on their own teaching, they started to 

see more clearly the impact of teaching on students’ learning. One possible explanation could be 

that PTs’ engagement in analyzing other teachers’ teaching provided them a reflective stance 

towards their own teaching. A similar finding has been reported by Stockero (2008) who identified 

that PTs’ experiences in analyzing video lessons of other teachers can enhance deeper levels of 

reflection on their own teaching. Tracing PTs’ critical incidents, their interpretations and suggested 

teaching actions indicated shifts in their ways of noticing. Most PTs reached levels 3 and/or 4 of the 

Van Es’ framework (2011) in terms of what and how they notice realizing interrelationships 

between teaching and learning. This finding adds to existing research on developing structures in 

teacher education facilitating PTs’ noticing and enriches discussions that have taken place in 

previous CERME conferences (e.g., Potari et al., 2011). Integrating selection and reflection on 

critical incidents in teacher education provides a structured way that helps PTs to become aware of 

significant classroom interactions and to develop a critical way of addressing them. 
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In this paper, we present how experiences gained from a theory informed Lesson study in regard to 

a specific learning goal can be shared and used by other teachers in new contexts. A group of teachers 

worked together in a cyclic, iterative process of planning, evaluating and revising teaching. The aim 

was to provide possibilities for grade 2 and 3 students to become familiar with negative numbers. 

The teacher group draw the conclusion that the pupils needed to be able to differentiate some aspects 

of negative numbers. The conjecture was put to the test in a follow-up study with five new teachers 

and eight classes. One lesson was taught based on the empirical finding in the Lesson study. When 

learning gains from pre- to post-test in these classes were compared to those in the Lesson study, 

similarities were found.  

Keywords: Lesson study, sharing instructional products, negative numbers, variation theory. 

Introduction 

Morris and Hiebert (2011) have presented Lesson study as a model for transforming teachers’ craft 

knowledge into professional knowledge i.e. making it public, sharable, storable and verified as well 

as improved and should be organized around public changeable knowledge products. Their arguments 

are based on the necessity to reduce differences in classroom instruction (Morris & Hiebert, 2011, p. 

5). The aim of this paper is to illustrate and discuss what an instructional product, generated on the 

basis of a pedagogical theory and empirically grounded, could look like and whether making use of 

such a product can be productive to enhance student learning. We report on how a theory-framed 

version of lesson study – Learning study – can produce ‘instructional products’ useful outside the 

specific context. Insights gained from one Learning study (LrS) about how to enhance the learning 

of negative numbers were communicated and used by new teachers in new contexts.  

Lesson Study not just professional development  

Stigler and Hiebert (1999) pointed out the effectiveness of Japanese Lesson study (LS) model for 

improving teaching and learning of mathematics. There are extensive reports on the effectiveness of 

Lesson study for teachers’ improvement of teaching skills, how they learn to reflect, on changes in 

motivation and capacity to improve instruction and the development of content and pedagogical 

content knowledge (e.g. Lewis, Perry & Hurd, 2009). Furthermore, it is often pointed out that Lesson 

Study can promote the establishment of learning communities and teacher collaboration, a culture of 

mutual accountability, shared goals for instruction and a common language for analyzing instruction 

(e.g. Chichibu & Kihara 2013; Hunter & Back, 2011; Toshiya & Toshiyuki, 2013). To us, with these 

purposes, Lesson study will be restricted to a model for professional development only, not as a 

system that can generate new and relevant knowledge recognized as a legitimate knowledge source 

for professionals. 

Hiebert and Morris (2011) take Lesson study further when they promote it as a system for “the 

creation of shared instructional products that guide classroom teaching” (p. 5). ‘Instructional 
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products’ should be designed with a specific learning goal in focus and detailed enough to guide 

classroom instruction. An instructional product is the current answer to common and shared problems 

on teaching and learning. It is tentative, changeable and thereby open to improvement. Therefore, 

such ‘local theories’ embedded in the instructional product must be communicated, shared and 

improved by other teachers in other contexts. In this way, they could be tested and verified under new 

and local conditions. 

Learning Study 

Learning study is a theory-informed version of Lesson study (Marton & Pang, 2003). It shares 

features with Lesson study, such as the collaboration among teachers and the iterative design of 

planning, implementing, observing and revising of the lesson, but it is framed by a theory of learning 

—variation theory (Marton, 2015). Just as with Lesson study, there are reports on the positive effects 

of Learning study on teachers’ professional development (e.g. Lo, Chik & Pang, 2006). Learning 

study is also a model for constructing knowledge concerning the objects of learning as well as the 

teaching-learning relationship. It takes the professional task as the point of departure and generates 

public and sharable knowledge for the improvement of teaching and learning, exactly in line with 

what Hiebert and Morris (2011) advocate.  

The knowledge produced in Learning study is an instructional product, not in terms of a lesson plan 

or specific teaching methods, but in terms of what is found to be necessary to learn in order to develop 

a specific understanding, skill or attitude. It is not about learning in a general sense, but in relation to 

specific learning goals (cf. Hiebert & Morris, 2011). In Learning study, variation theory serves as a 

tool for teachers to identify the necessary conditions of learning the object of learning. Learning, from 

this theoretical perspective, is seen as a change in one’s way of experiencing something. How we 

experience something has to do with what aspects we notice and become aware of. For every object 

of learning there are certain critical aspects necessary to discern.  

‘Critical aspects’ are dimensions of variation in the object of learning that the learner has not yet 

learned to discern and attend to. It has been suggested, however, that the critical aspects must be 

identified for every group of learners (Pang & Ki, 2016). Variation theory takes a relational 

perspective on learning, meaning that the critical aspects are not merely a feature of the content (a 

concept for instance), but a feature of the experienced object of learning. They cannot be derived at 

“from disciplinary knowledge alone or as taken-for-granted truths” (p. 333) Learners bring various 

experiences to the classroom and experience phenomena in different ways. Therefore, to identify the 

critical aspects, learners’ ways of experiencing must be taken into account. In Learning study, this is 

done by carefully diagnosing—via interviews and/or written tests—before and after the lesson. So, 

‘critical aspects’ should be defined in relation to the phenomenon in question as experienced by 

learners rather than in relation to what is deemed critical in the curriculum or subject discipline (Pang 

& Ki, 2016, p. 328) 

Marton (2015) asserts that one cannot become aware of new concepts or aspects without becoming 

aware of differences (i.e. variation). Variation theory is used when the teachers explore students’ prior 

understanding and to what extent the object of learning has been achieved by the learners after 

instruction. The exploration of teaching and learning in the Learning study entails identifying what 

aspects of the object of learning that are critical for learning and how to make it possible for the 



learners to experience them. When planning the lesson, variation is used for creating problems, 

example spaces and choosing representations for example. 

Teaching and learning negative numbers—some recommendations 

Gaining understanding of the nature of negative numbers has been problematic for early 

mathematicians to comprehend (Bishop et al., 2014), as well as for teachers to teach and learners to 

learn (e.g. Ball, 1993). The difficulties have to do with the meaning of the numerical system and the 

magnitude and direction of the number, the meaning of arithmetic operations, and the meaning of the 

minus sign (Altiparmak, & Özdoğan, 2010). For Swedish students the meaning of the minus sign is 

probably particularly difficult, since in Swedish a number like –2 (in English: negative two) is 

pronounced as ‘minus två’ (minus two) and written –2. Thus, there is no linguistic and symbolic 

difference between the minus as a sign for the operation and as a sign for the number.  

It has been recommended that teaching of negative numbers should take the point of departure in real 

life problems or situations known from the children’s experience and transformed into mathematical 

models. For instance, using ‘a house’ with floors above and below the ground floor, or a bird 

flying/diving above/below sea level, has been suggested (Ball, 1993). Usually in the Swedish 

mathematics curriculum negative numbers are contextualized within discussions about temperature 

below and above zero and with the help of the thermometer. However, there might be a risk with this. 

The number system and the ordering of integers might not be visible when negative numbers are 

talked about as ‘minus-degrees’ (in Swedish: ‘minus-grader’). Every child probably knows that it is 

colder when the temperature is –10 degrees C compared to a temperature of 3 degrees C. This may 

be confusing when they have to learn that –10 is a smaller number than 3. This was also found initially 

in the Learning study reported here. So, the teachers decided to use the number line only and talk 

about the numbers within a mathematical context instead of referring to temperature or depths. 

A Learning Study on expanding students’ number range from N->Z 

In the Learning study (LrS) one of the authors of this paper worked in collaboration with two primary 

school teachers and 64 students in four different classes in grade 2 and 3 (8–9 years old) in Sweden. 

The teachers wanted to extend the students’ experience of numbers to include the negative numbers 

also. In doing so, they explored what the students must learn—thus finding the critical aspects—in 

order to be familiar with integers and how to teach this in a way that would enhance the students’ 

learning.  

The LrS encompassed four cycles, that is, four lessons were taught with four different classes. A 

diagnostic pre- and post-test was given to the students. Results from this, together with a close 

analysis of the recordings of the lesson, gave insights into what is critical for learning and how the 

content must be handled to promote learning. Thus, when the learners failed to learn that which was 

targeted, they had to go deeply into the lesson and inquire how the content was handled and whether 

it was made possible to learn that which was intended. This analysis became the basis for the planning 

of the following lesson in the cycle, which was taught by a new teacher, and to new students, and 

again the recorded lesson and the diagnostic post-test are analyzed. The iteration proceeded until all 

classes were taught. Hypotheses about the critical aspects were tested in class. So, the critical aspects 

emerged as a result of trying them out in class and carefully analyzing students’ learning outcomes 

and what was made possible to learn in the lesson. When it was found that the learning outcomes 



were not as expected, the teachers had to consider the possibilities for learning during the lesson and, 

by being guided by variation theory, discuss learning in terms of discernment. As the process 

continued the critical aspects became more specified; from something to be discerned, to something 

that should be differentiated, namely: 

 To differentiate the value of two negative numbers 
 To differentiate the function of the minuend versus the function of the subtrahend in a 

subtraction 
 To differentiate the minus sign for negative numbers versus the minus sign for subtraction 

To get the students to discern the critical aspects, carefully constructed examples, based on the idea 

of variation/in-variance were used. So, for instance, the examples  and  (‘3’ varies; 

minuend/subtrahend) were contrasted as operations on the number line. The choice and character of 

the example space (Watson & Mason, 2006) was changed and developed during the process. It was 

not until lesson 4 that examples like  and  were implemented in the lesson, for 

example. Since the results on the post-test after lesson/class 4 were significantly better compared to 

the previous lessons, it was concluded that the examples chosen and how they were sequenced seemed 

to be important for the possibility to discern the critical aspects. 

Putting the conjecture to the test: The follow up study 

Lövström (2015) concludes that when the critical aspect was phrased in terms of differentiation, that 

is what things could be compared, it indicated not just what dimension that must be opened up, but 

also what values in that dimension that were critical and needed to be contrasted (two or more 

negative numbers). Thus, critical aspects in terms of differentiation highlight a specific subject matter 

and students’ experience of the content, and furthermore, provide directions for handling the content. 

To put the conjectures of the critical aspects identified in the LrS to the test, a follow-up study (FS) 

with eight classes of new learners (N=116) and five (partly) new teachers were conducted. All the 

teachers had more than 15 years of teaching experience. All but one were primary school teachers 

that were not specialized in mathematics. Three of the teachers taught two classes each. One of them 

had participated in the LrS and is one of the authors of this paper. All except one were, to a varying 

extent, familiar with variation theory. The teachers were selected on the basis of previous interest in 

Learning study and variation theory and asked to teach one lesson (three of the teachers in two 

different classes) about negative numbers. One of the classes was grade 7, a group of learners with 

difficulties in mathematics; all the other were grade 2 and 3. Swedish was the first language for the 

majority of the students, but several other languages were represented in all classes. The guardians 

had given their written consents to student participation. The students were given a test (with a few 

exceptions identical to the test in LrS) before and after the lesson. 

The FS was planned in a 3-hour meeting with the teachers and two of the authors of this paper. Results 

from the pre-tests in the eight classes were presented and discussed and it was found that the ‘new’ 

group of students had similar problems to the students in LrS. So, the critical aspects identified in LrS 

were assumed to be valid for the new group of students also. The results from LrS were presented to 

the teachers and the identified critical aspects were described and discussed. A video-recording of 

lesson 4 was observed by the group. Some sections were repeatedly paid attention to. It was specially 

observed and discussed in detail how the number line was used in the lesson. The aim was to conduct 



the eight lessons as similarly as possible in terms of how the critical aspects were handled. Similar, it 

was important that all the examples presented and discussed in lesson 4, were present in all the 

‘following up-lessons’ just as the usage of the number line. Except for these requirements, the 

teachers were free to arrange the lesson in their own fashion—to choose group- or individual work, 

for example.  

The FS did not have the same iterative design as the LrS. It was conducted in parallel during the same 

week. The lesson was conducted mainly in whole class, intersected with individual and/or group-

work. The interaction was more of a discussion between the teachers and the students with probing 

questions around the examples presented on the board. The examples used opened up dimensions of 

variation and were designed to make the critical aspects possible to discern. The teacher drew the 

learners’ attention to differences in the midst of similarities and the students were required to justify 

their answers, sometimes after discussion in peers/groups. The lessons lasted about 60 minutes. In 

our experience, in Swedish schools it is uncommon that such a long period of time is allocated to 

whole class teaching of mathematics among younger students. Still, the students seemed to remain 

concentrated and focused.  

The data consists of video-recordings of eight lessons, and results on four tasks (1, 3, 4 and 9) in the 

pre- and post-tests. Here, only results from pre- and post-test are drawn on. In task 1 (a–e), students 

should identify the biggest of five numbers. In a) all were positive numbers, b)-c) negative and 

positive numbers and zero, and e) negative numbers only. The object of learning was not preliminary 

to operate with negative numbers, but in order to test if the students were able to experience that there 

are numbers , operations with negative difference were chosen. So, task 3 (8 items) involved 

subtractions with positive or negative difference. The subtrahend and the minuend were positive 

numbers except in g) where the subtrahend was negative. Similarly, task 4 was a subtraction with 

negative difference. Here the students should also give a justification of their answer. Task 9 was 

about the difference of the meaning of the minus sign. The test comprised another four tasks not 

accounted for here.  

Some preliminary results based on a measurement of correct answers on the pre- and post-test are 

presented here. Results on the pre-test were compared to the post-test on each task and on a group 

level. A comparison between the LrS-group and the FS-group was also made. Preliminary results are 

presented in this paper.  

Results 

Preliminary results from the analysis of two tasks for all the groups are presented in Table 1 and 2. 

 

Item  a  b c d e 

Pre-test 113(97) 84(72) 104(90) 65(56) 34(29) 

Post-test 112(96) 102(87) 112(97) 97(84) 85(73) 

N=116 

Table 1: Numbers (percentage) of students who answered correctly on task 1, ordering of numbers 

In task 1 there were learning gains in terms of numbers and percentage of students who displayed the 

targeted experience of integers on all except one item. As can be seen from Table 1, the frequency of 



correct answers was higher on all items on the post-test, expect for a) (which had a high rate from the 

beginning). The highest increase is on d): from 56% to 84% and e): from 29% to 73% who answered 

correctly. Item d (negative numbers and zero) and particularly e) (negative numbers only) were 

initially more difficult than the others (lower scores on the pre-test compared to the others). Although 

significant progress was made, item d) and e) have lower scores on post-test compared to a-c. There 

were still students (15–26 %) who did not manage to find the biggest number among negative 

numbers or negative numbers and zero after the lesson. 

The analysis of task 3 and 4 (Subtraction pos./neg. difference) suggests improvement on all items 

except a) c) e) and f). These subtractions (positive difference) are well known to the students, but 

their encounter with subtractions with negative numbers might have confused some students.  

 

 Item a b* c d* e f g* h* 4 

Pre-

test 

113(97) 15(13) 105(90) 19(16) 115(99) 113(97) 11(9) 17(15) 17(15) 

Post-

test 

96(83) 57(49) 90(78) 62(53) 112(96) 110(95) 51(44) 52(45) 61(52) 

N=116 *negative difference 

Table 2: Numbers (percentage) of students who answered correctly in task 3 and 4 

The frequency of correct answers on the subtractions with negative difference is particularly 

interesting. Item b), d), g) and h) show a similar result. About half of the students could solve these 

correctly after being taught just one lesson. Before they were taught, the average frequency of correct 

answers on these items on the pre-test was slightly more than 10 % (13.6). So, there was a significant 

improvement on the post-test. 

Item g)  is perhaps the most interesting. This item had the lowest frequency of correct 

answers before the lesson. Only 9% managed this on the pre-test. 44% answered correctly on the 

post-test. To be able to solve , one must differentiate the minus sign as an operation sign 

and the sign for negative numbers. Task 9 was designed to test whether the learners could understand 

the two meanings of the minus sign. On the pre-test, 8 students (7%) could tell the difference between 

the minus sign in the operations  and  respectively. After the lesson, 42% 

answered correctly. 

Conclusions and discussion 

What has been reported here is not a description of the ‘best’ lesson design or an answer about to how 

to teach negative numbers. It is a theoretically and empirically grounded description of some 

necessary conditions for learning about negative numbers among young students, generated by a 

group of professionals. Our interpretation of the analysis so far is that, the simultaneous 

differentiation of the value of two negative numbers, the differentiation of the function of the minuend 

and subtrahend, together with differentiating the meaning of the minus sign, seem to be necessary 

conditions for learning about the nature of negative numbers. Although learning was improved, still 

there was a fairly large group of students who seemed not to have learned that which was targeted. 

So, the ‘instructional product’ is open for development and improvement. 



As was described above, finding the critical aspects is a transactional process comprising the learners, 

their learning (what they learn), what is targeted, or, using Dewey and Bentley’s (1949) description: 

a transaction of the known, the knowing and the known. This was demonstrated in the reported LrS; 

what was found to be critical emerged as the teachers got deeper understanding of how the learners 

responded to instruction, what was made possible (and not possible) to learn in the lesson in relation 

to the targeted ‘known’. The object of learning, in terms of what is critical for learning, is constituted 

in a transactional and continuing process in LrS. The instructional products produced in LrS are 

hypotheses of what is needed to learn, that can and must be tested and developed to deepen the 

understanding of teaching and learning. The object of learning and its critical aspects are dynamic 

and emergent, and this study supports this proposal. In this study, there are most likely things that 

have been taken for granted or even neglected that might be critical.  

Hiebert and Morris (2011) call for a need to accumulate evidence about what works and what does 

not across different classroom settings (p. 5). Our analysis suggests that the results for the FS-group 

on the post-tests reflect the results for the LrS-group after the lesson. Our study supports finding from 

Kullberg’s study (2012); when critical aspects generated in LrS become visible as dimensions of 

variation in new settings, similar learning outcomes are gained. This further suggests and points to 

possibilities that the development of effective ways of teaching could be shared among professionals. 
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The aim of this study is to investigate changes regarding a first-grade teacher’s quality of 

implementation of mathematical tasks within the scope of a professional development (PD) program. 

The quality of implementation of mathematical tasks was analyzed through the instructional quality 

framework developed by Stein and Kaufman (2010) including maintaining cognitive demand, 

attending to students’ thinking and the intellectual authority in mathematical reasoning. This is a 

qualitative case study focusing on the teaching of a first-grade teacher with 40-year experience. 13 

lessons were video-recorded and weekly meetings were audio-recorded. All data were transcribed 

for content analysis. The results indicated that there was a slightly positive change in quality of 

implementation of tasks throughout the PD program.  

Keywords: Mathematical tasks, cognitive demand (CD) of a task, intellectual authority, student 

thinking, quality of implementation. 

Introduction 

Mathematical tasks are the units of instruction that create an environment for students to work 

mathematically. To explore mathematics instruction and potential changes in it, an investigation of 

teachers’ selection and implementation of mathematical tasks is necessary (Hsu, 2013). Stein et. al. 

(2000) characterized use of a mathematical task through four successive phases in Mathematical Task 

Framework (MTF); (1) task as appears in curricular materials, (2) task as set up in the classroom, (3) 

task as enacted in the classroom and (4) student learning. Teachers select or develop, present and 

implement mathematical tasks in their instructional processes.  

Stein and Kaufman (2010) defined the high-quality mathematics lessons through the maintenance of 

high level cognitive demands (CDs), attending to student thinking and vesting intellectual authority 

in mathematical reasoning. The first is to maintain a high level CD through the steps of MTF. Doyle 

(1988) described cognitive demand of a task as the cognitive processes necessary for successful 

completion of the task. If mathematical tasks require high CD level, these tasks need to foster 

students’ high level cognitive processes such as reasoning about the mathematics concepts involved, 

problem solving, making justifications, making sense of representations etc. Maintaining high CD of 

a task would require sustaining a focus on such processes through the steps of MTF. 

Based on Doyle’s (1988) work, Stein et al. (2000) divided mathematical tasks into two categories as 

high level CD and low level CD. Each category consists of two subcategories. Memorization tasks 

and procedures without connection to mathematical concepts tasks (P without C) belong to low level 

CD. The procedures with connection to mathematical concepts tasks (P with C) and doing 

mathematics tasks are high level CD (see Stein et. al., 2000 for a detailed explanation of these 

categories in Task Analysis Guide). Literature indicates that students show their best performance on 

reasoning and problem solving when tasks are maintained in high level CD (Stein et. al., 2000). 



However, in most practices high level CD cannot be maintained and there is a decline in CD during 

set up and implementation of tasks (Tekkumru-Kisa & Stein, 2015). 

Attending to students’ thinking is about paying attention to what students tell regarding mathematics 

(Stein & Kaufman, 2010). The goal is to gather students' strategies, representations, understandings 

or thinking, and to use them in classroom discussion in order to support conceptual understanding. 

Vesting intellectual authority in mathematical reasoning emphasizes that the authority in the 

classroom needs to be in mathematics itself, especially in mathematical reasoning. Therefore, teachers 

are not acting as the judge to tell whether student responses are right or wrong (Stein & Kaufman, 

2010).  

Approaches to mathematics teaching have been going through changes in many countries in the last 

two decades. The emphases on problem-solving and reasoning for conceptual understanding, i.e. 

reflections of high levels of CD, are prominent in many countries’ recently revised mathematics 

curricula and curricular materials. At times of change, teachers are the agents who enact curricular 

and pedagogical changes by arranging the learning environments according to the needs of students. 

However, teachers have difficulties while adapting new approaches in implementing new curriculum 

(Davis, 2003). Even though teachers are expected to implement tasks focusing on conceptual 

understanding, studies demonstrate that they continue to teach mathematics in a traditional way; 

focusing on practicing procedural skills (Hsu, 2013; Stein et. al.,2000). In Turkey, where there are 

similar changes in the curriculum, mathematical tasks in textbooks are aiming to reflect this focus 

(Ubuz et. al., 2010). Thus, teachers’ implementation of mathematical tasks requires a close attention 

in this context.  

In various international studies, the whole process in MTF has been investigated considering the 

change in curricular approach (e.g. Charamlambous, 2010; Stein & Kaufman, 2010). The studies 

mostly focus on how CD of a task is maintained through the phases of MTF (e.g. Charalambous, 

2010). In the context of Turkey, studies related to investigating teachers’ implementation of 

mathematical tasks are scarce (e.g. Ubuz & Sarpkaya, 2014). More specifically, according to our 

knowledge there has not been any study conducted considering all three components of instructional 

quality.  

Due to demands of a new curriculum from teachers, we conducted a professional development (PD) 

program in a private primary school in Turkey. We aimed to investigate how the quality of teachers' 

implementation of mathematical tasks progressed through the PD program. The current paper reports 

a part of this project. The aim of this article is to examine the case of a first-grade classroom teacher’s 

quality of implementation of mathematical tasks throughout a year. The research question is: 

How does a first-grade teacher's quality of implementation of mathematical tasks change 

during a professional development program? 

Method 

A qualitative case study approach was adopted, aiming for in-depth analysis of a particular complex 

situation in a realistic context. Neşe (pseudonym) was a first-grade teacher at a small private primary 

school in İstanbul and was one of the participants who joined the PD program. We chose the case of 

Neşe to further analyze in this study because of her experience in teaching and her initial resistance 

to changes regarding the quality of implementation of mathematical tasks.  



The participant 

Neşe had approximately 40 years of experience in teaching as a classroom teacher and had deeply 

rooted classroom practices. In her classroom, there were 16 students whose SES backgrounds varied 

from middle to high. At the beginning of the study, Neşe reported that she already taught in a way to 

foster high level cognitive processing. When she acknowledged that she could not follow the kind of 

teaching suggested by the quality of implementation of tasks framework, she highlighted that her first 

graders required detailed teacher directions of what needed to be done, tasks focusing on singular 

skills or knowledge at a time. She wanted to spoon-feed them since she believed the students needed 

experiencing success in tasks. She explicitly referred to her experience as a reason for her resistance 

to making changes in her practice. Neşe was a typical case of experienced teachers with deep-rooted 

beliefs and skeptical to new approaches (Ghaith & Yaghi, 1997). 

Data collection 

In the PD program, we adopted Borko’s (2004) phase 1 teacher professional development research 

approach through the collaboration of teacher and researchers in one school. We, as two mathematics 

education researchers, aimed to create a community of learners where researchers and teachers 

discussed their ideas together. Classroom observations were done approximately twice in every month. 

While observing the classrooms, we were nonparticipant observers who took field-notes and video-

recorded the lesson. The video recordings were used for two purposes; (1) collecting research data and 

(2) supporting teacher reflection. We had weekly meetings with teachers to discuss their implementation 

of mathematical tasks based on the videos. The teachers watched their videos before the meetings and 

reflected on them. There were 23 meetings lasted for 40 minutes and were audio-recorded. Furthermore, 

mathematics lesson plans for the coming week were also discussed. We gave suggestions for lesson 

planning and teaching but made sure teachers made the final decisions. Besides, in order to explore 

MTF's first step, before observation, we wanted teachers to send us their plans for the lessons to be 

observed. 13 lesson observations were conducted in Neşe’s classroom. 44 mathematical tasks were 

implemented in these lessons. However, not all tasks were present in the lesson plans Neşe provided. 

Data analysis 

For the quality of implementation of mathematical tasks, all videos were transcribed and coded using 

the Classroom Observation Coding Instrument (Stein & Kaufman, 2010). Based on the instrument, 

we coded intellectual authority in mathematical reasoning ranging from 0 to 2 and attending to 

students thinking ranging from 0 to 3. While coding, the enactment episodes of instructional tasks 

were used as the unit of analysis. For the maintenance of CD, we used the paths provided by 

Charalambous (2010) (see Figure 1). For interrater reliability, two mathematics education researchers 

coded 4 of the 13 lessons including 11 of the 44 tasks independently. Cohen’s kappa was calculated 

to check agreement between raters for coding CD of tasks, CD of task set-up, CD of task enactment, 

student thinking and intellectual authority. Cohen’s kappa values were κ =.784, κ=.694, κ =.792, κ 

=1.00, and κ =. 792 respectively, which shows a high level of agreement between raters. Beyond the 

provision of descriptive statistics, we will present key episodes from her teaching practice and 

comments in the meetings to document teacher resistance to change and teacher change in terms of 

her quality of implementation of tasks.  



 

Figure 1: Paths for the maintenance of CD (Charalambous, 2010, p.258) 

Results 

Neşe used 44 tasks in total throughout 13 lessons. Sixteen of 44 tasks were not laid out explicitly in 

the lesson plans Neşe provided. Table 1 summarizes CDs of the tasks with respect to semesters. The 

table shows that about 61% of the tasks in the second semester were set up as cognitively demanding 

compared with only about 43% of the tasks in the first semester. In the first semester, about 57% of 

the tasks Neşe presented required low cognitive processes (i.e. recalling information, applying 

algorithms). Table 1 also indicates similar trends in enactment phase; Neşe implemented about 61% 

of the tasks at a high level in the semester 2 while she enacted about 33% of the tasks at this level in 

the semester 1. When the maintenance of CD was analyzed, it was observed that Neşe mainly 

maintained CD at its intended level for all phases for both semesters. While Neşe maintained about 

59% of first semester’s tasks at a low-level (Path B), she maintained 73% of second semester’s tasks 

at a high level (Path A). For only two tasks throughout the whole year, she did not maintain 

cognitively challenging tasks; the decline occurred during enactment phase (Path C). Analyses 

showed that Neşe’s choice of tasks determined the level of CD to be maintained.  

 Semester 1 Semester 2 

CD levels of 

tasks 

Planning Set-up Enactment Planning Set-up Enactment 

f % f % f % f % f % f % 

Memorization 3 14.3 3 14.3 3 14.3 0 0 0 0 0 0 

P without C 
7 33.3 9 42.9 11 52.4 3 13 9 

39.

1 
9 

39.

1 

P with C 
6 28.6 7 33.3 7 33.3 6 26.1 11 

47.

8 
11 

47.

8 

Doing math 1 4.8 2 9.5 0 0 2 8.7 3 13 3 13 

Not present 4 19 0 0 0 0 12 52.2 0 0 0 0 

Table 1: Descriptive analysis of CD levels of tasks 

Table 2 shows the limited work Neşe did to uncover student thinking in the first semester (i.e. she 

mostly asked for short or one-word answers). She did not connect students’ responses in the 

discussion. However, there were slight differences in her use of tasks where she used students’ 

answers to direct and connect the discussion on 8.7% of the tasks in semester 2. She demanded 

explanations from the students, called on certain students for directing the discussion to specific 

outcomes and connected the discussion for a fruitful experience for students as a classroom 

community.  



 Semester 1 Semester 2 

Categories for attending to student thinking f % f % 

(0) no attention to student thinking 6 28.6 6 26.1 

(1) limited attention - some student explanation 11 52.4 10 43.5 

(2) purposeful selection of responses, attention, but no connected 

discussion 
4 19.0 5 21.7 

(3) purposeful selection, attention and connected discussion 0 0 2 8.7 

Table 2: Descriptive analysis of attending to student thinking 

Table 3 shows that the nature of Neşe’s practices on judging the correctness of students’ work was 

slightly different in the second semester. She was in charge of deciding what was correct or not for 

most of the tasks in semester 1. Although she wanted students to prove or check the correctness via 

mathematical tools, she was the one confirming students’ answers at the end. In semester 2, she 

continued with similar teaching practices; but she also experienced teaching episodes where 

mathematics was the tool students used to decide on the correctness.  

 Semester 1 Semester 2 

Categories for intellectual authority f % f % 

(0) judgments of correctness derived from teacher or text  11 52.4 7 30.4 

(1) judgments of correctness sometimes derived from teacher or text, 

but also some appeals to mathematical reasoning  
10 47.6 14 60.9 

(2) judgments of correctness derived from mathematical reasoning  0 0 2 8.7 

Table 3: Descriptive analysis of intellectual authority in mathematical reasoning  

Illustrative episodes from Neşe’s lessons  

In this part, we will present two episodes from Neşe’s quality of implementation of tasks. The first 

episode illustrates Neşe’s common use of non-challenging, low level CD tasks throughout all phases 

of MTF. There were elements representing her resistance to changing her practice. The second 

episode presents how Neşe maintained a cognitively demanding task through letting her students 

struggle and encouraging their ideas to come out, practice emerging more prominently in the second 

semester. Neşe’s comments from meetings about the tasks in the episodes gave insights about the 

nature of change in her practice.  

Making 10. This episode is from a lesson on pairs of numbers that make 10, covered at the beginning 

of the PD program. In the plan of the lesson, Neşe stated the lesson goal as discovering the pairs of 

numbers that make 10. The task in the episode included nine possible pairs that would make 10. The 

students needed to find one of the pairs to make 10. The task and the coding decisions for this episode 

are presented in Table 4. While implementing the tasks, Neşe directed students to count the flowers 

as seen in the sample item. In doing so, she made available the unknown to the students. Neşe 

eliminated opportunities for students to explore the pairs that make 10 by focusing on the counting 

procedure and finding the answer. This led students not to use high cognitive processes, or think about 

the operation they were engaged in; counting the flowers was enough for the completion of the task. 

Neşe had similar trends in her implementations of the first semester’s tasks. 

  



The Task Coding Decisions 

How many more needed to make 10? 

Sample item: 2 +  = 10  

Sample episode:  

Neşe: Elif, there are 2 flowers. Which 

number should I add to make 10? I can 

count these flowers to find out. Let’s 

count. 

Student:One, two, three, four, five, six, 

seven, eight. Eight. 

Neşe: Well done, this is it! 

The task was coded as procedures without connections 

for task selection, set-up, and enactment. Neşe expected 

students to count the flowers to decide what would be the 

unknown of the pair that makes 10. Since the focus was 

on counting the flowers, students enacted the task by not 

relating with pairs of 10, but counting the flowers and 

writing the unknown number. During instruction, she did 

not attend student thinking; she asked for completion of 

the task. The judgments regarding correctness were 

derived from the teacher; she checked students’ work 

constantly.  

Table 4: Making 10 task and coding decisions of the making 10 task 

In the follow-up meeting of the lesson, Neşe did not prefer to comment on the episode before we 

made any comments. We pointed out the discrepancies between the CD of Neşe’s expectations from 

the students as reflected in her activity and the goal she noted down for this task. We discussed the 

importance of giving opportunities for higher-level thinking and mechanisms for shifting teaching 

towards this aim. After such comments from the researchers, Neşe wanted us to lower our 

expectations from her and emphasized her teaching habits by saying: 

Neşe: If I bring open-ended tasks to the classroom, the students could not complete the 

task. I need to use such repetitive activities for students to learn. I have been using 

teacher-centered approach for years. Do not expect me to improve my teaching. At 

most, two years later I will be retired from teaching. Do not try hard for me. 

Contribute to younger teachers (personal communication, November 26, 2014)  

Yet we emphasized that we believed that there would be changes if she wished to work together. This 

extract shows that Neşe held on to her experiences in teaching and her expectations about student 

learning. Neşe was reluctant to change because she wanted to retire from teaching in two years. This 

reaction is an evidence of her resistance to change her implementation of tasks.  

Subtraction Problem. This episode is from a lesson on problem solving using subtraction, covered 

towards the end of the PD program. The task and coding decisions are presented in Table 5. During 

the episode, Neşe expected students to analyze the problem and to explain their thinking by modeling 

the problem and writing mathematical sentences. Therefore, she maintained the complexity of the 

task by pressing for meaningful explanations so that the students realized the unnecessary information 

by asking, “Why do you think it is unnecessary information?”, “Can you explain in more detail?”, 

“Why don’t I use money?” “Why is the result 11, not 14 or not 27?” In the post-lesson meeting, Neşe 

examined her lesson in detail before the researchers made any comments. She referred to the 

maintenance of CD in her comments. She had certain concerns about the set-up phase of the task after 

watching her practice.  

The Task Coding Decisions 

Examine the following problem situation 

by modeling it. Write mathematical 

 Contextualized task was coded as procedures with 

connections for all phases of MTF. Applying general 

subtraction procedures were necessary with the need of 



sentences and solve it. Explain your 

reasoning.  

**There are 6 roses in our vase. Dad 

brought 8 tulips too. Mom told that dad 

spent 10 ₺ for the tulips. Next day, mom 

realized 3 flowers faded. How many 

flowers are left in the vase? 

conceptual connections to complete the task. Neşe 

expected students to connect multiple representations by 

asking for a model and mathematical sentences. She 

attended to student thinking by demanding justifications 

from students. She mostly directed students to the models 

for checking the correctness of their answers. 

Table 5: Subtraction problem task and its coding decisions 

In the meeting following classroom observation, Neşe stated that the task was too abstract and hard 

for the students. Then she pointed to getting students to struggle in order to construct meaning through 

abstraction as a necessary practice for learning:  

Neşe: It would not be easy for students, but it is good to present the task abstractly. It is 

challenging for them and for me too. I think I maintained the high level CD. I did 

not just expect them to apply the subtraction procedure. I wanted them to question 

the problem situation, and the unnecessary information within the problem. I 

wanted them to explain their thinking by using manipulatives. It took a long time, 

but it was necessary for students to experience high level cognitive processes. 

(personal communication, May 6, 2015).  

This episode and Neşe’s interpretations showed the importance she gave to supporting students’ 

reasoning in her teaching practice. The focus on explanations and justifications helped the teacher 

implement the task with high quality. The post-lesson interview provided evidence for teacher’s 

change in her emerging practice and comments during the PD program.  

Discussion and conclusion 

This study aimed to investigate the changes in a first-grade teacher’s quality of implementation of 

mathematical tasks during a PD program. Neşe, our case, was one of the experienced teachers having 

difficulties with adapting educational innovations into their practices as illustrated in the literature 

(Ghaith & Yaghi, 1997). The PD program aimed to meet the needs of new approaches to mathematics 

education. The results indicated a slight positive difference in Neşe’s practices between first semester 

and second semester based on maintenance of high levels of CD, attending to student thinking and 

intellectual authority. The teaching episodes showed that the PD program contributed to the teacher’s 

approach towards implementing high quality of tasks that focus on problem-solving, reasoning and 

conceptual understanding (Stein & Kaufman, 2010). Neşe was resistant to change at the beginning of 

the PD program; her selection and implementation of tasks were low level CD in general (e.g. the 

making 10 task). However, high expectations from the researchers and the post-lesson interviews 

persistently focusing on the quality of implementation of tasks contributed to emerging changes in 

Neşe’s teaching practice as well as the nature of her comments (e.g. the subtraction problem task). 

This study contributes to the existing body of literature on change of teachers’ practices about the 

implementation of mathematical tasks within the context of a PD program. This study might inform 

future studies to explore facilitators’ actions that lead to change in teacher practice. Further research 

might explore how change occurs in an experienced teacher practice to work with other experienced 

teachers. Especially in Turkey, there are a limited number of studies related to the classroom practices 



of primary school teachers in a climate of change in curricular approaches (e.g. Ubuz & Sarpkaya, 

2014). Results of this study provide information about mechanisms of change in context and 

contribute to the development of larger scale PD programs.  

Additional information 

Work in this paper was supported by a grant from Boğaziçi University Scientific Research Projects 

(BAP) Fund, with project code 15D01P1 and project number 9420. 
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This paper stems from research on mathematics teachers’ participation in a particular collaborative 

learning process that addresses the issue of mathematical communication and mathematical 

reasoning in relation to the teaching of algebra. Although results from the developmental research 

revealed changes in the working group’s meaning making about mathematical communication and 

reasoning, whether these changes are long-term and influence the teachers’ mathematics teaching 

over time remains unclear. The aim of this paper is to discuss possible theoretical frameworks and 

ways of understanding mathematics teachers’ long-term learning about mathematical 

communication and reasoning by describing what they can learn in an organized community of 

practice (Wenger 1998) when working with key mathematical issues. I will use the data and results 

from the developmental research to design another study on long-term learning. 

Keywords: Collaborative learning, long-term learning, mathematical communication, mathematical 

reasoning, mathematics teaching.  

Introduction 

Changing mathematics teaching is a complex process that requires the improved alignment of theory 

and practice (Sowder 2007). To that end research has failed to focus on answering questions about 

how mathematics teaching can change as a result of collaborative teacher learning projects (Sowder 

2007). In this paper, I present an earlier study (Sterner 2015) as a background for a discussion of 

potential ways of conducting further research on understanding what a developmental research 

project can achieve in three years after its completion. The previous study addressed a school 

developmental project in mathematics in a middle sized community in Sweden. Figure 1 illustrates 

the background of the study and a possible direction for further research. 

 

Figure 1: The study’s chronological development.   

The first section of this paper focusses on the learning process and results of a working group (i.e. the 

reflection group) that formed part of the developmental research study (Fig. 1). The second section 

comprises questions about possible ways to conduct further research three years after the study’s 

completion. The bulk of research in the field of teacher learning and development has indicated the 
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failure of teachers to learn how to promote and support teaching and student learning (e.g. Borko 

2004; Opfer & Pedder 2011; Sowder 2007). New issues emerged during and after the previous study, 

including ones addressing what happened in mathematics teaching after the completion of 

collaboration in the reflection group and how research on mathematics teaching can integrate the 

significance of context. Among other questions, whether we can listen to teachers’ voices (Potari, 

Figeiras, Mosvold, Sakonidis & Skott 2015, p. 2972 - 2973), and what comes to mind when teachers 

listen to their own narratives three years after the completion of work in a reflection group are of 

particular importance (Fig. 1). 

Background   

As Figure 1 illustrates, results from a pilot study (November 2012 – February 2013) revealed 

teachers’ difficulties with describing the concepts of mathematical communication and reasoning, as 

well as with applying those concepts in their teaching. Based on the results, the main study (Sterner 

2015) was designed as a collaborative development initiative in a working group called reflection 

group. The author and five mathematics teachers in grades 1-6 collaborated on the key issue of 

mathematical communication and reasoning in relation to their teaching of algebra. Since the 

reflection group met monthly for a year the study can be characterised as developmental research, 

which Jaworski and Goodchild (2006) have defined as:  

Research which both studies the developmental process and, simultaneously, promotes 

development through engagement and questioning (p. 353). 

The developmental work in this study addressed change achieved in an ongoing investigative process 

which occurred in parallel with the active creation of the participants’ meaning making related to the 

key issue. However, as Goodchild (2008) pointed out, transformations through such dialectic cyclical 

processes of research and development are complex. In a literature review, Sowder (2007, p. 158) 

outlined 10 important issues facing mathematics teachers’ development. Three of those issues were 

of specific importance to the study at hand and constituted the underlying questions addressed in the 

developmental research study:  

1. How do teachers learn from their professional communities about teaching mathematics?  

2. What can teachers learn from investigating their own teaching of mathematics?  

3. What can be learned from research on teacher change?  

In this paper, I discuss theoretical frameworks for understanding mathematics teachers’ sustainable 

and long-term learning by describing what teachers can learn in an organised community of practice 

(Wenger 1998) addressing a key mathematical issue. The teachers in the reflection group wanted to 

develop their understanding of communication in mathematics teaching in order to stimulate 

mathematical reasoning in their own teaching of algebra. 

Methodology  

The study derived from a developmental project that adopted the perspective of collaborative learning 

among mathematics teachers and a researcher when designing tasks and environments to investigate 



students’ learning of mathematical reasoning related to algebra. A socio-cultural approach was 

adopted and the focus of the study was the learning process of the reflection group.  

The theoretical perspective employed was that of communities of practice (Wenger 1998), in which 

learning is an aspect of participation in a social practice, whose participants engage in the negotiation 

of meaning (Wenger 1998). The theory of communities of practice (Wenger 1998) focusses on 

meaning making, participants’ learning, and their reification of the key issue in a social context. 

Negotiating meaning is a central and dynamic process when teachers participate and reify. In that 

sense the reflection group’s joint enterprise (Wenger 1998) was its members to understand more about 

communication and reasoning in their own mathematics teaching.  

The process in the reflection group concentrated on two interacting parts: participation and reification 

(Wenger 1998). Framing the case as a community of practice shed light on the teachers’ negotiation 

of meaning. At the same time the negotiation of their experience with teaching and learning related 

the key issue of mathematical communication and reasoning to their teaching of algebra.  

The developmental research cycle method (Goodchild 2008) and the theory of communities of 

practice (Wenger 1998) together shaped the methodology of the study (Fig. 2). Developmental 

research and choice of methodology were intended to provide duality between a developmental and 

a research process over time and to enable a participant’s perspective. Figure 2 illustrates my 

interpretation of Goodchild’s (2008, p. 8) schematic figure of the developmental research cycle.  

 

Figure 2: Interpretation of the developmental research cycle (Goodchild 2008, p. 208) 

This study draws upon the idea that mathematics teachers’ professional development should be based 

on their own classroom practice and students’ learning (e.g., Broodie 2014; Goodchild 2014; 

Goodchild, Fuglestad & Jaworski 2013; Kazemi & Franke 2004; Matos, Powell & Sztajn 2009). The 

reflection group constituted a learning community that reflected on their teaching practices as well as 

on their students’ mathematical communication and reasoning related to algebra. Working 

collaboratively, the mathematics teachers developed a shared repertoire (Wenger 1998) of the key 

issue, mathematical communication and reasoning in relation to their teaching of algebra. 

Developmental research represents a methodology based on interacting cycles of research and 

development (Goodchild 2008). As illustrated in Figure 2, the developmental research cycle 

constitutes the largest ellipse that spans the entire study since a cyclical process clearly exists between 

development and research. The ellipse on the left, representing the developmental cycle (A-E), 



illustrates the work performed in and organisation of the reflection group (Sterner 2015). The 

developmental process appears as a cycle between a practical experiment and a thought experiment 

(Fig. 2). Every meeting of the reflection group were started at phase C (i.e. common reflections, 

challenges and questions and activities completed by the students when working on mathematical 

reasoning in algebra). This meetings were recorded. The ellipse on the furthest left, representing 

mathematics teaching (Fig. 2), illustrates the teachers’ own practice in which they attempt to align 

and adjust common mathematical tasks and make individual reflections. Figure 3 illustrates 

systematic reflections in the process and the three levels of reflection in the reflection group. 

 

 

Figure 3: Systematic reflections among participants in the reflection group 

The discussions in the reflection group provided empirical data that nurtured the research cycle. In 

Figure 2 the research process appears as a cyclical process between global and local theories. My 

interpretation of global theories (Goodchild 2008) is comparable to a theory-guided design research 

approach (Gravemeijer 1994; Gravemeijer & Cobb 2013) that in turn produces new theories 

(Gravemeijer 1994; Goodchild 2008). The research process guides the developmental cycle by means 

of local theories, which nurture the research cycle in the form of thought experiments and new 

questions. Reflecting together in the reflection group (phase C, Fig. 2) and the challenges of group 

members’ own teaching resulted in problematizing questions.  

Analysis and results 

The analysis of the reflection group’s discussions involved three steps. The first two continued 

throughout the developmental research process and constituted tools used for reflection in the 

reflection group (Fig. 3). The third step of analysis occurred following the completion of work in the 

reflection group. All three analyses were based on Wenger’s (1998) concepts of participants’ meaning 

making, reification and shared repertoire related to the key issue. The first two analyses and the 

preliminary results motivated the reflection group to negotiate their meanings of the key issue and 

wielded questions about what the group needs to discuss in terms of mathematical communication 

and reasoning. The reflection group returned to the preliminary results of analyses in order to identify 

further opportunities for development (Goodchild et al. 2013). As a participant researcher, I provided 

reflection to the group members with “findings of the research” and problematizing questions based 

on their own thoughts and questions. 

During the ongoing data analysis from the reflection group discussions, new questions emerged when 

participants problematized daily mathematics teaching practices and became aware of new questions 

and challenges in their practice. The key principle in that process was reflection on three levels, as 

illustrated in Figure 3, since an essential component of developmental research is participants’ 

interpretation (Kvale & Brinkman 2009). Wenger’s (1998) modes of belonging (i.e engagement, 

Individual reflection before during and after implemented lessons.

Common reflections and discussions in the reflection group. 

The researcher's reflection on the analysed 
discussions in the reflection group.



alignment and imagination) served as the participants’ means for aligning and changing the 

discussions and activities of the reflection group. Those alignments and changes derived from 

participants’ negotiation of meaning and reification of the key issue. The following dialogue from the 

initial analysis reveals that participants’ shared repertoire concerns their frustration with failing to 

understand the meaning of reasoning in mathematics teaching.  

Majken: There is, generally speaking, no resistance among the students to conducting 

mathematical reasoning, but when we tell them to do so, they have no idea what it means. 

Irma: We need to provide them with tools that enable them to practise mathematical 

reasoning. 

Majken: But how can we do it, when we don’t know the meaning of mathematical 

reasoning ourselves? 

The dialogue led to consider textual content of mathematics as a science and in teaching from 

Lampert’ (1990; 2001) and the National Council of Teachers of Mathematics (2008). Lampert (1990; 

2001) described the science of mathematics as the formulation of assumptions followed by 

investigations to verify or refute them. When it comes to learning from a participant perspective, 

Lampert (2001) has outlined how she stimulated students’ mathematical reasoning by encouraging 

them to make a mathematical assumption (conjecture) about, for example, a strategy or a solution. 

She also stressed the importance of advancing a plausible mathematical justification for the 

assumption that can be explored and verified. This dynamics exemplifies how reflection group 

members returned to the analysis and its results.  

The textual content of strategies for mathematical reasoning in teaching suggested by from Lampert 

(1990; 2001) and the National Council of Teachers of Mathematics (2008) can be global theories 

transformed into local ones (Fig. 2). During discussions and activities participants aligned and 

developed local theories into a practical experiment (Fig. 2), which they sought to align for 

implementation in their own mathematics teaching. The teachers attempted to support their students 

in using the strategies for mathematical reasoning and to conceptualise mathematical reasoning as a 

cyclic process of exploration, conjecture and justification. The quote bellow is from the reflection 

group. The students have worked with equations and to concretize that 𝑥 can have different values, 

the students used boxes with different amounts of beans.  

Irma: […] the strategies for ”the reasoning cycle” (conjecture, justification and 

exploration) helped both me (in grade 4) to understand the students’ mathematical thinking. 

The students worked with the equation 3𝑥 + 3 = 2𝑥 + 5 and the students had to determine 

the value of 𝑥. I saw differences between students who made a wild guess and students 

who argued for their assumptions e.g. [… if we imagine that 𝑥 represent the boxes with 

beans. In each box there is same number of beans, we don´t know the amount yet. We need 

to balance the left and right side… if we reduce the same amount of boxes (2𝑥) from the 

both side of the equal sign, what will happen then?] 

Irma gives a student example of an initial mathematical reasoning. Later on the reflection group 

discussed situations from their own mathematical teaching in terms of how and when mathematical 

reasoning occurred and interpreted why. In the reflection group the negotiation of meaning centered 

on teachers’ awareness of stimulating students to “become involved in the reasoning cycle of” 



exploration, conjecture and justification (Lampert 2001; the National Council of Teachers of 

Mathematics 2008). The teachers reflected on and interpreted their own teaching and used a thought 

experiment as a form of individual experience and reflection (Fig. 3). Ongoing analysis revealed how 

participants’ discussions and shared repertoire about the key issue changed over time. As a participant 

researcher, my strategy was to focus on questions that arose in the reflection group and search for 

mathematical education theories that problematized the teachers’ challenges and questions 

(Goodchild 2008) in thought experiments (Fig. 2).  

Results and conclusions 

I investigated how the reflection group developed their meaning making and shared repertoire related 

to mathematical communication and reasoning, which promoted a change in the members’ ways of 

communicating about mathematics teaching in relation to students’ mathematical communication and 

mathematical reasoning. Four relevant changes in the mathematics teaching were identified in the 

reflection group’s discussions and learning. The changes ranged from understanding communication 

and reasoning to identifying, interpreting, applying and practising that reasoning. Teachers in the 

reflection group also changed their approach to discussion. In the initial stage, they achieved 

consensus, but gradually adopted a positive yet critical approach in which they problematized the 

process of learning in and from daily practice (Sterner 2015). The three levels of reflection (individual 

and shared reflections and the researcher’s reflection on the preliminary outcome in the reflection 

group) resulted in discussions that promoted new and meaningful ways to communicate 

mathematically and stimulate mathematical reasoning in algebra. This methodology could be a way 

of linking the activities of students and teachers. 

Ultimately, in response to Potari et al.’s (2015, p. 2,972) ‘How can we link students’ activity to 

teachers’ activity’, the present study demonstrates the importance of linking research and 

development in order to enable teachers to learn about their own mathematics teaching and students’ 

learning. Moreover it provides a response to Sowder’s (2007, p.158) questions; ‘How do teachers 

learn from their professional communities about teaching mathematics’ and ‘What can teachers learn 

from investigating their own teaching of mathematics’ by indicating the combined method of the 

developmental research cycle (Goodchild 2008) and the theory of communities of practice (Wenger 

1998), along with reflection on three levels (Fig. 3) allowed using the results and questions that 

emerged in the reflection group.  

Implications and further research  

The main study, between March 2013 and January 2014 (Fig. 1) focused on a group’s learning 

process, the group’s meaning making of the key issue. The third question from Sowder (2007) ‘What 

can be learned from research on teacher change’ found a partial answer. Results of the study 

demonstrate what can happen in the change process when a reflection group begins to work actively. 

On that note, other questions are whether mathematics teachers’ activities and shifts in collaborative 

learning change their mathematics teaching and whether teachers’ meaning making and their shared 

repertoire about communication and reasoning in mathematics teaching influence their teaching and 

persisted three years later. Since I am curious about teachers’ learning from a long-term, sustainable 



perspective, one question I will continue to carry with me comes from the last meeting in the reflection 

group, when one of the teachers, Clara said: 

Clara: I’m worried about myself. It’s very easy to sit back and fall into old habits when 

we no longer meet for reflection. What will my teaching be like now? 

As Clara suggests, a question not answered in this study is whether teachers’ activities and the shift 

in their approach in the discussion can change their mathematical teaching shortly after and also three 

years later.  

Possible new routes and issues three years after the completion of the reflection group 

The research in the reflection group involved the group’s process of learning about the key issue of 

communication and reasoning. The teachers’ meaning making and shared repertoire (Wenger 1998) 

about that issue shifted from understanding to identifying, interpreting, applying and practising 

mathematical reasoning. The present study does not provide answers about what happened in the light 

of the grey ellipse representing mathematics teaching in Figure 2 or what happened to the teachers’ 

thoughts and their mathematical teaching three years later. What questions will arise when the five 

teachers listen to the interviews they gave in 2014, after the completion of work in the reflection 

group and what thoughts will they have on hearing their own narratives? Will it be possible to use the 

same theory of communities of practice (Wenger 1998) to analyse the teachers’ individual reflections 

when they listen to their own voices from those interviews? Further research is necessary to 

understand sustainable, long-term learning in this case whether the mathematics teachers’ activities 

and shifts in their collaborative learning actually changed their mathematics teaching over time. What 

roles, if any, do teachers’ discussions changed meaning making and changed shared repertoire about 

mathematical communication and reasoning play in their teaching in a long-term sustainable 

perspective? 
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Teachers’ decisions and the transformation of teaching activity 

Konstantinos Stouraitis  

National and Kapodistrian University of Athens, Greece, kstouraitis@math.uoa.gr 

In this paper I study teachers' decisions as a response to emerged contradictions in the context of 

enacting a new set of curriculum materials. The way these decisions are framed and the potentials 

they have to transform the teaching activity are analysed. Our data come from discussions in 

teachers' group meetings through one year. I use activity theory to capture social and systemic 

aspects of decision making and to interpret teachers' decisions. Future-oriented envisioning of the 

deliberate outcomes of teaching and action-based decisions about the actions to be undertaken are 

two different aspects of decision making. Both are traced in the data of this study as two necessary 

aspects for decisions that create possibilities to broaden the horizon of teaching activity.  

Keywords: Activity theory, contradiction, decision making, teachers. 

Last decades, in the context of curriculum reform efforts, teachers are seen as active agents and 

designers, whose instructional actions are influenced by curricular materials, but also shape the 

enacted curriculum alongside their students (Remillard, 2005). Considering teacher at the centre of 

the curriculum enactment, highlights the importance of teacher's decision making. Thus, a number 

of studies focus more or less explicitly on teachers' decisions. For example, Lloyd (2008) follows a 

teacher for two years and finds that his perception of students' expectations and his own discomfort 

associated with using the new curriculum were key factors in his decisions. A large number of 

studies are focused on in-the-moment decisions made by teachers. ZDM special issue 48(1–2) on 

teachers’ perception, interpretation, and decision making, is indicative. Schoenfeld (2011) uses the 

notions of resources, goals and orientations to "offer a theoretical account of the decisions that 

teachers make amid the extraordinary complexity of classroom interactions" (p. 3). 

The studies examining in-the-moment teacher decisions, focus on the classroom context and 

emphasize the individual dimension of deciding. Nevertheless, the broader social, temporal and 

cultural dimensions of decisions a teacher makes in his planning or in the classroom are not 

addressed. In this study I seek a better understanding of how decision making process develops and 

how is shaping the teaching activity, drawing on cultural historical activity theory. The study is 

conducted in two secondary schools in Greece at the time of the introduction of a newly prescribed 

mathematics curriculum. In Stouraitis, Potari, & Skott (2015) and Stouraitis (2016), we have 

analysed the contradictions emerged in this context and how teachers’ decision-making is framed 

and develops considering social and systemic dimensions. In this paper I study how and why 

teachers’ decisions, may or may not have a transforming effect on teaching activity. The decisions 

in focus are discussed in group meetings and refer to planed actions undertaken in the classroom. I 

examine three teachers’ decisions, the different ways these decisions shape the teaching activity and 

I interpret these differences. Although sociocultural perspectives have been used in research about 

teachers' decisions in mathematics education (see for example, Skott, 2013), activity theory has not 

been used so far. Thus, although empirically based, the paper is methodologically oriented, giving 

an account about the affordances of using activity theory in studying teachers’ decisions. 



Theoretical considerations 

Cultural historical activity theory (AT) offers a lens that tries to capture the complexity of teaching, 

by integrating dialectically the individual and the social/collective. The activity is driven by a 

motive and directed towards an object (Leont'ev, 1978). In our case, teachers (the subject) are 

involved in teaching activity with the motives of students' learning of mathematics and the 

fulfilment of other professional obligations. The unit of analysis is the activity system (Engeström, 

2001a) incorporating social factors (rules, communities, division of labour) that frame the relations 

between the subject and the object with the mediation of tools 

(Figure 1). In our case, a tool with considerable influence in 

the teaching activity is the new curriculum.  

Activity is carried out through actions which are "relatively 

discrete segments of behaviour oriented toward a goal" 

(Engeström, 2001b). I conceptualise teaching action as 

discrete instructional acts or clusters of acts that constitute the 

teaching activity, e.g. the selection or creation of a task, the 

enacting of a lesson plan, etc. 

Every activity system is characterised by contradictions which are the driving forces for the 

development of every dynamic system (Ilyenkov, 2009). They may create learning opportunities for 

the subject and may broaden the activity, for example leading to reconsideration of the actions and 

goals (Engeström, 2001a; Potari, 2013). In our study, the introduction and enactment of the new 

curriculum produced or revealed contradictions in teaching that emerged in group discussions 

(Stouraitis, Potari, & Skott, 2015). 

Dealing with contradictions involves decisions about the goals and the actions to be undertaken. Of 

particular importance are decisions related to the "discrete individual violations and innovations" 

(Cole & Engeström, 1993), that is the search for novel solutions as the first, individual response to 

the emerged contradictions. Thus, although teachers' decisions are part of the teaching activity, they 

may have a transformational effect on this activity. Engeström (2001b) identifies four dimensions of 

decision making: social, temporal, moral and systemic. The systemic dimension is particularly 

concerned with the way “this [decision] shape the future of our activity?” (Engeström, 2001b, p. 

281). This dimension is connected to expansive learning, the activity theoretical notion in which the 

learners are creating new ways to carry out the activity, reconceptualising its object.  

Engeström, Engeström, & Kerosuo (2003) make a distinction between action-based decisions about 

the actions to be undertaken, and future-oriented envisioning, which is the imagination of the 

deliberate situation of the object as outcome of the activity. Drawing from their interventional study 

in health sector, they argue that intertwining these two aspects is necessary in any attempt to 

transform the activity stating that “history is made in future oriented situated actions” (p. 287). 

Methodology 

A new set of reform-oriented curricular materials was introduced and piloted in a small number of 

schools in Greece in 2011-12 and 2012-13. The new materials emphasize students' mathematical 

reasoning and argumentation, connections within and outside mathematics, communication through 

 

Figure 1: The activity system 

(adapted from Engeström, 2001a) 



the use of tools, and students’ metacognitive awareness. It also attributes a central role to the teacher 

in designing instruction. In 2012-13 I collaborated with teachers in three of the lower secondary 

schools that piloted the new materials. The collaboration took place in group meetings at the 

respective schools, where the teachers discussed about their lesson planning and reflected on their 

experiences from teaching some modules of the designed curriculum. I participated in these 

meetings, providing explanations about the rationale of the materials, as I was a member of the team 

that developed the curriculum. I was also discussing their reflections provoking their explanations 

about the rationale of their choices. In this paper, I refer to two reflection groups, one of five 

teachers working in school A and one of two teachers working in school B. 

School A is an experimental school with an innovative spirit. Our focus here is on the teaching 

decisions of two teachers, Marina and Linda. They both have more than 25 years of teaching 

experience and additional qualifications beyond their teacher certification, as Marina has a masters’ 

degree in mathematics and Linda has one in mathematics education. They both have experiences 

with innovative teaching approaches and both have strong views about their instructional choices 

and a critical stance on teaching innovations and materials introduced by various agents. 

School B is a normal school with a culture open to innovations. Peter, the teacher in focus, is 

teaching in public schools about 15 years. Before this, he was teaching in private education 

preparing students for examinations. Peter is assistant principal of the school, he attends master 

studies in education and he is educator preparing teachers to use digital tools in teaching 

mathematics. He is open to the new curriculum, but he bases his teaching on the old textbooks. In 

the year of the study Peter is questioning the teaching practices he was involved for many years. 

The data material consists of transcriptions of audiotaped group discussions and interviews 

conducted with each teacher in the beginning of the study and six months after the end of the group 

meetings. The transcriptions were analysed with methods inspired by grounded theory (Charmaz, 

2006). The initial open coding resulted in the identification of the discussion themes for each 

meeting and the corresponding contradictions that emerged in the context of enacting the 

curriculum. Seeking an understanding of these emerging contradictions I used AT which provided 

me a lens to study them and a language to discuss about their dialectical nature, integrating social, 

cultural and historical aspects. Analysing the ways teachers decide to deal with contradictions, I 

traced shifts in teachers' discourse across different meetings and interviews and I used AT and the 

relevant literature to interpret these decisions and the factors influencing them.  In this paper I focus 

on the part of my analysis concerning the relations between the action based decision making and 

the future oriented envisioning, and the potential of transforming the teaching activity. 

Results 

Below I present two examples selected as illustrative cases for the relations of action based 

decisions and future oriented envisioning. In the first one, Marina and Linda make contrasting 

decisions, both addressing their perspectives about their students’ learning. In the second one, Peter 

makes action based decisions without a clear articulation of his envisioning about his students’ 

learning.  



First example: teaching congruence involving geometrical transformations  

Geometrical transformations are introduced as a distinct topic in the new curriculum with the 

rationale of supporting students’ development of spatial sense and of using transformations when 

tackling issues of congruence and similarity. The use of transformations as a proving tool is an 

alternative to the Euclidean perspective in school geometry: the intuitive use of the moving figure is 

seen as incompatible with the rigorous deductive rationale of Euclidean geometry. This 

contradiction between the two proving tools is a manifestation of the dialectical opposition between 

intuition and logic. In Stouraitis (2016) I discuss in details the two contrasting ways Marina and 

Linda deal with this contradiction in the discussions in school A. Below, I briefly describe their 

decisions to highlight the different future-oriented envisioning they hold for the object of activity.  

In the fourth meeting (A4), Marina discusses her thoughts to use geometrical transformations in 

teaching triangle congruence in grade 9. She considers using tasks with geometrical transformations 

in parallel to or in combination with criteria of triangle congruence. She describes her goal saying "I 

want them [the students] to understand that when we compare angles or segments, we have two 

tools. One is transformations and the other is the criteria of triangle congruence". On the other hand, 

although Linda appreciates Marina’s approach as a "nice idea", she prefers not to intertwine the two 

topics. She refers to “the purpose [students] to learn how to write [a justification], to observe the 

shape, to distinguish the given data from the required claims, to make conclusions, and to prove", 

implying that these goals can be achieved through teaching congruence with a Euclidean 

perspective, without involving transformations. Although Marina's response is that the same goals 

are relevant in every geometrical topic, Linda states that in teaching congruence she wants to focus 

on Euclidean geometry and not transformations. 

In next meetings (A5, A6) Marina describes how her students work with both geometrical 

transformations and congruence of triangles, discussing also emerging epistemological issues. She 

explains her decision as creating an "opportunity to change the framework [of proving] in grade 9" 

and to "get away from Euclidean geometry". Linda contributes to the discussion with her opinion 

and ideas, but she does not change her decisions. In other meetings, Marina mentions a seminar on 

transformations she attended three years ago in the university and her experimental teaching of 

transformations in a school she was previously working.  

Analyzing Marina’s and Linda’s decisions across Engeström’s (2001b) four dimensions, I conclude 

(Stouraitis, 2016) that, although Linda and Marina share similar experiences and perspectives and 

participate in the same school community and in the same reflection group, there are significant 

differences between the goals they set, the decisions they make and, consequently, the actions they 

undertake. Marina appears more fluent with the mathematics of geometrical transformations to use 

them as a proving tool alternative to Euclidean geometry, and this may possibly and in part be 

explained by her involvement in past activities like the seminar on transformations and her 

experimental teachings. Linda has not such experiences. Moreover, her goals are based on the 

affordances of the Euclidean perspective.  

Focusing on the possibilities their decisions have to shape the future of teaching activity, I look at 

the way the teachers envision the future of their students learning. All the aforementioned extracts 

of Marina’s discourse reveal a future-oriented envisioning of the object of the activity she is 



engaged in: she imagines her students working fluently with both approaches and consciously about 

the differences between them and she notes their development in this direction. In the interview 

conducted in the next year, Marina says that she uses the same approach, with more elaborated tasks 

for her students. Like Marina’s envisioning, Linda is showing her motive in the relevant extract: she 

imagines her students in the future to work having developed understandings and proving abilities 

based on Euclidean perspective in school geometry. 

Second example: the use of modelling in teaching algebra 

The new curriculum materials recommend mathematical modelling as an important aspect in 

students meaning making in algebra. Generating algebraic expressions and equations to represent 

realistic situations and problems is introduced in grades 7th, 8th and 9th. In group discussions about 

teaching polynomials in grade 9, a common contradiction was about introducing polynomials and 

operations in a formal, abstract way or involving realistic situations and modelling procedures. This 

contradiction is a manifestation of the dialectical opposition between the abstract and the concrete. 

Below I describe Peter’s dealing with this contradiction as appeared in group discussions of school 

B with Manolis (Peter’s colleague) and the researcher. 

In the 3rd meeting (B3) Peter describes his introductory lesson of monomials using only definitions, 

examples and counterexamples. He says “we begin with the algebraic expression, they [the 

students] read the definition, and I give them examples to discuss … then to monomials [with the 

same way]”. After researcher’s and Manolis’ questioning about the “why” of teaching polynomials, 

Peter refers to a similar student's question. He is reflecting that “he begins with the definitions”, but 

"we must pay more attention … to the practical use of monomials”. Again in the discussion with 

Manolis and the researcher about modelling, Peter starts thinking the potentials of it. After some 

turns, he says that he likes the word "modelling" because “it shows exactly what we are doing: we 

transform real situations to mathematics, verbal expressions to mathematical ones”. With modelling 

“you give [the students] a motive, a goal. Ok, you must first pose the problem to create questions” 

Although Peter finds modelling a useful idea, he is involved in a discourse emphasizing the role of 

mathematics and his own teaching but not the deliberate students’ development. For example, he 

describes what “he did” and what he “usually does”, and that modelling is what “we do in 

mathematics”. In this discourse, no explicit or implicit longitudinal objective appears related to the 

way his students should deal with modelling. This can be interpreted as absence of any clear 

articulation of his future-oriented envisioning that could lead his decisions. 

In another meeting (B7), Peter refers to classroom discussions about functions where students and 

teacher modelled realistic situations and phenomena (mostly from physics) leading to linear and 

quadratic functions. He says that his goal is “[the students] to understand that a function shows a 

relation between two interdependent things. And that everything is a potential function”. These 

formulations reveal Peter’s future-oriented envisioning about students understanding of functions 

and connecting them to realistic situations and also physics. But again, there is not any similar 

envisioning about students’ work on modelling per se. The modelling processes Peter involved in 

classroom discussions were limited at the level of actions subordinated to his teaching of functions. 

In the interview conducted in the next year, the researcher asked Peter if he uses modelling in 

teaching polynomials this year. Peter responded that although he thinks it is useful and keeps it in 



mind, he “hasn’t the time to do all this”. This response shows that there is not any movement in the 

way Peter carries out the teaching activity about modelling.  

Peter's adoption of the idea of modeling in teaching polynomials and functions can be interpreted as 

adoption of elements introduced by the new curriculum, based on Peter's reflection about teaching 

and on the group discussions with Manolis and the researcher. But this adoption did not gave rise to 

actions involving students in modeling procedures, especially in teaching polynomials. Peter's 

previous involvement in practices, like preparing students for examinations in the private education, 

seem to have strong influence on his decisions. Moreover, his decision about modelling had not any 

systemic influence on the teaching activity, since it was not connected with future oriented actions. 

Discussion and conclusion 

The introduction of the new curriculum created or revealed contradictions that provide opportunities 

for teachers to engage differently in mathematics teaching and learning. The analysis exemplifies 

these opportunities and the teachers' decisions to make or not shifts in their teaching. 

In both provided examples, all three teachers seem to be aware of a contradiction of the introduction 

of the new curriculum. Marina and Linda appear to be more consciously aware of its 

epistemological and dialectical nature. Peter also shows an understanding of some aspects of the 

relevant contradiction. Teachers’ awareness of the contradiction is the necessary but insufficient 

driving force for the development of the teaching activity. From this point, teachers’ decisions can 

lead to one or the other direction. 

On the contrary of "traditional views [that] locate decision making in the heads of individuals at a 

given point of time in a particular place" (Engeström, 2001b, p. 282), searching, under an activity 

theoretical view, what makes teachers to set goals and what creates the horizon for possible actions, 

contributes to our understanding of teachers' decisions. Although activity is collective and the object 

is socially formulated, different teachers can have "different positions and histories and thus 

different angles or perspectives on their shared general object" (Engeström, 2001b, p. 286). In the 

first example provided in this paper, Marina and Linda make different decisions about the same 

contradiction. The difference may in part be explained by their different histories, including 

Marina's attending of the seminar and her experimental teachings. In the second example, Peter’s 

decision seems to be influenced by his previous activities in the private education sector.  

In the two provided examples three possibilities appear for teachers’ decisions and the way these 

decisions may or may not influence the future of the activity. Marina’s decision to combine 

geometrical transformations with Euclidean geometry is an attempt to overcome the contradiction 

synthesizing dialectically the opposing poles. On the other hand, Linda decides to keep the two 

opposing poles separated, pursuing the affordances of Euclidean geometry. Somehow in the middle, 

Peter decides to deal with the contradictions using aspects of modelling in teaching functions, but 

not to use modelling as meaning-making introductory activity in polynomials. 

Marina’s decision has the potential to transform the teaching activity, broadening the horizon of the 

possible modes this activity is carried out. The dialectical overcoming of the contradiction is a 

discrete individual innovation, although its evolvement is not already known. Linda’s approach does 

not transform the activity, but clarifies and strengthens some objectives of teaching Euclidean 



geometry. Linda’s decision reinforces aspects of the existing way activity is carried out, showing 

that every learning is not necessarily expansive (Engeström, Engeström, & Kerosuo, 2003). Peter’s 

decisions have not any shifting effect to the way the activity is carried out, neither reinforce any 

existing practice. Somehow this decision seems to have not the power to affect the activity.  

What is the difference between Marina’s and Linda’s decisions on the one hand, and Peter’s 

decision on the other, that provide the different power on them? The difference could not be the 

attempt to overcome or not the contradiction, since Marina’s and Linda’s decisions differ at this 

point although both are strong enough to have an effect on the teaching activity. The difference is 

grounded on the connections made between action-based decisions and future-oriented envisioning 

of the object. Marina and Linda underpin their decisions about the actions they undertake with a 

strong future-oriented projection of their students' understanding. This adds fluency in deciding 

among the possible actions realizing the relevant goals. At the same time it generates decisions with 

the potential to be stabilized, even if initially the stabilization refers only to individual modes of 

carrying out the activity. On the other hand, Peter’s decisions seem to be restricted to action level, 

without a grounding on future envisioning of the object, namely the deliberate modelling processes 

his students should be able to involve as outcome of the sequential actions undertaken. The absence 

of future-orientation restricts the horizon of possible actions and reduces the potentiality of 

stabilizing them. Our conclusions appear in line with Engeström, Engeström, & Kerosuo (2003) 

who, researching developmental work in the health sector, write that “professionals make history in 

future-oriented discursive actions” (p. 286) and “to overcome the gap between action and 

imagination in history-making, it may be necessary to bring them closer to one another” (p. 305). 

Summing up, one can argue that for decisions to affect the activity the following elements seem to 

be necessary: the emergence of a contradiction and some degree of awareness about it, a willingness 

to deal with it and a future-oriented envisioning about the outcomes of the activity. If there is to 

have a transformation of the activity, the decision must aim to a dialectical overcoming of the 

contradiction by searching new solutions. Although schematic and perhaps simplistic, this sequence 

may represent some crucial aspects of decision making, especially the relations between action-

based decisions and the future of the activity.   

Our developmental intervention was not designed on an AT basis. However, based on AT, our 

analysis traces aspects of the path leading from the contradiction to the transformation of the 

teaching activity. In this analysis, AT seems to offer two particularly important aspects. Firstly, the 

four dimensions capture social and historical aspects of teachers' decisions, which is critical in our 

interpretations. Secondly, the distinction between action-based decisions and future oriented 

envisioning, provides a lens to interpret the possible power of teachers' decisions. The not-

predetermined nature of the intervention might be seen to provide the analysis with a potential to 

interpret more naturally some snapshots of the trajectory of transforming the teaching activity. More 

research could be useful for a more holistic, but also detailed view of this trajectory. 
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This paper investigates how Sfard’s (2008) commognitive framework might inform the investigation 

of pre-service teachers’ (PSTs’) teaching in the context of achieving a goal of ambitious 

mathematics (AM) teaching. In particular, I will show how the commognitive framework can be 

used to foreground the mathematical talk when analyzing qualities in PSTs’ attempts in forms of 

opportunities and needs created and exploited. I use the commognitive framework and especially 

the distinction between rituals and explorations to conceptualize qualities of PSTs’ attempts at AM 

teaching on two levels. The first level points to PSTs’ use of teaching tools provided in a teacher 

education program in Norway to support AM teaching. The second level points to characteristics of 

the mathematical discourses manifested in the attempts of PSTs to utilize these tools. On both levels 

I investigate students’ opportunities for explorations.  

Keywords: Teacher education, mathematics teaching, commognitive framework, geometry. 

Preparing for ambitious mathematics teaching 

Over 25 years ago, Lampert (1990) described a possible approach to bring the practice of knowing 

mathematics in school classes closer to what it means to know mathematics within the discipline. 

Her vision is in contrast to what is viewed in most classrooms, where doing mathematics means 

following the rules laid down by the teacher; knowing mathematics means remembering and 

applying the correct rule when the teacher asks a question; and mathematical truth is determined 

when the answer is ratified by the teacher (Lampert, 1990, p. 32). Sfard (2017, p. 125) calls this 

memorized-symbolic-manipulation type of activity ritualized participation in a mathematical 

discourse. Such participation is connected to ritualized instruction and it is characterized as 

performance for the sake of connecting with or pleasing others (Heyd-Metzuyanim & Graven, 

2016).  

The term ambitious is used by Lampert, Beasley, Ghousseini, Kazemi, and Franke (2010, p. 129) to 

distinguish this kind of classroom discourse from a classroom discourse that is more aligned with 

Lampert’s vison. They define the work teachers need to do to manage the complicated interactions 

between the teacher, the students, and the mathematics in classroom environments as ambitious 

mathematics teaching (AM teaching). The most important and challenging work of AM teaching is 

allowing students to exercise authority for mathematical ideas while staying accountable to the 

discipline (Lampert et al., 2010). Students are expected to participate in a discourse in which they 

strive to learn more about the mathematics involved. Such activities are called by Sfard (2008) 

explorative participation in mathematical discourse, in contrast to ritual participation. Explorative 

participation is connected to explorative instruction and is characterized as performance for its own 

sake (Heyd-Metzuyanim, Smith, Bill, & Resnick, 2016).  

In a practice-based teacher education program in Norway, pre-service teachers (PSTs) were 

provided among others the following teaching tools to support their attempts in AM teaching: A set 



of talk moves to increase the mathematical talk in the classroom (Chapin, O’Conner, & Anderson, 

2009), and some screen manipulable shape-making quadrilaterals constructed in GeoGebra with the 

potential to develop more sophisticated geometrical discourses (e.g., Sinclair & Moss, 2012).The 

figures (e.g., squares, rectangles, rhombi, and parallelograms) are constructed to hold certain 

properties of the diagonals (see Figure 1).  

 

Figure 1: Four of the seven shape-making quadrilaterals 

It is within the context of this teacher education program that I study the mathematical talk, the 

extent to which it becomes explicit for the students through the PST’s use of the provided teaching 

tools, and how this affects student’s opportunities to participate in the discussion. I explore Sfard’s 

commognitive framework regarding these relations because of the comprehensive set of conceptual 

tools it provides for capturing both mathematical discourses and social participation patterns (e.g., 

Heyd-Metzuyanim & Graven, 2016; Sfard, 2017). This paper is a contribution to the general need to 

develop analytical approaches for conceptualizing and analyzing interactional and content-related 

aspects of classroom discourse (Sfard, 2008). 

In the following, I will first briefly outline key concepts from the commognitive framework and 

report how they are used to conceptualize qualities of PST’s attempts at AM teaching in discursive 

terms. Finally, I will show how the analytical framework is used to foreground the mathematical 

talk when analyzing qualities in one PST’s attempt in the form of opportunities and needs created 

and exploited. The PST is named Andy and he is in his second semester studying mathematics in a 

Norwegian teacher education program for lower secondary school. He leads a classroom discussion 

about quadrilaterals in ninth grade (14–15 years). This is his first attempt to lead a classroom 

discussion in the context of achieving a goal of AM teaching. 

Analytical framework 

Sfard’s (2008) commognitive framework is rooted in the claim that thinking is a form of 

communication and that mathematics is defined as a discourse where mathematical objects are 

abstract discursive objects. Discourse is a special type of communication, set apart by its objects 

(word use), all kinds of mediators created and acted on for the sake of communication (visual 

mediators), a set of meta-level rules followed by the participants (routines), and the outcomes of 

their processes (endorsed narratives) produced within the community of the discourse (Sfard, 2008, 

p. 93). Sfard does not explicitly define teaching. However, she talks about ways teachers can 

provide opportunities for different kind of mathematics learning and participation through their 

communicational activities (Sfard, 2017, p.44). In AM teaching the communicational activities aim 

to bring students’ mathematical discourses closer to disciplinary mathematical discourses in such a 

way that they are able to participate in an explorative way. 

Sfard (2017, p. 45) describes distinctions between ritual and explorative mathematical discourses 

when she talks about the historically established mathematical discourses we aim at in schools. I use 

the work of Wang (2016) and Sinclair & Moss (2012) in redefining and refining van Hiele’s levels 



of geometric thinking into discursive terms to make distinctions between ritualized and explorative 

geometrical discourses. In ritualized discourses (levels 1 and 2) a “square” is often used as a proper 

name on a concrete thing or a family name of disjoint discursive objects. Thus, in ritualized 

discourses it is difficult to call a shape by a different name, because names represent different 

families. In contrast, mathematical definitions guide the use of the name “square” in object-driven 

explorative discourses (levels 3 and 4). A shape can be called by several names if it has the 

necessary and sufficient properties described in several definitions. A characteristic in explorative 

discourses is therefore the possibility of hierarchic classification by definition. The identification 

routines are also different in the two discourses. In explorative discourses, one strives to use 

definitions as criteria to identify geometric figures instead of direct visual recognition or just 

checking some partial properties. In ritualized discourses, there is often no need for substantiation 

routines, because claims seem to be self-evident. If they are not, one tends to use the concreteness of 

the figures to endorse the narrative, for example, by using measuring and dragging routines to check 

and verify the sides and angles in a figure constructed in GeoGebra. In contrast, explorative 

discourses emphasize deductive reasoning to substantiate the endorsement of a narrative by using 

previously endorsed narratives. The more ritualized checking routines are still used, but mainly to 

modify the justifications. Engagement in explorative geometrical discourses can therefore be related 

to qualities in AM teaching. 

Supporting transitions from ritualized to explorative geometrical discourses is central in AM 

teaching. It involves what Sfard (2008) calls meta-level development, so called because the meta-

level rules change. The inevitable point of departure for meta-level development is imitation of the 

moves of an expert discursant (Sfard, 2017). If everything goes well, the participation will gradually 

become explorative. However, this transition is demanding for the students and for the teacher. 

According to Sfard (2017, p. 44), there are two ways in which the teacher can support such 

transitions. The first way is to take leadership in the new discourse in appropriate learning-teaching 

situations and model how words are used and what routines count as acceptable within the new 

discourse. For example, the teacher may demonstrate the use of definitions as a way to enhance 

direct visual recognition in appropriate situations (Sfard, 2008, p. 254). In order to succeed, the 

students need to show confidence in the expert, be willing to take the role of the learner, and make 

changes that bring them closer to explorative geometrical discourses. The second way is to 

explicitly encourage the desired discourse by using appropriate teaching moves. In order to succeed, 

the teacher needs to elicit contributions from the students to identify and analyze their geometrical 

discourses up against ritualized and explorative discourses. Then, the teacher must respond in such a 

way that students become aware of possible differences in the use of words and routines. In 

addition, the teacher may expose them to situations in which their discourses would prove 

insufficient and support them in the process of understanding the advantages of the new way of 

doing or saying things instead of the method with which they have been so familiar. For example, 

students may drag the shape-making figures, creating opportunities to widen the range of shapes 

students are ready to call the same (Sinclair & Moss, 2012).  

The provided teaching tools have the potential to take into account the complexity of the goals in 

AM teaching and support such transitions (Lampert et al., 2010; Sinclair & Moss, 2012). However, 

the choice of appropriate teaching tools involves more than just the use of a tool. It involves making 

judgments about when and where it is appropriate to use the tool. The PST’s use of the provided 



teaching tools could therefore be characterized as ritualized or explorative (Heyd-Metzuyanim et al., 

2016). A ritual performer would be concerned about how to proceed when a specific tool has been 

chosen (Nachlieli & Katz, submitted). The use is often rigidly defined and dependent on others 

decisions in order to achieve social goals. For example, talk moves may be used to reward ritual 

participation as appropriate behavior, or they may be used to follow a prescribed list of possible 

properties of diagonals regardless of students’ responses. In contrast, an explorative performer is 

concerned about choosing the appropriate tool in order to achieve her intended goal (Nachlieli & 

Katz, submitted). For example, she may use the shape-making figures to create situations for 

potential explorations or use talk moves to explicitly support transitions from ritualized to 

explorative geometrical discourse. PST’s explorative use of these teaching tools can therefore be 

related to qualities regarding AM teaching.  

It is important to stress that the distinction between ritual and exploration is not a categorization of 

students’ participation or PST’s use of teaching tools as such. It is meant to serve as a way to better 

understand qualities in PSTs’ attempts at AM teaching in learning-teaching situations. In this paper, 

I explore how the use of this distinction points to the different qualities of PST’s attempts at AM 

teaching; the characteristics of ritualized and explorative geometrical discourses; students’ 

opportunities for ritualized and explorative participation in these geometrical discourses; and PST’s 

ritualized and explorative use of the provided teaching tools to create and exploit these 

opportunities.  

An investigation of Andy’s attempt 

In this paper, I use the transcription of a video recording of Andy leading a ninth-grade classroom 

discussion about quadrilaterals. I use it to show how the analytical framework informs the 

investigation of qualities in PSTs’ attempts at AM teaching. I also present findings from a three-

tiered analysis design. 

Tier 1: The transcription was first organized into mathematical episodes in which Andy and 

students discuss an endorsable mathematical narrative as a claim about one of the shape-making 

figures or a relation between them. Each episode encompasses the whole discussion around one 

claim, including the routines of construction and substantiation. I chose Andy’s attempt out of four 

PSTs’ discussions because of the nature of the claims in the ten identified mathematical episodes. In 

episodes 1, 2, 3, 7, and 9, the talk is mainly about identifying and describing potential properties of 

the shape-making figures. However, in episodes 4 and 8, Andy challenges students to explain how 

necessary conditions are linked to the naming process (e.g., “Is this (perpendicular diagonals) one 

thing that needs to hold for it to be a square?” [48]). In episode 5 a student identifies figure B in 

Figure 1 as a rectangle and Andy prompts the student for further explanations (“Why is it a 

rectangle?” [75]). Andy also challenges students in episodes 6 and 10 to extend their thinking about 

the possibility of a figure having several names (e.g., “But, here (figure A in Figure 1) are two and 

two sides equal as well (5s). Is it a rectangle too?” [85]).  

These examples show that Andy’s use of the provided talk moves (see Table 1) managed to create 

several opportunities for explorative participation in a geometrical discourse. The examples also 

revealed teaching-learning situations where Andy was given opportunities to support transitions 

from ritualized to explorative geometrical discourses. Understanding whether these opportunities 



were exploited requires further investigation. The mathematical episodes were therefore examined 

qualitatively using the analytical framework on two levels described in tiers 2 and 3 and inspired by 

the work of Heyd-Metzuyanim et al. (2016). 

Tier 2: The first level points to Andy’s use of teaching tools and the opportunities created and 

exploited for students’ participation. I separated Andy’s and students’ talk and coded their talk 

moves on a turn-by-turn basis. I used a modified coding scheme based on the set of teacher’s talk 

moves provided by Chapin et al. (2009) and created codes for students’ talk (see Table 1).  

Andy’s 

talk moves 

Say more Revoice Repeat Press for 

reasoning 

Challenge Agree/ 

Disagree 

Add more 

14 2 7 1 6 1 6 

Students’ 

talk 

Narrative Justify Explain Judge Repeat Clarify Question 

6 6 4 18 5 3 3 

Table 1: The amount of talk moves used by Andy and students' talk 

Table 1 presents an overview of the amount of talk moves used by Andy and students’ 

contributions. The findings show that Andy makes use of the recommended talk moves to promote 

student engagement in the leading geometrical discourse and in relation to each other’s 

contributions. The table also shows that students contributed to the geometrical discourse by 

constructing geometrical endorsable narratives (e.g., “It is a rectangle” [74]). They tried to verify 

narratives (e.g., “Because two of the sides are longer than the other two” [76]) and they contributed 

further explanations (e.g., “Yes, but all sides are equal there…In a rectangle there are only two and 

two equal sides” [88]). It is difficult to determine whether students’ intentions were to produce new 

mathematical narratives for their own sake or to please Andy. However, they show examples of 

explorative use of talk moves. However, the amount of talk moves did not provide answers 

concerning whether and how Andy’s use of talk moves supported students in the meta-level 

development towards explorative geometrical discourses.  

Tier 3: The second level of analysis therefore points to opportunities and needs created and 

exploited for students to engage in explorative geometrical discourses. I screened the episodes for 

signs of ritualized and explorative geometrical discourses in the forms of word use and routines. 

The aim was to identify appropriate learning-teaching situations for meta-level development. I then 

investigated Andy’s use of teaching tools in these situations in order to study how their use 

supported students in their transitions.  

Due to limited space, I present an analysis of one episode regarding a more detailed investigation of 

the geometrical discourse and PST’s use of talk-moves. In episode 1, Andy starts to drag figure A in 

Figure 1 and asks if anyone has something to say about the shape-making figure on the smartboard. 

1 Andy: We start with figure A (2s). Does anyone want to say something about figure 

A? (4s) Yes? (Andy points at a student who has her hand up.) 

2 Student: The sides are always of equal length 

3 Andy:  The sides are always longer (.) of equal length? 

4 Student: Mmm. 



5 Andy: Yes (2s), can you explain why they are of equal length?  

6 Student: Because it is a square. 

7 Andy:  Yes? 

8 Student: And if you change the size, the sides will change. They are still of equal 

length. 

9 Andy:  Yes (2s), it is said it is a square. All sides are of equal length; therefore, it is 

a square. All sides are equal because (Andy is waving his arm at the figure 

on the smartboard) (4s) Does anybody disagree? Does anybody have 

anything else? (4s) Let’s look at the diagonals (Andy points at figure 1 on 

the smartboard), the ones which intersect. We have four criteria here (he 

removes the figures and puts a scheme up on the smartboard). Now you 

have the figures on your computers, OK? What do you think? (5s) Can 

anyone repeat what has been said? (4s) (Andy points at some students in the 

back.) You in the back. 

10 Student:  Oh OK, yes, it is a square= 

11 Andy:  =Square, yes= 

12 Student:  =and all sides are equal 

13 Andy:  Yes? What do you want to say? (Andy points at a student) 

Andy invites the students to participate in the discussion with an open question [1]. One student 

contributes with an identifying narrative about the length of the sides [2]. The student has therefore 

created an opportunity to discuss variant and invariant properties in figure A. Andy exploits the 

opportunity and prompts for an endorsement by asking why (“say more”) [5]. Instead of relying on 

immediate visual recognition, the student provides the justification “because it is a square” [6]. The 

use of “it” refers to the concreteness of the figure on the smartboard. The identifying narrative “it is 

a square” [6] has not been previously endorsed by the use of definitions. It is established by the 

student as something that is already known. The student provides a correct deductive inference: If 

figure A is a square, then the sides are of equal length. Andy signals that he wants her to “say more” 

by asking “yes?” [7]. The student supports her justification by explaining a more ritualized checking 

routine [8]. The student draws on ritualized routines but her contributions also show explorative 

characteristics in the ritualized discourse.  

This is a teaching-learning situation in which Andy has the opportunity to either demonstrate how 

definitions are used in explorative discourses or choose appropriate teaching tools to create a 

situation in which the suggested routines prove to be insufficient. Instead, Andy confirms the 

narrative “it is a square” [9]. He then restates the construction of the narrative suggested by the 

student but changes the premise and conclusion [9]. His deductive inference is: If all sides in figure 

A are of equal length, then figure A is a square. This endorsement would not have been accepted in 

explorative discourses because equal sides are not sufficient properties to define a square. Andy 

starts to explain why the lengths of the sides are equal, but he stops talking and waves his arms 

without touching the smartboard [9]. In this situation Andy shifts from being an explorative user of 

talk moves to a ritual user. Instead of trying to solve the problem or cope with the difficulties within 

the geometrical discourse, he chooses talk moves that help him to redirect the discussion in order to 

go on. In this situation, Andy uses “disagree” (“Does anybody disagree?”) and “add more” (“Does 

anybody have anything else?”). The students do not respond. He then redirects the talk towards the 



properties of the diagonals. He then uses “repeat” (“Can anyone repeat what has been said?”) to 

activate the students. The student repeats what is said without adding anything new [10], [12]. Andy 

invites another student to participate (“add on”) and the talk shifts to the properties of the diagonals. 

Thus, the opportunities that were given for students shifted from explorative to ritual participation 

in the geometrical discourse. 

This analysis shows how Andy struggles to respond appropriately when he has created opportunities 

for students to participate exploratively in the geometrical discourse. The analysis of the other 

episodes revealed similar patterns. Andy manages to make use of the shape-making figures and talk 

moves to create opportunities and needs for explorative participation, which are important qualities 

in AM teaching. However, he struggles to stay accountable to the discipline and take leadership in 

the explorative geometrical discourse when needed. Instead of exploiting the teaching-learning 

situations to engage students in explorative geometrical discourses, he tends to use the provided talk 

moves such as “repeat,” “agree/disagree,” and “add more” as shortcuts to overcome the difficulties 

and keep the discussion going. In these situations, Andy’s use of talk moves shifts from explorative 

to ritualized, which affects the students’ opportunities to participate in the geometrical discourse. 

Even more importantly, students were not offered the necessary opportunities to engage ritually or 

in an explorative way in the explorative geometrical discourse in order to modify their thinking and 

bring them closer to accepted ideas of the discipline. Without knowing it, they were stuck in a 

ritualized geometrical discourse (Sfard, 2017). 

Some concluding remarks 

AM teaching is characterized by its deliberately responsive and disciplinary-connected instruction 

which complicates interactional and content-related aspects of classroom discourse (Lampert et al. 

2010). The purpose of this paper was to show how the commognitive framework and particularly 

the distinction between rituals and explorations foreground the mathematical talk when 

investigating qualities of PST’s attempts at AM teaching. Analyzing the mathematical episodes and 

the amount of talk moves helped to uncover qualities regarding students’ opportunities for 

explorative participation in the PSTs’ teaching attempts. Students’ talk provided some evidence of 

students’ uptake of these opportunities. However, it was the more detailed analysis of the 

geometrical discourses in the episodes that revealed if and how the PST’s use of talk moves 

provided opportunities for participation in explorative discourses.  

The analysis of Andy’s attempt in AM teaching uncovers just some of the complexity that a PST 

must attend to in the challenging moment-by-moment interactions with students and mathematical 

discourses. It also shows the critical need for teacher education programs to provide PSTs with 

opportunities to learn and reflect upon their use of potentially powerful teaching tools in such 

learning-teaching situations. Sfard (2008, p. 223) argues that if one only focuses on how a teaching 

tool should be performed and neglects the question of when and where this performance is 

appropriate, it is most likely to result in ritualized rather than explorative participation.  
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Our focus in this paper is on locating ways of working with teachers’ use of conventional example 

spaces to include a focus on structure, abstraction and generality in primary mathematics teaching 

in South Africa. We share the ways in which we have worked with trajectories of working with 

example spaces in two strands within our framework for analyzing teaching in terms of teachers: 

‘mediating primary mathematics’. We discuss the ways in which this work with example spaces differs 

from previous writing where emphasis is placed on moving beyond conventional example spaces 

towards the realms of boundary examples. The ways in which attention to structure and generality 

might be retained in the context of conventional example spaces are discussed, with focus too on why 

this might be useful to do in a developing country context marked by very low mathematical 

performance.  

Keywords: Example spaces, primary mathematics teaching, South Africa, mathematical discourse in 

instruction, generalization. 

Introduction 

The background for this paper rests upon two bodies of writing that are interpreted as pushing in 

somewhat opposite directions in relation to the kinds of examples that are in focus. The first evidence 

base is located in mathematics education writing on ‘example spaces’ (Watson & Mason, 2005). 

These authors, over nearly two decades now, have produced an extended evidence base arguing for 

learning to be seen in terms of extensions in the example space that students are able to work with 

and construct. On the pedagogic side, they have focused on both teacher-set example spaces (Watson 

& Mason, 2006a) and student-constructed example spaces based on prompting for ‘another example’ 

of something or ‘a different kind of example’ of something (Watson & Mason, 2005). In both teacher-

set and student-constructed cases, the focus on example spaces is driven towards attention to the 

abstractions and generalizations inherent in the idea of ‘examplehood’ – the attributes that make an 

example an ‘example of’ some class or category. Goldenberg & Mason (2008) describe such 

attributes as critical ‘dimensions of possible variation’, and the extent to which variation in the 

dimensions of these attributes can allow students to see the boundaries or extents of application of 

properties or structure defines the ‘range of permissible variation’ in their terms. As Watson and 

Mason (2005) put it: 



‘[Example] spaces can be explored by finding out what can vary and how far it can vary, 

identifying new variables, working from first principles, building objects from definitions, and 

using alternative modes of representation to see what is possible in one and relating it to another 

and in other ways.’ (p.52) 

Within their work, critiques of pedagogy are directed towards what they see as the overemphasis on 

‘conventional’ or ‘central’ examples that commonly contribute to unhelpful abstractions on the part 

of students – for example, that triangles are three-sided shapes with acute angles that have the base 

edge parallel to the bottom of the page, or multiplication only with positive integers. Instead, they 

call for a pedagogy in which there is encouragement for the construction of examples that extend 

students’ existing ‘boundaries’ through attending to dimensions of possible variation and range of 

permissible change, and focusing discussion on the ‘tipping points’ at which ‘examplehood’ appears 

to end. Illustrating this approach are tasks relating to questions such as ‘Can we multiply by a number 

and end up with an answer smaller than the one we started with?’ And ‘What kinds of numbers 

produce this result?’ Pedagogy in mathematics, in this formulation, is consistently directed towards 

tasks functioning in ways that expand the boundaries of the example spaces associated with particular 

ideas: 

‘one of the important roles for tasks inviting learners to construct examples is to broaden their 

range of permissible change in the images they associate with concepts’ (Watson & Mason, 2005, 

p.56) 

In this pedagogy, the emphasis is on the boundaries of example spaces related to the concept in focus 

– on what Askew & Wiliam (1995) describe as ‘only-just examples’ on the example side and ‘very 

nearly examples’ on the non-example side. 

Sitting with somewhat different emphases to this attention on example spaces is a second body of 

work, located in developing country contexts, but with parallels in contexts of disadvantage in 

developed country contexts as well, that is focused on learner performance. In this narrative, there is 

extensive evidence of a lack even of limited forays towards success in the restricted purview of the 

conventional or central example spaces associated with key concepts. Pritchett & Beatty (2012), 

working in the policy terrain and overviewing mathematics (and reading) performance data across 

India, Pakistan, Uganda and Kenya, identify what they describe as almost ‘flat learning profiles’ when 

looking at mathematical performance in items across grades. For example, in a study carried out in 

one state in India, Pritchett & Beatty note that while just over half of Grade 2 children were able to 

correctly answer 697+505 presented as a vertical addition, less than 10% of Grade 5 children were 

able to correctly fill in the missing number in this horizontal equivalence sentence: 200 + 85 + 400 = 

600 + __. Further, it was noted that performance on ‘mechanical’ procedures was generally higher 

than performance on even-low level conceptually oriented items, with one of the overviewed studies 

showing that less than 30% of a Grade 4 learner sample were able correctly answer the question: 3 x 

__ = 3+ 3+ 3+ 3. 

What interests us here is that the examples identified in this latter body of work fall well within the 

realms of ‘conventional’ example spaces, with the ‘multiplication as repeated addition’ example 

above also possible to interpret as a ‘reference’ example (examples that ‘somehow contain 

information about a whole class of objects’, Watson & Mason, 2005, p.84). 



While Watson & Mason’s pedagogic approach emphasizes the need to need to focus on expanding 

students’ example spaces, which are viewed as personal, and locally situated, these authors’ 

exemplifications of ways of working with sets of examples point to a relatively fast skip beyond the 

conventional and central example spaces towards the boundary examples. 

But why is this difference of emphasis of interest to us? We answer this question in the next section. 

Background 

Our work over the last five years in South Africa has focused on primary mathematics knowledge 

and teaching development, set in the context of the Wits Maths Connect-Primary (WMC-P) research 

and development project, located in Johannesburg, and working in partnership with ten government 

primary schools. The South African primary teaching context is marked by an emphasis on oral, 

chorused responses to closed questions, weaknesses and gaps in the teacher knowledge base, and 

concerns related to coverage, connections & coherence, and pacing within primary mathematics 

teaching (Hoadley, 2012). The national context is one that is marked by low performance in 

mathematics at all phases, reflecting many of the concerns about limited progress and significant 

learning deficits raised by Pritchett & Beatty (2012). A key problem that has been widely written 

about in primary mathematics is the ongoing use of highly inefficient counting based methods for 

solving number problems well into the middle years (Fleisch, 2009). 

In this context, we have worked on a combination of interventions aimed at supporting development 

in terms of both ‘primary mathematics knowledge for teaching’ and of primary mathematics teaching 

itself. Quasi-longitudinal data on learner performance in the early primary ‘Foundation’ years (Grades 

1 -3) has pointed towards some improvements in early number learning, with broad evidence of 

moves from highly rudimentary ‘count all’ strategies used for early additive relations problems to the 

more efficient ‘count on’/‘count down’ strategies underpinned by some initial reifications of number 

(Sfard, 2008). With interventions in place focused on working with teachers to develop number sense, 

our attention has started to turn towards working to understand whether, and, if so, how, changes in 

learning might be linked to changes at the level of teaching. We have found the work on example 

spaces, and seeing expansions in teachers’ ways of working with example spaces useful for thinking 

about the changes in teaching that we have observed. But these explorations have focused firmly on 

the middle ground of conventional example spaces, rather than on the boundaries. In this sense, they 

are more aligned with supporting mathematical learning in the middle ground rather than at the 

boundaries of particular topic spaces, with the examples selected grounded in expanding the 

boundaries of personal and situated example spaces, rather than mathematical boundaries of concepts 

in any more disembodied, objective sense. Our considerations of changes in teaching have led to the 

development of a framework for exploring differences, focused on primary teachers ‘mediating 

primary mathematics1’ (MPM). Empirically, our attention within this framework centres on teachers’ 

mediation of mathematics as enacted in the context of their selected example spaces across episodes 

in lessons through their use of artifacts, their inscriptions and their talk, with focus on the following 

strands: 

1 Mediating with artifacts 

2 Mediating with inscriptions 



3 Mediating with talk & gesture in a) methods for generating/validating solutions; b) building 

mathematical connections; and c) building learning connections: explanations and evaluations 

of errors/ for efficiency/ with rationales for choices 

The concepts and theories underlying the aspects in the MPM framework have been detailed in other 

writing (Venkat & Askew, under review). Expansions in teachers’ personal, situated example spaces, 

as seen in observed lessons, feature within two key strands of our overall framework – 3a and 3b – 

and our attention in this paper is on detailing the ways in which expansions in example space are 

considered in relation to the two bodies of literature discussed at the start of this paper, with the 

illustration and discussion in this paper focused on our ways of thinking about expansions within 

these strands. We remain interested in the notions of abstraction and generalization that Mason (1989) 

has written about over an extended period of time, and have looked at ways of retaining a focus on 

these elements drawing from a base in highly conventional example spaces. Our illustrations of levels 

of mediation for structure and generality in these two strands draw from excerpts of teaching and 

teacher explanations seen across our work supporting teaching development in Foundation Phase 

classrooms, and also, in this paper (and for the purposes of exemplification of the levels), from teacher 

responses to tasks in our primary mathematics for teaching courses. 

Analytical discussion 

Strand 3a: Method for generating/ validating solution 

We have formulated expansions in teaching related to this strand as follows: 

 

Method for 

generating/ 

validating 

solutions 

 

0 

No method or 

problematic 

generation/ 

validation 

(Mixing of 

knowns and 

unknowns) 

1 

Singular 

method/validation 

(provides a method that 

generates the immediate 

answer and can produce 

answers in the 

immediate example 

space) 

2 

Localized 

method/validation  

(provides a method 

that can generate 

answers beyond the 

particular example 

space) 

 

3 

Generalized 

method/validation  

(provides a strategy/method 

that can be generalized to 

both other example spaces 

AND without restriction to a 

particular artefact/inscription) 

 

Our earlier work pointed to problems with the coherence of teachers’ ways of generating solutions to 

the problems that they set in the context of their teaching or that were set to them in our mathematics 

knowledge for teaching courses. At the lower extreme, lack of coherence manifested itself in a range 

of ways. We saw the mixing of knowns and unknowns in teachers’ solution processes, with unknowns 

sometimes drawn into the problem-solving process prior to their actual generation, and questioning 

sometimes treating ‘knowns’ as if they were unknowns. For example, we saw episodes where, in 

adding 10 to a number on a 100 chart, the teacher counted on from, e.g. 17, saying 18, 19, 20, etc, 

and stopping at 27, without any overt demonstration of keeping track of how many she had counted 

on. Knowledge of the answer – the unknown value – was assumed in this kind of working. There was 

also evidence of teacher talk that connected poorly with the artifacts and inscriptions in use during 



the focal episode, disrupting possibilities for generating or validating a solution to the tasks in the 

example space being worked with.  

In the middle ground of this strand, we focused on the extent of applicability of the methods that 

teachers communicated for solving problems in, and related to, the example space being worked with. 

An excerpt of teachers’ responses to a task we used in our teacher development work helps us to 

illustrate some of the range in this strand. The question in focus was:  

Is –8 < –5? What diagrams and explanations might you use to help to explain your answer?’ 

Almost all teachers from a group of 50 we were working with responded to this by drawing a number 

line and marking –8 and –5 in the correct positions on their number lines. The explanations linked to 

this inscription varied between two key justifications. Some stated that –8 was less than –5 because 

it was further away from 0, with many teachers marking 0 and annotating the two respective distances 

for the immediate example on their number lines. In some instances, this ‘particular’ statement was 

accompanied by more general statements like: ‘Numbers further from 0 are smaller’. 

Other teachers had annotated their number lines with the words: ‘Further to the left, numbers are 

smaller. Further to the right, numbers are bigger.’ The first formulation remains applicable if both (or 

all) of the numbers being compared are of the same sign, i.e. both negative or both positive, but is not 

necessarily true if the numbers under consideration have different signs. The latter statement, in 

contrast, is more generally true across the real number example space and the number line convention. 

We code the latter formulation as a Level 3 offering, but we still have questions about whether the 

first formulation should be coded as a Level 1 or Level 2 offering, and whether this should be 

interpreted in relation to the example space that is being worked with in the empirical terrain. If the 

example space only contains pairs of negative numbers, we could argue that while the method offered 

is ‘localized’ (in the sense that the method can also be applied to pairs of positive numbers as well), 

there are limitations in the example space that can be critiqued. The broader point remains valuable 

though: that it appears useful to think about teachers’ offers of methods for solving or validating 

problems in relation to their extent of applicability to example spaces related to the concept in focus. 

Further, this appears important in a context of broad evidence of a lack of move beyond unit counting 

strategies – which we have usually coded at Level 1 due to their inefficiency for use as the number 

range being worked with increases.  

In a sense, what we are focusing on in this strand relates to the range of permissible variation in the 

example space that can be managed within the constraints of the solution procedure that has been 

taught. This range is considered pragmatically rather than strictly mathematically: for example, at one 

level, even large additive relationship calculations can be carried out using the unit counting strategies 

that we have noted as prevalent. In practice though, such methods are both inefficient and error-prone, 

and therefore represent solution choices with pragmatic limitations as the number range increases. In 

larger number ranges, ‘structured’ representations of number – i.e. representations of number 

underpinned by properties and relations, offer much greater purchase for both range of applicability, 

and for flexible efficiency. While not the focus of this paper, we code ‘structured’ representations 

(representations underpinned by structural properties of number) more highly in the artifact and 

inscription strands than ‘unstructured’ representations of number. In the 3a strand, a focus on solution 



procedures employing numerical structure provides an important feature within the possibility for 

attention to procedures with more extensive scope of applicability. 

Strand 3b: Building mathematical connections 

Expansions in relation to building mathematical connections have been conceptualized as follows: 

 

Building 

mathematical 

connections 

 

 

0 

Disconnected and/or 

incoherent treatment 

of examples 

OR 

Oral recitation with 

no additional teacher 

talk 

1 

Every example 

treated from 

scratch 

2 

Connects between 

examples or 

artefacts/ 

inscriptions or 

episodes 

3 

Makes vertical and 

horizontal (or multiple) 

connections between 

examples/ 

artefacts/inscriptions / 

episodes 

 

This strand was built into the framework on the basis of common evidence of disconnections. These 

disconnections sometimes occurred, as noted in the previous strand, within teachers’ handling of 

examples, leading to incoherent explanations. Further, in our observations, and noted as prevalent in 

the broader South African landscape, is evidence of extensive chorused oral recitation, for example 

of skip counting in multiple sequences, with no input from the teacher. Both of these phenomena 

were coded at the lowest level of the building mathematical connections strand.  

Example spaces figure within this strand in terms of the nature and extent of the connections between 

the examples seen. Watson & Mason (2006b) have described these kinds of connections in terms of 

vertical connections between elements of examples – which they describe as ‘going with the grain’ 

and horizontal connections within examples (e.g. equivalence structures within relationships) – 

described as ‘across the grain’ connections. Linked focus on several examples allows for attention to 

invariances amongst the variation between examples, with these invariances forming the grounds for 

abstraction and generalization. Keeping vertical and horizontal, and more generally, multiple 

connections between examples in focus, allowed us similarly to pay attention to shifts in the 

possibilities for building awareness of generality in pedagogic mediation.  

Our way of attending to example spaces in this strand contrasts with our focus in the previous strand 

where the emphasis was on the extent of ‘reach’ into other examples and example spaces of the 

methods for solving problems that are communicated within the focal example space. At Level 1 of 

this scale, we placed episodes where examples within the focal example space were dealt with as 

individual and separate instances. Venkat & Naidoo (2012) describe an episode involving finding 

pairs of numbers adding to 16, where each offered pair is verified as correct by concrete unit counting, 

with very limited reference to any of the partitions that were established previously in the episode as 

correct. In this ‘extreme localization’ there is no opening for a focus on ‘examplehood’ as thinking 

about instances as ‘examples of’ some property necessarily requires some invoking of either other 

examples from which abstractions can occur, or juxtaposing the instance with the property or 

generalization or definition of which it is an instance. In our observations and analyses, we noted that 



this invoking could occur through teachers making connections between examples in the example 

space as noted here, but could also occur more multi-directionally through connections made between 

artifacts, inscriptions and episodes as well. Importantly for us, this way of considering the possibilities 

for generality can, once again, be worked with in the context of conventional example spaces. Askew 

(2015) has analysed one teacher’s ways of working with multi-directional connections in lesson 

episodes focused on early place value, noting her working with the example space as a connected set 

of instances with fluid vertical and horizontal links, as well as links to place value artifacts involving 

ten strips and unit squares, and the inclusion of symbolic inscriptions. While the teacher’s working 

with the examples was entirely coherent, the conventional nature of the example space contrasts, for 

example, with Watson & Mason’s (2006a) ‘stretching’ of what looks, initially, like a conventional 

example spaces (related to co-ordinate plotting to fractional values) in the context of a single exercise, 

as a key aspect of hypothesizing a generality related to a given constraint. 

Discussion 

Working in this way with the concept of example spaces has allowed us to develop attention to 

structure and generality in somewhat different ways to those presented in Watson & Mason’s writing. 

Specifically, the base for generalizations is located in conventional example spaces, with limited – if 

any – move towards boundary examples. We would acknowledge that concepts are less fully rounded 

out in this way of working. But we would also argue that these more mundane expansions are 

important to thinking about developing primary mathematics teaching in contexts of the flat learning 

profiles described in Pritchett & Beatty’s overview. At the lower extremes of both of the strands we 

have delineated in this paper, there is attention to students being able to reproduce coherent 

procedures that have been presented or offered and accepted in class. This kind of move already 

represents some potential for forward moves in relation to students’ existing problem-solving 

repertoires. Further moves upward in the strands discussed start bringing other example spaces into 

the realms of possibility for learners. Our early analyses show moves towards coherence and 

connection in teachers’ work with example spaces, coupled with greater inclusion of structured 

artifacts and inscriptions. The concurrence of these fledgling moves towards coherence and generality 

in pedagogy with improvements in students’ performance on conventional and central example 

spaces suggests that our ways of working with example spaces may be useful to carry further into our 

research and development activity. 
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It is known not only that young students have difficulty solving mathematical problems but also that 

appropriate scaffolding can support them in the process. In this paper we describe the development 

and pilot implementation of a device for self-scaffolding grade 6 Catalan students’ mathematical 

problem solving. Called an orientation basis (OB), the OB, which addresses cognitive, 

metacognitive and affective aspects of problem solving, drew on research describing the actions of 

an expert problem solver. The evidence indicated that the OB, while in need of refinement, had a 

positive impact on the problem solving behaviours of many participant students. 

Keywords: Mathematical problem solving, scaffolding, orientation basis, Catalonia. 

Introduction 

Mathematical problem solving is difficult, both for students (Mason, Stacey & Burton, 1982; Pólya, 

1945) and teachers trying to create appropriately conducive classroom environments (De Corte & 

Verschaffel, 2004; Schoenfeld, 2013). When children solve problems without being conscious of 

the relationship between their actions and their solutions their ability to transfer their solution 

processes to new situations will be limited (Coltman, Petyaeva & Anghileri, 2002). However, 

appropriate adult intervention can help children become aware of these processes (Coltman et al., 

2002). Such interventions, known as scaffolding, build on what learners already know in order to 

close the gap between current learner competence and task objective (Bruner, 1985; Greenfield, 

1984; Wood, Bruner & Ross, 1976). Moreover, given time, scaffolding can be provided by peers 

and, ultimately, students themselves (Holton & Clarke, 2006). In this paper we describe the 

development and use of a device, which we have called an orientation base (OB), for use in Catalan 

sixth grade classrooms. The OB’s role is to support the transition from where teachers scaffold 

learner’s problem solving to where students scaffold their own. 

Problem solving  

As a human activity, problem solving can be understood as an example of goal-directed behavior 

(Schoenfeld, 2007). It is a dynamic, but not necessarily linear, activity requiring the organization 

and activation of multiple skills and strategies (Mason et al., 1982; Pólya, 1945). At the heart of 

problem solving lies an appropriate mathematical knowledge, an awareness and experience of 

solution strategies, self-regulatory or metacognitive competence and a belief not only that the 

problem is worth solving but also that the solver can solve the problem (De Corte, Verschaffel & 

Op’t Eynde, 2000; Schoenfeld, 2007, 2013).  

A key aspect of the above, at least from the perspective of providing scaffolding for the learner, is 

the encouragement of students’ metacognitive competence. For example, expert solvers spend more 

time understanding and analyzing the problem and solution process than calculating, and they 

continuously reflect on the state of the problem solving process (De Corte et al, 2000), behaviours 

that are typically absent with weak problem solvers (De Corte et al., 2004). Such students need 



scaffolded support with respect to interpreting a task, identifying its sub-objectives and planning a 

strategy (De Corte et al., 2000; Mason et al., 1982). They need to learn how to reflect on their 

existing knowledge and thought processes; that is they need to learn how to evaluate and regulate 

their own thinking (Sanmartí, 2007). This regulative competence is not acquired automatically but 

emerges over time (De Corte et al., 2004). Thus, with support in understanding how things work, 

students can become more efficient and self-regulated problem solvers (Schoenfeld, 2013). 

Scaffolding 

Scaffolding in an educational context 

Drawing on Bruner’s (1975) initial observations with respect to the ways that parents scaffold their 

infants’ learning, Wood, Bruner and Ross (1976) argued that knowledgeable adults can scaffold 

students’ problem solving activity. Here, the adult seeks to reconcile implicit theories of the task 

components, the necessary steps to solution, and the child's capabilities (Stone, 1998). In this way, 

acknowledging a socially imitative process, six ways of assistance were differentiated; recruiting the 

child’s interest, reducing the degrees of freedom, maintaining goal direction, highlighting critical 

task features, controlling frustration and modelling preferred solutions paths (Wood et al., 1976). 

Recent work has continued this theme, examining how teachers can best provide (temporary) 

support that enables learners to complete tasks they would otherwise not have been able to complete 

independently (Smit, van Eerde & Bakker, 2013; van de Pol, Volman & Beishuizen, 2010). In this 

process, whereby the learner becomes incrementally independently functional (Smit et al., 2013), 

both teacher and learner actively share and build common understanding (Stone, 1998; van de Pol et 

al., 2010). 

Scaffolding strategies 

Scaffolding is not a ‘technique’ that can be applied in every situation in the same way (van de Pol et 

al., 2010). As in the construction industry, where each scaffold is unique to a specific building, 

learning scaffolding can be provided at different ages and in a variety of ways, addressing learners’ 

knowledge gaps as part of an ongoing progress (Wood et al., 1976). Significantly, effective 

scaffolding is thought to comprise three components, involving the six processes of feeding back, 

giving hints, instructing, explaining, modelling and questioning (van de Pol et al., 2010), which are 

 Contingency: Support should be adapted to the student’s current level of performance.  

 Fading: Support is gradually withdrawn over time. 

 Transfer of responsibility: Task completion is gradually transferred to the learner. 

Moreover, effective scaffolding not only promotes learners’ cognitive and metacognitive activities 

but also positive affect. Finally, acknowledging different agents in the process, whether they are 

informed adults, a group of learners or the individual student, scaffolding is progressively relocated 

to the learner, whereby the external dialogue of scaffolding becomes the inner dialogue of 

metacognition (Holton & Clarke, 2006).  

Orientation basis for problem solving 

One means of encouraging self-scaffolding of students’ problem solving-related self-monitoring 

skills is to use an orientation basis (OB) (Sanmartí, 2007). Here we understand a problem solving-



related OB to be a necessary sequence of actions based on the problem solving behaviour of experts. 

An orientation basis leads the learner to a solution in ways that structure an emergent independence 

and problem solving autonomy. An OB is not a ‘one size fits all’ tool but tailored according to 

learners’ requirements and achievements. At every age and according to the learner’s needs, an OB 

can be presented through different statements. 

Dimensions Actions Track 

I understand the 

problem 

A1. I have read the question twice, at least.   

A2. I understand what the question wants.   

A3. I have identified and understood the data.   

I devise a plan 

A4. I have played with the data from the question.   

A5. I have prepared a strategy.   

A6. I have checked that my strategy fits the data.   

I apply my plan 

A7. I have implemented my strategy.   

A8. I have recorded all my actions in ways that I understand.   

A9. I have recorded all my actions in ways others can understand.   

I review my 

task 

A10. When I get stuck I go back to the beginning.   

A11. When I have finished I have checked my answer(s).   

A12. I have checked for other answers or better solutions.    

Table 2: The orientation basis (OB)  

In this paper we discuss the development and implementation of an OB for grade 6 Catalan pupils. 

At this age, pupils are typically expected to have acquired a minimum background in problem 

solving. However, experience has shown that they lack regulative and problem solving competence, 

especially in understanding and analyzing the problem, and planning and implementing a solution 

process. Therefore, drawing on Pólya’s (1945) problem solving principles, the OB depicted in Table 

2 was developed. Each of Pólya’s four dimensions comprised three particular actions, which can be 

tracked in the right hand column. The inclusion of each action was a consequence of earlier 

observations of the problem solving behaviours of grade 6 Catalan pupils and the problem solving 

strategies found in the literature (e.g. De Corte et al., 2004; Mason et al., 1982). The OB shown in 

Table 2, translated from the original Catalan, was designed to be a contingent, hint-giving, feedback 

tool focused on facilitating both fading and transfer of responsibility (van de Pol et al., 2010). As 

indicated above, the aim of this paper is to present an initial evaluation of the efficacy of the OB 

shown in Table 2 for scaffolding grade 6 students’ mathematical problem solving.  

The study 

The participants were students in a 6th-grade class of a Barcelona primary school. Their teacher was 

an experienced generalist primary school teacher. Such teachers, who receive relatively little subject 

knowledge instruction during their pre-service education, typically acquire their mathematical 

knowledge in practice, a situation much criticised (Egido, 2011; MECD, 2012). Data were collected 

during a regular, 50 minute, lesson at the end of the second quarter of the academic year 2015-2016. 

They derived from 22 students’ initial use of the OB as they tried to solve the mathematical problem 

posed in Figure 1, which was originally posed in Catalan.  



 
Figure 1: The Problem translated from Catalan 

Before solving the problem, the teacher explained the purpose of the OB carefully and together with 

the class discussed and clarified the meaning and purpose of each element. This ensured, as far as is 

practicable, that students understood its vocabulary and overall purpose. Students were each given a 

copy of the OB’s rubric, which included a grid in which they recorded their engagement with the 

OB as well as a paper copy of the problem on which their solution was to be written. Students were 

instructed to solve the problem, using the OB to guide their activity, and then record the OB actions 

they addressed. They were also told that their teacher would not intervene in the problem solving 

process but check, as they worked, that they completed their OB tracking. 

Results 

Table 3 shows the data from all 22 students’ use of the OB as they worked on the problem. It can be 

seen that only one student, Student 21, failed to engage with the OB, while all others used it in 

varying degrees. Nine students obtained correct solutions for both parts of the problem, a further 

five managed just one part and eight failed to complete either, including the one who failed to 

complete any OB actions. Four students indicated some difficulty with respect to understanding 

some OB actions. In this respect, all four found A3, ‘I have identified and understood the data’, 

difficult to understand. The only other action that caused uncertainty was A6, ‘I have checked that 

my strategy fits the data’. Thus, in the light of an OB being necessarily adaptive (Sanmarti, 2007), 

these issues would be addressed in the next iteration of its development. Importantly, even when 

faced with uncertainty, each of these students was able to continue the problem solving process to at 

least the next step. Student 12, the only student who found two statements difficult, completed 11 of 

the OB’s stages but failed to complete either part of the problem. Importantly, from the perspective 

of the OB’s development, Student 9 completed all the OB’s actions but failed to solve either part of 

the problem, pointing, perhaps, to the need of cognitive interviews to determine in depth the nature 

of the difficulties encountered in completing the task. 



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A1 X X X X X X X X X X X X X X X X X X X X X

A2 X X X X X X X X X X X X X X X X X X X

A3 X X X * X X X * X X X * X * X X X X X

A4 X X X X X X X X X* X X X X X X X X

A5 X X X X X X X X X X X X X X X X X

A6 X X X X X X X X * X X X X X

A7 X X X X X X X X X X X X X

A8 X X X X X X X X X X X X X X

A9 X X X X X X X X X X

A10 X X X X X X X X X X X X

A11 X X X X X X X X X X X X

A12 X X X X X X X X X X X X X

Total 5 7 12 11 9 12 5 4 12 10 12 11 3 12 4 12 12 3 1 12 0 12

Correct 0 2 2 1 1 2 0 1 0 0 2 0 0 2 1 2 2 1 0 2 0 2

Student

 
Table 3: OB-related data for each student. An asterisk shows a difficult but completed OB action 

Was the OB effective and did students take it seriously? 

As is typical of classroom interventions, eliciting evidence of their efficacy and their being taken 

seriously is not straightforward. With respect to its efficacy, it is interesting to compare the number 

of completed OB actions with the number of completed problems, as shown in Table 4. A Fisher 

exact probability, p = 0.008, indicated not only that the figures of Table 4 were unlikely to have 

been due to chance but, importantly, that students who failed to complete the OB tended not to 

complete the tasks. Indeed, Table 4 shows that a necessary but not sufficient condition for the 

completion of both tasks was that students completed seven or more OB actions. 

0 1 2

0-6 5 3 0

7-12 3 2 9
Completed OB activities

Number of correct solutions

 
Table 4: Number of completed OB actions and number of successfully completed problems 

When viewed as four dimensions rather than as individual actions the data offer further interesting 

insights. For example, while probably not surprising, the data of Table 3 show that as they move 

down the OB, the number of students completing each dimension gets smaller. With respect to the 

first dimension, ‘I understand the problem’, 21 students began its three actions, of which 19 (90.5%) 

completed all three. With respect to the second dimension, 17 began with the first action, of whom 

12 (70.6%) completed all three. The third dimension, ‘I apply my action plan’, was begun by 13 

students (one more than completed the second dimension), of whom 9 (69%) completed the 

dimension. Finally, of the 12 students who began the final dimension, ‘I review my task’, 11 

completed (91.7%) it. These figures tell two stories. The first is that students who begin working on 

a dimension can typically be expected to complete it. The second is that once they reach the final 

dimension students seem almost guaranteed to complete it. In other words, an in-depth examination 

of the four dimensions can also inform future developments of the OB; the first and last dimensions 

seem less problematic with high completion rates in comparison with the middle two. 



Looking at the data qualitatively, it can be seen that students’ solution attempts tended to show that 

they took the OB seriously. Students were able to connect OB actions to their own activity, and did 

not confirm those actions until after they had been completed. 

 
Figure 2: A solution of the problem and related OB tracking 

For example, Figure 2 shows a student solution and his OB tracking. The picture confirms that he 

had read the problem and understood what the first question required. For example, his arithmetical 

operations and note, ‘on each side there are 6 squares’, indicate not only that he had identified and 

understood the required data but that he had also played with the data which let him to prepare a 

strategy for the first part of the problem. In short, the solution the student presented corresponded 

with the OB actions he claimed to have completed.  

 
Figure 3: Solution of the pupil who failed to complete explicitly any OB action 

Even when students failed to complete any OB action, there was evidence of its having influenced 

their solution attempts. For example, Figure 3 shows how the single pupil who failed to complete 

any OB action attempted to address the OB’s first action. 

Student response to the OB 

Several students attempted to communicate with the OB, particularly when uncertain as to its 

intentions. Figure 4 shows, in the underlining of the word quefer, uncertainty as to its meaning and, 

essentially, an invitation for someone to explain. In similar vein, students annotated their OB in 

ways indicative of doubt or just a desire to comment on their response, both cognitively and 

affectively. Figure 5 shows comments inserted alongside the ticks indicating the student’s 

completion of the various actions. The top two comments are the same and translate as, ‘yes, but it 

takes me a great effort’. The lower comment, while similar in its intention, translates as, ‘regular, 

because it takes me a great effort’. 

 
Figure 4: A student’s doubts with respect to the meaning of the fourth action 



 
Figure 5: Two annotated record sheets 

Discussion 

In this paper we have outlined the development and trial of an orientation basis, designed to support 

6th grade-students’ problem solving-related self-scaffolding. Derived from the literature the four 

dimensions, and their respective actions, provided evidence suggesting that the OB has a role to 

play. The four dimensions and the means of their operationalisation make real for students the 

actions that guide problem solving (Holton & Clarke, 2006). The evidence supports earlier findings 

that appropriate scaffolding may have a beneficial impact on cognition, metacognition and affect 

(van de Pol et al., 2010). However, with respect to the extent to which the OB for problem solving 

is contingent, exploits fading and encourages transfer of responsibility (van de Pol et al., 2010) is 

variable. With respect to contingency, our view is that students were able to connect OB actions to 

their own activity and those who were affected by typically persisted until at least the next step. 

Also, students took the OB seriously, indicating initial support for both fading and transfer of 

responsibility, although a longitudinal study would allow these to be better examined. The 

dimensional structure and the ways in which students use the actions embedded within it point 

towards a productive cycle of refinement. Despite its linearity, based on the behaviours of an expert 

problem solver, students’ engagement with the final dimension confirmed not only the cyclic nature 

of problem solving but also the role of the OB in supporting students’ awareness of it. Finally, the 

OB comprised short statements written in the first person. Our view is that it helps learners’ not 

only understand what problem solving expects of them but also anticipate possible actions. 

Finally, this paper has reported on the first iteration of an emergent study. Since the completion of 

this first task students have solved two further problems using the OB. Their teacher has 

commented, anecdotally, that students are becoming more familiar with and confident in their use of 

the OB. Therefore, a longitudinal analysis of students’ OB-related problem solving would seem an 

appropriate next step. As found with previous studies, the impact of scaffolding is difficult to 

evaluate (van de Pol et al., 2010) and this will remain a key objective of future work.  
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We present a new tool – Realization Tree Assessment (RTA) for assessing the mathematical quality 

of lessons and the ways in which the whole classroom discussion expose students to mathematical 

concepts. The tool, built upon the commognitive framework, depicts the different realizations of a 

mathematical object treated in a lesson, and then uses different shades to signify who articulated 

the realization – the teacher or the students. We exemplify the tool on two lessons implementing an 

identical Hexagon pattern generalization task. The RTA visualizes the manner in which one lesson 

gave students sufficient opportunities to “same” different algebraic expressions, while the other 

lesson did not. We show how this visual presentation of the mathematical ideas complements 

existing assessment tools, particularly, the Instructional Quality Assessment and Accountable Talk. 

We conclude by discussing the potential of the tool as an aid for lesson planning.  

Keywords: Teaching practices, Realization tree, commognition, cognitive demand, lesson 

assessment tools. 

Introduction 

Recent years have seen increasing efforts to train teachers to teach exploratively – provide students 

with opportunities to engage with cognitively demanding tasks, problem solve, and participate in 

rich mathematical discussions (Schoenfeld, 2014). Within such efforts an important role lies in the 

tools that are used to examine lessons enacted by the trained teachers (Boston & Smith, 2009; 

Schoenfeld, 2015). Scoring and evaluation tools (such as the Instructional Quality Assessment tool 

or TRU math) can be used both for evaluating lessons and thereby examining the effectiveness of 

the training program, as well as tools for teachers’ professional development. A common difficulty 

with these tools, however, lies in operationalizing their criteria for evaluating the quality of 

mathematical ideas dealt with in the lesson. In this paper, we propose an analytical tool – the 

Realization Tree Assessment tool which is based on the “commognitive” framework (Nachlieli & 

Tabach, 2012; Sfard, 2008). This tool enables drawing a succinct yet sufficiently meaningful picture 

of the mathematical concepts surfaced in a specific lesson in such a way that lessons can be both 

compared with each other as well as planned ahead more accurately. 

Theoretical background 

Tools for the examination and evaluation of classroom instruction can be categorized into three 

types: scoring tools such as Instructional Quality Assessment, or IQA (Boston, 2012b) and the 

Teaching for Robust Understanding of Mathematics summary, or TRU math (Schoenfeld, 2014); 

“coding and counting” tools, such as Accountable Talk (O’Connor, Michaels, & Chapin, 2015); and 

qualitative analytical tools (e.g. commognition, Sfard (2008)). Scoring and coding measures have 

the benefit that they are quantifiable. They thus enable both the comparison of teachers with each 



other, as well as comparison of within-teacher change from lesson to lesson, for example, as a result 

of professional development. Scoring tools, however, have a drawback. They are heavily based on 

extensive training of scorers for the development of inter-rater reliability. This, because of their 

high-inference nature. Coding and counting tools, which are based on coding talk moves, 

necessitate lower inferences and are therefore easier for achieving reliability. However, these tools 

are mostly good for capturing non-mathematical aspects of the discourse. 

The difficulty in assessing the surfacing of “important mathematical concepts” (Boston, 2012a) or 

“important content and practices” (Schoenfeld, 2015) in a lesson is not surprising, given that the 

definition of “mathematical concepts” has been under much dispute for decades (Sfard, 2008). To 

our aid, we draw on commognition (ibid), which we have extensively used in the past as a 

qualitative tool for describing learning-teaching processes. In the present work, we simplify this 

tool, to attune it with the demands of coding and scoring schemes that seek to evaluate lessons in a 

relatively short period of time, for the goal of comparing large sets of lessons.  

Realization trees 

Mathematical learning, says Sfard (2008), is a process whereby students gradually become able to 

communicate about mathematical objects. These objects are produced by discourse (or 

communication), and are made up of different “realizations” (ibid, p. 165). The term realization is 

used by Sfard instead of the more common term “representation”, to emphasize the fact that nothing 

is, in fact, “there” to be represented. All mathematical objects are products of human discourse and 

come to life by being different realizations being “samed” and alienated from human agency so that 

they are talked about as existing of themselves. For example, the signifier ½, the process of dividing 

a pizza into two pieces, and the process of shading 3 circles out of 6, are all samed into the object 

“one half”. Children often learn each of these realizations separately and only later come to relate to 

them all to one object. This is the heart of a process Sfard calls “objectification”. Objectification, or 

talking about mathematical signifiers as “standing for” mathematical objects that “exist” in the 

world, is a major and necessary accomplishment for advancing in the mathematical discourse. Sfard 

used the term “realization tree” to illustrate the fact that realizations are usually hierarchical. A half 

is made of different realizations (1/2, 0.5, 50%, 3/6 etc.) but the whole numbers making up these 

realizations also have endless realizations (3 apples, 3 fingers, etc.).  Nachlieli & Tabach (2012) 

used realization trees to visually explain the complexity of the object function and to relate to the 

historical development of this object, as well as to make explicit students' development of the 

discourse of function. Before moving to explain our use of realization trees as tools for assessing 

the conceptual quality of a lesson, let us briefly describe the two other tools that have been serving 

us for quantifying and comparing mathematics lessons. 

IQA 

The IQA (Instructional Quality Assessment tool) has been designed by Boston and Smith (2009; 

Boston, 2012a) to evaluate the cognitive demand of mathematical lessons. This, based on the “task 

framework” put forward by Stein and her colleagues (1996), which differentiates between the 

cognitive demand of a task, the way it is presented to the classroom, and the way students 

eventually engage in it. Every rubric in the IQA is scored on a scale from 0 to 4. For reasons of 

space, we will concentrate here only on two rubrics: AR-2 (implementation) and AR-X 



(mathematical residue). Regarding the implementation rubric, 1 means students engage only in rote 

memorization and producing facts, 2 means they engage in the application of procedures explicitly 

taught, 3 means cognitive demand is not lowered but mathematical reasoning is not sufficiently 

explicated, and 4 means full engagement in a cognitively demanding mathematical task. 

'Mathematical concepts' or ‘ideas' are mentioned almost in every rubric in the IQA. For example, in 

the rubric that refers to the mathematical residue, the highest score should be given when: "The 

discussion following students' work on the task surfaces the important mathematical ideas, 

concepts, or connections embedded in the task" (Boston, 2012b, p. 20). However, IQA does not 

provide any clear guidance on this matter, besides giving a few examples of high and low level 

lessons.  

Accountable Talk 

Accountable Talk coding (Resnick, Michales, & O’connor, 2010) is a tool originating in socio-

linguistic analysis of classroom talk (O’Connor & Michaels, 1993). It provides teachers with a set 

of specific talk moves they can make during whole classroom discussions, to hold students 

accountable to the community, to knowledge and to reasoning. Our version of Accountable Talk 

coding (Heyd-Metzuyanim, Smith, Bill, & Resnick, 2016) includes eight codes for teacher moves 

(e.g. press for reasoning, revoice, restate, agree/disagree) and four codes for students' moves (e.g. 

student-agree, student-justification). These moves track the amount in which teachers attempt to 

make students' thinking public, help students to reason mathematically, and hold them responsible 

for attending to the reasoning of others. Though the manual does contain examples of mathematical 

statements, Accountable Talk’s basic framework does not deal specifically with content. It has no 

clear indicator of what consists as more important or “conceptual” reasoning, and what does not.  

The study  

In what follows, we first describe the setting of the study on which we developed the Realization 

Tree Assessment tool (RTA). We then describe the results of analysis using the IQA and AT, 

showing what could be achieved by them and what was missing or difficult to agree upon. We 

follow this by describing the RTA results for the data, showing where they agree, complement and 

elaborate on the findings obtained by the IQA and AT.  

Setting 

The study reported here was performed in the context of a project for training Israeli teachers to 

implement explorative instructional practices in middle school mathematics classrooms, using 

methods inspired by Smith & Stein’s (2011) “Five Practices for Orchestrating Productive 

Mathematics Discussions”. In this report, we focus on two teachers: Dani and Sivan. Dani was 

teaching a 7th grade classroom in a school serving a community of middle-high socio-economic 

background. Sivan was teaching an 8th grade classroom in a school serving a community mostly 

from a low-middle socio-economic background. Both teachers participated in training sessions 

where the instructor planned together with each of them separately a lesson according to the “5 

Practices”. In both cases, the lesson centered around an identical task: the Hexagon Task. The main 

session in the task was to write description that could be used to compute the perimeter of any train 

in the pattern of hexagons (See Figure 1):  



The reason this task was used, was that it has proved in a previous study (Heyd-Metzuyanim et al., 

2016) to be very productive for teachers who are beginning to implement the “5 Practices”. We 

observed, video recorded, and transcribed both lessons. In addition, Dani and Sivan were both 

interviewed before and after the lessons, and their lesson planning sessions were recorded. In what 

follows, we present the IQA and AT measures of the two lessons, as well as what was still missing 

from them for a full understanding of the task implementation.  

Findings 

Accountable Talk in the two lessons. Both Dani and Sivan’s lessons were conducted over a 

double period (90 Minutes) and both included work in groups (or pairs) where the teacher was 

walking between the groups, followed by a whole classroom discussion. The two whole classroom 

discussions took similar time (in Dani’s classroom 28 minutes and in Sivan’s lesson 26 minutes).  

Overall, there were many more AT moves in Dani’s lesson (98) than Sivan’s (46). In particular, 

Dani’s lesson had much more student talk moves coded as AT moves, either as student 

agree/disagree (N_Dani=22, N_Sivan=0), or as student justifications (N_Dani=20, N_Sivan=11). 

Dani was also higher than Sivan in pressing for students’ reasoning (N_Dani=23, N_Sivan = 14). 

The overall picture drawn from the AT measure is, thus, that Dani’s lesson had more accountability 

to reasoning and to the community than Sivan’s lesson. Using the AT measure alone, however, does 

not enable learning about what mathematical concepts were dealt with, and which mathematical 

ideas surfaced through the discussion.  

IQA scoring of two lessons. According to the IQA, Dani's lesson got higher scores then Sivan’s 

lesson on all the rubrics, except the potential of the task, which was given in both cases by the 

teachers’ trainer. In the Implementation rubric, we scored Dani’s lesson as a 4, since multiple 

solutions were found and presented by the students; the teacher did not lead the students towards 

any particular solution; solutions were linked to each other both by the teacher and by the students; 

and there was no proceduralization of the task. In contrast, Sivan’s implementation scored a 2. 

Though students generalized the Hexagon pattern into a  expression, this was not done through the 

visual Hexagon’s representation, only through the table; connections were not made with other 

algebraic expressions; in particular, students seemed to be well rehearsed in producing a table, 

algebraic expression from it and a graph of that expression, thus the task was proceduralized.  

In the mathematical residue rubric, the results of the scoring were similar. Dani’s lesson received a 

4 since: the mathematical idea of equivalence of algebraic expressions was driven through the 

different algebraic solutions student presented. Evidence for students’ understanding could be seen 

in one of the girls' exclamation “so they’re all the same!” In contrast, Sivan’s lesson scored a “2” on 

the mathematical residue rubric, since although the discussion dealt with some mathematical ideas, 

it did not touch upon the main idea behind the Hexagon task. The teacher did not focus on the 

different algebraic expressions but rather on the different representations of a linear function (graph, 

Figure 1: The Hexagons Pattern 



table and algebraic expression). However, as will be shown later, even this idea was not treated 

fully and appropriately.  

Of all the Academic Rigor rubrics, we found the “Mathematical Residue1” most difficult to 

operationalize. It appeared Dani and Sivan had different ideas regarding the mathematical goals of 

their lessons and this had consequence for the way they led the lesson. While Dani seemed to be 

well aligned with the goal of showing the equivalence of algebraic expressions, Sivan seemed as 

though she was mostly aiming at ideas related to linear functions (which are, indeed, part of the 8th 

grade curriculum). We therefore searched for a tool that would aid in explicating the mathematical 

ideas explored in the two lessons. For this end, we developed the RTA. 

Realization Tree Assessment tool 

The first step in RTA is examining the task and explicating the mathematical object(s) that can be 

surfaced through engagement with the task. This includes the different realizations that are 

reasonable to expect from students at a certain grade level. In our case, we built our realization tree 

based on a lesson plan provided by the Institute for Learning 

(http://ifl.pitt.edu/index.php/educator_resources), where the different solutions, expected from 

middle schoolers for this task were drawn out. This produced a “blank” tree, with nodes as seen in 

Figures 2 and 3. We then proceeded to shade the tree nodes with four different colors, as follows: 

Shade no 4: the student's explanation was complete and accurate; Shade no. 3: the student’s 

explanation was not complete and accurate but the teacher helped explicating the idea; Shade no. 2: 

the student did not articulate the realization, but the teacher did; Shade no. 1: The realization was 

partially mentioned, but neither the student nor the teacher explained it fully. 

 

 

 

 

 

 

                                                 

1 The Mathematical Residue rubric appears in our manual as “under development”. 

Figure 2: The RTA of Dani's lesson Figure 3: The RTA of Sivan's lesson 



Finally, if the realization was not mentioned at all, but was hypothesized to be relevant to the lesson 

and the grade level according to the lesson plan, it was shaded white (no. 0).  

As can be seen in Figures 2 and 3, the main branch of our realization tree (“algebraic expression”), 

branches out on the multiple realizations of the algebraic expression . This, in accordance with the 

potential of the task to explore the different ways in which the visual representation of the hexagon 

sides can be generalized into a pattern and expressed algebraically.  

Figure 2 describes the RTA for Dani’s lesson. It shows that three realizations were explained fully 

and completely by students, three were explained by students, but the teacher filled in some gaps in 

these explanations, and one realization was explained only by the teacher. This full treatment of the 

“algebraic expressions” branch led students to endorsement of the narrative that “they all (all the 

algebraic expressions describing the pattern) equal to ”, thus to the saming of different realizations, 

which was the goal of the lesson, as expressed both by Dani and by the teacher trainer.  

In contrast, the RTA for Sivan’s lesson (see Figure 3) is much lighter and sparser. It shows that only 

three realizations were treated in the lesson, and none of them was fully explained by the students. 

Moreover, the main branch of the tree – the “algebraic expressions” branch, is particularly empty. 

Only the  realization was treated, and even that one was not explained accurately by the teacher or 

the students. The relative “emptiness” of Sivan’s RTA corresponds well with the relatively low IQA 

and AT scores her lesson received. Still, it puzzled us, since Sivan was prepared in the PD very 

specifically for a lesson that was envisioned as similar to that of Dani. “What went wrong?”, we 

asked ourselves. In order to answer that, we went back to the planning session, as well as to the 

post-lesson interview with Sivan, conducted right after the lesson. We found that, despite the PD 

instructor’s conviction that she and Sivan were “on the same page”, Sivan, in fact, had different 

goals for the lesson. She was focused on connecting the lesson to the previously learned unit on 

linear functions, where she had taught students to connect the concept of “slope” with the term 

“ ” in  , as well as connect it with the visual slope of a linear graph: 

“I wanted the students to see that every time it rises by four so that they will connect it with the 

slope that we have done with functions… I deliberately divided the board into three sections, to 

show the different stages in reaching the function itself - the graph that combines all the various 

representations of the function". (Sivan, Post-lesson interview)  

It appears, then, that Sivan had a different mathematical object in mind (though probably only 

tacitly) when she planned the lesson – the “linear function” object2. Within the linear function 

object, the “slope” attribute of that object was her focus of attention. This could have been an 

appropriate goal for the lesson, had it been explicated and thought through. In particular, the 

following realization tree (see Figure 4) could have been appropriate for discussing slope and linear 

functions.  

                                                 

2 Though she named it inaccurately simply a “function”, we understood from the context and from the curriculum she 

was referring to linear functions. 



 

 

 

 

 

 

 

 

 

 
 

Figure 4: Alternative Realization Tree for discussing slopes and rate of change 

However, the Hexagon task, especially as written for this lesson, was probably not the optimal task 

for talking about “slope”. This, since it depicts a situation where the function is discreet and cannot 

be described using a linear line. In practice, Sivan neglected very early the connection to the 

Hexagons drawing. Thus even the “rate of change” (which could have been visualized as the 

addition of four sides with the addition of each hexagon) was not connected to the “slope” on the 

graph.  

Discussion 

Our goal in the present report was to present a new analytical tool for the evaluation of 

mathematical lessons – the RTA. Though this tool does not give a numerical value such as scoring 

and “coding and counting” tools do, it still enables relatively easy qualitative comparisons between 

lessons. We have used this tool to enable comparison between two more lessons that were 

performed on the Hexagon task, and the results give a quick overview of the mathematical 

opportunities to learn in each lesson. The RTA can also serve as an aid for determining the quality 

of mathematical content (or “mathematical residue”) that is sought after in coarser grained 

assessment tools such as the IQA. In addition, the RTA can give us information about the potential 

of the task to engage students in explorative mathematical learning and about the relation between 

this potential and the actual implementation of the task in the classroom.   

In the two cases reported here, the application of the RTA was done post-hoc, after the lessons were 

planned, implemented and recorded. However, we believe there is much potential for using this tool 

as an aid for planning lessons and training teachers for explorative mathematics instruction. Such a 

tool is particularly needed in light of previous findings which point to the difficulty of teachers to 

explicate to themselves the mathematical goals of the lesson (Heyd-Metzuyanim, Smith, Bill, & 

Resnick, submitted). We also believe that drawing realization trees with teachers will help them 

plan tasks and whole classroom discussions that provide sufficient opportunities for explorative 

participation. Often, when teachers talk about explorative instruction, their focus lies on the social 

or socio-mathematical norms of the classroom, such as students talking and listening to each other 



(Heyd-Metzuyanim, Munter, & Greeno, submitted). We believe no less emphasis should be put on 

the nature of mathematical objects that students get exposed to, and on the paths for objectification 

that are opened through sufficiently rich mathematical discussions.  
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This poster explores the complex process of integration of 21
st

 Century (21C) teaching and learning 

practices into mathematics classrooms, reporting on mathematics teachers’ perceptions of the 

predictors for, and barriers to, their integration in European post-primary schools. Data are drawn 

from teachers’ responses to a questionnaire for an Erasmus+ project that addresses readiness for 

the integration of 21C practices. Responses from 52 Irish, Swedish, Estonian and German 

practitioners listing mathematics as one of their teaching subjects are considered. For quantitative 

data, descriptive and inferential statistics were used; a directed content analysis approach was taken 

for qualitative data. Findings indicate that system restrictions and resources are major barriers, and 

that classroom management and teacher beliefs impact on confidence with and frequency of use of 

21C practices. We propose that this work form the basis of a broader study. 

Keywords: Teaching practices, 21
st

 century learning, mathematics education. 

The perceived importance of a ‘21
st

 Century’ (21C) approach to teaching and learning is well 

documented (Dede, 2010; Voogt & Roblin, 2012). In terms of mathematics pedagogy however, while 

there is considerable research into the use of technologies for teaching and learning (e.g., TWG15 

and TWG16), the broader field of 21C practices in the classroom is less considered. This research 

explores responses to a survey instrument developed for an Erasmus+ project, Teaching for 

Tomorrow (TfT). TfT is a partnership between institutions in four countries (Ireland, Sweden, Estonia 

and Germany) that are working to develop a model of 21C teaching and learning across subject areas. 

The poster reports on the responses of 52 teachers who name mathematics as one of their teaching 

subjects. The aim is to identify what they see as the predictors for and barriers to usage of 21C 

practices in the classroom, with a view to larger-scale research. 

The theoretical framework underpinning the model for 21C practices being developed by TfT draws 

on the work of Ravitz, Hixson, English, and Mergendoller (2012), which emphasises a project-based, 

collaborative, and student-led pedagogic approach. “Readiness for integration” is taken as involving 

confidence in using and encouraging, and frequency of using, the 21C practices of: Critical thinking, 

Collaboration, Communication, Creativity & Innovation, Use of Technology, Self-direction, Global 

and Local Connections. 

The questionnaire used to gather data was developed by the Irish partners, with items drawn from the 

validated instruments of Euler and Maaß (2011), Ravitz et al. (2012), and the OECD (2010). It 

involved 4 main sections: (1) Background information; (2) Teachers’ beliefs about the nature of 

teaching and learning (direct transmission versus constructivist); (3) Orientation towards, usage of, 

and barriers to 21C teaching and learning; and (4) Confidence with and frequency of integration of 

21st skills in practice. Apart from section 1 and an open-ended item in the Barriers section, all items 

used 5-point Likert-type scoring system. 



Multiple regressions were performed to identify whether the categories of beliefs, opinions and usage, 

and barriers had a significant bearing on teachers’ confidence with, and frequency of, integration of 

21CL practices in the mathematics classroom. Also, t-tests and one-way ANOVAs were used to 

compare the mean ratings across the four participating countries. Directed content analysis was 

undertaken for the qualitative data. 

Results indicate that teachers’ mean orientation towards 21C practices is quite high, with respondents 

tending to agree that 21C teaching and learning has a positive impact on student motivation. However 

mean levels of confidence are less positive, and mean frequency of usage is rather low, pointing to a 

lack of readiness for integration. Respondents’ mean scores for self-reported direct transmission 

beliefs are lower than those for constructivist beliefs, the latter being predictors of confidence in 21C 

practices. 

In the qualitative analysis, students’ and teachers’ direct transmission beliefs are reported by 

respondents as barriers to the integration of 21C practices, with “teacher inertia and general 

reluctance to move from traditional methods” emerging as a common issue. Barriers at the system 

level, particularly those associated with time, and curriculum and assessment, also appear important. 

In addition, both quantitative and qualitative analysis reflects that classroom management issues act 

as barriers to teachers’ implementation of 21C practices: “Students are not used to 21CL, because 

most of the time they do not have to do it, so at first it takes a lot of time.” 

In order to encourage teachers to integrate 21C practices in the mathematics classroom, it is essential 

to address some of the barriers identified. The features of the TfT model, outlined above, are intended 

to provide guidance for teachers and students, a structured approach to the development of 21C 

activities, and relevant assessment practices. 

It should be noted that although the samples from each country are small and not representative, and 

that there were variations in the criteria for participant selection, the results across counties show 

surprising commonality. Thus, we propose to conduct a larger study, involving representative groups, 

uniformly selected in each country, to see if such trends arise outside the confines of TfT. 
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Rationale 

The variety of papers presented in TWG 20 at CERME 2017 connected to the growing field of 

teacher education. There were total of 27 papers and 4 posters that had been presented. The number 

and heterogeneity of the research foci, contexts, methodological and theoretical approaches, 

provided opportunity for in-depth discussions and reflections around the presented papers. Although 

the core topic proposals were expected to embrace three intertwined domains, the focus of the 

presented papers at TWG20 was mainly on teachers' knowledge, while the topic of teachers’ beliefs 

and teachers’ identity would appear implicitly or in the background of some of the research.  

Main topics  

The priority given to teachers’ knowledge can be seen throughout the unbalanced number of 

proposals which included the 27 papers presented (30 were submitted). For the development of the 

work three thematic strands have been considered: (i) knowledge in mathematics education (3 

papers); (ii) lesson study context and beliefs (5 papers) and (iii) teachers’ knowledge” (19 papers). It 

is interesting to note that the differences between (i) and (iii) concerns the aims of the research 

(even if not perceived explicitly), and not necessarily the theoretical perspectives considered.  

(i) Knowledge in mathematics education. This thematic strand included three papers, focusing on 

aspects different from the specificities of teachers’ knowledge, even when the context was teachers’ 

education. Although the theoretical dimensions of the presented researches addressed teachers’ 

knowledge conceptualizations the research focused on the knowledge of prospective teachers’ that 

is revealed at the very beginning of teachers’ training. 

(ii) Lesson study. The second thematic strand included five papers and one poster, dealing with 

mathematics teachers’ professional development (PD), in the context of the development of Lesson 

Studies (LS), and (prospective) teachers’ learning with regards their own teaching practice and 

students learning, as well as on how teachers perceive themselves as participants in such LS context. 

Although there is evidence that PD contexts can lead to improvements in teaching practices and 

students’ learning, less is known about what and how teachers learn from PD and about its further 

impact on students’ learning outcomes (Borko, 2004), and also some other intertwined variables. 



Common to the presented research were the perspective of considering teachers as learners, where 

the research is looking at the relationships between these two elements. In this thematic strand, two 

particular issues arise; how can theories/approaches/perspectives on teachers’ knowledge be used to 

analyse the impact of teachers’ participation and involvement in LS for teaching practices and 

professional development; concerning questions around the incorporation of theory in a 

methodological approach for LS in order to analyse the different phases and cycles. 

Further, the research developed in the context of the implementation of a LS (or a research on the 

LS process), needs to take into account the particularities and specificities of the cultural contexts in 

which it is implemented – in order to acknowledge, the differences of those cultural contexts and 

the one where it is originated. In, and for doing so, one needs to take into account different aspects, 

such as the type, nature and impact of the affordances and constraints that takes into consideration; 

the influence of the researchers’ background in the implementation, development and design of the 

research in the LS context; to what extent, in the context of a mathematics education research, the 

mathematics features of teaching is effectively the focus of attention.  

(ii) Teachers’ knowledge. Similar to previous CERME’s, the explicit focus on teachers’ 

knowledge has been given a major importance in the context of most of the presented proposals. 

The papers were grounded on teachers’ knowledge conceptualizations that have already been 

discussed extensively in previous CERME conferences (Mathematical Knowledge for Teaching 

(Ball, Thames & Phelps, 2008); Mathematics Teachers’ Specialized Knowledge (Carrillo, Climent, 

Contreras & Munoz-Catalan, 2013); Knowledge Quartet (Rowland, Huckstep & Thwaites, 2005); 

Ontosemiotic Approach (Godino, Batanero & Font, 2007)). We observe that, within a period of four 

years (from CERME 8 to CERME 10) a certain shift related to the focus of attention occurred, 

namely a shift from discussing the need for different conceptualizations towards an effort to 

deepening on the nature of teachers’ knowledge when assuming a certain conceptualization. 

In CERME9, Ribeiro, Aslan-Tutak, Charalambous and Meinke (2015) suggested that the use and 

development of diverse conceptualizations could be perceived as both a richness of the research 

field and as a constraint. The richness concerns possibilities for gaining a better insight into factors 

that influence the development of teacher knowledge. However, there are challenges of finding a 

common ground for discussing the core aspects of the research field. At the current conference, the 

issue of a diverse conceptualization was addressed in discussions on how to investigate mathematics 

teachers’ knowledge when assuming it to be in interplay with students’ learning. In other words, the 

need to pay “close” attention to how we, as researchers, take into consideration the aspects of 

mathematics teaching and learning, being connected to teachers’ intertwined knowledge as well as 

to the role and impact of teachers’ knowledge in practice concerning the use of resources (where the 

focus was the teachers’ knowledge involved in/for preparing and using such resources – in a broader 

sense – in practice and not the resources itself). 

The research, and the associated discussions and reflections in the group, also bought forward one 

of the recurrent items in the group discussions: the need for the research on teacher education to 

move from a prevalent focus on what teachers do not have (the deficit perspective – in term of 

knowledge) to a focus on what teachers actually know, how they know it, and possible different 

hows that can contribute to the development of teacher’s knowledge, specifically related with 

teacher’s work of teaching. Along the discussions, and aligned with some of the presented papers, a 



possible direction for future research emerged on area of teachers’ knowledge sustaining teachers’ 

noticing and “earing” ability. For example, future research focusing on how mathematic teachers’ 

pay attention to and make sense of what happens in the complexity of instructional situations (see 

e.g. Sherin, Jacobs & Philipp, 2011). Also on what aspects of one’s knowledge do teachers’ ground 

their decision making – in order to develop mathematically demanding practices, aiming at 

developing critical mathematical thinking for deeper mathematical understanding. One other 

possible focus concerns on how and why (the impact) the teachers’ and researchers’ knowledge 

influence their foci of attention and awareness.  

Emerged themes and future perspectives  

We have considered three thematic strands for an operational reason, but one need to have in mind 

the intertwined nature of such strands. Thus, in our case, the connecting element was teachers’ 

knowledge. Some of the discussions were grounded in ideas already discussed in previous 

CERME’s, aiming at deepening the understanding on those aspects/dimensions while other 

discussions seek for an alternative and complementary path for getting such a broader 

understanding. A particular sensitive aspect was the need for a deeper understanding on the 

relationships between teachers’ knowledge and practice, and for gaining such a deeper 

understanding some new approaches to research on teachers’ knowledge were discussed, in 

particular studies that investigate how teachers use their knowledge to give meaning to others’ 

solutions or to anticipate students’ answers. Moreover, the role of task design in and for assessing, 

accessing and developing teachers’ knowledge and improving practices was emphasized in the 

discussions. We have grouped the main research trends emerged in three groups:  

- Deepening research into teachers’ knowledge, beliefs, identity, and noticing 

 Taking into account that in some contexts mathematics teachers knowledge specificities are 

perceived mainly in the domain of PCK, how is the "weight” of PCK perceived in the field of 

research in mathematics education and how it intertwines with the specificities of the teachers’ 

content knowledge, beliefs and identity? 

 How to take into account teachers’ noticing? 

- Research on interactions with fields of practice 

 How can the focus of research be intertwined with practice and education in a more explicit 

manner, perceiving practice in a broader sense?  

 How can we investigate whether and how teachers’ knowledge affects students’ learning and 

transitions throughout student’s education? How to design and develop research aimed at 

approaching “simultaneously” teachers’ knowledge and students learning? 

 How to move from frameworks for analyzing, describing, understanding and/or evaluating 

teachers’ knowledge, to the use of frameworks by teachers (for analyzing teaching practice)?   

 How the teachers’ knowledge conceptualizations take into account the notion of assessment, and 

how does knowledge on assessment contribute to students’ learning in mathematics? 

 What are the roles and knowledge (e.g., features, nature, content) of mathematic educators in 

teacher education (e.g. facilitator in LS; teacher trainer)?  



- Research on methodological (and theoretical) challenges: 

 How can we deal with (and what are the implications for) similarities and differences of aims and 

challenges in mathematics teacher education in different cultural contexts? 

 How to clarify the findings we have, when using a particular theoretical lens for analyzing 

teachers’ answers, comments and/or practices?  

 How to develop research that emphasize teachers’ potentials instead of teachers’ deficiencies, 

and how to design approaches for grounding teachers’ knowledge development in such potential? 

 As many of the researchers developing research on teachers’ knowledge – in multiple contexts, 

including lesson study – are educators, how do we deal with such fact (a recurrent issue); what 

significant does researcher’s role as an educator play on the research itself and what is the actual 

impact of research in improving teachers’ education (in what terms is the research one does 

implying on the ways teachers’ education occur)? 
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Responsibility for evaluation is assigned to teachers so that they can critique their own work and 

follow each of their students' progress. To succeed, teachers must build an appropriate means of 

assessment by themselves. This study examines the ability of pre-service and novice mathematics 

teachers in secondary schools to do so, using a questionnaire that requires them to make a connection 

between teaching objectives and mathematical tasks. The results show difficulties in matching 

teaching objectives to a given task and vice versa, with no significant differences between the pre-

service and novice mathematics teachers. Interviews show how their beliefs, and their lack of 

mathematical and pedagogical knowledge, influence the teaching objective and assessment task they 

choose.   

Keywords: Pedagogical mathematical knowledge, assessment, mathematical knowledge, pre-service 

mathematics teachers, novice mathematics teachers. 

Introduction  

The aim of evaluation is to provide teachers with reliable information so they can make decisions 

regarding their teaching methods as well as track their students' learning (NCTM, 2000). To achieve 

that aim, teachers must design and construct assessment tools on a routine basis (Magnusson, Krajcik, 

& Borko, 2002). This means that teachers should have the capacity to find or develop assessment 

tasks that align with their teaching objective, and that have the potential to accurately reflect their 

students' knowledge and understanding (Siegel & Wissehr, 2011). They should also have the reverse 

capacity: they must know how to find the teaching objective behind a given mathematical task. The 

two capacities integrate pedagogical knowledge with mathematical (content) knowledge, which has 

been defined as a part of pedagogical mathematical knowledge in assessment which teachers should 

have (Tamir, 1988). This study attempts to examine the pedagogical mathematical knowledge in 

assessment of pre-service and novice mathematics teachers by checking their ability to draw a 

connection between teaching objectives and mathematical tasks.      

The theoretical framework   

Teaching as a profession is characterized by the existence of a unique knowledge base for those 

involved in it. Shulman (1986) defined categories of knowledge that teachers need in order to be 

professionals. Among these, he listed content knowledge (in this case, of mathematics), pedagogical 

knowledge, and pedagogical-content knowledge. Toward the end of the last century, the assessment 

of students’ achievement was placed in the teachers' hands, with the hope they would have the 

knowledge to develop a reliable and valid assessment methods aligned with the teaching objectives 

(NCTM, 2000). Thus, the topic of assessment became part of the knowledge base teachers have to 

have. Tamir (1988), followed by Magnusson, Krajcik, & Borko (2002), expanded the definitions of 



pedagogical knowledge and pedagogical-content knowledge for the topic of assessment. Pedagogical 

knowledge in assessment means knowledge of general rules related to assessment that can be applied 

to every subject-matter, such as familiarity with the various means of assessment. Pedagogical-

mathematical knowledge in assessment refers to the knowledge teachers need in order to implement 

the general assessment rules in mathematics, and also to the ability to build a means of assessment 

that aligns with their teaching objectives.  

Connecting teaching objectives and mathematical tasks is the foundation upon which pedagogical-

mathematical knowledge in assessment is based, and particularly all means of assessment, formal as 

well as informal. This capacity should be acquired by every teacher from the time he/she starts to 

work. To the best of our knowledge, research that examines teachers' ability to connect between tasks 

and objectives has yet to be done in any field. This study is the first attempt to explore this ability in 

general, and particularly in mathematics, among novice and pre-service mathematics teachers. This 

paper is aimed to check this ability in an innovative way.  

Methodology  

The data analyzed below derives from a research program about assessment that examines the 

pedagogical knowledge and pedagogical mathematical knowledge in assessment of pre-service and 

novice mathematics teachers for primary and secondary schools (Hoch & Amit, 2013; Hoch & Amit, 

2011). 

The research questions  

The aim of this paper is to examine the ability of pre-service and novice mathematics teachers to find 

the most suitable teaching objectives to associate with a given mathematical task. The research 

questions are: 

a. Given a mathematical task, to what extent do the participants know how to match it to a suitable 

teaching objective which can be checked by that mathematical task? 

b. What are the sources of mismatching in selecting the appropriate teaching objective?    

The population  

The study focused on sixty-six participants: thirty-two pre-service teachers, who were taught in five 

teacher training colleges, and thirty-four novice teachers, who had also been trained in one of those 

colleges.           

The pre-service teachers were near the conclusion of their studies, and about to become secondary 

school mathematics teachers (grades 7-10). The novice teachers were already teaching mathematics 

in secondary schools (grades 7-10), and had up to three years of teaching experience (Vonk, 1993).  

All the participants had taken a one-semester course in student achievement assessment during their 

studies at the teacher training colleges. None of the novice teachers took any additional course besides 

the one in which they had trained. 

The research approach 

This study used the Mixed Method approach. First, quantitative data was gathered; then, on the basis 

of the gathered data, qualitative data was collected (see below).  

  



The instruments 

The research was conducted by means of a questionnaire, followed by interviews. 

The questionnaire: 

This study is innovative in that it examines assessment pedagogical-content knowledge in 

mathematics by checking teachers' ability to draw connections between teaching objectives and 

mathematical tasks. Specific questionnaires were created for this purpose. In this paper we shall focus 

on one of these, which checks the participants' ability to match a suitable teaching objective to a given 

mathematical task. Every question starts with a mathematical task followed by three teaching 

objectives that can assessed by that task. The participants were asked to rate those teaching objectives 

according to their suitability to the given mathematical task on the scale of 3 (= the most suitable) to 

1(= the least suitable) (see Figure 1 below).   

The questions focus on three central subjects in the curriculum of grades 7-10: algebraic expressions, 

equations and functions. All the mathematical tasks appear in the most widely used textbooks and in 

national tests. The teaching objectives were taken from the mathematics curriculum and from these 

textbooks, in order to simulate live classroom situations.   

The questionnaire was given to a panel of judges which included seven experts in mathematics 

assessment. All have a PhD. in mathematics education, except for one who has an M.A. in 

mathematics education. All are familiar with the topic of assessment, and some of them even teach 

this topic in teacher training colleges. The panel of judges was asked to rate the teaching objectives 

in each question according to their suitability to the given mathematical task (just as the respondents 

would be, on a scale of 1-3). To ensure reliability (see Burstein et al., 1995/1996) each one of the 

judges was given the questionnaire discretely and did the assignment independently, without knowing 

who the other judges were.   

After all the judges had completed the questionnaire, their ratings for each question were checked. 

Only questions that were given the same rating by at least five judges were left in the final version of 

the questionnaire. For the remaining questions, all the judges agreed which was the most appropriate 

teaching objective, but did not agree about the order of the other tasks. 

The interviews: 

Interviews were conducted with eight participants (four pre-service teachers and four novice teachers) 

a maximum of two days after they completed the questionnaire. The interviews were done in order to 

gain a deeper understanding of the participants' way of thinking and to find explanations to and 

elaborations for the results obtained from the questionnaire (see Burstein et al., 1995/1996; Ercikan 

& Roth, 2006; Luft & Roehrig, 2007). The interviewees were therefore chosen according to the 

degree of incompatibility between their own rating and the experts' rating, and subject to their 

willingness to be interviewed. The interviews were semi-structured so that for each item in the 

questionnaire the interviewees were asked: "Can you explain your considerations for the rating you 

gave?" Each interview was recorded rather than hand written so as to avoid interruptions and delays 

during the interviewing process.  Later the interview was transcribed.  

 

  



Data analysis 

Quantitative analysis: For each question, each participant’s rating was compared to that of the experts 

and received a mark indicating the degree to which it matched the experts' rating. The mark was on a 

scale from 4 to 0 following the rules: 4 points - the participant’s rating is equal to the experts' rating; 

3 points - the participant found the most suitable teaching objective but confused the order of the two 

other objectives; 2 points - the participant marked the most suitable teaching objective as the second 

and the second suitable teaching objective as the most suitable one; 1 point - the participant marked 

the most suitable teaching objective as the second and confused the order of the other two; 0 points – 

any other option. As a result of this process each question got a score, thus enabling the use of 

common statistic tests. 

Interview analysis: The material obtained from the interviews was coded and analyzed using content 

analysis (Bauer & Gaskell, 2010), with the explanation for each question used as an analysis unit. At 

the initial stage of the analysis, the participant's rating was compared to that of the experts for each 

question and the explanation for the rating was checked. In cases where the rating did not match that 

of the experts, or the interviewee's explanation for the rating (even when it was in alignment with the 

experts' rating) did not correspond to the experts' reasons, the causes that led to those mistakes were 

identified. Finally, all the causes which were found to have a common source were grouped together, 

thus creating several categories. Since similar research has not previously been undertaken, there 

were not yet any known categories.    

Findings and interpretations 

General results for the questionnaire  

On average, the participants obtained 2.5 points (out of 4) in this questionnaire. This means that they 

managed to answer correctly an average of 6 questions out of 9. No significant differences were found 

between pre-service and novice teachers. 

"Substitute Set" Question (see Figure 1 below). 

In this question the participants obtained 2.51 points (out of 4). No significant differences were found 

between the two groups. Less than 50% of the participants correctly chose the most appropriate 

teaching objective.   

For this question the causes that led to a mistaken rating were divided into four categories. 

Difficulties in content knowledge 

Interviewer:  Which algebraic expressions are suitable? 

Sara: b, c, d  

Interviewer:   b, c, d, all right 

Sara: And e  

Interviewer:   And e 

Sara: Even though in e you can substitute (-5) 

Interviewer:   So what is the right answer? 



Sara: I really do not know ….. 

The right answer is b and d, but many students of all ages have problems with the algebraic expression 

given in c. They need more than a few minutes to understand that c is a wrong answer. The one which 

is written in e caused problems for some interviewees, and one interviewee gave it as a correct answer 

without realizing that there was a problem. The fact that (-5) cannot be substituted, while 5 can, 

caused problems. This algebraic expression shows that the ability to find the substitute set is not 

sufficient for providing the right solution. Those interviewees who had difficulty with mathematical 

knowledge chose the second objective as the most suitable one or rated the teaching objectives in the 

same order as the experts. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: "Substitute Set" Question (with the experts' rating) 

 

Difficulties in pedagogical knowledge 

The results showed that the participants did not clearly and unequivocally understand how a teaching 

objective should be determined. As a result, they made their choices based on several different 

criteria. Some of the interviewees chose the suitable teaching objective according to the order of the 

syllabus. In this case, for instance, finding a substitute set to an algebraic expression topic is learnt 

after the students know how to substitute numbers and practice doing so. According to Orna, "Here 

the student does not try to substitute numbers because this stage is already known, it is something 

obvious". Thus the teaching objective that would be suitable in this case is the second one, with the 

additional reasoning "that is the way I would do it" (Orna). Osama’s rationale, on the other hand, led 

her to choose the first teaching objective, saying "Here the student first has to substitute in order to 

know if the denominator is equal to zero… [Therefore] I think this task checks very well if the student 

knows how to substitute". Others, like Yelena, based their determination of the most suitable teaching 

objective on a strict adherence to the exact phrasing of the assessment task. She declared that "the 

student does not have to know the idea behind the term ‘a substitute set’ because no one asks for this". 

In a test that was given to 7th grade students the following question was asked: 

Find the algebraic expressions where the set {x| x     5} is the substitute set.  

(There is more than one correct option.) 

a. (x-5)(x+5)        b.  
)5)(5(

4

 xx
   c.  

25

5
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      d.  

252 x

x
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Degree to which the 

objective fits the task  

The teaching objective: 

To check if the student 

1 Knows how to substitute numbers in an algebraic 

expression 

2 Knows how to find  a substitute set to an algebraic 

expression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



She thinks that a teaching objective should be determined according to what is specifically asked for 

in the written question.  

Difficulties in pedagogical content knowledge 

Some of the interviewees did not take into consideration the difficulties students have when the 

substitute set of the algebraic expression is not the same as the given one. "Even those who do not 

understand the learnt material can substitute numbers and succeed in solving the question and the 

teacher will think he/she understands" (Osama). "In 'e' the student finds that the substitute set is all 

numbers except 5, so he will not mark this ['e'] because [it is given that] the substitute set should be 

different from 5 and also from (-5)" (Sharon). Knowing how to find the substitute set or knowing 

how to substitute numbers does not ensure that the student will come to the right conclusion because 

an additional step is requires, namely comparing the result obtained from the finding of the substitute 

set with the given substitute set and coming to a conclusion. 

Beliefs/conceptions   

The interviewees raised concerns about whether a task like this could in fact accurately reflect their 

students’ understanding at all, or whether it just reflected their ability to follow instructions. Their 

responses addressed questions like: What is the nature of the rules that are provided by teachers or 

books? Do these rules replace the need for understanding the subject matter? Can students follow the 

rules and succeed in solving tasks without understanding? Anat, for example, pointed out that “If the 

teacher wrote down the rules on how to find a substitute set…all kinds of rules, the students may not 

understand what a substitute set means, but they will be able to solve exercises without such 

understanding.” Anat expresses the belief that knowing the rules and using them correctly can cover 

up a lack of understanding, and that therefore this task cannot check the understanding of a substitute 

set.       

Discussion and conclusions 

This study attempts to give a preliminary idea of the mathematics teachers’ pedagogical-content 

knowledge of assessment. It examined two groups: pre-service teachers in secondary schools just 

prior to their entering the educational system, and novice teachers in secondary schools. The example 

presented here shows the participants’ difficulties finding the teaching objective behind the given 

mathematical task, dividing them into four categories: a. difficulties in mathematical knowledge, b. 

difficulties in pedagogical knowledge, c. difficulties in pedagogical mathematics knowledge and d. 

beliefs/conceptions teachers hold. The first three categories have already been discussed extensively 

by many researchers as an acknowledged part of the knowledge base all teachers must have (e.g. 

Shulman, 1986; Turner-Bisset, 1999). As this example shows, an incomplete knowledge base also 

influences the quality of the assessment teachers carry out. The application of beliefs in the teaching 

process has been well documented in the literature (Eren, 2010; James & Pedder, 2006; Turner-Bisset, 

1999) and arose in the context of assessment as well. In this case, it was the teachers’ belief that 

providing students with rules could cover their lack of understanding. This issue has been dealt with 

by many researchers for many years (e.g. Skemp, 1976). The belief that teaching students to follow 

a set of rules can be a substitute for teaching them the underlying ideas for those rules may be the 

result of what has, until recently, been the prevalent Israeli method of learning mathematics – a 



method that demanded low levels of thinking from the students. Various researchers (e.g. James & 

Pedder, 2006) have recommended encouraging the pre-service teachers to express their beliefs by 

opening them up for discussion them. Hearing and addressing these beliefs that can influence future 

behavior, can lead the holder to undergo a process of professional development.   

Finally, this study showed that the abilities of the novice teachers are no better than those of pre-

service teachers. Both groups demonstrated the same problems, suggesting that experience in practice 

does not rectify problems that originate in training. This forces the assessment course's lecturers to 

focus on how to connect between teaching objectives and mathematical tasks. Moreover, every 

teacher educator should encourage preservice teachers to express their presumptions or beliefs, since 

discussing them can eliminate wrong beliefs and lead to a professional development (James & Pedder, 

2006). 

The study’s limitations 

Although the number of participating in this research is small, and despite the fact that this research 

was restricted only to novice teachers, it is nevertheless important, since there is no study to date that 

examines the ability of teachers to identify a suitable teaching objective for a given mathematical 

task. Understanding the sources of the mismatching in selecting the appropriate teaching objective 

can help teacher educators focus their efforts on these problems, thus improving the training 

program’s changes of preventing them. 

The study looked at the participants' ability to connect between teaching objectives and mathematical 

tasks in three themes, limiting each theme to very few questions. These alone could not encompass 

all the aspects to be addressed in each theme. Further studies of this ability (and its opposite) should 

be done, preferably with every study conducting an in-depth examination (including interviews) of 

only one teaching theme.   
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Differences in the forms of content teachers are seen to offer over 

time: Identifying opportunities for teacher growth 

Nick Andrews 

University of Oxford, Department of Education, UK; nicholas.andrews@education.ox.ac.uk 

In this paper, I report on a study into differences in how teachers make content available to learners 

over a series of lessons on a topic of their choice. The study highlights significant differences in the 

forms of content made available between lesson series, with the taught topic being a critical factor. 

It also highlights significant differences between the forms of content made available during 

classwork and seatwork, but these differences are independent of both topic and teacher. The 

implications of these findings are discussed, including their potential along with the analytic research 

tool for prompting teacher knowledge growth.  

Keywords: Teacher knowledge, instructional design, teacher education. 

Introduction 

Findings of research into classroom practice have clear impact when they draw attention to features 

of a classroom situation that teachers might not otherwise attend. This impact can be particularly 

powerful if it affords deep psychological investment: if findings are presented in such a way as to 

promote an awareness of choice, if a reason to choose to act differently can be harnessed and if 

alternative actions can be imagined (Mason, 2002). In this paper I focus on an exploratory study of 

four cases of classroom practice over a series of lessons, and in particular differences in the 

manifestations of mathematical concepts offered by the teacher over time (a phrase I will define in 

due course) revealed through quantitative content analysis of teacher talk and classroom tasks. I draw 

on and adapt ideas from international comparative studies in order to inform the research design of 

this local study. I express the findings of my analysis as rhetorical questions about teacher knowledge 

that shapes decision making around the sequencing of content over time (a contributory code of the 

connection element of the Knowledge Quartet (Rowland, Huckstep & Thwaites, 2005)).  

Background to the study 

Differences in how content is made available to learners 

The notion of differences in teaching methods is well established through comparative research (e.g. 

Stigler & Hiebert, 1999). Such studies have tended to use the lesson as the unit of analysis, yet Clarke, 

Emanuelsson, Jablonka & Mok (2006) propose a series of lessons on a topic as more appropriate for 

the purposes of comparison. The nature of teaching can change over the course of a lesson series, 

with the decisions that teachers make in planning and teaching individual lessons shaping the way 

they act over time but also being shaped by the classroom situation of which the teacher is part. 

Furthermore, teachers make decisions at the lesson series level when preparing to teach a topic and 

so analysis at this grain size affords focusing attention on such decisions as well as alternative choices 

that might be available. What is not known is whether particular forms of content are emphasised, 

and whether this emphasis might differ between series of lessons taught in different contexts. 



Differences between lesson time given over to the teacher speaking with the whole class and to 

students engaged in seatwork have been researched (e.g. Stigler & Hiebert, 1999). Serrano (2012) 

underlines the emphasis placed on application/practice during seatwork in classrooms in USA and 

German, contrasting this with greater opportunities for exploration offered in Japanese classrooms. 

Hino’s (2006) within-country comparisons offer an account for this, highlighting how seatwork 

activity frequently precedes explicit presentation of the main content in lessons in Japan rather than 

following it. From these studies, some variation in the forms of mathematics being offered during 

seatwork in different contexts might be anticipated, but are these differences as significant as those 

between the forms of content emphasised when the teacher speaks with the whole class and those 

emphasised during seatwork? 

Case study design 

I purposefully designed the current study so that it involved four cases of teachers teaching a series 

of lessons on a topic of their choice, which allowed me to explore the role of the teacher and the topic. 

In Clarke et al.’s (2006) study the length of a lesson series was set by the researchers as ten lessons 

(or equivalent), but in the current study the length was determined by how long the teacher intended 

to work on the topic and was between three and five one-hour lessons. This ensured that the stretch 

of lessons included a start, middle and end, and I report elsewhere on the notable lesson-to-lesson 

differences that were revealed in each case (Andrews, 2016). Figure 1 shows the convenient selection 

of three experienced mathematics teachers (Ashley, Bernie and Courtney) from two local secondary 

schools (King’s Meadow School and Bishop Langton School) that generated the four case studies for 

my investigation.  

 

Figure 1: Tree diagram representation of the multiple case study design 

Figure 1 also shows that classes were from school years 9 to 11 in England (learners aged between 

13 and 16). Classes were set by prior attainment in both schools, with the average teacher-predicted 

attainment of learners in each class by the age of 16 being in line with the national average for 

mathematics. The broad topics that were the focus of each lesson series are also given in Figure 1. 

Thus cases involving Ashley and Bernie had the school context in common, the two cases involving 

Bernie had the teacher in common and the two cases involving linear equations had the age and 

predicted attainment of students and the topic in common. For convenience, I generally refer to cases 

through teacher and topic, but it is important to have in mind the significance of all four dimensions 

(teacher, class, school and topic) and not let this notation obscure the contribution of school and class 

to the classroom environment. 



Conceptualising forms of content offered by teachers 

In this section I clarify what I mean above by ‘forms of content offered’. Firstly, I view the teacher’s 

role within the classroom situation as making content available to learners, where by content I mean 

the material dealt with in teaching rather than its form; it is the content that brings teachers and 

learners together. In the context of mathematics teaching, content is made up of the mathematical 

phenomena that constitute a topic. But it is precisely the ‘form’ of content that I observe the teacher 

offering learners – rather than the content itself – that is of interest to me. The emphasis on “I observe” 

here is deliberate, since this is a researcher’s stance. In the current study I am not seeking what the 

teacher perceives as the form of content they are offering, for which I might use the term instantiation 

of a mathematical concept. Rather it is my own perception of what is being offered from the position 

of observer, for which I use the term manifestation of a mathematical concept. This also explains why 

more familiar terms used to describe learner activity such as ‘prepare, ‘apply’ and ‘explore’ (Serrano, 

2012) and Clarke et al.’s (2006) codes are inappropriate from a methodological perspective, since 

attending to what the teacher says and makes available as tasks allows for neither assertions regarding 

teacher intentions nor learner activity. 

The notion of manifestation requires further exemplification. When observing a teacher working with 

a class on linear equations, I might see the teacher offering diagrams of bars as in Figure 2, 

mathematical symbols such as “5x + 3 = 24 - 2x”, or word problems such as “My father is currently 

three times my age. In five years’ time the sum of our ages will be 50. How old am I now?” 

 

Figure 2: A problem featuring bars 

I see each as a manifestation of a linear equation, but each is a different manifestation. I classify the 

manifestation in Figure 2 as visual, the mathematical symbols as technical and the worded problem 

as functional (in the sense that a solution is likely to be arrived at through modelling the problem 

mathematically). There are parallels here with the three strands of Structure of a Topic: awareness, 

techniques and emotion (Mason & Johnston-Wilder, 2004). These three components of manifestation 

may be combined, for example if the teacher was observed offering the worded problem above and 

heard saying “Solve this by forming and solving an equation,” this would be both a functional and a 

technical manifestation of a linear equation. In other cases, the spoken instruction may not be so 

explicit but nevertheless clearly implied in the context of the lesson. Either way, I would classify 

what is offered as functional-technical. Similarly manifestations might be classified as visual-

functional or visual-technical, or indeed visual-functional-technical. 

Although this classification of manifestations has been established here through focusing on linear 

equations, it is transferable to the other topics under consideration in this study. For example, when 

teaching geometric constructions, the teacher may seek to evoke an image of a perpendicular bisector 

of two fixed points as the locus of points equidistant from the fixed points (visual) or ask learners to 

construct a perpendicular bisector using a straight edge and compasses (technical). Or when teaching 



division in a given ratio, the teacher may offer a pile of coins for learners to experience sharing in a 

given ratio visually (visual) or pose a worded problem (functional) such as: “On starting up a 

company, Sasha invests £25000 and Tina £40000. At the end of the first year they make a profit of 

£19500 that they agree to share based on their original investment. How much does Sasha receive?” 

To add texture to these descriptions and to consider implications for learners, I cautiously associate 

visual, technical and functional manifestations with opportunities to focus learners’ attention on 

image having (Pirie & Kieren, 1989), procedural fluency (Kilpatrick, Swafford & Findell, 2001) and 

confident manipulation (Mason, 1980) respectively. I associate visual-functional, visual-technical 

and functional-technical manifestations with opportunities to shift the focus of learners’ attention; 

these are likely to be formative, and afford learners new ways in which to encounter a mathematical 

phenomenon working from what is already familiar.  

Focus of the investigation 

The multiple case studies provide broad instantiations of teachers teaching over time, so afford 

localised responses to my research questions: 

When comparing series of lessons, what differences are discernible in the forms of content that the 

teacher is observed offering (manifestations) over time? 

Within and across series of lessons, what differences are discernible in the forms of content that 

the teacher is observed offering (manifestations) when speaking with the whole class (classwork) 

and through tasks (seatwork)? 

In posing these questions, my intention is to explore features of classroom situations that may go 

beyond those which teachers routinely attend. But if they are features to which teachers could attend, 

then this opens up opportunities to act differently. 

Method of analysis 

The transcript of the teacher’s voice, field notes, screen-shots of information displayed on boards, 

hand-outs, worksheets and text books were all used in order to infer how the teacher made content 

available to learners. In the process of coding, I considered the mathematics-related utterances made 

by the teacher when speaking with the whole class during classwork or with individuals during 

seatwork, which together I refer to as teacher-talk. I also considered whether learners were working 

on a particular task, which might have been made available for example through a worksheet or 

spoken instructions from the teacher. I refer to such tasks as given-tasks. 

Each lesson was parsed into half-minute intervals, which were then coded for manifestation taking 

account of the teacher-talk and given-task present during the interval. Selecting half-minute intervals 

as the smallest unit of analysis afforded reliable and manageable coding while still allowing sufficient 

sensitivity to discern small differences in how content was made available. Each interval was coded 

with a Barycentric co-ordinate (x, y, z), where x, y and z represent the relative emphasis between 

visual, functional and technical manifestations respectively observed during the thirty seconds with 

x + y + z = 1 (c.f. Swan, 2006). For example, an interval featuring only technical manifestation was 

coded (0, 0, 1) and an interval featuring visual-functional manifestation was coded (½, ½, 0). Coding 

was based on presence of a manifestation in the half-minute interval rather than the proportion of 

time, and given-task and teacher-talk were weighted equally. Further, if in a particular half-minute 



interval of seatwork the given-task was classified as visual-functional but the teacher made an brief 

articulation that was classified as technical, the overall interval would be coded (¼, ¼, ½), being the 

mean point of (½, ½, 0) and (0, 0, 1). More details of the coding rules and approach to analysis, 

including the strengths and limitations of this approach, are provided in Andrews (2016). 

The series centre for manifestation for each case was calculated through finding the mean point over 

the whole lesson series. Further analysis allowed for the calculation of series centres for each case for 

classwork and for seatwork. Differences between lessons were explored by treating the x, y and z 

values as separate variables. Each variable is ordinal-valued, and as such only non-parametric 

approaches to statistical analysis are appropriate. The Wilcoxon rank-sum test (Wilcoxon, 1945) was 

selected for this purpose. It was found that this test was sufficiently sensitive in order to detect even 

small difference between cases, and so I use the term materially different to describe the situation 

where the effect size (r, calculated from the Wilcoxon test statistic) of case comparison on one of the 

variables satisfies r > 0.3. 

The use of Barycentric co-ordinates as a method of coding half-minute intervals afforded representing 

series centres as points within an equilateral triangle. This may evoke a sense of the series centre 

representing a point of  ‘electromagnetic attraction’ to three differently charged ‘poles’ – visual, 

functional, technical – positioned at the vertices of the triangle. With this imagery in mind, I refer to 

the triangle as the tri-polar space for manifestation.  

Results 

Comparing series centres for manifestation 

The series centres for manifestation highlighted differences in how content was manifested across 

each of the four lesson series. Figure 4 presents the four series centres in the tri-polar space for 

manifestation, indicating clear differences between some of the cases. 

 

Figure 4: The four series centres plotted in the tri-polar space for manifestation 

The three components of manifestation were most evenly stressed in Ashley’s series on geometric 

construction. Functional and particularly technical components were stressed in Bernie’s series on 

sharing in a given ratio, while visual and particularly technical components were stressed in the two 

series on solving linear equations (Bernie and Courtney). Table 1 quantifies the between-case 

differences seen in Figure 4 by presenting the effect sizes on the three components of manifestation 

when comparing lesson series. 

  



 Effect size on component of manifestation 

Case comparison 

(Topic; half-minute intervals) 
Visual Functional Technical 

Ashley (Constructions; n = 488) to 

Bernie (Ratio; n = 383) 
-0.45 0.03 0.38 

Ashley (Constructions; n = 488) to 

Bernie (Equations; n = 289) 
-0.10 -0.57 0.57 

Ashley (Constructions; n = 488) to 

Courtney (Equations; n = 416) 
-0.11 -0.46 0.50 

Bernie (Ratio; n = 383) to 

Bernie (Equations; n = 289) 
0.42 -0.65 0.30 

Bernie (Ratio; n = 383) to Courtney 

(Equations; n = 416) 
0.41 -0.51 0.17 

Bernie (Equations; n = 289) to 

Courtney (Equations; n = 416) 
-0.01 0.20 -0.14 

N.B. Material differences are highlighted in bold. 

Table 1: Quantification of between-case differences in the components of manifestation 

The series of lessons taught by Ashley on constructions and Bernie on ratio were marked out as 

materially different to the two series on equations, and different to each other. However, the analysis 

did not highlight significant differences between the two series on equations. This led me to infer that 

within this study the topic had an impact on the forms of content the teacher offered. 

Comparing classwork and seatwork 

Combining the four cases, there were differences in the forms of content the teachers were observed 

offering during classwork and seatwork (see Figure 5). On average, the visual component was 

stressed more during classwork whereas the functional component was stressed more during 

seatwork, which aligns with Serrano’s (2012) findings about American and German classrooms.  

 

Figure 5: The across-case centres for classwork and seatwork plotted in the tri-polar space 

Focusing now on each case, the difference in emphasis of the visual component between classwork 

and seatwork was statistically significant, although the difference was only material in Courtney’s 

lesson series on equations (see Table 2). Greater emphasis on the visual component during classwork 

was observed regardless of the particular teacher, topic or class. 



 Effect size on component of manifestation 

Case 

(Classwork intervals, seatwork intervals) 
Visual Functional Technical 

Ashley (Constructions; c = 77, s = 411) -0.21 0.26 -0.02 

Bernie (Ratio; c = 82, s = 301) -0.17 0.38 -0.24 

Bernie (Equations; c = 81, s = 208)  -0.18 -0.06 0.19 

Courtney (Equations; c = 146, s = 270) -0.34 0.21 0.17 

N.B. Material differences are highlighted in bold. 

Table 2: Comparison of classwork to seatwork across the four cases based on the relative stressing of 

the three components of the manifestation 

Only in Bernie’s series on equations was there no statistically significant difference in the functional 

component between classwork and seatwork. Yet the only difference in the functional component 

between classwork and seatwork to be material was in Bernie’s series on ratio (see Table 2), 

suggesting that the teacher was not a critical factor here but that the class may be. 

Discussion 

This investigation has highlighted differences in the teaching of topics over a series of lessons. 

Material differences were discernible in the forms of content that the teachers were observed offering 

over time. In the current study, the topic was a critical factor and this contrasts with Clarke et al.’s 

(2006) study since although their analysis was of a series of lessons on a topic, the topic itself was 

not foregrounded in their findings. My findings raise the question of why the forms of content Bernie 

offered in a lesson series were so different when teaching ratio compared to equations. In particular, 

the findings lead me to ask whether opportunities associated with functional manifestations of 

equations were considered or not and, if they were, why these manifestation choices were not enacted.  

Differences in the forms of mathematical content offered during classwork and seatwork gets to the 

heart of the purpose of these two types of engagement from a didactic perspective. From other 

perspectives, classwork may have a specific purpose such as offering learners extrinsic motivation to 

engage in mathematical activity. Yet this study prompts the question: what forms of content is it 

necessary for the teacher to make available through classwork rather than seatwork, if any? The small 

sample in this study raised the conjecture that making available visual manifestation might be better 

served by classwork rather than seatwork, and that the class – rather than the topic – being taught 

would shape the extent of this. 

In the introduction, I spoke of how the impact of findings “might be particularly powerful if there is 

an awareness of choice, if a reason to choose to act differently can be harnessed and if alternative 

actions can be imagined.” The above prompts along with the tri-polar space for manifestation offer 

opportunity for such activity, for the interior triangular space suggests the possibility of choice and 

invites actions associated with particular positions within it to be imagined. This activity in turn 

invites new research opportunities to explore teachers’ knowledge, attitudes and beliefs.  
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Prospective teachers plan a short mathematical discussion on comparing fractions by writing 

lesson plays. We analyse how their mathematical knowledge for teaching surfaces in their written 

scripts, using three dimensions of the Knowledge Quartet: foundation, transformation and 

connection. Our findings give insight into the prospective teachers’ knowledge of fractions and 

comparison strategies, their perspectives on mathematics and mathematics teaching, and insight 

into how they transform their knowledge to make it accessible to middle school students. 

Keywords: Mathematics knowledge for teaching, representations of teaching, classroom discussion, 

lesson planning, rational number sense. 

Introduction 

Several recent studies call for a practice-based approach to research on teacher education (e.g. Ball 

& Cohen, 1999; Grossman & McDonald, 2008). An integral part of teachers’ work is planning for 

teaching. Recently, several researchers have advocated writing lesson plays as a means of learning 

how to plan for instruction (see Zazkis, Liljedahl, & Sinclair, 2009). Lesson plays are imagined 

mathematical discussions written verbatim. Zazkis et al. (2009) argue that lesson plays can give a 

“window” for researchers to investigate mathematical knowledge for teaching. We have collected 

and analysed prospective teachers’ (PTs’) planning documents for a practice assignment in their 

school placement. The assignment was to write a lesson play on fractions. Several studies show that 

many PTs struggle to understand fractions (Newton, 2008; Ma, 1999). Siegler et al. (2010) 

recommend, “[p]rofessional development programs should place a high priority on improving 

teachers’ understanding of fractions and of how to teach them”. With this in mind, our research 

focuses on the following question: How does PTs’ mathematical knowledge for teaching surface in 

their lesson plays on fraction comparison? 

Lesson plays 

This study reports our efforts to develop practice assignments in our teacher education courses with 

respect to the notion of high-leverage practices. Ball, Sleep, Boerst, and Bass (2009) define “high-

leverage practices” to be those that, when done well, are likely to lead to improved student learning. 

High-leverage practices are practices which novice teachers need to learn to do, and from which 

they will learn more about teaching (Lampert, 2009). Further, a high-leverage practice is such that 

novices can begin to master it (Grossman, Hammerness, & McDonald, 2009). Lampert, Beasley, 

Ghousseini, Kazemi, and Franke (2010) give several instructional activities that could be part of 

high-leverage practices in mathematics, which can be realised in a relatively short time, typically 

10-15 minutes, through classroom discussions. The PTs used coursework literature to analyse and 

discuss a series of videos and transcripts of classroom discussions concerning computational 

strategies. We asked the PTs to plan a similar short mathematical discussion with a group of middle 



school students, age 9 to 13. This was part of a practice assignment, intended to be implemented 

during their school placement towards the end of the term. The PTs were asked to plan for the 

mathematical discussion by writing a lesson play. 

Lesson plays, introduced by Zazkis et al. (2009), are proposed as a way to plan teaching by writing a 

script for (part of) a lesson. An envisaged interaction between a teacher and a group of students is 

given verbatim, as an alternative for the traditional lesson plan. Zazkis et al. (2009) argue that lesson 

plays can give an opportunity for in-depth discussions of crucial aspects of mathematics teaching 

before the lesson, while such discussions can only take place after the lesson if the lesson is planned 

using a traditional lesson plan. As such, lesson plays are not affected by John’s (2006) claim that 

traditional lesson plans do not give insight into “the substance of the particular activity” (p. 487). 

Zazkis et al. (2009) typically give their PTs a prompt representing a mathematical error or 

misinterpretation, and ask the PTs to write the script of a discussion, which resolves the prompt.  

We asked our PTs to plan all aspects of the discussion, including formulating a mathematical aim 

for the discussion and a task, or a sequence of tasks, to achieve this aim. Our requirements for the 

discussion were that the mathematical topic was fractions, and that the aim should be to discuss 

some calculation or reasoning strategy on fractions. Furthermore, the script should include 

argumentation and some type of generalisation of concepts and/or strategies. Generalisation, 

argumentation and reasoning was a major focus in the coursework. The duration of the discussion 

should be 10-15 minutes.  

Mathematical knowledge for teaching 

We are interested in how PTs’ mathematical knowledge for teaching surfaces in their lesson plays, 

and we use the Knowledge Quartet (KQ) (Rowland, Huckstep,  & Thwaites, 2005) as a framework 

for our analysis. The KQ consists of four dimensions, three of them resting on the first, named 

Foundation. Foundation concerns the teacher’s or PT’s knowledge of mathematics and mathematics 

teaching as acquired in their education. It underpins a teacher’s ability to make rational, reasoned 

choices and decisions about instruction based on knowledge of mathematics and mathematics 

pedagogy. The second dimension of the KQ, Transformation, is about how the teacher transforms 

her own subject matter knowledge of mathematics into forms which enable others to learn it. Such 

transformation is informed by the teacher’s choice of examples and representations and how these 

support learning of the intended mathematical topic. Connection is about the choices a teacher 

makes in order to ensure the consistency of planning and teaching a topic or concept through a 

lesson or lessons. As such it concerns anticipation of what students will find problematic, and 

decisions about sequencing. Crucial is the teacher’s understanding of connections between 

mathematical concepts and between concepts and procedures as well as anticipation of complexity 

when planning and teaching a topic. Contingency concerns a teacher’s responses to events that were 

not anticipated or planned for. Since we are considering planning for teaching this dimension will 

not be relevant to our analysis. 

As the lesson plays analysed concern comparing fractions, it is useful to clarify the implications this 

has for the foundation dimension of the KQ. When describing number sense, researchers state that it 

manifests in flexible mental computation, understanding number magnitude, making judgements 

about calculations, using benchmarks, and having an inclination to use and develop understanding 



of numbers and operations (McIntosh, Reys, & Reys, 1992; Sowder, 1992). Researchers have 

identified several strategies for comparing fractions based on number sense (see Yang, 2007). The 

parts strategy can be used when comparing fractions with the same numerator or denominator. The 

benchmark strategy refers to comparing two fractions to some well-known third fraction, typically  

or . When using residual thinking one builds up the fractions to 1. There are also “standard” ways 

of comparing fractions, which do not overtly depend on number sense, such as finding a common 

denominator or converting to decimals. Since the task for the PTs was to write a lesson play about 

reasoning with fractions, we expected the planned discussions to contain more than performing an 

algorithm. Using visual models of fractions can be a legitimate strategy, but researchers also warn 

about the limitations of relying on a visual strategy alone (Petit, Laird, Mardsen, & Ebby, 2015; 

Lamon, 2012). Thus, we expected strategies beyond visual strategies in the planned discussions.  

Method 

The participants in the study were PTs following a 4-year teacher education programme, for age 6-

13, at a university in Norway. The data were collected from their responses to a coursework 

assignment given during their first mathematics education module, in their first year of study. Of the 

178 PTs in this cohort, 32 had chosen tasks on comparing fractions for their written classroom 

discussion. These 32 scripts are the data analysed in this paper, in particular they were chosen for 

analysis because fraction comparison has good potential for reasoning based on number sense 

(Yang, 2007).  The excerpts presented in this paper are chosen to exemplify general trends 

identified in the 32 lesson plays.  

All four authors conducted the analysis. Together, we first analysed in detail two lesson plays, using 

the descriptions of the dimensions from the KQ in our analysis of the two scripts. We then 

individually analysed the rest of the lesson plays looking for occurrences of similar and contrasting 

forms of mathematical teacher knowledge related to the KQ. After this independent analysis, we 

compared similarities and differences in our analyses, and agreed on an interpretation of different 

aspects of the lesson plays, using notions included in the KQ framework. 

Analysis 

Of the 32 scripts, 6 used no strategies based on number sense, instead relying on visual “parts of 

shapes” strategies, or on algorithms such as finding a common denominator or converting to 

decimal numbers. In the remaining 26 scripts, the PTs used a number sense-based strategy at least 

once. 9 PTs used benchmarking, 13 used parts and 17 used residual thinking. In the following, we 

analyse some examples from the scripts in light of the mathematical content. 

Anne was one of the PTs who based most of the imagined discussion on number sense-based 

strategies. Her stated goal of the discussion is to build understanding of the strategies of 

benchmarking and residual thinking. She gives two tasks designed to encourage the students to 



utilise these strategies, and we quote here1 two excerpts from the imagined discussion between 

Anne’s teacher and her students while discussing the sorting of  and  by magnitude:  

Ola: Yes, at least you see that is the same as the half of something, that was where I 

started. 

Teacher:  OK, so you believe that it is one half. But how can that help us? 

Ola: Well, since it is one half, we also see that  is less than one half. 

Teacher:  Per, can you try to elaborate Ola’s thinking? 

Per:   is sort of lacking 3 parts to become one half. Because 5 parts is half of 10 parts. 

So then  is less than  

Teacher:  Right, do the rest of you agree? Yes. OK, what do we do next? 

We see that Anne, in Ola’s words, uses one half as a benchmark when comparing   and . We note 

that Ola’s explanation is incomplete; it does not state why  is less than one half. The PT seems to 

be aware of this, as she asks Per to elaborate Ola’s thinking, from whom she receives the completed 

reasoning. In the next sample from Anne’s script, a residual argument is pursued:  

Teacher:  All right, so now we know that  is the smallest, and then comes , but which is 

the biggest of  and ? 

Per:  Since  is smaller than  then  is the most 

Mia:  But why is that when  is a lot bigger than ? 

Teacher:  Good question Mia, does anyone want to explain? 

Ola: When we looked at  and  we were looking at how much was missing to fill one 

whole. The one that miss the biggest part is then missing the most, and therefore 

that fraction is the smallest. Because  is only missing a small  to become one 

whole. 

Mia:  Oh yes, now I understand, because we are looking at what is missing. 

Anne does not acknowledge any students’ claim without a justification. Through the whole of 

Anne’s script, the teacher is encouraging the students to utilise their number sense when reasoning 

about the tasks. Similar approaches are also apparent in the rest of the 26 scripts, but not always as 

comprehensive as in Anne’s case. One typical feature is that even though a mathematically correct 

conclusion is reached, there is no valid argument given by the students, and the PTs tend to accept 

this without comment. This is evident in Alice’s script, when the students are comparing  and . 

                                                 

1 The original scripts were written in Norwegian, with translation to English by the authors of this paper. In the 

translation we have retained linguistic inaccuracies and imprecise use of terms, as in the original Norwegian. 



Fredrik:  Yes, me and my group decided that  is the biggest. I think that 3 is closer to 4, 

than 4 is to 8. 

Teacher:  That was good thinking. [Proceeds with a different task] 

Our analysis shows a general tendency in the scripts that strategies based on number sense have 

some kind of justification, while strategies based on algorithms and rules are more likely accepted 

without justification. The above excerpt from Alice’s script is one of few exceptions, where she 

gives a correct conclusion with an attempted justification that is not valid as an argument. Judging 

by the teacher’s response, it seems that Alice regards Fredrik’s argument as valid.  

The following excerpt from Christine’s script shows another problem. 

Sindre:   must be the biggest, because that fraction is only missing 3 parts to become one 

whole, while  is missing 5 parts to become one whole. 

Teacher:  Yes, that’s right Sindre. Did the rest of you understand what Sindre was thinking? 

Nina, can you explain what Sindre meant? 

Nina:  Yes, you can also say that  misses one half to be whole, while  lacks more than 

half to be whole, since it is lacking 5, and half of  is . 

Teacher:  That was a good explanation, Nina. Did the rest of you also understand what Nina 

meant? (The class agrees.)  

In this excerpt, we notice that Sindre’s argument is wrong even though the conclusion is correct. 

Christine (in the role of the teacher in the discussion) does not comment upon this, instead simply 

accepting Sindre’s argument. Interestingly, Nina subsequently gives a valid residual argument, but 

Christine does not draw attention to the difference in the two arguments in her script. Our analysis 

shows that similar arguments that “work” on the fractions in question, but where a counterexample 

would prove the argument not generally valid, are typical for many of the lesson plays. 

Another aspect of our findings was the PTs’ choice of tasks used in the discussions. Returning to 

Anne’s script, she uses only two tasks. They both underpin the strategy in focus, and have a natural 

progression in complexity: The fractions involved seem to be carefully chosen to make her target 

strategy suitable, and residual thinking is further highlighted by Anne asking the question “Which of 

the fractions are missing the most to become one whole?” at the start of the discussion. In contrast 

to this, Molly’s choice of tasks and the sequencing chosen, seems less appropriate: Compare  and 

;   and ;   and ;   and ; and  and . Molly does not state explicitly a mathematical goal for the 

planned discussion, and her imagined discussion covers several ideas in a brief way. Moreover, the 

progression of difficulty in the sequence of tasks does not seem to be well thought through: in the 

lesson script on the first tasks, Molly’s fictive students use benchmarking with one half, indicating 

that one half is a well-known concept for them. To then proceed with the final three tasks focusing 

on equivalent fractions to , seems exaggerated.  

Discussion 

We now relate the findings presented in the analysis to the dimensions of the Knowledge Quartet.  



Foundation 

For the foundation dimension, the most visible aspects are the PTs’ mathematical knowledge of 

fractions and comparison strategies, as well as their beliefs about mathematics itself, and about 

mathematics teaching. In general, the PTs try to use strategies relying on number sense to compare 

fractions. This could indicate that the PTs value developing understanding rather than focusing on 

an algorithmic approach. The strategies attempted in the scripts are not always followed through in a 

mathematically valid argument, and some of the PTs fail to recognise the difference between valid 

and invalid arguments. Christine’s script is an example of this. 

Another finding is that very few scripts contain any attempt at discussing the generality of the 

strategies used. This indicates that the PTs’ beliefs about mathematics might not include this as an 

important aspect of doing mathematics. Instead, the PTs seem to be satisfied as soon as the problem 

at hand is solved, as in Christine’s script when neither Sindre’s or Nina’s arguments are investigated 

further from a general point of view. Recall that the task given to the PTs particularly required them 

to emphasise the development of their students’ understanding and reasoning.  

Transformation 

The PTs’ scripts afford good insight into their choice of examples to elicit an idea. With very few 

exceptions, the tasks chosen by the PTs are suitable comparison tasks where it is clear that there is 

at least one number sense-based strategy that could be applied. 

We proceed to consider the PTs’ use of questions. In the context of PTs writing an imagined 

discussion, we regard this as a form of teacher demonstration, and thus consider it a part of 

transformation. We find in most scripts a use of certain techniques and types of questions known 

from their coursework literature on orchestrating mathematical discussions. For example, in Anne’s 

script, the teacher’s questions structure what her students have discovered and then seek to develop 

their ideas further. When Anne’s teacher asks Per to elaborate Ola’s thinking, she succeeds in 

bringing to light an argument. In other scripts, the PTs seem to emphasise the use of discussion 

techniques in itself to such an extent that it suppresses the attention on connecting the mathematical 

ideas. This can be seen e.g. in the excerpt from Christine’s script above, where the teacher asks a 

student to repeat another student’s reasoning without connecting the different explanations. 

Sometimes the PTs fail to notice when a clarifying question is needed. This can be seen in Alice’s 

script above, where Fredrik’s attempted justification is an invalid argument in general, and yet the 

teacher accepts it and proceeds without further enquiry. 

Connection 

The sequencing of tasks, how one task should connect to the previous task, and the anticipation of 

what students will find problematic, is part of the connection dimension. We find that in most 

scripts, the sequencing of tasks is appropriate. However, we find examples of situations where the 

PTs do not seem to anticipate the complexity of the sequence of tasks. An example is Molly’s script 

as discussed above. Other scripts seem to have too many tasks, given the time allotted. In these 

scripts the discussion moves forward smoothly with students giving the desired response quickly 

and effortlessly. This may indicate that these PTs do not anticipate complexity in the discussion and 

that the conceptual challenge for the students is underestimated. Thus, these discussions take more 

the form of numerous repetitions of the same procedure, which relates to the foundation dimension 



of the KQ and perspectives on how mathematics is learned: These PTs seem to emphasize 

procedural repetition as an important aspect of learning mathematics, perhaps on behalf of 

unpacking the mathematics of the procedures. However, some scripts include deliberate mistakes 

and misconceptions made by the students, which are then discussed. We see this as an anticipation 

of complexity. 

Conclusions 

Following the discussion above, we claim that lesson plays encourage the PTs to use and develop 

several aspects of their mathematical knowledge for teaching. For the foundation dimension, we 

claim that the insight we get from the scripts, is more than what we would get from simply 

assigning the PTs fraction comparison problems for them to solve. We note that several PTs write 

discussions including both valid and invalid arguments and both are accepted without further 

probing. For instance, Christine knows what a valid argument for comparing fractions looks like, 

but at the same time she accepts an invalid one.  Such inconsistency in the PTs’ thinking might 

become more visible when they plan teaching by imagining a detailed mathematical discussion.  

We also claim that our findings show the importance of emphasis in mathematics teacher education 

on generalisation and argumentation, and how classroom discussions concerning generalisations 

could play out. Our PTs were asked to have those aspects in mind when writing their lesson plays, 

and yet it is rarely found in the scripts. How to develop the PTs’ ability to emphasise this aspect 

more needs to be studied further. Managing classroom discussions is a complicated task for novice 

teachers. However, due to its high leverage on students’ development of mathematical 

understanding it is a critical factor in mathematics teaching, and thus in teacher education.  
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The purpose of the current study is to provide findings of a follow-up study on a content course 

developed to improve specialized content knowledge of high school teachers. Elif was chosen to be 

interviewed among the participants of the content course according to certain criteria of sampling. 

Elif graduated within a year of taking the course and have been teaching in high school since. The 

individual semi-structured interview on her perceptions of how the content course influenced her 

teaching was conducted. The interview was transcribed and coded. Two themes emerged about the 

influence of the content course; using same examples or proofs, readiness to implement tasks for 

teaching. The findings show the participant’s self-report of how she transformed her SCK experiences 

from university to her instruction. Furthermore, her answers revealed the relationship between SCK 

and PCK, how this unique knowledge of mathematics (SCK) forming basis for PCK.          

Keywords: Specialized content knowledge, mathematical knowledge for teaching, novice teachers, 

content course, secondary mathematics teaching. 

Introduction 

Teacher knowledge has been in central position for teacher quality. Not only Shulman’s (1986)  work 

and emphasis on pedagogical content knowledge (PCK) but also further studies (e.g. Ball and her 

colleagues) on understanding nature of knowledge needed for effective mathematics teaching have 

been shedding light on role of teacher knowledge. In addition to studies to develop different models 

on teacher knowledge, there are many researches on understanding or improving teacher knowledge. 

However, most of those studies investigate either preservice teacher education (content or pedagogy 

courses) or in-service teachers (professional development). In this study the authors will share 

findings from a case study of a novice secondary school mathematics teacher’s perception on 

influence of taking a content course focusing on Specialized Content Knowledge (Aslan-Tutak and 

Ertas, 2013) on her teaching. Authors will shortly review literature on mathematics teacher 

knowledge that guides this research.    

 Mathematical Knowledge for Teaching   

 The theoretical framework of this study is mathematical knowledge for teaching (MKT) model 

developed by Ball et al. (2008). According to MKT model, there are six sub-domains of teachers’ 

knowledge for mathematics teaching. Three sub-domains of subject matter knowledge are Common 

Content Knowledge, Specialized Content Knowledge, Horizon Content Knowledge, and sub-

domains of pedagogical content knowledge are Knowledge of Content and Students, Knowledge of 

Content and Teaching Curriculum Knowledge. Since this model is very well known, in literature 

review part of this paper, authors will focus on only Specialized Content Knowledge (SCK). Further 

information about these domains can be read from Ball et al. (2008).   



SCK is a type of subject matter knowledge; it is defined as mathematics knowledge which is unique 

to teaching. Indeed, it is about knowledge about mathematics, not teaching, but for teaching. Ball and 

her colleagues stated the role of SCK as follows:  

What caught us by surprise, however, was how much special mathematical knowledge was 

required, even in many everyday tasks of teaching— assigning student work, listening to student 

talk, grading or commenting on student work. Despite the fact that these tasks are done with and 

for students, close analysis revealed how intensively mathematical the tasks were. (Ball et al., 

2008, p.398) 

Due to nature of SCK it may be omitted in university mathematics courses and also in pedagogy 

courses (Ball, et al., 2008). Especially in secondary school teacher education, mathematics courses 

are advanced and require teachers to study mathematics from a different perspective than teaching. 

Since MKT model was developed based on a study of elementary school teachers, it was necessary 

to revise definition of SCK for high school preservice teachers. In an attempt to improve high school 

preservice mathematics teachers the first author developed a mathematics content course. The course 

content was developed by addressing not only MKT but also Advanced Mathematical Knowledge 

model of Zaskis and Leikin (2010), Advanced Mathematics for Secondary School Mathematics 

Teachers by Usiskin and his colleagues (2003), and SCK task development perspective of Suzuka 

and her colleagues (2009). Usiskin and his colleagues emphasized three types of mathematics 

experiences for secondary school mathematics teachers; concept analysis, problem analysis and 

mathematical connections. Lastly, the content course practices were developed to allow preservice 

teachers to unpack their already existing knowledge and to develop a flexible understanding of 

concepts (Suzuka et al., 2009).  How these models and perspectives were merged together to form a 

content course can be read in detail in author’s previous paper for CERME 8 (Aslan-Tutak & Ertas, 

2013).  

Since our research is a follow up study, it is needed to mention about aforesaid content course’s 

ingredients. The mathematical tasks which were used during the course can be categorized under four 

approaches; unpacking concept definitions, applications and modeling, procedures and 

generalizations, and historical perspective of concepts (Aslan-Tutak & Ertas, 2013).  

Unpacking concept definitions practice was identified by participants as eye-opening experience.  

One example is the activity focusing on geometric definition of imaginary number “i”.  Almost all of 

the students stated that they had seen geometric representation of “i” for the first time and they were 

really surprised. The instruction which focused on geometric representation of “i” was discussed in 

Aslan-Tutak and Ertas (2013) as;     

In order to explore number “i”, instruction started with discussion on the roots of an equation 

as its constant terms changes (Usiskin, et al., 2003). Then graphs of the equations were plotted 

on Cartesian plane (geometric representation of the equations) and their roots showed on a 

number line (geometric representation of real numbers). The number line was sufficient for the 

roots of first two equations but participants realized that they could not show the roots of third 

equation on number line. Then, the definition of the imaginary number i was discussed by 

rotation of 90o perspective (Lakoff & Núñez, 2000; Trudgian, 2009; and Usiskin et al., 2003) 

which provides a geometrical understanding of the imaginary number.  



Second categorization of the course was applications and modeling. In the content course, there were 

some modeling problems for the topic of functions and also alternative definition of function. An 

example of modeling activity was about oil spill and its cleaning procedures. At the beginning of the 

problem there were some discussion about oil spill incidents in Gulf of Mexico and France and its 

effect on environment. After discussion part, the students were taken the problem as: If there was 

8000 gallon oil due to a spill, and the crew can clean only 80% of oil for a week. So how much oil 

would remain after a week? And how long will it take to clean until there is 10 gallon of oil is left? 

Erbas et al. (2014) discussed two approaches in use of modeling: as a means of teaching mathematics 

and modeling as an aim of teaching mathematics. In this current study, the authors used modeling in 

content course as a means of teaching mathematics. This practice was aimed to introduce preservice 

teachers to use mathematical modeling in instruction while examining definition of functions. In 

addition to modeling, history of mathematics was used for examining functions. For example, history 

of logarithm and Napier’s problem were studied. The historical approach was not limited to functions 

but almost all the topics, such as history of irrational numbers.  

Participants of the content course stated that, the proof of equality 0,9999…=1 was also one of the 

surprising tasks of the course. Seven different approaches to show it were posed to preservice teachers 

and then the relationship between the aforesaid proof and converting infinitely repeating decimals to 

fraction without any formula were established. This mathematical task was used with preservice 

teachers in different settings. Conner (2013) used this task to promote argumentation with preservice 

teachers. She stated that “Engaging prospective secondary teachers in mathematical argumentation is 

important so that they can learn to engage their own students in creating and critiquing arguments.” 

(p. 172).      

The second author of this current paper was a student at the time of the study. He graduated from the 

program and has been teaching for three years. The purpose of the content course was to improve 

participants’ SCK which can be used during teaching. Therefore, the authors examined perceptions 

of participants, actively teaching in high schools, about how their learning from the undergraduate 

course transferred into their teaching.  

Methods  

The two-year long study, SCK development of high school teachers, was conducted at a mid-size, 

western public university in Turkey. The content course was offered in 2011 fall semester and 2012 

fall semester. Based on students scores on national central university entrance exam, this high school 

mathematics teaching program had the highest rank among all of the mathematics education programs 

in Turkey. Students of this program had to take advanced level mathematics courses such as calculus, 

linear algebra, and complex analysis. Seventy percent of the courses are mathematics courses. Pre-

service teachers also took general pedagogy courses, mathematics teaching courses and school 

practicum courses. At the time of this SCK project, there was no content course in mathematics 

teacher education program. The content course that developed based on this project was therefore 

elective for students. There were 31 students who enrolled to this course in 2012 fall semester.  

The sample of the current study was determined based on three criteria; graduation from the program 

and starting teaching in spring 2013, teaching in high school, and living in Istanbul. Some of the 

students did not pursue career in teaching but other professions such as economics. Also, not all 



students graduated in 2013. This condition was necessary in order to allow minimum time between 

taking the course and starting teaching. The second condition of teaching in high school was used 

because the topics of the content course were high school topics. The topics of this course are not 

covered in middle school. In order to investigate how novice teachers’ transfer their SCK learning 

into their practices, it was important to choose participants according to grade levels they teach. The 

last condition of living in Istanbul was for convenience, in order to be able to conduct interview easily. 

There are some novice teachers who fulfill the first two conditions but they were living in other cities. 

Considering all of these conditions, there are only two novice teachers. Since one of them is the 

second author of this paper, the only other novice teacher (Elif, pseudonym name) was the sample 

for this study.  

Indeed, all these conditions are also helping researchers to establish trustworthiness of the study. The 

conditions allow clear examination of transferability of the study. The findings of the study can be 

transferred into settings where preservice teachers study mathematics content for SCK in context of 

teaching and start teaching afterwards. Furthermore, in order to improve trustworthiness of the study 

researchers did member-checking with the participant. In addition to asking Elif to confirm 

interviewer’s interpretations during the interview, later researchers also contacted her to discuss about 

findings of this case study. The member-checking also aided for the conformability of the study. For 

conformability, after the completion of analysis done by the first author, the second author went 

through the analysis. After this two-stage of analysis, Elif’s member-checking was helpful to finalize 

findings. Elif approved most of the findings and she improved what we called “completeness”. This 

phenomenon of “completeness” is discussed in findings section.   

Yin (2013) explained the rationale of using case study research methodology as explaining “how” or 

“why” questions in-dept. The purpose of this study is to investigate how a novice high school 

mathematics teacher uses her SCK experiences in the content course. How does this course influence 

her teaching practices? Since teaching is a complex practice, it was necessary to examine this research 

question through case study methodology. The authors conducted a semi-structured interview with 

the participant, Elif. The interview questions were in two parts (i) background questions (e.g. years 

of teaching), (ii) her experiences in the course as a student and how these experiences influence her 

teaching.  

Elif’s interview was first transcribed and the open-coded. After open-coding, Elif’s answers on how 

the SCK tasks in the course influenced her teaching practice were emerged into two themes; (i) using 

same example, proof in the classroom, (ii) readiness for implementing tasks of teaching 

(understanding student misconceptions, answering student questions, material development).    

Findings  

The first part of the interview was to understand Elif’s teaching experiences and the environment that 

she has been working in. The school environment and possible mentor-mentee relationship is 

important in novice teachers development of practice. Elif took the content course in fall 2012 and 

graduated from university on June 2013. Right after her graduation, she started to work at a private 

high school, Baris Schools. Baris Schools is a school of a foundation which has more than 100 years 

background in education. Baris Schools have three K-12 campuses in Istanbul. In other words, Elif 

started to work at a well established school, a good opportunity for a novice teacher. After her first 



year, she transferred to another campus and has been teaching for two years at that campus. So, she 

has been teaching high school (9-12 grades) for three years. In the interview, she stated that her school 

is a good place to learn about teaching. Considering how she transferred what she learned in content 

course in her teaching, she stated that mathematical exploration in the course provided her 

“completeness” for the topics/concepts that were covered in the course.  

Elif: You can guide, direct the students to understand concept because you know that 

concept. 

Interviewer:  How do you direct them?  

Elif:  You construct the concept together, like i square to be -1, by asking questions, when 

you are complete for content. 

Especially as a novice teacher, she valued this feeling of completeness both when preparing 

instructional material and during the instruction.  

Elif: When teaching, for the concept, you can be prepared. Your explanations are 

complete, select materials and put them in order.  

According to Elif, completeness is a broad term which includes readiness to unexpected questions, 

constructing relationships between mathematical concepts and having deep understanding of the 

concepts. Her answers on how she transferred what she learned in the course to her teaching practice 

will be discussed in detail according to two themes that were emerged from data.  

Using same examples or proofs 

She stated that she kept all of the course materials, book, notebook, activities and presentations. She 

said, for some topics, she specifically used same examples. Her answers on what she kept same for 

her teaching reveal that she used alternative definitions (number i, mathematical functions), proofs 

(irrationality of √2, quadratic formula), and examples given for concepts (examples for exponential 

functions).  For example, she had been teaching complex numbers for two years, she stated that she 

always introduced number i by the same geometric definition from the content course. But she made 

a differentiation about using materials from the course. Elif stated that while she was teaching 

geometric definition of number i for whole class instruction, she used many proofs only when certain 

group of students asked for further mathematical knowledge. She said that she decided to use a 

definition/proof/example based on students’ mathematics level. In the following quote from the 

interview, she described how she used “deriving the quadratic formula” that she learned in the content 

course.  

Elif:  When I explain it (quadratic formula) to students, even the order of doing it was 

stuck in my mind because we teach it this way, we give formula at the end. Before 

that to make square formula…It make sense, you get quadratic formula from 

making square formula. Discussing 𝑏2 − 4𝑎𝑐 from the beginning, why there are 

two roots, or one root…Yes, it’s a terrible formula but we derive it together, of 

course with the ones who are good at math  



Readiness to implement tasks of teaching 

Content course, in other words SCK tasks that were done in the content course, aided Elif’s teaching 

during the instruction when answering student answers. In the individual interview, Elif discussed 

about using  her mathematical experiences from the content course. Many of Elif’s answers to 

interview questions were emerged to form the theme, readiness for teaching. However, her answers 

were similar to mathematical tasks for teaching addressed in MKT model (Ball et al., 2008). So, in 

order to put emphasize on Elif’s differentiation of demands of teaching, we merged her answers 

together and named them readiness for implementing tasks for teaching. As it was stated before in 

her feeling of completeness, she emphasized knowing what to prioritize in teaching a concept. She 

explained knowing and realizing the big idea in concepts several times. For example, while she was 

getting ready for teaching a concept, she knew what to emphasize in instruction even before thinking 

about how to teach it. 

Elif:  In complex numbers, maybe students didn’t get why square of i is -1, but I checked 

my notes (from content course ) in order to get 180 degree rotation thing in my mind 

so I can teach it. This was for me actually.     

The second code is building awareness, and directing her to find other resources. Elif didn’t have to 

use same examples from course in her instruction. Mathematical tasks provided some awareness to 

her and she did further research about certain concepts. She stated that based on mathematical tasks 

in the course, she searched and found other tasks/examples from Khan Academy or YouTube. The 

third code is directing students to understand concepts. Elif emphasized the role of mathematics that 

she learned in course to help her ask mathematical questions to guide student thinking. In a sense, 

this is related to first code, identifying and knowing big idea of a concept. Further to that identifying 

big ideas,  in this code, she is using that knowledge for directing student thinking.  

Elif:  In the class, maybe I didn’t use exactly same example but when there is a student 

question, if it is related to mathematical concept, I can just direct student to reach 

the concept. Because I learned that content.  

The fourth code under readiness to implement tasks of teaching is answering student questions and 

addressing their misconceptions. This code is related to previous one but Elif made explicit 

differentiation between directing students and answering students’ questions.   

Elif:  When someone asks, or what does quadratic formula mean, why do we need it. I 

know these. When there is a question like these I can answer them easily.   

Here, Elif focuses on her state of being confident in her mathematics knowledge when answering 

student questions. The last code, fifth one is related to her implementation of curriculum. As a novice 

teacher Elif stated using textbooks and course materials from other experienced teachers. However, 

she realized differences between her and experienced teachers in terms of implementing curriculum. 

In her first year, the national curriculum was revised extensively. One of the changes was how 

functions were introduced in 9th grade. In previous curriculum, first mathematical relations were 

introduced and then set theory approach of functions was given. In revised curriculum, functions 

should be taught through mathematical modeling without an introduction with mathematical 

relations.  The covariation definition gains importance in this new curriculum. Elif realized that 

knowing alternative definitions of function (including covariation) helped her to easily adapt her 



instruction to new curriculum. The SCK experiences of the content course provided basis for her use 

of the new curriculum. Furthermore, she was able to implement certain features of the curriculum 

while experienced teachers omitted.  

Elif:  Maybe, they don’t think it (proof of √2 irrationality) is important. Because other 

teachers also analyzed the new book, but I said we need to do this. They didn’t want 

to spent time on it. This actually give information about what do we need to give 

importance conceptually.  

Discussion  

The purpose of this study was to investigate perception of novice teachers on how they transfer what 

they had learned in the content course into their practices. Elif, a former student of this course and 

with 3 years of teaching experince, was volunteer to participate this follow up study. She stated that 

the course and mathematical explorations (SCK tasks) clearly helped her in teaching. The most 

expected influence would be using mathematics examples, tasks from the course. Usiskin and his 

colleagues (2003) discussed that “Often the more mathematics courses a teacher takes, the wider the 

gap between the mathematics the teacher studies and the mathematics the teacher teaches” (p. 86). 

So, based on findings from Elif’s case study, it should be explored further if a content course with 

SCK tasks provides mathematical explorations that preservice teachers will be teaching in their 

profession. Furthermore, these SCK tasks also allowed Elif to unpack her knowledge of mathematics 

(Suzuka et al., 2009) so she could identify mathematical big ideas and prioritize important concepts.     

It is important to note Elif’s feeling of readiness in her first three years of teaching. There are various 

demanding tasks of mathematics teaching such as selecting appropriate mathematical task, using 

proper representations, answering student questions, and leading student discussions. Elif mentioned 

five different tasks (themes emerged from data analysis) of teaching that influenced by her 

experiences in the content course. Her discussion of these tasks may be used to depict how SCK is 

taking role in classroom instruction. It can be used to discuss the link between SCK and PCK. For 

example, when Elif discussed role of knowing mathematics in directing students to understand 

concepts, she was actually talking about PCK. She explained and clearly discusses the role of 

specialized knowledge of a teacher. Without this type of mathematics knowledge, she will be lacking 

directing students. Similarly, in using curriculum materials, she uses her SCK knowledge.  

There are some limitations of this study such as sampling only novice teachers in Istanbul, and also 

relying on participant’s self report on how she transferred what she learned in the content course. 

Even though, interview questions were specifically asking about the content course, there is still a 

limitation of influence of all other teacher education courses/practices on Elif’s transfer from 

university to her teaching. Furthermore, Elif also has been teaching at a prestigious high school which 

provides various resources for a novice teacher to improve herself. In order to investigate further how 

preservice mathematics teachers transfer what they have learned into their teaching, researchers are 

planning to extend the study to include other participants who possess different characteristics.   
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This study presents the analysis of primary school teacher’s practices in mathematics for a lesson 

that has taken place after a professional development training called lesson study (LS) in Lausanne, 

Switzerland. Practices are analysed in a double didactical and ergonomical approach. The 

methodology used is a case study of the particular teacher’s practices. Results about the teacher’s 

practices after the LS process are discussed. 
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LS is a field of research and professional development developed principally in Asia, in US and in 

Northern Europe (Lewis & Hurd, 2011; Yoshida & Jackson, 2011). LS is a collective and reflexive 

process that involves a group of teachers and facilitators meeting to improve instruction.  

This study concerns practices of a teacher who participated to a LS process and this study falls 

within the “double approach” (Robert & Rogalski, 2002, 2005). 

Theoretical framework: The “double approach” 

Teachers’ practices are analysed using the following theoretical framework: the “double approach”  

based on a French didactical approach (Robert & Rogalski, 2002, 2005) and an ergonomical 

approach based on activity theory (Leontiev, 1975; Leplat, 1997). 

This “double approach” distinguishes the task, the "goal to be attained under certain circumstances" 

and the activity, what the teacher engages in during the completion of the task (Rogalski, 2013, p. 

4). The prescribed work fits the prescribed task (in our context: what the teacher must do according 

to Teacher’s Handbook and the official program) and the real work fits the conducted task (in our 

context: what the teacher does in reality during the lesson). To appropriate the prescribed task, the 

teacher should modify it. Thus, a gap exists between the prescribed task and the conducted task: the 

reasons can be a lack of the necessary competencies or an inappropriate representation of the task 

for example (Ibid.). Leplat (1997) adds two levels of tasks: the represented task (in our context: 

how the teacher represents the prescribed task and what he thinks we attend of him) and the 

redefined task (in our context: the teacher redefines his task according to the prescribed task and his 

own professional goals). These levels of tasks are neither hierarchical nor time: the teacher can 

represent the prescribed task and can redefine a new task before and during the lesson in taking into 

account different sources (students’ activity, his own activity, institutional constraints). 

The teacher combines professional acts and knowledge (mathematical, didactical, pedagogical) in 

his representation of the prescribed task and in his redefinition of the represented task. This study 

focused on these professional acts and knowledge at stake in these representation and redefinition. 

Thus, the teacher’s activity is analysed as a process of modifications between the prescribed and 

conducted tasks (Leplat, 1997; Mangiante, 2007). 



Research question 

This case study aims to provide elements to respond to the following question: what are the sources 

of the process of modifications between the prescribed and conducted tasks?  

Methodology and data 

This qualitative study used a case study to analyse teacher’s practices. A LS process (see Figure 1) 

can be decomposed four steps (Lewis & Hurd, 2011, p. 2): the group studies a mathematical subject, 

standards and sets instructional goals (step 1), the group prepares a research lesson based on their 

study of the topic and standards (step 2), the group selects one teacher to conduct the research lesson 

while others observe and collet student data (step 3), and finally, the group analyses and reflects on 

the research lesson (step 4), with the option of teaching it again (Batteau, 2016). 

 

Figure 1: A LS cycle (Lewis & Hurd, 2011) 

In the Swiss context, some researchers chose to implement this form of LS process without modify 

the structure in four steps because this model fits a French didactical point of view (Clivaz, 2015): 

the Theory of Didactical Situations (Brousseau, 1997; Warfield, 2014). In the TDS, the 

methodological research tool consists of an a priori analysis of the possible teaching of a 

mathematical subject: the steps 1 and 2 fit a deepen a priori analysis with a study of the 

mathematical subject, the didactical variables, the student’s strategies, and difficulties. A second 

methodological research tool (in the TDS) consists of an a posteriori analysis, who takes place 

during the step 4, which compares what would be anticipated and what is happened. Thus, a LS 

process in mathematics began in Lausanne in September 2013 and occurred over two years with two 



collective sessions occurring per month (Clivaz, 2016). The group consisted of eight primary school 

teachers ranging in experience, voluntary, and generalist1 teachers, and two facilitators2. 

This study focused on Océanes’ practices for one lesson observed after the end of this LS process. 

For this teacher, data were collective sessions during the LS process (cycles c and d about problem 

solving), one lesson after the LS process (about problem solving), informal meetings after this 

lesson, all written documents produced during the lesson, and student work. Video data (lesson and 

collective sessions) were transcribed. This teacher has seventeen years of experience and students 

eight to ten years old. 

To operationalise the theoretical tools presented for this study, the prescribed task fit the aim of the 

problem chosen by Océane, the Teacher’s handbook, and the planning material for this problem. 

The prescribed task is analysed a priori, which means the mathematical knowledge at stake in the 

problem, the possible resolutions, and the didactical variables were analysed. We analysed the 

modifications between the prescribed and conducted tasks. To explain these modifications, we 

analyse the representation of the prescribed task and the redefinition of the represented task with 

using the informal meetings and collective sessions. 

This paper presents first the mathematical subject worked during the LS cycles c and d before this 

lesson.    

Analysis 

Cycles c and d of the LS process 

During the cycles c and d, the group worked on problem solving and how to help students represent 

a problem. The group relied on an article (Julo, 2002)3 in which the main idea was explained during 

a collective session. 

Facilitator: (quoting Julo) “this help doesn’t give clues about the answer, doesn’t guide to a 

strategy and doesn’t suggest a modelling”. But it’s difficult to achieve, it’s written 

just after that.  It is an ideal […] but if we don’t follow this ideal, it means that we 

do precisely a part of what students have difficulty to do.  

The research lesson of the cycle d was based on this problem: examine the matchstick pattern 

represented below. How many matchsticks are needed to align 99 squares?  

                                                 

1 In the French speaking part of Switzerland, primary school teachers teach several school disciplines (mathematics, 

French, sciences...). 

2 In this particular LS process, the two facilitators were researchers in Mathematics Education and in teaching and 

learning (Clerc-Georgy & Clivaz, 2016). They had the role of trainers and « knowledgeable others » (Lewis & Hurd, 

2011, p. 30;33). 

3 During the first collective session of LS process, teachers said to facilitators which subject they wanted to work 

according to their teaching difficulties and/or students’ difficulties. The subjects were numeration (cycle a), isometries 

(cycle b), and problem solving (especially how to help students represent and model a problem, cycles c and d). Then, 

the facilitators proposed reading this paper to teachers, in order to find elements of answer to this issue.  



 

Figure 3: Problem “99 squares” (Teacher's handbook of 6H, Danalet, Dumas, Studer, & Villars-

Kneubühler, 1999, p. 187) 

The mathematical function at stake was u(n)=3n+1, where n is a whole number. The group worked 

on this problem focussing on how to help students represent and model this problem. 

Context of the lesson observed after the LS process 

For this lesson, Océane chose to manage problem solving and she explained it during a collective 

session at the end of the LS process. 

Océane:  There is a lot of problem which I think oh I don’t dare to try [...] 

Océane:  I think, this year with my students, I take the textbook and I do a lot of things I 

never did before.  

Anaïs:  Oh, you dared. 

 Océane:  Yeah, I did.  

The prescribed task: some elements of analysis 

For this lesson after LS, Océane chose the problem “Fold”: Fold a strip of paper in half, here are 

two parts. Fold a strip of paper in half, then a second time, here are four parts and so on. How many 

parts are there with a folded strip of paper ten times?  

 

Figure 4: Problem “Fold” from (teacher's handbook, Danalet et al., 1998, p. 96) 

The aim of this problem is to develop reasoning capacities and research strategies (Ibid.). In this 

problem, students should go from handling to representation in order to predict the result of acts 

(Ibid.). To determine the number of parts when the strip of paper is folded 10 times, we should 



calculate 2x...x2 with ten factors 2 (or 2 power of ten). Thus, to find the number of parts with a strip 

of paper folded n times, it’s not necessary to know the answer when the strip of paper is folded (n-1) 

times. 

The problem solving “Fold” is similar to “99 squares” in that sense these two problems rely on 

functions (power function or affine function). The kind of functions and the context of these 

problems are different but the idea of function is the same and the idea that it’s possible to 

determine the number of matchsticks whatever the number of squares or the number of parts 

whatever the number of times we fold the strip of paper. 

Modifications between the prescribed and conducted tasks 

Some significant elements of modifications between the prescribed and conducted tasks are 

summarized about the mathematics at stake in the problem. Océane took over the modelling of the 

problem: she realized a two-column table, then students had to complete it by calculating doubles. 

Thus, she modified the aim of the problem. During informal meetings, she said that she chose this 

problem to introduce the multiplication. The issue of the problem is not the same for her (involving 

the multiplication) and for the designer of the problem (modelling a problem). During the lesson, 

she took over the modelling of this problem instead of students. Furthermore, she reduced the 

problem to calculations of doubles of numbers as in this characteristic extract of the lesson. 

Teacher: doubles. Here, we double. We double every time. The double of two, four. The double 

of four, eight. The double of eight, sixteen. The double of sixteen, thirty-two. The 

double of thirty-two, sixty-four. The double of sixty-four? All right? So Nadège, 

the double of sixty-four is? It folds in seven times. […] It’s as if we calculate 

sixty-four more sixty-four. Is it? (Nadège looks all the folds in her strip of paper). 

Nadège: one hundred twenty-six. One hundred twenty-eight. 

Teacher: great. […] Next, Luc? 

Luc: two hundred fifty-six. 

Teacher: very well. Yes? If we fold it nine times, it should be? 

Romuald: five hundred six. 

When Océane prepared her lesson, she did not identify the mathematical knowledge at stake in the 

problem (power of two). She validated students’ strategies only with calculations (see extract), and 

she did not link strategies together. In this extract, she said “the double of sixty-four is? It folds in 

seven times”. However, she did not explain why it’s necessary to multiply by two when the strip of 

paper is folded half. Her strategy of doubling could not allow to respond directly to the problem. 

With her strategy of doubling, in order to find the number of parts with a strip of paper folded ten 

times, it’s necessary to know the answer when the strip of paper is folded nine times and eight 

times, …, until two times (see Figure 5). With the “expert” strategy, to find the number of parts 

when the strip of paper is folded n times, the students should calculate the product 2x2x….x2 with n 

factors 2. 

Using a similar problem solving activity than for the research lesson of the cycle d, Océane could 

not identify the mathematical function at stake. 



Another modification of the prescribed task was to propose to students to calculate the number of 

parts when the strip of paper is folded 11, 12, 13, and 14 times (see Figure 5). This modification 

was coherent with the teacher’s strategy because it was not possible to propose to calculate the 

number of parts when the strip of paper is fold 100 times for example without the “expert” strategy. 

FOLD PARTS

1 2

2 COUNT	UP	
TO	4

3 8

4 16

5 32

6 64

7 128

8 256

2+2

4+4
=8
8+8
=16

16
+16
32+32

64+64

9 512

10 1024

11 2048

12 4096

13 8092

14 16384

 

Figure 5: Reconstitution of the blackboard 

In the blackboard, Océane wrote only additions to fill in the table, but nor multiplication neither 

“double of a number”. To fill in the second line of the table, she wrote two strategies without 

linking: count up to 4 and 2+2.  

This modification illustrated the focus of the lesson on calculation of double (with additions) and 

nor on modelling the problem, neither on the explanation of strategies and the links between the 

different strategies. 

Representation of the prescribed task 

Océane represented the prescribed task in according to her mathematical analyses. Before teaching, 

she prepared her lesson and realised mathematical analysis. The issue of the problem (modelling) 

took over by the teacher. In her analysis, the mathematical knowledge at stake in the problem are 

multiplication and doubling of a number. In the teacher’s handbook, the aim is to represent, to 

model a problem, to develop reasoning capacities and research strategies. Her analysis was in 

contradiction with the teacher’s handbook. Thus, she took freedom in relation to institutional 

constraints of the Teacher’s textbook. 

Redefinition of the represented task 

Océane anticipated the two-column table to fill in, so she anticipated to take over the representation 

of the problem and his modelling before this lesson. During this lesson, she taught vocabulary, 

“double of”, and she focused only on calculations. In her redefinition of the task, she modified the 

problem in a problem of calculation when the strip of paper is folded 2 until 14 times. 

In her redefinition of the task, she modified the problem according to her mathematical analysis and 

her representation of the task. 

Process of modification between the prescribed and conducted tasks 

The process of modification between the prescribed and conducted tasks had its origins in her 

representation of the prescribed task for this lesson. Océane took into account the students’ activity 

for the first time she taught this problem (last year). Then, she adapted her teaching when she taught 

this problem for the second time (for this lesson after LS): she took over the modelling and imposed 



a two-column table to fill in. She did not take into account students’ activity during this lesson but 

by anticipation. 

Conclusion 

This case study proposed an analysis of particular teacher’s practices during a lesson after a LS 

process. After the LS process, this teacher has self-confidence over teaching problem solving. In 

teaching problem solving, it should be able to identify mathematics at stake in the problem. 

Mathematics at stake should be given by the mathematical textbooks, but it was not the case. In the 

French part of Switzerland, official textbooks lack mathematical analysis for the teacher to use 

while planning lessons. For this lesson, the representation of the prescribed task relied on the 

Océane’s mathematical analysis which were not sufficient. Thus, her representation and her 

redefinition of the prescribed task did not allow to reach the mathematical learning intended by this 

problem. To conclude, the sources of the process of modifications for this lesson were her 

representation of the prescribed task and her mathematical analysis. This case study highlighted a 

gap between the prescribed and conducted tasks due to the teacher’s representation and 

mathematical analysis. 
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This paper presents a study that is part of a project named MaKosi (“Mathematische Kompetenzen 

sichern”). It aims at the conception and evaluation of a program in which primary student teachers 

and children who are low attaining in arithmetic work together. The organization refers to a 

specific form of project seminars called “learning-teaching-laboratories”. The study investigates 

how knowledge of identifying and supporting low attaining children develops by participating in 

such a program. Qualitative data were generated by learning maps in a pre-post-design and 

analyzed by a reconstructive pedagogic-iconological image interpretation. The results indicate a 

sustainable positive development of student teachers’ knowledge. 

Keywords: Professional development, learning-teaching-laboratories, low attaining students. 

Introduction 

Concepts of teachers’ professionalization are an important focus of current research in mathematics 

education (e.g., DZLM, 2015). Regarding a specific professional knowledge of teachers, the 

development of pedagogical content knowledge (PCK) including, in particular, the development of 

abilities to analyze children’s thinking and learning is reputed to be one of the main goals (Sowder, 

2007). Moreover, beyond cognitive aspects, some recent approaches on teachers’ knowledge 

consider affective components like beliefs (Kuntze, 2012). Questions that arise from this are, e.g., 

how student teachers’ education on analyzing children’s learning trajectories can be realized, and as 

a result how cognitive and co-cognitive components of student teachers’ knowledge develop. In this 

paper, the attention will be given to the aspects mentioned above by a synthesis of different 

approaches within a qualitative study: With regard to analyses of children’s thinking and learning, 

the development of primary student teachers’ knowledge about the identification and support of low 

attainments (ISLA) is focused on, since analyzing mistakes is assumed to be a valuable resource in 

this context (e.g., Ribeiro, Mellone, & Jakobsen, 2013). As to a suitable organization of a 

professional development program, the approach of “learning-teaching-laboratories” (LTL) is 

applied, which reflects an important part of current discussions on student teachers’ education in 

Germany (Roth, Lengnink, & Brüning, 2016). Summarized, LTL provide project seminars 

intertwining student teachers’ theoretical and practical education by working with children, i.e., via 

learning by teaching. The following questions will be investigated: How can a development of 

student teachers’ knowledge about analyses of children’s thinking and learning in mathematics be 

organized by a connection of ISLA- and LTL-concepts? How does their knowledge by taking part in 

an ISLA-LTL develop? First, brief overviews of the theoretical frameworks will be given. On these 

bases, a LTL-concept will be outlined. Finally, the study’s design and results will be subsumed and 

discussed.  

  



Theoretical frameworks – brief overviews 

As to teachers’ professional knowledge, the classical concept distinguishes between subject matter 

knowledge, PCK and curricular knowledge. Summarized, PCK refers to knowledge of possibilities 

regarding teaching subject matters (Shulman, 1986). Independent of certain approaches, there seems 

to be a consensus on the fact that PCK bridges subject matter knowledge and teaching, and it 

designates a specific-distinctive manner of teachers’ professional knowledge (Brown & Borko, 

1992). According to Ball, Thames and Phelps (2008), PCK covers knowledge of content and 

students, knowledge of content and teaching, and knowledge of curriculum. In particular, the first 

mentioned aspects provide facets that are connected to analyzing children’s thinking and learning as 

well as to providing an adequate support (Sztajn, Confrey, Wilson, & Edgington, 2012). Because 

drawing an exact distinction between cognitive aspects regarded by knowledge and affective aspects 

like beliefs is felt to be difficult, some current research combines both aspects to describe teachers’ 

professional knowledge; inter alia, pedagogical content beliefs (PCB) are described as an equivalent 

to PCK: Convictions about handling specific instructional situations (Kuntze, 2012) like ISLA. 

Recent competence frameworks of professional development programs are in line with such 

approaches. Beyond mathematics-related beliefs, self-oriented ones are considered including 

components like self-efficacy (e.g., DZLM, 2015), which produces a more holistic view. The 

study’s framework refers to Kuntze (2012). Thus, a combination of cognitive (PCK) and affective 

aspects (PCB) is assumed. Additionally, self-oriented beliefs are considered in the context of PCB, 

since in this way a holistic base to describe changes of knowledge by taking part in a LTL is given. 

Research on individual problems in learning mathematics covers a large range: Beyond approaches 

that describe such problems as a social construct, or approaches focusing on learning difficulties or 

disabilities in a narrower sense (for a survey: Scherer, Beswick, DeBlois, Healy, & Moser Opitz, 

2016), different approaches focus on previously low achievements (e.g., Watson & De Geest, 2012). 

The perspective mentioned last mostly concentrates on arithmetic and in this context on typical 

phenomena such as rigidified counting (and a unilateral ordinal understanding of numbers) and an 

insufficient understanding of mathematical operations or the place value system (for surveys: 

Benölken, 2016; Denvir & Brown 1986). Mostly, a group of children is addressed which can be 

supported within a school’s infrastructure, i.e., which does not show learning difficulties in the 

outlined narrower sense. As to identification or support, recent research independent of certain 

approaches demands a holistic view considering both cognitive and co-cognitive parameters (e.g., 

Nolte, 2009). Against the background of student teachers’ education, the theoretical framework of 

both the LTL and, thus, the study corresponds to different aspects of the above outlined approaches: 

As to problems in learning mathematics, low attainments in arithmetic are focused on considering 

both typical phenomena and a holistic view in the identification and support procedures.  

As to the development of PCK, practical situations that demand, e.g., scaffolding skills are assumed 

to be adequate opportunities of extending knowledge (Prediger, 2010). Existing findings indicate 

that one-to-one-interactions of a student teacher and a child might be a promising organizational 

form (e.g., Kilic, 2015). Against this background, “learning-teaching-laboratories” aim at a mutual 

growth and practical application of knowledge by a specific form of academic studies combining 

three dimensions: First, the support of children regarding a certain topic; then, the education of 

student teachers in this context, e.g., as to diagnostics and support; third, research aims like theory 



building in the content focused on (Roth, Lengnink, & Brüning, 2016). Recent research mainly 

concentrates on a clarification of LTL-types and on an interdisciplinary consensus about defining 

the term of LTL. An example is given by the following definition: 

LTL define a specific form of organization as to student teachers’ academic studies combining 

children’s learning with student teachers’ professional development in a holistic way. In contrast 

to, e.g., standard lectures, seminars or practice lessons, LTL offer student teachers opportunities 

to develop, to enhance and to apply iteratively various skills of diagnostics, support and, thus, 

both teachers’ professional acting and knowledge with regard to specific focuses in authentic, but 

complexity-reduced learning situations. (Brüning, 2016, p. 1274; translated by the author) 

Hence, LTL include aspects and influences that are considered as most important by approaches on 

teachers’ professional growth like the individuality of their learning in mutual reflection and 

enactment processes (e.g., Clarke & Hollingsworth, 2002). Even if LTL are conducted at more and 

more German universities in different “STEM”-disciplines, ongoing studies still focus on their 

evaluation. First impressions indicate that LTL are highly valued by student teachers and they are 

suited to ensure a sustainable growth of their knowledge about the respective topic (e.g., Brüning, 

2016). The study’s framework refers to Brüning’s definition. Its cornerstones are transferred to the 

context of ISLA. The demanded complexity-reduction is realized by one-to-one-interactions.  

Survey of a LTL-concept in the context of ISLA 

The presented study is part of the long-term project “MaKosi” that focuses on the conception and 

evaluation of a professional development program connecting ISLA- and LTL-approaches (for 

details: Benölken, 2016). Summarized, the aims are the support of children low attaining in 

arithmetic and the development of student teachers’ knowledge of ISLA. The student teachers’ 

education is organized as a combination of a theoretical course and a project seminar with children. 

The theoretical course covers information about approaches in the field of problems in learning 

mathematics as well as concepts of diagnostics and support. While the theoretical course is a regular 

seminar at university, the project seminar takes place at a primary school once a week about 15 

times per semester. Against the outlined framework of ISLA, diagnostics triangulate different tools: 

In a first step, teachers are given information about the framework and they elect children providing 

a justification in written form. Then, parents have to fill in a declaration of consent. In a second 

step, children, student teachers and scientists come together to get to know each other in a playful 

first session. In a third step, process-diagnostics follow considering both cognitive and co-cognitive 

parameters; mostly, non-standardized tools such as observations on children’s task solving using 

rating sheets or guided interviews with children, teachers or parents are applied. Every project 

seminar session is divided into three parts: First, a preparing workshop where student teachers and 

scientists come together for 15 minutes in order to highlight specific aspects of observation or other 

determining factors; second, a 90-minute-children-session; finally, a reflecting 75-minute-

workshop, in which each child’s problems and possibilities as to an appropriate support are 

discussed. Within this schedule, the children’s session is divided into three stages: In the beginning, 

a playful problem task is offered avoiding arithmetic contents to provide an adequate imagination of 

mathematics or to support both a positive self-perception of mathematical abilities and joy of 

problem solving (for example, the problem of “a ferryman, a wolf, a sheep and a head of cabbage”). 



At this stage, children can organize themselves considering ideas of a natural differentiation. 

Subsequently, one student teacher and one child turn into one-to-one-interactions of diagnostics and 

support in established teams for 60 minutes. Thus, the student teachers can develop, e.g., 

scaffolding abilities in a complexity-reduced situation. Tasks and activities applied in this context 

are taken from well-proven examples of literature (for examples see: Benölken, 2016), which the 

student teachers got to know in the theoretical course. They develop suggestions on both their 

compilation and detailed planning which are discussed during the reflecting workshop with all 

participating student teachers and the supervising scientists in order to ensure sustainable conducts. 

Each session closes with a game to support the children’s joy of participating in the LTL.  

The study 

The study focuses on the question how student teachers’ knowledge of ISLA develops by taking 

part in an ISLA-LTL. The participants were 25 primary student teachers; 11 (10 females, 1 male) 

took part in the winter semester 2015/2016, and 14 (only females) in the summer semester 2016. 

Mostly, they were in their third year of undergraduate studies. The study’s character is explorative, 

i.e., generalizations were not intended, but existential propositions (Lamnek, 2010) about possible 

developments of knowledge by participating in the LTL. Thus, a qualitative design was advisable. 

As to the method, qualitative data were generated according to Rott (2017) by applying learning 

maps in a pre-post-comparison which were anonymized by codes to ensure unbiased interpretations. 

In the head, the student teachers were given the impulse to craft their way between their current 

status and their future work at schools: “Dealing with low attainments will be a challenge as to your 

work as a teacher, especially due to the knowledge of identification and support: What does this 

mean to you personally? Which way have you covered or which way will you have to cover in the 

future? Please lay out your way.” (translated from German) All participants designed the maps for 

the first time, and they had to do it before taking part in the LTL at the beginning of a semester, and, 

again, at its end. As to the analysis, the pre- and post-maps were compared by a reconstructive 

pedagogic-iconological image interpretation, which becomes more and more accepted in different 

scientific disciplines. Its characteristic steps were observed: (1) Discussion of previous history and 

selection of key images, (2) image description and analysis (with regard to the factual, expressive 

and form-related sense), (3) context analysis, and (4) comparative analysis (Schulze, 2013). Data 

were interpreted within two meetings at the end of the summer semester 2016: The 14 participants 

analyzed in groups of two or three at least one, but for the most part two pairs of maps. Afterwards, 

the results were presented, and major observations were discussed in a plenary session. 

Results 

As to key images, their description and analysis, three types were identified: (1) An interrupted 

path, (2) a continuous path, and (3) a system of paths. The first type was found only within the pre-, 

the third one only within the post-, but the second type within both the pre- and post-drawings. 

Subsequently, we focus on the reconstructions of the examples shown by the Figures 1 and 2, which 

were conducted in the group meetings mentioned above and which reflect typical main features.     

 

 



 

 

 

 

Figure 1: First example of a pre- (left) and post-map (right) 

 

 

 

 

 

Figure 2: Second example of a pre- (left) and post-map (right) 

As to the factual sense of the first example’s pre-map (Figure 1, left), a lack of details is obvious, 

which might reflect that the creator is unfamiliar with the context. The expressive sense is 

characterized by monotony as to, e.g., colors, which might indicate the creator’s uncertainty. 

Regarding the sense of form, the interrupted way seems to reflect that the creator cannot (yet) 

imagine how to achieve the purpose. As to the factual sense, the post-map (Figure 1, right) contains 

more details: Different remarks are phrased; thus, the creator seems to connect many thoughts to the 

path. Merged stars seem to reflect interdependent experiences that influenced the creator positively, 

but a question mark seems to indicate obscurity about future requirements. The expressive sense is 

characterized by a use of different colors highlighting the significance of the experiences’ 

connection, for instance. As to the sense of form, the continuous path obviously reflects that the 

creator now perceives a way to achieve the purpose, even if it is flanked by the question mark. The 

path precedes the current status; thus, the creator seems to have developed a more holistic view on 

the way he or she passed. As to the factual sense of the second example’s pre-map (Figure 2, left), a 

main feature is a wide range of remarks, which seems to reflect that the creator already connects 

several aspects to the path. An important detail is the remarks’ phrasing in the form of questions in 

most of the cases; thus, the creator rather seems to ascribe uncertainty or just a small level of 

recognition to him- or herself. Moreover, clouds seem to emphasize particular past and future 

experiences. The expressive sense is rather monotonous, e.g., as to the coloring, which might 

indicate that the creator refers to a matter-of-fact way. Regarding the sense of form, the continuous 

path is drawn as a stairway; thus, the creator obviously distinguishes different steps of his or her 

knowledge’s complexity. Arrows emphasize secondary objects, which might reflect that the creator 

at least considers different complex patterns. As to the factual sense of the post-map (Figure 2, 

right), a wide range of remarks still can be observed, but now they are put forward in the form of 

declarative sentences. Signposts seem to describe possible intentions and their connections. Clouds 



and boxes seem to highlight important (mostly past) theoretical and (especially future) practical 

experiences. A computer seems to indicate an intertwining of the regarded focus with other 

domains. Finally, sections which the creator already had passed are characterized by continuous, but 

future sections by dotted lines. The expressive sense is characterized by different colors which 

underline the significance of main experiences; overall, a great confidence seems to be reflected. 

Aspects related to the sense of form confirm this impression: In contrast to the circle drawn in the 

first section of the map, the path continues afterwards directly, but winding to school, flanked by 

some concrete imaginations. The final part of the path system is drawn slightly broader compared to 

previous sections which might reflect that the creator will feel well prepared to enter school. In the 

creator’s view, practical work seems to bridge impressions of running in a circle within theoretical 

studies, which are not connected directly to work at school, and achieving the objective, which is 

supposed to be a complex, but positive and manageable challenge.  

As to a context analysis of the first example, the interrupted way of the pre-map (Figure 1, left) 

seems to reflect that knowledge on ISLA is assessed to be nonexistent or at least superficial by the 

creator (PCK), and he or she cannot imagine how to cope with ISLA at school (PCB). Comparing 

the post-map (Figure 1, right) indicates that the creator now reflects to have knowledge on ISLA 

(PCK), and that he or she perceives ways of handling ISLA at school (PCB). This impression is 

confirmed by concrete aspects and intentions given by the detailed remarks (e.g., top right, “self-

responsibility”, “perspective of hope to face the topic in the future”), which were missing in the pre-

map, and by elements like stars or colors, which underline the significance of taking part in the LTL 

as to developing knowledge of ISLA and, thus, of bridging theoretical knowledge and practical 

work. Regarding the second example, the continuous path shown by the pre-map (Figure 2, left) 

indicates that the creator already knows about some aspects of ISLA, even if this knowledge seems 

to be rather superficial (PCK) and he or she seems to be rather uncertain (PCB). Comparing this 

with the post-map (Figure 2, right) suggests that the complexity of the system of paths reflects an 

increase of knowledge (PCK), and the creator can well imagine to cope with ISLA at school (PCB). 

Questions posed in the pre-map (e.g., on the first step, “What has to be done?”) turned to concrete 

intentions and planning steps (e.g., top left, an intention as to the practical semester of academic 

studies “Enriching scientific knowledge by specific focuses of observation.”); particular attention is 

given to emphasize the significance of practical experiences, like taking part in the LTL, as to 

developing knowledge of ISLA and as to intertwining theoretical knowledge and practice. 

Based on these examples, a comparative analysis of all pre- and post-maps suggests that both the 

student teachers’ ways and their location on the ways changed. Their PCK of ISLA developed to 

more profound patterns, and their PCB to more confident characteristics. Put more precisely, the 

comparisons indicate mainly the following typical changes: As to cognitive aspects, before taking 

part in the LTL the student teachers’ knowledge about ISLA seemed to be rather fragmentary and 

superficial for the most part. Moreover, most of them seemed to equate problems in learning 

mathematics unilaterally with learning difficulties in a narrower sense. In contrast, after 

participating in the LTL, the student teachers developed a complex knowledge of the entire field: 

They distinguished different approaches and considered phenomenology-related issues. Regarding 

affective aspects, before taking part in the LTL, the student teachers rather seemed to express 

uncertainty as to dealing with ISLA, which seems to reflect disadvantageous characteristics of self-

efficacy. In contrast, after participating in the LTL, the maps indicate more proactive views: The 



student teachers declared more complex perceptions of problems in learning mathematics, in 

particular as to a child’s individuality, and they proposed precise plans to develop their knowledge. 

Moreover, they seemed to connect ISLA closer to teachers’ responsibilities, and emphasized the 

significance of practice as to the development of aspects such as self-efficacy. Finally, as indicated 

by the discussed examples, there seem to be different types: A first one representing an “optimistic 

novice” (Figure 1), and a second one representing an “expectant expert” (Figure 2). 

Discussion 

The results indicate that participating in an ISLA-LTL and, therefore, an intertwining of theory and 

practice contributes sustainably to a positive development of both student teacher’s knowledge 

about ISLA and their abilities to analyze children’s thinking and learning in mathematics. This 

observation is in line with reports emphasizing the benefits of practical work with children as to the 

development of knowledge, and one main reason for this might be seen in the student teachers’ 

constructivist learning (Sowder, 2007). Thus, beyond the context of ISLA, the results suggest the 

hypothesis that LTL provide an appropriate professional development program for student teachers 

to develop their abilities in analyses of children’s thinking and learning. Of course, the study’s 

character is explorative, and it has obvious limitations; for instance, the reconstructions as to 

interpreting the use of colors (or, e.g., their absence) were conducted within a group, but it remains 

uncertain, if a consensus view is the right one (Lamnek, 2010). Subsequent research might focus on 

a deeper clarification as to evaluations of ISLA-LTL, and as to the benefits of LTL in general; in 

particular, different LTL-focuses like support of mathematics interest should be taken into account.  
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The aim of this paper is to present what are the criteria used by a teacher when performing the 

didactic analysis in its final master thesis. For that matter a case study was performed, whose 

object of study is the master thesis conducted by a Math teacher in service. The analysis was based 

on didactical suitability criteria proposed by the Onto-Semiotic Approach (OSA) to mathematical 

knowledge and instruction (Godino, Batanero & Font, 2007). As a result of the analysis it was 

possible to notice that the teacher, in addition to using all didactical suitability criteria proposed by 

the OSA implicitly, highlights the importance of finding a balance among the suitability criteria to 

achieve the learning of the didactic proposal carried out by him. 

Keywords: Didactic assessment, suitability criteria, masters thesis.  

Introduction 

The tendency to achieve an international convergence in the planning of College programs and, 

particularly, those related to the Professional Master education centered on the education of 

teachers, has fostered a series of reforms in different countries, so that there is a model organized by 

a sort of refinement and evolution around professional skills. In the Brazilian context, in an attempt 

to train Mathematics teachers who were currently working in the area, the Professional Master 

Program in Mathematics in the National Network (PROFMAT) was launched in 2010 by 

recommendation of the Conselho Técnico-Científico da Educação Superior da Capes. The program 

is an on-site and long-distance program, offered throughout the Brazilian territory, coordinated by 

the Sociedade Brasileira de Matemática (SBM), which has a main objective to support 

Mathematics teachers who work in the primary education level, especially in public schools. It is 

important to highlight that, although PROFMAT's main objective is to foster teaching of 

mathematics at all levels (Brasil, 2013) it is configured as a program composed almost entirely of 

mathematical disciplines. In addition, at the end of the course, the students must present a final 

work (ETM) consisting of design a sequence of tasks, not assigning the mandatory implementation. 

The work presented in this document is part of a larger research (Breda & Lima, 2016; Breda, Font 

& Lima, 2016; Breda, Pino-Fan & Font, 2016; Breda, Pino-Fan & Font, in press), in which, through 

the analysis of 29 Master’s Thesis Works (EMTs) of PROFMAT (Breda, 2016) and was concluded 

that the teachers who implemented the design of their sequence of tasks performed a much more 

refined and balanced didactic analysis compared to the teachers who did not implement the 

proposal. In addition, it was evidenced that when the teachers’ opinions were clearly evaluative, 

they were organized implicitly using some characteristics of the components of the didactical 

suitability criteria proposed by the Onto-Semiotic Approach (OSA) to mathematical knowledge and 

instruction (Godino, Batanero & Font, 2007). 



So, the objective of this paper is to present a case study that analyses what are the criteria used by a 

teacher in his reflection process (explained in his EMT of PROFMAT), who will be addressed as 

Mr. Lopes, in order to improve the design and implementation of new contents related to the 

Riemman integral in Elementary School.  

Theoretical framework 

In the field of Mathematics Education there is no consensus on the notion of “quality” and, in 

particular, there is no consensus on the “methods for assessing and improving the teaching and 

learning of mathematics”. There are basically two ways to address this problem, from a positivist 

perspective or from a consensual perspective (Font & Godino, 2011). From the first, the scientific 

research in the area of Mathematics Education tell us what are the causes to be modified to achieve 

the effects as objectives to be achieved, or at least tell us what are the conditions and restrictions 

that must be taken into account to achieve them. From the consensual perspective, that tells us how 

to guide the improvement process of mathematics instruction, which must come from the 

argumentative discourse of the scientific community, when it is aimed at achieving a consensus on 

“what can be considered as the best”.  

The notion of didactical suitability criteria proposed by the Onto-Semiotic Approach (OSA) to 

mathematical knowledge and instruction (OSA, from now onwards) (Godino, Batanero & Font, 

2007) is positioned in the consensual perspective. Such notion is a partial answer to the following 

problematic: What criteria should be used to design a sequence of tasks to assess and develop 

mathematical competence of students and what changes should be made in its redesign to improve 

the development of this competition? Suitability criteria can first serve to guide the teaching and 

learning of mathematics and, second, to assess their implementation. Suitability criteria are rules of 

useful correction in two stages of the processes of mathematical study. A priori, the suitability 

criteria are the principles that guide “how things should be done”. In hindsight, the criteria used to 

assess the study process effectively implemented. According to these authors, the didactical 

suitability criteria are: 1) Epistemic suitability, to evaluate if the Mathematics being taught are 

“good Mathematics”; 2) Cognitive suitability, to evaluate, prior to the beginning of the instruction 

process, if what is intended to be taught is at a reasonable distance from what the students already 

know, and after the process, if the knowledge acquired is any close to what was intended to teach; 

3) Interactional suitability, to evaluate if the interactions contribute to clear doubts and difficulties 

students encounter; 4) Mediational suitability, to evaluate the adaptation of material and time-

related resources used in the process of instruction; 5) Emotional suitability, to evaluate the 

implications (interests, motivations,…) of students during the process of instruction; 6) Ecological 

suitability, to evaluate the adaptation of the instruction process to the educational project of the 

school, the curricular guidelines, the social and professional environmental conditions (Font, Planas 

& Godino, 2010, p. 101). 

Methodological aspects 

We chose to conduct a case study (Ponte, 1994) where the didactic analysis performed by a 

mathematics teacher in service, as part of his master degree, is investigated. To analyse our case, we 

used the indicators of didactical suitability proposed by the OSA (Godino, Batanero & Font, 2007; 

Godino, 2011; Breda, Font & Lima, 2015), as theoretical model to analyse the reflections 



performed by the teachers regarding ways to improve their teaching practices, related to the 

implementation of the didactical activities proposed as part of their EMT. 

Research context 

According to the guiding document of the PROFMAT, the EMT should, preferably, consist of a 

project with direct application to the mathematics classroom in Basic Education, thus contributing 

to the enrichment of the teaching of said discipline.  

In this work we proceed on the assumption that the End of Master’s Thesis (EMT) is a task that 

involves, implicitly, a didactical analysis exercise, since in their EMTs teachers must explain a 

didactical proposal and justify why it represents an improvement in teaching. In this sense, the 

reason for choosing the case of Professor Lopes is that, in addition to having applied the sequence 

of tasks with the students, he presents in his reflection aspects that "did not work" or that should be 

improved in future implementations. 

Professor Lopes’ didactical proposal 

Professor Lopes’ EMT (2014), entitled “A review of the introduction of Riemann’s sums into High 

School Education”, presents the design and the implementation of a didactic proposal for a group of 

third-year high school students (students aged 16 to 17) in order to intuitively introduce the integral 

calculus through the study of the areas of 2D geometric forms. Lopes (2014) explains that it is 

possible to introduce methods and notions of the integral calculus in High School Education 

intuitively, starting with area-calculation problems for curvilinear shapes. That is, the aim is to 

broaden the calculation of areas habitually studied in Elementary Education through the study of 

area-calculation of curvilinear shapes, using both Archimedes’ and Riemann’s methods.  

 To be specific, Lopes’ EMT (2014) is organized into four chapters; in the first, the professor 

presents, using literature reviews, the argument: “Should integral calculus be used in Elementary 

School?” On the basis of this question, the professor seeks to justify- through the study of literature- 

the use of two methods: Archimedes’ method (used to calculate the area of a circle) and Riemann’s 

method (used to calculate the area of three curvilinear shapes: circles, eclipses and polynomial 

shapes with an x axis). In the second chapter, Lopes (2014) explains the didactic unit which was 

implemented with a group of third-year students from a state secondary/high school in Brazil. The 

group was formed of 41 students but at the beginning of the year, only 36 students attended the 

classes and participated willingly in the project. In this second chapter, the professor also explains 

in detail the initial self-evaluation he performed with the students and, in particular, he explains the 

method for evaluation previous knowledge on certain geometry topics, on mathematical software 

knowledge and also on the expectations of the project.     

In the third chapter, professor Lopes describe the implementation he carried out. This section is a 

sequential report in which the author explains what happened during the implementation of the 

didactic sequence, placing emphasis on the set tasks, what the students learnt and the interactions 

made during the implementation. We are looking at a review written from the perspective of the 

professor but, in his very review, the professor ensures he presents evidence of the statements he 

makes. In the fourth and last chapter, the professor presents his reflections and conclusions on the 

implementation he carried out. In this way, it can be said that Lopes’ proposal (2014) covers the 

four phases of didactic design (preliminary study, design, implementation and evaluation), which 



other models of mathematics teachers’ knowledge also cover, in order to answer the most 

fundamental question: “What knowledge should a mathematics teacher have to be able to 

appropriately manage their students’ learning?” (Pino-Fan, Assis & Castro, 2015). 

Professor Lopes’ analysis on his own implementation project 

When teachers have to reflect on a didactic proposal that implies a change to or an innovation in 

their own practices, they implicitly employ some of the didactical suitability criteria. Lopes’ EMT 

(2014) has also allowed us to deduce the use of some of these criterions in the justification and 

reflection on the suggested proposal. In the following subsections, we show the extent to which the 

author considered- implicitly and explicitly- the suitability criteria put forward by OSA in attempt 

to defend his didactic proposal as improvement for mathematics teaching. 

Epistemical suitability 

Lopes (2014) justifies the ‘innovative and creative’ nature of his proposal by pointing out that it 

encourages students to perform relevant mathematical processes, in particular that of mathematical 

modelling. In his own words, he explains: “In this way, the application process, divided in three 

stages, aims to build knowledge through the use of mathematical models. Starting with the first 

construction, on the basis that the topic is studied in depth and new elements arise, other models 

are built based on the previous ones […]”. (Lopes, 2014, p. 22) 

The professor also considered that his innovative proposal allows students to perform other relevant 

mathematical processes such as connections, meaningful constructions, problem-solving, etc. “In 

this sense, the aim is to (…) awaken the student’s creativity and enthusiasm to learn geometry, to 

create geometrical models with the students, making connections with reality, and to provide 

situational problems with a geometric focus…” (Lopes, 2014, p. 21). 

It is evident in his review that some of the processes mentioned were in fact developed during the 

implementation of his proposal. In his thesis, the professor generally presents explicit reflections on 

the fact that his didactic proposal for teaching area-calculation is more representative (since it 

thoroughly explores the area-calculation of curvilinear figures) than the proposals that are 

commonly implemented at high school level. 

Cognitive suitability 

In Lopes’ work (2014) there are comments, reflections, etc., that allow concluding that the author 

takes into account, in an implicit way most of the times, the indicator of cognitive suitability. 

Background knowledge. The teacher carries out an initial evaluation in order to find out if the 

students had the necessary background knowledge for the study of the intended content. 

Furthermore, he makes sure that the students have such background knowledge, and specifically, he 

dedicates part of the time intended for the implementation, to revise the calculation of the area of 

triangles and quadrilaterals, and the study of trigonometric ratios. On the other hand, the learning 

objectives were attained by the students, “and there is confirmation that the Archimedes and 

Riemann methods are in the students’ zone of proximal development” (Lopes, 2014, p. 19). 

Curricular adaptation to individual differences. With the narration of the teacher it is not possible 

to conclude if he considers at some point complementary or reinforcement activities. However, 

when he assesses the learning related to the Riemann method, he concludes that many students will 



not achieve such learning and adds: “…it would be necessary to have a more extensive study 

period, to be able to ask the students (…) to interpret results more thoroughly, considering that each 

student is unique and as such, needs a shorter or longer time to learn” (Lopes, 2014, p. 92). 

Regarding the learning intended, the teacher states in a very clear way that he has to carry out 

evaluations to verify that his innovative proposal helps the students to achieve the learning 

objectives. Therefore, apart from the initial evaluation, the teacher carries out three formative 

evaluations that show the acquisition of the competences/learning implemented. With these 

evaluations, the teacher concludes that the learning related to the calculation of areas of 

quadrilaterals and triangles, and the Archimedes method was acquired, but the same cannot be said 

about the learning of the Riemann method, which he justifies with lack of time. 

High cognitive demand. The author considers that his proposal requires a high cognitive demand 

from the students, since it activates relevant cognitive processes. 

Interactional suitability 

Teacher-Student interaction. The teacher describes a “teacher-large group interaction”, through a 

dynamic of questions asked by the teacher and answers given by the students, which, according to 

him “facilitates comprehension among students” (Lopes, 2014, p. 32). He also presents some 

examples of how this type of interaction helps to clarify doubts that the students might have. 

Interaction among students. In his narrative, the teacher also mentions that the students worked in 

small groups and although he did not comment if such dynamic has solved the student’s semiotics 

conflicts, he concludes that this organization allowed some students that hardly participated in the 

classroom to express themselves in a larger group. 

Autonomy. It is possible to conclude that there were moments in which the autonomy of students 

was encouraged. On the one hand, “the students had to do homework” (Lopes, 2014, p. 67); on the 

other hand, there were some moments in which it was possible to observe that the responsibility to 

study (exploration, formulation and validation) was assumed by the students. 

Formative evaluation. As mentioned in the cognitive suitability section, the teacher carried out a 

formative evaluation that allowed a systematic observation of the cognitive process of the students.  

Mediational suitability 

It was possible to observe the use of material resources such as calculators and computers. The 

teacher explains that he used the GeoGebra software and the calculator during the teaching process. 

Regarding GeoGebra, he presents some implicit evaluative comments about the advantages of 

including this software of dynamic geometry in the teaching process. 

Number of students, Schedule and classroom conditions. Regarding this aspect, the teacher makes 

several comments. In a relevant way, he explains that the number of students and the conditions of 

the classroom (both the physical space as well as the computer laboratory) somehow determined the 

use of GeoGebra. Thus, the software was mainly used by the teacher to illustrate and show 

mathematical practices (e.g., the calculation of the areas of quadrilaterals and triangles). 

Regarding the time – of group teaching and learning –, the teacher makes comments and 

assessments about three indicators of this component: the adaptation of intended meanings in the 



available time, the time spent in the most important and relevant contents, and the time spent in the 

contents that were more difficult for the students. In connection to the first indicator, the teacher 

states very clearly that he could not adapt the intended meanings in the time that was available. 

Particularly, he states that he did not have enough time to finish explaining all he had planned 

regarding the Riemann method. For the second indicator, the teacher states that it took him a lot of 

time to ensure the required background knowledge, and that, on the other hand, he did not have 

time to solve the initial problem that was contextualized in order to later introduce the Archimedes 

and Riemann methods. Finally, regarding the third indicator, it is possible to infer from the 

teacher’s comments that it was impossible to carry out the whole study due to lack of time (e.g., 

there was not enough time to explain the Riemann method in depth). 

Emotional suitability 

In connection to this suitability indicator, no comments regarding the interests and needs of the 

students were found in Lopes’ EMT (2014). No comments about the attitudes of the students were 

found neither. Regarding emotions, the teacher states that the implementation he carried out 

promotes the students’ self-esteem.  

Ecological suitability 

According to the criteria and objectives that the teachers had to consider for the elaboration of their 

projects, professor Lopes adds that his proposal is a didactical innovation that adapts to the 

Elementary school curriculum and, according to his students, contributes to social and professional 

integration (social and labour utility) and that presents an intra-mathematical connection to higher 

level Mathematics (intra and interdisciplinary connections). 

Final reflections 

The analysis of the EMT of Professor Lopes shows how the indicators of didactical suitability 

proposed by OSA are -implicitly- present in his reflection processes on their own practice. An 

important aspect to highlight is that this EMT clearly demonstrates the issue of finding a balance 

between each of the suitability criteria. On one hand, the author plans an innovation with high 

epistemic suitability and he demonstrates in his review that he also made a substantial effort to 

achieve high cognitive suitability. On the other hand, however, he also demonstrates that he was 

obliged to neglect part of the content he had planned; in particular he could not solve the initial 

problem which was the very motive of his didactic proposal and the learning was not complete (in 

particular, the Riemann method) due to the fact that the suitability of means was not adequate; to be 

precise, there was not enough time.  

We could say that, in terms of the suitability criteria, Lopes concludes that if in future 

implementations, cognitive and epistemic suitability are not to be neglected, and then it would be 

necessary to allow more time. One aspect, which is difficult to explain, is the reason why the 

criteria of didactic suitability function as implicit patterns in the Lopes’ discourse, when he has to 

evaluate instruction processes without specific training on the use of this analysis tool. One possible 

explanation is that the training that he has received in the PROFMAT allows him to do, implicitly, 

this type of analysis. However, Caldatto’s research (2015) and Caldatto Pavanello and Fiorentini 

(2016), leads us to believe that the characteristics of the PROFMAT do not encourage this kind of 



reflection. Now, other answer to this very question is related to the origins of this construct. In the 

OSA, the didactic suitability criteria, its components and characteristics were constructed on the 

basis that they should be constructs which rely on a certain amount of consensus within the 

Mathematics Education community, albeit the local one. Therefore, one of the plausible 

explanations that the suitability criteria can be considered as teachers’ reflections patterns is related 

to the extensive consensus that they themselves generate amongst persons involved in Mathematics 

Education. Therefore, another possible explanation, for Lopes case, could be based on his previous 

training and his experience, which would lead him to participate in this consensus. 

The analysis of the EMT of Professor Lopes shows that, when the teachers’ opinions were clearly 

evaluative, they were organized implicitly using some characteristics of the components of the 

didactical suitability criteria proposed by the OSA. This result has been evidenced in other 

investigations (Breda, 2016; Seckel, 2016; Breda, Pino-Fan, Font, in press) in which it is also 

suggested that the suitability indicators can be taught as powerful methodological tools to organize 

the teacher reflection –as it has already been done in different processes of teacher training in Spain, 

Ecuador, Chile and Argentina (Giménez, et al., 2012; Valls & Vanegas, 2015; Posadas, 2015; 

Pochulu, Font & Rodriguez, 2016; Seckel, 2016) –, that aim at the fostering of the “meta” 

dimension of didactical-mathematical knowledge (DMK) of Mathematics teachers (Pino-Fan, Assis 

& Castro, 2015; Pino-Fan, Godino & Font, 2016). 

Acknowledgements 

This work has been developed in the framework of Research Projects: FONDECYT Nº11150014 

(CONICYT-Chile), EDU2015-64646-P (MINECO/FEDER, UE), REDICE16-1520 (ICE-UB) and 

the PDSE program CAPES/Brazil process number 99999.004658/2014-00. 

References 

Brasil. (2013). Uma análise quali-quantitativa de perfis de candidatos ao Mestrado Profissional em 

Matemática em Rede Nacional (PROFMAT). Sociedade Brasileira de Matemática (SBM). 

Breda, A. (2016). Melhorias no ensino de matemática na concepção de professores que realizam o 

mestrado PROFMAT no Rio Grande do Sul: uma análise dos trabalhos de conclusão de curso. 

Tese de doutorado, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brasil. 

Breda, A., Font, V., & Lima, V. (2015). A noção de idoneidade didática e seu uso na formação de 

professores de matemática. Jornal Internacional de Estudos em Educação Matemática, 8(1), 4-

41. 

Breda, A., Font, V., & Lima, V. M. (2016). Análise das Propostas de Inovação nos Trabalhos de 

Conclusão de Curso de um Programa de Mestrado Profissional em Matemática. Avances de 

Investigación en Educación Matemática, 10(2), 53-72. 

Breda, A., & Lima, V. M. R. (2016). Estudio de caso sobre el análisis didáctico realizado en un 

trabajo final de un máster para profesores de matemáticas en servicio. REDIMAT - Journal of 

Research in Mathematics Education, 5(1), 74-103. doi: 

http://dx.doi.org/10.17583/redimat.2016.1955 

Breda, A., Pino-Fan, L., & Font, V. (2016). Establishing criteria for teachers' reflection on their 

own practices. In Csíkos, C., Rausch, A., & Szitányi, J. (Eds.), Proceedings of the 40th 

Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 

283). Szeged, Hungary: PME. 

http://enfoqueontosemiotico.ugr.es/documentos/tesis_Breda_2016.pdf
http://enfoqueontosemiotico.ugr.es/documentos/tesis_Breda_2016.pdf
http://enfoqueontosemiotico.ugr.es/documentos/tesis_Breda_2016.pdf
http://dx.doi.org/10.17583/redimat.2016.1955


Breda, A., Pino-Fan, L., & Font, V. (In press). Meta didactic-mathematical knowledge of teachers: 

criteria for the reflection and assessment on teaching practice. Eurasia Journal of Mathematics, 

Science & Technology Education.  

Caldatto, M. (2015). O PROFMAT e a formação do professor de matemática: uma análise 

curricular a partir de uma perspectiva processual e descentralizadora. Tese de doutorado, 

Universidade Estadual de Campinas, Campinas, Brasil.   

Caldatto, M., Pavanello, R., & Fiorentini, D. (2016). O PROFMAT e a Formação do Professor de 

Matemática: uma análise curricular a partir de uma perspectiva processual e descentralizadora. 

Bolema, 30(56), 906-925. 

Valls, S. F., & Muņoz, Y. M. V. (2015). Uso de criterios de calidad en la reflexión sobre la práctica 

de los futuros profesores de secundaria de matemáticas. Procedia-Social and Behavioral 

Sciences, 196, 219-225. 

Font, V. & Godino, J. D. (2011), Inicio a la investigación en la enseñanza de las matemáticas en 

secundaria y bachillerato, en J. M. Goñi (ed.), MATEMÁTICAS: Investigación, innovación y 

buenas prácticas (9-55). Barcelona, España, Graó. 

Giménez, J., Vanegas, Y., Font, V., Ferreres, S. (2012). El papel del trabajo final de Máster en la 

formación del profesorado de Matemáticas. UNO. Revista de Didáctica de las Matemáticas, 61, 

76-86. 

Godino, J. D. (2011). Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje 

de las matemáticas. XIII Conferência Interamericana de Educação Matemática (CIAEM-

IACME). Recife, Brasil. 

Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in 

mathematics education. ZDM. The International Journal on Mathematics Education, 39(1), 127 

– 135. doi: 10.1007/s11858-006-0004-1 

Lopes, A. (2014). Um relato sobre à introdução às somas de Riemann na Educação Básica. 

Dissertação de mestrado, Mestrado Profissional em Matemática em Rede Nacional PROFMAT, 

Universidade Federal de Santa Maria, Santa Maria, Brasil. 

Pino-Fan, L., Assis, A., & Castro, W. F. (2015). Towards a methodology for the characterization of 

teachers’ didactic-mathematical knowledge. EURASIA Journal of Mathematics, Science & 

Technology Education, 11(6), 1429-1456. doi: 10.12973/eurasia.2015.1403a. 

Pino-Fan, L., Godino, J. D., & Font, V. (2016). Assessing key epistemic features of didactic-

mathematical knowledge of prospective teachers: the case of the derivative. Journal of 

Mathematics Teacher Education. doi: 10.1007/s10857-016-9349-8 

Pochulu, M., Font, V. & Rodríguez, M. (2016).  Desarrollo de la competencia en análisis didáctico 

de formadores de futuros profesores de matemática a través del diseño de tareas. Revista 

Latinoamericana de Investigación en Matemática Educativa-RELIME, 19(1), 71-98. 

Posadas, P. (2013). Evaluación de la idoneidad didáctica de una experiencia de enseñanza sobre 

ecuaciones de segundo grado en 3º de educación secundaria obligatoria. Tesis de magíster, 

Universidad de Granada, Granada, España. 

Ponte, J. P. (1994). O estudo de caso na investigação em educação matemática. Quadrante, 3(1), 3-

18. 

Seckel, M. J. (2016). Competencia en análisis didáctico en la formación inicial de profesores de 

educación general básica con mención en matemática. Tesis de doctorado, Universitat de 

Barcelona, Barcelona, España. 



Describing a secondary mathematics teacher’s specialised knowledge 

of functions 

Dinazar Escudero-Avila1, Eric Flores-Medrano1, and José Carrillo2 
1BUAP, Puebla, México; eadinazar@hotmail.com; ericfm_0@hotmail.com 

2University of Huelva, Huelva, Spain; carrillo@uhu.es 

 

Taking a case study into the specialised knowledge of linear functions demonstrated by a secondary 

teacher, we aim to demonstrate, and to raise discussion about, a set of methodological tools for 

organising and representing mathematics teachers’ knowledge. The results are art of an ongoing 

study which employs the model of professional knowledge known as Mathematics Teacher’s 

Specialised Knowledge. We also believe that the use of these tools help to demonstrate the 

effectiveness of the division of this knowledge into subdomains, and affirms the relevance of the 

descriptors defining their boundaries. 

Keywords: Secondary, mathematics teacher’s specialised knowledge, functions. 

Introduction 

Since the CERME 8 conference in Turkey, the University of Huelva research group has presented a 

series of papers demonstrating an analytical model that is being developed to aid the study of 

mathematics teachers’ specialised knowledge (e.g. Montes, Aguilar, Carrillo & Muñoz-Catalán, 

2013; Vasco, Climent, Escudero-Ávila & Flores-Medrano, 2015; Flores, Escudero & Carrillo, 2013), 

we outlined the model currently under development, known as Mathematics Teacher’s Specialised 

Knowledge (MTSK). In this model, each subdomain is described in terms of mathematical concerns, 

an aspect which represents a significant move away from other models (Carrillo, Climent, Contreras 

& Muñoz-Catalán, 2013). 

Continuing the group’s work on this model, this paper illustrates the application of various 

methodological tools to studying and understanding mathematics teachers’ knowledge, as brought 

into play in the classroom. At the same time, we consider developments in the theoretical foundations 

of the model, and present adjustments that have been made in the light of empirical studies and fruitful 

discussion in various academic platforms. We illustrate the use of these tools by means of an 

analytical study of the knowledge employed by a secondary school mathematics teacher in the process 

of planning classroom activities. 

Mathematics Teacher’s Specialised Knowledge (MTSK) 

The distinguishing feature of the MTSK model is that it incorporates elements of knowledge which, 

considered as a unit, are uniquely relevant to mathematics teachers. It contemplates two chief 

knowledge domains – Pedagogical Content Knowledge and Mathematical Knowledge, each divided 

into three subdomains. 

For its part, Pedagogical Content Knowledge is composed of Knowledge of Features of Learning 

Mathematics (KFLM - the teacher’s knowledge of the processes involved in the students’ assimilation 

of mathematical content), Knowledge of Mathematics Teaching (KMT - the teacher’s stock of 



resources and strategies for teaching such as examples, tasks, analogies and so on), and Knowledge 

of Mathematics Learning Standards (KMLS - the teacher’s knowledge of the performance targets set 

for different educational stages). Meanwhile, Mathematical Knowledge comprises Knowledge of 

Topics (KoT - knowledge of the mathematical content pertaining to any particular course, along with 

the associated foundations, properties, definitions, phenomenological associations and so on), 

Knowledge of the Structure of Mathematics (KSM - the teacher’s knowledge of mathematical 

connections between concepts), and Knowledge of Practices in Mathematics (KPM - knowledge of 

the syntax of mathematics and the procedural logic at the heart of the discipline) (Escudero-Ávila, 

Carrillo, Flores-Medrano, Climent, Contreras & Montes, 2015). 

In addition to the division into subdomains, the MTSK model also places emphasis on beliefs about 

mathematics and about mathematics teaching and learning, as the relationship between beliefs and 

knowledge is a significant consideration, influencing, for example, how a teacher might deploy his 

or her knowledge. This provides a base to interpret knowledge evidences that we found and gives us 

sensitivity to interpret some elements that allow to contextualize David’s teaching decisions and the 

exchange of opinions with his colleagues. 

Methodological tools for studying and understanding the specialised knowledge 

of mathematics teachers 

In this section we present an example of an analysis using MTSK, which we hope will demonstrate 

a deeper understanding of the nature of each of the subdomains involved and illustrate some 

interesting methodological tools. 

We analyse the case of David (fictitious name), a secondary school mathematics teacher working in 

Colombia, who, at the time of the data collection, was studying an online Master’s degree. His first 

degree was in Chemical Engineering, and he had been involved in education for over 25 years as a 

teacher of Mathematics, Physics and Chemistry. He had also participated in several teacher training 

courses and similar programmes. The bulk of his experience was in upper secondary (14-18 year-

olds), but for the previous eight years he had worked in lower secondary (12-14 year olds), teaching 

Mathematics. 

Our analysis focuses on David's participations in forums and his written productions as part of the 

Master’s course. David plans a lesson for teaching linear and quadratic functions. The task required 

the teacher to devise an exercise for use with the class, and then to discuss aspects of it with the group 

tutor and the other course participants in various sessions of an online forum, with the aim of 

evaluating the task and making any modifications deemed necessary as a result. 

David came up with two exercises, one dealing with linear functions, the other with quadratic, both 

aimed at pupils in eighth grade. In this paper, we focus on the specialised knowledge we were able to 

identify relating to the exercise concerning linear functions. It should be noted here that although 

David was given several opportunities to incorporate modifications to his planned activity, he 

ultimately decided to stick with the same plan through to the end of the course. 

The Master’s programme which forms the background to our analysis encouraged teachers to explore 

aspects of their day-to-day classroom practice. This required them to articulate their pedagogical and 

mathematical knowledge in order to explain to the other teachers and the tutor the decisions that had 

led to their particular activities. 



Our system for classifying and organising the knowledge displayed by David was based on units of 

analysis drawn from his written discourse in forums and tasks over the duration of the course. These 

were assigned to a particular category within the subdomains making up MTSK. In order to establish 

these categories and refine the analysis, we used Grbich’s top-down and bottom-up methodology 

(Grbich, 2013). This approach enables researchers to move from theory to data (top-down) by 

opening provisional categories suggested by the literature review, and from data to theory (bottom-

up) by eliminating, merging and opening new categories consistent with the results obtained from 

empirical study.  

With respect to the potential of this methodological approach, we propose the following example. In 

Escudero (2015), it is mentioned that the KFLM and KMT subdomains contain a category that reflects 

the knowledge that teachers have about learning and teaching mathematics, respectively. With this 

information we analyze the data collected from David to find elements related to teaching/learning 

theories. When David mentions Socio-Epistemological Theory, it is clear that he has knowledge 

about the theories we are looking for (top-down). On the other hand, when David refers to 

Socioepistemology, we could notice some differences with the “formal” constructs, therefore we 

think of the possibility to explore knowledge of formal theories and personal knowledge base in 

formal theories whose nature corresponds with the knowledge of teaching/learning theories (bottom-

up). 

As a result of this procedure, we developed a range of categories for each of the subdomains, enabling 

specific aspects of each one to be considered, and giving a fuller description of the MTSK model. 

These categories are illustrated alongside the model in Figure 1. 

 

Figure 1: Mathematics Teacher’s Specialised Knowledge 

Once units of David’s knowledge had been identified from his contributions during the course, we 

wanted to be able to describe and understand the specialized knowledge deployed in each instance. 

To do so required a tool that would allow us to determine the type of knowledge, the connections 

between different subdomains, and the nature of this knowledge in terms of the different categories 

within each subdomain. At the same time, we wanted to keep in sight the holistic character of this 



kind of knowledge, and to maintain an awareness that the placing of boundaries around discrete areas 

of knowledge is a (necessarily) artificial procedure serving analytical purposes. To this end, we 

devised a coding system using shapes and colours, whereby subdomains were represented by colours 

and categories by shape. In addition, associations between different types of knowledge were 

schematized by a series of arrows joining the two elements. The result can be seen in Figure 2 below. 

David’s specialised knowledge of Mathematics   

The task which we will analyse below concerns filling a tank, in the shape of a rectangular prism, 

with water. 

David: There is a rectangular tank with a volume as shown in the figure, which is to be 

filled with water at the rate of 1 cm3 per second. 

 

Draw a table in which the variables are height and time.  

If the inflow varies, what happens to the graph, if it increases and if it decreases?  

What type of function do you get if you model the two situations?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: A representation of David’s specialised knowledge regarding the concept of functions 



An interpretation of Figure 2 is presented below. The aim is to reach an understanding of David’s 

specialised knowledge, as identified in his contributions during the course, and of the connections 

between the different subdomains and categories which can be detected. 

David goes on to specify the objectives of the task, underlining the importance of designing 

appropriate activities for the topic of functions, and gives a list of the resources to be used with 

suggestions for conducting the activity. These include a series of exercises aimed at guiding the 

students towards analysing the problem, establishing the relationship between the variables and 

modelling the process in order to arrive at a function modelling the behavior. In the final section, he 

makes various observations about the use of the teaching resources. 

Although David does not write explicitly about his knowledge of the properties of linear functions 

(yellow ovals), the design of the exercise and his comments about it provide indications of the 

elements he considers fundamental to them, such as the parameters and concept of dependent and 

independent variables, and noting that directly proportional magnitudes are also linear functions. 

Nor does David explicitly solve the activity, although he does talk about different ways the problem 

can be solved. One method he mentions is that of primary difference for calculating the parameters 

of the functions modelling the phenomenon in question. This indicates knowledge of mathematical 

procedures associated with the mathematical content (yellow rectangle), which represents 

evidence that he knows a specific mathematical process associated with the concept of linear 

functions. 

David:  […] using differences to find out the parameters of the functions; the primary 

difference for the linear, and the secondary difference for the quadratic; that is for 

when I need to find out the parameters using the given data. 

The students are encouraged by the task to employ different semiotic registers of representation 

(Duval, 1995) for the function, that is, the pictorial, numerical, graphical and algebraic. This provides 

us with evidence that David has knowledge of different registers of representation (yellow rectangles 

with rounded corners) associated with the concept of functions. 

Regarding knowledge of the mathematical characteristics specific to teaching resources (green 

rectangles) used by David in his design, and which are located in KMT, we identified that he knows 

a specific mathematical task for dealing with the concept of linear functions, such as filling a 

receptacle at a constant rate, and also a specific technique for teaching the concept – the transition 

between registers of representation. Questioned about the exercise, David demonstrates a connection 

between understanding registers in terms of mathematics and understanding them in terms of 

teaching, when he considers the transfer from one register to another as a teaching strategy, thus 

making a connection between KoT and KMT: 

David: Generally, we, teachers, prefer to work in the algebraic register; but to a large 

extent we can also recognise the different variations a function can undergo using 

tables and graphs, by giving the dependent variable different values to the ones 

originally set. 

 […] By moving from one register to the other [from the algebraic to the graphic], I 

hope that, by making graphs, [the students] establish the relations between the 



dependent and independent variables, and can see how this resource, that is the use 

of graphs, could be put to use in modelling. 

A connection to KFLM is also made that contemplates potential errors, obstacles and difficulties to 

learning, as well as, conversely, areas that might offer an advantage when David considers potential 

difficulties in learning the concept of function (mauve rectangles):  

David: [I acknowledge] a high degree of complexity in learning the concept of function, 

because of the variety of its representations in different contexts, and its algorithmic 

nature. 

Awareness of these potential difficulties in representing functions is inherent to the concept of 

function itself. 

Elsewhere, another connection between KoT and KFLM can be seen when David shows that he is 

aware of how modelling real world phenomena can be a motivating factor in work on functions as 

the students can establish the relationship between dependent and independent variables through 

making graphs, thus providing a meaning linked to a tangible context for the linear and quadratic 

functions. It is precisely this kind of knowledge – understanding how drawing up graphs can help 

students learn about functions – which we consider knowledge of the students’ interests and 

expectations regarding the teacher’s approach to the concept in question (mauve rectangle with 

rounded corners). 

As might be expected, David’s KoT is the foundation on which the task is constructed, providing him 

with the background knowledge for sequencing activities and setting his goals. One important aspect 

is his knowledge of phenomena which can be modelled by linear functions, such as the rate at which 

a rectangular-shaped vessel fills with a constant inflow, which we have denominated knowledge of 

the phenomenology associated with the concept (yellow labels), on the basis that understanding 

the mathematical features of the phenomenon and the effect of its variation on the different modes of 

representation, enables David to make connections between the variables involved, and to model the 

phenomenon via the transition from one register to another, using modelling as a teaching strategy 

for generating “new” meanings of the concept of functions. 

David: [I recognise] the importance of learning this concept [function], and its significance 

as a tool for modelling different phenomena in mathematics, physics, chemistry and 

economics amongst others. 

As can be seen in Figure 2, modelling plays an important role in the task design. Deconstructing 

David’s understanding of modelling, we can see that he imbues it with different meanings, and we 

can duly recognise the different ways that David understands and recognizes modelling. Hence, on 

the one hand, we can locate David’s knowledge of modelling as a teaching strategy (green 

rectangles) within KMT. On the other, within KPM, we can identify David’s knowledge of modelling 

as a mathematical practice or process (blue labels), directly associated with the concept of functions 

which enables real world phenomena to be interpreted. Finally, within KFLM, David identifies the 

concept as a means of getting students to interact with mathematical content for educational 

purposes (mauve oval). 



At the same time, KFLM includes knowledge about theories of mathematics learning, whether 

formal or personal (mauve label). In David’s case, he was able to draw on various theoretical 

constructs at the design stage of his materials so as to supply a solid foundation for his work. Some 

of these constructs derive from Sociopistemological theory (Cantoral & Farfán, 2003). In the excerpt 

below, David makes reference to some socioepistemological constructs (marked in bold): 

David: One of our aims is to achieve the concept of function resignification using the 

modelling practice. 

Asked about the origin of terminology, David replied: 

David: Socioepistemology allows me not only to view mathematics education as a practice 

in which we convey knowledge, express postulates, solve problems and do 

demonstrations, but also to see beyond the concepts to what lies behind them, to 

transform them and to transpose them to other contexts and so get closer to real life 

[…] From the perspective of linguistics, we can note significant learning and 

resignification. Both attempt to modify the meanings of a concept, but Significant 

Learning is the process followed to achieve learning of value, and where our 

behaviour changes, while resignification is the means by which I achieve this 

learning. 

Given the lack of rigorous definition of the constructs (it could even be said that some are not totally 

accurate, in that modelling and making graphs are not actually defined as social practices) we can say 

that David has a certain personal knowledge of this theory, which allows him to take a position in 

terms of how the concept of function is to be learnt (re-signified). That is to say, drawing on his 

knowledge of formal theory, David has developed a personal theory of the relevance of learning about 

functions based on the “practice of modelling”. His personal theory extends to regarding education 

as a tool for creating specific meanings about functions by enabling connections to real world 

situations to be made. 

Regarding KPM, as can be seen in Figure 2, David’s knowledge of the processes of validation, 

reasoning, and checking via software (blue rectangles with rounded corners) is directly connected 

to teaching technique chosen for his lesson plan. It also links to his knowledge of technology 

specifically designed for teaching Mathematics (green ovals), namely GeoGebra and Cabri. 

David: The use of the software is to show the students that their work is not only checked 

by their classmates, but also by a tool which in addition to helping them show their 

results, is like an external agency which can tell them whether what they have done 

is right or not. 

Final reflections 

We can conclude that David’s knowledge of various teaching resources, such as software and 

teaching strategies, and the use to which he puts this knowledge could be connected to his 

understanding of the ways of proceeding and producing in Mathematics, possibly as a result of the 

tendency of KPM to organize mathematical work, as discussed above. 

The main connections that this analysis has brought to light are those between KoT, KMT and KFLM. 

As underlined above, these connections illustrate the interdependence between the different 



categories within the subdomains, and highlight the holistic and indivisible nature of teachers’ 

knowledge of the teaching and learning process. What a teacher knows about interacting with content, 

or about learning theories and possible difficulties that might arise in a specific topic, has a significant 

influence on how the teacher plans the lesson. However, it is important to distinguish between the 

influence that this knowledge brings to bear on the planning process and the teacher’s knowledge of 

planning itself a teaching resource. 

We hope that this study serves to open a debate within the group about the relevance, potential and 

shortcomings of using categories to analyse Mathematics teachers specialized knowledge, and 

likewise the use of colour-coding and shapes as a means of aiding the assimilation of the information 

and facilitating the analysis of the connections between subdomains and categories. 
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This paper addresses the knowledge about the function concept and the knowledge on how to teach 

this concept using an analogy. The analysis of an episode of one lesson in which the analogy between 

a washing machine and the concept of a function is shown allows identifying specialised knowledge 

about the function concept and teaching strategies. The study findings reveal links between 

knowledge of the topic and knowledge of mathematics teaching, permitting identification of 

potentialities and limitations of the analogy used. 

Keywords: Function concept, mathematics teachers' specialised knowledge, analogies.  

Introduction  

Function is one of the most important concepts in mathematics, fundamental for development of 

mathematical analysis and mathematics in general (Ponte, 1992). This concept is not only present in 

many areas of mathematics, but is prevalent in the school curriculum and is, of course, studied as a 

part of the mathematics teacher training programs. Given its importance and great complexity 

(Dubinsky & Harel, 1992), it is essential that the mathematics teacher's knowledge considers both the 

discipline-specific knowledge of the function concept, as well as knowledge about how it is taught 

and learned. 

Teachers' knowledge has been widely studied from different perspectives, using a wide range of 

theoretical models (e.g., Shulman, 1986; Ball, Thames, & Phelps, 2008; Carrillo et al., 2014). The 

Mathematics Teacher's Specialised Knowledge (MTSK) model is presented both as a 

conceptualisation for mathematics teachers' knowledge and as an analytical tool for acquiring this 

knowledge (Flores, Escudero, & Aguilar, 2013). Studying the subdomains and categories proposed 

by the MTSK model, and their relationships, allows us to advance the understanding and analysis of 

teachers’ knowledge (Sosa, Flores-Medrano, & Carrillo, 2015). Part of this knowledge is related to 

the depth of the teacher’s understanding of a concept (in this case the function) as a mathematical 

concept and as an object of teaching. Several studies conducted to date focused on the understanding 

of the function concept on students, pre-service teachers, and practicing teachers (e.g., Even, 1990; 

Breidenbach, Dubinsky, Hawks, & Nichols, 1992). Other studies highlight the importance of fully 

understanding the concept (e.g., Sierpinska, 1992), identification of its representations (e.g., Even, 

1990), as well as difficulties in learning (e.g., Dubinsky & Harel, 1992) and relating their different 

representations (e.g. Ponte, 1992; Figueiredo, Contreras, & Blanco, 2015). The focus of the present 

investigation is on the relationship between teachers’ knowledge about the function concept and the 

knowledge about its teaching from the perspective of the MTSK, particularly when a teacher uses an 

analogy to make the function concept understandable. In this study we ask what knowledge about 



functions and their teaching can be inferred from the use of an analogy? How are these knowledge 

types related? 

Analogies 

According to Treagust, Duit, Joslin, and Lindauer (1992), analogy is achieved through a comparison 

of structures in two distinct domains, one of which is familiar (source or analogue), while the other 

is unfamiliar (target).  

An analogy refers to comparisons of structures between domains. An analogy is a relation between 

parts of the structures of two conceptual domains and may be viewed as a comparison statement 

on the grounds that these structures bear some resemblance to one another. (Treagust et al., 1992, 

p. 413) 

The use of analogies in teaching, particularly as a didactic strategy in the teaching-learning process, 

has been extensively studied (e.g., Duit, 1991; Treagust et al., 1992). For example, Curtis and 

Reigeluth (1984) analysed instructional text and provided a classification of the ways in which the 

relationship between the source and the target domain is established. According to the authors, the 

relationship can be (1) structural, referring to physical similarity or similar construction; (2) 

functional, referring to the way of functioning of both structures; and (3) structural-functional, 

formed by combining the previous two. They add that analogies occur in two forms: verbal and 

pictorial-verbal, whereby the former is achieved solely via the use of words, while in the latter words 

are complemented by an image.  

Teachers tend to produce analogies automatically when answering questions or explaining the 

concepts they are teaching (Ünver, 2009). According to Figueiredo et al. (2015), function as a 

machine is an example of such analogies and this comparison will show only some aspect of the 

concept. Function can be descripting operationally as a computational process or structurally as a set 

of ordered pairs (Sfard, 1991). To present the function trough this analogy conducts to understand the 

concept as an input-output process in an operational way.   

Mathematics Teacher's Specialised Knowledge  

The MTSK model (Figure 1), in the spirit of contributions by Shulman (1986) and Ball et al. (2008), 

proposes, within the teacher's knowledge, a discipline-specific component (MK, mathematical 

knowledge) and a didactic component (PCK, pedagogical content knowledge). A further component 

related to beliefs about mathematics and about teaching and learning it is introduced in the middle of 

the model.  

According to Carrillo et al. (2014), MK corresponds to knowledge specific to the discipline being 

taught, and comprises of three subdomains: Knowledge of Topics (KoT), Knowledge of the Structure 

of Mathematics (KSM), and Knowledge of the Practice of Mathematics (KPM). KoT considers the 

phenomenology, definitions, properties, procedures, and foundations of the topic, as well as the ways 

of recording and representing it. On the other hand, KSM pertains to the conceptual connections 

among mathematical concepts, relating a concept to prior contents (simplification), later contents 

(adding complexity), or to contents with a common property (transverse connections), and the 

auxiliary connections among objects. Finally, KPM is related to knowledge about the characteristics 



of mathematical work, namely how to proceed and create knowledge in mathematics, practices linked 

to mathematics in general, and practices linked to a specific topic. 

 

 

Figure 1: Sub-domains of the MTSK model (Carrillo et al., 2014) 

PCK corresponds to didactic knowledge specific to teaching work in the process of teaching and 

learning mathematics. Once again, it comprises of three subdomains, namely Knowledge of Features 

of Learning Mathematics (KFLM), Knowledge of Mathematics Teaching (KMT) and Knowledge of 

Mathematics Learning Standards (KMLS). KFLM considers teachers' knowledge of their students’ 

learning styles, strengths and difficulties associated with learning, way of interacting with 

mathematical content, students' conceptions of mathematics, and personal or institutional theories of 

mathematics learning. KMT is knowledge about mathematical content conditioned by its teaching, 

including knowledge about personal or institutional teaching theories, physical and virtual resources, 

and strategies, activities, examples, and help. Finally, KMLS pertains to knowledge about required 

mathematical concepts to be taught, knowledge about the level of conceptual and procedural 

development expected, and the sequencing of the various topics.  

The aforementioned division into subdomains allows us to deepen our understanding of the elements 

of knowledge that are utilised in an integrated and interconnected manner. The MTSK model is a 

suitable analytical tool for meeting the objective of the present study because, in addition to 

highlighting mathematics, its categories, and subdomains, it allows focusing on teachers’ knowledge 

about the function concept and its teaching (for example, the definition, its properties, representation, 

and the strategies used when teaching). 

Methods 

This research is grounded in an interpretative paradigm and is based on the instrumental case study 

design (Stake, 2007). The aim is to investigate from the perspective of MTSK the knowledge 

manifested by a high-school teacher when teaching the concept of function. The teacher that is in the 

focus of the study, henceforth referred to as Arturo, has ten years of teaching experience, teaching 

classes from fifth to twelfth grade. He is also a university teacher in first-year classes for engineering 

students and for pre-service teachers. He has also worked as a teacher in continuing education courses 

for primary-school teachers and has taken courses connected to university teaching, curricular updates 

in geometry, and curricular reform. At the time of this study, Arturo was teaching ninth-grade classes, 



where he had planned to introduce the function concept. According to the information provided by 

Arturo, his group of students is familiar with the use of algebraic language, equation solving 

techniques, and Cartesian plane, among others. 

To collect the data, classes in which Arturo planned to introduce the function concept were observed 

and video-recorded. The videos were transcribed and the transcripts served as the principal source of 

information. The resulting data was subjected to content analysis (Bardin, 1996), whereby class 

episodes were determined according to the tacit or explicit goals of the teacher. The units of analysis 

correspond to the teacher’s interventions and responses provided by his students. In addition, only 

those that present evidence of teacher's specialised knowledge have been considered (Flores et al., 

2013). In the first class, Arturo introduces the concept of function and its definition, and provides 

some examples of functions. An episode was selected from this class, in which the teacher uses an 

analogy to promote students’ understanding of the definition of function. The episode was analysed 

in relation to the KoT and KMT sub-categories of the MTSK. 

Results and discussion  

Arturo defined function as a correspondence between elements of two sets in which each element of 

the input set corresponds to a single element in the output set. Knowledge of this definition is part of 

his KoT. To make this definition understandable, Arturo introduces a washing machine as an analogy 

for a function, alluding to a family context for his students. To know this context is not part of the 

MTSK, but it allows us to reflect on the scope and applicability of the analogy according to the type 

of students to whom they are presented. In the following extract, Arturo presents the analogy between 

function and washing machine:  

Arturo:         Before giving you more names, the function works like a kind of machine. An 

example could be a washing machine. A washing machine carries out a function. 

What is its function? 

Student:          Washing! 

Arturo:          What do you do? You take an article of clothing. It's dirty. You put it in the washing 

machine. How does it come out? 

Student:          Clean. 

Arturo:      Did the washing machine fulfil its function? Yes. The dirty article of clothing would 

be a member of the input set, and the clean article of clothing would be a member 

of the output set. This is what the function does. Here [he points to a diagram] we 

would have the dirty article of clothing. The function does what it does, depending 

on the machine, and arrives at the other side. In the case of a washing machine, it 

arrives clean.  

Knowledge of analogies, as elements that enhance the teaching of a concept, is part of the teacher's 

specialised knowledge (Carrillo et al., 2014). The use of analogy shows teacher's knowledge about 

when to give any specific help to his students (KMT). The use of analogy favours the understanding 

and visualisation of abstract objects in students, besides being a motivation for a new theme. This 

analogy presents the function as a process and allows the students to better understand this concept 

(Sfard, 1991; Figueiredo et al., 2015). Moreover, different components can be identified, namely 



domain, co-domain, pre-image, and image explaining the connection between the source and the 

target domain.  

a) 1     b)  

Figure 2a: Presentation of the analogy. 2b: Relationship between the source and the target domain. 

The analogy is presented in two formats: in the intervention described (verbal) and when the teacher 

draws a washing machine on the whiteboard (pictorial). This illustration (Figure 2a) shows the 

function as an input-output process, in which the object that enters is modified (in this case, a dirty 

article of clothing comes out clean). In this example, the objects are the same at entry and exit (T-

shirts in both cases). Other analogies for this concept can relate objects of different nature. For 

example, function can be represented as a coffee dispensing machine into which money is entered in 

order to obtain a cup of coffee, highlighting the arbitrariness of related sets (Even, 1990). In this 

sense, the analogy of the washing machine impedes the association of arbitrary sets, which may result 

in students gaining a partial understanding of the concept. Likewise, the washing machine does not 

show other conceptions for the function as, for example, the co-variation of magnitudes. Similarly, it 

does not facilitate representation of more complex functions or the complexity of the concept itself 

(function algebra, composition).  

Arturo takes advantage of this relation between input and output to clarify the definition of the 

concepts of image and pre-image, which are parts of his KoT. Similarly, evidence of his knowledge 

about the domain and co-domain of the function appears in the analogy as "dirty clothes" and "clean 

clothes." This knowledge and the exposed relations between the source and target domains account 

for the use of analogy as a strategy for teaching the function, evidencing a relationship between its 

KoT and its KMT. Figure 2a shows Arturo's knowledge of the notation f(x) = y (knowledge about 

representations as a part of his KoT) that allows him to show the relationship between two domains 

of the analogy (as knowledge of strategies - KMT) and to introduce new ways to represent the 

function. 

In the following excerpt, Arturo explains the relationship between the linked domains, source and 

target, using the analogy, in which we interpret the structural and functional character of the analogy 

presented (Curtis & Reigeluth, 1984). 

Arturo: In our context, our function was the washing machine, washing. Set A would be 

dirty clothes and Set B clean clothes. If this is our washing machine, and it carries 

out its function; dirty clothes go in, and how do they come out? 

                                                 

1 f: washing machine   A: dirty clothes    B: clean clothes 



Student:  Clean! 

Arturo:  The same as what we did here. The function was applied to this kind of T-shirt that 

I drew that was dirty. What will it equal? 

Student:  Clean, clean clothes. 

Arturo:  The same T-shirt, but clean. These two elements also have names. This element 

here is called the "image" of what I sent in. [...] And these elements here are called 

"pre image." What is the clean T-shirt?  

Student:  Image. 

Arturo:  The image of what? 

Student:  Of the dirty T-shirt. 

The structural characteristic is shown in establishing the correspondences of the Set A with the dirty 

clothes, the Set B with the clean clothes, and the washing machine with the arithmetic process carried 

out by the function. That is, the structure of the laundry process is analogous to the evaluation process 

in the function. When Arturo presents the analogy "function as a washing machine," he also refers to 

its functional character, as he establishes a comparison between the operation of the machine and the 

function. After this intervention, Arturo represented verbally and as an algebraic expression 

(representations in his KoT) an example of function (Figure 2b), thus deepening the analogy between 

machine and function. 

Arturo:  With numbers, the function isn't going to do the washing. It's going to add two to 

whatever comes in [he writes "f(x) = x+2"]. Whatever comes into the function, to 

the machine, I add two to it. If this is my machine that adds two to whatever comes 

in, if a one enters, how does it come out?  [Student: Three.] 

It should be noted that, when Arturo teaches "with numbers," he aims to work in the target domain of 

functions. Consequently, the situation created becomes an example (knowledge of examples - KMT) 

that will allow him to present the functional characteristic of the analogy and propose a two-way 

process for understanding the relationship between a function and a washing machine (Figure 2b). 

The relationship between an algebraic expression (function) and a washing machine presents 

functions as an input-output process, meaning of the concept that we consider part of his KoT. In the 

same way, the articulation and selection of representations for the function (the analogy, f(x) = y, 

algebraic expression and natural language) accounts for Arturo's KoT, relating to his KMT.   

In this last intervention, by associating a function with a machine, Arturo highlights the process role 

of a function (part of his KoT). We do not have evidence of Arturo highlighting the object role of a 

function supported by the analogy studied here, although the structural character of the analogy may 

be the first approach to this conception. 

Conclusion 

According to the results yielded by the analyses presented above, the relations between the teacher’s 

KoT and KMT are demonstrated in the articulation between knowledge of representations of the 

function and the choice and use of these representations as examples and analogies for teaching the 



concept. In addition, the choice of analogies and examples given by Arturo reflect his KMT, which 

is nurtured and influenced by his KoT. The analogy shows the function as a correspondence in 

coherence with the definition given, while also permitting articulation of different representations: 

sagittal and algebraic diagram (Figure 2b). They also allow the teacher to produce other 

representations as a Cartesian graph or a table of values, thereby expanding the concept image for the 

students. Likewise, the analogy allows the students to appreciate the univalence character of the 

function (Even, 1990) and to extend the range of situations in which the concept of function is present 

(phenomenology - KoT). 

The analogy utilised in this case is suitable for teaching and learning given that it is connected to the 

students' prior everyday experience. Moreover, its functional and structural character allows them to 

understand the concept from different perspectives and using different representations. Establishing 

a bidirectional relationship between the function and the washing machine can allow students to 

utilise the concept of a function they have learned to identify the concept in other areas of mathematics 

and other areas of knowledge. It should be noted that, in spite of the benefits presented by this 

analogy, students may have a partial notion of function if the conception of function as a machine is 

maintained. Thus, it is essential that other aspects of the concept be highlighted, such as the 

arbitrariness of the sets involved (Even, 1990). It is also important to relate it to other representations 

(Figueiredo et al., 2015). Lack of articulation between representations can cause a limitation in the 

development of the conception of function from the structural perspective (Sfard, 1991; Breidenbach 

et al., 1992). On the other hand, this presentation of the concept may constitute an obstacle to learning, 

for example, the algebra of functions or its composition (How do I sum two machines?). Likewise, 

students’ direct experience with the laundry process can be detrimental in understanding the function: 

"the function did not fulfil its function." However, it is not the purpose of the study to evaluate the 

methodological proposal or Arturo's knowledge, but rather to approach it with the intention of 

improving our understanding of such knowledge, that of subdomain relationships in particular. In that 

sense, the analysis using the MTSK model is useful for advancing this understanding. 
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This paper reports a qualitative study of the post-lesson reflections of two pre-service teachers in 

Norway. During their third school placement, Nora and Mia volunteered to use the Knowledge 

Quartet to analyse and reflect on their own mathematics teaching. Comparing the nature of their 

reflections at the start and at the end of the placement, we find that Nora and Mia exhibit some 

development, focusing more on mathematical content at the end of the study than in the beginning.  

Factors that can influence their reflections are discussed: their own experience of mathematics and 

their beliefs about mathematics seemed to play an important role in how they interpreted and made 

use of the framework. 

Keywords: Mathematics teacher education, teacher background, elementary school mathematics, 

teacher practicum placement, Knowledge Quartet. 

Introduction  

The apparent disconnect between teacher education and the practice of teaching is of great concern 

to teacher educators (e.g., Solomon, Eriksen, Smestad, Rodal, & Bjerke, 2015). Systematic 

reflection on teaching might reduce this fragmentation, providing an educational experience based 

on genuine classroom experiences. However, teacher educators face the challenge of encouraging 

pre-service teachers to engage with classroom data in a meaningful way. In mathematics, in 

particular, research efforts have been made to find ways of focusing attention on mathematics as 

opposed to general pedagogy, with the ultimate goal of helping mathematics teachers (both pre- and 

in-service) to develop their teaching. The Knowledge Quartet (KQ) is an example of a research-

based theory that resulted from this research effort (Rowland, Huckstep, & Thwaites, 2005). 

Through two case studies (Flesvig, 2016), this paper explains and exemplifies the situated challenge 

of using the KQ to reflect on mathematics teaching.  

The research questions are: “To what extent does using the KQ as an analytical tool influence what 

pre-service teachers' (PSTs') attend to in the analysis of their own mathematics teaching? How do 

PSTs describe their experiences of using the KQ for lesson analysis?” 

Literature review 

Teacher education programmes prioritize increasingly the ‘core practices’ of teaching. The debate as 

to what these might be and what it means to focus on these in teacher education is ongoing 

(McDonald, Kazemi, & Kavanagh, 2013). We support the view that analyzing teaching is one such 

core practice: 
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[it] involves learning to decompose instructional practice, to attend to particular events and 

interactions that are considered consequential for student learning, and to interpret the meaning 

behind those events to make informed teaching decisions. (Sun & van Es, 2015, p. 201) 

The underlying assumptions are that engaging in analysis of teaching, and focusing on the details of 

the mathematical aspects involved and on students’ mathematical thinking, will result in 

development of mathematical knowledge for teaching, as well as in more responsive teaching. 

There is evidence that the first assumption holds true both for PSTs (Turner, 2012) and for in-

service teachers (Llinares & Krainer, 2006). While the second assumption is yet not well 

documented, Sun & van Es (2015) confirm it in their study of secondary PSTs exposed to a course 

with a focus on analysis of video recordings of the participants’ own mathematics teaching.  

Providing PSTs with opportunities to analyse teaching is not enough. PSTs need tools to direct their 

attention to salient aspects of teaching episodes. While focusing their reflections on the taught 

content (mathematics) is not a given either for in-service teachers or for PSTs, research provides 

examples to show that this is a trainable skill (Turner, 2012; Star & Strickland, 2008; Sun & van Es, 

2015). Examples of ‘tools’ that support the process include frameworks for analysis of teaching 

(Rowland et al., 2005, Star & Strickland, 2008), routines for discussion of videos (Sun & van Es, 

2015), and experienced mentor support to direct post-lesson review to focus on mathematics 

(Nilssen, 2010). 

In theory, school ‘practicum’ placements should provide PSTs with excellent opportunities to reflect 

on the details of teaching, under the supervision of experienced teacher mentors. However, research 

has shown that there are significant differences in the experience of school placement of individual 

PSTs and that school placement is mostly about managing and doing the teaching, less about 

learning systematically from it (Solomon et al., 2015). This makes it all the more interesting for 

teacher educators to explore ways of supporting, with minimal involvement, PSTs’ structured 

reflections on mathematics teaching in their school placements. 

Theoretical underpinnings of the study 

The nature of reflections on mathematics lessons  

While we argued for the value (and difficulty) of attending to mathematics content in PSTs' lesson 

analysis, we recognise other salient aspects are likely to feature. To capture these aspects in PSTs 

reflections, we turn to the five-category framework of Star & Strickland (2008): classroom 

environment (class size and level, room layout, equipment, etc.), classroom management (classroom 

events and procedures), tasks (worksheets, presentations, homework, etc.), mathematical content 

(the topic, representations, examples, problems) and communication (questions asked, suggestion 

offered). The framework has been used as an instructional tool in two separate studies based on 

analysing video, leading to improved skills in observing classroom environment and 

communications (Star & Stickland, 2008; Star, Lynch & Perova, 2011). However, attention to the 

categories ‘tasks’ and ‘mathematical content’ seems harder to promote, and did not improve in the 

second study. For this reason, we chose another instructional tool for our study.   



The Knowledge Quartet 

The Knowledge Quartet (KQ) is a framework that classified the situations in which mathematics 

teachers’ knowledge comes into play, in four broad categories: foundation, transformation, 

connection and contingency. The framework is empirically grounded in classroom observations, and 

the four categories encompass in total 20 different codes (Rowland, 2014). For example, foundation 

includes codes such as overt display of subject knowledge, adherence to textbook, concentration on 

procedures. Transformation encompasses ways of making the mathematics accessible to learners, 

such as choice of examples and choice of representation. Connection includes, for instance, both 

connections between concepts and sequencing within a lesson. Contingency is the dimension 

capturing unexpected events in the lesson, for instance in responding to students’ ideas.  

The KQ is used to analyse mathematics teaching with a focus on teacher knowledge, and is an 

appropriate tool to analyse and develop mathematics teaching when used in cooperation by PSTs, 

teacher mentors and teacher educators (Rowland, Huckstep & Thwaites, 2005). It has been 

successfully used as “an analytical framework to identifying mathematical content knowledge 

revealed through observations of practice” in a study with in-service teachers (Turner, 2012, p. 256). 

The participants, who collaborated closely with the researcher and were given considerable support 

in using the framework, saw the KQ as a tool to support them in reflecting more critically on their 

own teaching (Turner, 2012). This focus on the mathematics stands in contrast with the general 

pedagogical and organisational features of the lesson typically addressed in post-lesson review 

sessions between teacher mentors and PSTs (Solomon et al., 2015). The KQ is a means “to support 

focused reflection on the mathematical content of teaching” (Turner, 2012, p.253). 

Methodology and methods 

This paper reports on case studies of two PSTs’ reflections on their mathematics teaching in school 

practicum placement. At the time of the study, the participants, called here Mia and Nora, were in 

their second year of a four-year Norwegian teacher education programme for grades 5-10 (age 10-

15), specialising in mathematics. They were in the third school placement of their programme, and 

were based in the same grade 5 class.  

Prior to the school placement, Mia and Nora attended a training session with the first author. This 

included a presentation of the KQ, and a joint analysis of a video from a Norwegian classroom. 

Nora and Mia were invited to use the KQ to analyse each mathematics lesson in their school 

placement. Since Mia and Nora were aware of the design of the study when they volunteered to 

participate, we expect that they attempted to use the framework as faithfully as possible. 

Data collection included observations of two mathematics lessons for each participant, the first and 

the last of those taught in that third school placement (two weeks apart), followed immediately by 

audio-recorded semi-structured interviews. In the observed lesson, Mia and Nora taught statistics, 

and in the second they taught decimal numbers. This paper considers data from the interviews, since 

it is the PST’s reflections on teaching, rather than the teaching itself, that will be analysed. 

However, the lessons were videotaped for stimulated recall during the interviews, and to allow 

recall of episodes discussed in the interviews. 



The interview guides for the two interviews had a common core, and some additional questions that 

differed (regarding participants’ background in the first interview, and regarding their experiences 

of using the KQ in the last interview). The core was structured around the dimensions of the KQ 

(“Last time we talked you mentioned being concerned with how tasks are sequenced. What about 

this lesson?”), but also included more open questions about the lesson observed (“Tell me about an 

episode you remember from this lesson. Why did this episode catch your attention?”). The 

interviews were transcribed and analysed in the original language (Norwegian), by the first author. 

The excerpts included in this paper were translated into English by the authors.  

Given the design of the interview guide, with some open questions and some directly connecting to 

the KQ, this framework is not sufficient as the analytical tool. In this paper, our analysis draws on 

the framework of Star & Strickland (2008). This framework gives insight into the nature of the 

participants’ reflections on their mathematics teaching, and their development during the school 

placement during which the study took place.  

Participants 

At the time of the study Mia and Nora were in their third school placement (lasting 13 days), both 

based in the same class (grade 5, age 10) under the supervision of the same teacher mentor. Both 

Mia and Nora had some experience working as (unqualified) substitute teachers. 

While confident in her mathematics knowledge, Mia wanted more in terms of mathematics 

pedagogy and this was her motivation for participating in this study. She had enrolled in her current 

grades 5-10 teacher education programme after dropping out from a programme for mathematics 

teachers for grades 8-13 (age 13-18) in disappointment with the courses: “It was all about 

computations… there was nothing about putting it [the maths] across”.  

Nora found mathematics “fun, at least in grades 1-7”, but to gain admission to the teacher education 

programme, she had to retake the final mathematics exam (grade 12). In teacher education, Nora 

experienced a “steep transition from upper secondary, quite a few notches over that”. In the first 

interview she described mathematics as her favourite subject to teach, but was dissatisfied with the 

course: “A lot of what we learn is not what we will teach, and there is no use for it in our 

professional lives, while at the same time I miss something on how to teach the very basic stuff”. 

Findings 

We consider Mia and Nora’s reflections on their teaching of the two lessons, and their thoughts on 

The Knowledge Quartet. Some data from the videos is included by way of context for the 

interviews. 

Interview 1 - Mia’s reflection on her teaching 

In the post-lesson interview following Mia’s first lesson, some questions were directed towards 

specific dimensions of The Knowledge Quartet, such as transformation. Mia was asked how she 

selected tasks for her class. She mentioned that she does look at the textbook first, but she 

supplements the materials with additional problems that she finds online and selects carefully: 

I make sure they target the age group, fifth grade. That one [task on the handout] was actually a 

challenge for fourth grade, I found it online [...]. But it was about inserting, rather than drawing 



the chart, and there are no such tasks in the textbook. I always look for tasks that fit the topic and 

the age group and that complement the textbook, otherwise there is no point in it. 

Interview 2 - Mia’s reflection on her teaching and on using The Knowledge Quartet 

The last lesson, like the first, had a traditional structure, with Mia showing some examples, then the 

students worked individually until the lesson ended, without any summary or discussion. Mia was 

invited to mention something she noticed during the lesson: 

I remember best and I was most surprised by how well the students remember from [...] the first 

lesson about decimal numbers. In that lesson I felt they got something out of it, but not 

everything, because it was hard. But now I suddenly felt that there were very many who were 

eager and who knew something about it [decimal numbers]. 

The interview included questions on the dimensions of The Knowledge Quartet, related to specific 

situations from the lesson observed. In terms of transformation, Mia commented on the role of the 

textbook and the choice of tasks and examples:  

I only use it [the textbook] to see what it says, given that the students will solve problems from 

there, so my teaching shouldn’t deviate too much from it. But I don’t really use it when I teach as 

such, then I use examples and tasks I prepared myself, that are suitable for the children. And 

these are […] examples I choose carefully so that I know them well if I get questions. 

At the end of the interview, Mia was asked about her thoughts on the KQ:  

I had one lesson that I was really unhappy with, while my mentor thought it hadn’t been so bad. 

But I was really irritated […] so I used it [the KQ], because I was really angry. I went carefully 

through all the codes and categories. I’m thinking this should be done when the lesson goes well, 

too, because it really helped me when it went poorly [...] I discovered that - here is something 

positive, and here as well. It wasn’t all negative, although it felt that way to begin with. 

Interview 1 - Nora’s reflection on her teaching  

Nora’s first lesson was in statistics. The lesson had a traditional structure, starting with recalling and 

writing down definitions, solving a few problems on the interactive board, and then individual 

work. 

Asked about the transformation dimension, about her choice of tasks and their sequencing, Nora 

explained: 

I asked first for the definition of the mode and the median, since they’d learned that earlier. [I 

asked them] to check if they remembered what they’d been told earlier. [...] They have a 

rulebook where it’s good to write down things like this, so we started there, because I thought at 

least they have it there. 

The interviewer asked her to explain her choice of tasks, why she considered them good, and why 

they were selected for the session on the interactive board: 

Because there was a bit of variation. But after a while … Well, there were [in the online resource 

of the textbook] ten levels [of difficulty]. That’s a bit much, so I stopped a bit earlier. [...] It 

would have been too much of the same, but six-seven is okay, a chance to drill.  



Interview 2 - Nora’s reflection on her teaching and on using the Knowledge Quartet 

Nora continued the lesson on decimal numbers from where Mia left off, continuing with individual 

work and then the whole class worked on exercises on the interactive board. 

In the interview, she was invited to mention something she remembered from the lesson: 

The students worked individually for a long time, so I had to find some additional tasks [from the 

textbook] since they solved them much faster than I thought. So I just let them know [...] that 

they can carry on to the next page. 

Invited to use the KQ to analyse the lesson itself, Nora recalls a contingent moment: 

One girl asked […] if the distance between 0.7 and 1.1 on the number line is 4. Then I answered 

that she has to think of the whole number line: here’s 0 and here’s 1, there is a whole between 

them. Do you think there are four between [0.7 and 1.1]? No, so then it’s 0.4.   

In this final interview, Nora was asked about her experience using KQ so far and if she thinks she 

might continue using it. She admitted that it can be helpful in reassessing a situation (“might not 

think of it without all these points”) that might otherwise be overlooked (“so much happens during a 

lesson”) and this will help to revise the teacher’s approach next time. However, the traditional post-

lesson review session appeals to her: 

I think it’s helpful to talk about what happened in the lesson anyway, and we [Nora, Mia and the 

mentor] talked a lot. Then you get some insight in what is good and what could have been 

different, and so on. 

In her experience, the KQ has “an awful lot of codes and dimensions” and using it resulted in: 

... talking more about the lessons. And more about the examples. And sequencing, maybe.  But 

not much otherwise. 

Discussion 

Mia 

With reference to Star, Lynch & Perova’s (2011) framework, the categories tasks and classroom 

management are especially prominent in Mia’s first analysis/interview, both in response to the open 

questions, and when directed to use the KQ. A turn towards mathematical content occurs with more 

targeted questions about specific dimensions of the KQ, as in the case of transformation. By 

contrast, in her second analysis/interview Mia observed and reflected with mathematical content in 

mind, barely touching upon classroom management. Answering open questions, she refers to tasks 

and communication, without using any of the terms from the KQ. However, this changes when she 

goes deeper into her lesson using the KQ framework, with Mia using the terminology of the KQ, 

with attention to mathematical content, as well as tasks and classroom management in general. 

Questions on the dimensions of the KQ, such as the transformation dimension, direct Mia’s focus to 

the fine grain of mathematical content. 

Mia is convinced that the KQ supports a focus on the details of mathematics lesson. She pinpoints a 

specific situation in which breaking down the events of a lesson with the KQ helped her see 



strengths, not only weaknesses in her teaching, thus regaining her confidence as a mathematics 

teacher, at a time when her mentor's more general feedback was not helping her.   

Nora 

Throughout her first teaching analysis/interview, Nora's reflections focused most on tasks, 

classroom management and to some extent communication, only superficially touching on the 

mathematical content. Even when the questions directed her to the KQ, she never actively used the 

terminology of the framework. In the second analysis/interview, Nora focused mostly on 

mathematical content. Although initially focusing on tasks, there was a clear change in emphasis 

towards mathematical content when she is asked to use the KQ framework, and even more so when 

the questions are specific to the KQ dimensions.  

There is a tension in Nora's statements about using the KQ for teaching analysis. While she 

recognizes that the KQ creates an opportunity for development by making visible the specifics of a 

mathematics lesson, Nora prefers the unstructured form of traditional review sessions, explaining 

this in terms of the burden of the number of codes. 

Concluding comment 

Comparing the first and the last interview, we see that both Mia and Nora's reflections exhibited an 

increasing focus on mathematics. A number of factors could play a part in this, including the use of 

the KQ for analysis of the lessons, the experience of the school placement, and the mentor's 

guidance in the post-lesson reviews. The data indicate that the KQ does mediate this change, since 

even in the last interview we see that the more the questions are anchored in the KQ, the more 

marked the focus on mathematics was.  

Both Mia and Nora described the KQ as a means to explore the details of a mathematics lesson, and 

an opportunity to improve their teaching. However, we see differences in the degree to which they 

embrace the use of the KQ, with Nora leaving the door open to use it for troubleshooting, and Mia 

positive to continuing using it both when lessons go well and when they do not. We recognize that 

there are differences in the mathematical knowledge and mathematics teaching confidence of the 

two PSTs, and this might play a part in these differences. For instance, analysing in such detail a 

lesson that ‘went well’ (as is often said in unfocused post-lesson reviews) is likely to reveal details 

that were problematic, an insight causing some emotional discomfort. In that case, Nora might have 

benefitted from receiving more support when using the KQ, to help her cope. Or, perhaps Nora 

interprets the KQ as an algorithm that requires her to go through the all 20 codes for every lesson, 

and finds the time commitment too much, in which case she would benefit from more in-depth 

training in using the KQ in a more holistic and efficient way, perhaps limiting the framework to 

low-inference codes (e.g. ‘choice of examples’) to begin with. 

In conclusion, the study indicates that, even with minimal support, the KQ can contribute in some 

cases to focus pre-service teachers' post-lesson reflections on mathematics. Individual differences 

between the voluntary participants' willingness to continue using KQ after the end of the study 

suggest that teacher educators need to be mindful of factors that could deter PSTs from using the 

framework.     
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Professional association activity is commonly regarded as a professional ‘good’, yet there remains 

little systematic evidence of its impact. This paper reports on a small study that asked English 

teachers of mathematics participating in such activity what contribution they believe it makes to the 

development of their knowledge, skills and affect, and how that then impacts on their students. 

Participants claimed a range of significant and pervasive benefits, many of which are distinctive to 

this form of professional development. These include a renewed commitment to their role as teachers 

of mathematics, refreshment and inspiration, and a deep and lasting impact on both their own 

learning and that of their students. 

Keywords: Professional association, professional development, mathematics, affect. 

Background 

Within mathematics education in the UK, there are four national ‘classroom-facing’ PAs, funded 

entirely from membership and each attracting up to several thousand members: The Mathematical 

Association (MA), the Association of Teachers of Mathematics (ATM), the National Association for 

Numeracy and Mathematics in Colleges (NANAMIC), and NAMA, the National Association for 

Mathematics Advisers. All have a core purpose of supporting the teaching and learning of pre-

university mathematics through working with teachers and others.  

Their annual conferences, residential for most, offer sessions that might focus on mathematics 

pedagogic knowledge or skills, learner enrichment or teachers’ own mathematics enhancement and/or 

enjoyment, or mathematics curriculum, leadership or assessment issues. There is time for networking 

and also for social activities. Conferences are usually held in teachers’ holidays and teachers who 

attend often fund themselves, so they clearly value what such activity offers. Between them the PAs 

also offer a range of day conferences, bespoke courses, professional periodicals, local groups, policy 

debate, and a variety of social media opportunities, so building professional communities of up to 

national scale. Additionally, the larger ones operate working days and weekends when resources are 

developed for publication, and Hodgen (2003) suggests this in itself can develop teacher reflection, 

knowledge and hence practice. Teachers can therefore personalize the extent and type of their 

involvement and the professional development (PD) targeted.  

I adopt Cobb and Bowers’ (1999) conceptualization of teacher PD as any planned experience intended 

to develop teachers’ professional functioning (for the ultimate benefit of their students’ learning) – 

and that process as both enculturation and construction. We know something of what makes PD 

effective, for example that it has a content focus, is coherent with teacher’s prior learning and needs, 

active, sustained, features collective participation (e.g. Desimone, 2009). Golding (2017) suggests 

that for sustained development it should develop positive work-related identity and affect, as in 

Hodgen (2003) and Hannula (2011) respectively, including self-efficacy, resilience, enthusiasm and 

feeling valued. The importance of effective PD, job satisfaction and recognition to teacher retention 



is also well evidenced (Lynch et al, 2016): critical when, as in England, there is a shortage of effective 

teachers of mathematics at all levels (Ofsted, 2012). 

There are, though, some sizeable gaps in the PD literature, e.g. there is limited evidence of the impact 

on students’ learning (Joubert and Sutherland, 2008), and the affordances of online activity continue 

to change. Further, I can find no systematic study of the contribution professional association (PA) 

activity can make to teachers’ development, though Chetwin (2010) suggests there are likely to be 

gains from networking, growth of knowledge and/or skills, and taking responsibility for one’s 

development. This small study therefore investigated the contribution of PA activity as perceived by 

participant English teachers of mathematics (n=185). It asked  

 How is PA activity aligned with what is known about effective PD?  

 What contribution can PA activity make to teachers’ professional development, and to the 

development of their students?  

 Is any of that distinctive?  

The study 

I conducted semi-structured individual interviews with a purposive sample of four anonymized 

participants from each of the four 2016 PA annual conferences (Table 1), drawing on a variety of 

phase/experience/PA background from those currently, or recently, active in the profession. 

Questions (Figure 1) offered opportunity for development of a grounded account (Charmaz, 2006).  

All 2016 conference participants were invited to complete a (usually online) questionnaire designed 

in part to validate interview responses with a wider sample. The interview questions were 

complemented by Likert-style questions (Table 2) designed to elicit the value attributed to aspects of 

conference activity known to be particular to this form of PD. Additionally, I scrutinised documents 

and publications available on PA websites or at conferences. Data consisted of questionnaire 

responses (n=185), transcriptions of recorded interviews (n=16), and my notes from documents 

scrutinized. There is no claim to generalisation from this highly selective sample, though the study 

shows clearly the breadth and depth of perceived impact on some teachers.  

Grounded analysis of all qualitative data was by open, axial and selective coding (Charmaz, 2006). 

Documentary evidence was used to validate participant claims, and interviewees validated all  written 

interpretations of their talk; additionally, a colleague acted as a ‘critical friend’ - particularly 

important given I have a history of involvement in PA activity myself.  

Throughout, though, the study is framed by its reliance on teacher accounts. The status of such claims 

has been contested: do teacher narratives represent warranted true belief, and if not, to what extent 

can they be represented as ‘truth’? This issue is addressed in the literature, though Desimone (2009) 

argues concerns can be over-stated in relation to accounts of PD; I adopt here Doyle’s  (1997) position 

applied to teacher development, that the study aims to develop understanding of a highly 

contextualised and personal phenomenon, through access to participants’ stories of intentions, 

motives, purposes and perceptions of effectiveness, rather than a universally knowable phenomenon 

susceptible to legislation through policy. 



Table 1: Interviewees 

Source Pseudonym and teaching context PA activity(years) 

ATM Alice (11-18, special education), Lara (11-18), Terry (11-18), Billy 

(11-18, Higher Education, Adviser) 

6/8/ 2/’many’ 

MA  Jackie (5-11, 11-18, Higher Education), Janet (5-11, Adviser), Kim 

(11-18), Rachel (5-11) 

41/35/3/10 

NAMA  Charles (11-18, Higher Education), Gail (5-11, Higher Education), 

Graham (11-18, Adviser), Kathy (11-18) 

16/20/16/’many’ 

NANAMIC  Sally (11-18, 16+), David (11-18, adults), Angela (16+), Susan (11-18, 

16+) 

‘Many’/0/’12/10 

 

Figure 1: Interview structure 

 

Findings 

Coding exposed themes around identity and values, specific gains for teachers and/or students, 

strengths and limitations of professional association activity, including some apparently distinctive 

benefits, and threats or disincentives to that. I consider each of those in turn. Whilst it was not possible 

to enact either questionnaires or interviews in precisely comparable ways across the four associations, 

I argue that differences did not fundamentally influence the nature of responses.  

Identity and values 

Interviewees were keen to talk about impact on their professional identity or values, often in terms of 

affirmation, empowerment and meeting with like-minded people who support and challenge them 

professionally. For 11 of 16 this was their first focus in response, often centred around face to face 

participation – a sense of community, sometimes built up over years, and talk about refreshment and 

renewal, often contrasting that with the draining nature of teaching. Claims were often extravagant: 

“It’s been a life-changer, it builds me up as a maths teacher so I can do a better job in the classroom” 

(Kim), and for four teachers this was specifically linked with retention:  

PA activity helps me analyse and then be proactive about developing what I value. Hugely 

empowering, and … that keeps me in the profession despite the grinding demands. (Lara) 

1. Tell me about your professional background… and your history of involvement in (the PA). 

2. What aspects of the conference are you finding/did you find particularly helpful (why)? 

3. What are the limitations of a conference like this in terms of your PD – what aspects of your PD are 

better provided elsewhere? (prompt: institution or local opportunities, online affordances) 

4. And how do all these different opportunities impact on your students? (prompt: and their learning? 

How do you know? Any conference-specific impact, or not? if not mentioned) 

5. So if someone asked you how you stay up to date, maintain your skills, and develop further as a 

teacher, what would you say?... and has that changed over your career? 

6. Any other comments you’d like to make about your PD and its relation to PA activity? Thanks. 

 



Here is about personal PD, affirmation, values – challenge too, but support for…your long-term 

growth and enablement, that enables you to go back refreshed and keeps you committed to what 

can be a …very draining profession – I just couldn’t stay in my job long-term without that injection 

of positivity and recharging. (Billy) 

For interviewees with a background in Further or Adult Education, this identity work was talked 

about in even more fundamental terms:  

In FE, very often you don’t even see other teachers of maths... So NANAMIC gives you that 

identity – there are other people out there struggling with you, valuing some of the same things as 

you do – otherwise you’re just functioning in isolation, far too often. (Sally)  

Specific gains for teachers and/or students 

Interviewees commonly (10 of 16) talked about the high quality of PA publications, sessions and 

resources in terms of direct benefit to themselves and to their students:  

Support – inspiration - resources: I return brimming over with ideas and enthusiasm, with 

knowledge about innovations across the country, catholic ideas and approaches that have worked 

in different circumstances. The resources are creative and engaging, they really probe deep 

understanding and the students love them. (Terry) 

Often the benefit was claimed to spread beyond the interviewee concerned:  

I’ve worked with teachers using these materials and boy are they effective. If they can make the 

right selection and the right tweaks, and we work on that, then they see real and immediate impact 

on learning. (Graham) 

Many respondents (25 open questionnaire responses and 7 interviewees) greatly valued informal 

networking opportunities, claiming explicit benefits also to their colleagues and students – both 

immediate and also for sustained learning and positive disposition towards mathematics: 

The specific numeracy ideas, I took them straight back to my classroom and my students are 

already showing the benefits, in a couple of weeks – to confidence as well as skill. There are also 

‘seed’ ideas, things that ...will come to fruition over a longer timescale. (Susan) 

For some (seven interviewees and over 25 open questionnaire responses), the opportunity to be better 

informed about, and contribute to, national policy debate is valued; for others (in 6 interviews and 

some 15 questionnaires), the chance to engage with cutting-edge research relevant to their practice 

and reflect on its application is important. Teachers who engage in local branch meetings claim 

similar, but less extravagant, benefits. Questionnaire open responses were generally consistent with 

these interview response strands.  

Strengths and limitations of PA activity 

As well as the specific benefits to professional skills and knowledge, and to professional affect and 

identity, teachers identified the eclectic nature of professional association activity, and the fact that 

they can easily personalise it to their own professional needs, as underpinning its effectiveness. Many 

described it as ‘uniformly high quality – the best professional development I get’ or similar. It was 

often reported as having long-term benefits for both teachers and their students, sometimes in contrast 

to other courses which “focus on short-term skill or particular knowledge.” (Janet). 



Five interviewees talked about the benefits of being physically removed from their work environment 

and the luxury of sustained unhindered time committed to their professional growth. Several teachers 

described the desirability of also participating in institution-based development alongside colleagues, 

with access to familiar resources, and with whom they could contextualise new ideas. In three 

interviews they extolled the particular advantages of engaging in branch or conference activity with 

at least one colleague. On the other hand, teachers said they found distance learning can be effective 

and efficient for pure dissemination of information. Four  identified PA activity as often limited by a 

‘light touch’ for more substantial knowledge or skill development, particularly where there was a 

need for substantial subject or subject pedagogical knowledge, perhaps better provided in a series of 

inputs interspersed by classroom embedding. This was true in particular for two of the one-day 

NANAMIC conference participants. One commented: 

And of course then you go back into college and there’s no-one to share it with…so unless you’re 

really committed, those interesting ideas and good intentions might well get lost. (Angela) 

However, all of those interviewed and virtually all of those completing questionnaires identified face 

to face PA activity as a central and rich component of their effective impact on students. These 

comments were echoed in questionnaire responses, though typically in less depth. Questionnaire 

responses added no significantly different responses.  

Likert scale items in questionnaires largely concentrated on features of conferences. Table 2 shows 

mean response, on a scale of 1 (of little importance to me) to 5 (very important to me), together with 

standard deviations s. As quantitative data it is of limited robustness but gives some indication of the 

ranking of different aspects, similar but not identical for the different conferences. For the range of 

participants, working with others from a variety of roles and experiences is highly valued, as are 

opportunities to engage with new ideas or mathematics. These teachers also value opportunities to 

construct a programme that meets their individual needs. 

 

Table 2: How important are the following aspects of the conference to you?  

Association (responses from active teachers or 

those actively working with teachers) 
NANAMIC     

(n=10) 

NAMA 

(n=29) 

MA   

(n=56) 

ATM 

(n=90) 
Overall (185) 

 

Meeting people in comparable roles 4.2 3.7 4.3 4.2 4.2 (s=0.7) 

Face to face rather than at a distance 4.4 4.5 4.3 4.3 4.4 (s=0.7) 

Meeting people from other phases in education 

or with different roles or from different areas of 

the country 
4.2 3.9 4.7 4.7 4.6 (s=0.6) 

A mix of beginners and experienced colleagues 4.4 4.0 4.5 4.6 4.5 (s=0.7) 

Sessions that are grounded in the classroom 4.1 3.4 4.4 4.2 4.1 (s=0.5) 

Social activities - 2.3 3.3 3.9 3.5 (s=1.1) 

Immersion – it’s residential - 2.3 4.5 4.3 4.0 (s=0.7) 



Opportunity to do mathematics or  engage with 

new ideas, irrespective of whether I’ll use them 

directly in the classroom 
4.3 4.5 4.5 4.6 4.5 (s=0.8) 

Being able to choose sessions which fit my 

needs/preferences 
4.6 3.7 4.6 4.7 4.5 (s=0.8) 

 

Threats or disincentives to such activity 

There are, though, some clear threats to participation, of which funding was mentioned by nearly all 

interviewees. Although “cheaper for several days of exceptionally high quality development than 

many mediocre commercial courses” (Rachel), teachers routinely talked of schools and colleges 

prioritising performance-framed one-off courses for funding, and leadership teams not valuing the 

“deeper, wider learning that is supported by face to face PA opportunities” (Janet). Others said that 

colleagues “thought they were mad to spend holiday time at a …conference when there are so many 

pressures during term time you just want to curl up and die when you get to a holiday” (Kathy). Four 

interviewees claimed their schools/colleges would not pay for conference attendance because a better-

informed teacher was more likely to move. Funding was a particular issue for those working in FE, 

with a majority of those respondents reporting little or no employer support for subject-specific 

development, so no choice but to fund such development themselves.  

Four interviewees suggested that Primary or FE teachers without a strong mathematical background 

or a specific mathematics responsibility were unlikely to prioritise, or be confident to participate in, 

subject specific and self-funded professional development. They suggested incentives for Primary 

teachers to ‘bring a local friend’ might increase both confidence and impact, and identified day 

conferences as a good first step “where it’s often desperately needed” (Janet). 

Discussion  

It is important to note that there is no claim to generalisability here: these are teachers in an English 

education culture who choose to attend these conferences in their own time, and often self-funded. 

They are therefore highly committed to their own development as teachers, but also claim that they 

gain motivation and energy for their work from PA activity, often in contrast to other opportunities 

available to their context. It is striking that almost all interviewees privilege talk about values, 

affirmation of professional identity, and improved self-efficacy in their accounts, together with deep, 

wide and reflective mathematical (subject and subject pedagogical) learning for the long-term 

effective exercise of their professional role. They commonly contrast that with much external PD and 

often generic local provision. With both preservice and inservice education in England increasingly 

adopting generic rather than subject-specific approaches, Joubert and Sutherland (2008) show such 

subject-specific opportunities are central to the development of a deeply effective teaching profession. 

The benefits described align well with Desimone’s (2009) and Golding’s (2017) criteria for effective 

PD: showing a clear content focus, active and coherent with teacher’s prior learning  needs, featuring 

collective participation, and contributing very positively to teachers’ affective and identity needs. PA 

activity can be sustained (sometimes over years) in the sense of offering longitudinal stimulus 

interspersed with everyday teaching, but not usually in the sense of a critical mass of hours focused 

on particular knowledge or skills, for which other avenues would appear to be more effective. The 



benefits claimed for teachers, and for their students, are significant, deep, wide-reaching and long-

lasting, including a renewed commitment to retention in the profession. There is no a priori reason 

why such benefits should not be experienced by far greater numbers, and it is important that perceived 

threats to participation are addressed. These are not just about funding, but, as in Lynch et al (2016), 

about the value teachers perceive management to give to PA activity and to teachers’ PD beyond the 

short term specific needs of their school/college.  

All teachers in this study were teachers of mathematics, but in the English context there are 

comparable professional associations in other curriculum areas, and an obvious question is whether 

the benefits cited here, particularly in relation to subject-related identity, apply also to them.  

Benefits distinctive to professional association activity 

Some distinctive benefits of PA activity appear to emerge. First, there is the opportunity to mould a 

PD programme to one’s own professional needs, whether in terms of reading, resources or face to 

face development. Many teachers also referred explicitly to working with mathematics – for its own 

sake as well as for possible classroom benefits. In England, in contrast to many other jurisdictions, 

this is unusual after initial qualification, yet this aspect of PA activity was commonly highly valued. 

There appears to be a great deal of professional affirmation, networking and identity work taking 

place. Some teachers particularly value the access to recent research offered by the PAs, and/or the 

informed policy work facilitated by PAs and based on professional discussion, and I would argue it 

is healthy for policy systems to be informed by such knowledge and discussion. Finally, through the 

PAs it is relatively easy for teachers to be able to offer something back to the PD of others, whether 

through writing about their professional work, giving a session at a conference, disseminating, 

receiving critique and discussing in a varied but informed peer group, producing resources or 

developing courses, or engaging in writing work that responds to deep desires to improve 

mathematics learning. This is itself is recognized to be developmental:  

Writing for journals has been very developmental, and the support you get for doing that. Very 

high quality writing sessions: a richness of ideas from people whose ideas have since shaped my 

practice, that I admire and aspire to. (Charles) 

There are, though, other providers of different subsets of the cited activities, and it is an open question 

how the affordances and constraints of such provisions compare with those of PA activity.  

Conclusions 

These English mathematics teachers claim a wide range of benefits from PA activity (especially face 

to face events), some of which are perceived as either exclusive to such activity or most effectively 

provided by it. They say it gives them deep and wide professional learning which impacts on their 

students both through specific pedagogical tools and approaches, and through teacher refreshment 

and re-commitment. They claim an affirmation of their professional identity through sharing goals 

and values with others, and increased self-efficacy through peer validation and personalisation of 

development. Teachers value the subject-specific nature of PA activity, that in the English context 

contrasts with much school-based, typically generic, development. They appreciate the range of ideas 

and ways of thinking that far exceed what is available within one school/college or group of 

institutions. For many, these claimed benefits have been developed and sustained over years.  



The study offers evidence to management and policy makers about the value these teachers of 

mathematics place on subject-specific development that affirms their professional identity and their 

values, recharges and  renews their commitment and enthusiasm, and engages them actively in deep 

and reflective subject and subject pedagogic learning. With current performance pressures and limited 

budgets, it is not surprising English schools and colleges often privilege perceived immediate 

curriculum needs, but the cost of PA activity outside teaching time is small when compared with the 

costs to students of a stale and drained teacher – or no teacher at all. There is a need to identify 

politically-acceptable ways to invest in teachers’ longer term subject-specific development, so that 

more teachers are encouraged to participate in such activity. 

References 

Charmaz, K. (2006). Constructing grounded theory: a practical guide through qualitative analysis. 

Thousand Oaks: Sage Publications. 

Cherwin, K. (2010). Why join a professional association? Times Higher Education Supplement, 23 

March 2010, 15 https://www.higheredjobs.com/Articles/articleDisplay.cfm?ID=157. 

Cobb, P. and Bowers, J.S. (1999). Cognitive and situative learning perspectives in theory and practice. 

Educational Researcher 28/2, 4-15. 

Desimone, L. (2009). Improving impact studies of teachers’ professional development: towards better 

conceptualizations and measures. Educational Researcher 38/3, 181-199. 

Doyle, W. (1997). Heard any good stories lately? A critique of the critics of narrative in educational 

research. Teaching and Teacher Education 13/1, 93-99.  

Golding, J. (2017). Mathematics teacher capacity for change. In press. 

Hannula, M.S. (2011). The structure and dynamics of affect in mathematical thinking and learning. 

In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the Seventh Congress of the 

European Mathematical Society for Research in Mathematics Education (pp. 34-60). Rzeszów, 

Poland: University of Rzeszów and ERME.  

Hodgen, J.(2003). Reflection, identity and belief change in primary mathematics. In Pitta-Pantazi, D., 

& Philippou, G., Proceedings of the Fifth Congress of the European Society for Research in 

Mathematics Education CERME5 (pp. 1-10). Larnaca, Cyprus: University of Cyprus and ERME. 

Joubert, M. and Sutherland, R. (2008). Researching CPD for teachers of mathematics: a review of 

the literature. National Centre for Excellence in the Teaching of Mathematics, London. 

Lynch, S., Worth, J., Bamford, S. and Wespieser, K. (2016). Engaging Teachers: NFER Analysis of 

Teacher Retention Slough: NFER. 

Ofsted (2012). Mathematics made to measure. Her Majesty’s Stationery Office, London. 

https://www.higheredjobs.com/Articles/articleDisplay.cfm?ID=157


Subject matter knowledge and pedagogical content knowledge in the 
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In this study, 26 learning diaries by prospective mathematics teachers were analysed in order to 

describe the characteristics of mathematical and pedagogical knowledge discussed therein and to 

evaluate the potential and limitations of the learning diary in mathematics teacher education. 

Conceptualisations of teacher knowledge are typically discussed in terms of subject matter 

knowledge, pedagogical knowledge and pedagogical content knowledge. A central goal of 

mathematics teacher education is to strengthen all of these areas of competency. The results of this 

study indicate that, although the learning diary is a potential learning tool, prospective mathematics 

teachers tend to emphasise pedagogical content knowledge, placing less stress on subject matter 

knowledge. Consequently, more structured learning diary tasks could be used to support all the 

components of mathematical knowledge for teaching. 

Keywords: Teacher knowledge, mathematics teacher education, learning diaries, subject matter 

knowledge, pedagogical content knowledge. 

Introduction 

Finnish mathematics teacher education consists of three somewhat distinct parts: subject matter 

studies, educational studies and practical teacher training at schools. Subject matter studies at 

mathematics departments form a major part of the mathematics teacher studies. Finnish mathematics 

teachers, however, report that university-level subject studies in mathematics lack a clear connection 

to the mathematics taught at school (Koponen, Asikainen, Viholainen, & Hirvonen, 2016). The 

transition to university-level mathematics requires a major change in mathematical thinking (e.g., 

Tall, 1992). At university, mathematics courses typically emphasise formal reasoning, meaning 

reasoning based on axioms, definitions and proven theorems (Viholainen, 2008). Informal reasoning 

is based on visual or physical interpretations of mathematical concepts (Viholainen, 2008). Some 

empirical studies (e.g., Chin, 2013; Viholainen, 2008) have shown that prospective teachers may have 

difficulties connecting formal and informal reasoning.  

On the other hand, prospective mathematics teachers may emphasise the importance of a teacher’s 

personal characteristics and pedagogical knowledge, while diminishing the importance of subject 

matter knowledge (e.g., Hoffkamp & Warmuth, 2015). Subject matter knowledge nevertheless plays 

a significant role in a teacher’s professional knowledge. Firstly, subject matter knowledge is typically 

seen as theoretically necessary for developing pedagogical content knowledge (Baumert et al., 2010). 

The quality of prospective teachers’ subject matter knowledge also affects their pedagogical choices 

when participating in practical training (Even, Tirosh, & Markovits, 1996). In addition, subject matter 

knowledge along with pedagogical content knowledge can be seen as a foundation for effective 

teaching, as a teacher’s professional knowledge affects student achievement (e.g., Baumert et al., 

2010). 

This study is a part of a design-based research and development project that has been carried out at 

the University of Helsinki. The aim of the research is to develop instructional practices in order for 



prospective teachers to both strengthen their subject matter knowledge and build up their pedagogical 

content knowledge. The research also aims to give insight into prospective mathematics teachers’ 

conceptions of the relationship between school and university mathematics. 

In this study, the specific focus is on learning diaries written by prospective mathematics during a 

six-week seminar. The seminar focused on finding connections between the mathematics studied both 

at university and at school and on discussions of mathematical content from the teacher’s point of 

view. That is, the aim of the seminar was for prospective teachers to, first, strengthen their (structural) 

knowledge of mathematical topics (such as derivative) and, second, enhance their pedagogical 

content knowledge with relation to these topics. The aim of this study was to examine the potential 

and limitations of learning diaries as a learning tool in this context and to conceptualise the kinds of 

knowledge these prospective mathematics teachers discussed in their diaries. 

Theoretical background 

Theories used in design-based research can be divided into grand theories, orienting frameworks, 

frameworks for action and domain-specific instructional theories (DiSessa & Cobb, 2004). In this 

study, the idea of constructive alignment (Biggs & Tang, 2011), which provided the instructional 

design of the research setting, is used as a framework for action. The data analysis for this study is 

based on domain-specific conceptualisation of teacher knowledge (Ball, Thames, & Phelps, 2008). 

In the next two subsections, these frameworks will be discussed in more detail. 

Teacher Knowledge 

The distinctions between content knowledge (or subject matter knowledge), pedagogical knowledge 

and pedagogical content knowledge (Shulman, 1987) are an established starting point for 

conceptualisations of teacher knowledge (Scheiner, 2015). Especially the distinction between subject 

matter knowledge and pedagogical content knowledge has gained significant attention and generated 

a great amount of research and further development of the conceptualisations of teacher knowledge. 

According to the Mathematical Knowledge for Teaching (MKT) model (Ball et al., 2008), a teacher’s 

content knowledge consists of common content knowledge (CCK), specialised content knowledge 

(SCK) and horizon content knowledge (HCK). In the MKT model, pedagogical content knowledge, 

in contrast, is divided into knowledge of content and students (KCS), knowledge of content and 

teaching (KCT) and knowledge of content and curriculum. 

The components of MKT model have been shown as important for effective teaching (Jakobsen, 

Thames, & Ribeiro, 2013). Hence, the model is valuable for this study, which aims to offer insight 

into prospective mathematics teachers’ discussions of their learning diaries and to use this information 

for further development of instructional practices in teacher education. 

Constructive alignment and learning diaries 

Present research and development of instructional practices in higher education is typically based on 

the constructivist view of learning and concepts, such as learner approaches to learning, self-

regulation and reflection. Constructive alignment is based on the constructivist view of learning and 

suggests that the intended learning outcomes, implementation of teaching and assessment should be 

carefully aligned and support active learning. Biggs and Tang (2011) suggest that by using more 



active ways of learning (such as problem-based learning) even ‘less academic’ students can achieve 

more advanced levels of learning, such as applying and theorising. 

In this study, the seminar was designed in the spirit of constructive alignment (e.g., the students 

worked in groups and specified their own study/discussion topics). The learning diary task was one 

of the ways to promote active learning and reflection among students. Typically, learning diaries are 

seen as texts that include both the central arguments of a course or a seminar and the writer’s own 

interpretation of and reflection on these themes. That is, learning diaries are not supposed to promote 

knowledge telling writing (Bereiter & Scardamalia, 1987), which is understood as writing based on 

memorised facts. Instead, learning diaries promote knowledge transforming writing (Bereiter & 

Scardamalia, 1987), which is based on problem analysis and reflection. 

Research questions 

In Finnish higher education, learning diaries have been used successfully in subjects such as research 

methodology (Kyttälä, 2012). Journaling has also been found to be useful in studying university-level 

mathematics (Meel, 1999). There is, however, a lack of research evaluating the use of learning diaries 

in mathematics teacher education from the point of view of the teacher’s knowledge. Additionally, 

more insight into prospective mathematics teachers’ mathematical and pedagogical thinking is 

needed for further development of instructional practices in mathematics teacher education. Thus, the 

following research questions were formed. 

1. Can learning diaries be used to promote knowledge transforming writing in mathematics 

teacher education? 

2. What kinds of professional knowledge do the prospective mathematics teachers discuss in 

their learning diaries? 

The first research question was posed in order to evaluate whether learning diaries have potential as 

a reflective learning method in mathematics teacher education. The second research question was 

posed in order to characterise the prospective mathematics teachers’ discussions on teacher 

knowledge. The question of whether some/certain aspects of teacher knowledge would be emphasised 

in the diaries was also considered, as prior research has shown that prospective teachers may 

emphasise pedagogical knowledge and diminish the importance of subject matter knowledge (e.g., 

Hoffkamp & Warmuth, 2015). 

Method 

The data was collected during a seminar held in autumn 2014. The students (prospective mathematics 

teachers) attending the seminar formed small groups of 4–5 members. All groups prepared an 

introduction to a topic (such as dot product), so that both mathematical and pedagogical ideas were 

covered. These introductions led to group discussion and, as homework, the students reflected on 

their ideas by writing a learning diary. In their diaries, the students were asked to discuss 1) What was 

discussed and how do the topics of discussion relate to other contexts?; 2) What did I learn and what 

was its meaning for me?; 3) Was something missing or unclear? 

Participants were mainly mathematics students at the end of their studies. Three students were 

studying another subject (such as physics) with minor studies in mathematics. Also, six students were 

second- or third-year students and, thus, not yet at the end of their five-year studies. The participants 



were studying in a subject teacher programme that qualifies them to work as a teacher in the last years 

of comprehensive school (with students aged 13 to 16 years) and upper secondary school (with 

students aged 16 to 19 years). 

Student learning diaries (N=26) were analysed using content analysis (Elo & Kyngäs, 2008). The 

units of observation were first placed in categories from the MKT model using deductive content 

analysis. Subcategories were then formed using inductive content analysis. In addition, the individual 

diary entries were classified either as knowledge telling writing or knowledge transforming writing 

in order to classify the entire diary either as knowledge telling or knowledge transforming.  

The author of the present article created the coding. As it was not possible to use two independent 

coders, during the process, the author reread the diaries and the coding to ensure that his thinking 

remained constant during the coding process. The components of the MKT model may be difficult to 

distinguish from one another and this boundary problem has been highlighted in the research 

literature. This poses a challenge for coding, as two researchers may create different categorisations. 

The most problematic category seems to be HCK. In this study, HCK was understood, as defined by 

Jacobsen et al. (2013), as ‘an orientation to and familiarity with the discipline (or disciplines) that 

contribute to the teaching of the school subject at hand, providing teachers with a sense for how the 

content being taught is situated in and connected to the broader disciplinary territory’.  

The coding of knowledge telling writing and knowledge transforming writing was based on a prior 

study by Kyttälä (2012). When coding each diary entry as either knowledge telling or knowledge 

transforming, the former was used if the entry included only repetition of the information discussed 

in the seminar and the latter code was used if the entry included personal reflection. Knowledge telling 

writing included excerpts such as ‘This week we discussed linear algebra. Firstly, we discussed 

vectors in R2’, whereas knowledge transforming writing included personal reflection such as ‘I soon 

realised that I didn’t remember much about dot product. I remembered that it had something to do 

with lengths and the perpendicularity of vectors.’ 

If at least half of the entries were labelled as knowledge transforming the entire diary was labelled 

accordingly. This methodology was chosen to ease the comparison of the results of this study to prior 

studies in the Finnish higher education context.  

Results  

The results of the study are presented in three parts. First, writing strategies (knowledge telling vs. 

knowledge transforming) are discussed. Then, in the following two subsections, the subject matter 

knowledge and pedagogical content knowledge observed in the diaries are discussed. 

Knowledge telling writing vs. knowledge transforming writing 

23 of the 26 diaries featured knowledge transforming writing. This seems to indicate that learning 

diaries can be used to promote reflective learning in mathematics teacher education as they have in 

other educational contexts, as Kyttälä (2012) has suggested. However, while most of the diaries were 

categorised as knowledge transforming, the content discussed in the diaries varied significantly. In 

some of the diaries, both mathematical and pedagogical topics/issues were discussed 

comprehensively, whereas in others, the mathematical content was discussed only cursorily and the 



pedagogical issues were discussed in depth. The coding of subject matter knowledge and pedagogical 

content knowledge aimed to highlight this variation in greater detail. 

Subject matter knowledge 

The distinguished subcategories of subject matter knowledge are presented in Table 1. The frequency 

of each category is indicated in brackets. In the main categories, percentages are also given. 

Discussing representations of mathematical content was labelled as SCK, as according to Ball et al. 

(2008), knowledge of ’how to choose, make, and use mathematical representations’ belongs to SCK. 

The category ‘nature of mathematics’ included utterances such as ‘In mathematics you don’t prove 

absolute truths. Instead, the proofs are based on chains where assumptions lead to something.’ These 

can be also seen in connection to HCK, but as these comments were general, they were coded as 

CCK. Additionally, some discussion of the curriculum, such as ’Does knowing probability require 

knowing set theory? I suppose so. It would be good if there would be more of that in secondary 

school’, were categorised as SCK instead of KCC. These comments also seemed connected to HCK, 

but were more focused on rethinking school mathematics and were consequently categorised as SCK. 

Common content knowledge 

(66; 25 %) 

Specialised content knowledge 

(158; 59 %) 

Horizon content knowledge 

(46; 17 %) 

 Giving a list of concepts (20) 

 Giving a definition (11) 

 Giving a theorem (9) 

 Explaining a property of a 

mathematical entity (8) 

 Giving a solution strategy (8) 

 Giving alternative definitions 

(7) 

 Discussing the nature of 

mathematical knowledge (6) 

 Giving a mathematical 

example (2) 

 Discussing representations of 

mathematical content given in 

textbooks (72) 

 Discussing alternative 

representations of mathematical 

content (65) 

 Discussing relationship 

between mathematical 

knowledge and curriculum (11) 

 Going through some history of 

mathematics (6) 

 Giving and discussing 

matriculation examination tasks 

(5) 

 Reflecting on a mathematical 

example (2) 

 Modifying an example (1) 

 Discussing the hierarchical 

relationship of 

mathematical concepts 

(28)  

 Giving an application of a 

mathematical entity or 

method (18) 

Table 1: Subcategories of subject matter knowledge distinguished in the diaries 

Common content knowledge was mainly discussed in terms of giving a list of concepts (related to the 

subject), giving a definition of a concept (such as limit) or giving a theorem (such as ‘If function f is 

derivative, then function f is continuous’). This discussion was typically limited to telling the facts 

and no explanations or proofs were given. The specialised content knowledge typically focused on 

discussing the representations of mathematical content. Only one student adapted an example so that 

different versions of a problem were considered. The least discussed aspect of subject matter 

knowledge was horizon content knowledge; only 46 units of observation included discussion of the 



hierarchical relationship of mathematical concepts or an application of a mathematical entity or 

method. Overall, discussion of subject matter knowledge was somewhat focused on SCK. More 

specifically, discussing the different representations of mathematical content was common in many 

diaries. 

Pedagogical content knowledge 

The distinguished subcategories of pedagogical content knowledge are given in Table 2.  

Table 2: Subcategories of pedagogical content knowledge distinguished in the diaries 

In many diaries, the secondary school and university curricula were compared. Students discussed, 

for instance, the content of secondary school calculus courses and university analysis courses. The 

knowledge of content and students sections mainly focused on difficulties or misconceptions that 

school students may have. For example, affect and learning (e.g., emotions) were little discussed and 

the cognitive studies in mathematics education were mainly used as references. The knowledge of 

content and teaching focused on discussing different means of approaching mathematical content in 

teaching and different teaching methods. For example, no imaginary learning situations were 

introduced and only one student pondered the answering of school students’ questions. 

Overall, PCK was discussed more than subject matter knowledge. However, the PCK typically 

discussed in the diaries can be described as content-driven, as it was mainly placed in subcategories 

such as ‘Ways to approach the mathematical content in teaching’ or ‘Difficult content for students’. 

Discussion and conclusion 

It is worth noticing that the results of this study cannot be generalised to whole student populations 

or other contexts. This study contributes only case-specific information, which can, however, be used 

in further development of the specific learning environment. In addition, the reliability of this study 

could be enhanced by using two independent researchers in the data analysis phase. Nevertheless, 

this study found that in this specific context, many prospective mathematics teachers adopted a 

knowledge transforming writing strategy in their learning diaries. The knowledge discussed in the 

diaries was somewhat focused on SCK and PCK. More specifically, the most discussed topics were 

representations of mathematical content, curricula, student knowledge and teaching methods. 

Knowledge of content and 

curriculum (106; 27 %) 

Knowledge of content and 

students (133; 34 %) 

Knowledge of content and 

teaching (148; 38 %) 

 Upper secondary school 

curriculum (57) 

 University curriculum (51) 

 Comprehensive school 

curriculum (17) 

 University of applied 

sciences curriculum (6) 

 Vocational school 

curriculum (2) 

 Difficult content for 

students (45) 

 Student competence (28) 

 Student knowledge (23) 

 Learning process (18) 

 Misconceptions (10) 

 Affect (7) 

 Solving strategies (3) 

 Ways to approach mathematical 

content in teaching (87) 

 Teaching methods (54) 

 Encouraging students (5) 

 Differentiation (2) 

 Answering student questions 

(1) 

 Correcting misconceptions (1) 

 Mathematical language and 

notation (1) 



Some of the learning diaries discussed both subject matter knowledge and pedagogical content 

knowledge. Some of the diaries, however, were more focused on pedagogical content knowledge. 

This seems to indicate that some of the prospective teachers emphasised pedagogical topics, while 

other prospective teachers discussed teacher knowledge more comprehensively. Further research 

would be needed to discuss this variation in detail and, especially, to compare students who are at 

different stages of their studies. In addition, it is notable that horizon content knowledge was rarely 

discussed in the diaries. This was somewhat surprising as the aim of the seminar was to connect the 

content of university-level mathematics and school mathematics. If HCK is understood as Jakobsen 

et al. (2013) have presented it, connecting mathematics as a discipline to school mathematics means 

discussing horizon content knowledge. In addition, some aspects of SMK and PCK (such as 

modifying tasks) also received little attention. This implies that learning diaries may lead to 

reflections that are not fully aligned with the intended learning outcomes. Further research is needed 

to determine whether more structured learning diary tasks would help students to better discuss 

desired sides of mathematical knowledge for teaching. 
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The role of definitions on classification of solids including 

(non)prototype examples: The case of cylinder and prism  
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The purpose of this study is to investigate prospective middle school mathematics teachers’ (PMTs) 

formal definitions regarding cylinder and prism and the role of these definitions on their 

classifications of solids involving (non)prototype examples. Data were collected through 

questionnaire and interview protocol from three PMTs who were 3rd year students in one of the 

teacher education programs in Turkey. Data analysis revealed that PMTs mostly used inappropriate 

terminology in defining cylinder and prism. Despite their inappropriate definitions, one PMT could 

classify cylinders and non-cylinders among the groups of solids correctly. PMTs who could not 

classify cylinders correctly made incorrect inclusions regarding the cylinders and prisms. 

Keywords: Definitions, solids, prospective mathematics teachers, middle school mathematics 

teachers. 

Introduction 

Definitions constitute the indispensable part of mathematical instruction. National Council of 

Teachers of Mathematics [NCTM] (2000) emphasized the importance of students’ understanding of 

the role of mathematical definitions and students’ use of definitions in mathematical practices. 

Researchers argue that definitions should have some critical attributes. According to Van Dormolen 

and Zaslavsky (2003), a good mathematical definition should have following necessary 

characteristics: criterion of hierarchy, criterion of existence, criterion of equivalence, and criterion of 

acclimatization. In addition to the necessary characteristics, criterion of minimality, criterion of 

elegance, and criterion for degenerations are classified as the preferred features for the good 

mathematical definitions (Van Dormolen & Zaslavsky, 2003). Additionally, Leikin and Winicki-

Landman (2000) stated that definitions should have necessary and sufficient conditions for the given 

concept and they should have conditions that are characterized as minimal.  

Beginning at early school years, students are encountered with geometric shapes and solid figures. 

Students’ concept images that flourish during that years may support the concept definitions that will 

be introduced in later years. However, as Vinner (2011) argues, concept definitions and concept 

images are not always parallel and mismatch may arise between them. Keeping this in mind, 

educators should stimulate the development of concept images as early as possible that support the 

concept definitions (Tsamir, Tirosh, Levenson, Barkai, & Tabach, 2015). In other words, appropriate 

guidance should be supplied before those intuitions are rooted and difficult to alter (Tsamir et al., 

2015). Hence, it is a well-known fact that teachers play important roles during the development of 

those concept structures.  Shulman (1986) stated:  

Teachers must not only be capable of defining for students the accepted truths in a domain. They 

must also be able to explain why a particular proposition is deemed warranted, why it is worth 



knowing, and how it relates to other propositions, both within the discipline and without, both in 

theory and in practice. (p. 9) 

To state differently, subject matter knowledge (SMK) was related to the structure of mathematics 

involving definitions, axioms, proofs, theorems and relationships among them (Shulman, 1986). 

Thus, teachers’ knowledge on definitions, classified as one of the components of SMK (Ball, Thames, 

& Phelps, 2008) plays an important role during the development of students’ conceptions of 

definitions. In addition, teachers’ knowledge of mathematical definitions has an influence on didactic 

approaches in mathematics classes (Leikin & Zazkis, 2010; Zazkis & Leikin, 2008). In other words, 

teachers’ understanding of the definition of concepts in addition to their concept images impact the 

teachers’ way of representing the concept to the students, explanations given during the instructions, 

way of orchestrating the classroom discussion and their fluency and flexibility in teaching topics 

(Leikin & Zazkis, 2010). Thus, teachers’ knowledge on definitions and to what extent they use these 

definitions in classifying solid figures deserves further attention for giving evidence for teachers’ 

practices regarding the examples used in mathematics classrooms. 

Moreover, an assertion was made that most of the time students do not know the definitions of 

mathematical terms that they need to use, and thus, they tend to memorize the given definitions 

without understanding (Edwards & Ward, 2008). Indeed, since stating the correct concept definition 

is not an indication for the understanding of the concept, critical understanding of definition is needed 

to apply the definition successfully. With this idea in mind, in this study as a continuation of our early 

work, we investigate PMTs’ knowledge of definitions regarding the cylinder and prism and how their 

definitions influence their choice of classifications of solids involving prototype and non-prototype 

examples. Thus, the aim of this study was to answer the following research question: 

How do PMTs define cylinder and prism, and how do their definitions influence their classifications 

of solids involving (non)prototype examples? 

Framework of the study 

In this research study, we used Leikin and Zazkis’s framework developed for the analysis of teacher-

generated examples of mathematical concepts (Leikin & Zazkis, 2010). According to the framework 

teacher-generated examples of definitions of the concepts were analyzed according to four 

components: 1) Accessibility, 2) Correctness, 3) Richness, and 4) Generality/Concreteness. 

Accessibility refers to the generation of examples with or without a prompt, whether they are 

generated easily or with difficulty. By means of generality, Leikin and Zaskis emphasize the use of 

specific properties pertaining the given concept apart from the general descriptions that belongs to 

the other class of concepts. In addition, correctness refers to the appropriateness of the logical 

statement generated for the mathematical concepts. While analyzing correctness of the examples, 

they make a distinction between appropriate and inappropriate examples. In other words, they classify 

examples of definitions as appropriately rigorous if the answers consist of necessary and sufficient 

conditions for defining the given concept and minimal use of correct mathematical terminology and 

symbols. On the other hand, the answers are classified as appropriate but not rigorous when there are 

some deficiencies in the definitions or imprecise language was used. When the given examples has 

deficiency in either satisfying necessary or sufficient conditions, they are categorized under the 

heading of inappropriate examples. For instance, while defining cylinder as a solid, one of the 



necessary condition for the cylindrical surface is that it is generated by a straight line (generatix) 

which moves so as constantly to pass through a given curve (directix) remaining parallel to its original 

position (Beman & Smith, 1900). In addition, to have sufficient conditions, the curve should be a 

closed shape which designates the bases of the cylinder that are two parallel transverse sections 

(Beman & Smith, 1900). Therefore, cylinder is a portion of an enclosed space between two parallel 

bases created by a cylindrical surface. On the other hand, the definition of cylinder will be 

inappropriate unless the surface is composed of parallel lines. In addition, having a closed surface is 

a general description that belongs to other 3D solids and base should be a circle is not a necessary 

condition for a cylinder.  

In the framework, richness refers to the number of different examples for a concept that are generated 

correctly by the participants. In the present study, we focus on cylinder and prism which are 

geometrical concepts and their examples have figural aspects. Thus, for analyzing richness of the 

examples, we considered Fujita and Jones’s (2007) perspective on prototype examples since 

prototype images of geometrical objects and definitions of these geometrical concepts are related. 

Prototype example(s) of a concept are the examples that come first in persons’ mind, and they also 

exist in the participants’ concept images. To understand a geometrical object, the associated figure of 

this certain object would be active in mind. Thus, when a participant has only prototype examples of 

an object, she can give specific examples of an object with limited images (Fujita & Jones, 2007). On 

the other hand, when one has non-prototype examples of an object, she can generate different 

examples for an object. Therefore, in this research we accepted non-prototype examples as indicator 

of richness for the given definition. Considering the context of Turkish middle school mathematics 

curriculum (MoNE, 2013), hexagonal prism and rectangular prism are considered as prototypes of 

prism and circular cylinder is considered as prototype of cylinder. On the other hand, cylinder with 

non-circular base could be a non-prototype example. However, non-prototype examples are not given 

a place for exemplifying or defining the solids in Turkish curricula.   

Method 

In this study multiple case study approach (Yin, 2003) was used in  which data were collected from 

three volunteer PMTs enrolled in a teacher education program in a public university in Ankara, 

Turkey. The rationales for selecting these PMTs are as follows: They took the methods of teaching 

mathematics-2 course, and they were already completed all the geometry courses offered in the 

program. Thus, they were supposed to give rich data about the definition of geometric shapes.  

The data were collected by using a questionnaire and an interview protocol. Therefore, examples of 

the objects could be analyzed both in oral and written settings. The questionnaire involved items that 

asked participants to define cylinder and prism in their own words and to show the relationship 

between cylinder and prism, if any. After the implementation of questionnaire, semi-structured 

interviews were conducted with the participants using think-aloud method in order to get more 

information regarding the richness, correctness and generality of the participants’ definitions. The 

semi-structured interview protocol involves questions on definitions of solids and classification of 

groups of solids as given in Table 1. More specifically, during the interviews participants were given 

back their questionnaires and they were asked to elaborate on their answers (E.g. Here is your 

definition for the cylinder. Do you want to change any wordings of your definition? Or will you keep 

the definition same?). Then, they were asked to name the classification of objects given in Table 1 



and to express their reasoning behind this classification. In the Table 1, solids taken from Van de 

Walle, Karen, and Bay-Williams (2013) are numbered in each group. Group A and Group B involve 

cylinders with both prototype and non-prototype examples. Further, Group C and Group D involve 

prisms with prototype and non-prototype examples. Lastly, Group E involves general 3-D objects 

which are neither cylinders nor prisms.  

Cylinders Prisms Not cylinders  

Group A Group C Group E 

 
Group B Group D 

Table 1: Groups of solids used in the interview protocol (Van de Walle et al., 2013, p. 413) 

The data obtained from questionnaire and interviews were analyzed using Leikin and Zazkis’s (2010) 

framework and Fujita and Jones’s (2007) definition of non-prototype examples. More specifically, to 

analyze generated definitions regarding the cylinder and prism, correctness, richness and generality 

dimensions of the Leikin and Zazkis’s framework were used. While coding the data in terms of 

correctness criterion, we focus on whether participants’ definitions of cylinder and prism satisfy the 

necessary and sufficient conditions and involve proper terminology. In the analysis of the generality 

of the definitions, if a participant’s exemplification of definition corresponded only to cylinder/prism 

(e.g. circular cylinder, rectangular prism), it was named as specific. If the definition corresponded to 

any 3-D solid without critical attributes of cylinder/prism, it was named as general. In addition, in 

order to evaluate the richness of examples, Fujita and Jones’s (2007) definition of non-prototype 

examples was used. In other words, richness of the examples are determined according to the non-

prototype examples expressed/drawn by participants. Researchers analyzed the data until reaching a 

consensus on the categories of the definitions. Considering that definitions are conventional and 

contextual, the analysis of the present study was made based on Beman and Smith’s (1900) definitions 

of cylinder and prism. 

Findings 

Analysis of PMTs’ definitions and their classifications for the cylinder and prism are presented in 

Table 2. Participants’ definitions of cylinder and prism were analyzed according to the correctness, 

richness and generality criteria. The analysis of PMTs’ knowledge of definitions revealed that their 

definitions were categorized as inappropriate, which satisfy necessary but not sufficient conditions or 

neither necessary nor sufficient conditions. The dimension of richness included both prototype and 

non-prototype examples. Analysis regarding generality showed that participants’ definitions included 

specific, partially specific, and general statements. Lastly, the classification of solids are given in 

Table 2.  The symbols ‘+’ and ‘-’ showed that a PMT identified the classification of a group as 

cylinders, prisms or not cylinders correctly and incorrectly, respectively. 

  



 Correctness Richness Generality Classification 

 Cyl Pr Cyl Pr Cyl Pr Cyl  Pr None  

P1 Inapp. Not N 

not S cond. 

Inapp. Not N  

not S cond. 

Non-pro Proto. General Specific + + Non-

cyl 

P2 Inapp. With N 

but not S cond. 

Inapp. With N 

but not S cond. 

Non-pro. Proto. General Partially 

Specific 

- + Non-

pr 

P3 Inapp. Not N 

not S cond. 

Inapp. Not N 

not S cond. 

Non-pro. Proto. General Partially 

Specific 

- + Non-

pr 

Note: Cyl: Cylinder, Pr: Prism. P1: Participant 1, P2: Participant 2, P3: Participant 3, N: Necessary, S: Sufficient. Symbol 

+: participant correctly identified solids. Symbol-: participant do not correctly identified solids 

Table 2: Correctness, richness, and generality in participants’ definitions and their classification 

Data analysis showed that P1 defined cylinder as “a 3D shape formed by union of two parallel 

surfaces with another surface that cover these two surfaces’ surroundings” and then she expressed 

that “the surfaces do not have to be a polygon and one under the other”. In her statements, the 

definition would be correct if “parallel surfaces” are taken to mean “parallel transverse sections 

enclosed by closed curves” and “another surface” is taken to mean “surface composed of parallel line 

segments”. In addition, her use of “surfaces” terminology is not appropriate and lead 

misinterpretation. This is why her definition was categorized under the example of inappropriate 

definition with neither necessary nor sufficient conditions. In addition, P1’s definition not only 

include improper terminology but also satisfies general conditions that belong to general 3D objects 

whose surface is not restricted with a cylindrical surface (e.g. vase). However, analysis of data showed 

that her drawing of cylinder included a non-prototype example, a cylinder with non-circular closed 

curve bases. While classifying the group of objects in Table 1, P1 correctly identified the examples 

of cylinders (group A and group B) which contain both prototype and non-prototype examples. While 

identifying them, she referred to the attributes that she mentioned while defining cylinder. In addition, 

she correctly identified Group E as examples of non-cylinders referencing inappropriate examples. 

For instance, by showing the object #6 she stated that “there is a space here [she showed the surface 

of the object #6] thus this group cannot be categorized as cylinder”. However, she did not address 

this critical attribute in her definition of cylinder.  

As for the prism, P1 defined it as “a 3D figure formed by combination of two polygon surfaces in 

two different planes with a surface that covers surroundings of that polygons”. In her definition she 

did not mention critical attributes like bases and faces. This definition was also considered under the 

category of neither necessary not sufficient conditions. While classifying, she correctly identified the 

groups of prisms through referring visual characteristics and making inclusion as “they are prisms, a 

special case of cylinders since their bases are polygons”. 

P2 defined cylinder as “it is a 3D figure whose top and bottom bases are parallel and congruent closed 

curves” and then she expressed that “cylinder is formed by combining two identical, parallel and 

closed curves from corresponding points”. In her statements, although she mentioned about some 

necessary conditions for the cylinder, they were not sufficient. For instance, she did not mention any 

information about cylindrical surface. Thus, those characteristics which are general and not specific 

to the cylinder can be valid for other 3D objects. In addition, the curve that bounds the base should 



be planar. Therefore, definition was categorized under the examples of inappropriate definition with 

necessary but not sufficient conditions. Similar to P1, her drawing of cylinder consisted of non-

prototype example which is a cylinder with non-circular bases. However, while classifying, she 

incorrectly identified the groups of cylinders. She identified objects (2, 3, 4, and 5) in group A as 

prisms based on their attributes. She also incorrectly identified #1 as pyramid. She stated that “Bases 

are congruent polygons and parallel. If I take the bases of #5 as polygon, I can say that it is also a 

prism”. This incorrect identification was also related to her conception of “cylinder is [a special case 

of] prism”. Besides, she identified group E as non-prisms, based on the assertion that they lack the 

critical attribute of prism as “their bases are not congruent”, but did not refer to the cylinders.  

P2 defined prism as “a 3D object that has top and bottom bases which are congruent and parallel and 

whose surface area is polygon”. In her definition, while she mentioned some necessary characteristics 

of bases, she missed that the bases are polygons and overgeneralized faces to polygons rather than 

parallelograms. Therefore, the definition was categorized under the example of inappropriate 

definition with necessary but not sufficient conditions. While classifying, she referred to the critical 

attribute “prisms have top and bottom bases that are congruent and parallel polygons” and correctly 

identified prisms. Although she confused for a moment about whether object #4 in group D is a prism 

or not, she identified it as a prism by referring the concavity as “I can consider both concave and 

convex polygons. Can I think them as polygonal region? Ok, then, I considered polygon bases as both 

convex and concave and decide that they are prisms”. 

P3 defined cylinder as “It has non-polygon bases. It consists of two parallel bases which can be regular 

or not and combined to each other with infinite parallel lines”. In her statements, she did not mention 

any information about the congruency of bases. Thus, those properties could be attributed to general 

properties of 3D solids that are not specific to cylinder.  She unconventionally used the term “lines” 

rather than “line segments”. In addition, she stated that the bases should be non-polygon. Therefore, 

her statements were examples of inappropriate definition with neither necessary nor sufficient 

conditions. In addition, she drew a non-prototype example of a cylinder with non-circular bases. 

While classifying the groups, she incorrectly identified solids in Group A and Group B as prisms. In 

this process, she considered cylinders as a special case of prisms and identified the objects according 

to their attributes. In other words, for Group A objects, she stated that “these bases are parallel and 

congruent. There are parallel lines between them. Thus, these shapes can be classified as prism” and 

for Group B objects she stated that “these (#1 and #3) are regular cylinders. Can we say whether #2 

is non-regular cylinder? But we could not name them as cylinder unless bases are circles. But, we can 

admitted them as prisms”. In addition, she classified objects in group B as both prism and cylinder 

since cylinder was included in prisms in her images. Moreover, she identified objects in group E as 

“non-classified solids and non-prisms”. While explaining her answer, she referred to the critical 

attribute of prism that “bases should be congruent” and classified them as non-prisms.  

P3 defined prism as “a shape formed by infinite parallel lines that pass through two parallel and 

congruent polygonal bases”. Similar with P3’s cylinder definition “lines” is not appropriate 

terminology and the definition is insufficient since critical characteristics of bases and faces are not 

stressed. Therefore, this example was considered under the category of inappropriate definition with 

neither necessary nor sufficient conditions. In addition, as an example of prism she drew a prototype 



example that is a right hexagonal prism. While classifying, she identified prisms correctly by just 

referring to visual form as “they are all prisms” and not mentioning any critical attributes.  

Discussion and conclusion 

In this study, we first examined PMTs’ knowledge of definitions of cylinder and prism through 

questionnaire and interview data. Then, we analyzed their classification of cylinders and prisms while 

identifying the 3D objects and how their identification of classes of objects was influenced by their 

informal definitions. The definition analysis showed that PMTs have difficulty in defining cylinder 

(Ertekin, Yazıcı, & Delice, 2014; Tsamir et al., 2015) and prism (Gökbulut & Ubuz, 2013) where 

they mostly used inappropriate terminology that refers to more general attributes of solids rather than 

attributes specific to cylinder and prism. More specifically, we deduced that PMTs have inadequacy 

in defining the (sur)faces of the cylinder and prism. This might be the result of their construction of 

concept definition that depends on the bases rather than cylindrical or prismatic surfaces.  

The other finding was that even a PMT did not make a correct definition of cylinder, she identified 

group of cylinders and non-cylinders correctly. In other words, while PMT did not express some 

critical attributes that are specific for cylinders in her definition, she correctly identified the group of 

non-cylinders based on her correct inclusion of cylinder and prism. However, two participants 

identified cylinder as inclusion of prisms and thus classified non-cylinders (group E) as non-prisms. 

In other words, participants’ misconception of “cylinder is a special case of prism” arouse from the 

prototype image of circular cylinder let them classify the solids incorrectly.  Thus, PMTs’ prototype 

images of cylinders might be an obstacle that influence their inclusion relations of cylinder and prism. 

On the other hand,  PMTs could identified the group of  prisms correctly by referring to the critical 

attribute of polygon bases in their definitions and making visual judgements. Thus, PMTs easily 

identified prisms compare to the cylinder. However, we could deduce that PMTs’ preferences toward 

pedagogical considerations over a rigor definition inhibit their formal definitions and correct 

classifications of solid figures.  

Based on the findings, some implications could be suggested to the teacher educators. The content of 

courses like methods of mathematics teaching and school practice offered in teacher education 

programs should be enriched with activities that demands identifying, explaining, defining, and 

classifying mathematical concepts from both pedagogical and mathematical perspective. By this way, 

PMTs could have the opportunity to analyze the critical attributes and non-prototype examples of the 

given concepts and establish the relationships among the concepts through examining general and 

specific characteristics. In addition, as mentioned above definitions are conventional. Thus, 

depending on the theoretical perspective 3D solids could be defined differently in different nations. 

Thus, further research studies could be conducted to compare and contrast definitions and their 

instructional practices in different nations.  
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In this study, we examined whether the Malawian Initial Primary Teacher Education Programme 

develops teachers’ mathematical knowledge for teaching [MKT]. We administered measures adapted 

from the Learning Mathematics for Teaching project to more than 1,700 pre-service teachers from 

eight colleges to measure their knowledge for teaching. Paired samples t-test using 725 pre-service 

teachers whose pre-test (M = .049, SD = .960) and post-test (M = .084, SD = 1.043) scores we have 

paired, showed no significant gains in knowledge overall (t(724) = -.808, p=.419), and in seven 

colleges individually. However, mathematical knowledge for teaching for pre-service teachers from 

college C2 had increased significantly (t(165) = -2.062, p = .041). While the results showed a 

significant correlation between pre-test and post-test (r = 0.544, p < 0.001), we fail to conclude based 

on the results that the initial teacher education improves mathematical knowledge for teaching. 

Keywords: Primary teacher education, mathematical knowledge for teaching, number concepts. 

Introduction 

Primary school education sector in Malawi experienced a critical shortage of teachers due to increased 

enrolments following the introduction of free primary education in 1994 (Ministry of Education 

Science and Technology [MoEST], 2011). The increased enrolments in primary schools resulted into 

an exceptional demand for teachers. The government of Malawi responded by recruiting unqualified 

teachers and recalling retired qualified teachers as a temporary measure. In order to expedite training 

of the unqualified teachers, the MoEST developed a new teacher education programme called the 

Malawi Integrated In-service Teacher Education Programme [MIITEP] which begun in 1996/7 and 

remained until 2005/6 when it got replaced by the current Initial Primary Teacher Education [IPTE] 

programme. Unlike MIITEP, IPTE is a two year pre-service certificate teacher education programme 

designed to respond to reforms in primary school curriculum (MIE, 2008). During the first year, pre-

service teachers are full time learning in teacher colleges with minimal supervised peer and micro-

teaching. In the second year, the pre-service teachers are attached to primary schools for teaching 

practice with assistance of experienced mentors. To enrol into the programme, prospective students 

must possess a Malawi School Certificate of Education (MSCE) with a credit pass in English and a 

pass in Mathematics and one other science subject. 

Despite the reforms that have occurred in teacher education since 1997 and curriculum shift to align 

it with the primary curriculum, pupils’ performance and achievement in primary mathematics remain 

poor. For instance, Malawian pupils have fared poorly on surveys by the Southern and Eastern 

African Consortium for Monitoring Educational Quality (SACMEQ). In SACMEQ II, Malawi was 

ranked 13th in mathematics out of 14 Southern African countries (SACMEQ, 2010). The trend in 

pupils’ achievements did not change when SACMEQ III was implemented, with Malawian pupils 



being ranked 14th out of 15 participating African countries (SACMEQ, 2010). Efforts to explain the 

underperformance of Malawian pupils in regional surveys have ruled out use of English and increased 

enrolments as factors responsible for the trend because these factors were not unique to Malawi 

(World Bank, 2010). Following analysis of the SACMEQ results, the MoEST observed that most 

teachers did not have sufficient training and/or experience (MoEST, 2011). The analysis therefore 

recommended strengthening of pre-service and in-service teacher education. 

In order to strengthen the current teacher education programme, we need to understand how it 

operates and identify weaknesses. Therefore, the current study as part of a larger study contributes to 

efforts to improve the IPTE programme by assessing the extent to which it develops pre-service 

teachers’ mathematical knowledge for teaching. We therefore attempted to address the following null 

hypothesis: There is no significant change in pre-service teachers’ mathematical knowledge for 

teaching after undergoing initial primary teacher education in Malawi. 

Related literature 

Issues surrounding teacher preparation are of growing concern in Malawi. In its evaluation report of 

the IPTE programme, MIE (2008) highlights the importance of basic mathematics and numeracy for 

teaching of primary mathematics. Through this evaluation and further analyses, MIE identified the 

following issues relating to IPTE and mathematics teacher education: (1) lack of motivation among 

trainees to learn mathematics and to become mathematics teachers, (2) mistakes and wrong 

information in the teaching and learning materials, (3) mismatch between syllabus and content in 

handbooks, (4) conflict between curriculum and assessment reforms, and foundation studies, and (5) 

missing illustrations for number operations in student handbooks. The MIE report concludes that 

these “…will eventually make the student teachers fail to understand what they are supposed to do 

and even fail to do the activities they are being asked to perform” (p. 54). We consequently observe 

that, if the goals of the reforms in teacher education are to be met, we must approach the assessment 

of the current (mathematics) teacher education in a multifaceted and holistic manner. This study is 

therefore part of that holistic approach. 

Although several factors affect a teacher’s effectiveness, Hill, Rowan and Ball (2005) argue that 

teacher’s knowledge is one of the biggest influences on teaching and students’ attainment. As a matter 

of fact, they have put forward evidence that show that teachers with sufficient knowledge produce 

significantly positive changes in their students’ learning and attainment after controlling other 

variables that are believed to influence student achievement. Furthermore, Ball, Thames and Phelps 

(2008) state that there is nothing more foundational to teacher competency than knowledge of their 

subject matter. Their assertion concurs with Ma (1999) who contends that a deep understanding of 

fundamental mathematics affords a crucial base for effective and successful mathematics teaching. 

We agree with Ball et al. (2008) that the quality of mathematics teaching depends, largely, on teachers' 

mathematical knowledge. Research in teacher education has considerably changed the way in which 

mathematical knowledge for teaching development is understood. Traditionally, it can be thought that 

knowledge for teaching develops during and after formal teacher education. However, Grossman 

(1990) and Hill, Rowan and Ball (2005) suggest that knowledge for teaching develops from pre-

teacher education experiences, teacher education experiences and teaching experiences. Hence our 

interest in pre-service teachers’ mathematical knowledge for teaching before and after their initial 

teacher education.  



Vigorous enthusiasm in knowledge for teaching research followed Shulman’s (1986) work to 

identify, classify and define elements of knowledge for teaching. In mathematics education, the 

Learning Mathematics for Teaching [LMT] Project at the University of Michigan has made 

substantial contribution towards identifying and defining the type of knowledge necessary for 

teaching mathematics. This knowledge is today referred to as MKT (e.g. Ball, 2003; Ball et al., 2005; 

Ball et al., 2008; Hill et al., 2005). The LMT Project has shown that general mathematics ability does 

not entirely adjudge the knowledge and skills for effective teaching of mathematics. Ball and 

colleagues have also defined a special type of knowledge needed by mathematics teachers that is 

specific, distinct from pedagogy and knowledge of students, and not needed in other professional 

settings (Ball, et al., 2008; Hill et al., 2005). This is because the tasks of teaching mathematics require 

knowledge beyond ability to confidently perform algorithms (Ball, 2003; Ball et al., 2005). They 

argue that teaching mathematics demands of teachers to be able to, apart from thinking pedagogically, 

fragment mathematical reasoning which is not needed by other professions that use mathematics (Ball 

et al., 2008). This mathematical knowledge and skill unique to teaching is, in their view, specialized 

content knowledge (SCK). Conversely, common content knowledge (CCK) is the knowledge which 

enables an individual to succeed mathematically in terms of “being able to do particular calculations, 

knowing the definition of a concept, or making a simple representation” (Thames & Ball, 2010, p. 

223) and is the knowledge also needed in other professions. 

It is our considered view therefore that for the IPTE programme to prepare pre-service teachers for 

quality mathematic teaching, the programme must offer the teachers opportunities to develop their 

mathematical knowledge for teaching, among other things, because “improving the mathematics 

learning of every child depends on making central the learning opportunities of our teachers,” (Ball, 

2003, p. 9). The programme must embrace deliberate implementation approaches that develop SCK, 

in addition to CCK, of pre-service teachers within the teacher education cycle. 

Design and methodology 

The study examined whether pre-service teachers’ knowledge for teaching number concepts and 

operations improved after completing two terms (about 6 months) of their initial teacher education in 

a pre-test–post-test design. Mathematical knowledge for teaching was examined using measures that 

were adapted from the LMT measures. The measures were piloted using a different group of pre-

service teachers a year prior to the current study (Kasoka, Kazima, & Jakobsen, 2016). 

Sample 

Pre-service primary teachers were sampled from all the eight public teacher education colleges in 

Malawi. Only one of the colleges is a single-sex institution. The recruitment and posting of the student 

teachers to the colleges is centrally done by the MoEST. For the purpose of this study, we identify 

the colleges as C1 to C8. The pre-service teachers enrolled into the IPTE programme in September 

2015 and had covered number concepts and operations in term one that runs from September to 

December of an academic year. The pre-service teachers had learnt how to teach number concepts 

and operations by the end of term one. Table 1 shows the composition of the sample. 

  



Age/Gender Teacher college Total 

 C1 C2 C3 C4 C5 C6 C7 C8  

<21 years 49 65 36 26 28 42 18 20 284 

21 – 25 75 81 53 16 34 52 20 16 347 

26 – 30 13 12 15 3 6 11 2 3 65 

>30 years 9 8 0 0 3 3 4 2 29 

Female 84 94 22 45 25 57 17 19 363 

Male 62 72 82 0 46 51 27 22 362 

Table 1: Pre-service teachers numbers by college 

The instrument 

For this study, we used adapted MKT measures for number concepts and operations from the LMT 

measures (see Kasoka et al., 2016). We used the previously validated measures to design an 

instrument comprising of two forms, namely Form A and Form B. The forms that we designed were 

intended to specifically measure the pre-service teachers’ CCK and SCK of number concepts and 

operations. The final version of the instrument we administered had 67 items distributed between 

Form A and Form B. Form A had 38 items while Form B had 35 items. The two forms had six 

anchoring items. 

Data collection and scoring 

The first set of data was collected from the pre-service teachers in the third week (September 28 – 

October 2, 2015) of term one. The forms were re-administered during the second week (May 16 – 20, 

2016) of the third term. Although number concepts and operations are covered in the first two terms, 

we deliberately collected post-test data at the beginning of term three so as to avoid the pre-test 

directly affected the post-test. We also noted that there are instances where first term material spills 

to term two due to some unforeseen circumstances in the colleges. To minimize the test-retest effect 

further, we swap the forms among the colleges such that the pre-service teachers that took Form A 

on pre-test, took Form B on post-test and vice versa. 

The administration of the forms took place on different days of the same weeks as it was not possible 

for us to cover all the eight colleges on a single day. Each of the two forms was administered in four 

colleges. Permission to administer the forms was sort from college management prior to travelling to 

each college. The pre-service teachers completed the forms during class times without any personal 

incentives. However, they were briefed about the study and its objectives hence they participated 

willingly. The participants were allowed to work on the forms for a maximum period of 90 minutes. 

We had more than 1,700 preservice teachers at each administration. However due to other logistical 

hiccups, we have only been able to pair pre and post-test scores for 725 pre-service teachers. Hence 

the sample size, n = 725. It must be noted that some participants who took the pre-test dropped out of 

college before the post-test and some participants who took the post-test reported to college late. 

These missed the pre-test. Table 1 shows the number of pre-service teachers whose scores we have 

paired so far.  



The two tests were scored simultaneously using an item response theory (IRT) software, BILOG-

MG. IRT was chosen because of its robustness in analysis of item level data to measure inter-

individual variation. For Hambleton and Swaminathan (1985), rich item level information extracted 

through IRT offers many advantages over classical test theory (CTT). Each of the pre-service teachers 

got a pair of IRT scores placing them along a standardized ability scale with mean of 0 and standard 

deviation of 1. The IRT scores were then entered into IBM-SPSS for further analysis. 

Statistical analysis 

Pre-test scores were used to calculate Cronbach’s alphas to test internal reliability of the test. Form 

A appeared to have a good internal consistence, 𝛼 =  0.733 (Pallant, 2007). All the 38 items seemed 

worthy retaining since the greatest increase in alpha was only .002 after deleting either item FA8 or 

FA13. Form B had a lower reliability, 𝛼 = 0.656 and none of the item deletion increased the alpha 

value significant. To examine the change in mathematical knowledge for teaching between pre-test 

and post-test, a dependent samples t-test was used to compare means of the tests for all the colleges, 

and within each college. We also compared knowledge growth among the pre-service teacher in the 

eight colleges using one way analysis of variance (ANOVA). To achieve this, a new score we called 

knowledge growth was obtained for each participating teacher by calculating the differences between 

post-test and pre-test scores. ANOVA of the new scores was then carried out. Levene’s test confirmed 

the assumption of homogenous variances, F(7, 717) = 2.273, p = .049. 

 

 Teacher college 

 C1 C2 C3 C4 C5 C6 C7 C8 

T -.085 -2.062 .951 1.586 -.453 -.873 -1.705 1.590 

p-value .932 .041 .343 .120 .652 .385 .950 .120 

Df 145 165 219 44 70 107 43 40 

Table 2: Summary of t-test results 

Results and discussion 

A dependent samples t-test was carried out to test the hypothesis that the pre-IPTE mean (M = .048, 

SD = .833) and post-IPTE mean (M = .960, SD = 1.044) of mathematical knowledge for teaching are 

the same.  Before conducting the test, the assumption of normality for the distribution was ascertain 

using Q-Q plots. We also observed that there was a significant correlation between pre and post-test 

scores (r = .544, p < .001). This suggests that a pre-service teacher with a high mathematical 

knowledge for teaching at pre-IPTE was more likely to have a high mathematical knowledge for 

teaching at post-IPTE. The two assumptions support our use of dependent samples t-test. Dependent 

samples t-test returned t(724) = – .808, p = .419 showing that the test was not significant. We therefore 

failed to reject the null hypothesis and concluded that the teachers’ knowledge means before and after 

teacher education were not significantly different. We also carried dependent samples t-tests to test 

the null hypothesis using knowledge scores for each college. The results are summarized in Table 2. 



Teachers’ understanding of number concepts and operations is critical to quality teaching of primary 

mathematics (Hill et al., 2005; Ma, 1999). The poor achievement in primary mathematics and 

misconceptions are attributed to misunderstanding surrounding number concepts and operations, 

including counting, ordering, order of operations, associativity, commutativity, and fractions (e.g. 

Brombacher, 2011). It is critical that pre-service teachers understand and competently use basic 

number concepts and operations properties for them to effectively teach mathematics (MIE, 2008). 

The items used in this study were purposively selected to address specific aspects of number concepts 

and operations that can be considered prerequisite for the learning of school mathematics beyond 

literacy level. The items examined pre-service teachers’ knowledge of whole number operations, 

subtraction of integers, representation and operations of fractions, decimal representations, prime 

numbers, and the order of operations. The results of data analysis show that pre-service teachers’ 

knowledge for teaching these essential aspects of mathematics did not improve as a consequence of 

the participants undergoing teacher education. Similar results are observed from analysis of data from 

seven individual colleges. These results are surprising and not encouraging since the IPTE 

programme was developed on the premise of setting the foundations for formal schooling. However, 

at college level, we observe that mathematical knowledge for teaching number concepts and 

operations significantly improved among pre-service teachers from college C2. 

We noted that the IPTE programme has some effect on pre-service teachers’ mathematical knowledge 

for teaching. However, the effect varied among the colleges. ANOVA test was conducted to 

understand how the IPTE programme affected mathematical knowledge for teaching growth of pre-

service teachers across the colleges. The ANOVA analysis yielded insignificant results (F(7) = 1.808, 

p = .085). This result shows that the means of knowledge growth were not statistically different 

among the eight colleges. 

Implications 

The IPTE programme should include aspects related to mathematical knowledge for teaching. These 

may include use of non-traditional lesson design, improved quality of activities, and classroom 

engagements of pre-service teachers during their college based education. This study suggests that 

mathematics teacher educators in teacher education colleges in Malawi ought to understand what 

mathematical knowledge for teaching is, why it is important, and how they can enhance its 

development among pre-service teachers. These results encourage teacher educators to network 

among themselves to learn from each other. The study found that one college had improved MKT. 

The other colleges can therefore learn from this college. 

The significant growth of MKT for college C2 supports the notion that MKT can be developed and 

enhanced during pre-service teacher education. Mathematics educators in education colleges are 

encouraged to blend content, pedagogy and practice to develop pre-service teachers CCK and SCK 

simultaneously. However, the determination of what exactly went on at college C2 to improve MKT 

is beyond the scope of the current study but a possible direction for future research. 

The result also point to pre-service teachers’ very poor understanding of basic mathematics and hence 

their mathematics background. This may have explained the low levels of mathematical knowledge 

students had on pre-test and the inability for the knowledge to grow in six months. IPTE’s minimum 



entry requirements for mathematics teachers may need to be revised. Currently, all pre-services 

primary teachers study mathematics in college and are expected to teach mathematics on completion. 

More research is required to identify, understand, and replicate variables affecting growth of 

mathematical knowledge for teaching in the Malawi context. Although this study is unique in that it 

implemented MKT measures on multiple colleges and compared knowledge growth, it was limited 

to MKT growth. There is need to clearly understand how this knowledge is developed and can be 

enhanced in Malawi. As we continue to make further attempts of pairing pre-test and post-test scores 

so as to increase our sample and understand how the current results would be affected, the study has 

been able show that growth in MKT is possible within the settings of the IPTE. 

Conclusion 

As more and more research reports highlight poor achievement in primary mathematics in Malawi 

(Brombacher, 2011; SACMEQ, 2010; World Bank, 2010), it is necessary to assess how teachers are 

prepared under the IPTE programme to teach mathematics. Research suggests that for student 

teachers to succeed in their profession, they must have sufficient mathematical knowledge for 

teaching mathematics. Research has also illustrated that student learning and achievement can be 

affected by teachers’ knowledge for teaching and that this knowledge can be assessed (Hill et al., 

2005). According to the framework suggested by the LMT Project, mathematical knowledge for 

teaching consists of mathematical content knowledge specific to the needs of task of teaching (SCK) 

over and above what is considered common for other professionals (CCK) (Ball et al., 2008; Thames 

& Ball, 2010). Therefore, our teacher education programme can meaningfully prepare teachers by 

ensuring that the pre-service teachers are provided with opportunities to develop both CCK and SCK. 

We can therefore argue that by assessing student teachers’ knowledge for teaching mathematics, we 

can identify possible gaps that need to be addressed as a contribution towards the provision of quality 

mathematics teacher education in Malawi. 

The current study found that pre-service primary school teachers’ MKT did not improve after 

undergoing IPTE programme. We expected that students’ MKT to positively change post-IPTE. 

However, mathematical knowledge for teaching for students from one college, C2, improved 

significantly relatively to its pre-test average but not to other colleges. 

While the study findings are discouraging, they suggest the need for a review of the IPTE curriculum 

and its implementation so that it improves pre-service teachers’ Mathematical knowledge for teaching 
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A preservice secondary school teacher’s pedagogical content 

knowledge for teaching algebra 
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This study investigated a preservice secondary school teacher’s pedagogical content knowledge 

(PCK) for teaching algebra. Data were generated using video-recorded interviews and analysed 

using thematic analysis. Findings indicate that content knowledge was influential in the preservice 

teacher’s PCK. Secondly, the preservice teacher, who was one of the best students in his class, 

displayed some knowledge of analysing students’ errors and anticipating their possible 

misconceptions. He appeared to be familiar with some methods of handling students’ errors and 

misconceptions. However, it appears that he was not prepared to apply such methods in his 

teaching of algebra. 

Keywords: Pedagogical content knowledge, preservice teacher, secondary school, algebra. 

Introduction 

A body of research indicates that teacher knowledge influences the quality of their teaching and 

student learning (Hoover, Mosvold, Ball, & Lai, 2016). Although there appears to be general 

consensus that mathematics teachers need to know the content in ways that surpass the knowledge 

of educated people outside the teaching profession (Ball, Thames & Phelps, 2008), more research is 

needed in order to investigate the types of knowledge needed for teaching particular mathematical 

topics at particular levels (Hoover et al., 2016). From her review of literature on teaching and 

learning of algebra, Kieran (2007) suggests that researchers have barely begun to investigate the 

knowledge needed for teaching algebra. Some studies have contributed to this area of research. For 

instance, Bair and Rich (2011) investigated the development of specialised content knowledge for 

teaching algebra among primary teachers. In the present study, we contribute to the field by 

investigating pedagogical content knowledge (PCK) for teaching algebra in secondary school. 

Our study was carried out in Malawi – a country in southern Africa that experiences severe 

challenges in the education system. Secondary school students’ performance in national 

examinations continues to be poor with only around 50 percent of students passing end-of-cycle 

examinations (Ministry of Education Science and technology, 2008), and students’ performance in 

algebra is poor (Malawi National Examinations Board, 2008-2013). While explanations have been 

proposed concerning system failure, (Ministry of Education Science and Technology, 2008), we 

suggest that further investigations of teacher knowledge as a potentially relevant factor of influence 

is necessary. As such, the aim of this study was to investigate a Malawian preservice secondary 

school teacher’s PCK for teaching algebra. Possible implications are discussed. 

Theoretical framework 

Two constructs guide the theoretical framework for this study: mathematical knowledge for 

teaching (Ball et al., 2008) and algebraic thinking (Kriegler, 2007). Ball et al. (2008) distinguish 

between three sub–categories of subject-matter knowledge and thus extend Shulman’s (1986) 

original category. Common content knowledge refers to a kind of mathematical knowledge and skill 



that is used in settings other than teaching (Ball et al., 2008). Specialised content knowledge, on the 

other hand, refers to mathematical knowledge and skill that is unique to teaching. In addition, they 

present horizon content knowledge as a third category of subject-matter knowledge. For sake of 

simplicity, we focus broadly on content knowledge in this study. Ball et al. (2008) also distinguish 

between three sub-categories of PCK. Knowledge of content and students (KCS) is knowledge that 

combines knowing about students and knowing about mathematics. Knowledge of content and 

teaching (KCT) combines knowledge about teaching and knowledge about mathematics. Finally, 

Ball et al. (2008) present knowledge of content and curriculum as a third sub-category of PCK. In 

the present study, we focus on content knowledge and two sub-categories of PCK: KCS and KCT.  

The second construct of the theoretical framework draws upon Kriegler’s (2007) work on 

mathematical thinking tools of the algebraic thinking framework. Kriegler asserts that mathematical 

thinking tools are analytical habits of mind. They are organised around three topics: problem 

solving skills, representation skills, and quantitative reasoning skills. Teachers should be able to 

solve algebra problems using multiple approaches and problem solving strategies. They should be 

able to translate among representations and solve problems inductively and deductively.  

Method 

The study reported here is part of a larger qualitative study that investigates four preservice 

secondary school teachers’ mathematical knowledge for teaching (see Mamba, 2016a; Mamba, 

2016b). In previous publications, the first author reported on results from a task based interview that 

she conducted with one preservice secondary school mathematics teacher and video lesson 

observation for one lesson. In the current paper, we explore PCK for teaching algebra, considering 

the case of Dinga (pseudonym). Dinga was a diploma in education student in a three-year 

programme at a college of education in Malawi. When data for this study were generated, he was in 

the final year of study. Being a high-achieving student in mathematics in his class, he was 

considered an “information-rich” case for in-depth study (Yin, 2014). Video-recorded semi-

structured interview was used to generate the data, allowing for multiple, in-depth rounds of 

analysis of the data (Girden & Kabacoff, 2011). Interview tasks reported here were adapted from a 

Malawi secondary school mathematics textbook (Gunsaru & Macrae, 2001) and were piloted before 

the main study.  

The first author conducted the interview and transcribed the video recordings. These transcripts 

were analysed using a combination of inductive and deductive thematic analysis (Yin, 2014). 

Analysis of the interview transcripts involved identification of the PCK that Dinga displayed as he 

answered the interview questions. The themes that guided analysis were developed a priori from 

the theoretical framework. Themes for content knowledge were problem solving skills, 

representation skills, quantitative reasoning skills and justifying. Themes for KCS included 

predicting students’ errors and misconceptions, understanding reasons for errors and 

misconceptions, and asking questions to reveal or understand students’ reasoning and 

misconceptions. KCT was coded into methods of handling students’ misconceptions and knowledge 

of instructional tasks to be used to enhance conceptual understanding and choosing instructional 

strategies. Some themes that were not in the theoretical framework were developed a posteriori 

from the data. The themes were further grouped into three categories: CK, KCS and KCT. To 

achieve credibility of the results, another researcher analysed the data. In all cases we got at least 



90% agreement, with no discussion between the researchers. Furthermore, the findings were read 

and critiqued by other researchers. 

Results and discussion 

In the following, we present illustrative examples of results from the analysis of data from the 

video-recorded interview.  

Content knowledge 

During the interview, Dinga was asked to solve the following equation: x2 = 2x + 8. He solved the 

equation using two approaches: factorisation method and the quadratic formula. When asked about 

other methods apart from the two he used, Dinga explained that he had forgotten the other method. 

His explanation showed that he had knowledge of completing the square, but he had forgotten how 

to use this method for solving quadratic equations. Dinga’s solution processes revealed that he had 

procedural knowledge, since he did not display knowledge of the conceptual foundations of 

quadratic equations. For instance, when he solved the equation x2 = 2x + 8 by factor method and 

quadratic formula, his difficulties of explaining the procedures indicated that he knew the “what” of 

the procedure but not the “why”. For mathematics teachers, knowing both the “what” and the 

“why” of a procedure is important (Shulman, 1986). Dinga’s knowledge of content therefore 

seemed limited in depth and breadth. Inability to solve the equation, using the other approaches, like 

completing the square and graphing, also indicated limitations in problem solving skills and 

representation skills. When solving the equation using the two methods he remembered, however, 

Dinga used rules of logic to come up with next steps in the procedures he used – thus indicating 

skills in deductive and quantitative reasoning.  

When answering questions in Task 2 (Figure 1), he did not attempt to interpret the graph first, 

although the interviewer asked him to do so. This also indicates limitations in content knowledge 

and algebraic thinking skills. 

Knowledge of content and students  

Dinga displayed knowledge of predicting methods that students may find easy or difficult, 

predicting students’ errors and misconceptions, understanding reasons for misconceptions, and 

asking questions to reveal or understand students’ reasoning and misconceptions. For instance, the 

interviewer asked Dinga to assume that he gave this equation x2 = 2x + 8 to his algebra students to 

solve. When asked to explain what methods he thought his students would use, Dinga explained 

that his students would use factorisation because, to him, factorisation method is easy and the other 

methods are difficult. Our interpretation of Dinga’s response is that he based his prediction of what 

students would find difficult on his own experienced difficulties.  

The second task in the interview involved interpretation of a conversion graph between °C and °F 

(see figure 1 below). 



 

Figure 1: Conversion task 

During the discussion extracted in the below excerpt from the transcripts, Dinga was first asked to 

read, solve and understand task 2. Then, the interviewer asked him to explain the errors and 

misconceptions that students might display as they attempt to answer this question.  

Dinga:  (...) They may misread the scale, or they may not understand the scale and they 

may come up with different values.  

FM:  Ummmm! Hummm!  

Dinga:         Some students don’t know what horizontal axis is and what vertical axis is. So in 

this kind of problem, they can easily do the reverse. 

FM:  What misconceptions might lead to the errors you presented in this item? 

Dinga:  Sometimes, they put forward the belief that mathematics is difficult. So they may 

think that they may not manage.  

FM:  What else apart from the belief that mathematics is difficult? 

Dinga:  Teachers also contribute. If a teacher does not understand a topic, he/she does not 

teach it. He/she teaches a topic that is easy.  

By explaining that students will misread scale and come up with different values from the expected 

values due to misunderstanding of scale, and that students may misallocate a point on the coordinate 

system, Dinga displayed ability to predict errors students may exhibit as they interpret that graph. 

However, when Dinga said, “if students do not understand scale, they would find some difficulties 

about how to come up with a conversion graph”, he changed the purpose of the task from 

interpreting the graph to drawing the graph. Secondly, although Dinga suggested that graph 

interpretation is easier for Malawian students than drawing the graph, he did not interpret the graph 

himself, hence what he said contradicted with what he did during the interview. By explaining that 

graph interpretation is easier than drawing graphs, Dinga displayed limited knowledge of levels of 



graph interpretation. According to Cursio (1987), graph interpretation is a cognitive task involving 

three levels of understanding, namely reading the data, reading between the data and reading 

beyond the data. Dinga’s understanding of these levels may influence students’ development of 

graph interpretation abilities. Thus, Dinga displayed limited ability to predict students’ difficulties 

about interpreting a linear graph – possibly because he struggled to interpret the graph himself. 

Failure to interpret the graph was also an indication of limitation in representation skills. He was 

unable to interpret information within a representation. We noted that while algebra students often 

create graphs from equations, they rarely practice creating equations from graphs and interpreting 

the graphs – hence Dinga’s difficulty. 

When asked to explain the misconceptions that may lead to the errors mentioned, Dinga pointed out 

beliefs and teachers. By explaining that teachers also contribute to errors and misconceptions, 

Dinga proposes that some misconceptions originate from experiences in school – students’ 

interaction with teachers being one of the experiences. However, his responses indicate that he did 

not know which causes the other. He identified the errors but was not in a position to understand the 

misconceptions that could be possible causes of such errors. Instead, Dinga explained the causes of 

misconceptions. This confusion might have resulted from lack of understanding of errors, 

misconceptions and their causes. Understanding of each is important for the teacher, because, as 

with the weeds, the roots must be tackled if the weeds are to disappear. Similarly, teachers must 

deal with the causes of errors and misconceptions to help students overcome them. 

To understand or reveal students’ reasoning and misconceptions, Dinga explained that he would ask 

the students about the meaning and interpretation of scale, and he would identify the 

misconceptions from their responses. He also explained that he would ask the students to tell him 

what the horizontal and the vertical axes represent, because some students do not know what 

horizontal and vertical axes represent. By explaining that students confuse between horizontal and 

vertical axes, Dinga displayed understanding of students’ confusion between independent and 

dependent variables. Asking him to give examples of probing questions that he said he would ask, 

we expected that he would mention questions like “explain your answer”, “why do you think so?”, 

“How did you get that?” Dinga did not suggest such questions. We interpret this as an indication of 

limited knowledge of what questions to ask in order to identify misconceptions.  

Knowledge of content and teaching  

The KCT that Dinga displayed included predicting strategies for teaching how to solve the 

quadratic equation x2 = 2x + 8, and strategies for handling students’ errors and misconceptions. 

When asked how he would teach solving quadratic equations using the equation x2 = 2x + 8, Dinga 

explained that he would give them steps to follow for them to come up with the roots of the 

equation. The procedural knowledge he displayed when solving the equation might have influenced 

this response. Dinga also explained that he would ask volunteers to solve the equation on the 

chalkboard in any way they want in order to understand the way students understood the problem. 

In this case, Dinga decided to use a hybrid of teacher centred and student centred teaching methods. 

Although, this might be an improved version of teacher centred strategies, Dinga revealed 

knowledge of teaching the “what” but not “why”. Thus, Dinga displayed lack of an important 

aspect of subject matter knowledge: “knowing why”. Even and Tirosh (1995) argue that “knowing 

that” is not enough, and they suggest that “knowing why” enables the teacher to make better 



pedagogical decisions. It could thus be expected that Dinga lacks the knowledge necessary for 

teaching equations effectively to his students. In the closing statements of the interview, Dinga 

explained his limitations with lack of teaching experience. 

In order to handle students’ errors and misconceptions, teachers need to use appropriate strategies to 

create moments of cognitive conflict and help students resolve the conflict (Sayce, 2009). Dinga 

pointed out that he would use discussion and group work. The transcript below illustrates this. 

FM:              What instructional strategies would you use to address the misconceptions you have 

mentioned? 

Dinga:         I will use discussion, grouping, … (silence). 

FM:             How could these methods work in addressing these misconceptions? 

Dinga:         If I put my students in groups of 5 or 10, those who understood may assist others.  

FM:             Um! Humm! 

Dinga:          I will also give a summary of the topic so that students can easily correct  their 

mistakes. 

FM:              How else can you address the misconceptions? 

Dinga:      Maybe giving my students a lot of exercises to do on the topic which they have 

problems so that the students understand the concept. 

The results in the transcript above concur with Sayce (2009) who asserts that, to induce cognitive 

conflict, teachers should encourage collaborative working, especially in mixed ability groups. 

However, Dinga did not reflect on any features of group work that may facilitate this. He also did 

not reflect on the possibility that cognitive conflicts might be introduced by peers, but he seemed to 

suggest that the less able students could be passive recipients of the other students’ explanations. 

We also argue that since errors and misconceptions are deeply rooted erroneous conceptions, 

summarising content covered in a lesson or giving students more exercises might neither be the root 

to cognitive conflict nor the way out of the conflict. The possible cause for Dinga’s limitations in 

methods of handling students’ errors and misconceptions might be that he did not solve the 

mathematical task (task 2) – possibly because he seemed not to know what it takes to interpret 

graphs (Cursio, 1987). A teacher needs to be able to solve the mathematical task before presenting it 

for the students in the classroom. Solving the task enables the teacher to anticipate students’ 

solution methods, errors, misconceptions and questions to ask the students.  

Conclusion 

In this study, we investigated the PCK for teaching algebra displayed by one preservice secondary 

school teacher – Dinga. The findings reveal that content knowledge was the overriding determinant 

of Dinga’s KCS and KCT. For instance, Dinga explained that he would teach solving the equation 

x2 = 2x + 8 by giving the students a procedure to follow to solve the equation, probably because he 

lacked the “why” of the procedure and he solved the equation likewise. He also had some 

difficulties predicting students’ errors and misconceptions because he was unable to interpret the 

graph. These findings support the fact that PCK involves knowledge and skills that are highly 

interrelated to each other (Even & Tirosh, 1995). Thus, teachers should possess in-depth content 



knowledge, have a rich repertoire of teaching strategies to promote students’ understanding of a 

particular topic and to understand and handle students’ errors and misconceptions (Kilic, 2011). The 

findings also support the fact that preservice teachers possess limited PCK (Kilic, 2011). Although 

Dinga appeared to be familiar with some methods that can be used to handle students’ errors and 

misconceptions, he seemed to lack conceptual approaches to students’ errors and misconceptions 

because of his limitations in content knowledge and the “why” of his ideas.  

It is also worth noting that Dinga’s responses to the interview questions might be influenced by 

several factors. Firstly, it might be that Dinga might be able to solve equations but might not be able 

to explain his ideas. The fact that the interview tasks were adapted from a textbook might also limit 

Dinga’s explanations and responses during the interview if the textbook was not familiar to him. 

But I gave the preservice teachers the textbooks a week before the commencement of the data 

collection for them to study in preparation for the tests and interviews. Furthermore, Dinga’s 

responses might be influenced by the secondary school mathematics curriculum he went through as 

a mathematics student. The mathematics curriculum did not give students opportunities to explain 

their reasoning during mathematical problem solving. The way mathematical problem solving is 

handled in preservice teacher education in Malawi might also influence the results from the 

interview with Dinga. For instance, there is less practical work on mathematical problem solving in 

teacher education, yet the preservice teachers are expected to teach their students how to use the 

approach during teaching practice. 

The results from this study cannot be generalized to all preservice teachers at Dinga’s institution. 

Further research with a larger sample needs to be carried out to find out whether results from this 

case study are generalisable at a large scale. In addition, the measurement of Dinga’s PCK was 

somewhat constrained due to the limitation of not having access to classroom students. In his 

responses, Dinga had to ‘work’ within a hypothetical situation. While his limitations in PCK were 

more evident during the task-based interview, it is possible that additional evidence of PCK could 

be obtained through a variety of problems and video lesson observations. These results, however, 

help us to learn that developing PCK and problem-solving skills among preservice secondary 

teachers by “providing teachers with opportunities to learn mathematics that is intertwined with 

teaching” (Hoover et al., 2016, p. 12) is crucial for mathematics teaching and learning. 
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Analysis of mathematics standardized tests:  

Examples of tasks for teachers 
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This paper discusses examples of tasks for teachers proposed during some laboratory activities 

developed in two Italian teacher education courses for middle school mathematics teachers. 

Following a common script, the teachers carried out and shared an a priori analysis of some items 

selected from the Italian National Standardized Assessment. The tasks fostered the reflection on 

epistemological, cognitive and educational aspects: the teachers reflected on the mathematical 

contents involved, the link with the National Guidelines, and the possible students’ answers. The 

specific tasks and the laboratory approach make these activities well suited for showing and 

improving some aspects of teacher knowledge and skills. 

Keywords: Teachers’ knowledge and skills, teacher education, tasks for teachers, laboratory 

activities. 

Introduction 

For some years now, the research on Teacher Education has been concerned with tasks for teachers. 

Drawing from specific research about the knowledge used by teachers in their work (Shulman, 

1986; Ball, Thames, & Phelps., 2008) and about the features that make a task well suited for 

developing that knowledge (Suzuka et al, 2009), this study presents examples of meta-didactical 

praxeologies (Aldon et al., 2013), which show the ability of the teachers to intertwine the different 

knowledge that can characterize them as mathematics teachers. The paper discusses a laboratory 

activity carried out during two teacher education programs for middle school teachers, in which we 

can identify tasks that aim at bringing out teachers’ knowledge and skills and at improving their 

ability to dynamically relate these knowledge. Teachers carried out a priori analysis of items on 

number line, selected from Italian mathematics standardized tests. These items are assessment tasks 

but they were chosen and analyzed individually as mathematical problems that could be also 

become part of learning activities. The fact that they were selected from national tests gave also the 

opportunity to take into account the statistical results on the national sample. Teachers reflected on 

the mathematical contents, aims, and students’ possible solution strategies, errors and 

misconceptions. In order to do that, they used different mathematical content knowledge. These 

activities, by means of shared analyses and collective discussions, put into light some professional 

skills of the teachers: in particular those related to the use of their Subject Matter Knowledge and 

the Pedagogical Content Knowledge (Shulman, 1986; Ball et al., 2008) and to the management of 

the links between these knowledge. 

After a brief presentation of the background and the theoretical framework, the paper discusses 

examples of activities, tasks, and teachers’ reflections developed in two teacher education 

programs, which involved in-service and pre-service middle school teachers. 



Background and theoretical framework  

Making the cultural background explicit is fundamental to understand the goals of a teacher 

education course (Bartolini Bussi & Martignone, 2013). Therefore, it is important to present briefly 

the background of the activities analyzed in this paper. In fact, the choices made in the design of the 

activities are due to factors that are also linked to the Italian context: e.g. the choice of analyzing 

items taken from the Italian National Standardized tests (http://www.invalsi.it/invalsi/index.php). 

The teachers are interested in the discussion about these items, because all their students faced or 

will face these tests. For each item the teachers could refer to the quantitative results coming from 

the surveys on the national sample (these results are annually reported and they are public as well as 

the test items). Another factor that justifies the choice of analyzing these items is that the teacher 

educator was involved in a research on Italian national standardized mathematics tests (Branchetti 

et al., 2015; Lemmo, Branchetti, Ferretti, Maffia, & Martignone, in press) and she wanted to discuss 

the results of this study with the teachers. The teachers and the teacher educator shared specific 

meta-didactical praxeologies (Aldon et al., 2013) about the analysis of standardized test items. The 

term “meta-didactical” denotes that the praxeologies shared during the courses deal with the actions 

and the reflections of teachers about the educational activities. The reflective actions can be fostered 

by a particular praxis that includes different kinds of tasks (in this case the task for teachers about 

the a priori analysis) as well as techniques available to face them (e.g. the development and sharing 

of a common script that takes into account institutional aspects, the mathematical contents involved, 

the link with the National Guidelines, and the possible students’ answers and mistakes). The meta-

didactical praxeologies change over time because of the dialectical interactions between the 

researchers and the teachers communities (Martignone, 2015). This work would lay the foundations 

of the growth of a community of inquiry (Jaworski, 2003) in which the teachers and the teacher 

educator can share and develop their knowledge. There are aspects of teacher knowledge that many 

researchers agree on as been characteristic of  the teacher knowledge, such as the Pedagogical 

Content Knowledge: “the particular form of content knowledge that embodies the aspects of content 

most germane to its teachability” (Shulman, 1986, p. 9). There is a wide literature that started from 

the Shulman idea about the knowledge for teaching. In particular, the studies on the Mathematical 

Knowledge for Teaching (MKT - Ball et al., 2008) propose a refinement of Shulman’s classification 

of Content Knowledge. Ball and colleagues try to define a so called Specialized Content 

Knowledge: “the mathematical knowledge and skills unique to teaching” (Ball et al, 2008, p. 400). 

As the authors write (Ball et al, 2008, p. 403), often it is difficult to discriminate Specialized 

Content Knowledge (SCK) from the Common Content Knowledge (CCK) and from the Pedagogical 

Content Knowledge (PCK), but there are examples in which we can see their different aspects. 

 “[…] for example, consider what is involved in selecting a numerical example to investigate 

students’ understanding of decimal numbers. The shifts that occur across the four domains, for 

example, ordering a list of decimals (CCK), generating a list to be ordered that would reveal key 

mathematical issues (SCK), recognizing which decimals would cause students the most 

difficulty (KCS1), and deciding what to do about their difficulties (KCT2), are important yet 

subtle” (Ball et al., 2008; p.404) 
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By means of specific tasks and methodology, some aspects of teachers knowledge and skills can 

emerge during teacher education programs. Therefore, the tasks for teachers are an important part of 

teacher learning: they can include “the mathematical prompts, many of which may be classroom 

tasks, that are used as part of teaching learning” (Watson & Sullivan, 2008; p.109). With regard to 

the tasks used to develop the MKT, Suzuka and colleagues (Suzuka et al, 2009) make a list of 

features that make a task well suited for developing MKT: 

 “Creates opportunities to unpack, make explicit, and develop a flexible understanding of 

mathematical ideas that are central to the school curriculum 

 Provokes a stumble due to a superficial “understanding” of an idea 

 Opens opportunities to build connections among mathematical ideas 

 Lends itself to alternative/multiple representations and solution methods 

 Provides opportunities to engage in mathematical practices central to teaching (e.g., 

explaining, representing, using mathematical language, analyzing equivalences, proving, 

analyzing proofs, posing questions)” (Suzuka et al., 2009; pp.12−13) 

These features are linked to the analysis of some examples of tasks (Suzuka et al, 2009). There are 

shareable critics (Flores, Escudero, & Carrillo, 2013) about the fact that the tasks described can also 

be faced by individuals who know the topic and, therefore, these knowledge and skills are not 

identifiable as specialist of the teachers: according to Flores and colleagues there is not sufficient 

evidence to guarantee that the knowledge, labelled SCK, is exclusive to mathematics teachers. Even 

if I agree with the critics on these tasks, the list of features about the MKT tasks presented by 

Suzuka and colleagues seems to well identify some aspects of tasks that characterize the work of a 

teacher.  

This paper will present some examples of tasks for teachers that can be suited for showing and 

improving the mathematical knowledge for teaching.  The methodology is also important in raising 

the teachers knowledge: in the activities that will be presented, the teachers are involved in 

laboratory sessions in which they work in small groups, discuss and share their reflections and 

analysis. 

The teacher education program  

This paragraph discusses some examples of educational activities carried out in the “Didactics of 

Mathematics” courses for middle school teachers involved in two Italian post-degree programs for 

the achievement of the teaching credential: the Active Internship (in Italian “Tirocinio Formativo 

Attivo” -TFA) and the Special Teaching Certificate Course (in Italian “Percorso Abilitante 

Speciale” -PAS). These programs follow the indications of the Ministry of Education and they are 

established by universities. The first one is attended by pre-service teachers and the second one by 

in-service teachers. The author of this paper is the teacher educator/didactician. During the teacher 

education programs, the teacher educator had the opportunity to work with teachers and to discuss 

with them some theoretical tools to analyze tasks from the Italian National Mathematics 

Standardized Tests. These tests are administered at the end of the school year in grades 2-5-8-10 

(grade 6 was involved from 2010 to 2013). Only for grade 8 (the end of middle school in Italy), the 
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test is part of the national final examination, so it contributes to the final assessment of the students. 

The items aim at assessing students knowledge and skills identified in the Italian National 

Guidelines. 

The teacher education courses analyzed involved 72 in-service teachers and 25 pre-service teachers. 

The activities followed a laboratory approach in a Vygotskian perspective (Bartolini Bussi & 

Mariotti, 2008): the teachers learn by doing, seeing, imitating, and communicating with each other 

within the course community. In these courses, the teachers and the teacher educator shared, 

discussed and reflected on their a priori analysis of mathematics problems, focusing on the 

institutional, epistemological, cognitive and didactical aspects. 

The laboratory activity consists of five phases. In this paper we discuss the first three phases that 

deal with the a priori analysis of the items and that are the same for pre-service and in-service 

teachers. The last two phases involved only the in-service teachers, because these activities consist 

in the implementation and analysis of classroom activities carried out with their own students.  

At the beginning of the activity, the teacher educator shows an a priori analysis of some Italian 

National Standardized Test items according to a common script (Martignone, 2016). It starts with 

the analysis of what is necessary for the students to know and how to do it. Therefore, the focus is 

on the epistemological and institutional aspects. The question is: what is significant from the point 

of view of the teaching and learning of mathematics? This starting point is necessary, but it is not an 

innovative task in a teacher education program. It is an activity that all teachers commonly develop. 

The next step consists in foreseeing the students’ possible solution strategies and mistakes. This 

type of fine grain analysis is common in the educational studies in mathematics, while the teachers 

more often discuss the student performance after an activity. Afterwards, the teacher educator 

presents the national sample results about these items, adding also some examples of students’ 

answers collected in the study carried out by her research group (Branchetti et al., 2015). By means 

of the analysis of these data, during the subsequent collective discussion, the hypothesis shared in 

the a priori analysis are confirmed or rejected. In this first part, the meta-didactical praxeologies, 

related to the analysis of standardized test items, begin to be shared. 

The activities of the teacher education course  

In the second phase of the course, the teachers, divided into small groups, carry out on their own an 

a priori analysis of other items selected from the Italian National Assessment. During these 

laboratory sessions, teachers compare and discuss their works and the teacher educator provides 

other information about possible students behavior, by also quoting some educational research 

results collected in the literature.  

The tasks for teachers 

This is the task proposed to the teachers: “Carry out an a priori analysis of the item, following the 

common guidelines shared: (i) the mathematical contents, the necessary skills to face the item, and 

the links with the Italian National Guidelines; (ii) the possible students solution strategies; (iii) the 

possible mistakes and difficulties; (iv) the strengths of the task; (v) the critical aspects of the task; 

and (vi) some proposals for changes”.  



Figure 1 shows an example of an item analyzed. This item was administered to grade 6 students in 

2011, but there were many similar items also in grade 8 tests. 

Place the following numbers on the line: 

 

Figure 1: Item D8 administered in grade 6 (2011) 

The in-service teachers have much more experience in predicting students’ possible behaviors, but 

also pre-service teachers manage to foresee the most common mistakes. The written analyses (word 

documents or Power Point presentations) were shared on the Course Moodle platform.  

Some excerpts from the teachers’ works 

This paragraph presents some excerpts (author's translations) from the a priori analysis carried out 

by teachers on item D8 presented above. The first excerpt shows an example of how the teachers 

wonder about what the item actually assesses.   

“The item assesses simultaneously two different skills: to know how to transform numbers from 

one representation to another, and to place them on the number line. Because a student may be 

able to carry out only one of these two actions, he/she gives a wrong answer. Therefore, it is not 

possible to understand (from the final result) in which part of the process the student made the 

mistake”. 

The following are examples of students possible difficulties foreseen by the teachers. 

“If students consider only the numerators of the fractions (3 and 5), the way in which the 

numbers appear in the stem might suggests that they are already written in order” 

“The students do not manage the symbol of fraction: they consider only the value of the 

numerator (or denominator); they put the fraction close to the value of numerator (or of the 

denominator)” 

“The student pinpoints 5/10 counting five hash marks for two possible reasons: he/she makes the 

straight line longer to obtain ten hash marks and then he/she considers five of these; or he/she 

considers only the value of the numerator and counts five hash marks”. 

The teachers have to read the colleagues’ works in order to be ready for the next collective 

discussion, that is orchestrated by the teacher educator. 

Collective discussion  

All the hypotheses about the possible students behavior are collectively discussed. The student 

behaviors in these types of items are amply documented in the literature. The teacher educator 

refers to the studies summarized in the Encyclopedia of Mathematics Education (2014) and to the 

theoretical framework of the study on the Italian National Mathematical Standardized Tests carried 

out by her research group (Lemmo et al., in press). All the research papers quoted (or translations of 



parts of them) are shared on the platform of the course. Because the items analyzed are taken from 

Italian national standardized tests, also the quantitative results could be taken into account. The 

national sample results concerning item D8, administered in 2011 in grade 6, are: 85% of the 

students gave the wrong answers, 11% the correct one and the remaining 4% either did not answer 

nor the answers made no sense. The questions faced by the teachers are: which could be the reason 

for this low percentage of right answers? When all the numbers are well positioned, the item is 

considered correct; il instead the students make mistakes, then  how can the teachers identify the 

students’ difficulties? As a matter of fact, based on  the statistical data, we cannot know which 

mistakes the students made, but only the percentage of wrong answers. For this reason, during the 

discussion the teacher educator shows some examples of students’ answers collected and analyzed 

in her research project: she wants to intertwine quantitative and qualitative analyses. As we can see 

in the following examples (Figures 2-3-4), we find the difficulties and the mistakes foreseen by the 

teachers (showed in the previous paragraph). The teacher educator supports the teachers’ 

interpretations, by quoting some results from educational studies in Mathematics concerning the 

placing of rational numbers on the number line (Lemmo et al., in press). In fact, many mistakes can 

be generated by the interlacement of misconceptions about rational numbers and number line 

management: e.g. some students write the numbers in each hash mark without considering the unit 

of measure and place the fractions considering only the numerator (Figure 2). In this specific case 

we are not able to know if the students only copy the numbers as they are presented in the stem. 

 

Figure 2  

Other students show difficulties in placing fractions on the number line: they consider 3/2 

equivalent to 3+½, or to 3.2. The same mistake could justify 5/10 put over the end of the line 

(Figures 3-4). 

  

Figure 3 Figure 4 

At last, the teachers design new items in order to investigate specific questions raised from the 

collective discussion. They ask themselves: what would happen if we change/add some numbers? 

Which ones? Why? What would happen if we change the unit of length or the numbers already 

written on the number line? Some examples of the proposals for modifications are: to change the 

order of the numbers in the stem (e.g. to alternate fractions and decimals numbers and do not write 

2.5 after 2); to make the number line longer to see where, the students who make a mistake, would 

place 5/10; to add more numbers (e.g. ½) , etc. 



Conclusions 

This paper discusses some tasks for teachers carried out during laboratory activities for middle 

school teachers. The teachers and the teacher educator share praxeologies concerning the analysis of 

some items selected from the Italian National Assessment. During the laboratory activities, the 

teachers analyze and discuss the mathematical contents involved, the link with the National 

Guidelines, the possible students answers and mistakes, and propose changes in the tasks. The 

quantitative data of the national sample are taken into account and the teacher educator also 

provides results from different educational studies collected in the literature. The shared 

praxeologies (Aldon et al., 2013) are made by the intersection of the didactician’s knowledge of 

theory, research and systems and the teachers’ knowledge about subject matter, students and school: 

elements of mathematics, didactics and pedagogy are intertwined. The meta-didactical praxeologies 

(Aldon et al., 2013) presented highlight how some aspects of the MKT can emerge in the analysis 

of mathematical problems carried out by teachers. The actions that characterized the teachers’ 

activity and their knowledge and skills are: to imagine many possible different solution strategies; 

to interpret different representations and students’ solutions; and to analyze the mistakes thinking 

about the possible causes. The paper shows how these knowledge and skills can emerge and be 

improved during a teacher education program by means of specific tasks (e.g. a priori analysis of 

math problems) and methodologies (e.g. laboratory activities that involved teachers and 

researchers). The tasks presented aim at developing an interlacement among the teachers’ Subject 

Matter Knowledge and Pedagogical Content Knowledge (Shulman, 1986; Ball et al., 2008): i.e. 

they highlight the different aspects related to the knowledge of the subject matter to be taught, to the 

curriculum, and to the possible behavior of students and their difficulties related to specific 

mathematical content. The ability of the teachers to dynamically relate and  intertwine the different 

content knowledge (among that there are fuzzy boundaries) characterizes their professional skills 

and therefore it can be identified as typical of the work of teachers. A further development of this 

research will be the analysis of the actual teachers' actions in the following design and 

implementation of educational activities (phases 4 - 5 of the teacher education program). 
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An exploration of challenges of engaging students in generative 

interaction with diagrams during geometric proving 
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This paper reports from a single qualitative case study which investigated challenges that might 

arise in a geometric proof lesson involving generative interaction with diagrams. Data consists of 

video recordings from a 120 minute lesson, taught with a focus on geometric proof in a Malawian 

grade 11 secondary school classroom. A post-lesson interview was also conducted with the teacher 

soon after the lesson. The findings indicate that the teacher faced challenge of lack of time, hence 

he did not complete some planned activities. The students faced the challenge of lack of 

understanding of the problem. As a result, they were unable to devise a correct plan during their 

initial involvement in the generative activity. The findings suggest that both the teacher’s and 

students’ challenges would have been avoided if problem solving was conducted appropriately.  

Keywords: Geometric proving, generative interaction with diagrams, empirical activity, geometric 

diagrams, problem solving. 

Introduction 

Malawi National Examinations Board (MANEB) chief examiners’ reports show that students fail to 

construct geometric proofs because they do not interact with diagrams successfully (MANEB, 

2013). The report attributes students’ failure to construct geometric proofs to lack of teacher 

knowledge for engaging students in successful proving activities. The reason suggested by MANEB 

supports the argument that teachers are responsible for engaging students in activities that involve 

interaction with diagrams during proof construction (Herbst, 2004). In geometry, to prove means to 

construct a sequence of argumentation from X (hypothesis) to Y (conclusion) with supportive 

reasons (Cheng & Lin, 2009). Herbst (2002) describes the work of geometric proving as a didactical 

contract between a teacher and his/her students. In this contract, the teacher’s responsibility is to 

provide the problem statement and a diagram which contains the givens and the unknown. The 

students’ responsibility is to develop logically connected statements from diagrams by making 

appropriate geometric interpretations and relationships. Herbst (2004) proposed four distinctive 

ways of thinking about how students interact with geometric diagrams during proving. These are 

empirical, representational, descriptive, and generative modes of interaction. Empirical interaction 

supports hands on geometry in the sense that the student is free to make a variety of operations on 

the diagram (measuring, looking at, and drawing in the diagram). Representational interaction 

supports abstract geometry, in the sense that the student is restricted by prescribed rules when 

making operations on the diagram. In descriptive interaction, the diagram contains features like 

marks and labels. Students use the features to complete a proof. Herbst (2004) argues that the 

availability of features in a descriptive diagram reduces students’ responsibility for producing the 

proof and portrays situations of doing proof as only learning of good logic rather than discovering of 

new mathematics.  The author therefore proposes that teachers should engage students in generative 

activities by using generative mode of interaction with diagrams during geometric proving. In this 

mode of interaction with diagrams, students are authorised to anticipate operations and results on 



the diagram. Depending on the given information and the anticipated result, students can add 

features like drawing in lines and labels into the diagram. This means that generative interaction 

with diagrams is supposed to involve exploratory teaching strategies. Despite acknowledging that it 

is not easy to involve students in generative activities, the studies by Herbst have not focused on 

clarifying the challenges that might arise during such activities. Likewise, to my knowledge, no 

study has been done in Malawi to examine challenges of involving students in different modes of 

interaction with diagrams during geometric proving. Therefore this study has both a local relevance 

to teaching of geometric proving in Malawi and general relevance to the field of teaching of 

geometric proofs. The study addresses the following research question: What are the challenges of 

engaging secondary school students in generative interaction with diagrams during geometric 

proving?   

Theoretical framework 

Several investigations have been conducted with an aim of addressing challenges of teaching and 

learning geometric proof construction. Studies by Jones and his colleagues aimed at developing 

strategies for teaching proof construction with focus on helping students to understand the proof and 

appreciate its discovery function (Ding & Jones, 2009). The focus on value of geometric proofs 

arose because the authors found that there were some students who were able to construct proofs but 

could not appreciate its discovery function in mathematics (Jones et al., 2009). The authors 

therefore propose for a shift to exploratory pedagogical strategies. One of these teaching strategies is 

problem solving approach which involves four stages; understanding the problem, devising the plan, 

carrying out the plan, and looking back (Polya, 1945). For a geometric proof problem, 

understanding of the problem involves understanding of the hypothesis and the conclusion. 

Hypothesis is the given information and conclusion is the statement to be proved.  Polya (1945) 

suggests that when a proof problem is connected to a figure, the stage of understanding the problem 

must involve helping the students to draw the figure, to introduce suitable notations, and to label in 

the diagram the hypothesis and conclusion. Devising the plan involves finding the connection 

between hypothesis and conclusion, deciding on the theorem to use, and making decisions whether 

to introduce auxiliary elements into the diagram to enable proving (Polya, 1945). Carrying out the 

plan involves writing of the proving statements logically, each statement accompanied by a valid 

reason. Looking back stage includes reviewing the solution and checking if the arguments can be 

derived using a different approach. This study agrees that problem solving strategy can provide 

opportunities for students to appreciate the value of geometric proving.  In addition, this study 

argues that students’ opportunities to involve in generative interaction with diagrams can be 

enhanced through exploratory activities. This means that teachers require knowledge of problem 

solving strategy to engage students successfully in generative interaction with diagrams.  This study 

was therefore guided by Polya’s (1945) problem solving framework in analysing the data.  

Methodology 

The study was conducted using qualitative case study design because the goal was to expand 

understanding of social issues in their context (Yin, 2009). The study was conducted on one 

Malawian secondary school teacher and one lesson. The teacher, Kim (pseudonym) is regarded as 

one of the best teachers due to his long teaching experience and because his students perform well 



in mathematics during national examinations. Kim was selected for the study on assumption that 

conducting research on an experienced teacher could offer an opportunity to study the issue in 

depth. The lesson episode analysed for this study is part of the video data that was collected for a 

larger project which aims at studying knowledge for teaching geometric proofs. The lesson episode 

was considered for analysis because it involved moments of generative mode of interaction with 

diagrams as well as problem solving teaching strategy. Post-lesson interview was conducted and 

audio recorded in the teacher’s office soon after recording the lesson. The teacher was mainly asked 

to explain his views about the lesson in terms of what went well and what did not go well during the 

lesson. Although the data for the study is from one lesson, it is considered to be sufficient for 

illustrative purposes because it was generated from a real-life context (Yin, 2009). The empirical 

material, both from the video recording of the lesson and the audio recording of post-lesson 

interview were transcribed and further analysed separately by using thematic analysis. The aim of 

thematic analysis was to capture and interpret sense and substantive meanings in the data (Ritchie, 

Spencer & O’Connor, 2004). Polya’s (1945) stages of problem solving were used as a priori themes 

for analysing the data. The transcribed data was read several times to understand it and to identify 

moments that were related to a particular stage of problem solving. The findings from the two types 

of data are discussed under each theme for purposes of comparison. Due to space limitations, this 

paper has mainly discussed findings related to the first two stages of problem solving; 

understanding the problem and devising the plan.  

Findings and discussions 

Kim started the lesson by writing a geometric statement and making a drawing of a diagram on the 

chalkboard. He told his students that the aim of the lesson was to prove that an angle subtended by 

an arc at the centre is equal to two times an angle subtended by the same arc at the circumference. 

After explaining the lesson aim, Kim asked his students to go into their usual small groups to draw a 

similar diagram and discuss how to prove the theorem. There were six groups in the class and each 

group contained five to eight students. Table 1 shows the diagram that was drawn and the statement 

that written by Kim on the chalkboard. 

 

 

Given:  a circle with centre O, with arc AB subtending angle AOB 

at the centre and angle AMB at the circumference. Prove that the 

angle at the centre is twice the angle at the circumference. 

Table 1: Diagram and statement given to students for proof construction 

It can be argued that the problem statement in table 1 is ambiguous because the teacher has not 

specified the two angles whose relationship is to be proved. There is one angle at the circumference 

referred by the statement, but there are two angles at the centre (reflex AOB and obtuse AOB). 

Furthermore, the diagram in table 1 did not contain any features to indicate the required angles. This 

means that during group discussion, students were challenged to decide whether to relate the angle 



at the circumference to the reflex angle or the obtuse angle at the centre. As such, the diagram 

required generative mode of interaction. Hence the discussion activity involves problem solving.  

After about 10 minutes, Kim moved around to check what students were discussing and doing in the 

groups. The following lesson segment 1 presents a dialogue between Kim and students in group 6.  

Kim:  Okay so what are you going to do, have you discussed? 

Student 1:  Yes, we will join MO and prove that these two triangles (pointing at triangle 

AMO and BMO are congruent). Then relate the corresponding angles. 

Kim:  Can you show me how you will relate the angles. 

Student 1:  First, AO = BO (radii), OM is common, and AM= BM (third side) AOM is 

congruent to BOM. Then angle MAO = MBO, the two angle here are also equal 

(pointing at the reflex angle at AOB) and the two angles here are equal (pointing 

at M). (The student is silent). 

Kim:  Go ahead. 

Student 2:  Then we add angles here (pointing at the reflex angle at AOB) and angles here 

(pointing at M) uhhh…. (silence 4 seconds). 

Kim:  Yes go ahead what about the other group members, how do you proceed from here 

to the theorem? (silence for 4seconds) how do you relate the two angles? (silence 

6 seconds), how do you arrive at the question that you have been asked using that 

theorem? (silence 4 seconds). Do you know the angle at the centre referred in the 

theorem? 

Student 3:  Yes this one (pointing at the reflex angle at AOB). 

Student 4:  No this one (pointing at the obtuse angle at AOB). 

Kim:  Can you try to measure the angles and see if it is the upper or lower angle which is 

twice the angle at M? After that think of another way, this one might not work.  

Then Kim went to check students in other groups and asked questions. When he noticed that most 

of the groups were not focusing on a correct angle at the centre, Kim interrupted the generative 

activity and asked all groups to measure the three angles and relate their values to find out the 

correct angles. The activity took about 15 minutes, students measured the angles and made 

comparisons. The following lesson segment (segment 2) is a continuation of a conversation between 

Kim and group 6.  

Student 3:  This angle (pointing at angle AMB) was  while this one (pointing at obtuse 

angle AOB) was . So this (pointing at obtuse angle AOB) is twice this 

(pointing at angle AMB). 

Kim:  Okay so how are you going to prove the theorem? 

Student 5:  We tried similarity but we found that it was going to be difficult as well because it 

was not saying anything about this angle (pointing at obtuse angle at O) it was 

only saying about this one (pointing at the reflex angle at O). So since this angle is 

outside these two triangles, we agreed to use the property of exterior angle of 



triangle. So we extended MO to N to create exterior angles here (pointing at 

obtuse angle at the centre).  

Understanding the problem 

Lesson segment 1 shows that the students agreed to add a feature (auxiliary line) into the diagram by 

joining MO to form two triangles (AOM and BOM). The students also agreed to construct the proof 

for the theorem by firstly constructing an in-between proof of congruency of triangles AOM and 

BOM. This means that in lesson segment 1, the students were devising a plan for the proof. 

Depending on geometry background at their level, there are two possible approaches that the 

students could use in developing their plan. The first approach involves joining of MO, then 

forming two equations using properties of isosceles triangles, sum of interior angles of a triangle 

and sum of angles at a point, and finally making substitutions to reach the conclusion. The second 

approach involves joining MO and extending it to some point within the circle to form exterior 

angles of triangles AOM and BOM, and then use properties of isosceles triangles and exterior angle 

of a triangle to form two equations, and finally make substitutions. This shows that congruency 

theorem is not appropriate for both approaches. As such, the students’ decision to join MO and then 

use congruency theorem as an in-between proof was not correct. It can be argued that the students’ 

decision was based on lack of understanding of the problem. This argument is based on several 

observations. Firstly, in segment1the students were unable to explain how they would use the 

congruency theorem to connect to the conclusion. But segment 2 indicates that after realising that 

the angle at the centre is the obtuse angle, the students changed their plan, and they were able to 

justify their decision to use property of exterior angle of a triangle. Secondly, the argument is based 

on students’ disagreements regarding angle at the centre in segment 1. Some students pointed at the 

reflex angle while others pointed at the obtuse angle when Kim asked them to identify the angle at 

the centre referred by the theorem. This means that the students were not sure of the correct angle at 

the centre. The disagreement among the students regarding the angle at the centre provided an 

opportunity for Kim to shift students’ focus from the stage of devising the plan to the stage of 

understanding the problem. The findings from the lesson segments are supported by the following 

extract in which Kim expresses the challenges that students faced when constructing the proof: 

It was very difficult for the students to come up with relevant constructions when proving. 

Because I think the main trick in the proof was to know what type of construction and in-

between theorem to use for the proof. But after doing the measurements, the students were 

able to make correct construction and to know the theorem to use. Their reasoning and their 

work showed that they now understood the statement they were asked to prove. 

The extract shows that Kim realised the difference in the students’ ability to come up with a correct 

plan before and after the empirical activity. Kim mentions two challenges that the students faced 

before the empirical activity. The first challenge involved failure to decide on features to be added 

to the diagram. The second challenge involved failure to use the diagram to generate a correct in-

between theorem and proof. Both challenges involved generative interaction with diagrams as they 

required students to make explorations with the diagram (Herbst, 2004). The extract also indicates 

that the students were able to devise a correct plan upon understanding the problem. Cheng & Lin 

(2009) call the proving of an in-between theorem as construction of intermediary condition (IC). 



These authors argue that students can only construct correct ICs if they understand the hypothesis 

and the conclusion. Polya (1945) advises that solving of any mathematical problem should not be 

started unless the problem is well understood. Probably, the challenge of understanding the problem 

could have been avoided if Kim carried out the phases of problem solving before going to the class 

(Polya, 945). Through this preparation activity, Kim could have anticipated that students were more 

likely to regard the reflex angle as angle at the centre due to its location. Thus the reflex angle is 

close to and in the same quadrilateral (AMBO) with the angle at the circumference. In so doing, 

Kim could avoid the mistake by helping the students to understand the theorem (which also implies 

to understand the problem) before asking them to discuss how to develop its proof.  

Devising the plan 

Both lesson segments show that students devised the plan for the proof in their groups through 

exploration. Lesson segment 1 shows that the first attempt to devise the plan was not successful due 

to lack of understanding of the problem. Lesson segment 2, shows that after the empirical activity, 

students came up with a proper construction and correct IC for linking angle at the centre and angle 

at the circumference. The students’ suggestions to introduce a line into the diagram confirm that 

they were involved in generative interaction with the diagram. Lesson segment 2 also shows that the 

students were able to evaluate their ideas by considering the questions asked by Kim in lesson 

segment 1. The questions are, “how do you relate the two angles? How do you arrive at the question 

that you have been asked using that theorem?” The questions helped the students to focus on 

identifying a construction and theorem that could help them to connect the given information to the 

conclusion. This is observed in utterance by student 5 who explained that they tried to use similarity 

theorem but they realised that it was not appropriate because it could not help them to link angle at 

the circumference and the obtuse angle at the centre. The technique of asking questions that probe 

students’ thinking is regarded as one of the strategies for helping students to devise a plan (Polya, 

1945). The findings from analysis of students’ explanations in lesson segment 2 show that the 

empirical activity which focused on understanding angle at the centre helped the students to devise a 

correct plan for the proof. This observation is also confirmed in Kim’s explanation regarding what 

went well during the lesson. Kim explained that the lesson was generally successful because the 

students were able to construct the proof independently. Kim explained that his lesson objective was 

to help the students to understand the theorem and construct its proof on their own. He explained as 

follows: 

If you just start proving without engaging students in an activity like measuring or 

discussions on how to prove, they just memorise the proof. So to avoid memorisation, I 

involved the students in discussions. When I found that they were referring to a wrong angle 

at the centre, I did not tell them the angle, I wanted them to find out on their own by 

measuring the angles.  

The extract shows that during the first activity Kim regarded the students’ inability to construct a 

correct proof as an opportunity for them to understand the theorem which is also the statement 

problem in this case. Kim’s idea of giving students opportunity to do explorations on the problem to 

be proved is supported by Ding & Jones (2009). But Kim was not supposed to wait until students 

got stuck in order to suggest the empirical activity. According to Polya (1945) the teacher is 



supposed to prevent students from answering a question that is not clear to them, and from working 

for an end that they do not desire. The author argues that students might be frustrated if they either 

get stuck or come up with undesirable solution to a problem. As such, teachers are supposed to 

avoid making students’ frustrated by ensuring that they understand the problem before beginning to 

devise its plan. This suggests that Kim was supposed to first of all engage the students in an 

exploration activity that could help them to understand the problem before involving them in 

activity of discussing how to prove the theorem.  By doing so, Kim could have avoided the 

challenge of lack of time that he pointed out when explaining what did not go well during the 

lesson. Kim explained that he had planned to discuss three examples of how to apply the theorem in 

solving different geometric problems, but he only managed to discuss one example because some 

time was spent on the unplanned activity of measuring angles. Apart from examples, Kim also 

explained that he had planned to give the students an exercise which he wanted to start marking 

during the lesson, but he turned it into homework due to lack of time. Kim seemed to have planned 

many activities for the lesson which involved problem solving. But Polya (1945) explains that 

problem solving might be time consuming because students explore different ways when devising a 

plan for finding solution of the problem. This means that a teacher is supposed to plan few activities 

for a problem solving lesson to ensure that students have ample time for explorations. The planning 

of many activities and the sequence of activities during the lesson indicates that although Kim used 

problem solving strategy, he was not aware of some of its skills. This agrees with Herbst’s (2004) 

caution that engaging students in generative mode of interaction with diagrams is challenging. 

Conclusion 

This study has found that both the teacher and students faced some challenges during the lesson of 

geometric proving which involved generative interaction with diagrams. The teacher faced the 

challenge of lack of time hence he did not complete some of the planned activities. The students 

faced a challenge of lack of understanding of the problem during their first attempt to devise a plan 

for the proof. Due to this challenge, the students came up with wrong construction and IC for the 

proof. As a result the students were unable to complete the plan for the proof during their first 

attempt to devise the plan. However the findings show that the students were able to devise correct 

plan for the proof after doing an empirical activity which focused on understanding the problem.  

The study implies that the challenges faced by both the teacher and the students could have been 

avoided if proper problem solving skills were followed. Thus the first activity could have focused 

on understanding the problem and the second activity could have focused on devising the plan for 

the proof. The findings suggest that successful involvement of students in generative interaction 

with diagrams require knowledge of several problem solving skills including proper planning and 

sequencing of activities. Lastly, the findings show that empirical interaction with diagrams 

enhanced students understanding of the problem. Further study is needed to explore whether 

successful involvement of students in generative interaction with diagrams require a combination 

with other modes of interaction with diagrams. 
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The purpose of this study was to investigate middle school mathematics teachers’ knowledge for 

teaching algebra. The participants of the study were 48 mathematics teachers from various middle 

schools. A questionnaire was conducted in order to collect data about the teachers’ knowledge 

related to teaching of algebra. The results showed that the participating teachers were competent in 

making transitions among different algebraic representations. However, they had difficulties in 

explaining the conceptual bases of some of the algebraic concepts and procedures. In addition, 

results indicated that some of the teachers had difficulties and misconceptions similar to those of 

students as depicted in the scenarios provided in the questionnaire. 

Keywords: Pedagogical content knowledge, algebra, middle school mathematics teachers. 

Introduction 

Teachers’ knowledge is considered as one of the most important predictor of student achievement 

(Hill, Rowan, & Ball, 2005). In recent years, therefore, researchers have focused on the professional 

knowledge of teachers (Ball, Thames, & Phelps, 2008; Grossman, 1990; Shulman, 1986, 1987). As 

Knowles, Plake, Robinson, and Mitschell (2001) stated, what teachers should know and be able to do 

are issues which continuously change and develop as values of the society come up with the changes. 

Therefore, teachers need different types of knowledge in order to fulfill those expectations. Subject 

matter knowledge (SMK), pedagogical knowledge, and pedagogical content knowledge (PCK) are 

among the major components of teacher knowledge referred frequently in the literature (Ball et al., 

2008; Cochran, DeRuiter, & King, 1993; Magnusson, Krajcik, & Borko, 1999; Shulman, 1987). 

Among these, having a strong subject matter knowledge is often considered the central component of 

teacher competency (Krauss et al., 2008). However, merely having strong mathematics knowledge 

does not guarantee effective teaching (Ball et al., 2008; Kind 2009). 

Effective teaching requires making the content accessible to students, interpreting the questions and 

productions of students, and being able to explain or represent ideas and procedures in multiple ways 

(Hill, Sleep, Jewis, & Ball, 2007). In this context, teacher competency is the cognitive ability in order 

to develop solutions for problems concerning teaching profession and applying these solutions in 

various situations successfully (Weinert, 2001). Providing meaningful and effective activities for 

students’ learning is considered essential for teacher competency (Knowles et al., 2001). Therefore, 

pedagogical content knowledge, defined as “the most useful ways of representing and formulating 

the subject that makes it comprehensible to others” (Shulman, 1986, p. 9), is seen as a core component 

of teacher competency and an indispensable part of teacher knowledge base. A study conducted by 

Kind (2009) in which several PCK models were investigated revealed that representations and 

instructional strategies and students’ subject specific learning difficulties were considered as two core 

dimensions of PCK in most of the studies (e.g., Grossman, 1990; Magnusson, Krajcik & Borko, 1999; 



Shulman, 1987). Therefore, among others, the components that are knowledge of students’ learning 

of mathematics and knowledge of teaching mathematics were chosen as the focus in this study.  

In the literature, there have been several studies on the pedagogical content knowledge of 

mathematics teachers concerning knowledge of algebra and teaching of algebraic concepts (e.g., see 

Doerr, 2004; Güler, 2014; McCrory, Floden, Ferrini-Mundy, Rackase, & Senk, 2012). As the 

Mathematics Study Panel (2003) indicates, proficiency in algebra is important for students’ 

mathematical thinking and understanding. Moreover, teaching of algebra in middle school is 

particularly crucial since the algebra learnt there constitutes a basis for the high school and university 

level mathematics (Mathematics Study Panel, 2003). Thus, teachers’ knowledge of algebra and 

teaching of algebra in middle schools are worth studying as teachers’ professional knowledge is one 

of the most important predictors of student achievement (Hill, Rowan, & Ball, 2005). Thus, the 

assessment of teacher knowledge is an important step to understand the competency of teachers or 

the quality of teacher education programs. Although there are several studies based on the algebra 

knowledge of students, there is limited research on algebra instruction (Güler, 2014; Kieran, 2007; 

Ladele, Ormond, & Hackling, 2014). Therefore, which knowledge component is required by the 

teachers and how this knowledge could be developed need to be investigated in order to improve 

algebra instruction (Kieran, 2007). For this reason, there is a need for theory building on what teachers 

need to know related to teaching of algebra and how this knowledge could be developed by teachers. 

In this study, SMK and PCK were considered as separate dimensions of teacher knowledge and PCK 

of middle school mathematics teachers was investigated for teaching algebra. As for the main 

theoretical framework, we used “algebraic knowledge for teaching” which was adapted by Güler 

(2014) from Ferrini-Mundy, Floden, McCrory, Burrill, and Sandow (2005). The framework is a three-

dimensional model consisting of three main components: algebra content, algebra knowledge for 

teaching, and domains of mathematical knowledge. Algebra content consists of two main categories: 

algebraic expressions, equalities, and inequalities and linear and non-linear functions and their 

properties. Algebra knowledge for teaching includes advanced algebra, knowledge about learning of 

students, and knowledge about representations of the content. Domains of mathematical knowledge 

include basic concepts and procedures, representations, applications, and reasoning and proof. In this 

study, algebraic knowledge for teaching dimension of the model was focused on. The only difference 

between the adapted framework (Güler, 2014) and the original one (Ferrini-Mundy et al., 2005) was 

in algebraic knowledge for teaching dimension which includes school algebra, advanced algebra, and 

teaching knowledge components. The knowledge about learning of students, and knowledge about 

representation of the content segments of this dimension were investigated within the study in relation 

with algebra content and mathematical knowledge context dimensions.  

The purpose of this study was to investigate the knowledge of middle school mathematics teachers 

in relation with teaching of algebra. In this scope, two components of pedagogical content knowledge 

of middle school mathematics teachers were investigated; knowledge of learning of students and 

knowledge of teaching mathematics. Moreover, the difficulties and strengths of middle school 

mathematics teachers were investigated in relation with the knowledge of teaching algebraic 

concepts. Therefore, the research questions that guided this study were:  

 What are the difficulties and challenges that middle school mathematics teachers face in 

teaching of algebraic expressions, equations, inequalities, and linear and non-linear functions? 



 What pedagogical content knowledge do middle school mathematics teachers have about 

algebraic expressions, equations, inequalities, and linear and non-linear functions? 

Methodology 

Participants of the study were 48 middle school mathematics teachers from different public and 

private schools in Turkey who voluntarily participated in the study. Their teaching experiences (in 

years) ranged from 1 year to 26 years ( X = 8, SD = 5.3). In Turkey, middle school mathematics 

teachers are responsible for teaching mathematics in grades 5, 6, 7, and 8. All of the participants in 

this study had at least a bachelor’s degree in elementary mathematics education. Based on the current 

mathematics curriculum in Turkey (MoNE, 2013), formal teaching of algebra starts in 6th grade with 

the introduction of algebraic expressions and the concept of variable. Then, the concepts of equality, 

equation and linear equation are introduced in 7th grade. In 8th grade, algebraic expressions and 

identities, linear equations, equation systems, and inequalities are further dealt. 

Developed by Güler (2014) and used with his permission, the instrument used in this study was a 20-

item questionnaire comprising of multiple-choice and open-ended items intended to assess teachers’ 

knowledge for teaching algebra at the middle school level. For the instrument, the scores were 

averaged across 20 items to control the reliability of the instrument ( X = 17.8, SD = 5.9). Also, 

Cronbach’s alpha was estimated as 0.81 for person reliability and 0.94 for item reliability. Moreover, 

in order to ensure validity of the instrument, item analyses were carried out and expert opinion was 

taken in order to show that the content of the instrument coincides with the conceptual framework. In 

the questionnaire, the participants were confronted with situations or scenarios related to the work or 

practice of teaching middle school level algebraic concepts (see Figure 1 for an example). The algebra 

content tested in the instrument was in line with the mathematics curriculum for the middle school 

level (grades 5 to 8) in Turkey (MoNE, 2013). The instrument consists of two components in relation 

with PCK: knowledge of students’ learning and knowledge about representation of the content. 

Moreover, the content of the instrument is constructed under two domains: mathematical knowledge 

content and algebra content. Mathematics content includes basic concepts and procedures, 

representations, applications, and reasoning and proof. Algebra content includes algebraic 

expressions, equality, and inequality, linear and non-linear functions and their properties.    

The use of a questionnaire with a survey type design was preferred in order to collect data from a 

large sample of teachers. There was no time limitation for completing the questionnaire. Descriptive 

analyses and item based in-depth analyses were carried out in order to have a general overview on 

algebra related PCK of teachers. Based on the rubric prepared by Güler (2014), analyses were 

conducted for each item separately. The frequencies and percentages of correct, particularly correct, 

or incorrect answers were calculated in order to investigate the performances of all teachers for each 

item. To illustrate, the answers to the 10th item (see Figure 1) were categorized as correct if the 

teachers explained why the inequality sign changed direction by using algebraic expressions or trying 

out particular values to make generalization, partially correct if the teacher explained it by using 

particular values of x, and incorrect if the answer was wrong, invalid, or missing. 



 

Figure 1: The Item 10 in the questionnaire 

In general, answers were coded as correct when the teacher provided correct answers/results to the 

questions by using algebraic expressions or trying out particular values in order to make 

generalization in explaining an algebraic topic conceptually, and explained why the answer of the 

student was wrong in the scenario by providing underlying reasons. The answers coded as partially 

correct included those in which the teachers gave inadequate explanations and used particular values 

to show the validity of an algebraic procedure. The answers coded as incorrect were the wrong, 

invalid, or missing ones. To ensure the reliability of coding, two independent scorers coded all of the 

open-ended items in the questionnaire for half of the participants (i.e., 24 teachers). The interrater 

agreement across both scorers was high (percent agreement = 92.80%). 

Findings 

As the findings suggested, most of the teachers in this study were able to make the transition among 

the rhetoric, symbolic, and geometric representations of the algebraic expressions. Below we present 

the findings in relation to the dimensions of knowledge for teaching algebra framework (Güler, 2014), 

namely algebra content, algebra knowledge for teaching, and domains of mathematical knowledge. 

In some items, most of the teachers gave correct responses in the questionnaire. The Item 18 ("The 

difference between an equation and (algebraic) identity") was one of the items that most of the 

teachers answered correctly (see Table 1). The item 18 was related to three dimensions of the algebra 

knowledge for teaching model, namely algebra content, algebra knowledge for teaching, and domains 

of mathematical knowledge. 

 
Correct  Partially correct  Incorrect  

 
f % f % f % 

Item 6 
3 6.3 17 35.4 28 58.3 

Item 10 
0 0.0 27 56.3 21 43.8 

Item 18 
33 68.8 12 25.0 3 6.3 

Table 1: Results of the analyses of three items in the questionnaire 

The answer of a participant (P18) for the Item 18 item was categorized as correct since it presented 

the difference of the two concepts effectively.  

P18: Equation is an algebraic expression which holds for particular real number(s) while (algebraic) 

identity is an algebraic expression which holds for all real numbers.  

The answer of another participant (P31) for the Item 18 was categorized as partially correct since the 

teacher considered all equations as if they were just first degree equations. 

P31: Equations hold for just one value (i.e., If 3x + 5 = 8, then x = 1). However, identity holds for 

all values of the unknown.  



Moreover, some of the items got partially correct or incorrect answers by most of the teachers. To 

illustrate, the results for Item 6 (see Figure 2), which was related to the algebra content and knowledge 

for teaching algebra dimensions and basic concepts and procedures segment of the model, are 

presented in Table 1. On the other hand, the results revealed that the teachers were incompetent in 

some of the areas such as finding and correctly expressing the solution set of equations and 

identification and correction of students’ incorrect ideas and misconceptions.  

 

Figure 2: The Item 6 in the questionnaire 

The answer provided by one of the participants (P34) was categorized as correct since the teacher 

stated that the solution set could not be real numbers and gave a suggestion on how to show it to the 

students.  

P34: The solution set cannot be real numbers since the equations do not hold for each (x, y) when x 

and y are real numbers. Therefore, this could be shown to students by substituting some x and y 

values which are real numbers but do not satisfy the equations. 

The answer of another participant (P32) was categorized as partially correct as it stated that the 

equation could not be solved. 

P32: The solution is false. The solution set of the equation system should be in the form of (a, b). 

It cannot be real numbers. Those are not two different equations. The first equation is double of 

the second equation. The two are the same equations. That is, it cannot be solved. 

Some of the answers for the Item 6 were categorized as incorrect if the teachers stated that the solution 

was correct without any explanation or if they gave invalid/missing explanations. The Item 10 where 

the teachers were asked "Why the direction of the inequality sign is changed when both sides of the 

inequality −x < 7 are divided by a negative number?" (see Figure 1) was also answered incorrectly 

by most of the teachers in this study (see Table 1). This item was related to the algebraic expressions, 

equations, and inequalities, basic concepts and procedures, knowledge about learning of students 

segments of the model. None of the teachers used algebraic expressions for the solution. Rather, the 

teachers mostly used particular values for x in order to show the change of the direction of sign when 

both sides were divided by a negative number. The answer of one of the participant (P35) is 

categorized as particularly correct since the teacher used particular values for the solution without 

making generalization.   

P35: I would give particular values. For example, if we multiply or divide both sides of 2 < 5 with 

−1, the inequality will be −2 > −5. By considering the values of the numbers, we can see that the 

inequality sign should be changed when both sides are multiplied or divided by −1.  



Also, the answer of one of the participants (P44) is categorized as incorrect since the teacher stated 

that it was just a rule to be memorized. In addition, the invalid/missing answers were also categorized 

as incorrect. 

P44: I would say that it was a rule to be memorized. Thus, the inequality sign changes when both 

sides are divided by a negative number. Then, I would give examples with particular values. 

 Discussion and conclusion 

Results revealed that middle school mathematics teachers presented strength and weaknesses in terms 

of knowledge for teaching algebra. Most of the teachers in this study show indications of ability and 

knowledge to make transition among different representations of algebraic expressions. Moreover, 

most of them were successful at items which required knowledge about particular algebraic concepts 

such as the difference between an equation and (algebraic) identity or the properties of nonlinear 

functions. Although some studies concluded that the concept of equation and the concept of identity 

were frequently confused by pre-service middle school mathematics teachers (Altun, 2006; Güler, 

2014), nearly all of the teachers in this study were able to differentiate between these concepts. It 

might be safe to say that, in general, teachers in this study performed well in items related to algebra 

content dimension and basic procedures and representations segment of the domains of mathematical 

knowledge dimension of the model (Güler, 2014). 

Analyses of the answers illustrated that some of the teachers had errors and misconceptions similar 

to those of students, as also observed by Güler (2014). Moreover, most of the teachers presented not 

only signs of misconceptions beyond the ones given in the scenarios but also difficulties in explaining 

students’ reasoning and proposing an appropriate teaching method in order to guide them in the right 

direction. One of the basic reasons for teachers’ inadequacy to propose an appropriate teaching 

method might be the lack of knowledge of algebraic concepts. Since the teachers could not provide a 

valid explanation for students’ thinking and reasoning in most cases, they could not provide a 

suggestion for the teaching of related algebraic concepts (Güler, 2014). In some of the items, teachers 

were required to give conceptual explanations for the algebraic situations. For example, regarding 

“How would you explain to your students why 20 is equal to 1?”), only about half of the teachers 

were able to provide conceptually sound explanations why 20 is equal to 1. However, other teachers 

could not give a conceptual answer for that question or stated that “20 is equal to 1” is just a rule. This 

indicates that such lack of knowledge lead teachers to teach algebra as a collection of rules to be 

memorized. Another situation supporting this was Item 10 which required explaining why the 

direction of the inequality sign changes when both sides of the equation were divided by a negative 

number. There were nearly no conceptually based explanations provided by the teachers for it. Some 

of the teachers explained that they were just rules to be memorized like any other mathematical rules, 

like the multiplication of two negative numbers’ being equal to a positive number. Conversely, some 

teachers explained it by showing that it holds for many different values. However, none of them 

provided an explanation by using and considering algebra as a tool for generalization (Bednarz, 

Kieran, & Lee, 1996). Thus, it might be concluded that the teachers in this study had lack of strong 

knowledge based on representation of the content segment of knowledge for teaching algebra 

dimension in general. Also, teachers had deficiencies related to the mathematical knowledge 

dimension of the model. 



Results obtained in this study supports that middle school mathematics teachers might be incompetent 

about the conceptual bases of some algebraic concepts and in identifying and explaining students’ 

errors and misconceptions in order to provide appropriate representations (Ball, 1990; Güler, 2014; 

Tirosh, 2000). Since teacher knowledge is considered as the first step to provide an effective teaching, 

it should be investigated and developed. As Cochran, DeRuiter, and King (1993) stated, teacher 

knowledge has a dynamic form and it develops continuously. Therefore, the results of the current 

study should simply be taken as a call for teacher educators to strengthen and develop teachers’ 

conceptual knowledge of algebra and its teaching. In this context, for example, a balance should be 

sought between requiring several advanced mathematics/algebra courses and methods of teaching 

mathematics/algebra courses in mathematics teacher education programs in order to equip them with 

the knowledge and pedagogy needed to teach algebra effectively. Furthermore, courses and 

professional development efforts for learning to teach mathematics/algebra should focus on concepts 

and big ideas with an emphasis on why to use a particular procedure or why a certain idea/procedure 

works in some particular contexts. 

On the other hand, as assessing in-service teachers’ knowledge for teaching (algebra) would require 

a more carefully constructed instrument and research design, the questionnaire used in this study itself 

and limiting the research design to survey type might be considered as methodological limitations of 

this study. Even though the purpose was to collect data from as many teachers as possible, further 

studies should at least consider collecting data through interviews (with selected participants at least) 

and require more elaboration on the answers given in the questionnaire and conducting classroom 

observations when possible. Furthermore, as much as it is challenging, more studies should focus on 

developing instruments for assessing teachers’ knowledge for teaching algebra. 
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Similar to counties such as the U.K. and the U.S.A, the Irish education system is divided into four key 

stages; pre-school education, primary level education, second level education and tertiary education. 

Transition between each of these phases has its own set of challenges but many believe the most 

challenging of all is the transition from primary to second level education.  This quantitative, national 

study investigates the transition from primary to second level mathematics education from the 

perspective of teachers. It investigates sixth class teachers’ knowledge of the mathematics curriculum 

and teaching strategies employed at second level and first year mathematics teachers’ knowledge of 

the mathematics curriculum and teaching strategies favored in primary school. The results of the 

study highlight low levels of knowledge in these domains amongst both sixth class and first year 

mathematics teachers. The ramifications of this gap in teacher knowledge are also discussed in detail. 

Keywords: Primary school mathematics education, second-level mathematics education, transition, 

teacher knowledge, continuity. 

Background to the study 

As is the case in Australia, the United States and the United Kingdom, Ireland’s education system is 

divided into four phases; pre-school education, primary level education, second level education and 

tertiary education. The transition from primary mathematics education to second level mathematics 

education is one of the greatest challenges that young people experience during their school years. 

According to Bicknell, Burgess and Hunter (2009) the challenge presented by this transition is 

multifaceted and involves challenges from social, academic and systematic perspectives. As such, 

this is a pertinent research area and one which has been looked at in depth in recent years. 

The overarching finding to emerge from the research carried out to date was that the transition from 

primary to second level mathematics education resulted in a decline in students’ attitudes, academic 

performance and confidence (Attard, 2010; Economic and Social Research Institute [ESRI], 2007). 

Furthermore, Bicknell et al. (2009) found that the gap between high achieving and low achieving 

students widened significantly during this transition period. Due to the serious nature of these 

consequences, researchers, such as Green (1997) and Attard (2010), have sought to investigate what 

constitutes effective transition and what are the main factors that contribute to an educationally poor 

transition for students.  

In her study on students’ experiences of the transition from primary to second level mathematics 

education in Australia, Attard (2010) listed curriculum, pedagogy, assessment strategies, social 

interactions and students’ relationships with others, as key factors that dictate the success of 

transition. Likewise, Barber (1999) describes the transition as a set of five hurdles all of which must 



be overcome at once. The hurdles to be overcome to ensure a smooth transition, as listed in this study, 

are bureaucratic, social and emotional, curriculum, pedagogy, and management of learning. In 

addition to this, Evangelou et al. (2008, p. 2) stated that a successful transition for children entailed: 

…developing new friendships and improving their self-esteem and confidence; having settled 

so well in school life that they caused no concerns to their parents; showing an increasing 

interest in school and school work; getting used to their new routines and school organisation 

with great ease [and] experiencing curriculum continuity.  

All research conducted into what constitutes effective transition make some reference to curriculum 

and pedagogical continuity. Likewise, research conducted in the area of problematic transitions all 

point to a lack of continuity in this regard. For example, Elkins (1989), Green (1997) and Tilleczek 

(2007) all found that the attainment and motivational losses that students often experience when 

moving from primary to second level mathematics education can, in no small way, be attributed to a 

lack of continuity in terms of both curriculum and pedagogical approaches. 

However, in order to ensure continuity between both curriculum and pedagogical approaches it is 

critical that teachers who are teaching students that are about to enter or have just completed the 

transition process have an in-depth Mathematical Knowledge for Teaching (MKT). Such knowledge 

encompasses knowledge of the mathematical content previously studied and that which they will 

study in subsequent years (Ball, Thames & Phelps, 2008). Ernest (1989) reiterates that a teacher’s 

MKT is not limited to knowledge of curriculum, but also knowledge of students, in order to enable 

them to teach mathematics effectively. The authors further ascertain that teachers, especially those 

involved in the transition process, must have a comprehensive MKT comprising of the curricula, 

students and teaching methodologies utilised before and after the transition process. Teachers who 

do not possess such knowledge have yet to develop the full range of knowledge domains proposed 

by both Ball, Thames & Phelps (2008) and Ernest (1989) and as such, their knowledge could be 

considered inadequate for teaching. It is this belief, in conjunction with existing research, which led 

the authors to investigate the following research questions. 

1. How familiar are sixth class primary school teachers with the second level mathematics 

syllabus and the teaching methodologies being promoted at second level and vice versa? 

2. What are the consequences of these levels of MKT in terms of (a) the fluidity of the 

transition between primary and secondary mathematics education and (b) the teaching 

approach adopted by second level teachers when teaching mathematics to first year students? 

Methodology 

The research design for this quantitative study involved the distribution of questionnaires to a 

representative sample of two groups of stakeholders involved in the transition process; namely sixth 

class teachers in primary schools and first year mathematics teachers in second level schools1. For 

the purpose of the study two advisory groups, one involving primary teachers and another involving 

second level mathematics teachers, were established. Their role was to help with the development 

                                                 

1 In Ireland 6th class is the final year of primary education which 1st year is the name given to the first year of second level 

education. 



and piloting of the questionnaires and to help the authors in relation to sampling issues. To allow for 

comparison of responses from primary and second level teachers the questionnaires were of a similar 

nature and both were based on the framework for transition developed by the authors from the work 

of Anderson, Jacobs, Schramm and Splittgerber (2000) and the models of knowledge proposed for 

primary teachers by Ball, Thames & Phelps (2008) and for second level teachers by Ernest (1989). 

This theoretical framework is outlined in Figure 1. 

 

Figure 1: Theoretical framework 

This study was unique in that it looked solely at the issue from the perspective of teachers. As such, 

only some dimensions of this model were relevant to this study namely the discontinuity pillar, the 

support pillar and the teacher knowledge pillar. This particular paper has an even narrower focus and 

looks solely at the pillar of teacher knowledge.  

The sampling frame for this study was a list of all 3,300 primary schools and 723 second level schools 

in Ireland (DES website February 2016). The targeted sample was 700 sixth class teachers and 400 

first year mathematics teachers. By consulting the primary school advisory groups, the authors 

established that on average, there is one sixth class teacher in each primary school in Ireland. As a 

result, a simple random sample of 700 primary schools was selected. Overall, the sample included 

21.2% of all primary schools. Having consulted with the second level advisory group it was 

established that on average, there are two mathematics teachers teaching first year mathematics in 

each school in Ireland. Hence using this estimate, a stratified random sample of 200 second level 

schools around Ireland was selected. This sampling technique ensured that an accurate representation 

of each type of school (secondary, vocational, community and comprehensive) in Ireland was 

included in the sample. Overall, the sample included 27.7% of all second level schools in Ireland.   

The questionnaires were distributed to the 700 primary schools and 200 second level schools in April 

2015. The primary school questionnaires were sent to the principal of each school and they were 



asked to distribute these questionnaires to the sixth class teacher. The pack sent to each of the 700 

principals included an information sheet for the principal, a teacher information sheet along with the 

questionnaire and a stamped address enveloped for the questionnaire to be returned in. The second 

level questionnaires were sent to the Head of Mathematics in each of the 200 second level schools 

and they were asked to distribute the questionnaires to the first year mathematics teachers in their 

school. The pack sent to each department head included an information sheet for their perusal, an 

information sheet for first year mathematics teachers along with two questionnaires and two stamped 

address envelopes in which the questionnaires could be returned. At both primary and second level, 

each stamped addressed envelope included was given a number corresponding to the school selected 

so the researchers could identify the schools that had not returned the completed questionnaires. Two 

weeks after sending the questionnaires, follow-up telephone calls to each of these schools were 

undertaken with the aim to increase the response rate.  

Upon receipt of the completed questionnaires the quantitative data was inputted and saved into the 

computer programme SPSS. Descriptive analysis examined primary teachers’ knowledge of the 

mathematics curriculum and teaching strategies employed in secondary school and second level 

mathematics teachers’ knowledge of the mathematics curriculum and teaching strategies employed 

at primary level. Descriptive analysis also allowed the authors to determine how these levels of 

knowledge affected the approach adopted by second level teachers when teaching first year students 

and also to determine if the transition from primary to secondary was educationally successful from 

the teachers’ perspective. The authors will now present the results of this analysis in an attempt to 

address the aforementioned research questions.  

Findings  

Based on the population size it was determined that, to allow for a 5% margin of error, the study 

would require 263 responses from sixth class teachers and 133 responses from first year mathematics 

teachers. The actual response rate was 296 primary school teachers (approx. 42%) and 171 second 

level teachers (approx. 43%). The primary teachers who responded were distributed across 271 

schools (38.7% of schools surveyed) while the second level teachers who responded were distributed 

across 101 schools (50.5% of schools surveyed).  

The first research question sought to ascertain sixth class teachers’ knowledge of the first year 

mathematics curricula and the teaching strategies employed by first year mathematics teachers as well 

as first year teachers’ knowledge of the sixth class curriculum and the teaching strategies adopted by 

sixth class teachers. The findings related to this research question are presented in Figure 2 and Figure 

3. 



 

       (a)       (b) 

Figure 2: Primary teachers’ responses when asked (a) How familiar are you with the first year mathematics 

syllabus? and (b) How familiar are you with the recommended teaching methods for first year mathematics? 

 

        (a)       (b) 

Figure 3: Second Level teachers’ responses when asked (a) How familiar are you with the sixth class mathematics 

syllabus? and (b) How familiar are you with the recommended teaching methods for sixth class mathematics? 

These findings demonstrate that teachers, at both levels, have a deficient understanding of the syllabus 

and teaching strategies that their students were/will be exposed to in their previous/next year of 

schooling. Over half of sixth class teachers (56%) reported that the first year mathematics syllabus 

was either highly unfamiliar or slightly unfamiliar to them. The corresponding figure for second level 

teachers was 49%. The responses in relation to knowledge of teaching strategies were even more 

pronounced. Almost three-quarters of sixth class teachers (73%) stated that they were highly 

unfamiliar or slightly unfamiliar with the teaching approaches used in mathematics classrooms at 

second level. Likewise, 77% of first year mathematics teachers stated that they were highly unfamiliar 

or slightly unfamiliar with the pedagogical approaches employed by sixth class teachers. 

Furthermore, only 13% of sixth class teachers claimed to be in any way familiar with the teaching 

approaches used by first year mathematics teachers while the corresponding figure for the first year 

teachers who responded was 15%.      

The second research question was two-folded and sought to analyse the knock on effect of the gaps 

in teacher knowledge discussed previously. In order to address this research question both groups of 

teachers were first asked to rate their agreement with the statement “There is a fluid transition 
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between primary and secondary mathematics”. The second level teachers were then further probed 

on these knock on effects when they were asked to describe the approach they adopt when teaching 

first year mathematics students upon their entry to second level. For this, they were asked to pick 

from a pre-determined list of four options, which included “Other”. The responses received are 

provided in Figure 4 and Figure 5.  

 

Figure 4: Teachers’ responses when asked their level of agreement with the statement “There is a fluid 

transition between the primary and secondary school mathematics curricula.” 

 

Figure 5: Second level teachers’ responses when asked which of the 4 strategies outlined best describe 

their approach to teaching first year mathematics  

Figure 4 shows that a large proportion of both groups of teachers believe that the transition from 

primary school mathematics to second level mathematics is not smooth. For example, 44.6% of sixth 

class teachers believe this to be the case compared with 44.4% of first year mathematics teachers. 

Only one teacher in both groups strongly agreed that there was a fluid transition between primary 

school mathematics and second level mathematics with a further 34 in each group agreeing with the 

sentiment. The lack of fluidity or continuity is elaborated upon further when secondary teachers were 
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asked to describe the approach that they adopt when teaching first year mathematics students. Of the 

168 teachers who responded to this question 67.9% stated that they “See it as an opportunity for a 

fresh start and initially assume as little as possible about student knowledge or ability”. Despite 

mechanisms, such as the Education Passport2 being introduced in recent years, this study shows that 

teachers, most probably due to their own lack of knowledge of the primary school curriculum, 

continue to adopt a “fresh start” approach. This will undoubtedly lead to a disjointed and fractured 

transition from primary to secondary mathematics education.  

Discussion and conclusion 

“If a teacher is largely ignorant or uninformed he can do much harm” (Conant, 1963: 93) 

This research study has demonstrated that sixth class teachers have gaps in their knowledge in relation 

to the syllabus and pedagogical approaches being adopted at second level while the same can also be 

said about second level mathematics teachers in relation to the primary school mathematics syllabus 

and favoured pedagogical approaches. Teachers in both of these sectors do not have the full repertoire 

of knowledge prescribed by Ball, Thames & Phelps (2008) and Ernest (1989). As Conant (1963) 

points out, such gaps can be detrimental to students’ progress and prove a hindrance in their academic 

progression. This gap in teacher knowledge can prevent teachers from adequately preparing students 

for the transition process or providing them with a sense of continuity when they make the transition. 

For example, in a study carried out by Bicknell et al. (2009) teachers expressed concerns that gaps in 

their own knowledge meant that they were not equipped to prepare students for the mathematics they 

would face at second level. Likewise, students in a study carried out by Green (1997) reported that 

the lack of continuity between primary and second level mathematics education, which stemmed from 

the lack of understanding of the mathematics syllabi and teaching strategies being employed in the 

years either side of the transition on the part of teachers, meant that they did not face new challenges 

on entry to second level and as a result their motivation and attitudes declined. Hence, internationally 

it has been shown that these gaps in teacher knowledge can play a role in the declining attainment 

levels and attitudes of students during the transition. As a result, it is critical that steps are taken to 

improve teachers’ knowledge in this regard in order to improve students’ experience of transition. 

In addition to the ramifications already discussed in international literature, this study found that the 

knowledge levels reported by teachers had other consequences, namely the lack of fluidity in 

transition and the approach adopted by teachers when students enter first year. The lack of fluidity in 

transition reported by teachers in this study is unsurprising, as without an in-depth understanding of 

the previous or subsequent syllabi and teaching approaches it is difficult for teachers to ensure 

curriculum or pedagogical continuity. Such continuity is critical in order to allow for a educationally 

successful or fluid transition from primary to second level mathematics education (Evangelou et al., 

2008). Teachers who do not possess the knowledge domains outlined in the work of Ball, Thames & 

Phelps (2008) and Ernest (1989) struggle to provide curriculum and pedagogical continuity and are 

                                                 

2 The Education Passport was an initiative introduced in 2014. It requires primary schools to pass documentation onto 

second level schools which details a rounded picture of the child’s progress and achievement at primary school as well 

as signalling to second level schools what support a child may need. The overall purpose of the Education Passport is to 

help the child progress and experience continuity as they move from primary education to second level education.  



forced to adopt a “fresh approach” with their first year students. This is the only option available to 

teachers who are not informed about the syllabus and/or pedagogical practices that students were 

exposed to in their previous year of schooling. It is not surprising that this deficiency in the area of 

MKT among teachers has resulted in pedagogical approaches that are not well received by students, 

and thus lead to boredom, lack of motivation and a consequential decline in students’ attainment 

levels (Bicknell et al, 2009). Due to such concerns, the authors believe it is of paramount importance 

that teachers are given the opportunity to develop knowledge of the sixth class and first year 

mathematics syllabi; of students in both these years; and of the teaching strategies in place across 

both levels. Only when such opportunities are available will teachers be in a position to develop the 

range of knowledge domains required for teaching and the hurdle of discontinuity will be overcome. 
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This paper discusses a primary prospective teacher analysis of practice from a video episode she 

selected from her own practice – aimed at exploring the use of non-standard length measurement 

units. The analysis focuses on the revealed knowledge (MKT) while in practice, on the reflection when 

justifying the choice of the episode, and on her analysis of such episode. The results reveal aspects 

of PT knowledge associated with anticipating students’ difficulties, but also her difficulties in 

interpreting and give meaning to student use of non-standard measurement units in a non-standard 

way. From the analysis, the need for an improvement in the use of video-based tasks in teachers’ 

education is discussed, as well as the importance and impact of analyzing and discussing the analysis 

made by PT in and for educators’ professional development. 

Keywords: Mathematic teachers’ knowledge, measurement, video analysis.   

Introduction 

Mathematics teachers’ knowledge and professional development has acquired an important relevance 

for research, enhancing its complexity. Particularly, the research focusing on mathematics 

prospective teachers’ (PTs) education brings to the fore the role and importance of the relationships 

between teachers’ mathematical knowledge and their knowledge of the content and students (e.g., 

Ball, Thames, & Phelps, 2008). Following such focuses, new trends (conceptualization and 

implementation of interventions) for accessing, understanding, and developing teachers’ and PTs 

knowledge are being developed (e.g., Ribeiro, Mellone, & Jakobsen, 2013; Santagata & Bray, 2015; 

Sherin, Linsenmeier, & van Es, 2009). 

More recently, analyzing video episodes has been both a focus of attention and a source for teacher 

education (e.g., Llinares & Valls, 2010; Sherin & van Es, 2002). In that sense, the reflection and 

discussion upon one’s own practice through video analysis is perceived as a powerful path for the 

development of a teacher’s knowledge and awareness—focusing essentially on the mathematically 

critical features, both for teachers and students (e.g., mathematical content, competencies, 

interactions). One such critical aspect for students concerns measurement (e.g., Sarama, Clements, 

Barrett, Van Dine, & McDonel, 2011), particularly with regard to length. Considering the core role 

of teacher knowledge in student learning a focus on such knowledge is essential to better understand 

students’ difficulties. 

This paper aims at contributing to a broader and deeper understanding of the hows and whys 

sustaining the intertwining of teachers’ knowledge (in the sense of Mathematical Knowledge for 

Teaching—MKT; Ball et al., 2008) and professional competency of noticing (in Mason’s 2002 

sense). Therefore, the research question in this study is what kind of knowledge is mobilized by the 

teacher when analyzing students’ interactions with the mathematical content in a videotaped episode 



of measurement. For doing so, a video clip of a primary PT practice on length measurement is 

discussed, as well as her analysis of such video. The results reveal powerful trends concerning both 

the video analysis process as well as PT knowledge concerning length measurement. 

Theoretical framework 

As in other mathematical topics (e.g., adding or dividing fractions), the understanding of the 

mathematical whys of the measurement process is not straightforward, the understanding of such 

process being much more complex than the process itself. Piaget (1972) mentions that acquiring the 

notion of magnitude requires going through different stages, from the use of words to express the 

magnitude (correctly) until one has the knowledge about the measurement of such magnitude. Going 

through such stages is not a straightforward path, and developing a broader and deeper understanding 

of the concept image and definition involved (in the sense of Tall, 1988) is a core aspect of such 

development. 

Two aspects in measuring a length are crucial: the dimension and the distance. The dimension is 

connected with the use of physical resources, and the distance concerns the space between two 

points/objects. Although both notions are perceived in an intertwined and inseparable way, due to its 

nature, one can’t approach them in a single identical manner with students (Clements & Stephan, 

2004). Such a measuring process requires the choice of the unit to use and perceive the quantity of 

units (or unit parts) are needed (how many) to go from one point to the other. Ultimately, one would 

need to combine both processes in order to get a more approximated value for the considered 

magnitude. In that sense, measuring is linked with two core ideas: the inverse relationship between 

the size of the unit used/number of units needed and the need for using the same unit in the same 

process of measuring (e.g., Clements & Stephan, 2004), applying it using a certain algorithm. 

Measuring the length thus requires knowing the standard measure(s) used, as well as the differences 

from using different measurement units (e.g., hands, foot, fingers) and the possibility of using these 

non-standard measurement units in a non-standard way. 

Teachers’ MKT on measurement is essential for developing students’ knowledge and awareness of 

the topic. Among the MKT subdomains, and due to the aim and context of the work reported here, 

we consider for discussion the Common and Specialized Content Knowledge (CCK and SCK) and 

the Knowledge of Content and Students (KCS) subdomains. For doing so, examples linked with 

length measurement are used. The Common Content Knowledge (CCK) is associated with the 

mathematical knowledge required by teachers, including being able to use the instruments to correctly 

perform a certain measurement, knowing that no empty space must be left, as well as that there 

shouldn’t also exist any overlays (instrumental knowledge). In doing so, knowing what instruments 

to use (in the sense of standard instruments/measurement) for measuring different entities and the 

differences between the entities they measure is involved. It corresponds to knowledge of how to 

perform, assuming a user’s perspective (knowing how to measure). Complementary to this CCK, 

following the MKT conceptualization, teachers are required to be in possession of mathematical 

knowledge specifically linked with the tasks of teaching (Ball et al., 2008). Such Specialized Content 

Knowledge (SCK) includes knowing the mathematical whys justifying the different measuring 

processes (considering all the stages mentioned by Piaget, 1972). In addition to requiring knowledge 

of the different ways of measuring different entities, from one side, teachers’ knowledge should also 

include knowing the whys of using such different forms of measuring (and the associated units). 



Complementarily, it should include knowing possible different units for measuring the same entity 

and the ways of doing so (e.g., length), as well as the whys associated with the use of (non)standard 

units. In that sense, such knowledge does not include only knowing the whys associated with the 

procedures, but also includes the concepts (both image and definition in Tall’s 1988 sense) and the 

whys associated with such concepts (e.g., the inverse relationship between the size of the unit and the 

number of iterations needed). Thus, it corresponds to a core aspect of the knowledge that allows 

teachers to give meaning and interpret students’ solutions and comments (part of the interpretative 

knowledge, e.g., Ribeiro et al., 2013) while in practice. 

Both CCK and SCK (and HCK, although it is not discussed here) give support for teachers’ 

developing their practice—conceptualizing and implementing the tasks, hearing students’ comments, 

and interpreting them in order to decide the path to follow at each moment. Those decisions are also 

informed by the knowledge teachers have of their students’ difficulties or what they consider easier.  

Intertwining knowledge of the content and knowledge of the students’ learning processes concerns 

the KCS. It includes knowing that one of students’ difficulties concern the measuring process (e.g., 

the need for using units with different natures), which is related to the complexity of understanding 

the measuring process (e.g., Clement & Stephan, 2004). In such subdomain of knowledge, one can 

also include the knowledge allowing teachers to anticipate students difficulties in differentiating the 

measurement instrument (non-standard unit, e.g., the hand) and the measuring unit, or on ways of 

using non-standard measuring units (e.g., using the finger length or width). 

Recent research has shown the need for designing instruments/resources for teacher education 

allowing them (and the researcher) to characterize the knowledge in action when analyzing their own 

practice (e.g., Kersting, Givvin, Sotelo, & Stigler, 2010). One such resource is video analysis (of 

classroom episodes), which allows a focus on how and which knowledge (prospective) teachers bring 

to front when interpreting, analyzing, and reflecting upon the recorded interactions (e.g., Kersting et 

al., 2010; Van Es & Sherin 2002). When focusing on selecting and characterizing a video episode, 

Sherin et al. (2009) consider three dimensions: (i) window, (ii) depth and (iii) clarity. In the particular 

case we address here, focusing on length, windows dimension is related to evidences of students’ 

different levels of comprehension of the measurement of length; depth dimension is related to 

evidences of interactions in which students participate in the decision making process about choosing 

the measuring unit, the instruments and the measurement procedure and clarity is related to evidence 

of student’s arguments that transparently show their comprehension of measurement of length. 

Reflecting upon what seems to be happening, and discussing grounded on the analysis elaborated, is 

perceived as a pathway for developing teachers’ knowledge and professional noticing (Sherin et al. 

2009). Such professional noticing includes identifying what is important in a teaching situation, using 

what one knows about the context to reason about a situation, and making connections between 

specific events and broader principles of teaching and learning (Van Es & Sherin, 2002). Such 

noticing is thus linked with the ability for examining practice pinpointing the significant aspects in 

order to be better informed at the time of making their pedagogical decisions. 

The context of the study 

Aiming at identifying and deepening the understanding of the content of teacher knowledge and how 

it intertwines with teacher actions and beliefs several case studies have been developed – in different 



contexts and involving different school levels, mathematical topics, and competencies, contributing 

also to conceptualizing tasks of different natures focusing on developing teachers’ knowledge (e.g., 

Ribeiro et al., 2013). 

Method 

We first present the participant of this study, and afterward, the specific context and analysis stages 

and process. Here we focus on the knowledge and awareness about the topic of length measurement 

of a primary PT (Carla), who was part of a bigger research project in which her professional 

development through video analysis and reflection was the aim. Carla was in the last year of the 

teachers’ training program at University Autònoma of Barcelona, and she was teaching the field 

practice to grade 2. Previously, she had some training concerning classroom analysis, identifying and 

interpreting relevant events in a video from a novice teacher. As part of the field practice, PTs have 

to record the 10 classes they teach (one hour each) and choose one episode to analyze and reflect 

upon – which has to be transcribed. The selection of the episode needs to be justified, mentioning the 

whys associated with its mathematical richness and referring explicitly to the mathematical goal 

pursued. For selecting and analyzing such an episode, Sherin et al.’s (2009) criteria (windows, depth 

and clarity) should be used (which have been previously explored with the PTs). Therefore, the 

analysis should focus on the mathematical content approached, student-teacher interaction, and 

students’ understanding. 

For selecting the episodes, PTs’ were advised to look for situations they perceived as involving a 

“high level” of students mathematical knowledge and discussions/argumentations. Carla’s choice was 

an episode aimed at introducing “the measurement of the length and width of objects using non-

standard units” (e.g., the length of the classroom using the foot; the length of a glue package using 

the finger). An example of the proposed tasks is: using an unconventional length measure (finger), 

determine the length of the glue package. Although Carla chose a 15 minutes long video associated 

with the goal “review the content,” she only considered it important to analyze and reflect upon the 

last six minutes – sustaining such choice on her perceived richness, in terms of Sherin et al.’s criteria 

(2009). In the video, one can perceive how the students assign the corresponding number (amount of 

units) to the length or width of the objects as a result of comparing such amount with the unitary 

measurement they consider as a reference. In the discussion, the inverse relationship between the 

length to be measured and the unit used is also explored. Complementary to the video and Carla’s 

analysis, Carla (as all the other PT) were also asked to justify (in a written form) their actions in the 

video they selected.  

The analyses were made in different stages and each of them followed the same structure. First, each 

researcher focused on the divergent aspects, then there was a joint discussion focusing on them. Such 

joint discussions contributed to a refinement of the analysis and increased the researchers’ own 

mathematical awareness and “interpretative knowledge.” Here we expand the notion attributed to this 

expression by Ribeiro et al. (2013) by including the researcher’s ability to read, hear, and understand 

the interactions and knowledge in action. The first stage focused on analyzing Carla’s revealed 

knowledge in the part of the video she considered important to analyze and reflect upon—the last six 

minutes. In the second stage, the focus of attention was Carla’s analysis of her own practice using the 

same criteria PTs use for doing the analysis (Sherin et al.’s 2009 criteria). The third stage focused on 

the mathematical aspects associated with what happened in the first part of the video—which Carla 



chose not to include in her analysis—and the possible whys concerning her knowledge and awareness 

leading to such choice.  

Analysis and discussion 

When analyzing Carla’s practice (the 15’ video) with a focus on the CCK, SCK, and KCS, different 

aspects of her revealed knowledge are identified that sustain her awareness and professional 

competency of noticing. She reveals knowing the importance of measuring with different non-

standard units (CCK), leading to the inverse relationship between the number of units and the size of 

such units (CCK): 

Carla: I gave an example, showing to the students that is not the same measuring with bigger o 

smaller hands, so I put my hand in the sheet they had to measure and asked a student to 

put his hand next to mine, to compare the different measures of both hands, telling them: 

“Do you see that his hand is smaller? Then my measure will be smaller than his”. 

Also, the students’ difficulties in measuring without leaving empty spaces between units is anticipated 

(KCS) when interacting with students: 

Carla: Of course, another thing is how we put our hands. If some of you put them like this (partially 

opened) and some of you put them as Isaac did (completely opened), Isaac will get less . . 

. . But it doesn’t mean that it is wrong; it simply indicates that we have different hands and 

we have measured differently. 

However, we can see a potential conflict identifying the unit of measurement, arising at least four 

different possible unit combinations: kin’s and teacher’s hand, both in a close or open position. In 

spite of Carla’s ability to identify the previous situation as an interesting topic to be discussed in the 

class (noticing), it is noteworthy that there is a lack of awareness of the necessity of exhaustiveness 

when re-covering the measurable object (Clements & Stephan, 2004). 

While teaching, Carla indistinctly uses dimension and distance—the two aspects of length (Dickson, 

Brown, & Gibson, 1991)—revealing aspects of the content of teachers’ knowledge that need to be a 

specific focus of attention in training. Such knowledge would sustain the conceptualization and 

implementation of tasks aimed explicitly at exploring both concepts and their complexity. Not 

overcoming such difficulties, and thereby enriching teachers’ SCK on measurement, would 

contribute to a low level of professional competence of noticing, particularly concerning the students’ 

difficulties in distinguishing perimeter and area (and volume)—KCS. 

Focusing on her analysis of the students’ reasoning (only the last six minutes of the video), the fact 

that she can differentiate various aspects of understanding from different students reveals Carla’s 

(advanced) level of professional competency of noticing according to Sherin et al.’s (2009) criteria. 

Such can be linked with her KCS as well as her interpretative knowledge (Ribeiro et al., 2013). In 

that sense, she takes into consideration (CCK and SCK) the dimension, the absence of empty spaces 

between the use of the measurement units, the use of anthropomorphic units, and the inverse 

relationship between the size of the unit and the number of iterations – on the written justification 

Carla wrote: Hugo and Daniel notice that the different results of the measurement depends on the 

size of the hands; Miguel, on the other hand, concludes that the result depends on the ways the hands 

are placed). 



When justifying the choice of the episode to analyze, Carla’s reflection reveals an awareness of the 

relationship between the SCK on the content, her decisions, and her ability to anticipate the students’ 

difficulties and understanding of the topic (KCS).  

Carla: I chose this particular part of the class because it reveals the moment when the pupils 

become aware that when measuring with non-standard instruments and units, they get 

different results…Through the students’ reflection and reasoning, they get that the size of 

the hands matter when measuring the length (thus getting different results) and that not 

only the size of the hand matters, but also the ways one uses it. I also have to note that after 

the mentioned reasoning emerged from students, I registered the different values on the 

blackboard, and I could then use it to explain to the whole class. During this period, I also 

use different teaching strategies, including the registration on the board (with the number 

and the unit used), giving time for students to present their results, and promoting reflection 

concerning the measurement technique used, supported by visual examples, as they could 

have difficulties in the content concerning both the measuring process and finding the 

relationship between length and units used. 

However, in the remainder time of the episode Carla didn’t chose to analyze (the first nine minutes), 

something curious and mathematically important happened. Analyzing it can shed some light on 

teacher decisions and associated specialized knowledge as well as concerning the need for a change 

in Sherin et al.’s (2009) criteria for selecting and analyzing he video episodes.  

During the first part of the episode, one student (Miguel) provides a completely different answer to 

the posed questions (e.g., length of the class in steps, when the rest of the class provided answers 

around 30, his answer was 14). Carla interpreted it as a misunderstanding of the measurement process, 

showing him in each case “how to do it correctly.” But the consistency of Miguel’s answers reveals 

a high level of understanding (concept image and definition, Tall, 1988) of measurement (Clements 

& Stephan, 2004), using non-standard units. When Carla discussed the question “How many fingers 

are needed to measure the glue package?” Miguel again disagrees with the other students and with 

Carla’s validation of a length of eight fingers. With the glue package on the top of the table, on the 

vertical, the following dialogue occurs: 

Teacher: No? How many fingers did you get? 

Miguel (putting the finger vertically along the glue package): One! 

Teacher: One? Like this? (The teacher repeats the measurement process using the indicator 

finger horizontally) 

Miguel: No, two… 

Teacher: Two? With two you can cover all the distance? 

Miguel: No…ah…four… 

Teacher: Don’t know what you are measuring… 

Miguel: Ah, four, four… 

Teacher: No! It can’t be…you should get eight, you are doing it wrong. 



Although the goal of the class was “to use non-standard length measures,” such measures have been 

used and explored by Carla only in a standard way (the one with which she was used to – taking into 

consideration the cultural aspects). Such exclusive use, linked with the content of SCK, makes it 

difficult to anticipate and understand (KCS) Miguel’s answers––use of non-standard measurement 

units in a non-standard way. The fact that when reflecting upon her practice and analyzing the video 

she did not point to this aspect as problematic sustains the need for a change in the way the video 

analysis task has been conceptualized. And, in an intertwined way, makes us wonder about Sherin et 

al.’s (2009) criteria for professional competency, as when focusing only on her own analysis (of the 

last six minutes), Carla could have been considered to have an advanced level of such competence; 

when looking at the part of the video she did not analyze, a different conclusion could be drawn. In 

that sense, there is also evidence of the interdependent nature of such competence and teachers’ 

knowledge. 

Carla seems to not be aware of the inexplicit use of a one-dimensional measurement unit on a three-

dimensional object, leading thus to some contingency moments. To overcome such moments, she 

opted (grounded in her own revealed knowledge of measurement) to tell the student “how to do it”. 

Although aspects of professional awareness and competencies of noticing are present both in her 

practice and in her analysis of the video, her knowledge shaped such aspect, leading to a partial view 

of the students’ understanding of the measurement length and units. This supports the need for a 

complementary discussion and reflection upon the video analyses PTs make in order to focus also on 

the mathematically critical aspects they are not aware of, and which are a barrier to completely 

achieving the advanced level of professional competency of noticing expected when using Sherin et 

al.’s (2009) criteria. 

 

Final comments 

From the work focusing on the video analysis, three aspects can be enhanced: teachers’ knowledge 

and professional noticing abilities; reflection and awareness capabilities; video-based task design and 

its potentialities. Although of different natures, these aspects have in common the educator’s 

responsibility in changing the training process. Through this case study, one can better understand 

aspects of the content of the different subdomains of MKT, both revealed in practice as well as 

expressed when reflecting upon such practice when analyzing the video. Other aspects concern the 

impact of the interactions and the prevalence of non-standard length measurements in standard ways, 

and that revisiting the practice didn’t become a prompt for awareness and noticing development, 

obviously linked with previous experiences and MKT. This calls our attention to the need for an 

exterior element to pinpoint these critical features, leading them to become a starting point for 

developing such knowledge and awareness.   

Although the video analysis performed by Carla with the provided instrument did not accomplish 

completely the defined aim, our analysis of her practice and of her own analysis of the video was a 

prompt for inquiring our own practice as educators in terms of interpretative knowledge (Ribeiro et 

al., 2013) and of awareness of the educators professional noticing abilities. One future research path 

concerns thus the develop of a complementary instrument for video analysis that would allow trainees 



to dig deeper into their awareness of the mathematical whys sustaining what happens and to focus 

also on the educators specialized knowledge, awareness and noticing abilities. 
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Investigating Lesson Study as a practice-based approach to study the 

development of mathematics teachers’ professional practice 
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The study, whose methodological approach is the focus of attention in this paper, is a qualitative, 

single longitudinal case study. The object of study is Lesson Study (LS), and the unit of analysis is 

two LS cycles. What teachers learn about teaching practice and student learning in mathematics from 

participating in the two cycles is investigated. LS and teaching practice are in the study regarded as 

object-oriented activities. It is claimed that indications of what the teachers learn during LS processes 

can be uncovered by the use of discourse analysis because learning is considered as a change in 

discourse.  

Keywords: Lesson Study, mathematics teachers, professional development, teaching practice. 

Introduction 

Recent studies have focused on the potential of practice-based approaches for developing 

mathematics teachers’ knowledge and practice. In this paper, we investigate a methodological 

approach to study how Lesson Study (hereafter LS) as a particular practice-based approach to 

professional development can contribute to teachers’ development (Thames & Van Zoest, 2013). In 

Japan, LS has been used for professional development of teachers for more than a century (Ronda, 

2013). Since Stigler and Hiebert (1999) wrote “The Teaching Gap”, researchers from other countries 

have become interested in LS as a structured approach to teachers’ professional development (e.g., 

Fernandez, 2002). In Norway, the Ministry of Education and Research calls for more school-

development projects, and LS is mentioned specifically in a recent strategy document (KD, 2014).  

Cohen, Raudenbush and Ball (2003) suggest that teaching can be regarded as instructional 

interactions among teachers and students around a certain content. Increased student learning thereby 

requires a change in these instructional interactions. Thames and Van Zoest (2013) call for research 

to focus more directly on these instructional dynamics. We suggest that LS provides a great venue 

for studying the development of teachers’ interactions about teaching practice and student learning.  

We focus on issues related to research design and methods in a project where LS is used to study 

indications of what the teachers learn during LS processes. To frame this discussion, the paper 

presents an ongoing research project in a Norwegian lower secondary school, where teachers learn 

and develop their professional practice from participating in two LS cycles. The aim is to highlight 

and discuss some methodological issues that occur when coordinating two sociocultural theories in a 

study of teachers’ learning about their own practice and student learning. Although this is a theoretical 

rather than an empirical paper – some would suggest that it sits at the border in between – we provide 

a brief empirical example from the study to illuminate our approach.    

Context of the study 

A group of mathematics teachers is observed in two LS cycles with an overall focus on what the 

teachers learn about their own teaching practice and student learning from participating in these two 

cycles. A sociocultural stance is used to investigate teachers’ learning and to understand the 



participants’ perspectives and interactions in the LS group. Knowledge is regarded as shared and 

collective rather than individual and develops through social negotiation (Radford, 2008). The role 

of verbal interaction in the learning process is essential, because new knowledge is considered to 

develop through talk in social interaction (Dudley, 2013). The theoretical and analytical frameworks 

used in this study coordinate two sociocultural theories: activity theory (Leontiev, 1978) and the 

commognitive theory (Sfard, 2008). Research on human development and learning thus becomes the 

study of development of discourse.  

Tabach and Nachlieli (2016) propose a combination of activity theory with communicational theories 

to study mathematics teaching, and our coordinated theoretical framework adheres to this proposal. 

Activity theory is used as a grand theory, and LS and teaching practice are seen as activities in the 

way Leontiev (1978) thought of activity. To Leontiev, all human activities are oriented towards an 

object with a certain motive. The activities consist of three components at dynamic levels: object-

motive, actions-goals and operations. In coordination with this theoretical perspective, and to identify 

what the teachers have learned on a discourse level, the commognitive theory (Sfard, 2008) is used 

as a local theory. This theory defines learning in terms of discourse, and it presents certain 

characteristics of a mathematical discourse: word use, visual mediators, routines and endorsed 

narratives. In this study, the development of teachers’ mathematical discourse about teaching practice 

and student learning in the goal-oriented actions and operations in the LS activity is studied. 

The main data sources for the ongoing research project are video-recorded observations from two LS 

cycles and focus group interviews (FGI). One LS cycle lasts about three months. The two cycles took 

place in spring (first cycle) and autumn (second cycle) 2016. The school implemented LS as their 

school-development project in January 2016, and this was the teachers’ first experience with LS. The 

LS group consists of four mathematics teachers, one participant from the school administration (the 

group leader) and one external expert (the first author of this paper). All the teachers’ meetings are 

video- and audio-recorded. In addition, all documents produced by the teachers during the whole 

process, and some of the students’ written works, are collected. Since conversation and 

communication are crucial in the study, FGIs before and after each LS cycle are conducted. The 

purpose of a FGI is to get a variety of perspectives on a given subject (Kvale, 2007). In the first FGI, 

a discussion about the current teachers’ teaching practice, including making plans, teaching, 

evaluation and the teachers’ thoughts about student learning is facilitated. In the second FGI, it is 

important to let the participants reflect on what they have learned about their own teaching practice 

and student learning. In the third FGI, the focus is on the LS process and what can be done differently 

in the next cycle. In the last FGI, the most crucial topic relates to teaching practice and student 

learning, and contains the same focus as the second FGI. 

A coordinated theoretical framework to investigate teacher development  

Describing the landscape of using more than one theory, Birkner-Ahsbahs and Prediger (2014) refer 

to networking strategies or connecting strategies. They distinguish these strategies by the degree of 

integration, from ignoring other theories on the one hand, to global unification on the other. Figure 

1 gives an overview of the approaches in between. Networking strategies are useful to analyse the 

same empirical phenomena using different approaches (Birkner-Ahsbahs & Prediger, 2014). 



 

Figure 1. Networking strategies (Bikner-Ahsbahs & Prediger, 2014, p. 119). 

The strategies of coordinating and combining are mostly used for a networked understanding of an 

empirical phenomenon or a piece of data (Bikner-Ahsbahs & Prediger, 2014, pp. 119–120). The 

difference between coordinating and combining theories depends on how elements from the two 

theories are well fitting or not. While coordinating can only be possible if the theories have compatible 

cores, theories with conflicting basic assumptions can be combined. In this study, activity theory and 

the commognitive theory are coordinated, because they have similar ontological and epistemological 

perspectives. LS and teaching practice are seen as object-oriented activities. Tables 1 and 2 give an 

overview of these activities. LS and teaching practice as object-oriented activities have a common 

motive: to promote student learning. They have however, different objects and goal-oriented actions. 

Another main difference is the teaching in LS (the research lesson). Because of the participating 

observers and the teachers’ research question(s) – they are researching their own teaching practice – 

the teaching is planned in order to promote teachers’ learning and development as well as students’ 

learning. The focus on instructional interactions between teacher and students around content (cf. 

Cohen et al., 2003; Thames & Van Zoest, 2013) is naturally embedded in LS. In order to study your 

own teaching practice to increase student learning, teachers are conducting goal-oriented actions. 

These actions represent each step of the LS cycle; formulate goals and plan the lesson, teach the 

lesson, observe students and reflect on/evaluate the research lesson. Each action has its own goal – 

prepare teaching, facilitate students’ learning, gather data to answer research questions and learn from 

the lesson. To constitute the goal-oriented actions, there are different operations, listed in Table 1.  

To describe the meaning of teachers’ professional teaching practice, we draw upon the work of Ball 

and Forzani (2009). They consider mathematics teaching as professional work and this work of 

teaching mathematics does not come natural. It has to be learned through deliberate training. Teaching 

practice is all about designing activities that increase student learning, but the work of teaching 

mathematics can also be decomposed into several core components. For instance, a teacher must 

present mathematical ideas, respond to students’ mathematical questions, find examples that illustrate 

certain mathematical points and so on – all examples of what Ball and colleagues refer to as “the 

mathematical tasks of teaching” (Ball & Forzani, 2009; Ball, Thames, & Phelps, 2008). This is 

another aspect of what they mean by referring to teaching as professional practice. In order to carry 

out the tasks of teaching mathematics, a specific knowledge is required that is connected with the 

work of teaching. This constitutes a particular knowledge base that is shared within the teaching 

profession.  
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Table 1: LS and Activity Theory (translated from Mosvold & Bjuland, 2016, p. 188) 

Considering teaching or “the work of teaching” as an object-oriented activity, the object/motive is 

teaching in a way that leads to student learning. The goal-oriented actions are the tasks of teaching, 

and the operations are when the teachers actually conduct the tasks of teaching (see Table 2). These 

operations require mathematical knowledge for teaching (Ball et al., 2008). Developing teaching 

practice also includes developing teachers’ knowledge for teaching (Lerman, 2013). In this study, 

Ball et al.’s (2008) knowledge component: “Knowledge of content and students” is used when 

studying what teachers learn about student learning. 

Activity  The work of teaching mathematics 

Objects/motive Help students learn 

Actions  Mathematical tasks of teaching 

Goals  Student learning of specific mathematical content   

Operations  Conduct the mathematical tasks of teaching, depending on teachers’ knowledge for teaching 

Table 2. Teaching practice and Activity Theory 

The following example illustrates how the local theory is applied in coordination with the grand 

theory. In the activity of LS, one of the goal-oriented actions is evaluation. Within this action, an 



operation is to “discuss observations” (see Table 1). In the discussions of observations from the 

second research lesson, the teachers discuss how the students had worked on a task of finding the 

shape of a sandpit that can fit 500 litres of sand. They recall how one boy responded when challenged 

by the teacher to try another figure than a rectangle – like a triangle. The boy responded, “Yes, then 

we just double, because that is half, then…” Another teacher comments that the boy found another 

solution. Although the example is limited, it displays some characteristics of a mathematical 

discourse. In this action of discussing their observations, the teachers use mathematical words like 

shape, rectangle and triangle. Their restatement of a student’s response illustrates a mathematical 

routine that appears to involve the area of a triangle. When analysing the teachers’ discourse in the 

actions of LS over time, the local theory may help us identify changes in discourse – which is how 

Sfard (2008) defines learning – on an object level or meta level. Introduction of new words are 

examples of object level learning, whereas changes in the metarules of the discourse constitute 

learning or development on meta level.  

Considering the role of the researcher  

In the described study – like in numerous similar LS research projects – the researcher acts as 

participant observer. Being a participant observer in research – as the first author of this paper – might 

lead to both advantages and challenges. Connelly and Clandinin (1990) underline one advantage 

when they focus on the relationship between the researcher and the participants in the context of 

research in education. They stress the importance of all parties’ equality, which gives rise to better 

collaboration. The first author is a participant observer in the way Bryman (2012) defines as being an 

“overt full member” (p. 441). This means that the researcher is completely involved in the group’s 

work. Bryman distinguishes between “covert full member” and “overt full member”. The differences 

being if the members of the group are aware of the researcher’s status as a researcher or not. In the 

present study, the participants are aware of the first author’s role as a researcher. Bryman (2012) 

claims that there are some challenges associated with the “overt full member” role. As an active 

participant, you may forget your role as a researcher. He refers to this as “going native” (Bryman, 

2012, p. 445). To avoid this, it is important to be aware of the different roles you have as a 

participating observer. In the group meetings, the researcher switches between a conversation role 

and a member role. In the research lesson, the researcher does not teach the lesson, but participates 

in activities as an observer. Wadel (1991) refers to this role as the role of the apprentice. In addition, 

another essential aspect of the researcher role in this study is “the knowledgeable other” in the LS 

group, the role of observer-spectator (Wadel, 1991). The most important part of this role is to guide 

the group through the LS cycle and help the teachers to keep focus on their own research. Previous 

research has shown that without an external expert, teachers easily forget the research question (e.g., 

Takahashi, 2013) and collaborate without actually doing LS.  

Staying long in the field increases the stability of observations and dependability in a qualitative 

project (Cohen, Manion, & Morrison, 2007). In this project, data collection spans over a calendar 

year. The time span is particularly important when the researcher acts as participant observer in a LS 

group, in order to reduce potential reactivity effects (Cohen et al., 2007). Another element that 

supports the dependability in the study is the teachers’ reflections on the outcomes of their own 

learning. This is useful for the analysis, because we can then compare findings (related to observed 

change in discourse) with the teachers’ own reflections. The participants’ opportunity to agree with 



the descriptions and interpretations the researcher makes during the LS cycles underpin the 

confirmability in this research. Since one researcher is participating in all the conversations when the 

teachers talk about their own reflections on a meta-level, this researcher’s voice – repeating their 

different opinions – enables the participants to confirm or disconfirm. This can only happen because 

one researcher is a participant observer. 

In the final step of a LS cycle, the teachers have to think through what they have learned during the 

whole process. Based on interpretations of the data material, the researcher attempts to make thick 

description of teachers’ learning through LS. In the process of creating such thick descriptions, we 

follow Stake (2010) who emphasizes the connection to theory in addition to providing rich 

descriptions and interpretations of data – thus supporting the transferability of the research.  

Concluding discussion  

In this paper, we have referred to a study of teacher learning in LS as a starting point for discussing 

some theoretical and methodological issues that can be involved when studying what teachers learn 

about teaching practice and student learning. In their call for more practice-based approaches to study 

the development of mathematics teachers’ knowledge and professional practice, Thames and Van 

Zoest (2013) argued that such efforts required “work on conceptualizing practice, formulating 

questions about practice, and developing methods for studying it” (pp. 592–593). We suggest that LS 

provides a useful venue for such studies, but we agree with these researchers that further work – 

conceptual and methodological – is necessary. A possible approach is to use our proposed 

coordination (Bikner-Ahsbahs & Prediger, 2014) of activity theory and the commognitive theory to 

study mathematics teachers’ learning in the context of LS. This might be useful in multiple ways. In 

the following, we highlight two potential benefits of such a coordinated theoretical framework.  

First, the application of Leontiev’s (1978) activity theory provides a useful framing for a 

reconceptualization of the work of teaching mathematics. Ball and Forzani (2009) propose that the 

work of teaching mathematics is constituted by the recurrent tasks of teaching that teachers encounter 

when carrying out this work. Their conceptualization fits within the idea of teaching as professional 

practice. In the TeachingWorks (2015) project, they develop these ideas further and identify a number 

of core practices that are particularly important in the work of teaching. A challenge with these and 

other efforts to conceptualize the work of teaching is that the components of practice – for instance 

the mathematical tasks of teaching – sometimes appear to be on different levels, and the issue of 

purpose often appears absent. Using Leontiev’s (1978) idea of distinguishing between object-oriented 

activity, goal-oriented actions and operations in a reconceptualization of the work of teaching 

mathematics, may solve both of these potential challenges while at the same time preserving the 

obvious strengths of previous conceptualizations. Such a theory-based reconceptualization enables 

new questions to be posed and may support the development of a theory of mathematics teaching that 

communicates with existing theories of learning and development.  

Second, the application of Sfard’s (2008) commognitive theory enables the development of more 

operational definitions of teaching and teacher learning about teaching practice and student learning. 

When applying a definition of teaching that coordinates perspectives from activity theory with Sfard’s 

theory, the issues of motives and purpose are embedded. The proposed definition of Tabach and 

Nachlieli (2016, p. 303) is a good candidate: “teaching can be defined as the communicational activity 



the motive of which is to bring the learner’s discourse closer to a canonical discourse.” This definition 

draws upon Sfard’s (2008) definition of learning as an observable change in discourse, and the 

application of such a theory makes teaching and learning more easily observable.  

In interpretative research, the goal is to understand and interpret the meanings of human behaviour 

such as teachers’ talk, and it is important for the researcher to understand motives, meanings, reasons 

and other subjective experiences rather than to predict causes and effects (Hudson & Ozanne, 1988). 

This paper highlights and discusses some methodological issues that may arise when investigating 

development of mathematical knowledge for teaching in LS from a participationist (rather than 

acquisitionist) perspective (Sfard, 2008), focusing on teachers’ participation in object-oriented LS 

activities and analysing their learning in terms of discourse as two different grain sizes. The two levels 

occur because the theories look at learning differently; activity theory is focusing on acting humans, 

whereas discourse theory is focusing on humans who communicate. Both perspectives are arguably 

embedded when mathematics teachers’ professional practice is developed through LS, and an 

application of such a coordinated theoretical perspective might represent another step towards the 

efforts to understand what teachers learn about teaching practice and student learning (cf. Thames & 

Van Zoest, 2013).  
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We understand Fundamental Mathematical Knowledge (FMK) as the initial mathematical 

background we expect students to have at the start of their education to become Primary School 

teachers. In this paper, we focus on the answers given by 241 first-year student teachers to two non-

routine questions that were part of an entrance examination. Non-routine questions are those for 

which students do not have a straightforward algorithm available to reach the answer and/or the 

result obtained by using it needs to be interpreted within the problem’s context. The results show 

that non-routine questions are a powerful tool to assess the solidity and stability of their initial 

mathematical knowledge but also a powerful tool to find out whether the students have 

appropriated the essential ways of thinking and working in mathematics. Our findings also suggest 

that the mathematical knowledge of first-year student teachers is far from the desired FMK. 

Keywords: Fundamental Mathematical Knowledge, non-routine questions, teacher education. 

Introduction 

Within the framework of a program that aims to improve initial teacher training in Catalonia – 

Programa per a la Millora de la Formació Inicial de Mestres, MIF– an entrance assessment has 

been created. Its purpose is to regulate the access to primary teaching degrees and will be applied for 

the first time in June 2017. The assessment includes a mathematics test intended to ensure the 

mathematical knowledge of future students of teaching degrees. In this context, in an attempt to find 

evidence of the distance between the student candidates’ initial mathematical knowledge and the 

desirable mathematical knowledge, our study focuses on characterizing the knowledge 

demonstrated by a group of 241 students in their first year of training as primary teachers. In this 

paper we focus on the analysis of their responses to 2 non-routine questions. 

Fundamental Mathematical Knowledge (FMK)  

In Castro, Mengual, Prat, Albarracín and Gorgorió (2014) we introduced Fundamental 

Mathematical Knowledge (FMK) as the disciplinary mathematical knowledge that students need to 

benefit from courses in mathematics and mathematics teaching during their education to become 

teachers, considering the requirements of the professional practice and the competences to be 

developed by children in primary education. FMK is the disciplinary knowledge on which to build 

throughout teacher training to attain the mathematical and pedagogical content knowledge required 

                                                 

1 The study presented here has been developed within the the research project Caracterización del conocimiento 

disciplinar en matemáticas para el Grado en Educación primaria: matemáticas para maestros, supported by the 

Dirección General de Investigación in the framework of I+D, RETOS, (ref. EDU2013-4683-R). 

2 Lluís Albarracín is a Serra Húnter Fellow at the Universitat Autònoma de Barcelona. 



for professional practice. As teacher educators, we regard FMK as the mathematical knowledge 

starting point for our courses, which should be based on a thorough knowledge of elementary 

mathematics, being the foundation that would support a structurally robust training.  

As we have defined FMK, it is not explicitly part of the different models that characterize teacher 

knowledge. However, it relates to them. Ma (1999) develops Shulmans’ proposal (1986) and brings 

up the notion of profound understanding of emergent mathematics. Our idea of FMK is related to 

Ma’s proposal, but focuses on the initial knowledge required for teacher training, as opposed to this 

author who is interested in the educated teacher. Ball, Thames and Phelps (2008) propose a 

characterization of mathematical knowledge for teaching from what teachers do when they teach 

mathematics and from the knowledge and skills they need to achieve for students to learn.  

Considering that we are focusing on young adults that want to become teachers, FMK is close to 

their notion of Common Content Knowledge (CCK), understood as the subject-specific knowledge 

needed to recognize and solve mathematical problems that any educated adult should have. 

However, since FMK is defined in terms of requirements to enter a teaching degree, FMK would be 

mathematical knowledge essentially linked to the school-subject “mathematics”. FMK would be the 

knowledge upon which our students would construct their Specialized Content Knowledge (SCK) 

and Horizon Content Knowledge (HCK) during their education to become teachers. Rowland 

(2008), based on observation in the classroom to characterize situations in which the teachers’ 

mathematical content knowledge is visible, proposes the reference framework called Knowledge 

Quartet Framework. The Knowledge Quartet has 4 dimensions: foundation, transformation, 

connection and contingency. Again, the idea of FMK can be related to the Foundation dimension, 

even though the latter refers to expert knowledge  

There is extensive research aimed at developing theoretical models of different types of knowledge 

required to teach mathematics. However, much less attention has been paid to research focused on 

establishing what students’ mathematical knowledge is (or should be) when entering teacher 

training programs (Linsell and Anakin, 2012). According to Linsell and Anakin (2013), the theory 

developed so far around knowledge for mathematics teaching shows limitations when analysing 

students’ knowledge on entrance to the faculties, since it is based on what teachers do in practice.  

FMK focuses on the knowledge of core concepts and on the ability to solve exercises, problems and 

situations applied to different fields – numbering and arithmetic, relations and change, space and 

shape, measurement, statistics, and randomness – together with the ability to assess the adequacy 

and reasonableness of the response in each case. We understand mathematical competence as the 

ability to use mathematical knowledge encompassing both mathematical and non-mathematical 

situations. Mathematical competence is based on factual knowledge and concrete skills to carry out 

mathematical activities and it includes the ability to ask and answer questions in and with 

mathematics, and the ability to deal with mathematical language and tools (Niss and Højgaard, 

2011). 

Mathematical competence goes beyond knowledge of procedures and it manifests itself in the use of 

conceptual knowledge in different situations. It requires the knowledge of rules, definitions and 

connections and domain structure, and knowing why certain procedures work for certain problems, 

what the purpose of each step of a procedure is, and making the connections between these steps 



and their conceptual foundations. Non-routine questions cannot be approached in an automated way 

and solving them requires a deep understanding of the concepts and procedures involved in them.  

This is why we want to know whether or not non-routine questions are a suitable tool to evaluate the 

initial mathematical knowledge of student candidates in relation to FMK in terms of competences.   

Method 

In the process of construction and refinement of the mathematics test of the entrance assessment, we 

examined different groups of students who had just started their training as teachers but had not yet 

had any courses related to mathematics or didactics of mathematics. The main data used in this 

study comes from the test answers of the 241 first-year students of the Primary Education Degree at 

the Universitat Autònoma de Barcelona during the school year 2015-16. For this cohort of students, 

the test was not yet a requirement for admission. The test students had to pass had 4 different 

versions around the same mathematical ideas, and was made up of 25 questions. Students were 

given 90 minutes to complete the test not being allowed to use any type of calculator. They were 

randomly handed out one of the four versions, and we afterwards verified that the four groups of 

students were statistically equivalent in terms of their entrance characteristics.  

The questions in the test were related to the core content of the curriculum for compulsory 

education. At least half of them were non-routine questions in the sense that there was no 

straightforward algorithm available to the student to reach the answer. In the cases in which such an 

algorithm was available, the result obtained by using it had to be interpreted within the problem’s 

context. When there was a simple approach to solve a question, its application would however be a 

cumbersome and time-consuming task. Therefore, given the limited time, these questions called for 

the development of efficient approaches to solve them.  

Results 

Ruler question 

Questions 1 and 2, given in Figure 1, were question 15 in versions 1 and 4, and versions 2 and 3 of 

the test respectively. In the students’ test, the centimetre in the images corresponded to exactly one 

centimetre. 

This question involves the measurement of a length with a tool, which is part of the content of 

compulsory education and is similar to questions that can be found in tools aimed to test primary 

children’s mathematics. It’s a non-routine question, since it cannot be answered by a direct reading 

of the image because the segment to be measured does not start at point 0 and the subdivisions of 

the ruler do not correspond to decimal units. The question requires knowledge of the number line 

and representing fractions on it. 

Version 1 Version 2 

Figure 1: Question 15 of versions 1 and 2 



The students’ answers are summarized in Table 1. Since all the students answered this question, 

both in version 1 and 2, we interpret that they believed to know the correct answer. For the question 

in version 2, where the fraction involved is 1/2, 78.22% of the students gave a correct answer, while 

in version 1, which additionally requires a measurement using the ¾ fraction, the percentage of 

success is 38.46%.  

Version Correct Answers Errors Blank Total 

1 45 (38.46%) 72 0 117 

2 97 (78.22%) 27 0 124 

Total 142 (58.92%) 99 0 241 

Table 1: Answers to the Ruler question 

We generally observe a tendency to induct, i.e. the students answer the question from what they 

would do to approach a similar routine question. The correct answer is 4.75 cm, and little more than 

a third of the students answered correctly, and the answer 4.3 arises from considering that each 

subdivision of the unit corresponds to 0.1 cm and calculating the total length counting subdivisions. 

This answer contains an additional error, since units are ignored when expressing the measurement. 

Similarly, the answers 4.7 cm, 5.3 cm and 5.7 cm stem from automatically considering that each 

subdivision equals 0.1 cm. The three answers consider a reading of the graphical information 

contained in whole units. Thus, 4.7 = 5 – 3 x 0.1. In the 5.3 answer, there is an additional error since 

subtraction would be required 5.3 = 5 + 3 x 0.1. The 5.7 answer implies an incorrect reading of the 

graphical information when supposing that the segment contains 6 whole units 5.7 = 6 – 3 x 0.1. 

The error of 19 cm also answers to an automated process, since it stems from considering each 

subdivision as 0.1 cm. The incorrect answer 9.5 cm arises from considering that every two divisions 

equals 1 cm and then acting routinely. In addition, those who make this mistake do not stop to think 

whether the segment may be longer than the ruler being used to measure. We also noted another 

type of errors resulting of applying a routine process. Here the students gave the result of the 

measurement by rounding amounts, such as in 4.8 cm or 5.8 cm, from rounding 4.75 and 5.75, 

respectively. In version 2, the correct answer is 5.5 and the errors detected similarly stem from 

applying automated processes – such as acting inductively or rounding – without questioning the 

meaning of the procedure they are using or the answer obtained. 

Cubes question 

Question number 16 – shown in Figure 2 – was slightly different in the four versions of the test, but 

was always related to the concept of volume. It approached the idea of measuring the volume of a 

solid directly by counting units, again a concept present in compulsory education. However, all 

these were non-routine questions in the sense that they differed from typical textbook exercises that 

require the calculation of a volume by applying a formula. This question additionally required the 

interpretation of figural information, even though the figures were rather simple. 



If the edge of each cube measures 4 cm, what 

is the volume of this object? 

 

If the edge of each cube measures 4 cm, what is 

the volume of this object knowing that we can 

see all the cubes that integrate the object? 

 

 

Version 1 Version 2 

If the edge of each cube measures 4 cm and the 

volume of the object is 512 cm3, how many 

hidden cubes are there? 

The volume of the object is 384 cm3. All the 

cubes that integrate it are identical. What is the 

length of the edge of the cubes? 

  

Version 3 Version 4 

Figure 2: Versions 1, 2, 3 and 4 of the Cubes question 

In versions 1 and 2, the question required interpreting figural information, mastering the notion of 

unit of measurement, being able to calculate the volume of a cube with a 4 cm edge and, 

particularly, having a way to quickly figure out how much 4 x 4 x 4 is. In both cases, students 

should be able to express their answers using the appropriate units. Version 2 was more complex 

than version 1, since it explicitly brought up the idea of hidden cubes. The questions in versions 3 

and 4 also required interpreting figural information in a representation that also included the idea of 

hidden cubes, but this time providing the volume of the global object.  

The question in version 3 required determining the number of hidden cubes, therefore calculating 

the volume of a cube with an edge of 4 cm, using the multiplication algorithm or having a way to 

quickly calculate 4 x 4 x 4. Then it required being able to find how many times 512 cm3 could 

contain 64 cm3, by either using the traditional division algorithm or any other efficient procedure. 

The question in version 4 was more complex, since once the number of small cubes was 

determined, the students had to find the volume of each of them, and after that finding the length of 

the edge. With a given length, finding the volume is certainly a routine question; however, the 

opposite is clearly non-routine.  

Table 2 shows the number of correct, erroneous and blank answers for each version of question 16. 

In contrast to what happened with the Ruler question, in all versions of question 16 there was a 



significant percentage of blank answers, which indicates how the students perceived the difficulty of 

the different versions.  

Version Correct Erroneous Blank Total students 

1 23.21% 46,43% 30,36% 56 

2 20.69% 43,10% 36,21% 58 

3 9.09% 59,09% 31,81% 66 

4 8.20%) 39,34% 52,46% 61 

    241 

Table 2: Answers to the Cubes question 

If we pay attention to the percentage of corrects answers, we see that the success in versions 1 and 2 

is similar and much higher than that of versions 3 and 4, which also have a similar success rate. We 

interpret this difference as due to the fact that questions in versions 3 and 4 are much further away 

from textbook questions than the questions in versions 1 and 2, and all of them are far from how 

they have dealt with volume in their previous schooling.  

In version 1, the correct answer is 1792 cm3, since there are 28 cubes with a volume of 64 cm3 each. 

Among the 56 students, only 13 reached the correct answer and 18 gave no answer at all. Among 

those that gave a wrong answer, the most common errors lie in not knowing how to find the volume 

of the small cube or in mixing the idea of volume with that of surface area. Another common error 

lies in not identifying the right number of cubes in the figure: only 8 of the wrong answers are 

attained using the correct number of cubes, the others that make sense deal with the question 

considering there are 20 cubes. 

In version 2, the correct answer is 384 cm3, since there are 6 cubes with a volume of 64 cm3 each. 

Among the 58 students dealing with these questions, only 12 reached the correct answer and 21 

gave no answer at all. The percentage of blank answers being higher than in version 1 would 

confirm the idea that students considered this task to be more difficult than task 1, most likely 

because it brings up the idea of hidden cubes. Calculations are simpler than in version 1, since the 

number of cubes is a one digit number. However, students also have problems in knowing how to 

find the volume of the small cube or mix the idea of volume with surface area.  

In version 3, the correct answer is 2 hidden cubes, since the object is made up of 8 cubes and 6 of 

them are visible. The total number of cubes in the object can be found by dividing 512 by 64, since 

the volume of each cube is 64 cm3. Among the 66 students, only 6 students reached the correct 

answer and 21 gave no answer at all. The percentage of blank answers being close to the one in 

versions 1 and 2 would suggest that students do not consider this question to be more difficult than 

the others. As in version 2, calculations are simple, since the number of cubes is a one digit number. 

One common error is to not answer to the number of hidden cubes, but to answer the number of 

cubes that make up the object. Among the incorrect answers, 7 of them clearly show that the 

students knew they had to divide the volume of the object by the volume of the small cube, but 

again encountered problems in relating the length of the side of the cube to the volume of the cube, 

and directly used the side length or the surface area of one the sides of the cube. It is interesting to 



note that, among the wrong answers, there is at least one that suggests that the student attempted to 

directly read the figural information given. 

To solve the question in version 4 the student had to divide the volume of the object, 384 cm3, by 6 

which is the number of the cubes, obtaining 64 cm3. Version 4 was given to 61 students, 5 of them 

solved it properly, 24 obtained wrong answers and 32 gave no answers, a much higher percentage 

than in version 3. Among the 24 wrong answers, we found three where the student divided 384 by 6 

but went no further, giving as a result 64 cm3, 64 cm or 64. Among the wrong answers, we also find 

those of 11 students that divided the volume by 3 to calculate the length of the side and, in some 

cases, there are added errors like using the wrong units or rounding off the result.  

We wish to note that, in all versions, miscalculations were often present. Once again, as in the Ruler 

question, what is most striking about the students’ answers is that, too often, it seems that they did 

not try to make sense of what they were doing. We might think that the students would be content 

with providing a numerical answer without paying attention to the meaning of either the question or 

the answer they are giving. 

Discussion and conclusions 

In this paper, we have analysed how a group of 241 first year student teachers deal with two non-

routine questions in the context of a test intended, in a near future, to select those students that will 

be allowed to access a degree in Primary Education. Our results show that the percentage of correct 

answers relates to how far apart the questions posed are from the type of questions the students may 

have encountered in their previous schooling. The difficulties encountered by the students show that 

their initial mathematical knowledge is not solid enough to be considered a sufficient basis on 

which to build up their mathematical content knowledge and didactical knowledge. The results also 

show a significant offset between the initial mathematical knowledge of the student tested and the 

FMK understood as the desirable starting-point knowledge even though they may consider they 

have the knowledge required to address these questions, given that the number of blank questions is 

generally small. Moreover, we have little evidence that they master mathematical modes of thought 

or that they have problem tackling competence. Even to find a reasonable answer – one that makes 

sense – does not seem to be part of their way of doing mathematics. 

Non-routine questions in the examination were designed to assess the students’ understanding of 

basic algorithms and core concepts and their ability to move from specific to general thinking. 

Therefore, even if the questions essentially dealt with ideas taught in compulsory education, they 

challenged the student to reason and to use mathematical structures, and required that the student 

thoroughly understood the knowledge, skills and problem approaches he was using.  

Non-routine questions seem to be a powerful tool not only to test basic concepts, but also to check 

the existence of the relationships among them, and to verify whether the students grasp the essence 

of doing mathematics and the thought processes involved. It is in this way that we consider that 

non-routine questions were useful to assess the students’ initial mathematical knowledge. Our 

results also seem to suggest that when non-routine questions are simple, as in the Ruler question, 

students tend to solve them by using a procedure that would solve a similar standard question, 

without critically analysing what they are doing or how they are doing it. In the same way, when the 

question is non-routine due to its complexity, the evidences we obtained show gaps in their 



knowledge of concepts and relationships between concepts. However, these are hypotheses that 

would need further research to be tested. 
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This study aimed to examine prospective teachers’ anticipations of students’ thinking on the 

measure of the arc and measure of the central angle, circumference, and area of the circle and to 

explore the changes in their anticipations as they conduct three lesson study. For this purpose, case 

study method was used. Three prospective middle school mathematics teachers participated in the 

study and completed three lesson study. The data were analyzed in terms of three components: the 

prospective teachers’ anticipations of (1) how students’ would think; (2) what difficulties they 

would have; and (3) what powerful ideas they would have. The results showed that lesson study 

cycles with real classroom experience provided opportunities for the prospective teachers to 

develop anticipations of students’ thinking.  
 
Keywords: Lesson Study, prospective teacher knowledge, anticipating student thinking, middle 

school mathematics. 

 

Introduction 

Recently, teachers’ knowledge of mathematics has become an object of concern. Ball and 

colleagues have expanded teacher knowledge proposed by Shulman (1986) by defining “the 

mathematical knowledge for teaching” (Ball, Thames, & Phelps, 2008). Pedagogical content 

knowledge (PCK) is part of the mathematical knowledge for teaching, and it focuses not only on 

content knowledge and pedagogical knowledge, but also on integration and transformation of 

content and pedagogy (Ball et al., 2008). According to Ball and others (2008), the components of 

PCK are knowledge of content and teaching (KCT), knowledge of content and students (KCS), and 

knowledge of content and curriculum (KCC). This study focuses on knowledge of content and 

students (KCS). Hill and others (2008) defined “KCS as content knowledge intertwined with 

knowledge of how students think about, know, or learn this particular content” (p. 375). Ni 

Shuilleabhain (2015) added that KCS includes students’ understanding of content, student 

developmental sequences, typical student errors, anticipation of what students are likely to think or 

find confusing and common student computational strategies. Teachers should consider students’ 

needs and interests when they plan for lessons. They must anticipate students’ typical thoughts, 

ideas, and difficulties when selecting teaching materials and making decisions about the 

implementation of the lessons. Teachers must also attend to and interpret students’ emerging and 

incomplete ideas during the instruction. Each of these tasks requires knowledge and skills 

developed through the interaction between mathematical understanding and knowledge of student 

thinking (Ball et al., 2008). Prospective teachers who can recognize and appreciate students’ 

thinking and cognitive development could design and implement learning activities to meet 

students’ needs and interest (Ball et Al., 2008; Llinares, Fernandez, & Sanchez-Matamoros, 2016). 



However, their experiences and knowledge of students’ thinking are very limited (Peterson & 

Leatham, 2009). Hence, teacher education programs should be designed to help prospective teachers 

improve students’ mathematical knowledge and skills related to KCS by anticipating student 

thinking, among other abilities. 

Lesson study is one of the models that helps teacher candidates develop their knowledge related to 

student thinking. It is a professional development program in which teachers collaboratively work 

on teaching. In this program, teachers first determine learning goals of the lesson and plan the 

lesson. Subsequently, one of the teachers in the group teaches a lesson and other group members 

observe the teaching process. Finally, they evaluate and revise the lesson plan so that it can be 

implemented second time (Lewis, Perry, & Hurd, 2009; Murata, Boffering, Pothen, Taylor, & 

Wischnia, 2012). In planning a lesson, the teachers are usually guided to focus on expected learning 

activities, expected student reactions or answers, teacher’s responses to student reactions, and 

possible evaluation activities. This professional development model may provide prospective 

teachers with opportunities to plan, implement, criticize, and reflect on lessons collaboratively 

(Carrier, 2011). 

Although research studies emphasize the importance of teachers’ knowledge of student thinking, we 

know little about the development of prospective teachers’ knowledge and skills in anticipating 

student thinking (Webb, 2006). Lesson study practices are found helpful in developing teachers’ 

competence to anticipate students’ mathematical thinking (Lewis et al., 2009; Tepylo & Moss, 

2011). In this regard, the present study aimed to investigate prospective teachers’ knowledge of 

student thinking of the concept of circle as a two-dimensional figure (disk) and as a one dimensional 

curve and to explore any changes in their anticipations as they work on three lesson study cycle. 

Conceptual framework 

The theoretical basis of the lesson study model acknowledges that cognition is social and that 

learning takes place in enriched learning environments in a cooperative way (Fernandez, 2005). In 

this regard, lesson study is a professional development program that encompasses constructive 

learning and creates learning opportunities (Lieberman, 2009). As lesson study is based on planning 

before the practice, observations during the practice, and cooperation and reflection throughout the 

practice, it contributes to making ‘learning’ a cultural activity, which ultimately makes this model 

more significant (Dudley, 2013). According to Davies and Dunnill (2008), this model differs from 

other cooperative models in that the cooperation adopted in lesson study continues before, during, 

and after the practice. All these characteristics of lesson study model give teachers different 

perspectives and show them how an effective mathematics education should be offered (Erarslan, 

2008). Researchers emphasize that integrating lesson study model into teacher education programs 

can help prospective teachers develop knowledge and competence by learning from practice 

(Rasmussen 2016; Sims & Walsh 2009). Lesson study enables prospective teachers to work on 

lesson plans collaboratively and to conduct careful observations of learning and teaching activities. 

The model also allows prospective teachers to discuss and reflect on their own practice (Fernandez 

2010). It mainly helps prospective teachers gain curriculum knowledge and pedagogical content 

knowledge, including knowledge of common student mistakes. Observing lessons gives prospective 

teachers the opportunity to notice things about the classroom environment, and most importantly, to 

see the situation from the perspective of students (Lewis, 2002). Thus, they can become familiar 



with what students actually know, how they think, and what they can do as well as with areas in 

which they may have difficulty (National Research Council, 2001, Takahashi, 2005).  

Methodology 

This study focuses on investigating the prospective teachers’ anticipations of students’ thinking of 

the measure of the arc and angle and circumference and area of the circle. Furthermore, it explores 

how such anticipations change during the lesson study. For this purpose, case study design was 

adopted. This design provides an in-depth analysis of single or multiple cases by means of various 

data collection tools (Creswell, Hanson, Clark, & Morales, 2007). 

Participants and context 

The participants of this study were three prospective middle school mathematics teachers enrolled in 

a state university in Ankara. They were in their last year of the program and were willing and 

motivated to participate in the study. They were 22 years old, and their GPAs were between 3.29-

3.47 out of 4.00. The teacher education program generally focuses on content knowledge (i.e., 

mathematics) in the first and second years. On the other hand, during the third and fourth years, 

most of the courses are related to mathematics education. Prospective teachers who graduate from 

the program can work as mathematics teachers in middle schools (grades 5 to 8). 

Data collection 

Within the scope of the three-week study, the prospective teachers worked as a group and planned, 

implemented, and revised three lessons (each of which lasted about 80-120 mins) for each learning 

objective on the topic of circle that is a part of the 7
th 

grade math curriculum (MoNE, 2013). The 

prospective teachers used a lesson plan template to design the lessons. It consisted of four columns 

listing the (1) learning activities and key questions (and time allocation), (2) expected student 

reactions or responses, (3) teachers’ responses to student reactions, and (4) goals and method(s) of 

evaluation (see column 2 of Table I).  

Steps of the lesson: 

learning activities and 

key questions (and 

time allocation) 

Student activities/ 

expected student 

reactions or responses 

Teacher’s response to 

student reactions / 

Things to remember 

Goals and Method(s) 

of evaluation 

  

 

  

Table 1: Lesson plan template 

Afterwards, one of the group members implemented each lesson plan in real classrooms. The 

implementation process was video recorded. Regarding the last stage, the first author and mentor 

teacher evaluated and provided feedback to group members. Subsequently, the group revised the 

lesson plan (see Figure 1). Moreover, prospective teachers were expected to write a diary about this 

process. 



 

 

Figure 1: Lesson study cycles 

The same cycle was repeated for each lesson plan. Prospective teacher 1 (T1) focused on the 

following learning objective: “Identifying central angles, their intercepted arcs, and the relationship 

between the measure of  the  arc  and  measure  of  the  angle.”  T2  focused on “Calculating the 

circumference of a circle and a segment of a circle.” T3 focused on “Calculating the area of a circle 

and a segment of a circle” (MoNE, 2013). The initial and revised lesson plans designed by the 

prospective teachers, the video recordings of the lesson study meetings, the video recordings of the 

lessons conducted, debriefing meetings after each lesson, and the observation notes and diaries 

taken by the prospective teachers, researchers, and training teacher during the implementation of the 

lesson provided the data for this study.  

Data analysis 

The data were coded based on the themes from the relevant literature (Ball, et. al., 2008; Fernandez 

& Chokshi, 2002; Hill, et. al, 2008; Schoenfeld, 1994) as well as from the participants’ responses. 

For this purpose, researchers examined the prospective teachers’ articulations and behaviors during 

study lessons and searched for the incidents showing their anticipations of (a) student thinking, (b) 

difficulties that students would have, and (c) students’ powerful ideas. Anticipations of how 

students would think involve predicting how students think in general, what deductions they can 

make, and what types of connections they can make. Anticipations of students’ difficulties involve 

predicting the challenges, mistakes, and misconceptions of students regarding the concept of circle. 

Lastly, anticipations of the powerful ideas that students might have involve expecting the key ideas 

about the relevant concepts. The data were examined based on this analytical framework for each 

lesson study cycle, and the findings were compared across three lesson study to examine any 

changes observed throughout the study. 

Findings 

This section presents the prospective teachers’ anticipations of (1) how students would think, (2) the 

difficulties that students would have, and (3) the powerful ideas that students would have, as 

teachers design and implement three study lessons on the concepts of the measure of the arc, 

measure of the angle, and circumference and area of the circle. In Table 2, frequencies represent 

prospective teachers’ anticipations related to each component of student thinking observed for each 

study lesson. 

Table 2 shows that the prospective teachers pointed out that 26 different thoughts could be 

considered as typical for students (i.e., component 1) in the study lesson. For instance, they expected 



that students could explain central angles as the midpoint angle of the circle, or they anticipated that 

students would know how to draw a circle using different tools, such as a coin or a compass. 

 

 Types of plan How students’ would 

think typically 

What difficulties they 

would have 

What powerful ideas 

they would have  

First 

Cycle 

Lesson plan 10 2 3 

Revised lesson 

plan 

10 (0 new 

anticipation) 

3 (2+ 1 new 

anticipation) 

3 (3+ 0 new 

anticipation) 

Second 

Cycle 

Lesson plan 8 - 5 

Revised lesson 

plan 

9(8+ 1 new 

anticipation) 

1 (0+ 1 new 

anticipation) 

6 (5+ 1 new 

anticipation) 

Third 

Cycle 

Lesson plan 7 5 6 

Revised lesson 

plan 

7 (7+0 new 

anticipation) 

5 (5+ 0 new 

anticipation) 

8 (6 + 2 new 

anticipation) 

Table 2: Frequency of prospective teachers’ thoughts related to the components of anticipating 

student thinking 

Among these 26 different anticipations, only one new anticipation was included in the revised plan 

after its implementation in a real classroom. More specifically, in the second study lesson, they 

thought that the students would quickly give the correct answer when they were asked to spot the 

circumference of the circle. However, since the students pointed the region inside the circle as the 

circumference of the circle, the prospective teachers included such typical student thinking in the 

revised lesson plan and made some revisions, as illustrated in the following dialogue: 

T2: Some students conceived the circumference of the circle as inside of the circle. We had never 

considered this. 

T1: Yes, I didn’t know what to say when they gave this answer. 

T3: So, we need to include some questions in the lesson plan. For example, shall we say ‘What 

do you think of when we say ‘circumference of the school ground?’ Then we can tell them to 

walk around the school ground. 

T2: Let’s decide a starting point and tell them to start walking from there and walk around the 

school ground until they reach the same point. 

T1: Yes, then students would realize that circumference is not actually the same as inside [of the 

circle]. Then we can ask them to think about the circumference of a circle. 

 

According to Table 2, the prospective teachers reported 9 different student thoughts could be 

considered difficult (i.e., component 2) in the study lesson. For example, they thought that students 

might confuse the concepts of circle and sphere. They also anticipated that students might consider 

meter as a unit of arc. Among these 9 different anticipations, two were included in the revised plans 

after its implementation in real classroom. In the first cycle, during the implementation of the 

lesson, the prospective teachers realized that students would confuse the central angle with inscribed 

angle. Thus, in the revised lesson, they decided to remind the students about the difference between 

these two types of angles. The following dialogue shows how they considered this idea as they were 

revising the lesson plan: 



 

T1: Did you see that students confused central angle with inscribed angle? 

T2: Yes, it seems that they didn’t know the difference. We never thought about it. So, what shall 

we do? Let’s draw a figure and ask them if it’s a central angle. If they say ‘yes’, we’ll use a 

material that shows an angle as a combination of two rays (half lines). Here, we can make a 

straight angle and ask the students what type of an angle it is. 

T1: Then, students would say it’s a straight angle based on what they learnt it in the previous 

lesson. Let’s make it a 360-degree angle and draw a circle taking the origin of the angle as the 

center and ask what type of an angle it is. 

T2: The students would say “It’s a central angle because the origin is at the center of the circle.” 

T3: Yes, then we can show the example with an inscribed angle and ask if it is a central angle. I 

think students will say it’s not because the origin does not cross the center. 

T1: This way, they can differentiate between a central angle and an inscribed angle. 

 

As seen in Table 2, the prospective teachers pointed out 17 different student thoughts could be 

considered as powerful ideas (i.e., component 3) in the study lessons. For instance, they expected 

that students could explain differences between circle and disk, and they anticipated that students 

would know what pi is. Among these 17 different anticipations, three new anticipations were 

included in the revised plans after their implementations in real classroom. In the third cycle, the 

prospective teachers asked students to find the area of a circle by using the area of a parallelogram. 

However, following the lesson, they realized that the instructions in the activity sheet were not clear 

enough to guide the students. This experience led them to contemplate about their expectations 

concerning students’ powerful ideas (i.e., making connections between the area of a circle and of a 

parallelogram) based on which they made some changes to the instructions. The following dialogue 

illustrates how their expectations changed: 

T1: The activity sheet was not very clear, so students did not understand the relationship between 

the area of a disk and the area of a parallelogram. We wanted to make it easier using what they 

learnt in quadrilaterals, but it didn’t work. What shall we do? 

T3: I think we should say that circle doesn’t look like a quadrilateral. Then they can notice it. 

Later, we can ask what part of a disk and the height of a parallelogram look similar. They 

might say ‘the radius of disk’. But, what’s important here is whether they can tell, which part 

of a disk has a relationship with the base length of a parallelogram. 

T2: Yes, so let’s include this in the lesson plan. 

To sum up, the data analysis showed that the prospective teachers identified various anticipations 

related to the three aspects of student thinking. They thought about how students develop ideas 

related to the fundamental elements of a circle as well as the circumference and area of a circle. 

They also recognized the importance of designing the lesson in the light of powerful ideas. In 

addition, they successfully anticipated different student difficulties and mistakes. The study lesson 

also help the prospective teachers produce new anticipations of student thinking after implementing 

and reflecting on the lessons. The prospective teachers might not have thought about these issues if 

they had not had a chance to implement and revise study lessons. 



Conclusion and results 

The findings showed that prospective teachers’ anticipations of student thinking for each study 

lesson varied. The study lesson provided the prospective teachers an opportunity to consider student 

thinking as an essential part of the planning. They were expected to work collaboratively and think 

deeply about students’ thinking (typical student responses, misconception, powerful ideas, prior 

knowledge, and understandings, etc.) as they plan their lessons. The lesson plan template guided 

prospective teachers to document their ideas about student thinking, making them explicit and the 

object of discussion. In this way, study lessons created a context for discussion about student 

thinking.   

Furthermore, the lesson study allowed them to develop knowledge and skills related to student 

thinking through powerful experiences in real classrooms. Such opportunities allowed them to get to 

know students well and analyze the learning process from students’ perspective. Some previous 

studies reported similar results (e.g., Ni Shuilleabhain, 2015; Webb, 2006). In this regard, lesson 

study could be used as a model in undergraduate programs to help the prospective teachers develop 

knowledge and skills related to student learning. 

Even though prospective teachers’ anticipations of student thinking were observed for each study 

lesson, a clear development through the three cycle was not observed. In this study, each cycle 

focused on learning objectives involving different concepts and skills (e.g., identifying central 

angles and calculating circumference and area of a circle). Such differences might have influenced 

prospective teachers’ anticipations. Another reason for not being able to detect a clear development 

through three cycles might be related to the analytical framework used in the study. To reveal 

different aspects of development of teachers’ anticipations, a more structured and detailed analytical 

framework could be used.   
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Some preliminary words 

The Saturday Group [Grupo de Sábado] (GdS), which emerged in 1999, is a collaborative group 

that brings together teachers from schools and academics (prospective teachers, master and PhD 

students, teacher educators) interested in researching the teaching of mathematics in a collaborative 

environment. Although gatherings are held on the university landscape, there are no formal 

academic regulations controlling participation. Recently the participants have focused their interest 

in improving their practices by deepening their mathematical and pedagogical knowledge. In that 

context, in order to frame the work to be developed, a Lesson Study (LS) has been devised, 

involving teachers from primary, lower and upper secondary, prospective teachers and researchers. 

For the implementation of LS, a structure with three subgroups has been established (one for each 

school level – primary, lower secondary and upper secondary). Complementary to the subgroups 

meetings (discussion and reflection upon tasks conceptualization and implementation), there will be 

meetings involving all the GdS elements. In those large group meetings (following the work already 

being done) the work goes around discussing and reflecting upon the situations emerged from 

teachers’ practice the participants consider problematic. In particular, such discussions are aimed at 

contributing for developing teachers’ knowledge, professional competency of noticing (in Mason’s 

2002 sense) and professional awareness.  For the development of this project we consider what we 

call a hybrid methodology, where goals of two different natures are pursued. On the one hand, there 

is an interest in studying the development of a Lesson Study as teacher education strategy in the 

Brazilian context. On the other hand, the research goal concerns the teachers’ professional 

development process, considering such development addressed through the lens of the Mathematics 

Teachers’ Specialized Knowledge – MTSK (Carrillo et al., 2013) conceptualization, intertwined 

with what we term of interpretative knowledge (Jakobsen, Ribeiro, & Mellone, 2014). When 

discussing teachers’ knowledge, besides the analysis of teachers’ classroom practices and 

interviews, also a focus on the dynamics emerged in the subgroups and on the GdS will be analysed, 

as well as teachers’ narratives grounded on their own experience (Connelly & Clandinin, 1988).  

Lesson Study as a teacher education strategy 

Considering the GdS context and the goals of the project in which this hybrid Lesson Study will be 

developed, six steps are considered. We have to recall that these steps have been emerged from the 

work with participants – by the nature of the GdS (a collaborative working group). The environment 

in which these steps are going to be developed are perceived as the context in which data for the 

research dimension will be gathered.  

1) Teachers identify a critical aspect from their own mathematical practice which they aim to 

discuss, reflect upon and improve. Such critical feature will be firstly discussed in each of the 



subgroups, taking into consideration the specificities of the contexts, and afterwards socialized and 

discussed in the large group (GdS) with all the participants; 

2) After the identification of the critical features, all the subgroup elements will discuss their 

own previous experiences, also grounded on some readings on documents (e.g., papers, books) 

where such problematic (or similar) is discussed. Such discussion aims at allowing deepening the 

participants MTSK, understanding and awareness on the problem at hand; 

3) Grounded on the discussions and reflections focusing on the problematic, teachers will 

conceptualize a task or sequence of tasks aimed at contributing for minimize the identified 

problem. Such tasks will be firstly prepared and discussed in each of the subgroups; 

4) The following considered stage concerns the implementation of each task prepared on the 

subgroups in the GdS, in order to deepen the levels of discussion both on the nature of the tasks, 

its mathematical goals and ways of implementation. We have to recall that in such discussion are 

involved teachers from different school levels which is perceived as an opportunity to intertwine 

different aspects of the MTSK and teachers’ awareness; 

5) The next stage concerns the participants analysis of the implementation (all the participants 

will analyse the task, the implementation process and the teachers knowledge involved and 

required). Such analysis will occur firstly on the subgroups and afterwards some episodes will be 

discussed in the GdS; 

6) The last stage (of each cycle), concerns the writing and discussion of narratives focusing on 

the lived experiences.  

The development of LS as a research project 

Understanding LS as a proficient way to engage mathematics teachers in a professional 

development landscape, we focus on discussing the MTSK mobilized, involved and recognized by 

teachers when preparing, implementing and discussing mathematical tasks. In an intertwined 

manner the dimensions of the interpretative knowledge will be focus of attention at all the 

previously considered moments. Data collection will be taken from the video recordings of the 

subgroups meetings and the GdS meetings; classroom practices; interviews to teachers; interviews 

to students after the implementation of the tasks and teachers narratives. With the analysis we intend 

to contribute for a broader understanding of teachers’ professional development and on the MTSK 

and interpretative knowledge developmental processes.  
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For many years, there has been an interest in the role of the teacher in mathematics education 

research. During this time, efforts have been made to conceptualize the professional knowledge 

required to be a mathematics teacher. However, yet no consensus has been reached on how to 

describe the knowledge and ability, which is special to mathematics teachers. One framework, 

“Mathematical Knowledge for Teaching” (MKT) (Ball, Thames & Phelps, 2008), developed in 

Michigan includes subject matter knowledge, pedagogical content knowledge and tasks of teaching, 

and is widely used, in praxis and theory. The Danish competency-based framework “Competencies 

and Mathematical Learning” (KOM) (Niss & Jensen, 2011), which is described in terms of 

possessing eight fields of mathematical competency and six competencies related to the teaching of 

mathematics, is less used. The frameworks have not yet been used together. This is what we propose 

to do using the framework for networking of theories as formulated by Bikner-Ahsbahs and 

Prediger (2010), which describes strategies for connecting theoretical frameworks. 

Figure 1: The MKT and KOM frameworks 

Method 

Based on a case study of the development of mathematics teacher knowledge among students in the 

Danish preservice mathematics teacher education program (Sloth & Højsted, 2016), which aims to 

qualify prospective teachers for work in primary and lower secondary schools, we investigate how 

and to what extent MKT and KOM can capture what the preservice teachers learn. Finally, referring 

to the model for networking of theories proposed by Bikner-Ahsbahs & Prediger (2010) we 

compare the two frameworks. 



Results 

We find that MKT and KOM can be used to describe most of our findings regarding the 

development of mathematical teacher knowledge in our case study, but the manner they describe 

them is different and do not always overlap. For example, when preservice teachers learn about 

different subtraction algorithms, which pupils might employ, we find the MKT framework can give 

a nuanced description of the unique mathematical knowledge and skills involved in teaching 

through its description of “Specialized content knowledge”. The KOM framework does not address 

the issues of teaching at this level of detail, but one could say that the teaching of subtraction 

algorithms requires different mathematical competencies, like representation competency and 

symbol and formalism competency as well as teaching competency. Another example is when 

preservice teachers learn how to perform mathematical modelling and how to analyze the 

mathematical models of others. We find that KOM can capture this with modelling competency, 

whereas MKT lacks a way to describe mathematical processes like modelling, problem solving and 

reasoning skills. Meanwhile the details of the didactical aspects of the development of modelling 

competency are not elaborated in KOM. For example, typical difficulties pupils encounter when 

working with modelling are not described. This could call for the development of what corresponds 

to knowledge of content and students and specialized content knowledge, but with regards to 

competencies. 

Conclusion 

We conclude that MKT and KOM give different perspectives on mathematics teacher knowledge, 

that there are overlaps and differences when applied to practical situations, but also that the 

frameworks themselves may benefit from the perspective of each other. Using both frameworks on 

our case, we find that they can complement each other and describe a greater range of mathematics 

teacher knowledge. Furthermore, we suggest that using or combining concepts from both 

frameworks can result in a new understanding of the knowledge and ability needed by mathematics 

teachers. 
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Introduction and purpose of the study 

Teaching is a complex phenomenon that encompasses ever-changing situations, where teachers are 

challenged to positively deal with unanticipated circumstances such as teachable moments. This 

poster draws from an ongoing doctoral research study, a hermeneutic phenomenological study, 

which seeks to identify and explore teachable moments corresponding to intermediate mathematics 

teachers’ lived experiences. The research is guided by the following questions: What does it mean 

to teach intermediate mathematics? What does it mean to recognize and utilize teachable moments 

at an intermediate mathematics level? At this stage in the research, the term teachable moment is 

generally defined as an opportunity that arises when connections have been made to advance 

learning by a learner and/or an educator. More specifically, the term moment is distinctly defined as 

an expected or unexpected occurrence that allows learners and/or educators to deepen their 

understanding. The poster focuses on the background and context of the study, by highlighting the 

rationale, framework and methodology of the study. 

Background and context 

Teachers often question the underlying purpose of teaching and its subjective meaning across three 

general categories: teaching subject content; teaching based on certain pedagogical tools; or 

teaching the child. Researchers in mathematics education have asked: What does it means to teach 

mathematics? How can one become an effective mathematics teacher? On one hand, researchers 

tend to focus on teachers’ content knowledge and/or pedagogical knowledge, or an integration of 

the two. However, having in-depth context knowledge in mathematics does not necessarily equate 

to teaching it effectively (Muri, 2008). Also other researchers question how the two categories of 

knowledge—mathematics (subject matter) and teaching (pedagogy)—can be integrated. On the 

other hand, mathematics researchers such as Doxiadis (2003) suggest that teaching mathematics 

effectively means humanizing mathematics for learners, and that “education is—should be, at its 

best—a process involving the complete human being” (p. 2). In this sense, humanizing mathematics 

means teaching it in a way that involves students as participants in mathematics, which is beyond 

mere content delivery or teaching certain skill sets. This poster draws from a study that aligns with 

this second view.  

Theoretical framework 

The epistemology of phenomenology centers on didactic meaning as opposed to arguing or 

developing abstract theory. In their discussion of the theoretical and conceptual framework for a 

phenomenological study, Savin-Baden and Howell Major (2012) stated that “the essence experience 



is so central and is to be uncovered before it is categorized, researchers do not tend to use a 

theoretical or conceptual framework… [because] doing so could impose presuppositions on the 

meaning of the experiences” (p.  221). The objective of this study is not to make broad 

generalizations about experiences of all mathematics teachers, but instead to examine individual 

teachers’ personal experiences associated with a very specific phenomenon of teachable moments. 

Methodology 

In order to understand what teachable moments means to mathematics teachers, and how teachers 

use them in their day-to-day, moment-to-moment teaching, it is necessary to first gain insight into 

teachers’ lived experiences by exploring their reasoning, beliefs, and intentions for teachable 

moments. As a consequence, to this underpinning, the study employs e a hermeneutic 

phenomenological research design founded on an epistemology of interpretivism. The study uses 

qualitative methods to collect data. These include semi-structured interviews, field notes and 

researcher journal. Participants comprise a purposeful sample of intermediate teachers with 

experience of teaching mathematics in Ontario, who have had lived experiences related to the 

phenomenon of teachable moments.  

Conclusion 

The “teachable moment” is viewed as a somewhat intangible pedagogical prize; a teacher might 

know what it feels like, yet may not identify its characteristics. Educators such as math teachers 

seek moments of openness and creativity with their students so they can personally experience “the 

psychic rewards” of teaching (Lortie, 1975). Too often, such moments happen suddenly and slip 

away just as quickly, leading some teachers to conclude that such occurrences are a matter of 

chance. This study therefore seeks to shed some light on the characteristics of teachable moments in 

mathematics education to deepen teachers’ understanding and use of such teachable moments in 

their respective practices. 
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Introduction 

Given the prominence that the general education research ascribes to the impact of assessment on 

teaching and learning it is surprising that there had been so far no TWG dedicated to assessment of 

mathematics at CERME. TWG21, which met for the first time at CERME10 in Dublin, aimed to fill 

this gap. Given that this was a new group we decided to focus on assessment of mathematics 

considered broadly in order to gauge where the interest of the mathematics education community lies 

in this field, which encompasses very many different aspects. Although traditionally assessment has 

been discussed across many TWGs at CERME, TWG21 aimed to bring researchers together who 

have an interest in this topic and can, for the lack of a common forum, at times feel isolated. To reflect 

the landscape in the general literature we called for papers investigating the nature of assessment and 

its effects on student learning making use of a wide range of methodologies, from large quantitative 

and mixed methods study to small investigative qualitative studies. We were delighted to have 24 

papers and one poster discussed at the conference. In what follows, we have grouped the papers in 

thematic clusters to reflect the variety of submissions regarding both focus and methodology. We 

conclude with some reflections on the working of the group and some suggestions for the directions 

this group can take in future CERME conferences. 

Thematic clusters  

We identified six overarching themes that could serve as an organizing tool for the papers submitted 

to TWG21. Below, we describe each of these themes in turn. 

Different approaches to assessment: Papers in this theme considered the affordances, drawbacks 

and validity of innovative assessment, both for students and for teachers. Davies proposes 

comparative judgment at university level as a new way of assessing students. In his paper, he 

investigates issues connected to the validity of this method for assessing conceptual understanding in 

mathematics. Lemmo and Mariotti investigate the issues connected with transitions of tasks from a 

paper and pencil form to an electronic form. They challenge the view that students employ similar 

solving strategies in both environments and find that indeed students solve the task differently in the 

two modalities. Teledhal investigates the validity of narrative accounts as an assessment tool for 

problem solving and concludes that those accounts do not offer enough details of the problem-solving 

process to be a valid tool for assessment. Dahl describes the perceptions of a group of science students 

(engineers, mathematicians, and other sciences) for group oral assessment. She finds that students 



across disciplines agreed that a group exam gives less differentiation of grades compared to an 

individual exam. Finally, Reit discusses whether the validity of teachers’ intuitive assessment 

practices is supported by empirical findings and shows that a sequential consideration of thought 

structures in a solution approach leads to reasonable results and may justify its application in school 

due to its straightforward implementation, especially when assessing modelling tasks. 

In service and pre-service teachers’ views: A second important theme that emerged from the 

submissions to TWG21 was related to teachers’ views, beliefs, and use of assessment methods, both 

during their training and in their professional practice. Hofmann and Roth report on a study aimed at 

fostering preservice teachers’ diagnostic skills with a focus on students’ abilities, problems and 

misconceptions with graphs of functions. They explore the affordances of two tools for promoting 

diagnostic skills: video analysis and task analysis. Pratt and Alderton analyse English mathematics 

teachers’ assessment approaches in the context of the current changes in assessment policy in the UK. 

To this end they use a Foucauldian analysis of teachers’ discourse to sketch the power structures 

involved. They find that the official removal of the levels only superficially affected teachers’ 

practices and teachers still relate these to the ‘old’ language of attainment levels. Kaplan and Haser 

investigate 27 preservice middle school mathematics teachers’ purposes in planning the assessment 

and their views and suggestions about the assessment part of a lesson plan. Findings of the study 

indicate that purposes underlined by preservice teachers in preparing the assessment part of the lesson 

are similar across the sample and they all related to the teacher actions. 

Professional development: Papers in this cluster addressed the role of professional development in 

fostering teachers’ (both in service and pre-service) competences in assessing student understanding. 

Grapin and Sayac investigate the use of external (e.g. researcher-created) assessment tasks by primary 

school mathematics teachers and teachers’ practice by using and an activity theory perspective. They 

find that teachers design tests with low levels of complexity and did not invest much in assessment 

as a professional activity. Pilet and Horoks present analytical tools to characterize assessment 

activities as part of teachers’ practice in algebra. The authors exemplify why high school teachers 

came to consider assessment as a potential lever to enhance both the students’ learning in mathematics 

and the teachers’ development. Initial results indicate that the teachers developed better indicators to 

select the students’ productions that they will use for the discussion after a task, but that they use they 

make of these products hasn’t improved. In her theoretical paper, Andersson argues that the addition 

of the dimension Teacher Instruction (ATI) as a key strategy to the five key strategies proposed in 

Wiliam and Thompson’s (2007) framework of formative assessment could facilitate the analysis of 

teachers’ use of formative assessment activities and improve the guidance and support of teachers’ 

implementation of high quality formative assessment practice. Finally, in this group Santos and 

Domingos investigate portfolio assessment in geometry for pre-service teachers through the lenses of 

activity theory and procepts. They find students engage in qualitative different pathways when 

solving these problems. 

Formative assessment/feedback: We received many papers discussing formative feedback and the 

submissions in this group spanned from primary to upper secondary school with focuses both on 

teachers’ use of formative assessment and students’ engagement with such assessment. Chanudet 

investigates the assessment of problem solving by using a grid of criteria. The paper focuses on the 

use that teachers make of such tool to facilitate formative assessment and offers the example of the 



practice of one teacher where she analyses instances of formative feedback occurring in this 

classroom. Zhao, Van den Heuvel-Panhuizen, and Veldhuis investigated the effects on student 

achievement of supporting Chinese primary mathematics teachers’ use of classroom assessment 

techniques. In this experimental study, the intervention consisted of teachers participating in 

workshops on the use of these techniques and using them in their classrooms. Results indicate that 

the students of teachers that gained more insight about their students from using the techniques, 

improved their mathematics achievement scores more than other students. Gurhy focuses on Irish 

students’ perspectives on the use of assessment for learning in primary school. Findings indicated 

that students were positive about the feedback in, and practices of, assessment for learning, became 

more confident and expressed a feeling of enjoyment related to this. Two related papers reported 

findings from FaSMEd, a European project on the use of technology for formative assessment. In the 

first paper, Cusi, Morselli and Sabena analyse a teacher’s strategies to provide feedback during class 

discussion. They identify five strategies: revoicing, rephrasing, rephrasing with scaffolding, 

relaunching, and contrasting. In the second paper, the authors describe how materials were designed 

to facilitate technology-enhanced formative assessment practices. They then show how the design 

framework can be used to analyse the implementation of technology-enhanced materials. They argue 

that materials designed in this way, combined with the functionality of technology, enhance a 

teacher’s capacity to activate Wiliam & Thompson (2007) formative assessment strategies. 

Task design: Three papers were dedicated to this theme. O’Brien and Ní Ríordáin describe the 

development, design, and theoretical underpinning of a diagnostic test for algebra. The test is aimed 

at lower secondary students in Ireland and is intended to help teachers identify the causes of students’ 

errors. The authors discuss their reasons for adopting this approach. Beck investigates students’ 

written solutions from CAS-allowed exams. Based on the analysis of students’ solutions a descriptive 

model for assessing these solutions is set up. The paper also discusses how formative assessment 

could help students develop their competencies in communicating mathematics. Moomaw 

investigates the validation of a constructivist game- and story-based measure (Teddy Bear Picnic) for 

pre-school mathematics. In this measure, pre-school pupils are assessed while playing several 

interactive games. Psychometric tests show that the test appears to be a valid and reliable measure of 

pupils’ level of mathematical development. 

Large-scale/standardized tests: Finally, we received several papers addressing issues related to the 

use and design of large nationwide standardized tests. Garuti, Lasorsa, and Pozio describe the 

development of items for national assessment in Italy. They show how both quantitative and 

qualitative analysis can be used to improve the psychometric properties of items, whilst also 

improving their validity in terms of appropriate and relevant mathematical content. Ferretti and 

Gambini investigate the persistence of certain misconceptions in the transition between school and 

university. They focus on properties of powers and analyse two Italian nationwide databases to find 

that indeed certain misconceptions persist across this transition. Drüke-Noe and Kühn analyse 

characteristics of statewide exams in eight countries through task analysis and find that that the 

cognitive demands of most competences needed to solve these tasks are rather low with the only the 

competence ‘working technically’ being often assessed. Cunningham, Shiel, and Close investigate 

the relation between the current Junior Certificate mathematics examination in Ireland for Grade 9 to 

the PISA and TIMSS frameworks. Their findings show that the Junior Certificate examination is 

moving closer in the direction of the PISA approach, but this is also motivated by the comprehensive 



reform in mathematics in this country. Finally, Olande investigates how Grade 9 students solve an 

item involving the interpretation of graphs. Using student responses to an item from the national test 

in Sweden, his analysis shows that only a very small proportion of students use graphical reasoning 

in their solutions.  

Conclusions 

In the process of preparing for this new group at CERME10 we were impressed not only by the 

variety of work we received but also by the methodological variety of the papers that spread from 

small qualitative case studies to large statistical surveys. The theoretical frameworks employed were 

also varied, from Activity Theory to Foucauldian analysis. We believe this variety to be sign of a 

growing interest in mathematics education for assessment; not only in the sense of validation of large 

scale tests, but also in terms of the effect that assessment has on teachers’ actions in the classroom 

and as such on student learning. This variety, however, can also be sign of a field which has yet to 

find its unifying themes: the presence of a forum for discussion like TWG21 can therefore help define 

these emerging unifying themes. Validity of assessment for example – although ubiquitous in many 

papers – was hardly explicitly addressed. Indeed, in the final session of our group which was 

dedicated to reflecting on the group experience with an eye to future meetings, we observed some 

issues which at times have hindered communication. One of those was the lack of uniformity in 

definitions of recurring terms or sometimes the lack of clear definitions at all. It was felt that 

agreement on definitions of basic terms is important for communication and collaboration, and the 

lack of this clarity of definitions can be again a manifestation of a developing and growing field. We 

also noticed the absence of papers discussing the impact of assessment methods on student learning, 

a theme which is very much present in the assessment literature. The final reflection of the group 

concerned the presence of mathematics in the research presented. The group felt that in a topic such 

as assessment it may be easy to lose the focus on the mathematics assessed and instead discuss generic 

assessment research. While assessment research in general education is obviously very important to 

the work of this group, all participants felt that the focus should be on the mathematics assessed, and 

that indeed it may be a difficult balancing act not to replicate research and constructs that are already 

used in the general assessment literature and keep the focus on the fact that we aim to use these 

findings and constructs to investigate the assessment of mathematics. Although this balancing act 

might make for a difficult enterprise, we are confident that in the coming CERMEs we will be able 

to continue discussing general assessment issues such as validity, but always with a clear focus on 

the mathematics to be assessed and its didactics. 
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This theoretical paper is based on an empirical study where the framework of formative assessment 

by Wiliam and Thompson was used to analyze teachers’ use of formative assessment in their 

mathematics classroom practice. The paper argues for treating a component named Adjusted 

Teacher Instruction (ATI) as a key strategy in complement to the five key strategies in the original 

framework. ATI is a significant component in formative assessment, but also particularly challenging 

for teachers to implement in their classroom practice. Treating ATI as a key strategy could facilitate 

the analysis of teachers’ use of formative assessment activities and enhance the understandings about 

what kind of ATIs are most useful for whom under what conditions. Extended understandings about 

effective formative assessment activities are important in decisions about what formative assessment 

to include in teacher education and in-service training for teachers. 
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Introduction 

The encouraging potential noticed in formative assessment has motivated scholars to further engage 

in both empirical studies and theoretical work in the research area of formative assessment. The 

theoretical understandings of formative assessment have evolved during a long time, often affected 

by empirical studies in which researchers has been responsive to teacher practice. This paper focuses 

on a component of formative assessment that is regarded particularly significant, but also difficult in 

carrying out formative assessment. In this paper this component is called Adjusted Teacher 

Instruction (ATI) and it is argued for treating ATI as a key strategy in parallel to teacher feedback. 

Black and Wiliam (1998) in their research review demonstrated that large student achievement gains 

are possible when formative assessment is employed in classroom practice. This review received 

widespread attention and caused a discussion about the need for and role of an extended assessment 

culture and practice. Since then, implementation of formative assessment has been on school policy 

agendas in many countries (Tierney, 2006), but this implementation has often proven to be 

challenging (Birenbaum et al., 2015). Several attempts have been unsuccessful in accomplishing a 

substantially developed formative assessment practice (James & McCormick, 2009; Schneider & 

Randel, 2010) and misunderstandings and distortions of essential features of formative assessment 

are detected in policy and practice (Swaffield, 2011). Some factors facilitating and hindering the 

implementation regarding the teacher, student, assessment and context are identified (Heitink, Van 

der Kleij, Veldkamp, Schildkamp & Kippers, 2016), but still a strong research base supporting how 

to effectively help regular teachers to implement a high quality formative assessment practice is 

lacking (Schneider & Randel, 2010; Wiliam, 2010). Such a research base needs to include both how 

to design effective professional development programs for teachers and what kind of formative 

assessment to include in such programs.  

This paper is related to the latter issue. The discussion in the paper is theoretical, but originates from 

an intervention study in which a group of mathematics teachers learned about formative assessment 



(see Andersson, 2015). In this study, formative assessment was conceptualized as one big idea and 

five key strategies (see Wiliam & Thompson, 2008) in a framework that was used in the professional 

development program and for structuring the data collection and data analysis.  

Background 

Black and Wiliam defined formative assessment as “encompassing all those activities undertaken by 

teachers, and/or by their students, which provide information to be used as feedback to modify the 

teaching and learning activities in which they are engaged” (Black & Wiliam, 1998, pp. 7–8); a 

definition that provide several possible focus in carrying out formative assessment. Consequently, 

Black and Wiliam’s review included studies investigating different strategies for carrying out 

formative assessment, using the term formative assessment in different meanings or using alternative 

terms such as feedback, self-regulated learning or peer-assisted learning. As Bennett (2011) points 

out, without a consensus about the term formative assessment, the effects will be unclear. A common 

and clear terminology and definition of formative assessment is also desired to eliminate 

misunderstandings and distortions in policy and practice.  

To maximize instructional benefits, we need to know more about what constitutes effective formative 

assessment (Wiliam & Thomphson, 2008; Wiliam, 2007). To gain valuable insights about best 

practices it is important to be clear about the way formative assessment is conceptualized in for 

example studies of implementations of formative assessment that are empirically linked to student 

achievement. The formative assessment practice needs to be carefully analyzed and described to 

provide information about specifics of such practices as well as how these specific characteristics 

may have functioned as part of an enhanced learning process.  

Black and Wiliam’s review included studies showing the potential instructional benefits of different 

strategies for carrying out formative assessment. It can be expected that a classroom practice that 

integrate such key strategies to a unity would open up extended opportunities for learning and thus 

offer higher potential for improving student achievement. The empirical study motivating this paper 

is one of few studies investigating the impact of such an integrated practice on students’ achievement. 

Following sections of the text outline Wiliam and colleagues’ conceptualization of such a practice, 

followed by a description of the operationalization of that framework.  

One big idea and five key strategies 

A more recent definition of formative assessment by Black and Wiliam is more detailed: 

Practice in a classroom is formative to the extent that evidence about student achievement is 

elicited, interpreted, and used by teachers, learners, or their peers, to make decisions about next 

steps in instruction that are likely to be better, or be better founded, than the decisions they would 

have taken in the absence of evidence that was elicited. (Black & Wiliam, 2009, p. 9) 

This definition clearly demands every formative strategy to fulfill the big idea of using evidence of 

student learning to adjust instruction to better meet students’ learning needs. The conceptualization 

of formative assessment as one big idea and five key strategies (Wiliam & Thompson, 2008; Black 

& Wiliam, 2009) is visualized in Figure 1. The matrix visualizes how three processes (horizontally) 

and three agents in the classroom (vertically) construct five key strategies (KS) in formative 

assessment. The three processes constitute the defining characteristics of formative assessment 



inherent in the definition above and are central for the big idea of using evidence of student learning 

in decisions about how to proceed in the instruction. The three agents who are responsible for the 

learning in the classroom are defined as the teacher, the learner and the peers. 

 Where the learner is going Where the learner is right 

now 

How to get there 

Teacher KS 1 Clarifying learning 

intentions and criteria 

for success 

KS 2 Engineering 

effective classroom 

discussions and other 

learning tasks that 

elicit evidence of 

student understanding 

KS 3 Providing feedback 

that moves learners 

forward 

Peer Understanding and 

sharing learning 

intentions and criteria 

for success 

KS 4 Activating students as instructional resources for 

one another 

Learner Understanding learning 

intentions and criteria 

for success 

KS 5 Activating students as the owners of their own 

learning 

Figure 1: The relationship between key strategies (KS), instructional processes and agents in the 

classroom (After a figure in Black & Wiliam, 2009, p. 8) 

The different key strategies in formative assessment are connected and sometimes dependent on each 

other’s existence and performance. For example, clear learning intentions guide the teacher to chose 

questions/tasks that elicit relevant information about students’ learning and help the teacher to provide 

goal directed feedback. In addition, learning intentions clear to the students enhance their 

opportunities to be engaged and involved in the learning process (their own or their peers’).  

Using the big idea and five key strategies to analyze classroom practice 

The author of this paper participated in a research group responsible for a study about professional 

development in formative assessment for a group of randomly selected mathematics teachers. The 

framework above was used in the professional development program, in the data collection and in 

analysis of formative assessment used in the teachers’ mathematics classroom practices. 

Two rounds of data collection and analysis were made, before and one year after the professional 

development program. Both times, observations were completed in each teacher’s mathematics 

classroom practice and all teachers were interviewed. The big idea and the five key strategies 

structured observation schemes and interview guides, with a focus on what formative assessment 

activities the teachers used in their mathematics classroom practice.  

Each formative assessment activity was supposed to be classified in relation to one of the five key 

strategies or the big idea. From a teacher perspective the big idea pertains to Key strategies 1–3. 

Accordingly, activities aimed at clarifying where the learner is going could be classified as belonging 

to KS 1 and activities aimed at eliciting where the learner is right know as belonging to KS 2. Teacher 



feedback aiming at moving student learning forward was classified as belonging to KS 3. This process 

led to one remaining group of teacher activities concerning teachers’ use of information about 

learning needs (the big idea) that did not fit to any of the other key strategies. Therefore, to clarify 

our data and for consistency reasons, we decided to include the new category Adjusted Teacher 

Instruction (ATI) as a new ‘strategy’ in parallel to feedback. Both strategies (ATI and feedback) aim 

at taking learning forward. Consequently, no activities were classified as belonging to the big idea. 

The formative activities classified as ATI were the activities aiming at taking learning forward that 

did not concern teachers’ oral or written feedback. 

Before the professional development program (PDP) the most common ATI activity was to use results 

from a diagnosis in the textbook to choose a group of tasks (regular or advanced) for each student’s 

individual work with the chapter in the textbook. Other ATI activities used by a smaller group of 

teachers were, for example: individualized tasks for a student; adapted materials for example work 

sheets, homework or tactile materials; extra or modified lecture for the class, a group of students or 

for individual students; and adaption of time set aside for a chapter in the textbook. After the PDP 

individual teachers extended their repertoire of ATI activities (from the same type of activities as 

identified before the PDP), for example lectures for group of students became more common. The 

teachers’ use of ATI activities was also affected by new activities connected to Key strategy 2. Many 

teachers had started to make use of students’ misunderstandings, which were often identified by using 

mini-whiteboards as an all-response system. In general, the teachers received information about 

student learning more often and in various ways and could consequently make adjustments of 

instruction more often and with more precision.  

In our analysis of formative assessment activities in teacher’s mathematics classroom we decided that 

teacher activities connected to the use of evidence of learning needs could either be classified as a 

feedback activity or as an Adjusted Teacher Instruction activity. Thus, feedback and Adjusted 

Teacher Instruction would have a shared position within the third teaching and learning process (How 

to get there) for the teacher’s actions (see Figure 1). This proposed shared position will be discussed 

below. 

Discussion 

In this paper, Adjusted Teacher Instruction (ATI) is suggested as a component of particular 

significance in formative assessment to be treated as a key strategy, a proposal that could improve 

the use of the formative assessment framework by Wiliam and Thompson (2008) in research, policy 

and practice. The advantage is twofold: (1) the ATI component will get a more prominent place and 

(2) the framework will be more coherent. These advantages, but also some concerns, will be discussed 

below. 

One advantage of treating ATI as a key strategy would be that teacher activities within this strategy 

could be defined and further studied in the same way as for activities belonging to other strategies. 

The few studies using frameworks unifying several formative assessment strategies in analysis of 

teacher classroom practices do not always provide specifics about teachers’ adjustment of instruction 

(e.g. Wylie & Lyon, 2015; Randel et al., 2011). Such specifics are desirable because the instructional 

decisions and actions taken to better meet student needs are crucial for students’ continued learning 

opportunities (Wiliam, 2007) and because using evidence of learning to inform next instructional 



steps has been experienced as a challenging aspect of formative assessment (Cowie & Bell, 1999; 

Heritage, Kim, Vendlinski, & Herman, 2009; Oláh, Lawrence, & Riggan, 2010).  

Research addressing this crucial and difficult component in formative assessment is desirable to 

enhance the understandings about what ATIs are effective under different circumstances, but this area 

of research needs improvement in terms of becoming more prominent, the definition of the area and 

the number of empirical studies conducted (Bellert, 2015). Research about feedback has resulted in 

guiding models for what type feedback is more or less effective, for different students and under 

different conditions (e.g. Hattie & Timperley, 2007; Shute, 2008). Similar knowledge about ATI is 

important because a main aspect of formative assessment is that planning of instruction is decision 

driven. To secure that the information from the assessment will be useful, a feasible way is to plan 

instruction backwards with a clear decision in mind and searching for relevant evidence to make 

decisions in a smarter way (Wiliam, 2007). Skilled teachers can design teachable moments into their 

lesson because they have already thought of alternative instructional decisions before the information 

was collected (ibid., p. 1089).  

If we know more about what instructional adjustments are likely to be most effective in different 

situations this would be helpful guidance for policy and practice, for example in teacher education 

and in-service training for teachers. The knowledge base can be extended from conducting studies 

that empirically link different types of ATI to student achievement and by careful analysis, 

descriptions and conclusions about ATI characteristics and their function as part of an enhanced 

learning process. One example of a study contributing to this knowledgebase is a study by Ruiz-

Primo, Kroog and Sands (2015). This study of science and mathematics teachers was restricted to 

informal formative assessment, in which the interaction between teacher and students is central. 

Studied within this interaction, the characteristics of the teacher’s response were classified according 

to type of oral feedback or type of instructional move. Additionally, the type of teachers’ actions 

observed in more and less expert teachers was studied. The results were separated for individual 

student work and whole class work. Using a two step cluster analysis, there were five variables 

included for teachers’ instructional moves: (1) re-teaching (e.g., going over content again in the same 

or similar way as before); (2) solving problems with students (e.g., asking students for their input 

along the way while solving a problem); (3) solving problems without students (e.g., solving or 

modeling the solution to a problem without student input); (4) re-clarifying the task (e.g., reminding 

students of what they need to do); and (5) providing the correct answer (e.g., giving the answer 

without explanation) (Ruiz-Primo et al., 2015, p.17). This study does not only tell us that instructional 

adjustment where implemented, but also specifies these adjustments and compare the use of them in 

two kinds of work conditions and by two groups of teachers. 

Another advantage of treating ATI as a key strategy in parallel with feedback is that the framework 

would be more coherent. In fact, also Wiliam includes instructional adjustment as a second aspect of 

feedback in the meaning that feedback is provided to the teacher so he or she can modify the 

instruction to be more effective (Wiliam, 2010, p. 33). However, the feedback to the teacher is 

comparable to elicited evidence of student learning in Key strategy 2, and this might generate 

confusion. The suggested shared position for feedback and Adjusted Teacher Instruction might clarify 

the framework to avoid misunderstandings and distortions in policy and practice and thus provide a 

better guidance. Such guidance might have affected the design of the professional development 



program in the study behind this paper (see Andersson, 2015). In the program ATI was not treated as 

a key strategy and did not get the same focus and time set aside as the other key strategies did. This 

might have affected the limited extension of types of ATIs at group level in the results. 

A concern about treating ATI as a key strategy regards the need and meaning of the big idea. 

Elaborating the big idea from a teacher perspective, Key strategy 1 is not indispensable for teachers’ 

eliciting and using information of students’ learning needs, only critical for ending up with evidence 

useful for formative assessment. Wiliam distinguishes between diagnostic assessment and assessment 

that is instructionally tractable, where the latter form not only indicates what needs attention but also 

what needs to be done to address the issue (Wiliam, 2007, p. 1063). Wiliam points to the need of the 

teacher to have a range of instructional alternatives beyond just repetition:  

For formative assessment to be instructionally tractable, the teacher must be clear about the range 

of alternative instructional moves that are possible, should then decide what kinds of evidence 

would be useful in choosing among the relevant alternatives, and only then elicit the evidence 

needed to make that decision. (Wiliam, 2010, p. 33)  

While Key strategy 1 is ultimate, Key strategy 2 is a prerequisite for the implementation of the big 

idea. Key strategy 3 concerns the very foundation of the big idea about formative assessment. The 

big idea is important in the evaluation of the function of the implementation because it reflects the 

whole assessment cycle, which Wiliam suggests should be performed backwards (see above). 

Another concern regards the distinction between feedback and Adjusted Teacher Instruction. The 

distinction we made (see Andersson, 2015) do not match the distinction made by Ruiz-Primo et al. 

(2015), probably caused by the different conceptualization of formative assessment. Even when using 

the same conceptualization of formative assessment, some activities will be a definite feedback or 

ATI activity, but other activities will have a more uncertain belonging. In our case, when teachers 

used the “thumb of role” giving feedback as two stars and a wish (showing the student two excellent 

aspect of their work and an idea for improvement), this is categorized as feedback. When a teacher 

decides on finishing work on algebra a week earlier than planned, this is ATI. A more uncertain 

activity would be when the teacher together with the student decides what tasks are most appropriate 

for the student to work with. We would classify this as an ATI activity, from the rationale of not being 

restricted to oral or written feedback from the teacher. 

Conclusion 

The advantage of treating ATI as a key strategy put forward in this paper is ultimately about 

improving the guidance and support of teachers’ implementation of high quality formative assessment 

practice. ATI is experienced as difficult to implement by teachers. At the same time, the ATI 

component does not always receive much focus in analysis of teacher classroom practices. A more 

specified analysis and communication of research results about ATI could provide teachers with 

better guidance. In addition, a more coherent framework could be easier for teachers to understand. 

The big idea is an important guiding idea and the key strategies concretize this idea. The quality of 

any formative assessment activity is dependent on the extent the activity meet the aim of the key 

strategy as well as the big idea. 

This paper argues for more studies conceptualizing formative assessment as a unity of different 

strategies of which ATI is one. Ultimately such studies examine the effect of implementation of 



formative assessment on both teacher classroom practice and student achievement. The formative 

assessment practice needs to be carefully analyzed and described to provide information about 

specific characteristics and their function as part of an enhanced learning process. Such research 

might end up in models similar to those of feedback (Hattie & Timperley, 2007; Shute, 2008), 

showing more and less effective ATI, for different students and under different conditions. 
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This article focuses on students’ written solutions from CAS-allowed exams. Based on the analysis of 

students’ solutions a descriptive model is set up. It can be used for assessing students’ solution as 

well as creating exemplary documentations. The purpose of these documentations is to help teachers 

reflect about their practise of writing down solutions and the norms they set by this for exams. This 

paper also shows how formative assessment could be a means to help students develop their 

competencies in communicating mathematics. 

Keywords: Upper secondary education, exams, written solutions, Computer Algebra Systems, 

formative assessment. 

Introduction: Challenges in exams with computer algebra systems 

Digital technologies like graphical calculators and computer-algebra-systems (CAS) influence 

various aspects of mathematics education in general and the classroom-practise in particular (cf. 

Barzel ea. 2005). Most prominently, the way tasks can be solved changes drastically: where once it 

was necessary to differentiate a function with pen and paper, now every student can use a CAS and 

by pressing a short series of buttons the result appears on the screen. The new possibilities fuelled the 

hope that “[t]he new tool provided the chance to concentrate more on central competencies in 

mathematics education, concept formation, problem solving and modelling competencies, and to 

outsource algorithmic operations to the machine” (Drijvers & Weigand, 2010). While the shortcutting 

of the work of calculating with pen and paper enables classes to have more time for the central 

competencies, it also forces teachers and students to think about how to document the process of 

“working” on a task. This article focuses on the aspect of how communication in a CAS-environment 

could be shaped. 

In this context, the study aims at identifying problems, difficulties and possibilities concerning 

students’ solutions, categorize elements in those according to their function within the solving process 

and suggest a possible standard for written solutions with CAS. Against this background, the 

suggestions can also be interpreted as assessment criteria and, thus, a given students’ solution can be 

assessed. Furthermore, it is a goal to provide a theoretical model that describes the development of 

students’ documenting competency. The following research questions are 

1. How do students write down their solutions in final exams? Which different forms of 

documentations do they use? What kinds of problems or difficulties (if any) are connected 

with these forms? 

2. How can students’ written solutions be described by means of a category system? 

3. How could a developmental model look like that 

a. describes how students’ competencies in documenting the solving process with CAS 

can be developed? 

b. offers learning strategies and exemplary solutions for shape this development?  

c. encompasses criteria for assessment in final exams? 



The major motivation for this study is to create a sound set of suggestions for teachers, for application 

in the classroom and for preparing students for the final exams. Formative assessment plays a crucial 

role in developing an adequate documentation competence. This article gives an answer to the second 

question and presents an outline of ideas to research question (3). 

Theoretical framework 

The theoretical framework to tackle the questions above encompasses two important fields: written 

documentations as communicative texts, and formative assessment, which will be the basis for 

creating didactical material for teachers. 

In exams the purpose of documentations is to enable others to understand how the solution has been 

gained and to evaluate to which degree the solution is correct or incorrect (cf. Ball & Stacey 2003). 

Thus, the communication of mathematical knowledge is the primary aspect. In terms of the 

communication model by Jakobson (1960) the communication situation can be described as follows: 

the learner is the ADDRESSER, the teacher is the ADDRESSEE and the written-down solution is the 

CONTACT (or channel) for the MESSAGE (1960, p. 353). The CODE in this communication 

situation can be considered as coming from three different areas: (1) the natural language, (2) the 

mathematical language, encompassing the symbolic language as well as the mathematical register 

(cf. Pimm 1987), and (3) the computer world with CAS-commands and also its own register (cf. Siller 

& Greefrath, 2010). 

In exams the written documentation is – according to the communication model above – the only 

channel by which the message is sent from the addresser to the addressee. Naturally, in such a 

situation it is neither possible nor allowed for the corrector to inquire in case he or she does not 

understand a part of the solution. Busse speaks of all written communication as “reduced 

communication situation[s]” (2015, p 320, translation by the author), arguing that only the text itself 

and the recipient of the text are present in the situation. As a result, the understanding of texts can be 

reduced to the allocation of the recipient’s knowledge to elements of the text. 

The second part of the theoretical background is about formative assessment and how it might be 

used to develop the documentation competence of students over a longer period. “Assessment for 

learning”, as formative assessment is sometimes called, can be outlined as “the process of seeking 

and interpreting evidence for use by learners and their teachers to decide where the learners are in 

their learning, where they need to go and how best to get there” ( ARG 2002, p. 2). Black & Wiliam 

(2009) describe how five key strategies constitute formative assessment: 

1. Clarifying and sharing learning intentions and criteria for success;  

2. Engineering effective classroom discussions and other learning tasks that elicit evidence of student 

understanding; 

3. Providing feedback that moves learners forward; 

4. Activating students as instructional resources for one another; and 

5. Activating students as the owners of their own learning (Black & Wiliam 2009). 

 

The crucial and most difficult point here is to have criteria for good written solutions. As Weigand 



points out “there are no algorithmic rules or norms how to document a solution on paper” (Weigand 

2013, p. 2772). He reports from a long-term project in Bavaria (a part of Germany) that students have 

“difficulties in using SC [scientific calculator] and (problem-)adequate representations especially, as 

well as the documentation of the solution with paper and pencil” (Weigand 2013, p. 2763). Therefore, 

teachers need to focus on the development of the competence to document adequately over a longer 

time. Students have to reflect about documentations and grow into the communication practices of 

the mathematics community. In Germany, the most important framework of mathematical 

competencies is the one by the KMK (cf. KMK 2012). The KMK distinguishes three requirement-

levels to describe the requirements that can be addressed in tasks in relation to six central 

mathematical competencies and five central mathematical guiding ideas. This framework is not made 

for the development of the competence to document (which I see as only a part of the competence of 

communicating mathematically) but for describing and testing the competencies. Thus, a model was 

created that focuses more on the development and tries to reflect the difficulties of handling the CAS, 

too. The competence model by Dreyfus & Dreyfus (1991) is insofar an important reference work that 

it describes how the development of competencies from a novice stage to an expert stage happens in 

five steps. According to Dreyfus & Dreyfus, novices act according to rules very explicitly while 

experts have internalized the rules so much that the behaviour has become part of them. The model 

for the development of the documentation competence distinguishes only three stages. For teachers 

it is thus easier to think of the stages as of the three consecutive years (10th to 12th grade) when CAS-

classes can be allowed permanently in special classes. The model tries to reflect some difficulties 

teachers reported in CAS-classes (cf. Beck 2015, Weigand 2013) by shifting the focus of each of the 

three stages:  

 

Figure 1 – Development model 

1. Novice: Focus on technology-use: Learning to deal with already known and new 

mathematical content with the new tool, in order to get accustomed to it. 

2. Experienced: Focus on communication: Reflecting about the use of the tool and the 

communication of mathematical content. 

3. Expert: Focus on modelling and problem-solving: Applying the mathematics to modelling 

problems with the help of the CAS.  

Although high-school CAS-classes only use one device (like the TI-nspire or the CASIO Class Pad 

II) it is not the aim to restrict the mathematical competence to just this one device. Therefore, also the 

competence to document should not be chained to the tool that is used but be applicable to all kinds 
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of tasks and problems. To achieve such a flexible competence teachers could use formative 

assessment as shown below. 

It is the teacher’s task to initiate a discussion about how the digital tool changes the nature of the 

solving process and, as a consequence, the written solution (strategy 2, see above). This is also a 

reflection of the benefits of a CAS. As already mentioned, it is not necessary anymore to write down 

every step in the solving process in order to perform it. A lot of algorithmic procedures can be 

outsourced to the CAS. This reflection might help students to progress further on their way from 

novices to experts.  

Furthermore, as Black & Wiliam state “peer- and self-assessment are activities that might be used to 

pursue the fourth and fifth [key strategy] respectively” (p. 8). As a useful activity students (and 

teachers as well) could check and discuss whether their own documentation and the documentation 

of classmates meet the criteria. Students can discuss problems regarding the understandability of 

solutions amongst themselves and with their teacher. From a theoretical perspective, it seems to be 

most promising to apply these activities with experienced students (Fig. 1), after the students are used 

to work with the CAS but before complex (modelling-)problems are treated. Yet, this assumption has 

not been tested empirically. Regarding the documentation of solutions one aim is a high level of 

language use (most prominently: mathematical terminology). This is part of the competences 

communicating mathematically and mathematical reasoning (cf. KMK-Bildungsstandards, K6 and 

K1; Blum 2010). 

Methodology 

As a first step, a descriptive model has been developed from students’ authentic solutions from high-

stake final exams. These exams are the last time in the students’ life and therefore these reflect (to a 

certain degree) the knowledge and the practise of the students. From a linguistic perspective, it is one 

aim to identify which elements students use in their documentations and which function is connected 

with each form. This is a typical pragmatic approach (cf. Meibauer 2008). The underlying question 

of this form-function-analysis can be formulated as follows: With which forms of representation do 

students document each step of the solving process? From a mathematical perspective, it is the aim 

to identify difficulties and problems in the students’ solution. One problem is that traditional 

mathematical notation is mixed with computer language with the result that the created expressions 

do not fit the requirements of “the community of mathematicians”. 

Bavarian teachers of CAS-classes have been asked to send in nine written solutions each from the 

final exams. The students have three groups of tasks to solve (calculus, geometry, data & statistics) 

and have 180 minutes time. Three solutions came from students who have been average, three from 

students who have been above average, and three from students who have been below average in the 

preceding semester. Similar data has been collected every year (starting with 2014) for further 

evaluation and research. Four to five teachers answer this request every year. 

The first research question is how students document their solving process in exams. So far, in Bavaria 

(Germany) only little official advice about documentations of solving processes is given. Normally, 

the Institute for School Quality and Educational Research (ISB) provides such material and official 

notes in addition to the curriculum. In order to develop such advice, it is a very valuable first step for 

researchers to analyse authentic documentations and to develop a descriptive model with which 



problems and difficulties can be identified and categorized. 

The representational dimension describes with which forms of representation students document. 

There might be expressions, which use some kind of formulaic symbols (traditional mathematical, 

computer-syntax, mixed-forms), verbalisations (both natural language and the special mathematical 

vernacular) and graphic representations. In the latter category, mixed forms (such as graphs, tables, 

sketches, etc.) are also counted. 
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Figure 2 – Category system for description of students’ solutions 

The second, activity dimension describes which purpose an element has, that is what actually is 

documented with it and which step, or activity, in the solving process it is related to. Central categories 

are: 

● CAS-related notes make the use of CAS explicit, either by stating the CAS command (input), by 

writing down the output (e.g. “false”, which is odd in a German text), or by unspecifically writing 

– in short form – that the CAS was used (e.g. “CAS: …”). 

● According to Wagner and Wörn (2011) explanations comprise three different facets: concepts 

and ideas (what-explanation), algorithms and procedures (how-explanation), argumentations and 

logical connections (why-explanation). They often focus on: 

o mathematizations, which show that information given in the task-description is translated 

into mathematical notation or terminology;  

o interpretations, which are translations of computer-output and the construction of 

meaning in relation to the task. 

The terms mathematizations and interpretations are related to the respective activities in the 

extended modelling cycle by Siller & Greefrath (2010). 

● Furthermore, there are elements which refer to the underlying mathematical idea, e.g. in order to 

find the maximum of a function f it is necessary to solve the equation f'(x)=0. From this element, 

the mathematical idea can be reconstructed.  



● Every mathematical activity leads to some result. This might be the answer to a posed question 

or a step that takes one closer to the final result.    

● Structuring elements are used to structure the text on the surface (the layout) and the way the 

information is presented. They can also be used to set up links between pieces of information such 

as single steps in the solving process and the chronological order in which they were performed. 

 

Results 

The first result is that the category system above (Fig. 2) is suitable to describe students solutions. It 

can be observed that in regard to the documentation of CAS-commands the style was very 

homogenous throughout each class. In one of the classes, CAS-commands have been documented. In 

the second class, the CAS-use was indicated by writing “CAS” either over an equation or at the 

beginning of a line. In the third and fourth class there were no CAS-commands at all. This 

phenomenon can be explained by the normative standards that the respective teacher had set in the 

preceding year. Secondly, students who had a correct solution always showed the necessary 

mathematical ideas. Fig. 3 shows two different ways how mathematical ideas can be presented: either 

in verbalized form (line 1) or encapsulated in a formulaic expression (line 3).  

A further result of the analysis of the students’ documents is that written solutions without verbalised 

explanations were often harder to understand and that the solving process could not be reconstructed 

that easily. 

Authentic and examplary solutions 

As shown above, elements of written solutions can have different functions. Among them 

explanations can contribute a lot to make students’ documents easily understandable. According to 

Jörissen and Schmidt-Thieme explanations can be characterised as “primarily verbal statements” with 

the goal that the reader can understand connections (2015, p. 401, translation by the author). 

 

Furthermore, additional explanations extend the transmitted information with the possible 

consequence of redundancy. However, misunderstandings can possibly be prevented. As already 

mentioned Wagner & Wörn distinguish three different types of explanations: explain-what, explain-

how and explain-why (2011). These sub-categories can be found – rudimentarily – in the students’ 

 

 

Figure 3 – Student’s solution: original and 

translation 



solutions, too. It is most important to notice here that students often explained verbally although it 

was not explicitly asked to do so in the formulation of the task. 

The task of the example (Fig. 3) is to check whether there is a point at which the exit of a highway – 

modelled by a polynomic function s – runs parallel to another road – the route B299. 

In the example (Fig. 3) we see that the student explains the mathematical idea of his solution verbally 

at the beginning. It is a rudimentary how-explanation. The verbal inaccuracy at this point is not that 

important because the information given in the text is supported by the mathematical formulaic 

expression, which is the equation. The output (“{}”) follows a CAS-use which is documented 

unspecifically (see abve). The student confuses proper mathematical syntax with device-specific 

CAS-output and mixes both into an incorrect expression. As a concluding answer to the task a verbal 

interpretation of this output is written down. 

The categories from Fig. 1 can be used to describe and explain students’ solutions. But they can also 

be used to help teachers to reflect written solutions and their own practise of writing mathematical 

texts. Furthmore, on the basis of the categories exemplary solutions can be created, as shown below 

(Fig. 4). 

Category  Exemplary solution 

Explanation  The roads run parallel to each other when 

there is a point at which 𝑠 has the same 

gradient as 𝑠(𝑠) = −0.5𝑠.  

Mathematical idea  𝑠′(𝑠) = −0.5 

Result  This equation has no solution, therefore, 

Expanation  the roads do not run parallel to each other. 

Figure 4 – Exemplary solution for teachers 

It cannot be expected of students’ solution to show such a degree of verbalisation. It is not the purpose 

of exemplary solutions to set minimal standards for students but to show teachers how solutions can 

be documented. The categories help to structure the text and to make the function of single elements 

more apparent. 

 

Discussion of results and conclusion 

Teachers may apply the categories in two ways: firstly, the categories can provide guidelines for 

documentations in a constructive way. For example, every documentation should make clear what 

the mathematical idea was that lead to the solution. Furthermore, students and teacher could agree in 

classroom discussions that verbalized explanations help to make clear the connections of different 

(symbolic) elements and, thus, allow the reader(s) to follow the solving process more easily. The 

notation of CAS-commands (if and how) could also be agreed upon in the class or amongst teacher 

even on a school level. Secondly, they then might be used for assessing students’ solutions for 

formative purposes as well as summative purposes. The categories might help teachers and researches 

alike to see documentations more clearly as a set of elements with different functions that make up 

the whole text. The exemplary solutions illustrate different possibilities of documentations. They can 



be used for reflection in pre-service professional development courses as well as in in-service 

professional development courses.  

In conclusion, it is important that students develop the competence to assess by themselves if a 

solution is acceptable and to create good solutions on their own (formative assessment key strategies 

4 and 5). The main determining factors are the purpose of the documentation and the intended 

addressee, both of which may make an additional verbal explanation necessary. To provide support 

for this development is a major challenge for modern mathematics education. The combination of 

“learning to document” with some elements of formative assessment is a promising way to meet this 

challenge. 
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In Geneva canton (Switzerland), a special course has been designed to deal with problem solving. 

Within one 45-minute period per week, teachers have to improve students’ problem solving 

competencies and to assess them frequently. In order to assess students’ problem solving 

competencies, most teachers use grids of criteria with a summative purpose. The global objective of 

our research is to find out if and how using such a tool can also foster formative assessment processes. 

In this paper, we present an exploratory study focused on teachers’ formative assessment practices. 

In order to do so, we study the practices of a teacher giving this IBME-centered course and show 

how she uses formative assessment in her teaching practices. 

Keywords: Formative assessment, summative assessment, problem solving, IBME, teachers’ 

practices. 

A course dealing with problem solving 

In French-speaking Switzerland, the shared curriculum for compulsory education insists on the 

importance of problem solving in mathematics education in order to make students familiar with 

inquiry based mathematics education (IBME). The aim is to promote students’ scientific processes 

of thought. But as Dorier and Maass say “inquiry based mathematics education remains quite 

marginal in day-to-day mathematics teaching” (2014, p. 303). That is why in Geneva canton, a special 

course called mathematics development has been created to focus on and develop students’ problem 

solving competencies. Students aged 13-14 years old (grade 8) with a scientific profile are involved. 

Within one 45-minute period per week, teachers have to improve the students’ problem solving 

competencies and at the same time, assess them frequently. 

This course is subject to many constraints and raises two fundamental questions in mathematics 

education: how to foster and how to assess students’ problem solving competencies? Thus it is 

necessary to identify what problem-solving competencies are and consequently what students are 

expected to learn and to know. 

IBME and problem-solving competencies 

In the French mathematics teaching tradition, problem solving has been seen for many years as a 

means to develop specific mathematical content and knowledge (Brousseau, 1998). For the past 

couple of years, however, many countries, and especially European countries, have been emphasizing 

problem solving in mathematics and inquiry-based mathematics and science education (IBMSE) as a 

learning goal for its sake. The European Rocard’s report (Rocard et al., 2007) promotes a wider 

implementation of IBMSE in classrooms as a tool to make sciences and mathematics more attractive 

to students. Nevertheless, this increasing interest in IBMSE has not been followed by a concise and 

commonly shared definition (Dorier & Garcia, 2013). If we are to summarize, it 



refers to a student-centered paradigm of teaching mathematics and science, in which students are 

invited to work in ways similar to how mathematicians and scientists work. This means they have 

to observe phenomena, ask questions, look for mathematical and scientific ways of how to answer 

these questions (like carrying out experiments, systematically controlling variables, drawing  

diagrams, calculating, looking for patterns and relationships, making conjectures and 

generalizations), interpret and evaluate their solutions and communicate and discuss their solutions 

effectively. (Dorier & Maass, 2014, p. 300) 

Intended learning outcomes of IBME 

The goal of IBME is to make students work in a way similar to the one of mathematicians and to 

make students familiar with a scientific approach to solve problems. For Hersant (2012), a scientific 

approach cannot be considered as a relevant learning goal, especially because it is unclear, non-unique 

and too ambitious. Thus the intended learning outcomes of IBME are not so easy to interpret and 

implementing IBME in classrooms remains a crucial issue. If we look at institutional instructions of 

the mathematics development class, teachers are invited to propose open-ended problems (Arsac, 

Germain, & Mante, 1991) to students, which is, in France and in French speaking Switzerland, a 

traditional way of introducing students to IBME. An open-ended problem is a problem which has a 

short text, has no obvious solution and method, deals with students’ familiar conceptual domain and 

enables students to make the problem their own. Facing such a problem, students should learn 

different strategies. It aims more generally at both establishing scientific debate rules and developing 

a scientific approach following the pattern of try - conjecture - test and prove. But according to 

Hersant (2010), what gives this approach a scientific dimension is not only the existence of trials, 

conjecture and proof but the articulation among these. She also emphasizes that there is no unique 

scientific approach. The first goal is not so clear, neither is the second. Debate rules can indeed refer 

to logical rules (several examples don’t prove a proposition, a counter example is sufficient to 

disprove a conjecture, etc.) or to social rules (listen to the others, etc.). Consequently, curriculum and 

instructions about open-ended problems do not seem to be sufficient to help teachers to define what 

is institutionally expected about students’ problem solving competencies.  

Identifying what we want students to learn and to know about problem solving is still a problematic 

issue. The identification of the intended learning outcomes from IBME is by no means obvious even 

for teachers, and the danger is that students might not be aware of what they are supposed to learn 

and to know. That is why IBME learning goals should be at the midst of specific discussions with 

students in class. Even though such discussions should also be encouraged when acquiring a more 

classical mathematical knowledge, it is all the more important in the case of IBME. 

Problem solving narration activity 

To assess students’ problem solving competencies, teachers have to be able to access what students 

did in order to solve the problem and especially what solving strategies they used. That is why the 

problem solving narration activity (Bonafé et al., 2002) has been institutionally chosen as a means to 

assess students. It can be defined as a new contract between students and teachers in which students 

have to explain the best they can, how they solved, or tried to solve, the problem (including mistakes, 

wrong ways, dead-ends, help they received…) and teachers have to assess students on these and only 

these points and especially not take into account the fact whether students found the right answer or 



not. With this activity, the fact that students have to explain all the strategies they tried and all the 

ideas they had to someone else, presupposes that they are capable to do so firstly to themselves. They 

have to reconstruct their reflection and make a synthesis of which strategies were effective, which 

one were wrong ways or led to dead-ends, etc. In that sense, it can emphasize students’ reflection 

about what solving problems in mathematics means, about their own problem solving competencies 

and it can encourage the development of para and proto-mathematical knowledge. Problem solving 

narration activity as a scheme used principally for summative assessment can also foster students’ 

problem solving competencies and assume a formative function. This last observation leads us to 

consider the assessment of problem solving competencies, not only with summative purpose, but also 

with a formative purpose. 

Assessing students’ problem-solving competencies 

According to Allal (2008) assessment is summative as soon as a synthesis of the competencies and 

knowledge learnt by the student at the end of his curriculum is established. Thanks to the distinction 

made by Scriven (1967) and then by Bloom (1968) between summative and formative assessment, 

Black and Wiliam give the following definition: 

Practice in a classroom is formative to the extent that evidence about student achievement is 

elicited, interpreted, and used by teachers, learners, or their peers, to make decisions about the next 

steps in instruction that are likely to be better, or better founded, than the decisions they would 

have taken in the absence of the evidence that was elicited (Black & Wiliam, 2009, p. 9).  

The notion of feedback is a key component of formative assessment. Formative assessment contains 

“all those activities undertaken by teachers, and/or by their students, which provide information to be 

used as feedback to modify the teaching and learning activities” (Black & William, 1998, pp. 7-8). 

Another key component of formative assessment is that students understand the target of their work 

and that they grasp what is expected (Harlen, 2013). But it means that “students need to have some 

understanding of the criteria to apply in assessing their work” (Harlen, 2013, p. 17). Once again, the 

necessity of specific discussions with students about assessment criteria and about what they are 

expected to learn is emphasized.  

To classify classroom formative assessment, Shavelson et al. (2008) are using a continuum, that 

ranges from formal embedded assessment to informal, on the fly formative assessment. It means that 

formative assessment does not take a unique form but that it can be planned or not, it can refer to 

formal tools to collection of data or not, etc. Adopting this point of view, formative assessment can 

be considered as a practice integrated within the learning process (Lepareur, 2016). Referring to 

formative assessment about IBME is all the more relevant that 

the practice of formative assessment, through teachers and students collecting data about learning 

as it takes place and feeding back information to regulate the teaching and learning process, is 

clearly aligned with the goals and practice of inquiry-based learning. (Harlen, 2013, p. 20) 

These definitions of summative and formative assessment enhance that identifying assessment 

according to when it occurs (after a phase of teaching vs within a teaching activity for instance) or 

how it occurs (paper-pencil test vs worksheet for instance) seems less relevant than distinguishing 

assessment according to its function. But it does not mean that these two principal functions of 

assessment (summative and formative) cannot coexist. Thus some researchers (Allal, 2011; Harlen, 



2012; Shavelson et al., 2008) argue that they can coexist in what Earl (2003) calls assessment for 

learning. The same assessment activity can serve to summative and formative purpose. It means that 

data collected by the teacher can be used to give students a mark but also to improve learning and 

teaching. On the other hand, for Shavelson et al. “formative assessment could serve summative needs” 

(2008, p. 298). In our research, we deal with teachers’ practices in the mathematics development class. 

Our objective is to find out if and how using an assessment tool as a grid of criteria, firstly with 

summative purpose, can also foster formative assessment processes. In this paper, we focus only on 

teacher’s formative assessment practices. For that, we study the practices of a teacher giving this 

IBME-centered course. 

Teachers’ formative assessment practices 

 Context of the research 

The teacher whose practice we are going to analyze, was a member of a one year commission, created 

in September 2015, and gathering another teacher and ourselves. The purpose of this commission was 

to give teachers of mathematics development classes a common tool to assess students’ problem 

solving competencies with both summative and formative purpose, and consequently to ensure 

common expectations about IBME (from teachers, and more globally from schools). To do so, we 

have been working for one year to elaborate a grid of criteria aiming to assess students’ problem 

solving narration activity. This development of the tool was mainly based on teachers’ expertise. 

Indeed, teachers have implemented the grid in their class, and according to their experiences, we 

adjusted, removed and added some criteria. Nevertheless, we dealt with an existing tool elaborated 

by the Geneva team in the wake of the PRIMAS1 project and were careful to take into account some 

research results (as those of Hersant (2010)). The grid in its final version summarizes criteria related 

to five dimensions of such an activity: presentation, narration, research, technique and modelling. 

These dimensions induce ways to look at the students’ production according to expected qualities. 

For instance, the modelling dimension is characterized by two criteria: “Appropriation of the 

problem: rephrase the problem in French and/or express it with drawings, diagrams, tables” and “Use 

of pertinent mathematical tools and theories, strategies”.  

So, this teacher whose practice we are going to analyze has been reflecting on the intended learning 

outcomes of this IBME-centered course and on the summative assessment of problem solving 

competencies, for one year, thanks to the meetings with the other members of the commission. She 

used the grid elaborated by the commission, in her class, principally with a summative purpose. 

However, thanks to our hypothesis that summative and formative assessment can co-exist, we would 

like to see if she also referred to formative assessment, thanks to specific discussions with students 

about criteria, and feedback related to their production. That is why we analyzed her formative 

assessment practices. 

                                                 
1 Available at http://www.primas-project.eu/fr/index.do 

http://www.primas-project.eu/fr/index.do


Theoretical framework  

To characterize teachers‘ formative assessment practices, we referred to criteria elaborated by 

Lepareur (2016). She defined five strategies2 : eliciting goals and criteria (S1); managing discussions 

and activities which can produce some evidence of effective learning (S2); giving feedback to 

students which make them progress (S3); helping students to be responsible for their learning (S4); 

helping students to be a resource for their peers (S5). Even though her research dealt with science and 

mathematics teachers’ formative assessment practice, in our case, we only study mathematics 

teachers’ practices. In that sense, we made some adaptations about key words and sub-strategies she 

defined. The table 1 is the grid we used to characterize the mathematics teacher’s formative 

assessment practices. The T is used for the teacher, S for the students. 

Methodology  

We video recorded two consecutive periods of mathematics development given by this teacher, 

member of the commission, at the end of the school year. The nine students of the class were working 

in four groups (3 groups of 2 students, 1 group of 3). They were working on two problems related to 

the introduction of algebra. At the end of the second period, students had to give a narration about the 

problem they were working on to the teacher. Consequently half of the second period was devoted to 

the narration and students were invited to use office software to write their research down. To interpret 

data and make it relevant with our theoretical framework, we transcribed all interactions occurred in 

class for both lessons (about 67 minutes) and classified interactions according to strategies and sub-

strategies defined in the table 1. 

                                                 
2 Translated from Lepareur (2016).  

Strategy Key words Code Description 

S1 

Goals S11 T explains the goals of the activity. 

Criteria S12 
T explains the intended learning outcomes, what will be 

assessed. 

S2 

Progress in activity S21 T collects information about students’ progress in the activity. 

Strategies S22 T collects information about strategies used by S. 

Understanding S23 T questionnes S about their understanding of the goals. 

Knowledge S24 T takes information about previous S’ knowledge. 

Self assessment S25 
T helps S to situate themselves in relation to assessment and 

success criteria. 

S3 

Feedback (what 

students have to do) 
S31 

T gives an information to make explicit what S have to do 

left. 

Feedback (how 

students can do it) 
S32 

T provides explicit  information about how S have to do it, to 

move on. 

S4 Responsabilisation S4 
T emphasizes S’ ideas, gives them independancy to access  

resources. 

S5 
Interactions (group) S51 

T encourages S to discuss with others members of their group. 

Peers are seen as a resource. 

Interactions (class) S52 T integrates S’ propositions and encourages others to react on. 



Table 1: Grid of analysis of formative assessment practices, adapted from Lepareur (2016) 

For instance, during the following interaction between the teacher and a student, we can see that the 

teacher tries to make the student explains his strategy.  

Teacher: Yes but how did you find this? 

Student: I made a lot of stuff. 

Teacher: But try… what did you do? It’s interesting to know how you were thinking. 

Student: I made all of this but like everything in reverse. 

Teacher: Yes so the first step. What did you do at the first step? 

Student: 24 minus 7. 

Teacher: Yes, you went backwards in your calculations. Yes. It’s a good idea. Doing 

backward calculation is in fact a lead. 

In that case, we identify a formative assessment practice, according to the strategy S2 “managing 

discussions and activity which can produce some evidence of effective learning“ and more specially 

the strategy S22 “collecting information about strategies used by students”. 

Results and analysis

Figure 1: Strategies of formative assessment 

We found out 44 episodes when formative 

assessment strategies occurred thus we can say 

that this mathematics teacher refers frequently to 

formative assessment in her practice. We 

identified 4 times the strategy S1; 25 times 

strategy S2; 10 times strategy S3; 3 times 

strategy S4 and 2 times strategy S5. The figure 1 

illustrates the percentage of apparition of each 

strategy. To summarize, we can notice that the 

teacher refers to every strategy (S1, S2, S3, S4 

and S5).  

On top of that, she uses principally the strategy S2: “managing discussions and activities which can 

produce some evidence of effective learning”. It represents more than half of the strategies of 

formative assessment used by this teacher. The strategy S3 which refers to “give feedback to students 

which makes them progress” is also used frequently, about one time out of four. 

But if we look deeper, we can see that each sub-strategy is not used with the same frequency (figure 

2).We can see that for the strategy S1 related to the goals and criteria, the teacher only explains the 

goals of the activity (S11) but not the criteria of assessment or the intended learning outcomes (S12). 

This lesson occurred at the end of the year so we can make the hypothesis that by then students knew 

well what they were expected to do. 



The most represented sub-strategy related to 

“discussions and activities which can produce 

some evidence of effective learning which is 

used frequently” (S2) is “collecting information 

about strategies used by students” (S22). It 

appears 19 times. It is also the strategy that 

occurs the most, all categories taken into 

account. The only other significant strategy 

dealing with S2 used by the teacher is “taking 

information about students’ progress in the 

activity” (S21). So the teacher focuses on where 

students are in the activity and what they have 

done to get there. 

Then, for strategy S3 about feedback, the two ways; “provides information to make it explicit what 

is left for the students to be done” (S31) or “how they have to move on” (S32) are represented, but 

the second one more than the first one. The idea is that this teacher helps students both knowing what 

they have to do but even more how they can continue. For the last strategy (S5) dealing with 

interactions, the teacher focuses on discussions within the groups. The absence of strategy S52 about 

“the integration of students” can easily be explained by the fact that during these two lessons, students 

only worked in group, without any collective classroom discussion. 

Conclusion 

We can say that this mathematics teacher refers frequently to formative assessment in her practices 

(44 times during a 67 minute-lesson). She uses a very large set of formative assessment tactics; 

eliciting goals and criteria; managing discussions and activities which can produce some evidence of 

effective learning; giving feedback to students which make them progressing; helping students to be 

responsible for their learning; helping students to be a resource for their peers. But she uses principally 

formative assessment to manage discussions and activities which can produce some evidence of 

effective learning, and especially, she collects information about strategies students use. The feedback 

she provided to students is mainly about how they can continue, how they can do what they have to 

do to solve the problem. The only strategy which does not appear is this related to explanation of 

criteria and expected learning outcomes. We can make the hypotesis that it has been at the core of a 

discussion in the first part of the schoolyear. In that sense, it should be interesting to focus on what 

happens at the beginning of the schoolyear and to study how teachers explain and negociate the 

intended learning outcomes with students. 

To conclude this paper, we can say that this exploratory study shows that formative assessment seems 

to be relevant for this teacher in order to foster her teaching practices in the case of an IBME-centered 

course. It is, nevertheless, necessary to enlarge the study, in order to compare and expend or not the 

results, and to have more information about how teachers refer to formative assessment. On top of 

that, we can imagine that working with teachers about these strategies could foster their formative 

assessment practices.  

  

Figure 2: Strategies of formative 

assessment according to key words 
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It has been argued that the PISA assessment has had a disproportionate impact on Project Maths, 

the new mathematics curriculum recently implemented in post-primary schools in Ireland, which 

seeks to emphasise deep conceptual understanding and problem solving in real-life contexts.  This 

paper describes an analysis of the content, cognitive processes and contexts underpinning Junior 

Certificate mathematics examination questions set for students in Grade 9 in 2003 and 2015, using 

the frameworks underpinning the PISA and TIMSS studies. Despite a significantly increased reading 

load for students, the Junior Certificate mathematics examination continues to emphasise lower-

order processes, at the expense of higher-level thinking, as defined by PISA and TIMSS, while there 

has been a small increase in the proportion of items presented in practical contexts. The need to 

examine the effects of Project Maths in classroom settings is highlighted.  

Keywords: Mathematics, assessment, Project Maths, Junior Certificate.  

Introduction 

Since 2010, all students entering post-primary school (Grade 7) in Ireland have studied under Project 

Maths, an innovative mathematics curriculum introduced in an effort to increase the relevance of 

mathematics for students, and to improve teaching and learning. Since 2015, all aspects of Project 

Maths have been assessed in the Junior Certificate (JC) mathematics examination, a state examination 

taken by almost all students at the end of Grade 9 (Third Year). The purpose of this paper is to examine 

changes in how and what mathematics is assessed in the JC, and how these changes relate to the 

frameworks and approaches to assessment of mathematics underpinning the OECD Programme for 

International Student Assessment (PISA) (OECD, 2016), and the Trends in International 

Mathematics and Science Study (TIMSS) (Grønmo, Lindquist, Arora, & Mullis, 2013).   

Ireland has participated in PISA since its inception in 2000. Although Ireland has been consistently 

among the highest-performing countries on reading literacy in PISA, performance on mathematical 

literacy has generally been at the OECD average, and, on one occasion (2009), significantly below it. 

Although average performance on mathematics in Ireland was above the OECD average for the first 

time in 2012, this reflected a decline in the OECD average rather than an increase in the performance 

of students in Ireland, compared with, for example, 2003 and 2006.1 Students in Grade 8 in Ireland 

                                                 

1 It should be noted that over three-quarters of students in PISA 2012 in Ireland had not studied under Project Maths, with 

students in Grades 9 and 10 studying the preceding curriculum, except those in a small number of Project Maths pilot 

schools.  



 

 

 

did not participate in TIMSS between 2003 and 2011, but did take part in the most recent cycle, in 

2015.  

Concerns about standards in mathematics have increased in recent years and outcomes in PISA are 

just one factor contributing to this. There have also been concerns about declining performance 

among entrants to university mathematics courses (Gill, O’Donoghue, Faulkner & Hannigan, 2010).  

In 2005, the National Council for Curriculum and Assessment began a process leading to the 

implementation of a revised mathematics curriculum for post-primary schools. This involved the 

commissioning of a research paper looking at international trends in mathematics education (see 

Conway & Sloane, 2006), and a consultation process involving interested parties (NCCA, 2005). 

Following two years of development work, the Project Maths curriculum was introduced into 24 pilot 

schools in 2008, and implementation began in all post-primary schools in 2010, with a phased 

introduction that was completed by 2015. The aims of Project Maths at Junior Cycle level (Grades 7-

9) include developing mathematical knowledge, skills and understanding needed for continuing 

education, for life and for work; fostering a positive attitude to mathematics; and developing the skills 

of dealing with mathematical concepts in context and in applications, and in problem solving (DES, 

2013). There are five inter-related strands in the curriculum: Statistics and Probability; Geometry and 

Trigonometry; Number; Algebra; and Functions. Learning outcomes are identified for students 

intending to take the JC mathematics examination at Higher and Ordinary levels, with no separate 

course for Foundation level.  

Project Maths has received a mixed reception. The Irish Mathematics Teachers Association (IMTA) 

(2012) noted that insufficient detail was provided on aspects of course content, giving rise to 

uncertainty as to whether certain topics were included or not. Drawing on a survey of teachers in 

Project Maths pilot and non-pilot schools conducted as part of PISA 2012 in Ireland, Cosgrove et al. 

(2012) reported more frequent use of ICT in pilot schools, and more positive changes in learning and 

assessment, though teachers in pilot schools were less confident in their teaching. Concerns about 

readability were raised in the same study, with teachers in pilot schools arguing that the problems 

presented to students in classroom and assessment contexts contained more text and greater linguistic 

complexity than was the case prior to Project Maths, when teaching and learning mathematics were 

more formal and less contextualised. Similar concerns have been raised about the effects of 

readability on performance in the PISA mathematics assessment as a result of the complexity of 

contexts that are presented to students (Eivers, 2010). 

A small number of studies have looked at the initial effects of Project Maths on students’ 

performance. A study by the National Foundation for Educational Research in the UK (Jeffes et al., 

2013) found no achievement differences between students in schools implementing Project Maths for 

longer or shorter time periods, or between those that had implemented more, compared with fewer, 

content areas. Although students in pilot schools in the PISA 2012 sample in Ireland achieved higher 

mean scores on each PISA mathematics content area, and on overall performance, differences were 

not statistically significant (Merriman, Shiel, Cosgrove & Perkins, 2014). Worryingly, students in 

pilot schools had significantly higher levels of anxiety about mathematics than their counterparts in 

non-pilot schools.  



 

 

 

The lack of evidence for a significant change in mathematics performance since the implementation 

of Project Maths, as well as claims that PISA has had a disproportionate impact on the Project Maths 

curriculum (e.g., Kirwan, 2015; Grannell, Barry, Cronin, Holland & Hurley, 2011) points to the need 

for a critical look at changes to the JC mathematics examination. This paper looks at whether the 

contexts, content and processes underpinning the examination differed in 2003 and 2015 (when 

analysed through the lens of PISA and TIMSS) and whether examination papers have become more 

or less readable between the same two time points. The research questions addressed are as follows: 

(i) What changes in mathematical content, cognitive processes, and item contexts can be 

identified from a comparison of the pre-Project Maths 2003 Junior Certificate examination 

with the post-Project Maths 2015 examination with reference to the TIMSS and PISA 

mathematical frameworks and tests? 

(ii) What changes in readability can be identified from a comparison of the pre-Project Maths 

2003 Junior Certificate examination with the post-Project Maths 2015 examination? 

Methodology 

Examination paper analysis – Context, content and process  

This study focuses on the JC state examination papers in 2003 and 2015 as examples of papers before 

and after the introduction of the revised curriculum. The 2003 papers were chosen because a similar 

classification exercise was previously carried out on these papers by Close and Oldham (2005). The 

2015 papers were chosen as a comparison as they were the first to include all Project Maths content 

areas for all JC students.  

Junior Certificate mathematics is examined at three levels: Higher Level (HL), Ordinary Level (OL) 

and Foundation Level (FL). There are two papers each for HL and OL and one for FL. Consequently, 

the study included ten papers in total (five for each year). The aim was to classify the questions in 

each examination paper in terms of the main components of the TIMSS 2015 Grade 8 mathematics 

framework (Grønmo et al., 2013) and the PISA 2003 and 2015 frameworks (OECD, 2003; 2016). 

The relevant characteristics of these frameworks are outlined below. The PISA framework was 

chosen as it reflects recent trends internationally towards realistic mathematics and problem-based 

learning in rich contexts. The TIMSS framework was also used in this study as it reflects a more 

traditional, curriculum-based approach, with a focus on the mathematical concepts, skills and 

applications seen as necessary for further study of mathematics and for life. Using both frameworks 

allowed the analysis to capture more fully any changes in the JC examination between the selected 

time points. 

TIMSS mathematics has four content domains: Number, Algebra, Geometry and Data and Chance. 

There are three cognitive domains: Knowing, Applying and Reasoning. The PISA mathematics 

framework has three dimensions: Context, Content and Competency2. PISA classifies each 

mathematics item in terms of its context – Personal, Occupational, Societal or Scientific. The PISA 

                                                 

2 For the purposes of this study, the 2015 framework was used to classify items by Content and Context. However, the 

2003 Competency Clusters were used as they are more suited to the JC examinations and are more consistent with the 

TIMSS Cognitive Domains. In addition, the 2003 Competencies were used in Close and Oldham (2005). 



 

 

 

content categories are Change and Relationships, Space and Shape, Quantity, and Uncertainty and 

Data. The PISA 2003 framework also classifies items by groups of cognitive processes or 

‘Competency Clusters’. The three clusters are Reproduction, Connections, and Reflection.   

The Reproduction cluster in PISA can be summarised as the ‘reproduction of practised knowledge’ 

(OECD, 2003), which covers the category of Knowing in TIMSS but also some of Applying. The 

Reflection cluster involves ‘advanced’ reasoning, abstraction and generalisation in novel contexts, 

which often requires a higher cognitive demand than some Reasoning items in TIMSS. 

Within each JC paper, each part of a question (a i), ii), etc.) was treated as a separate item. Each item 

was classified by two of the authors (RC and SC) according to the dimensions outlined above. 

Classifications were carried out independently and all disagreements were recorded and discussed 

until a consensus was reached. Very few disagreements arose in relation to the content or context of 

the items. By comparison, more disagreements occurred where judgements were made about the 

processes involved in answering the items i.e. in identifying TIMSS Cognitive Domains and PISA 

Competency Clusters. This is not surprising, as determining the primary process required to answer 

a test item is, by nature, a more subjective exercise. Initial agreement rates for cognitive processes 

per examination ranged from 74 percent (TIMSS classifications for FL 2015) to 97 percent (PISA 

classifications for FL 2003). Most examinations had an agreement level above 80 per cent.  

Reading load and readability analysis  

An analysis of the reading load and readability of JC mathematics examination papers administered 

in 2003 and 2015 was also conducted. Reading load here refers only to the number of words to be 

read, while measures of readability aim to assess the overall difficulty of the text.  Data were 

generated for word count, number of sentences, average number of words per sentence, and average 

number of complex words (words with three or more syllables). An overall measure of readability 

for each paper was obtained by taking the average results (in Grade level units) of eight readability 

measures including the Flesch-Kincaid Grade Level. Prior to applying these formulae, title 

information, general instructions and item numbers were removed. In addition, diagrams were deleted 

(though labels and numbers were retained), and functions were replaced with a placeholder, as 

readability formulae are not designed to assess the complexity of these elements.  

Results 

Classification of items by content, cognitive process and context3 

The data in Table 1 show that, between 2003 and 2015, there was an increase in the number of JC 

examination items in Data and Chance (+10 percentage points), as defined by TIMSS, with a 

corresponding increase in Uncertainty and Data (+9 percentage points), as defined by PISA. The 

change in these content domains can be ascribed to the increased emphasis on Statistics and 

Probability in the revised curriculum. These increases were more or less counter-balanced by 

decreases in Number (-5 percentage points) and Geometry (-4 percentage points) on the TIMSS 

content dimension and in Quantity (-8 percentage points) in PISA.  

  

                                                 

3 For brevity, the results of the item categorisation are collapsed across HL, OL and FL for each year. 



 

 

 

TIMSS 

Content 

Domain 

TIMSS  

% Items 

 

JC 2003 

% Items 

N = 187 

JC 2015 

% Items 

N = 208 

PISA 

Content 

Domain 

PISA  

% Items 

 

JC 2003 

% Items 

N = 187 

JC 2015 

% Items  

N = 208 

Number 30 (30)4 21 16 Quantity 25 27 19 

Algebra 30 (25) 24 27 
Change & 

Relations 
25 31 34 

Geometry 20 (30) 30 26 
Space & 

Shape 
25 25 24 

Data & 

Chance 
20 (15) 11 21 Uncertainty 25 11 20 

Not covered5  13 10 
Not 

covered 
 6 3 

Table 1: Percentages of items in each TIMSS and PISA content domain, and percentages of total JC 

2003 and 2015 items, by TIMSS and PISA content domains    

Table 2 presents the results for the cognitive process dimensions. Relatively few of the JC 

examination items for either 2003 or 2015 fell into the TIMSS Reasoning category, although there 

was an increase between 2003 and 2015 (+6 percentage points). Only two items in 2015 (1%) were 

categorised as PISA Reflection, with none in 2003. However, the proportion of Connections items 

was higher in 2015 than in 2003 (+8 percentage points), with a corresponding decrease in 

Reproduction items. Despite this, most of the JC items for both years were classified as TIMSS 

Knowing and Applying and PISA Reproduction.  

TIMSS 

Cognitive 

Domain  

TIMSS  

% Items 

 

JC 2003 

% Items 

N = 187 

JC 2015 

% Items 

N = 208 

PISA 

Cognitive 

Domain 

PISA  

% Items 

 

JC 2003 

% Items 

N = 187 

JC 2015 

% Items  

N = 208 

Knowing 35 35 45 Reproduction 25 88 79 

Applying 40 57 42 Connections 50 12 20 

Reasoning 25 7 13 Reflection 25 0 1 

Table 2: Percentages of items in each TIMSS and PISA cognitive (process) domain, and percentages of 

total JC 2003 and 2015 items, by TIMSS and PISA cognitive domains    

Part of the intention of Project Maths reform was to place more emphasis on using mathematics to 

solve problems set in practical realistic contexts. Table 3 shows the results of classifying the items in 

the 2003 and 2015 JC exams into items with some sort of practical context and items which are purely 

mathematical or intra-mathematical. The results show that around half of the items in the 2015 

examination papers had a practical context reflecting a small change since 2003 (up from 40%). These 

figures are similar to the TIMSS percentages for mathematical and practical contexts, whereas all 

PISA items are placed in a practical context. It is important to note that the practical contexts of 

                                                 

4 TIMSS 2003 Content Domain weightings in parentheses. 

5 Some JC topics are not included in the TIMSS and/or PISA frameworks e.g. sets, trigonometry and proofs of geometric 

theorems. 



 

 

 

TIMSS items and JC 2003 and 2015 exam items are generally minimal compared with the more 

substantial and often realistic contexts of PISA items. 

 
Context 

Category 

TIMSS 

approx.% Items 

PISA 

% Items 

JC 2003 

% Items, N = 187 

JC 2015 

% Items, N = 208 

Mathematical 50 0 60  49  

Practical 50 100 40  51  

Table 3: Comparison of TIMSS and PISA test items and JC exam item percentages by context category 

Reading Load and Readability6  

Table 4 shows that, at JC HL, the number of words students were expected to read on Paper 1 

increased from 765 in 2003 to 1335 in 2015 (a 75% increase). At OL, the word count increased from 

662 to 1240 (an 87% increase), and at FL, the increase was from 530 to 1027 words (a 94% increase). 

However, the average difficulty of the text that students were expected to read remained about the 

same at HL (Grade 4) and OL (Grade 2). There was an increase at FL (from Grade 0 to Grade 2). The 

average number of words per sentence remained more or less the same (and even decreased by 3 on 

HL Paper 1 in 2015), while the proportions of complex words also remained about the same.   

Examination Paper No. of 

Item 

Parts 

No. of 

words 

No. of 

sent-

ences 

Avg.  no. 

words 

per 

sentence     

No. of 

complex 

words 

(Percent) 

Flesch-

Kincaid 

grade 

level  

Average 

read-

ability 

grade 

2003 HL Paper 1 32 765 58 13 61 (8) 5.0 4 

2015 HL Paper 1 45 1335 135 10 123 (9) 4.1 4 

2003 OL Paper 1 40 662 76 8 35 (5) 2.6 2 

2015 OL Paper 1 41 1240 181 7 64 (5) 2.2 2 

2003 FL 32 530 73 7 23 (4) 1.6 0 

2015 FL  43 1027 140 7 57 (6) 2.3 2 

Table 4: Readability measures for JC examination papers in 2003 and 2015 

Conclusion 

The impetus for the Project Maths curricular reform arose, in part, from Ireland’s performance in 

PISA mathematics (NCCA, 2012). However, the current analysis does not indicate that the 

assessment of JC mathematics has been unduly influenced by the PISA approach. The distribution of 

items by content area on the JC examination in 2015 was similar to its predecessor in 2003, when 

viewed through the lens of TIMSS and PISA, though more Data and Chance items were included in 

                                                 

6 Again, for brevity, results for this section are reported for Paper 1 only for HL and OL. There is only one paper for FL 

for each year. 



 

 

 

2015. This is in line with the increased emphasis on Statistics and Probability in the new JC 

curriculum. While there were proportionally more Reasoning items (as defined by TIMSS) in the JC 

examination in 2015 than 2013, there were no Reflection items (as defined by PISA) in 2003 and 

only 2 in 2015. However, there was an increase in the proportion of PISA Connections items in the 

JC examination, and a reduction in the proportion of Reproduction items. One objective of Project 

Maths is to place more emphasis on higher-order cognitive processes, such as problem solving and 

reasoning in the mathematics curriculum and examinations. The analysis above suggests some 

movement in this direction in JC state examinations, but not to the extent that might be expected from 

such a comprehensive reform. The analysis also indicates that the 2015 JC examination is more 

similar to TIMSS than to PISA in terms of content and processes. This is reinforced by the finding 

that the proportions of items described as being presented in practical (rather than purely 

mathematical) contexts were similar in the JC 2003 and 2015 exams, despite large increases in the 

amount of text that students had to read. Remarkably, however, the readability (overall difficulty) of 

the text in the JC examinations was broadly similar in 2003 and 2015.  A study by King and Burge 

(2015) found that readability levels for clusters of PISA 2012 items ranged from US grade levels 7.5 

to 10.9 (UK reading ages 12.3 to 15.5 years). Hence, the linguistic complexity of PISA items is greater 

than that required for JC mathematics. The analysis here focuses only on state examinations of JC 

mathematics, and not on the implementation of Project Maths in the classroom. Given that Project 

Maths has now been fully rolled out, it would seem timely for an exploration of the extent to which 

teaching and learning has changed.  
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In this paper we present the design of specific digital resources and related methodology, conceived 

with the aim of exploiting connected classroom technology to carry out formative assessment 

processes in the mathematics classroom. The digital resources have been created and experimented 

within the European Project FaSMEd. By using a multi-dimensional theoretical frame developed 

within FaSMEd, we offer elements of validation for the design, focusing in particular on the 

activation of formative assessment strategies through the use of “helping worksheets”. The 

elements of validation will be illustrated through an example from a case study. 

Keywords: Formative assessment, technology, digital resources, task design. 

Introduction 

This contribution stems from the European Project FaSMEd (“Improving progress for lower 

achievers through Formative Assessment in Science and Mathematics Education”), aimed at 

investigating the role of technologically enhanced formative assessment (FA) methods in raising 

students’ attainment levels.  

Within FaSMEd, FA is conceived as a method of teaching where evidence from learning is used to 

adapt both teaching and learning. Wiliam and Thompson (2007, in Black & Wiliam, 2009) focus on 

three central processes in learning and teaching, which represent the aims related to the collection, 

interpretation and exploitation of these learning evidence: (a) Establishing where learners are in 

their learning; (b) Establishing where learners are going; (c) Establishing how to get there.  

In the model developed by Wiliam and Thompson these three central processes are connected to the 

three main agents that intervene (the teacher, the student, the peers) and to the FA key-strategies 

that could be activated: (A) Clarifying and sharing learning intentions and criteria for success; (B) 

Engineering effective classroom discussions and other learning tasks that elicit evidence of student 

understanding; (C) Providing feedback that moves learners forward; (D) Activating students as 

instructional resources for one another; (E) Activating students as the owners of their own learning. 

A theoretical model to analyse the use of technology in FA practices has been elaborated within 

FaSMEd (Aldon et al., in print, and Cusi, Morselli & Sabena, 2016). The model extends Wiliam 

and Thompson’s model, taking into account three main dimensions: (1) the five FA key-strategies 

described by Wiliam and Thompson (ibid.); (2) the three main agents that intervene; (3) the 

functionalities of technology. The third dimension - the functionalities of technology – was added 

within FaSMEd to focus on the ways in which technology can support the three agents in 

developing the FA strategies: (a) Sending and sharing, that is the ways in which technology 



supports the communication among the agents of FA processes; (b) Processing and analysing, that 

is the ways in which technology supports the processing and the analysis of the data collected during 

the lessons; (c) Providing an interactive environment, that is when technology enables to create 

environments in which students can interact to work individually/in group on a task or to explore 

mathematical/scientific contents. 

We argue that the FaSMEd three-dimensional framework may represent a useful tool for:  

 designing digital materials for technology-enhanced FA practices and the corresponding 

methodology, and 

 analysing how these materials are implemented in the classroom.  

In this paper we will refer to the study carried out in Italy, where we added the fundamental 

assumption that, in order to raise students’ achievement, FA has to focus not only on cognitive, but 

also on metacognitive factors (Schoenfeld, 1992). For this reason, our design is aimed at i) fostering 

students’ ongoing reflections on the teaching-learning processes, and ii) focusing on making 

thinking visible (Collins, Brown & Newmann, 1989) through students’ sharing of their reasoning 

with the teacher and the classmates, by means of argumentative processes.  

In the following we present the design of digital materials and of the methodology for their 

implementation in the classroom. We will then focus on the specific case of “helping worksheets” 

and analyse its implementation in a case study. The analysis will be based on the FaSMEd three-

dimensional framework. The analysis of FA strategy C (Providing feedback that moves learners 

forward) will be deepened with reference to the four major levels of feedback introduced by Hattie 

and Temperley (2007): (1) feedback about the task; (2) feedback about the processing of the task; 

(3) feedback about self-regulation; (4) feedback about the self as a person. 

Design of the digital materials and of the methodology for their implementation 

The research developed within FaSMEd has been built on the model of design-based research 

(Cobb et al, 2003), so it is based on successive cycles of design, observation, analysis and redesign 

of classroom sequences. The design experiments we carried out in Italy were characterised by three 

subsequent cycles of design. The first two cycles were carried out in March-May 2015 and in 

September-December 2015. The third cycle started in May 2016 and has not been completed yet. 

The results we present in this paper refer to the first two cycles of the design. 

In tune with the theoretical assumptions presented in the previous paragraph, we chose to use a 

technology that supports the students in sharing, discussing and comparing both their written 

productions and the strategies developed to carry out the different tasks. Specifically, we explored 

the use of a connected classroom technology (CCT), which creates a network between the students’ 

tablets and the teachers’ laptop, allowing the students to share their productions, and the teacher to 

easily collect the students’ opinions and reflections: IDM-TClass. 

The design experiments involved 25 classes (from grade 4 to grade 7) from three different clusters 

of schools located in the North-West of Italy. Each school was provided with tablets for the students 

and computers for the teachers, linked to IWB or data projector. In order to foster collaboration and 

sharing of ideas, students were asked to work in pairs or in small groups on the same tablet. 



During the first two cycles of design, we carried out about 450 hours of lessons. The researcher was 

in the class as both an observer and a participant (to support the teacher in the use of the technology 

and in the implementation of the digital resources). In some cases, also Master students were present 

as observers. The corpus of data is constituted by video-recordings of the lessons, written 

transcripts, field notes taken by the observers, teachers’ interviews after sequences of lessons, 

students’ written questionnaires and groups of students’ interviews during a Q-sorting activity 

(questionnaires and Q-sorting data were collected at the end of the design experiments). 

The use of IDM-TClass was integrated within a set of activities on relations and functions, and their 

different representations (symbolic representations, tables, graphs). These activities, in line with the 

aims of the FaSMEd Project, where adapted starting from existing research-informed materials. 

For each activity, we have prepared a sequence of different worksheets, to be sent to the students’ 

tablets or to be displayed on the IWB (or through the data projector). The worksheets were designed 

according to four main categories: (1) worksheets introducing a problem and asking one or more 

questions (problem worksheets); (2) helping worksheets, aimed at supporting students, who meet 

difficulties with the problem worksheets, through specific suggestions (e.g. guiding questions); (3) 

worksheets prompting a poll between proposed options (poll worksheets); (4) worksheets prompting 

a focused discussion (discussion worksheets). 

Usually the activity starts with a problem worksheet, sent from the teacher’s laptop to the students’ 

tablets. Students work in pairs or small groups of three. After facing the task and answering the 

questions, the pairs/groups send back to the teacher their written productions. The teacher can 

decide to send helping worksheets to some groups, or the groups can ask for them.  

After all groups have sent back their answers, the teacher sets up a classroom discussion in which 

the students’ written productions are shown and feedbacks are given by the teacher and by 

classmates. The discussion is engineered starting from the teacher’s selection of some of the 

received written answers, to be shown on the IWB, and aims at highlighting: (a) typical mistakes; 

(b) effective ways of processing the tasks; (c) the comparison between the different ways of 

justifying. During the part of the discussion focused on these aspects, therefore, the criteria for 

success could be clarified through the analysis and comparison of the different written productions. 

The teacher can also display the discussion worksheets or poll worksheets, if she realises that some 

specific aspects were neglected, to support the class discussion during different parts of the lessons. 

It is also possible to create polls on the spot to check students’ understanding, or their awareness 

about what has been developed during the activity, or their attitudes toward the activity. 

In the next paragraph we illustrate the design of the helping worksheets and the corresponding 

implementation, and present the analysis of an example from a case study. The example has been 

chosen because it is a paradigmatic one, which enables to highlight how the implementation of 

helping worksheets, through the support of CCT, fosters the activation of FA strategies and the 

dynamics between them. 



The design and implementation of the helping worksheets: Analysis of an 

episode 

Helping worksheets are conceived to support students in facing the tasks posed through the problem 

worksheets and are sent to selected students during the problem-solving phase, when: (a) they ask to 

receive a help; (b) the teacher realises that they are stuck; (b) the answers they send to the teacher 

highlight mistakes or difficulties. Moreover, helping worksheets may be sent to all groups, after they 

sent their answers to the teacher, as a checking tool for their work. 

Usually we design sets of differentiated worksheets, according to the possible difficulties students 

could meet when facing a problem worksheet. Since our activities are adaptations of existing 

research-informed materials, the hypothesis about students’ difficulties and the corresponding 

feedback that could be provided are drawn also from these materials. 

We focus on helping worksheet 1A (see figure 1), which is matched to problem worksheet 1 within 

an articulated activity on time-distance graphs. The activity, which is our adaptation of some 

materials from the Mathematics Assessment Program, developed at the University of Nottingham 

(http://map.mathshell.org/materials/lessons.php), starts with the interpretation of a given time-

distance graph and develops through the matching between graphs and stories and the construction 

of graphs associated to specific stories. We adapted the tasks in order to propose them to students 

from grade 5 to 7. To ground the time-distance graph on a meaningful activity, we designed an 

introductory activity on the use of a motion sensor (a device connected to a graphic calculator, 

showing, in real time, the Cartesian representation of a produced motion). 

Worksheet 1 introduces a task on the interpretation of a time-distance graph representing the 

journey of a student, Tommaso, from home to the bus-stop. The worksheets’ sequence connected to 

this task was conceived to gradually lead students in the interpretation of the graph, focusing their 

attention on the meaning of ascending, descending and horizontal traits of the graphs. Students are 

also asked to focus on the reasons supporting the correct interpretation of a time-distance graph, 

with the aim of making them, on one side, reflect on their thinking processes and share these 

processes with their classmates and, on the other side, consolidate their competencies in justifying 

and analysing their answers. The question on worksheet 1 (within the white box, see fig.1) requires 

students to interpret the meaning of a descending line within the graph. Students have to highlight 

that in the period of time from 50s to 70s the distance from home decreases, so Tommaso is going 

back for a while. Helping worksheet 1A (fig. 1) first of all makes students focus on the word 

“straight” to help them to abandon the idea that the graph could represent the drawing of the road. 

Moreover, it aims at fostering a correct interpretation of the descending line in the graph, making 

students look at two specific points within the graphs, that is (50, 100) and (70,40), to highlight that 

the distance from home is decreasing.  

Sending a helping worksheet to a specific group of students is a way to activate FA strategy C, 

because students are provided with feedback about the task (if they receive this kind of worksheets, 

they realise that their answers should be completed and/or corrected) and feedback about the 

processing of the task (the suggestions and the guiding questions on the helping worksheets are 

aimed at supporting the students in facing the problem). Moreover, giving feedback represents a 

way of making students activate themselves as owners of their learning (FA strategy E). 

http://map.mathshell.org/materials/lessons.php
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Journey to the Bus Stop 

Every morning Tom walks along a straight road from his home to a bus stop, a distance of 160 meters. 

The graph shows his journey on one particular day. 

 

1. Describe what may have happened. 

You should include details like how fast he walked. 

 

 

 

 

 

 

 

 

2. Are all sections of the graph realistic? Fully explain your answer. 
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(1) $What$happens$in$the$period$of$time$between$

50s$and$70s?$How$do$you$know$it?$$
!

Remember	 that	 Tommaso	 is	 walking	 on	 a	
straight	road.		
What	 is	 his	 distance	 from	 home	 after	 50s?	
What	is	his	distance	from	home	after	70s?”		

Help	to	answer	to	question	1:	

 

Fig. 1: The helping worksheet 

During our design experiments, some students (in particular, low-achieving students) face 

difficulties also in interpreting the purpose of the provided helping worksheets, as supports to face 

the tasks. This is a manifestation of their lack of metacognitive control. For this reason, after the 

first cycle of design experiments, we introduced the displaying and collective meta-level analysis of 

helping worksheets as a fundamental characteristic of the methodology for their implementation.  

As an example of this specific implementation of helping worksheets, we present and analyse an 

excerpt from a discussion on helping worksheet 1A, which was carried out in a 5th grade class. The 

discussion was aimed at making students aware of the goal of the helping worksheet and at pointing 

out specific mathematical aspects related to the task, namely to make them: (1) look at points within 

time-distance graphs as bearers of two linked information (the distance from home and the time 

spent); (2) interpret the variation of the distance in terms of moving away/approaching home; (3) 

avoid the typical mistake of interpreting the graph as a drawing. We remind that the researcher takes 

part in the discussion as both an observer and a participant. 

220 Researcher: The first ones who are going to speak are those who did not receive this 

helping worksheet. Let’s read the help that is given and try to say why, in your 

opinion, it is an help…what it helps you to do… The main question to be 

answered is still this one (she indicates question 1, presented in Worksheet 1). 

The help says (reading) “Remember that Tommaso is walking on a straight 

road. What is his distance from home after 50s? What is his distance from 

home after 70s?” 

221 Teacher: Why do the suggestions focus on this? 

222 Researcher: What do these questions help to do? 

Several students raise their hands. 

223 Carlo: Because they help you to understand the distance in the period between 50s and 70s. 

Because, at 70s, he is nearer… 



224 Researcher: So you are saying that it enables to look at the distance, aren’t you? 

This discussion was planned with the objective, on one side, of eliciting evidence of students’ 

understanding at a metacognitive level (strategy B), and, on the other side, of activating some 

students as resources for their classmates (strategy D). In fact, the researcher (lines 220, 222) and 

the teacher (line 221) are fostering a meta-reflection, involving the students that did not receive the 

help in clarifying the reasons why the questions posed on helping worksheet 1A could provide help 

in answering questions 1. Their aim is, therefore, to activate FA strategy C at the peer’s level. 

Specifically, Carlo’s intervention (line 223) represents a feedback about self-regulation because he 

highlights that the questions in worksheet 1A enable to focus on the change in Tommaso’s distance 

from home, during that period of time. Through this comparison with their classmates, students can 

therefore become aware of the kind of support that helping worksheets could give and can also 

develop new tools to face similar activities in an effective way.  

Then, the teacher focuses students’ attention on a part of the helping worksheet that was not 

mentioned by Carlo: 

225 Teacher: And why does it [the help] suggest that Tommaso is moving on a straight road? 

226 Carlo: Because it wants to make us reason on the fact that he is going back. 

227 Researcher: What mistake couldn’t be done if I remember that the road is straight? … 

(Silence) If I don’t know that the road is straight, what could I think? 

Anna mimes a curvy road with her hands. 

228 Arturo: I could think that the sensor initially indicates a direction, then he goes on the 

right… (Arturo is referring to the introductory activity with the motion sensor) 

229 Teacher: So a change in the direction. 

230 Researcher: That we are zigzagging, in a strange way. 

231 Teacher: It is the reason why it remembers us that the road is straight. You recalled, with 

your memory, what we experimented last time. If we hadn’t worked with the 

sensor, you, maybe, would have proposed different answers. 

Again the teacher and the researcher focus students’ attention on the suggestions contained in 

helping worksheet 1A to make them become aware of its role in supporting the resolution of the 

task (strategy C). The teacher (line 225) focuses on the first suggestion given in worksheet 1A 

(Remember that Tommaso is walking on a straight road) and the researcher (lines 227) aims at 

making students reflect on the possible misinterpretations that this suggestion wants to prevent. 

Students are, in this way, provided with both feedback about the processing of the task and feedback 

about self-regulation, because they can become aware of the possible mistakes that could be done in 

the interpretation of this kind of graphs, learning how to monitor their work. Also the teacher (line 

231) provides a feedback about self-regulation because she is making the students notice how the 

previous experience has influenced their answer to the current question. Carlo (line 226) and Arturo 

(line 228) are activated as instructional resources for their classmates (strategy D). 

Discussion 

In this paper we referred to the theoretical lenses provided by the FaSMEd framework to present 

and discuss the design of digital resources and the corresponding method of implementation, with a 

special focus on the helping worksheets. The analysis we developed, on one side, shows that the 



FaSMEd three-dimensional framework represents a useful tool for both designing digital materials 

for technology-enhanced FA practices and the corresponding methodology, and analysing how these 

materials are implemented in the classroom. On the other side, this analysis provides a validation of 

the design and implementation because the FaSMEd framework offers some important criteria 

according to which the digital worksheets and the methodology for their implementation can be 

evaluated as effective tools to foster FA processes: (1) the activation of different FA strategies; (2) 

the involvement of all the agents; (3) the evolution of the FA strategies (in particular toward strategy 

E, which should constitute a constant objective of the activities); (4) the different levels of feedback 

provided; (5) the support provided to the three fundamental FA processes.  

At the same time, the analysis of the design and implementation of the helping worksheets in the 

chosen episode enabled us to highlight a pattern that characterises the evolution of FA strategies 

when helping worksheets are implemented. In fact, the use of the helping worksheet, combined with 

the sending and displaying functionality of technology, turned into the activation of several FA 

processes, with the involvement of all the agents. During the group-work phase, by sending the 

helping worksheet to the students, the teacher is activating FA strategy C with the aim of activating 

also strategy E. After the group-work phase, a meta-level discussion devoted to the sharing and 

analysis of helping worksheet is planned by the teacher (strategy B). As a result of the design based 

process, two different ways of fostering students’ meta-level reflections have been identified: 

initially, the students who did not receive the worksheets are asked to reflect on the possible role 

played by the provided help (becoming instructional resources for their classmates, strategy D); 

then, the students who did receive the help (mostly low achieving students) are asked to discuss on 

the ways in which they used it, making their reasoning explicit and being activated as the owners of 

their own learning (strategy E). During the discussion, all the students receive feedback from the 

teacher and their classmates (strategy C) and are provided with the opportunity to clarify the 

learning intentions associated to the worksheet (strategy A).  

We think that this pattern, since it is recurring throughout our corpus of data, represents an 

important validation of the design of helping worksheets, because it highlights the effectiveness of 

these resources and their implementation in fostering the development of FA strategies and the 

fruitful involvement of all the agents. 

Other elements of validation can be highlighted if we interpret the results of the activities carried 

out through the helping worksheets in terms of the three fundamental FA processes that are 

supported: (a) the students are supported in establishing where they are in their learning when they 

use the help as a feedback to assess their own answer; (b) the teacher is supported in helping 

students clarify where they are asked to go when, during the class discussion, the characteristics of 

given answers are analysed and discussed; and (c) the teacher and the students are supported in 

establishing what needs to be done to get there when, during the class discussion, the helping 

worksheets are analysed to highlight in what ways they could help and what kind of suggestions 

they give. 

We are now developing a similar analysis to highlight, referring to these criteria, how the other 

categories of worksheets are used to foster the activation of FA strategies through the support 

provided by technology. This will enable us to identify the connections and mutual support between 



the different worksheets and the methodologies through which they are implemented during the 

lessons. 
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This contribution is framed in a European project on the use of technology to foster formative 

assessment strategies (FaSMEd project) and addresses the crucial issue of feedback therein. The 

theoretical framework refers to formative assessment, with specific focus on different levels of 

feedback. By analyzing data from teaching experiments in grades 5 and 7, we identify strategies 

employed by the teacher to provide feedback during class discussion and investigate the effect of 

such strategies on the enactment of formative assessment. 
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Introduction and theoretical background 

Formative assessment and feedback 

This contribution is framed within the European Project FaSMEd (“Improving progress for lower 

achievers through Formative Assessment in Science and Mathematics Education”), aimed at 

investigating the use of technology to promote formative assessment (FA) practices in the 

mathematics and science classroom. FA is conceived as a method of teaching where 

“[...] evidence about student achievement is elicited, interpreted, and used by teachers, learners, 

or their peers, to make decisions about the next steps in instruction that are likely to be better, or 

better founded, than the decisions they would have taken in the absence of the evidence that was 

elicited” (Black & Wiliam, 2009, p. 7). 

Wiliam and Thompson (2007) describe five key FA strategies: (A) Clarifying and sharing learning 

intentions and criteria for success; (B) Engineering effective classroom discussions and other 

learning tasks that elicit evidence of student understanding; (C) Providing feedback that moves 

learners forward; (D) Activating students as instructional resources for one another; (E) Activating 

students as the owners of their own learning.  

Feedback is a crucial issue in FA. Hattie and Temperley (2007) define feedback as “information 

provided by an agent (e.g., teacher, peer, book, parent, self, experience) regarding aspects of one’s 

performance or understanding” (p.81) and identify four major levels of feedback: (1) feedback 

about the task (concerning how well a task is being accomplished or performed); (2) feedback about 

the processing of the task (concerning the processes underlying tasks or relating and extending 

tasks); (3) feedback about self-regulation (concerning the way students monitor, direct, and regulate 

actions toward the learning goal); (4) feedback about the self as a person (consisting in positive 

(and sometimes negative) evaluations and affect about the student). Hattie and Temperley also point 



 

 

out that feedback is a consequence of specific actions and that can also be sought by students, peers, 

and so on, and detected by a learner without it being intentionally sought.” (p.82). 

Enhancing formative assessment: technology and tasks 

Specific theoretical and methodological assumptions of the Italian team (the three authors) within 

FaSMEd concern the importance of fostering students’ development of ongoing reflections on the 

teaching-learning processes, and helping students to make their thinking visible (Collins, Brown and 

Newmann, 1989), sharing their ideas with the teacher and the classmates. These basic assumptions 

entail specific choices concerning the technology and the tasks. 

Concerning technology, each class is equipped with a Connected Classroom Technology (CCT) 

through which the students’ tablets and the teacher’s laptop are connected. In order to foster 

collaboration and sharing of ideas, students are asked to work in pairs or in small groups on the 

same tablet. By means of the CCT equipment, students are able to receive worksheets from the 

teacher, send back their written answers, and answer to instant polls proposed by the teacher; the 

teacher can easily collect the students’ opinions and reflections during or at the end of an activity, as 

well as the written answers, and receive the statistics concerning the answers to the polls. The 

teacher’s computer is connected to an Interactive White Board (IWB) or a projector, so that it is 

possible to select and display written productions and the results of polls.  

Concerning the tasks, students are asked to work on sequences of activities with a strong 

argumentative component: they are required to provide their answer and explain it in a written text. 

In this way, they are encouraged to make their thinking visible and to provide the teacher and the 

peers with a written text that will be shared and analysed during mathematical discussions (Bartolini 

Bussi, 1998). The mathematical content at issue is relationships and functions, and their different 

representations (symbolic, tabular, graphic). Activities are adapted from the ArAl project (Cusi, 

Malara & Navarra 2011) and The Mathematics Assessment Program (http://map.mathshell.org).  

Summing up, the typical lesson starts with a peer activity on one worksheet. After having collected 

all the students’ written answers, the teacher promotes a class discussion, starting from the analysis 

of some written answers (selected and displayed on the IWB). The discussion concerns the task 

level (correct answers and typical mistakes), the task processing level (effective ways of 

approaching the task) and the communicative level (effective ways of communicating the answer 

and the explanation). Comparison between different solutions is especially promoted. For further 

details on the organization of the lessons, see (Cusi, Morselli and Sabena, 2016).  

Previous results and the current research questions 

In former studies (Cusi, Morselli and Sabena, 2016) we analysed classroom discussions performed 

within the FaSMEd teaching experiments, and highlighted that CCT may support the activation of 

FA strategies by the teacher, by the peers (peer assessment), and by the student himself (self-

assessment). In this contribution we focus on strategy C (providing feedback that moves learners 

forward) and we investigate: what are teacher’s strategies that may foster FA strategy C; which 

level of feedback is provided; what are the effects of this strategy (in terms of activation of other 

strategies such as D and E). 



 

 

The context 

In Italy the FaSMEd project involved 20 teachers, from three different clusters of schools located in 

the North-West of Italy (from grade 4 to grade 7). During all the teaching experiments, one of the 

authors was present in the classes with the teachers, acting as a participant observer. The analysis is 

based on video-recordings of the classroom discussions, with the help of written transcripts and 

field notes by the participant observer (one of the authors). 

Analysis 

By analysing several episodes from the teaching experiments, we came to a first characterization of 

teacher’s feedback strategies, that is the ways in which she gives feedback to students. In the 

subsequent part, we provide a short example for each kind of feedback strategy, highlighting the 

level of feedback provided. Moreover, we will discuss the effects of each feedback strategy in terms 

of activation of FA strategies. All the examples come from the third lesson on time-distance graphs, 

performed in grade 7. The lesson sequence on time-distance graphs (about 20 hours, 8 worksheets) 

was adapted from the Mathematics Assessment Program (http://map.mathshell.org) and was 

introduced by an experience with a motion sensor, which provided instantaneous graphical 

representation of a linear motion performed by the students. This lesson was chosen because it 

contains all the typical teacher’s feedback strategies that recurred in different classes and grades in 

our teaching experiments. Here we refer to worksheet 6, where a graph and three possible stories are 

presented:  Scheda	6	

 
	
RISPOSTA:	

 

Story A: Tommaso took his dog for a walk to the 

park. He set off slowly and then increased his 

pace. At the park Tommaso turned around and 

walked slowly back home. 

Story B: Tom rode his bike east from his home 

up a steep hill. After a while the slope eased off. 

At the top he raced down the other side. 

Story C: Tommaso went for a jog. At the end of 

his road he bumped into a friend and his pace 

slowed. When Tommaso left his friend he walked 

quickly back home. 

The students are asked to answer to the following question: “What is the story that this graph 

represents? Justify you answer.” Students work in pairs and send their written answers to the 

teacher’s computer, as soon as they feel ready. The teacher, together with the participant observer, 

reads the answers as they arrive at her laptop and selects some of them for the discussion. The first 

selected answer is the one by the group of Mil and Pon: 

“For us the answer is B for two reasons: 

1. You cannot do 1600 meters by foot in half an hour 

http://map.mathshell.org)/


 

 

2. The graph represents precisely the information given by the story. Then Tommaso climbs 

the hills, the first trait is the climb, the second is still a climb but less steep. When he 

comes to the top, then Tommaso climbs down and goes back home”.  

We may observe that Mil and Pon highlight two reasons for the choice of story B: the first one is 

based on everyday life experience (they draw from the graph the information that 800+800 meters 

are walked, and they point out that it is not possible to walk for 1600 meters in half an hour; since it 

is actually possible to walk 1600 meters in half an hour, this argument is wrong), the second one is 

based on a wrong interpretation of the graph: they interpret the graph as a picture of the hill, that 

Tommaso first climbs up and then descends down. For the teacher, the discussion of students’ 

production is the occasion for giving feedback on two levels: about the task (clarifying that the 

graph represents the relation between distance from home and time, and is not a picture of the hill, 

so it does not share with it any resemblance, in principle) and about the way of processing the task 

(pointing out that the justification must be based on a careful analysis of the information provided 

by the text and the graph). To this aim, the teacher promotes a discussion (strategy B). Mario is 

asked to read the production of Mil and Pon, then the discussion starts.  

Transcript Analysis 

217. Teacher: Then, answer B for two 

reasons. Ok, Lollo? 
The teacher encourages the students to activate 

themselves as resources for Mil and Pon (strategy D). 

218. Lollo: We did, because… we did 

the experience with the motion 

sensor… that if the line was more 

oblique the… the line, if it was 

more oblique, it meant that he 

(Tommaso) went faster, it did not 

mean that the road was steeper, 

because if the road is steeper you 

go slower… 

Lollo gives a feedback about the task (strategy C), 

suggesting that the different inclination of the 

segments should be interpreted in terms of different 

speed. To warrant his statement, he refers to the 

experience with the sensors. He activates himself as 

resource for Mil and Pon (strategy D). He also adds 

that, when the road is steeper, usually one goes slower, 

and not faster, referring to everyday experience.  

219. Teacher: Rob?  

220. Rob: This is a graph, it is not the 

drawing of the hill. 
Rob makes explicit that the graph does not represent 

the drawing of the hill, giving a feedback about the 

task to Mil and Pon. He activates himself as 

instructional resource for his classmates (strategy D), 

providing feedback about the task (strategy C). 

221. Teacher: It is not the drawing of 

the hill, it is the graph that 

represents what? 

The teacher encourages Rob to make explicit his 

comment to Mil and Pon’s answer. This intervention 

is a relaunching: she poses another question, linked to 

Rob’s intervention, with the aim of deepening the 

analysis. Relaunching Rob’s intervention the teacher 

implicitly gives a feedback (strategy C) to Rob 

himself, suggesting that his intervention is worthwhile. 



 

 

222. Rob: The… the journey of one 

boy, and anyway they told that it 

is not possible to do 1600 meters 

in half an hour, we already said it 

last time [he refers to the lesson 

with motion sensors], it is a 

graph, it doesn’t have to be really 

real… really near to reality. 

Rob gives a feedback (strategy C) about the processing 

of the task, pointing out that the justification must not 

rely on empirical arguments but on the interpretation 

of the task. The teacher’s relaunching is efficient in 

turning Rob’s former intervention, which provided a 

feedback about the task, into a meaningful feedback 

about the processing of the task. 

223. Observer: Do you understand what 

he is saying? 
 

224. Mario: For me you can do it easily, 

you can even do 2 or 3 

kilometers… 

Mario challenges Mil and Pon’s justification A, on the 

basis of empirical experience. Mario is giving a 

feedback on the task (strategy C): the first answer 

relies on a wrong argument. 

225. Rob: For me yes…  

226. Teacher: Then, the fact of 1600 

meters in half an hour, your 

classmate says that actually you 

can do it in half an hour, then that 

is not a good motivation. 

Somebody else was talking about 

the second motivation, motivation 

B, the fact that the graph explains 

us that Tommaso climbs the hill 

and so on. Lollo said: “No, 

because when we did the 

experience with the sensor we 

went on a oblique line, but the 

path we were doing was not on a 

hill, it was not steep”.  

The teacher synthetizes the interventions of Lollo, 

Mario and Rob, stressing that the justification 1 is not 

correct. Then she shifts the focus on justification 2, 

focusing on the correct interpretation of oblique lines 

within a time-distance graph. In this way, she activates 

strategy C, giving Mil and Pon a feedback about the 

task (it is a mistake to interpret the task as the picture 

of a hill) and the processing of the task (focusing on 

the ways in which the time-distance graphs should be 

interpreted). Here we may see instances of both 

rephrasing (the teacher reformulates some arguments 

so as to make them more intelligible to the mates) and 

revoicing (the teacher revoices some of the students’ 

interventions, so as to draw the attention on specific 

effective parts of the given arguments). 

227. Ur: Teacher, but I agree with what 

Lollo said. I thought that if it is 

steep you walk slowly, while 

after, when it becomes less steep, 

Tommaso goes faster.  

Ur intervenes, referring to Lollo’s first intervention 

(218). Ur activates herself as owner of her own 

learning (strategy E). This intervention confirms that 

Lollo became a resource for his mates. 

228. Teacher: But the fact that… you 

say: “the fact that the road is more 

or less steep can give us 

information on the reasons why 

he goes faster or slower”… 

The teacher gives a quick feedback to Ur, 

reformulating her sentence, so that other students can 

intervene. This is again an example of rephrasing. 

229. Mark: Teacher, moreover we told 

that with the sensor if we went 

faster… the segment went more 

Mark intervenes making reference to the experience 

with sensors (thus linking the inclination to the speed) 



 

 

vertically, but here … they say 

that he is climbing and he goes 

too much… he goes fast, and then 

when it [the segment] becomes 

less steep he goes less fast. I don’t 

know, in the descent he goes 

really faster than on the other two 

traits, but if they say that he 

climbs up in the first trait, he goes 

fast, and then when it starts being 

plane he goes less fast. 

 

[…] 

and pointing out that something doesn’t work in what 

Mil and Pon wrote: in their interpretation of the graph 

as a picture the first trait is the steeper part of the hill, 

but in the interpretation of the graph in terms of speed 

(as in the previous experience with the motion 

sensors) the segment is steeper when the speed 

increases. Mark expresses his own doubts about the 

two contrasting interpretations: in reference to 

everyday experience, it is not so common to walk 

faster in the steeper trait of a hill. Mark’s intervention 

is an instance of strategy E, but his intervention could 

also act as feedback for Mil and Pon (strategies C, D).  

234. Teacher: But I… this answer really 

tells that the first segment, the 

first two parts of segment that go 

up describe the hill, the steep 

climb, the less steep climb, the 

top and after the descent… 

The teacher goes back to Mil and Pon’s written 

answer, so as to foster the comparison between their 

answer and the intervention of Mark. By contrasting 

in this way the two answers, the teacher is implicitly 

giving a feedback to Mil and Pon (strategy C) and 

turning Mark as instructional resource for them 

(strategy D). 

235. Student: That is wrong. This intervention confirms that the contrasting was 

efficient in fostering the comparison between the 

different positions of Mark and Mil and Pon.  

236. Teacher: Then the idea that the 

segments, as Rob said… “the 

graph is different from the 

drawing of a hill”, or Lollo said 

“when we did it with the sensors 

we saw this kind of segments but 

we were not climbing, it meant 

that we changed the speed”… 

Let’s remember always that the y 

axis describes what? The distance 

from home in meters. 

The teacher intervenes with a rephrasing: she teacher 

reformulates and synthetizes the interventions of the 

students, so as to give a feedback to Mil and Pon. The 

activated strategy is C (providing feedback). In this 

way she is efficient in turning the feedback about the 

task into a feedback about the processing of the task 

(she draws the attention on the meaning of the two 

axes). We call this kind of intervention a rephrasing 

with scaffolding, since the teacher, besides 

rephrasing, adds some elements to guide the work on 

the graph.  

Results and discussion 

Within the FaSMEd project, we performed several teaching experiments in grades 5 to 7, setting up 

task sequences and proposing them in a CCT environment. As a first result (Cusi, Morselli and 

Sabena, 2016), we showed how technology may support the activation of several FA strategies. In 

the current paper we focused on FA strategy C (providing feedback) and explored the ways in which 

the teachers may intentionally provide feedback during class discussions, the kind of feedback that 

is provided and the possible links with FA strategies.  



 

 

The analysis of several class discussions performed during the teaching experiments led us to 

identify typical strategies employed by the teacher to provide feedback. Such strategies are 

exemplified in this paper through the analysis of a class discussion in grade 7. Here we summarize 

the strategies and discuss further developments of our study. The first strategy is revoicing, that 

occurs when the teacher mirrors one student’s intervention so as to draw the attention on it. Often, 

during the revoicing, the teacher, stresses with voice intonation some crucial words of the sentence 

she is mirroring. Rephrasing takes place when the teacher reformulates the intervention of one 

student, with the double aim of drawing the attention of the class and making the intervention more 

intelligible to everybody.  Rephrasing is applied when the teacher feels that the intervention could 

be useful but needs to be communicated in a better way so as to become a resource for the others. 

We also found special instances of rephrasing, when the teacher, besides rephrasing, adds some 

elements to guide the students’ work. Drawing from Wood, Bruner & Ross (1976) the term 

“scaffolding”, we call this special strategy a rephrasing with scaffolding. The revoicing and 

rephrasing strategies are used to activate strategy D, since they turn one student (the author of the 

intervention) into a resource for the class. Moreover, we observed that often revoicing and 

rephrasing (and rephrasing with scaffolding) are efficient in promoting the evolution of the kind of 

feedback, for instance (as in the reported example) from a feedback on the task to a feedback on the 

processing of the task. Relaunching occurs when the teacher reacts to a student’s intervention, 

which (s)he considers interesting for the class, not giving a direct feedback, but posing a connected 

question. In this way, by relaunching the teacher provides an implicit feedback (strategy C) on the 

student’s intervention, suggesting that the issue is interesting and worth to be deepened or, 

conversely, has some problematic points and should be reworked on. Contrasting takes place when 

the teacher draws the attention on two or more interventions, representing two different positions, so 

as to promote a comparison. By contrasting, FA strategy D and E are activated (the authors of the 

two positions may be resource for the class as well as responsible of their own learning).  

The aforementioned strategies, besides being efficient ways to boost the discussion, are powerful 

formative assessment tools, since they foster the activation of formative assessment strategies. 

When addressing one student’s statement, the teacher gives an implicit feedback on it (strategy C), 

suggesting the intervention deserves further attention. Moreover, in this way strategies D and E are 

activated and the feedback may evolve from feedback on the task to feedback on the processing of 

the task. We deem that this kind of classification may shed light into the crucial role of the teacher 

in enhancing FA within class discussions. All the documented strategies seem to be intentionally 

applied by the teacher. Anyway, the given feedback is implicit, since the teacher does not address 

directly the correctness of the student’s intervention. As a consequence, the feedback is not always 

sought by the students. We are aware of the fact that we were able to single out and discuss only 

some effects of a given feedback, namely when a student explicitly refers to a previous intervention 

or changes his mind immediately after an intervention by a peer or by the teacher. Other effects of a 

given feedback are less visible during a class discussion: in order to study them, it will be necessary 

to analyse further activities of the students or collect a-posteriori interviews.  

For the moment we focused on class discussions around the analysis and comparison of students’ 

written productions. In the future we plan to go on with our analysis, focusing on other crucial 



 

 

moments of the teaching experiments, such as the discussion after a poll, or the discussion on 

specific helping worksheets. As a further development, we plan to compare the strategies we 

outlined with Bartolini Bussi (1998)’s classification of teacher’s interventions during a 

mathematical discussion. Moreover, we aim at complementing the present study, concerning the 

way feedback is given (feedback strategies), with a study on the content of feedback. To this aim, 

we plan to deepen the categorization of levels of feedback provided by Hattie & Temperley (2007), 

so as to take into account the specific features of the proposed mathematical tasks.  
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Mathematics students’ attitudes to group-based project exams 

compared to students in science and engineering  

Bettina Dahl1 

1 Aalborg University, Denmark; bdahls@plan.aau.dk  

At Aalborg University, science, engineering, and mathematics students spent half the time each 

semester working in groups on projects within a problem based learning (PBL) curriculum. They 

are assessed through group exams. A survey showed that overall, the students are positive towards 

the group exam but there are significant differences between engineering, science, and mathematics 

students. Within this collectivistic student culture, some engineering students are very positive 

towards group exams, while mathematics, science, and other engineering students are less positive. 

In terms of the opportunity to obtain a fair grade in a group exam, the mathematics students are 

moderate positive, with different engineering students being more or less positive. All students 

agree that a group exam gives less differentiation of grades compared to an individual exam. 

Keywords: attitudes; project exam; group exam 

Introduction 

At Aalborg University (AAU) in Denmark, science, engineering, and mathematics students work 

half the time each semester in groups of four to eight students on a project in a problem based 

learning (PBL) curriculum. PBL is student-centred and self-directed learning in teams with problem 

analysis and problem solving (Barge, 2010). The project is documented as a joint written report with 

an oral group exam lasting around four hours. This exam has traditionally consisted of two phases: 

First the group presents the project, then the external examiner and the supervisor examine the 

group. Each student is awarded a grade that may not be the same as the others. From 2006–2012 the 

Danish government banned group exams, but during this time AAU students still worked in PBL 

groups but the exam became an individual oral exam of around half an hour per student. This 

situation led to research on assessment methods in PBL, and Kolmos and Holgaard (2007) 

concluded that the students, the academic staff, and the external examiners preferred the group 

exam. One argument was that the students were not able to interact with each other during an 

individual exam, hence it was not possible to test PBL process competencies such as collaboration 

and teamwork. Since Danish law states that a grade solely depends on the student’s performance at 

the exam (they cannot earn partial credits during the semester), this created a misalignment between 

PBL teaching and the assessment methods. In 2013 the group exam was reintroduced in Denmark 

and at AAU. The Faculty of Engineering and Science (FES) now added an individual phase into the 

previous group exam, where each student is questioned without interference from the group. Dahl 

and Kolmos (2015) found that the students overall were in favour of the reintroduction of the group-

based project exam, but that students from two different engineering programmes were not equally 

positive, partly owing to their previous experience with the individual project exam and partly 

owing to professional cultures of individualism or collaboration influencing their attitudes. Maull 

and Berry (2000) and Bingolbali et al. (2007) showed that mathematics and engineering students are 

different in terms of their learning of mathematics, so one might ask whether a similar division 



 

 

between engineering and mathematics students is seen in relation to which type of exam is 

perceived appropriate. This paper therefore compares students from eight programmes in science, 

engineering, and mathematics in relation to how they perceive the new group exam, the new 

individual phase as well as the opportunity to obtain a fair grade. 

Theoretical background 

Alignment and exams 

Biggs and Tang (2011) argue that in order for students to learn the intended learning outcomes 

(ILOs), teaching should be constructively aligned with the ILOs and the exam. This theory fits other 

studies stating that an upcoming exam is a key factor for students’ motivation and learning (Boud & 

Falchikov, 2006); i.e. the ‘backwash effect’ of exams. Hence, one can argue that in a PBL 

curriculum, the exam method should be aligned with the team-based and collaborative teaching 

method and the ILOs on PBL process competencies. Romberg (1995) argues that a group exam is 

able to test “reflection on one’s own thinking, reasoning and reflection, communication, production, 

cooperation, arguing, negotiating” (p. 165). One can thus argue that a group exam assesses PBL 

competencies of communication and cooperation. However, each programme also prepares the 

students for a professional life after the university so the problems that the students address vary and 

AAU’s PBL model is developed “on the basis of both professional and educational argumentation” 

(Kolmos et al., 2004, p. 9). One might anticipate that professional culture influences the students’ 

views of the group exam, particularly master students. 

Cultural differences in engineering, science, and mathematics 

Murzi et al. (2015) studied how students perceived their discipline culture using Hofstede’s 

dimensions. One dimension measures individualism versus collectivism. Overall, students had a 

high individualistic score. Mathematics, computer engineering, and electronic engineering students 

were among the less individualist students. This fits the study by Burton (2004) where a majority of 

professional mathematicians worked co-operatively. Murzi et al. (2015) further argued that they had 

expected industrial design students to be more collectivistic as they rely on collective work in team 

projects but the results were opposite. Architect students’ scores fell between mathematics and 

industrial design. Dahl and Kolmos (2015) also found significant differences between the 

engineering programmes Architecture and Design (AD) and Software Engineering (SE) at AAU. SE 

students were significantly more positive toward the group exam than those of AD. AD combines 

architecture with civil engineering and students here expect a more individual-oriented programme 

whereas SE is a system-oriented approach and a collaborative profession. 

Research questions 

How do the students from the eight programmes view the group-based project exam compared to 

the individual project exam and the individual phase of the new group exam? How do they 

experience the grading? What does this tell us about mathematics assessment in PBL? 



 

 

Methodology 

The questionnaire was piloted after the January 2013 exams and the revised questionnaire consisted 

of 20 questions of which most had several sub-questions. After the June 2013 exams, all 4,588 FES 

students received a link to this questionnaire and 1,136 responded. The response rate was relatively 

low (25%), which unfortunately is not uncommon for online surveys, but the level is still reasonable 

(Nulty, 2008). The response rate for each study programme cannot be determined separately but the 

number of student responses were as follows: Computer Science (CS: 40), Energy (EnE: 50), 

Mechanics and Production (MP: 39), Physics and Nano science (PN: 27), Architecture and Design 

(AD: 79), Mathematics (M: 28), Software (SE: 51), and Electronic (ElE: 48). In this paper, all 

questions are translated from Danish by the author. The programmes compared all had a relative 

large number of students who responded. The engineering programmes are civil engineering. 

Results 

Views of individual versus group-based project exam 

Of all FES students, 34% preferred the individual exam and 57% the group exam, but students in 

different programmes were not equally positive towards the group exam (see Figure 1). 

 

Figure 1: “I would prefer an individual project exam” 

EnE students were the least positive towards the group exam while SE students were the most 

positive. Table 1 shows the programmes that were significantly different. 

 EnE AD PN M 

CS .047 .037   

ElE .043    

SE .002 .004 .041 .031 

Table 1: Significant differences in answers to the question if they preferred the individual exam 



 

 

SE and EnE are at opposite ends of the group-individual preference and they are each significantly 

different from many programmes. SE, CS and ElE are the most collective while EnE, AD, PN, M 

are the more individualistic, although M appears to be more moderately individual. MP are not 

significantly different from any. Master students are significantly more positive towards the 

individual exam than bachelor students (p = .001). Almost half the master students preferred the 

individual exam while only a third of the bachelor students did. Comparing bachelor and master 

students in each programme, there is only a significant difference for ElE (p = .002).  

The survey asked a related question: “The time spent on the individual part is better spent on a 

longer joint part?” Of all FES students, 34% agreed, 50% disagreed, and 15% did not know. The 

students do not differ except MP, which is significantly different from AD (p = .005) and M (p = 

.030) (see Figure 2). Overall the students are positive towards the individual phase, particularly M. 

There is not significant difference (p = .114) between bachelor and master students for all FES. 

When comparing students in each programme, MP bachelor and master students are significantly 

different (p = .024) but here the master students are the more positive toward the group exam.  

 

Figure 2: “The time spent on the individual part is better spent on a longer joint part” 

How did the students experience the opportunity to obtain a fair grade? 

A question asked if the students were satisfied with their own grade. Overall, 83% agreed and there 

was not a significant difference between the eight programmes. Another question asked whether 

they found that all their group members had received a fair grade. Here only 66% agreed. In all 

groups, a majority of students had agreed but EnE (61%) and AD (59%) agreed significantly less 

than SE (76%) and PN (85%). EnE was different from SE (p = .046) and PN (p = .037) while AD 

was (p = .019) different from SE and PN. When comparing each programme, most had given 

significantly different answers to the two questions except ElE (p = .064), PN (p = .324), and SE (p 

= .760).  



 

 

The survey also asked the students who had tried the individual exam whether the new group exam 

gave a better or a worse opportunity to obtain a fair grade. The views differ greatly (see Figure 3). 

 

Figure 3: “Does the group exam provide a better or worse opportunity to obtain a fair grade…?” 

When comparing the programmes, one sees that only M is not significantly different from any of the 

others while students from several of the engineering programmes answer significantly differently 

from each other (see Table 2). M therefore appears to be quite moderate in their views of whether or 

not the group exam gives a better or worse opportunity to obtain a fair grade. CS, ElE, SE, MP and 

to some extent PN are more positive towards the group exam as giving them a fair grade, while AD 

and EnE in general state that it provides them a worse opportunity to obtain a fair grade, compared 

with the individual exam. The students answering this question were all from the second year or 

older, as these were the only ones who had experienced both types of exams.  

 CS ElE SE MP PN 

EnE .001 .004 < .001 < .001 .015 

AD .030 .039 < .001 .005  

Table 2: Significant differences in answers to the question if the group exam provided a better or 

worse opportunity to obtain a fair grade 

The survey also asked the students whether there was a larger differentiation of grades in the group 

exam compared to the individual exam. The Danish grade scale has five passing grades (2, 4, 7, 10, 

12) and two failing grades (-3, 0). This question relates to an internal discussion at both AAU and in 

Denmark debating if the group exam uses less of the grade scale as it is harder to give a precise 

individual grade and weaker students can hide and good students are not rewarded. Only a minority 

of the students confirmed that the group exam resulted in more differentiated grades. The lowest 

was ElE, where 7% said that the group exam resulted in more differentiated grades to some or to a 

higher extent, while the highest was M with 29%. This difference was not significant (p = .069). 

 



 

 

 

Conclusions 

Individual versus group exam and the individual part of a group exam 

The students were in general very positive towards the group exam but there are significant 

differences. Murzi et al. (2015) found that mathematics, computer engineering, and electronic 

engineering were among the least individualistic within a very individualistic student culture. One 

might argue that in general the AAU students are used to working in PBL and thus have a more 

collectivistic culture since, overall, the majority of students were in favour of the group exam when 

asked to compare it to an individual exam. This study of AAU students shows that in agreement 

with Murzi et al. (2015), CS and ElE were among the most collectivistic students as they were 

among the most positive towards the group exams. However, this is stated within the frames of a 

collectivistic AAU culture. Murzi et al. (2015) found mathematics students to also be among the 

least individualist, however at AAU, M appeared to be among the more individualistic students, 

even though AD and EnE appeared to be even more individualistic. Architect students in Murzi et 

al. (2015) were not among the individualist groups. In relation to their attitudes to the time spent on 

the individual part of the group exam, M were the most positive toward the individual part. M was 

again close to AD but quite different from MP. PN students were closer to the M students.  

Master students were generally more positive toward an individual exam than bachelor students, 

especially ElE. However MP master students appeared very positive toward having a longer joint 

part in the new group exam. One might argue that this is related to the fact that the master students 

have been used to the individual exam prior to 2013, or perhaps to how they perceive their future 

professional life (wrongly or rightly) might have an impact. 

Fairness of grades 

The students were overall satisfied with their own grade but relatively less satisfied with the grades 

given to their peers. Given the relatively low response rate, it could make sense that students answer 

this question significantly differently. The question in the questionnaire did not explicitly ask if their 

peers were over/under-graded, but it appears that seeing how their peers behave at the exam, 

perhaps with reference to their work during the semester and then experiencing what grade they 

received, often left the other students feeling some degree of unfairness. More research is needed 

here in order to determine why. The students also differed when they compared the group and the 

individual exam in relation to the opportunity to receive a fair grade. Here, M was more or less in 

the middle, not being significantly different from any of the other programmes. In general one sees 

that the same programmes as above show ‘collectivist’ preferences (CS, ElE, SE, MP) and 

‘individualistic’ preferences (AD, EnE), which to some extent validate the results shown above and 

show that the students are consistent in their answers. However, one also needs to discuss to what 

extent their experience of receiving a fair grade is correct. Do students always know which grade 

they deserve? Furthermore, the perception – rightly or wrongly – of not being awarded a fair grade, 

might negatively influence their view of the exam. Students are occupied by fairness in grading and 

their perception of justice is significantly affected by the assessment method (Burger, 2016).  



 

 

Students appear to obtain more similar grades when they are assessed as a group than if they are 

assessed individually. The question is then – which is the right grade? One might argue that in a 

group exam of up to eight students, it might be difficult to make a distinction between each group 

member, which to some extent might explain the different opinions about own grade and the grade 

of the group members, and the same question can only be asked once. On the other hand, one might 

also argue that since a group exam to some extent is able to test PBL process competencies, which 

an individual exam cannot, the grades given in a group exam are the more accurate.   

Summing up and impact for mathematics assessment 

It appears that mathematics students are not distinct from engineering or science students on the 

issue of preference for individual or group exams. The eight groups were mixed; ergo mathematics 

students were more similar to some engineering students but different from others. This is different 

from what is known from how the learning of mathematics takes place when comparing 

mathematics and engineering students. For instance Bingolbali et al. (2007) found that engineering 

students see mathematics as a tool and therefore wish to see the application side. In science, 

engineering, and mathematics PBL projects, mathematics is applied to solve problems, but in a 

mathematics project, the body of mathematical theorems used to solve a problem usually takes up a 

considerable part of the project work and the report. Thus, the role of mathematics is different in the 

PBL projects in each programme. Assuming that the group exam is the best fit to PBL, it is 

unexpected that the students are not more in agreement with each other about the group exam. An 

obvious answer is that the group exam does not fit each programme equally well. The more 

moderate views of the mathematics students could indicate that it is a reasonably good fit when 

there is an individual phase as this is a way to serve both the individual and collaborative aspects of 

mathematics. 

The question of individualistic or collective attitudes may also depend on the overall student 

culture. Murzi et al. (2015) found that mathematics students were among the least individualistic 

within an individualistic culture, while this study found the mathematics students to be among the 

most individualist students within a collectivist culture. With caution, one might argue that the most 

individual student cultures were AD and EnE, with M and PN also being individualistic but not as 

much. The most collectivist student cultures were SE and CS, with ElE and MP also being 

collectivistic but not as much.  

However, the above conclusions should be treated with caution as the students base their attitudes 

about the group exam on the ‘learnt’ curriculum (Bauersfeld, 1979), which is not necessarily the 

same as the intended curriculum. The group exams were intended to be the same throughout the 

FES and prior to the reimplementation, workshops had prepared the supervisors for this type of 

exam. It is, however, unlikely that all group exams were identical as students, supervisors, and 

external examiners were different. One should therefore hesitate to draw too strong conclusions, 

particularly also taking into account the relatively small response rate. The results are indications of 

how students in different programmes at a Danish PBL university perceive a group exam and 

therefore which attitudes curriculum planners might expect from students if other universities wish 

to implement a type of project work or group exams. Curriculum planners need to consider what is 

the general ‘culture’ of collaboration both at the university and in the future profession, they need to 



 

 

consider how the exam has a backwash effect on how the students work, and that bachelor and 

master students might not perceive such an exam in the same way. The group exam might also be a 

better fit for some groups than others, but in terms of mathematics, it neither appears to be an 

obvious fit, since mathematics students might lean more towards the individualistic culture, nor 

does it appear to be a bad choice since the students in general are positive. This might reflect the 

mathematics culture as being both individual and collectivistic. In terms of grading, curriculum 

planners need to consider that group exams might result in a smaller distribution of grades.  
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A case for a new approach to establishing the validity of comparative 

judgement as an assessment tool for mathematics 
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Traditional, criterion-based assessments have recently been criticised for rewarding the procedural 

over the conceptual, limiting exam writers’ ability to focus on authentic mathematics and 

necessitating complex mark schemes that are difficult and time consuming to implement (Jones, Swan 

& Pollitt, 2015; Bisson, Gilmore, Inglis & Jones, 2016). This paper discusses an assessment 

innovation, comparative judgement, that avoids the above criticisms by using the innate human 

capacity for comparative, over criterion-based, judgement. After a review of the reliability and 

validity literature in this area, a theoretical examination of validity research on comparative 

judgement results in the proposition that a new approach is necessary. The final section of the paper 

suggests that investigation of predictive validity, as defined by Trochim (2006), may address the 

concerns raised regarding previous research on the validity of comparative judgement.  

Keywords: Assessment, comparative judgement, conceptual understanding, reliability, validity. 

If presented with two large bags of gold and invited to keep one, most people would have a strong 

preference. While unlikely to know the exact quantity in either bag, it is usually not difficult to 

identify which is heavier by comparison. Comparative judgement is an assessment tool that exploits 

this innate capacity for comparison (Thurstone, 1927, "The Law of Comparative Judgment") rather 

than isolated evaluation against specified criteria. This well-established principle of psychology 

forms the basis for an innovative assessment that offers an alternative to the criterion-based status 

quo. This paper is a theoretical discussion of investigations into the reliability and validity of this 

approach to mathematics assessment. This is followed by a detailed theoretical examination of 

validity, resulting in the suggestion that further work and a new approach is necessary to establish 

validity in a more substantive manner. While making few definitive claims regarding the nature of 

the new approach, a case study in assessing conceptual understanding is used to illustrate the potential 

of two approaches based on what Trochim (2006) refers to as predictive validity.   

What is comparative judgement? 

Comparative judgement relies on expert judges making a series of comparisons between two 

responses to a given question. Without any specific criteria, judges are simply asked to ‘choose the 

better response’. Using an automated system to generate pairs of students’ responses for comparison, 

comparative judgement generates a ranked order from ‘best’ to ‘worst’. This ranked order, produced 

after each response has been compared to others several times, is based on the Terry Bradley model 

(Pollitt, 2012) that generates a standardised parameter estimate (z-score) representative of the relative 

quality of each response. In the absence of specific marking criteria, the rankings produced are 

“instead grounded in the collective expertise of the judges” (Bisson et al., 2016, p. 143), avoiding the 

necessity to explicitly define the target of the assessment.  



A summary of the literature on Comparative Judgement 

Before examining the literature on reliability and validity, this section begins with a discussion of two 

key benefits claimed in the comparative judgement literature.  

Benefits, motivations and intentions 

Comparative judgement facilitates the targeting of specific aspects of mathematics without having to 

embed a precise definition into a marking schedule (Pollitt, 2012). For example, Bisson et al. (2016) 

used comparative judgement to investigate conceptual understanding in undergraduate mathematics. 

This “important but nebulous construct” (Bisson et al. 2016, p. 143) has been the topic of much 

debate. Bisson et al. (2016) claim experts are capable of recognising examples of conceptual 

understanding, but find it difficult to generate comprehensive, reliable scoring rubrics. As suggested 

by Bisson et al. (2016), by grounding the definition of an area of assessment solely in the collective 

understanding of judges, this problem is at least partially avoided. Assessment of conceptual 

understanding will be returned to in a later section of this work.  

Jones, Swan and Pollitt (2015) also argue for the need to “free assessment designers from restricting 

tasks to those that may be easily scored by conventional means” (Jones et al. p. 170). They claim this 

would allow for the introduction of components that more adequately reflect the assessments 

purported purpose. A study involving four experienced GCSE (General Certificate of Secondary 

Education for England, Wales and Northern Ireland) exam writers producing an exam explicitly for 

comparative judgement marking found that exam writers experienced greater freedom to write more 

open-ended questions providing students with the freedom to experience more genuine problem 

solving situations (Jones & Inglis, 2015). Moreover, this freedom was successfully used, as evidenced 

by the survey responses of 23 teachers who evaluated the suitability of this exam script. Examinations 

of this type have been long sought-after but have seldom materialised due to the need for a 

demonstrably reliable and valid tool for assessment (Jones & Inglis, 2015). 

These benefits, particularly that of eliminating assessment criteria, raise questions of reliability and 

validity. An assessment based on such apparently subjective foundations might initially attract 

substantial skepticism. These questions are the focus of the following two sections. 

Reliability  

In the context of comparative judgement, reliability has universally been used to refer to the notion 

of repeatability across different judges and judging communities. This is often referred to as inter-

rater reliability.  

There is a growing collection of case studies demonstrating high inter-rater reliability in the use of 

comparative judgement. Bisson et al. (2016) demonstrated high inter-rater reliability in the contexts 

of conceptual understanding of entry-level undergraduate statistics (p-values), undergraduate pure 

mathematics (derivatives) and elementary school-level algebra (using letters in mathematics). Using 

a split-half technique in each of the three studies, judges were divided into two groups of equal size. 

As a result of the computerised method by which judges make comparisons, this split-half comparison 

was repeated 20 times in each study without requiring any additional comparisons from the judges. 

Pearson’s correlation coefficients were computed for each iteration of each study, the results of which 

are summarised in Table 1.  



 

 Participants Range in r 

over 20 trials 

Mean r Median r Standard 

Deviation 

P-values 10 judges, 

20 students  

.664 - .855 .749 .762 .06 

Derivatives 30 judges, 

42 students 

.826 - .907 .869 .872 .02 

School Algebra 10 judges,  

46 students 

.678 - .837 .745 .742 .04 

Table 1: Summary of comparative judgement reliability results from Bisson et al. (2016). 

Jones, Swan and Pollitt (2015) produced results consistent with the above in a problem solving 

context. When applied to both traditional GCSE examination scripts and purpose-written open-ended 

examination scripts, comparative judgement performed well when implemented by a diverse group 

of 23 judges, consisting of ten GCSE examiners, one non-GCSE examiner, seven mathematics 

education lecturers, two researchers, one research student and two advisors. When separated into two 

groups (of 12 and 13), the Rasch sample separation reliabilities, often considered similar to 

Cronbach’s  (e.g. Wright & Masters, 1982) were .80 and .93, indicating acceptably high internal 

inter-rater reliability for each group. Jones et al. (2015) also report a Pearson product-moment 

correlation coefficient of .87, providing further evidence for the inter-rater reliability of comparative 

judgement when assessing problem solving.  

In every reviewed study on the reliability of comparative judgement to-date, the results have 

positively indicated that comparative judgement performed reliably across judging communities.  

Validity 

Consistent with the majority of studies in the comparative judgement literature this paper adopts the 

broad definition that a valid assessment measures that which it purports to measure (Koretz, 2008). 

Most investigations of the validity of comparative judgement have focused on what Trochim (2006) 

refer to as convergent validity, based on comparison with traditional measures of mathematical 

achievement.  Bisson et al. (2016) has taken a different approach, by investigating content validity, 

based on comparisons with other psychometrically validated instruments.  

A measure is said to have convergent validity if it produces results similar to others that should 

theoretically be similar (Trochim, 2006). On investigating assessment of problem solving, McMahon 

and Jones (2015) reported “comparative judgement outcomes correlated as expected both with test 

marks and with existing student achievement data, supporting the [convergent] validity of the 

[comparative judgement] approach” (p. 368). Jones and Inglis (2015) reported a correlation of .86 

between students’ GCSE marks and their parameter estimated z-score based on a comparative 

judgement assessment, providing further evidence in this direction.  

Finally, Bisson et al. (2016) investigated both convergent validity and content validity across all three 

studies on which they report; see Table 2. The former was evaluated with methods similar to those 



above, analysing correlations between traditional student achievement data and comparative 

judgement results. Content validity, a comparison of the measure against the relevant content domain 

(Trochim, 2006), was based on correlation analysis between comparative judgement results and other 

psychometrically validated measures of conceptual understanding; see column two of Table 2. It 

should be noted that the choice of topics (p-values, derivatives and algebra) in Bisson et al. (2016) 

were “driven by the existence of validated instruments to measure conceptual understanding of those 

topics” (p. 144). As is discussed later, the absence of such instruments for most topics in mathematics 

appears to serve as a significant barrier for this line of research. For the list of topics available Bisson 

et al. (2016) conclude that comparative judgement is a valid measure of conceptual understanding.   

 Traditional measure Instruments 

P-values .555 .457 

Derivatives .365 .093 

School algebra .349 .428 

Table 2: Summary of comparative judgement validity results from Bisson et al. (2016). The 

‘traditional measure’ line refers to the correlation between achievement data and comparative 

judgement z-scores. The ‘instruments’ column refers to the correlation between comparative 

judgement z-scores and scores on an existing psychometrically validated measure (RPASS-7, CCI and 

‘Concepts in Algebra’, respectively).  

Jones and Inglis (2015) also investigated content validity of exam scripts. They asked experienced 

experts to analyse the content of the exam scripts produced when writers were freed from the 

constraints of traditional assessment criteria. Their qualitative analysis resulted in the assertion, 

consistent with their hypothesis, that these exam scripts placed more emphasis on conceptual thinking 

than their GCSE counterparts. It should be noted that this aspect of the study was focused on the exam 

scripts themselves, not on students’ responses. 

The evidence in this section suggests that comparative judgement is likely to perform at least as well 

as established tools for mathematics assessment in many or even most contexts. Moreover, Bisson et 

al. (2016) provide evidence of content validity in three specific mathematical domains. As discussed 

in the final section, the scope for expansion of the argument for content validity is limited, given the 

absence of other psychometrically validated measures. The following section focuses on the necessity 

for a complementary approach to establishing the validity of comparative judgement. 

The necessity for a different approach to validity 

This section has two aims. First, this section establishes the necessity for an approach other than the 

convergent validity-based studies discussed above. Second, this section discusses the limitations of 

the content validity approach proposed by Jones et al. (2015) as a suitable answer to the shortcomings 

of convergent validity discussed above.   

Assessing the validity of comparative judgement only by comparison with traditional assessment 

appears to significantly limit the argument for comparative judgement. While arguments regarding 



efficiency (Bisson et al. 2016) and the freedom to write examinations with a different mathematical 

focus (McMahon & Jones, 2015) still stand, proponents of comparative judgement claim it to have 

the potential to assess something fundamentally different from that assessed by traditional 

approaches. Bisson et al. (2016), for example, argue that comparative judgement can be used to assess 

‘conceptual understanding’, an aspect of mathematics known to be difficult to assess using traditional 

assessment. However, in establishing the validity of comparative judgement in this area, they refer to 

comparisons with traditional assessment data. This approach to validity appears problematic from the 

outset as it limits a successful measure of validity to something not worse than traditional assessment; 

an approach claimed to be ineffective in assessing their domain of interest. Jones et al. (2015) note 

similar reservations pointing out that traditional student achievement data, often compared with 

comparative judgement, can be criticised for its overly-procedural focus. Jones et al. (2015) go on to 

assert the need for a different approach, pointing to comparisons with ‘other psychometrically 

validated measures’ as a satisfactory solution.  

A further analysis of the limitations of convergent validity 

A key aspect of the argument for comparative judgement is that it facilitates reliable assessment of 

areas previously difficult to assess. Thus it seems logical to believe that comparative judgement, when 

explicitly focused on assessing those areas (e.g. conceptual understanding) should reward different 

abilities/strengths than those rewarded by traditional assessment.  

Taking this reasoning to its logical conclusion results in the assumption that some students should 

perform better under comparative judgement than under traditional assessment. Thus it seems at best 

limited to evaluate a new assessment tool by its ability to reproduce the results of traditional 

assessment. Consider a hypothetical student with a particular aptitude for memorising procedures but 

difficulty with the conceptual understanding underlying and drawing together important ideas. Based 

on previous critiques of traditional criterion-based approaches, one might assume this student would 

perform well on such an assessment. However, one might hope that this student would score poorly 

on comparative judgement assessment given the claims of Bisson et al. (2016). Hence, arguing for 

the validity of comparative judgement by pointing to its comparability with traditional assessment 

seems inherently limited.   

Establishing convergent validity has made a significant progress toward gaining legitimacy and the 

credibility to justify further, more detailed work. However, it seems that a complementary direction 

is necessary in establishing other aspects of validity, thereby further developing the argument for the 

adoption of comparative judgement. 

The limitations of content validity  

As noted by Jones et al. (2015), making comparisons with alternative psychometrically-validated 

instruments appears to be an obvious and fruitful way forward in establishing the validity of 

comparative judgement. However, the absence of such instruments in most domains serves as a 

substantial barrier to progress. Returning to conceptual understanding, the absence of such 

instruments in this realm is well-documented and is a significant reason Bisson et al. limited their 

study to just three content domains.  

It is theoretically possible to develop more such instruments. However, the number of instruments 

will always be far fewer than the number of mathematical domains in need of assessment. At present, 



the content validity approach relies on inherently inductive reasoning. Evidence supporting 

comparative judgement in a small number of domains has little relevance for the new and previously 

untested.  If comparative judgement is to be established as a viable assessment tool for a greater range 

of domains, I further claim that yet another approach is necessary. 

The final section below seeks to identify a way forward that is cognizant of the issues raised above.  

Predictive validity through the case of conceptual understanding 

Having argued the necessity for something new, this final section offers a plausible approach 

attempting to avoid at least some of the above criticisms. This new approach, predictive validity, is 

illustrated here by further considering the case of conceptual understanding. It should be noted that 

this is just one such possible solution that, like previous sections, is intended to raise more questions 

than it answers. It too is not without its flaws. 

As defined by Trochim (2006), predictive validity refers to a measure’s ability to predict something 

it should theoretically be able to predict. If one is to accept conceptual understanding as fundamental 

to mathematical development (NCTM, 2000; Ofsted, 2008; Rittle-Johnson, Siegler, & Alibali, 2001), 

a valid measure of conceptual understanding should serve as a predictor of other mathematical 

success. In the absence of suitable comparative measures for evaluating content or convergent 

validity, predictive validity appears a logical alternative. This section addresses two possible such 

approaches that may aid in establishing the validity of comparative judgement. 

First, comparative judgement could be evaluated as a predictor of performance on traditional 

assessment. Allowing for the passage of time, moving away from an immediate comparison with 

traditional assessment (see convergent validity) creates the opportunity for a student’s general 

mathematical maturity and understanding to progress. This argument hinges on the assumption that 

conceptual understanding is so fundamental to mathematical development that it should act as a future 

predictor of mathematical performance in general, even on assessment for which conceptual 

understanding is not an explicit focus. If one is to accept this assumption regarding conceptual 

understanding then those that perform well on a comparative judgement assessment of conceptual 

understanding at time 1, should perform well on any assessment at time 2. 

This approach may be criticised by those who argue that if an attempt to avoid immediate comparison 

with traditional assessment results in a delayed comparison with the same traditional assessment, then 

nothing has been gained by analysing predictive over convergent validity.  

Another approach to predictive validity is to seek other measures of mathematics success not 

beholden to traditional, criterion-based assessment. Such measures of mathematical success may 

appear hard to come by. However, metrics such as success at postgraduate level, or success on 

relevant career pathways may provide an interesting solution. While arguably somewhat crude, these 

measures may provide useful sources of comparison. Using such measures, one could compare 

comparative judgement z-scores from prior years with success on these future measures to evaluate 

the predictive validity of comparative judgement here. For example, in an attempt to evaluate validity 

in the tertiary context, it would be possible to consider success in tertiary mathematics. By using 

comparative judgement to assess a series of tertiary exam scripts, it may be possible to evaluate 

predictive validity by comparison with future success in postgraduate studies or related mathematical 



careers. A significant correlation between comparative judgement rankings and future success would 

stand as strong evidence for the predictive validity of comparative judgement.  

This second approach to predictive validity benefits from avoiding any comparison with traditional 

assessment. However, unsurprisingly raises many questions of its own, particularly regarding the 

quality and availability of data related to such future measures of success. Moreover, predictive 

validity still does not grapple with the ways that scores and interpretation of scores are used. Kane 

(2013) offers yet another approach, drawing on the general principles of construct validity (i.e., how 

well an assessment reflects the true theoretical measurement of a concept) to grapple with the 

assumptions underpinning the interpretation and use (IUA) of assessment scores, rather than the 

scores themselves.  The implications of this ‘argument-based approach’ approach to validation of 

comparative judgment are unclear, but his detailed discussion of IUAs draws attention beyond the 

process of assessment in of itself to the use and interpretation of the assessment findings in the real 

world.  For example, the evaluation of comparative judgment results could usefully require an 

evaluation of the consequences of the assessments’ use, and negative consequences in some could 

render the use of the results unacceptable in some circumstances.   

I do not claim to have covered the full range of criticisms that may be levied at the new approaches. 

Nor do I claim predictive validity is the only response to the limitations of existing research discussed 

earlier.  The intention of this section is to initiate a discussion regarding a new approach to validation 

of comparative judgement that might facilitate an extension of the argument for comparative 

judgement beyond the mathematical domains for which we have other tests.  

Conclusions 

This paper has been a discussion of an exciting and relatively new approach to assessment. In 

particular, the focus has been on the necessity for a new approach to evaluating the validity of 

comparative judgement. It should be noted this work does not advocate for the abandonment of one 

approach in favour of another. Rather, it advocates for a wider range of complementary approaches 

that together will form a comprehensive body of research. 

This paper has argued that by moving beyond convergent validity, researchers will have the ability 

to investigate the validity of comparative judgement in a manner less limited by comparisons with 

the status quo. Moreover, it has been argued that the recent content validity solution, suggested by 

Jones et al. (2015) is insufficient in scope and is inevitably limited by the non-existence of 

psychometrically validated measures for the vast majority of mathematical content.  

Finally, this paper proposed two new approaches, based on predictive validity, that avoid some of the 

discussed limitations. A research programme including investigation of predictive validity and the 

interpretation and use of assessments has the potential to extend the discussion about comparative 

judgement, and ensure that further uptake of this exciting new development in mathematics 

assessment is evidence-based and beneficial to the students for whom it is designed. 
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Statewide exit exams play an important role in education as they tend to define what is considered 

important in a subject. This paper examines characteristics of Mathematics tasks set in such exams 

in eight European countries at the end of lower secondary education. The main result of this 

descriptive study is that the cognitive demand of most competences needed to solve these tasks is 

rather low. The only exception is ‘working technically’. So far, these results can neither be 

explained with the public impact these exams have nor with relevant exam regulations.  

Keywords: Exit exams, mathematics, competences, routines and facts, cognitive demand. 

Introduction 

Key competences and statewide exit exams 

A changing need for competences in a knowledge-based society has caused literally all European 

countries to agree to equip all learners in compulsory schooling with certain ‘key competences’ 

“which represent a combination of knowledge, skills and attitudes that are considered necessary for 

personal fulfilment and development; active citizenship; social inclusion; and employment” 

(Eurydice 2012, p. 7). ‘Mathematical competence and basic competences in science and technology’ 

is one of the eight key competences defined. As these are promoted either by a national strategy or 

by applying large-scales initiatives instead (Eurydice, 2012), competences are relevant in different 

forms of assessment, too.  

Central written exams at the end of a particular educational stage are one form of assessment in the 

majority of European countries. In secondary education such exams are frequently taken at the end 

of upper secondary education (ISCED level 3) and in some countries additionally at the end of 

lower secondary education (ISCED level 2), which marks the end of compulsory schooling. 

Subjects tested are usually at least Mathematics and the language of instruction.  

Exit exams are mostly compulsory either for all students, regardless of the type of school attended, 

or just for those in public-sector schools (Eurydice, 2009). Even if these exams are “optional, as in 

the case of the ‘national qualifications examination’ in the United Kingdom (Scotland), or the Dutch 

CITO test, nearly all pupils take them in practice” (Eurydice, 2009, p. 23) which hints at the 

relevance of these exams. However, despite having the same name and sharing the purpose of 

summarizing the achievement of individual students at the end of an educational stage, statewide 

exit exams of any two countries differ in several respects such as the time awarded or the 

institutions which set them (cf. Klein, Kühn, van Ackeren & Block, 2009) or the ways the results 

are used or published (cf. Eurydice, 2009). 



Research on statewide exit exams 

International research on statewide exit exams reveals various perspectives. Considering governance 

and accountability Klein & van Ackeren (2011) identify considerable national differences, e.g. as 

regards the role of the governing bodies, the degree of standardization of these exams, the use of the 

results or varying intentions ranging from control to support of schools. Other research focuses on 

setting standards and promoting innovation by means of such exams (e.g. Bishop, 1998) but also 

draws attention to contrary positions. Wößmann (2008) even gives evidence that such exams 

enhance students’ achievement. Further research addresses the impact of such exams on the 

selection of tasks for teaching (e.g. Cheng & Curtis, 2012; Neill, 2003). In this context a backwash-

effect of exams on teaching and learning is also frequently discussed (e.g. Biggs & Tang, 2011; 

Boud & Falchikov, 2006). Especially such summative forms of assessment have this effect and 

exert a considerable influence on both teachers and students because exit exams set standards as to 

what is to be achieved or considered important. As a consequence, exams ought to be carefully 

designed, even more so if governing bodies use them as a strategic instrument to influence teaching. 

However, there is only scant research on characteristics of tasks set in exit exams, and some of these 

studies are somewhat dated (see overview by Krüger (2015) for various subjects).  

With respect to tasks particularly set at the end of lower secondary education in Europe, this lack of 

research might be due to the fact that only few countries like Northern Ireland and Scotland have a 

longstanding tradition of such exams, whereas most other countries only introduced them in the last 

one or two decades (Eurydice, 2009). However, given the broadly conceded relevance of tasks in 

Mathematics (e.g. Arbaugh & Brown, 2005; Neubrand, Jordan, Krauss, Blum & Löwen, 2013), it is 

astounding that only very few studies examine tasks set in exit exams in this subject. One study by 

Kühn and Drüke-Noe (2013) identifies a low level of cognitive demand of the tasks set in the 

15 German states (Länder), and it reveals that applying routines and using facts (working 

technically) is a dominant competence when solving the tasks, whereas more complex competences, 

such as problem solving or argumentation, are far less needed. Another study by Vos (2013) 

focusses on specific modeling aspects of tasks set in the Netherlands and reveals that concerns about 

test reliability seem to limit the range of modeling aspects tested. 

Methodology 

Based on the discussion in the section above, the following four research questions are addressed: 

Which mathematical competences are needed to solve the tasks set in statewide exit exams and 

which level of cognitive demand is realized? Are the competences of similar importance? Which 

national exam characteristics can be identified which might be related to their public impact in each 

country? Can national exam characteristics be explained on basis of national exam regulations?  

To address these questions a classification scheme by Kühn (2011) is used, which was developed in 

a German comparative study on mathematics tasks. The scheme’s subject specific categories, which 

are based on educational standards in mathematics, are used to identify and understand the structure 

as well as content- and process-related characteristics of tasks (cf. Kühn & Drüke-Noe, 2013). In the 

scheme the various categories and their subcategories are described in detail and illustrated by 

examples. Some of these categories are: mathematical content (subcategories: arithmetic, algebra, 

geometry, stochastics), types of mathematical activities and mathematical competences. In the 



course of developing this classification scheme, country-specific requirements for the design of 

exam tasks (e.g. Specifications in England, Notes des Service in France, or Examen Programma and 

Constructie opdracht in the Netherlands) have been examined if they were publicly available. Thus, 

the classification scheme includes general (instead of country-specific) categories for task analysis 

so that it can be used for a transnational comparison of task characteristics. 

Based on this classification scheme, various task characteristics, such as competences necessary to 

solve a task and the level of cognitive demand of each competence, can clearly be identified. Each 

task is assigned to one or more of six mathematical competences (argumentation, problem solving, 

modeling, use of representations, working technically, communication), and for each competence 

one of four levels of cognitive demand is marked by a score (0: not needed, 1: low level, 

2: intermediate level, 3: high level). 

Analyses of the impact of these exams rely on documents published by the Eurydice network.  

The sample comprises 655 tasks set in eight European countries (Ireland (IE), France (FR), Italy 

(IT), the Netherlands (NL), Norway (NO), Portugal (PT), England (UK-ENG) and Scotland (UK-

SCT)). In both years 2008 and 2011, only these countries set written statewide exit exams in 

Mathematics at the end of lower secondary education (ISCED level 2), i.e. when students are aged 

16. All tasks were translated into German and then categorized by a student who was excellent in 

mathematics and its didactics. The student was trained in several steps: tasks were classified and 

reasons for classifications had to be articulated. By means of this communicative validation 

agreement was gradually achieved. Additionally, the student could query classifications at any time.  

Results 

Quantitative findings 

The descriptive results presented here are aggregated for both years 2008 and 2011. For each of the 

eight countries the findings provide insight into mathematical competences needed to solve the 

exam tasks. Table 1 informs on the number of tasks (N) set in each country and it provides 

information on the level of cognitive demand realized by giving mean scores (M) and standard 

deviations (SD) for each of the six competences.  

  

argumentation problem solving modeling 
use of 

representations 

working 

technically 
communication 

Country N M SD M SD M SD M SD M SD M SD 

IE 96 .01 .102 .28 .452 .46 .501 .15 .355 1.41 .535 .02 .144 

FR 60 .40 .807 .77 .647 .67 .629 .63 .712 1.13 .724 .28 .585 

IT 63 .17 .423 .37 .485 .79 .652 .67 .762 .90 .560 .37 .517 

NL 50 .32 .713 .72 .497 .78 .648 1.22 .932 1.32 .768 .74 .527 

NO 124 .10 .400 .40 .582 .52 .618 .54 .562 .94 .621 .29 .522 

PT 39 .26 .637 .54 .643 .51 .506 .82 .885 1.18 .756 .77 .742 

UK-ENG 152 .26 .581 .37 .512 .50 .575 .67 .726 1.16 .656 .45 .639 

UK-SCT 71 .08 .327 1.00 .378 .65 .657 .56 .626 1.39 .547 .59 .523 

Table 1: Mean scores of cognitive demand of the six competences  

Table 2 reveals if exam results are used to award certificates and if and how exam results are 

published. These categories are used to judge the exams’ impact (cf. Eurydice 2009, 2012). 



Country IE FR IT NL NO PT 
UK-

ENG 

UK-

SCT 

Award of certificates  x  x   x  x 

No impact on students’ progression  x  x x  x  

Publication of results organized or required 

of schools, by central/local government  
   x   x x 

Publication of results at the discretion of 

schools  
  x      

No publication of results x x   x x   

Table 2: Ways in which results of statewide exit exams are used and published 

With respect to the first two research questions, the results in table 1 indicate an overall very low 

level of cognitive demand of all six competences for all countries. Since a maximum score of 3 can 

be reached, which stands for a high level of cognitive demand of a competence, the means realized 

indicate that most competences are only rarely needed to solve the tasks. This means that if a 

specific competence is needed at all its cognitive demand is mostly low. As mean scores of about 

1.00 or more are almost exclusively limited to ‘working technically’, it can be concluded that this 

competence considerably determines the overall cognitive demand of the tasks set. This shows the 

relative importance of this competence, as more complex ones, such as argumentation, problem 

solving or modeling, are only rarely needed in any of these countries. This fact, however, is not fully 

in accordance with national exam regulations, such as those of France, England and the 

Netherlands, which explicitly require that these competences are tested, too. All in all, these results 

hint at the relative importance of applying routines and using facts to solve the tasks set. 

Finally, based on the results given in both tables, for none of these countries a systematic relation 

can be identified between the overall mean levels of cognitive demand realized and the impact of 

the exams. For example in Scotland the impact can be considered high (certificates awarded, results 

published) and the mean levels of cognitive demand of all competences are relatively high, too. On 

the contrary, in France the impact can be considered low (no impact on students’ progression, no 

results published) and the mean levels of cognitive demand are fairly high, too.  

Examples of tasks 

The following two examples of tasks and their analyses are to illustrate the quantitative findings 

given in table 1. The first example serves to illustrate the relative importance of working 

technically. In many tasks this is either the only competence needed or it is the only one which is 

cognitively more demanding. The task shown in figure 1 is typical in the sense that it only requires 

to work technically. To factorize the given sum of products, several steps need to be carried out 

(working technically, intermediate level). In all countries, however, most tasks which require this 

competence are of an even lower cognitive demand. 

 

Figure 1: Working technically at an intermediate level (source: Ireland, 2011)   

 

 

Factorise: x² + 7x + 12     



 

 

 

 

 

 

  

 

 

Figure 2: Relatively high cognitive demand of a task (source: the Netherlands, 2011) 

The second example given in figure 2 shows one of the few tasks in the entire sample which are not 

only relatively long and complex but also require a number of rather complex competences.  

To understand both diagrams (figures A and B) the introductory text needs to be read first 

(communication, intermediate level). Then a given model needs to be applied to the context 

(modeling, low level). The comparison of both complex diagrams (use of representations, high 

level) is supported by problem solving strategies (intermediate level). The final decision on the 

appropriate diagram requires an argumentation that needs to be written down (communication and 

argumentation, both intermediate level). In contrast to the majority of tasks in the sample this one 

does not require to work technically. 

Influence of national exam regulations on task characteristics 

To explain the different levels of cognitive demand of tasks set in different countries (cf. table 1) 

national exam regulations are considered, too. As not all regulations are publicly accessible, the 

following analyses are only based on the ones applicable in England, in France and in the 

Netherlands. The document analyses are to show if and in which way individual competences are 

mentioned. Furthermore, the analyses are to reveal if the relevance of any of the competences is 

stressed in relation to other ones.    

The analyses of these documents firstly reveal that exam regulations in these three countries demand 

explicitly that competences such as argumentation, modeling and communication are tested. While 

in France and in England these competences are merely mentioned, in the Netherlands the cognitive 

demand of individual competences is described in some more detail. For example with respect to 

argumentation and communication regulations in the Netherlands explicitly ask for “reasoning 

strategies” and “communication by means of adequate mathematical language” (cf. CEVO, 2009). 

In addition, the requirements concerning modeling are even more specific as the entire modeling 

cycle including its individual steps is mentioned.  

Sounds are vibrations in the air. A sound spreads through the air. We then speak about sound waves. 

Sound can be visualized using a device that turns sound vibration into an electric vibration. Below you see what this 

device shows for two different sounds. Both figures show a number of vibrations within a certain period of time 

(for example, 1 millisecond). 

 

The number of vibrations per second is called the sound frequency. 

 Which figure shows a higher frequency? Explain how you get to your answer. 



Contrary to expectation, though, the way competences are specified does not directly correspond 

with realized mean levels of cognitive demand. One example is the level of cognitive demand of 

modeling in France (brief specifications) which is similar to the one in the Netherlands (more 

detailed specifications). A second example is the considerably different mean levels of cognitive 

demand of argumentation in France and in England despite the fact that both countries have rather 

brief and similar specifications of competences.  

The document analyses secondly reveal that none of the exam regulations studied state in any way 

how intensively individual competences are to be considered in the exams. There is also no 

statement as to the relative importance of working technically. Thus, on the basis of the exam 

regulations it is not possible either to explain the relatively high mean levels of cognitive demand of 

this competence in all countries. 

All in all, the findings show that exam regulations do not correspond systematically with task 

characteristics. Furthermore, the more detailed analysis of only three countries shows that further 

research is necessary to explain how exam regulations are put into practice. Considering theories of 

educational governance, it must be assumed that such regulations do exert an influence on the 

selection or the development of exam tasks but so far it is not entirely clear in which way this 

impact works in practice. As a consequence and with special regard to competences, more needs to 

be found out on the application of exam regulations by those who either select and develop exam 

tasks or design entire exam papers by assembling tasks. For these reasons it is necessary to find out 

which other elements directly influence characteristics of exam tasks in different countries. 

Conclusion and implications 

Although all eight countries examined supposedly promote key competences including 

mathematical ones, the task characteristics raise the question how thoroughly these competences 

have been implemented, since cognitive demand is primarily determined by working with routines. 

As exam tasks influence the selection of tasks for teaching and as the task characteristics identified 

in this descriptive study can neither yet be explained by the use of the exams’ results nor be 

explained by exam regulations, further research is necessary that addresses both the influence of 

national curricula and that of existing exam design regulations as well as their application. Beyond 

this, further research should also address reforms actually taken to promote competences in these 

European countries to explain the results.  

More detailed research of the tasks set in two different years is of interest, too. This also has to do 

with the influence such tasks have on teaching (cf. Black & Wiliam, 1998). More detailed research 

of this kind could possibly better help to understand the so far unsystematic relation of the exams’ 

impact (see table 2) and the characteristics of the tasks set. 

The results presented in this study also raise further interest in more recent developments on exam 

design regulations and the ways in which they influence actual exams. Especially with respect to 

exams taken at the end of lower secondary education not much is known about this relation yet. 

Research on further development in the direction of a broader and more explicit notion of 

competences which includes explicit research on the cognitive demand of individual competences in 

these exams is desirable, too. 



From a process-oriented perspective, a number of interesting research questions arise that focus on 

factors which influence the development of tasks set in central exams. There are two important 

factors of interest: One of them is longstanding traditions of tasks in these countries which might 

help to understand the task characteristics presented in this study. A second factor is the 

professional knowledge of those people who design the exam tasks. As the findings presented 

cannot fully be explained by exam regulations, attention is shifted towards the role of those people 

who develop tasks set in the statewide exit exams. It is well worth finding out if these people are 

aware of the different competences and – even more and on a more detailed level – of the various 

facets which these competences have. Modeling can be taken as an example here, as this 

competence comprises more than just mathematising (cf. exam regulations in the Netherlands). 

Furthermore, it is of interest to see if people who design the tasks are aware of different levels of 

cognitive approach of individual competences.  

Finally, more recent theories on educational governance as well as findings from research on 

implementation support the assumption that the design of exam tasks is not exclusively influenced 

by relevant exam regulations. There is evidence for a considerable and multi-factorial influence of 

any people who are involved in the design of exams. More traditional attempts of research, which 

explain directions of influence, are based on a model of governance which is hierarchically 

structured and works in a linear way. More recent approaches, however, that try to explain these 

directions of influence, even identify a systematic discrepancy between formal exam regulations set 

by both political and administrative bodies and the way they are applied in practice. There is 

evidence that this seems to be caused by a necessary re-contextualization and transformation of 

existing regulations by the individuals involved (cf. Altrichter & Maag Merki, 2010). Research both 

on innovation and implementation shows similar findings and reveals that administrative 

regulations and their implementation in practice can even differ widely (cf. Gräsel & Parchmann, 

2004). To sum up, far more research is necessary to understand how exam design regulations are put 

into practice and how task characteristics can be explained. 
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A longitudinal analysis of the recurring mistakes at different school levels in national standardized 

assessment tests is presented. The analysis of the outcomes highlights some difficulties common 

across different school grades. Subsequently, we extend our research to university students: we 

investigate the results of tasks solved by students at the end of high school and at the beginning of 

university in an e-learning environment called AlmaMathematica. We examine whether there are 

commonalities between errors that lead to wrong answers at school level and university level. 

Results show that university students share the same difficulties of high school students when faced 

with similar tasks.  

Keywords: Mathematics test, summative evaluation, semiotics. 

Introduction  

Our research is carried out selecting a set of tasks sharing common features among the national 

standardized assessment tests INVALSI (National Assessment Institute for the School System) and 

the results of the AlmaMathematica tests administered to students at the end of high secondary 

school and at the beginning of university. As we can see in the next section, the INVALSI gives 

back the results at national level to each item of each test. Thus, we have, each year, results for 

grade 2 and 5 (in Italy, second and fifth years of Primary School), grade 8 (third year of low 

secondary school) and grade 10 (second year of high secondary school). Most of the research based 

on these data concerns vertical and common features arising at different test level outcomes 

(Branchetti et al, 2015).  In this research perspective, we investigate common difficulties that 

emerged from the vertical analysis of INVALSI secondary schools test results. In the second phase 

of the project we further develop the research expanding to university level students. In order to do 

this, we analyzed the results of mathematics tests in the AlmaMathematica project, an e-learning 

environment in which many students of the fifth (and last) year of high secondary school and 

university freshmen perform mathematics tasks.  Hence, we asked the following research question: 

Is it possible to identify some common student behavior when facing mathematics tests from 

secondary school to university? For this we analyse two tasks of INVALSI mathematics tests of 

grade 8 and grade 10 giving an example of analysis of linked tasks in which different approaches are 

implemented. The comparison between the two tasks allows us to interpret some difficulties 

encountered by the students.  The analysis of a related task in AlmaMathematica suggests some 

possible ways to interpret students’ behaviors at university level. All three tasks have the same 

structure and the same mathematical content, but the likely difficulty is represented by the switch 

from a representation register to another one. The same skills are required for all three tasks and the 

purpose of our research is to investigate if there are common aspects in the task solutions. 



National Evaluation Service and AlmaMathematica Project  

INVALSI is the Italian national institute for the educational assessment of instruction and every 

year, through National Evaluation Service (SNV), it carries out periodic and systematic national 

assessment to check student knowledge and skills in Mathematics and Italian language. Every year, 

INVALSI performs assessment tests in a census to school grades 2 and 5 (Primary School), 8 (low 

secondary school), and 10 (high secondary school) and it returns the results of the sample for each 

item of all tests administered. As part of our research we consider in detail the results of two tasks in 

mathematics standardized tests carried out by grade 8 students in a.y. 2010/11 and by grade 10 

students in a.y. 2011/12. To conduct this research, it has been crucial the use of a research tool of 

INVALSI tests, the GestInv Database that we will describe in detail later. To investigate difficulties 

at university level, we examine the results of the performance of students using AlmaMathematica. 

AlmaMathematica (almamathematica.unibo.it) is a project of the University of Bologna designed 

specifically to create links between Secondary School and University. It is aimed at students who 

wish to enroll in undergraduate courses at the University of Bologna and it provides basic courses in 

mathematics, statistics and probability. The environment that has been created refers to the tasks of 

the Entrance Tests to a restricted number of Curriculum courses (TOLC), and to the evaluation of 

basic knowledge tests. Access to the statistical data allows us to investigate the percentage of 

correct answers for each question.   

Theoretical lenses  

Our main hypothesis is that a longitudinal analysis involving a large number of students can give 

relevant information about difficulties existing at secondary school level and can allow us to infer 

whether these difficulties remain at the beginning of university and in what fashion. Our research 

stems from evidence arising from the analysis of Large Scale Assessment (LSA) tests. We do not 

consider LSA merely as a way to provide a ranking or scores for benchmarks or as a search for 

correlations between variables of context, but we assume that its results can provide information on 

the teaching/learning process. In accordance with many researches (i.e. Looney, 2006) we consider 

the analysis of the results of standardized assessment through the lens of formative assessment. The 

information given back by LSA contains not only global scores (measured by statistical models), but 

it also highlights the specific phenomenon observed individually. Among the results of standardized 

assessments many significant macro-phenomena are visible that can be explored and interpreted 

through some of the lenses of mathematics education as the most frequent difficulties described in 

literature are also reflected in the students’ responses. We conjecture that this kind of longitudinal 

analysis carried out through the comparison between the data sets from different years and levels 

could be useful to better interpret the difficulties that arise in secondary school and remain until 

university. For this reason, we need some criteria to link tasks from different grades: we have 

chosen the tasks that had the lowest correct response rate in the standardized tests and for which the 

topic is present both at secondary school and university. In particular, our research focuses on 

powers and manipulation of exponents and the difficulties with these topics have been widely 

reported in the literature (Pitta-Pantazi et al., 2007, Cangelosi et al., 2013). Indeed some studies 

have already reported common difficulties with management of exponentials between university 

students and high school students (Cangelosi et al., 2013). This led us to think that some 

misconceptions regarding exponential expressions are persistent over time. The students’ mental 



constructions and the way in which they develop a meaningful understanding of exponentials has 

been the subject of other studies (i.e. Pitta-Pattanzi et al., 2007). In this is a vertical analysis made 

among secondary school students the authors found that, independently from the age of the students, 

there is an issue in the treatment of the exponentials that led them to provide wrong arguments in 

comparing powers with the same base or with the same exponents. Starting from these evidence, we 

conducted our research concerning expressions with exponentials, in particular the manipulation of 

different representations of exponentials. We are interested in understanding if the phenomenon 

showed from the quantitative analysis also implies that the difficulties encountered by students at 

different school levels are the same. To investigate this phenomenon, we need a further qualitative 

analysis, which is on-going, and its results will not be included in this paper. As we can see below, 

we detect that the main common difficulties are related to the semiotic representations management 

and, in order to interpret it, we use the semiotic approach proposed by Duval (1993, 2006). 

According to Duval, for each object there is more than one possible semiotic representation and one 

of the highest processes of mathematics is precisely the management of different representations of 

the same object. Our analysis will show that recurrent errors made by students, in all investigated 

levels, can be reduced to the difficulties concerning the management of different semiotic 

representation of the same object and the transformation of representations within different 

registers. We can then identify the main difficulties in the conversion (Duval, 1993). Duval (2006) 

suggests that the switch from natural language (verbal register) to algebra (symbolic register) 

requires a high level of complexity. Furthermore, according to Duval, it is possible to classify the 

different representations of a mathematical object in different registers, which are a set of signs and 

rules that can be manipulated. Such registers may themselves be classified as discursive (natural 

language written or spoken, mathematical symbols) or non-discursive (diagrams and figures). Still, 

it is possible to distinguish within each category those that are multifunctional registers, i.e. suitable 

to explain processes that cannot be put in algorithmic form, from those mono-functional, i.e. 

especially dedicated to algorithmic processes. In the first category there is natural language, in the 

second arithmetic and algebraic symbols. In the mono-functional register treatments can take the 

form of an algorithm, while in multi-functional ones, this is not possible. This fact will be crucial in 

the analysis of the behaviour of the students in our research.  

Methodology and data analysis   

Our research is a mixed method sequential research (Johnson & Onwuegbuzie, 2004), with design 

QUAN → QUAL → QUAN. The first quantitative phase consists in an analysis of statistical results 

of the standardized items. Then, among the selected standardized items, we search for the ones with 

a topic common between secondary school and university levels. Subsequently, we look for the ones 

that highlight the same educational phenomena. Finally, we search on AlmaMathematica for the 

ones with the same features. We conduct a research looking at tasks at low secondary school level, 

high secondary school level and the initial stage of university undergraduate level. We needed a 

common topic to start with and we chose powers. In Italy, this is a topic used in the final national 

examination at the end of low secondary school, which is then elaborated in the second year of high 

secondary school and it is considered an “entry requirement” (and therefore investigated) for all 

university courses that require mathematics knowledge and skills.  To search for tasks concerning 

powers among all the ones of the standardized assessment INVALSI test from 2008, which has had 

a low rate of correct answers, the INVALSI Database Gestinv is used. This database is an online 



tool of research (www.gestinv.it) that contains more than 1,400 items administered in the Italian 

national standardized tests and it is used in professional development programs implemented by 

schools and in research in mathematics education. Inside the database, there is a PDF of all tests 

administered in Italy from 2008, in which each item of these tests is accompanied by detailed 

results, statistical classifications, and data split into different categories. In respect of each item 

there is the image of the question, the goal of the content, the process, the reference to the National 

Guidelines for Curricula, some keywords characterizing the content, the text of the question, the 

correct answer or the image of the correct answer, the percentage of national response, the 

characteristic curves, and the item information. The Gestinv database can be used in many ways: 

when entering the section of Mathematics it is possible to search by National Guidelines for 

Curricula, Keywords, Full Text, and to do a Guided Search: a cross-search - with connectors and/or 

- of all parameters in respect of each item and all its features, such as the percentage of national 

response. Through the tool Guided Search we searched for all of the secondary school tasks of 

INVALSI Tests of Mathematics, referring to the keyword “powers” which had percentages of 

correct national responses below 50%. The research displayed about ten tasks with these features, 

and we looked for those whose analyses represent the same didactic phenomenon. As we see in the 

next section, we studied two tasks that had “common errors” displayed at national level: one by low 

secondary student (13 years old) and one by high secondary school students (15 years old).   

Once such tasks are identified, we check if the analysis of the tasks about powers in 

AlmaMathematica Project shows the same type of errors. Students who performed exercises and 

problems in this e-learning environment are 18-20 years old; this allows us to investigate whether 

the same phenomenon persists with students of different age and how it occurs in various levels.  

The analysis of tasks 

The following task was administered in a census at grade 8 Italian students in a.y. 2010/11.  

 

Figure 1: Question D11, Grade 08, INVALSI Test, a.y. 2010/11 

Figure 2 shows the national percentage of correct, mistaken, missed, and invalid answers and the 

percentage of choice for each option. 

http://www.gestinv.it/


 

Figure 2: Data of Question D10, Grade 08, INVALSI Test a.y. 2010/11 

The question was administered in a.y. 2010/11 to a population of approximately 600,000 grade 8 

students, the sample (from which the statistical data are calculated) was composed by about 27,000 

students. To give the correct answer a correct management from natural language to algebra is 

necessary. As we notice, the percentage of correct answers is low (the correct answer is option D, 

and it has been chosen by 26.2% of students). Option A and B have been chosen almost by the same 

percentage of students. Students that answered A worked incorrectly on the exponents (they 

probably halved the exponents or subtracted ten from the exponents). Students who choose option B 

had divided the base by ten. A similar situation appears also in the following question, administered 

at grade 10 students in the INVALSI N of the a.y. 2011/12. 

 

Figure 3: Question D10, Grade 10, INVALSI Test, a.y. 2011/12 

 

Figure 4: Data of Question D10, Grade 10, INVALSI Test, a.y. 2011/12 

As shown in Figure 4 the correct answer was chosen only by 12.1% of students. This question was 

administered in a census to 530,000 grade 10 students, and about 42,000 students composed the 

sample. The most common option is B: students who have chosen this option have halved the 



exponents. This situation has some features in common with the previous one: the task structure is 

the same and the construction of the distractor is similar. In the 8th grade task, the numbers involved 

are integers and in the 10th grade task are fractions, but the solution of both tasks require the 

manipulation of powers, and the conversion from different registers.  Another similar situation 

occurred in the analysis of the results of the exercise referring to powers in the AlmaMathematica 

Project. Entering the e-learning environment AlmaMathematica there are 5 sections and one of them 

is about algebra. Inside this section there are 7 subsections including “Powers and Roots”. Students 

enter the online environment and perform the exercises; each student can perform the exercises 

more than once. When a student makes a mistake, it is only reported that the given answer is 

incorrect but the display does not show the right one. The percentages of answers, shown in Table 1, 

are related to the first attempts given by students. When we extrapolated the data, there were 1625 

registered and 773 students attempted the exercise. By analysing the data we can see that one of the 

tasks has some characteristics in common with the previous ones; the task is the following one 

(Figure 5). 

 

Figure 5: Question Q.3, Section “Powers and Roots”, AlmaMathematica Project 

Answer A Answer B Answer C Answer D 

13.7% 25.9% 12.3 % 48.1% 

Table 1: Data of Question Q.3, Section “Powers and Roots”, AlmaMathematica Project 

Also in this case we notice that the structure of the task has several elements in common with the 

previous two. Indeed, the situation is similar to the situations that occurred in the INVALSI tests: 

the solution of the task requires interpreting a verbal delivery and employing working with powers. 

Also the distractors are similar to the distractors in the INVALSI task grade 10th. Specifically, the 

number presented in option C, in which the exponent is divided by a third, is obtained by an 

incorrect manipulation of the exponent exactly as the number present in option B in the previous 

task. As we can see in Table 1, the percentage of correct answer is slightly higher and almost half of 

the students chose option D, just like the majority of students of grade 10 chose option B. The 

exercises in AlmaMathematica were performed by students at the end of the secondary school and at 

the beginning of university but almost all users are university students. Thus, we can observe that 

among all analysed levels (from low secondary school to university) the conversion from natural 

language to symbolic representation about power manipulation is an issue. Specifically, observing 

the results obtained in high secondary school and university tests, we show that the students who 



made the same mistake: they manipulated in the wrong way the exponent of the powers leading 

back to the exponent the “verbal indication” provided in the stimulus. Indeed, in both tasks they 

chose the option in which there is an incorrect manipulation of the exponent.  

Conclusions and further directions 

Our main hypothesis is that a longitudinal analysis, performed with many students, can give relevant 

information on the directions to link (and, then interpret) longitudinal shared difficulties from low 

and high secondary school to university. We study students’ behaviour when solving mathematics 

exercises in which the management of representation of powers in different registers is required. As 

shown by Cangelosi et al. (2013) certain errors when working with exponential expressions persist 

as the students progress through their mathematical studies. Many students memorize algebraic 

rules with little or no conceptual understanding of their meaning because the rules of algebra and its 

terminology seem distant from their way of thinking. It follows that these students have trouble 

keeping track and applying the rules appropriately (Kieran, 2007). The description of the difficulties 

of students in algebra, particularly in the interpretation of mathematical symbols, was also addressed 

by Carraher and Schliemann (2007). Kieran (2007) noted furthermore that a main issue is the ways 

in which students work with variables and algebraic expressions, discussing in depth the 

development of algebraic thinking in middle and high school. In our case the problem is the 

management of verbal representation of power and algebraic representation. The processes put in 

place to manage these different representations are well framed in Duval (2006). In all tasks 

analysed, a switch from natural language (verbal register) to the algebra (symbolic register) is 

necessary to give the correct answer, and this presents a high level of complexity (Duval, 2006). 

Indeed, we studied the difficulties of students in conversion from two different registers, from 

natural language to symbolic representation. Particularly, we analysed the difficulties to convert 

from one multi-functional register to one mono-functional register, and despite this represents a 

difficulty, it is impossible to avoid this situation in the teaching/learning processes. Results show 

that students make common errors in managing different representations of an object. For a better 

interpretation of the phenomena that we observed, we shall need a further qualitative analysis and 

for this reason we are conducting some interviews with school and university students. Research in 

mathematics education regarding the transition from secondary to tertiary education highlights that 

students’ difficulties are related to a multiplicity of factors – cognitive and meta-cognitive – and it is 

still more problematic when accessing university education (Gueudet, 2008). These difficulties 

highlight that one of the causes is the gap in the prerequisite knowledge, specifically in the 

manipulation of different objects representations. In conclusion, information acquired by LSA and 

by the e-learning environment has brought to light some recurrent mistakes. The analysis of this 

data allows us to interpret a didactic phenomenon, and it is also in this perspective that we consider 

standardized assessment as a tool for formative assessment.  
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In this paper we describe how mathematical items are constructed for the Italian National  

Education Assessment System (SNV). After a brief description of the structure of the Italian SNV, 

we describe – through an example – how mathematical items are analyzed and finalized before 

being submitted to Italian students of different school grades. Each item is analyzed from two 

different perspectives: first the mathematical content and its relevance in the teaching and learning 

of mathematics is considered and then the statistical analysis of the field trial results are examined. 

The challenge we face is to maintain an appropriate balance between these two different aspects. 

Keywords: Assessment, mathematics tests. 

 

Introduction 

Italian National Assessment System (SNV1) started its work in 2008 through annual surveys 

conducted by the National Institute for the Evaluation of the Education System (INVALSI) at 

different school levels. The INVALSI develops standardized national tests to assess students’ 

reading comprehension, grammatical knowledge and mathematical competence, and administers 

them to the whole population of primary school students (Grades 2 and 5), middle school students 

(Grades 6 and 8), and high school students (Grade 10), see Figure 1. From 2008, the SNV test on 

reading and mathematical competence is part of the 8th Grade national final examination. Therefore 

it contributes to the final evaluation of the students (Garuti & Martignone, 2016). 

 

 

Figure 1: The design of INVALSI surveys from 2008 to present 

SNV surveys aim at taking a snapshot of schooling as a whole: in other words, it is an evaluation of 

the effectiveness of education provided by Italian schools. The results of a national sample are 

                                                 

1 https://invalsi-areaprove.cineca.it/. 

https://invalsi-areaprove.cineca.it/


annually reported2 stratified by regions and disaggregated by gender, citizenship and regularity of 

schooling. These results are public, as well as the tests and the scoring guides. However, the results 

of each school are sent confidentially to the principal.  

The mathematics items are connected to the National Guidelines for the Curriculum and to some 

teaching practices that have consolidated over the years. Another important reference is the UMI-

CIIM curriculum "Mathematics for the citizen” (Anichini et al., 2004), which is based on results of 

mathematics education research and has deeply influenced the last formulation of the national 

curriculum. The SNV Framework defines what type of mathematics is assessed by the SNV tests 

and how it is evaluated. It identifies two dimensions along which the questions are built: the 

mathematical content, divided into four major areas (Numbers, Space and Figures, Relationships 

and Functions, Data and Forecasts); and the mathematical processes involved in solving the 

questions (Knowing, Problem solving, Arguing and proving). These dimensions are closely and 

explicitly related to the National Guidelines. The framework adopted by SNV assessment includes 

aspects of mathematical modelling as in PISA survey (Niss, 2015), and aspects of mathematics as a 

body of knowledge logically consistent and systematically structured, characterized by a strong 

cultural unity (Arzarello et al., 2015). 

The SNV tests differ from PISA or TIMSS surveys not only for its frequency (annual vs. triennial), 

for the type of tested population (census vs. sample), and for the target population (grade-based vs. 

age-based students for PISA), but mainly for its goals: as a matter of fact the SNV tests results aim 

at providing to the Ministry a national benchmark for the assessment of the Italian students at 

different grades taking into account the national curriculum. In addition, each school and each class 

receives its own results according to the dimensions described above, compared with the national 

results and the results of 200 schools or classes with the same socio-economic background. Results 

are returned to the schools according to the two dimensions of the framework: content and 

mathematical processes as well as for each item (including the response rates for each option in the 

case of multiple-choice item). 

The goals of the study 

 The aim of the present study is to illustrate the two approaches used to select mathematics items: 

mathematical content and its relevance in the teaching and learning of mathematics and the 

statistical analysis of the field trial results. 

The construction and analysis of mathematics items 

The preparation of the SNV items takes place in two steps. A first set of items is prepared by in-

service teachers of all levels, subsequently, the SNV National Working Group builds the test by 

selecting items so that the test is balanced both from the point of view of contents and processes. 

Since 2013, the item development has been carried out during a summer school held in July, 

involving about 200 in-service teachers. All item developers are teachers who teach at the school 

level for which they prepare the items. All items are classified according to the SNV framework 

                                                 

2 https://invalsi-areaprove.cineca.it/index.php?form=precedenti_risultati.  
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(mathematical content, question intent, mathematical process involved and specific links with the 

National Guidelines).  

Towards the end of the year in which the summer school is held, the items are revised and 

assembled in booklets. Five different working groups (group-level), one for each grade involved, 

prepare the field trial. The group's work consists of the analysis of the items and the selection of 

those deemed most suitable to be included in the booklets. Each group-level constructs at least two 

booklets, making sure that they are balanced from the point of view of both content and processes. 

Once the items have been tested in the field trial, the results are analyzed by the SNV National 

Working Group in order to prepare the final booklet for the main study. This National Working 

Group is formed by the coordinators of the level-groups, generally experienced teachers, 

researchers in mathematics education and statisticians. The revision of the booklet is supported by 

psychometric analysis, conducted according to CTT model (classical test theory) and the IRT model 

(item response theory – 1p Model) (Rasch, 1960, Hambleton, 1991).  

If one item does not fit the parameters, we try to figure out what doesn’t work. Sometimes the 

problem can be that the text is not entirely clear from a linguistic point of view, that some 

distractors are too attractive or not attractive enough, or the percentage of correct answers is too 

low, especially when the question requires an open constructed response. In this case, if the item is 

interesting from an educational point of view and it tests important skills, it is modified according to 

the analysis done and included in the next field trail.  In some cases it is difficult to change the item 

while maintaining its significance from a mathematical point of view, so if the psychometric 

properties of the item are too weak we prefer to exclude the item from the final booklet. 

Our research questions are: 

a. In which way item analysis, that is the statistical analysis of the psychometric properties of 

an item within a test, may support the progressive refinement of the item formulation?  

b. How to balance the tension between producing a test with good psychometric properties and 

guaranteeing at the same time that it has appropriate or relevant mathematical content? 

Qualitative and quantitative analysis: one example 

The example below shows the analysis performed on each mathematical item. Each item is 

analyzed from two different perspectives: the mathematical content and its relevance in the teaching 

and learning of mathematics and the statistical analysis of field trial results. In fact, an item may be 

robust in terms of statistical analysis, but not significant from the point of view of mathematical 

competence to be measured and vice versa an item could be very interesting from the aspect of 

mathematics education, but not suited to a standardized test. The challenge that we face is how to 

ensure the right balance between these two aspects.  

From the mathematical educational point of view, the item that we propose as an example in Figure 

1, belongs to Space and Figures content. It doesn’t require the calculation of the volume of a solid, 

which is a typical and traditional request at this educational level (8th grade), but the understanding 

of the relationship between a given quantity (1 litre) and the shape and dimensions of a container. 

The four figures have different sizes and shapes. Each response option is accompanied by a 

plausible justification. 



 

Figure 1: Original item (before the field trial) 

The item was administered to a random sample of 389 students, representative at the national level 

(see Table 1). The high number of respondents ensures the robustness of the results of the test. 

Analyses are conducted by considering the overall functioning of the item as well as the functioning 

of each option (4). 

item:37 (A25-M8SF601)                                                            
Cases for this item     389   Item-Rest Cor.  0.11   Weighted MNSQ   1.09  
Item Delta(s):         1.30  
------------------------------------------------------------------------------  
 Label    Score     Count   % of tot  Pt Bis     t  (p)   PV1Avg:1 PV1 SD:1    
------------------------------------------------------------------------------ 
   A       1.00       38       9.77    0.11     2.08(.038) -0.94     1.11      
   B       0.00       44      11.31   -0.07    -1.46(.145) -1.39     0.81      
   C       0.00      136      34.96    0.14     2.77(.006) -1.13     0.78      
   D       0.00      144      37.02   -0.11    -2.27(.024) -1.40     0.86      
   7       0.00        1       0.26   -0.06    -1.14(.254) -1.92     0.00      
   9       0.00       26       6.68   -0.06    -1.27(.206) -1.43     1.13    

Table 1: The original item: Results from field trial 

The item has some problems from the point of view of both the overall functioning and the 

functioning of individual distractors. A, B, C, D labels represent the different options, the code 7 

represents invalid answers and the code 9 represents missing answers. Taking into account the 

correlation coefficient (in table 1, Item-Rest COR.= 0.11), we notice that the value is positive, but 

below what we consider the reference value (0.20). This means that the item, as was proposed in the 

field trial phase, is not able to discriminate students with different skill levels. The correct option 

(A) is chosen by a small number of respondents, (9.77%). The question, therefore, seems to have a 

high level of difficulty but, at the same time, it is not so discriminant. In fact, if we consider the 

correlation coefficient for the correct answer (A) the correlation is low (Pt Bis 0.11). The three 

distractors have problems too: the weakest is the third (C): besides being very attractive (34.96%) it 



has a positive biserial-correlation index, even slightly higher than the correct option (Pt Bis = 0.14). 

This means that the students who choose this option have a higher level of ability, as measured by 

the whole test, than the students having selected the correct answer. This is confirmed by the IRT 

analysis shown on the plot of characteristic curves by category (see Figure 3). 

 

Figure 3: Characteristic curves by category 

The item difficulty, estimated by Rasch scale, is 1.30 (Figure 3, Delta(s): 1.30). The IRT model 

confirms the difficulty of the item. The chart shows on the x-axis the estimated ability of 

respondents (in logit units) and on the y-axis the probability of answering correctly to the item. 

Therefore each curve represents the evolution of a response option, in terms of skill of students and 

chance to choose a certain option. The curves relative to observed data are then compared with 

theoretical trends that question should have, depending on the Rasch model (continue blue curve). 

This comparison reveals that observed behaviour of correct option (in legend, Item 37:1) is not 

fitting with the theoretical model. From the plot, we can see that the probability to choose the 

correct answer does not increase with the increase of the skill level. The distractors trends have 

some problems as well. In particular, the distractor C (Figure 3, Item 37:3) has a probability to be 

chosen which is higher than that to choose the correct answer, even for the highest level of ability.  

The field trial item analysis results help us to make hypothesis about which mathematical aspects of 

this item don’t work. The two more often selected options (C and D) contain both terms that 

probably confuse students (volume and height), and elements linked to students’ cognitive 

difficulties related to the concept of volume, as shown by the relevant research (Vergnaud, 1983). 

In option C, the word “volume” probably attracts high level students as they know that the item is 

about the volume. Probably they think that the lower the volume, the greater the height, because 

they do not grasp the right relationship between the measures of the base area and the supplied 

quantity (1 litre). Option D is attractive probably because the question is about the “maximum 

height” and this option is the only one in which the term “height” is mentioned.  This item is 

interesting from the point of view of mathematical skills and it is closely related to the Mathematics 



National Guidelines, but it does not seem to be clear for students. Probably its question intent is not 

well focused either. In fact, given the formulation of the item, we cannot understand the reason why 

students are unable to answer correctly: does it depend on the fact that students are not able to 

identify the right container or on the fact that they are not able to identify the right justification? 

The question has therefore been modified for the Main Study test (2015) in order to remove its 

problematic elements (Figure 4). 

 

Figure 4: Modified item (after field trial) 

In the new version of the item “the maximum height” is no more mentioned, because the question is 

about “the highest level”. Moreover, all figures have the same height (20 cm), in order to help 

students to focus their attention on the shape of the containers and on the dimensions of the base.  

Finally, the justification has been removed from the response options. The item question intent was 

partly modified, but it is more focused.  

The fact that the figures have all the same height allows students to focus more on the size of the 

base of the containers rather than on the meaning of volume or on the relationship between volume 

(1 L) and the shape of the containers. 

From the point of view of mathematics education the first version of the question was probably 

more interesting because it was more stimulating (the containers have different sizes and each 

option has different justifications).  This type of question would be very suitable for a class 

discussion.  For example, as part of work with the class, it would be interesting to isolate the crucial 

variable through a discussion in order to highlight the different ideas of the concept of volume. 

However, in a standardized national test, where the item is administered to all the Italian 8th grade 

students, it should be able to discriminate between skill levels, without losing in mathematical 

relevance. 

Figure 5 show the characteristic curves of the modified item administered to the national sample 

(about 28500 students, with the presence in the classrooms of external observers). 



 

 

Figure 5: Characteristic curves by category 

The item is still rather difficult (Item Delta = 1.66, and the percentage of correct answers 19.58%), 

but its discrimination has improved (Item-Rest Cor. = 0.25) as well as the index of FIT (Weighted 

MNSQ = 1.03). Only the option B seems to have some problems: its correlation coefficient, in fact, 

have a positive value (Table 2, Pt Bis= 0) even if this correlation is not significant (in table, sig. p = 

0,952). The real change is observed on the curves of each response option (Figure 5). In the 

previous version of the item, the trend of the curves highlighted a number of issues about the 

different response options. Now we can see that the correct option (Label A; Item 18:1) follows the 

theoretical model (continuous blue curve) and the curves of the incorrect options drop with 

increasing student skills. Option B still remains problematic: you can notice from its curve on the 

graph that this option (in legend, Item 18: 2) has lower probability to be chosen, in comparison with 

the other distractors, by students of any skill level. Analysing the item from the mathematical 

content point of view you can see that option B involves an estimate of the base area which is 

slightly more complex (15x15) than the other options. On the other hand, the other two options C e 

D, (Figure 5, 18:3 e 18:4) work well: in fact they have higher probability to be chosen by students 

with low abilities and this probability decreases according to the increase of skill. As intended, the 

item so modified results to be better focused on a specific question intent. 

Discussion 

In this paper, we have described how we construct mathematics items for the Italian Assessment 

System and which aspects are taken into account in the selection of items for the main study. The 

debate between statisticians and researchers in mathematics education (as well as experienced 

teachers) of the National Working Group for the construction of the mathematics national test is 

always very lively. The challenge is to be able to maintain the right balance between these aspects, 

with the awareness that through a standardized test many mathematical skills cannot be measured. 

The choice is never between pretty or ugly questions, but between suitable or unsuitable questions 

in a standardized test aimed at all the students of the country. In this example we showed how 

statistical analysis has allowed us to improve the item from the linguistic point of view and better 

focus on the purpose of the item. In this way the mathematical aim of the item is saved while its 



psychometric properties are improved. Over the past few years, in a few cases we have submitted 

items that were very interesting from a mathematical point of view, but unsuitable for a test of this 

kind as they didn’t provide information about students’ ability. However some of these questions 

would be more appropriate to be discussed in a classroom setting, proceeding by trial and error until 

arriving at a shared solution, rather than being included in a standardised test. 

The challenge that we try to face is to be able to build interesting questions on math skills that are 

important to the teaching and learning of mathematics, but that provide a solid measure of students’ 

mathematics skill levels, with the aim of providing useful information for teachers to enrich their 

work in the classroom. 
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A recent research (Sayac, 2016) has shown that assessments proposed by primary school teachers 

are mainly summative and not used to increase student knowledge. To further this work, we have 

decided to study teachers’ assessment practices in mathematics, but also to improve them in the 

context of a collaborative environment. In such a project, as researchers and teacher educators, we 

share the same goal with the teachers involved: developing assessment for learning and helping 

students to learn better in mathematics. For studying this environment and for analysing the 

professional development of any actor, we use the Activity Theory framework (Engeström, 2001) 

but also the notions of “evaluative episode” and “professional judgement in assessment”, 

developed by Sayac (in progress) for defining the didactic paradigm of assessment. In our paper, 

we present our methodology and focus on one aspect of this research: the use of external 

assessments as tools for improving assessment practices.  

Keywords: Assessment practices, external and internal assessment, validity in assessment. 

In France, recent modifications in curricula and institutional directions encourage teachers to assess 

competencies (and not only knowledge), but also to develop, in their classes, “assessment for 

learning”: teachers should consider that assessment is a part of the didactic process and use 

assessment information for adjusting their teaching strategies. A recent study by Sayac (2016) with 

some primary school teachers, has showed that assessments in mathematics are mainly summative 

and that teachers use the results principally for the end of term report. Moreover, assessment tasks 

are not complex and previously studied before taking the test.  

Furthermore, few assessment tools are made available to primary teachers. Until 2012, national 

diagnostic assessments were organized at the beginning of Grades 3 and 6 and teachers could use 

them for a diagnostic purpose, but these tests do not exist anymore. In the same time, the number of 

large scale assessments in primary school has increased in France, but items are not free and only 

results are published (Brun & Pastor, 2009, Dalibard & Pastor, 2014; Lescure & Pastor, 2008,). So, 

teachers cannot use items or results directly for their classes and educators can only exploit general 

results for providing an overview of trends in students’ mathematical knowledge or difficulties. 

Since 2016, a bank of exercises (with scoring procedure, explanation of the difficulties and 

propositions of teaching strategies) has been created for helping teachers to assess students at the 

beginning of Grade 3. It is a commendable initiative, but it raises a lot of questions about these 

exercises and their use: even if each task is relevant with regard to its assessment aim, teacher must 

select many of them to elaborate a complete test. How is this selection done and which 

competencies are finally assessed?  Is scoring guide used or not by teachers? How? Etc. 



Like other external assessment tools, this could improve teaching and assessment practices, but 

merely delivering assessment tasks seems not to be sufficient: for designing tests and using results 

for a better regulation in classes, we think that, in addition to assessment tools, teachers must have 

knowledge about mathematical notions, teaching them.  

Finally, these observations about the bank of exercises have led us to conduct a study to analyze and 

improve teachers’ assessment practice; we suppose that training teachers in assessment will also 

impact their teaching as a whole. We have chosen to conduct our research in a specific 

mathematical domain (whole numbers) at the beginning of the elementary school (Grade 1 to 3), in 

a collaborative environment. After specifying our research and training aims, we explain our 

theorical frameworks and methodology for studying this environment and the professional 

development of any actor and conclude with perspectives. 

Research aims and context 

This research aims to continuing to explore the assessment practices primary school teachers in 

mathematics but also to improve them as part of a collaborative research-training. It is undertake in 

a special network “AeDeP” at FIE (standing for Associated educational Design-experiment Places 

at French Institute for Education); this type of project is initially based on an educational question 

shared by different actors (teachers, researchers, school directors, local authorities) and is built for 

sharing experiences and designing common tools. Our two key issues are:  

1. How do primary school teachers assess their students?  We focus on test content (which type of 

tasks do they propose? What techniques are necessary to solve them? Etc.), but also on how 

teachers design their assessments (what kind of resources they use? What do they do with the 

results? Etc.) 

2. How can such a collaborative research-training improve teachers’ assessment practice, and more 

generally mathematics teaching?  

We present in this paper one part of our three-year project, called “EvalNumC2” and we focus on 

the development of assessment practices in mathematics at primary school. For this part of the 

project, regular meetings are planned (one per month) with all the actors (ten primary school 

teachers and us, two educators/researchers) and with different aims depending on the timing of the 

research. At the beginning, researchers will only collect the tests produced by teachers (without 

training) and information about teachers’ practice; after, external assessments and didactic tools 

designed by researchers will be introduced. 

Theoretical framework 

Activity theory for studying professional development in a collaborative environment 

We consider that the Activity Theory expanded by Engeström (2001) is a good framework to study 

this kind of collaborative project of research and training through the objects and the tools used by 

the subjects, i.e. the teachers involved and us, as mathematics teacher educators/researchers (MTE-

Rs). In this framework, the activity of teachers in which we are interested is their assessment 

practice and the activity of MTE-Rs is to explore and develop these assessment practices within the 

collaborative environment. We look at the activity of the different subjects in order to produce 



results concerning professional development of each one, promoted through this collaborative 

device (Jaworski, 2006). 

Among the tools used in the AeDeP, we have chosen to focus on two specific ones: a list of 

criterions for studying the validity of test items and tests designed by researchers. In the following 

we explain why.  

Didactic paradigm of assessment 

To study the assessment practices of teachers, we adopt the didactic paradigm of assessment 

developed by Sayac (in progress). In this framework, teachers’ assessment practices are studied 

through the evaluative episodes they propose during the learning process, but also from the 

evaluative logic of teachers that becomes apparent in the design of the episodes (resources, method, 

nature of the tests provided), through their professional judgment in assessment and their grading 

practices. 

A number of researchers draw on the notion of professional judgment when considering learning 

assessment by teachers (Klenowski & Gunn, 2010; Laveault, 2008; Wyatt-Smith, Morgan & 

Watson, 2002). For them, professional judgment includes both cognitive process and social practice 

(Mottier Lopez & Allal, 2008), which is not same as a “mechanical gesture of measurement” 

(Wyatt-Smith et al., 2010), but must be considered as a “flexible dynamic process comprised of 

middle and final judgments” (Tourmen, 2009). The professional judgment of teachers could be 

viewed as an act of discernment and as the ability to build intelligibility of the phenomenon of 

assessment, while taking into account the epistemic, technical, social, ethical and paradigmatic 

dimensions of classroom assessment practices (Tessaro, 2013). In the didactic paradigm of 

assessment, the professional judgment is considered as a kind of “didactic vigilance” (Pézard, 2010) 

specifically applied to the assessment activity of teachers. This allows them to on the one hand give 

a valid verdict (Chevallard, 1989) about students’ mathematical knowledge, individually and 

collectively, from data collected during the different evaluative episodes. On the other hand this 

allows them to mutually articulate the different moments of the learning process (especially to 

connect evaluative episodes to the other moments of the learning process), based on data collected 

during the different evaluative episodes. This professional judgment in assessment is related to 

teachers’ mathematical and didactical knowledge and assessment skills. It also depends on 

individual factors as beliefs on learning and assessment as well as professional and personal 

experiences on assessment (Brady & Bowd, 2006; Di Martino & Zan, 2011; Jong & Hodges, 2015).  

 

Validity of tests  

Researchers and teachers, and more generally, all assessment designers, have a same preoccupation 

about the test: they want to be sure that their tests assess what they should assess and only that. In 

previous work, we have described a methodology and listed didactic criterions for analysing the 

validity of an external assessment in mathematics (Grapin, 2015; 2016). We transfer and adapt these 

principles with two different aims: as researchers, for analyzing the content of internal tests 

designed by teachers (classroom assessment), and, as educators, for helping teachers to construct 

their own assessments.  



For studying the validity of a test of a mathematical domain, we consider two levels: locally 

(exercise by exercise) and globally (the test as a whole). From a didactical point of view, the a 

priori analysis of each item is crucial because it gives indicators to guarantee that a task is relevant 

for achieving its assessment aim. For each item, we realize such an analysis specifying the tool or 

object aspect, the registers implicated with their possible congruence (Duval, 2006), the types of 

tasks involved in the resolution, the different techniques (adequate and inadequate through 

curricula) for solving the problem, the arithmetic problem classes (Vergnaud, 1996), the complexity 

levels (Sayac & Grapin, 2015). We also take into account the techniques involved in the resolution; 

if an item can be solved with a technique or a strategy different from the ones expected relatively to 

his assessment’ aims, we consider the item as inconsistent.  

For studying and ranking items according to their complexity, we have developed a tool (Sayac & 

Grapin, 2015) which takes into account three factors. In the first one, the wording and the task 

context are considered (what is difficult to understand the question?), in the second one, the 

mathematical knowledge involved in the solving process is studied, and finally in the third one, 

concerns the level of competency (is the task usual or not, does the student have to take initiative?). 

For each of these factors, we attribute a degree of complexity between 1 (simple) and 3 (complex). 

We also observed that discussions between teachers arise during the use of this tool because they do 

not have the same ideas about the complexity, depending on their teaching or their representations 

of mathematical notions (Sayac & Grapin 2013). So, this tool seems particularly appropriate to use 

with the teachers in our project. 

On a global level, we study whether the items are representative for the curriculum: have all types of 

tasks been represented? What are the complexity levels (defined a priori) of the items? Are they 

different or similar? Which registers of representation are involved? When a same type of task is 

represented by different items, are the effective techniques similar? Etc. 

Methodological elements and preliminary results 

The Engeström triangle (Engeström, 2001) allows identifying, for each subject, objects that will 

evolve during the collaborative project of the research and training, through the mediation proposed 

via the tools, the rules and the division of labor and the communities.  

For the teachers involved in the project, the main object is to assess their students. It comes to study 

specifically, from the collaborative environment, tests designed by researcher as one of the tools 

used. We will study how these tests could: 

1- Enhance assessment tasks proposed by the teachers in terms of diversity, complexity and 

coverage of the mathematical domain. 

2- Develop teacher’s professional judgment through the study of students’ answers to these tests and 

the confrontation between all the teachers during the meetings.  

3- Work on the coding of students’ answers and therefore, on grading.  

Studying or using external tests could foster the teachers’ professional development, because they 

will be validly designed from the epistemological and didactical point of view (Grapin & Grugeon, 



2015). The evidence of validity will allow us to show how these tests could be relevant for the three 

points above. 

We consider as Johnson, Severance, Penuel and Leary (2016) that: 

Professional development organized around the analysis of mathematical tasks has potential to 

prepare teachers for standards implementation by helping them develop common understandings 

of standards and how to help students meet ambitious new learning goals. (p. 173) 

Therefore, we believe that the contribution of assessment tasks from external tests, in a 

collaborative context, could develop teachers’ skills on assessment tasks design and contribute to 

enhance their professional judgment in evaluation (Gueudet, Pépin & Trouche, 2013).  

Methodology 

At the start of the school year, we collected tests designed by teachers involved in our project in 

order to analyze the assessment tasks with the tool developed in previous research (Sayac & Grapin 

2015). We will also collect new tests designed by the teachers at the end of the school year, after the 

collaborative group work in the meetings. Each assessment will be analyzed in terms of its validity 

with the criterions listed above; we will principally observe the change in content between the 

beginning and the end of the project (variety of type of tasks, complexity of tasks and the coding of 

students’ answers). 

Each teacher will also fill in a questionnaire about his or her assessment practices (How does he or 

she design tests? Which resources does he or she use? What are the periods of assessment in his/her 

classes? How does he or she use the results?). The results of these questionnaires will be used to 

compare teachers but also as an element for analysing the evolution of their practice.  

Lastly, for relying assessment and teaching in classes, each teacher involved in the project will have 

to keep a “daily book” (journal) in which he or she explains briefly the aim and the content of each 

mathematical course (in the numerical domain). He or she will also have to identify, according to 

his/her own representations, the evaluative episodes and describe these more specifically. We will 

analyze the content of the tasks proposed in tests and during teaching to study their correlations and 

their evolution during the project. As observed by Grugeon and Bedja (2016), we suppose that 

training teachers in assessment will also improve teaching: teachers should propose a wider variety 

of types of tasks, but they also should be able to have a better interpretation of students’ errors and 

propose adapted instruction to upgrade students’ level of understanding. 

Preliminary results 

At the time of writing, we cannot present full results because this project started in September 2016 

and we are in the process of collecting first data; we show however two example of tasks, extracted 

from the same test, one of the teachers in our study used in Grade 3. 

In a first task (Figure 1), the five questions are similar and aim to assess the decomposition of 

written numbers in canonical expressions. In all examples, the underlying structure is regular. We 

observe that such a task is not complex (we quote level 1 on each factor of complexity) and assesses 

five times the same knowledge: only the positional aspect of numeration (and not the decimal 

aspect).  



 

Figure 1: First exercise and students’ answer extracted from a classroom assessment designed by a 

Grade 3 teacher.  

The second exercise of the test (Figure 2) looks like the first one and assesses the same type of 

knowledge.  

 

Figure 2: Second exercise and students’ answer extracted from a classroom assessment designed by a 

Grade 3 teachers.  

Throughout the full test, there isn’t any exercise for assessing the decimal aspect of numeration. We 

conclude that such a test is not valid and in the project we are going to elaborate other questions 

with the teachers to fill this lack. 

We have not yet achieved the analysis of all classroom assessments designed by teachers involved 

in the project, but it seems that, as we can observe in the two previous examples, tasks are 

repetitive, having low complexity and for the numeration, assess principally positional aspect of the 

numeration. Such observations led us to propose external assessments with other types of tasks: 

exercises designed to assess numerical aspect of the numeration but also complex situations 

intended to develop students’ abilities.  

Conclusion and perspectives 

We have focused in the paper on the original and theorical notion of “didactic paradigm” designed 

recently by Sayac (in progress). What we can tell currently, from the first data collected (tests, 

questionnaires, interviews) is that the teachers, participating in our research, design tests with low 

levels of complexity and have invested very little in assessment as a professional gesture. They 

assess their students as they can, with very subjective practices. So, it seems that our research, with 

its training dimension, will make possible a real professional development concerning the 

assessment tasks proposed in mathematics by these teachers and their professional judgment in 

assessment.  



So, besides studying and providing primary school assessment practice in mathematics and 

designing assessment tools, our research aims also to develop these theorical elements. At the end 

of the project, it will be possible to show the impact on the teachers’ practice and interests, and the 

limitations of this methodology, according to our theorical framework. It would then be possible to 

extend such studies in other mathematical domains (as geometry) or in other levels, for example at 

secondary school. 
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Previous research suggests that assessment for learning (AfL), when used effectively, can greatly 

enhance student learning and achievement. However, students’ views regarding AfL are often 

overlooked. This paper reports on one part of a broader study that investigated the interplay between 

lesson study, continuing professional development in AfL and mathematics teaching and learning. 

The paper explores the views of students in one Irish Primary School regarding their use of AfL 

practices during mathematics lessons over the course of one academic year. Evidence suggests the 

use of AfL strategies and techniques enhanced children’s mathematical confidence, and improved 

their engagement with, and attitudes to, mathematics. By the end of the intervention, children readily 

used the language of AfL, engaged in AfL practices and played a more active role in their own 

learning and assessment, identifying the use of self-and peer-assessment as a highlight. 

Keywords: Assessment for learning, mathematics, student voice, student engagement. 

 

Background and focus of the project 

Assessment, as argued by Gardner (2012), is a “hot topic” across the entire education spectrum and 

rarely out of the limelight (p.103). In particular, assessment for learning, with its emphasis on learning 

as opposed to measurement has in recent years, according to Chappuis (2014), “garnered the lion’s 

share of assessment attention and established a pretty good name for itself” (p.21). This paper is about 

assessment for learning (AfL) in mathematics which is conceptualised using the following second 

generation definition generated by the Third International Conference on Assessment for Learning 

in New Zealand in 2009 which states: 

Assessment for Learning is part of everyday practice by students, teachers and peers that 

seeks, reflects upon and responds to information from dialogue, demonstration and 

observation in ways that enhance ongoing learning. (Klenowski, p.264) 

This definition clearly captures the key tenets of AfL, foregrounds classroom practices, highlights the 

notion of AfL as a bridge between teaching and learning (Wiliam, 2011), and views teachers and 

students as the primary agents of educational change (Lysaght & O’Leary, 2013). Research evidence 

suggests that focusing on the use of day-to-day AfL is one of the most powerful ways of improving 

learning in mathematics classrooms and can result in significant learning gains (Wiliam, 2007). 

Additionally, various studies have also linked AfL to increased student motivation and self-esteem 

(e.g., Clarke, 2008), enhanced self-regulated learning and metacognitive abilities (e.g., Andrade, 

2013), and better student-teacher relationships (e.g., Clarke, 2014). In the Irish context, government 

policy emphasises the centrality of AfL in teaching and learning although few teachers have received 

assessment-related continuing professional development (CPD). The Department of Education and 

Skills (DES, 2011a) has highlighted that AfL is not used sufficiently widely in Irish schools and 



concerns have also been raised about teacher assessment literacy. Regarding mathematics, data from 

the 2009 National Assessments of Mathematics and English Reading (DES, 2010b), school 

inspections (DES, 2010a) and international reports (PISA, 2009) have suggested Irish students are 

underperforming. Indeed, Hislop (2013), chief inspector with the DES, argues that it was Ireland’s 

poor performance in PISA 2009 that precipitated publication by the Irish government of a strategy 

aimed at improving standards of literacy and numeracy in Ireland: Literacy and Numeracy for 

Learning and Life; The National Strategy to Improve Literacy and Numeracy for Children and Young 

People 2011-2020 (DES, 2011a). This strategy is one of the most significant documents pertaining 

to education in the Irish context in recent years, and it is especially pertinent to this research since it 

has particular implications for numeracy, assessment and CPD. The Literacy and Numeracy Strategy 

increased the amount of time allocated to literacy and numeracy at all class levels, and set out 

ambitious improvement targets in English and mathematics as measured on standardised tests to be 

achieved by 2020. Compulsory standardised testing in English and mathematics changed from two 

to three points in the primary cycle (second, fourth and sixth classes), with mandatory annual 

reporting of aggregated results to the DES to facilitate collation of a national picture of achievement. 

Additionally, schools must use these results as part of “robust self-evaluation” (p.40) and to prepare 

three-year improvement plans for the promotion and improvement of numeracy and literacy. Results 

also have to be given to Boards of Management and parents. Nevertheless, while various scholars 

(e.g., Leahy & Wiliam, 2012) agree that AfL, when used effectively, is a warranted strategy that can 

improve student learning and achievement, and Irish government policy emphasises the importance 

of using AfL in teaching and learning, apart from some small-scale studies (e.g., Lysaght, 2009), 

research into AfL in the Irish context remains sparse, particularly in the area of mathematics. 

Furthermore, there has been little or no research investigating what is going on in the hearts and minds 

of learners while engaging in AfL practices. This study seeks to address this gap in the field by 

specifically investigating the following research question presented as a hypothesis: 

 The use of AfL strategies and techniques, and the adoption of AfL principles, would 

 enhance children’s mathematical confidence, and improve their engagement with, and 

 attitudes to, mathematics.   

Methodology 

This is a practitioner action research mixed methods explorative case study, which operated within 

the pragmatic paradigm. Over the course of one academic year, it investigated the impact of AfL 

practices on the teaching and learning of mathematics at fourth-class level in one primary school in 

the Republic of Ireland. Specifically, it explored how the use of AfL principles, strategies and 

techniques affected students’ attainment on standardised mathematics tests and their dispositions 

towards mathematics. Additionally, the research investigated the potential of lesson study (LS) as a 

vehicle of collaborative professional learning in AfL and considered the impact engaging in LS had 

on teachers’ skills, knowledge, and use of AfL, and their beliefs towards AfL as a form of assessment. 

A key part of this study was the use of peer-to-peer learning as a vehicle of continuing professional 

development (CPD). Meeting after school on twenty-three occasions over the course of the 

intervention the teachers learned about AfL strategies and techniques on a phased basis before 

implementing them in their mathematics lessons prior to the next meeting. The AfL strategies used 

were as follows: learning intentions and success criteria; questioning and classroom discussion; 



feedback; self- and peer-assessment. Additionally the teachers learned about and implemented more 

than twenty AfL techniques, for example, rubrics, think-pair-share, two stars and a wish, fist-to-five, 

learning logs, ABCD cards and comment-only marking (For further details see Wiliam, 2011). 

Site selection and research participants 

This research project took place exclusively in the school where I teach, Scoil na nAingeal 

(pseudonym), from September 2012 to June 2013. It is a vertical, urban, girls-only Primary School 

in the Republic of Ireland with an enrolment of 438 students and an all-female staff. The profile 

participants included all students enrolled in fourth class for the academic year 2012-2013, 51 girls, 

the average age of whom was ten years in September 2012. Classes were pre-formed, intact groups 

and so, according to Creswell (2009), random sampling was not considered appropriate. Three 

teachers participated in the project, the two fourth-class teachers and one member of the Special 

Educational Needs (SEN) team.  

Data collection and analysis 

Both quantitative and qualitative data were collected to decide whether to accept or reject the above 

research hypothesis. This aided triangulation, enhanced the study’s findings and enabled better 

understanding of the research problem. The quantitative data were collected using one scale of an 

instrument developed by the researcher called the Attitude to Mathematics Questionnaire (ATMQ). 

This scale was labeled the ATMQ-TIMSS since it used statements 8a-8h of the Trends in International 

Mathematics and Science Study (TIMSS) 2007 Grade Four Student questionnaire verbatim. These 

statements examined “students’ general attitudes towards mathematics” and “their self-confidence in 

learning mathematics” (Mullis, Martin & Foy, 2008, p.173). Leaving the TIMSS questionnaire 

unchanged facilitated comparative analysis with national and international data, and ensured the 

reliability of this scale (median reliability coefficients across all TIMSS countries at fourth grade was 

0.83, Mullis et al., 2008, p.401). Fifty children completed the ATMQ-TIMSS pre- and post-

intervention. Scoring was done using a four-point Likert scale, with response options ranging from 

‘Agree a lot’ to ‘Disagree a lot’. Raw data from the ATMQ-TIMSS were coded or categorised, 

recorded and prepared in Microsoft Excel and then imported into the software package, SPSS 21, 

where dependent (paired) samples t-tests were conducted in order to compare the scores of the same 

participants at Time 1 and Time 2, to ascertain whether or not the intervention had an impact (Pallant, 

2013). 

The qualitative data comprised transcripts and video from focus groups (FG) interviews, teachers’ 

learning logs (TLL), students’ learning logs (LL), and the researcher’s journal. In addition to aiding 

triangulation, these data supplemented the quantitative data by facilitating a more in-depth analysis 

of students’ views about using AfL strategies and techniques in their learning of mathematics. Braun 

and Clarke’s (2006) six-step approach to thematic analysis was used to guide analysis of each data 

item individually and subsequently the complete qualitative data set. 

Results and discussion 

Quantitative data 

Results from analysis of the ATMQ-TIMSS indicated that there was a statistically significant 

difference between pre-test (M = 2.03, SD = 0.73) and post-test scores (M = 1.56, SD = 0.42; t (49)= 



5.09, p < .001), i.e. post-test scores indicated more positive attitudes towards mathematics (mean 

values in post-test scores were closer to 1 = Agree a lot). The magnitude of the difference between 

the pre- and post-test means can be interpreted as being large (eta squared = .35). Table 1 presents 

combined ‘agree’ percentages for pre- and post-results for each statement in the ATMQ-TIMSS 

scale.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: ATMQ-TIMSS Scale 

A more detailed exploration of the eight statements from the scale revealed that following the 

intervention the combined ‘agree’ percentages scores for the five positively-worded statements (a, b, 

d, f, h) had increased by between 12 and 20 percentage points while the percentage of students 

agreeing with the three negatively-worded statements (c, e, g) had decreased by between 14 and 20 

percentage points. This suggests that children believed the intervention had positively impacted their 

general attitudes towards mathematics and their self-confidence in learning mathematics. 

Specifically, regarding the three statements which measured students’ general affect towards 

mathematics (d, g, h), results indicated that following the intervention almost 100% of the participants 

agreed a little or a lot with these three statements (Table 1).  

  Statement Subscale n 
Combined 
% Agreeing 
PRE-TEST 

Combined 
% Agreeing 
POST-TEST 

a I usually do well in Maths SCM 50 76 96 

b I would like to do more Maths in school * 50 60 70 

c 
Maths is harder for me than for most other 

students in my class 
SCM 50 28 14 

d I enjoy learning Maths PATM 50 80 98 

e I am not good at Maths SCM 50 26 6 

f I learn things quickly in Maths SCM 50 58 70 

g Maths is boring PATM 50 26 6 

h I like Maths PATM 50 80 100 

Note. % Agreeing = Agree a lot +Agree a little 

Italicised text highlights statements that were recoded. 

For discussion purposes, percentage scores for the three PATM (Positive attitude towards mathematics) 

statements and the four SCM (Self-confidence in learning mathematics) statements were amalgamated to 

provide a composite percentage score for these scales which could then be compared with TIMSS data. 

*Regarding statement b, Clerkin (personal communciation, April 15, 2015) suggests it was probably  originally 

intended to be part of the PATM scale but following factor analysis was found not to represent positive affect 

in the same way as the other scale items and so was excluded. 

 



Qualitative data 

Five main themes were identified following the qualitative analysis but due to space limitation these 

are discussed only briefly here.  

Enjoying the AfL journey 

When describing their experience of using AfL practices in mathematics, the children regularly used 

words such as ‘fun’ and ‘enjoyment’. Their enthusiasm regarding using AfL can be succinctly 

summarised by Maria’s comment: “I love doing AfL and I would like to continue doing it” (LL, 

13/02/2013).  

Growing positivity and self-confidence in mathematics 

It is clear from the data that at the end of the study students reported a growing positivity towards and 

increased self-confidence in mathematics that they attributed to their use of AfL. Some believed that 

using AfL practices made mathematics easier and increased their liking of mathematics: “It makes 

maths so much more fun, ‘cause like in third class I used to hate maths and then like now that there’s 

all these different strategies, it just makes maths so much easier” (Sophie, LL, n.d.).  

A changed classroom dynamic 

Scholars suggest (e.g., Hayward, 2012), engaging in AfL practices in the spirit in which it is meant 

impacts learning and teaching and acts as a leverage for change in classroom practices, and roles and 

relations. Children in this study, while recognising the teacher as overall guide and arbiter in the 

classroom, also identified teachers as learners. Additionally, they were beginning to monitor their 

own learning and to evaluate their progress. For example, Chloe commented, “I think it’s helped me, 

that it’s not letting the teacher correct all your work, that you, you kind of have to check it, and you 

have to, because there’s some silly mistakes that you could make” (FG1). Others displayed an 

increased confidence in their ability to assess, both themselves and others: “I think that when you 

correct it yourself, or for your friend, you know what you're correcting, you know why you're 

correcting, what you did wrong, so you know what you're doing”  (Emma, FG1). This suggests that 

through the process of engaging in AfL strategies and techniques over the course of one academic 

year, these students were becoming more independent learners, accepting the responsibility this 

brought, and were moving towards self-regulated learning. 

Peer- and self-assessment: - a highlight for children 

Using peer- and self-assessment was undoubtedly a highlight for children participating in this study 

as this comment illustrates: “I love self-assessment and peer-assessment” (Hollie, LL, n.d.). The 

following comment from Ruby demonstrates that by the end of the intervention the children had 

developed a good understanding and appreciation of peer- and self-assessment: 

I thought the self-assessment was excellent because we were judging ourselves and could 

learn from our mistakes. Peer-assessment was brilliant for your partner or pair could judge 

your work and spot mistakes that you might not have spotted yourself. (Ruby, LL, 12/06/2014) 

The children believed that self- and peer-assessment not only enhanced their learning but that it was 

also fun. Similar to research by Topping (2010), trusting your peers was mentioned by a number of 

participants as integral to good peer-assessment practice. For example, Hollie remarked: “I think peer-



assessment is the best because you get to like trust your friends more, so they’ll be more honest with 

you in the future” (FG1).  

Unexpected insights 

The qualitative data also revealed some unexpected insights about students’ perspectives regarding 

AfL. The children revealed they used the learning intentions and success criteria from their 

mathematics lessons to help them when doing their mathematics homework. Additionally, they 

described how they appropriated the AfL strategies and techniques to help them learn in other subject 

areas. Many children reported they liked using rubrics since they scaffolded the assessment process. 

Maria wrote: “My favourite thing about the AfL was using the rubric” (LL, 12/06/2013) and later 

explained why: 

I like using the rubric because when we were first going to do peer-assessment I was like ‘oh 

God, what will I say was wrong?’ and ‘I don’t know what to do here’, but then you showed 

us the rubric, and I was like ‘oh, it’s ok’, ... with the rubric, it tells you what you’re supposed 

to assess, (FG2) 

Conclusions 

While acknowledging the limitations of this study, such as the fact that it takes place in a single school 

and employs a case study strategy with convenience rather than non-probability sampling, it 

nevertheless contributes new insights regarding AfL and mathematics, especially from students’ 

perspectives. It demonstrates that children in primary school are capable of engaging in AfL practices, 

including peer- and self-assessment, and want to do so. Findings suggest that using AfL practices 

enhanced children’s mathematical confidence, and improved their engagement with, and attitudes to, 

mathematics.   

This study is important since, to date, little empirical research has been done into the effects of AfL 

practices on students’ mathematics learning in the Irish context at primary level. Additionally, this 

study can supplement research done by academics regarding AfL since it provides a practitioner 

researcher’s perspective of the field, thus “inside-outside” (Cochran-Smith & Lytle, 1993). 

Notwithstanding, perhaps the most significant contribution made by this research is that it provides a 

unique opportunity to listen to, and contemplate, the voice of young learners as they discuss their 

experiences of using AfL practices in their mathematics learning. 
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Diagnostic competences are essential for teacher actions; however pre-service teachers often do 

not have the opportunity to train these skills at university. Thus, there is a need to find out the best 

way to promote diagnostic competences in teacher training. During the last decades, several 

projects introduced videos as a tool for the training of diagnostic skills, but there is no evidence 

that pre-service teachers really acquire diagnostic skills better by analysing videos than by 

analysing tasks. The present study contributes to this growing area of research by exploring which 

one of these two methods promotes diagnostic skills better. Video analysis and task analysis are 

compared as training methods in an intervention study with a pretest-posttest design. Fostering 

preservice teachers’ diagnostic skills with focus on students’ abilities, problems and misconceptions 

with graphs of functions, is the specific objective of our study. 

Keywords: Pre-service teacher training, diagnostic competence, formative assessment, graphs of 

functions, video vignettes. 

Theoretical background 

Good lessons require a lot of competencies on the teacher’s side. Diagnostic skills, in particular, are 

an important part of teachers’ professional knowledge and competence (e.g. Baumert & Kunter, 

2006). Weinert (2000) regards diagnostic competence as one out of four basic and essential 

competences of teachers. Having good diagnostic skills enables a teacher to differentiate and 

individualise amongst learners – an ability that becomes increasingly important in today´s 

classrooms, “[…] because lessons can no longer be planned completely in advance, and teachers 

have to make many decisions in the midst of instruction about how to proceed” (van Es & Sherin, 

2002, p. 574). Good lessons require teacher actions that are adapted to the students’ needs and 

abilities and, therefore, are based on diagnostic information (Klug et al., 2013; Schrader & Helmke, 

2001). For the adaptation of teacher actions to pupils’ needs during a lesson, relevant information 

needs to be obtained during the students’ whole learning process. Getting an insight into the 

students´ abilities only through the results of a final exam, is often too late to work on the students’ 

problems and misconceptions. For this reason, our focus lies on diagnostics which take place in the 

learning process of the students where the teacher is still able to guide and influence the learners and 

their learning process. In the following, an overview of different aspects concerning diagnostics and 

assessment will be given.  

Diagnostic competence 

The term “diagnostic competence” is often used in the literature, but there is no agreement on a 

definition of this expression. A wide-spread definition would be that diagnostic competence 

involves all the abilities of an evaluator enabling him to correctly asses other people (Schrader, 

2010). Artelt and Gräsel (2009) understand diagnostic competence as the teachers’ competence to 



evaluate the characteristic traits of their students in an adequate way and to suitably assess the 

demands of learning and of the tasks. Except of these two, various other definitions are used. 

Diagnostic competence is often described as “accuracy” in teachers’ judgements – mostly in 

correlation with standardized tests – and therefore concerns the students’ achievement in tests (Klug 

et al., 2013). Other definitions refer to the learning process of the students itself. In this regard 

Weinert (2000) defines diagnostic competences as:  

[…] an amount of abilities to continuously asses during lesson the state of knowledge, the 

learning progresses and the performance issues of the individual students as well as the 

difficulties of different learning-tasks, so that the teaching actions can be based on diagnostic 

insights. (Weinert, 2000, p.16, own translation) 

All of these definitions have in common that diagnostic skills are presented as the tool allowing the 

teachers to gain information about the learners. This information can be used for different 

pedagogical decisions like grading and lesson planning (makroadaptations), but also for short-

termed interventions during lessons (mikroadaptations) (Schrader, 2013). As our study does not 

focus on achievements in tests but on the learning process of the students, we refer to the definition 

of Weinert. Moreover, there are different facets of diagnostic competences (e.g. Praetorius, 

Lipowsky, & Karst, 2012), so that we prefer to use the term diagnostic skills, as we focus on 

specific parts of it: the analysis of tasks and the analysis of video sequences – both with regard to 

abilities, problems and misconceptions of students working on tasks with the content functional 

relationships. 

Formative assessment vs. summative assessment 

The terms formative and summative assessment are quite similar to the foregoing described 

diagnostic competence. Again, there is no common and widely accepted definition although they are 

widespread in the international literature (Black & Wiliam, 1998). While summative assessment 

corresponds to the evaluation of students’ academic achievements, formative assessment can be 

equated to diagnoses during learning processes. According to Bell and Cowie (2001b, p. 538), such 

diagnoses during learning processes “could include continuous summative assessment”, which is 

why the authors “explored formative assessment as classroom assessment to improve learning (and 

teaching) during the learning”. Bell and Cowie (ibid.) distinguish between planned formative 

assessment and interactive formative assessment. The former describes an assessment activity 

which is planned in advance, the latter includes assessments that arise out of learning activities 

during the lesson (Bell & Cowie, 2001a). The purpose of interactive formative assessment is to help 

the students by accompanying the learning process (Bell & Cowie, 2001a). According to Bell and 

Cowie (2001a, p. 86) this process involves three parts: noticing, recognizing and responding. 

Noticing in this context means to gather information about the patterns of thought and actions of the 

students. This information is gathered while the pupils are working or talking. Thus, this 

interpretation differs from the term “noticing” described by van Es and Sherin (2002). In contrast to 

the meaning of “noticing” characterized by van Es and Sherin, which already includes the 

identification of important aspects of a teaching scenario, Bell and Cowie (2001a) regard the 

recognition of relevant interactions and moments as a second step. “Recognising may be 

differentiated from noticing in that it is possible to observe and note what a student does without 

appreciating its significance” (Bell & Cowie, 2001a, p. 88). Consideration of “responding” as one of 



the stages of interactive formative assessment shows, that the noticing or assessment should not 

stand alone – the following action of the teacher is indispensable.  

In this sense, formative assessment involves diagnostic as well as didactical competencies - action 

competence, respectively. Diagnosis/ noticing and the action which follows up the diagnosis are 

both parts of formative assessment. To sum up, the subject of our study is diagnostic competence 

according to Weinert (2000) and the following teacher action. Thus, the regarded skills manifest 

themselves in the three stages of interactive formative assessment: noticing, recognizing, and 

responding (Bell and Cowie, 2001a). 

Graphs of functions 

The focus of the diagnosis in our project is on the students’ learning processes while working with 

graphs of functions. The interpretation and construction of graphs of functions are essential skills - 

not only in mathematics education. The ability to use different (external) representations is an 

important issue here. It is one of the six mathematical competences mentioned in the German 

educational standards for mathematics and also influences two of the remaining standards (KMK, 

2004). Moreover, the use of graphs of functions is essential for the topic “functional relationships”, 

being one of five central topics of mathematics education (KMK, 2004). In addition to that, the 

abundance of graphs of functions in our everyday life (e.g. functional relationships or graphical 

representations of data) makes them indispensable in teaching and learning. Nevertheless, previous 

research has shown that dealing with graphs of functions can be difficult and easily leads to 

misconceptions. In the literature one can find a lot of those mistakes and misconceptions (e.g. 

Nitsch, 2015; Leinhardt et al., 1990; Clement, 1985; Bell & Janvier, 1981), like the graph-as-picture 

misconception, the slope-height confusion or the interval-point confusion. Moreover, what the 

students think a function is or how a graph of a function should look like (concept image) does not 

always correspond to the definition of a function, the students have in mind (concept definition) 

(Tall & Vinner, 1981).  

However, not all of these mistakes and misconceptions are visible on the surface but they need to be 

uncovered in time. Otherwise, there is the danger of a consolidation of wrong thinking making it 

very hard to work against them (Nitsch, 2015). In this case, wrong conceptions might still be present 

when students leave school or even when they enrol at university. Teachers need to be able to 

diagnose students´ misconceptions and difficulties in time in order to foster their correct use of 

graphs of functions.  

Giving effective feedback is a crucial aspect of teacher-learner interactions (Hattie, 20120), but 

often there is a lack of time for reflection and decisions on necessary actions to be taken (Black & 

William, 2009). The perception and processing of crucial situations often takes place intuitively – 

“on the fly” – when the teacher is monitoring the classroom and listening to student conversations 

while students are working with their partners or in groups. This is a highly demanding situation for 

teachers (William & Thompson, 2007). Consequently, in the beginning of teaching, teachers can 

experience an overloading by the wealth of information. Thus, the skills to notice, recognize and 

respond should already be fostered during preservice teacher training. A common way to train 

diagnostic skills is the analysis of tasks as it can easily be embedded in university teacher training. 

Thereby the university students reflect the skills which are needed to solve a task as well as 



problems which can occur with the task. This method focuses on skills which are primarily 

necessary in lesson planning. No influence of task analysis on teachers´ diagnostic skills could be 

found yet. It could be assumed, that a good analysis of tasks helps a person to notice things – which 

are expected through the analysis – in reality. Nonetheless the analysis of gestures is not part of this 

method and can still be a difficulty for beginning teachers. Furthermore, noticing in a situation is 

more complex and can be cognitive overwhelming. Therefore, another approach to train such 

diagnostic skills is the use of videos as part of the training of diagnostic competences, as videos are 

very close to reality (compare Janík et al., 2009).  

Up to now, several studies have shown that pre-service teachers often do not have the opportunity to 

train their diagnostic skills so that these competences are only poorly developed (Ostermann et al., 

2015; Praetorius, Lipowsky, & Karst, 2012). For this reason, we want to foster these skills already 

during the university teacher training. 

Research Question 

The goal of our research is to enhance pre-service teachers´ diagnostic skills through experimental 

settings at university. As mentioned before, there are different aspects of diagnostic skills, all 

important for professional teaching. On the one hand, a teacher should be able to identify possible 

difficulties of a task and be aware of the skills needed for solving the task. On the other hand, the 

teacher needs to be able to identify the concrete difficulties and misconceptions an individual 

student has and to react appropriately. The analysing of tasks is one common way to train diagnostic 

skills of pre-service teachers. During the last decades videos were introduced as training tool for 

diagnostic skills as well. Looking at the two approaches to the training of diagnostic skills, several 

questions arise that need to be answered:  

1. How does the training of task analysis influence the skills for analysing learning situations?  

2. How does the training of analysing videos influence task-analytical skills? 

Furthermore, as the diagnoses should be the basis for teacher action, the impact of both trainings 

with regard to this issue is another interesting part of the investigation: 

3. Which intervention results in a noticeable improvement of the actions following the 

diagnoses? 

Method 

In order to verify the effects of the different trainings on the preservice teachers’ diagnostic skills we 

will conduct an intervention study using a pre-posttest design. Thus, it will be a setting with two 

experimental groups: Experimental group one (EG1) will practice diagnostic skills by analysing 

videos, experimental group two (EG2) by analysing the tasks the students work on (Figure 1). The 

preliminary study will be conducted in winter term 2016/2017. The participating pre-service 

mathematic teachers (approximately 60 persons) are currently attending the same lecture in 

mathematics education (didactic of algebra) and will be randomly distributed into the two 

experimental groups. The participants of both groups receive the same content input during the 

lecture. The information given in the lecture will be on functional relationships and particularly 

focus on the representation graph of functions. Furthermore, the skills which the learners shall 



acquire as well as possible student mistakes and misconceptions which can occur during learning, 

are of special interest. 

In the intervention the participants of EG1 are asked to analyse video-vignettes. The participants of 

EG2 have to analyse tasks which contain the construction or the interpretation of graphs of 

functions. The focus of both analyses lies on diagnosis of errors regarding problems and 

misconceptions as well as the skills the students already have or need. The video-sequences used for 

the intervention can be watched multiple times, stopped at any point and the participant can jump to 

any point in the video that is of interest to him. This circumstance is meant to help the pre-service 

teachers as well as possible while they are analysing the learning process of the pupils. The tasks 

which are given to the participants of EG2 are the same tasks used for the video vignettes. 

Therefore, differences between experimental groups are limited to the characteristics of the learning 

resources. The analysis – both of the videos-vignettes and the tasks – happens at each individuals’ 

home, not during the university lecture. In contrast to the test situations, there will be no time 

constraint during the intervention in order to foster the development of diagnostic skills.  

During the pretest, additional data will be collected: teaching experience, attended university 

lectures in education (other subjects included), differentiating between those already attended, and 

those happening in the meantime of the intervention. Knowing these influences gives us the 

opportunity to consider them as covariates for the computation and the results. 

The pre- and posttest will be conducted to measure the diagnostic skills of the pre-service teachers 

at the beginning and the end to be able to see the changes of these skills between before and after 

the intervention. The tests inquires diagnostic skills which are important for the preparation of 

lessons as well as those needed to be able to notice situations relevant for successful learning in 

class. Furthermore reactions based on the participants’ diagnoses will be part of the inquiry. The test 

for diagnostic competencies asks participants to first analyse tasks. Then, a three-minute video will 

be presented, showing pupils working on the tasks previously analysed. The video can only be 

watched once and doesn’t provide the possibility to pause. This way, we are trying to create a test-

situation which is as close to reality as possible. The test includes both open and closed questions 

asking the participant to communicate what they have noticed and to reason about their findings.  

By testing both types of analysis, we want to investigate whether different diagnostic skills have 

influences on each other. Moreover we expect the test to resolve, whether one method is superior to 

the other one. This would be the case if for one training method superior gains in both types of 

diagnostic skills could be observed.  

Both settings of the intervention and the tests for diagnostic competence are embedded in the 

learning environment ViviAn (see Figure 2) developed by Bartel and Roth (2015). This learning 

environment provides a combination of video vignettes and further material and thereby further 

approximates the information available in real-life teaching situations. Hence, the user gets 

information about the students (type of school, grade, sex), the content and the learning goals of the 

entire lesson, and the materials the students use such as the given task and the materials (for 

example a big sheet of paper with a graph of a function on it). The students’ protocols (products) are 

only available to the participants of EG1 who are analysing videos. As the participants of EG2 

analyse the task in more general they shall not be influenced by the solution of the pupils.  



 

Figure 2: The learning environment ViviAn (Bartel & Roth, 2015) 

The data will be analysed with mixed methods. The approach of qualitative content analysis 

(Mayring, 2008) will be applied to create a coding guideline. Thereby the answers of the 

participants will be compared to experts’ diagnoses. As experts serve mathematics teachers and 

academic staff working in the field of didactics of mathematics. These experts’ diagnoses will be 

used as a criterion norm for the measurement of diagnostic skills by using the resulting criteria to 

rate the participants’ answers. To resolve group differences descriptive statistics as well as 

inferential statistics with variance analysis will be considered.  

Expected results 

The preliminary study was conducted in winter term 2016/2017. It will reveal potential problems 

concerning our approach, the used material and tasks. Based on these findings we will be able to 

improve our approach and the used material. Moreover, the preliminary study contributes to the 

investigation of differences between the diagnoses of tasks and videos. Prospectively, with the 

results of the main study, we will then be able to point out, whether trainee teachers better acquire 

diagnostic skills by analysing videos than by analysing tasks. Furthermore it will provide insight 

into whether different aspects of diagnostic skills have an influence on each other. 
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The study attempted to investigate senior preservice middle school mathematics teachers’ purposes 

in preparing the assessment, and their views and suggestions about the assessment part of a lesson 

plan through employing basic qualitative method. First, the “Incomplete and Improper Lesson Plan 

Task” prepared by the researchers was administered to the participants (N=27). Then, one-to-one 

interviews were conducted (N=11). Findings of the study indicated that preservice teachers 

underlined similar purposes in preparing the assessment part of the lesson plan, all of which related 

to the teacher actions. They mainly emphasized the kind of feedback gathered by the teachers rather 

than the students. They also considered the assessment part in the task weak since there were 

insufficient number and diversity of the questions.  

Keywords: Formative assessment, feedback, preservice mathematics teachers. 

Introduction 

Formative assessment or assessment for learning is utilized deliberately for learning (Laud & Patel, 

2013). It includes all activities that provide feedback for adjusting teaching activities and instruction 

(Black & Wiliam, 1998). Any assessment is formative if it is utilized to collect evidence about 

students’ learning progress and current level of understanding the concept (Heritage, 2007), and to 

make instructional adjustments in line with their needs (Wiliam, 2007).  

Feedback plays a crucial role in formative assessment (Sadler, 1989). Ramaprasad (1983, p.4) defined 

feedback as “the information about the gap between the actual level and the reference level of a 

system parameter which is used to alter the gap in some way.” Feedback cannot be differentiated 

from the instruction and it is formative when the information provided is utilized to enhance learners’ 

performance (Wiliam, 2007). Information gathered from feedback can be used by both teacher and 

students (Sadler, 1989). Teachers use it to specify students’ needs and give decisions about the 

adjustments for further instructions (Wiliam, 2007). Students use it to realize their strengths and 

weaknesses (Moss & Brookhart, 2009) and to learn how to modify and improve their performances 

to reach the reference level. Therefore, it affects students’ learning positively. 

Wiliam and Thompson (2008) focused on three instructional processes; where students are in their 

learning, where they are going, and how to get there which are emphasized in Ramaprasad’s (1983) 

definition of feedback and they suggested a formative assessment framework shown in Table 1. 

According to the framework, formative assessment is composed of five key strategies and one big 

idea that the outcome of students’ learning processes can be utilized to make necessary changes in 

the instruction with respect to students’ needs (Wiliam & Thompson, 2008). 

 

  



 

 Where the Learner Is 

Going 

Where the Learner Is Right 

Now 

How to Get There 

Teacher (1) Clarifying and sharing 

learning intentions and 

criteria for success  

(2) Engineering effective 

classroom discussions and 

tasks that elicit evidence of 

learning 

(3) Providing 

feedback that moves 

learners forward 

Peer Understanding and sharing 

learning intentions and 

criteria for success 

(4) Activating students as instructional resources for 

one another 

Learner Understanding learning 

intentions and criteria for 

success 

(5) Activating students as the owners of their own 

learning 

Table 1: Framework relating strategies of formative assessment to instructional processes (Wiliam & 

Thompson, 2008, p.63) 

The five strategies can be explained in the following way: Teachers are responsible for “engineering” 

effective learning environment since their role is only to scaffold learning. They provide this 

environment by generating productive discussion setting, asking deep questions and monitoring the 

learning process (O'Connor, 2002). Learners’ active participation is associated with challenging tasks 

and providing feedback for these tasks which assist students’ learning (Black & Wiliam, 1998). Since 

students need to understand the learning intentions and standards for which they will be assessed, 

clarifying and sharing learning intentions and success criteria with the students is also very important 

(Wiliam, 2007). Additionally, activating learners as instructional resources for one another and for 

themselves is essential for any assessment approach. In this way, learners can improve the ability to 

judge and decide about what to do next (Berry, 2005).  

Formative assessment is a significant process that can be followed in order to have information about 

students’ progress. Hence, each step of the assessment needs to be decided and planned continuously 

(Heritage, 2007). Since, as future teachers, preservice teachers need to be qualified in planning and 

implementing formative assessment practices, teacher education programs play a crucial role in raising 

the awareness of preservice teachers about the significance of formative assessment and in teaching them 

how to plan and use it in their classes effectively. 

The current study aimed to investigate preservice mathematics teachers’ (PST) purposes in preparing 

the assessment part, and their views and suggestions about the assessment part of the lesson plan. 

Aforementioned framework guided the researchers in the process of both preparation of the task used 

for as the data collection instrument and analysis the participants’ responses. 

Methodology 

In this study, basic qualitative research method was employed in order to reveal PSTs’ views about 

planning the assessment part of the given lesson plan. 

Context and participants 

The study was conducted in a four-year middle grades mathematics teacher education program 

(MTE). The program offers mainly mathematics and introductory education courses in the first two 

years and mathematics teaching courses in third and fourth years. A total of 27 senior PSTs who were 



enrolled in MTE program participated in the study. They were selected among PSTs who completed 

the Methods of Mathematics Teaching and Measurement and Assessment courses, and who were 

taking the Practice Teaching course. The first data collection instrument, Incomplete and Improper 

Lesson Plan Task (LPT) was implemented to 27 PSTs. Then, 11 PSTs were selected for the interviews 

with respect to their diverse answers to the questions in the given task. 

Instruments and data collection 

Data were collected by LPT and a semi-structured interview protocol. LPT consisted of incomplete 

and improper lesson plan with three 6th grade objectives on equivalent fractions and a case where 

PSTs assumed to be in-service mathematics teachers implementing this lesson plan. A basic lesson 

plan template which addressed the lesson in beginning, middle, end, and assessment parts was used 

because participants were familiar with the template in the MTE program courses. The plan was 

incomplete because there were not any expression implying any formative assessment strategy. PSTs 

were expected to realize the nonexistence of these strategies and integrate one or more strategies in 

the given lesson plan. The plan was improper also because the first objective was unmeasurable and 

unobservable, there were inconsistencies between objectives and questions in the assessment part, 

there was no rubric for fair scoring, and questions had a weak structure in the assessment part. Certain 

multiple choice questions were selected because PSTs were expected to realize that feedback gathered 

through these questions about students’ learning was limited. PSTs were anticipated to notice and 

eliminate these reasons of improperness of the lesson plan. Figure 1 presents the lesson objectives 

and 4 yes-no questions in the assessment part of the lesson plan.  

Objectives:  

● Students should be able to develop a conceptual understanding of equivalent fractions.  

● Students should be able to explore the same quantity can have different fractional names.  

● Students should be able to look for patterns in equivalent fraction.  

Assessment: 

For each equivalence please write T in the given blank if it is correct; write F if it is false. 

A)    (__)      B)   (__)      C)   (__)      D)     (__)                                

Figure 1: Objectives and assessment part of the incomplete and improper lesson plan 

LPT asked PSTs to write the strengths and weaknesses of the assessment part, and give suggestions 

about how to improve it with regard to weaknesses they found. During the interview, PSTs 

commented on how they would have designed the beginning, middle, end, and assessment parts if 

they had prepared the given lesson plan. They responded the questions by assuming to be in a 

hypothetical classroom environment; they did not implement the lesson plan in their teaching. The 

current research report, a part of a broader study which addressed all indicated features, focused only 

on PSTs’ views about the assessment part of the given lesson plan. 

LPT was implemented in a course where PSTs attended after necessary permissions were granted. 

PSTs were asked if they would like to volunteer to participate in the study and those who volunteered 

completed the task in about 50 minutes. After one-month of data analysis period, 11 PSTs were 



selected to be interviewed in one-on-one setting. They all participated in the interviews voluntarily. 

Interviews took 30-80 minutes and were audio-recorded with the permission of the participants. 

PSTs’ answers to the task were reminded with the purpose of eliciting whether they wrote the 

responses for formative assessment purpose or not when they did not advert to the same issues during 

the interview. Data were analysed through content analysis. PSTs’ expressions which imply the action 

of gathering evidence about students’ current knowledge and their own competence in teaching were 

grouped under the “providing feedback that moves learners forward” subdomain of the formative 

assessment framework (Wiliam & Thompson, 2008). PSTs’ purposes in preparing this part were 

examined under the categories of “feedback for teacher” and “feedback for students” (Sadler, 1989). 

One researcher, other than the authors, examined the data and they agreed that the categorization was 

conceivable regarding to the data. Preservice teachers’ intended further actions, views and 

suggestions about the assessment part were also reported. 

Findings 

Feedback for teacher and students 

Findings of the interviews indicated that all interview participants agreed that the assessment part 

provided feedback for the teacher. PSTs mainly stated that they would perform this part to gather 

feedback about students’ level of knowledge and their own competence in teaching. PST4 

emphasized both aspects as in the following conversation:  

Researcher (R):    What is your purpose in preparing the assessment part of the lesson plan?  

PST4:             In order to learn about whether I could teach the concept or not. Did I have students 

achieve the objectives? There can be some points that the students did not get. I 

prepare [the assessment part] in order to determine these points [as well]. 

PST13 also underlined the necessity of providing feedback about students’ learning as follows:  

I think the [assessment] part is necessary in order to provide feedback about what the students have 

learnt or have not learnt… I think using exit card is very beneficial in order to understand whether 

the students have learnt the concept or not.  

Only one participant mentioned that this part also provided feedback to the students about their 

learning:   

PST23:        Definitely I will not grade students’ work. Here, grading is so ridiculous. I check 

whether they understood the concept or not. I think it should provide me feedback.  

R:                   Why do you not grade their works?  

PST23:        We implement it in last five minutes [of the lesson]. The students have learnt the 

concept in that lesson. Their knowledge is so fresh. I think there is no need to grade 

the exit card if the students have a perception that the assessment part serves for 

testing themselves. The teacher will use it to learn about what the students 

understand (and) also the students will realize whether they understand the concept 

or not through the assessment part. 

Remaining ten interview participants also preferred not to grade students’ responses to the questions 

in the assessment part since they thought that this part would be used to check students’ current level 



of understanding of the concept or to have them comprehend the concept better.  

All interview participants expressed that feedback they obtained by means of the assessment part 

would affect their further instructional plans. They indicated that they would make some instructional 

changes according to the feedback about students’ needs. They mostly preferred changing the next 

class’s activities or teach the lesson again. However, some of the participants claimed that they 

probably would not have time to repeat the lesson since they need to keep the pace of the national 

curriculum: 

I would decide what to do according to the answers of the majority of the class. If the students 

made major errors, I would think that I was responsible for their mistakes. Maybe, I would repeat 

the lesson or I would probably teach another lesson in which I could emphasize the points that the 

students misunderstood. However, I do not know whether I have time to do it when I would be a 

teacher because there is a curriculum [need to follow]. These plans are only utopia. (PST15) 

PSTs’ views and suggestions about the assessment part of the lesson plan 

In both task implementation and the interview, PSTs expressed similar ideas with different 

frequencies. In the LPT implementation, more than half of the PSTs commented on the strength of 

the assessment part and mainly emphasized the consistency of the questions in the assessment part 

with the lesson content (n=5). PST12 expressed that “it is a good activity [since] the students can 

implement what they have learnt into the assessment part.” Two PSTs claimed that the assessment 

part was strong since “it is efficient in assessing whether the students understand the second 

objective” (PST8) and “the indicated questions can measure easily whether the students understand 

the relationship between two equivalent fractions.” (PST15). PST11 and PST27 reflected on different 

features of the questions. They indicated that this part was useful since there were questions related 

to both enlargement and simplification of the fractions. On the other hand, there was not any 

coherence within other PSTs’ expressions. For instance, PST9 stated that she liked the questions in 

the assessment part because “they have uncontroversial and single answer” whereas according to 

PST23, “the questions do not have specific answer and they prompt students to think.”  

Only four interview participants mentioned the strength of the assessment part by commenting on 

only the specific options. Two participants stated that they would keep the option c since it could 

assist to detect some misconceptions or errors. PST17 expressed that she liked the questions in the 

assessment part since they included numbers such as 37 and 46 which were not much used.  

Regarding to the weaknesses of assessment part, in both LPT implementation and interviews, PSTs 

addressed the questions in the assessment part as insufficient in number and diversity. In LPT 

implementation, 6 among 27 PSTs commented on and suggested ways to improve such weaknesses: 

There is only one type of question. There should be (questions) which are supported by the shapes. 

Not only true-false questions, but also some interpretation questions and the questions that the 

students can write equivalence of the indicated fractions should be added. (PST21) 

According to five participants, assessment part was weak since it included questions that students had 

fifty per cent chance to answer them correctly. They recommended to add different types of questions 

to reduce students’ guessing. For instance, PST19 suggested to “add some open ended questions in 

order to see how much the students understand the concept in an easy and reliable way.” Adding 

verbal and daily life questions, and questions with shapes was also recommended.  



During the interview, PSTs mostly underlined similar weaknesses of the assessment part and 

proposed suggestions to deal with them as they did in the task implementation: 

I think, whether the students understand the concept or not is not assessed exactly here because 

there is fifty per cent chance. If I write all of them true, I will answer one or two of them correctly. 

(PST18) 

To overcome this weakness, PST18 also recommended to add different type of question as: 

If I were… I would give them and want them write an equivalent fraction to this one rather than 

asking true-false [questions]. Even, I can ask the same questions with the one that I asked in the 

beginning part of the lesson. I change its numbers. “If such a number of pieces of cake were eaten, 

how many pieces were eaten?” and “Is there another fraction which represents the (same) 

amount?” 

On the other hand, none of the participants mentioned the inclusion of the rubric for fair scoring 

which was one of the reasons for the improperness of the given lesson plan. 

Discussion and conclusion 

Findings of the study showed that all PSTs planned to prepare assessment part of the lesson plan in 

order to gain feedback about students’ current knowledge level and their own competence in teaching, 

all of which related to teacher actions. Only one interview participant stated that assessment part 

would also provide feedback to the students about their own learning. PSTs mainly emphasized the 

kind of feedback gathered by the teachers although they were expected to comment on that students 

can also obtain feedback about their own learning and needs through the assessment. This tendency 

towards teacher-centred assessment was the action which provided feedback only to the teacher in 

order to determine the problematic areas that required more emphasis and practice (Antoniou & 

James, 2014). It might be due to PSTs’ views that the students may not benefit from the assessment 

part to determine their needs and take necessary actions to meet these needs. 

PSTs were against grading the assessment part of the lesson plan since their purpose in the preparation 

of the assessment part was only to check students’ learning or to have them understand the concept 

well. This finding was congruent with the idea that the main purpose of utilizing formative assessment 

was to facilitate and improve students’ learning instead of simply assigning a grade (Marshall & 

Drummond, 2006). When it is considered that the formative assessment serves its purpose when the 

teacher avoids grading students’ performance (Elawar & Corno, 1985), it might be deduced that the 

PSTs planned to use this part for formative purpose.  

PSTs indicated that feedback gathered from the assessment part assisted them to adjust their further 

instructional plans according to students’ needs. This finding might indicate that PSTs used the 

assessment part of the given lesson plan formatively because they would make some changes in the 

next class’s instruction and planned further instructional steps (O'Connor, 2002). PSTs generally 

preferred to repeat the previous lesson or teach another lesson by changing the existing activity in 

case the students had difficulty in learning the content. However, some PSTs indicated that they 

probably would not have such time since they needed to keep track of the national curriculum. Similar 

types of adjustments and lack of time issues were also reported previously (Antoniou & James, 2014). 

Although all PSTs talked about teachers’ further actions, they did not mention students’ possible 

further actions to enhance their own learning. The reason might be PSTs’ disposition towards teacher-



centred assessment. They might not consider students’ further actions because they disregarded the 

fact that the students could also obtain feedback through assessment part to monitor their progress 

and enhance their learning.  

In both task implementation and interview, majority of the PTSs were able to detect the improperness 

of the assessment part resulted from the structure of the questions. They emphasized that they could 

not know whether students had learned the concept or not through these questions since students had 

fifty per cent chance to answer them correctly. PSTs generally recommended adding open-ended 

questions to eliminate this weakness. Being able to detect improperness might be due to their 

awareness of the requirement of the alignment between objectives and the questions in the assessment 

part. They might have suggested adding different questions to eliminate the inconsistency between 

the objectives and questions. PSTs also suggested increasing the number of the questions in the 

assessment part. The reason for this might be attributed to the demand of introducing students with 

wide range of questions to prepare them for high-stake national examinations, as reported for 

beginning Turkish middle grades mathematics teachers (Haser, 2006). 

Due to the fact that the measurement and assessment course stresses mainly the assessment tools 

rather than focusing on the whole picture of the lesson plan with regard to the utilization of the 

formative assessment strategies, PSTs might have had difficulty in examining and integrating the 

intended formative assessment strategies in the lesson plan. Therefore, courses on assessment can be 

offered with the methods of mathematics teaching courses or lesson contents of these courses can be 

associated with each other so that PSTs can integrate what they have learnt about assessment into the 

lesson plans they prepared in the methods courses. Hence, they can have a chance to look at the whole 

picture of the lesson plans in terms of employing the formative assessment practices. 
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Comparative studies on pen-and-paper and computer-based test principally focus on statistical 

analysis of students’ performances. In educational assessment, comparing students’ performance (in 

terms of right or wrong results) does not imply a comparison between the solving processes followed 

by students. In this paper we present an example of task analysis that allows to highlight how 

students’ solving processes could change in switching from paper to computer format and how these 

changes could be affected by the use of one environment rather than another. The aim of our study 

lies in identifying possible consequences that specific changes in task formulation have, in terms of 

students’ solution processes.  

Keywords: Computer based assessment, comparative study, task analysis.  

Introduction 

Computer-based assessment is an actual issue. The increasing use of tests administered in the digital 

environment allows research in mathematics education to develop new fields of study. On the one 

hand research in computer based tests concerns the validity of these tests, on the other it focuses on 

their comparability with existing paper tests. In these two perspectives, large-scale surveys were 

conducted; they involve students from different educational levels, from primary to secondary 

instruction (Drasgow, 2015; Way, Davis, & Fitzpatrick, 2005).  

Computer-based tests mainly involve institutions in large scale assessment (OECD-PISA, OECD-

PIAAC, NAEP, …); one of the major interests of these institutions is to anchor every new test with 

ones from the previous years rather the diachronic study of students’ performances in the different 

surveys. For this reason, some studies focus on the test-mode effect comparing performances of 

students taking on computer and paper-based tests.  

Literature on these topics shows very mixed results; there is empirical evidence that paper-based and 

computer-based tests will not return the same results. On the one hand, some studies show 

equivalence in students’ performances; on the other hand, different researches highlight a significant 

discrepancy on scores. For example, Kim and Huynh (2007), as many other researchers (e.g. Kapoor 

& Welch, 2011; Lottridge et al., 2008), show that there is no statistical evidence suggesting that the 

administration modality changes the coherence and consistency of computer-based tests. On the 

contrary Clariana and Wallace (2002) point out to empirical evidence suggesting that students 

involved in paper-based and digital-based tests will not obtain the same results. At a more general 

level, in a meta-analysis of computer versus paper-based cognitive ability tests, Mead and Drasgow 

(1993) found that on average, paper-based test scores were very slightly higher than computer-based 

test scores.  

The main characteristic of all these studies, which involve comparative analysis of outcomes using 

quantitative and statistical methods, is that they show the comparability between tests administered 



on paper and pencil and in a computer environment. Such comparison is developed contrasting 

students’ performances and it is grounded in the implicit assumption that students who achieve the 

same performance implement the same solution processes. Threlfall et al. (2007) propose a more 

accurate analysis; they focus on students’ solution processes and explore the effect on students’ 

attitudes when they are involved in paper and pencil tests migrated into a digital environment. As 

shown by Threlfall et al., in some cases changing to a different environment seems to make little 

differences in the solution process. However, for some particular tasks the computer environment 

deeply affects how students approach the tasks. An important issue arises: task comparability cannot 

be measured only in terms of students’ outcomes but it is also established by the comparison between 

the solving strategies that they use.  

These diversified results suggest that task comparability needs a deeper analysis. In particular, the 

comparison between students implies the problem of how and when two tasks could be considered 

equivalent. Ripley (2009) proposes a possible solution to this question. He distinguishes two main 

approaches to the use of digital devices in order to enhance assessment: migratory and transformative 

approach. He defines the migratory approach to be the use of technological support as a tool of 

administration; it consists in a transition in digital format of tasks conceived for paper format. The 

transformative approach involves the transformation of original paper tests integrating new 

technological devices which support interactive tools (graphs, applets, …) that enhance new 

affordances. There are no specific studies comparing these two approaches; a possible reasonable 

hypothesis is that migratory could be a suitable approach to construct what in the literature is called 

an equivalent task. By definition, the migratory approach has the aim to maintain most of the task 

features unvaried in the translation process but this transition to a new environment cannot be 

completely unbiased. The migration from an environment to another one is not neutral because it 

depends on intrinsic properties of the environments. The adoption of migratory approaches is 

undervalued; the assumption that the translation process causes few changes on the task formulation 

and that these changes do not cause significant alterations on the solution processes is not to be 

neglected.  

The purpose of this study is to examine whether the migratory approach may have effects on students’ 

solving processes. In this perspective, the issue of test validity arises; in other words, does the use of 

a migratory approach maintain the validity of the original test? Below, we present part of a wider 

study that has the aim to analyse possible changes in students’ solution procedures related to the 

migration from a pen and paper to a digital environment. In Ripley’s words, we consider tasks that 

could be defined migratory or other authors could call equivalent tasks. In particular, we present one 

example of  analysis that compares a task in his migration from paper to computer, highlighting the 

impact that the changes could have on students’ solutions. 

Word problem in a migration process 

In many tests, especially in large scale assessment, knowledge and skills are assessed through units 

consisting of a stimulus (e.g. text, table, chart, figures, etc.) followed by a certain number of tasks 

associated with this common stimulus. These particular features connect these kinds of tasks with 

word problems. In a wide perspective, the term mathematical word problem refers to any 

mathematical task where significant background information is presented through a verbal text rather 



than in mathematical notation. As word problems often involve a narrative of some sort, they are 

occasionally also referred to as story problems (Verschaffel , Greer, & De Corte, 2000).  

Mathematical word problems have an important role in teaching; for many decades researchers in 

mathematics education have focused on the possible difficulties that students encounter when they 

solve them. Verschaffel et al. (2000) highlight the fact that many of the difficulties met by students 

lie in the preliminary phase of understanding the problem situation. Interpreting students’ attitudes in 

solving word problems is complex because it involves multiple interacting factors, both cognitive and 

metacognitive: stereotypes of standard problems, implicit and explicit rules that regulate 

mathematical activity, students’ beliefs, etc. (Verschaffel , Greer, & De Corte, 2000).  

Considering word problem texts (in particular, its formulation features) introduces the important issue 

of representation. Goldin and Kaput (1996) describe two distinct meanings of the term 

representation. On the one hand, the external representations refer to “physically embodied, 

observable configurations such as words, graphs, pictures, equations, or computer microworlds” 

(ibid., 400); on the other hand, the internal representations concern “possible mental configurations 

of individuals, such as learners or problem solvers” (ibid., 399). In the case of word problems, the 

solver interacts with the external representation presented and produces a personal internal 

representation linked with the one that she already has. Obviously, being internal, such configurations 

are not directly observable but they could be inferred through the solution process that the solver 

employs. For this reason it is possible to confirm that a change in the external representation could 

influence the construction of the internal representation and so the adoption of the solving process. 

Therefore, it is possible to suppose that the formulation of mathematical word problem influences 

both cognitive and metacognitive factors that are involved in word problem solution. Goldin (1982) 

highlights that small differences in some features of word problems can deeply affect the process of 

solution. In particular, Mayer (1982) and later De Corte & Verschaffel (1985) observe that the 

difficulties noticed within problem solving activities may come from an inadequate interpretation of 

the text.  

Thus, in the perspective of comparison, it is necessary to analyse the differences between tasks to 

determine the possible differences that occur in students’ solution processes. Identifying possible 

changes in a mathematical word problem requires to consider many text features. For this reason, the 

task is simplified by dividing the word problem into simpler elements. Gerofsky (1996) describes 

word problems in terms of three main components: the set-up component which establishes the 

characters and location of the story; the information component which encompasses the information 

needed to solve the problem; and finally, the question component which expresses the request and 

focuses on goal and aim. 

Our purpose is to analyse tasks through specific variables that might influence the behaviour of 

students in the solving process. Obviously, checking these differences is a general issue that could be 

presented whether or not there is a migration process in a new environment; possible changes could 

happen even just in the paper environment.  

Analyses of a migrated word problem  

We present the analysis of one of the items presented in the Draft 2015 PISA Mathematics framework 

(OECD, 2013). Figures 1 and 2 show the two versions of the famous task: "Walking”, administered 



in PISA 2003 survey. The text of the item has not changed; therefore, narrative or linguistic 

differences are not recognized in the set-up component. 

  

Figure 1: "Walking" paper version, administered in PISA 2003 survey 

 

Figure 2: "Walking" computer version, shown in PISA 2015 Framework Draft 

First of all, there is a difference in the editing of the text. In the paper version the task is presented in 

a compact way: set-up and information components are given in the same text and the question is 

presented under this text. In the digital format, the task is divided into two main sections. On the right 

there are the set-up and information components: they consist of an image and a description of the 

situation, both in words and algebraic formulas. On the left there is the question. The difference in 

editing seems to complicate the task; in the digital format, the text is presented in two separate 

columns. Therefore, the change of the question position could create variances in solution processes: 

the solver has to coordinate the interpretations of the different parts in which the text is divided. In 

other cases this change could affect the solver’s comprehension. For instance, Thevenot et al. (2007) 

show that putting the question before a word problem (rather than classically presenting it at the end) 

conditions problem solution in young students and in particular it facilitates students in engaging a 

correct solution process. In Fig 2, the question is presented in the bottom-left of the screen; in this 

case the solver probably reads the question before reading the set-up and information components. 



According to Thevenot et al, this fact suggests that in the digital format the interpretation of set-up 

and information components could be affected by the previous reading of the question.  

Concerning the component question, there is another notable difference. In the digital format (Fig. 

2), the first part of the question text shows the instructions for answering to the task ("Type ... below") 

and how to coordinate the information presented in the context ("Refer to … pacelenght"). This aspect 

enriches the question and the length of the text that students have to comprehend and interpret (in the 

paper version there is not any kind of instruction).  

The test item format is changed; a text box in the digital version replaces the free space presented in 

the paper. The test item format has a strong impact on students’ solution process. Kazemi (2001) 

investigates children’s mathematical performance on test items focussing on the typology of the 

questions. In his study, Kazemi uses multiple-choice questions and juxtaposes them to other open-

ended problems. He highlights that the typology of questions affects students’ thinking in designing 

and interpreting problems. This impact is emphasized when there is a change of environment and so 

a change of tools available to the solver. Concerning computer and paper and pencil based tests, 

Russell and Haney (1997) describe a comparative study in terms of students’ performances. They 

show that there are differences in performance related to the type of test item formats; substantial 

changes are not found in the case of tasks with multiple choice questions but there are relevant 

differences in the case of open response items. Moreover, assuming that the student is familiar with 

the writing tools available (for example the keyboard) it is reasonable to suppose that this change 

would not result in significant differences in the solution process. However, in using the free space 

in paper format, the solver has a different freedom of expression with respect to the case of the text 

box: in paper and pencil, the solver can produce sketches, calculate and write text both in natural and 

in symbolic language. These actions are not allowed in a simple text box in which one can only enter 

the characters on the keyboard or otherwise perform the actions allowed by the available writing tool, 

depending on the software used. 

Finally, in both tasks the same picture is presented; nevertheless, it is possible to notice that in the 

digital version the picture is presented on the screen with all the strengths and limitations of the 

software that supports it. For example, it might be difficult (or impossible) to analyse the image 

through common and simple manipulation action such as turning the paper, complete the picture by 

drawing lines, highlight points, etc.; these actions are possible only in paper and pencil environment. 

Conclusion 

In the previous example, the migration process could at first appear accurate but a deep analysis 

shows the opposite. At a first glance, the highlighted little differences might appear superfluous; 

however they are crucial to analyse and interpret students’ behaviour in the solving process. The 

literature described in the first part of the paper indicates that each difference observed in the example 

may affect the solver. For instance, the change in the task editing could simplify the text 

comprehension if it is presented in a linear way; on the contrary, the reading could be difficult if the 

verbal description is fragmented in several parts. Furthermore, the position of the question may 

encourage the solver to develop a correct solution process or it could complicate the set-up 

comprehension because the solver has to coordinate its interpretation with the information presented 

in the text components. These little differences hide important consequences for assessment, 

especially if the purpose of the migration process is to ensure continuity between the paper and the 



computer administration. The comparison studies presented in the literature assume that the tasks 

administered in the two environments are equivalent. However, our analysis shows that this starting 

assumption should be changed. The equivalence between performances (in terms of right or wrong 

results) does not imply an equivalence between the processes adopted by the students. Therefore, the 

analysis of the results collected in the two environments probably is not equivalent in terms of 

educational assessment. The answers produced by students in the digital environment seem hardly 

comparable with what they do on paper. Thus, there is a substantial difference in terms of the 

assessment; it cannot be ignored especially by national or international large scale assessment.  

In addition, the change in type of test item format is crucial because it strictly depends on the intrinsic 

feature of the environment and on the familiarity that the solver has with the tool available. We recall 

also that there are cases where it is impossible to translate a task from paper to digital format through 

the migratory approach; for example, the tasks that require the use of physical tools and measuring 

instruments as ruler, compass, or other. A special case is the one of items that have the goal of 

assessing students’ drawing abilities. In this case, the item may request to draw a figure starting from 

a given one, or from given measurement, or from written verbal instructions. In these cases, it is 

possible to introduce an ad hoc software or applet that simulates the use of drawing tools. Moreover, 

the issue of students’ familiarity with these software or applets arises (Bennett, Persky, Weiss, & 

Jenkins, 2010). In the case of lack of familiarity with the use of the instrument, the digital device 

could be largely useless; students that use digital tools may be disadvantaged comparing them to 

students that use paper and pencil and physical tools. This example highlights a very serious and 

complex issue. Further research is needed to define criteria of control that allow to check and to 

compare all the little differences that occur in the migration process.  

In our wider study we define a specific instrument to monitor such differences. In particular, we 

identify specific variables that might influence the students’ behaviour in solving a certain task. We 

organize such variables into a table that we call comparison tool. Such tool is constituted by a system 

of indices related to the structure of word problems described before. In particular, we identify five 

different indices that represent possible changes that may occur in the migration process:  

 Story refers to the narrative dimension (Zan, 2011) of the task (for example: characters, 

background, narration, etc); 

 Linguistic form that indicates also the number and the length of sentences (for example: 

syntactic, organization of the sentence, lexical, etc); 

 Type of item formats concerns the types of possible responses (for example: the question 

has constructed-response, selected-response, etc); 

 Format and editing refers to layout features and position of the different components (for 

example: paragraphs, font, underlines, spaces, etc); 

 Data representation is related to semiotic register used for representing information (Duval, 

1993) (for example: verbal register, iconic register, math register, etc). 

Each index is related with studies concerning word problem formulation and its impact on students’ 

solution process. For example, many authors show that the narrative dimension attached to 

mathematical tasks is relevant to students in terms of the their availability to solve the task (Sowder, 

1989). Other studies draw attention to the importance of language in student performance on 



assessments (Abedi, Lord, & Plummer, 1995). Moreover, many authors pay attention to the role of 

representation in the teaching and learning process (Duval, 1993).  

Considering the example above, the comparison tool highlights differences related to three of the five 

indices. In particular, tasks are different in terms of linguistic form, type of item format and format 

and editing. In fact, in the digital version there are more sentences than in the paper task. Furthermore, 

even if both questions are open-ended, in the computer task there is the restriction caused by the text 

box where type. Finally, there is a strong difference in editing: in the two task versions, the 

components are presented in different parts of the page/screen. The comparison tool highlights a 

certain number of differences; such differences could confirm our hypothesis in terms of possible 

differences in students’ behaviour.  

References 

Abedi, J., Lord, C., & Plummer, J. (1995). Language Background as a Variable in NAEP 

Mathematics Performance: NAEP TRP Task 3D: Language Background Study. Los Angeles: 

UCLA Center for the Study of Evaluation/National Center for Research on Evaluation, Standards, 

and Student Testing. 

Bennett, R. E., Persky, H., Weiss, A., & Jenkins, F. (2010). Measuring problem solving with 

technology: A demonstration study for NAEP. The Journal of Technology, Learning and 

Assessment , 8 (8). 

Clariana, R. & Wallace, P. (2002). Paper-based versus computer-based assessment: Key factors 

associated with test mode effect. British Journal of Educational Technology, 33 (5), 593-602. 

De Corte, E., & Verschaffel, L. (1985). Beginning first graders' initial representation of arithmetic 

word problems. The Journal of Mathematical Behavior , 4, 3-21. 

Drasgow, F. (Ed.). (2015). Technology and Testing: Improving Educational and Psychological 

Measurement. Abingdon, Oxon, United Kingdom: Routledge. 

Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. 

Annales de didactique et de sciences cognitives, 5, 37-65. 

Gerofsky, S. (1996). A linguistic and narrative view of word problems in mathematics education. For 

The Learning of Mathematics, 16 (2), 36-45. 

Goldin, G. A. (1982). The measure of problem-solving outcomes. In J. Garofalo, & F. Lester (Eds), 

Mathematical problem solving: Issues in research (pp. 87-101). Philadelphia: Franklin Institute 

Press. 

Goldin, G. A., & Kaput, J. J. (1996). A joint perspective on the idea of representation in learning and 

doing mathematics. In Theories of mathematical learning (pp. 397-430). 

Kapoor, S., & Welch, C. (2011). Comparability of Paper and Computer Administrations in Terms of 

Proficiency Interpretations. Annual meeting of the National Council on Measurement in 

Education. New Orleans: LA. 

Kazemi, E. (2001). Exploring test performance in mathematics: the questions children’s answers 

raise. Journal of Mathematical Behavior, 21, 203-224. 



Kim, D. H., & Huynh, H. (2007). Comparability of computer and paper-and-pencil versions of 

algebra and biology assessments. The Journal of Technology, Learning and Assessment, 6 (4). 

Lottridge, S., Nicewander, A., Schulz, M., & Mitzel, H. (2008). Comparability of Paper-based and 

Computer-based Tests: A Review of the Methodology. Monterey: Pacific Metrics Corporation. 

Mayer, R. (1982). The psychology of mathematical problem solving. In F. L. Lester, & J. Garofalo 

(Eds.), Mathematical problem solving. Issues in research (pp. 1-13). Philadelphia: The Franklin 

Institute Press. 

Mead, A. D., & Drasgow, F. (1993). Equivalence of computerized and paper-and-pencil cognitive 

ability tests: A meta-analysis. Psychological Bulletin, 114(3), 449. 

OECD. (2013). Draft PISA 2015 Mathematics Framework. OECD publishing. 

Ripley, M. (2009). Transformational computer-based testing. In F. Scheuermann, & J. Björnsson 

(Eds.), The transition to computer-based assessment (pp. 92-98). Luxembourg: Office for Official 

Publications of the European Communities. 

Russell, M., & Haney, W. (1997). Testing writing on computers: An experiment comparing student 

performance on tests conducted via computer and via paper-and-pencil. Education policy analysis 

archives, 5 (3), 1-18. 

Sowder, J. (1989). Searching for affect in the solution of story problems in mathematics. In D. B. 

Adams (Ed.), Affect and mathematical problem solving:· A new perspective (pp. 104 - 113). New 

York: Springer-Verlag. 

Thevenot, C., Devidal, M., Barrouillet, P., & Fayol, M. (2007). Why does placing the question before 

an arithmetic word problem improve performance? A situation model account. The Quarterly 

Journal of Experimental Psychology, 60 (1), 43-56. 

Threlfall, J., Pool, P., Homer, M., & Swinnerton, B. (2007). Implicit aspects of paper and pencil 

mathematics assessment that come to light through the use of the computer. Educational Studies 

in Mathematics, 66 (3), 335-348. 

Verschaffel , L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse, The 

Netherlands: Swets & Zeitlinger. 

Way, W. D., Davis, L. L., & Fitzpatrick, S. (2005). Practical questions in introducing computerized 

adaptive testing for K-12 assessments. (pp. 1-20). Pearson Educational Measurement. 

Zan, R. (2011). The crucial role of narrative thought in understanding story problem. In K. Kislenko 

(Ed.), Current state of research on mathematical beliefs. Proceeding of 16th MAVI Conference 

(pp. 331-348). Tallinn. 



Teddy Bear Preschool Mathematics Assessment: 

 Validation of a constructivist game- and story-based measure 

Sally Moomaw1 

1University of Cincinnati, Cincinnati, Ohio, USA; sally.moomaw@uc.edu  

This research evaluated an interactive story- and game-based measure of the level of mathematical 

development in preschool children. Nine measurable learning trajectories identified by previous 

researchers—quantification, counting, set comparison, numerals, number line, positional terms, 

shapes, addition/subtraction, and patterning—were assessed through a series of games played by 

assessor and child to re-enact the story of teddy bears on a picnic. This format was selected 

because it engages young children, connects to constructivist curriculum and materials, and 

extends previous research by the author. Confirmatory factor analysis indicated that the nine 

developmental trajectories were strong and significant contributors to the latent construct of level 

of mathematical development. Results from test-retest and criterion comparisons indicated that the 

assessment tool was a valid and reliable measure of mathematical development for this sample. 

Keywords: Curriculum based assessment, number concepts, preschool tests, child development, 

developmentally appropriate practices. 

Purpose 

The purpose of this research was to create and validate the Teddy Bear Preschool Mathematics 

Assessment (TBPMA), a play-based, constructivist measure, as a novel alternative to traditional 

quantitative assessments. The story- and game-based framework, in which the assessor participates 

with the child, was selected because it engages young children, connects to constructivist 

curriculum and materials frequently used in preschool classrooms (Moomaw & Hieronymus, 2011), 

and provides both formative and summative assessments. The hypothesis was that nine measurable 

variables based on seminal research—(1) quantification level, (2) counting, (3) set comparison, (4) 

numeral recognition and understanding, (5) movement along a number line, (6) emergent 

addition/subtraction, (7) understanding positional terms, (8) shape recognition, and (9) patterning—

would make a significant contribution to the latent construct of mathematical development. 

Theoretical framework 

Assessment of preschool children has grown rapidly during the 21st century (Wortham, 2012). 

Assessment is used to monitor children’s development, make educational decisions, and evaluate 

programs. However, valid and reliable assessment of young children is often difficult. If children are 

not interested in the assessment, they quickly lose attention and refuse to participate. Also, many 

standardized assessments do not provide information that directly relates to the curriculum. This is 

frustrating for teachers, who need formative assessments in order to guide their planning and 

interactions with children. Therefore, assessments that are aligned to curriculum and can inform 

planning and instructional decisions (Stecker, Fuchs, & Fuchs, 2005) are of particular interest. 

Assessment of early math development is important; research has shown that children develop 

substantial math knowledge prior to first grade (Clements & Sarama, 2007). Early number sense 



development is a strong predictor of later mathematics achievement (Duncan et al., 2007); however, 

a substantial achievement gap exists between low- and middle-income children that persists as they 

advance in school (Jordan, Kaplan, Olah, & Lucuniak, 2006).  

The theoretical framework of this research is constructivist; children are active creators of 

knowledge rather than passive recipients (Piaget, 1952). An instructional corollary is that students 

require a context that allows them to formulate or discover important relationships (Geary, 2003). 

For young children, play is an important mode for learning that is considered essential for cognitive 

development (Frost, Wortham, & Reifel, 2008). 

Learning trajectories in early mathematical development 

Formation of content knowledge follows a developmental progression that reflects progressively 

higher levels of thinking (Piaget, 1952). Understanding of developmental progressions in the 

mathematical thinking of young children is essential for effective teaching because it guides 

teachers in the selection of appropriate curriculum and in effective modeling and dialogue with 

children. These documented developmental progressions are now referred to as learning trajectories, 

which serve as a bridge between theory and practice (Sarama & Clements, 2007). 

The learning trajectory for quantification (Kamii, 1982; Piaget, 1952) shows a progression in young 

children from visual perception to more logical forms of reasoning when determining quantity and 

comparing sets of objects. The earliest level is referred to as global, in which children make a visual 

or tactile approximation of quantity, perhaps by taking a small or large handful of objects to 

represent a given amount. At the one-to-one correspondence level, children realize they can 

accurately represent a given quantity by taking one object for each item in the original group and 

aligning them. This important development indicates that children are now able to focus on the units 

in a set rather than just the global parameters. Eventually, children realize that they can count to 

determine the number of objects in a group or to create an equivalent set. Rather than simply 

counting because an adult tells them to, children at this level select a counting strategy because they 

understand that the last number they count represents the total. 

Counting is an important mathematical tool for children. In their seminal research, Gelman and 

Gallistel (1978) developed five principles that children must understand in order to successfully use 

counting to quantify. Of these principles, the first three are designated as “how to count” and are 

likely to be developed by children in the 3- to 5-year age range. The stable order principle indicates 

that children understand that they must say the counting words in the correct order. Application of 

the one-to-one principle shows that children know they should count each object one and only one 

time. In practice, many (if not most) young children tend to recount objects or count some more than 

once, particularly as the number of objects increases. The cardinality principle means that children 

understand that when they count objects, the last number word they use refers to the total amount, 

not just one item. These principles do not necessarily develop in a prescribed order, and accuracy is 

variable throughout the early years. It is the ability to apply the principles with growing accuracy 

when counting increasingly large sets that constitutes a learning trajectory. 

Both researchers and educators have documented that children can name numerals before they can 

use them to represent a specific quantity. In particular, Kato, Kamii, Ozaki, and Nagahiro (2002) 



have shown a disconnect between children’s ability to name numerals and their ability to use them 

to represent quantities. 

Research by Ramani and Siegler (2008) suggests that linear number board games enhance young 

children’s understanding of number. However, research by Moomaw (2015) indicates that there is a 

developmental trajectory in which children are first able to represent quantities on a grid, or bingo-

type board, followed by moving a specific amount along a straight path, or incipient number line. 

Representing quantities by moving along a longer, curved path is more advanced. 

Spatial reasoning is an important component of geometry. Bowerman (1996) has demonstrated that 

the order in which children learn spatial terms is consistent across languages, thus forming a 

learning trajectory. Terms that relate to an object that is in direct contact with another (“in,” “on,” 

and “under”) are the first to develop, along with the movement terms “up” and “down.” Words of 

proximity, such as “beside” and “next to,” develop next. These are followed by terms related to 

position but not necessarily close proximity (“in front of,” “in back of,” or “behind”). Directional 

words, such as “right” and “left,” are often not learned until first or second grade. 

Seminal work by van Hiele (1999) suggests a progression, or learning trajectory, of four levels of 

geometric understanding, of which the first two relate directly to young children. At the first level, 

visual, children judge a figure according to its appearance. They often have a prototype in mind, so 

they may identify only equilateral triangles as “triangles.” At the second level, descriptive or 

analytic, children begin to use language to describe properties of shapes. For example, they may 

indicate that a figure is a triangle because it has three sides.  

Research has established a trajectory for early addition (Baroody & Tiilikainen, 2003). Children 

start by counting individual sets of objects. Next, they realize that they can count the objects in both 

sets all together. Eventually, children begin to count forward from the cardinal value of one of the 

sets; they also begin to remember particular combinations, such as doubles. 

Patterning is considered a foundational component of early mathematical thinking by the National 

Council of Teachers of Mathematics (USA). However, there is insufficient research in this area to 

establish a developmental learning trajectory. 

Development of the Teddy Bear Preschool Mathematics Assessment 

Conception of the TBPMA evolved from the author’s 25 years of experience teaching preschool and 

kindergarten children. During this time, considerable contributions to the understanding of how 

children develop mathematical reasoning were made by theorists and researchers. That information 

was shared with interested teachers by Professor Anne Dorsey, then Director of the Arlitt Child 

Development Center at the University of Cincinnati. With her input, teachers began to redesign their 

preschool math curriculum to focus, in part, on teacher-created math games. Children’s responses to 

these games were carefully observed, and changes to the curriculum were made accordingly. 

Eventually, this game- and play-based curriculum, which extended to all areas of the classroom, was 

published in a series of books for teachers (Moomaw & Hieronymus, 2011).  

For her doctoral research, the author developed and validated an assessment of number sense in 

preschool children that was essentially a quantification game played between assessor and child. It 



showed that this interactive form of assessment could be reliably quantified. The TBPMA extends 

that research to more completely measure number and operations as well as geometry. 

Methods 

The TBPMA consists of a series of games that allow children to re-enact the story of teddy bears on 

a picnic. The game board depicts a park, including picnic blanket, wading pool, path, small climber, 

and merry-go-round (Figure 1). Assessor and child take turns drawing cards arranged in a prescribed 

order. Teddy bear counters are used throughout the game. Although the assessor participates in the 

game, assessor role and comments are clearly scripted to ensure procedural reliability. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Game Board for the Teddy Bear Preschool Math Assessment 

The scales quantification, counting, and set comparison are measured as assessor and child draw 

cards with 1–8 dots to determine how many bears to place on their picnic blankets. One point is 

awarded for a global strategy, 2 points for one-to-one correspondence, 3 points for counting, and 4 

points for counting with accuracy. Following each turn, the assessor asks how many teddy bears are 

on the child’s blanket and scores 1 point for application of each counting principle (stable order, 

one-to-one correspondence, and cardinality). Next, the assessor asks who has more bears, which 

elicits set comparison and is scored similarly to quantification. Set sizes increase over subsequent 

turns. 

Recognition and understanding of numerals is assessed when the bears go swimming. Children are 

scored on whether they recognize numerals 1–8 and can put the corresponding number of bears in 

the pool. Movement along a number line is measured when children draw cards with dots and 

attempt to move a corresponding number of spaces along a path. Understanding of spatial terms is 

assessed as children draw cards that tell them where to place their teddy bear in relation to the 

climber, as in “Your bear wants to play under the climber.” For assessment of shapes, the bears play 

on a merry-go-round, which has prototypical and non-prototypical shapes for seats. Scoring is based 

on shape recognition and the explanation the child gives for determining shape. 

 



The addition/subtraction trajectory is assessed as children draw two cards with dots to determine 

how many bears to move to the picnic table. They then draw a card that indicates how many bears 

leave and asks how many are left. Finally, the assessor arranges the bears in an AB and an ABC 

color pattern for a dance and asks the child to complete the pattern. 

Data sources 

A total of 146 children, ages 3 to 5 years, enrolled in childcare centers in a Midwestern USA city, 

were assessed. Of the sample, 60 (41.1%) were poverty level (determined by voucher participation); 

37 (25.3%) were African American or mixed race; 73 (50%) were female; 65 (44.5%) were 3 years 

old; 63 (43.2%) were age 4; and 18 (12.3%) were age 5. For test-retest comparison, 50 (34.2%) 

received a second assessment; 38 (26.0%) were administered a criterion measure.  Assessors were 

required to demonstrate reliability by independently scoring assessments conducted by the lead 

researcher and achieving an inter-scorer reliability of 90% over three successive tests. 

Results 

The maximum possible total score on the TBPMA is 118. Among the 146 initial tests, scores ranged 

from 5 to 112 (M=62.44, SD=28.01). Assumption checks indicated the total scores were normally 

distributed. The correlation between child’s age in months and total score was r=.572 (p=.000). 

There were two specific questions for the analysis: 

1. What is the contribution of each sub-construct to the general construct? 

2. What is the technical adequacy of the TBPMA? 

Regarding question 1, confirmatory factor analysis (AMOS 22) was used to evaluate the 

hypothesized model for the TBPMA. Results indicated good model fit: χ2(23,N=146)=25.297, 

p=.335; NFI=.974; CFI=.998; and RMSEA=.026. All standardized path coefficients were highly 

significant (p<.001), with robust standardized regression weights ranging from .57 to .90 (Figure 2), 

indicating all scales were strong contributors to the latent variable mathematical development. 

For question 2, technical adequacy was assessed through Cronbach’s alpha, test-retest reliability, 

and criterion validity. Cronbach’s alpha was .922, indicating high internal consistency.  

Test-retest reliability was assessed with paired t-tests on mean differences for the nine scales and 

total score (Table 1). Differences significant at the .05 level occurred with the addition/subtraction 

scale, in which the mean retest score was one point higher on the 16 point scale, and with the total 

TBPMA score, about 2.5 points higher on the 118 point scale. Given that the average time between 

the initial test and the retest was 24 days, these small increases do not appear to affect the reliability 

of the TBPMA. Reliability is further confirmed by the highly significant correlations between the 

initial and retest scores. For all scales and the total score, all correlations were strong, above .50. 

 



 

Figure 2: Standardized Path Coefficients for the Confirmatory Factor Analysis 

for the Teddy Bear Preschool Math Assessment 

 

 

Scale 

Max 

score 

poss-

ible 

Initial Test Retest 

Difference in 

means 

T test on 

difference in 

means 

Pearson 

correlations 

Mean SD Mean SD Mean SD t Sig. r Sig. 

Quantification 20 14.58 4.77 15.04 4.49 0.46 2.42 1.34 .186 .864 .000 

Counting/Cardinality 20 12.52 4.84 13.32 4.47 0.80 3.30 1.72 .092 .752 .000 

Comparison of Sets 16 7.32 4.30 7.48 4.02 0.16 2.97 0.38 .705 .747 .000 

Numerals 9 5.92 3.43 5.90 3.39 -0.02 1.17 -0.12 .904 .941 .000 

Number Line 12 7.22 4.86 7.38 5.06 0.16 2.61 0.43 .666 .863 .000 

Spatial 6 5.02 0.96 5.18 1.17 0.16 1.02 1.11 .272 .560 .000 

Shapes 12 5.96 2.76 5.52 2.87 -0.44 2.44 -1.27 .209 .623 .000 

Addition/Subtraction 16 4.72 4.29 5.76 4.78 1.04 3.55 2.07 .043 .698 .000 

Patterning 7 2.58 2.98 2.72 2.98 0.14 2.08 0.48 .636 .756 .000 

Total 118 65.84 27.30 68.30 27.67 2.46 6.80 2.56 .014 .969 .000 

Note: This table uses data from the 50 subjects who were assessed twice. 

Table 1: Test/Retest Reliability: Means, Test of Differences between Means, 

and Correlations between Means of Initial Test and Retest 



TEMA-3 (Ginsburg & Baroody, 2003), a recognized measure of early mathematical ability, was 

used to assess criterion validity. The correlation between the total TBPMA score and the TEMA-3 

raw scores was high (r=.867, p=.000), demonstrating criterion validity. 

These results indicate that the TBPMA was a valid and reliable measure of mathematical 

development for this sample. 

Significance 

Preschool educators and funding sources recognize the need for accountability and for monitoring 

children’s development. Conversely, they understand that testing is often stressful for children, 

unreliable, and unrelated to the curriculum. The TBPMA offers a validated approach to quantifiable 

assessment that is compatible with young children’s social and emotional development; all children 

assessed to date have enjoyed the experience. 

The TBPMA is a novel alternative to traditional quantitative assessments. It can provide both 

formative data for teachers and summative data for program evaluation. Because it assesses multiple 

domains of mathematics, it can indicate areas of strength within a curriculum and areas that may 

require more attention. Based on acknowledged developmental trajectories, it informs teachers of 

the child’s current level of thinking so that they can target their interactions to move the child 

forward. This is the essence of constructivist teaching.  

It is natural for educators to focus on material from class or program assessments (i.e., teach to the 

test). The TBPMA reverses this process. It evaluates the types of experiences and interactions that 

are highly recommended for preschool classrooms and the areas of mathematics designated as focal 

points (NCTM, 2006).  
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This research aims to investigate the algebraic under performance of second year post-primary students in 

Ireland (approximate age 14 years). To this end a diagnostic test for algebra has been developed to profile 

and identify students who are struggling with algebra. This paper examines the development of the test, which 

involved the identification of key mathematical content areas that are critical for success in algebra. Both 

prerequisite, and algebra content areas are key to a students’ success in algebra and how each of these areas 

contribute to a students’ progress with algebra is discussed in this theoretical paper. Test items have been 

selected and adapted from the literature which are aligned with both the key content areas and the Irish 

mathematics syllabus at junior cycle, the initial three years of post-primary education in Ireland.   

Keywords: Algebra, diagnostic test, secondary education. 

Introduction 

This paper reports on the development of a diagnostic test for algebra, designed specifically for 

second year post-primary students in Ireland. It is noted in the literature that few adequate assessments 

are available to provide formative information on a students’ progress with algebra, but they are 

essential to allow timely and informed instructional decisions for teachers (Ketterlin-Geller, Gifford, 

& Perry, 2015). A key outcome of this research will be a validated diagnostic test specifically 

designed to identify students’ conceptual errors when working with algebra and aligned with the Irish 

post-primary mathematics syllabus. The test can be used by teachers in a normal class period (35-40 

minutes as relevant to the Irish context) to help inform their instruction of algebra. This paper focuses 

on identifying key content areas which are required for success in algebra and accordingly developing 

a bank of questions to support the development of a diagnostic test. 

Background and rationale 

The mathematical deficiencies of students entering third level education in Ireland and internationally 

is widely reported and commonly referred to as the “Maths Problem” (Treacy & Faulkner, 2015). 

Over a decade ago it had become apparent that there were issues with the mathematics curriculum at 

post-primary level in Ireland resulting in radical reform of the syllabi, introduced as “Project Maths” 

(Treacy & Faulkner, 2015). The vast majority of students study mathematics throughout their time in 

post-primary education and the syllabus is delivered in five interwoven strands; 1. Probability and 

Statistics, 2. Trigonometry and Geometry, 3. Number, 4. Algebra and 5. Functions. Mathematics is 

offered at higher, ordinary and foundation levels throughout. Despite the changes made to the Irish 

syllabus and teaching methods, it is clear that problems with algebra persist. This is evidenced in the 

latest chief examiners report which states students need to “gain comfort and accuracy in the basic 

skills of computation, algebraic manipulation and calculus” (Department of Education  and Skills, 

2015 p. 29). Algebra serves as a gateway to higher mathematics and deficiencies in basic algebra 

result in overall mathematical deficiencies in students (Lawson, 1997). However, issues with the 



teaching and learning of algebra remain internationally, and research into progress measuring 

instruments to inform the area continue (Ketterlin-Geller et al., 2015). Given the poor performance 

of Irish students in algebra a diagnostic test has been developed to give insight into how second year 

students perform in this area. It is noted that many tests exist to measure performance in algebra and 

these provide useful information about the content areas in which students need further assistance. 

However, few of these tests provide information about why students are struggling (Russell, 

O’Dwyer, & Miranda, 2009). This test may help inform part of why students are struggling by looking 

at the conceptual errors students make in other content areas. These content areas, which include 

fractions, equality and patterns for example, have been identified in the literature as essential for the 

understanding of algebra (Bush & Karp, 2013; Warren & Cooper, 2008). 

Theoretical frame 

The theoretical framework guiding this research is that the conceptual errors students make in 

working with algebra perpetuate the difficulties they encounter, subsequently interfering with their 

understanding of various algebraic concepts (Russell et al., 2009). The test is designed to identify the 

conceptual errors students make when working with a particular concept. The test results could inform 

the teacher who can then guide instruction aimed at alleviating these conceptual errors (ibid.:2009). 

It is possible that many teachers do not realise the essential connections that algebra has to numerous 

other mathematical content areas, and that how conceptual errors in one or more of these areas can 

hinder a students’ progress, which will be discussed in more detail below (Bush & Karp, 2013). This 

test, in conjunction with an appropriate framework to interpret students’ answers, could help inform 

instruction. The teaching and learning of algebra in Ireland aligns closely with Kieran’s (2004) model, 

which outlines three activities that learners of school algebra must participate in: 1. Generational 

activities, 2. Transformational activities and 3. Global/Meta Level activities. It is noted that two 

aspects of algebra underlie all others, namely generality and abstraction (Department of Education 

and Skills, 2016 p. 26). These aspects have led to the definition of three types of algebraic activities 

that mathematics students in Ireland must engage in - representational, transformational and activities 

involving generalising and justifying. The test items have been designed to support the 

implementation of the new syllabus and in line with the approach to algebra being used in Ireland. 

One potential criticism of the approach used in developing this test instrument is that it is a test of 

mathematics globally, given the broad range of content areas included. However, difficulties with 

algebra lie with both algebra itself and also with other areas of mathematics that students will have 

encountered, which are seen as prerequisites for the learning and understanding of algebra (Bush & 

Karp, 2013). Problems and conceptual errors in any one of the content areas can lead to problems in 

another area thus hindering a student’s progress in algebra as a whole. Although these prerequisite 

areas support other areas of mathematics learning such as number and numerical operations, they are 

identified in the literature as core areas for the learning and understanding of algebra (Bush & Karp, 

2013). The following section outlines the content areas identified throughout the literature as pertinent 

to success in algebra, on which test items have been based. 

Prerequisite and algebra content areas 

As stated the focus of this paper is the key content areas required for success in algebra. These content 

areas are outlined in Table 1 (Bush & Karp, 2013; Warren & Cooper, 2008).   



Content Areas Junior Cycle Syllabus 

Ratios and 

proportional 

relationships 

3.1 Number Systems: - consolidate their understanding of the relationship 

between ratio and proportion.  

4.4 Examining algebraic relationships: – proportional relationships 

Fractions 3.1 Number Systems: - Investigate models to think about operation on fractions. 

- Use the equivalence of fractions, decimals and percentages to compare 

proportions. 

Decimals and 

Percentages 

3.1 Number Systems: - Calculate percentages - Use the equivalence of fractions, 

decimals and percentages to compare proportions. 

Integers 3.1 Number Systems: - Investigate models, such as the number line, to illustrate 

the operations on integers 

Exponents 3.2 Indices 

Order of 

operations 

3.1 Number Systems: - Appreciate the order of operations, including use of 

brackets 

Properties of 

numbers 

3.1 Number Systems: - Investigate the properties of arithmetic and the 

relationships between them. 

Compare and 

order numbers 

3.1 Number Systems: - Use the number line to order natural numbers, integers 

and rational numbers. - Use the equivalence of fractions, decimals and 

percentages to compare proportions. 

Equality 3.1 Number Systems: - Consolidate the idea that equality is a relationship in 

which two mathematical expressions hold the same value. 

Variables 4.6 Expressions: - Using letters to represent quantities that are variable. 

Algebraic 

expressions 

4.6 Expressions: - Arithmetic operations on expressions. - Transformational 

activities 

Algebraic 

equations 

4.7 Equations and inequalities: - Selecting and using suitable strategies for finding 

solutions to equations and inequalities.  

Functions 4.2 Representing situations with table diagrams and graphs: - use tables, 

diagrams and graphs as a tool for analysing relations – present and interpret 

solutions, explaining and justifying methods, inferences and reasoning. 

Patterns  4.1 Generating arithmetic expressions from repeating patterns: - use tables and 

diagrams to represent a repeating-pattern situation – generalise and explain 

patterns and relationships in words and numbers – write arithmetic expressions 

for particular terms in a sequence.  

Table 1: Content Areas for Diagnostic Test and alignment with the Junior Cycle syllabus 

Related content domains from the Irish syllabus were used as a framework to align the prerequisite 

and algebra content areas identified in the literature. The Number Strand (3) of the syllabus builds on 

primary school learning and facilitates the transition from arithmetic to Algebra (Strand 4). The 

Common Introductory Course (CIC) is the minimum course to be covered by all students at the 

beginning of the junior cycle, elements from the CIC are in italics within Table 1.  The numbering 



within Table 1 refers to the strand numbers, for instance 3.2 refers to section 2 of strand 3. The 

diagnostic test has been developed for use with students in second year and therefore it was important 

to align the test items specifically with the content of the CIC. Once the CIC is complete teachers use 

their own discretion to introduce their topics (Department of Education and Skills, 2016). There is no 

prescribed structure for following the syllabus however, it is desirable that students will have 

completed their basic algebra skills including equation solving by the end of first year (Project Maths, 

n.d.-a). 

Prerequisite content areas 

Difficulties with algebra lie with both algebra itself and also with other areas of mathematics that 

students will have encountered, which are seen as prerequisites for the learning and understanding of 

algebra. Proportional reasoning is a key aspect of numeracy and it leads to relational thinking which 

is important in the development of algebraic skills, it is highly conceptual and a skill that develops 

gradually. Equally, fractions are an integral part of algebra and can be found as coefficients, constants 

and solutions to equations, the slope of a line, and, in general, proportions are written in fraction form 

in algebra  (Bush & Karp, 2013). Knowledge of decimals, their value and placement on a number 

line,  computation with decimals, and the ability to convert between decimals, fractions and 

percentages is also important for success in algebra (Bush & Karp, 2013). Studies have been 

conducted to identify what element of decimal and fraction understanding best indicate a students’ 

performance in algebra. It has been found that the relational understanding of the bipartite format of 

a fraction and unidimensional magnitude, measured with the placement of decimals on a number line 

are the best predictors (DeWolf, Bassok, & Holyoak, 2015).  

In learning about fractions, decimals and percentages, with the use of number lines and graphs, 

students at junior cycle are expected be able to compare and order numbers. This provides students 

with the skills and knowledge to apply the rules correctly when working with variables. It also enables 

a student to assess if a solution to an equation or inequality is reasonable. However, if students do not 

understand a fraction, decimal or percent, they are unable to extend their understanding to which is 

greater than or less than or equivalent (Bush & Karp, 2013). 

Furthermore, a solid understanding and procedural fluency with integers is required for success in 

algebra. Misconceptions about negative integers can impede progression, where, for example, a 

student may fail to accept a negative number as a solution to an equation. Research has suggested that 

the number line and graphs of functions can be used to help correct students’ misunderstandings and 

conceptual errors with integers (Bush & Karp, 2013). Equally, an understanding of exponents is 

required for both the transformational skills, in dealing with expressions, and the generational and 

global/meta level skills, where knowledge of the shape of functions are required (Bush & Karp, 2013). 

Moreover, to succeed in the transformational rules of algebra it is essential to understand the order of 

operations. Some students believe that order of operations do not matter, that the same answer will 

result regardless. Others believe that the context of the problem determines the order of operations 

and in the absence of context operations should be performed from left to right. Research suggests 

that students should learn the hierarchy of operations more naturally by attending to more complicated 

operations first (Bush & Karp, 2013).  



Finding equivalent expressions is frequently required in algebra, and this manipulation requires an 

underlying sense of the properties of numbers. Allowing students to investigate the properties of 

numbers will assist in learning, retaining knowledge and developing relational understanding, which 

in turn will create a strong foundation for algebra (Bush & Karp, 2013). Numerous studies have 

focused on development of the concept of the equal sign in the early stages of learning algebra (Bush 

& Karp, 2013). Students often misinterpret the meaning of the sign viewing it as an operational sign. 

Those who interpret the equal sign correctly and see it as a relational symbol have more flexibility 

when working with equations.  

Algebra content areas 

Kieran (1992) asserts that many misconceptions and common errors in algebra are generally rooted 

in the meaning of symbol or the letters used in algebra. Much research has been conducted into 

students’ difficulties in working with algebraic variables and the misconceptions student’s hold. 

These misconceptions include viewing variables as labels, the belief that the value of a variable has 

something to do with its position in the alphabet, and the belief that a variable is just a missing value 

rather than something which has varying values.  These difficulties are then compounded when a 

student attempts to create and manipulate an algebraic expression (Bush & Karp, 2013). 

The underlying misconceptions and difficulties students hold in relation to variables, expressions and 

indeed all the prerequisite content areas can then lead to difficulties in solving algebraic equations. 

The ability to solve equations is reliant on both procedural and conceptual understanding. Conceptual 

understanding is strongly related to student’s equation solving performance, as without it students 

learn by rote a series of transformational rules for dealing with equations. A solid understanding of 

how to use variables to write algebraic expressions, form subsequent equations and solve when 

necessary is the essence of success in algebra at junior cycle level (Bush & Karp, 2013). 

A function is defined as a correspondence between two sets (Kieran, 1992), and there are two general 

approaches to teaching and learning functional relationships mentioned in the literature; a 

correspondence approach and a covariation approach (Ayalon, Watson, & Lerman, 2015). The 

correspondence approach deals with an input-output model, whereby an output value y is calculated 

for a given input value x, often listed in a table of values or as couples. This approach allows for 

determining the rule which generates the y-value from the x-value and is in line with the approach to 

teaching functions in Ireland. The concept of a function is not simple when you consider that at least 

three representations are used to convey the notion of a function; a table, a graph and an equation. 

True procedural fluency and competency in working with functions is obtained when one can move 

between the different representations of a function with ease and this aligns with the multi-

representations approach advocated in the Irish syllabus (Bush & Karp, 2013; Project Maths, n.d.-a) 

Finally, algebra can be seen as the language used to describe patterns and relationships for the ultimate 

goal of problem solving and as a systematic way of expressing generality (Project Maths, n.d.-a). 

Students at junior cycle learn to identify the relationship which lies between the pattern and its 

position is a functional relationship meaning an expression or formula must be created using 

variables. In doing this a context for the use of variables is set for Irish students, assisting their 

understanding of a variable as a varying quantity rather than a specific unknown, laying down the 



foundation for understanding expressions and solving equations in what is known overall as a 

functions based approach to algebra (Project Maths, n.d.-a). 

The diagnostic test 

Test items were taken from previous relevant studies pertinent to measuring ability in the core content 

areas required for algebra outlined in Table 1. The diagnostic test currently contains twenty one 

questions summarized in Table 2 where the source of each test question is detailed. 

Content Areas Test Question Number and Source 

Ratio and proportion 1. Number Line/Decimal Magnitude from DeWolf et al. (2015) 

7. Proportional reasoning from Hilton, Hilton, Dole, and Goos (2013) 

Fractions 2. 4. 5. Fraction Knowledge from DeWolf et al. (2015) 

3. Fraction Knowledge  multiplication (Bush & Karp, 2013) 

Decimals and 

Percentages 

1. Number Line/Decimal Magnitude from DeWolf et al. (2015) 

11. Comparing and Ordering Numbers, Project Maths (n.d.-b) 

Integers 15. Integers and equations adapted from  Vlassis (2008) 

Exponents 6. and 8. adapted from discussion in Mok (2010)  

Order of operations 9. Order of operations adapted from Linchevski and Livneh (1999)  

Properties of numbers 10. Distributive  property, adapted from discussion in Mok (2010)  

Comparing and 

ordering numbers 

11. Comparing and Ordering Numbers, Project Maths (n.d.-b) 

Equality 12. 13. adapted from Stephens, Knuth, Blanton, Isler, Gardiner, and 

Marum (2013)  

Variables 14. Variable as label adapted from Küchemann (1981)  

Algebraic expressions 16. adapted from Hodgen, Kuchemann, Brown, and Coe (2009) 

17. Simplifying expressions based on errors discussed in Kieran (1992)  

Algebraic equations 20. adapted from Clement, Lochhead, and Monk (1981)  

18. 19. Next step of solution  adapted from Chung and Delacruz (2014) 

21.3 Forming equations adapted from Ayalon et al. (2015)  

Patterns 21 Interpreting from a geometric pattern from Ayalon et al. (2015) 

Table 2: Summary of content and source of items on the diagnostic test 

An example of a test item, which assesses relational fraction knowledge, together with understanding 

of a variable and algebraic expression is taken and adapted from (DeWolf et al., 2015) as follows; 

n is a whole number greater than 0. If 𝑛 continues to get bigger in value, please circle one of the 

following options A, B or C in the answer box for what happens to 
1

𝑛
.  

Hint: Think about the following sequence of numbers 
1

10
,
1

20
,
1

30
,… 

Figure 1: Question 5 on the diagnostic test based on relational fraction knowledge 



Students have space for workings and are then asked to circle the correct answer from the following 

options; A. 
1

𝑛
 gets very close to 1, B. 

1

𝑛
 gets very close to 0, or C.  

1

𝑛
 increases in value too. Adaptations 

from the original question include changing the word “integer” to “a whole number” and offering the 

“Hint”, to ensure the question is more in line with the age profile of those being tested as informed 

by the pilot of this test and feedback from teachers. The above question was included as relational 

understanding of a fraction was an element identified in the DeWolf et al. (2015) study to predict 

performance in algebra. All test items have been developed with such a theoretical underpinning that 

is using multiple choice responses based on possible conceptual errors. In addition language was 

adjusted where necessary to make the test items more accessible for fourteen year old students. 

Conclusion 

There are fresh concerns in relation to student attainment in mathematics in Ireland, specifically 

algebra and for progression to third level education (Treacy & Faulkner, 2015). There is a clear need 

to intervene early in the effort to address the issues students are facing with learning and 

understanding algebra. The overall aim in using this test is to identify conceptual errors that students 

make in both algebra and the prerequisite content areas required for success in algebra, therefore 

assisting to identify possible root causes of the students’ errors, and as a result, through appropriate 

intervention improve students’ knowledge of algebra and therefore general mathematical ability. 

Ultimately, this will be a tool for teachers to use in the classroom allowing them to make informed 

decisions and to plan appropriate interventions (Russell et al., 2009).  
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Analysing students’ graphicacy from a national test 
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The present study explores a task containing graphical artefacts from the Swedish national test 

(Nationella provet – NP) for a sub-sample of grade 9 students’ solutions.  The sub-sample comprising 

of 115 students’ solutions to the task is closely analysed, using an analytical construct founded on 

“identification” as well as the “critical-analytical” approach to problem solving. Based on this 

construct it is observed that a sizable number of students’ solutions follow a visual strategy with 

strong reliance on everyday forms of expression. Given the nature and purpose of NP we posit that 

students use the methods and tools that reflect general school practice. The analysis used in this study 

is perceived as problematising the assessment of competency from high stake tests, and the 

educational setting in general.   

Keywords: Assessment, examinations, graphical artefacts, misleading diagram, competencies. 

Introduction 

National tests generally play a vital role in the evaluation of educational systems, informing 

educational reforms and policy implementations as well as serving as a local comparative instrument 

(Eurydice, 2009; cf Skolverket, 2016). This implies that results from national tests can be used to 

explore the effects of curriculum documents on teaching and learning. Some researchers, (e.g. Boesen 

2006) have suggested that centrally administered tests can influence instructional practices, for 

instance by guiding the time set aside to teaching specific topic strands in the mathematics classroom. 

Given the orientation towards competencies in the mathematics classroom, it is also envisaged that 

the Swedish national test (Nationella provet – NP) might be a suitable indicator of teaching and 

learning of mathematics competencies.   Thus, national tests can be perceived as having the potential 

to provide insight on students’ fluency with mathematical concepts, as well as mathematics 

competencies (NCTM 2000; Niss & Højgaard, 2011; Skolverket, 2011; see also Sáenz, 2008).  

The goals of the study 

The aim of the present study is to gain insight into the strategies and approaches that some students 

at the end of the compulsory school in Sweden employ, as they interact with a mathematics task 

containing graphical artefacts. This study is based on written solutions from NP. The purpose is to 

explore the strategies and tools used to solve this task, as well as to determine the potential provided 

by a model focusing on mathematical tools and forms of expression as a means of exploring students’ 

mathematics competency. 

Background and theoretical construct 

Several methods have been used to analyse students’ responses to test items (e.g. Åberg-Bengtsson, 

2005; Goodchild & Grevholm, 2007). In some of these studies the focus has been on general 

performance with microanalysis done at topics strand levels. While there are models proposed for 

examining the response to tasks (e.g. Gal, 2002, 1998; Ben-Zvi & Arcavi, 2001; Watson & 

Callingham, 2003), these seem to suggest general skills needed to solve the task with a bias towards 

statistical literacy. Friel, Curcio and Bright (2001) developed a three-tier model entirely devoted to 



graphical artefacts: without loss of generality this can be collapsed into two tiers (cf. Gal, 1998; 

Bertin, 1983; Olande, 2013). While there are models for analysing students’ test results, there is a 

dearth of studies exploring the use of subject specific tools and forms of expression in students’ 

solutions. 

In the present study an analytical construct (see Olande, 2013), focusing on the application of 

mathematics tools and forms of expression while solving test items, is employed. In this construct 

response to test items is perceived as being oriented towards identification and critical-analytical 

approaches. Items eliciting the identification approach are largely “self-evident” and as such, 

problem solvers might not need to unpack their mathematical skills entirely in order to solve the 

problem. On the other hand, items seen as demanding a critical-analytical approach require focused 

engagement from the problem solver. For example, this could be in the form of a critical analysis of 

underlying factors in the task, evaluation and selection of appropriate tools for interacting with the 

task, as well as reporting the solution with relevant subject specific forms of expression.  

The construct guiding the present study borrows from a socio-semiotic paradigm where the emphasis 

is on artefacts as a means of coming to know. Radford (2008) posits that the investigation of students’ 

interaction and use of semiotic means of objectification is a methodological way of accounting for 

learning (see also Radford, 2003; Vygotsky, 1978). It is recognised that a sign or symbol does not 

exist in isolation but is always bound with intentions, motives and the objects of action (Roth, 2008; 

Olande, 2014). Thus, in a critical-analytical approach, “being critical” encompasses more than 

visually interrogating a graphical artefact, but also includes the means and the tools used in the sense 

making process. The assumption about what can be perceived as a non-hierarchical path to cognition 

is significant for the analytical framework: i.e. it is access to tools and forms of expression that is 

perceived as largely determining a problem-solving trajectory. 

The research questions 

Thus, the concern of the study is to outline and analyse tools and forms of expressions used by 

students as they interact with a task from NP. This task was picked from section C of the national 

test, a section that requires students to justify in one way or another how they arrive at their solutions. 

The task (figure 1) was selected for further analysis given that it provided a combination of visual-

identification as well as critical-analytical components. This way of assessing the task is different 

from the marking process employed by graders while awarding credit to students’ solutions. The 

marking scheme used by graders did not indicate assessment of diverse solutions provided by students 

but largely gave written statements as guidelines. Thus item a) scored full credit when the solution 

contained the expression TRUE with corresponding justification such as making a comparison based 

on the sizes of the shaded areas. For item b) partial credit was awarded where the solution contained 

the expression FALSE with corresponding justification indicating an understanding that the pie charts 

express different quantities e.g. “Australia has more medals than Spain”. Full credit was awarded 

where the solution, in addition to the general statement FALSE, explicitly made comparisons based 

on mathematical forms of expression e.g. computation with fractions. A reliability check conducted 

by an independent entity (Skolinspektionen, 2010) from a representative sample of Swedish students 

for section C of the test, indicated that for items scoring grade G - (for the purpose of this study partial 

credit) in 51% of the cases the graders gave higher grades than the assessors. In 27% of the cases 

there was correspondence in the credit award. For items scoring VG - “full credit” in 37% of the cases 



the graders’ credit award was higher than that of the assessors, with 41% indicating correspondence 

in the credit award.  

From a competency perspective (Skolverket, 2011), this task might be considered to focus on 

developing competencies in the following: using and analysing mathematical concepts, use of 

appropriate mathematical methods to solve problems, and the use the of mathematical forms of 

expression to discuss, reason and give account of questions, calculations and conclusions. However, 

given that the task explicitly called for a justification of the student’s given solution, it was generally 

perceived as eliciting a critical-analytical approach. The success rate for item 9a was 78% for both 

girls and boys, while the success rate for item 9b was 47% and 55% for girls and boys respectively. 

Figure 1: Task No. 9 from NP Sweden 

   

 

The research questions are outlined as: 

1. What range of tools and forms of expression are made manifest as students interact with the 

task containing graphical artefacts? 

2. How does tool selection and use impact on the characteristics of the task solution provided? 

 

Task analysis 

Students’ solutions to task No. 9 were closely analysed with respect to: a) forms of expression (see 

Table 1 for typical examples of student responses) mathematical, everyday, graphical or one-word 

and b) tool use/sign of tool accessibility – mathematical operators and symbols. With regard to tool 

use seven approaches to task solving were identified, namely: i) visual comparison of graphical 

artefact, ii) critical - questioning the production of the graph iii) fraction iv) proportion v) percent vi) 

division vii) multiplication and vii) other solutions.  

  



Mathematical Everyday Graphical One-Word 

 

Britain ≈ 5/12 ≈ 0,40 40% 

gold (18,8 medals) 

Australia ≈ 35/120 ≈ 0,30 

30% gold (13,8 medals) 

Answer: true 

 

True: Britain obtained 

most gold in its 

diagram and Australia 

more silver.  

Yes! Britain’s bit is larger 

Yes Spain’s bit is larger 

 

False 

Table 1: Forms of expression identified from test task 

 

Based on aspects of identification and critical-analytical approaches (Olande, 2013) and aspects of 

Sfard’s (2008; cf. Schleppegrell, 2007) categories of mathematical discourse, the author developed a 

coding scheme and analysed the students’ solutions. The focus was on the forms of expression and 

mathematical tools – concepts used in working out a solution, rather than the correctness of students’ 

solutions. The correctness or otherwise of the item solution was pegged on the test score awarded by 

test graders within the framework of the test situation. Significantly, within this coding scheme the 

perception of the forms of expression was as follows: 1) everyday – the use of causal expressions 

wherein aspects of the obviousness of solution are embedded. In Table 1, while the type of language 

used in the solution is everyday, it is apparent that there are quantities being compared: “Britain 

obtained most gold” and “Australia more silver” 2) mathematical – the use of mathematical concepts 

and methods in the solution 3) graphical – the use of illustrations in an attempt to amplify the visual 

aspects of the task. In the illustration given in Table 1 above while the solution for item b) did not 

receive credit award from the graders, the solution appears to be appealing to the visual faculties in a 

comparison exercise. Zooming in on gold or silver, the student seem to be posing the question can’t 

you see they are different? 

Results and analysis 

The success rate for task No. 9 seems to indicate that students did not have as much difficulty with 

aspects of item 9a as compared to item 9b. This can be explained in part by the nature and the array 

of tools needed for effective interaction with the different items. Thus, the different forms of 

expression of the items were analysed. 

 Everyday Mathematics One-word Graphical 

Form of expression 0.72 0.15 0.11 0.02 

Correct responses 0.89 0.95 0.32 1.00 

Incorrect responses 0.11 0.00 0.60 0.00 

No response 0.00 0.05 0.08 0.00 

Table 2: Forms of expression identified from item 9a 



For this item, a majority (72%) of the students’ solutions used everyday forms of expression, of these 

89% provided successful solutions. While only 15% of the students used mathematical forms of 

expression, the success rate was relatively high at 95%. Students providing a one-word response to 

the task gave the majority of unsuccessful solutions. For this item it was observed that more than 50% 

of the students used visual comparison and/or the comparison of totals. 

The general pattern for forms of expression for item 9b was no different for item 9a (see Table 2). 

 Everyday Mathematics One-word Graphical 

Form of expression 0.50 0.32 0.13 0.04 

Full credit 0.29 0.91 0.00 0.25 

Partial credit 0.43 0.04 0.13 0.00 

Incorrect responses 0.27 0.02 0.79 0.75 

No response 0.00 0.05 0.08 0.00 

Table 3: Forms of expression identified from item 9b 

It is noteworthy that students providing one-word answers and those using graphical strategies 

recorded rather higher rates of incorrect responses. Evidently, students’ results indicate that the use 

of forms of expressions reflects one way or another on the success rate of their solutions. 

Consequently, it is of particular interest to explore the subject specific tools and forms of expression 

used in solving the task, and how these might have impacted on the quality of the response provided. 

This analysis is conducted for item 9b (see figure 2) 

Figure 2: Frequency of tool use and credit award 

 

From figure 2 it is shown that most of the solutions awarded full credit included the application of 

mathematical symbols and calculation. For these solutions the predominant tools of 

manipulation/calculation were fraction, division and percent. The solutions providing incorrect 

responses seem to be largely based on visual strategies.  



From the results it is apparent that students using mathematical tools and forms of expression had a 

relatively higher success rate. The predominant tools used in solving the task were fraction, division 

and percentage. The frequency with which fraction and division are used is not entirely unexpected 

since these tools are closely related; the same applies to some extent to percent. It could be suggested 

that the task in some way elicits the use of fraction: It is not uncommon for mathematics teachers to 

use pie charts in the teaching of, or in the introduction of, the topic strand of fraction. From this 

approach there is a natural connection to percentage; a circle divided into two gives two halves – this 

is often perceived as 50-50 (%). The results also indicate that some of the students using these tools 

(fraction, percentage) experienced some difficulty in application.  It is worth noting that the students 

using multiplication obtained full credit. These students seem to employ a tool that might not be 

considered “self-evident” for the task. This necessitated using the tool in a creative manner, thus 

indicating a higher level of confidence and “procifiency” in using the tool. 

For the students scoring full credit for the items, it is observed that most of them are proficient in the 

use of item specific tools namely, fraction, division and multiplication. From the students’ solutions 

it seems that only a small number indicate some aspect of interrogating the purpose of the graphics. 

Indeed there seems to be a general scarcity of solutions communicated using subject specific forms 

of expression, that is, mathematical language.  

Discussion 

The present study sought to apply a construct focusing tools and forms expression in solving 

mathematics tasks containing graphical artefacts. The purpose was to outline the usage of tools and 

forms of expression, and the quality of the solution thereof. A deeper analysis of task No. 9 provided 

more insight into strategies and tools used in interacting with graphical artefacts. It is observed that 

it is in part the grasp of the tool in use that determines the quality of the solution given. Based on the 

level of confidence in tool use, it is possible for the test taker to interrogate the task from different 

perspectives. Based on what can be considered as overlapping tool use (see figure 2), the results are 

perceived as suggesting that “reading” a graphical artefact can be a complex undertaking that might 

involve reading the graph – reading within the graph – reading beyond the graph (cf Friel et. al., 

2001). In the case of this task, there is indeed a different array of tools available to the students as 

they solve the task. However, it is communication using subject specific forms of expression that 

appears to be wanting – this might be an indicator that as much as the tools are available and “visible” 

to some of the students, the competency to apply and organize the same to produce a sound solution 

is a major challenge. This was observed in the case of students indicating knowledge of appropriate 

tools needed to solve the task, but apparently lacking the necessary skills to effectively apply the same 

in a problem-solving situation. Thus the observation made in the present study underscores the 

importance of having a solid foundation in the use of mathematical tools and forms of expression 

(concepts) in different settings. The importance of the use of subject specific forms of expression is 

also observed. For item b) there was higher correspondence in credit award between the graders and 

assessors as compared to item a) which did not elicit the use of the subject specific forms of 

expression as such. The analytical framework employed in the present study also helped to identify 

the strengths and weakness in students’ written solutions, thus providing valuable indicators for 

developing classroom practice. 



Given the interest in, and the focus on mathematics competencies in the Swedish mathematics 

classroom, the present study can also be perceived as drawing attention to the practice of assessment: 

if the concept of mathematical competencies implies imparting aspects of such skills as 

mathematicians use in the processes of mathematisation (cf Niss & Højgaard, 2011; Sfard, 2008), 

then assessment practice might need to be refocused to examine such use of tools and forms of 

expression that enable the learner to understand, and to participate in, activities within the 

mathematics community.  
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In this paper, we are presenting our analytical tools to characterize assessment activities as part of 

teachers’ practice, on a specific mathematical content (algebra). We are also presenting the 

principles of our collaboration with high school teachers, inside a particular workgroup (LéA), to 

explain why we came to consider assessment as a potential lever to enhance both the students’ 

learning in mathematics, and the teachers’ development. We are presenting a few results on the 

effects of this collaborative work on teachers’ practice when assessing students’ learning, and on our 

means to analyze the students’ results throughout the process. 

Keywords: Assessment, algebra, teachers’ practice, teachers’ professional development, 

collaborative work. 

In this paper we are presenting the analytical framework that we are building to characterize the 

practice of high school teachers in mathematics regarding student assessment. We study assessment 

throught one of its particular functions, promoting learning, with a didactical point of view, focussing 

on a particular content (algebra). We consider three inputs for assessment: assessment as a framework 

to characterize teachers’ practice, assessment as a tool to enhance students’ learning in mathematics, 

assessment as a lever for professional development. We will present some results on teachers’ 

professional development, from the collaborative work we lead with high school teachers on 

assessment. 

Assessment as a framework to characterize teachers’ practice 

In this first part, we are presenting the framework that we have built to analyze teachers’ assessment 

practice, leaning on previous studies about teachers’ practice, and on the teaching of algebra in 

particular. 

Defining assessment practice 

Assessment can be found in many aspects of the teachers’ activity, and it would be easy to call 

assessment any interaction between the teacher and the students. To restrain our observations, we 

draw upon De Ketele‘s definition (1989), and call assessment any gathering of information by the 

teacher on the students’ activity and knowledge, and the interpretation and use of this information.  

By activity, we mean everything the students do, say, think, (or do not do). Of course, not everything 

is accessible to neither the researcher nor the teacher, but we consider that students’ learning happens 

through their mathematical activities, at least partially (cf. Rogalski, 2013, about the use of Activity 

Theory as a framework for research in the Math Education field). These activities may consist on 

participating in a debate around a task or listening to a mathematical discourse in class. But in many 

occasion, they result from the tasks proposed by the teacher, and on the choices that the teacher makes 



to manage the solving of the task, which are elements that we consider when analyzing the teachers’ 

practice in class. 

Assessment is easier to pinpoint for the researcher, when it is formal, for example a written summative 

test at the end of a teaching sequence, or short diagnostic tests happening at the beginning of every 

session. Informal assessment, on the other hand, is more difficult to identify, but can happen in many 

occasions during the class, through the interactions between the teacher and the students, giving 

information on the students state of knowledge, to the teacher or to the students themselves. To be 

able to characterize assessment practice in any case, we have drawn a list of criteria, whether the 

assessment is formal or not, and at any point in the teaching sequence. 

Characterizing assessment practice 

One of the elements that we take into consideration to characterize assessment practice, is the distance 

between each assessment task and the similar tasks previously given by the teachers on the same 

mathematical content (Horoks, 2006). For example, when a teacher is assessing the students’ 

knowledge on a mathematical content through a final test, we can question the choices of tasks made 

by this teacher and their link with the tasks that were actually worked on before the test. A certain 

gap between the test’s and previous tasks (or between tasks from a diagnostic test and all the possible 

prerequisite tasks) can be interpreted in different manners: it could be explained by the function given 

to this test, (rewarding or challenging the students for example) or maybe by a lack of pedagogical 

content knowledge (Shulman, 1986) for the teacher. The epistemological and didactical analyses of 

the mathematical contents are crucial here to make the comparison between the two sets of tasks. In 

the case of informal assessment, each new task given by the teacher has to be considered among a set 

of previous tasks, depending on the “study moments” (Chevallard, 1999; Barbé & al., 2005), related 

to the distance from the first encounter with the mathematical notion. The distance between the tasks 

allows us to measure the complexity for the students compared to the tasks that they have already 

worked on. More globally, the whole range of tasks proposed by the teacher on a mathematical 

content, with the absence of particular tasks in the related assessments, can tell us some of the 

intentions of the teacher for assessment, in relation with teaching.  

Another element that we take into account, is the “depth” of the information: indeed, the process of 

“taking / interpreting / exploiting information on students’ activity” in mathematics, can take its roots 

in the solution that the students produce (the result of a task), the way they solve the task (procedure 

to achieve a result), or the knowledge that is put into action to complete this procedure. Linking the 

activity to the student’s knowledge requires, from the teacher, an understanding of the 

conceptualization of the mathematical contents behind the procedure, which is usually specific to the 

particular content. Regarding algebra in particular, it leads us to consider some specific elements, 

such as the form of writing for calculations or the type of reasoning. Indeed, some forms of writing 

for the calculation for example (cf. figure 1) can inform the teacher on the meaning of the equal sign 

for each student (computation, equivalence), or on the student’s structural / procedural view of 

numerical or algebraic expressions. 



 

Figure 1: Different writings for the calculation, giving information on the students’ knowledge 

The interpretation of the information can also differ, depending on the reference taken for this 

interpretation: a comparison with what is expected by the institution (curricula, external assessment), 

or what could be expected by the teacher, considering all the previous work and the teacher’s 

knowledge of the didactics of the mathematical notion at stake (errors, obstacles and breaches, steps 

in the conceptualization, etc). It can also be a comparison between the students’ different procedures 

or a comparison in time for one student, to appraise his or her progress. These comparisons can be 

made explicit or not to the students. Here again, it can be linked to the various possible functions of 

the assessment. 

Finally, the exploitation of the information differs depending on the moment when it occurs: whether 

it leads to immediate feedbacks related to students’ result, procedure or knowledge or, in a more or 

less short term, when it influences the planning for the next activities.  

Before giving an example of teachers’ formal assessment practice, we will first describe our working 

context with a group of teachers. 

Description of the collaborative work inside the Léa 

A “Lieu d’Education Associé (Léa)” is an instance created by the French Institute for Education (IFE) 

to promote research with people who play an acting part in education. For 3 years, they are associated 

with a team of researchers to investigate questions about education and to build realistic resources for 

teachers or educators. Our Léa takes place, since May 2014, in a high school (students from 11 to 15 

year old) in an Educational Priority Area, with 9 teachers (4 at the beginning) and 7 researchers, who 

meet every month to work together, to build teaching materials for algebra and to discuss assessment 

practice that could promote students’ learning. The Léa can give us access to those teachers’ 

evaluation practice in the long term. 

An example of a comparison of teachers’ formal assessment practice  

We asked Léa teachers to design a diagnostic test at the beginning of the year for their 7th-grade 

students, to assess their numerical and pre-algebraic knowledge before introducing algebra. The tasks 

of the tests that they individually proposed were not covering all the range of the required knowledge 

for the introduction of algebra (Carraher & Schliemann, 2007, Kieran, 2007). The teachers justified 

their choices by giving institutional or social reasons, rather than epistemological or didactical ones. 

 

-  (3 + 4) x 2 – 8 = 6 

-  3 + 4 = 7 x 2 = 14 – 8 = 6 

      + 4     x2      - 8 

-  3 ------> 7 ------> 14 ------> 6 

- 3 + 4 = 7 

 7 x 2 = 14 

  14 – 8 = 6 



Teachers  G M 

Variety of tasks Repetitive task Different tasks 

Complexity of test’s tasks / 

previously given in class 

Similar to the previous ones in class More complex than the previous ones 

in class 

Information (declarative) On the result On the procedure 

Feedback to the students 

(declarative) 

Marks on the paper Marks on the paper 

Function of the formal test 

(declarative) 
- To be able to give marks for the 

institution 

- To work on the basics 

- To learn by adapting to a different 

situation 

- To adapt the teaching plan ahead 

Table 1: Formal assessment (summative test) 

We also conducted interviews with these teachers to find out about their views about assessment, 

after they had proposed their first summative test of the year. They were asked questions about their 

choices of tasks and the feedbacks they gave to the students afterwards (cf. table 1 for two of the 

teachers). Their answers showed a great variety in the tasks they proposed, regarding the distance 

with previous tasks, and probably resulting from different views on the functions given to formal 

assessment, despite the fact that these teachers often worked together. What was common to all the 

teachers on the other hand, is that they did not usually give many feedbacks to their students. Indeed, 

those teachers gave a mark without informing the students with the necessary elements to understand 

their mistakes and the limitations of their reasoning. Another comparison, related to informal 

assessment, for one teacher at different moments, will be made in the last part of this paper. 

Assessment as a tool to enhance students’ learning in mathematics 

Definition of formative assessment 

For Black & Wiliam (1998), an assessment can be formative when a teacher uses the information on 

the students to help them engage in the work on a task, or to help each of them auto-evaluate their 

knowledge: 

The term ‘assessment refers to all those activities undertaken by teachers, and by their students in 

assessing themselves, which provide information to be used as feedback to modify the teaching 

and learning activities in which they are engaged. Such assessment becomes “formative 

assessment“ when the evidence is actually used to adapt the teaching work to meet the needs. (page 

2) 

In terms of gathering/interpreting/exploiting information, formal assessment can play a more or less 

formative function, depending on the chosen tasks (if the tasks are way too complex or too simple; 

the students’ productions might not reveal many useful information for the teacher). It depends also 

on the feedbacks made to the students. These facts can both be witnessed and analyzed by the 

researcher. 

But when in comes to informal formative assessment in class, even if it is possible to see a teacher 

going around in the class when the students are working on a task, we can only witness the 

information actually gathered if the teacher is using it right away to guide the students’ work. 

Deciding not to use the information right away, but reorganizing the plan of the next sessions, for the 

entire class or a particular student, could also be an exploitation of the information to promote the 

students’ learning, but the researcher would then hardly acknowledge it. In any case, the research 

time allowed to the students to work on the task will probably have an influence on their mathematical 



activity, and on the information that the teacher will be able to take on this activity, depending on the 

task. 

A key moment: sharing the students’ productions after letting them work on a task 

The moment of pooling of students’ procedures, after letting them work on a task, alone or in groups, 

seems to us like a good opportunity for informal formative assessment, where students could compare 

their solution with others’ and know if they are close to what was expected. It depends of course on 

how the teachers choose to manage this moment of the session, and on the use they will make of the 

students’ productions. This is why we will look more closely at those moments in the classrooms to 

analyze the use that the teachers make of the students’ productions: how is the students’ work taken 

into consideration? 

What kind of productions do the teachers choose to share with the entire class? Is there a variety in 

these productions, regarding the result of the task or the possible procedures? Are there errors, typical 

or not, showed to the students? These elements are indicative of the information probably gathered 

by the teacher on the students’ work while they were working, but depends also on an a priori analysis 

of the task, strongly linked to the mathematical contents to be mobilized, in order for the teacher to 

anticipate the possible outcomes. 

We also analyze the exploitation of these productions. However, the interpretation of the information 

by the teachers remains mostly invisible to the researcher, except when the teachers explicitly mention 

the reference they use to compare (with what is expected at the end of the year, with what the students 

already did before, between students…). We note if the teachers organize a comparison of the results 

or of the procedures. Do they rank them to show the relevance and limits of each solution? How is 

organized the (in)validation of the solutions? Who is (in)validating them? With which arguments? 

And which conclusion? These elements can inform us on the role given to the students in the 

validation and institutionalization process and in the assessment process in general. We will give an 

example of this type of analysis for one teacher, in the last part of this paper. 

We have hypotheses on the conditions that we consider more favorable towards student’s learning, 

for example by making use of various students’ procedures and errors and by implicating them in the 

validation, using mathematical arguments. We will confront these hypotheses with the results in 

algebra of a hundred of high school students, whose teachers’ assessment practice was analyzed in 

this study,. In order to do that, we will analyze each task given by each of the teachers participating 

in the Léa, as part of the formal assessment process in algebra during 3 years, in terms of kinds of 

tasks (Chevallard, 1999) and adaptations (cf. Robert 2003), to determine their variety and complexity. 

We will collect the students’ productions, analyze their answers and characterize them according to 

the different degrees of algebraic competencies defined by Grugeon & al. (2012) and Chenevotot-

Quentin & al. (2015) for the design of a diagnostic assessment in algebra. This analysis is now in 

progress, as we are beginning the third year of our work inside the Léa.  

Assessment as a lever for professional development 

Our tools to analyze professional development 

For our research, we already have collected a wide range of data inside our Léa, that we still have to 

fully process: to document the teachers’ assessment practice, we gathered their personal documents 



for the class and asked them to film themselves regularly in their own class; to measure the possible 

effect of this practice on the students’ learning in algebra, we collected many students’ productions; 

and at last, to try to estimate the effects of our collaborative work on the teachers’ practice, we 

recorded the discussions during our meetings, and kept the reports of these meetings, when written 

by the teachers. 

The analysis of the teachers’ assessment practice takes into account, as explained before, the list of 

tasks proposed to the students in algebra and the management of the resolution of these tasks in class 

(informal assessment) or after a test (formal assessment). Their point of view about assessment is also 

visible through the interviews we conducted at the beginning of the project, or through the discourse 

of the teachers during the meetings of the Léa. More specifically, we are interested in the ways they 

argument their choices for their class, through the type of reasons they give for their choices of tasks 

or management (institutional, social, didactical, mathematical, etc). The moments when the teachers 

disagree with the researchers, or try to convince new teachers who joined the collaborative 

workgroup, are particularly interesting for us for that matter; to gather information on a possible 

evolution on the teachers’ point of view on assessment, and more globally, on the teaching of algebra.  

Some results about the changes in the teachers practice and arguments 

To illustrate our analyses of the teachers’ practice and their development, we are giving here an 

example of two sessions, for the same teacher, filmed one year apart. We analyzed the moment of 

sharing the students’ productions, after working on similar tasks. These tasks both involve testing a 

calculation program with several numbers to notice an unchanging result or property and proving it 

with algebra. Our analyses are based on the indicators that we have already listed (the variety of the 

productions chosen to be displayed, the exploitation of students’ errors, the initiatives in the 

validation, the arguments for justification). 

Our analyses after the first year of collaboration (see table 2 “year 1”) tend to find that teachers’ 

assessment practice are very settled and stable. It seems that our didactical contributions about the 

teaching and the learning of algebra have helped teachers’ practice to evolve (Horoks & Pilet, 2015): 

indeed they have better indicators to select the students’ productions that they will use for the 

discussion after a task. But the exploitation that they make of these productions hasn’t really changed 

after the first year: when sharing them with the class, the Léa’s teachers don’t usually organize a 

comparison between the students’ productions nor give a validation based on mathematical reasons. 

We also found that these teachers usually leave no initiative for students when working on the more 

complex algebraic tasks, which leads to the impossibility to rely on their production (see table 2, 

“year 1”). 

After the second year, where we decided to share some of our tools to analyze the sessions in class 

with the teachers, we can notice some evolution in the exploitation of the information (see table 2, 

“year 2”). Even though the second part of the task is more complex, this teacher still relies on the 

students’ productions, even if they are not mathematically correct, to build, along with the students, 

the reasoning that will allow the class to invalidate the proposed solution. 

However, even if the tasks are similar between year 1 and year 2, students have a higher grade in year 

2 which may also explain the different choices made by the teacher. We should go on studying 

practice for a longer time, to identify its stability, and this is what we plan to do in the Léa project. 



  
M(year 1) M(year 2) 

Testing with 

numbers 

Duration of individual work 6.00  

this numerical 

step is not part of 

the second task 

 

Variety and comparison on results/procedures 

from the students’ productions 

3 procedures 

not compared 

Presence of errors in the displayed productions error in the 

procedure 

Student’s initiative in the validation yes 

Mathematical arguments of proof no 

Proving with 

algebra 

Duration of individual work 2.30 6.30 

Variety and comparison on results/procedures 

from the students’ productions 

this algebraic 

step is handled 

by the teacher 

without any 

support on the 

students’ 

productions 

 

4 procedures 

compared 

Presence of errors in the displayed productions yes 

Student’s initiative in the validation yes 

Mathematical arguments of proof counter-example 

Table 2: Evolution of informal assessment practice for teacher M 

Both the cognitive (contents and tasks) and mediative (organization of the sessions in class) elements 

of the teacher activity play a part in the assessment process that we are trying to analyze here. But, as 

emphasized by Robert and Rogalski (2005) there are other constraints of this professional occupation 

to be taken into account: the social (type of school), the institutional (curricula) and personal (carrier 

and education) components, playing a significant part when interpreting teachers’ practice, including 

for us their choices in terms of assessment. We analyze teacher’s practice through all these 

components, at different levels: locally in the classroom or globally within all the teaching plan, and 

we believe that it can give us access more deeply into the teachers’ consistency and explain their 

stability. Yet, after the second year, we noticed some changes in the arguments that the teachers are 

giving to justify their choices, shifting a little from social and institutional reasons to mathematical 

or didactical ones, that we would hope to link to our work together, that is still going on..  
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This paper explores primary teachers’ accounts of their responses to major changes in the 

curriculum and assessment system in England, which has recently re-designated expected standards 

of achievement and progress. Analysis is informed by Foucauldian poststructural understandings of 

power/knowledge and truth to examine how they reorganise their practices as mathematics teachers 

within a policy context which continues to compel schools to focus on performance. By means of a 

small-scale empirical study, we identify the tensions created when the ‘rules of the game’ change 

and how technological assessment tools require and enable teachers to reproduce levels and labels 

to categorise pupils. Our aim in undertaking this analysis is not to compare teachers’ assessment 

practices to an ideal, beyond policy, but to illustrate how government-driven changes to assessment 

are insufficient to change underlying discourses of performativity which ultimately shape practice.  
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Introduction 

The examination [assessment] combines the techniques of an observing hierarchy and those of a 

normalizing judgement. It is a normalizing gaze, a surveillance that makes it possible to qualify, 

to classify and to punish. It establishes over individuals a visibility through which one 

differentiates them and judges them. (Foucault, 1977, p. 184) 

The quote from Foucault begins to set out both our substantive interest and the theoretical stance, 

namely, an interest in mathematics assessment from a sociological perspective. Our focus is on 

assessment not simply as a technical activity to improve pupil outcomes, but as a mechanism 

through which teachers manage their professional selves; the way in which mathematics assessment 

is used as part of their ongoing professional identification and as the basis, and evidence, of their 

success. Our starting point is the claim that in English primary (5-11) schools, assessment, and the 

curriculum alongside which it takes place, plays a major – perhaps the major – role in influencing 

teachers’ actions. There are many reasons why this is the case but, as Pratt (2016a) argues, in 

essence they revolve around the marketized and high-stakes, accountable nature of the English 

system and the ‘performativity’ (Ball, 2003) this manifests in teachers’ work. 

The changing context of English mathematics education 

It is difficult in a short paper to describe fully the complex landscape of an education system and 

how it is changing and we refer the reader to Pratt (2016a) and Keddie (2016) for more detailed 

discussions of English primary schools. However, in summary the system is based in a neo-liberal, 

neo-conservative framework which affords an increasingly marketized, competitive and accountable 

approach to school improvement. This has led to a strong discourse of ‘progress’, since it is the 

change in pupils’ levels of attainment across each year which has been the key measure against 

which schools, and individual teachers, have been judged. In turn this leads to a strong discourse of 

control, a belief that pupils’ progress is predictable and controllable across time; and therefore of 

teachers’ responsibility for learning outcomes obtained through their teaching (Pratt, 2016b). 



However, over the last 18 months, both the curriculum for mathematics and the assessment system 

have been reformed. The new primary national curriculum (NC) (DfE, 2013) stipulated increased 

expectations in mathematics with more challenging national tests. Perhaps most importantly for 

teachers, previous NC ‘attainment levels’ have been superseded by an ‘expected standard’ set for 

2016, at a higher level than in 2015 (DfE, 2016). The rationale for this change is described in the 

final report of the government’s Commission on Assessment Without Levels (McIntosh, 2015, p. 

5), as follows: 

Despite being intended only for use in statutory national assessments, too frequently levels also 

came to be used for in-school assessment between key stages in order to monitor whether pupils 

were on track to achieve expected levels at the end of key stages. This distorted the purpose of 

in-school assessment, particularly day-to-day formative assessment. The Commission believes 

that this has had a profoundly negative impact on teaching. 

Too often levels became viewed as thresholds and teaching became focused on getting pupils 

across the next threshold … Depth and breadth of understanding were sometimes sacrificed in 

favour of pace.  

Guidance specifies that the majority of pupils should move through the programmes of study of the 

NC at broadly the same pace (DfE, 2013), crucially replacing previous advice to accelerate high 

attaining children through new content. At the classroom level, ‘progress’ through the curriculum 

has been replaced by ‘progress’ within it; and a new language of ‘mastery’ has sprung up to describe 

this, which “denotes a focus on achieving a deeper understanding of fewer topics, through problem-

solving, questioning and encouraging deep mathematical thinking” (McIntosh, 2015, p. 17). 

Progress measures of pupils and schools across key stages are also calculated differently. 

Monitoring progress by levels and sub-levels has been replaced by a value-added measure. Pupils’ 

results at the end of key stage 1 and key stage 2 (at ages 7 and 11) are compared to the achievements 

of other pupils with similar attainment nationally, and a new ‘floor’ standard requires that at least 

65% of pupils meet the expected level in mathematics (and English), or that a school achieves 

sufficient progress scores (DfE, 2016). Schools not achieving the floor standard will be scrutinised 

through additional inspection and may have their freedom curtailed. Indeed, the Commission notes 

that “with freedom, however, comes responsibility” (McIntosh, 2015, p. 10) and “recognises that the 

transition to assessment without Attainment Targets and levels will be challenging, and that schools 

will have to develop and manage their assessment systems during a period of change” (p.16). 

However, it justifies this on the basis of “a much greater focus on high quality formative assessment 

as an integral part of teaching and learning”; the raising of “standards” in line with neoliberal policy. 

As we have previously pointed out, in a performativity culture such as this one, assessment has 

become a means by which teachers gain and maintain professional capital (after Bourdieu, see Pratt, 

2016a).  

Theoretical Framework 

To understand the effect of changes to the ‘rules of the game’ of assessment, we draw on Foucault, 

particularly his notion of governmentality (Foucault, 1977) that surrounds English education (Ball, 

2013; Llewellyn, 2016); the notion that dominant discourses become normalized to such an extent 

that (teacher) subjects consent to particular action and hence come to govern themselves. (Note, 

discourse here refers to “a group of rules proper to discursive practices … [which] define the 



ordering of objects” (Foucault, 1972, p. 49) and is more than just language.) Our aim is to make 

visible the ways in which assessment discourses normalize certain practices and relations between 

teachers, school systems and pupils, rendering them common-sense, irrevocable and change-

resistant – but not to judge these against some ideal version of practice. In theorising these forms of 

governmentality in and through assessment, two related ideas are in play: power/knowledge and 

truth. Power, according to Foucault, is enacted, not held by individuals, and 

is not exercised simply as an obligation or a prohibition on those who 'do not have it'; it invests 

them, is transmitted by them and through them; it exerts pressure upon them, just as they 

themselves, in their struggle against it, resist the grip it has on them. (Foucault, 1977, p. 27) 

We emphasise that this can be a good or bad thing; power can liberate and is not oppressive per se, 

but either way, ‘power produces knowledge’ (ibid). ‘Experts’ in a field (teachers in their classroom 

settings, but also senior managers in the school as a whole, policy makers and children as ‘expert 

pupils’) produce knowledge through their language and activity which positions and exerts pressure 

in terms of the way it influences what can and cannot be said and done. In this sense, it forms a 

‘game of truth’. For Foucault, truth is not something to be found outside of relations. Rather it is 

something produced through such relations so that “each society has its regime of truth, its 'general 

politics' of truth: that is, the types of discourse which it accepts and makes function as true” 

(Foucault, 1980, p. 131). Thus, the question is not what the truth ‘is’, but how things come to be 

taken as true; how this is used in order to make manifest and exert power relations. This is  

the truth which does not belong to the order of what is, but to the order of what happens … a 

truth which is not found but aroused and hunted down: production rather than apophantic. This 

kind of truth does not call for method, but for strategy. (Foucault et al, 2008, p. 237) 

It is through this theoretical lens that we return to mathematics assessment, and the following 

questions: how do teachers respond to the changes that a new curriculum and assessment system 

impose; and in doing so, how do they re-organise the economy, and politics, of truth in assessment 

practices in order to (re)empower themselves as experts?  

Methodology 

The project involved extended semi-structured interviews with primary teachers in 9 different 

schools (12 teachers in total) in the first year after the removal of levels. Teachers and schools were 

chosen purposively to reflect a range of ages, experience, school types and locations, but in this 

paper we draw on just three of the participating teachers – Ann, Jill and Mike, all working in state 

schools – in order to keep the analysis manageable. Mike and Jill are in their late 20s and both are 

coordinators of mathematics in their schools and are both on a programme of training to develop 

leadership in ‘mastery’ of mathematics. They work in a village and an urban school respectively; Jill 

has been teaching for 8 years and Mike for 7. Ann is in her late 30s, has been teaching for 19 years 

and in her current, town, school for 5 of these. She is a class teacher, but not a specialist in 

mathematics. Data from all the interviews were analysed thematically in relation to the substantive 

and theoretical framework – teachers’ assessment practices, as we understood them in relation to 

power/knowledge and truths. Whilst we can only present a small set of data we have selected this 

carefully, ensuring that teachers’ views, though sometimes individual, are never contradictory of the 

data set as a whole. Our aim is not to claim that the specifics are generalizable to every teacher 

beyond, or even within, the data set. Rather, the analysis is of the system of governmentality and the 



dominant discourses that constitute it. We think it offers a trustworthy and useful analysis in this 

sense, meaning that it is likely to be generalizable to other teachers in terms of the way in which 

their work becomes problematized, even if not in terms of how individuals are able to respond. All 

our work conformed to the ethical procedures of the British Educational Research Association and 

were approved by our employing institutions. 

Analysis – Reproducing the truth 

The DfE’s Commission on Assessment without Levels is very clear over the point of their removal.  

Removing the ‘label’ of levels can help to improve pupils’ mind-sets about their own ability. 

Differentiating teaching according to pupils’ levels meant some pupils did not have access to 

more challenging aspects of the curriculum. (McIntosh, 2015, p. 15) 

Interestingly, this critique itself illustrates Foucault’s central point about governmentality, namely 

that it is through labelling that subjects are categorised, normalized and objectified. They ‘become’ 

their label – and act accordingly in the common-sense, normal(ized), way that this affords. Whilst 

removing the language of levels is well-intentioned in order to remove such labels, we noted above 

that teachers’ work takes place in a culture of performativity with dominant discourses of control 

and responsibility. Central to governmentality, they require teachers to ‘know’ what their pupils can 

and cannot do so that they can take responsibility for ‘filling the gaps’ in their knowledge by 

“identifying specific ‘corrective’ activities to help them do this” (ibid. p.17). These, then, become 

questions of truth, of what pupils ‘actually’ and ‘really’ know. However, as Foucault notes, a truth 

statement is “contingent on the instruments required to discover it, the categories necessary to think 

it, and an adequate language for formulating it in proposition” (Foucault et al., 2008, p. 236). The 

language of levels may have gone, but the imperatives for control remain and so a new language is 

needed for teachers with which to think and speak it. Our interviews suggest that the language of 

‘mastery’, codified through other national continuing professional development programmes, has 

offered teachers such an alternative, so that: 

For every child you can click on an objective and say whether you are working towards it, 

achieved, secure, or greater depth. (Ann) 

Basically we have developed a system throughout the year. So, we haven't bought a system in. 

We've simply developed our own system as a school where we've given the children a grade of 

either 1, 2, 3 or 4. (Mike) 

When we were talking, as a school, what we were going to put for our levels, we said "what shall 

we call them?” We've got to have things and labelling them "emerging, developing, secure, 

exceeding". (Jill) 

Ironically then, the notion of mastery which was meant to take teachers away from codifying and 

levelling has provided alternative “types of discourse which it [the system] accepts and makes 

function as true” (Foucault, 1980, p. 131). Classification continues, but with new levels. What is 

significant in terms of governmentality is that, despite the best intentions, this replacement is 

inevitable since it is founded in the performative discourse which underpins pedagogic activity. In 

English primary schools this performance is measured by ‘progress’; in the past meaning the 

movement up levels and sub-levels of attainment. Although the removal of levels has meant that 

there might be a new official understanding of it – that “progress can involve developing deeper or 



wider understanding, not just moving on to work of greater difficulty” (McIntosh, 2015, p. 12) – it 

has not removed the imperative of being able to make it demonstrable as the way in which schools 

are judged. In other words, knowing ‘where pupils are’ is still central to “the status of those who are 

charged with saying what counts as true” (Foucault, 1980, p. 131) and is not therefore optional.  

Hunting for truth with technology 

Foucault (1980, p. 131) has pointed out that the political economy of truth is characterised by, 

amongst other things, the form of scientific discourse, economic and political demands and the ways 

in which it is diffused and consumed amongst different organisations. Each school in our study has 

made use of some form of tracking system, either commercial software or a spreadsheet of some 

sort, as a technology for capturing data and in different ways teachers are looking for these 

technologies to help them seek the truth about the progress of their pupils. In each case, there are 

two technologies at work. Firstly, a tracking system recreates labels: 

you've got all the statements and you can say whether the children are working towards it, 

expected for it, or exceeding for it, or something. Then it breaks it down into them being, for 

each year group, they are beginning to access or beginning plus, working towards or working at 

plus, secure, secure plus. There are six basic, what would have been sub-levels. (Mike) 

But, he notes, “it can't generate something that tells you your child probably is secure or probably is 

working at” and “it's not comparing your children to anyone else. It's not saying anything.” Whilst 

teacher judgement is “fine and good” it does not seem to represent a sufficient truth for the 

accountability purposes to which it is to be put. Mike’s school has therefore turned to commercially 

produced online tests. These give him “beautiful data” and whilst it also serves a formative purpose 

in identifying “gaps” it “provides a comfort blanket” because “it gives you a standardised score and 

it’s based against however many thousand children from around the country”.  

Whilst Mike has turned to comparative statistics to produce knowledge of progress, Jill agrees that 

numbers and labels mean that “it somehow feels like it's clearer, but if it's not well-defined that's 

quite dangerous, really”. Rather than seeking a truth in statistics though, Jill is committed to the idea 

of illuminating pupils’ mathematical understanding and somehow mapping this onto the new labels 

so that they can say, “these children are where they should be and these children aren't … so that the 

gaps that they have got [can be] filled”. Rather than comparisons to other pupils nationally, Jill’s 

plan is to exemplify for colleagues a truth about what each label (developing, secure etc.) looks like 

in terms of the objectives from the curriculum that pupils can achieve. In this way she hopes that “it 

would be very clear where the children were and where their next steps were more clearly” and that 

“within the following year’s teaching you can see that clear progression, and then that becomes a 

way for teachers to show progress”. Jill’s belief seems to be that professional judgement, evaluating 

pupils’ understanding against exemplar materials, will, in time, allow teachers to learn what the new 

levels “feel like”. 

The rationale for the removal of levels and a focus on mastery was, in part, based on the assertion 

that “too often … teaching became focused on getting pupils across the next threshold instead of 

ensuring they were secure in the knowledge and understanding defined in the programmes of study” 

(McIntosh, 2015, p. 5). We have illustrated how levels have been recreated by teachers to serve the 

function of performativity, yet this is not to say that the idea of refocusing on pupils’ understanding 

of the curriculum was not welcomed and encouraged by this move. Mike notes that alongside the 



security of knowing how their pupils rank against others “we are thinking about 'OK they are 

working at expected levels or just below but what are their gaps and how am I going to fill their 

gaps?” Jill claims that “I think the move away from levels has been absolutely fantastic” because it 

allowed them to “take the time to sit back and actually think about the underlying maths”. Ann also 

welcomes the focus on ensuring that “gaps are filled” and considers this as central to pupils’ 

success. However, in her experience 

it was just a lot that had to be covered and part of it was because there were gaps that I needed to 

go [over]. So for example my class didn't have a very good understanding of decimals, so rather 

than teaching thousandths and all of what was in the year 5 curriculum, I've had to go right back 

to the start and doing tenths. And that is your year 3 and year 4 objectives. (Ann) 

This has led to her being reluctant to say that any child is secure and to her “feeling that almost, as a 

teacher, you've failed”, with her confidence being affected as a result. The school uses a system 

called School Pupil Tracker Online (SPTO) which, unlike the other systems, is meant to calculate 

whether pupils are emerging, developing or secure, but Ann does not trust its output. 

I just experimented with 'what if I made that [objective] mostly achieved?'. And by doing that I 

could see that it was literally one little click turns that level up. … I didn't like the fact that just 

one click sent that judgement over, particularly when it didn't look like it was right. 

She notes that even if the company that runs the software alters this in the coming year “it sounds 

like the standard is going to slightly change every single year, which just makes it completely 

confusing. How can you work towards something that you don't know what it is?” This lack of 

clarity over the truth of her pupils’ learning is leading to some tension for Ann. 

So within what I do with the children I see progress but I don't always see it in what I've got on 

paper, on SPTO. The progress isn't always reflected there … I thought I was a good maths 

teacher, maybe I'm not, because of what's coming out … In some ways I'm almost fighting 

against it and saying 'you will not do this to my confidence' [laughs], yeah. 

A new normalizing gaze 

We noted above that one intention of removing levels was to avoid labelling pupils in ways that 

prevented access to the curriculum. As the quote that begins this paper makes clear, however, from 

Foucault’s position any examination “combines the techniques of an observing hierarchy and those 

of a normalizing judgement” which “establishes over individuals a visibility through which one 

differentiates them and judges them” (Foucault, 1977, p. 184). Foucault’s use of normalizing here is 

two-fold. On the one hand it points to the standardisation and categorisation of pupils; their 

allocation into categories, in this case ‘emerging’, ‘secure’ etc. which are then used to define 

normal, and hence abnormal, and to take remedial action. Mike refers to “the ones who haven’t 

quite got there” and Jill to those who are “where they should be” and those that are not. On the other 

hand, it refers to the notion of making this categorisation ‘normal’ practice; common-sense, 

inarguable, defining what can and cannot be thought and said. Thus, although removing levels is 

meant to avoid differentiating pupils and restricting their access to the curriculum, the need to track 

progress makes such differentiation necessary. To speak of progress is to speak of changes in 

category as the only “type of discourse which [society] accepts and makes function as true” 

(Foucault, 1980, p. 131); “a truth provoked by rituals, captured by ruses, seized according to 



occasions” (Foucault et al., 2008, p. 237). Such rituals create a practical tension in the idea of 

normalisation. As Mike notes,  

It's that challenge we're set of trying to keep together and moving forward together but having 

children still working at a greater depth but closing the gap for the ones that are lower. 

For those already ‘succeeding’ as secure, mathematics involves a range of activities. Mike describes 

“10 children who we saw as working at greater depth and they worked in groups with teaching 

assistants and had some really different kind of problem solving”. However, Jill points out that the 

governmentality around floor targets means that for “the children who are almost secure but not 

quite, there is a real push to get them [over the threshold]”.  

Yes, but I think the secure one [is key] at the moment. I think at the moment with the new system 

it’s different, it’s difficult, it’s unknown. I think it's that ‘where are we for secure?’ (Jill). 

Hence, whilst the change in the curriculum structure is meant to ensure that children move together 

through the content, the manner in which assessment inevitably “establishes over individuals a 

visibility through which one differentiates them and judges them” (Foucault, 1977, p. 184) means 

that the way in which they experience the subject is far from equal. 

Discussion 

Our analysis suggests that although superficially things might look different and teachers may feel 

that their practice has changed, this appears to be largely a reconstruction of the same dominant 

discourses in new language. Whilst the specific practices of governing might have been altered, the 

fundamental forms of governmentality have not and teachers are in the process of reconstituting 

much of what they had before. We recognise that the recent changes have opened up opportunities 

for discussion, collaboration and reflection within and between schools and made teachers pause 

and take stock of assessment in ways that feel positive to them. However, they have also reproduced 

pressures and tensions which can work to deflect attention away from questioning the 

responsibilities of policy makers and the implications for the teaching and learning of mathematics 

in the new system. Whilst there is a significant impact on teachers’ day-to-day teaching and 

assessment practices, and how these are evaluated, the performative role of the teacher remains 

largely the same. There does seem to be more consideration of pupils’ development in mathematics; 

though this is produced in particular ways: an atomised curriculum and filling in gaps. There are 

signs too that far from alleviating the problem of access to the curriculum for all children, there is a 

new normalizing gaze; one that focuses teachers’ efforts on an even slimmer tranche of pupils who 

might just be normalized – literally, to the middle of the normal distribution. Similarly, only those 

who are ‘secure’ in their ‘knowledge’ of the subject get access to a rich version of mathematical 

problem solving. These points raise questions about the way in which such tightly managed forms 

of assessment affect pupils’ relationships with the subject and about the equity of pupils’ access to 

the curriculum. The nature of these authoritative discourses of progress, control and responsibility 

that make up performativity, and the version of mathematics and assessment produced within them, 

appear difficult for the teachers in our study to identify. All schooling operates within policy and its 

incumbent discourses and can never be free of it, however the value of a Foucauldian analysis is in 

making such discourses visible to those responsible for making changes to the assessment system. 
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The identification of intermediate steps in student solutions as a basis for assessment is a common 

procedure in mathematics teaching. Modelling tasks, providing more than one solution approach, 

are considered hard to assess. This is not least a reason for the unsatisfactory proportion of modelling 

in school. Assuming that task difficulty is strongly connected with assessment, the implications of a 

study about the difficulty of modelling tasks are discussed. Starting point for the discussion is the 

question whether intuitive assessment practices like the identification and scoring of intermediate 

steps, can be supported by empirical findings. The focus is on the influence of cognitive aspects 

regarding structural characteristics of solution approaches. Results indicate that a pure sequential 

consideration of thought structures in a solution approach lead to reasonable results and might justify 

its application in school due to its straightforward implementation. 

Keywords: Assessment, cognitive structure, modelling tasks, mathematics teaching. 

Introduction 

Within the mathematics community it is mostly agreed upon the positive impact of modelling tasks 

on the learning of students. Mathematical modelling is promoted and there are many votes for its 

broader implementation in school mathematics. However, several studies provide evidence that 

modelling is far away from playing an integral role in everyday school teaching, in Germany and also 

elsewhere (Blum, 2007, p. 5). Jordan et al. (2006) confirm that the proportion of modelling in daily 

school routine is low. Research focusing on the teachers’ point of view reveals several difficulties 

that teachers are confronted with. In a study of Schmidt (2010) it has been found out that 67% of the 

interviewed teachers indicate assessment as being the major challenge in the implementation of 

modelling tasks. Blum (1996) also speaks of an increased difficulty in the context of modelling tasks. 

These findings are comprehensible in view of the multiple solution approaches of modelling tasks.  

A common opinion is that modelling tasks cannot be assessed as objectively as traditional task 

formats (Spandaw & Zwaneveld, 2010). However, if we want modelling to be part of mathematics 

teaching, it must part of the grading (Hall, 1984). With the striking quotation “What you assess is 

what you get” Niss (1993) also argues in favor of a provision for modelling activities in the grading. 

The aim of the present paper is not to discuss and contrast formative and summative assessment since 

the advantages of formative assessment as assessment for learning movement could be confirmed in 

different settings (e.g. Black & William, 1998) and are not denied. However, in view of the fact that 

summative assessment aspects hinder the implementation of modelling tasks in everyday school live, 

it is necessary to provide tools or possibilities in that direction.  

Besides a number of assessment methods which aim at assessing modelling competence (e.g.  Berry 

& Le Masurier, 1984; Haines, Crouch, & Davis, 2000), there is hardly any assessment instrument 

which can be used for assessing modelling tasks in everyday school live. In this context so far only 

Maaß suggests an assessment scheme which can be adapted to different modelling tasks by a variable 



weighting of several categories (Maaß, 2007, p. 40). However, an empirical validation is lacking such 

that the assessment scheme might serve as orientation but it cannot give detailed instruction.  

On the way to an assessment scheme for a mathematics task, a common procedure of mathematics 

teachers (in the following referred to as “intuitive assessment practice”) is to identify reasonable 

intermediate steps in a solution which are worthwhile to be scored. On that basis an assessment 

scheme is set up which determines the conditions to be fulfilled for a differentiated scoring of those 

intermediate steps. Hence, there is a procedural difference between the phase of identifying scoreable 

aspects in a solution and an assessment scheme. The former is the requirement for the latter. At this 

point the present paper ties on by discussing the use of so called thought structures to identify 

reasonable intermediate steps in solution approaches of modelling tasks in connection with its 

difficulty. The question of identifying intermediate steps and the influence of their structure within a 

solution approach to its difficulty has been analysed by Reit (2016). In this study different models are 

developed and evaluated to determine the difficulty of solution approaches. Assuming that assessment 

of a mathematics task is strongly determined by its difficulty, interesting conclusions can be drawn 

concerning common assessment practice in school. Results of the study of Reit (2016) indicate that 

there is quantifiable influence of structural characteristics of a solution approach on its difficulty. 

However, it is also stated that a sequential model which is based upon a sequential arrangement of 

thought operations, similar to the intuitive assessment practice of mathematics teachers, can also be 

confirmed.  

Theoretical framework 

The core of the study of Reit (2016) is a structural analysis of students’ solution approaches of 

modelling tasks. These thought structures of solution approaches indicate the chronology of thought 

operations to be done to arrive at a solution. Assuming that parallel thought operations complicate a 

solution approach, a non-weighting difficulty model (addition model) is contrasted with four models 

varying in their weighting of parallel thought operations.  

Thought structure analysis 

Recalling structures is a wide-spread procedure in mathematics (Bourbaki, 1961, pp. 163). In this 

context Breidenbach (1963) looks at the structural-substantial complexity of a word problem to decide 

amongst others about its difficulty. He formulates that tasks with one operation deal in the simplest 

case, with one issue in which three factors play a role and every factor is uniquely determined by the 

two others (Breidenbach, 1963, p. 200). Breidenbach named such tasks Simplex. A linking of several 

Simplex is called Komplex. Further developments of Winter and Ziegler (1969) lead to the arithmetic 

tree which is still used in mathematics textbooks (Figure 1).  An obvious but so far empirically not 

validated conclusion is that a larger number of Simplex and a more complicated nesting of them, has 

an effect on the difficulty of the tasks’ solution (Graumann, 2002). 



 

Figure 1: Arithmetic tree of an exemplary task following Winter and Ziegler (1969) 

The study of Reit (2016) investigates the cognitive complexity of a solution approach on the basis of 

its structural complexity represented by its arithmetic tree-like structure. At that point the coherence 

of structural considerations and cognitive psychological theories play an important role. In a study of 

Fletcher and Bloom (1988) it is assumed that text comprehension is a kind of problem solving process, 

where the reader must find a causal chain which links start and end of a text. Furthermore they assume 

that information must be kept simultaneously in the working memory to be able to form such a causal 

chain. Results of their study show that readers must keep that information available that is the direct 

predecessor in the causal chain. It can be concluded that the task of the working memory is to keep 

information available which is necessary to link old and new information (Baumann 2000).  

By relating these findings to structural considerations of a solution approach represented as an 

arithmetic tree, statements can be made about its cognitive complexity. On the one hand the arithmetic 

tree-like structure (Figure 1) can be interpreted as causal chain since the start (given information in 

the task text) and end (solution of the task) is linked by chain links (intermediate steps in the solution 

process). On the other hand direct predecessors can be identified as relevant intermediate steps. Thus, 

it can be concluded that the previous intermediate step must be kept active in the working memory to 

master the following. The assumption that the mental processing capacity is limited (Sweller, 1988) 

leads to the statement that several information which has to be kept active at the same time, complicate 

the solution process. Thus, it can be deduced that the load of the working memory is dependent on 

the number of intermediate steps necessary to master the current intermediate step. That means that 

the load of the working memory increases with increasing number of information needed at the 

respective point in the solution process. 

Based on these considerations a study has been performed where theoretical difficulty of a solution 

approach is characterized as its cognitive complexity (Reit, 2016). Starting point is the so called 

thought structure of a solution approach which can be interpreted as kind of arithmetic tree (Figure 

1). To formulate a thought structure all student solutions of a modelling task have been clustered into 

several solution approaches according to the mathematical model or solution process used. An aim 

of the study was to investigate whether the number of sequential and parallel thought operations has 

an effect on the cognitive complexity and thus, the theoretical difficulty of a solution approach.  



Study design 

Approximately 1800 grade 9 students (15 years of age) from German grammar schools took part and 

completed a booklet consisting of three out of five modelling tasks (see modelling task “potato” in 

Figure 2) under seatwork conditions. The total processing time for a booklet lay within one teaching 

unit.  

 

Figure 2: Modelling task “potato” (Reit, 2016) 

Method 

In the following the method in the study of Reit (2016) will be briefly explained. For a detailed 

description of the methodical implementation it is referred to Reit (2016). 

All student solutions of a modelling task were analyzed and different solution approaches could be 

identified (two to four solution approaches per modelling task). These solution approaches within one 

modelling task differed in their underlying mathematical model used or, if similar to this, in their 

solution process. Every student solution was finally assigned to a solution approach (Figure 3). A 

structural analysis of these solution approaches then lead to individual thought structures indicating 

the chronology of thought operations. Based on thought structures of solution approaches different 

difficulty models have been developed to translate the respective structure into a scalar difficulty 

value. In a first step a thought structure was mapped onto a so called thought structure vector (Figure 

3). These thought structure vectors represent the tabular-compact form of a thought structure. Each 

vector component indicates the number of parallel thought operations on the respective level of the 

thought structure. 

Due to the fact that it was not clear yet if parallel thought operations lead to a higher difficulty than 

sequential thought operations, different operationalization of a thought structure vector into a scalar 

value were imaginable. Therefore different difficulty models have been set up (four accounting for 

parallelism of thought operations by weighting them and one non-weighting model (addition model)) 

which lead to solution approach specific difficulties. 

Industrial manufactured French fries are supposed to be equal in 

size and the single sticks are cut out lengthwise. Therefore not the 

whole potato can be used. The potato tubers look similar to the 

picture above, are regularly formed and approximately 10 cm in 

length. 

How many of these potato sticks can be obtained from one potato? 

Reason mathematically. 



 

Figure 3: Identification of solution approaches, setting up thought structures (together with its thought 

structure vector) and applying difficulty models which lead to theoretical difficulties 

Results 

Whether and to what extent parallel and sequential thought operations have an influence on the 

difficulty was evaluated by comparison with the corresponding empirical difficulty, as a measure of 

the average score of a solution approach. To determine the empirical difficulty all student solutions 

have been assessed by two independent raters on the basis of a predefined assessment scheme set up 

by experts. The question was whether the theoretical difficulty reflected the associated empirical 

difficulty of a solution approach. In this case structural characteristics of a solution approach can be 

taken as a basis for assessment of modelling tasks. Of special interest are the results of the non-

weighting difficulty model as analogy to mathematics teachers’ intuitive assessment practice. The 

non-weighting difficulty model (addition model) adds up all thought operations to arrive at a 

theoretical difficulty as it is done, more or less intuitively, by mathematics teachers when identifying 

scoreable intermediate steps.   

The results (Figure 4) indicate that addition and factorial model (pseudo-R²=0.83) map the coherence 

of theoretical and empirical difficulty best. The factorial model weights parallel thought operations. 

In regard of the focus of the paper the results in Figure 4 clearly show that the addition model lead to 

significantly better results than the most weighting models.  



 

Figure 4: Comparison of theoretical and empirical difficulty of solution approaches taking account for 

different difficulty models 

Discussion of results 

Particular reference is made to established but so far not researched assessment practices in 

mathematics teaching. The focus is on whether intuitive assessment practices of mathematics teachers 

can be empirically confirmed and transferred to modelling tasks. Intuitive assessment practice means 

the common procedure of mathematics teachers of scoring intermediate steps in student solutions 

without accounting for structural-cognitive particularities. These intermediate steps usually then 

serve as a basis for an assessment scheme. The portrayed procedure is commonly used when assessing 

performance tasks in mathematics (summative assessment). Modelling tasks with its multiple solution 

approaches are considered to be hard to assess. This problem not least leads to the fact that modelling 

tasks are sparsely used in mathematics class. Results of a study investigating the difficulty of 

modelling tasks support the intuitive assessment practice of mathematics teachers and thus, legitimate 

transferring this assessment practice to modelling tasks.  

In detail the results show that the addition model which treats sequential and parallel thought 

operations equally lead to reasonable results. This indicates that difficulty of a solution approach can 

be described well by the number of thought operations needed to arrive at a solution. By applying the 

addition model it is assumed that parallelism of thought operations has no influence on the complexity 

of a solution approach. This assumption is also made, more or less intuitively, in common assessment 

practice in mathematics teaching. Intermediate steps are identified and scored.  Thus, on the one hand 



the results support the everyday procedure in mathematics teaching where the difficulty of a 

mathematics task is often interpreted as the number of intermediate steps to complete a solution. On 

the other hand the results might justify a similar assessment procedure when assessing modelling 

tasks. In view of the widespread problems concerning assessing modelling tasks in everyday school 

live as part of the grading, the results clearly highlight a possible and furthermore practicable way.  

In summary it can be concluded that the so far intuitive assessment practice in school of identifying 

intermediate steps in a solution, can be supported by empirical findings. It can be a worthwhile 

procedure to identify thought structures as a basis for assessment especially when assessing modelling 

tasks. By assuming that assessment is connected with difficulty of the respective solution approach, 

parallelism of solution approaches has an influence (see the results of the factorial model) but might 

be neglected in favour of a straightforward applicability in everyday school practice. Thus the results 

of Reit (2016) can serve as a basis for the development of a manageable assessment scheme for 

modelling tasks and might promote their implementation in mathematics teaching. 

References 

Baumann, M. (2000). Die Funktion des Arbeitsgedächtnisses beim abduktiven Schließen: 

Experimente zur Verfügbarkeit der mentalen Repräsentation erklärter und nicht erklärter 

Beobachtungen. Chemnitz: Technische Universität Chemnitz. 

Berry, J. S., & Le Masurier, D. (1984). Open university students do it by themselves. In J. S. Berry, 

D. N. Burghes, I. D. Huntley, D. J. James, & A. O. Mascardini, Teaching and applying 

mathematical modelling (pp. 48-85). Chichester: Horwood. 

Black, P. J., & William, D. (1998). Assessment and classroom learning. Assessment in Education, 

5(1), 7-73. 

Blum, W. (1996). Modellierungsaufgaben im Mathematikunterricht - Herausforderung für Schüler 

und Lehrer. In A. Büchter, H. Humenberger, S. Hußmann, & S. Prediger, Trends und 

Perspektiven: Beiträge zum 7. Internationalen Symposium zur Didaktik der Mathematik. Wien: 

Hölder-Pichler-Tempsky. 

Blum, W. (2007). Mathematisches Modellieren – zu schwer für Schüler und Lehrer? Beiträge zum 

Mathematikunterricht 2007,  3-12. 

Bourbaki, N. (1961). Die Architektur der Mathematik I. Physik Journal, 17(4), 161-166. 

Breidenbach, W. (1963). Rechnen in der Volksschule: eine Methodik. Hannover: Schroedel. 

Fletcher, C. R., & Bloom, C. P. (1988). Causal reasoning in the comprehension of simple narrative 

texts. Journal of Memory and Language, 27(3), 235-244. 

Graumann, G. (2002). Mathematikunterricht in der Grundschule. Bad Heilbrunn/Orb: Klinkhardt. 

Haines, C., Crouch, R., & Davis, J. (2000). Mathematical modelling skills: a research instrument. 

Hatfield: University of Hertfordshire, Department of Mathematics Technical Report No. 55. 

Hall, G. G. (1984). The assessment of modelling projects. In J. S. Berry, D. N. Burghes, I. D. Huntley, 

D. J. James, & A. O. Moscardini, Teaching and applying mathematical modelling (pp. 143-148). 

Chichester: Horwood. 



Jordan, A., Ross, N., Krauss, S., Baumert, J. B., Neubrandt, M., Löwen, K., . . . Kunter, M. (2006). 

Klassifikationsschema für Mathematikaufgaben. Dokumentation der Aufgabenkategorisierung im 

COACTIV-Projekt. Materialien aus der Bildungsforschung Nr. 81. Berlin: Max-Planck-Institut 

für Bildungsforschung. 

Maaß, K. (2007). Mathematisches Modellieren - Aufgaben für die Sekundarstufe. Berlin: Cornelsen 

Verlag Scriptor. 

Niss, M. (1993). Assessment of mathematical applications and modelling in mathematics teaching. 

In J. de Lange, I. Huntley, C. Keitel, & M. Niss, Innovation in maths education by modelling and 

applications (pp. 41-51). Chichester: Horwood. 

Reit, X.-R. (2016). Denkstruturanalyse als Instrument zur Bestimmung der Schwierigkeit von 

Modellierunsgaufgaben. Heidelberg: Springer. 

Schmidt, B. (2010). Modellieren in der Schulpraxis: Beweggründe und Hindernisse aus Lehrersicht. 

Hildesheim, Berlin: Franzbecker. 

Spandaw, J., & Zwaneveld, B. (2010). Modelling in mathematics teachers' professional development. 

In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello, Proceedings of the Sixth Congress of 

the European Mathematical Society for Research in Mathematics Education, (pp. 2076-2085). 

Lyon, France: Institut national de recherche pédagogique and ERME. 

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 

12(2), 257-285. 

Winter, H., & Ziegler, T. (1969). Neue Mathematik: Lehrerheft. Hannover: Schroedel. 

 

 



Mathematics teachers’ assessment of accounts of problem solving 

Anna Teledahl 

Dalarna University, Falun, Sweden; ate@du.se 

In mathematics education it has been argued that traditional assessment provides insufficient 

evidence of students’ overall achievements. Assessment of problem solving has been put forward as 

a more comprehensive form of assessment. This however entails a subjectivity which raises 

concerns regarding the reliability. This study aims to investigate mathematics teachers’ assessment 

of mathematical problem solving. Nineteen teachers have been interviewed in five groups and asked 

to discuss a sample of 16 accounts of problem solving by 10-year-old students. The analysis focused 

on examining how five mathematical abilities, described in the Swedish mathematics syllabus, were 

addressed and discussed by the teachers. Preliminary findings indicate that the accounts provide 

teachers with very little evidence of students’ mathematical abilities. One of the reasons for this 

appears to be that the accounts do not offer clear descriptions of the problem-solving process. 

Keywords: Assessment, mathematical problem solving, abilities, teachers. 

Introduction 

Assessment forms a large part of teachers’ practice yet studies indicate that teachers feel 

inadequately prepared for the task of judging students’ performances, skills and understandings. 

(Cumming & Wyatt-Smith, 2009; Mertler, 2004). Research that has investigated teachers' 

assessment practices has also criticized such practices for failing to meet standards of reliability, 

objectivity and validity (Allal, 2012). Assessment is inherently a process of professional judgment 

in which the element of interpretation is salient. In mathematics education Morgan (1998) has 

shown that teachers can interpret the meaning of the same passages of texts, produced by students in 

mathematics, very differently. When teachers interpret observed test results or other types of 

information to come to a conclusion about a student’s level of knowledge or skill such a conclusion 

may be referred to as inference, and although some inferences can be made with more confidence 

than others, no conclusion about a particular student’s knowledge or skill can ever be made with 

certainty (Cizek, 2009). Assessment in school mathematics has always relied heavily on students’ 

written work (Morgan, 2001b). Written responses to mathematical tasks, such as problem solving, 

require that students explain both their thinking and the proposed solution. For such written material 

to act as valid evidence, from which judgements regarding students’ problem-solving processes and 

mathematical abilities may be inferred, it has to be clear and comprehensive. There is reason to 

believe that not all students possess the ability to produce clear and comprehensive accounts of their 

mathematical problem solving (Monaghan, Pool, Roper, & Threlfall, 2009). 

 

This study represents a microstudy on groups of teachers’ assessment of a specific set of accounts of 

solving mathematical problems. The accounts were collected from two classes of 10-year old 

students. The aim of the study is to investigate the aspects of mathematical problem solving which 

are addressed and discussed by the teachers and to relate these to the five mathematical abilities set 

by the Swedish mathematics syllabus. These abilities are related to: problem solving, mathematical 

concepts, mathematical methods, mathematical reasoning and communication.   



Students’ writing in mathematics 

It can be argued that the written mathematical work of students in school mathematics typically 

serves two very different functions. It can be seen as a part of a learning process in which writing is 

used to record and perhaps reflect on various mathematical ideas; hence, the text is written by and 

for the student herself. It can also however, be seen as a product for the purpose of assessment; 

hence, written for a teacher or examiner. Unlike the work of professional mathematicians, which is 

often thought to be the model for school mathematics, the work in school mathematics often serves 

these two functions at the same time (Morgan, 2001a). When problem solving is viewed as an 

individual cognitive activity, students use their writing to understand, explore, record, and monitor 

their own problem solving (Stylianou, 2011). Several studies indicate that writing poses problems 

for students. Evidence suggests, for example, that it is far more common for children to experience 

problems with semantic structure, vocabulary and mathematical symbolism than they do with, for 

example, standard algorithms (Ellerton & Clarkson, 1996). 

Assessing mathematical problem solving 

Assessment of students’ mathematical problem solving is complex. There are different definitions 

of what mathematical problem solving is and what constitutes a problem. A generally accepted 

definition suggests that problem solving can be seen as a response to a question for which one does 

not already know or have access to a method (Monaghan et al., 2009). This understanding is also 

used by OECD in the PISA 2012 Assessment and Analytical Framework (OECD, 2013). Problem 

solving can be seen as a goal, a process, and a skill and problem-solving activities are thought to 

engage students in a number of different processes such as reasoning, communication and 

connections (Rosli, Goldsby, & Capraro, 2013). In a situation where traditional assessment in 

mathematics is increasingly seen as providing insufficient evidence of mathematical knowledge and 

abilities beyond routine skills and algorithms there are high hopes for alternative forms of 

assessment of which problem solving is one (Jones & Inglis, 2015; Rosli et al., 2013). Despite its 

power to engage students however, problem solving has been problematic to use as a source from 

which to make inferences about students’ mathematical achievement. Reliance on the traditional 

mathematics test has often been justified on the grounds of reliability and comparability, but this has 

often been at the expense of validity (Watt, 2005). The challenges to assessment of problem solving 

are several. The first is that it requires access to evidence of the process. Most test situations do not 

include the option of observation to provide such evidence but rather require students to produce an 

extended written account which includes an explanation of both their problem-solving process and 

their proposed solution(s). This is problematic because considerable skill is required to produce 

clear and comprehensive accounts of problem-solving processes, a skill that students may or may 

not have (Monaghan et al., 2009). The second challenge is the element of interpretation and, thus, 

subjectivity. As teachers read and assess students’ texts, their professional judgment is formed by a 

set of resources which varies with their personal, social and cultural history as well as their relation 

to the particular discourse. These resources are individual, as well as collective, and they include: 

personal knowledge of mathematics and the curriculum, beliefs about the nature of mathematics and 

how these relate to assessment, expectations about how mathematical knowledge can be 

communicated, experience and expectations of students and classrooms in general, and  experience, 

impressions, and expectations of individual students (Morgan & Watson, 2002). Individual teachers 



may also have particular preferences for particular modes of communication as indicators of 

understanding. A study from Australia has also indicated that teachers themselves object to the use 

of alternative assessment methods such as problem solving on the grounds that it is perceived as too 

subjective (Watt, 2005). In Sweden there have been calls for national tests to be assessed and graded 

externally instead of by the teachers who already know the students. External grading is seen as a 

way to secure objectivity and fairness. 

Mathematical abilities 

Assessment in mathematics has many concerns, of which perhaps the most important one is: what is 

it that is being assessed? This issue has been dealt with and given many names throughout the 

history of mathematics education including numeracy, mathematical proficiency, mathemacy, 

matheracy and quantitative literacy, to name a few (Wedege, 2010). Competency frameworks in 

mathematics are constructs that build on the assumption that mathematics is a domain in which it is 

possible to provide a generic set of mathematical practices (Säfström, 2013). Given that 

mathematical activities have to be about something, arriving at a common and generic set of such 

skills and abilities proves a challenging task, as has been pointed out by many (see for example 

Jablonka, 2003; Kanes, 2002; Kilpatrick, 2001; Wedege, 1999). Some frameworks have focused on 

this ‘something’ whereas others have focused on the mental processes that are associated with 

mathematical activities in general. Influential examples of the latter include the five strands of 

mathematical proficiency introduced by the Mathematical Learning Study of the NCTM in the US 

(Kilpatrick, Swafford, & Findell, 2001) and the KOM project in Denmark (Niss, 2003; Niss & 

Højgaard Jensen, 2002). 

One of the motives behind the above referenced frameworks is the clear intention to break with a 

traditional teaching of mathematics associated with rote learning and procedures and instead 

promote a more dynamic view of what it means to do mathematics (Boesen et al., 2013). In Sweden 

the Swedish national curricula has been influenced by the ideas from these frameworks and in the 

Swedish syllabus in mathematics, introduced in 2011, five different abilities which the teaching in 

mathematics should provide the students the opportunity to develop, are described. These include 

the ability to: 

 formulate and solve problems using mathematics and also assess selected strategies and 

methods, 

 use and analyse mathematical concepts and their interrelationships, 

 choose and use appropriate mathematical methods to perform calculations and solve routine 

tasks, 

 apply and follow mathematical reasoning, and 

 use mathematical forms of expression to discuss, reason and give an account of questions, 

calculations and conclusions. (SNAE, 2011, pp. 59-60) 

 

In the syllabus the abilities, described above, are actualized in a set of knowledge requirements 

which define what constitutes an acceptable level of knowledge for the grades E, C, and A, where A 

represents the most advanced. In the results section the five knowledge requirements are shortened 

to: problem solving, mathematical concepts, mathematical methods, mathematical reasoning and 

communication. 



Data collection 

The study sets out to investigate teachers’ assessment of a specific set of accounts of mathematical 

problem solving and aims to identify the aspects of mathematical problem solving which are 

addressed and discussed by the teachers. Nineteen elementary school teachers from four schools in a 

middle-sized town in mid-Sweden were interviewed in groups. There were five groups of 3, 4 or 5 

teachers respectively. At the time of the interview all nineteen teachers were teaching mathematics. 

They were initially chosen by their principals and asked to participate based on their own interest. 

The interviews were all recorded on video and an additional audio recorder. The teachers were 

presented with 10-16 accounts of problem solving produced by students, aged 10. The problem-

solving was centered on two specific problems. They were both Diophantine equations involving 

the identification of a number of ways to distribute: a) 30 legs on 12 animals or b) 36 wheels on 11 

vehicles (see figure 1). This type of problem can be formulated in this way where there is only one 

possible combination or as an open problem to which there are many solutions. A small number of 

legs or wheels also results in a small number of combinations; the problem can therefore be adapted 

to fit different students or age groups. The students can also be asked to demonstrate that they have 

found all possible combinations and explain how they know this. The problem offers opportunities 

to adopt a more or less systematic trial-and-error strategy, but there are also other ways to solve the 

problem. Given that the problem involves concrete objects it also offers students opportunities to 

draw. All these properties contributed to the choice of the problem type.  

The teachers in the interviews were given information on the problems but very little information on 

the situation in which the texts were created. Being faced with an account of mathematical problem 

whose origin you know very little about forces a teacher to focus on the account itself and the 

interpretations derive to a larger extent from the account than it would had the teacher been asked to 

comment on their own students’ written material. The teachers were asked to discuss the different 

accounts from an assessment perspective and to provide arguments for their reasoning. The group 

interview was chosen so as to create room for discussions but also for eliciting the teachers’ idea of 

possible ‘common grounds’ in evaluating students’ accounts. The interviews, which amounted to a 

total of 4 hours 26 minutes, were transcribed. 

Analysis 

The analysis was performed in two steps. In the first step the transcribed interviews were analyzed 

with the intention of identifying instances in which the teachers discussed what the students seemed 

to be doing. This focus was inspired by the understanding that knowing mathematics is doing 

mathematics, as described above. This analysis included identifying verbs connected to instances of 

action such as understand, know, think, draw, calculate, see and show.  

The second step in the analysis was focused on relating the identified instances to the different 

abilities described in the syllabus. The five abilities problem solving, methods, concepts, reasoning, 

and communication, did not have to be mentioned specifically. A discussion regarding a method 

such as trial-and-error was considered as relating to method even if the term method was not used.  

Discussions about failed attempts or deficiencies were also considered as belonging to the category 

of the ability in question. Examples of quotes from the teachers are shown below together with the 

abilities they were thought to relate to. One quote can be related to several of the listed abilities. 



Teacher:  Here they have really tried…drawn all the tires… (problem solving, method, 

communication) 

Teacher:  He has counted the number of fours he has taken away and those are plus signs… 

it is plus 7… (problem solving, method) 

Teacher:  There is no reasoning to show that this is correct… (reasoning, communication) 

Teacher:  They cannot reason without explaining a little bit more… she has not used any 

concepts for example… (concepts, reasoning, communication) 

Teacher:  It is not enough to just write an answer…you have to be able to show in writing 

how you arrived at this… (communication) 

Teacher:  Yes but she…she does know how to solve the problem… (problem solving, 

communication) 

Teacher:  And then you try different numbers… that is how they have done it… you can see 

that they have erased… (problem solving, method, communication) 

 

Preliminary results 

The preliminary results are presented under headlines which are consistent with the five abilities 

described in the syllabus. In some cases the teachers’ discussions are covering two abilities at the 

same time and in these cases they are either presented under both headlines or presented as a 

compound ability which is treated under one headline. 

Problem solving 

Many of the teachers’ discussions are focused on the students’ choice of method or strategy for 

solving the problem and the teachers spend considerable time trying to identify the specific method 

of each student. Once this has been identified however, the discussions tend to turn to other issues. 

A problem solving strategy is seldom judged based on its appropriateness or sophistication. Other 

aspects of problem solving that are addressed by the teachers include the ability to describe a 

problem-solving approach. The ability to describe a method, strategy or problem-solving approach 

can be seen as part of a problem-solving ability and this aspect is also mentioned in the knowledge 

requirements. This aspect however is very difficult to distinguish from the ability to account for and 

communicate a method, strategy or problem-solving approach. The teachers’ discussions on 

students’ ability to communicate are treated under this headline below. The ability to reason about 

the plausibility of results of the problem solving, or to propose alternative approaches, which is 

mentioned in the knowledge requirements, is not discussed.  

Mathematical concepts 

Very few discussions deal with mathematical concepts. The four operations are mentioned but they 

are referred to as calculations which illustrate the process rather than as concepts. One student is 

identified by several teachers as having used the equals sign in a non-standard way which can be 

interpreted as relating to the concept of equality but this can also be connected to the way students 

choose to present their calculations. 



Mathematical methods 

As was presented above this is the ability which many of the teachers’ discussions are focused on. 

The method that most teachers identify is the trial-and-error method. Several teachers claim that this 

is the method that all students have used. There are several accounts which show different ways in 

which the students have carried out and represented this method but these differences are most often 

referred to as relating to the ability to communicate. There are examples of accounts where the trial-

and-error method is not used systematically and other examples where the representation indicates a 

calculation that precedes the trial-and-error since the account either contains no errors at all, or 

displays errors that have been erased but which are still traceable. This difference stirs many 

discussions among all the teacher groups. They are discussing whether they can tell if a student has 

tried different combinations and ruled some out or if the student came by the right combination by 

chance or by doing mental calculations that are not represented in writing. Sometimes they agree 

that they cannot tell and that this is due to students’ lack of ability to communicate their problem-

solving processes, other times they have different opinions regarding what can be inferred. 

Mathematical reasoning 

There is only one teacher who addresses the students’ mathematical reasoning. This teacher argues 

that any account of problem solving which describes a method or strategy constitutes evidence of 

some form of mathematical reasoning. The rest of the teachers in this group are not questioning her 

but they are not offering her support and the issue of mathematical reasoning does not come up 

again. 

Communication 

There are very few discussions that do not involve students’ ability to account for and describe their 

approaches to solving the problem. Practically every instance involves a question from the teachers 

regarding what the students have done or what they mean. Even in cases where the teachers have 

identified a successful strategy along with a correct answer to the problem they still raise questions 

regarding the clarity and coherence of the account. The discussions on presentation are focused on 

the students’ [lack of] logic, neatness, clearness, abstraction, accuracy, appropriateness, and 

comprehensiveness. When discussing students’ choice and employment of different method a 

typical comment from the teachers is “if she had only shown…”. This fictional comment 

summarizes the teachers’ frustration with what they perceive as lack of evidence on which they can 

base their judgements regarding other abilities. 

Discussion 

The preliminary results presented above can be used in response to the calls for external grading of 

national tests in mathematics in Sweden, and elsewhere, as a way to ensure objectivity and fairness. 

The results indicate that students’ lack of communicative skill makes it difficult for the teachers to 

use these written accounts to assess other mathematical abilities. The study thus confirms 

Monaghan et al’s (2009) claim that students’ ability to communicate, to describe and to account for, 

their processes or their thinking, is crucial for teachers as well as for students. In order for teachers 

to evaluate students’ abilities, they need to understand what the students have done and why. In 

order for students to write in a way that reflects their mathematical knowledge they need to know 



how to represent their problem-solving process along with explanations and arguments for their 

various choices. The fact that there are different ways to interpret what the students have written, 

further strengthens the conclusion that using this writing, to assess other mathematical abilities, may 

be problematic. The results should not be interpreted as suggesting that problem-solving should not 

be used to assess students’ mathematical abilities but rather that both teachers and students need to 

know more about different ways to clearly and comprehensively account for problem-solving 

processes. 
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In an experimental study with a pretest/posttest/delayed posttest and control-group design, we 

investigated the effects on students’ mathematics achievement of using classroom assessment 

techniques in Chines classrooms. Participants were 47 third-grade teachers and their 608 students 

in Nanjing, China. The teachers were assigned to either the experimental condition, participating in 

two two-hour workshops on classroom assessment, or the control condition, in which the teachers 

followed their regular teaching plans. The workshops focused on the use of classroom assessment 

techniques to reveal students’ understanding of multiplication and to enable teachers to adapt 

teaching to their students’ needs. Students from the teachers in the experimental condition slightly 

improved their mathematics achievement scores. However, no statistically significant difference was 

found between the two conditions. 

Keywords: Classroom assessment, student achievement, China, multiplication, teachers. 

Introduction 

The guidance teachers provide in their mathematics classes to their students can be more or less 

effective for stimulating students’ learning processes, depending on whether their instruction is 

attuned to students’ needs and possibilities for further development. Therefore, at practically every 

moment teachers need to know where the students are in their learning process (Wiliam, 2011). This 

was also recently emphasised by Schoenfeld (2014) when he wrote that “[p]owerful instruction 

‘meets students where they are’ and gives them opportunities to move forward” (p. 407). Classroom 

assessment, i.e. assessment in the hands of the teachers that is interwoven with instruction and 

integrated in daily teaching practice, can inform teachers of ‘where their students are’ and as such 

enable them to adapt their further instruction to their students’ needs. 

Since the importance of classroom assessment on raising students’ achievement was revealed by 

Black and Wiliam (1998), much attention has been paid to professional development to enhance 

teachers’ classroom assessment practice. The rationale for this is that providing professional 

development to teachers on the use of classroom assessment can lead to teachers gaining more 

information on their students’ understanding and skills. Through this information teachers can adapt 

their teaching to their students’ needs, which in turn is expected to lead to improved student 

achievement. Whether professional development indeed has impact on student achievement was 

investigated in several studies (Phelan et al, 2012; Randel, Apthorp, Beesley, Clark, & Wang, 2016; 

Thompson, Paek, Goe, & Ponte, 2004; Veldhuis & Van den Heuvel-Panhuizen, 2014, 2016). The 

results of these studies are mixed. Facilitating teachers to use classroom assessment has been shown 

to lead to considerable improvement of students’ achievement (Phelan et al, 2012, Veldhuis & Van 

den Heuvel-Panhuizen, 2014, 2016). It also happened that professional development on classroom 

assessment had only a small but consistent positive effect on student learning (Thompson et al, 2004) 



 

or failed to yield any statistically significant impact (Randel et al, 2016). These mixed, but generally 

positive, results on the effects of professional development on classroom assessment were all found 

in the western educational context. As there are important differences between mathematics education 

in Western and East Asian countries (Leung, Graf, & Lopez-Real, 2006), we aimed to find out 

whether giving support to Chinese teachers on the use of classroom assessment would have an effect 

on their students’ mathematics achievement. 

In China, recently, classroom assessment has received increasing attention from primary school 

mathematics teachers, as evidenced by an increasing number of teacher-written papers addressing 

classroom assessment (Zhao, Van den Heuvel-Panhuizen, & Veldhuis, 2017). Moreover, in Chinese 

primary mathematics education, teachers generally agree that assessment is useful for the 

improvement of teaching and learning, and they assess their students at least weekly by employing 

various methods, for example observing, questioning and assigning textbook tests (Zhao, Van den 

Heuvel-Panhuizen, & Veldhuis, 2016a). It seems that classroom assessment has been widely 

embraced and implemented in teaching practice. However, professional development focused on 

classroom assessment seems sparse (Zhao et al, 2016a), let alone investigations into its effect on 

students achievement. 

In our study, classroom assessment is conceived as the use of what we call ‘classroom assessment 

techniques’ (CATs): short teacher-initiated assessment activities that teachers can use in their daily 

practice to reveal their students’ understanding of a particular mathematical concept or skill. These 

CATs have been used in earlier research in the Netherlands (Veldhuis & Van den Heuvel-Panhuizen, 

2014, 2016). Our main research question was: What are the effects of supporting Chinese primary 

school mathematics teachers’ use of classroom assessment techniques (CATs) on students’ 

mathematics achievement? 

Method 

An experiment with pretest/posttest/delayed posttest and control-group design (see Table 1) with 47 

third-grade mathematics teachers from 18 primary schools was carried out in Nanjing, China. All 

teachers used the same textbook, namely 苏教版 textbook published by Jiangsu Phoenix Education 

Publishing House (2014). Based on the participating schools’ reputation, educational quality, and 

location, pairs of matched schools were allocated either to the control or to the experimental 

condition. Teachers in the experimental group participated in two two-hour workshops on the use of 

classroom assessment techniques, whereas the teachers in the control group followed their regular 

teaching plans. 

Condition January  March  May 

  Week 1 Week 2 Week 3  

Control Pretest   Posttest Delayed posttest 

Experimental Pretest Workshop Workshop Posttest Delayed posttest 

Table 1: Time schedule of the experiment in 2015 

In the workshops, the teachers were introduced to eight CATs. These CATs are low-tech and low-

cost, and can easily be implemented by teachers. Every technique consists of a short activity (less 



 

than 10 minutes) and helps teachers to quickly find out something about their students’ understanding 

of mathematics, provides indications for further teaching. Also, the teachers could adapt the 

techniques to their own practice; they could choose when and how to use the CATs. The focus of the 

assessment techniques was on the first chapter of the second semester of Grade 3, in which students 

learn how to solve multiplication problems of two-digit numbers mainly by written digit-based 

algorithm. In the following we illustrate three examples of these CATs. During the workshops, the 

teachers in the experimental condition were provided with a detailed teacher guide describing the 

eight CATs that all fitted to the content of their textbook. Detailed information about the purpose of 

the CATs and suggestions for how to use them was provided and discussed during these workshops. 

It was also explained that the teachers were free to decide how they would use the CATs in practice 

in the following two weeks of multiplication teaching. 

CAT 1: Family problems 

This CAT (see Figure 1) is aimed at assessing whether students recognize similarities among 

analogous problems and can use the given answer to one of these problems to solve the others. 

 

Figure 1: CAT 1: Family problems 

One strategy to solve a multiplication problem with either the multiplicand or the multiplier being a 

multiple of 10 is making use of an analogous problem of which the answer is known or which is easy 

to calculate. A requirement for students to choose and use this strategy is that they understand the 

analogous relationship, even when the numbers involved in the multiplication are bigger than two 

digits. CAT 1 is meant to elicit information of whether and to what extent students have this 

understanding. The students are provided with the answer of 97×8 and are then asked whether they 

think they are able to solve mentally a number of other, related multiplication problems that, at first 

sight, are not easy to solve by mental calculation. CAT 1 differs from the regular assessment tasks in 

the textbook in which the students have to carry out the calculation and the focus is on detecting 

whether students can do this correctly. In CAT 1 it is assessed whether the students recognize the 

analogue structure of the problems and are aware that they can use this for solving these problems. 

In CAT 1, the teacher asks for every problem whether students think they are able to solve it. All 

students have a green card (for the answer: “Yes”) and a red card (for the answer: “No”) with which 

they can show their answers (see Figure 2). By inspecting the waving green and red cards the teacher 

gets an immediate overview of the students’ responses and whether they see the analogy between the 

problems, and whether their understanding is affected by the number of zeroes in the family problems. 



 

 

Figure 2: Students showing their cards in CAT 1 for the problems 97×80 and 970×8000 

CAT 2: Breaking down a multiplication 

This CAT (see Figure 3) is aimed at assessing whether students can identify the components of a 

multiplication by filling in the blanks on a work sheet. 

 

Figure 3: CAT 2: Breaking down a multiplication 

Students may be able to find the correct answer of a problem like 24×53 by performing the standard 

multiplication algorithm perfectly; however, this does not necessarily mean that students understand 

what they are doing and that they understand the structure of multiplications with multi-digit numbers, 

which is the focus of CAT 2. This approach of requiring students to unravel multiplication problems 

differs from the regular approach to assessing students in which finding the correct answer of a 

multiplication problem receives most attention of mathematics teachers. In the case of CAT 2, the 

multiplication of 24 and 53 can be unpacked into four sub-multiplications, namely 3×4, 3×20, 50×4, 

and 50×20. The sum of the results of these sub-multiplications gives the answer of 24×53. By asking 

students to identify the components of a multiplication problem of multi-digit numbers it can be 

revealed whether they understand what is ‘behind’ the multiplication algorithm. For example, the 

student work in Figure 4 shows that Student 1 has difficulties in being fully aware of the values of 

the digits (having 5×4 and 5×20 instead of 50×4 and 50×20 in Task a, and having 2×3 instead of 20×3 

in Task b), while Student 2 could not clearly distinguish the different components of the 

multiplication 24×53 (having 4×3 instead of 20×3 in Task b, and having no answer filled in Task c). 

 

Figure 4: Work of two students in CAT 2 

CAT 3: Fruit language 

This CAT (see Figure 5) is aimed at assessing whether students can use the associative and 

distributive property of multiplication to restructure a multiplication problem. 



 

 

Figure 5: CAT 3: Fruit language 

Making use of the associative and distributive property of multiplication is the basis of solving 

multiplication problems. By using these properties students can convert a difficult multiplication 

problem into a number of easier multiplication problems. For example, 25×36 can be solved by 

calculating 20×36 and 5×36 (distributive property) or by calculating 25×4×9 (associative property). 

For solving multiplication problems in this way it is very important that students understand the 

associative and distributive property of multiplication and that they can identify the possibilities of 

restructuring a multiplication problem. CAT 3 provides an opportunity for students to show this 

understanding. In order to avoid the difficulty of formal notations, fruit is used as a substitute. 

The student work shown in Figure 6 reveals that Student 3 has arrived at a high level of the 

understanding of the associative and distributive property of multiplication and is able to notate this 

in a proper mathematical way, although not using a formal notation with number or letter symbols. 

Student 4 only ‘rewrote’ one of the multiplication problems (18×20) by drawing four bananas. 

Moreover, the worksheet of this student shows that he/she did not use the properties of multiplication 

but instead was calculating the multiplications and then tried to express the answer by using the fruit. 

Figure 6: Work of two students in CAT 3 

In order to measure students’ mathematics achievement, three tests were used, which were designed 

and arranged by the local teaching research office. These tests have the same structure in terms of the 

type of questions and total score (100 points). However, the mathematical domains that are tested are 

different. The immediate posttest was an end-of-chapter test and focused on the multiplication of two-

digit numbers. The pretest and the delayed posttest were end-term and mid-term tests, which also 



 

included problems related to measurement, fractions, and geometry. Nevertheless, multiplication is 

the main focus of all the three tests (30% of the points in the pretest and delayed posttest and 90% in 

the immediate posttest were related to multiplication tasks). 

Originally, 3040 students took the tests. Since it was found that mistakes were made when grading 

students’ examination papers, we decided to choose 608 (20%) students systematically, based on their 

student number in every class, for data checking to be included in the final analysis. 

Results 

Unexpectedly, on average, students in both conditions had decreasing mathematics achievement 

scores from pretest (Mexp = 89.2, SDexp = 8.7; Mcon = 90.8, SDcon = 7.7) to immediate posttest 

(Mexp = 88.5, SDexp = 9.3; Mcon = 89.5, SDcon = 9.0) and to delayed posttest (Mexp = 86.4, SDexp = 12.2; 

Mcon = 87.7, SDcon = 11.2). When looking at the standardized scores this image becomes a bit less 

clouded by the different tests measuring different domains at the different time points, therefore we 

report the z-scores in Table 2. The pattern remains almost the same, with relatively higher scores in 

the control condition than in the experimental condition, but, in the experimental condition, a slight 

improvement of the scores appears after the intervention. 

 Pretest score  Posttest score  Delayed posttest score 
n 

Condition M SD  M SD  M SD 

Control  0.104 0.930   0.059 0.986   0.058 0.952 278 

Experimental -0.088 1.049  -0.050 1.010  -0.049 1.038 330 

Table 2: Descriptive statistics of students’ standardized mathematics (z) scores per condition for the 

pretest, posttest, and the delayed posttest 

We performed an analysis of covariance (ANCOVA) on the immediate posttest scores to see if this 

small improvement was statistically significant. In this ANCOVA the pretest score was entered as 

covariate and condition as fixed factor. It turned out that no significant effect for condition was found 

(F(1, 605) = 0.08, p = .776, ηp
2 = 0.000). 

Discussion 

The students of the teachers that participated in the workshops on the CATs only very slightly 

improved their standardized mathematics achievement scores after the intervention. This 

improvement was not significant, neither in size, nor in the statistical sense. Contrary to these findings 

in the experimental group, the students in the control group did not improve their standardized scores 

from one test to the other. However, on average the students in the control condition outperformed 

the students in the experimental condition on all three tests. A possible reason for the minor changes 

in students’ mathematics achievement could be that there appeared to be a strong ceiling effect on the 

tests (average success scores of around 90%). Maybe students’ extant high achievement level could 

also have caused that the use of the CATs did not further optimize the teachers’ instruction. Another 

explanation for the small improvement in the experimental condition could be the short period of time 

of the intervention. In less than three weeks, the teachers in the experimental condition needed to 

understand how to use the CATs, to incorporate them into their teaching plans, and to reconcile the 

new insights into their students with their original understanding of students and teaching. For 



 

teachers to really get used to and to make the most of the implementation of the CATs, probably more 

time needs to be reserved and more guidance needs to be offered in the professional development 

workshops. 

Also the context of the experimental study may have influenced the effect of the CATs on the 

students’ mathematics achievement. First of all, as we found in an earlier study (Zhao, Van den 

Heuvel-Panhuizen, & Veldhuis, 2016b) Chinese primary school mathematics teachers have detailed 

lesson plans and tend to include CATs in their pre-arranged lessons as extra exercises rather than 

implementing them as formative assessment activities. As such, the teachers may not have used the 

information gathered with the CATs for adapting their instruction. Another issue is that the planned 

lessons have for every addressed topic a fixed time schedule for instruction and practice. By including 

the CATs less time could be spent on teaching these topics and students may have had less practice 

in solving the problems as used in the regular tests. A promising finding is that despite this smaller 

investment in the regular program the students in the experimental condition did not perform really 

worse in the regular tests than their counterparts in the control condition. In this way, our study 

provides some evidence which may encourage teachers to go beyond the straightforward testing of 

the standard operations and pay also attention to examining students’ deeper understanding of these 

operations, and use the assessment information adaptively for improving instruction and student 

learning. 
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This poster presents an instance of portfolio assessment by two students on a geometry problem in a 

pre-service teacher training course analysed through a model designed to access the mathematical 

thought and the quality of student leaning outcomes. This analytical model, supported by the SOLO 

taxonomy, uses Activity Theory as a contextual framework that integrates the different relations, 

namely advanced mathematical thinking concepts like procept and proceptual divide. Results allowed 

us to see the different pathways taken by the students to solve the same problem.  

Keywords: Assessment, geometry, portfolio, quality of learning, mathematical thought. 

Introduction 

Portfolio assessment brings an open evaluation method into the mathematical classroom and allows 

the mathematical abilities of the students to grow. In this study, students chose three of 15 problems 

and were given one month to solve them and to explain in detail their solution process. This solution 

process involves brainstorming sessions centred on the best solution, and the detailed explanation 

necessarily involved in self-regulated learning processes. This teaching method aims to extend the 

mathematical knowledge of future teachers, involving them in activities more open and less structured 

than the traditional ones. 

The data presented here were chosen because the students show a similar path (12th grade 

mathematics) and took different approaches to the same problem. Data was studied using the 

analytical model that highlights these differences and integrates the SOLO taxonomy (Biggs & Collis, 

1982) with the advanced mathematical thinking theories and concepts of Tall (1991) alongside the 

conceptualization of the proceptual divide (Gray & Tall, 1994), and activity theory (Engeström, 2001) 

as a contextual structure. The SOLO taxonomy allows us to identify five progressive levels of 

understanding from the prestructural (lowest level), through the unistructural, the multistructural, 

the relational to the extended abstract (highest level). 

The problem statement asks to find the length of 𝐵𝐶̅̅ ̅̅  (to the second decimal place) knowing that 𝐴𝐶̅̅ ̅̅ =

10𝑐𝑚 and ∡𝐵𝐴𝐶 = 300 (do not use any trigonometry) with the aid of figure 1. 

 

Figure 1: Visual representation of the problem  

Raquel, one of the participants, struggled with this problem due to the limitation stated in the problem 

(do not use trigonometry), but she sketched another triangle making an isometry using [𝐴𝐶] as a 



symmetry axis, creating with 𝐵′ an equilateral triangle 𝐴𝐵𝐵′ because if ∡𝐵𝐴𝐶 = 300 then the

resulting isometry makes ∡𝐶𝐴𝐵′ = 300 therefore ∡𝐵𝐴𝐵′ = 600 and a equiangular triangle is also an

equilateral triangle. By using the Pythagorean theorem, she calculated: 

𝐼𝑓  𝐴𝐵̅̅ ̅̅ = 𝑥, 𝐵𝐶̅̅ ̅̅ =
𝑥

2
, 𝐴𝐶̅̅ ̅̅ = 10 𝑡ℎ𝑒𝑛 𝑥2 = (

𝑥

2
)

2
+ 102 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦𝑖𝑛𝑔 𝑥2 =

𝑥2

22 + 100 ⇔ 4𝑥2 = 𝑥2 + 400 ⇔

⇔ 4𝑥2 = 𝑥2 + 400 ⇔ 3𝑥2 = 400 ⇔ 𝑥 ≅ 11,55 ⇔ 𝐴𝐶̅̅ ̅̅ =
𝑥

2
≅ 5,77 𝑐𝑚

Mariana on the other hand started calculating ∡𝐴𝐵𝐶 by subtracting the other two angles known so: 

𝐼𝑓 ∡𝐵𝐴𝐶 = 300, ∡𝐵𝐶𝐴 = 900 𝑡ℎ𝑒𝑛 1800 = 900 + 300 + ∡𝐴𝐵𝐶 𝑠𝑜 ∡𝐴𝐵𝐶 = 600

And then she made a relation between the sides of the triangle by using the ration of special 

triangles (a trigonometry concept) what gives the following outcome: 

𝐼𝑓 𝐴𝐵̅̅ ̅̅ = 2𝑎, 𝐵𝐶̅̅ ̅̅ = 𝑎, 𝐴𝐶̅̅ ̅̅ = 𝑎√3 ∧ 𝐴𝐶̅̅ ̅̅ = 10 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑎√3 = 10 ∧ 𝑎 =
10

√3
 𝑠𝑜 𝐵𝐶̅̅ ̅̅ = 𝑎 𝑠𝑜 𝐵𝐶̅̅ ̅̅ ≅ 5,77 𝑐𝑚

Final remarks 

These students are very familiar with being tested by closed book exams (and they were expecting 

that also), but portfolio assessment was a different approach and they were in an unknown territory.  

Raquel clearly surpassed the proceptual divide and her outcome was classified as an extended 

abstract. She made connections to other concepts, explained her pathway and was able to justify the 

outcome, supplying evidence to support her solution. Activity theory was used to identify the 

contradiction arising by the use of different mediating artifacts namely the use of isometries to 

produce the equilateral triangle.  

Mariana knew something about what she was doing, but by breaking the mathematical rules she did 

not surpass the proceptual divide. Her outcome was classified as multistructural. After the 

presentation of the results it is clear that her answer could be unistructural because she made simple 

connections without identifying their role. She could not describe what’s the process she had followed 

but could not justify what she did and how she obtained the outcome. The use of activity theory 

revealed two major contradictions related to the mediating artifacts and the limitations. 
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In this report the themes and points for discussion of the Thematic Working Group 22 on Curricular 

Resources and Task design are briefly explained and summarized. These related to design 

principles and task characteristics, also of digital curriculum resources, and perspectives on the 

development of digital resources were identified. At the same time the role of teachers in task 

design, whether as “designers” or “partners in task design” or as mediators of tasks designed by 

others, and of course the role of students working with the tasks/resources, were acknowledged as 

crucial issues. Concerning teachers, pre-service or in-service teacher education, and generally 

teachers’ work in collectives, were perceived as stimulating contexts for the design of and work 

with curriculum resources: how can teachers develop design capacity and knowledge when working 

with curriculum resources, and which affordances (and constraints) are provided by digital 

resources? Concerning students, discussions evolved around issues related to how digital resources 

can provide feedback for enhanced student learning.   

Keywords: Curriculum resources; task/curriculum design; design principles; teacher collective 

work; design capacity. 

Background 

The TWG 22 received 25 paper and poster submissions: 17 submissions were accepted as papers, 6 

as posters, and 2 were withdrawn (for various reasons: lack of funding; lack of time). The 

contributing authors came from 17 different countries.  

The sessions were organised into five paper sessions organised under four themes, one poster 

session, and one report & discussion session. For each session we now briefly present the authors 

and titles of the individual presentations, followed by a summary of themes discussed in the 

sessions.   

Session 1 & 2 

Theme: Issues linked to the design of tasks and resources 

• Gijsbers & Pepin: Context based tasks on differential equations to improve students' beliefs 

about the relevance of mathematics 

• Nagari Haddif: Principles of redesigning an e-task based on a paper-and-pencil task: The 

case of parametric functions 

• Borys & Choppin: Tensions between resource perspectives and trends in the design and 

dissemination of digital resources 

mailto:sean.delaney@mie.ie


• Brocardo, et al.: Tasks to develop flexible multiplicative reasoning 

• Seidouvy & Eckert: Designing for Responsibility and Authority in experiment based 

instruction in mathematics 

• Cohen-Eliyahu: The role of design in conceptual change: The case of proportional reasoning 

The issues identified in these two sessions related to four main themes. First, participants discussed 

the relationships between design principles and task characteristics. This is particularly important, if 

the design is expected, for example, to afford conceptual change (see Cohen-Eliyahu), or to support 

student reasoning competency involving aspects of authority and responsibility (see Seidouvy & 

Eckert) or to enhance students’ beliefs about the relevance of mathematics (see Gijsberg & Pepin), 

or to facilitate noticing and visualization when developing flexible multiplicative reasoning skills 

(see Brocardo, et al.). It is also pertinent for tasks that were re-designed from paper and pencil to e-

tasks (see Nagari Haddif). Second, perspectives on the development of digital resources were 

identified, and tensions between conceptions of teachers’ interactions with digital resources and the 

ways other actors (e.g. policy makers, curriculum developers) frame the purpose for and 

development of digital curriculum resources (see Borys & Choppin). A third point of discussion was 

the role of teachers in task design, whether as “designers” or “partners in task design” or as 

mediators of tasks designed by others. In fact, it was concluded that often teachers were left out, or 

insufficiently considered, in relation to their role of mediating tasks. A fourth point of discussion 

was related to the role of students working with the tasks/resources, which was addressed in the 

majority of the papers presented in these two sessions.  

Session 3 (poster session) 

In this session all posters were presented in order to provide additional opportunities for 

contributors to participate in this TWG. 

- Noll, et al.: How to design educational material for inclusive classes 

- Jukic Matic: Teachers’ pedagogical design capacity and mobilisation of textbook 

- Wynne & Harbison: Task design within the Universal Design for Learning Framework to 

support inclusion in the mathematics classroom 

- Llanos & Otero: Changes in the images and arguing from mathematics textbooks for the 

secondary school in Argentina along 67 years 

- Dooley & Aysel: Using variation theory to explore the re-teaching phase of lesson study 

- Cizmesija et al.: Asymptotes and asymptotic behaviour in graphing functions and curves: an 

analysis of the Croation upper secondary education within the anthropological theory of 

didactics 

Session 4 

Theme: Issues linked to prospective teachers’ work with tasks and resources  

• Dempsey & O’Shea: Critical Evaluation and Design of Mathematics Tasks: Pre-Service 

Teachers  

• Kilic, et al.: Pre-service teachers' reflections on task design and implementation 



• Stylianides & Stylianides:  Promoting prospective elementary teachers’ knowledge about the 

role of assumptions in mathematical activity 

The issues identified in this session related to four main themes. First, although not directly 

addressed in the three papers, the issue of design capacity building was raised: what teacher design 

might mean (see also sessions 1 & 2), who is designing what (see also sessions 1 & 2), and how 

design capacity building relates to teacher education. Linked to latter, a second point was discussed: 

the relationship between teacher knowledge (see Stylianides & Stylianides) and design capacity. As 

a third point for discussion, participants reflected on the implementation process in terms of pre-

service teacher learning/knowledge development (see Kilic, et al.). Under a fourth issue it was 

discussed how teacher knowledge (in teacher education) could be enhanced through task design 

(Dempsey & O’Shea). 

Session 5 

Theme: Issues linked to design and use of resources in professional development and collective 

work  

• Eckert: Agency as a tool in design research collaborations 

• Essonnier, et al.: Factors impacting on the collaborative design of digital resources 

• Gueudet & Parra:  Teachers' collective documentation work: a case study on tolerance 

intervals 

• De Moraes Rocha & Trouche: Documentational trajectory: a tool for analysing the genesis 

of a teacher's resource system across her collective work  

The issues identified in this session related to three main themes. First, it was emphasised that 

teachers’ learning trajectories of professional learning are typically not short-term, and hence that 

there is a need to research them longitudinally (see De Moraes Rocha & Trouche). Second, the 

dynamics in collaborative task design of teachers and teachers working/designing collaboratively 

with curriculum resources, were highlighted (see Eckert; Gueudet & Parra): in terms of lesson 

preparation, design of learning trajectories, and/or teacher re-design in class. Linked to that a third 

point was raised: the cultural aspects of teachers working with curriculum resources (see Essonier et 

al.).  

Session 6 

Theme: Issues linked to teacher and student use of resources/curriculum materials at primary level 

• Daina: From textbook to classroom: a research on teachers’ use of pedagogical resources in 

the context of primary school in the French  

• Delaney: Children's performance on a mathematics task they were not taught to solve: A 

case study 

• Gaio: Programming for 3rd graders, Scratch-based or Unplugged? 

• Rezat: Students’ utilization of feedback by an interactive mathematics e-textbook for 

primary level 



The issues identified in this session related to four main themes. First, although not directly 

addressed in all papers of this session, the choice, design and use of digital as compared to non-

digital curriculum resources were discussed. This was seen as particularly relevant, as often digital 

curriculum resources are combined with traditional materials (see Gaio), such as textbooks. Second, 

participants discussed the use of mathematical tasks/curriculum resources to promote particular 

learning goals (see Diana), in particular as textbooks often do not provide information on how to 

organize the teaching of particular activities. This links to the third point, the enactment/ 

implementation of tasks depending on teacher goals (see Delaney). A fourth point related to task 

design and feedback, that is ways in which teachers or curriculum developers can provide effective 

feedback, i.e. feedback that actually influences the development of mathematical concepts (see 

Rezat). 

Session 7 

In session 7 the following themes were identified as overarching issues: 

• Task design: what does task mean; what does design mean? 

• Teacher design capacity & the role of the teacher in “design” (incl. implementation) 

• Digital resources/tasks/curriculum materials 

• Plurality of theoretical frameworks & clarity 

• Operationalization of theoretical frames  

• High inference claims & evidence  

Whilst the first three have been addressed under previous sections, the last three deserve a special 

mention. It was noted that a plurality of theoretical frames was used. This is not an issue in itself, 

but it becomes a problem, when the diversity of theoretical frameworks diverts from, and sometimes 

covers, the problem addressed, that is obscures the clarity of the research. Linked to that selected 

participants would have wanted a better, or clearer, description of how the theoretical frames were 

actually operationalized. Moreover, it was mentioned that too often the researchers made high 

inference claims based on insufficient evidence. This was seen as a shortcoming of such research. 

Overall, participants emphasized the positive and constructive atmosphere in the group, where 

criticism was welcomed as a vehicle for developing deeper insights and sharpening up of ideas.    
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Teachers are increasingly using digital resources to design lessons. We describe three perspectives 

for describing teachers’ interactions with digital resources, perspectives that denote different 

assumptions with respect to teacher agency and the connections between capacity development and 

resource use. This paper examines the tensions between these conceptions of teachers’ interactions 

with digital resources and the ways other actors – including policy makers, curriculum developers, 

and purveyors of online content – frame the purpose for and development of digital resources. Our 

analysis suggests that the assumed role of the teacher differs across different sets of actors and 

different visions related to the design and development of digital curriculum resources. The 

implications relate to the opportunities for teachers to transform digital resources to suit their 

purposes and to develop and grow professionally as a result.  

Keywords: Digital curriculum, teacher practices, curricular resources. 

Teaching is design work: Teachers actively interpret and mobilize resources to attain pedagogic and 

curricular goals.  Moreover, teachers increasingly use, and are expected to use, digital resources to 

design lessons. However, there are tensions between education technology discourses, curriculum 

design trends, education policies, and the work teachers do with digital resources. As a case in point, 

in Sweden a public/private partnership endeavor created a repository of resources and lessons for 

teachers that was little used because the design of the repository did not take into account how 

teachers actually take up digital resources, illustrating the lack of alignment between teachers’ 

professional practices, education policy, and the design of instructional resources (CERI, 2009). As 

Remillard (2012) notes, teachers do not simply interpret authors’ intentions as they engage with 

curriculum resources, they engage with the artifact itself (p. 114).  Given that teachers’ work with 

resources can promote teachers’ professional development and meaningful experiences for students, 

it is important to understand how tensions between teachers’ practices and the assumptions about 

teaching and teachers embedded in digital resources potentially constrain teachers’ opportunities to 

develop design capacity.   

To illustrate how digital resource design and dissemination limit teachers’ agency – and thus their 

roles as designers – we examined tensions between conceptions of teachers’ interactions with digital 

resources and the ways other actors – including policy makers, curriculum developers, and purveyors 

of online content (commercial publishers, large philanthropies) – frame the purpose for and 

development of digital resources.  These actors constitute the largest source of resources and 

information regarding digital resources and thus their influence merits attention from the research 

community. The ways digital resources are framed and promoted by policy makers and other actors 

may be at odds with the actual work teachers do and the needs of their students.   



Conceptualizations of teachers’ work with digital curriculum resources 

The meaning of the term resources depends on the perspective of the researcher and what is being 

researched (Ruthven, 2013). Researchers frame the relationship between teachers and their use of 

resources in three ways: resources function as tools that mediate the act of teaching; resources 

function as artifacts (instruments) that signify outcomes of processes; and resources function as 

objects whose creation is a key component of teachers’ professional work (Remillard, 2013). These 

are elaborated in more detail below. 

The most common framing in teachers’ design work is that resources are tools that mediate teachers’ 

work, in line with sociocultural notions of tool mediation (e.g., Wertsch, 1998). The resource’s 

function is primarily to help/aid/assist teachers in the work of teaching.  Teachers’ use of resources 

allows them to improve practices they already engaged in or, sometimes, to engage in new practices 

altogether. Often, the affordance or benefit of the resource is located within the resource and teachers 

perceive the affordance or benefit and apply it to their local context. Kasten and Sinclair (2009), for 

example, showed that teachers selected digital applets to help present topics in new ways. Also, 

Duncan (2010) demonstrated that teachers made their classroom practices more student-centered 

because the resources they were using automatically provided students feedback and gave students 

more agency over their interactions with content. These teachers crafted lessons that capitalized on 

this shift in the student-content relationship. In these two examples, the benefits or affordances were 

thought of as residing in the resource.  

Considering resources as an artifact – rather than as a tool –connotes place and time: teachers’ use of 

resources is inseparable from when they are used and teachers’ purposes for using resources. The 

theory of instrumental genesis (Rabardel, 2002) considers three factors: the impact of the design of 

tools on how they are used (instrumentation); the users and their previous experiences with using the 

tool (instrumentalization); and the purposes and goals users assign to tool use (schemes of utilization).  

Acknowledging the different factors that impact a how teachers take up tools makes the processes 

associated with using the tool rather than the tool itself the object of study. Rabardel defined an 

instrument as an artifact coupled with the schemes of utilization users assign to it. It is important to 

note that the theory of instrumental genesis is focused on the resource in use, not the resource itself.  

The use of the term instrument emphasizes a process of transformation where the focus is on how 

teachers use resources to attain goals, not some innate quality of the resources. This is especially 

important when considering teachers’ work with resources because teachers increasingly draw from 

a variety of sources when crafting instruction and use resources differently over time according to 

their context (e.g. Gueudet, Bueno-Ravel, & Poisard, 2014). 

The third conceptualization is framing resources as objects, where a key component of teaching is to 

create resources. Document genesis (Gueudet & Trouche, 2009) is a theory focused on teachers’ 

creation of resources for teaching.  Stemming from the instrumental approach, document genesis 

explains how, in the creation of resources, teachers develop schemes of utilization that are comprised 

of teachers’ knowledge and processes for using resources.  Document genesis offers a window into 

teachers’ evolution of practices with their resources. Since teachers often reuse resources from 

previous years, the documents from one year become resources for the next year and are embedded 

with teachers’ experiences and modifications (Gueudet & Trouche, 2009). Often, when resources are 

considered tools, teachers are not producers: their work is of application and applies to one instance 



of enactment without connection to future use.  However, when treated as objects of design, the focus 

is on how teachers create resources to meet their local contextual challenges and on how the teachers’ 

understanding and use of resources evolves over time.  

In a complex landscape where teachers weave together various resources in the design of lessons, 

treating resources as an object of teachers’ design work provides researchers with a theoretical 

grounding to make sense of and explain interactions in online spaces, such as resource repositories. 

The resources being downloaded and shared by teachers are not solely resources (tools) to mediate 

teaching: their creation and transmission constitute important facets of teaching. For example, 

Trglaova and Jahn (2013) examined how teachers improved resources posted to a repository based 

on the feedback they received from other teachers.  Also, this framing allows researchers to situate 

teachers in broader collectives and to determine how the impact of belonging to and participating in 

collectives has on teachers’ practices (Guedet & Trouche, 2012).   

These perspectives on resources suggest different roles for the teacher with respect to how digital 

resources get taken up. In the first, resource as tool, the resource is considered to have innate qualities 

that teachers can employ to varying degrees in their lessons but not substantially revise. The latter 

two perspectives outline a more active role for the teacher, suggesting not simply a mediating role 

between resource and student, but a transformative role for the teacher with respect to the design and 

use of the resource. More generally, thinking about teachers’ design processes positions teacher 

capacity as an important goal in the design and use of digital resources; consequently, perspectives 

on digital resources that minimize teachers’ role have potential impact in terms of agency and 

ultimately the development of teacher capacity. Below, we explore how trends in the design and 

dissemination of digital resources may be in tension with conceptualizations of active roles for 

teachers with respect to the design and use of digital curriculum resources. We consider how different 

actors influence the design and dissemination of digital curriculum resources, and that these efforts 

may neglect the role of the teacher. An aim is to show that there are potentially conflicting values 

between perspectives focused on teaching as design and perspectives that promote characteristics of 

digital resources that constrain teachers’ roles and their ability to be responsive to their local context.   

Trends in the design and dissemination of digital resources 

In this section, we articulate broad trends in the design and dissemination of digital curriculum 

materials and then connect those trends to the perspectives that emphasize the design role of teachers. 

We characterize these trends by focusing on the actors who emphasize particular perspectives – and 

exercise considerable influence – related to the design and dissemination of digital resources. We 

focus on the following three broad sets of actors because of the considerable influence they exercise 

over the design and dissemination of digital curriculum materials: designers, policy makers, and 

purveyors of online content (e.g., commercial publishers, for-profit educational websites, large 

philanthropic or corporate organizations). Included in the group of corporate entities are 

philanthropies and corporations not previously engaged in educational publishing (e.g., the Gates 

Foundation, Amazon, Mark Zuckerberg’s funding efforts), who strive to influence both content as 

well as delivery mechanisms for that content, especially in the U.S.   



These groups make a number of claims about the potential transformative features of digital 

curriculum materials. We focus on three features to highlight the roles of the sets of actors identified 

above: 

 Content can be more relevant and interactive;  

 High quality content can be inexpensive and widely accessible;  and  

 Content can be customized to meet the needs of individual students. 

We selected these features because they are the primary focus of the design, dissemination, and 

publicity efforts of the actors described above. Below, we describe how these features are emphasized 

by the various actors and how they are in tension with the perspectives on resource use, with 

implications for how teachers get positioned as active designers who can develop increasing capacity 

to design and enact curriculum materials.  

Content can be more relevant and interactive 

Advocates claim that content in digital materials has the potential to be more interactive and relevant, 

as it can be updated and revised to fit the local context. In terms of interactivity, digital texts can be 

flexible with respect to navigation (e.g., hyperlinks) and with respect to creating documents with 

resources and materials from a range of sources, including the web (Zhao et al., 2010). Other kinds 

of interactivity include the use of sliders or buttons to manipulate parameters in a model to investigate 

problems or phenomena (Dede, 2000). More powerful forms of interactivity involve the use of tools 

with flexible purposes in open working environments, such as curriculum programs developed in 

Israel and Korea (cf. Lew, 2016; Yerushalmy, 2016). In general, interactivity can be conceived in 

terms of the choices users can make to influence their engagement with the content. 

We focus on the set of actors we call designers to highlight how interactive features are incorporated 

into digital resources. We refer to designers as those who conceptualize features of digital materials 

based on research on learning and learning systems. Of the sets of actors described above, the 

curriculum resources designed and disseminated by designers are the most aligned with teaching as 

design perspective. These resources offer the greatest flexibility in terms of adaptation by teachers 

and in terms of generating interactions with students that provide opportunities to understand how 

student thinking develops. Designers emphasize learning experiences that augment or enhance what 

is possible in paper curricula. Moreover, designers emphasize the development of tool-rich 

workspaces that enhance interaction, communication, and exploration. Designers incorporate 

ubiquitous access to tools that allow for dynamically linked representations and the ability to record 

and curate work (Confrey, 2016; Lew, 2016; Yerushalmy, 2016). Confrey, Lew, and Yerushalmy 

emphasize that workspaces should provide access to a suite of tools that learners strategically select 

as they engage in complex problems. These workspaces facilitate the use and manipulation of 

multiple representations, including symbols, in ways that are intuitive and that communicate 

increasingly formal inscriptions of the mathematics. Furthermore, these workspaces should allow 

students to store and curate their work, for future reference for themselves and external audiences.  

In terms of developing teachers’ design capacity, and thus align with the artifact and documentation 

perspectives described above, designers emphasize more complicated and idiosyncratic learning 

paths for students in terms of deviating from a rigid demarcation and flow of mathematical activity 

(Confrey, 2016). Curriculum materials differ from open tools, such as Sketchpad, Cabri, or 



Mathematica, in that they are intended to provide structure by bounding and sequencing mathematical 

activity. Integrating rich problems and work spaces provides opportunities for the kind of complex 

activity that involves non-linear processes (unproductive approaches may precede more productive 

approaches), complex interactions of tools and representations, and the collective negotiation of the 

viability and validity of solution paths. Such complex activity can disrupt well-defined lesson 

structures and allocations of time (both duration and synchronicity)(c.f. Ritella & Hakkarainen’s 

[2012] discussion of chronotype), interrupting the potential flow of a lesson, with implications for 

following a prescribed scope and sequence of mathematics. Managing these non-linear activity flows 

calls for more prominent roles for teachers and entails developing new forms of capacity in terms of 

understanding curriculum progressions and coordinating (orchestrating) multiple tools and artifacts 

in the workspace.   

The work of designers focuses on the interactive and flexible features of digital resources, while other 

actors – policy makers and purveyors of online content (mostly commercial interests and 

philanthropies operating from a neoliberal perspective) – emphasize different features, explored 

below. The different features emphasized by these other actors have implications in terms of the roles 

and capacities envisioned for teachers. 

Free and open digital content 

Policy makers have pushed digital content that is freely available and open source. They argue that 

this would make high-quality content accessible to low-resource high needs districts. Internationally, 

there has been a push for Open Education Resources (OER) for nearly a decade now: “The open 

educational resource (OER) movement aims to break down such barriers [from proprietary systems] 

and to encourage and enable freely sharing content” (OECD, 2007).  Recently, the US Department 

of Education launched an initiative designed to encourage districts to adopt open resources and to 

share their efforts and experiences with others, in part to make access to high-quality instructional 

resources more equitable (USDoE, 2016). The use of open resource content, however, can be time-

consuming and the resources themselves are of uneven quality. There is little quality control with 

respect to content, and much of it requires little interactivity or minimal educative features for 

explaining the design rationale to teachers. Furthermore, these efforts assume that teachers have 

considerable capacity to evaluate, select, and sequence content chosen from a variety of sources. 

Given that much of these efforts are aimed at low-resourced districts, especially in the U.S., there is 

an assumption that teachers can use the materials without modifications, which aligns with the 

resource as tool perspective. Recently, there have been efforts to curate content in ways that provide 

quality control and articulate curriculum progressions (Confrey, 2016); however, these efforts have 

yet to be coordinated with the larger policies for open resources and their impact on teacher design 

capacity is not yet determined.  

Customizing content for individual learners 

Policy makers, commercial publishers, and large philanthropies have emphasized the promise of 

digital content to be customized to meet the needs of individual learners.  Customization has been 

discussed in a variety of ways. This can be achieved through systems that emphasize mastery learning, 

in which software dictates the sequencing of content for a learner based on the learner’s performance 

on skills-based assessments (e.g., Means, Peters, & Zheng, 2014). Or, it could involve personalizing 



the software settings so that the user has control over video and audio as well as the presentation of 

the text.  A third way is for the teacher to make content selections within a program so that different 

students would see different content. Mostly, however, the personalized systems entail diagnostic 

assessments administered through online programs that dictate the pacing and sequencing of content 

(Choppin, Carson, Borys, Cerosaletti, & Gillis, 2014). These efforts, largely funded and publicized 

by large philanthropic or corporate entities, push to embed digital content in comprehensive learning 

management systems that include data reporting and classroom management systems. They also 

emphasize adaptive programs based largely from the mastery learning perspective (e.g., courseware 

funded by the Gates Foundation). Some educational websites, either for-profit or philanthropy-

funded, create collections of lessons, sometimes developed by a small group or by larger author 

groups (e.g., Khan Academy, sofatutor.com). While these programs may eventually involve 

sophisticated adaptive systems and customized learning tools that allow learners to explore content 

in complex workspaces, the initial versions of these programs typically entail low-level content and 

reporting of percentage of correctly answered multiple-choice questions (Choppin, Carson, Borys, 

Cerosaletti, & Gillis, 2014), characteristics that constrain opportunities for learning. Furthermore, the 

programs minimize the role of the teacher, impacting development of teacher capacity.   

Implications of tensions between perspectives 

Teachers’ interactions with digital resources involves agency: in the act of designing, teachers take 

up digital curriculum resources, interpret their purposes, and transform them to respond to their 

pedagogical purposes and their evolving understanding of how those resources can be used to engage 

students. This assumes that teachers are designers, actively interacting with and transforming 

curriculum resources to engage students. The three perspectives describing teachers’ interactions with 

digital resources denote different assumptions with respect to teacher agency and the connections 

between capacity development and resource use. The assumed role of the teacher differs across the 

perspectives of the different sets of actors that relate to the design and development of digital 

curriculum resources.  

The analysis illustrates that different perspectives on the design and dissemination of digital resources 

have implications for the opportunities teachers have to understand, adapt, and transform digital 

resources and thus develop capacity as a result. The designer perspective offers the greatest possibility 

of alignment between views of teachers as designers and the affordances of digital curriculum 

materials, though much of their focus and expectations is on creating a medium for rich student 

interaction rather than informing teacher use and capacity development. Other actors – such as policy 

makers, commercial publishers, large philanthropies – have different perspectives, and motives, for 

designing and disseminating digital curriculum. The programs associated with these perspectives 

show little sensitivity to the complexities involved with how teachers take up digital curriculum 

resources, and minimize the role of teachers to transform digital resources to suit their purposes. 

Many of these programs emphasize personalized learning, which entails little interaction with 

teachers, and little flexibility on the teacher’s part to construct learning experiences for students. 

These entities exercise great influence on which programs are available, and their impact on teacher 

autonomy and teacher capacity needs to occupy the attention of researchers.  
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The project ‘Numerical thinking and flexible calculation: critical issues’ aims to study students’ 

conceptual knowledge associated with the different levels of understanding numbers and operations. 

This paper presents the conjectural theory used to design and articulate the tasks of an explorative 

instructional sequence that promotes flexibility in reasoning and calculating in grades 2 and 3 in the 

field of multiplicative thinking. We focus our analysis of task design in the development of the first 

task of the sequence, illustrating how data analysis of students’ solutions is used to reformulate the 

task. 

Keywords: Task design, multiplicative thinking, flexible reasoning. 

Conjectural theory 

Our approach aims to foster flexibility in multiplicative reasoning and calculation by systematically 

developing both factual knowledge on numbers and the ability to operate with them as mental objects. 

The schemes and situations associated with multiplicative thinking constitute the referential field of 

modeling the relationship between quantities/magnitudes with multiplication and division (e.g. Greer, 

1992, 2012; Thompson & Saldanha, 2003; Tzur et al., 2013; Vergnaud, 1983, 1988). Against this 

background, we develop a conjectural theory assuming that flexibility in the transition phase of 

addition to multiplication requires the ability of operating with products and quotients as 

mathematical objects, using different symbolisms for the same object (Gray & Tall, 1994; Tall, 2013) 

(e.g. 60 seen as 6 × 10; 12 x 5; 4 × 15; ½ × 120). We envision the development of this ability along 

the experimental sequence as follows. 

Starting point: product as representing some numbers of some amount. In Portuguese textbooks, as 

in many other countries, “times” and the notation ‘__ ×  __’ is introduced as symbolization of the 

sequence of repeated addition executed to quantify a relative big collection of identical objects in 

situations where these objects are combined in equal groups (e.g. Greer, 1992). The first cycle of 

activities introduces the expression “some numbers of some amount” (with or without remainder) as 

common way of describing the result of combining objects into equal parts, putting an amount into 

parts of a given size (partitive or ratio/measurement division) and distributing an amount of something 

among a given number of persons (e.g. Thompson & Saldanha, 2003). It is conjectured that this 

should foster the later understanding of the numerical equivalence of this three processes. The 

symbolic notation ‘__ × __ + __’ represents the underlying multiplicative structure. It ties 

conceptually and numerically the initial meaning of multiplication with the two meanings of division. 

It explains, at the same time, why both repeated subtraction and repeated addition allow to find how 

many times does an amount of things go into a given quantity - inverse relationship between 



multiplication and division (e.g. Freudenthal, 1983; Greer, 2013). Last but not the least, reasoning in 

“some numbers of some amount” allows to apprehend the inverted/reciprocal relationship between 

the involved quantities (e.g. if sharing 52 pictures between 4 children results in 13 pictures each, each 

child receives ¼ of the collection, which implies that the initial amount (52) is 4 times as large as 

each part (13) (e.g. Thompson & Saldanha, 2003). 

“Times” as multiplicative comparison. From the above understanding of the symbolic ‘__ × __’ we 

conjecture that students should extend the use of familiar products of the tables to compare quantities 

or magnitudes reasoning in terms of “so many times as much as __”. The number that in the situations 

above operates as `multiplier` gets now the sense of `factor` (e.g. Freudenthal, 1983; Greer, 1993). 

The above inverted relationship comes back: saying that Bernardo has 4 times as many volumes of 

Asterix as Fernanda, means that her number of volumes is 1/4 as large as Bernardo´s collection (and 

vice versa).  

“Times” as operation that emerges from a rectangular arrangement. Until now, multiplicative 

reasoning and calculations are limited to situations where combining, partitioning and distributing 

are modelled with sequences of multiples (times tables). The following cycle of measurement 

activities extends stepwise multiplicative reasoning by mean of the rectangular arrangement of 

objects. First the multiplication of factors emerges from pacing concrete units in the length and width 

and using familiar products to find the number of units. This way of reasoning is then adapted to (1) 

calculate the number of tales of a given arrangement and to transform it by substituting the initial 

units in bigger or smaller ones; (2) to recognize the two rectangular arrangements of the starts of the 

American flag. The operative notion of commutativity (12 × 6 = 6 × 12) and distributivity emerges 

from these activities. This increases the power of multiplicative reasoning and extends the application 

of the available factual knowledge.  

Endpoint: multiplicity goes together with divisibility and proportional relationship. The last inquiry 

is conceived to connect the conceptual, procedural and factual knowledge constructed along the 

reflection about the ways of reasoning and calculating in the above multiplicative setting. The 

challenging question is why hours do have 60 minutes. Students are engaged to “unroll” the time line 

of a clock segmented in units of 5 and 15 minutes and to symbolize the accumulation of time with 

the underlying numbers’ pattern and the corresponding product to identify how one hour is divided 

in equal parts (5, 10, 15, ...  12 × 5; 10, 20, 30  6 × 10; etc.). The inverted number relation met 

before comes back by the connection of 4 × 15 and 2 × 30 with respectively 15 minutes as “a quarter 

of an hour” and 30 minutes as “half an hour”. Finally, by identifying all the possible ways of grouping 

60 chairs in a rectangle, children discover the hide equivalents of the ‘products of the clock’. 60 then 

appears as ‘an object’ that can be composed and decomposed in “many ways” (e.g. 4 × 15 = 15 × 4 

related to 60 ÷ 4 and 60 ÷ 15).  

Key principles of designing task with focus on flexibility 

The chosen approach prompts the systematic extension of the numerical relationships, arithmetic 

operations and factual knowledge using multiplication and division to model situations. We foster 

that students come to act and reason in a “mathematical reality” (e.g. Freudenthal, 2003; Tall, 2013; 

Gravemeijer, Bruin-Muurling, Kraemer & van Stiphout, 2013), manipulating flexibly mathematical 



objects and relationships at hand through symbolic representation as professional mathematicians do 

(e.g. Gray & Tall, 1994).  

We use the framework above to develop three kinds of tasks with a specific function and to articulate 

them transversally and vertically in cycles of inquiries (Bell, 1993). Open tasks as “Prawn skewers” 

(Figure 1) prompt the exploration of a key idea (e.g. envisioning multiplicities of identical things 

thinking in some numbers of some amount) and the development of a symbolism to express it (e.g. 

__ × __) to express it (e.g. Bell, 1993; Back, 2011). Numerical tasks (without context) promote the 

organization of numbers as ties in a web of number relations (Van Hiele, 1985) which extend the 

personal factual knowledge (Threlfall, 2002) and the development of specific skills such as analyzing 

numbers multiplicatively and using the process-object symbolic to explore unfamiliar forms of 

operating with numbers as mental objects (Gray and Tall, 1994). Conventional tasks focus on 

understanding how a particular relationship (theorem-in-action) of a scheme works and can be 

adapted in a limited class of situations.  

The constructed webs of number relations connected to the schemes of reasoning and the classes of 

situations form the horizontal junctions between the tasks. The same tasks are articulated vertically, 

considering the transitions from a lower (informal) to a higher (formal) level of reasoning, 

symbolizing and computing.  

The task ‘Prawn skewers’ (Figure 1) exemplifies this approach. The task provides an opportunity to 

explore “partitioning” as a process of structuring quantities on the own level of understanding the 

relationships involved in equal group situations (see draft of conjectural theory above) and using the 

number patterns in the available tables of multiplication. We conjectured that the majority of the 

children would notice that 61 is an odd number (ending by 1), near 60 (60+1 and/or 62-1). Focusing 

by turn on number 60, they would in first instance notice it can be reached counting by two and/or 

ten which suggests partitioning the pile of prawns by way of repeated addition (2+2+2+2…; 

10+10+10+10+10+10). Students that operate on a higher level of understanding two-digit numbers 

would associate 60 with 6x10 seen as “six tens”. Then, one can explore other grouping possibilities, 

varying additively or multiplicatively the number of prawns of each stick or transforming a founded 

partition in a new one, substituting smaller composite units by bigger ones and vice versa. 

Considering the current phase of development of grade 2 students, we expect difficulties with the 

symbolization of founded structures with products (e.g. difference between “6 times 10” written as 6 

× 10 and “10 times 6” written as 10×6) and related misunderstanding in the communication about 

the transformation of one possible structure into another one (e.g. 6 times 10 into 12 times 5; 

6×10=12×5). Finally, we expect that some students could first approach the task by describing the 

process of exhausting the pile of 61 prawns with an arithmetical sequence of repeated subtraction and 

then (quickly) invert their modeling to avoid the (arising) computing difficulties. 

Methodology  

The project plan is based on a qualitative and interpretative methodology (Denzin & Lincoln, 2005) 

with a design research approach (Gravemeijer & Cobb, 2006). The preparation of teaching 

experiences is a crucial aspect of the project plan.  

To prepare teaching experiences we design and reformulate mathematical tasks using a three-step 

cyclic process: (1) design tasks, (2) analyze what children noticed in the numbers and how they use 



their knowledge about numbers and operations to solve the task presented along clinical interviews 

and (3) reformulate the previous task. 

This text refers to one teaching experiment that involved 24 grade 2 students (age 7-8) and focuses 

on the students reasoning to solve the task ‘Prawn Skewer’ (Figure 1). Students knew how to add and 

subtract numbers until 1000 and had some experience in solving word problems. They hadn’t yet 

learned the multiplication tables. Data was collected through video and audio recordings of the 

classroom work, researchers’ notes, audio recordings of the preparation and reflection meetings with 

the school teacher involved.  

The proposed task was designed and reformulated according to the data analysis of four clinical 

interviews, where students (4 students, 8-year-old) solved a first version of the task (Figure 2) 

analyzed in Brocardo, Kraemer, Mendes and Delgado (2015).  

  

Figure 1: The tasks ‘Prawn skewer’ 

(reformulated) 

Figure 2: The tasks ‘Prawn skewer’ (first version) 

Since the given alternatives in the first version (groups of 3 or groups of 5) seemed to hinder the 

envisioning of other ways of grouping, we decided to give students the freedom to experiment and 

evaluate different ways of grouping, taking into account two conditions: the given quantity of prawns 

and the freedom to invite more or less friends. We also `opened´ the illustration of the task, to 

stimulate the students’ own constructions. Finally, by giving only the number of prawns, and by 

continuing to choose the `ugly´ number 61 (in the sense of Thompson & Saldanha, 2003), we created 

a problem that these students surely never encountered before. 

Under these conditions, we expected that students would envision different possibilities of sticking a 

pile of 61 prawns, modeling from two ways of understanding “division”. This is to say, reasoning in 

terms of exhausting the pile by a sequence of repetitive subtraction (ratio/measurement division), 

and/or reasoning from the converse idea of accumulating 61 by counting on n by n (division as 

converse of multiplication) (Freudenthal, 1982). In second instance, we expected that the choice 

condition of the task should stimulate students to compare envisioned ways of grouping, considering 

the relation between the multiplier (number of sticks) and the multiplicand (number of prawns in each 

stick). Exhausting, taking away a smaller set of prawns go together with making more sticks and 

subtracting a bigger set with obtaining less sticks. And, increasing the number of sticks by 

accumulating goes together with decreasing the number of prawns in each stick, as putting a bigger 

set of prawns goes together with obtaining less sticks, while sticking less prawns provides more sticks. 

Finally, we expect a great variety of modeling, verbal explanation, and calculations, according to 



levels of memorizing the products/multiples of the tables, and understanding `multiplicity´ and 

`proportionality´ in the experienced contexts of multiplicative thinking. 

Results 

The analyses of the working sheets of the students and of some dialogues occurred in the classroom 

gave us a global idea of the patterns of reasoning that students used to solve this task. 

Globally, we identified the following patterns of reasoning: trying with 18 sticks (they counted the 

sticks represented in the illustration); drawing the prawns’ skewers one by one (with 18 sticks); 

putting 2 by 2 we will arrive to 60; putting 10 by 10 gives 60; adaptation of grouping by 10 making 

one skewer with 11 prawn (Figure 3); adaptation by “grouping by one”; putting 5 by 5 and/or 15 by 

15 gives 60 (Figure 4); intuitive notion/feeling that putting by n would give 61. 

 

 

Figure 3: Adaptation of grouping by tens, making one skewer with 11 prawns 

 

Figure 4: Putting by 15 and by 5 with verbal description of the result 

The most frequent way of modeling was trying to reach 60 arithmetically, by repeated addition. Some 

students shortcut their long addition by mean of doubling consecutively the terms (Figure 5).   

 

Figure 5: Shortcutting by successively doubling as way of controlling / justifying 

Some dialogues suggest that some pairs of students are jumping to 60 in a kind of mental sequence 

of multiples, without keeping track. Having arrived at 60, they must then count the numbers of “tens” 

to derive the multiplier from their long addition. 

Some pairs of students initially understood that they could choose the number of guests but failed to 

connect the given 61 prawns with the 18 sticks they counted in the picture. In a short dialog with the 

teacher, they envisioned ways of grouping with units, leaded by a kind of intuition (feeling) that the 

repeated addition they had in mind would give 61. Vera was thinking about 11 + 11 + 11 …, and 

moved to 5 + 5 + 5 … as response on the teacher´s question “Why 11?”. Her colleague Martin was 

expecting that putting prawns by 7 would give 61, “since 7 + 7 = 14 and 14 + 7 = 21”. 



José drew the 18 sticks and then ´sticks’ 4 prawns in each (Figure 6). He then symbolized the 

represented accumulation with the long addition 4+4+4 … and tried to determine the total number of 

prawns, by doubling 4 and 8, transforming 4+4+4+4 … (18 times four) into 8+8+8... (9 times 8) and 

16+16+16+16+8.  

Only one group used repeated subtraction (viewpoint of exhausting 61; Figure 7). They began to 

subtract 1 to obtain 60 but it seemed they changed their idea and begun to work with 61, subtracting 

5 until they have a remainder smaller than 5.  

  

Figure 6: Wrong modeling by drawing 18 

skewers with 4 prawns in each 

Figure 7: Modeling by repeated subtraction 

 

Finally, two pairs of students associated the information of the story and the illustration of the task 

with the decomposition of 61 into two parts. One pair is thinking about a combination of 18 children 

(the number of sticks of the illustration) and 40 children (a multiple of 10). The other pair proposes 

“as 41 + 20 = 61, one has 41 and the other 20” and does not adds any other justification.  

Implications for task Design 

From data analysis, we may conjecture that the formulated instruction does not scaffold the expected 

mathematization including: (1) finding and representing adequately different forms of sticking the 

prawns, (2) choosing the preferred way, and (3) justifying this choice. It seems that “Why” is 

interpreted as an instruction to demonstrate and/or control that the modeling with the sequence of 

repeated addition indeed gives 60 prawns. This interpretation explains the spontaneous short-cutting 

of long additions (Figure 5). A solution to avoid this is to structure the task in an exploring phase 

asking explicitly to look for possible ways of sticking and a reflective one including the choice and 

the justification of the referred form of sticking. 

On relating the choice of 61 as cardinal of the set, we can argument that the complexity of taking 

away, could explain the high frequency of the modeling by repeated addition and the single use of 

repeated subtraction. Since more students associate 61 with the near even number 60, and since the 

table of two and 4 are memorized, it would be meaningful to replace 61 by 62 to increase the chance 

that more students balanced between modeling by jumping back to exhaust 62 and jumping forwards 

to reach 62. We might expect that, being aware that this way of grouping would give a lot of `small´ 

sticks, more students would try to subtract a bigger quantity and finally move to jumping forwards to 

avoid annoying calculations.  



Finally, since the representation of some stick may suggest some students to fix the multiplier and 

model the process directly by drawing all the set of prawns, stick by stick, we have to change the 

illustration to avoid the observed try-and-error approaches. 

Implications for task design in the field of multiplication 

In this text, we explicit how we analyze the influence of contexts, numbers and pictures/images 

aiming to potentially facilitate noticing (Threlfall, 2002) relevant numerical relations and envisioning 

different approaches that emerge from noticing.  

Another aspect of our analysis is related with the importance to propose non-conventional equal group 

problems to develop flexible multiplicative reasoning. In all conventional equal group problems, two 

values are given. Consequently, children learn to identify the ‘kind’ of problem from the story and 

the given numbers. Then, they solve it applying the standard scheme of reasoning. Children´s 

approaches and solutions of the task ‘Prawn Skewers’ show the advantage of the missing multiplayer 

and multiplicand as stressed by Back (2011). They have to adapt their common way of thinking to 

the unusual conditions of the task (Vergnaud, 2009) noticing numerical relations and envisioning 

different approaches. Some fixed the multiplier counting the sticks of the pictures. Others inferred 

that they had to fix the number of prawns on each stick and to look how many skewers can be made. 

The vast majority envisioned the all process of sticking, using the knowledge that counting by ten 

leads to 60. A crucial advantage of these non-conventional problems is that the teacher can focus the 

reflection on the relationship between “continually putting prawns by n” and “taking again and again 

n prawns” and the use of asymmetric role of the multiplier and the multiplicand to symbolize both 

process.  
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The case of proportional reasoning  
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Conceptual change is extremely difficult to trigger in mathematics and science education. The present 

study shows the special role of design – in the fact that design can afford behaviors that lead to 

conceptual change. We chose the domain of proportional reasoning. The design was based on 

collaborative and argumentative scripts, provision of a tool for checking hypotheses, and 

arrangement of students with different strategies. Above all we created a task, the Blocks Task, that 

invites students with different strategies different solutions, whereby creating (socio-)cognitive 

conflicts with the possibility of enhancing conceptual change. The participants were 496 ninth 

graders. A central result is that performing the task resulted in conceptual change. It was also shown 

that the provision of a tool for checking hypotheses yielded substantially larger gains. We conclude 

by providing design principles for fostering conceptual change in mathematics.  

Keywords: Conceptual change, cognitive conflict, task design, proportional reasoning, collaborative 

work. 

The present paper 

The focus of the present paper 

The present paper aims to expose whether the block task is effective in triggering conceptual change 

in proportional reasoning. While triggering conceptual change in mathematics and in science 

education is a very challenging task. We have defined conditions for task design and we showed that 

they can dramatically boost conceptual change and learning in the field of proportion reasoning: 

Collaborative scripts, the arrangement of students in small groups and the provision of a hypothesis 

testing device for feedback were central design decisions. Above all, we created a special task, the 

Blocks Task, which invites students with different strategies in proportional reasoning (that reflect 

different levels in proportional reasoning) to exhibit different solutions, by such creating socio-

cognitive conflicts  

Theoretical framework  

The process of conceptual change had been described in literature in various ways. The pioneering 

model of Posner, Strike, Hewson, and Gertzog (1982) had described the conceptual change of 

replacing the earlier premature, and somewhat naïve, conceptions (which, at times, contradicts the 

scientific explanations) with more up-to-date scientific conceptions. The trigger for this change had 

been the dissatisfactions with the earlier conceptions. Other scholars (e.g. Vosniadou, & Verschaffel, 

2004) replaced Posner et al.'s model with a model they called a synthetic model which is based on 

the combination of a scientific concept with the student naïve preliminary concept. Cognitive conflict 

had been for a long time considered as a major, necessary ingredient in the development of 

psychological theories that explain conceptual changes. The role of cognitive conflict is important in 

many mathematical fields Stylianides and Stylianides (2009) related to the potential concealed in 



cognitive conflict to support the development of the student knowledge. In the domain of proof, 

counterexamples play a great deal as a pivotal means in creating and resolving a cognitive conflict 

(Zazkis, & Chernoff, 2008, Stylianides, & Stylianides, 2009).  However, it was also found that 

introducing conflicting data was generally not sufficient for triggering conceptual change (Limón, 

2001). Collaborative and argumentative settings as well as the provision of feedback are among the 

means described in the literature which may prompt the development of conceptual change among 

students (Schwarz, 2009). The block task which was designed for the purpose of the present study 

has been a sophistication of the blocks task developed by Harel, Behr, Lesh and Post (1992). Harel 

and colleagues designed the original Blocks Task as a diagnostic tool to assess the level of 

proportional reasoning of adolescents. I modified the task as a learning task with the potential for 

triggering conceptual change (Cohen-Eliyahu, 2001). The modifications consisted of posing the task 

in a dyadic setting, providing a collaborative and argumentative script in their interactions, and 

providing a hypothesis testing device (a balance) for checking hypotheses. This mathematical task 

has the potential to create socio-cognitive conflicts based on the three aforementioned conditions. 

Schwarz and Lichevski (2007) showed that the design yielded conceptual change. In an additional 

study, Asterhan, Schwarz and Cohen-Eliyahu (2014) examined the mechanisms that govern 

conceptual change with the Blocks task. In the present paper, I examine the role of design in triggering 

conceptual change. Let us first describe succinctly the study. More information can be found in 

Asterhan, Schwarz and Cohen-Eliyahu (2014).   

Method  

Participants  

The participants were 496 Israeli ninth graders from large metropolitan areas (After studying the 

subject proportion ratio and percentages). 16 groups were formed with different conditions for each 

group: individual or pair work, with or without weighing condition (the hypothesis testing device). 

Students were paired according to their initial solution strategies, in order to create varied social 

settings based on differing initial cognitive levels. Three strategies were focused on: Students with 

additive strategies (N=196), students with proto- proportional strategies (N=194) and students with 

proportional strategies (N = 106).       

Tools  

The Blocks tasks were designed according to three aforementioned conditions in the field of 

mathematics, and its aim was to facilitate learning (i.e. conceptual change) of ratio and proportion, as 

follows: (a) The task enables collaborative or individual work. (b) There is a tool (scales) with which 

one may check (or not) whether hypotheses are correct. In other words, students receive feedback on 

their solutions by using scales (c) The task allows the activation of a variety of strategies by which 

students may be differentiated according to their levels of thinking, which may facilitate teaming 

them up according to their levels of proportional thinking. In each task students are shown 4 three 

dimensional blocks constructed from bricks (A,B,C and D). They are told the bricks in A and C is 

identical (the same weight = the same color) and the same is true for bricks in B and D. In each trial, 

students are given information about the relation between the two base block constructions A and B 

(A is heavier than B, B is heavier than A, or they are of equal weight). They are asked to determine 

the relation between the weights of the two target blocks, C and D, choosing one of the following 



four options: “C is heavier than D”, “D is heavier than C”, “They are of the same weight”, or 

“Impossible to determine”. They are required to provide a verbal explanation for their choice. 

 

Figure 1: Blocks Task 1 

In the current study seven configuration of the Blocks tasks had been designed. The design was aimed 

at leading wrong reasoning strategies to wrong answers. For example, a student using Visual 

explanations typically would claim that “it has less bricks in it". A student adopting an additive 

reasoning strategy would use an explanation such as "when B has 6 more bricks than A, A and B 

weigh the same. D has 13 bricks more than C so D weighs more than C."  A student adopting a proto- 

proportional reasoning strategy would typically draw a wrong conclusion: For example, he would say 

"B has more bricks than A but they have the same weight so each brick in A is heavier than single 

brick in B. C is 13 bricks less than D but each bricks weigh more so it's impossible to decide."  

Students adopting a proportional reasoning strategy would typically predict the right conclusion that 

C weighs more than D. They would say something like, "10 bricks in A(10a) have the same weight 

as 16 in B(16b) i.e. one single brick in A weighs 1.6 times one single brick in B a=1.6b. so 24 bricks 

in C weigh 24*a=24*1.6b  = 38.4b that is more than 37b bricks in D." We see then that the Blocks 

task was designed to lead students with inferior strategies to give wrong answers.  

Procedure  

The current study consisted in three stages: pre- test, intervention and post- test.  

Stage 1: Assessment and selection– pre-test. Five Blocks Task Test was administered in pen-and 

paper format to all students in the ninth grade classes to assess their initial level of proportional 

reasoning. In each tasks the blacks' constructions (A, B, C and D) were presented to the class and 

trained research assistants called aloud the instruction. According to their initial reasoning strategy 

students were arranged in order to create socio-cognitive conflicts. 

Stage 2: Learning stage. Students were asked to solve collaboratively two different Blocks Tasks 

according to the aforementioned condition. They were provided a collaborative and argumentative 

script: The dyads asked to solve the tasks together. they were invited to collaborate and to argue with 

each other. Additionally, students that work with hypothesis testing condition get a scale after they 

finished each task to check their answer. An experimenter helped them to put the blocks constructions 

(C and D) on the scale and told them the correct answer, and asked them to explain it. All students, 

dyads or individuals with or without hypothesis testing device, were interviewed while this stage by 

trained research assistants who, repeated the instruction again and asked the student to explain their 

answers.  

Stage 3: post – test the student answered the five Blocks Task Test again individually.       



All the participants completed the three stages in less than one month.  

Results 

Over the entire sample, it appears that in all conditions, conceptual learning was attained. T–test 

showed significant results in compering differential from pre-test to post-test to zero.  

Analyses were conducted with a mixed model (SAS PROC MIXED) with random effects of dyad 

within condition and of individual within dyad and condition. Differentials means and standard 

deviations between pretest and posttest performance per condition are reported in Table 1. 

Pairing condition 

 Single Peer Sum 

With 

Feedback 

0.22 

 

(.06) 

0.28 

 

(.03) 

0.25 

 

(.04) 

No 

Feedback 

0.17 

 

(.06) 

0.10 

 

(.03) 

0.13 

 

(.04) 

Sum  0.19 

 

(.04) 

0.19 

 

(.02) 

 

Table 1: Differentials mean (and SD) between pretest and posttest scores on the 

BlocksTask (N=488) 

There is significant different between Students who worked with feedback (single or peer) (M=.25, 

SD=.04) and students who worked without feedback (single or peer) (M=.13, SD=.04). The results 

confirmed that hypothesis-testing improved learning (F (1,422)= 5.10 p= 0.024). But in general there 

is no advantage to work with peer over individual work.   

Further analyses were made in purpose to reveal what accord in different pairing condition. Focusing 

on students who lacked full proportional reasoning, non-Proportional students (Proto – proportional 

students (ProtoS) and additive –students (AddS)). Differentials means between pretest and posttest 

and standard deviations performance for non-Proportional students are reported in Table 2.  

 Pairing condition 

  single The 

same 

strategy- 
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Different 

strategy-  
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With Feedback 0.20 

(.08) 

0.12 

(.06) 

0.16 

(.08) 

0.58 

(.06) 

0.26 

(.03) 

No Feedback 0.22 

(.07) 

-0.02 

(.06) 

0.22 

(.08) 

0.24 

(.07) 

0.16 

(.03) 



Sum  0.22 

(.05) 

0.05 

(.04) 

0.19 

(.05) 

0.41 

(.05) 

 

Table 2. Differentials mean (and SD) between pretest and posttest scores for non-

Proportional students (N=382) 

There is significant different between non-Proportional Students who worked with feedback (single 

or peer) (M=.26, SD=.03) and students who worked without feedback (single or peer) (M=.16, 

SD=.03). The results confirmed that hypothesis-testing improved learning (F (1,239)= 4.13 p= 0.043). 

In addition, Focusing on the non-Proportional students revealed that apart from the hypothesis-testing 

condition, there is significant affect to the pairing condition ((F(3, 225)=10.98, p<.0001). and the  

Tukey-Kramer post hoc test showed that most efficient pairing was with a partner with full 

proportional reasoning. The interaction between the hypothesis-testing condition  and the pairing 

condition is significant (F(3,225)= 3.22, p=0.024). The Tukey-Kramer post hoc test showed that with 

feedback condition students who worked with student who reached proportional reasoning gained 

more than student who worked with any other pairing. But, without feedback condition the result 

wasn't significant.  

We present here the example of two students, Ido and Shira, and show how the design of the task 

helped them advancing their strategies in proportional reasoning. Ido and Shira both started, 

according to their pre-test, in a proto-proportional stage. Neither of them had a fully proportional 

answer to any of the tasks, but they were well aware of the importance of looking at each of the cubes 

separately. After the interaction, they both progressed: Shira gave one full-fledged proportional 

answer and Ido, two. Right from the start, elements of the proportional discourse were apparent in 

both Shira and Ido’s interaction.  Interestingly, the additive discourse co-existed with elements of the 

proportional discourse all through the interaction about the first task (see figure 2). Thus, for instance, 

Shira first suggested an additive argument:  

24 Shira: I think, I think this (C) is bigger than this (D) because here they tell us that this (A), 

no, sorry, because here they tell us that this (A) is smaller than this (B) although here (A) there 

are more, but only by one cube more, so if here (C) there is more in three cubes, so that says 

that this (C) is big. 

Ido, on the other hand, starts referring to multiplicative routines: 

25 Ido: Look, if you take- this (A) is 11, this (A) is bigger than this (B) by 1 and here (C) it’s 

bigger times 3 than this (A) 

26 Shira: right 

27 Ido: yeah, try multiplying both of them by 3 and you’ll see what happens because it’s thirty 

something. 10 times 3 is 30 so 10 times 3 is 30 and 11 times 3 is 33. If you multiply it by 3 it 

comes out 33.  

28 Shira: oh, so, like I got it, I got it, so here it’s one 

29-30 Ido: and thirty one, two… that means if you put this (A & B) times 3 you’d get here 33 

and 30 and if you add another one to each one of them so it will be 34 and 31. 



Figure 2 :Learning stage Blocks Task 1 

Interestingly, Ido and Shira’s solution, though not accurately proportional (Ido found a linear 

relationship between the block structures, not a proportional one), still leads the two students to a 

correct solution. In other words, it leads them to predict that C < D (by preserving the linear 

relationship), and the scales do not contradict it. Thus, there is no resistance of material agency. 

During the second phase (where 10Acubes = 12Bcubes), it is Ido’s disciplinary agency (that is, the 

previous mathematical knowledge obtained by Ido) that resists the additive discourse. The pair starts 

out by trying to implement the successful routine that they had employed in the first task: 

106 Shira: Now, OK here there are 10, can you show me the calculation again? This (A) times 

3. 

After some calculations, Ido realizes this solution brings them to a dead end: 

115 Ido: OK, look, we multiplied both of them times two, it (A) turned out 20 and this (B) 

turned out 24. Now, if we add to both of them 3, you get this (B*2) plus 3 gives 27 like this 

(D) and this (A*2) plus 3 gives 23, it didn’t get to 24.  

According to this linear relationship, Ido and Shira agree that C and D are not equal. However, they 

do not have a way of determining which block (C or D) is heavier. This, because the only way they 

know to use the linear relationship is by applying it to affirm the relationship between the C and D 

blocks stays the same as between A and B. Realizing that the former routine does not work (resistance 

from disciplinary agency), Shira goes back to the additive discourse: 

120 Shira: so look here (C & D) this is by 3 more (meaning D has 3 more than C) and here (A 

& B) it’s only by 2 more (meaning B has 2 more than A), get it? 

After quite a long discussion (24 turns), Shira convinces Ido of her additive solution. But as she writes 

up her argument on the paper, Ido continues calculating numbers. The experimenter turns Shira’s 

attention to that and Ido explains to Shira: 

147 Ido: look, this (A) is 10 and here (B) it’s 12. Just saying, I’m not saying it’s true but let’s 

suppose each mass here (A) is 3 and here (B) each cube is 2.5 cause that’s less and they are 

equal cause 3 times 10 is 30 and also 2.5 times 12 is 30 and the weight between them is equal, 

but each cube is different like they said here. If you multiply to get to 24 you’ll get 72. If you 

multiply this (a cube in D) times twenty s… twenty.. 

148 Shira: Oh, I get it like 2.5 times 27. 

149 Ido: yes if you multiply you’ll get 67½ that means that C is bigger, (the) weight is higher 

than D, see? 



We can see that Ido changed his mind before the balance scales proved Shira’s additive solution to 

be wrong. We can only hypothesize why this happened. It seems the resistance that was most 

important here was that of disciplinary agency. Both Shira and Ido could not initially find a 

multiplicative routine that would satisfy them. But once such a routine was found by Ido, they happily 

switched to it, being aware all along of the appropriateness of the multiplicative discourse for the 

problem at hand. Ido and Shira were actively engaged in convincing each other and questioning each 

other’s solutions. Especially impressive was Shira’s attempt, once she was convinced by Ido’s new 

multiplicative solution, to critically examine her previous solution: 

181 Shira: so how could it be (true) if like this (covers one cube from the D structure with her 

hand so that there is a difference of only 2 between D and C) it’s equal and like this (raises 

her hand to expose the whole structure) it (C) is bigger? 

182 Ido: because the weight of the cubes is not the same. 

Shira is not convinced. She repeats her argument that D minus 1 cube equals C, but now Ido 

challenges this assumption: “who said it’s equal?” He then goes on to explain 

188 Ido: you told me that there are two points (probably means cubes) less so you add two 

here and another one but you don’t know, the two point here (A & B) and the two points here 

(C & D) are not the same. 

189 Shira: The mass is different, I get it. 

Thus, even though Ido is the main one to pursue the proportional solution and substantiate it, Shira is 

very active in her attempts to follow his logic, and to compare it with her own previous solution. Only 

then she is convince that the additive solution is invalid. 

Conclusion 

The Blocks task resulted in substantial learning which may be termed conceptual change, since under 

all conditions the students improved their solution strategies very significantly from the pre to the 

post – test. These are impressive findings that suggest the crucial role of design in triggering 

conceptual change. The additional results consistent with the assumptions based on previous 

researches (Schwarz and Lichevski, 2007) about the conditions that promote conceptual change.  The 

very rich dialogue between Ido and Shira revealed the crucial role of task design in triggering 

conceptual change that lead to learning. In the pre-test both student initial strategy were proto-

proportional reasoning. During the Learning stage (intervention) they both made a huge advance and 

promote their strategies reasoning to proportional as been founded in the post-test. The Blocks task 

design afforded and invited, as we saw in Shira and Ido very rich dialogue, a variety of reasoning 

strategies (Additive, Proto-proportional & Proportional). Shira and Ido considered those antithetic 

strategies by justify their claims and explain to each other their opinions this socio and cognitive 

conflict lead them to collaborate and argument in dyad and that lead to the desired conceptual change. 

Also in Ido and Shira case the scale's checking hypotheses "just" confirmed their solution. After the 

first task confirmation done with the scales, for Ido it was a trigger in the second task to continue 

searching for other option even if the AddS sound acceptable (120 Shira). The deep dialogue showed 

the power of the collaborative work, investigating each other ideas (an additive and a proto- 

proportional solutions) cause emerging of a new insight (proportional –solution). The case of Shira 



and Ido exemplifies the importance of collaborative and argumentative scripts, of a tool for receiving 

feedback (the scale), of the arrangement in dyads, but foremost of the design of the task that led 

students with inferior strategies to arrive to wrong conclusions, to check them with the scale and to 

revise them accordingly. In conclusion, as the statistical result and Ido and Shira's dialogue showed, 

the task design allows the use of variety of confronting strategies that may led to socio- cognitive 

conflict between the dyads. In the statistical result we find that gap between students play a major 

role.  Non-proportional students with hypothesis-testing condition is significantly advanced 

proportional reasoning when they work with proportional students. In Ido and Shira case also it 

looked they started with the same strategies we reveled in the rich dialogue gap between their 

strategies. when Shira used automatically additive strategy Ido looked for another option that explain 

his proto-proportional strategy. The hypothesis-testing condition that confirmed his first answer 

helped him to persist in finding satisfactory solution. 

 It seems that the next step is to expand the study to examine the effectiveness of the conditions 

defined in designing mathematical tasks in other areas.  
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In French speaking Switzerland, primary school teachers use uniform textbooks edited by the 

government. These official textbooks are specific, they provide a source of activities but do not give 

information about how to organize the teaching. In this context, it is interesting to observe how 

teachers choose and organize in-class activities, the different ways they use textbooks, and the 

consequences in the classroom. Our research is a case study, which is based on interviews with 

teachers and classroom observation. The analysis we will present in this contribution were conducted 

using the model of Robert and Rogalski (2005), which allows us to describe teachers’ choices as a 

coherent system that does not depend only on learning objectives but also on characteristics of the 

profession and on certain constraints. 

Keywords: teachers’ practice, textbooks, primary school, cross-analysis. 

Introduction 

School textbook is a field of research which has been widely increasing since the last three decades 

as described by Fan, Zhu and Zhenzhen (2013) survey study for the special issue of ZDM “Textbook 

Research in Mathematics Education”. The authors conclude this survey by suggesting future 

directions in this field of research: 

it is necessary for researchers to establish a more solid fundamental conceptualization and 

theoretical underpinning of the role of textbooks and the relationship between textbooks and other 

variables not only in curriculum, teaching and learning but also in a wider educational and social 

context” (Ibid, p. 643) 

The large-scale cross national research study TIMSS allowed us to have a wider vision on the role of 

textbook in connection with social or political issues as presented by Valverde and al. (2002) who 

analyze textbooks in terms of cross-national differences in educational opportunities “the 

configuration of social, political and pedagogical conditions to provide pupils chances to acquire 

knowledge, to develop skills and to form attitudes concerning school subjects” (Ibid, p. 6).  

Our contribution goes in this direction by presenting the results based on our PhD theses (Daina 

2013), which aimed to describe and analyze:  

 the social and political context in which the uniform textbooks are designed in French 

speaking part of Switzerland, known as “Moyens d’Enseignement Romand pour les 

Mathématiques”(MERM);  

 how five teachers in Geneva use this resource for mathematics, considering their “ordinary” 

practices.  



Our research brings a different focus on the question of the connections between social and political 

issues and teachers practices by considering a qualitative methodology and a theoretical framework 

which allowed us to understand the practice we observe as a complex but coherent system that is 

dynamic and does not depend only on learning objectives but also on characteristics of the profession 

and on certain constraints we can infer from the study of the context (Robert & Rogalski, 2005). 

Research design 

Our research is a case study, which is based on interviews with teachers and classroom observation. 

The data were collected from April to June 2009 in five classrooms in Geneva in two different 

schools. In every class, we collected the following data: an interview before the teaching sequence; 

the observations in class with video recordings of the various activities of the teaching sequence on 

the theme of area measure; an interview at the end of the teaching sequence.  

To understand the political and social issues connected to our context of study, we collected selected 

documents, which showed different aspects of the official textbook design process (institutional 

requirements, project design, review report, etc.) 

Theoretical frameworks and research questions 

Our project aimed to study how teachers use the textbook and prepare their lessons which is an 

“invisible” part of the teachers’ practices. In addition, we wanted to observe ordinary practices, with 

all the complexity implied. Therefore, to build our theoretical framework and our methodology we 

lean on two theoretical approaches: Margolinas’ model (2005) and the model of Robert and Rogalski 

(cross-analysis of the teacher’s activity). We did not combine this two framework, instead we asked 

different independent questions relating to these two theoretical frameworks which we study using 

tools and methodology from the relevant framework. In this presentation, we will focus on the second 

model and the results related to it. 

The model of Robert and Rogalski: Cross-analysis of the teacher’s activity  

This model combines two different approaches. Firstly, a didactic approach: teacher’s practices are 

linked with the learning objectives. In this sense, the knowledge content of the teaching and the way 

the teacher organizes his teaching are analyzed using a didactic theoretical framework. Secondly, a 

psychological approach from cognitive ergonomics: the teacher is considered as a professional whose 

practices are subject to a professional contract, with particular goals, repertories of action, 

representations of mathematical objects and their learning, and, more generally, personal 

competencies which determine his activity.  

Robert and Rogalski (2002) determined five dimensions to analyze teacher’s activity. 

- The cognitive and mediation dimensions which concern the set of teacher’s choices about the 

content and the organization of the knowledge before (cognitive dimension) and during the 

class-time (mediation dimension).   

The combination of this two dimensions allows us to trace what “kind” of mathematics is proposed 

in the class « la fréquentation des mathématiques qui est installée, ce qui est valorisé par les scénarios 

et leur accompagnement et ce qui pourrait manquer » (Robert & Rogalski, 2002, p. 514).  



This first part relates to the description of the teacher activity, then we would like to interpret and 

highlight what determines these practices. We refer to three dimensions: 

- The social, the personal and the institutional dimensions which permit to define the constraints 

and the personal aspects of each teaching project.  

These three dimensions are studied based on interviews, deduced from the observed teaching 

sequence and also from the study of the institutional and local context.   

This bring us the following research questions: 

- What type of mathematics is promoted by various teachers, according to different scenarios and 

their execution in different contexts? Which kind of logic of action can we observe? Are these 

practices compatible with the didactic and pedagogical choices of the MERM resource designers? 

- What hypotheses can be formulated concerning the dimensions (social, personal, institutional) that 

determine the teachers’ practices of our study? How do the MERM influence the observed practices? 

Method of analysis 

The analysis was realised according to the following stages:  

- A transcription of the lessons we observed was made using Transana, a software which allowed us 

to have permanently the video and the transcription on the same screen and give the possibility to 

introduce time codes and keywords. Referring to methodology used in various research using the 

double approach framework, we divide each lesson in temporal phases, which we call an episode and 

corresponds to a content unity.  

- The scenario of the whole teaching sequence was then reconstituted and analysed to clarify on the 

one hand what kind of mathematical content is presented during the teaching (cognitive dimension) 

and, on the other hand, the dynamics in which the content appear during the classes (mediation 

dimension). The episodes we defined in the first stage of the analysis were coded according to the 

mathematical content and the teaching strategies (for more details, see Daina 2013). 

- we wrote a report based on the interviews with teachers which allowed us to define the “profile” of 

each teacher, a synthesis of all the information we collected, which give information, among other 

aspects, on social, personal, institutional dimensions.  

Selected results 

French speaking Switzerland context and pedagogical resources 

Switzerland has a highly decentralized system with no federal or national Ministry of Education. Each 

of the 26 cantons which composes the country has its own education legislation. However, four 

Regional Conferences, including French-speaking Switzerland which is represented by the CIIP 

(http://www.ciip.ch), have led to some effective coordination since the last five decades, drawing up 

common curricula, publishing material, jointly managing institutions and recognizing qualifications 

and admissions.  

In the 1970s in all French speaking Switzerland a common official set of pedagogical resources, the 

MERM, was designed by the CIIP appointed group of experts and teachers from the different cantons. 

This first edition originates from a double necessity: a will of « inter-cantonal » coordination of 



education (mathematics but more widely all the disciplines) and the introduction of a new curricula 

(CIRCE I), linked with the reform of the "modern mathematics ". In the 1990s, modern mathematics 

were abandoned and the pedagogical resources have been renewed in the 1990s according to a new 

educational paradigm based on problem solving, strongly influenced by the socio-constructivist 

approach.  

Switzerland has therefore a long tradition of diverse cantonal educational policies but also the 

willingness to coordinate the educational system in order to facilitate in particular communication 

and student mobility. The MERM are the “symbol” of this process, especially in mathematics because 

they were the first to be done. In fact, the MERM are the result of a long process of discussions and 

compromises because they have to be approved and accepted by all the cantons of the French speaking 

part of Switzerland. It is necessary to allow three or four years to realize the MERM for one degree. 

We have to take into account this complex context in our observation and analysis of this resource 

(institutional dimension). The MERM must for example be compatible with all the plans of studies. 

They cannot thus be too prescriptive and require an opening. 

Besides, the pedagogical resources are central to the reforms and innovations regarding mathematics 

education and more than just simple resources, they have the role of promoting  innovation, in 

particular thanks to the teacher's textbook which describes the didactic and educational choices. They 

have to introduce the changes and harmonize the practices. This is also a critical element we have to 

take into account in our analysis (institutional dimension). 

The MERM have been thought as a set of resources, therefore they mostly consist of a succession of 

activities for class, regrouped in 6 to 8 main themes, without hierarchy. Contrarily to textbooks in 

other countries, they do not give a day-to-day organised plan for teaching, which remains the teachers’ 

responsibility. To do this, the teacher must provide a considerable amount of preparation prior to the 

lesson and our PhD theses aimed to study the ordinary practices in connection with this resource in 

order to make visible this essential part of the work of the teacher. 

Case study: Mathilde and Sophie 

To exemplify our methodology and present some results of our research, we will now present two 

examples of our case study. We will first provide the chosen information about their “profile”, which 

gives information about the personal and social dimensions. Then we will present and compare their 

teaching sequences.  

Mathilde and Sophie were both young teachers (4 and 5 years of experience) and they worked in the 

same school. The year of our experiment, they taught the same degree (6P) and they met twice a 

month and collaborated to develop mathematics lesson plans. Looking at the exchanges between the 

teachers during this meeting, we saw that they spoke little about the teaching objectives which seemed 

to be implicitly known and shared.  

Mathilde said that the textbook was the reference and did not feel the need to talk more about the 

objectives. She specified during the interview that her colleagues “trust” her concerning the choice 

of the activity because it’s impossible, according to her, to choose the activities in the textbook 

without assistance. Sophie also speaks about "trust" during the interview what shows the importance 

of the collaboration in the preparation, by filling what is felt as a "lack" of the resource. 



However, the study of Sophie’s and Mathilde’s profiles allows us to highlight that the objectives of 

both teachers are very different. For Sophie the calculating procedures in particular the introduction 

of the techniques of calculation of areas for triangles and parallelograms represent an important aim 

in the sequence. For her part, Mathilde considers that the main objective concerns the understanding 

of the notion of area and the formula to calculate the area of a square. Even though their objectives 

are different, this point remains implicit throughout their collaboration. 

The scenarios analysis and their carrying out in class will allow to see how will evolve the educational 

projects of the two teachers whose starting point, by the way, is the same list of activities. 

Figures 1 and 2 allow to have a global vision of Mathilde’s and Sophie’s scenarios. Mathilde provides 

a teaching sequence we analysed in three parts: an introductory session, three sessions dedicated to 

the area of square and rectangle and a session of introduction of the area of other polygons. This 

corresponds to what is proposed in the textbook.       

 

Figure 1 Mathilde’s scenarios 

The analysis of the series of activities proposed in Sophie’s classroom show a split teaching sequence 

where activity from the official textbook are often mixed with improvised tasks on the blackboard.  

 

Figure 2 Sophie’s scenarios 

We represented a structure in four parts: an introductory activity, a series of activities on the area of 

square and rectangle, an introduction in the measure of areas of the other regular polygons and a 

session of revision. 

Although Sophie and Mathilde based there teaching sequence on the same common project, we see 

well how both scenarios evolved. While the starting point is almost identical, the gap is widening in 

the course of the sessions, leading to differents mathematics promoted in each class (considering the 

cognitive dimension, Daina 2013). It is nevertheless interesting to note that in the interviews, 

Mathilde and Sophie did not seem conscious of these differences. 

The analysis of the first session, while Sophie and Mathilde proposed the same activity, “Fraction of 

a field”, allowed to see more in details this difference. 



8. Fraction of a field 

Father Joseph has a square field. He splits it 

using three ropes passing through the vertices or 

the midpoints of the sides. One of his sons, 

Francis, will inherit the grey part of the field. 

What fraction of the field will he receive? 
 

The table below synthesizes the succession of the phases during the carrying out of the activity in 

Sophie’s and Mathilde’s class. 

Sophie Mathilde 

Phases Duration Phases Duration 

Instruction 7 minutes Instruction 3 minutes 

Pupils work on the activity 6 minutes Pupils work on the activity 10 minutes 

Pooling 3 minutes Pooling 7 minutes 

Pupils work on the activity 3 minutes Aide mémoire 19 minutes 

Pooling 8 minutes Pupils work on the activity 39 minutes 

Parallel task on white board (interruption) 5 minutes   

pooling (reprise) 8 minutes   

Aide mémoire 4 minutes   

Parallel task on the white board (interruption) 8 minutes   

Here we see very clearly that, although the same activity was proposed to the pupils, its management 

in class is totally different between the two teachers (mediation dimension). 

In the class of Mathilde the number of phases is limited. The instruction is very short. During the 

pooling, the interactions testify of a discussion between the teacher and the pupils who have an active 

participation in advancing the discussion. Corrections are made individually. 

In the class of Sophie we observe at first a longer instruction time. Sophie testifies of a will to make 

sure that the pupils understand well « what they have to do ». The progression of the project is 

managed collectively. Sophie makes regular pooling in the course of which, she directs the pupils on 

a strategy of resolution which is going to become common. However, the task is also diverted on 

secondary tasks which are in connection with knowledge bound to calculate the area of 

parallelograms or triangles which are central objectives for her. Sophie’s more personal project enters 

thus in tension with the progress of the main activity which becomes a material medium to introduce 

new knowledge in a lecture style of teaching on whiteboard. 

We can thus observe a big variability in the practices of these two teachers. What is really questioning 

is that these differences do not seem to worry them and in spite of their various ways of functioning, 

the teachers find an interest to prepare together the teaching sequences. 

The space provided in this paper only allows to give a limited insight into our research result but 

some analysis made permit to identify tensions bound to the use of MER. The first cause of tension 

results from the “shape” of this resource. Indeed, the quantity of the activity proposed is too important 

and a novice teacher can’t know them all and make a real choice. As said in the introduction, there is 

no supplied sequence and not much piece of information given about each activity. This leads the 

teachers to follow what make other colleagues, even if sometimes they did not share the same 

objective and teaching strategy. Furthermore, as we show in the first part, the specific status of this 

resource will act as a strong constraint on the teacher who will use it to be in “conformity”, even if 



they do not follow the socio-constructivist approach and will finally distract from the goal of the 

activities. 
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A teacher documents how a task was used to elicit children’s knowledge of multiplication as a 

precursor to learning the long multiplication algorithm. Data include samples of children’s written 

work, and transcripts of two 30-minute lessons. Children discussed solution strategies. The teacher 

used time between the two lessons to select and sequence representative strategies to share. 

Strategies used by the children were diverse showing a range of multiplication-related knowledge 

among the children ranging from knowledge of repeated addition to knowledge of place value and 

the additive decomposition of numbers to various applications of the distributive property.  

Keywords: Long multiplication, problem solving, third grade, mathematics laboratory.  

Introduction 

A common pattern of mathematics teaching is for teachers to present a problem to children, 

demonstrate how to solve it, and then set similar problems for the children to solve applying the 

demonstrated strategy (Lyons, Lynch, Close, Sheerin, & Boland, 2003; Stigler & Hiebert, 1999). 

Calls have long been made for mathematics instruction to focus on teaching thinking strategies and 

to promote goals like creativity, forming and changing hypotheses, and reflecting on one’s own 

thinking and the thinking of others (e.g. Streefland, 1992). This case study describes one teacher 

using heuristics to introduce long multiplication to children who have completed third class.  

Children in Ireland learn short multiplication in third class and long multiplication in fourth class. 

The study describes and analyses work done over two days in a mathematics laboratory school 

which took place in July 2016 in Dublin. Two research questions are addressed in this study. First, 

what knowledge did children draw on to solve a long multiplication problem they had not been 

taught to solve? Second, what knowledge does the class possess that prepares the children for future 

work on long multiplication? The data consist of children’s written work and transcripts of two 30-

minute lessons on consecutive days.  

Theoretical framework 

Three research areas frame this study. The first is progressive schematisation or progressive 

mathematisation as inspired by the work of Freudenthal and Realistic Mathematics Education. It 

describes how children solve problems using their own ideas and informal strategies (Streefland, 

1992). These ideas and methods become more sophisticated as students begin to understand and use 

formal, more efficient algorithms (Treffers, 1987).  Although others have written about invented 

algorithms (e.g. Kamii, Lewis, & Livingston, 1993), Treffers (1987) formalises the process and 

refers to vertical mathematisation (where algorithms are reorganised and refined) and to horizontal 

mathematisation (connecting the mathematics to real-life) (Selter, 1998). The second area of 

research relates to the conceptual field of multiplication: the grounding of mathematical analysis of 

situations and problems, and the development of children’s ideas over time. It includes paying 

attention to children’s past and future learning to inform present learning (Vergnaud, 1988).   



The third area of research framing this study is the teaching of multiplication (Lampert, 1986). 

Lampert identifies four categories of knowledge used when learning mathematics: intuitive, 

computational, concrete and principled. Intuitive (or naïve) knowledge refers to how people in 

particular contexts invent ways to calculate in order to do their work; it may not transfer well to 

other contexts. Computational knowledge is procedural knowledge, like standard algorithms, that 

children typically use in school. Concrete knowledge is used when objects are manipulated to find 

answers. This may include rectangular grids which are sometimes used to compute answers to 

multiplication problems. Finally, principled knowledge is knowledge children can use, without 

necessarily understanding the meaning of what they are doing. Such knowledge might involve 

children drawing on principles such as place value, the commutativity of addition or multiplication, 

or the distributive property of multiplication over addition.  

This framework will help to identify stages in the heterogeneous work of a class (Selter, 1998) of 

children as they attempt to solve problems for which they do not have a solution. It will also help to 

categorise the knowledge that children used and shared in solving the problems.    

Method 

Participants 

Twenty-four children – 17 girls and 7 boys – were in the class which lasted for two hours per day 

over five days. The children had just completed third class in ten different schools and therefore 

could be expected to be familiar with short multiplication but not to have worked on long 

multiplication. The mathematics laboratory class was taught by the author and was observed by 

twenty-five teachers who were completing a summer course in mathematics. Although several 

topics were taught in the summer school, the focus of this study is on the introduction of long 

multiplication. A word problem was chosen from Van de Walle: “The parade had 23 clowns. Each 

clown carried 18 balloons. How many balloons were there altogether?” (Van de Walle, 2001, 

p.182). Children worked on this problem collaboratively in pairs; they were encouraged to solve the 

problem and to be prepared to justify their solution. 

Data analysis 

Two data sources were used: samples of children’s written work and transcripts of dialogue from 

the lessons. Children did their written work in squared exercise books using black pen to ensure that 

they would not erase work they were unhappy with or that contained errors. This rationale was 

shared with the children. All lessons were video recorded by two cameras – one focused on the 

children and one focused on the teacher. The videos were used to prepare lesson transcripts.  

The research questions relate to the knowledge used by the children and available to the class as a 

resource for future learning. All children’s written work completed in response to the problem was 

studied and compared to ensure that samples of every approach used were represented in the four 

samples of work selected for more detailed analysis. The chosen work samples were subsequently 

analysed to identify categories of knowledge that were evident in the work. The four categories 

outlined by Lampert (1986) guided this analysis. The transcripts were analysed for evidence of 

student mathematical knowledge. Although the categories identified by Lampert informed this 



analysis, the analysis was open (Corbin & Strauss, 2008) so references to knowledge not covered by 

the four categories could be identified.   

Results 

Lesson plans 

Children were asked to work on the multiplication problem in pairs. The following day the plan was 

to continue working on the same problem. Prior to lesson 2, the author (as teacher) looked at the 

children’s work to select and sequence four approaches to share with the entire class. The strategies 

selected involved repeated addition, repeated addition with some multiplication, multiplying using 

partial products and an attempt at the standard algorithm for long multiplication. The lesson plan 

refers to a pictorial representation of the problem that would help the children get an understanding 

of the dimensions of the problem. This was introduced in response to a similar approach used for 

various scenarios by Lampert (1986). The lesson plan concluded with the intention to ask the 

children to independently solve a second long multiplication problem.  

Day 1 

The calculation was embedded in a word problem referring to a setting familiar to most children in 

the culture – many clowns each holding several balloons. Two two-digit numbers needed to be 

multiplied. The combination of relatively low two-digit numbers and the concrete image of clowns 

with balloons made it relatively easy for children to draw the scenario if they decided to do so. After 

a class discussion of the problem conditions, children worked on it in pairs for seventeen minutes. 

The teacher circulated among the children monitoring the work of pairs. Teachers participating in 

the summer course walked around the class observing the children working. Although they were 

asked not to interact with the children, on one or two occasions some did.  

After the children had worked in pairs, the teacher asked one pair of children – Sandra and Lisa – to 

tell the class how they went about solving the problem. They had added eighteen and eighteen to 

make thirty-six. Then they added another eighteen. The teacher asked the class if this strategy were 

implemented properly, would it yield the correct answer, and based on their responses reminded 

them of the need to be systematic in recording their work. 

Two more children, Chuck and Róisín, shared a different approach. They wrote down twenty-three 

eighteens and multiplied twenty-three by eight and twenty-three by one. This represented an 

understandable mistake, forgetting that the one digit in the eighteens represents ten rather than one.  

At this stage the teacher adjourned the discussion and moved to another mathematical topic. Having 

concluded that part of the work for the day, the teacher could examine and reflect on the children’s 

work in order to select and sequence material for discussion in the following day’s lesson.  

Day 2 

Overnight the teacher looked at each child’s work. No one had successfully used the long 

multiplication algorithm suggesting that, as expected, it had not been taught to the children prior to 

the summer school. Four examples were selected and sequenced in a way that was anticipated to tap 

into the children’s current understanding, to show increasing efficiency or sophistication of 

solutions – progressive mathematisation – and to prepare the children for subsequent work on long 



multiplication. Although all children had worked in pairs, work to be shared was selected according 

to the clarity of the work recorded in individual children’s copybooks.  

First was Christine who had used a straightforward repeated addition approach. She had a pictorial 

representation of the problem with twenty-three faces and eighteen balloons over seven of them (see 

Figure 1). Next was Donal who had no pictorial representation but who also used a repeated 

addition approach. He had grouped ten eights where possible to multiply them and had multiplied 

twenty-three by ten (see Figure 2). Third was Fintan who solved the problem by calculating ten 

eighteens, another ten eighteens and three eighteens and then added the three calculations (see 

Figure 3). All three students had the correct answer of 414. The fourth student, Eileen, got the 

wrong answer but the strategy used seemed closer to the standard long multiplication algorithm. She 

wrote an account of what she did and of how she was thinking rather than just recording the 

calculation. She multiplied the three from twenty-three by the eight in eighteen and got twenty-four. 

She then multiplied twenty by ten to get two hundred. She refers to multiplying two by one and it is 

unclear if that is a precursor to multiplying twenty by ten (see Figure 4). 

Despite the fact that Christine had set up the calculation to be solved using repeated addition (see 

Figure 1), she stated that to solve the problem she and her partner “drew a picture and we did loads 

of dots and we counted them all up.” When challenged by the teacher about the repeated addition 

work in her copy, Christine responded that “I had a long sum but that didn’t really work because I 

kept on losing count.” This provided an opportunity to discuss a problem that arises with repeated 

addition, and to prepare the class for seeking more efficient ways to calculate using long 

multiplication. The teacher did not ask Christine why it was easier to keep track of counting the 

balloons individually than adding 18 twenty-three times and that may have yielded information 

about a system she had developed to keep track of the balloons already counted.  

Donal had a more sophisticated way of working with repeated addition (Figure 2). Although his 

layout of the problem looks similar to Christine’s, he approached it as follows  

(8x10) + (8x10) + (8x3) + (10x23) 

In solving it this way Donal and his partner showed understanding of the distributive property of 

multiplication. They noted that the ones in the eighteens represented tens and not units. However, 

Donal’s written recording of the work and his oral explanation of it suggests that he was not yet 

familiar with multiplying numbers by ten. In contrast, his classmate David stated that “When I’m 

multiplying by tens, I just add on another zero at the end of the number.” Although the wording of 

“adding” another zero may not be helpful, he is referring to the fact that multiplying a number by 

ten shifts each digit one place to the left requiring zero as a placeholder in the units place.  

A more condensed understanding of the distributive property was apparent in Fintan’s work (Figure 

3). Unlike Donal or Christine he did not write out the calculation using repeated addition. Nor did 

he separate the tens and units in order to complete his calculation, which took the following form: 

(18x10) + (18x10) + 18 + 18 + 18 

Fintan sees his approach as being similar to Donal’s and he states that “we basically did the same as 

Donal; we used hundreds, tens, and units.” However, whereas Donal’s approach was limited by 



apparently not being able to multiply two-digit numbers by ten, Fintan was able to make the 

calculation more efficient by multiplying eighteen by ten.  

When the children were asked where the twenty-three (clowns) could be seen in Fintan’s strategy, 

two children (Katherine, Ethna) found it difficult to identify. One, Doireann, successfully 

constructed an explanation with the teacher in the following exchange.  

Doireann: So the eighteen times ten is done twice. So that would be like twenty there. And 

then… 

Teacher: So, you’re saying that this is ten clowns with eighteen balloons, and this is another 

ten clowns with eighteen balloons.  

Doireann: Yeah.  

Teacher: Is that what you’re saying? 

Doireann: Yeah.  

Teacher: Okay. And what then? 

Doireann: And then if you add that together that’s twenty… 

Teacher: Twenty clowns with eighteen balloons.  

Doireann: Yeah, and down the bottom there, it’s three eighteens. Add them onto the twenty 

and it’s twenty-three.  

When asked to choose a preferred strategy from those presented by Christine, Donal and Fintan. 

Four children preferred Fintan’s approach on the basis that it is quicker and it requires less writing. 

Two claimed to prefer the repeated addition approach because it looked less complicated.  

When children solved the first long multiplication problem, twelve of them used a variation of 

repeated addition, three used a form of the distributed property, three a variation of the conventional 

algorithm, the work of three children was unclear and one used counting. Following the discussion, 

seven children used repeated addition, four used a form of the distributive property, five used a form 

of the conventional algorithm, the work of six students was unclear and one used counting. 

Finally, Eileen was asked to share her approach. Initially she stated that she and her partner got the 

wrong answer. After reassurance from the teacher that the class could learn from the wrong answer, 

she shared her approach. She writes that “in her head” she laid out the problem as it would be laid 

out in the conventional algorithm for long multiplication. She multiplied the three units by the eight 

units and got twenty-four. Then she multiplied the two tens (of twenty-three) by the one ten (of 

eighteen). She added them together and got 224. Although the teacher sequenced Eileen’s strategy 

after Fintan, it is conceivable that her understanding is more naïve than his because she may have 

been attempting to apply the algorithm for short multiplication to long multiplication without really 

understanding the distributive property. Nevertheless, it provided an opportunity for the teacher to 

introduce an illustration of the distributive property of multiplication to all children.  

Eileen failed to multiply the eight by twenty and the ten by three. In order to help her and her 

classmates visualize this, the teacher proposed a drawing of the scenario based on Lampert (1986). 

In this drawing (see Figure 5) twenty clowns were on a bus travelling to the parade and three clowns 



had to walk because there were only twenty seats on the bus. Twenty strings with balloons on them 

could be seen emerging from the bus, each string with one group of ten and one group of eight and 

the three clowns outside the bus held similar strings of balloons.  

The class was asked how they could calculate the number of balloons held by the clowns altogether. 

The idea of the picture was to make it clear that the numbers that need to be multiplied are (20x10), 

(20x8), (3x10) and (3x8). The first two calculations correspond to the clowns sitting in the bus with 

the strings containing ten balloons and eight balloons and the second two calculations correspond to 

the clowns standing outside the bus holding strings with ten and eight balloons on them. The 

diagram helped children see that Eileen had neglected to calculate the (20x8) and the (3x10).  

Discussion and conclusion 

That multiplication was the operation needed to complete this task was uncontested by the children. 

In solving the problem, they drew on different categories of mathematical knowledge. Some relied 

on intuitive, context-specific knowledge and drew versions of the clowns in order to solve the 

problem. Computational knowledge of multiplication was widely held, as would be expected by 

children who had completed third class. Although occasional errors were made, children had access 

to multiplication table cards if they wanted them so that even a lack of computational knowledge 

would not pose a barrier to solving the problem.  

Little evidence of the children using concrete knowledge emerged in the lessons. This may have 

been because no manipulable objects were made available to them to help them find an answer. 

Some children may have used the diagrams they drew as a form of concrete knowledge to support 

their solution but that is unclear from the data sources used.  

Much evidence of principled knowledge emerged from the children. Donal and David showed 

understanding of place value, by separating the tens and the eights in eighteen (Donal) and in stating 

how numbers can be easily multiplied by ten (David). Several children had a tacit knowledge that 

numbers can be decomposed additively and of the distributive property of multiplication (e.g. 

Donal, David, Caitlin, Fintan and others). The teacher attempted to make this aspect more explicit 

by introducing the diagram with the clowns in and beside the bus. Students like Eileen have some 

understanding of the distributive property but it needs to become more explicit if she and others are 

to be ready to apply it in taking the next step to understand and use the long multiplication 

algorithm automatically. They need to grasp the principle that (a+b)*(c+d) requires multiplying a by 

both c and d and multiplying b by both c and d and not just multiplying a by c and b by d.  

At the end of the week around fourteen children were still either using repeated addition for similar 

multiplication tasks, using counting or not showing evidence of how they found their answer. Nine 

showed willingness either to apply the distributive property of multiplication or to at least attempt 

the conventional algorithm. Of those who were still applying the repeated addition algorithm, four 

had become more sophisticated in using it (moving closer to Donal’s approach than to Christine’s) 

following the class discussion documented here. This highlights the importance of children learning 

from each other through working on and explicitly discussing their completion of a task.  



 

 Figure 1. Christine’s work.  

 

Figure 2. Donal’s work.  

 

Figure 3. Fintan’s work.  

 

Figure 4. Eileen’s work.  

 

 

Figure 5. Visual representation of long multiplication problem. 

Half the children used a form of repeated addition to solve the problem. However, additive 

reasoning differs from multiplicative reasoning (Nunes & Bryant, 1996). It remains unclear from 

this study if children reverted to additive reasoning because long multiplication was unfamiliar to 

them or if they have made the leap from additive reasoning to multiplicative reasoning at all. Future 

study could involve assessing children’s grasp of multiplicative reasoning in short multiplication 

scenarios (Sherin & Fuson, 2005), exploring the use of arrays (Fosnot & Dolk, 2001) and 

introducing long multiplication tasks that would more likely elicit responses that exhibited 

multiplicative reasoning.  
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This paper reports on a research project undertaken with a group (n=19) of Irish pre-service 

student teachers (PSTs) during the third year of a four-year undergraduate education course. A 
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pedagogical design capacity and showed evidence of developing curriculum-making competences. 

The research highlights the need for PSTs to work together on evaluating and designing tasks.   
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Introduction 

This paper reports on a research project undertaken with a group (n=19) of Irish pre-service student 

teachers (PSTs) during the third year of a four-year undergraduate education course. A series of 

workshops were carried out on the critical evaluation and design of mathematics tasks. For the 

purpose of this research a ‘mathematical task’ is a problem or set of problems that address a specific 

mathematical idea, they are situated between teaching, learning and assessment (Smith & Stein, 

1998). The types of tasks that students engage with have been shown to influence their development 

(Jonson et al., 2014), and studies have shown that students spend the majority of their time in 

mathematics classes working on tasks (Boston & Smith, 2009; Haggarty & Pepin, 2002). 

Furthermore, Smith and Stein (1998) asserted that the highest learning gains in mathematics were 

related to the how mathematics tasks were set up and implemented in teaching and highlighted the 

importance of students being engaged in high levels of cognitive thinking and reasoning (see also 

Swan, 2011; Boston, 2013). Many challenging questions arise from this assertion for pre-service 

mathematics teachers, such as, what is a good learning task? How is a good learning task set up? 

How is it implemented in a mathematics classroom? These questions are especially relevant in 

Ireland, given that a report on mathematics education found that traditional approaches to teaching 

and learning were widespread and recommended that students engage with more tasks which 

require higher order thinking skills such as problem-solving and justification (Jeffes et al., 2013). 

Research questions 

In what ways did pre-service teachers’ knowledge of the cognitive demands of mathematical 

tasks change following their participation in a module on critical evaluation and design of 

mathematical tasks?  

How did this knowledge impact on their competences in curriculum making?  

In this paper we present a review of some key research on mathematics task design. We provide an 

overview of the module implemented as part of the research project and the methodology used to 



collect data. We present the key findings from the research and discuss the salient themes emerging 

as they pertain to pre-service teacher education. Finally, we summarise our recommendations and 

conclusions.  

Literature review  

The dependence of mathematics teachers on textbooks in their teaching appears to be a phenomenon 

in many countries (Haggarty & Pepin, 2002; Jeffes et al., 2013.). Haggarty and Pepin (2002) write 

about the dominance of the textbook in the mathematics classroom and conclude that without time 

to prepare for teaching, and, we would add, the skills to enrich the curriculum materials available, 

textbooks take on a prominence in “relation to teacher thinking and planning” (p.588). This is of 

concern as a recent review of mathematics books in Ireland found that all available books fell short 

of the standard needed to support mathematics teaching at that time and furthermore they especially 

fell short on the integration of technology, approaches to teaching for understanding and problem 

solving (O’Keeffe & O’Donoghue, 2011).  

Synder, Bolin and Zumwalt (1992) describe three teacher curriculum approaches: the fidelity 

approach, where teachers are transmitters of the written curriculum without changing it; the 

adaptation approach where the teacher adapts the curriculum to suit their context; and the 

enactment approach where the teacher develops the curriculum in action depending on the student 

experience.  Shawer (2010) builds on this work and identifies curriculum-transmission strategies 

where the textbook and teacher’s guide are the source of pedagogical instructions. He describes 

curriculum-making strategies as where the teacher develops their own materials in addition to those 

available in response to a needs assessment. Curriculum-development strategies on the other hand 

include experimentation, material writing and evaluation and involve both macro and micro level 

curriculum development. Within the Irish education system opportunities for curriculum-

development strategies are limited since the curriculum is centrally devised with little space for 

school-based curriculum development, this coupled with a teaching culture that has a dependence 

on textbooks would point to a need for PSTs to engage with research on task development.  

Studies have previously looked at this issue as part of professional development courses for in-

service teachers. For example, Boston and Smith (2011) describe a task-centric approach to such 

courses where the focus is on teachers’ ability to select and implement cognitively demanding tasks. 

They found that after a series of workshops, where teachers analysed both the cognitive demand of 

tasks and the implementation of tasks, the participants increased their ability to select high-level 

tasks and this improvement was sustained over time. The workshops also influenced teachers to 

consider the impact of the tasks they selected on their students’ learning (Boston, 2013). Arbaugh 

and Brown (2005) used a similar approach and found that introducing teachers to criteria for high-

level tasks influenced their task selection, and ultimately their pedagogical content knowledge.  

A number of different frameworks have been developed to classify mathematical tasks and have 

proved useful in research, professional development and pre-service teacher education (Boston & 

Smith, 2011). In this research we used three different but complementary frameworks with the 

participants.  The first framework is that of Smith and Stein (1998) which looks at the level of 

cognitive demand (LCD) of tasks. They identify two levels of LCD: Lower-level demands (with 

task types of Memorization and Procedures without connections to meaning), and higher-level 



demands (Procedures with connections to meaning and Doing Mathematics). The distinction 

between tasks is relevant, as the level of cognitive demand in a task provides different learning 

opportunities for the learner and demands a different learning environment for the development of 

competences required by the task. Our second framework is the mathematical reasoning framework 

developed by Lithner (2008). This framework can be used to classify the opportunities for different 

types of mathematical reasoning afforded by tasks. Lithner (2008) describes two types of reasoning: 

Imitative Reasoning which consists of Memorised reasoning and Algorithmic reasoning; and 

Creative Reasoning which involves local and global Creative mathematically founded reasoning. 

Creative reasoning tasks fulfil the criteria of novelty, plausibility and mathematical foundation. 

Lithner (2008) is concerned with how tasks can be used to promote creative reasoning as opposed to 

imitative reasoning. He contends that the teacher’s task is to “arrange a suitable didactic situation in 

the form of a problem” (p.271) so that the learner can take responsibility for the problem solving 

process, and use creative reasoning.  

These two frameworks can be used to classify tasks using either the degree of cognitive effort 

required or the type of reasoning needed.  They both divide tasks into two broad categories - either 

high or low levels of cognitive demand in the case of Smith and Stein (1998) or imitative or creative 

reasoning in Lithner (2008). They have been used in professional development to alert teachers to 

the effects of different types of tasks (e.g. Arbaugh & Brown, 2005). In order to help the PSTs to 

move from classifying tasks to designing them, we introduced a third framework. Swan’s 

framework (2008) describes five task types that encourage concept development and provides very 

clear design principles to inform task development and implementation. There are many examples 

of Swan’s mathematics tasks available on-line (see, for example, Mathematics Assessment Project, 

n.d.). The five task types that he posits will encourage concept development are: classifying 

mathematical objects, interpreting multiple representations, evaluating mathematical statements, 

creating problems, and, analysing reasoning and solutions.  

Methodology 

Nineteen pre-service teachers in the second semester of year three of a four-year post-primary 

teacher education course took part in the research project. At the time of the research the PSTs were 

midway through their second school placement experience and were teaching a minimum of two 

hours per week.   All participants were taking mathematics in their degree and one other science 

subject (either biology, chemistry or physics). The research is presented as a case study using mixed 

data collection methods looking at the group of PSTs as a whole, over a sustained period of time as 

they developed competences in task design (Yin, 2009).  This allowed us to build on earlier research 

(Boston, 2013) and incorporate PSTs reflections on the design process.  Jones and Pepin (2016) 

contend that when teachers interact with mathematical tasks, they develop knowledge; this is done 

individually in preparing and planning for teaching and collectively when they are afforded 

opportunities to develop and discuss tasks with peers. In designing curriculum materials PSTs need 

both subject matter knowledge (SMK) and pedagogical content knowledge (PCK) (Ball, Thames & 

Phelps, 2008). With this in mind we designed a module for the group of PSTs based on task 

evaluation and ultimately task design. 



In order to investigate any gain in knowledge for the group over the course of the intervention, we 

administered a pre- and a post-test designed by Boston (2013). This test asked students to classify 

16 tasks as either High Level or Low Level tasks, and to give a rationale for their choice. At the end 

of the module, the pre-service teachers were asked to complete an evaluation questionnaire which 

asked them: to report on a key learning moment during the module; whether their teaching had 

changed as a result of the module and if so, in what way; what they would change about the module; 

and to indicate their level of agreement with some statements about the reading from the 

Mathematics Education literature. 13 of the 19 students submitted the evaluation questionnaire.  

The assessment for the module consisted of the assignment outlined in Figure 1. All 19 pre-service 

teachers submitted this assignment and gave their consent to use it for research purposes. The tasks 

designed by the PSTs were analysed using the LCD and Lithner Frameworks. The classification was 

conducted by two researchers who were familiar with the curriculum, assessment, and textbooks 

relevant to the classes taught by the PSTs. The researchers used their knowledge to decide if (in the 

context of the PSTs’ classes) the tasks should be classified as either high or low level tasks. We also 

looked for evidence that PSTs employed aspects of Swan’s (2008) framework in their design. A 

general inductive approach as advocated by Thomas (2006) was taken to analyse the students’ 

reflections on the differences between types of tasks. Analysis was guided by the research questions 

and a number of a priori themes (such as MKT), allowing flexibility for other themes to emerge.   

Task Development  

For a topic of your choice design (or significantly adapt) a series of tasks. One task/s should 

be suitable to be used in class while teaching, and, one for use as homework. Design an 

examination task/s for the topic. Present your rationale for each task based on your readings. 

Reflect on the differences between classroom task, homework task and examination tasks. 

Figure 1: End of module assessment  

Findings 

PSTs’ specific learning about cognitive demands 

Thirteen participants completed the Boston (2013) pre- and post-tests on levels of cognitive 

demand; a paired t-test was used to investigate whether the mean of the group had increased 

significantly over the course of the module, and found that it did (p=0.037). There was also 

evidence for PSTs developing knowledge about cognitive demand in their response to the question 

on the end of module evaluation asking what was their key learning moment.  

Realising the different reasoning and thinking about the type of question. In the textbook, where 

homework is usually given from, questions are repeated, low demand. In the maths exam 

students are faced with high level conceptual questions so there is a big gap there that needs to be 

addressed. (S14) 

Here we see that S14 is noticing the level of demand and reasoning in the artefacts available to them 

in their teaching, the textbook. This text-guided Algorithmic Reasoning (AR) is supported and 

encouraged by the rote use of the textbook for homework (Lithner, 2008). The recognition of this by 

the PSTs was notable in many comments such as: 



Having completed this module, I seriously consider what I give my students as homework. 

Beforehand I generally gave a list of questions at the end of the chapter but now, having seen the 

different levels, I generally spend more time selecting and developing questions …. (S16) 

The PSTs seem to be linking the levels of cognitive demand with the level of reasoning required, 

bringing the two theories together in their own thinking about the mathematics curriculum and 

assessment. The knowledge of the different frameworks is enabling the PSTs to move from a role of 

curriculum transmitters dependent on the text book to being curriculum makers as described by 

Shawer (2010).  

Pedagogical design capacity and moving from curriculum transmission 

The analysis of the PSTs’ end of module assignments gave further evidence of them making this 

transition. All students showed that they were able to design or modify tasks to get high level 

questions. The PSTs classification of their tasks using the LCD and reasoning frameworks 

demonstrated that they were competent in using the frameworks for classification.  

We noted the types of tasks designed by the PSTs for the three different situations of classroom 

tasks, homework tasks, and examination tasks. The types of tasks designed seemed to fall into two 

broad camps: open-ended exploratory tasks (which were mainly found in the classroom setting) and 

more traditional formats (which were mainly found in homework and examination tasks). The latter 

types of tasks mostly consisted of word problems with a real-life context; the PSTs designed a small 

number of other types of tasks for use as homework or examination questions, including tasks 

which required students to make a conjecture, provide an example, or evaluate a mathematical 

statement. In addition, one PST designed a homework task which involved a pre-class investigation. 

The majority (13 of 19) of the PSTs used card-matching designs for their classroom tasks. These 

tasks were based on Swan’s “Interpreting Multiple Representations” (Swan, 2008, p. 3) task type. 

The PSTs were introduced to this idea through the Swan (2008) article and also participated in a 

card-matching task (on the topic of fractions) during one of the module sessions.  Three of the PSTs 

used games (such as ‘Battleships’ and dice games) to devise tasks for use in the classroom, two 

PSTs used investigations as the basis of their task, and one designed a series of worksheets with 

problems of increasing difficulty. 

The PSTs showed creativity and an appreciation for tasks with high levels of cognitive demand. 

However, an analysis of their designed tasks showed that the design process was not without 

difficulty for the group. Some of the questions were not always clear due to missing or confusing 

instructions, and sometimes the context made the question ambiguous (this has also been a problem 

in state examinations in Ireland). Occasionally it seemed as if the PSTs did not have a clear 

understanding of the underlying mathematics themselves, possibly owing to their level of SMK, and 

sometimes their use of mathematical language caused difficulty (such as using the term ‘equation’ 

instead of ‘expression’ for something like 2x+1). The learning trajectories for the tasks or sets of 

tasks were not always clear - sometimes it was not clear what understanding and what concept the 

PSTs were trying to develop.  

Pre-service teachers’ pedagogical content knowledge 

The PSTs’ knowledge of levels of cognitive demands challenged their deeply held view of how best 

to teach mathematics. Previous research with a similar co-hort of PSTs found that they focused on 



content when planning for teaching and placed little emphasis on the learner or prior learning 

(Nolan, Dempsey, Lovatt & O’Shea, 2015).  Most of the respondents said the module impacted on 

how they taught mathematics with the majority citing a change in how they asked questions, placing 

more emphasis on higher level of cognitive demand in questions. Prior to this module, these PSTs 

would have completed a module which included a significant input on questioning skills for 

teaching; they seem to have needed the knowledge of cognitive demand in order to have changed 

their questioning practices. It must be noted that this was reported but may not have been the reality 

when one takes into account the examples provided by the PSTs in their end of module assessment. 

However, an increased emphasis on discussing mathematics problems appears to be evident with 

comments such as  

I try to think more about pushing my students to reason more when completing tasks. I try to ask 

questions, give tasks to my students with much less information, and I want my students to rely 

less on me giving them the answer. (S11) 

This PST also spoke about the effect of the intervention on her teaching: 

I never really thought much into the differences between the tasks that I give during class, 

homework or exams or the impact it could have on my students’ development in a subject. 

Having studied and researched the classification of math’s tasks and implementing my own 

selection/adaption of tasks into my class, I now feel that I have gained a deeper understanding 

into the effect my choice of tasks can have on the progression and learning... (S11) 

The PSTs who implemented their tasks in their teaching placements, realised the effect that the 

teacher or set-up can have on the cognitive level of the task and this led to them thinking about 

different types of tasks or redesigning their original tasks:  

The students struggled very much with it at the beginning and due to my own fault I went 

through an algorithm with them and then the task immediately became a lower demand one, just 

requiring the students to reproduce an algorithm each time. If I were to redesign the tasks, I 

would change tasks E and F [card-matching tasks] to tasks where the students have to spot a 

mistake in a question/statement and justify their reasoning and how they would alter the 

question/statement … in order to encourage them to develop critical thinking skills. (S12) 

This reflection would suggest that the PST is developing her thinking on organising pedagogical 

content, adapting materials to suit students and adopting curriculum planning and making strategies 

(Shawer, 2010).   

Discussion 

Increasing the PSTs awareness of different levels of tasks and giving them an opportunity to design 

and modify tasks would appear to have allowed them to develop skills such as the ability to classify 

tasks and design tasks at different levels. They also seem to have developed knowledge especially 

PCK which linked to their knowledge of cognitive demand has enabled them to adapt their practice 

especially around questioning. We note though that the evidence we have presented in this regard is 

based on self-reported data. The importance of applying frameworks in order to increase awareness 

of concepts such as levels of cognitive demand is significant for PST education; awareness may be a 

crucial first step in knowledge acquisition.  Similar to findings from Boston (2013) and Swan 



(2007) who worked with practicing teachers, our research appears to demonstrate the need for an 

awareness of cognitive demand in order for mathematics educators to be able to select and develop 

rich and engaging tasks.  This increase in knowledge and skills seems to be crucial in order to make 

the transition from curriculum transmitters to curriculum makers (Shawer, 2010). The space in our 

intervention for discussing textbook questions and State Examinations materials was cited as being 

the most impactful for the PSTs. They suggested that the module could be enhanced with more time 

devoted to this kind of peer interaction in task evaluation and design. This need for space for 

curriculum making and professional learning, and, the challenges therein has not been fully 

explored within PST education.  

This research has highlighted a gap in the PSTs’ education on task design in the case study 

institution, and, as such will be used to make changes to the module design and implementation. 

PSTs’ practices and beliefs around tasks for homework merits further exploration. We intend to 

carry out more analysis on our data such as on the tasks assigned by PSTs (pre- and post-

intervention) and of their reflections on tasks linking back to Lithner’s (2008) concept of 

sociocultural milieu. 
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The aim in this paper is to shed light on interactional aspects of researcher and practitioner 

collaboration in design research in mathematics education. Symbolic interactionism is used to gain 

understanding of interactional aspects as it has potential to take both individual and social aspects 

of the interaction into account. Aims and agencies are in focus of the retrospective analysis of the 

collaboration between two researchers and two practitioners as they collaborate to develop 

instructional design. The analysis show how referring to authoritative disciplines as the 

mathematics community influence agency and therefore has great potential to influence how the 

negotiation of meaning progress and participants acts. I argue that agency could be viewed as an 

indirect tool that has the potential to direct the collaboration when designing tasks based on what 

aim different actors put in the foreground.  

Keywords: Collaboration, agency, interaction, design research. 

Introduction 

Collaboration is at the core of design research in mathematics education. A key characteristic is that 

it is research conducted with researchers and practitioners in real-world settings (Plomp, 2013). This 

collaboration is often between one or more researchers and practicing teachers. It is essential that 

this team collectively has the competence to develop the design, conduct the lessons, and perform 

the retrospective analysis (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). This means that we 

have different actors in the activity, each with its interpretation of the aim and purpose, as well as of 

the actual activity and the mathematics involved. Since each actor has a specific set of competences 

and a vital role to play in the collaboration to develop the design, the question is how their 

differences influence the discussions during meetings and by extension the design? McClain (2011) 

explores this interplay of differences in the classroom interaction between students who performed 

the resulting tasks and the teacher who orchestrated the discussions. She views it as interplay 

between the students’ contribution, the task and what she calls the proactive role of the teacher. One 

key aspect of the interplay is where the authority over the topic, the agency, lies. Agency is thought 

of as a capacity to act in social interaction. McClain (2011) emphasizes that it is important for 

students’ learning that agency shifts between different actors in the activity.  

The discussion in this paper focuses on the developing phases of design research. How does this 

shifting of agency that McClain (2011) identifies in the design research classroom appear in the 

development of tasks in between lessons? The aim of this paper is to further understand how the 

aim and agency fluctuate between the participants and its influence on how the negotiation develops 

as researchers and teachers collaborate to develop instructional design. Results could be viewed as a 

contribution to the mathematics design research methodology discourse of how collaboration 

between researchers and practitioners can support the design process. 



Previous research 

Design research in mathematics education is described as a research design that is interventionist; 

iterative; process, utility and theory oriented; and has involvement of practitioners (Plomp, 2013). 

The idea is to develop tasks and activities, test them in real classrooms, evaluate the outcomes and 

then revise the design in an iterative process involving practitioners from the field. All in all, the 

research design enables the team to pursue multiple goals in the same project. The aim is to 

understand the processes involved in utilizing the developed tasks from the point of view of a 

chosen theory, design usable material for users in real life context and lastly to contribute to further 

development of theory. Plomp (2013) calls it the twofold yield of design research, producing both 

research-based intervention and knowledge about interventions in the form of theory. 

Beside the global aims of design research, an intention to develop theories and instructional designs, 

there are local aims as well. The instructional design has an aim, an intention to stimulate learning, 

in the form of a hypothesised learning process and goal for the subjects (Cobb et al., 2003). The so-

called Hypothetical learning trajectory (HLT) is defined by Simon (1995) as follows: 

The hypothetical learning trajectory is made up of three components: the learning goal that 

defines the direction, the learning activities, and the hypothetical learning process – a prediction 

of how the students’ thinking and understanding will evolve in the context of the learning 

activities. (p. 136) 

Cobb (1999) argues that the learning goal of a HLT should be from a group perspective rather than 

an individual one. Simon (1995) amongst others talk about a prediction of individual learning 

processes and thinking whereas Cobb (1999) call this line of thinking highly idealized at best. 

Instead, he proposes a focus on collective mathematical development in the classroom community. 

A HLT then consists of an “envisioned sequence of classroom mathematical practices together with 

conjectures about the means of supporting their evolution from prior practices” (p. 9).  

Global and local aims are both individual interpretations as well as objects for the research team to 

negotiate. In this paper, it is assumed that this process is a social interaction within the team. 

Interaction is described with the theoretical background of symbolic interactionism (Blumer, 1986). 

It proposes that humans act according to the meaning that objects have to them and that the meaning 

of objects arise out of social interaction. This is an interpretative process where humans constantly 

interpret others’ actions and the meanings they indicate before acting themselves (Blumer, 1986). It 

means that participants of the research team interact according to how they interpret the local aim of 

the design as well as their own global aims and interpretations of the mathematics in question. Voigt 

(1994) calls this the negotiation of meaning in the mathematics education context. It is a negotiation 

because the actors contribute to a discussion based on their interpretation of what is being discussed 

and at the same time re-evaluate their own understanding, thus creating a negotiation of what is 

viewed as the community’s meaning of the objects.  

As global and local aims and the design itself are negotiated, participants position themselves 

through their contribution to the negotiation. Burr (2003) talks of the capacity to take up positions 

for one’s own purposes and that agency lies in responsive actions in interaction. In the mathematics 

classroom context, McClain, Zhao, Visnovska, and Bowen (2011) defines agency as “authority over 

both the mathematics being taught and the sequencing and presentation of that content” (p. 63). 



Combined, they frame the agency concept for this paper. For the purpose of this paper agency is 

viewed as involving one’s intentions, sense of responsibility, as well as one’s expectations of 

recognition and reward in taking a particular action. As the participants of a research team interact 

in the development of the design, they act according to their interpretations and their positioning in 

a community, for example as a representative for the mathematical community, and act with the 

authority of that discipline. Participant act according to different agencies as fits their purposes and 

evaluate its impact on the negotiation, also known as the dance of agency (Pickering, 1995). As the 

negotiation progress, agency shift between the participants and within them. Shifting agency enables 

the participants to contribute in different ways and from multiple perspectives, for example as 

mathematicians, practitioners or researchers. The result is an effect on the design of the HLT in line 

with different actors’ fluctuating aims and their agency to contribute according to those aims. 

Method 

The data used here is generated from video recordings of a small-scale teaching experiment 

involving probability with students from year 5 and 6 in a Swedish elementary school. The aim of 

the task was for the students to become able to discuss matters of relative frequency data and the 

law of large numbers in a probability context. Relative frequency is a way of analysing data from 

repeated random events, such coin flips, where the number of observations of each outcome is 

divided by the total number of events. The law of large numbers then states that as the sample size 

increases, the likelihood of a difference between the relative frequency and the actual probability of 

the event decrease. Thus, can the relative frequency be used as a measure of probability. The 

research team consisted of the author of this paper, a senior researcher (here called Paul) and two 

teachers (here called Karen and Tilly). The whole process was initiated by the two teachers who felt 

that they needed inspiration and experience in teaching probability, which they had never done 

before. The balance of numbers provided a sense of balance between researchers and teachers, 

which later has been recognized by Stephan (2015) to be an important factor to highlight teachers’ 

unique knowledge in design research collaborations. The work was organized as such that after an 

introductory meeting, the two researchers drafted a design proposal in line with the requested topic. 

That design was further developed by a discussion within the team, which was video recorded, and 

then initiated by one of the teachers in the classroom. Minor adjustments were carried out between 

the two teachers’ lessons and major changes of the lesson sequence were carried out after both 

teachers had used each lesson plan. A total of 5 lessons were designed, although one of the teachers 

divided the last lesson into two because of time management issues.  

The activity and hypothetical learning trajectory 

The task design originated from a teaching experiment by Brousseau, Brousseau, and Warfield 

(2001), where the students were asked to investigate a chance event with an unknown sample space. 

The aim was to introduce basic principles of the Law of large numbers from probability as well as a 

frequency perspective on probability theory. We used an opaque soda bottle containing an unknown 

amount of small coloured balls (neither the students nor the teachers knew the content of the bottles) 

during the first lesson. When the bottle was turned over, the colour of one ball was revealed while 

remaining inside the bottle. Thus, creating a constant but unknown sample space. The activity was 

presented as a race in the first lesson with three contestants on a six-step track. As one of the three 



colours was observed on a bottle turn, that colour advanced one step down the track. The students 

were asked to guess which colour would first get six observations during each race. Based on the 

topics discussed by the students in the first lessons, the following three lessons made use of a 

transparent bottle with a visible sample space. Here the students were asked to discuss chance, 

random variation, sample space, sampling and the law of large numbers. The importance of the 

sample space was highlighted in the second lesson because of ideas discussed in the first lesson. 

The students got to return to the opaque bottle in the last lesson(s) and again, in an organized 

manner, investigate the unknown sample space from the first lesson with the use of the law of large 

numbers. By producing a large enough sample, they could reason about the sample space in the 

opaque bottle by translating the relative frequency of each outcome into the probability of that 

outcome. Overall, one class needed a total of five lessons and the other class six lessons, to reach an 

agreement about the unknown sample space in the opaque bottle. 

Method of analysis 

The analysis of the transcript in the forthcoming section is inspired by retrospective analysis from 

the design research methodology. It is based on open inquiry and constant comparison (Glaser & 

Strauss, 1967) where you retrospectively analyse and compare small instances of data from the 

whole set with one another to gain insights into the processes (Gravemeijer & Cobb, 2013). 

Trustworthy accounts of possible meanings can be developed by immersing oneself in the social 

setting, using participant observation, alongside systematic coding of data in retrospective analysis 

(Cobb, Stephan, McClain, & Gravemeijer, 2001). Instances of active contribution to the negotiation, 

utterances by the teachers or researchers, are coded with open codes. These instances are then 

compared to each other to find differences and similarities in their actions as they indicate the 

participant’s interpretations, aims and agency. When looking at longer sequences, patterns are 

sought after, especially how participants’ aims and agency influence the development of the 

negotiation. Short excerpts used for constant comparisons are presented in the text and expanded 

upon. Tied to those excerpts are expansions on the continuing interactions not shown in the 

transcripts due to space limitations. 

Results 

The excerpts from the transcripts presented here are all from a meeting with the two researchers and 

the two teachers between Karen’s first lesson and Tilly’s first. The purpose was to engage in a mini-

cycle to evaluate the initial design and revise it before Tilly used it in her classroom. One of the 

researchers, the author of this paper, was present during Karen’s lesson and the discussion utilized 

their experiences as a main source of data to analyse. In the first episode, the two teachers discuss 

Karen’s experience during the first lesson. She had asked the students to reflect on the notions 

statistics, chance and probability at the beginning of the lesson and then proceeded to carry out the 

design outlined here in an earlier section. Notice how the focus shifts from being about implicit 

aspects of the activity to being about students connecting knowledge.  

Karen:  What fascinated me was that their engagement induced the use of the concepts 

that we highlighted and reconnected to what we did at the beginning. Statistics, 

chance and probability, well, that Kim said “This is what I think! Statistics is what 



we’re doing, and the balls drop by chance but you may still calculate the 

probability”. He started… 

Tilly:  He added that, you didn’t guide him? 

Karen:  No, he was like “This is what I think, I figured out this with statistics”. So, it kind 

of extracted their knowledge.  

Tilly:  They latched on on the correct incident somehow. 

Karen:  Exactly, and they could use the concepts to describe it, what we had done. 

Karen acts with an interest in the activity as an eliciting factor for a student’s development of 

concepts. Tilly indicates that she is interested in how Karen carried out the activity in the classroom 

and both act as if their main aim is to further develop the task. Tilly then subtly indicates that she 

has shifted her focus towards the students’ learning process in the second utterance. She acts as if 

her interpretation of the aim has shifted towards the global aim of contributing to theory on students 

learning processes. The negotiation takes off in another direction, initially being about gaining 

understanding of the design aspect towards being about understanding aspects of learning. The 

global aim of understanding the students’ learning in respect of making connections as well as 

developing language is pursued long after this extract ends. The following episode picks up this 

chain of events further into the meeting. Karen admits that the development of the lesson had made 

her unsure of how she interpreted the three concepts statistics, chance and probability. We start off 

with her reading her own notes from what she found out from a dictionary after the lesson.  

Karen:  “Not be able to calculate in advance. Statistics, summarization of information, 

nah, Probability, the chances of getting” for example blue. 

Paul:  So what it becomes, Heads or Tails, aren’t known in advance. Is that what you 

mean? 

Tilly:  Why did you pose that question like that? What were you thinking? Since you do 

this professionally… Why did you ask that question? 

Paul:  Well, because I thought the sentence was incomplete. “we calculate in advance”, I 

just wanted to emphasise … what is it we can’t calculate in advance? 

Tilly:  Aaa, okay 

The initial statement was copied from a dictionary and Karen acts as if she trusts and places the 

authority within that community. At least in the case of chance and probability, she relies on the 

dictionary and achieves agency with the use of it. The group’s prior negotiation of meaning of 

statistics makes her less confident in the case of statistics; she indicates that she gives primacy to the 

group’s interpretation. Paul questions this authority altogether. Tilly seems to pick up on Paul’s 

questioning and probes the nature of Paul’s agency; is he acting from a mathematics education 

researcher perspective, or a mathematical community perspective or something else? Paul continues 

by acting as if there are better interpretations of these concepts by questioning the wordings. He 

later on continues to negotiate the meaning of these concepts by means of examples and more 

mathematically precise definitions and thereby achieves agency by referring to the mathematical 

community. This exchange impacts the negotiation towards being even more focused on language. 



It also becomes apparent that Paul’s agency influences how Karen and Tilly use technical terms in 

the remainder of the session. Paul’s aims and agencies remain in focus as they are given more space 

and remain unquestioned as the work progresses. The following episode is from the later parts of the 

meeting. It shows the impact of Karen’s and Tilly’s interaction in the first episode regarding the 

topic but also how Paul is left as an authority. Notice how Paul remains unopposed even though his 

claims and sentences are incomplete just as Karen’s were in the previous episode.  

Paul:  My question about statistics springs from that fact that statistics is a rather large 

subject… A large topic so to speak 

Karen:  Mm 

Paul:  And I think that the curriculum sort of… Even in our … our curriculum contains 

what this student is saying about the ratings of a TV-show. That you compare… 

often just think about observations, or we usually say frequencies, frequency 

tables and so on, so you limit the whole field of statistics to what one might call 

data collection, frequencies and such. 

Tilly:  Mm 

Paul:  What do you think, we could think about beginning to establish this type of 

concepts like… What is the frequency of blue? What is the frequency… How 

many observations of blue? How many observations of red? So, you insert this 

type of technical terms to become more precise. Specify a little bit more. That is, I 

imagine, a part of learning, that you learn to… You use a language and start to 

become a little bit more precise. 

Paul acts as if he wants to shift focus to the local aim of the activity. He offers an alternative, or 

additional, learning goal in students developing their language through the activity. He pushes his 

agenda by referring to the authoritative mathematical community and therefore achieving agency. 

Both Karen and Tilly accept Paul’s agency and leave his claims unopposed and instead adjust their 

use of language after the episode to fit Paul’s. Paul’s agency also results in a shift of focus in the 

following interaction. The continuing negotiation still involves interpretations of language but also 

aspects of the design and how language development can be anticipated and sequenced in a HLT. 

To sum up the analysis, I exemplify how rearranging the aims of the activity, placing the aim of 

understanding students’ learning in the foreground instead of the aim to develop the design, can 

have huge impacts on the course of the developmental process. Karen’s and Tilly’s interaction in the 

first extract refocused much of the remaining discussion towards negotiating the meaning of 

language use and development. An example of the dance of agency in designing educational 

activities has also been offered. Especially how some agency has higher authority and thus also 

more impact on the negotiation process. 

Discussion 

Shifts of agency emerged in the presented episodes. Karen and Tilly both seemed to mostly rely on 

personal agencies in their actions, trusting in their professional experience in teaching for learning 

and language development. Paul on the other hand was perceived to rely on agency achieved from 

highly regarded disciplines as the mathematics and mathematics education research communities 



when he contributes with examples and language. It corresponds with results from when Pickering 

(1995) studied mathematicians in their work. He saw that mathematicians often relied on their 

personal agency as they created initial ideas but “surrendered” to that of the discipline, as they 

needed to resort to following standard procedures of (for example) proofs. A similar phenomenon 

was observed in the episodes. Karen and Tilly relied on their personal agency until Paul referred to 

the mathematics community; Karen and Tilly then surrendered to the formalized language of the 

discipline to a greater extent. Further on it resulted in worksheets handed to the students using this 

formalized language and thus re-evaluating the HLT in light of formal use of concepts. I suggest 

that it emphasizes how the dance of agency (Pickering, 1995) is a principle to regard in 

collaboration between researchers and practitioners as it has the potential to be an indirect tool to 

guide the negotiation process in different directions.  

Shifts in aims emerged in the data. Karen initially acts in line with the global aim of developing 

aspects of the design but soon shifts to align with Tilly to negotiate the meaning of a   student’s 

language development. Paul later uses the mathematics community to achieve agency to shift focus 

towards developing the design once again and then sits back to evaluate its impact. Blumer (1986) 

argues that not only individual aims should be regarded but also that of the group. When multiple 

actors interact over a period of time a joint action is formed. It is a social construct that extends 

from being merely the sum of all actions, for example it also has its own aim that is negotiated by its 

participants. One might look at Karen’s, Tilly’s and Paul’s shifts in aims as attempts to negotiate 

what aim should be in focus or in the foreground while the others remain in the background. It 

becomes apparent in the topics discussed that the negotiation of aims for the joint action has impact. 

In the extended data, patterns emerge of how shifts in the joint aim redirect the following interaction 

until it was renegotiated. The result was an added activity in the HLT that was meant to challenge 

students’ ideas of chance.  Reasons for why the participants chose to contribute in this way did not 

emerge from the existing data but one could speculate whether it has something to do with the 

respective role of the actors, being from a tradition of research or education. It presents a way 

forward to further advance our insight in the collaboration between researchers and practitioners in 

design research in mathematics education.  

Implications 

As Stephan (2015) highlights the importance of working with small groups of teachers instead of 

just one in design research collaborations, the dance of agency is yet another tool to create 

purposeful design research collaborations. In the case of Paul, agency is used to steer the negotiation 

of meaning towards more mathematically aligned use of vocabulary. In another setting, it is possible 

to rely on shifting agencies to empower teachers in the collaboration by placing it in the domain of 

mathematics teachers. There is also the possibility to put focus on the research agenda when 

discussions tend to steer away. One could also consider the interpretation that it has the potential to 

shift the power relations, creating an (even bigger?) imbalance between participants, making 

participants less likely to make substantial contributions to the development of the task. The 

conclusion is that conscious achievement of agency can be used as a tool for researchers in design 

research collaborations to manoeuvre the discussion and shape the HLT to fulfil different aims. 
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In order to identify mechanisms that can support mediation, this paper analyses the decision making 

process in a collaborative design of a digital learning resource by two different Communities of 

Interest (CoI). It focuses especially on the influence of both the CoI contexts and the socio-technical 

environment. This research was carried out within the framework of the “M C Squared” European 

project aiming at studying social creativity in the resource design. Specific conceptual and technical 

tools were used in this project to ease and document social interactions in the design of innovative 

learning resources promoting Creative Mathematical Thinking in the users. We focus on two main 

forces: tools and culture, which supported the collaborative design work between two CoIs. 

Keywords: Community of Interest, context, socio-technical environment, collaborative task design, 

Creative Mathematical Thinking. 

Introduction 

This paper focuses on the analysis of a collaborative design of an innovative kind of digital 

educational resources for teaching and learning mathematics by different teams of designers. This 

research took place in the frame of the European Research and Development project called “M C 

Squared (MC2)” (http://mc2-project.eu/) where innovative digital resources have been produced to 

promote creative mathematical thinking (CMT). These resources have been designed by four 

Communities of Interest (CoI) (Fisher, 2001) constituted within the project: the English, French, 

Greek and Spanish CoIs. One of the objectives of the project was studying the processes of social 

creativity occurring during the design of resources and uncovering factors fostering it. Moreover, as 

the design was carried out in four different countries, the question of the influence of the cultural and 

institutional context on the design choices, as well as on the processes of social creativity, was raised 

naturally.    

In this paper, we focus on the design process that involved a collaboration between two CoIs, the 

inter-CoI interaction being considered as a window on contextual issues impacting the design. We 

report the case of a resource called “Limits” that was initially designed by the French CoI members, 

redesigned by the Spanish CoI, and finally redesigned again in the cross-CoI collaboration between 

the two CoIs. In this framework of a collaborative design of a resource, we explore the influence of 

the context and of the conceptual and technical tools on the design process. In other words, we are 

particularly interested in how the CoI context influences the design process in a given socio-technical 

environment and which tools and mechanisms support the collaboration between different teams of 

designers in the process of task design. 

http://mc2-project.eu/


The paper starts by presenting the context within which this research was carried out and its 

theoretical and methodological background. The design of the “Limits” resource is then described 

and analysed and the findings are discussed bringing to the fore elements of answers to the research 

questions. 

Context and socio-technical environment of the CoI 

Communities of Interest (CoIs) and their context 

According to Fischer (2001), Communities of Interest “bring together stakeholders from different 

CoPs [Communities of Practice] (Wenger, 1998) to solve a particular (design) problem of common 

concern”. Four CoIs were constituted in the MC2 project gathering together, around a digital resource 

design, mathematics teachers, teacher educators, researches in mathematics education, educational 

software designers, artists, etc. 

The French and the Spanish CoI, whose experience is reported in this paper, present different 

compositions and characteristics; we consider these as contextual aspects. The French CoI consists 

of 13 members with varied professional background, including researchers, school teachers, teacher 

educators, and educational technology developers. They share a socio-constructivist approach to 

mathematics learning rooted in the French didactical tradition of teaching and learning mathematics 

(CFEM, 2016). This approach has shaped the CoI representation of creative mathematical thinking 

(CMT) that manifests itself through (implicit) task design principles, such as designing tasks aiming 

at revealing specific students’ misconceptions, using multiple representations to enhance 

conceptualisation of mathematical notions, fostering social aspects through collaboration between 

students and affective aspects through challenging problems and games, or focusing on tasks calling 

for generalisation. The Spanish CoI, composed of about 20 members, involves people from different 

communities of practice, including researchers in and out of mathematics education, secondary school 

and university teachers and publishers. Most of the resources designed by the Spanish CoI present 

many design principles that are especially important for mathematical modelling, such as proposing 

real questions to students in order to face linking mathematics with other disciplines (social sciences, 

history, etc.), articulating questions posed and mathematical tools to engage students in modelling 

processes, enhancing the exploration or the contrast and validation of mathematical tools and models. 

The socio-technical environment and collaborative design 

The design of resources took place within a specific socio-technical environment developed in the 

MC2 project, called C-Book technology (http://mc2dme.appspot.com/mcs/). It integrates two main 

tools: i) an authoring environment enabling to create digital resources, called c-books (“c” for 

creative), which consist from pages including texts, pictures, hyperlinks, dynamic interactive widgets, 

and allowing to record successive versions of the c-book units; ii) a tool, named CoICode that 

provides a workspace to organize and enhance interactions among designers. CoICode enables each 

designer to post various kinds of ideas (“contributory”, “alternative”, “objection”, “off task” and “task 

organization”), each of them having a specific icon. When a designer posts an idea, the system 

captures several details: author’s name, date, title of the idea, comments, attached resources, 

hyperlinks, etc. The CoICode system provides designers from a CoI or a CoI-pair (two collaborating 

CoIs) with a space for collaborative design. In CoICode, the discussions can be visualised in form of 

threaded forum or in a mind-map view (Fig. 1), where nodes are ideas, and branches of the tree model 

http://mc2dme.appspot.com/mcs/


the evolutions of an idea. The reports in the form of a graph provided by the system are the main data 

gathered for the study of social creativity. A voting system has been implemented in the CoICode 

allowing designers to evaluate in terms of creativity any idea posted by someone else. Such evaluation 

follows a “middle c” perspective of creativity (Moran, 2010), that views creativity as a competency 

developed through interactions between members of a community and through their participation in 

situations where they display their intentions and negotiate new alternatives for the interpretation of 

actions in situated activity systems. 

 
Figure 1. Excerpt of a CoICode workspace in the mind-map view.  

The cross-CoI collaboration on the re-design of the “Limits” c-book was organized in the following 

five phases: (1) a part of the French CoI, acting as the primary designers, designed a first version of 

the c-book; (2) four members of the Spanish CoI (two secondary school teachers, one researcher in 

mathematics education and one researcher in Calculus) evaluated the CMT potential of the c-book; 

(3) these members of the Spanish CoI redesigned the c-book according to their own approach, which 

constituted the first phase of the redesign; (4) a second redesign phase was carried out by the CoI-

pair comprising this Spanish sub-CoI and two members of the French CoI (one researcher in 

mathematics education and one secondary school teacher); and (5) four new members (two from each 

CoI not involved in the redesign) evaluated the CMT potential of the redesigned c-book. 

Theoretical and methodological background 

Documentational and boundary crossing approaches 

Our focus on the genesis of the c-book resource leads us to adopt the Documentational Approach to 

Didactics (DA) (Gueudet&Trouche, 2009) and thus consider the design of this resource as a 

documentational genesis. The analysis of resources coming into play in this genesis and of their 

successive versions unveils designers’ mathematics knowledge, CMT representations and culture. In 

addition, considering the collaboration between two CoIs, which can be viewed as two different 

activity systems, allows inferring the influence of the contexts on the design choices.  

The Boundary Crossing approach (Akkerman& Bakker, 2011) enables enlightening the interactions 

between these contexts. It allows to highlight discontinuities, i.e. boundaries. Boundary objects (Star 

& Griesemer, 1989) and brokers support the communication and the understanding between and 

within the CoIs, allow to build new norms and a common frame of reference. Moreover, highlighting 

the mechanisms of identification (i.e., consciousness of discontinuities, awareness of multifold 

cultural background, which allows pointing out differences), coordination (i.e., creation of 

continuities between domains and bridges between cultures, which enables the construction of a 

common frame of reference), reflection (i.e., perspective making, perspective taking on the problem 



at stake, which supports divergent thinking), and transformation (i.e., confrontation, recognition of a 

shared problem space, hybridization or combining ideas, and crystallizationor keeping a perspective, 

an idea) helps us to better understand the design process. 

Grid for the evaluation of c-book features fostering CMT  

The evaluation of the potential or affordances of a c-book to foster CMT was a central task in the 

MC2 project. Facing the necessity of CMT cross-evaluation, a need emerged for agreeing on and 

sharing common criteria, tools and methodologies, which had been developed independently in the 

first cycles of c-book production. A common CMT evaluation grid, which combines design criteria 

or principles proposed by the four CoIs involved in the project, has been elaborated by the researchers. 

This grid could be adapted by each CoI or CoI-pair to better fit its context, by adding specific criteria, 

and played a crucial role in the construction of a common frame of reference for all four CoIs. 

The CMT evaluation grid is a questionnaire composed of three sections. The first and the widest 

section focuses on the evaluation up to what degree different dimensions of mathematical activity 

considered crucial for fostering CMT, such as conjecturing, questioning, evaluating, and establishing 

connections, are taken into account in the c-book design. With a total of 14 items expressing the 

indicators of different dimensions, evaluators of a c-book grade (from 1-4) their agreement on the 

items and explain their response according to the design being evaluated. For instance, the dimension 

of establishing connections is evaluated through the item: “The c-book provides users with 

opportunities to establish connections between various representations of the mathematical concepts 

at stake”, or the validation dimension through the item: “The c-book stimulates to think about, reflect, 

summarize and evaluate the mathematical work already developed”. The second section addresses 

social aspects through items like: “The c-book stimulates user's collaboration / cooperation / 

interaction with other users”. Finally, the third section focuses on affective aspects via items like: 

“The c-book actively promotes engagement by generating a perception of usefulness of mathematics, 

either in everyday life, or inside the mathematical context”. This grid, filled in for each c-book, 

provides the basis of the CMT study and development. 

CoICode analytics features 

In the MC2 project, a creative idea is defined as: (1) novel (original, unusual or new for the CoI 

members), (2) appropriate, that is it conforms to the characteristics and functions of the c-books, 

including their CMT affordances, bind to the CoI context, and (3) usable, that is available and ready 

to be used in the design of the c-book according to the designers’ (the CoI members’) estimation 

(Daskolia, 2015). CoICode voting mechanism allows any CoI member to express his/her opinion 

about the three attributes of any idea posted by any other CoI member. The expressed opinions are 

aggregated into the creative score of an idea defined as follows: “creative score of the idea i (CRi) = 

0.5 x number of ‘novel’ votes + 0.25 x number of ‘appropriate’ votes + 0.25 x number of ‘usable’ 

votes, if the number of ‘novel’ votes is at least a half of the number of CoI members involved in the 

c-book design, otherwise CRi = 0”. This definition reflects the fact that novelty is the sine qua non 

condition for an idea to be deemed creative; this is why the corresponding weight is the highest (0.5). 

On the other hand, the “middle c” perspective of creativity leads to considering an idea creative if the 

majority of the CoI members share this opinion. Thus, the interactions recorded in CoICode allow 



tracking communication among the designers during the design process and getting automatically the 

ranking of the ideas expressed according to their creativity score (Table 1). 

USER DATE ID TITLE NOVEL APPROP USABLE SC SCORE 

CM 04/02/2016 
11:03:51 45675 Variable pythagorean tree 4 4 4 4 

NE 12/02/2016 
11:01:13 45901 EpsilonChat to foster social aspects 3 3 3 3 

Table 1. Quantitative measurement to identify creative ideas. 

Data collection and observables for each phase 

The ideas and their organisation in CoICode workspaces, the creativity score of ideas obtained 

automatically from CoICode, the CMT grids filled in by the evaluators of the c-book and the 

successive versions of the c-book constitute the main data we analyse in order to highlight the impact 

of context, and cultural evolutions on the design decisions taken, as well as the role of the tools in the 

design process. 

c-book design process in the cross-CoI collaboration and its analysis  

Our analysis focuses on two out of the five phases of the redesign of the c-book “Limits” (see above), 

namely phase (3), when the Spanish CoI redesigned the c-book and the phase (4) when the CoI-pair 

worked collaboratively on agreeing upon and conceptualizing the last changes of the redesigned c-

book. We have chosen these two phases of the redesign process as they appear especially important 

with respect to our research questions. 

Adopting the c-book and de- and re-contextualizing its design: mechanisms of coordination and 

reflection 

The initial version of the c-book “Limits”, designed by the French CoI, covered the notion of infinity 

through its meaning in solving equations, constructing the Pythagorean tree, analysing geometric 

sequences, comparing growth of functions, and calculating limits of real functions. The CMT 

representation of the French CoI members shaped the design of the c-book. In particular, it led the 

designers to embed tasks that enable intra-mathematical connections, generalisation, competition and 

challenge as levers for the CMT development. Following these principles, they proposed tasks 

offering various representations of the mathematical notions at stake (limits and infinity), by using 

algebraic, calculus, and geometrical settings, with the aim to provide students with alternative ways 

to make sense of these difficult notions in calculus and to generalise some properties. Moreover, the 

educational technology developers, involved in the CoI, enabled the development of specific widgets 

with features deemed as important to foster CMT, such as relevant feedback, written collaboration 

and discussions (a chat tool), and a framework for designing playful activities affording students’ 

self-assessment. Hence, the involvement of software developers in the designers’ team impacted the 

c-book design by creating new widgets in line with the French CoI culture. They also worked in close 

collaboration with the C-book technology developers, thus playing the role of technical brokers 

within the CoI.  

As soon as the phase (3) started, the Spanish CoI began with the redesign of the c-book.The designers 

structured the workspace dedicated to the intra-CoI redesign work according to the results of their 

CMT evaluation with the grid (see section 3). For instance, they found the c-book improvable 



regarding the connections that could be established with other disciplines or with other mathematical 

topics. They appreciated some characteristics of the c-book such as connections between several 

representations (numerical, geometric, and algebraic) of limits or the potential of the new widgets to 

simulate functions, sequences, limits, etc. and their practical use in activities focusing on evaluating 

students’ work and progress. The decision to maintain these features can be interpreted as the 

agreement on the underpinning design criteria by both CoIs. They also detected several traits to 

further improve the c-book redesign, some of them being central for their own CMT representation; 

for example, they missed situations and questions that give sense and utility to the mathematical 

notions at stake (infinity, limits, etc.) – questioning or problematisation. Likewise, they missed a 

global articulation of some of the activities dealing with a more general narrative and questions to 

focus on. This led the designers to organize the CoICode workspace around the eight design criteria 

or indicators they considered as crucial to be prompted (validation, connections, articulation, 

problematisation ...) according to their CMT approach (Fig. 2, first column on the left) to orient 

further discussion. Therefore, the redesigned c-book urged students to investigate questions like the 

ones about fractal constructions and properties (guiding part 1 of the redesigned c-book), or the one 

about a cell phone password as the problem of the 9 points (guiding part 2), and to engage students 

in recognizing patterns in the process of mathematization of a problem, and in using the 

corresponding mathematical relations to check the validity of a conjecture. 

 

Figure 2. Excerpt of the workspace created for the intra-CoI redesign. 

In this episode, we can identify a mechanism of coordination initiated by the CMT evaluation which 

supported the subsequent mechanism of reflexion sustained by the structure given to the workspace. 

We note that the Spanish CoI instrumentalized CoICode, with a strong purpose of enhancing the c-

book potential to foster CMT in students in line with their culture. Hence the mechanism of reflexion 

enabled to open new perspectives, related to the Spanish context, by adding tasks on fractals, the 

problem of 9 points and the mathematization of another problem. 

The CoI-pair collaboration in the c-book redesign: mechanism of transformation 

The cross-CoI collaboration (phase 4), started with the translation of the redesigned c-book into 

English and the creation of a new workspace common to both CoIs. In order to organise and facilitate 

the communication between the two CoIs, the workspace was structured according to the four main 

sections of the c-book, and a summary of the main aims and changes introduced by the Spanish CoI 

in each section was added; the French team could thus compare the new version of the c-book with 



its original design. During the CoI collaborative work, some design principles stemming from both 

CoIs were recognized and discussed to progressively become shared by both CoIs (confrontation and 

crystallisation of principles), such as the importance of tasks calling for conjectures, simulation, 

communication of results, and validation. Other design choices issued from the Spanish CoI were 

accepted by the primary designers of the c-book, such as the extra-mathematical connections included 

in the c-book or the new way of structuring and articulating activities in terms of chains of interrelated 

questions with increasing complexity. Furthermore, the quantitative information provided by the 

CoICode data analytics, in particular in terms of creative scores of ideas (see Table 1) appeared as a 

powerful tool to identify ideas worth to be further developed in the CoI-pair collaboration. The two 

ideas that obtained the highest creativity scores came from two comments made by two members of 

the French CoI while analysing the c-book redesigned by the Spanish CoI. The first idea was related 

to the first part of the c-book devoted to the study of fractal properties and the appearance of the 

notion of limit at infinity. A French CoI member provided a link to a widget he designed with 

Cinderella dynamic geometry system to simulate fractals and predict their tendency in the infinity 

(Table 1, idea n°45675). The widget was subsequently integrated at the end of this first section with 

new questions that CoI-pair members suggested. The other idea was suggested by another French CoI 

member concerning the possibilities embedded in chat tools, developed within the French CoI, to 

foster social aspects (Table 1, idea n°45901).Chat tools were subsequently integrated in the c-book 

to enable students to communicate their results or to pose new questions. These episodes can be 

interpreted as hybridisation and elaboration of ideas. 

Besides the importance that this phase had on creating a new and common CoI-pair design context, 

our analysis shows that the CMT grid, the CoICode workspace the creative scores of ideas and the c-

book versions used as boundary objects between the two CoIs constituted key meditation supports to 

enable the designers to agree on which ideas to accept (or not) and on the ways of further elaboration 

of some of these ideas, thus sustaining the mechanisms of coordination, reflection and  

transformation. 

Discussion and conclusion 

The analysis of the c-book “Limits” collaborative design shows that different CMT representations 

that both CoIs held, influenced by each CoI own culture and traditions, enriched the cross-CoI 

collaboration, acted as a boundary object and participated in the key mechanism of coordination for 

decisions making in the intra-CoI and cross-CoI design work (Barajas, 2016). 

In the two phases of intra-CoI and cross-CoI work (phases 3 and 4), it appeared that redesigning does 

not mean a total transformation and complete re-contextualisation either of the initial unit, of the 

empirical setting envisioned or of the academic approach (Barquero, Papadopoulos, Barajas & 

Kynigos, 2016), but rather an improvement of some aspects, and it helped to establish confidence and 

trust atmosphere. On the contrary, some design principles shared by the two CoIs were reinforced, 

crystallised through the mechanism of transformation, such as connections between multiple 

representations, or making and investigating conjectures. Others, coming from only one CoI, were 

negotiated and became shared by both CoIs, such as extra-mathematical connections or interrelations 

between the c-book activities, yet others were abandoned. The CoI-pair created a new, wealthier 

design context thanks to two different cultures close enough to create some overlaps yielding a 

common frame of reference, which enabled to build understanding and fostered the mechanism of 



coordination. The understanding and respect allowed to share design decisions with the help of 

mediation tools used as boundary objects (different versions of the c-book, CMT grid, creative scores 

of ideas) and to cross some boundaries (different CMT representations, school cultures, research 

approaches, distance collaboration). The mediation tools favoured the dialogue between the CoIs and 

facilitated decisions, in conjunction with common good practices and CoI moderation strategies. The 

workspaces in CoICode used as meditational artefact were instrumentalized to support reflection, 

enabling to make points of view explicit (perspective making) and to enrich ideas (hybridisation). 

The boundary objects, the structure of the workspaces and the moderation strategy played a major 

role in the mechanism of coordination, reflection and transformation. 

This study brings to the fore two main forces that shaped decision making in the design process: tools 

and cultures (Fig. 3). 

 

Figure 3. Main forces shaping the decision making in a c-book design process. 

Both had either theoretical or conceptual dimensions, for example the CMT evaluation grid built on 

theoretical considerations about creativity, but they have socio-technical aspects as well because the 

C-Book technology, comprising authoring tools, widget factories and CoICode, is the MC2 project 

social management main tool. The cultural context of the CoI includes mathematics education 

theoretical tradition, composition of the CoI, familiarity and expertise with the variety of widgets. 

The background of the designers impacts their attitude towards these tools, their CMT 

representations, their position in the collaborative decision making and the widgets they use. Eased 

by the proximity of collaborating cultures, the interplay of culture and tools in cross-CoI collaboration 

had enriched the scope of the designed tasks. 
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In this paper we describe a comparison between two different approaches to teach some algorithmic 

and computational thinking to children, mainly in 3rd grade. Children’s learning is taken into main 

consideration and we want to analyze the difficulties students encounter using the different 

approaches. Before that, an introduction is done, describing the research framework and 

methodology, offering the background for this research and outlining the larger research project 

from which the paper is derived. We then describe the tasks used and look at some examples of the 

difficulties children face, on one side dealing with the problem of abstract thinking while 

programming, and on the other having troubles relating more practical activity with what the 

calculator does. 

Keywords: Primary education, curriculum, computer science, programming, algorithms. 

Introduction 

Computer Science and algorithms in education are gaining more and more importance as the use of 

digital technologies is nowadays part of everyone’s life. New educational trends are therefore 

emerging both from the computer science and mathematics education research community and from 

elementary and secondary school teachers (Franklin et al., 2015; Richtel, 2014). The question about 

how young children learn computer science is still a new area of research; and providing effective 

learning opportunities to K-5 students is a big challenge (Hills et al., 2015; Gelderblom & Kotze, 

2009). Some good examples have been tried in the secondary school, while we feel that not much is 

present, at least in our country, in lower school grades. Topics in computer science and discrete 

mathematics are not clearly delimited in our curriculum and teachers are usually not aware that they 

actually could. We are thinking of our work as able to enhance the study of teaching and learning 

skills of mathematical practice through discrete mathematics problems, both general skills, such as 

reasoning and modeling, and skills particular to discrete mathematics, such as algorithmic and 

recursive thinking. 

Background and context 

Preliminary survey among teachers – relation with cryptography 

We had a first survey, with results collected from about 150 teachers, mostly in service and quite 

evenly divided between primary, middle and secondary school. The survey was done with an online 

platform. The result analysis is mainly following a quantitative approach, the qualitative analysis was 

referred to the codification of some particular key words used by teachers. 

Analysing the results, teachers, especially at lower levels, admit not to have the necessary knowledge 

to teach this in school. Question was about their previous experience in learning cryptography and 

graph theory, as well as the connection of these to mathematics and computer science. Some of these 

teachers see the connection between algorithms, cryptography and mathematics in general and 

computer science as quite necessary, while some don’t have this idea clear in their mind. Also, 



teachers were asked if they had any previous experience in teaching the topic or if "they would be 

interested in teaching some algorithm, cryptography and other discrete mathematics topic to 

students”, and feeling from their answer is that this results can be taken as a first starting and 

promising point to make something of this into the national curriculum. A detailed analysis of these 

results is available in another article (Gaio & Di Paola, 2016, in press). 

National Guidelines and teaching situation 

The Italian Ministry for Education, University and Research published the current National 

Guidelines for the first cycle (kindergarten to middle school) of education (Ministero della Pubblica 

Istruzione, 2012). These guidelines are not any longer a detailed description of school curriculum to 

follow, but just want to provide concepts from which the single schools and institutes, and teachers, 

can take the basic goals and competences to reach. Some general standards are set with objectives for 

the educational achievements and learning goals. In the section talking about mathematics, there is a 

great importance given to reading and understanding texts with logical content, build lines of 

reasoning, having own ideas and defending and comparing them with others; a positive attitude 

towards mathematics, realizing how mathematical topics are useful in the real world. Algorithms and 

logical thinking as also referred to as important in the technology chapter of the guidelines, for all 

school grades. Following these guidelines, and our idea as well, “the first education cycle has a 

prominent role in the school curriculum considering the importance of this time in every student's 

life. Within this, the school attributes great relevance to the education and teaching methods that can 

fully activate energies and potentialities of every kid”. 

Research question 

Our main general research problem lies therefore in a proposal to alleviate the substantial lack of 

activities in the national school curriculum about discrete mathematics and computer algorithms, 

especially for primary and middle school. Both in the school programs and in textbooks, activities of 

this kind are missing almost entirely, despite many agree that they can be really useful to improve the 

skills mentioned above.  

The purpose of this specific paper is to deal with the introduction of programming reasoning to 

children as young as 8 or 9 years old. The question is whether it is better to approach the subject with 

an unplugged approach and only later go on with computer-based coding or if it is ok to proceed 

using Scratch-based software and tools to serve the same purpose. We do this by describing two 

different approaches which have been used in the teaching of these computer science and discrete 

mathematics topics. We will in particular analyze and focus on certain difficulties students encounter 

while using both. 

Theory and methodology 

This is an overview, referring to our whole project’s methodology and background theory. 

Background theory 

Teaching methods follow the model of Realistic Mathematics Education (Gravemeijer, 1994) and 

Guided Reinvention of mathematics (Brousseau, 1997). 

Guided Reinvention of mathematics is based on Hans Freudenthal concept of mathematics as human 

activity. Education should give students the "guided" opportunity to "re-invent" mathematics by 



doing it. This means that in mathematics education, the focal point should not be on mathematics as 

a closed system but on the activity, on the process of mathematization (Freudenthal, 1973).  

Realistic Mathematics Education (RME) is an instructional design theory which centers around the 

view of mathematics as a human activity (Freudenthal, 1991); “The idea is to allow learners to come 

to regard the knowledge that they acquire as their own private knowledge, knowledge for which they 

themselves are responsible.”(Gravemeijer, 1994). The main goal is to develop a local (i.e. domain-

specific) instructional theory (LIT) that will allow students to “[invent] the mathematics themselves” 

(Larsen, 2008). This need two steps: Step 1, in which “students are engaged in activities designed to 

invoke powerful informal understandings” (Weber & Larsen, 2008); Step 2, in which “students are 

engaged in activities designed to support reflection on these informal notions in order to promote the 

development of formal concepts”  (Weber & Larsen, 2008). 

Research methodology 

The methodology we are going to use is that of design research or design experiments (Cobb et al., 

2003; Barab & Squire, 2004; Brown, 1992). For the purpose of this thesis, the developmental 

approach is taken into consideration (Plomp & Nieveen, 2007); development studies function is to 

design and develop a, research based, intervention (Steffe, 1983) and constructing design principles 

in the process of developing it. The goal is to explore new learning and teaching environments, to 

verify their effectiveness; to develop somehow new methods, instruments and teaching actions to 

further improve in the field of problem solving and logical thinking, using somehow unusual topics 

as algorithms and cryptography are for primary school students. Doing this the goal is to contribute 

to the development of new teaching and learning theories, taking into consideration learning 

processes in the specific situation, with contents and goals clearly defined. Design research is quite 

appropriate in this situation, as we are facing a brand new experience in an environment that we need 

to analyze carefully, i.e. on a local scale, considering all the different elements in the learning 

environment. The intended design experiment will be a classroom experiment in which the researcher 

(or researchers) will cooperate with the teachers in assuming teaching responsibilities. On one hand, 

the teacher is a part of the design team and will be a key role in the development and reviewing of 

the activities, on the other, they have no previous knowledge and need a guide to experiment with 

this new experience and new content to present.  

Design, tasks, analysis and results 

As a first design step, based on theoretical framework and literature, two hypothetical learning 

trajectories were designed for the two different approaches. One approach is Scratch-based, and has 

been taken from the most popular book on curricular resources about Scratch programming in our 

country (Coding, DeAgostini publisher, Ferraresso, Colombini, Bonanome, 2014). The second 

approach was developed by our research team, taking idea and inspiration from the Computer Science 

Unplugged project (Bell, Witten, Fellows, 1998, 2015 review) and other related sources (Casey et al., 

1992), with a development, after a preliminary teaching experiment, to better adapt the activities to 

the school level and local situation and norms. The two HLTs are taking into account the theoretical 

framework presented above, both in the choice of tasks (e.g. some tasks are chosen for their RME 

approach,others for the group and cooperative work students have to do, and so on) and in the way 

of presenting them to the classroom or students. 



The tasks we are going to describe are just some of the many sequences of tasks that were proposed 

to various schools and age groups during the 2015/2016 school year in the bigger research project. In 

a design research paradigm (Plomp & Nievenn, 2007), the activities were tried out many times, 

always with an a priori analysis together with the teachers and with a retrospective look after each 

lesson.  

Schools Grades n. of Classes n. of Students Approach 

1,2,4 3 4 78 Unplugged 

1,2,4 3,4 5 80 Scratch-based 

3,5 3,4 3 54 Unplugged 

3,5 3,4 2 39 Scratch-based 

Table 1: Classes involved in different grades, with students numbers and curriculum used 

Scratch-based teaching and learning 

As mentioned above, the sequence of tasks we called “Scratch-based” is taken from this Coding book, 

which is getting popular in our country’s schools. Also we did use the M.I.T. official Scratch guide 

(Creative Computing, Brennan, Balch & Chung, 2014). It is following a similar approach to many 

school text books and even M.I.T.’s own guidelines on Scratch use and we feel it is good material for 

teachers. We did choose the tasks that are most popular among teachers already doing this kind of 

activity in their classroom, at least investigating the most popular in our area. 

We did in particular choose tasks related to sequencing, selection and iteration. The goal is to have 

students learn basic ideas behind an algorithm (seen as a sequence of instructions), but also more 

complex concepts like selection instructions (i.e. do this only if something else happens) or iteration 

procedures. A sequence of tasks on those three topics were selected together with the classroom 

teacher and then tried out with the students during mathematics and technology lessons.  

Unplugged approach, teaching and learning 

Our “unplugged” sequence of tasks occupies 3 or 4 lesson slots of 

about one and a half to two hours and follows a brief introduction 

given on how computer works and binary numbers, in form of 

games (this was given also the groups using the other approach). 

Briefly describing the tasks, task 1 was an activity on paper, about 

binary image representation. Students had to color a grid which 

was provided with 0s and 1s and produce a drawing following the 

numbers. This task goal was about following instructions and 

beginning to understand how a computer transmits information. 



Task 2 was about giving and receiving instructions. Students were divided in pairs and given a series 

of shapes and objects they could move on their table. One student (1) for each pair was to create a 

composition on his table; without looking at each other (physical barrier between the two), student 1 

had to explain to the other how to reproduce the same 

composition with the objects and shapes. Children were 

required to be as precise as possible while the game went on, 

and to try to find out compositions that were harder to form. 

Only oral communication were left them, not to make them 

“correct” the other mistakes or looking at the other 

composition. Slightly different versions of the game were tried 

out, e.g. with just one student giving instructions to all others, 

or with different kinds of objects, even with just drawing 

something instead of moving objects, and so on. 

The following tasks had the goal to make programming even more tangible for children. We wanted 

them to learn to give instruction as a calculator, through a path to walk on. One student (blinded) was 

the “robot” walking along this path on the ground and the others were the “programmers” having to 

give him instructions how to move to get to the end. We 

did this both speaking and then written. The written 

exercise does not give the possibility to correct the robot 

while you are actually giving the instructions, kind of 

how a real computer program works. Finally, with some 

of the classes we went on to construct some more 

complex sequence of instructions, posing different 

games to strengthen the concepts, but always with 

similar goals. 

Methods of video selection and analysis 

Analysis of the results is video-based, qualitative and fine-grained; both group activities and 

classroom discussion are recorded and we also have many of the transcripts, together with field notes, 

student’s sheets, and interviews as other sources of evidence. As already said, focus is put on students’ 

learning and thinking, in reaction to the different tasks proposed. 

Following Zacks & Tverski theory, data is represented by events selected from the video recordings 

available. We used an inductive approach in video selecting, beginning with viewing the corpus in its 

entirety and focus on details later on. Indexing and summaries of videos, plus a content log, help in 

this process. Going on with the analysis some events which were particularly relevant were isolated. 

Although there are some recognizable recurring situation and choice of words we coded, our focus is 

more on a “play-by-play” description of these chosen events. We are, with this approach, analyzing 

selected episodes focusing on the same happening and constantly revising our finding and new 

hypothesis, as in Cobb and Whitenack (1996) with the involvement of “constantly reconciling 

provisional analytic categories with subsequent data and newly formulated categories”. 



Different difficulties emerging 

The “events” we are focusing on does not pretend to show that one approach is better than the other, 

but which kind of, different, difficulties each of them can create in the children learning and thinking 

using the different approaches. 

In the unplugged approach, children easily figure out what they are really and practically doing, 

drawing conclusions that they usually do not get in front of the computer. See for example the 

following figures where the transition from longer instruction in the first part to shorter instruction 

(switching to an iteration notation) in the second comes automatically. Almost every student quite 

naturally finds out that it takes a long time to write again and again the same instruction and is quickly 

asking himself if he might “make it somehow shorter”. This is probably due to the fact that they were 

left free to develop their own language with arrows, and they feel they can adapt it to what is more 

appropriate and efficient for the situation. Videos showing these moments when they realize this fact 

has been isolated from the data. 

Figures 5 and 6: Showing the transition from sequential instruction to iteration  

Or, on the other hand, as an example, see the following short transcript from a video (in front of a 

Scratch set of instruction on the computer), where the students do not realize the usefulness of 

shortening a computer program to make it simple and more efficient: 

Teacher: Why aren’t you writing it in a shorter way (more compact?). You don’t need to 

write an instruction 6 times, you could write “do this … times”. 

Student: Well, but what’s the need for it? The computer is doing it anyways. 

In these examples, students doing it unplugged quickly find out they are more efficient if they switch 

to an iterative mode of giving their instructions, while students doing it on the computer do not really 

realize this. On the contrary, they should learn one more command (or Scratch block) they do not 

already know to do it, so in the beginning it does not seem so appealing. From many events observed, 

quite surprisingly, this shortening is not immediate on the computer. Following our qualitative video 

analysis, in general, it seems that both selection and iteration instructions do not come naturally in 



the Scratch environment as they do in an unplugged approach. Setting the activities and game in a 

real world scenario, especially at this young age, seems to give children a better idea of the advantages 

of iteration and the working principles of selection programming. Maybe creating some highly 

inefficient situation could force this process to happen in this case, too. 

A second aspect to consider is errors done while writing a program. Analyzing error situation we can 

observe that it is actually easier for the students to spot the errors in a Computer-based environment. 

In the unplugged approach, sometimes, error fixing does not work at all, i.e. they cannot even spot 

the error if told that there is one. Our conclusion is that, as they are controlling their own game, they, 

more or less, unconsciously, get to a right solution even with a wrong set of instructions. On the 

computer-based environment, trying the program and making it running, given that the computer 

executes exactly what it has been told, students easily spots where the mistake is.  

Another aspect we are facing at this young age is abstraction capability. As many references states 

(see Kramer, 2007), abstraction capability is the key to be a good programmer and to have future 

programming abilities. Abstraction is a very difficult process and Scratch helps a lot in this direction; 

on the other side, the unplugged approach makes activities somehow too distant from the abstraction 

of programming and makes it more difficult to children to relate what they are doing with what they 

will later do on the calculator, as some video excerpts from these moments show. Aspects of a real 

world mathematics surely can help the transition to the abstract world of programming (Futschek & 

Moschitz, 2011), but we have to be careful in the subtle connection between the two areas. 

Conclusions 

As conclusions, we could see pros and cons of both approaches, and we feel that obsessing over using 

just one is not the correct decision. Video and other data analysis show that there are aspects that 

ought to be dealt with in an unplugged way before writing them on the computer (algorithms, iteration 

processes and many others) and come really more natural to children if they use their own language, 

as can be seen in many “Aha! Moments” in the recordings. On the other side, it is really difficult for 

young children to relate the more real-world-oriented tasks to computer science, as we can see 

example when they get stuck in finding the connections. Future work will try to go into combining 

both approaches in a more comprehensive curriculum plan, creating new learning sequences that take 

both into account, which we will share with teachers and educators, in a relatively long developing 

process. Teachers willing to teach these topics are growing in number and they ought to be prepared 

for the challenge they will be facing. 
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 Principles of redesigning an e-task based on a paper-and-pencil task: 

The case of parametric functions  

Galit Nagari Haddif  
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Paper tasks are often redesigned to function as digital tasks. The research and design literature 

(Pead, 2010; Burkhardt & Pead, 2003) has reported on the challenges of such a transformation. We 

report on a study exploring the design principles of an e-task, originally designed as a paper-and-

pencil task and converted into an interactive diagram. We describe a paper task in the content area 

of parametric functions, and report on results from an experiment conducted with 39 high school 

students, who dealt with an e-task based on a paper task. Analyzing the results, we demonstrate that 

in a redesigned e-task based on a paper-and-pencil task, technology should allow self-reflection, 

promote learning, and guide the students to focus on the important details without unnecessary 

distractions.  

Keywords: Design, e-task, parameter. 

Goals and theoretical framework 

In this paper1, we explore design principles of an e-task that encourages exploration, based on a 

paper-and-pencil (P&P) task, in the area of parametric functions, which is central in algebra and is 

adequate for enhancing the abstraction of concrete situations (Drijvers, 2001). Solving parametric 

equations is different and more challenging than solving numerical algebraic equations, which are 

solved for an unknown that is a number. Naturally, when designing an e-task we should not 

translate from the paper but rather use successful principles of learning within the interactive 

environment to design the tasks. Research shows that many complex issues arise when transferring 

paper-and-pencil tasks to computers. For example, if students are not familiar with the tools, the 

online environment may be a potential source of an additional "cognitive load" (Pead, 2010). 

Interactivity can spoil some tasks: for example, by allowing students to check all their answers, or 

by encouraging them to persist in trial-and-error experimentation, rather than engaging in analysis 

(Burkhardt & Pead, 2003; Nagari Haddif & Yerushalmy, 2015). Although the transition from a 

paper-and-pencil task to an e-task is not trivial, there may be an added value in the use of 

technology. For example, multiple linked representations (MLRs) both support and require tasks 

that involve decision making and other problem-solving skills, such as estimation, selecting a 

representation, and mapping the changes across representations (e.g., Yerushalmy, 2006).  

With the Cabri software, Healy (2000) introduced soft and robust construction and found that 

despite the intention to encourage students to build robust constructions, in practice, some students 

preferred to investigate a second type of Cabri-object, soft constructions, in which one of the chosen 

properties is deliberately constructed by eye in an empirical manner, under the control of the 

student. Laborde (2005) referred to soft constructions as the "private" side of the student’s work, 

which is part of the solving process and serves as a scaffold to a definite robust construction. We 

suggest using soft constructions as a way of exploring and identifying dependences between 



properties, and as a gateway to a definite robust construction from a purely visual solution. Below 

we describe a task (Figure 1) taken from Taylor (1992, p. 204), and the reasons for which we 

decided to redesign it and convert it to an e-task. In general, Taylor’s rationale for this kind of task 

is to have a marked difference between being able to see ("sense") the solution geometrically and 

the ability to solve it algebraically. Interactive MLR technology offers dynamic interactions that can 

support the generalization of a graph into a family, offering sensuous support for finding an abstract 

parametric solution. This gap between interaction and abstraction is one of the challenges of using 

interactive MLR technology. The following description of the e-task design and of the experiment 

conducted with the students who worked with this e-task, demonstrates some basic considerations 

and principles of designing an e-task based on a P&P task. 

The original P&P task and its possible correct solutions 

Research on mathematicians’ conjecturing and proving activity suggests that use of examples plays 

a critical role both in the development of conjectures and in their exploration, as well as in the 

subsequent construction of proofs of these conjectures (Lockwood, Ellis, & Lynch, 2016). 

Therefore, when dealing with the task (Figure 1), we can expect work that would look like Figure 2 

(a): the students would sketch for themselves some exemplary lines through the origin. 

At the right is the graph of the cubic equation )3)(1(  xxxy . Consider the family of 

non-vertical lines through the origin. How many intersections does each line have with the 

curve?   (I) Begin by making a conjecture based on the picture. (II) Describe the family of 

lines algebraically, and verify your conjecture.  

Figure 1: The original task as it appears in Taylor's book (Taylor, p. 204) 

In this case, it may be difficult to make a generalization and diagnose the three different numbers of 

common points: one, two, and three common points between the family of lines mxy   and the 

given function )3)(1(  xxxy . Moreover, one could start to investigate algebraically the mutual 

relationship between the two functions required in part (II) (Figure 1), and skip part (I). 

 (a) 

 

(b) 

 

Figure 2: (a) Typical free-hand sketching used to conjecture about the intersections; (b) The domains and values 

of parameter m for all cases of number of common points 

                                                                                                                                                                  



The abstraction and generalization needed to find and define algebraically the domains of the 

parameter m for each case number of common points (Figure 2 (b)) is a challenge. Generally, 

solving the case of two common points requires using two approaches, as shown in Figure 3.  
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Figure 3: The two main ways of solving the case of two common points 

In both the calculus and the algebraic approaches, there is an "easy" value of m and one that is less 

obvious. When grappling with this task, students should "see" (and be able to calculate) that there 

are two possible values for parameter m, for which both functions have two common points: 

3m or 1m . Some students (see also Ron's thinking-aloud process in Figure 6) may skip one 

approach that reveals one of the values of m and move on to the other approach to obtain another 

value. A mathematical pedagogical discussion may address the manner in which the two approaches 

meet. This rich task concerns various mathematical concepts besides parametric functions: 

intersection points, tangency to a function, and mutual relationships between functions. It 

encourages making conjectures and aims to assess skills such as exploration, algebraic 

manipulation, and generalization of particular cases and examples.  

Study 

We redesigned the task (Figure 1) and converted it to an e-task. We conducted an experiment with 

39 10th- and 11th -grade students who worked with the e-task. The students studied the standard 

curriculum with different teachers in the same school, without special emphasis on technology. Ron, 

one of the students, was thinking aloud during the solving process (Figure 6). The video recording 

of his thinking aloud enabled us to follow the process of task completion as it was taking place, 

rather than consider only its final product, and to listen to the problem-solving process.  

Design considerations and possible correct solutions: Parts A and B 

MLR experimentation first. In part A (Figure 4), the students used a dynamic applet that displays 

the function )(xf  and the parametric family mx =y on the same coordinate system.  



The following interactive diagram describes the functions 

)3)(1()(  xxxxf  and mx =y . By dragging the red point, you 

can create different examples of mutual relationship between these 

functions.  

Part A: How many common points are there for both functions? 

Submit three different screenshots, each one representing a different 

number of common points. 

Part B: For which values of m does the functions have one common 

point? Two common points? Three common points? Indicate all the 

possible values. 
 

Figure 4: The designed e-task: parts A and B 

Students became familiar with the activity and the givens, and were asked to submit three 

screenshots of three different cases of numbers of common points, in other words, three different 

"soft constructions" (e.g., Healy, 2000; Laborde, 2005), designed to support their generalization 

process and symbolic work required in part B. In the case of the parametric family in the MLR 

environment, any change in the value of m changes simultaneously the graphic representation of the 

relevant line. In designing this part, we wanted to make sure that students experimented with the 

applet, understood all the details and givens, and were exposed to many examples of the parametric 

function, so that in part B they could concentrate on the exploration activity with as little cognitive 

load as possible. An example of a correct solution is shown in Figure 5. The student submitted three 

different mutual relationships of the two functions, each with a different number of common points.  

 

Figure 5: Example of a correct solution for part A 

Minimal necessary tool set. There are deliberately very few tools available to the student: zoom in, 

zoom out, and move the coordinate system. The tools are designed to enable users to sense the task 

qualitatively, allow them to focus on the relevant parts of the graphing picture, and not to provide 

numeric information. This minimal design coveys the message that other parts of the tasks require 

numeric and symbolic calculation not provided by the interactive diagram. To summarize, the goals 

of part A are: (a) encourage student experimentation with the dynamic applet: feel/sense the givens 

and avoid cognitive load; (b) expose students to a variety of examples demonstrating the mutual 

relationship of the two functions; (c) engineer an experience-based conceptualization for solving the 

general case required in part B; and (d) assess the student's understanding of the givens and of what 

is expected of them (as well as some technical issues). Solutions for each number of common points 

appear in Figure 2 (b): one 1m ; two 3m or 1m ; three: 31  m  or 3m . 



Findings and data analysis: Parts A and B 

(1) Part A: Most students submitted correct answers for part A (Table 1). This is not surprising, 

because the purpose of this part was to encourage students to "sense" the problem and its givens. 

But 15% of students missed one case (of one or two common points). Possible reasons for this are 

that students were not experienced enough with the applet, that they did not use the tools to view all 

cases, etc. As mentioned above (Figure 3), it is easy to reach one of the two possible values of m, 

but while experimenting with the interactive diagram one may notice that there is another possible 

value of m. In Figure 6 we describe Ron's thinking aloud about a solution for part B. 

29 (74.3%) Correct answer  Correct answers 

6 (15.8%) One missing case (of one or two common points)  

Incorrect answers 3 (7.7%) Technical problem 

1 (2.6%) Not submitted 

39 (100%) Total 

Table 1: Submission characteristics of correct and incorrect answers to part A 

In the beginning, Ron solved this part algebraically and found that m=-1 is the case in which the 

functions have two common points. By zooming in and out, he found that there is another value for 

m. The interactive diagram allowed Ron to connect between the algebraic and graphic approaches 

(Figure 6, line 9). Through experimentation, he tried to find the other value of m (Figure 6, lines 4-

9). This demonstrates the power of technology as a tool that provides students means to reflect their 

solution, allowing learning to take place during a test. In practice, during the experiment some 

students noticed the missing value of m and tried to find it (not always successfully), either by 

expanding the solution using the same approach, or by changing the approach from algebraic to 

calculus or vice versa, as described in Figure 3.  

(2) Part B (Error! Reference source not found.): 18 of the solutions included one or both correct 

values for m (m=-1, m=3).  

 N=39 (100%) 

Number of common points One  Two  Three  

Correct answer 15 (38.5%) 2 (5.1%) 2 (5.1%) 

Partial answer 0 (0%) 16 (41%) 7 (17.9%) 

Incorrect answer 8 (20.5%) 6 (15.4%) 13 (33.3%) 

Not submitted 16 (41%) 15 (38.5%) 17 (43.6%) 

Table 2: Submission characteristics of correct and incorrect answers to part B 

Only two students submitted a completely correct answer; 15 students did not submit an answer. 

Others submitted other values, probably as a result of calculation errors or because they were 

guessing. Only two students submitted a correct answer for the case of three common points (the 

same students who submitted correct solutions for the case of two common points). This may imply 

that in addition to the difficulty of finding both "critical" values of the parameter m (m=-1, 3), it is 

also difficult to generalize and formulate symbolically the possible domains of parameter m for the 

cases of three common points. 



 

 Ron's thinking aloud Ron's actions on and with the screen 

1.  This is equivalent to solving this equation. Right? Right. 

Zero is always one common point... then... Then I can 

divide simply by x. Then I investigate the quadratic 

equation: 
0=m-3+4x-x

3)-1)(x-(x=m 

3)-1)(x-x(x=mx

2

 

2.  I check when it has two solutions, one solution, or zero 

solutions. These are two common points in my opinion. 

He looks at the case that is close to 

m=3. 

3.  No, these are three common points... There is a certain 

m... It has to be minus 1 

This is the value that he got through 

the algebraic calculations. 

4.  Then where did I go wrong?   Graphically, he sees that there is another 

positive m, but he got only m=-1. 

5.  I need to check this equation. Refers to 3)-1)(x-x(x=mx . 

6.  I always have one common point. Then I can simply 

divide by x. I have a neat equation. I have to see when it 

is equal to zero. We need to check when the 

discriminant is positive, negative, or zero. m must be 

different from zero to have two common points. Then m 

equals to -1. m=-1 for two solutions.  

He checks again his calculations: 

0=m-3+4x-x

3)-1)(x-(x=m 

3)-1)(x-x(x=mx

2
 

7.  I need to zoom in.  Ron uses the zoom in and out buttons to 

explore and distinguish between different 

cases. 

8.  I don't know what is my analytic mistake...   

9.  This is the tangent, the tangent.  He finds the graphic meaning of the case 

of two common points. Using calculus, 

Ron finds the other value of m. 

Figure 6: Ron's thinking aloud while working on part B 

Discussion 

Our first conjecture, that a dynamic and interactive MLR environment supports the generalization of 

a graph into a family was only partially confirmed. The results of part B reveal the complexity of the 

concepts involved in the tasks. Results may suggest the presence of a permanent tension when 

designing mathematical e-tasks. On one hand, we want to design an e-task for exploration that can 

be automatically checked. Therefore, we tend to give students the opportunity to explore without 

any hints and without leading them to the solution. On the other hand, the task may be too difficult, 

and we may have difficulty assessing the students' knowledge and mistakes. In retrospect, this 

exploration e-task was too difficult; we should have divided the e-task into more than two stages 

and ranked the sub-tasks: first concentrate on the case of two common points, and only later on 

other cases. We are currently considering a refined design of this e- task.  

Below we describe some basic design principles we gleaned from the experiment described above. 

Other design principles are described in Yerushalmy, Haddif, and Olsher (under review), Haddif 

and Yerushalmy (under review). When re-designing an e-task based on a P&P task, technology 

should provide the following: (1) Allow self-reflection: When solving a P&P task, we have few 

means to reflect on our solution, especially not instantaneously. Use of an interactive diagram in an 



MLR environment together with manual calculations helps students control their actions and reflect 

on them during assessment, and check whether they are right or wrong, without telling them directly 

what the correct solution is. (2) Promote learning: Using an interactive diagram with parametric 

functions allows seeing many instances of the same family. This is an opportunity to see the 

parameter serve as a "generator" of functions that belong to the same parametric family. 

Experiencing with the dynamic diagram also encourages students to make conjectures and conduct 

interactive exploration. As demonstrated in Ron's case, technology has the potential to create a 

cognitive conflict and thereby provide a learning opportunity (Figure 6, line 4). Ron tries and 

succeeds in solving the conflict between the manual solution and the graphic representation on the 

screen. Had he solved the original task, he may not have noticed the "conflict" between the graphic 

representation and the symbolic calculation. (3) Guide students to focus on the important details, 

without unnecessary distractions: Although it is tempting to use the varied capabilities of 

technology, these might distract the students and produce negative effects. Therefore, it is necessary 

to focus on the real needs of the students and redesign the e-task to make students concentrate on 

the important details, without unnecessary distractions. This also implies that students understand 

how to approach the question. The design must reflect in some way the purpose for which the tool 

was created (Yerushalmy, 1999), and the cognitive load must be reduced as much as possible. We 

demonstrated several ways of doing this: (a) designing the task in a way that students move in stages 

away from using sensory knowledge in soft constructions toward experimenting with the interactive 

diagram to produce robust constructions, abstraction, and generalization. (b) designing the 

environment and the required solution in a way that defers engagement in numeric and symbolic 

activity: for example, eliminating grids and the option to enter expressions conveys the message that 

conjecturing comes before computations. (c) determining the minimal necessary tool set that is 

familiar to the students and common to other e-tasks. In Yerushalmy et al. (ibid.) we described in 

detail the tool set needed for calculus e-tasks, which enables automatic checking of the students' 

submissions.  
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Motivated and talented mathematics students are not always convinced about the relevance of 

mathematics. More insight into applications of mathematics can be beneficial for students in terms 

of preparing them for their future study and career. Using design research a particular intervention 

had been developed which differentiated by student interest, in order to improve students’ beliefs 

about the relevance of mathematics. The students selected were those studying advanced 

mathematics at upper secondary school in the Netherlands. The intervention had been designed to 

teach differential equations through tasks with science-, medicine-, or economics- related contexts. 

The results show that the students appreciated the context-rich tasks, which provided them with 

insights into how mathematics can be applied in other sciences and contributed to the improvement 

of their beliefs about the relevance of mathematics.        

Keywords: Mathematics education, task design, relevance of mathematics, differential equations, 

differentiation by interest. 

Introduction 

Students’ beliefs about the relevance of mathematics has been a topic of much research over the last 

decades. However, in most studies the main reason for studying students’ views on the relevance of 

mathematics has been the assumption that a positive notion of the importance of mathematics 

contributes to a positive attitude towards learning mathematics (Schoenfeld, 1989). Hence, most 

research studies conducted in this area have aimed at understanding and improving students’ 

attitudes towards mathematics, and ultimately improving their performance in mathematics at 

school (Farooq & Shah, 2008; Mohamed & Waheed, 2011). 

However, we start from the premise that already motivated and talented students can also benefit 

from a clear view on the usefulness of mathematics for their future education and career. Dutch 

secondary school students in an advanced mathematics course (aimed at improving students’ 

algebraic skills and elaborating the connection between mathematics and other sciences) praised the 

course as being challenging and fun, but they also mentioned that it was not clear to them how the 

mathematics would be useful for their future study (Van Elst, 2013). 

In our research project a design research approach has been used to develop and intervene with tasks 

aimed at simultaneously teaching a new (for students) mathematical concept (differential equations) 

and improving students’ beliefs about the relevance of mathematics in general, and in particular 

with respect to their future study and career ambitions. The students sampled were those taking the 

advanced mathematics course (in their final year before university entry) in Dutch upper secondary 

schooling. 

The mathematical topic of the designed intervention was the theory of analyzing, solving and 

interpreting first order differential equations. Differential equations are an important subject in any 



undergraduate university curriculum in a broad range of domains, such as engineering, physics, 

biology and economics, which makes it a suitable topic for an intervention with a focus on the 

relevance of mathematics. 

To improve the odds that the real-life problems posed in the designed tasks would appeal to the 

students, the designed intervention differentiated by student interest. Students were offered the 

opportunity to choose between different real-life problems, whilst ensuring that regardless of their 

choice they learned the same mathematical concepts of differential equations. 

The research question of the study was the following: How does a learning strategy based on 

differentiation by interest for teaching ordinary differential equations (to upper secondary students 

in a “strong mathematics” course) improve the view of students on the relevance of mathematics for 

their future study and career? 

In the subsequent section, we provide an overview of the relevant literature. Next, the research 

design including the context of the study and the data collection strategies used are described. 

Finally, we provide a discussion of the results and our conclusions.   

Literature 

Students’ beliefs about the relevance of mathematics is considered as one of the factors that can play 

an important role in their attitude and motivation. Several questionnaires measuring the attitude of 

students towards (learning) mathematics use a scale for measuring students’ beliefs about the 

usefulness of mathematics: for example, the Attitude scale towards Math (Martinot, et al., 1988) 

contains a scale named Relevance of Mathematics.  

Most studies using these surveys do not emphasize the improvement of students’ beliefs about the 

relevance of mathematics, as they are aimed at students’ attitudes towards mathematics. However, a 

recent study of first year university students in engineering focused on improving perceptions of the 

relevance of mathematics in engineering. In this study Flegg (2012) has described the use of 

context-based learning by applying mathematics to real-life problems as a promising approach.  

The teaching of differential equations has undergone some major changes over the past decades in 

favor of more contextualized, problem-based education, and a less traditional, analytical approach 

(Boyce, 1994). This was in line with our planned design to incorporate real-life problems in the 

assignments. At university level several initiatives have reported good results using this new 

teaching approach (e.g. Huber, 2010) and the development of new course material using Realistic 

Mathematics Education (e.g. Rasmussen & King, 2000). In a comparison of a traditional textbook 

with a textbook that incorporated discipline-specific perspectives to teach the mathematical 

knowledge to engineering students, Czocher and Baker (2010) conclude that a contextual approach 

is also more in line with recommendations from the research literature.  



Task design is widely recognized as an important, albeit complex activity that is at the core of 

mathematics education. The term ‘task’ is used to describe a wide variety of student activities aimed 

at learning mathematics (Watson & Ohtani, 2012). In our research tasks are guided group 

assignments about a real-life problem.  

The study 

The context 

The Dutch education system consists of eight years of primary education, and 4-6 years of 

secondary education (depending on the level of education). The highest level of secondary education 

is the pre-university education called VWO (voorbereidend wetenschappelijk onderwijs) with a 

duration of six years, which provides students access to university. For every student at VWO level 

mathematics is a mandatory course. However, in the last three years students can choose between 

two different mathematics courses: “wiskunde A” (mathematics A) and “wiskunde B” (mathematics 

B), the latter being the more mathematically demanding course, which is obligatory for technical 

and engineering studies at university. 

In 2007 an advanced mathematics course called “wiskunde D” (mathematics D) was introduced to 

offer challenging and engaging mathematics, and where the relevance of mathematics and its 

connection to other sciences should become clearly visible (cTWO 2007). This course is aimed at 

students with an interest in sciences and engineering, and it includes mathematical topics, which are 

part of every first year university curriculum: e.g. complex numbers; analytic geometry; and 

differential equations. Students with ‘wiskunde B’ are offered the opportunity to take this advanced 

course in mathematics in addition to their regular course. 

It might be expected that students who take this advanced course in mathematics are convinced 

about the relevance of mathematics, which is likely to fuel their obvious motivation to learn 

mathematics by taking this advanced course. However, studies on the implementation of ‘wiskunde 

D’ tell a different story. In a study by Van Elst (2013) students praised the course as being 

challenging and fun, but they also mentioned that it was not clear to them why the mathematics in 

the course was useful for their future study and career. According to a study by Cheung (2012) 

teachers of ‘wiskunde D’ stated that the course was well suited as a preparation for a future study in 

a technical or engineering environment, but they also stated that the curriculum did not emphasize 

enough the applications of mathematics and the connections to other sciences (Cheung, 2012).   

To be able to understand the theory of ordinary differential equations, secondary school students 

require almost all basic mathematical knowledge taught in secondary education as pre-knowledge. 

Hence, this topic is scheduled near the end of the final (6th) year, to make sure all major 

mathematics/’wiskunde B’ and mathematics/’wiskunde D’ topics have been covered. It can also be 

expected that at that time the students have a good idea of their intended future study. This might 

motivate the students to choose tasks with real-life problems associated with their future study. 

The real-life problems in the study by Flegg (2012) all had an engineering context, which was in 

line with students’ study (of engineering at university). However, from our experience secondary 

school students taking the ‘wiskunde D’ course are not all interested in engineering. Students 

typically also enroll for medical or economics studies after graduating with ‘wiskunde D’. Hence, 



only focusing on real-life problems in engineering would have been a too narrow approach. To give 

students a good view of applications of mathematics to solve real-life problems, the learning 

strategy should offer differentiated instruction, based on students’ interest.  

Beside this “practical” reason to give students a choice of which problems they wanted to 

investigate, research shows that differentiated instruction based on students’ interest supports their 

autonomy and improves students’ motivation for the task at hand (Katz & Assor, 2006). 

Differentiation is commonly used to accommodate the different learning styles of the students; 

however, it can also serve to accommodate other differences between the students, such as their 

interests and plans for their future study and career (Tomlinson et al., 2003).  

Research design and data collection strategies 

For the development of the intervention, a module consisting of tasks on real-life problems, a design 

research approach was chosen. The design process comprised of three phases: a preliminary phase; a 

iterative development phase; and a final evaluation phase. The preliminary phase included a context 

analysis and a literature review. The learning goals for teaching differential equations were defined, 

based on the five strands of mathematical proficiency (Kilpatrick et al., 2001).  

In the second phase a partial prototype of the module was developed. In March 2015, a small pilot 

test was conducted, with a prototype consisting of only three tasks. In a second design cycle a 

module was developed, which comprised of 14 tasks covering five different types of differential 

equations. Validation of separate tasks was done (1) by expert appraisals from university experts in 

mathematics education, focusing mainly on relevance and consistency of the design; and (2) by 

secondary school teachers focusing on the consistency and expected practicality of the design.  

The designed intervention was carried out from January to March 2016. Three classes of ‘wiskunde 

D’ students of two different schools in the Netherlands, in total 49 students, participated. The three 

classes all had a different teacher, one being a researcher in this study. 

The data collection strategies for the intervention included  

- two student surveys (before and after the intervention) asking the students about their future 

study plans and their views on the relevance of mathematics, using the 8 question scale 

Relevance of Mathematics (Relevance scale) from The Attitude scale towards Math 

(Martinot et al., 1988); 

- a student survey after the intervention to evaluate the module and the tasks; 

- student interviews after the intervention about the module and the relevance of mathematics 

in general, and in particular for their own future study and career; 

- the video recording of a teacher meeting about their experiences during the intervention; 

- the collection of exam results after the intervention at one school. These results were 

compared to the results of the ‘wiskunde D’ students of the previous exam years, who were 

taught the same theory of differential equations but in the traditional classroom setting. 



The intervention 

The intervention module comprised of five tasks, each covering a different type of differential 

equation. Of each task up to three different versions were developed, which applied the same 

mathematical concept to entirely different contexts. Prior to the first task students were given time 

to read short descriptions of each problem and were given the opportunity to make, for each of the 

five subsequent tasks, a choice which context (real-life problem) appealed to them most. 

The different contexts for each of the tasks consisted of: a science/engineering related problem; a 

biological/medical problem; and an economical/social problem. Regardless of students’ choices of 

contexts for the five tasks, the students worked with and learned the same mathematical concepts 

during their work on these parallel tasks. The students were guided through the process of 

modelling the problem and exploring the mathematical model analytically, graphically and 

numerically. After solving the mathematical problem the students were asked to interpret the results 

within the context of the chosen assignment. Table 1 gives an overview of the 14 tasks. 

 

Task Differential 

equation 

Scientific/engineering 

problems 

Biological/medical 

problems 

Economic/social 

problems 

1  Nuclear disaster Bacterial food poisoning Forged paintings 

2  Mixing water problem Intravenous infusion Advertising effect 

3  CO poisoning Estimating time of death Price indexing 

4  Oil production The Ebola epidemic Population growth 

5  Skydive Blood alcohol content  

Table 1: Overview of the real-life problems used in the module 

Results 

40 out of the 49 participating students filled in the survey about the module. Responses to most 

questions were measured on a five-point scale, ranging from “I strongly disagree” to “I strongly 

agree”. The students were generally quite positive about the whole module. Asked to grade the 

whole intervention on a scale of 1 to 10, they rated the module 6.5 on average. Interestingly, this 

mean score differed greatly between the three groups, with one group scoring surprisingly lower 

than the other two (see Table 2). Additional comments in the survey from this group suggest that 

they lacked proper guidance of their teacher. Hence, the practicality and effectivity of the 

intervention can substantially benefit from a good description of the role of the teacher as coach, 

helping the students to advance in their assignments. In the teacher meeting the same 

recommendation was made. 

Overall, 28 out of 40 students agreed (of which 6 strongly) with the statement “The tasks gave me a 

good view on how mathematics is applied in other sciences”, and only 3 students disagreed with this 

statement. The negative statement “I think that these tasks were not very realistic” was disagreed by 

29 students (of which 12 strongly) and only two students agreed with this statement. 



Schools Group Group size #Respondents 

survey 

Rating  

(mean) 

#Respondents 

Relevance scale 

School A 

 

1 19 18 7.1 18 

2 17 14 5.5 7 

School B 3 13 8 6.9 8 

Total  49 40 6.5 33 

Table 2: Respondents and rating of the module by group 

The survey also contained open questions asking students what they liked about the module and 

what in their opinion should be improved. Positive points were working in groups (11 times) and 

the application of mathematics in other sciences (15 times) with statements like: “it was fun to 

experience that math is useful”, “clear applications of math” and “you get a better view on how 

mathematics can be applied”.  

Some negative comments were about ICT problems encountered during the intervention (e.g. “slow 

laptops”). However, the majority of the feedback was about the way the mathematical concepts of 

differential equations were introduced to them. For example, they complained that having to read 

the theory by themselves made it harder to grasp the concepts. Some also missed the “traditional” 

teacher-led instruction, where the “basic” theory is explained by the teacher before the students start 

working on the assignments.  

The student interviews were conducted by the teacher/researcher (one of the authors). In the 

interviews the students voiced the same concerns about the lack of teacher instruction and the ICT 

problems. However, they were positive about the tasks and the application of mathematics to real-

life problems, as the extract shows. 

Interviewer: Did the tasks have some added value? 

Student 1: Yes, I think so. I think it adds quite a lot. It helps… 

Interviewer: It helps? In what way? 

Student 1: To give a lot of people the idea what can be done with mathematics. That there is 

mathematics behind everything. Not a lot of students would have realized that 

before, I think. 

Comparison of the ‘wiskunde D’ exam results of the 36 students from school A with the results on a 

similar exam by the 27 ‘wiskunde D’ students of the previous year did not show a significant 

change in the grades. As can be seen in Table 3, the students of 2016 scored slightly better than their 

peers in 2015 but that was to be expected as their average grade before the exam was also better. 

The intervention was not intended to improve the exam results, and the findings showed that the 

dual focus on both the mathematical concepts of differential equations and the relevance of 

mathematics to other sciences did not affect the grades of the students in a negative way.     



 

Exam results school A Group size Average grade 

before exam 

Average 

exam score 

Students 2016 (intervention) 36 75.2 % 72.6 % 

Students 2015 (traditional course)  27 74.6 % 71.4 % 

Table 3: Exam grades of the students in 2015 and 2016  

From the Relevance of Mathematics scale, conducted before and after the intervention, we obtained 

some promising results. Only 33 out of the 49 students completed both the pre and post survey, as 

shown in the last column of table 2. 

A one-sided paired-samples t-test was conducted to compare the answers of the 33 students on 8 

items of the Relevance of Mathematics scale before and after the intervention. The result of this test 

for the whole group of 33 respondents did not show a significant improvement with a p-value of 

0.19. But the same test on the 18 results from the high response group gave a p-value of less than 

0.02 indicating a significant positive change in their response to the questions about the relevance of 

mathematics. Due to the low response rate of the two other groups we were not able to get any 

significant results from these separate groups.  

We also conducted the paired t-test on the answers of the 17 students who had the lowest scores on 

the pretest. They had scored relatively low on their beliefs about the relevance of mathematics, all 

with an average score between 2.38 and 3.63 for the 8 items on the five point Likert scale. On the 

same test after the intervention their average scores ranged between 2.63 and 4.63. 12 of these 17 

students scored higher on the test after the intervention resulting in a p-value of 0.002, which 

indicates a strong significant positive change in these students’ beliefs about the relevance of 

mathematics. This result indicates that students who do not already have strong beliefs about the 

relevance of mathematics benefit most from the context-based tasks. 

Conclusion 

The intervention had positive effects on selected student views about the relevance of mathematics 

without affecting the examination results. Providing students with purposefully designed tasks 

where mathematics is applied to real-life problems cannot only challenge their assumptions about 

the relevance of mathematics, but also improve their awareness of its usefulness. 

Teacher professional development is a topic for further study that will be the focus of a new design 

cycle of the module. Applications like a teacher meeting, where the goals of the module are 

explained and an extension of the teacher manual with guidelines how to introduce the module and 

how to coach the students during the group assignments, are expected to contribute to a better 

understanding of the role of the teacher during future interventions.    
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In this paper we use the documentational approach to investigate teachers’ collective work. We 

follow two teachers, preparing together a lesson on tolerance intervals for grade 11. We identify 

Mathematical Knowledge for Teaching (MKT) that influences the use of resources by the teachers. 

We evidence that their collective work fosters important documentation work; but we observe 

significant differences between the documents developed by the two teachers.  

Keywords: Documentation work, resources, teachers’ knowledge, tolerance intervals, variability. 

Introduction 

Teachers interact with curriculum resources in and out-of-class (TWG22 call for papers). In 

previous works we have identified the importance of these interactions in terms of teachers’ 

professional development (Gueudet, Pepin & Trouche 2012), and we have evidenced that teachers 

often work collectively with resources. In this paper we study further this collective work of 

teachers with resources and its consequences.  

The work presented here takes place within the French national project REVEA1 (Living Resources 

for Teaching and Learning). We consider the case of two mathematics teachers at upper secondary 

school in France teaching sampling variability in statistics in grade 11. We firstly expose the 

theoretical perspective we use and our methods. Then we present the data we collected, and the 

context of teaching sampling variability in France. Finally we expose our analyses of the teachers’ 

work and of its links with teachers’ knowledge in particular.  

Investigating teachers’ documentational work: Theory and method 

We use for our research the theoretical and methodological perspective of the documentational 

approach (Gueudet et al. 2012). Mathematics teachers interact in their work with a large range of 

resources (Adler 2000). Resources designed for teaching purposes like textbooks or software, 

resources coming from the students, e-mails exchanged with colleagues etc. Teachers choose 

resources, transform them, use them in class; we call this work “teachers’ documentational work”. 

In previous research, we have evidenced that this work is closely linked with teachers’ professional 

knowledge. The choice of resources by teachers, the way teachers modify and use the resources is 

driven by their professional knowledge (and this is called an instrumentalisation process, drawing 

on Rabardel’s instrumentation theory, Rabardel 1995). In a reverse way, the features of the 

resources used modify teachers’ knowledge (in an instrumentation process). In the documentational 

approach, we consider that from a set of resources teachers develop a document: transformed 

                                                 

1 https://www.anr-revea.fr/ 



resources associated with a scheme of use (Vergnaud 1998). A scheme of use comprises the aim of 

the activity, rules of action and professional knowledge. The development of a document is called a 

documentational genesis.  

Teachers’ Communities of Practice (CoP, Wenger 1998) have a shared repertoire that the 

documentational approach interprets as shared resources. In previous works (Gueudet, Pepin & 

Trouche 2016) we have investigated the documentation work of a CoP (Sésamath, an association of 

teachers in France) designing online resources and identified the development of shared documents. 

Here we study a more “ordinary” CoP, composed of two teachers working together for the 

preparation of their courses. We are interested in particular in the commonalities and differences in 

professional knowledge within the documents developed by these teachers. The research question 

we investigate can be formulated as: 

How do professional knowledge and resources interact in the collective design and implementation 

of a lesson? 

Concerning teachers’ professional knowledge involved in the schemes, we are especially interested 

in the identification of Mathematical Knowledge for Teaching (MKT, Ball, Thames & Phelps 

2008): professional knowledge linked with the mathematical content to be taught.  

The documentational approach is associated with a specific method, called “the reflexive 

investigation method”. Documentational geneses are long term processes; moreover 

documentational work can take place everywhere and at any time. Thus we follow teachers over 

long periods of time; and involve them actively in the collection of data. These data are interviews 

of the teacher; videos of the teacher’s work in class and out-of-class (videos of collective work, if 

teachers work together); resources chosen and transformed by the teacher.  

For analyzing the data, we start with the transcribed interviews of the teachers. We identify in them 

the aims of the teacher’s activity. For each aim, we search in the data for the resources used, and the 

other components of the document (rules of action and professional knowledge) . We submit these 

elements to the teacher who corrects and complements them if needed. We present in the next 

section the data collected for the case we study here.  

Data collected and context 

We follow since 2014 two mathematics teachers in an upper secondary school of a middle-sized 

town in France: Valeria and Gwen. They are both very experienced: Valeria teaches for 34 years, 

Gwen for 36 years, they both regularly follow teacher education sessions and are trainers for new 

teachers in their school. They also regularly work together, we consider them as a CoP (Wenger 

1998). In 2015-2016, they decided to take two grade 11 classes called “economics and science”, a 

specialty they taught for the first time. We followed their work for these classes, in particular for a 

chapter entitled: “sampling variability” (that they both used to teach grade 11 “science”, with a 

similar content). For this chapter, we video recorded their common preparation (one hour), their 

individual courses (four hours each), and for each of them an individual post-teaching interview. 

We collected all the resources they used and produced, and the students’ productions for the final 

assessment of the chapter. For both teachers we identify the professional knowledge/beliefs, the 



possible origin of these beliefs, the consequences in terms of the activities/resources produced and 

the resources used. 

Sampling variability is taught in France since 2010. This teaching starts in grade 10 where the idea 

of sampling variability is introduced using material like coins and dice and simulations on the 

calculator and on the spreadsheet. In the curriculum in France, the concept of tolerance interval is 

central in the teaching of sampling variability. In grade 10 the students have to learn how to identify 

the population; the sample and its size n; the probability p of a given feature in the population, and 

the frequency f of this feature in the sample. A first tolerance interval is introduced, without 

justification: [p-1/√n, p+1/√n]. If f does not belong to this interval, the students learn to reject the 

hypothesis “the sample follows the population’s law” with a 5% risk level. At grade 11 (scientific or 

economics and scientific) the binomial distribution is introduced; it provides another tolerance 

interval, which can be found using the table of the binomial distribution produced for example with 

a calculator or a spreadsheet. The chapter we followed concerns the introduction and use of this 

interval. At grade 12, the normal distribution is presented; this leads to a new interval (the 

asymptotical tolerance interval).  

Many research works have investigated teaching variability; they emphasized the specific nature of 

reasoning in probability (Steinbring 1991) and the need for particular knowledge to teach this 

subject (González 2013). Eckert and Nilsson (2013) used the notion of Mathematical Knowledge 

for Teaching Probability (MKTP) for characterizing the specific knowledge needed by the teachers 

in probability and statistics, and for sampling variability in particular. Finding situations in relevant 

contexts; emphasizing the idea of variability, using the different kinds of possible representations all 

require specific knowledge from the teacher. Our aim here is to investigate how the interactions 

with resources are shaped by, and contribute to MKTP.  

Results 

In this results section, we firstly consider the two teachers’ documentation work, during the 

common preparation session, the lessons taught by each teacher and finally during the design of a 

common assessment. Then we present our analyses of the most important aspects of this 

documentation work (in terms of MKT involved), focusing on the collective-individual articulation. 

A collective documentation work 

During the common preparation, Valeria and Gwen used several textbooks (9 different textbooks). 

They did not actually chose resources together, but drew on exercises and problems in the textbook 

to illustrate their declarations. They also talked about resources they intended to use: exercises, 

software (GeoGebra, spreadsheet) and the calculator.  

Their discussion during the common preparation started by stating a difference: Valeria intended to 

use the spreadsheet from the beginning and during the whole lesson. The students have learned, in 

the “binomial law” chapter to produce with the spreadsheet and read tables displaying the value of 

P(X=k) and P(X≤k), when X is a random variable following a binomial law of parameters N and p. 

Valeria wanted to recall this, then to introduce the binomial law tolerance interval and the method 

for finding it, using the P(X≤k) table produced with the spreadsheet. Gwen, in contrast, intended to 

use only the calculator, and no other software. After introducing the binomial law tolerance interval, 



she wanted to ask students to write and implement on their calculator a program producing the 

tolerance interval.  

In the other aspects of the common preparation, Valeria and Gwen agreed on all the points they 

discussed. They mentioned in particular the need to recall the grade 10 tolerance interval and to 

compare it with the new interval introduced.  

All these aspects discussed during the common preparation are present in the lessons actually taught 

by Valeria and Gwen. We analysed these lessons drawing on the observations and videos in class, 

the resources collected and the post-lesson interview.  

Valeria started indeed by recalling how to produce and read the binomial law table with the 

spreadsheet. She also recalled the grade 10 interval with exercises chosen in a textbook’s “revision 

section”. Then she introduced the new interval through a problem concerning overweight in USA. 

This problem came from another textbook, and she modified it in particular by suppressing the table 

giving P(X≤k), because she wanted the students to produce it themselves with their calculator. She 

presented how to find the interval from the table P(X≤k). Valeria insisted on the need to formulate 

very precisely the decision rule. At the end of the chapter, she worked with her students on the 

algorithm: the students implemented it on their calculator, but this program was actually not used as 

a tool to find the interval in exercises.  

Gwen started with a problem that she built herself, about red-haired people in Scotland (inspired by 

a textbook problem with a different context). The first part of the problem recalled the grade 10 

interval, and more generally the idea of sampling variability. The second part of the problem 

introduced the new interval. Just after this session, Gwen worked with the students on the 

production of an algorithm and its implementation on the calculator to find the binomial law 

interval. Afterwards this program was always used to find the interval. Gwen said that she found the 

binomial law interval too technical, she did not want her students to learn how to find it. She 

preferred to use it as an opportunity to work on algorithms. She distributed a sheet to the students 

presenting the interval and a diagram. Then she proposed different exercises about decisions; in 

particular one exercise with samples of different sizes.  

The final assessment of this chapter was also the final assessment of the year for the two Grade 11 

ES classes. Valeria and Gwen wrote it together; we analyse their documentation work drawing on 

the resources they used and produced; the e-mail they exchanged and their interviews. The control 

text comprised one exercise on tolerance intervals. This exercise, with an introductory text (figure 

1) and three questions, concerned the rate of twins in India; it came from a textbook. Valeria and 

Gwen modified the initial text which was, in their opinion, too long and complex.  

 “ India: Kodinji, the mysterious twins village 

In the state of Kerala (south-west India), there is an amazing village. The rate of twins is much 

higher than the national average. 440 twins live indeed in this town for 14600 inhabitants. This 

average is outstanding, since the national average is 16 twins for 1000 births”. Extract of an article 

(Courrier International, 2009) 

 Let X be the random variable counting the number of twins in a 14600 Indians sample.  

Figure 1: Introductory text of the control exercise (our translation) 



They modified the first question: in the textbook the parameters of the binomial law followed by X 

were given; they wanted the students themselves to find the parameters. They also changed the 

second question, where the students are asked to produce the tolerance interval, to display the two 

different methods expected for each class: use of a table (given in the text) for Valeria’s class, use of 

the calculator’s program in Gwen’s class. Question 3 was left unchanged.  

42 students were present at the final assessment. In the first question, 35 students justified that X 

followed a binomial law of parameters n and p; 29 students determined correctly the value of n, but 

only 15 the value of p. In the second question, 19 students determined correctly the endpoints of the 

tolerance interval. In the third question, 19 students justified correctly the rejection of the hypothesis 

(“the Kodinji village follows the national figures”). 

Valeria and Gwen documentation work and use of resources: General statements 

We can notice that like other research works using the documentational approach (Gueudet et al. 

2012) this description evidences that Valeria and Gwen are designers of their own resources. They 

use various curriculum resources, but transform most of them. Only some exercises texts are left 

unchanged, and one textbook extract presenting the binomial law interval (for Gwen). Moreover, 

textbooks (on paper, they do not use digital textbooks) are central resources, used as a reference to 

discuss the lesson plan, and to choose exercises for practicing the new methods, for the 

assessment/test, or to find an introductory problem (for Valeria). More surprisingly, they did not 

search the Internet for resources – this can be a consequence of their common preparation: Valeria 

and Gwen sometimes search the Internet for preparing their lessons, but always at home. For the 

common preparation they were at school with no Internet access. Another result already well known 

in the documentational approach is that the observation of students (their written texts, or oral 

discussions in class) constitute a very important resource for the teachers, leading to a constant 

modification of the resources produced along the documentation work. Both Valeria and Gwen 

intend to modify this lesson on tolerance intervals next year, because they consider that the students 

made too many mistakes in the final assessment/test.  

Documents developed by Valeria and Gwen 

In this section we analyse our data in terms of documents developed by Valeria and Gwen. Since 

our focus is on MKT, we do not give a complete description of each scheme of use but only 

mention the aim of the activity and the MKT involved. We have chosen three examples of 

documents, corresponding to different situations in terms of similarities or differences. 

Valeria and Gwen had a shared aim that can be described as “Recalling previous knowledge needed 

for the binomial law tolerance interval”. They both considered that this new chapter must start by 

recalling the grade 10 interval, because they knew from their observation of students during the year 

that “many students do not remember this interval” (Gwen even added that some students perhaps 

never saw it, since some colleagues keep this content for the end of the year and run out of time). 

This shared MKT lead however to two different documents for this aim, because of the teachers’ 

different resources: Valeria used a lot the classroom textbook, and thus proposed revision exercises 

coming from this textbook, while Gwen wrote her own problem text.  

Valeria and Gwen also shared a general aim that can be presented as: “Teaching how to find a 

tolerance interval with a binomial law”. During the previous years, Valeria has developed for this 



aim a document including various resources: the spreadsheet (as software or in the calculator), 

exercise texts, the illustrating diagram, and MKTP: “The students must learn to find the endpoints 

of the interval by reading the table”. This knowledge can have different sources; we claim that it 

comes in particular from institutional texts (the official curriculum) and from textbooks. For the 

same aim, Gwen has developed a different document, including: the calculator, an algorithm, the 

illustrating diagram, exercise texts as resources; and MKTP like: “The binomial law interval is too 

technical”; “there are no questions about the binomial law interval at the baccalaureate2”; and the 

MKT “it is important to work with students on algorithms”. This knowledge comes from reading 

the texts of the baccalaureate, and from a personal mathematical difficulty: Gwen declared that she 

“cannot remember [herself] how to find the endpoint of the interval”. Moreover she considered that 

this grade 11 curriculum is only a transition between the grade 10 interval and the grade 12 interval 

(with the normal distribution) while algorithms are always present in the baccalaureate texts. 

Valeria and Gwen discussed this difference during the common preparation. Valeria integrated in 

her lesson the programming of the algorithm on the calculator, but she did not want her students to 

use it, because she feared that the students do not really understand the algorithm and use their 

calculator as a “black box”. 

For the aim: “Assessing the students’ ability to determine and interpret a tolerance interval”, Valeria 

and Gwen used shared resources: they wrote the assessment text together drawing on the same 

textbook exercise. The choice of this exercise was guided by MKT firstly expressed by Gwen, and 

adopted by Valeria: “the students must learn to find information in a text”. Nevertheless, the text 

produced was also transformed to incorporate the use of two possible methods, because of their 

different MKT concerning how to find the binomial law tolerance interval.  

In Table 1 below, we synthesise these three documents, evidencing the common and different 

elements.  

                                                 

2 In France, the final secondary school assessment, at the end of Grade 12.  



 

Aim Resources used MKT/ MKTP 

Recalling 

previous 

knowledge  

Valeria: Revision exercises in the 

classroom textbook 

“Many students do not remember the 

grade 10 tolerance interval” 

Gwen: Her own problem text 

Teaching how to 

find a tolerance 

interval with the 

binomial law 

Valeria: Problem and exercises texts 

from different textbooks, the 

spreadsheet, algorithm on the 

calculator (coming from the collective 

work) 

Valeria: “The students must learn to 

find the endpoints of the interval by 

reading the table”; “they must not use 

the calculator as a black box” 

Gwen: Problem composed herself, 

exercises from different textbooks, 

algorithm on the calculator 

Gwen: “it is important to work with 

students on algorithms” “the binomial 

law interval is too technical” 

Assessing the 

students’ ability 

to find and 

interpret a 

tolerance interval 

Shared assessment text written 

together from a textbook exercise, but 

integrating two possible methods.  

“The students must be able to identify 

information in a text” (shared) 

+ MKT/MKTP described in the above 

line 

Table 1: Synthetic presentation of documents developed by Valeria and Gwen. Shared elements are in 

italics. 

Conclusion 

In this paper we investigated the research question: “How do professional knowledge and resources 

interact in the collective design and implementation of a lesson?” in the case of a lesson on 

tolerance intervals for Grade 11 students in France. In the frame of the documentational approach, 

investigating how professional knowledge and resources interact means investigating the documents 

developed by teachers. For each of the two teachers we followed, we observed that they developed 

an important design work, choosing resources, associating and modifying them. This work was 

guided by their professional knowledge, in particular MKT and MKTP. We observe that this MKT 

is mostly of the type: “Knowledge of Content and Students”; deepening the analysis in terms of 

types of MKT is an interesting perspective for further work. In a reverse way, resources influenced 

the development of MKT, and this MKT can be different for each individual teacher. For example 

the official curriculum influenced Valeria and Gwen in different ways: while Valeria aligned with 

the curriculum about tolerance intervals, Gwen attached more importance to the algorithms. She 

developed a personal interpretation of the official curriculum, not focusing on the chapter she taught 

but taking into account the whole year.  

In previous works (Gueudet et al. 2012) we evidenced that collective work is present in many 

aspects of teachers’ activity and that it is a stimulator of documentation work, especially when it 

takes place within CoPs. In (Gueudet et al. 2016) we analysed the common documentation work in 

a CoP: an association of teacher designing an e-textbook. We evidenced that they developed 



common documents, drawing on their individual documents. In the present study we investigated a 

CoP composed by two teachers preparing their courses together. We evidenced that, in spite of the 

collective work the documents developed by the two teachers for the same aim are never completely 

identical. The consequence of the collective work is that these documents sometimes share common 

elements. The main reason for the differences seems to be the long experience of both teachers: they 

already developed in previous years documents for the same aims, and thus have MKT or MKTP 

associated with these aims and also specific resources. The collective work can bring new resources 

(the algorithm on the calculator for Valeria) or new knowledge (the students must be able to find 

information in a text, for Valeria again), but the previous knowledge developed during interactions 

with resources over many years is still present and produces differences in the documents. 

These teachers will go on working together; with a longer common work, evolutions may take 

place, and we will try to analyse these evolutions. We also hypothesize that evolutions of practice 

are more likely to take place in teachers’ CoPs when the members of the CoP are involved in a 

common design activity (for example in the Sésamath case, Gueudet et al. 2016, or in the context of 

professional development, Pepin & Miyakawa 20016). We intend to investigate this hypothesis in 

further research.  
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In this paper, we will present a part of findings of a larger study in which we investigated both pre-

service teachers’ pedagogical content knowledge and middle school students’ mathematical skills. 

A total of 17 pre-service teachers worked with 7th grade students on the mathematical tasks for a 

semester. The data was collected through inventories, videos of task implementations and written 

reflections. The analysis of inventories and written reflections revealed that the pre-service teachers 

had positive beliefs about using mathematical tasks in the lessons. They were able to evaluate the 

success or failure of a task by analyzing the implementation process. They recognized the 

importance of preparing appropriate tasks for students and implemented them as intended. They 

also noted that mathematical tasks provided them an opportunity to learn about students’ 

mathematical understanding as well as to develop their scaffolding practices. 

Keywords: Pre-service, middle school, mathematical tasks, reflection, teacher knowledge. 

Introduction 

The studies on mathematical tasks provide an opportunity to discuss not only students’ 

mathematical thinking and understanding but also teachers’ knowledge and skills (Zaslavsky, 2007). 

Tasks are accepted to be one of the curricular tools that help teachers to scaffold, foster and assess 

students’ understanding when used appropriately (Stein, Grover, & Henningsen, 1996; Watson & 

Mason, 2007). Research on task design and implementation shows that “good” tasks or cognitively 

demanding tasks (Stein et al., 1996) have positive impacts on students’ thinking and understanding 

(Henningsen & Stein, 2002). Such tasks encourage students to think about what mathematical 

concepts are conveyed in the task, what they know about them, how they are related to other 

concepts and which strategies, representations or materials are helpful in terms of arriving at a 

meaningful solution or answer. On the other hand, designing, selecting and implementing 

cognitively demanding tasks are related to teachers’ pedagogical content knowledge (PCK) as well 

as to their content knowledge (Charalambous, 2010; Liljedahl, Chernoff, & Zazkis, 2007; 

Stylianides & Stylianides, 2008). Teachers’ decisions about whether a task is appropriate for their 

students in terms of its complexity or if their students possess the necessary prior knowledge or the 

task’s goal aligns with the lesson’s objectives emerge from their PCK (Hill, Ball, & Schilling, 

2008). The studies on task design and implementation showed that when pre-service teachers 

(PSTs) were given opportunities to develop and implement tasks, they were able to prepare “good” 

tasks in which they used real life context and multiple representations and they asked for 

explanation, interpretation or justification (Ozgen & Alkan, 2014). 

In this study, we aimed to investigate how PSTs’ involvement in task design and implementation 

process influenced their views about tasks and their PCK. We used tasks as a tool to build up an 

environment for PST-student and student-student interactions where the PSTs observed how 

students worked on the tasks both individually and as a group and then joined their discussions to 

elicit students’ thinking and support their understanding. Thus, the PSTs had opportunity to learn 



about students’ mathematical skills and also to gain experience about how to implement a task 

without loss of fidelity, to scaffold students’ understanding, and to manage the group work. In this 

paper, however, we will present some findings about PSTs’ reflections on this task design and 

implementation process in terms of effectiveness of the tasks and their professional gains from this 

intervention study. 

Methodology 

Research setting 

This study was conducted under university-school collaboration between the mathematics education 

department and a local middle school in Istanbul in Turkey. A total of 17 PSTs (10 of them in Fall 

2015 and 7 of them in Spring 2016) and one of the 7th grade classes (aged between 12-13) from the 

partner school volunteered to participate in this study1. We arranged the students as mixed-ability 

groups of 4 students based on the results of an achievement test. We randomly assigned the PSTs to 

these groups. The PSTs worked with students in a 40-minute lesson for each week, a total of 11 

weeks during the Fall and 12 weeks during the Spring.  

All PSTs were senior students who volunteered to take an elective course that was carried out 

specifically for this study. During the first couple of weeks of the course, we talked about the design 

and implementation of tasks, effective ways of communicating with students and assessment of 

students’ mathematical understanding through samples. Then, each week, prior to implementation, 

we discussed the tasks that they would use with the students and made revisions on the tasks when 

necessary. After each implementation in the school, we met the PSTs again and discussed how the 

implementation went. We wanted PSTs to write reflection on each implementation by analyzing the 

implementation videos of their own group and students’ worksheets. We also asked PSTs to prepare 

and implement a set of tasks for their own group at the end of the semester. 

The tasks 

We prepared the tasks in alignment with the 7th grade mathematics curriculum. In the Fall semester 

we prepared 10 tasks which were about integers, fractions, rational numbers and algebra. In the 

Spring term we prepared 11 sets of tasks which were about geometry, algebra and data and 

statistics. Each set of tasks consisted of 3 to 4 sub-tasks with some additional problems. The tasks 

were set up around a common theme which related to the use of mathematics in daily life. For 

instance, in one of the data analysis tasks, we conducted a short survey on students’ preferences in 

the class such that we gave them a list of foods where each student would choose 5 of the foods 

from the list. Then we wrote down the frequencies for each food on the board and then asked them 

to answer questions about their preferences such as finding out the most popular food, making a bar 

graph of the drinks, etc. The majority of the tasks that we used were selected from the ones that we 

implemented in the previous years. However, we revised those tasks before the implementation 

based on the needs and performances of the students in our new sample.  

                                                 

1 The school was located in a crowded neighborhood in terms of school-age children. There were 40 students in the 

class, average size according to national education statistics, but in the Spring semester 4 students dropped out. Since we 

had only 7 volunteers in the Spring semester, two researchers from the research team worked with two of the groups. 



Data collection 

The data was collected through pre and post questionnaires, videos of PSTs’ task implementations 

and group discussions, and PSTs’ written reflections and assignments. One of the questionnaires 

(Kayan, Haser, & Isiksal-Bostan, 2013) consisted of 26 5-point Likert-type items asking for PSTs’ 

beliefs about mathematics and mathematics teaching. The other questionnaire was developed by the 

research team and it consisted of open-ended questions where in the pre questionnaire the PSTs 

were asked to write about their prior teaching experiences and their expectations from the study and 

in the post questionnaire they wrote about whether their expectations were met or not and what they 

had learned from this intervention, etc. In their written reflections, we wanted PSTs to discuss about 

how the implementation went. Among the other questions, we asked them to comment on whether 

the students were able to complete the tasks, whether the tasks achieved their goals or not and why, 

and what they would do as follow up. At the end of the semester, we wanted them to discuss in 

which tasks the students experienced the most difficulty and what their suggestions would be to 

revise those tasks. Furthermore, we asked them to prepare tasks for their own groups and provide 

the rationale behind those tasks.  

Data analysis 

We have not analyzed all data yet. However, because the knowledge of students’ thinking and 

understanding, the ability of selecting or developing appropriate tasks, and using appropriate 

teaching strategies for particular groups of students are counted in teachers’ PCK (Hill et al., 2008), 

we are basically looking for any instances that could be counted as an influence of task design and 

implementation process on the PSTs’ PCK and their views about tasks. For instance, whether they 

paid attention to the students’ earlier performances while preparing their own tasks, how accurate 

assumptions they were able to make about students’ performances on the new tasks, etc. Yet, we did 

document analysis such that we analyzed the items related to task design and implementation from 

the questionnaires, written reflections and assignments. We attempted to figure out the frequencies 

of common issues that emerged from those instruments. We found out the mean scores of the items 

in the Likert-type questionnaire but we did not compare pre and post results because of low number 

of participants. We examined pre and post open-ended questionnaires, the assignments asking for 

making overall evaluation of the study and the reflection reports including PSTs’ reflections on the 

implementation of their own tasks. We developed a coding scheme for the common issues that 

emerged from the reflection reports. For instance, when discussing the reasoning behind the success 

of the tasks, if the PSTs wrote that “they liked it” or “they enjoyed it” or “they had fun with it” then 

we coded that reasoning as “enjoyable” (see Table 1). However, out of possible 194 reflection 

reports, 6 of them were missing. Therefore, we coded a total of 188 reports. We achieved 90% 

agreement in initial coding. We discussed the discrepancies by re-reading the PSTs’ reports and 

then we came with an agreement. Moreover, we all agreed on the common issues that emerged from 

the open-ended questionnaire and the assignments. 

Findings 

PSTs’ thoughts about use of tasks in mathematics 

The analysis of items in the Likert-type questionnaire showed that the PSTs agreed that teachers 

should encourage students to be active learners (The average of 3 related items; pre 38.4x ; post 



45.4x ), the tasks are important for students’ learning and understanding (The average of 2 related 

items; pre 36.4x ; post 61.4x ) and manipulatives and materials facilitate students’ 

understanding (The average of 3 related items; pre 09.4x ; post 60.4x ). Their answers in the 

open-ended questionnaires were compatible with these results. The PSTs noted that doing 

mathematics through tasks enables students to participate in the lesson ( 5f ), love mathematics 

( 4f ), discover or review mathematical concepts or facts ( 4f ), and use materials or 

manipulatives ( 4f ). 

PSTs’ reflections on the implementation of the tasks 

In the reflection reports, we asked the PSTs to comment on the following questions: 1a) Were the 

students able to complete the task? 1b) Did the task attain its goal or not? 1c) Why did the task 

attain its goal or not? 2) What more would you like to do about this implementation? 3) What is 

your suggestion for the follow up of the task? The PSTs gave various answers to these questions. 

For instance, for question 1a they noted that some of the students completed the task or just one 

student could not finish all of them, etc. Although we coded them separately, we re-coded them in 

terms of whether their answers were most likely “Yes” or “No”. Similarly, we defined 12 different 

answers for question 1c. However, we preferred to present only the most frequent ones. In Table 1, 

the frequencies of PSTs’ answers to these questions are given.  

Q1a: Were the students able to complete the task?    

 
No Yes 

   
Fall 30 (29%) 75 (71%) 

   
Spring 15 (18%) 68 (82%) 

   
Total 45 (24%) 143 (76%) 

   
      

Q1b: Did the task attain its goal or not? 

 
No Yes 

No  

Comment   

Fall 38 (36%) 67 (64%) 
   

Spring 15 (18%) 63 (76%) 5 (6%) 
  

Total 53 (28%) 130 (69%) 5 (3%) 
  

      
Q1c: Why did the task attain its goal or not? 

 

No  

Comment 
Enjoyable 

Lack of  

Knowledge 

Use of  

Materials 

Recognize  

own Mistakes 

Fall 28 (27%) 10 (10%) 32 (30%) 11 (10%) 14 (13%) 

Spring 19 (23%) 5 (6%) 19 (23%) 1 (1%) 14 (17%) 

Total 47 (25%) 15 (8%) 51 (27%) 12 (6%) 27 (14%) 

      
Q2: What more would you like to do about this implementation? 

 

No  

Comment 

Nothing  

more 

Discuss  

more 

Teach for  

Understanding  

Fall 9 (9%) 17 (16%) 37 (35%) 29 (28%) 
 

Spring 1 (1%) 58 (70%) 15 (18%) 6 (7%) 
 

Total 10 (5%) 75 (40%) 52 (28%) 35 (19%) 
 

      
Q3: What is your suggestion for the follow up of the task? 



 

Nothing  

more 

Review for 

Exercise 

Review for  

Learning 

Easier 

Tasks  

Fall 5 (5%) 46 (44%) 31 (30%) 6 (6%) 
 

Spring 16 (19%) 42 (51%) 12 (14%) 3 (4%) 
 

Total 21 (11%) 88 (47%) 43 (23%) 9 (5%)   

Table 1: The frequencies of pre-service teachers’ answers to the questions about task implementation 

As seen in the table, the PSTs noted that in a 40-minute lesson the students were able to complete 

the given tasks and discuss their answers (76%). However, some of the PSTs wrote that the tasks 

were difficult for their students and they only answered one of the sub-tasks. For some of the tasks, 

the PSTs noted that although the students completed the tasks, there was no time for themselves to 

discuss students’ answers as a group discussion. 

The PSTs wrote that some of the tasks did not attain their goals (28%) mainly because of lack of 

students’ prior knowledge (27%). In a few cases, they noted that the students did not understand the 

task because the text was unclear (3%). Some of the PSTs attributed the success of the tasks to use 

of materials (6%) and context of the tasks that attracted students’ attention (8%). Furthermore, some 

of the PSTs wrote that the tasks attained their goal because during the group discussion the students 

recognized their own mistakes and learned from each other (14%). However, in 25% of the reports, 

the PSTs did not write anything about the reasoning behind the success or failure of the task. 

Furthermore, we analyzed the pattern in PSTs’ perceived cause-and-effect relationship between Q1b 

and Q1c. Among the total of 141 responses to Q1c, the PSTs wrote that the tasks achieved their 

goals because students learned from each other while engaging in the task (f: 25), they used 

materials (f: 12) and they enjoyed it (f: 15). They noted that the tasks were not successful mostly 

because of students’ lack of prior knowledge (f: 38). 

As an answer to Q2, the PSTs noted that they were able to do whatever they wanted to do during the 

implementation (40%). However, some of them noted that there was not enough time to explore 

how students thought about the given tasks or they were unsure whether the students understood the 

reasoning behind the answers to the tasks or not, therefore they would like to discuss more about 

those issues (28%). In some of the cases, especially in the Fall term, because of students’ lack of 

knowledge about fractions and rational numbers, the students could not finish the given tasks. In 

such cases, the PSTs wrote that they would like to teach about those concepts before or after the 

implementation if they had enough time (19%). On a total of 6% of the reports, the PSTs did not 

write relevant answers but summarized how the implementation went. 

For the third question, 12% of the reports (not shown in the table) included irrelevant answers such 

as the PSTs suggested encouraging students to read more books to improve their reading skills or 

they criticized themselves in terms of not managing time better. In a few reports, they wrote that the 

tasks were difficult for the students; there should be easier tasks on the same content domain (5%). 

However, they mostly suggested making review exercises for students to reinforce their 

understanding of the tasks as well as the content domain (47%). When they realized that the 

students did not know much about the content, they suggested remedial lessons for them (23%). 



PSTs’ reflections on the tasks and the intervention study  

At the end of the semester, we asked the PSTs to evaluate this intervention study including the 

effectiveness of the tasks and the contributions to their own professional development. We 

specifically asked them to determine five mathematical issues in which students had experienced the 

most difficulty and two tasks that they would like to revise. We also asked them to give the 

reasoning behind the selection of those tasks and their revisions.  

According to the PSTs, among the others, the students had difficulty in the tasks which were about 

fractions and rational numbers ( 16f ), algebraic expressions ( 9f ), solving equations ( 7f ), 

area problems ( 7f ), and discovering patterns ( 5f ). They wrote that the students could not do 

these tasks completely because of their lack of prior knowledge ( 17f ), lack of attention ( 7f ), 

lack of review exercises done at home ( 5f ), lack of understanding of the tasks ( 3f ), and 

personal insecurity ( 2f ). Specifically, they noted that students had difficulty in fractions, rational 

numbers and area problems because they did not know the algorithm for four operations with 

rational numbers as well as the area formulas of quadrilaterals and circle. They wrote that students 

failed in doing operations and discovering patterns because they did not practice enough at home or 

did not pay attention to the operations and procedures. However, the tasks that they would like to 

revise were mostly about integers ( 7f ), algebraic expressions ( 4f ), fractions and rational 

numbers ( 3f ), area problems ( 3f ), and transformations ( 3f ). The PSTs wanted to make 

revisions to the tasks about integers not because of students’ lack of knowledge but because the 

context of the tasks was confusing for the students. Therefore, they noted that they would rephrase 

the text and change the order of the sub-tasks in those tasks. They decided to make the tasks about 

fractions and area problems easier because students did not possess the required knowledge to 

complete the tasks. Furthermore, in some cases the PSTs preferred to change the tasks that were 

done by the students but they were uncertain whether they understood them thoroughly or not. 

The PSTs prepared a set of tasks for their own group of students at the end of the semester. Their 

rationale for their tasks was either to focus on the issues where the students experienced the most 

difficulty ( 13f ) or to make an overall review of what was done during that semester ( 4f ). In 

parallel with their comments about the students’ mathematical difficulties, they prepared tasks about 

integers, fractions and rational numbers, area problems, algebraic expressions and solving 

equations. Some of the PSTs kept their tasks as simple as possible because of their students’ poor 

performance on earlier tasks. Furthermore, 7 of the PSTs prepared their tasks around a common 

theme as we did in this study but 10 of them prepared separate problems related to the content 

domain that they focused on. 

In the post open-ended questionnaire, the PSTs wrote that this intervention study contributed to 

their professional knowledge in several ways. Among the others, they noted that they practiced how 

to scaffold students’ understanding without directly telling them the solution or answer ( 7f ), they 

got better in anticipating students’ possible difficulties in mathematics ( 5f ), they learned to be 

patient ( 4f ), and they learned what kind of tasks attract students’ attention more ( 3f ). 



Discussion 

The findings of this study have potential to contribute to the relevant literature that teachers learn 

from their own task design and implementation practices in terms of better understanding of 

students’ mathematical thinking and how to use or tailor tasks to scaffold students’ understanding 

(Zaslavsky, 2007). Although we have not yet analyzed all data, we recognized that the PSTs were 

able to evaluate the task implementation process in terms of the facts related to the task itself, the 

organization, the students and their own professional development.  

When we asked the PSTs to write their thoughts about the success or failure of the tasks, they were 

able to make reasonable inferences from the implementation. They recognized that the tasks were 

successful because the students were actively involved in the solution and discussion process (14%, 

see Table 1, Q1c), the materials were appropriate for the tasks (6%, see Table 1, Q1c), the tasks 

were aligned with the 7th grade curriculum and they were in the role of facilitator of group 

discussion (28%, see Table 1, Q1c and results of post questionnaire). In only a few of the cases, they 

noted that the students failed to complete the task because the task was unclear for the students 

(3%). For the other cases, they did not blame the tasks but the students because they did not possess 

necessary prior knowledge that they learned in previous grade levels or in their regular mathematics 

lessons (27%, see Table 1, Q1c). The PSTs’ interpretations revealed that they began to recognize 

students’ mathematical understanding as well as the importance of preparing tasks both aligned with 

the curriculum and appropriate for a particular group of students (Hill et al., 2008). For instance, 

while preparing their tasks, they preferred not to use higher cognitive demand tasks but the easier 

ones because some of their students did not know about the procedures required to solve given 

tasks, such as the rules of four operations with rational numbers. The PSTs also commented that 

students should revise the issues discussed in their mathematics lessons in order to understand the 

mathematics conveyed in the tasks (47%, see Table 1, Q3). Moreover, as we inferred from their 

answers in the questionnaire they appreciated the facilitator role of the teacher during the task 

implementation. They stated that they suppressed their feelings of telling and teaching when 

students could not figure out the solutions. Briefly, their reflections on the tasks and the 

implementations indicated that they were aware of the task implementation process which begins 

with selection of appropriate tasks, continues with implementation of the tasks and ends with 

evaluation of students’ learning (Stein et al., 1996). Because orchestration of task implementation 

process is involved in teachers’ PCK, such awareness of the PSTs can be counted as a sign of their 

PCK (Charalambous, 2010). However, because we have not yet analyzed the implementation 

videos, we are not able to validate PSTs’ reflections on the tasks implementation process, especially 

whether they were able to implement the tasks without loss of fidelity and manage the group 

discussions appropriately. Indeed, it is hard for teachers, even more so for PSTs, to keep the 

cognitive demand of the tasks such that they might have provided hints or helped students when the 

students did not possess the required knowledge (Stylianides & Stylianides, 2008). Therefore, we 

are not able to comment on their “PCK in practice” even though we could make inferences about 

their PCK from their written reflections.  

Finally, the analysis of pre and post questionnaires revealed that the PSTs had positive beliefs about 

use of student-centered teaching strategies, mathematical tasks and manipulatives while teaching 

mathematics and such beliefs sustained and even increased throughout the study.  They recognized 



that tasks provided an opportunity for them to elicit students’ mathematical understanding and they 

could be used as a tool to foster students’ mathematical understanding. 
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Feedback is acknowledged as an important influential factor on learning and achievement. An 

affordance of digital learning tools is that they provide different kinds of feedback to students. 

Research on the effectiveness of feedback has mainly focused on different forms of feedback and its 

timing assuming that different students react homogeneously to feedback. This paper provides a 

qualitative in-depth analysis of two third grade students’ responses to feedback in an interactive e-

textbook environment. Students responses to feedback are conceptualized in terms of utilization 

schemes within an instrumental approach. Results indicate that students utilize feedback differently, 

which has consequences for the effectiveness of the feedback.  

Keywords: Feedback, e-textbook, instrumental genesis.  

Introduction 

Feedback is widely acknowledged as an important influential factor on learning and achievement 

(Hattie & Timperley, 2007). The fact that interactive digital learning tools constantly provide 

feedback to the learners’ actions with the contents is indeed one of the most emphasized advantages 

of learning with digital tools (e.g. Mason & Bruning, 2001). In fact, an outstanding defining aspect 

of interactivity is that users get immediate feedback to their actions with the tool.  

According to Hattie and Timperley (2007, p. 81) feedback is understood as “information provided by 

an agent (e.g., teacher, peer, book, parent, self, experience) regarding aspects of one’s performance 

or understanding“. The goal of feedback is to support understanding and/or performance. In line with 

this, Shute (2008, p. 154) defines formative feedback as “information communicated to the learner 

that is intended to modify his or her thinking or behavior for the purpose of improving learning“. 

According to Hattie and Timperley (2007, p. 87) effective feedback has to address three questions: 

“Where am I going? How am I going? Where to next?”.  

Research related to feedback aims at identifying features of feedback that increase its efficiency. Two 

aspects seem to be important for effective feedback: 1) the information provided by feedback and 2) 

the timing of feedback. Mory (2004, p. 753) distinguishes five categories of feedback regarding 

information complexity: “1. No feedback means the learner is presented a question and is required to 

respond, but no indication is provided as to the correctness of the learner’s response. 2. Simple 

verification feedback or knowledge of results (KR) informs the learner of a correct or incorrect 

response. 3. Correct response feedback or knowledge or correct response (KCR) informs the learner 

what the correct response should be. 4. Elaborated feedback provides an explanation for why the 

learner’s response is correct or incorrect or allows the learner to review part of the instruction. 5. Try-

again feedback informs the learner when an incorrect response and allows the learner to one or more 

additional attempts to try again.”  

Research has shown that both, the wrong form of feedback and the wrong timing might even have 

negative effects on learning and achievement (Fyfe & Rittle-Johnson, 2016a; Hattie & Timperley, 



2007). The majority of studies in this context quantitatively measures effect sizes of different forms 

or timings of feedback in order to draw conclusions regarding the effectiveness of feedback. The 

underlying assumption in these settings is that students will react consistently to the respective form 

or timing of feedback. While different conditions of providing feedback that might influence its 

effectiveness have been studied, e.g. prior knowledge (Fyfe & Rittle-Johnson, 2016b) or feedback 

specificity (c.f. Shute, 2008) students’ individual ways of responding to and making use of feedback 

have scarcely been studied in mathematics education. Bokhove (2010) presents an exception. He 

reports from a study where student inquiry about desired feedback was used in order to develop a 

feedback design of a digital tool to learn algebra. He concludes that “asking students when to use 

what feedback can improve a digital tool“ (Bokhove, 2010, p. 125). Most of the research on feedback 

is based on experimental testing (Shute, 2008, p. 156). Shute (2008, p. 156) summarizes that „the 

specific mechanisms relating feedback to learning are still mostly murky, with very few (if any) 

general conclusions“.  The aim of this paper is to contribute to the understanding of the mechanisms 

relating feedback to learning. In particular, the focus is on two research questions: 1) How do students 

individually utilize feedback in order to improve their understanding and performance?; 2) What are 

the consequences of students’ individual utilizations of feedback with regard to the efficiency of 

feedback?  

Theoretical framework and methodology 

In this paper, feedback is regarded as an artifact, which is developed in order to improve students’ 

learning and achievement. According to Rabardel (2002) an artifact is transformed into an instrument 

in use. An instrument is a psychological entity that consists of an artifact component and a scheme 

component. In using the artifact with particular intentions the subject develops and adjusts utilization 

schemes, which are shaped by both, the artifact and the subject. This process is referred to as 

“instrumental genesis” (Rabardel, 2002). According to Vergnaud (1998, p. 167) a scheme is “the 

invariant organization of behavior for a certain class of situations”. Vergnaud (1998) suggests that 

schemes are in particular characterized by two operational invariants, which refer to the knowledge 

included in schemes: theorems-in-action and concepts-in-action. The difference between both 

operational invariants is that of relevance and truth. While “concepts-in-action are relevant, or not 

relevant, or more or less relevant, to identifying and selecting information”, “theorems-in-action can 

be true or false” (Vergnaud, 1998, p. 173). 

With regard to research question 1, students’ utilization of feedback is conceptualized in terms of 

their concepts-in-action and theorems-in-action, which guide their utilization schemes of the 

feedback. The situation that the scheme refers to is defined by the type of task with respective 

feedback.  

Methods 

The study presented in this paper is part of a larger study, which aims at understanding students’ 

learning with interactive e-textbooks at primary level. Therefore, we used an interactive e-textbook 

that is available on the German market. The e-textbook “Denken und Rechnen interaktiv 3”1 was the 

only interactive textbook for primary level that was available on the German market when the study 

                                                 

1 http://www.denken-und-rechnen-interaktiv.de 



was carried out. The e-textbook was not developed for the sake of this investigation, but by one of 

the leading German publishing companies for textbooks. Consequently, the design principles for the 

feedback are not known and do not necessarily take into account the current state of research in this 

field.  

In this paper, a case study with altogether 12 cases is presented. All students were at the end of third 

grade with an age between 8 and 9 years. Each case works on a tablet in experimental conditions on 

tasks from one unit of a beta-version of the web based interactive mathematics e-textbook. During 

data collection the students encountered the interactive e-textbook for the first time. The students 

were asked to verbalize their thoughts (thinking aloud). Additionally, the interviewer asks questions 

in order to understand the students’ actions and thoughts. The interviewer also gives hints in order to 

assist students’ instrumental genesis. The work of the students was video recorded. Data was 

transcribed and analyzed in terms of concepts-in-action and theorems-in-action. As the name of these 

concepts indicates, these are mainly inferred from students’ actions. Only sometimes students 

explicate the concepts and theorems guiding their actions verbally. Concepts-in-action were inferred 

from the data by constantly asking ‘what are the concepts / relevant categories / notions guiding the 

student’s action?’. Accordingly, theorems-in-action were inferred from the data by asking ‘what 

assertions / beliefs assumed as true by the student guides the student’s action?’ 

Since utilization schemes are defined as “invariant organization of behavior” (Vergnaud, 1998) it 

might seem questionable to investigate them with children that encounter an e-textbook for the first 

time. However, utilization schemes do not develop from scratch, but can be understood as adjustments 

(accommodation) of existing schemes. In fact, this experimental setting allows for analyzing the 

instrumental genesis in terms of accommodation of existing schemes.  

Analysis 

Analysis of the artifact 

An analysis of the task and related feedback is a prerequisite in order to understand students’ 

utilization schemes of the feedback, because they are influenced by the affordances and constraints 

of the artifact in the instrumentation process (Rabardel, 2002). Task no. 2 on page no. 73 and related 

feedback is analyzed for the scope of this paper. It is depicted in figure 1. The task is to find solids in 

the picture (“Which solid shapes do you find?”2) and to enter their names into the empty fields. After 

pressing the OK-button on lower right corner of the screen the software provides knowledge of results 

(KR) feedback. Correct inputs are shown in green color with a green frame, wrong inputs stay as they 

were entered for a few seconds. Afterwards they disappear and the empty fields are shown again 

(figure 2). Correct answers stay on the screen and the student can enter new inputs into the empty 

fields. Students get the opportunity to correct their wrong inputs twice. After their third try knowledge 

of correct response (KCR) feedback is provided by showing all the correct answers in green color. 

The ones that were entered correctly by the student are framed. An answer is evaluated as correct if 

                                                 

2 This was the task in the beta-version of the interactive textbook. In the latest online-version of the textbook the task was 

changed to “Enter befittingly sphere, cube, cylinder or pyramid“. 



the student entered the correct name of the solid in the correct spelling. The feedback does not 

differentiate between incorrect spelling mistakes ore incorrect solid names. 

 

Figure 1: Task 

   

Figure 2: Task-level-feedback (KR) and screen for second try 

Analysis of students’ utilization schemes of the feedback 

In this section data of two cases will be analyzed. The analysis of both cases starts at the moment, 

when the students have filled in most of or all empty fields and press the OK-button at the lower right 

corner of the screen. After pressing the OK-button the KR-feedback appears on the screen.  

Case 1: Farrell 

On Farrell’s feedback screen four out of seven answers are depicted in green color and with a frame 

and stay on the screen while three of his answers remain as they were entered and disappear after a 

few seconds. He gets the feedback “Sorry, wrong”. 

13’03” Interviewer What happened? 

13’08” Farrell Correct answers are green and what is gone now was wrong 

13’18” Interviewer  Ok. And do you have an idea why it was wrong? 

13’22” Farrell Wrong spelling? And wrong entry. 

13’30” Interviewer Could be. … Think about it. What else could you write or how could you 

write it differently if you think it also might be because of the spelling 

13’35” Farrell Tips into an empty field and starts typing ‘Cube’ in correct spelling. 

13’54” Interviewer Uhum, now you say it’s a cube. What did you enter before? 

13’56” Farrell Square. 



13’57” Interviewer And why do you think it is the cube now? 

13’58” Farrell Because, before, the square is not an object, no symmetrical figure  

14’12” Interviewer Ah, ok, and now you believe it’s the cube. 

14’15” Farrell Yes, because the square can only be seen and not touched 

14’19” Interviewer Ah, ok. 

14’35” Farrell  Types ‘cuboid’ in one empty field in the same wrong spelling as the first time. 

14’08” Interviewer Which form could that be? 

15’12” Interviewer Can the book help you somehow? 

15’21” Farrell Presses the ‘?’-button and choses “help” (the help screen appears). He reads 

the help screen.  

15’45” Interviewer Does that help you somehow? What do you see? 

15’52” Farrell There is everything that could give me a hint. 

15’56” Interviewer Hmm, ok. … And does that help you for the task? 

16’02” Farrell  No. 

16’04” Interviewer No. Is there maybe another function that could help you? 

16’09” Farrell I will check. Presses the ‘?’-button and points on the option ‘Lexikon’. 

Lexicon. 

16’13” Interviewer Yeah, click it. 

  Farrell explores the lexicon. The interviewer asks questions, which are 

related to the use of the lexicon. He looks for ‘form’ and “solid”. 

18’43” Farrell I believe it starts with a ‘Q’. At the same time, he opens the letter ‘Q’ in the 

lexicon and looks at the entries. 

18’58” Farrell No, but I found something different. 

19’02” Interviewer Ok. What did you find? 

19’04” Farrell The cuboid (in German: Quader) Returns to the screen/tab with the task and 

tips into the field with the entry “Qader”. 

19’09” Interviewer You already wrote cuboid there. So what did you find? 

19’12” Farrell That in-between the Q and the A there is a U. 

19’18” Interviewer Ah, that means the lexicon helped you a little. 

19’28” Farrell After completing to type the word ‘cuboid’ he presses the OK-button. All his 

entries are shown in green color with a frame. He gets the feedback “No, not 

correct yet.” 

19’30” Interviewer And, what now? 

19’31” Farrell I looked if what I wrote now is already correct.  

19’38” Interviewer And, how does it look? 

19’38” Farrell Correct. 

The relevant concepts that guide Farrell’s revision of his answers are verbalized in the beginning of 

the episode: Farrell verbalizes his interpretation of the feedback at 13’08” and also explicates two 

concepts of possible mistakes at 13’22”. Accordingly, Farrell’s utilization scheme of the feedback is 

guided by two concepts-in-action: 1) Correct answers are shown in green; wrong answers are shown 

in red (not explicit, but likely) and disappear (13’08”); 2) His concept-in-action of mistakes indicates 

that two kinds of mistakes are possible: Wrong names of the solids or wrong spelling of the names 



(13’22”). The latter concept-in-action is supported by his way of proceeding with the task. On the 

one hand he thinks about different entries (13’35”) and on the other hand he is sensitive about the 

spelling (18’58”-19’12”).  

Case 2: Edda 

Edda gets the feedback “No, that it not quite correct”. On the screen, the fields around her entries 

disappear and all her entries stay on the screen. An analysis of her answers reveals that five of her 

answers (from left to right and bottom to top: 1, 3, 4, 5, 7) named the solid correctly but were spelled 

wrong with no capital first letter, while two of her answers (2, 6) also contained a wrong name of the 

solid.  

23’51” Edda It says that it is all not quite correct. Looks at the screen 

23’55” Edda All (wrong) entries disappear. All fields are displayed empty again. Ah, boy! 

24’02” Edda Looks at the screen. Hm. 

24’07” Edda But this must be a sphere.  

24’12” Interviewer Do you have an idea what may could have been wrong? … 

24’16” Edda Yes, this and this (points at the two empty fields at the right side of the picture) 

24’20” Interviewer … because everything disappeared. 

24’27” Edda Well, this can’t be a cone. … Then I simply do again … It’s a sphere, 

definitely. Types ‘sphere’ in the same (wrong) spelling as before in the empty 

field. 

25’00” Edda Hm, it’s bad, now I don’t know what was wrong and now one cannot … 

25’10” Interviewer What is it that you can’t? 

25’12” Edda … ehm, know what is wrong, I know … ehm … I have to do everything from 

scratch … (not understandable) this and this was wrong (points at the two 

empty fields at the right side of the picture) 

Edda’s feedback screen shows all her entries in the way that she typed them. She seems frustrated 

that all her entries disappear from the screen (23’55”). Her answer to the interviewer’s question at 

24’12” reveals that she does not infer from the feedback that all her answers were wrong, but has her 

own beliefs about her wrong answers (24’16”). Her belief that her two answers on the right side of 

the picture were wrong seems to be stable throughout the episode (25’12”). However, these beliefs 

are not congruent with her actual performance on the task. At 25’00” it becomes apparent that she 

does not have the concepts available to make sense of the feedback given by the tool. 

Although she does not say it explicitly, her actions seem to be guided by the concept-in-action that 

she has to enter the correct names of the solids. There is no indication of her being aware that it is not 

only the name of the solid that is relevant, but that correct spelling is also a relevant aspect of the 

name related to this task.  

Discussion 

The analysis of students’ utilization schemes of feedback shows that both students do not activate the 

same concepts-in-action when they utilize the software’s feedback (research question 1). While 

Farrell’s utilization scheme is guided by the two relevant concepts-in-action “name of the solid” and 

“spelling of the name”, Edda’s interpretation only refers to the “name of the solid”. Edda seems 

surprised and disappointed that all her entries disappear on the screen and her belief that only two of 



her entries were wrong seems to be stable. This indicates that she does not seem to have relevant 

concepts available in order to utilize the feedback.  

However, it is important to note that the different utilization schemes of Farrell and Edda appear 

under different conditions. The intended interpretation of the feedback occurs in a situation when the 

student has got correct and wrong answers. In the case of Edda, it becomes apparent that she has 

difficulties to utilize the feedback. This is supported by findings from other cases in the study that 

have got all answers wrong in their first attempt. Two hypotheses can be inferred from this 

observation (research question 2): 1) In order to make effective use of the feedback it is important 

that students have both, correct and incorrect answers. If all answers are wrong it is more difficult to 

utilize the feedback, because it is more difficult to make sense of the feedback. 2) On the other hand, 

the findings might hint at an overall connection between the mathematical ability of the students and 

their ability to utilize the feedback effectively. Students who need the feedback most in order to 

improve their mathematical performance, because they have got many answers wrong in their first 

attempt have the most difficulties to utilize the feedback for improvement.  

Conclusions 

The analysis of two cases’ utilization-schemes of feedback in an interactive mathematics e-textbook, 

which was used for the first time, is too limited in order to draw far reaching conclusions. However, 

the results show that the feedback of this task can be optimized. For some students it seems to be 

important to get more detailed feedback about the kind of mistake they made, especially if mistakes 

from different domains such as mathematics and language are relevant for the evaluation of the 

solutions. Altogether, the results support the call for adaptive feedback systems in digital learning 

systems (Vasilyeva, Puuronen, Pechenizkiy, & Räsänen, 2007). 

The fact, that the feedback of the software is not sensitive to different kinds of mistakes can in fact 

be appraised differently depending on the pedagogic perspective. From the perspective of concept 

development, it is a constraint of the feedback that it is not sensitive to the kind of mistake, because 

it does not provide detailed information related to the question “Where to next?”, i.e. detailed 

information about “what is and what is not understood” (Hattie & Timperley, 2007, p. 90). Research 

has shown that “that feedback is significantly more effective when it provides details of how to 

improve the answer rather than just indicating whether the student’s work is correct or not” (Shute, 

2008, p. 157). From the perspective of integrated mathematics and language learning it might even 

be an affordance that the name and the spelling of the name of the solid have to be correct in order to 

be evaluated as a correct answer.  

On the other hand, the reconstructed concepts-in-action and theorems-in-action that guide students’ 

utilization schemes of feedback indicate that students interpret feedback differently. Therefore, the 

efficiency of feedback is not only a question of the features of the feedback, but also a question of 

students’ utilization-schemes of feedback. Like with any other artifact, students have to 

instrumentalize and develop utilization-schemes of the feedback so that it becomes an instrument for 

improving understanding and performance.  

  



Acknowledgement 

This investigation was supported by the Westermann Group by providing tablets and a beta-version 

of the interactive mathematics textbook used in the study. 

References 

Bokhove, C. (2010). Implementing feedback in a digital tool for symbol sense. The International 

Journal for Technology in Mathematics Education, 17(3), 121-126.  

Fyfe, E. R., & Rittle-Johnson, B. (2016a). The benefits of computer-generated feedback for 

mathematics problem solving. Journal of Experimental Child Psychology, 147, 140-151. 

doi:http://dx.doi.org/10.1016/j.jecp.2016.03.009 

Fyfe, E. R., & Rittle-Johnson, B. (2016b). Feedback both helps and hinders learning: The causal role 

of prior knowledge. Journal of Educational Psychology, 108(1), 82-97.  

Hattie, J., & Timperley, H. (2007). The Power of Feedback. Review of Educational Research, 77(1), 

81-112. doi:10.3102/003465430298487 

Mason, B. J., & Bruning, R. H. (2001). Providing Feedback in Computer-based Instruction: What the 

Research Tells Us. CLASS Research Report No. 9. Lincoln: Center for Instrnctional Innovation, 

University of Nebraska-Lincoln. 

Mory, E. H. (2004). Feedback research revisited. In D. H. Jonassen (Ed.), Handbook of Research on 

Educational Communications and Technology (2nd ed., pp. 745–783). Mahwah: Lawrence 

Erlbaum Associates. 

Rabardel, P. (2002). People and Technology: a cognitive approach to contemporary instruments  

Retrieved from http://ergoserv.psy.univ-paris8.fr/Site/default.asp?Act_group=1  

Shute, V. J. (2008). Focus on Formative Feedback. Review of Educational Research, 78(1), 153-189. 

doi:10.3102/0034654307313795 

Vasilyeva, E., Puuronen, S., Pechenizkiy, M., & Räsänen, P. (2007). Feedback adaption in web-based 

learning systems. International Journal of Continuing Engineering Education and Life-Long 

Learning, 17(4/5), 337-357.  

Vergnaud, G. (1998). A Comprehensive Theory of Representation for Mathematics Education. 

Journal of Mathematical Behaviour, 17(2), 167-181.  



Documentational trajectory: A tool for analyzing the genesis of a 

teacher’s resource system across her collective work 

Katiane de Moraes Rocha and Luc Trouche 

École Normale Supérieure, French Institute of Education, Lyon, France 

 katiane.de-moraes-rocha@ens-lyon.fr; luc.trouche@ens-lyon.fr 

Our contribution to TWG 22 is dedicated to discussing teachers’ interactions with resources for 

planning their classroom instruction, particularly in the context of collective work. Each teacher 

during his or her professional life uses and creates many resources. To analyse the history of 

teachers’ work with resources, we propose the concept of the “documentational trajectory”. This 

idea is based on and aims to contribute to the development of the documentational approach to 

didactics. We will present a case study of one middle school teacher. The data related to this teacher’s 

work allowed us to consider her documentational trajectory. We then used the teacher’s 

documentational trajectory to analyze her professional development. The teacher’s documentational 

trajectory demonstrates a strong participation in collective work, in particular a collective named 

SESAMES, has an essential role. This participation contributes to the emergence of a particular 

resource, called a metaresource, to structure her documentation work. 

Keywords: Documentational approach to didactics, documentational trajectory, metaresource, 

reflective investigation, professional development. 

Introduction 

The new possibilities arising from communication and information technologies have had a 

significant impact on discussions on mathematics education, due to their  impact on resources 

available to teachers and the way of designing them. This has led to a new conceptualization of 

teaching resources (Adler, 2000) and the consideration of teachers’ new relationships with these 

resources (Remillard, 2005). Drawing on these studies, Gueudet and Trouche (2009) have analyzed  

teachers’ professional development through the lens of resources: they introduced the 

documentational approach to didactics to analyze how teachers select, use, and produce their 

resources, along with a process called documentation work (ibid, 2009).  More recentily, Bozkurt and 

Ruthven (2015) have shown how digital resources structure classroom practices, evidencing five main 

features: working environment, resource system, activity format, curriculum script, and time 

economy. In this article, we will rely on and develop these approaches for analyzing teachers’ history 

of their resource usage. We will propose a new concept for modeling this history: the teacher’s 

documentational trajectory. We will mainly discuss here the effects of a teacher’s collective work on 

his or her documentational trajectory. In order to do this, we will organize our contribution in four 

sections. In the first, we will introduce the keys concepts that structure our analysis. In the second, 

we will present our methodological choices. Next, we will develop a case study based on a middle 

school teacher, Anna. And in the last section, we will propose some final considerations and openings 

for future research.  



Theoretical framework and research issues 

We will present and develop in this section the theoretical approaches that form the basis of our 

analysis: the documentational approach to didactics, the structuring features of teachers’ practices, 

and the notion of thought collective. Then we will present our own propositions. 

As stated by Gueudet and Trouche (2012, p. 24) “teachers interact with resources, select them and 

work on them (adapting, revising, reorganizing, etc.) within processes where design and enacting are 

intertwined”. This process is the central focus of the Documentational Approach to Didactics 

(Gueudet & Trouche, 2012) that grounds our work. In this approach, the term resource is used in a 

broad sense, as everything that  nourishes teachers’ work. To prepare their teaching, teachers work 

on resources, and the result of this process is called a document. A document is made of resources 

that have been modified and re-organized, and by the knowledge, both guiding, and produced by, 

teacher’s work. The document is therefore subjective, because it is created through a process of 

knowledge development on the part of the subject. And the new resources generated or used in this 

process take place in a very structured set of teachers’ resources, called a teacher’s resource system. 

To develop this system, some resources introduced by Prieur (2016) as metaresources play a critical 

role.They design resources that support and guide the creation of other ressources and, beside that, 

favor teacher’s reflection about their documentation work.  

Teachers’ documentation work grounds teachers’ classroom practices, structured, according to 

Bozkurt and Ruthven (2012) by five features: the working environment, where class takes place 

(infrastructure, social organization, etc.); the activity format, which comprises the body of work in 

the classroom, such as routines and models of interactions between teacher and student along teaching 

and learning; the resource system, which gathers tools and materials for class. The curriculum script 

is to be understood in the cognitive sense of structured organization of activity guiding a teacher’s 

work in the classroom: goals, actions, activities, potential difficulties of students, among others. And 

time economy, based on the comparison between the teaching time and the learning time of students. 

Bozkurt and Ruthven use this framework for analyzing teachers’ integration of new digital resources 

into classroom practices. We will extend this usage for analyzing teachers’ design and usages of 

resources. Thus, we will retain the notion of a resource system as proposed by Gueudet and Trouche 

(2012): 

“we consider here as resource system does not fully coincide with Ruthven’s definition, because 

of the broader meaning of resources we retained. The resource system comprises material 

elements, but also other elements that are more difficult to collect, like conversations between 

teachers” (p. 27). 

We consider that teachers’ interactions with colleagues are likely to foster their documentation work 

and professional development (Gueudet & Trouche, 2012). This is the reason why we give a primary 

importance to collectives. We have retained the broad definition of thought collective (Fleck, 1934, 

p. 44) that exist when “two or more people are exchanging thoughts” and generating a thought style 

“characterized by standard features in the problems of interest to a thought collective, by the judgment 

which the thought collective considers evident, and by the methods which it applies as a means of 

cognition” (ibidem, p. 99). We will differentiate the natures of collectives, according to their duration 



(stable vs. unstable), their organization (formal vs. informal) and type of participation (voluntary vs. 

obligatory).  

Finally, our proposition for modeling a teacher’s history with resources based on the notions of 

resource, collective, and event. An event is something that happens in a teacher’s professional life, 

and that he or she has remembered as important regarding her documentation work. We define the 

teacher’s documentational trajectory (Rocha, 2016) as the interplay, over time, between events and 

resources.This interplay is socially situated, because it happens in schools or collectives, or because 

the events or the resources themselves are social products. The design of a teacher’s documentational 

trajectory is then a way to analyze when, where, why, how and which resources are created. We will 

focus in this article on the documentational trajectory as a tool for analyzing the development of a 

teacher’s resource system across their collective work. We describe, in the following section, our 

methodological choices for such a design. 

Methodological design  

Our methodology is inspired by the four principles of reflective investigation proposed by Gueudet 

and Trouche (2012): “long-term follow-up”, “in- and out-of-class follow-up”, “reflective follow-up” 

and “broad collection of the material resources”. This methodology gives a major importance to 

specific drawings made by a teacher (for example the ‘schematic representation of their resource 

system’). To retain this way of reflective investigation by the teacher of her documentation work, we 

propose some evolutions: instead of the word “representation”, we propose (Rocha, 2016) the word 

“mapping”, integrating the metaphor of a progressive exploration of a new territory. And we propose 

two kinds of mapping: reflective (made by the teacher herself) vs. inferred (made by the researcher) 

mapping. We differentiate then Reflective, vs. Inferred Mapping of a teacher’s Resource System; 

Reflective vs. Inferred Mapping of a teacher’s Documentational Trajectory. For the design and 

analysis of a documentational trajectory, we also use: interviews, follow-up of lesson preparation, 

and classroom observation, and a logbook filled by teachers. 

Our current research is mainly based on case studies. To choose teachers, we searched teachers that 

had Sésamath textbooks as official textbooks in their class. Sésamath (http://www.sesamath.net/) is 

an association of mathematics teachers in France that collaboratively designs online resources 

(software, textbooks, etc.) at a very large scale, opening a window for us on advanced teachers’ 

design, use and sharing of resources. We present here the case of Anna, a middle school mathematics 

teacher, whose school had chosen a Sésamath textbook. She has a strong partnership with a colleague 

from her school, Cindy, and both of them participate in various collectives and use a lot of digital 

resources beyond the Sésamath textbook.  

Our work with Anna started in March 2015, when we followed her 6th grade class for three months. 

During this period, Anna created and shared with us a Dropbox folder, where she uploads resources 

that she used in her lesson or to prepare it. In addition, we also recorded four moments of interaction 

involving her documentation work. In the first one, she made a reflexive mapping of her 

documentational trajectory. In the second one, she reviewed her reflexive mapping (focusing on a 

particular resource and a specific year). In the third one, she prepared a lesson with Cindy about a 

new curricular subject. In the last one, she spoke about her usages of a particular digital tool, a padlet 

http://www.sesamath.net/


(https://padlet.com/) used to save and organize resources found online. Also, we had her use a 

logbook to complement our data collection when we could not follow her documentation work. 

We will explore in this paper different mappings of Anna’s documentational trajectory: inferred and 

reflexive mapping. To obtain the initial reflexive mapping, we asked her to write down above a 

timeline the main events that have influenced her use of teaching resources teaching, or the way of 

conceiving them, and to write down, below the same timeline, the resources associated with the event 

at stake. To help Anna, we gave her a sample of possible events: the arrival of a new person in her 

school; the participation in a new collective, an unexpected interaction with a student or colleague; a 

change of program; a change of teaching level or of textbook; a training course or the discovery of a 

new resource related to mathematics teaching (book, movie, website, etc.).  

Our method of analysis is in development. In this article, we transcribed our first interview with Anna 

and we did a digital transposition of her reflexive mapping. Afterwards, we identified on the map, 

among the events she exposed, those related with collective work, following our hypothesis that 

knowledge is socially situated. After that, we identified the effects of collective work on her 

documentation work through associated resources at the event. Afterwards, we inferred from Anna’s 

speech her role in collectives and the nature of each of these collectives, following the hypothesis that 

some features could inform us on the collective effect on a teacher’s documentation work. For 

example, a collective where teachers are voluntary and have a long or permanent engagement 

nourishes teachers’ work differently than an obligatory collective where they have a short time 

engagement. Then, we searched collectives that have an important status in Anna’s documentational 

work. For this purpose, we looked for the collectives that appeared more frequently and related to 

other events in the map. Afterwards, we analyzed how these collectives nourished her 

documentational work exploring associated resources, and identifying in her words features relating 

resources and collective work. We will present the main results of this analysis in the following 

section. This work is still in progress. 

Analysis  

This analysis is divided into two parts: (1) Anna’s participation in collectives along her 

documentational trajectory and the structuring role of a particular collective, SESAMES in it; and, 

(2) the structuring role of a particular resource, “Mise en train”, on Anna’s individual and collective 

documentation work.  

Anna’s documentation work in collectives along her documentational trajectory and 

relationships with SESAMES.” 

We start analyzing the first reflexive mapping drawn by Anna (Figure 1). The analysis of the events 

evidences Anna’s strong involvement in collective work (she says: “I cannot work alone”). Eight (E6, 

E7, E8, E9, E10, E12, E13 and E14) over 14 events are related to collectives. For deepening the 

analysis, we study the properties of collectives, the roles of Anna in these collectives, and the 

functions of the resources that are designed. 

The collectives have different natures: 

 some of them are transient, as a short episode of coworking with Sésamath (E4), or Assist 

Me (E12, linked to a European project), or M@gistère (E13, linked to the design of a 

https://padlet.com/


teacher training path); some of them are ‘permanent’ (meaning that, once Anna enters this 

collective and stays in it), as APMEP (E10/E11, the French national mathematics teacher 

association), or LéA (E9, collective linking Anna’ middle school and the French Institute 

of Education), or SESAMES 1  (E6, a team associating researchers and teachers for 

renewing Algebra teaching );  

 some of them are obligatory (as E14, meeting with parents), some of them are voluntary 

(as E7 the close partnership with Cindy).  

In these collectives, Anna can 

have six different roles: member, 

reading and using their resources 

(E8 and E10); author, conceiving 

articles and resources for readers 

external to the group (E6, E8, 

E10, among others); teacher 

trainer, training middle school 

teachers (E6, E8, and E10); 

teacher researcher, reflecting 

about mathematics teaching (E6, 

E12 and E8); partner, exchanging 

and co-producing resources with 

colleagues (E6 and E10).  

 

Figure 1. Anna’s reflective mapping (October, 22nd 2016) of her 

documentational trajectory 

Each collective contributes in different ways to her documentation work. However, they are entangled 

in a way that it is difficult to attribute a single function to each of them. The interviews with Anna 

help us to distinguish some structuring features of Anna’s documentation work: elaborating her 

resources for teaching algebra; elaborating activities for teaching mathematical concepts and 

interpreting curriculum materials; elaborating resources for developing and evaluating students’ 

competencies; creating lessons and curricular scripts for her class; reflecting about using digital 

resources; creating new resources according to pedagogical changes in the school, supporting her 

participation in other collectives outside of school, writing papers, and teacher training.  

These functions are not supported by all collectives, but all of them are exploited in Sésames, where 

Anna and Cindy used to work together. In addition, SESAMES gives Anna new possibilities for 

participating in new collectives and establishing new partnerships. Figure 2 shows how SESAMES 

resources nourish the resources of other collectives. Develop a critical thinking on their practice. 

When she was invited to join SESAMES, Anna hesitated “that was a change, anyway. I accepted, 

finally, to join ... to join SESAMES. [...] It was a real challenge…”.  

 

                                                 

1 In spite of the likeness of the acronyms, Sésamath, a mathematics teacher association designing resources at a large 

scale, is totally different of SESAMES, a small team gathering researchers and teachers for re-thinking algebra education. 



SESAMES 2  had a big impact on 

Anna’s collective work. We can see 

(Figure 1) that she joined Assist me, 

M@gistère and Léa as a consequence 

of her engagement in SESAMES. It 

gave the opportunity for a new 

partnership with Camille. It helped her 

understand the competencies 

emphasized in the new French 

curriculum, leading tothe design of a 

teacher training path at IREM, 

resulting in a chance to join this 

institute. 

  

Figure 2. Inferred mapping about the collectives and resource 

system impact 

SESAMES has two sets of principles guiding Anna’s documentation work (cf. the SESAMES 

website,  Pégame: http://pegame.ens-lyon.fr/), mirroring the thought style of SESAMES. The first set 

is composed of three principles for teaching algebra: justifying computation throughout algebraic 

rules; proposing proof activities and exploiting formulas to introduce the concept of a function. The 

second set is composed of four principles for teaching mathematics: providing students with 

sufficiently rich and open problems; giving them a chance to explore; giving them a chance to 

speculate; giving concrete meaning to concepts taught.  

These principles gave birth to resources emblematic of SESAMES thought style, guiding then the 

whole process of collaborative resource design in this group. It’s exactly the characteristic of the 

metaresources we have already introduced in this paper. One of them is Mise en train, and we will 

analyze in the following section its impact on Anna’s documentation work. 

The structuring role of a metaresource on Anna’s individual and collective documentation  

The Mise en train (MET) corresponds to a specific activity format: it aims to organize teacher’s work 

at the beginning (around 15 minutes) of each class. The expression Mise en train has three meanings: 

the direct one is warming up (like for an athlete at the beginning of his training); the second one 

derives from a literal translation, “put on a train”, meaning ‘cutting a mathematics subject in short 

successive parts (allowing to store them in the successive wagons of a train); the third meaning derives 

from an acronym (created by Anna): Travail de Recherche ou d’Approfondissement avec prise 

d’INitiative (Research and Deepening Work with Initiative Taken). The global meaning of Mise en 

Train has to be understood as the compilation of these three interpretations. In the following, we have 

chosen to keep this acronym MET, incorporating this global meaning. This global meaning evidences 

some features of MET resources’ design. MET is exactly a metaresource, as it gives a way to produce 

new resources and stimulates teacher’s reflection on their documentation work and its effect on 

students’ activity. 

                                                 

2 Science Education: Modeling Activities, Assessment, Simulation (SESAMES, Situations d'Enseignement Scientifique : 

Activités de Modélisation, d'Evaluation, de Simulation). 

http://pegame.ens-lyon.fr/


MET appears as emerging, in SESAMES, from the documentation work of Anna and her colleagues. 

Anna explains factors leading them to create this metaresource: the loss of time at the beginning of 

each class (teacher being mobilized by administrative tasks); the good experience with the short 

sections of reflecting calculations; and her exchange with English teachers dividing students’ activity 

in short articulated moments for a more dynamic activity format. 

Once created, MET deeply 

changed Anna’s documentation 

work (cf. Figure 4). It affects all 

five structuring features of 

classroom practice. The working 

environment changed, e.g. students 

entering class late did not disturb 

class activity. The activity format 

is also altered, because the class is 

divided into two moments: MET 

vs. main class. 

 

Figure 3. The impact of MET on Anna’s documentation work 

The curriculum script is modified, including new goals and activities. Anna has then three 

possibilities for developing a lesson: MET then the regular course; the regular course, then MET; or 

beginning with MET… and going on with MET, for giving more responsibility to students for the 

advancement of the knowledge in the classroom. Regarding Anna’s resource system, new resources 

are created (new curriculum script, new notebooks for students, new lesson plans with MET activities, 

slides that contains MET activities linked to a given notion, new articles (APMEP, IREM, Pégame 

website) for disseminating SESAMES resources. Last, but not least, the time economy changed, for 

example, Anna removed the initial “call to students” at the beginning of each lesson. 

MET also affects Anna’s work in other collectives: in her school, the new curricular script is shared 

by all teachers, as Cindy and Anna explain the principles of MET, and present their interest form their 

practice; outside of her school, Anna disseminates this metaresource in SESAMES training, IREM 

group, and training, APMEP group and training. Finally, this metaresource, initially constructed in 

SESAMES group to teach algebra, was extended to other mathematical topics. For us, the 

metaresource MET is a point of convergence between Anna’s need and SESAMES’ interest.  

Final considerations and perspectives  

Our original question was: What are the effects of a teacher’s collective work on their 

documentational trajectory? Our initial analysis of Anna's documentation work gives us some clues. 

Our exploration of Anna’s documentation work in collectives allows us to understand her resource 

system better. We saw a diversity of collectives that she participates or participated in, and how her 

different roles contributed to her work. Among them, SESAMES appears as an important collective, 

having a strong impact on Anna’s documentational trajectory. It contributes to developing new 

collective work, resources and thought styles. In this collective, she contributes to create a 

metaresource that structures her documentation work afterwards: this metaresource is exploited in 

various collectives and structures her way to create resources.  



We proposed the concept of documentational trajectory for modelling a teacher’s history with 

resources. In this modeling, the reflective and inferred mapping of the documentational trajectory 

allows us to evidence some critical aspects of this history. It should be noted that these maps constitute 

a picture at a given moment, and in a given context. This temporal aspect is linked to the fact that 

Anna’s documentation work is still ongoing. The context aspect is also linked to the relationships the 

researcher can build with the teacher. 

The combination of the Structuring Features of Classroom Practice and the Documentary Approach 

to Didactics helps us to analyze teachers’ documentational trajectory, demonstrating the structuring 

role of SESAMES and a metaresource associated to a thought collective. Finally, we retain from this 

analysis  that the development of the concept of documentational trajectory was relevant for analyzing 

interactions between resources, collective work and teacher’s practice. 
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Abstract: This study examines principles of task design concerning the concept of uncertainty in the 

area of statistics. A purpose is to promote and support students reasoning competency involving the 

aspects authority and responsibility.  By using inferential role semantics as a background theory, we 

examine students’ reasoning by means of how they show authority and responsibility for statements 

in the reasoning process. Statistical tasks where students generate and analyze their own data formed 

the basis for this pilot study conducted with seventh grade students in Sweden. The students were able 

to reflect on how their actions and consequences of their actions influence their reasoning with 

uncertainty. The study describes the findings, and presents principles to inform the design of 

innovative learning environments that promote authority and responsibility in reasoning in the 

domain of uncertainty.  

Keywords: Design principles, uncertainty, responsibility, authority. 

Introduction 

Designing lessons and tasks has been an important part of developing theories of instruction in 

mathematics for over a century (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) and emerging 

from this practice is the design-research methodology. Plomp (2013) speaks of a twofold yield in 

design research-projects, both producing an intervention that offers a solution to a problem in the 

practice and what he calls re-usable design principles. In the present study, we are aiming for the 

latter. Design principles are to be seen as heuristics as they do not guarantee success. The principles 

rather suggest design elements that could support the development of a prototype design of a task 

(Plomp, 2013). Design principles are guides that answer questions like “What should the lesson look 

like?” or “How should the lesson be developed?” (Van den Akker, 1999). They should connect task 

design with both a practical and theoretical understanding of the topic and inform the teaching 

practice as well as the research practice. 

This paper begins in the idea of developing tasks for experiment based instruction in mathematics 

and the special case of stochastic. Groth (2013), amongst others, argues that stochastic education 

should be researched in particular since the nature of mathematical reasoning is largely deterministic 

whereas that of stochastic is with uncertainty. Our task design principles are therefore not focused on 

the creation of new knowledge but on eliciting stochastic reasoning and developing students’ 

understanding. In the present study, we examine design principles in relation to how meaning making 

is described in the semantic theory of inferentialism (Brandom, 1994). Our guiding research question 

is: 

 What are the design principles that trigger students’ authority and responsibility in reasoning 

with stochastic uncertainty? 



Plomp (2013) stresses the importance of reviewing similar examples when articulating design 

principles for the first time. Hence, the following section will elaborate on previous examples of 

experimentation-oriented tasks for stochastic education in the research literature to create a deeper 

understanding of design principles in stochastic education. Furthermore, the theoretical background 

of inferentialism gives the tools to see authority and responsibility in student’s reasoning connected 

to the design of the task. 

Related works 

In the Dutch tradition of RME, three principles inform task design: guided reinvention, didactical 

phenomenology, and emerging modelling (Freudenthal, 1973; Gravemeijer, 1994). According to the 

principle of guided reinvention, mathematical tasks should offer students opportunities to experience 

a process similar to that linked to the invention of a specific topic. On the didactical phenomenological 

account, task designers should consider how mathematical “thought objects” will be used by the 

students to structure and organize phenomena in reality. Emerging modelling emphasizes the process 

on progressive abstraction, from a model of a situation (experimentally real for the student) to a more 

general mathematical model (Gravemeijer, 1994). Overall, in RME, mathematical tasks are often 

rooted in Freudenthal’s vision of “mathematics as a human activity”, and are designed to resemble 

realistic problems in context. Another school of thought close to RME is authentic teaching and 

learning in mathematics. The design principles of an authentic practice are used to perform certain 

actions and procedures, and knowledge as a tool to perform and achieve particular goals (Dierdorp, 

Bakker, Eijkelhof & van Maanen, 2011). The underlying conjecture in authentic mathematics is that 

students will be motivated and engaged in rich discussions if authentic practices are used as a source 

of inspiration in designing mathematical tasks. Ainley, Pratt and Hansen (2006) used purpose and 

utility as design principles in mathematical tasks. According to Ainley, Pratt and Hansen (2006), 

purpose means that a meaningful outcome of a task is crucial for student learning. Utility refers to 

acknowledging the power of mathematics ideas. Chance-maker microworld (Pratt, 2000) is an 

example of a learning environment in which purpose and utility are implemented. The chance-maker 

is a microworld program with a series of gadgets, simulations of everyday random generators such 

as spinner, coins and dice. The students are challenged to find the gadgets that according to them do 

not work (The students were told that the gadgets were programmed) and mend them. The purposeful 

activity, for the students, of mending the gadgets led to the understanding of the utility of 

representations (connection between probability and data distribution), and the importance of the law 

of large number. The students are supposed to discover the relevance of mathematical ideas through 

realistic situations created in classrooms, real life (Ainley, Pratt and Hansen, 2006) or in the 

microworld (Pratt, 2000).  

Our hypothesis is that a mathematical task that can trigger students’ authority and responsibility 

increases student awareness on the data generation process and, has the potential to develop students’ 

reasoning with uncertainty. 

Theoretical framework: The Game of Giving and Asking for Reasons – GoGAR 

The framework of our research is the game of giving and asking for reasons (GoGAR); it is a 

metaphor used by Brandom (1994, 2000) to describe the linguistic practices in inferentialism, which 



is the background theory of this study.  An inferentialist view on knowledge entails giving priority to 

inference in reasoning in account of what it is to grasp a concept:  

To grasp or understand […] a concept is to have practical mastery over the inferences it 

is involved in – to know, in the practical sense of being able to distinguish, what follows 

from the applicability of a concept, and what it follows from. (Brandom, 2000, p. 48) 

It corresponds to the practical mastery of concept and, to the increasing awareness that reasoning is 

central to statistics and statistics education (Bakker & Derry, 2011). “The game of giving and asking 

for reasons is an essentially social practice” (Brandom, 2000, p.163), and the purpose of GoGAR is 

to make explicit reasons that are implicit in our linguistic practice (Brandom, 2000; Bransen, 2002). 

According to Brandom (1994, 2000), one way of understanding how reasons are made explicit in talk 

is in terms of interaction of inferentially articulated authority and responsibility. Authority of a claim 

is a process, capturing the influence of a claim in the GoGAR. However, “Authority is not found in 

nature” (Brandom, 1994, p.51) but is gained in taking responsibility by providing evidence for one’s 

claims. Students are expected to make claims that are related in a certain way, justify and explain 

their claims. Responsibility can be defined as a quest for authority, and it also expresses the quality 

of requirement for performing and maintaining authority (Hansson, 2010). By using GoGAR we aim 

to show how, independently of the quality of the reasoning, elements of task design eliciting authority 

and responsibility influences how students reason in the domain of uncertainty.   

Method 

The present paper focuses on reaching an understanding of the data generation process connected to 

a mathematical task (Cobb et al., 2003). The data generation process involves clarifying the 

significance of the phenomenon under investigation, delineating key aspects of the phenomenon that 

should be measured, and considering how they might be measured (Cobb and McClain, 2004, p.386). 

The analytical process of this paper is that of an abductive approach (Alvesson & Sköldberg, 2009). 

The aim of this approach is to create an initial analytical lens to view the data through, and then allow 

for the emerging design principles to influence the initial theorization. The specific analytical tool is 

retrospective analysis by the use of constant comparisons (Gravemeijer & Cobb, 2013). Instances of 

data are compared to find similarities and differences related to authority and responsibility in the 

data.  

The data set used in this analysis are transcripts of video recorded lessons in a pilot study. The purpose 

of the study was to document our starting point (Cobb & Gravemeijer, 2003) prior to an initial cycle 

of a design experiment (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). The design experiment 

utilizes the idea of engaging students in actual data generation and asking them to reason about the 

results. Our aim is that the task would trigger students to develop authority and responsibility due to 



their active involvement in the 

data generation. The empirical 

study was performed with a 

class of 20 students in grade 7 

(aged 12/13) in Sweden using 

an experiment based task 

focusing on statistics. The 

“helicopter task” (figure 1) is a 

modified version of a task that 

originates from Ainley, Pratt 

and Nardi (2001). It involves 

constructing an auto-rotating 

helicopter out of paper and 

measuring five flight times per 

rotor length. The class dealt 

with the helicopter problem in 

two lessons. In the first lesson, 

the students were involved in the data generation by e.g. testing paper-helicopters of varying rotor 

lengths (3cm to 14cm) and measuring flight times. In the second lesson, the class interpreted and 

evaluated the data in groups, guided by questions provided by the teacher. This was followed by a 

whole class discussion. The transcripts used here are meant to illustrate the ideas developed in the 

paper and are chosen because they portray typical student reasoning elicited by the task while using 

a relativly small amount of space in the paper. The reader is then invited to evaluate the plausibility 

of our interpretations and thereby assess the trustworthiness of our claims as an alternative to 

reliability and validity more suitable for this type of research (Lincoln & Guba, 1985)                          

Results 

 The transcript elaborated on below is used to 

shed light on aspects of how responsibility 

and authority, embedded in the task, elicit 

reasoning with uncertainty. It is part of a 

whole class discussion in the second lesson 

where one of the groups presents their 

findings. The questions from the helicopter 

task in focus here are: Which is the best rotor 

length? How sure are you? (…) means that 

portions are inaudible and […] means that we omitted a segment because of space limitation that we 

feel does not add to the reader’s understanding of our analysis. Table 1 contains the students’ results. 

[1] Teacher: Before we move on, may I ask how you noticed that it was a failure with the rotors 

[2] Gabriel:  Because sometimes were like three, and then some were only 1 second 

 […] 

  1st   2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

6 cm 2.5 2.3 2.5 2.3 2.4 1.9 2.6 2.9 2.6 1.8 

7 cm 1.8 1.9 2.7 2.2 2.1 2.4 3.1 2.3 2.3 2.8 

8 cm 2.6 1.9 2.6 2.5 2 2 2.4 2.4 3 2.9 

9 cm 3.1 3 2.9 2.9 3 1.6 1.3 1.9 1.8 2.1 

10 cm 2.2 2.6 2.4 2.8 2.4 1.6 2.5 2.3 2.2 2.2 

11 cm 2.2 2.8 2.9 2.1 2.7 1.3 1.9 1.9 1.3 2.8 

12 cm 2.8 2.2 2.6 2.4 3.3 1.3 2.3 1.8 1.7 2 

13 cm 2.6 2.2 2.5 2.3 1.7 1.7 1.6 1.8 2.4 2 

14 cm 4 3 3 3.1 2.1 2.3 1.9 2.2 1.7 2.3 

Figure 1 Instruction for the helicopter task translated from Swedish to English 

Table 1 Measured flight time for the helicopters in seconds 



 [3] James: We aren’t so sure because the experiment is done in a small scale therefore we don’t 

have enough data on the functioning of the helicopter, which makes it hard to know 

which length is the best. 

[4] Eric: it also depends on the angle of the rotors (…), it depends on the height differences. 

[5] Eric: (…) some might be 4 seconds and others might be 1.48. 

[6] Jennie: It also depends on how you drop the rotors, wait, this? (…) You could’ve calculated 

it with the median which we should have done. 

[7] Maria: But we remembered that afterwards. 

[8] Jennie: But we did it with the mean which made it take longer time. 

[9] Teacher: why should you have measured the mean then? 

[10] Jennie: Because the differences were so big, and the times (…) 

[11] Teacher: would the results have been better if you used the median? 

[12] James: Yes 

[13] Teacher: Why do you think so? 

[14] Jennie: Because the differences were so big and the times 

[15] Teacher: okay, why did it become such big differences? Was it the failure or? 

[16] Maria: Because maybe you drop it from the exact same spot, maybe you drop it further down 

one time and another time further up. 

Responsibility in justifying uncertainty 

If we compare instances [2], [4], [6] and [16] there are similarities and differences. All four instances 

are parts of GoGAR about the level of uncertainty. There are differences as well, for instance how 

their claims are accepted in the GoGAR and how they situate the responsibility for their claims. In 

[2], Gabriel reasons that the failure of the rotors becomes apparent in his data, but the reasoning is 

underdeveloped and no one else acknowledges his authority in the following discussion. In the 

following lines, not included because of space limitation, instead focus is put on the definition of 

margin used earlier. Eric’s reasoning in [4] on the other hand situates responsibility explicitly in the 

activity of data generation. He draws on the experience of having been a part of the data generation 

and claims that both the angle of the wings and the drop height could be sources of uncertainty. Jennie 

acknowledges Eric’s authority on line [6] by referring to the action of releasing the helicopter. We 

call this Responsibility in justifying uncertainty. Both students and teacher recognize that there is a 

measure of uncertainty in the results and use various informal concepts to indicate it, for example 

“hard to know” on line [3] and “differences are so big” on line [10]. Both Eric’s and Jennie’s giving 

and asking for reasons for the level of uncertainty situate responsibility in the act of data generation. 

Maria acknowledges that Eric’s and Jennie’s claims still have authority in the GoGAR on line [16] 

by relating the mathematical discussion of mean, median and uncertainty to the act of data generation.  

Exercising authority by making claims 

From our analysis, it appears that students in this study exercise their authority through two types of 

claims: terminology related claims and context related claims. While the terminology claims are 

related to students’ previous formal knowledge, context related claims are from observations through 

perception. Terminology related claim: We noted that all the students in the group were given the 

opportunity to express themselves. As whole, the group took the chance and made a considerable 

number of claims in a limited time period. As mentioned earlier, making claims is one way of 



exercising authority. In [2], Gabriel answers to the teacher’s question in [1]. A close look at Gabriel’s 

utterance, indicates that Gabriel’s authority is grounded in comparing one second to three seconds. 

In other words, formal logic is what lies behind his authority. In [5], Eric acknowledges Gabriel’s 

claim [2] and undertakes it. We, therefore conclude that “Gabriel lends his authority to Eric”.  The 

same line of reasoning is observed in [10] and confirmed in [14]. Other students in their reasoning 

about uncertainty in GoGAR can use these claims. In [7] and [10], concepts such as mean and median 

are brought to the discussion. The students’ involvement in data generation creates conditions in 

which students can make use of their previous formal knowledge. In this case the consequence of 

their actions in generating data, and the uncertainty that follows activates the use of mean and median 

while talking about uncertainty. Context related claims: it is evident that Eric’s claim in [4], “it 

depends on high difference”, is also accepted by the class. Hence [4] is based on observations during 

the data generation. One argument that supports our interpretation is that (here and otherwise in the 

data) the whole class has reported that it was almost impossible to drop the helicopter from the same 

height. Eric’s claim is licensed by a context. The same observation is made by Jennie in [6]. Further, 

Eric points out that the angle of the rotor is reason for variation and uncertainty. This observation was 

specific to Eric’s group. However, we believe the rest of the group will use it as a premise in their 

reasoning with uncertainty if needed. The context created by the data generation enables students to 

make claims that can be used in reasoning with uncertainty.  

Discussion 

We organize the discussion around three questions connected to the design that seem to trigger 

authority and responsibility.  

Which different opportunities in the task are given by the students to accept responsibility for their 

claims? The students reason naturally with uncertainty since they have the practical experience of 

manually generating data in the task to situate their responsibility. In contrast, Pratt (1998) found that 

many students in his study based on the chance-maker microworld software had to convince 

themselves that the gadgets in the game were indeed random and that the mode of reasoning should 

be with uncertainty rather than a deterministic reasoning. As long as the students had the opportunity 

to influence, for example, the strength of a simulated dice throw, they were more prone to accept that 

it was random. One explanation could be that the students working with the chance-maker had to 

situate responsibility inside a black box, being the software, which led them to believe that the results 

were predetermined. Our analysis in [2] and [4] show how the task provides opportunity for the 

students to situate the responsibility of the failure in the measurement. The cause-effect opportunities 

created by the task initiate fruitful GoGARs in the domain of uncertainty, which also seems to fit with 

Pratt’s (1998) findings. 

Which different opportunities in the task give the students the ability to create authority for their 

claims? From Roth’s (1996) study, we know that students show difficulties in analyzing data when 

they have not been actively involved in the data generation. This view is supported by Noss, Pozzi & 

Hoyles (1999). Our analysis showed in [2] [3] and [4] that the task enabled the students to act as 

experts. The students were able to connect data analysis and inferences to data generation while 

reasoning with uncertainty. The experiment based instruction, which entails manual data generation, 

opens up for students to take control over the process. Leaving the data generation process to students, 

triggers their authority and responsibility and, students are more motivated than if they would just be 



limited to data collection and get “the right data” (Cobb & McClain, 2004). Getting students to reflect 

on how their own actions influence the results is the first step in acting with authority and 

responsibility. 

Which different opportunities in the task are given to the students to shift responsibility and authority 

between different domains? Designing tasks with manual data generation based on principles of 

authority and responsibility is not the general solution to improve statistics education. In fact, creating 

large data sets, suggested by Pratt (1998) as being a corner stone in statistics instruction, becomes 

almost impossible with this focus on manual data generation during lessons. We merely suggest that 

there are merits to these design principles in statistics education as it naturally elicits GoGARs in the 

domain of uncertainty and empowers students to take responsibility and use mathematics to back up 

their claims. In [6] and [8] our analysis in [6] and [8] show how the task provides opportunity for the 

students’ quest of authority as they shift responsibility between the empirical and theoretical domain. 

We show that designing tasks with manual data generation elicit fruitful situations for shifting 

authority and responsibility between context and concept levels. Thus the students used their previous 

concepts to act upon the context, and also looked for evidence in the context to strengthen their 

authority and responsibility. In sum, creating a learning environment where students can exercise 

authority by using their previous formal knowledge and most importantly “our imperfect perception” 

can promote a fruitful GoGAR in the area of uncertainty, and in mathematics in general. 
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Although the notion of assumptions is important in the discipline of mathematics and permeates 

(often tacitly) mathematical activity in school classrooms, instruction in the elementary school pays 

little attention to it. This situation is unlikely to change unless elementary teachers have a good 

understanding of the role of assumptions in mathematical activity and an appreciation of the 

pedagogical implications of that role. In this paper, we investigate how teacher education can 

promote this dual goal by illustrating a promising, task-based approach to supporting prospective 

elementary teachers to develop pedagogically functional mathematical knowledge about the role of 

assumptions in mathematical activity. We developed the approach in a 4-year design experiment we 

conducted in a mathematics course for prospective elementary teachers in the United States. 

Keywords: Assumptions, elementary grades, prospective teachers, task design, teacher knowledge. 

Introduction 

Assumptions denote the statements doers of mathematics use or accept (often implicitly) and on 

which their claims are based (Fawcett, 1938) and, thus, assumptions are fundamental to any 

mathematical activity at all levels. In school mathematics, however, assumptions often receive little 

explicit attention, especially at the elementary school level. The notion of assumptions has received 

also relatively little explicit attention in the mathematics education literature.  

A small number of studies addressed the role of assumptions in the particular area of proving at the 

secondary school (Fawcett, 1938; Jahnke & Wambach, 2013) and elementary school (Stylianides, 

2016) levels. However, there is a scarcity of relevant research at the teacher education level. This is 

problematic: unless teachers are supported to develop a good understanding of the role of 

assumptions in mathematical activity and an appreciation of its pedagogical implications, it is 

unlikely that teachers will offer to their students productive learning opportunities in the area of 

assumptions.  

In this paper, we investigate how teacher education can promote prospective elementary teachers’ 

knowledge about the role of assumptions in mathematical activity. We focus on the design and 

implementation of tasks that can support Mathematical Knowledge for Teaching (MKfT).  

Research background 

The notion of MKfT (Ball et al., 2008) denotes the kind of “pedagogically functional mathematical 

knowledge” (Ball & Bass, 2000, p. 95) that teachers need to have to be able to manage the 

mathematical demands of their practice. It has been noted that “there is a specificity to the 

mathematics that teachers need to know and know how to use” (Adler & Davis, 2006, p. 271) and 

that teacher education should aim to create learning opportunities for prospective teachers (PTs) that 

would enable them “not only to know, but to learn to use what they know in the varied contexts of 



[their] practice (Ball & Bass, 2000, p. 95). Thus mathematics courses for PTs cannot lose sight of 

the domain of application of the targeted knowledge (i.e., the domain of mathematics teaching).  

We consider next what might be essential elements of MKfT about the role of assumptions in 

mathematical activity. We begin by describing two elements we identified based on consideration of 

the role of assumptions in the discipline of mathematics (e.g., Fawcett, 1938; Kitcher, 1984) and 

mathematical analysis of classroom practice where the notion of assumptions received explicit 

instructional treatment (Fawcett, 1938; Jahnke & Wambach, 2013; Stylianides, 2016). 

 Element 1: Understanding that a conclusion is dependent on the assumptions on which the 

argument that led to it was based.  

 Element 2: Understanding that different legitimate assumptions can lead to different conclusions 

that, although on the surface may appear to be contradictory to each other, may nevertheless 

both be valid within the set of their underpinning assumptions. 

These interrelated elements are central to mathematical work. The different sets of axioms in 

Euclidean and non-Euclidean geometries, including associated results, offer an illustration of both 

of these elements in the discipline of mathematics or in the upper secondary school (Fawcett, 1938). 

Similar ideas are central also to the elementary school (Stylianides, 2016) and are consistent with 

recommendations in curriculum frameworks (e.g., NGA & CCSSO, 2010, p. 6). Furthermore, the 

two elements are essential for mathematical knowledge that is also pedagogically functional. For 

example, they can allow a teacher to recognize that, when two students offer inconsistent answers to 

a task, this does not necessarily mean that one of them is wrong; both students may have applied 

sound reasoning based on different assumptions about the conditions of the task. We capture this 

kind of pedagogical functionality of elements 1 and 2 under a third element of MKfT: 

 Element 3: Ability to recognize possible ways in which elements 1 and 2 might apply in 

mathematics teaching.  

Regarding how to promote PTs’ MKfT, in Stylianides and Stylianides (2014) we discussed and 

illustrated a special kind of mathematics tasks that we called pedagogy-related mathematics tasks. 

These tasks have two major features: (1) A mathematical focus, which relates to mathematical ideas 

that are important for teachers to know; and (2) A substantial pedagogical context, which is an 

integral part of the task and essential for its solution. Notwithstanding the importance of pedagogy-

related mathematics tasks, there is also a need for the use of other kinds of tasks in mathematics 

courses for teachers. In this paper, we focus on a task sequence that illustrates another approach we 

followed to promote MKfT. Unlike pedagogy-related mathematics tasks where mathematics and 

pedagogy are intertwined in the same task, this task sequence illustrates an approach to promoting 

MKfT in which (1) initial work on a non-contextualized mathematics task can create a productive 

space for pedagogical reflection and (2) follow-up instruction can foster the intertwinement between 

mathematics and pedagogy. We elaborate on the task sequence in the Method section. 

To conclude, in this paper we address the following research question: What task sequence can offer 

a productive learning environment for prospective elementary teachers to develop the three elements 

of MKfT that we described earlier about the role of assumptions in mathematical activity?  



Method 

Research context 

This research derived from the last cycle of a 4-year design experiment (e.g., Cobb et al., 2003) in a 

semester-long mathematics course (3hrs per week) for prospective elementary teachers in the United 

States. The design experiment comprised five research cycles of implementation, analysis, and 

refinement of task sequences and associated implementation plans that aimed to promote PTs’ 

MKfT. The students were undergraduates who majored in different fields and were taking the 

course as a prerequisite for admission to the master’s level elementary teacher education program. 

The task sequence we focus on was implemented toward the end of the semester and was the only 

one that explicitly targeted PTs’ MKfT about the role of assumptions in mathematical activity. We 

introduced the task sequence in cycle 4 because we felt an explicit intervention was needed to 

adequately promote PTs’ MKfT of elements 1–3. Analysis of how the task sequence played out in 

cycle 4, alongside our developing understanding of how things “worked,” led to modifications of 

the task sequence, culminating in the form described below which took place in cycle 5. 

 

Figure 1: The “Floors Problem” (derived from Ball, 1993) in part A of the task sequence 

The task sequence 

The task sequence comprised three parts. In part A we used the “Floors Problem” (Ball, 1993) in 

Figure 1. Two task features made it suitable for our goals to promote elements 1 and 2 of MKfT. 

First, the task conditions were ambiguous and thus subject to different legitimate assumptions; a 

major ambiguity concerned whether or not the person in the task had to travel directly to the second 

floor. Second, different assumptions about the task conditions could support different arguments for 

answers to the task that might appear to be contradictory but might actually be correct given their 

underpinning assumptions. In addition to promoting elements 1 and 2 of MKfT, we hypothesized 



that PTs’ mathematical experience with the task in part A could offer a productive context for 

pedagogical reflection (cf. element 3). We capitalized on this potential of the task in parts B and C. 

In part B we used two conceptual awareness pillars (or simply pillars; Stylianides & Stylianides, 

2009) to which the PTs responded individually and in writing. (There was a third pillar whose 

discussion we omit due to space limitations and a lack of direct relevance to our focus.) The pillars 

are presented in the first column of Table 1 (see next section). With them we aimed to amplify PTs’ 

mathematical learning (see pillar 1 in relation to elements 1 and 2 of MKfT) and its intertwinement 

with pedagogical reflection (see pillar 2 in relation to element 3). As per the definition of pillars 

(Stylianides & Stylianides, 2009), the non-directive prompts in them could increase PTs’ awareness 

of key realizations they might have developed (possibly in tacit form) during their work on the task. 

Finally, in part C we engaged PTs in small-group and whole-class discussion around the three 

prompts in Figure 2 that aimed to further support PTs’ reflective insights from part B and help them 

consider the applicability of those insights beyond the particular task. The prompts raised issues 

relating to elements 1–3 of MKfT. For example, in prompt 1 the first question related to elements 1 

and 2, while the second question related to element 3. Each small group was asked to collectively 

produce a written response to each prompt prior to a whole-class discussion. Due to space 

constraints we report only findings from our analysis of the small groups’ written responses. 

1. “Conclusions are ‘true’ only within the limits of the assumptions on which they are 

based.” How do you understand this statement? Do you think it is important for elementary 

school students to develop a sense of the role of assumptions in mathematics? Explain. 

2. “Teachers should always make sure that the mathematical tasks they give to their students 

have unambiguous conditions.” What do you think about this statement? Explain. 

3. There may be situations where teachers do not realize that a mathematical task they give 

to their students has ambiguous conditions. What might happen in these situations and how 

might teachers handle the situations? 

Figure 2: Discussion prompts used in part C of the task sequence 

Data and analysis  

The task sequence in research cycle 5 was implemented in two parallel (independent) classes of the 

course that were both taught by the second author. At this stage of our analysis we are using data 

from only one of the classes: videos and transcripts of the implementation of the task sequence in 

this class with 16 PTs attending on that day; these PTs’ written work including their individual 

responses to part B and their group responses to part C; and field notes from a research assistant 

documenting the work of one small group. Our data analysis was guided by elements 1–3 of MKfT 

that we aimed to promote. Specifically, we conducted qualitative content analysis of the transcripts 

and field notes in part A to examine whether and how the PTs developed understandings relating to 

elements 1 and 2, and also of PTs’ responses to parts B and C to identify themes in their responses 

and examine whether and how these themes corresponded to elements 1–3 of MKfT.  



Implementation of the task sequence and discussion 

Part A: implementation of the Floors Problem 

Stylianides showed the problem statement and the building model, and explained the notation for 

negative numbers. He also established a common notation with the class about representing trips. 

After that, he asked the PTs to work on the problem first individually and then in groups of four. He 

also said he would not answer any clarifying questions about the problem, an intentional aspect of 

our instructional design. The discussion in the small group where the research assistant was taking 

field notes is indicative of the way the PTs engaged with the problem (all names are pseudonyms):  

Amanda:  So… can you pass the second floor and then go back to it? Or do you have to stop, 

because you’ve technically gotten there? So… you just have to look at how to get 

directly there? If not, it’s going to be infinity! 

Beth:  That’s what I did…the direct. I just counted how many up and how many down… 

Monica:  But that doesn’t say that you have to come in the entrance… So you can start 

anywhere? 

At this point Stylianides passed by the small group and Monica asked him whether the trips had to 

start from the ground floor. Stylianides reminded her that he would rather not respond to clarifying 

questions and he moved on to a different group. The small group discussion continued as follows: 

Victor:  So… the solution of this problem depends on our assumption. 

Amanda:  Well, fine then. I say 15… because I’m assuming that you start on the ground 

floor and can’t pass [floor] 2 and can’t change direction more than once. 

Victor:  I say 25 because… [He was interrupted by the start of the whole-class discussion.] 

As illustrated by this exchange, the decision not to respond to clarifying questions allowed for the 

notion of assumptions to emerge naturally in the discussion: had the instructor specified an 

interpretation, the PTs would not have considered alternative interpretations. The whole class 

discussion started with the small groups explaining their answers to the problem: 25, infinity, 15, 

and 51. Sherrill explained the answer of 25 by noting how each floor could constitute a separate 

starting point for a direct trip to the second floor. Sophie then tried to explain infinity as an answer:  

Sophie: Well, we picked infinity because […] if you’re saying you can go up and down 

and up and down as many times as you wanted before you reach the second floor, 

I think that the question isn’t specific enough. Like they [Sherrill’s group] 

assumed you can only go up or down one time. […] 

Stylianides: So you say [referring to Sophie] if we don’t assume that [what Sherrill’s group 

assumed] and [we assume] you’re allowed to travel up and down as many times as 

you want, then the answer would be infinity? [To the class:] What do you think 

about that? Is one of them wrong? Are both of them right? […] 

Lindsey: I think […] they just made different rules, and like, thought processes. […] You 

could have a direct route and that’s it, no going back and forth… like, you could, 

when you were talking about going up and down and up and down and that’s not 



really a direct route… So really, you could do anything that you wanted to, but it 

just depends on what the person… what the problem is looking for, I guess. 

Sherrill: It’s up to the interpretation of the reader... Like I read it and I just assumed that it 

had to be a direct route, but it clearly doesn’t state that… […] 

Infinity as an answer was discussed again later, after the class had considered also 15 and 51 as 

possible answers. Overall, the whole-class discussion mirrored the previous small-group discussion. 

Sophie, Lindsey, and Sherrill’s comments show an increased understanding of elements 1 and 2: the 

PTs acknowledged that the task allowed for different legitimate interpretations of its conditions and 

that their conclusions depended on their assumptions (element 1), while realizing that the different 

answers they came up with were all correct based on their underpinning assumptions (element 2).  

Part B: PTs’ responses to the pillars 

Analysis of PTs’ responses to the two pillars gave rise to the themes summarized in Table 1. Each 

response could receive multiple codes. The frequencies are offered to show how prominent each 

theme was among PTs’ responses, not for generalizability. Regarding pillar 1, PTs’ responses under 

themes 1–4 related to both elements 1 and 2 of MKfT. The responses below illustrate all themes: 

Sherrill: I was surprised at the multiple assumptions made. I had not even considered the fact that 

answers other than 25 existed because of the way people interpreted the problem. I now realize 

how greatly making assumptions can alter mathematics. (themes 2, 4) 

Lorri: [A]ll of our groups had different interpretations of how many ways there were […] Some 

of the other groups’ answers […] I could understand their rationales as to why their answer was 

correct. Our answers were not wrong under this ambiguous problem. (themes 1, 3) 

Pillars Themes and frequencies (in parentheses) 

Pillar 1: Is there 

anything that 

particularly stood out to 

you from our work on 

the “Floors Problem”? 

1.  Multiple legitimate interpretations (8) 

2.  Multiple assumptions (5) 

3.  Multiple correct answers (4) 

4.  Importance of assumptions (4) 

5.  Other (2) 

Pillar 2: The “Floors 

Problem” was 

purposefully designed 

to be ambiguous. Why 

might a teacher use a 

problem like that in 

his/her classroom? 

a.  To encourage sensitivity to language (7) 

b.  To increase awareness of the role of assumptions (6) 

c.  To enhance appreciation of different possible interpretations 

of the same (ambiguous) text (6) 

d.  To enhance appreciation of the interdependency between 

different assumptions/interpretations and different answers 

and solution paths (5) 

e. To encourage discussion, explanation, or proof (5) 

f.  Other (3) 

Table 1: Summary of results from PTs’ responses to the pillars in part B of the task sequence (n=16) 



Regarding pillar 2, PTs’ responses under themes a–e showed ability to recognize how their 

mathematical insights from the problem could apply in teaching. Thus the responses offered 

evidence related to element 3 of MKfT. We offer two responses that illustrate some of the themes:     

Lorri: A teacher could use this ambiguous problem to get their students to understand that 

sometimes their answers are not wrong and that there may be other answers to a problem. 

Students will be able to explore their different ways of interpretation and must be open to others’ 

interpretations […] They will understand that there will be different […] answers that will 

depend on the information given in the problem, which may be ambiguous. (themes a, c, d) 

Helen: To learn about assumptions and understand not only the importance of specifics […] but 

also the freedom for one to think along the terms of their own assumptions. (themes a, b, c) 

Part C: responses of small groups to the discussion prompts  

Overall the PTs’ responses to part C were pedagogically sound and were informed by the powerful 

impact the Floors Problem had on their mathematical learning. Also, one can see parallels between 

PTs’ responses in part C and the part B pillars; these were supported by our instructional design.     

Prompt 1: An illustrative explanation of the first question in prompt 1 was: “You have to start with 

a base and then make assumptions from that. So your conclusion can only be based on those 

assumptions. Therefore your conclusion can be only true or false for those assumptions.” Regarding 

the second question in prompt 1, all groups noted the importance of helping students develop a 

sense of the role of assumptions in mathematics. The groups justified their response with reference 

to the following: the importance of assumptions in the discipline; knowledge of assumptions can 

help students understand that different legitimate interpretations of a problem can lead to different 

valid conclusions; and knowledge of assumptions can highlight the need for students to explain 

their thinking. These justifications relate to element 3 and are underpinned by the understanding of 

elements 1 and 2 that was evidenced in PTs’ responses to the first question in prompt 1.  

Prompt 2: All groups disagreed with the statement and highlighted, in a similar manner, that the 

phrasing of a task should align with the teacher’s goals. Here is an illustrative response: “If a teacher 

is giving a math test, or graded evaluation where they are looking for a specific answer then yes, the 

tasks should be unambiguous. However, if the teacher is trying to prove a point about assumptions 

or different approaches to the same problem, an ambiguous task may be beneficial.” 

Prompt 3: Two major points emerged from the responses to prompt 3. The first point related to 

teachers being able to recognize that some students’ approaches to a task that appear as “faulty” may 

be in fact mathematically sound based on unforeseen (to the teacher) legitimate assumptions. The 

second point related to teachers asking students to explain their thinking to see whether the students 

indeed operated on different assumptions rather than just focus on the final answer. Again, these 

justifications relate to element 3 but are also based on understanding of elements 1 and 2. 

Conclusion 

In this paper we investigated how teacher education can promote prospective elementary teachers’ 

knowledge about the role of assumptions in mathematical activity, with attention to the design and 

implementation of a task sequence that aimed to support three elements of MKfT. We illustrated a 

task-based approach to promoting MKfT whereby a mathematics task, although not embedded in a 



pedagogical context, can nevertheless create a productive space for pedagogical reflection through 

the creation of a powerful mathematical experience for PTs. Analysis of data from the fifth research 

cycle of a design experiment in a mathematics course for PTs provided evidence for the promise of 

this approach and highlighted the important role of the teacher educator in implementing deliberate 

(pre-planned) instructional moves to help amplify PTs’ mathematical learning and enhance the 

pedagogical functionality of their acquired knowledge. Future research can investigate whether and 

how the rich insights (both mathematical and pedagogical) that PTs may develop through the task 

sequence about the role of assumptions in mathematical activity can inform their practice.  
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Introduction and methodology 

Asymptotes and asymptotic behaviour play an important role in many traditional and modern 

mathematical disciplines and are supported by a rich and well-established abstract theory. Some 

basic aspects of these concepts can be utilized already in elementary mathematics as powerful tools 

in graphing and analyzing behaviour of elementary functions at infinity and near singularities and in 

graphing simple plane curves such as hyperbola. Therefore, this body of knowledge is a common 

part of upper secondary mathematics curricula worldwide. Here, we investigate its didactical 

transposition to the Croatian general upper secondary education. The survey is conducted within the 

theoretical framework of the Anthropological theory of the didactics (ATD), developed by Y. 

Chevallard (Chevallard, 1981, 2007). The main idea of the ATD is to determine a relation RI(p,O) 

between a body of knowledge O and a person that occupies a position p in an institution I. 

Accordingly, mathematical knowledge and activities are described in terms of a praxeology [T, τ, θ, 

Θ], where its practical component, praxis, is represented with a task T and a technique τ and its 

discursive or theoretical component, logos, with a theory Θ and a technology θ. Research within the 

ATD should include relevant data about the relation RI(p,O) for all institutions I involved in the 

educational process i.e. the process of didactic transposition (Bosch, Chevallard & Gascón, 2005). 

Questioning and understanding conditions and constraints on the relation RI(p,O) is necessary for 

setting up attainable, justified and significant educational interventions (Barbé, Bosch, Espinoza, & 

Gascón, 2005). Hence, as relevant for our setting, we analyzed and compared the relations RB(p,O) 

and RS(p,O), where O is a graphical representation of an elementary function and a hyperbola in a 

square coordinate system, together with corresponding techniques regarding asymptotes, while 

institutions considered are two actual Croatian mathematical gymnasium textbooks B and the cohort 

of 40 the final, fifth year mathematics education students S at the largest mathematical department 

in Croatia. 

This is a part of a more comprehensive study regarding asymptotes and asymptotic behaviour in the 

Croatian pre-university education which also included the institution of academic mathematicians. 

The methodology included a praxeological analysis of the textbooks as representatives of the 

knowledge to be taught and three questionnaires with open-ended questions for the prospective 

mathematics teachers to provide an insight in related knowledge available to students as a potential 

taught knowledge. Based on this, a reference epistemological model (REM) is proposed and then 

verified and improved with scholarly knowledge gained from semi-structured interviews with two 



academics. Here, we focus on textbook topics, tasks, techniques and discourses related to O and on 

three particular tasks from the questionnaires administered: graphing and describing a simple 

rational function and a shifted exponential function from a real world problem, given by formulas, 

and graphing a hyperbola and its asymptotes. 

Results and conclusions 

The results of the textbook analysis show that graphing a function f pointwise, that is, by plotting 

some corresponding points (x, f(x)) and connecting them by a smooth curve dominates all other 

available techniques for graphing functions given by formulae. A technique of graphing a function 

or a curve regarding its properties recognized from a corresponding algebraic expression (formula or 

equation) occurs only in relation to the tangent and cotangent function and to a hyperbola, while the 

tasks on graphing polynomials and rational functions appear only as common practical activities of 

utilizing derivatives (calculus). Finally, a technique of transforming a prototype graph of an 

elementary function to get a graph of its composition with a linear function (by translations and 

dilations) is rarely implemented. Although textbook praxeologies of graphing functions often 

elaborate function properties and flow, discursive accents are set on establishing a function’s 

domain, monotonicity and symmetry of its graph, neglecting its asymptotic behaviour. Asymptotes 

are seen relevant only for tangent and cotangent functions. Results of the questionnaire analysis 

completely reflect those of the textbooks. The students applied techniques and provided discourse to 

the same extent as it is given in the praxeological organization of the textbooks. Namely, their 

dominant techniques are drawing curves through their points and drawing graphs regarding function 

properties determined by using calculus, their chosen techniques are not the most efficient for the 

task in question, and asymptotic behaviour is available to them but not fully utilized in praxeologies 

relevant to graphing functions or curves. Considering this, it is our suggestion for the teaching 

practice and for an ongoing curricular reform in Croatia that: all relevant function properties should 

be emphasized when describing its behaviour; common properties of a function should be more 

related to its algebraic representation and utilized for its graphing; functions should be graphed by 

graph transformations, whenever fitted; and asymptotic behaviour should be more emphasized, 

adequately graphically represented and described by formal and informal mathematical discourse. 
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Japanese Lesson Study is now internationally accepted as a powerful form of professional 

development, particularly in the field of mathematics.  It involves a cycle in which teachers 

collaborate to plan, observe, analyze and refine actual classroom lessons (Lewis, Perry and Murata, 

2006).  Frequently the lesson is retaught, although rarely by the same teacher to the same students 

(Fernandez and Yoshida, 2004). Reteaching of a lesson allows teachers to see how small variations 

in, say, the presentation of a task can deepen learners’ understanding of mathematical concepts. This 

suggests that variation theory might be a useful lens for exploration of this phase of the Lesson Study 

cycle. From this theoretical perspective, learning is defined as “a change in the way something is 

seen, experienced or understood” (Runesson, 2005, p.70). Thus small changes in the design of a task 

can result in changes in what it is that students discern or notice. Watson and Mason (2006) refer to 

dimensions of possible variation (what is possible to vary) and a range of permissible change 

(perceived constraints on the extent and nature of change in any of the dimensions of variation): 

“Teachers can … aim to constrain the number and nature of the differences they present to learners 

and thus increase the likelihood that attention will be focused on mathematically crucial variables.” 

(p.102) 

In this paper we report on a research project in which one primary and three post-primary teachers 

participated in Lesson Study in order to examine transition issues in mathematics. In particular, there 

is reference to the mathematical written work of two different groups of students who engaged with 

a similar task. The teachers had identified the topic of fractions as one that poses both teaching and 

learning challenges at primary and post-primary levels. They developed a research lesson and taught 

it first to a junior post-primary class (students aged 12-13 years) and later to senior primary class 

(students aged 11-12 years). The goals for both lessons were the same and centred around students’  

1. development of confidence in comparison of fractions;  

2. utilization of their own approaches to solve the problem;  

3. discussion of their own ideas and opinions with each other; and 

4. motivation to engage in further such mathematical tasks.  

The particular task they chose (sourced from nrich.maths.org) concerns the identification of the 

greatest amount of chocolate in a room where there are three bars on one table, two on another and 

one on the last table. It is assumed that an unknown number of people will enter a room in turn and 

that each will decide which might be the best table at which to sit ‘at that moment’. Thus the first 

person should choose the table at which there are three bars. The comparison faced by the seventh 

person is mathematically more complex than that encountered by the first six people as, up to this 

point, comparison is between whole numbers and fractional amounts less than 1. For example, a 

choice that might have to be made by Person 6 is ½ or ⅔ or 1 bar of chocolate. However assuming 



that Person 6 opts for the table at which there is one bar, the choice for Person 7 is ½ or ⅔ or ¾. While 

much planning time was spent anticipating such complexities and how pupils might deal with them, 

the teachers did not foresee that poor organisation of work by students would impinge on their 

solution processes. A change introduced in the second iteration of this lesson was that students would 

be encouraged to present their solutions in tabular form, and, in fact, on inspection of their written 

artifacts, most did so. However, while the use of this table facilitated fraction comparison (Goal 1), it 

did not encourage the exploration of various approaches (Goal 2) to the same extent. It appeared that 

this small variation in the task had considerable impact on students’ focus of attention.   

Conclusions 

A broader range of permissable change  appears to have been conveyed in the post-primary than in 

the primary class due to the introduction of the tabular format in the second lesson. However, students 

perceived a narrower dimension of variation than was suggested by either teacher, evident in the 

frequency of use of decimals for recording in the post-primary class and use of fractions/tabular 

format for recording in the primary class This may have been influenced by the teacher’s 

representation of the task on the whiteboard in each lesson and might be explained by its endurance 

(and thus propensity to be noticed) over the course of each lesson. Such representations seem to have 

a considerable impact on the (enacted) object of learning and deserve focused attention in the design 

and  analysis of mathematical tasks. More generally, while other theories have explanatory power in 

the consideration of the different outcomes of two similar lessons, variation theory has a significant 

role to play.  
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This work analyses the changes in the relationship between arguing and images from the 

mathematics textbooks for the secondary school in Argentina along 67 years. The textbooks have 

been published in the period 1940 thru 2007. The analysis is done by (N=137) textbooks based on 

three meta-categories in an inductive way. A factorial analysis of multiple correspondences was 

performed to find the main similarities and differences between the textbooks and to make a cluster 

analysis and one possible classification. 
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Introduction and conception of arguing 

In 1994 an educational reform was performed in Argentina. The syllabus was changed and the 

scholar textbooks were adapted to the new educational system. The main modifications were 

realized in the properties of the images more than in the content. The characteristics of the text 

books, the ideas about argumentation and the characteristics of the images in the books are 

analysed. This research adopts an idea of arguing that emphasizes the relevance of the divergences 

between different points of view and the epistemological function of arguing, proposed by Leitão 

(2007). Different from other theories as Schwarz, Hershkowitz & Prusak (2010), Driver, Newton & 

Osborne (2000); Leitão proposes that arguing has to be analysed based on three elements: 

“argument, argument against and response” in order to generate confrontation between argument 

and argument against, to achieve construction of knowledge and transformation of perspectives in 

the subject (response). These processes occur into face to face situations, or in negotiations of the 

different points of view with ourselves, in this case, when we are reading a textbook. 

Methodology, categories of analysis and some results 

A set of (N=137) mathematics textbooks is selected by means of purposive sampling techniques. 

The analysis was performed starting from a previous qualitative inductive categorization based on 

three meta-categories:  

A- Characteristics of arguing. A1- Commencement of arguing: Questions or situation, 

which will be answered later; Definition, using to introduce knowledge; and Examples to formulate 

knowledge. A2- Type of arguing: Deductive formal, used deductive mathematics argument 

(definition, theorem, hypothesis, theory, demonstration, etc.); Deductive informal, they do not reach 

the formalism of the demonstrations; and Inductive that generalize knowledge from a single case. 

A3- Degree of arguing, cognitive conflict promoted by the text is analysed in three levels: High, 

books that generate explicitly confrontations, without solution in the text; Low, textbooks generate 

explicitly a cognitive conflict, solved later; and Absent, textbooks that inform without questioning. 



B- Relationship between the images and arguing (Otero, Moreira and Greca, 2002): B1- 

Use of the image: Ornamental, images used with a decorative aim, not related to the content; and 

Argument, used as source of information, knowledge can be derivative. B2- Type of image: 

Mathematical representations, use mathematical systems of representation; and Non-mathematical 

representations, images not related with mathematical content. B3- Grammatical style of the 

images: Conceptual, represent relations and fixed characteristics between the represented elements; 

and Narrative, identify actions between objects that can represent a relation between them in the 

image. B4- Relationship with the “real world”: Naturalist, images referring to the empirical world, 

detailed and complex; and Abstract, not referring to the world that we experience. 

C- Characteristics of the textbooks: C1-Date of publishing: Period 1, 1940 thru 1973, 

Period 2 1974 thru 1994 and Period 3, after the reform, until the year 2007. C2- Educational level: 

refers to the educational level the textbooks. Level 1, students between 12 and 14 years old; Level 2, 

students between 15 to 17 years old; and Level 3, older than 18 years old. C3- Mathematical 

traditions (Klimovsky & Boido, 2005): Computational, emphasis in the resolution of problems and 

calculation with numbers; Axiomatic, present the mathematics demonstrations steps; and 

Structuralist: books that search of regularities that meet the same conditions. 

Using this categorization, a qualitative description is made, which originated a first analysis. Then, 

the categorization is transformed in a group of nominal variables and modalities using Exploratory 

Data Analysis (Lebart, Morineau, 2000). A Factorial Analysis of Multiple Correspondences allowed 

the selection of one possible classification in three classes. In addition, a test of randomness to 

analyse the reliability of the sample was performed using the statistical software SPAD. 

The analysis explains changes in the images and arguing, given by: books that propose questions, or 

only definitions and examples, by the way to conceive and validate to mathematical knowledge, and 

mainly by the changes in the images and the relation between images and knowledge. The goal of 

most books seems to be informative. This explains the absence of questioning and discussing about 

several points of view, and the low level of arguing and conflict found within them. 
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To investigate, understand and explain the relationship between teachers and curriculum resources, 

in our context a textbook, Remillard (2009) derived a model of the teacher-curriculum relationship, 

from earlier Brown’s (2009) Design for Capacity Enactment Framework. The center of the model 

represents the participatory teacher–curriculum relationship designating what the teacher and the 

curriculum bring to the teacher-curriculum interactions. In this model, teacher resources include 

concepts of pedagogical design capacity, human and social capital, and agency and status. 

Curriculum resources include several components: mathematical topics and tasks that are structured 

in deliberate ways, embedded supports for the teacher to guide pedagogical decision-making and 

presence of a pedagogical orientation or emphasis embedded in instructional strategies and lesson 

structures. In domain of teacher resources, an interesting and important characteristic is the 

pedagogical design capacity (PDC). PDC describes the capacity of teachers to perceive and 

mobilize existing resources to create productive instructional episodes (Brown 2009), which to 

some extent, depends on the used resource and on the ways of working with that resource (Gueudet, 

Pepin & Trouche, 2013).  

In this study, we wanted to examine the relationship between the mathematics teacher and the 

textbook in the classroom. Therefore, we formed the following research questions: What 

characterizes the nature of the teacher–textbook relationship and why? What is the level of the 

teacher’s pedagogical design capacity? 

Remillard (2009) suggested that individual PDC can be measured by examining dimensions of 

human and social capital, therefore in this study, two measures are used to examine the teacher’s 

level of PDC; the one proposed by Remillard (2009) and the one the one described by Leshota 

(2015). Leshota (2015) proposed that one possible way for measuring teacher's PDC is examining 

whether teachers make injections of mathematical content into the lesson, omissions of 

mathematical content from the textbook and mathematical errors. Using those criteria one could 

determine whether teacher has low or high PDC.  

We observed four lessons in Mrs. D’s classroom and conducted an interview with the teacher. In 

terms of textbook content, Mrs. D offloaded, adapted and improvised in the lessons, but not to the 

same extent in every lesson. Those types of textbook mobilization were dynamically interchanging 

within a lesson. Mrs D. made several injections of content that are not in the curricular outlines or in 

the textbook for this grade level. She had no critical omissions in the lessons.  

It seems that the teacher regards the textbook as a vital resource for the students’ learning, but not 

crucial for her teaching. The established relationship between the teacher and the textbook could be 

regarded as a two way process in which both participants communicate. The outcome of that 

process is a product that fits the students’ needs and the teacher’s goals. The teacher positioned 

herself as having instructional authority in the classroom, regardless of what her colleagues in the 

school do or think. Recognizing the textbook’s affordances and constraints allowed her to place 



herself as an authority over the textbook. Mrs D. showed a high level of PDC in her teaching. She 

omitted content from the textbook, like activities or worked examples which were not crucial for 

learning mathematics. She injected content that is not usually introduced until the following grade 

because it was applicable to the topic being taught.  

From our perspective, the term PDC seems to be more efficient when examining teaching expertise 

than Shulman's pedagogical content knowledge (PCK). In a way, PDC has more dynamic nature 

than PCK. Therefore, from the perspective of the textbook utilization, teachers’ development of 

PDC is an important and critical part of their interactions with the textbook. Our study showed that 

interplay between curricular knowledge, professional development, mathematical knowledge, 

knowledge of the textbook’s characteristics are important aspects in ability to craft pedagogical 

beneficial lessons. More studies on teachers’ PDC would be beneficial for new and inexperienced 

teachers. 
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Inclusion is based on international legitimate developments like the Salamanca statement, which 

emphasizes the right of education for all (UNESCO, 1994). Furthermore, several studies showed that 

coeducation can have a positive effect on the development of performance of pupils with and without 

special educational needs (Markussen, 2004). But to include all students regardless of their physical, 

intellectual, social or other abilities the educational framework conditions need to be adopted at first. 

One important step into this direction consists in providing all pupils access to the assignments by 

enhancing their readability.  

Theoretical background 

Readability can be enhanced by linguistic simplifications like the application of the easy-to-read 

guidelines (Netzwerk Leichte Sprache, 2006). Easy-to-read language has been established to facilitate 

understanding in everyday life for people with disabilities. It is, for example, used for the 

simplification of manifestos in order to support participation in society. So far, these guidelines are 

not verified scientifically, but show several similarities to empirically based linguistic simplification 

rules, like the Hamburger Modell (Langer, Schulz von Thun, & Tausch, 2011). The authors state, 

among others, that only one statement should be made per sentence. Another possibility to facilitate 

the comprehension of assignments is the use of symbols. A symbol can be defined as a graphical 

image conveying a single idea or concept (Detheridge & Detheridge, 2002). Little empirical data 

about the use of symbols to foster the readability of texts exists (Jones, Long & Finley, 2007; Poncelas 

& Murphy, 2007). Nevertheless, a positive influence can be assumed, e.g. because of the multimedia 

principle (Mayer, 2009). It indicates that people learn better from words and pictures than from words 

alone. An explanation is given by the cognitive theory of multimedia learning (ibid.) which assumes 

that pictorial and verbal information are processed in two different channels in our brain. When words 

and pictures are presented, both channels are used and the cognitive load on the limited capacity of 

the working memory is reduced.  

Methodology 

Does the use of easy-to-read language and/or enriching text with symbols facilitate students’ 

performance in mathematical tasks? This research question shall be answered with the following 

methodology. The tasks of this study deal with introducing fractions. These are taught in activity-

oriented manner with hands-on material. The tasks are divided into two complexes. The first complex 

aims at the conduction of more basic actions like counting. Then, the pupils receive an input about 

fractions by watching a video. The pupils use the information of the video for more complex 

mathematical considerations which are necessary in the second task complex. Thus, the pupils’ 

conceptualization of fractions is fostered, e.g. by the naming and comparison of fractions. In 

November and December 2016, a pre-study was conducted with 30 students in grade 5, 6 and 7. The 

sample consisted of pupils with learning difficulties and students without special educational needs. 

The students worked on the tasks individually and participated in a subsequent interview. Data was 



also collected by use of eye tracking and thinking aloud. A first result of the pre-study is that the 

symbols are used by the students without explanation. This result can be exemplified by the following 

excerpt of the interview and the corresponding eye-tracking data. The different colors of the heatmap 

represent different durations of the fixations: 

Student: The little pictures helped me, because I 

could see how it works. Because sometimes I 

didn’t understand the text and then I watched the 

pictures and they helped me.  

Figure 1: Primary data insights 

Deeper qualitative analyses, which focus on how the symbols are used by the students as well as on 

the linguistic comprehensibility of the tasks, will follow. For the main study a posttest-only design, 

which includes two experimental as well as one control group, is planned. While experimental group 

1 receives a linguistically and pictorially simplified version of the tasks, experimental group 2 works 

with a variation which is linguistically simplified only. The control group receives a not simplified 

version. After working with the exercises, the students’ knowledge about fractions will be measured. 

The participants’ reading ability and their IQ will be elevated beforehand. These control variables 

shall help to build comparable groups.  
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Background to the study 

It is a requirement that all schools in Ireland administer standardized attainment tests in 

mathematics when children are in 2nd Class (aged 7 – 8). On the basis of these results, children who 

are deemed to have underperformed nationally (Standard Score <90), are usually offered additional 

support by means of withdrawal from their mainstream classroom for mathematics lessons to work 

on a complementary program with the learning support teacher. Although it is argued that such 

provision is offered to less able children as they tend to simply ‘give up’ in classrooms in which 

they find the mathematical tasks too challenging, the concern is that that these children will fall 

further and further behind. It is the contention of the authors, that it is not the tasks per se that are 

too challenging for the children but rather the nature of the tasks, which all too often tend to 

emphasize traditional practices of rote procedure and drill. 

In this study, the researcher, who was working as the learning support teacher, and the class teacher 

planned together to integrate children back into their classroom by co-designing mathematically rich 

tasks. Over a four week period, three children who had formerly been withdrawn from the 

classroom were put to the fore in the planning of the tasks. Particular consideration was given to 

their learning styles. The mathematical tasks were inspired by the three key principles of the 

educational framework, Universal Design for Learning (UDL), which constitute Multiple Means of 

Representation; Multiple Means of Action and Expression; and Multiple Means of Engagement 

(Rose & Meyer, 2000).  The term ‘universal’ is particularly pertinent in the design of the tasks as 

they were developed in line with specific mathematical learning goals for ‘all’ learners from the 

beginning rather than implementing a standard ‘one size fits all’ set of tasks and differentiating the 

tasks to cater for the marginalized, less able children, at a later stage.  

Therefore, in order to create learning tasks that will engage all children by design, this research 

sought to ascertain: 

1. How can the principles of UDL be used to design mathematically rich tasks? 

2. Do UDL informed tasks engage and support children of low-ability in mathematics? 

Methodology 

This case study took place over four weeks with one class of 32 children for 45 minutes per day. 

The children were aged between eight and nine years old.   



It was a detailed body of work comprising collaborative universal lesson design on the topic of 

‘Measurement’, implementation of lessons, critical analysis of tasks and peer review. Each lesson 

was assessed using an adapted scoring rubric developed by Spooner, Baker, Harris, Ahlgrim-Delzell 

and Browder (2007). Frequencies of different events were tabulated. Formal observational 

instruments were developed to recognize and discern certain types of behaviors such as children’s 

degrees of engagement. Observations were supplemented by photographs. Teachers’ daily 

reflections were analyzed using the analytic technique of pattern matching. A matrix of categories 

was developed and evidence placed within each classification. Information was put in chronological 

order. A follow up interview was held with the host teacher at the end of the intervention.  

Results 

The 14 lessons scored 82 points out of a maximum of 84 points on the adapted scoring rubric 

(Spooner et al., 2007) implying that a very high level of the UDL approach was used in the task 

design and implementation. Diversity was the starting point in planning the tasks, with lower ability 

children being accommodated within and enriching the regular class. The development of positive 

learning profiles for the three target children, such as, ‘needs assigned role during group tasks’, or, 

‘needs to have basic equipment available such as a pencil and a ruler prior to task allocation’, 

helped to remove barriers to and enable participation in learning. UDL tasks offered the children 

various ways of acquiring information and knowledge; provided alternatives for demonstrating what 

they knew; tapped into children’s interests, gave appropriate challenges, and increased motivation. 

Multiple means of representation, action and expression, and engagement were used in task design. 

Video clips were used on five occasions, concrete materials on eight occasions, ICT (PowerPoints, 

images, interactive stylus and interactive tools) were used during eight lessons, a parallel ICT 

mathematics program was set as homework for the children on each of the 14 days and the local 

environment was used on seven occasions. ICT was also found to be a key component that engaged 

children who were previously observed to be challenged by mathematics.   

Discussion and conclusion 

This research revealed that tasks which take into consideration UDL instructional goals, 

assessments, methods and materials are usable and accessible from the outset rather than having to 

retrofit the tasks to children’s needs as an afterthought. Crucially, results from this study found that 

by intentionally creating flexible learning opportunities, less able children were engaged and 

understood difficult mathematical ideas when they were provided with UDL informed tasks. 
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In this introduction, we briefly present selected theoretical constructs relevant for the Thematic 

Working Group 23 (TWG23). We first address the topic of “implementation research” by looking 

into other research fields and domains where this topic is well-developed. Drawing on a taxonomy 

of so-called “implementation science” in health-care, we attempt to categorize the papers and 

posters of TWG23 according to their “implementation research aim” (Nilsen, 2015). Using this 

taxonomy, we elaborate on future perspectives for the TWG by relating to ongoing discussions in 

mathematics education research. 
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A need for creating a new CERME Thematic Working Group 

With almost five decades of accumulated knowledge, research findings, theoretical frameworks and 

experiences, the field of mathematics education research now has quite a bit to offer to the ongoing 

teaching and learning of mathematics in primary, secondary and tertiary education. Regardless of 

the well-known long and winding “journey” that research results must travel before finding an 

actual foothold within practice, results from mathematics education research nowadays seem to be 

present to a much larger extent in practice than ever before – not to say that there is anything strange 

in this, but rather it is probably only natural given that the field has matured and become 

successively more and more established over the years. 

Indeed, as researchers in mathematics education, we are frequently involved in putting previous 

empirical results and findings as well as theoretical constructs based on these to good use in 

mathematics classrooms, mathematics programs, mathematics teacher education, in-service teacher 

training, etc. In several countries there are ongoing developmental projects that rely heavily on 

previously documented research results. However, as researchers we often find ourselves in a 

peculiar situation when wanting to report on these activities, since such accounts do not necessarily 

fall under the usual paradigm of “research in mathematics education” and do not in a clear-cut 

manner qualify as either “empirical” or “theoretical research”. To assist in closing this “gap” the 

purpose of creating a new thematic working group focusing on aspects and issues related to the 

implementation of research results and findings, is to provide a venue for discussing, collecting and 

advance the “implementation research” aspects of our activities. 



Implementation research and its aims 

In relation to research on actual implementations, mathematics education may profit from other 

disciplines or areas, where research on implementations is further ahead. Healthcare is one such 

area, where since 2006 an entire journal has been devoted to “implementation science” (the name of 

the journal as well). Although the journal of course publishes several empirical studies related to 

various aspects of implementations, it occasionally also offers theoretical studies focusing on 

“implementation research” itself. One such theoretical contribution is the study by Nilsen (2015), 

who proposes a taxonomy consisting of five categories of theoretical approaches in order to make 

“sense of implementation theories, models and frameworks” (p. 1). Nilsen describes implementation 

science as “the scientific study of methods to promote the systematic uptake of research findings 

and other EBPs [evidence-based practices] into routine practice to improve the quality and 

effectiveness” (p. 2). Although Nilsen focuses on the case of health care, the definition seems 

adaptable and applicable also to the field of teaching and learning of mathematics. As part of the 

background for the taxonomy, Nilsen states that “Implementation science has progressed towards 

increased use of theoretical approaches to provide better understanding and explanation of how and 

why implementation succeeds or fails” (p. 1). According to Nilsen, the theoretical approaches used 

in implementation science have three overarching aims: 

1. describing and/or guiding the process of translating research into practice (process models);  

2. understanding and/or explaining what influences implementation outcomes (determinant 

frameworks, classic theories, implementation theories); and  

3. evaluating implementation (evaluation frameworks). 

The five categories of theoretical approaches consist of those provided in parentheses following the 

aims above. For aim 1, process models serve the purpose of breaking down the translation process 

into smaller steps, stages or phases. For aim 3, evaluation frameworks serve the purpose of assisting 

in evaluating the success – or lack thereof – of a given implementation. More interestingly, perhaps, 

are the theoretical approaches associated with aim 2. Determinant frameworks specify types of 

determinants that act as barriers and enablers that influence implementation outcomes, or even 

specify relationships between types of determinants. Classic theories are defined as those 

originating from fields external to implementation science, e.g. psychology, sociology or 

organizational theory that can be applied to understand or explain aspects of implementation. 

Finally, implementation theories are defined as those which have been developed from scratch 

within the field of implementation science. 

Implementation research aims of the papers and posters in TWG23 

TWG23 received 16 papers prior to the congress. At the congress 14 papers and 1 poster were 

presented. In the light of Nilsen’s three aims of implementation research (or science), most of the 

studies presented in TWG23 at CERME 10 in Dublin concerned aim 1, addressing aspects of how 

to adapt research results and findings to practices in schools or other learning situations. A few of 

the presented studies touch upon aim 3, i.e. evaluation frameworks. Although it is seldom the main 

focus of the studies presented, aspects related to aim 2 occasionally surface. We shall return to 



potential reasons for this distribution, but first we will use Nilsen’s framework to categorize and 

briefly discuss the papers and posters in TWG23 presented at CERME 10. 

In line with Nilsen’s aim 1 to guide the process of translating research into practice, Ärlebäck 

describes and discusses the framing of, and experiences from, a project that combines research, 

practice, and teachers’ professional development based on the tenets of the “Models and Modeling 

Perspective” on teaching and learning. Besides providing a general description of the 

methodological considerations in the project design, the paper describes how the accumulated 

results and experiences in the research literature on so-called model eliciting activities are used to 

inform the design, implementation and evaluation of activities aiming at introducing functions to 

grade 8 students. The focus of the paper is on the implementation, and aims to show how the teacher 

in question realized the offered perspective and tools in practice. The work presented by Aguilar, 

Castañeda and González-Polo aligns with aim 1 as it illustrates how research results generated in 

the field of mathematics education can be implemented in the design of mathematics textbook tasks. 

In particular, it is shown how research findings related to representation registers and to the 

conceptualization of the concept of function as a process are used in the design of textbook tasks for 

upper secondary level. The poster by Chandia and Montes matches with aim 1, since they report a 

professional development strategy for teachers focused on improving students’ and teachers’ 

problem solving skills. The professional development strategy by Chandia and Montes incorporates 

research results related to the creation of professional development systems in mathematics. Bulien 

presents theoretical and methodological arguments for the design and implementation of a research 

based course for pre-service teachers aimed at clarifying and strengthen the connection between 

didactical and mathematical theories to in-school teaching activities. Drawing on a design 

experiment methodology and the theory of communities of practice, Bulien elaborates on a 

“Mathematics Didactics Planning Tool” for teaching in different classroom situations. Thus, this 

study also relates more closely to Nilsen’s aim 1. Jankvist and Niss deal with the research-based 

design and implementation aspects of a so-called “detection test” in relation to upper secondary 

school students’ difficulties with mathematical conventions, concepts and concept formation, in 

particular those related to equation solving. In a similar manner, Ahl addresses the design of a 

detection test related to students’ difficulties with proportional reasoning. Hence, both these studies 

deal with Nilsen’s first aim, that is, translating carefully selected research results from mathematics 

education into suitable test items. Based on the answers of 405 Year 1 upper secondary school 

students, Jankvist and Niss also address aspects of evaluation (aim 3). Another research report that 

corresponds to aim 1 is the one by Kjeldsen and Blomhøj. In their work, research findings on 

students’ concept formation and the digital tutorial genre are brought to use in the teaching of a first 

year calculus course. They present and discuss a theory-based design and its implementation for 

students’ productions of video tutorials aimed at supporting their understanding of the limit concept. 

It could be said that this work is also related to the aim 3 delineated by Nilsen, since the study 

examines whether the designed learning environment supports the students’ formation of key 

concepts in calculus or not. 

The paper by Valenta and Wæge touches on both aim 1 and aim 2 of Nilsen’s taxonomy. The 

paper describes a course aimed at supporting in-service teachers’ learning of ambitious mathematics 

teaching. The design of the course is based on a project called “Learning in, from, and for Teaching 

Practice Teacher Education Project” (aim 1). In addition, the particular question addressed in the 



paper is coupled to aim 2, since it focuses on the learning potential in the interactions between in-

service teachers and course instructors during the public rehearsals that are the key innovative 

feature of the designed course and manifested through cycles of enactment and investigation. The 

theoretical paper by Nilsson, Ryve and Larsson align with Nilsen’s second aim (understanding 

and/or explaining what influences implementation outcomes). They draw upon a systematic 

literature review on productive classroom practice to construct a framework for categorizing 

theories aiming at supporting teachers’ actions in mathematical classroom practices. They do so by 

relating to theories and literature on educational policy research, professional development research 

and implementation research. Related to a larger scale early intervention program, Lindenskov and 

Kirsted touch upon aspects of Nilsen’s aim 2. More precisely, they discuss teachers’ perception of 

“theory” and barriers these may lead to, when implementing research results in practice. In addition, 

they also address aspects of the translation of theoretical constructs to the teachers as well as the 

suitability of these constructs provided a given context of practice. The study reported by Tamborg, 

Allsopp, Fougt and Misfeldt clearly falls with Nilsen’s category of studies related to developing 

determinant frameworks (aim 2), since it investigates the of role the local supervisor (enabler) in the 

implementation of a mathematics teacher training program. 

Amit and Portnov-Neeman’s work can be related to the aims 1 and 3 proposed by Nilsen. They 

report on the implementation of a methodology used to teach reading and mathematics called 

“Explicit Teaching Method” focused on teaching students the “working backwards strategy” for 

solving non-routine mathematical problems; on the other hand, the effect of using the explicit 

teaching method as a means to learn the working backwards strategy is evaluated. Koichu and 

Keller position their paper as so-called design-based implementation research (DBIR) (see later). 

They present an evaluation framework (aim 3) to analyze and theorize their attempts in creating and 

sustaining online exploratory problem-solving discussion forums using the conceptual tools 

provided by Rogers’ “Theory of Diffusion of Innovation”. Ejersbo and Misfeldt report on a 

design-based research (DBR) project related to developing numeracy in grades K-3. This study too 

focuses specifically on evaluation aspects (aim 3), not least in terms of improving the design being 

implemented as well as the future of the project at the local school. Kuzle’s work somehow touches 

all three aims outlined by Nilsen. She reports on a collaborative project between educational 

researchers and practitioners with the goal of developing a problem-solving curriculum for grade 6 

students using DBR. The curriculum was developed and implemented based on problem solving 

research and theory, and through the evaluation of its implementation objective and subjective 

factors that inhibited the full-implementation of the curriculum were identified. 

Implementation of research findings in mathematics education 

As seen above, a few aspects of aim 2 were touched upon in the papers and posters of TWG23, and 

some papers also considered aim 3. Still, aim 1 appears to be the dominant one among the reported 

studies. This, however, is not so strange since actual “implementation research” within the field of 

mathematics education must be regarded as a relatively new trend. This is of course due to the field 

of mathematics education itself not being much older than fifty years, but at the same time it is 

mature enough to have produced a sound basis of research results to actually be implemented into 

the practice of teaching and learning mathematics. Engaged in such implementation-oriented 

endeavors, researchers in mathematics education work systematically at different levels to establish 



evidence-based solutions to the problems and challenges faced by practitioners and learners. 

Whether the research carried out is empirical or theoretical in nature, implementation of research 

findings and results is at the core of the research activities, either in the form of evaluating and 

furthering actual practices or materials etc., or to deepen our theoretical understanding to facilitate, 

guide and support various future implementations. Hence, and as already illustrated by the papers of 

TWG23, implementation of research findings and results in mathematics education can take many 

forms and expressions. Further examples from the literature are: in the design of experiments (e.g. 

Cobb, Confrey, diSessa, Lehrer & Schauble, 2003) and mathematical tasks (e.g. Margolinas, 2013); 

as tools for professional development of in-service and pre-service mathematics teachers (e.g. 

Tsamir, 2008; Sánchez, 2011). The research findings and results that are implemented as part of 

systematic research are typically empirical results, theoretical results in terms of frameworks of 

different kinds, or some mixture of the two. Still, such findings and results usually fall within 

Nilsen’s first and third aims, whereas results directly concerning aim 2 are scarcely touched upon. 

As seen from the presented research studies of TWG23, implementation of research findings may 

have connections with research areas already existing in the field of mathematics education. One 

such example, although not reported in TWG23 at CERME 10, is that of lesson study. In the lesson 

study approach, lessons are designed and analyzed as a means to improve mathematics teaching in 

the classroom, but also as a means for professional development of mathematics teachers. Another 

existing research area, represented in TWG23, is that of task design. Hence, from the presented 

papers, it is clear that “implementation research” encompasses different kinds and formats 

(textbooks, apps, software, etc.) of didactical designs and products, stretching from task design, over 

teaching modules, courses, to entire programs – on all educational levels. Yet an example is that of 

design-based research (DBR), where results might take the form of a teaching module that 

successively and iteratively have been envisioned, designed, applied, analyzed and redesigned. The 

result is the final design as well as measures of how successful the design has proven to be. 

However, to focus on the implementation aspect of DBR means to not only focus on the end 

product and its success in achieving what was set out to do, but also to seriously take into account 

the “design phase” of the design research cycle. That is, the phase where the researcher identifies a 

learning problem and then uses available research results to design a (preliminary) product or tool 

that can help students in overcoming this learning problem. A primary concern then becomes to 

focus precisely on the way research knowledge is applied to generate some type of educational 

product. Elements of these concerns are addressed by Fishman and colleagues (2013), who forefront 

the implementation aspects of DBR in a research approach they call design-based implementation 

research (DBIR) – a framework also used in a few of the papers presented in TWG23. In short, 

DBIR has:  

“(1) a focus on persistent problems of practice from multiple stakeholders’ perspectives; (2) a 

commitment to iterative, collaborative design; (3) a concern with developing theory and 

knowledge related to both classroom learning and implementation through systematic inquiry; 

and (4) a concern with developing capacity for sustaining change in systems.” (Fishman and 

colleagues, 2013, pp. 136-137) 

More generally, an important aspect when implementing research findings and results into practice 

is to focus on what Burton (2005) has called the methodology of the research conducted. Burton 



argues that researchers in mathematics education in general pay little or no attention to explaining 

and motivating the rationale for the actual research design they apply to be able to draw the 

conclusions they report when writing up their research. This “craft knowledge” of the researcher is 

in a way silent. In Burton’s opinion, accounts of research is full of descriptions of how results were 

obtained (i.e. what the explicit methods applied were), whereas elaborations on why choices were 

made and decisions taken in order to arrive at conclusions are rarely found. The how-question 

concerns the methods used by the researcher to undertake his or her research, while the why-

question focuses on the rationale for the research design, i.e. the methodology. That more emphasis 

should be put explicitly on the methodology has also been put forward by for example Wellington 

(2000), who describes methodology as “the activity or business of choosing, reflecting upon, 

evaluating and justifying the methods you use” (p. 22). He further argues that it is necessary to 

know the methodology of a piece of research to be able to impartially judge and assess it. TWG23 

provides a venue and forum for researchers to discuss how to best put research results to use in 

practice alongside the accompanying rationale for why. In this sense, TWG23 has as one of its 

primary foci methodologies for initiating and institutionalizing research-based implementation 

designs. Over time, the activities of such a group could also make us wiser on the actual usefulness 

of our various research results, constructs, and frameworks. 

Perspectives for the TWG at future CERMEs 

Although the main focus of TWG23 seems currently to be on Nilsen’s first aim, and to some extent 

the third aim, in time the TWG may potentially contribute much more to the second aim: in 

identifying determinants across various countries; in identifying relevant classical theories external 

to mathematics education, which may help to understand or explain implementations; and last but 

not least in developing homegrown implementation theories of mathematics education. This was 

also reflected in the evaluation of the TWG, where the question was asked: What shall be TWG23’s 

contribution of knowledge to the field of mathematics education? The participants of the TWG 

collectively phrased the following “vision” for the group: 

 “We want to explore a wide variety of ‘good examples’ of implementing research findings and 

results (back) into practice in order to improve the teaching and learning of mathematics at all 

educational levels on a research-based foundation. Over time we may begin to look into the 

aspects of research on implementations, potential requirements for these to function, etc.” 

Hence, for the future of TWG23, it may be envisioned that the TWG could come to consist of a core 

of researchers interested in these aspects (Nilsen’s second aim). But at the same time, a group like 

TWG23 is also a place for mathematics education researchers to go when wanting to report and 

discuss on any “intermediate” activities of either designing new research projects or developmental 

work, before the activities may result in more traditional research to be reported in other TWGs. In 

this sense, TWG23 also provides a forum for mathematics educators at CERME to “come and go” 

from one congress to another.  

To put it a bit boldly, it is our hope that this TWG can assist in filling the “gap” of where to report 

on implementation activities in our research community, while at the same time act as a “bridge” 

between research and practice. 
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The aim of this paper is to illustrate how the research results generated in the field of mathematics 

education could be implemented in the design of mathematics textbooks tasks. First we present 

research findings related to the concept of function, particularly findings related to representation 

registers and to the conceptualization of function as a process. Next we illustrate with examples 

obtained from a high school textbook, how these research findings can be implemented in the 

design of mathematical tasks. We close the manuscript with a reflection on the implications for 

research that this kind of implementation may have. 

Keywords: Textbook development, functions, task design, implementation of research findings. 

Introduction 

As noted in the call for papers for the Thematic Working Group 23, implementation research can 

encompass a wide range of different kinds of didactical designs on a broad range of formats. In this 

work we focus on the use of research findings in the design of mathematics textbooks. More 

particularly, we will address research findings related to the learning of the mathematical concept of 

function and its implementation in the design of tasks included in a mathematics textbook for upper 

secondary level. 

Textbooks play an important role in the teaching and learning of mathematics. For example, 

textbooks can affect teaching strategies by conveying pedagogical messages to mathematics teachers 

(Fan & Kaeley, 2000); also, mathematics textbooks can contribute to the creation and strengthening 

of students’ misconceptions (Kajander & Lovric, 2009), and even the content selection and 

presentation of materials in a textbook appear to influence learners’ participation and success in 

mathematics (Macintyre & Hamilton, 2010). Due to the huge influence that textbooks can exert in 

the dynamics of the mathematics classroom, over time there has been a growing interest in 

developing new and high-quality textbooks, however as pointed out by Li, Zhang & Ma (2014), 

“there are a very limited number of studies available that examine and discuss textbook design and 

the process of textbook development” (p. 306). Even more rare are the studies considering the 

implementation of research results in the design and development of mathematics textbooks, which 

it is the main focus of this manuscript.  

The aim of this paper is to illustrate how research results produced in the field of mathematics 

education can be implemented in the design and development of tasks for mathematics textbooks. 

To achieve this we identify some research findings related to the concept of function and illustrate 

how they were used in the development of tasks for a high school mathematics textbook that is 

currently in use in the Mexican education system. 



On the concept of function and research findings associated with it 

We have focused our attention on the concept of function because it is a fundamental concept in the 

mathematical knowledge and as such plays a major role in mathematics textbooks (Mesa, 2000), 

particularly in those of middle and upper level. Because of its status and importance in the corpus of 

mathematical knowledge, educational research around this concept has been developed for several 

years and its results could be useful in the process of designing textbooks. In the next section we 

mention some research findings associated with this concept that we ourselves have implemented in 

the design of mathematical tasks included in upper secondary level Mexican textbooks. 

What do we mean by «research findings»? 

The products or results generated by research in mathematics education can be varied and fluctuate 

in a range that goes from tangible products (such as textbooks, educational activities, software) to 

more abstract products (such as constructs and theories). When we use the term «research findings» 

in this work we refer to information that has been obtained or discovered through empirical research 

and that can be expressed through observations, identification of obstacles and students’ modes of 

thinking, didactical suggestions, etc.  

We argue that this type of information may be applicable in designing mathematical tasks included 

in textbooks. Next we present some examples of research findings connected to the learning of the 

concept of function, whose implementation will be illustrated below. 

What research says about the learning of the concept of function? 

Different representations of the concept should be encouraged. Some students’ difficulties 

connected with the concept of function can be attributed to the procedural emphasis with witch this 

concept is taught, and also to the lack of variety in the representation contexts in which this concept 

illustrated and manipulated. 

Research has shown that many students possess prototypical visions of the concept of function. For 

instance, they tend to assume that functions are linear or quadratic in cases where this assumption is 

unwarranted, so for example they tend to think that “u-shaped” graphs are parabolas (Schwarz & 

Hershkowitz, 1999); Carlson & Oehrtman (2005) suggest that this difficulty may be related to the 

fact that many teachers introduce the concept of function through prototypical examples, which 

often are linear or quadratic. Thus, they suggest that the concept of function instruction should 

include more opportunities to experience different types of functions emphasizing different contexts 

of representation. 

This is in line with the observations of Duval (2000). He claims that the conceptual understanding 

of a mathematical object becomes more robust when there is coordination between representation 

registers. Each register highlights certain characteristics and properties of the mathematical object, 

and the interaction between these registers allows for a broader conceptual understanding, so it is 

important to promote tasks that favor the transit between such representation registers, particularly 

the transit in directions that are not usually addressed in school, such as transit from the graphical 

register towards the algebraic one.  

A dynamic vision of function as a process should be promoted. A common practice in the teaching 

of mathematics is to represent functions as static objects, however it has been suggested that 



students must possess dynamic interpretations of this concept in order to favor a conceptualization 

of function as a process (Carlson, Oehrtman & Engelke, 2010). For instance, Figure 1 represents the 

area under a curve defined by a function f (x), and it does not promote a dynamic conceptualization 

of the area function; to achieve such dynamic conceptualization the student should imagine that 

point b moves and in doing so the shaded area S increase or decrease its size.  

 

Figure 1: «Static» representation of an area under a curve 

This type of static conceptualizations is closely related to an action view of functions (Dubinsky & 

Harel, 1992): 

An action conception of function would involve the ability to plug numbers into an algebraic 

expression and calculate. It is a static conception in that the subject will tend to think about it one 

step at a time (e.g., one evaluation of an expression). (p. 85) 

However, an action view of functions may result in an impoverished conceptualization of the 

concept; for instance, students with an action view often think of a function graph as being only a 

curve, a fixed object in the plane, they do not think the graph as defining a general rule where a set 

of input values are mapped to a set of output values (Carlson & Oehrtman, 2005). It is desirable to 

move students from an action view of functions to a process view of functions:  

A process conception of function involves a dynamic transformation of quantities according to 

some repeatable means that, given the same original quantity, will always produce the same 

transformed quantity. The subject is able to think about the transformation as a complete activity 

beginning with objects of some kind, doing something to these objects, and obtaining new 

objects as a result of what was done. (Dubinsky & Harel, 1992, p. 85) 

Is difficult to achieve this transition from static to a dynamic view of functions, however it has been 

suggested that technological tools can help in this transition. For example Borba & Confrey (1996) 

have suggested an approach to the study of functions based on visualization and the use of software; 

the approach focuses on the relationship between graphs and tabular values, and on the relationship 

between graphs and algebraic representations. For instance students could be asked to use the 

software to graph and explore how the coefficients of a quadratic function relate to translations, 

stretches and reflections of its graph. 



Examples of implementation of research findings in the design of mathematics 

textbooks tasks 

As we have claimed before, we believe that research findings as those previously presented can be 

implemented in the design of tasks for mathematics textbooks. We are aware that there may be 

different types of «implementation of research findings»; although it is not our intention to discuss 

such distinction here, we do want to clarify that in this work the «implementation of research 

findings» is interpreted as taking results or suggestions produced through research, and to use them 

as a source of inspiration for the design of mathematical tasks. To illustrate this point, next we 

present examples of tasks that were designed taking into consideration the research findings 

previously discussed. These tasks are included in the text González-Polo & Castañeda (2014), 

which was developed by the second and the third authors of this article. This is a textbook for high 

school level that is currently in use in the Mexican educational system; high school in Mexico 

traditionally consists of three years of education divided into six semesters, and this book is used in 

the fourth semester. Its print run for 2015 was 10,000 copies. The tasks proposed in the textbook are 

unpublished, but some of them have been inspired by tasks used as tools in the development of 

research in mathematics education. 

Tasks to study functions in different representation registers 

As mentioned before, research suggests that the concept of function should be studied and 

manipulated in different representation registers, but also should be promoted the transit between 

such representation registers, especially in directions that are not habitually addressed in school.  

To implement this research-based suggestion, we have designed activities that require the student to 

transit from a graphical representation register to an algebraic register, when the usual is to ask 

students to start from an algebraic expression to generate a table of values, and from this table trace 

the graph of the function. Figure 2 shows an example of this kind of task. 

 

Figure 2: Task that requires the student to transit from a graphical register to an algebraic register 

The English translation of the task instruction is as follows: «The graph in figure 1.66 belongs to a 

first degree polynomial function. Determine the new function obtained by rotating the graph 90º to 

the right leaving the coordinate (0, 0) as a fixed point». In this task the student must start working 

on a graphical register—rotating the graph 90º clockwise—and then determine the algebraic 

expression that defines the new function, which in this case would be f (x) = – x. 



Another example is shown in Figure 3. This is an activity in which the study of the concept of 

constant function in different representation registers is promoted, although contrary to usual, the 

student is required to transit from a numerical register—a table of values—to an algebraic register. 

 

Figure 3: Task that requires the student to transit from a numerical register to an algebraic register 

The English translation of the task instruction is the following: 

«A buoy in the Pacific Ocean measures salinity (the amount of NaCl, sodium chloride). The 

measures are sent every hour via satellite to a meteorological database for analysis. Table 3.4 shows 

the information obtained during an interval of 14 hours. 

a) Locate the coordinates on the plane and trace the resulting graph 

b) Write the function that best fits the data graphed 

c) Describe verbally the trend of the graph, i.e., how the data will behave in the next few hours?» 

The interpolation requested in paragraphs b) is somewhat facilitated because the function that best 

fits the data provided is a constant function, which in this case could be the function f (x) = 35. It is 

important to note that the activity is complemented by the question: «What operation should you 

apply to vertically translate the graph of the constant function?». This question attempts to engage 

the student in a dynamic conceptualization of the constant function, that is, to be able to understand 

that the graph of a constant function f (x) = k will move vertically by adding another constant c 

obtaining thus the graph of the function f (x) = k + c. 

Tasks to promote a process view of functions 

Inspired by the approach proposed by Borba & Confrey (1996) in which functions are studied with a 

strong emphasis on the visualization of their graphs, we have included tasks where students are 

asked to explore the graphical behavior of functions using software. It is assumed that these kinds of 

activities promote a dynamic conceptualization of functions where the graph is not interpreted as a 

fixed or static entity. An example of this type of task is shown in Figure 4. 



 

 

Figure 4: Task requesting the student to use graphing software to explore the effect of parameters on 

the graph of a function 

The task takes as its starting point the function f (x) = ax and the constant k. Then the student is 

asked to use software to explore the effects that different integer values of the parameter k produces 

in the graph of the following functions: 

f1 (x) = k・ax 

f2 (x) = ak・x 

f3 (x) = ak + x 

f4 (x) = ax + k 

Discussion 

In this article we have tried to illustrate how some research findings related to the learning of the 

concept of function can be implemented in the design of tasks for mathematics textbooks. If one of 

our aims as mathematics educators is to bring products that are generated in our discipline closer to 

the school society (teachers, students, administrators, parents, etc.), then the textbooks are a 

privileged outlet for this purpose since it allows to bring research findings into the heart of formal 

mathematics instruction: the mathematics classroom. 

Our enthusiasm as authors of textbooks and as researchers in mathematics education incline us to 

think that these tasks with a research-based design can be productive and beneficial for students’ 

mathematical learning, but what evidence is there to support these enthusiast assumptions? It would 

be necessary to develop studies from different perspectives that could allow us to understand how 

the textbook mathematical tasks are enacted in the classroom, and the type of conceptions and 

perspectives that they produce on students. 



Regarding the actual design of the tasks, in her reflections on textbook design, Yerushalmy (2015) 

has suggested that the tasks appearing in textbooks—or more precisely the mathematical concepts 

involved in such tasks—can be organized around objects and operations that can mathematically 

and pedagogically support a variety of progressions and sequences. For example, in the case of 

functions, it can be considered an organizational map that clarifies the type of mathematical object 

involved in the task (like linear or quadratic functions), but also the type of operations required in 

the task such as represent, modify, transform, analyze, operate or compare), where each operation 

can take place in symbolic, graphic, or numeric representations (see figure 5). 

 

Figure 5: Example of an organizational map for the tasks included in a textbook. Taken from 

Yerushalmy (2015, p. 243) 

This type of organizational maps can make the design of tasks more transparent, that is, to render 

explicit the mathematical objects involved in the tasks as well as the operations that are performed 

on them. These maps can work as a framework that helps both textbook designers and users to 

identify gaps in the presentation of concepts, and produce a sequencing of tasks that addresses the 

largest possible number of operations and contexts of representation with the intention to provide 

students with a richer picture of the mathematical objects studied.  

Finally, it is important to note that in addition to the textbook González-Polo & Castañeda (2014), 

there is a teacher’s guide explaining in more detail the theoretical background on which the design 

of the tasks is based, as well as their purpose. This kind of guide represents a fundamental support 

to achieve a classroom implementation of mathematical tasks that is faithful to the intentions of the 

task designers.  
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Mathematics education in the Swedish prison education program is struggling with a high rate of 

students that fail to pass the basic mathematics courses. One of the main issues seems to be the 

challenge for the teachers to elicit students’ widespread prior mathematical knowledge. The 

consequence of this is that the teachers cannot meet the students’ educational needs with meaningful 

teaching activities. Focusing on the most pervasive mathematical idea in these courses, proportional 

reasoning, a test was designed that aimed to elicit students’ mathematical reasoning. This paper 

illustrates that by making use of accumulated and selected research results and findings, we can gain 

valuable information on students’ proportional reasoning competency. This information may be used 

as an access point for individualized instruction. 

Keywords: Adults, individualized instruction, proportional reasoning, prison education. 

Introduction 

In the Swedish prison education program, only two out of ten students finish and pass their 

mathematics courses1. This is disturbing in itself, but particularly so given the resources available. 

The teachers are university trained upper secondary school mathematics teachers, and the students 

sign up voluntarily and typically are highly motivated. Moreover, all courses are individually 

designed for each student, which should ensure good teaching and learning conditions. However, a 

challenge is that the student group shows significant variation in age, ethnicity, socioeconomic 

background, school background and life experience in general. For the basic mathematics, the 

mathematics in compulsory school and the first course in upper secondary school, there exists no such 

thing as one course design that suits all students' different backgrounds. In 2015 the Swedish prison 

education program in mathematics had 728 students enrolled, spread across 47 prisons, and 80% of 

these were found in the basic mathematics courses  

A plausible reason for the low pass rate in the basic courses is that the teachers fail to make proper 

use of the individualization possibilities. A prerequisite for actual individualization is that teachers 

have the opportunity to find out students' prior mathematical understanding and adapt the teaching 

accordingly. Realizing that this opportunity hinges on the teachers’ competencies, e.g., they need to 

put their didactic and pedagogical teaching competency to play (Niss & Højgaard, 2011). But 

teachers’ possibilities to individualize instruction might also depend on various forms of support. 

Inspired by Jankvist and Niss (2015), I report on a research-based effort to develop such support: a 

test for identifying beginner students’ prior mathematical understanding. The test needs to provide 

information on students prior understanding in two ways:  vertically, in relation to progression 

throughout school years, and horizontally, throughout taught topics in compulsory school. Hence, a 

major design decision was to focus the content on proportional reasoning. As will be argued below, 

proportional reasoning permeates the basic mathematics courses in a systematic way, which means 

that probing students’ competencies in this area gives a good access point for individualized teaching. 

The foundation for the test is the accumulated and selected research results and findings related to 

proportional reasoning, since proportionality may be the most important, pervasive and powerful idea 

in elementary school mathematics (Behr, Harel, Post, & Lesh, 1992; Lamon, 2007). 

Constructing such a test involves several design decisions involving the content and form of the test, 

as well as constructing, collecting and adapting test items that realize these design decisions. The 

                                                 
1
 Data from administrator Gunilla Jonsson, personal communication, July 12, 2016. 



main question elaborated on in this paper is: How can research findings inform the development of a 

test that elicits students’ prior understanding on proportional reasoning so as to provide teachers 

with an access point for designing individualized teaching?  

Theoretical underpinnings for the development of the test 

Mathematical reasoning is one of eight competencies for identifying and analyzing students’ 

mathematical understanding, described in the Danish KOM-project (Niss & Højgaard, 2011). “The 

mathematical reasoning competency consists, first, of the ability to follow and assess mathematical 

reasoning, i.e., a chain of arguments put forward – orally or in writing – in support of a claim.” 

(Jankvist & Niss, 2015,. p. 264). The kind of mathematical reasoning called proportional reasoning 

is a prerequisite for successful further studies in mathematics and science, since multiplicative 

relations underpin almost all number-related concepts studied in elementary school (Behr et al., 1992; 

Lamon, 2007). A proportion is defined as a statement of equity of two ratios a/b = c/d. Proportion can 

also be defined as a function with the isomorphic properties f(x+y) = f(x) + f(y) and f(ax) = af(x) 

(Vergnaud, 2009). A function, A(x,y), can also be linear with respect to several variables, (n-linear) 

functions. For example the area functions for a rectangle with sides x and y is bilinear (2-linear) since 

A(x,y) = xy and it is easy to check that this function is linear with respect to each of its variables 

when the other is considered constant.  

Proportionality is a key concept in mathematics and science education from elementary school to 

university (Lamon, 2007). Despite the pervasive nature of proportional reasoning throughout the 

school years it is well known that children around the world have considerable difficulty in 

developing the mathematical competency to reason about fractions, percentages, ratio, proportion, 

scaling, rates, similarity, trigonometry, and rates of change (Behr, Harel, Post, & Lesh, 1992; Lamon, 

2007). Typically, proportional reasoning problems come in the shape of a missing value problems or 

comparison problems (Lamon, 2007). In the former, a multiplicative relation is present where three 

elements are provided and the fourth is to be found. The latter asks the student to compare which ratio 

is the bigger or smaller.  

From accumulated research, some key points for the developing of proportional reasoning and the 

building of multiplicative structures can be identified (c.f. Behr, Harel, Post, & Lesh, 1992; Fernández 

et al., 2012; Lamon, 2007; Shield & Dole, 2013; Van Dooren, De Bock, Vleugels, & Verschaffel, 

2010; Vergnaud, 1983). Students need to: 

1. Be able to distinguish additive from multiplicative reasoning and recognize when a 

multiplicative relation is present;  

2. Be able to draw connections to the algebraic rules for fractions when working with part/part 

ratios, part/whole fractions and proportions, a:b = c:d;  

3. Recognize and use a range of concrete representations for proportions, e.g., tables, graphs, 

formulas and drawing pictures;  

4. Acknowledge the properties of geometrical objects in two- and three dimensions for 

calculation of scaling and similarity.  

Key point 1. Research studies and findings show that the ability to distinguish additive from 

multiplicative comparisons constitute a major stumbling block for students (Van Dooren et al., 2005). 

Students need to be able to recognize that a proportional situation exists when the comparison is 

multiplicative (Shield & Dole, 2013). In Sweden, students get acquainted with additive strategies for 

reasoning about quantities in grades 4 to 6. For example, an increase in price by 10% can be calculated 

in two steps. First, calculate how much 10% is and then add this to the original price. A transition 

from an additive to multiplicative thinking approach is introduced in grades 7 to 9. The new price can 

now be approached in one multiplicative step: the original price multiplied by the factor 1.1, to find 



the new price. Far from all students embrace this new idea of approaching percentage change. The 

additive approach works well for calculating a single increase or decrease, while they may lack 

motivation to change strategy.  

Fernández et al. (2012) found that the error of using additive strategies on proportional situations 

increased during primary school and decreased during secondary school. A desirable development in 

students’ reasoning would be that they, after being introduced to multiplicative reasoning, still hold 

on to their ability to use additive strategies when appropriate. However, research findings show that 

once students have been introduced to multiplicative strategies they tend to overuse this approach on 

everything that resembles a proportional situation (Van Dooren et al., 2005). Further, non-integer 

ratios cause more errors than integer ratios (Fernandez et al., 2012; Gläser & Riegler, 2015), while 

the non-integer situations can be considered to require a more developed understanding of rational 

numbers.  

Key point 2. Many situations require that students can relate to part/part ratios and part/whole 

fractions (Vergnaud, 1983). For example, if a company employs 11 women and 31 men, the 

part/whole fractions 11/42 and 31/42 represent the relation of women and men related to the whole. 

If asked to determine the company’s gender distribution, it is instead the part/part ratio 11:31 between 

women and men that is relevant. When a ratio connects two parts of the same whole, students may 

not adequately recognize the difference between part/part and part/whole relationships (Clark, 

Berenson, & Cavey, 2003). It is not easy for students to approach situations that require shifting from 

part/part to part/whole situations. Moreover, students need to connect mathematical ideas. Since ratios 

can be written in fraction form, they obey the same mathematical laws as fractions (Shield & Dole, 

2002).  

Key point 3. Another stumbling block for students is that they tend to apply linear proportional 

reasoning on scaling, without considering the nature of the item. Van Dooren et al. (2010) found that 

students tend to use linear proportional reasoning even when it is inappropriate e.g., in word problems 

where a real word context is required to solve the problem. For example: Farmer Gus needs 8 hours 

to fertilize a square pasture with sides of 200 meters. Approximately how much time will he need to 

fertilize a square pasture with sides of 600 meters? Recognizing this as a missing value problem i.e., 

three values given and one unknown, this problem will trigger a cross-multiplication type solution 

which gives the wrong answer of 24 hours. Since scale is one of the major themes that span 

mathematics, chemistry, physics, earth/space science and biology it is crucial for students to gain 

understanding of the concept of scale. Scale in one, two, and three dimensions is a central unifying 

concept that crosses the science domains, crucial for understanding science phenomena (Taylor & 

Jones, 2009).  

Key point 4. Proportionalities can be represented in different ways, e.g., with words, pictures, 

algebraically, with graphs or tables. Shield and Dole (2013) enhance the use of a range of 

representations to promote students’ learning. If students are given the opportunity to work with 

graphs, tables and other diagrams that illustrate the proportional situation present in the mathematical 

task, their conceptual understanding is promoted (Vergnaud, 2009). Further, their ability to see 

connections between problems that are based on the same mathematical idea is enhanced, e.g. to see 

that missing value problems on similarity, proportional functions and speed problems can be 

illustrated with different representations but approached with the same mathematical idea.  

Several concepts are in play when students reason with proportional quantities. The intertwined 

concepts required for the development of proportional reasoning makes up a conceptual field 

(Vergnaud, 2009). A conceptual field is a set of situations and concepts tied together. As the theory 

of conceptual fields show, together with other well-known theoretical frameworks for conceptual 

understanding, the meaning of a single concept does not come from one situation only (Sfard, 1991; 

Tall & Vinner, 1981; Vergnaud, 2009) but from a variety of situations demanding mathematical 

reasoning related to the concept in question. The conceptual field of intertwined concepts in play in 



proportional reasoning cover at the least “linear and n-linear functions, vector spaces, dimensional 

analysis, fraction, ratio, rate, rational number, and multiplication and division” (Vergnaud, 1983, p. 

141). It is the complexity of the concepts in play together with the pervasive nature of proportional 

reasoning from elementary school to university that makes proportional reasoning suitable for the 

design of the test. 

Design of the test on proportional reasoning 

An important design choice for the test was to use a multiple-choice design. Even though open 

response tests are a powerful method to elicit students’ understanding, the advantages of multiple-

choice tests were in this case considered to be the best option. An open response test can be a negative 

experience for students with low prior understanding, since they may be unable to supply any 

answers. Since the students often have bad experiences from school mathematics, we want to avoid 

negative experiences in the beginning of a mathematics course. A multiple-choice test, on the other 

hand, is easy to take for the students. Even when they do not have the mathematical competencies to 

reason and solve an item, they can still provide an answer by intuition or chance.  The test is designed 

to be followed up with student interviews. This is an important step since many students do not have 

Swedish as their mother tongue, which of course may cloud their interpretation of the items. Many 

of the students also have concentration difficulties, so a written test may not give a satisfactory picture 

of students’ prior understanding. 

A downside of multiple-choice is the possibility to choose the right answer by chance. For this reason, 

a two-tier design was chosen (see examples below) yielding only 0.125 probability to pick both the 

right true or false value and the right claim. A pilot version of the test, consisting of 22 items, was 

tried out in April 2016. Feedback from the participants informed me that the test was too long and 

that some of the items were difficult to interpret. After revision and further testing, the resulting test 

consists of 16 proportional reasoning items. The final version of the test takes about 20 to 40 minutes 

to complete, without any time pressure.  

The items in the test were chosen from published research papers, with the intention to draw on 

knowledge from the research field on proportional reasoning. The rationale for my choices is as 

follows: a) the items have already been proved to work well for giving information on students’ 

understanding, and b) extensive background information of the nature of the mathematical reasoning 

in play are provided as well as analyzes of students results. Referring to the key points presented in 

the theory section, the potential reasoning related to each item involves several concepts and abilities, 

yet the items can still be categorized as referring mainly to one or two of the four presented key points:  

Key point 1. Students’ ability to distinguish additive from multiplicative reasoning and recognize 

when a multiplicative relation is present, and is always required for carrying out proportional 

reasoning, however mainly tested by items 1, 5, 6, 7, 11 and 16.  

Key point 2. Students’ ability to draw connections to the algebraic rules for fractions when working 

on part/part ratios, part/whole fractions and proportions, a:b = c:d, is mainly tested by items 2, 4, 12, 

and 13. 

Key point 3. Students’ ability to recognize and use a range of concrete representations for proportions, 

e.g., tables, graphs, formulas and drawing pictures is mainly tested by items 3, 8, 9 and 15. 

Key point 4. Students’ ability to acknowledge the properties of geometrical objects in two- and three 

dimensions for calculation of scaling and similarity is mainly tested by items 8, 10, 13 and 14. 

Several errors on items referring to the same key point indicate a lack of understanding that should be 

investigated further in the following student interview. The test items are also adapted to mirror the 

progression throughout the basic course. Items 1 and 4 refer to content taught in part two of the basic 



course. Items 2, 3, 6 and 10 deal with content from part three and part four is reflected in items 7, 8, 

9 and 11-16. 

 

Key points 

 

 
Basic course 

Distinguish 

additive from 

multiplicative 

reasoning 

Draw 

connections to 

the algebraic 

rules for fractions 

Recognize and 

use a range of 

concrete 

representations 

Acknowledge the 

properties of 

geometrical 

objects 

Part 2 Item 1 Item 4   

Part 3 Item 5 

Item 6 

Item 2 Item 3 Item 10 

Part4 Item 7 

Item 11 

Item 15 

Item 16 

Item 12 

Item 13 

Item 16 

Item 8 

Item 9 

Item 15 

Item 8 

Item 13 

Item 14 

Table 1. Schema over items in relation to key points and progression in the basic courses 

The sources for the test items are: Hilton, Hilton, Dole, and Goos (2013); Fernadéz et al. (2012); Niss 

and Jankvist (2013a; 2013b); and Gläser and Riegler (2015). The items from Hilton et al. were already 

designed as two tier multiple test items. The other items were adapted from their original design to a 

multiple-choice design, using erroneous answer alternatives either reported in the original studies or 

answer alternatives recalled from my experience from teaching. 

Examples of test items 

In what follows, I will exemplify how research results on common difficulties on proportional 

reasoning are guiding the choice of the test items. To illustrate, items included to elicit students’ 

difficulties to discriminate additive from multiplicative situations and difficulties with scaling are 

displayed below. 

Consider this item, adapted from Fernadez et al. (2012): 

Loading boxes: Petra and Tina are loading boxes in a truck. They started together but Tina loads 

faster. When Petra has loaded 40 boxes, Tina has loaded 160 boxes. When Petra has loaded 80 

boxes, Tina has loaded 200 boxes. 

True or False because (choose the best reason) 

a) Tina will always be 120 boxes ahead of Petra. 

b) Petra loads faster than Tina. 

c) Tina loads 4 times faster than Petra. 

d) Tina loads with double speed. 

This is a proportional situation where Tina is loading 4 times faster than Petra, so the claim “When 

Petra has loaded 80 boxes, Tina has loaded 200 boxes.” is false. Students should consider whether 

it is appropriate to use additive reasoning, that is, if Tina has still loaded 120 boxes more than Petra. 

If the students answer a) Tina is always 120 boxes ahead of Petra; further investigation of their 

reasoning strategies is required, though the answer indicates that there may be a lack of transition 

from additive to multiplicative thinking. This suspicion is further strengthened if the student is 

successful in items requiring additive reasoning, like in the item below, from Hilton, et al. (2013): 



Running laps: Sara and Johan runs equally fast around a track. Johan starts first. When Johan has 

run 4 laps, Sara has run 2 laps. When Sara has completed 6 laps, Johan has run 12 laps. 

True or False because (choose the best reason) 

a) The further they run; the further Johan will get ahead Sara. 

b) Johan is always 2 laps ahead of Sara. 

c) Johan completes double the laps of Sara. 

d) Sara has run 3 lots of 2 laps to make a total of 6 laps, so Johan must have run 3 lots of 4 laps 

to make a total of 12 laps. 

This is an additive situation where Sara and Johan run at the same speed. Students should consider 

whether it is appropriate to use multiplicative reasoning, that is, if Johan runs 3 times faster than Sara. 

If the students answer d) Sara has run 3 lots of 2 laps to make a total of 6 laps, so Johan must have 

run 3 lots of 4 laps to make a total of 12 laps, further investigation of their reasoning strategies is 

required though the answer indicates that a difficulty to discriminate multiplicative from additive 

situations exists.  

The two examples above illustrate how research findings on proportional reasoning have been used 

in the design of the test. By including items requiring multiplicative reasoning as well as items 

requiring additive reasoning you may elicit the students' ability to discern when a multiplicative 

situation is present.  

The Dice- and the Circle item below are adapted from Niss and Jankvist (2013b), The Dice item is 

originally phrased: A cube of wood with all edges 2 cm weighs 4.8 grams. What weighs a cube of 

wood, where all edges are 4 cm? Justify your answer. [En terning af træ med alle kanter lik 2 cm 

vejer 4.8 gram. Hvad vejer en terning af træ, hvor alle kanterne er 4 cm? Begrund dit svar.] I added 

the claim: “A wooden dice where all edges are 4 cm weight 19.2 g.”, and the response alternatives.  

Dice: A wooden dice where all edges are 2 cm weighs 4.8 g. A wooden dice where all edges are 

4 cm weight 19.2 g. 

True or False because (choose the best reason) 

a) The weight increases 4 times if the edge doubles. 

b) The weight increases 6 times if the edge doubles. 

c) The weight increases 8 times if the edge doubles. 

d) The weight doubles if the edge doubles. 

Circle: Simon says that if you draw a new circle with half the diameter of another circle, the 

new circle will have half the perimeter and half the area of the other circle. 

True or False because (choose the best reason) 

e) If the diameter is halved, the perimeter and area is halved. 

f) The area will be ¼ and the perimeter ½ of the original. 

g) You cannot know without knowing the length of the diameter in the new circle. 

h) You cannot know without knowing the length of the diameter in the original circle. 

Students may fail to interpret the effects on volume from a doubling of the edges, while further 

investigation on the students’ conceptualization of geometrical objects needs to be undertaken. To 

reason about the circle item, the students need to consider the conjunction that both the perimeter and 

the area are halved. Since (area scale) = (length scale)2; a halving of diameter will result in a ¼ size 

of area while the perimeter halves. An error on these items may indicate difficulties to acknowledge 

the properties of geometrical objects in two- and three dimensions for calculation of scaling and 

similarity.  



Reflection 

There are many reasons why educational research tends to be isolated from practice. Research results 

and findings need to undergo a number of transformations from theory to practice, before they can be 

adapted to teaching practice, as illustrated in the design of the discussed in this paper. The test was 

designed with considerations to a special prison context and early results from using the test shows 

that it provides valuable support for the teacher when eliciting students’ prior understanding of 

mathematics. Although, the test focuses on the mathematical reasoning competency it also informs 

us of students’ mathematical thinking competency, problem-handling competency and modeling 

competency since these competencies are intertwined and overlapping. Together these four 

competencies create one out of two overall competences associated with mathematics: The ability to 

ask and answer questions in and with mathematics (Niss & Højgaard, 2011). The other overall 

competence: The ability to deal with mathematical language and tools, covers the intertwined 

competencies representing competency, symbol and formalism competency, communication 

competency and aids and tools competency. The scope of the test does not cover the ability to deal 

with mathematical language and tools. These competencies are left to be tackled within the course 

design, as well as the further development of the students’ ability to ask and answer questions in and 

with mathematics.  

A fundamental idea of educational research is that research findings should be put in play in teaching 

practice to help students to succeed with their studies in mathematics. I have discussed the design of 

a test for supporting teachers when pursuing the goal of finding an access point for individualized 

instruction. Through making use of accumulated and selected research results in the area of 

proportional reasoning in the design of the test, we gain a more thoughtful idea of the students’ prior 

understanding.  
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It has been shown that children who control strategies are better able to direct their own learning 

and knowledge. Seeking for an effective teaching method to achieve this goal, we experimented with 

the Explicit Teaching method vs. a traditional school one, using both to teach the Working Backwards 

Strategy. The study was conducted amongst 57 mathematically talented students participating in a 

unique mathematics program called Kidumatica. A mixed method analysis showed that Explicit 

Teaching produced better results regarding students' ability to use the strategy, though it did not 

affect the students' ability to recognize the strategy. This indicates that young students can understand 

when to use this powerful tool and, with further guidance, can also master their ability to use it. 

Keywords:  Explicit teaching, strategy, working backwards strategy 

Introduction 

Since Polya (1957), who claimed that students who control many strategies will become more 

effective and intelligent problem solvers, other researchers have advocated integrating problem 

solving strategies into school mathematics (English, 1993; Steiner, 2007), especially for talented 

students (Lee, 2014). The development and use of strategies is definitely not intuitive, and students 

need proper instruction, guidance and encouragement in order to systematically implement strategies 

in different domains - especially in problem solving (Tishmen, Perkins & Jay, 1996). Unfortunately, 

teachers face immense difficulties when it comes to teaching strategies in an effective way (Zbiek & 

Larson, 2015). This fact led us to look for an effective method to teach (talented) students some basic 

problem solving strategies. Based on interviews and talks with “professional mathematicians," we 

decided on four such strategies: Trial and Error, Proof by Contradiction, Working Backwards, and 

Recursion, which were taught to students using the “Explicit Teaching method.” In this paper we 

focus on just one example, showing how Explicit Teaching can be used to teach students the 

"Working Backwards Strategy” for solving non-routine mathematical problems.  

Explicit teaching method       

Explicit Teaching is a systematic methodology that is currently used primarily to teach reading and 

mathematics. This method is described as “highly organized and structured, teacher-directed, and 

task-oriented” (Archer & Hughes, 2011). All stages of the learning process include mediation 

between the teacher and the learner, in which the teacher transmits an external understanding of 

certain information to the learner, who then processes that pre-determined understanding (Olson, 

2003). Nevertheless, using Explicit Teaching does not predetermine or confine learners’ thinking; on 

the contrary, it can help them become more active solvers and foster independent thinking (Portnov-

Neeman & Amit, 2015). The methodology consists of a five step model (Figure 1). The steps 

described below are performed sequentially by the instructor in order to efficiently pass on specific 

information to the learner with as little ambiguity and room for error as possible (Rosenshine, 1986).  



Orientation: Each lesson begins with a clear instruction about the purpose of the lesson. Learners 

need to understand what they going to learn and how it connects to previous lessons.  

Presentation: The lesson material is divided into small units that fit the learners’ cognitive abilities. 

The teacher uses a model or schema to guide them through their problem solving process. 

Structured Practice: The instructor gives a direct and detailed explanation of the problem solving 

using the model or schema that was presented in the previous step. During this phase, it is critical that 

the instructor asks learners questions and encourages class discussion in order to check and assess 

their understanding of the material and clarify any confusion.  

Guided Practice: In this practice the instructor addresses individuals’ questions and misconceptions 

one-on-one, and tailors responses to meet the individual needs of each learner. Students can work in 

small groups in order to develop their ideas together and help each other with the new material.  

Independent Practice: In this step, learners are asked to complete an assignment on their own and 

without assistance. They are not expected to have a flawless understanding of the lesson, but they 

must understand the steps involved in the process. This step should continue until learners gain full 

independent proficiency with the materials.  

 

 

 

    

 

 

 

Figure 1: Model of Explicit Teaching 

 

‘Working Backwards’  

‘Working Backwards’ is a useful and efficient strategy for solving problems in many aspects of our 

lives, in which an achievable outcome is known, but we have not yet determined the path towards 

achieving it (Newell & Simons, 1972; Portnov-Neeman & Amit, 2015). When dealing with word 

problems, for example, the information given in the problem can appear like a complex list of facts, 

so it is sometimes helpful to begin with the last detail given (Wright, 2010). The Working Backward 

strategy is illustrated in Figure 2 and explained step by step in detail below:  

1)  Read the problem from beginning to end and identify all its components and steps.  

2)  Check the final outcome of the problem.  

3)  From the final outcome, start reversing each mathematical operation in each step until you 

reach the beginning of the problem. For example, reverse the adding operation and replace with a 

subtraction operation.   



4)  After reversing every step, resolve the initial state of the problem. 

5)  Check the answer by starting from the initial state and working through the steps to see if the 

final outcome is achieved (Amit, Heifets & Samovol, 2007). 

 

 

 

 

 

 

 

 

Figure 2: Model of the Working Backwards strategy (Amit, Heifets & Samovol, 2007) 

 

Methodology 

The study presented here examined the effect of using the Explicit Teaching method to learn a new 

strategy, specifically the Working Backwards Strategy for mathematical problem solving. The 

research questions are:  To what extent does Explicit Teaching affect: 

a) The ability to recognize when the Working Backwards Strategy is needed for problem 

solving? 

b) The ability to use and implement the Working Backwards Strategy? 

Context 

The study was conducted in the framework of "Kidumatica". Kidumatica - the math club for 

excellence and creativity - is an after school program for talented students in the 5th to 11th grades 

who are interested in mathematics, but require further tools to reach their full potential (Amit, 2009). 

Fifty-seven (N= 57) 6th grade students were divided in two groups: an Experimental Group (EG = 30 

students) and a control group (CG = 27 students). Over a period of six months, these students learned 

different mathematical strategies, including the Working Backwards Strategy. The EG learned 

through the Explicit Teaching method, while the CG was taught using the traditional school one. 

None of the students in this study had been research subjects in previous studies involving the 

Working Backward Strategy, and none had learned the strategy before. 

  



The ‘Explicit Teaching’ Group (Experimental Group) 

Students in this group studied all the strategies by means of the Explicit Teaching method. Each 

strategy, including the Working Backwards Strategy, was taught for four weeks by one of the 

researchers, according to the model illustrated in Figure 1. The teacher had an integral part in the 

lessons. She clearly and explicitly outlined what the learning goals are for the student, and offered 

clear, unambiguous explanations of the skills, information and the problem solving process. As the 

lessons progressed, the teacher’s role reduced, until students were able to solve problems 

independently. It was like riding a bicycle, were the instructor gradually releases his hold of the bike 

and the child rides off by herself. The first lesson started with an explanation of the strategy, including 

its importance as well as where and how it should be implemented. The teacher showed the students 

the model of the strategy and explained the role of each step in the solution process. The following 

lessons were dedicated to structural, guided and independent practices. During the structured practice 

the teacher gave a direct and detailed explanation of the problem solution using the Working 

Backwards model (Figure 2). The teacher encouraged discourse between the students and asked 

questions to assess their understanding and clarify any confusion. In the guided practice, students 

worked in smaller groups or by themselves on different working backwards problems. The teacher 

walked around the students and addressed individuals’ questions. When the teacher felt confident 

enough of a student’s abilities, that student was allowed to start working individually and begin the 

independent practice step. At the independent practice stage, students were asked to complete several 

assignments using the working Backwards Strategy, and to solve complex problems on their own. 

Traditional teaching control group 

The control group studied the Working Backwards Strategy for the same period of time as the EG, 

but they studied the strategy in the traditional school method. This group differed from the EG in the 

following ways: 

1. Lessons were mainly dedicated to students’ work. The teacher’s part was smaller than in the 

EG. Her role was to give short explanations about the lesson activities. She did not use the 

word “strategy” in her explanations, or explain that a special approach is needed for solving 

working backwards problems. Most of the lesson was dedicated to independent time, so that 

students would develop their own strategy toward those problems. It was important that 

students draw their own conclusions, create their own conceptual structures, and assimilate 

the information in the way that makes the most sense to them. 

2. The teacher did not show the model of the strategy and did not name the strategy explicitly. 

Instead, students could develop their own model and meaningful name based on the teacher’s 

examples and their own experience. 

3. The practice process in the CG was mainly independent, in contrast to the three levels of 

practice used in the EG. That led to less room for discussion and collaborative work between 

the students, unlike the EG, where time was allotted for these during the structured and guided 

practice. 

  



Data collection and analysis 

Data was collected via pre- and post-tests, students’ products, short interviews during and after the 

lessons, and teacher’s notes. The pre/post-tests were administrated to both groups before and after the 

learning program. Both tests included working backwards problems. This paper will discuss two 

problems from the pretest (problems 1 and 2 below), and two from the posttest (problems 3 and 4).  

1. Card Problem: “Yael, Danny and Michael played cards. At the beginning of the game each one 

had a different amount of cards. Yael gave Danny 12 cards. Danny gave Michael 10 cards and 

Michael passed Yael 4 cards. At the end each one of them had 20 cards. How many cards did Yael, 

Danny and Michael have in the beginning?” 

2. Mangoes Problem: “One night the King couldn't sleep, so he went down into the royal kitchen, 

where he found a bowl full of mangoes. Being hungry, he took 1/6 of the mangoes. Later that night, 

the Queen was hungry and couldn't sleep. She too found the mangoes and took 1/5 of what the King 

had left. Still later, the first Prince awoke, went to the kitchen, and ate 1/4 of the remaining mangoes. 

Even later, his brother, the second Prince, ate 1/3 of what was then left. Finally, the third Prince ate 

1/2 of what was left, leaving only three mangoes for the servants. How many mangoes were originally 

in the bowl?” 

3. Weight Problem: “Four students in the class weighed themselves. Cobi was 15 kilograms lighter 

than Adi. Gaby was twice as heavy as Cobi and Jenya was seven kilograms heavier than Gaby. If 

Jenya weighed 71 kilograms what was Adi’s weight?” 

4. Baseball Problem: “The Wolverines baseball team opened a new box of baseballs for today’s 

game. They sent 1/3 of their baseballs to be rubbed with special mud to take the gloss off. They gave 

15 baseballs to their star outfielder to autograph. The batboy took 20 baseballs for batting practice. 

They had only 15 baseballs left. How many baseballs were in the box at the start?” 

At the end of each test, students were asked to write what method they had used to solve the problems. 

The purpose of the pre-test was to determine the homogeneity of the two groups. The post-test 

examined the effect of the teaching methods at the end of the learning process.  A five point scale 

was used to rank students' answers (5 points = full and correct answer, 0 points = no answer). For 

example, if students identified all the steps, calculated each one by doing the opposite mathematical 

calculation and wrote the final answer correctly, they received 5 points. Figure 3, for example, shows 

a five point solution for the “Weight Problem.” The problem has three steps: (1) Jenya was seven 

kilograms heavier than Gaby; (2) Gaby was twice as heavy as Cobi; (3) Cobi was 15 kilograms lighter 

than Adi. The student calculated the weight of each person by working backward through every step 

of the problem. Figure 4 shows an example of a 2 point solution. The student started with the last 

detail given and calculated Gaby’s weight correctly. However in the next two steps he did not reverse 

the mathematical operations and got an incorrect answer. 



 

Figure 3: Example of a five point answer to the weight problem 

 

Figure 4: Example of a two point answer to the weight problem 

Findings  

Findings from the pre-test showed that in both problems, there was no significant difference between 

the groups, which indicates that both groups had the same level of homogeneity. After six months of 

learning strategies, the average scores in the post-test for both problems were higher among the EG 

than the CG.  In Table 1 we can see a significant difference in the post-test between the two groups 

in both problems. Figure 5 indicates that students’ ability to recognize the strategy improved after the 

learning process, but that both groups had similar results in the pre and post-test. 

Table 1: Results from pre- and post-test in the EG and the CG 

 

 

 

 

 

 

 

 

 



 

Figure 5: Amount of students from the EG and CG that recognized the Working Backwards 

Strategy in pre- and post-tests 

Our qualitative analysis of students' solutions revealed that the EG students reversed the mathematical 

operations much better and more easily than those in the CG, and were thus able to solve the problem 

correctly. Moreover, while the EG explicitly stated the name of the strategy they had used when 

asked, the CG students were very creative in naming the strategy, coining names such as, “going in 

through the back door”, “reverse manual” etc. Finally, the EG students used the model of Working 

Backwards Strategy in a very efficient way, sometimes adjusting the model to make it easier to use.  

Discussion  

Strategies are undoubtedly an important tool for goal-directed procedures in problem solving. 

Introducing them at a younger age can improve learners’ mathematical ability (Polya, 1957) as well 

as their understanding and thinking skills (English, 1993). To achieve this goal, it is important to use 

a specific teaching method (Tishmen, Perkins & Jay, 1996). In this study, that method is the Explicit 

Teaching method, through which we introduced the Working Backwards Strategy. The study 

examined the effect of this method on students' ability to recognize and solve working backwards 

problems. Fifty-seven sixth graders were divided into two groups, an experiment group (EG) that 

studied with the Explicit Teaching method and a control group (CG) that studied with a traditional 

school one. The strategy was unfamiliar to both groups and the findings from the pre-test showed that 

both groups had a similar starting point. At the end of the learning process, the group that studied 

explicitly showed higher results than the control group. The structured steps of the Explicit Teaching 

helped the students to have a better, clearer understanding of the strategy (Anhalt & Cortez, 2015). 

Qualitative analysis revealed that students who studied explicitly were more much resourceful in their 

solutions. They understood how the strategy works, adopted it and changed it to make it easier to 

solve. We believe that this ability developed due to the discourse and the collaborative work in the 

structured and guided practice. We saw how students’ understanding of the strategy and its use 

improved over time. They asked more questions, listened to other students’ answers and learned how 

to avoid misconceptions. In addition, the integral role of the teacher in this method helped students 

gradually to build their confidence. Thus, these students were more prepared to work on working 

backwards problems by themselves. Our previous study showed that teaching explicitly can help 

students become active learners and foster their independent thinking (Portnov-Neeman & Amit, 

2015). The current study supports this conclusion, showing that Explicit Teaching did not limit 

students' thinking by fixing it on a particular process. On the contrary, students understood the core 

principle of the Working Backwards Strategy and then applied it creatively in whatever way seemed 
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best to them. Both groups showed improvement over time in their ability to recognize when and why 

the Working Backward Strategy is needed. The percentage of students that recognized the strategy 

before and after the learning process was similar. This is very encouraging, since it may indicate that 

the teaching method does not affect students' ability to recognize strategies. We can assume that with 

additional practice, all of the students could potentially master strategies and develop their 

understanding and their strategic approach to problem solving, but this has to be tested and 

researched. In this study, we experimented in ‘laboratory conditions’ with talented students, and 

found that the method works. Further research is needed to confirm its effectiveness outside of the 

Kidumatica Mathematics Club, in the ‘real world’ of education.  

Conclusion 

Mathematical strategies are complex concepts to learn and understand, and we as educators must 

search for the most effective way teach them. In this study, we used a systematic and structured 

methodology called Explicit Teaching, and found that students who studied with this method had 

higher scores than students who studied with a traditional school method. Introducing strategies like 

these to students is important, since they can help students evolve into better thinkers and develop 

their ability to solve problems. We believe that strategies can and should be introduced from a 

younger age so they can be developed over time. We have found that younger children are capable 

of acquiring the basic tools. Given time, they will be able to develop their tool kit of strategies further, 

and eventually master them all. It is our obligation as educators to teach our students how to use 

strategies correctly, and the sooner we do so the better. 
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This paper describes and discusses the framing of, and experiences from, a project that combine 

research, practice- and teachers’ professional development based on the tenets of the Models and 

Modeling Perspective on teaching and learning (MMP). Besides providing a general description of 

the methodological considerations in the project design, the paper describes how the accumulated 

results and experiences in the research literature on so-called model eliciting activities are used to 

inform the design, implementation and evaluation of activities aiming at introducing functions to 

grade 8 students. The focus of the paper is on the implantation and aim to showcase how the 

teacher in question realized the offered perspective and tools in practice. 

Keywords: Practice development, teachers’ professional development, models and modeling 

perspective, model eliciting activities. 

Introduction 

Clarke, Keitel and Shimizu (2006) have shown that much of the teaching and learning of 

mathematics in many counties are centered around, and dominated by, a traditional use of 

textbooks. This practice seems to strengthen as the students progress though the educational system, 

as does the fact that many students lose their interest in, and motivation for, learning mathematics 

with increasing age. TIMSS 2007 for example shows that the attitudes towards mathematics in 

Sweden expressed by grade 4 students generally are much more positive compared to the attitudes 

among grade 8 students (Skolverket, 2008). This situation in combination with the declining results 

of Swedish students on the international assessments PISA and TIMSS, are reflected and frequent in 

the public debate as well as in many of the ongoing drives, projects and programmes trying to 

realize changes in schools. Learning mathematics is complex (Niss, 1999), and now more than ever 

is the role teachers play stressed for what mathematical understanding and knowledge the students 

develop in schools (Hattie, 2009; 2012).  

However, the challenges that teachers meet in their everyday mathematics teaching are numerous 

and of various kind and nature. Students’ lack of interest in combination with too monotonous (and 

"traditional") forms of teaching seems to be part of the reasons for the Swedish students’ declining 

performances as well as interest in mathematics. Often, a proposed strategy to reverse theses trends 

is to try to change the prevailing norms in the classroom (Yackel & Cobb, 1996) by increasing 

student interaction and the overall student activity. Teachers are encouraged to try to vary their 

teaching, increase students’ activity levels and strive to make students ‘talk more mathematics’. But 

how is this going to work in practice in everyday teaching? How do we get students to ‘talk more 

math’ and to be more engaged and (inter-)active in the mathematics classrooms? 

The concerns mentioned above are part of the motivation for the installment for a joint collaborative 

initiative between two municipalities and a university, from which this paper will discuss some 

aspects. The overarching question for the initiative is: How can we organize the mathematics 



teaching so that students are given the opportunity to develop their conceptual, procedural/ 

methodology and reasoning abilities in, for the students, interesting and engaging ways? 

A project combining research, practice- and teachers’ professional development 

As a response to the situation and challenges briefly outlined above, a collaboration between two 

municipalities and a university was initiated with the aim to establishing a long term and sustainable 

collaboration as well as to seek for ways to counterbalance the current trends. The initiative rest one 

three strands, namely to simultaneously (1) combine and produce research with (2) the development 

of teaching practices in schools and (3) to serve as professional development for the teachers in the 

municipalities. The project involves two researchers focusing on different grade levels: grades F to 

6 (6- to 12-year-olds) and grades 7 to 12 (13- to 18-year-olds). The two researchers have autonomy 

in how they define, plan and conduct the work within the given boundaries defined by the university 

and the municipalities. 

The project focusing on grades 7 to 12 runs a series of semi-parallel 1-year projects were the 

researcher in each project works together with 4-6 teachers from different schools and grades as 

partners (c.f. Jaworski, 1999) in, what ideally could be described as, a co-learning agreement 

(Wagner, 1997). Each project departs from the practices of the participating teachers and the 

possibilities and challenges they see in their everyday teaching. Based on the teachers’ experiences a 

discussion leads to the formulation, planning and implementation of a 1-year long project with 

specified aims and goals. The research carried out in the projects is centered around the participating 

teachers own everyday teaching, and their engagement in research and developing their own 

practices constitute the professional development for the teachers. Within the context of the 

initiative two key questions then become: How to coordinate the experiences and result from the 

individual projects? and How to communicate then? Note that these questions also are at the heart 

of mathematics education more generally (aka the accumulation of research and the dissemination 

of knowledge; a main topic for CERME 10’s TWG23). For the 1-year project discussed in this 

paper, the studied question was: How can we create and work with joint classroom activities that 

challenge all students regardless of their levels of mathematical understanding and capabilities? 

The models and modeling perspective on teaching and learning 

The models and modeling perspective on teaching and learning (Lesh & Doerr, 2003), MMP for 

short, sometimes given as an example of a so-called contextual perspective in the discussion on 

modeling (Kaiser & Sriraman, 2006), draws on and traces it’s lineages back to Vygotsky, Piaget and 

Dienes as well as influences from the American pragmatists’ tradition represented by Mead, Peirce 

and Dewey (Kaiser & Sriraman, 2006; Mousoulides, Sriraman, & Christou, 2007). The central 

notion in this perspective is that of models, which are conceptual systems used to make sense of 

situations and phenomena. Models are considered to be human constructs which are fundamentally 

social in nature and can be described as systems consisting of elements, relationships, operations, 

and rules that can be used to predict, explain or describe the behavior of some other system. In the 

MMP learning is equated with model development, in which the role of modeling activities is to 

support this development by engaging the students in purposefully developing, understanding, 

modifying, and using their models to make sense of different situations and contexts (Lesh & Doerr, 

2003).  



The adaptation of the MMP at the macro level for all grade 7-12 projects establishes a common 

perspective and vocabulary that facilitate communication within as well as between different 

projects and levels of stakeholders in the initiative. The inherent recursive complexity of the MMP 

(researchers developing models of teachers’ models for teaching and supporting students developing 

their models) connects the work and results from the different projects and levels. The inclusive and 

accessible notions models and model development (understood in a more mundane way) facilitates 

communication with teachers, high municipality officials and policymakers.  

Model eliciting activities 

Model eliciting activities (MEAs) are purposefully designed activities where students need to 

develop a model that can be used to describe, explain or predict the behavior of, for the students, 

meaningful contexts, phenomena and situations. Traditionally, much work within the MMP have 

been centered around so-called model eliciting activities (MEAs) developed by Lesh and colleagues 

(Lesh, Hoover, Hole, Kelly, & Post, 2000). Although originating in mathematics, MEAs have in the 

last 15 year been used to support and investigate the development of students’ models (conceptual 

systems) in a range of disciplines and contexts (Diefes-Dux, Hjalmarson, Zawojewski, & Bowman, 

2006; Iversen & Larson, 2006; Yildirim, Shuman, & Besterfield-Sacre, 2010; Yoon, Dreyfus, & 

Thomas, 2010).  

The research involving MEAs have resulted in six design principles for MEAs, which also to some 

extent capture the essence of the MMP: (a) the reality principle – the MEA connects to students’ 

previous experiences and is meaningful; (b) the model construction principle – the MEA induces a 

need for the students to develop a meaningful model; (c) the self-evaluation principle – the MEA 

permits the students to assess their work and models; (d) the model documentation principle – the 

situation and context in the MEA requires the students to externally express their thinking (models); 

(e) the model generalization and sharable principle – the elicited model in the MEA is sharable, 

generalizable and applicable to similar situations; and (f) the simplicity principle – the situation in, 

and formulation of, the MEA is as simple as possible (Lesh et al., 2000; Lesh & Doerr, 2003). 

Teacher working with MEAs have proven to provide rice opportunities for professional change and 

development. Schorr and Lesh (2003) found that teachers working with MEAs in their classrooms 

(a) changed their perception regarding the most important behaviors to observe when students 

engaged in problem activities; (b) changed their views on what they considered to be strengths 

and weaknesses of student responses; (c) changed their views on how to help students reflect on, 

and assess their own work; and (d) reconsidered their notions regarding the user of the 

assessment information gathers from these activities.  (Schorr & Lesh, 2003, p. 157) 

These experiences and results suggest that MEAs might provide a productive tool to address the 

question about how to create mathematics teaching that is challenging for all students. The teachers 

in the project found this a promising approach and especially expressed the following aspects of 

MEAs appealing:  MEAs build on and respect what the students bring to the classroom in terms of 

prior knowledge in a fundamental way; MEAs focus on the students’ sense making of meaningful 

situations, representations and connections between representations; working with MEAs naturally 

includes a range of classroom organizations (working one-by-one, in pair, group or different whole 

class interactions); MEAs have the students work on explicitly formulating and expressing their 



thinking using mathematics. In addition, the six design principles for MEAs come to play a few 

different roles: tools for design; tools for analyzing tasks; evaluative tools for students work in 

class; and tools for thinking about one’s own view of mathematics, teaching and learning. 

The MEA and its’ implementation 

We now end the paper by showcasing the result of one teacher’s implementation of an MEA given 

as an introduction to linear function in grade 8. 

The context and the design of the MEA Candy time! 

The teacher wanted to use an MEA to introduce linear functions in grade 8. Functions, and different 

representations of functions, are something that the students have been exposed to more or less 

consciously in different forms during the majority of their mathematical schooling. In other word, 

students already have ideas and models for what graphs and tables are and how and when to use 

them. So, rather than systematically treat these concepts in a traditional manner, the teacher wanted 

to challenge the students to use their previous experiences and to see and explore the connections 

between tables, graphs and diagrams by engaging in a more exploratory activity (aka an MEA).  

The context of the problem was chosen by the teacher to be about buying candy. In Sweden, there is 

a often practiced tradition, that the children on Saturday do their weekly candy shopping, called 

lördagsgodis – “Saturday’s Candy.” Not seldom, the candy is bought in candy stores where you pick 

’n’ mix candy after your own preferences and liking, and pay by the hectogram (100 grams) or the 

based on the actual number of pieces of candy you picked. 

In the design of the MEA the teacher stressed four of the guiding principles as especially important 

for this particular purpose: (a) the reality principle: the choice of context and situations (the candy 

store) was made in order to be familiar to the students in that it should facilitate the students in 

making connections and interpretations between different representations; (b) the model 

construction principle: the intention with the activity Candy time! is for the students to build on 

their previous experiences and knowledge in order to connect and coordinate them further; (d) the 

model documentation principle: to facilitate for the students to document their work, a in that they 

make their models visible and objects for discussion, a worksheet was developed with easy-to-read 

instructions, questions and diagram as well as generously with space for writing answers and 

comments; (e) the model generalization and sharable principle: to promote that students share ideas 

as a means for furthering their models, the MEA was designed to have the students working along 

as well as in pairs or small groups, and engaged in whole class discussions. Note that the four 

principles not are independent, and that they contribute to make the students’ previous experience 

and knowledge the basis for the activity, to make students’ ideas and thoughts (models) visibility, 

and to facilitate that the students’ models are confronted with other students’ models so that they 

through discussion can refine and develop their ways of thinking.  

Implementation 

After the teacher started the lesson and introduced the first part of the activity, the students began to 

work individually on the first part of the task about the three stores A, B and C; see Figure 1 below. 

However, it only took seconds until the students spontaneously started discussing with each other 

about which store would given them the most candy for their money, and they spontaneous formed 



pairs and small groups. The teacher observed the students’ work and listen to the students’ 

discussions while walking around in the classroom and making sure all students understood the 

task, but otherwise intentionally kept a low profile.  

Candy time! 
It’s Saturday and you’re thinking about which of the three stores A, B and C you’ll go to and spend 2,50 € 
so that you’ll get as much candy as possible. Compare all three stores and motivate your choice. 

Store A 
You’ll pay 1 € for a bag of 32 pieces of candy. 

Store B    
 

    Pieces 
candy (#) 

  Price 
  (€) 

5 1,5 

10  

15  

  

  

  

 

 Store C 
 

 

Figure 1: Part one of the activity Candy time! 

The idea was that the students’ should use an experimental approach and try different ways and 

strategies to approach the problem. If the teacher noticed that some of the student got stuck she 

approached the student with encouragements like “Try to fill out the table for Store B!”, “What 

would it look like if one plotted the table-values for Store B in the same diagram displaying Store 

C’s pricing?”, or “What would Store A ‘look like’ in the Store C diagram?” When the majority of 

the students had decided in which Store to do their shopping of Saturday’s candy, the teacher 

focused and pulled the class together by asking “What would the graphs for Store A and Store B 

look like if you plotted them in the same diagram as the graph for Store C?”. 

When all the students had decided on which store gave them the most value for their money, the 

teacher, based on her observations in the classroom, chose a few of the students to orally present 

their solution for the whole class. The selected students showed, motivated and explained what 

method they used to approach and solve the problem. In the whole class discussion that followed the 

students’ presentations, the teacher, based on continuous inputs of the students, showed what the 

graphs for the different stores would look like if they were plotted in the same diagram. 

The discussion continued in smaller groups were the students were engaged in thinking about and 

explaining: What use does one have of graphs and tables? What are the differences and similarities 

between the three stores? What factors other than the price can affect where one choose to buy 

one’s candy? Looking at the students’ answers, there is a tendency to consider graphs as suitable 

tools for comparing things (“when you want to compare something”, “you can see the differences 

in prices”) or to illustrate how something develops over time (“when you wanna show something 

along a timeline”). Tables on the other hand the students put forward as good tools for presenting 

different kinds of compiled data or results (“as for example results from sports”, “to present one’s 

findings”, “sport results, lengths, weight, sizes, ages, sexes, opinions”). 



Regarding the differences and similarities between the stores the students mostly commented on 

directly observable features like “all are selling candy”, “the price goes up with the number [of 

pieces of candy you buy]”, “all have different pricing”. The selection of available candy in the 

different stores, both with respect to and quality and quantity, as well as to the geographical location 

of the store, were factors the students identified as things influencing where one buy one’s candy. 

After the students had discussed and compared their answers for a couple of minutes, the teacher 

introduced part two of the Candy time! activity; see Figure 2 below: 

Store D 

– a new store – opens!!!! 

You have previously meet Store A, B and C, 

but now there is a new store in town, Store D. 

What is special with this new store? Will this new store 

offer any serious competition to the three already 

established stores (Stores A, B and C)? 

Can you plot a graph representing yet another store? 

Write a few sentences explain your store’s price-fixing. 
 

Figure 2: Part two of the activity Candy time! 

While working on the second question in the second part of the activity, Will this new store [the 

Store D] offer any serious competition to the three already established stores (Stores A, B and C)?, 

the students concluded “well, it depends on how much you buy!”. Many of the students argued that 

Store D not would be any competition to the other stores if you as in the first part of the activity, 

only spent 2,50€. However, if you were spending a greater amount of money, then Store D should 

be the preferable choice. (“No, this [Store D] is more expensive that the others [Stores A-C]. But 

this [Store D] becomes more affordable if you buy a larger and larger amount”). The fact that the 

graph for Store D intersect the y-axis at y=10 some of the students interpreted as “you have to pay 

1€ to enter the store, like an entrance fee” or that you pay for the box or bag you put the picked 

candy in: “Surely it’s some kind of fancy candy store where you have to pay for the boxing. That’s 

is probably one of the reasoning people will come [and shop in the store] – that it’s a fancy shop 

that is”. 

The last task in the activity set lose the students’ creativity, drawing graphs describing other 

imaginary store’s pricing (see Figure 3). Most of the students draw in multiple stores and the most 

commonly pricing was a model giving the price proportional to the number of pieces of candy 

bought, as exemplified by Store H: “Every single piece of candy costs 0,10 € each”. One of the 

students wrote “In this store the only sell giant pieces of candy” (Store E) to explain the steepness 

of her graph. Store G was described by another student as “I’ve made a cheaper store - one where 

you’ll get one piece of candy for free!”, explaining the meaning of the graph intersecting the x-axis 

at x=1. Although the diagram only display the price for between zero and 11 pieces of candy, some 

of the students physically prolonged the lines representing the cost in Stores A – D and concluded 

that if you buy a large enough amount of candy, then Store D is the most price-worthy store. The 



students also constructed stores that had price-fixing represented by a line with negative slope (“The 

price decreases, and after 11 pieces the candy becomes free”, Store I), and stores with a flat rate 

price-fixing (“Take as much candy you want for 2,80 € ”, Store F). After the lesson the teacher 

noticed and expressed her surprised over how much the students own examples of stores’ pricing 

showed and reveled about the students’ creativity and proficiency to interpret linear functions y = kx 

+ m with positive (k > 0), negative (k < 0) slope as well as zero slope (k = 0) in the given context of 

the activity. 

 

Figure 3: The students’ own stores (Stores E – I) 

The students’ worked on the second part of the activity till the lesson ended. The teacher then 

collected all the students’ written work, and followed up the activity the following lesson, after 

having read and summarized the students’ explanations, with a whole class discussion about the 

students’ conclusions, interpretations and price-fixing of their own stores. The teacher was surprised 

over the interest and engagement the students showed when working on the activity as well as over 

the wide range of solutions and explanations the students offered. The fact that the activity allowed 

for a variety of solutions resulted in almost all students wanting to share their solution and thinking 

at the whiteboard in the whole class discussion. In a few instances the students asked for how to 

name certain concepts such as origin and intersection point to be able explain their thinking more 

precise and clear to their peers. In other word, the students wanted to express themselves 

mathematically correct. 

References 

Clarke, D., Keitel, C., & Shimizu, Y. (2006). Mathematics classrooms in twelve countries. 

Rotterdam: Sense Publishers. 

Diefes-Dux, H. A., Hjalmarson, M. A., Zawojewski, J. S., & Bowman, K. J. (2006). Quantifying 

aluminum crystal size part 1: The model-eliciting activity. Journal of STEM Education: 

Innovations and Research, 7(1&2), 51–63. 

Hattie, J. (2009). Visible learning: A synt A synthesis of over 800 meta-analyses relating to 

achievement. London, UK: Routledge. 

Hattie, J. (2012). Visible learning for teachers. London, UK: Routledge. 



Iversen, S. M., & Larson, C. J. (2006). Simple thinking using complex math vs. complex thinking 

using simple math - A study using model eliciting activities to compare students' abilities in 

standardized tests to their modelling abilities. DMm, 38(3), 281–292. 

Jaworski, B. (1999). Mathematics teachers education, research and development. The involvement 

of teachers. Journal of Mathematics Teacher Education, 2(2), 117–119.  

Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in 

mathematics education. ZDM, 38(3), 302–310. 

Lesh, R. A., & Doerr, H. M. (Eds.). (2003). Beyond constructivism: Models and modeling 

perspectives on mathematics problem solving, learning, and teaching. Mahwah, NJ: Lawrence 

Erlbaum Associates. 

Lesh, R. A., Hoover, M., Hole, B., Kelly, A. E., & Post, T. (2000). Principles for developing 

thought-revealing activities for students and teachers. In A. E. Kelly & R. A. Lesh (Eds.), 

Handbook of research design in mathematics and science education (pp. 591–645). Mahwah, 

NJ: Lawrence Erlbaum Associates. 

Mousoulides, N. G., Sriraman, B., & Christou, C. (2007). From problem solving to modeling-the 

emergence of models and modelling perspectives. Nordic Studies in Mathematics Education, 

12(1), 23–47. 

Niss, M. (1999). Aspects of the nature and state of research in mathematics education. Educational 

Studies in Mathematics, 40(1), 1–24. 

Schorr, R. Y., & Lesh, R. A. (2003). A modeling approach for providing teacher development. In R. 

A. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on 

mathematics problem solving, learning, and teaching (pp. 141–157). Mahwah, NJ: Lawrence 

Erlbaum Associates. 

Skolverket. (2008). TIMSS 2007 - huvudrapport (Report No. 323). Stockholm: Skolverket. 

Wagner, J. (1997). The unavoidable intervention of educational research: A framework for 

reconsidering researcher-practitioner cooperation. Educational Researcher, 26(7), 13–22. 

Yackel, E., & Cobb, P. (1996). Sociomathematical Norms, Argumentation, and Autonomy in 

Mathematics. Journal for Research in Mathematics Education, 27(4), 458–477. 

Yildirim, T. P., Shuman, L., & Besterfield-Sacre, M. (2010). Model eliciting activities: Assessing 

engineering student problem solving and skill integration processes. International Journal of 

Engineering Education, 26(4), 831–845. 

Yoon, C., Dreyfus, T., & Thomas, M. O. J. (2010). How high is the tramping track? Mathematising 

and applying in a calculus model-eliciting activity. Mathematics Education Research Journal, 

22(2), 141–157.  



Providing a tool for lesson planning in pre-service teacher’s education  

Tone Bulien 

University of Stavanger, Faculty of Arts and Education, Norway; tone.bulien@uis.no  

 

This paper discusses the theoretical and methodical arguments for the design and implementation of 

a research based course for pre-service teachers. The course program was carried out five times 

matching the methodology of design experiment and the theory of communities of practice. Students’ 

assignments in the course were designed to focus on planning teaching and to give the pre-service 

teachers experiences of how to use and connect didactical and mathematical theories to practical 

situations, and hence provide them with a tool for teaching in different classroom situations. 

Keywords: Pre-service teacher education, implementation, design experiment, lesson planning, 

mathematics teaching and learning. 

Introduction 

The implantation of a new teacher-training program in Norway (Kunnskapsdepartementet, 2010) 

presented an opportunity to think about new ways of teaching a pre-service teacher course in 

mathematics within the program at a Norwegian university. Previous to this reform the corresponding 

course was organized more traditionally entailing plenary lectures, workshops and various student 

assignments in which the pre-service teacher students (PST) actively had to participate. However, 

feedback from the PSTs showed that they found it difficult to see the connection between the course 

work at the university and the in-school teaching practicing activities, especially with respect to the 

implementation of didactical theories in the everyday mathematics classroom practice (Bulien, 2008; 

Solstad, 2010). Therefore, the design and implementation of a revised course focused on and included 

activities that aimed to enhance and make the connection between theories of teaching and learning 

and the actual practice of teaching clear and explicit for the students. This paper discusses the central 

idea used to realize this connection in the redesign of the course, namely, to focus on lesson planning 

by adapting and introducing the so-called Mathematics Didactic Planning tool (MDP).  

Besides presenting the MDP, the aim of this paper is to describe the research design and the theoretical 

background for the educational design experiment in which the MDP was developed, implemented 

and evaluated. 

Introducing the MDP, the setting and background 

The course that was subjected for redesign is a 30 credit compulsory course in the teaching and 

learning of mathematics given within a full time teacher education program for grades 1–7 (6–12 

years old). The students take multiple courses simultaneously and the course in teaching and learning 

mathematics spans over a period of 2 years (7,5 credits each semester). Even though the program is 

a full time program, most of the students are not at campus all the time. Rather, the students travel 

and are physically present at joint seminars at the university for three separate weeks each semester. 

In each week, the students studied mathematics for 7 hours spread out over two days. The rest of the 

semester, the PSTs and teachers communicate via different media over the Internet. 



In the first two semesters (credits 1-15) of the course in teaching and learning mathematics, the 

students focus on theories and frameworks related to the role of a mathematics teacher, teaching and 

learning mathematics, numeracy and early training of algebra (pre-algebra). This experience of 

different theoretical approaches to teaching and learning mathematics provided an advantage when 

they was introduced to the MDP in the third and fourth semester of their teacher-training program. 

During the second year of the course (credits 16-30) the PSTs worked through three MDPs, each 

organized in three different parts or phases named A1, A2 and A3, see Figure 1 (left).  

 

Figure 1: MDP model (left) and the course cycle of PST implementing MDP (right) 

Phase A1 is about analysing textbooks and making a brief plan for teaching mathematics covering a 

whole school year. In phase A2, a much more detailed plan for teaching a lesson given a particular 

content is worked out. The last phase, A3, time is spend on reflecting back on the previous phases. 

The assignment students are obliged in phases A1 and A2 are written assignments carried out as group 

work, whereas the assignment in phase A3 is individual reflecting text. 

In this second part of the compulsory course (semester three and four), the structure of the MDP was 

used as a frame to organize of both lectures and students’ assignments, and during the year the PSTs 

worked through three MDPs focusing on different mathematical topics as well as on different grades 

(1–7). The mathematical topics were geometry, measurement, statistics, probability and functions.  

The introduction to the MDP model was given in the first seminar in the third semester at campus 

where the teacher and the PSTs together planned a fictitious lesson for teaching using the MDP 

framework. The following three MDPs were mainly supervised using Google Disk (GD) and through 

Internet seminars, but also in face-to-face seminars with the teacher when the students met at campus. 

Additionally didactical and mathematical theories were provided to the students through lectures, 

both at campus and in online video lessons made and hosted by the teacher. Having the PSTs 

iteratively working through three MDPs made it possible for the PSTs to familiarize themselves with 

the framework, and hence their need for support and guidance successively declined, aiming at the 

PSTs to be more and more independent. In other words, writing the assignments (A1,A2 and A3), the 

supervision in GD was more actively during the first MDP, less in the second and only by questions 

from the PSTs in the third (Bulien, 2013). 



Methodology 

The methodology of the project to implement the revised course on teaching and learning 

mathematics based on this new tool for teaching (the MDP) was founded on experiences from 

previous teaching similar courses; research about PSTs’ education experiences (e.g. Bulien, 2008; 

Solstad, 2010); and, students’ feedback on the content in similar and previous courses. Based on 

these, special emphasis in the revised course became the application of theory in practical teaching 

situations. In short, the aim of the project was to present a more visible connection between the 

theoretical work at campus and the practice at schools. 

During the four-year teacher education program, the PSTs experience rather short periods of actually 

practicing teaching in schools, and each time they must focus on three or four different subjects which 

makes it difficult to go into depth on each subject during their practice time in the classroom (Solstad, 

2010). Solstad (2010) found that PSTs’ ability to connect theory with practice increase the longer 

they attended the education program, but the students still wanted more supervision in implementing 

theory into their teaching practice. This increasing theoretical understanding might be a result of 

engaging in multiple cycles of supervised practice at schools and evaluated written assignments at 

the university, which suggests that a similar iterative learning model would be the preferred teaching 

and learning environment for the new course. However, closer collaboration and involvement with the 

actual teaching practices done in schools by the students was not feasible. Instead, a more active 

collaboration between the PST and the teacher in the spirit of communities of practice (Wenger, 1998) 

was integrated in the design of the course. 

To guide and structure the overall re-design, implementation and evaluation of the new course, 

something that can be considered to be a classroom design experiment (Cobb, Confrey, diSessa, 

Lehrer, & Schauble, 2003), a design experiment (Cobb et al., 2003) methodology was adapted. 

Most classroom design experiments are conceptualized as cases of the process of supporting 

groups of students’ learning in a particular content domain. The theoretical intent, therefore, 

is to identify and account for successive patterns in student thinking by relating these patterns 

to the means by which their development was supported an organized. However, different 

classroom design experiments may set their focus on different constellations of issues (Cobb 

et al., 2003, p.11) 

The theoretical intent of implementing the MDP was to focus on the PSTs’ development in lesson 

planning using didactical theories and mathematical knowledge, which could be evaluated in the 

assignments of each MDP and the PSTs’ reflection notes. The teaching and learning process involved 

in the implementation of the course was continually evaluated through out the five years based on the 

PSTs’ work and reflection as well as the teachers reflections notes and written logs. The course was 

modified and adjustments were made both during the semester and when before starting a new course 

for a new group of PSTs. 

In the design and development of the MDP and the new course, Cobb et al. (2003) five crosscutting 

features of design experiments were used to structure and guide the work during the five-year period 

of this project. 

First, design experiment involves both the goal and the process (Cobb et al., 2003). The goal was to 

educate prospective mathematics teachers so they could give their students a grounded mathematical 



education based on mathematical knowledge and research about how to teach mathematics. The 

process, which should facilitate the goal, had two different parts. Initially the process was about 

developing a class of theories that supported the ideas of using the MDP as an artefact for the PSTs’ 

studies, and to get an overview of the implementation of the new ideas in the course. Next it was the 

process of defining the roles of the PSTs and of the teacher, in which the theory of communities of 

practice (Wenger, 1998) was introduced. 

Since the collaboration between the PSTs and the teacher was supposed to be less like the usual 

teaching situation and more like an ongoing working together process, communities of practice was 

a suitable framing since “… the property of a kind of community created over time by the sustained 

pursuit of a shared enterprise” (Wenger, 1998, p.45). Further, Wenger claims that in educational 

design “Learners must be able to invest themselves in communities of practice in the process of 

approaching a subject matter” (Wenger, 1998, p.270). In this project the subject matter was the MDP 

that could be seen as a reification of a teaching and learning situation in the sense of “… giving form 

to our experience by producing objects that congeal this experience into “thingness”” (Wenger, 1998, 

p.58). For the MDP, the process was to present a learning trajectory to the PSTs that realized the 

possibility to adapt theoretical perspectives of teaching to classroom situations. A corollary to this 

involved a change in the teacher’s role from less lecturing to more supervising, which supports 

Wenger’s idea of self-investment. 

Second, design experiment is about being innovative, and there should be a discontinuity between 

tradition and new ideas to test (Cobb et al., 2003). Expecting a more active contribution from the 

students and more supervision from the teacher changed the traditional lectures to seminars. In 

between seminars at campus, the supervision was implemented online using Google Disk (GD) and 

short video-films made by the university teacher. The focus for the supervision was to encourage the 

PSTs to evaluate didactical theories and mathematical knowledge and decide how to use them in 

teaching and learning situations. 

Third, design experiment should involve both prospective and reflective situations (Cobb et al., 2003). 

In this project, the prospective aspect was manifested in the hypothesis or conjectures developed in 

terms of lesson plans in the written assignments in phases A1 and A2 of the MDP. In Phase A3 

provided the possibility for reflection based on reflective knowledge and building on experience and 

research. Here, the MDP and the change of teaching and learning situations, build on previous 

teaching courses in mathematics and new ideas about learning, especially focused on social 

constructivism and the community of practice. 

Fourth, design experiments include an iterative design. In this project, there are two levels of iteration 

(Cobb et al., 2003). A first is that the PSTs repeat the MDP three or four times during the course 

period, whereas the other is that the course itself was repeated five times with different students. The 

PSTs repeating the task hopefully provides better learning and the teacher had the possibility to adjust 

teaching according to the students’ needs for supervision. The iteration of the course focused on the 

design of both the MDP and the teaching on a meta-level. 

Fifth, design experiment involves analysing and evaluating the course to search for potential new 

theories (Cobb et al., 2003). Each year the PSTs were asked to evaluate the course and their responses 

together with the exam results and logs written by the teachers during the year, were used to adjust 



the plan for the course for the following year. Although analyses took place during the five years, a 

retrospective analysis is yet to be fulfilled. Since then the designed course with the MDP has been 

repeated five times, and it has additionally been used in other courses, might give broader information 

about the ability of the use of MDPs. This adoption into other courses and continued use lead one to 

assume that the analyses made after each year have given positive results, but there is still need for 

more thorough analyses to quantify the effects of the implementation of the MDPs and the changes 

in teaching. A retrospective analysis of all available written material collected during the five years 

is necessary and is currently in progress. 

Theoretical discussion of the MDP 

The Danish textbook for teacher education, Delta (Skott, Jess, & Hansen, 2008), was part of the 

syllabus for the course and in this book there is a presentation of Gomez cycle of didactic analysis 

(Gomez, 2002). Based on this work of Gomez an artefact for lesson planning named The Mathematics 

Didactic planning tool (MDP) was constructed by changing the original model to fit a Norwegian 

teaching and learning context informed by the work of Ball, Thames & Phelps (2008) and Niss and 

Højgaard (2011). Hence, the content of the MDP considered both mathematical, didactical and 

methodological theories that was based on the curriculum of the course, but focusing on different 

mathematical subjects for each assignment aiming at a (fictitious) classroom situation. 

Gomez’ (2002) model for didactical analysis was inspired by the teaching trajectory of Simon (1995), 

which is a cyclic planning tool for mathematics teaching, and Shulman’s (1986) work on pedagogical 

content knowledge which later informed the development of Mathematical content Knowledge for 

Teaching (MKT) (Ball et al., 2008). MKT is divided into different theoretical issues like areas of 

knowledge of content and curriculum, content and students, content and teaching, common content 

knowledge, specialized content knowledge, and horizon content knowledge (Ball et al., 2008, p.403). 

In the various parts of the MDP (Figure 1) these areas was conceptualized in terms of the 

mathematical tasks for teaching from Ball et al. (2008, p.400), such as for instance using 

mathematical notation and language, asking productive mathematical questions, and finding an 

example to make a specific mathematical point. Another theoretical framework used were the 

didactical and pedagogical competencies with specific regards to mathematics from the KOM-project 

(Niss & Højgaard, 2011). These are the eight mathematical competencies concerning mathematics as 

a discipline (chapter 4 and 5), and the six forms of specific competencies which a mathematics teacher 

should possess (chapter 6 and 7). The areas of knowledge concerns the students’ competences of 

representing, symbol and formalism, communicating, aids and tools,  mathematical thinking, 

problem-tackling, modelling, and reasoning , and the teachers’ competences of curriculum, teaching, 

revealing learning, and assessment (Niss & Højgaard, 2011). In the following text these theoretical 

notions will briefly be discussed how to be used in the design of the different phases of the MDP; see 

Figure 1 for the presentation of the model. 

A1 introduces and presents topic, grade and focus points from the National curriculum’s perspective. 

This provides the background for the PST choosing two or three textbooks, which the PST should 

analyse according to the mathematics topic and the focus points in the national curriculum. After 

which, they should make a short plan for teaching mathematics over a school year focusing on how 

to structure and organize given topics and argue for their choices. For instance, it would be wise to 

have worked with fractions and multiplication before an introduction to probability. A1 focus mainly 



on theoretical aspects from knowledge of content and curriculum (Ball et al., 2008) and the teacher 

competency of curriculum (Niss & Højgaard, 2011). 

A2 is the main part of the MDP where the PSTs works with their understanding of both knowledge 

about mathematics and didactical theories. It is important for the student to notice that the different 

parts of the plan (again see Figure 1) are meant to be understood and worked through in a hierarchical 

way. The theoretical aspects mainly focus on the MKT (Ball et al., 2008) and the competencies of 

teaching and learning (Niss & Højgaard, 2011), but of course additional theory is added when 

relevant. 

The aim for this part is to formulate a plan for teaching the subject given, e.g. geometry, over a period 

of two to five lessons. In the first part (A2a), they present focus points and quality frameworks from 

the national curriculum to illustrate the frames and goals for the teaching and learning. Since the PSTs 

had no real class to teach, they had to make assumptions based on the information given in the national 

plans and other relevant sources such as e.g. textbooks. Analysis of mathematical content (A2b) 

illustrates “all” the mathematics that the PSTs knew about the subject given, including symbols, 

algorithms, different representations, modelling, etc. The goal of this part is to provoke the students 

to go deep into their own mathematical knowledge and analyse different aspects of mathematics 

without thinking about teaching or learning. In these analyses of mathematical content, the PSTs 

theoretical framework is knowledge about representing competency, symbol and formalism 

competency, communicating competency and aids and tools competency (Niss & Højgaard, 2011), 

which also illustrates general and special subject matter knowledge and horizon content knowledge 

(Ball et al., 2008). 

Analysis of learning process (A2c) is about the students learning process in the specific subject given, 

e.g. geometry, not about general pedagogical learning theories. This part focuses on knowledge of 

content and students (Ball et al., 2008) for instance illustrated by knowledge about misconceptions, 

what could be difficult to understand and why, or how to support the learners that needed an extra 

challenge building on the mathematical issues discussed in A2b. Some of the same issues were the 

basis for the analysis of teaching (A2d), but this time the focus is teaching and to predicate how they 

can meet different situations that probably occur in teaching the mathematics subject given were, 

such as asking productive mathematical questions (Ball et al., 2008). This part is illustrating 

knowledge of content and teaching (Ball et al., 2008), and the teacher competencies about teaching, 

revealing learning, and assessment (Niss & Højgaard, 2011). Since the A2 is hierarchical built, the 

three analyses should be written in the way they are presented, the next building on the information 

given in the previous. A final and important task in A2 is to construct an open mathematics problem 

(A2e) with different levels of cognitive demands (Stein & Hiebert, 2009) which is based on 

knowledge gained from the three analyses. All the work is summed up in a schedule for the lesson(s) 

(A2f). 

A3 is an individual written reflection assignment where the PSTs reflects on the decisions and 

analysis made in A1 and A2. Since A1 and A2 are carried out as group work, the final reflection gives 

each student the possibility to add his or her own perspectives on the process and the result of phases 

A1 and A2. The last phase, A3, has been a valuable resource for the on-going and continuing 

development and implementation of the MDP in the new course.  



Final comments 

Using different theoretical perspectives from previous research about teaching (Ball et al., 2008; Niss 

& Højgaard, 2011; Stein & Hiebert, 2009), the research design method for planning new teaching 

models (Cobb et al., 2003), and research-based models of lesson planning (Gomez, 2002), have been 

useful in in designing and developing the new course in which the MDP serves as a backbone. 

Although the PSTs’ practice in schools could not be integrated within the course, it could be argued 

that focusing on lesson planning by working with the MDP had a close connection to the practice of 

teaching mathematics, which was one intention of using lesson planning as a focal idea. Another was 

to elucidate the importance of theoretical argumentation when planning (and teaching) mathematics 

lessons and the intention of repeating the MDP several times became an important choice of 

performance since especially the complexity of A2 needed to be exercised several times. A profit of 

all the work was that all the MDPs together with the teachers’ comments were shared on a learning 

management system to be available for all the PSTs attending the course. When the PSTs finished 

the course, the students thus had a number of lesson plans ready to use (with adjustments) in their 

future career. 

The empirical material available for analysing different aspects of the project is teachers’ logs, 

planning documents, students’ reflective papers from the course, students’ papers on didactical and 

mathematical analysis, and electronic records showing supervising dialogue during the writing of 

papers. The preliminary analysis of all the empirical material available, five years of teaching 

experience, and reading some of the PSTs’ final reflection notes indicates that the majority found the 

MDP challenging but educational, and that they experienced writing MDPs’ assignments to be 

valuable. Many argued that it would be too much work for planning lessons when working as a 

teacher, but that the experience of having done so during their education will influence their work as 

teachers. 

There were a couple of practical changes made during the five years of study, such as to change the 

number of group members from groups up to 6, to working in pairs, and lowering the number of 

MDPs the students should work through from four in the first year to three the years following. Since 

the students only were on campus for a short time, much of the contact had to be via the Internet and 

became the common form of communication. Supervising the process of writing papers in this way 

had clear implications on the process. This is documented in several reflection notes where the PSTs 

explicitly wrote that they would not have gone so deep into the material if they had not been pushed 

by the supervisor. 

In summing up, it seems like the MDP can be a good mediator for MKT and competencies. Further 

and more rigorous analysis of the empirical material will be valuable in documenting the proof of this 

indicative claim, and it should additionally provide more information and suggestions on how to 

enhance the MDP and the role of the supervisor. 
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This article is a description and discussion of a design research project in which we introduced a 

research idea about the influence of language on number concepts development into praxis on a 

school in grades K-3. Danish children have difficulties remembering the Danish number names 

because the Danish language resembles a primitive number concept in mathematical thinking. In 

the project, we renamed the numbers between 11- 99 after the base-10 system. Our hypothesis was 

that this system would help Danish students to get a more secure concept about the base-10 system. 

The project lasted for three years ending in spring 2016. Our results were so convincing that the 

school decided to continue using the mathematical number names, and other schools that heard 

about the project seem to be interested in using the system as well. In other words, the project goes 

from being a top-down project to a bottom-up project.    

Keywords: Design research, base-10 system, grades K-2, top-down and bottom-up project. 

Introduction 

In this article, we describe a design research project, which took place in a public school in the 

primary grades K-3. We started with a hypothesis, and then it moved on to a design and then contact 

with a public school. We ran the project for three years and then worked with the school on its 

continuation. The main concern of our paper is that of existing and anchoring projects that have 

proven successful and engaged (part of) the organization with which we have collaborated. 

Our research idea was provoked by the fact that the Danish number names (Ejersbo & Misfeldt 

2011; 2015) have an etymology and wording that are both peculiar and impractical. For example, in 

Danish, the number 73 is treoghalvfjerds (three and half-four), the number 32 is toogtredive (two 

and thirty), and the number 16 is seksten (sixteen). These old roots are unknown to most students. 

Furthermore, the number names are abbreviated. In Danish, the number 70 or halvfjerds (half-four) 

was once named half-four-times-twenty (in Danish halvfjerdsindstyve), but the times-twenty (in 

Danish sindstyve)  has been lost in the counting numbers but retained in the ordinal numbers (for 

further explanation, see Ejersbo and Misfeldt, 2011). Another concern is the irregularity of the 

number names between 10 and 20, where 11 and 12 have unique names while 13 to 19 each end 

with a ten. Also, the two-digit numbers from 13 to 99 have an inversion property (the ones are said 

before the tens), and the tens have names inspired by a 20-base system.  

Even though Danish number names are particularly irregular, most European languages break away 

from the clear regularity of the base-10 place value system. So understanding the effects of such 

irregularities on mathematics teaching and learning is interesting. With that motivation, we 

developed a hypothesis of how speaking about numbers with specific regular words that resemble 

the base-10 system would be beneficial for learning about the numbers in an easier way. This 

hypothesis has been tested with a three-year long intervention at a school in the Copenhagen area. 



The project has ended, and the intervention was to a large extent successful. The data about student 

learning confirms that the classes where the new words for numbers system was successfully 

implemented have very strong performances in the areas related to number sense and arithmetic. 

Therefore, some of the teachers and the school organization would like to continue the work. We 

consequently discuss the question of how to exit intervention projects while anchoring relevant 

practices from the intervention into the organization.  

In the paper we explore how this initial hypothesis has been activated as a way of using language as 

a didactical tool in a design research project. We will describe the state of the art that allowed us to 

develop the project idea, and how the project proceeded. Then we will briefly state our results in 

terms of a more well developed and tested set of hypotheses. Finally, we will describe our exit 

strategy for leaving a better practice at the school and reaching out to other schools and teachers.  

Number concepts, base-10 and number names  

We know from the research literature that there are major differences in the kind of system and 

regularities a language uses to describe numbers. Most European countries have an irregular naming 

system for numbers between 11 and 20; both the German and Dutch systems feature an inversion 

property of the numbers between 13 and 99, similar to the Danish one. These inversion effects were 

studied by Moeller, Pixner, Zuber, Kaufman, and Nuerk (2011) for two-digit numbers, showing 

how inversion-related difficulties predict later arithmetic performance (for an overview, see Ejersbo 

and Misfeldt, 2011, 2015).  

Different studies (Miura & Okamoto, 1989; Miura, Okamoto, Chungsoon, Steere, & Fayol, 1993; 

Miura, Okamoto, Vlahovic-Stetic, Kim, & Han, 1999) compared Japanese, Chinese, Korean, and 

English-speaking American first graders’ (6–7 years old on average) cognitive representations and 

understanding of place value. The findings confirmed that the Asian-language speakers showed a 

preference for using base-10 representations to construct numbers, whereas English speakers 

favored using a collection of units. Note that a significant difference between American and Asian 

number names appears between the numbers 11 and 19, exactly when the base-10 system starts to 

use two digits. In Miura and Okamoto’s (1989) study, children were asked to construct the numbers 

11, 13, 28, 30, and 42 from sets of ten and unit wooden blocks. The results showed that 91% of the 

American first graders used unit blocks to represent the numbers on their first attempt. In contrast, 

about 80% of the Asian children used sets of ten blocks when representing the numbers on their 

initial attempt. These differences in cognitive representation were mainly ascribed to language 

(Miura et al., 1993).  

Learning to count and understand the base-10 system are cognitive challenges involving many small 

steps. We have chosen to focus on oral counting, the cardinal principle of combining a name with a 

cardinal value, and the combination of words for a number, its cardinal value, and the digit sign.  

Children typically learn the names of numbers as a long list of words and demonstrate knowledge of 

the stable order principle by almost always saying number words in a constant order while 

emphasizing the last number (Goswami, 2008). The names are developed as sounds connected to 

the number of objects in the sets. 



The developmental shift to understanding the number name as a cardinal value requires a qualitative 

shift in children’s representation of numbers. The cardinal principle requires comprehension of the 

logic behind counting (Goswami, 2008) and the ability to judge the size of a set. It relies on a 

representation of quantitative information in which the coding of smaller quantities is different from 

that of larger quantities (Goswami, 2008). Children’s conceptual understanding of numeration 

depends on their ability to make a connection between a number name and its cardinal value, which 

they learn to do by grouping and quantifying sets of objects (Thomas, Mulligan, & Goldin, 2002).  

Learning how to connect the number name, its cardinal value, and the digit sign is another 

challenge. As discussed, two different systems must be combined with different representations. 

Becoming an expert at combining these two systems means developing rapid access to an automatic 

use of written numbers and simultaneously being able to multitask to solve other problems in 

parallel. If the two systems are iconic and support each other, the child encounters less difficulty in 

learning this skill, as is the case for Japanese-speaking children. If the two systems are irregular and 

therefore conflict with each other, it is more problematic for the child to understand and remember 

the connection among the name, the cardinal value, and the sign. Duval (2006) described this 

situation as a conversion between registers and observed that the congruent conversions seem the 

easiest for students, meaning that the representation in the starting register is transparent to the 

target register. One obvious solution is, therefore, to use a fully regular approach to saying the 

names of the numbers, which means saying “one-ten and four” instead of fourteen and so on. It is 

possible and easy to create such a logical system for naming the numbers in Danish, and thus this 

became our main project idea. 

This reasoning helped to form the project idea of using such logical number names as a didactical 

tool.  

The design of a research idea 

Occupied by these issues of why and how different languages influence number concepts and 

perhaps even the ability to learn simple arithmetic, we designed a three-year project to take place at 

a Danish public school in the suburbs of Copenhagen.  

Using design research (Cobb & Gravemeijer, 2008), we formulated our hypotheses for empirical 

investigation. The hypotheses were grounded in our initial understanding of the difficulties that 

Danish children experience with the Danish number names. The research builds on the following 

two hypotheses: 

1. Number names function as cognitive artifacts; hence, a concordance between spoken and 

written language is sensible.  

2. Language constitutes concepts, which is why clear terminology seems effective in 

developing lucid concepts. 

Project intervention 

To address the question of the influence of number names on number concepts, we contacted a 

Danish public school that could be interested to run the project together with us. We already knew 

the school, which made the access easier. We were invited to a meeting with the leading team of the 



school, including the headmaster, together with a small group of teachers from the school. We 

presented our project, and the participants accepted it for one year as a start. An evaluation would 

decide if it should continue additionally for two more years. We decided to involve all 10 classes—

three grade 2, three grade 1, four kindergarten classes—and 9 teachers in the primary section of the 

school. The project combined the renaming of numbers with supporting the teachers in instructing 

the students. In each class, 20–35% was children who had migrated from other countries, but all the 

children spoke Danish, and all the teaching was in Danish. The entire research project was planned 

to last for three years. The data consists of students’ performance in classroom observations, a 

number understanding test, teachers’ portfolios, interviews with teachers and students, and notes 

from collaboration with teachers. At the end of the projects, we used the national test for evaluating 

the students’ competencies in Algebra and Numbers.  

The first year 

The cooperation with the teachers and the classes were only possible because of the positive attitude 

from the headmaster of the school. She left it to us, the researchers and the teachers, to run the 

project. But she and the leading team was helpful and showed interest the whole time. 

An in-service course for the involved teachers was the first thing to arrange and run. At this course 

many questions came up and were discussed. Should the teachers always rename both the names of 

the numbers? How should the fractions be named? Would the student get to know the normal 

Danish number names? We made a lot of decisions that day and agreed that the teachers should 

write a log with further questions that we as researchers should answer, either by discussion or by 

recording answers in the log.  

The participants were now ready to start the next school year with the mathematical numbers.  

Kindergarten: The Kindergarten (K) teachers were used to cooperating with each other and 

continued this work with the mathematical numbers. We observed the classrooms regularly and had 

follow-up meetings. The K teachers used both the mathematical number names and the normal 

number names when they named a number, or the students read a number. They also arranged joint 

counting for all using mathematical numbers, and they made materials for student use that helped 

the students to be aware of the base-10 position system, and the students became very familiar with 

the mathematical numbers. The parents were informed at a meeting with the kindergarten teachers 

only; all in all, they implemented the mathematical numbers very easily.  

Grade 1: The project proceeded differently in the first-grade classrooms. All these classes had new 

teachers, which is normal for students in the first grade in Denmark. We were in a real-world 

situation with all the mess that exists there. The three first-grade classes had three different teachers 

who did not work together very often, and none of them continued the work done by the K class 

teachers. So the routines disappeared. The big difference in practice between first grade and the K 

class caused some chaos during the first two months. Furthermore, some of the first-grade teachers 

left the school or their classes during that period. But new teachers came, and during November and 

December the classes also worked regularly with the mathematical numbers. We were lucky that 

one of the newcomers believed in the project idea and was very involved with it. He became a 

teacher in two of the three first-grade classes, and his presence was a great benefit for the project.  



Grade 2: We never observed any of these classes, but met with the teachers and discussed how they 

could implement the mathematical numbers in the best way. These students had already been in 

school for two years, and we decided that while we could not expect that they would naturally use 

the mathematical numbers, they should know them. 

Evaluation: In the first year we were very busy collecting data, observing the seven classes, and 

trying to find the best ways to implement the mathematical numbers. The teachers’ log idea never 

caught on, so we solved any problems during our meetings with the teachers. At the end of the year, 

we tested all the students. The outcome of the test showed us that the student used both names for 

the numbers quite naturally. There was a slight tendency that the students were more secure from 

the spoken mathematical numbers to written numbers than from the spoken normal numbers to 

written numbers. In the K classes, we noticed that the students were much more secure in correctly 

recognizing and naming numbers between 10 and 20 than was normal for these classes.  

During the year, we used the design research method as a way to evaluate the actual lesson related 

to how the whole project was running. We exchanged good ideas and noticed the progress and 

difficulties. We solved the difficulties in different ways and changed some of our means; but not our 

goal. We made a report of the first year with our results and data. It was positively received by the 

leading team, who decided to let the project continue for the next two years. 

In our plan for the second year we decided not to observe in the K classes, but only meet with the K 

teachers. We would do a brief orientation for the new mathematics teachers in the four new first 

grades, and we would follow the second grades more intensively. 

The second year  

For each year, we expanded our research with new K classes and with that also thirds grates. The K 

teachers could more or less develop and repeat with their new students what they had done first 

year. The newcomers in the K teacher group were taught by especially one of the K teachers taking 

the major responsibility for informing the new teachers. As we discussed in our meetings with the 

teachers, the work in the K classes went very smoothly. 

The four new first grades had new teachers, luckily only two teachers with two classes each. They 

did not know anything about the project before they chose to teach first-grade mathematics, but 

cooperated from the start. We met with them and introduced them to the project, and visited their 

classrooms several times during the year. 

The three second grades were the most interesting, because the students were in their second year of 

the project. Their teachers were very engaged and consistent in the use of the mathematical 

numbers. Each time we observed the classroom we talked with the students and asked how they felt 

using two different names for one number. The answers were surprising:  

Student 1:  It is fun, and we like to use the mathematical number names, because then we 

always are able to remember the names. 

Student 2:  We also know the cardinal at once.  

Student 3:  It is a help to remember the names of the normal number as well.   



We were a little overwhelmed but agreed with the students that they should explain to their parents 

why we used the mathematical number names. We decided that no one could do it better than them.  

At the end of the year, we used the same test we had used in the first year but only with the first and 

second grade.  We noticed again that the students’ understanding of numbers was very good, both 

for the use of normal number names and for the mathematical number names 

Due to the time we had to do the project, and how it developed in the school, we decided to 

minimize the observation to only the three third-grade classes, but we still met with the teachers 

from second grade. We did not observe the first grades or meet with their teachers. We continued 

with the K teachers’ meetings.  

The third year 

We mostly concentrated our research on grade three and the kindergarten classes. The use of the 

mathematical number names seemed very natural for the students together with the normal number 

names, and they were bilingual in the numbers from 10–99. In third grade, the students were so 

familiar with the base-10 value system that they could transfer the knowledge to the decimal 

numbers, which meant that they easily answered questions correctly when asked to compare 

numbers like 0.4 and 0.25. In May 2016, the three classes had the national test in mathematics for 

third grade. Compared to the average of all the third graders in Denmark, one of the third-grade 

classes—the one that was observed most frequently—had an average score in Numbers and Algebra 

that was far above average. The other third-grade classes also showed a better result in Numbers and 

Algebra than the average third-graders. 

The conclusion we draw was that the students using the new system showed a better understanding 

of the base-10 system. We saw these competencies, and met our goals, in all the classes which used 

the mathematical numbers. And because the national test investigates additional competencies in 

Numbers and Algebra, we dared to conclude that the students gained from using two names for the 

numbers.  

During the following year, the school had a new headmaster and a new leading board, but because 

of the results, she decided to continue with the mathematical number names even though the 

research project stopped.  

From Top-down to Bottom-up  

With the decision that the school wanted to continue using the mathematical number names after 

our exit, we needed to design a plan for how it could be possible. Inspired by the research (Jarvis, 

1999; Nielsen, 2001) we suggested the following plan:  

1. All the teachers at the school should know that the project stopped as a research project, but 

that the project would continue as an intervention project with the teachers as the drivers.  

2. One K teacher should be responsible for introducing the methods in the K classes for 

incoming teacher and for ideas to be exchanged among the K teachers.  



3. A mathematics teacher should be responsible for orientation of the mathematics teachers in 

first grade each year and arrange a course at the beginning of the new school year, which 

everybody could join in.  

4. There will still be access to the researchers for questions and other things; we are interested 

in the continuing process.  

This plan was first discussed with the involved teachers who agreed to the work they should do, and 

then it was presented to the headmaster. She also agreed and was willing to find time for the teacher 

support.  

We started the process with a course for mathematics teachers in the K-3 classes in August 2016. 

There were about 15 people at the course, which was organized and run by a K teacher, a 

mathematics teacher, and one of the researchers. At this course, we made a quick run through the 

ideas behind the project and how it had run in the previous three years. The teachers who had 

previously taught classes and been involved in the project exchanged ideas and views of the 

learning processes with the mathematical numbers. The K teacher told how she was at an in-service 

course for K teachers in the Copenhagen region and told about the project and how she and the math 

supervisor at the school videotaped how she used the mathematical number names in the K classes. 

The other participants at the in-service course showed a big interest in the project. A similar course 

will be held again, and the math supervisor has told us that there is already a big interest in this in-

service course. 

Discussion 

This article is less concerned with the actual results of the investigations that we conducted in the 

school and more concerned with the transition from an intervention driven by research curiosity to 

an ongoing project driven by the school itself.  

The project was large with many classes involved, and we must admit that it was a little too big for 

only two researchers on a very low budget. We shared the work, so at times only one of us made the 

observations, conducted the interviews, and participated in the meetings with the teachers. 

Everything was documented with taping, pictures, and materials that we analyzed together; we still 

have data waiting for deeper analysis.  

In spite of the low budget and the few researchers, or maybe because of these limitations, we saw 

some teachers taking over the project in an especially engaged way. One teacher, in particular, took 

a lot of responsibility and during a period when other teachers were out sick, he taught all the three 

classes in third grade. Without him, we are not sure the project would have had the success it had. It 

would neither be possible to run such a project without the support and interest we had from the 

leading team including the head master, who played an important role. 

Perspectives 

As it looks now, we hope that the use of mathematics number names will spread to other schools 

and continue to develop. Even though we officially stopped the project at a meeting with all the 



teachers at the school, we will continue with some kind of support if necessary. We will also stay in 

touch for our own sake. 
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This paper presents and discusses a specific aspect of the Danish “maths counsellor” programme 

for upper secondary school, namely that of detection tests. More precisely, the purpose and design 

of a detection test is presented, as is the prospective counsellors’ use of the test. In the description, 

emphasis is placed on the ways in which detection tests assist in informing the maths counsellors in 

their work with students experiencing learning difficulties in mathematics. 
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Introduction 

The words “test” and “testing” are omnipresent in educational research and practice in general and 

in mathematics education in particular. However, the actual notions covered by these terms are very 

diverse, as are their roles and uses. Basically, the terms mean “critical examination of a person’s or 

a thing’s qualities”. There is an abundance of different purposes, goals and objects of testing, as 

well as a multitude of different approaches to and instruments for testing. Without attempting to 

outline a comprehensive theory of test and testing, one distinction is worth introducing in the 

context of mathematics education, a distinction between direct and indirect testing. In direct testing, 

the test object directly epitomises the very purpose and goal of the testing. If your purpose is to find 

out whether a given person can actually drive a car, a direct test consists of taking the person to trial 

in real car driving. In indirect testing, the test object is devised as an indirect indicator of – a probe 

into – something that is not identical to the test object itself, because this “something” is either 

inaccessible in direct terms or too large or too complex to be fully represented by the test object. So 

the test object becomes a proxy for – a representative of – the underlying, but necessarily indirect, 

object of testing. Mathematical learning, understanding, reasoning, modelling, and problem solving 

are just a few examples of such underlying objects of testing, for which a wide variety of test objects 

are only more or less well-chosen proxies. Mathematics education research and practice make 

extensive use of indirect testing, alongside direct testing.  

The key issue concerning indirect testing is what relationships can be established between 

respondents’ responses to the test object and the real underlying object of testing. The generic 

question is: What do responses to the test object tell us about the respondent’s qualities in relation 

to the real underlying object of testing. Since, in indirect testing, these objects are not identical it 

requires a non-trivial amount of clarification of concepts, of interpretation and analysis, and 

oftentimes of independent empirical research to account for the inferences that can be justifiedly 

drawn from responses to the test object onto the underlying object of testing. The “detection tests” 

in focus in this paper are instruments for indirect testing. So, the above-mentioned generic question 

has to be specified for our context. Our research question then is: In what respects and to what 



extent does the detection test presented below allow for the detection of students with mathematics 

specific learning difficulties regarding mathematical concepts and concept formation? 

Due to space limitations we are not able to fully answer this question here and to fully corroborate 

the answer. Instead, we confine ourselves to providing some key points in an answer, that is by 

describing the context in which the detection tests are used; by providing an overall description of 

what a detection test is; and finally by means of an illustrative and authentic example. It should be 

noted that although the actual content of the detection tests is based on research findings and issues 

considered in the mathematics education literature, the notion and role of “detection test” in the 

sense presented here have been introduced by us and thus have not been described previously.  

The “maths counsellor” programme 

This section is based on (Jankvist & Niss, 2016). The maths counsellor in-service teacher 

programme at Roskilde University (Jankvist & Niss, 2015) runs part time over three semesters (in 

total 30 ECTS – European Credit Transfer and Accumulation System), during which the upper 

secondary teachers – ideally – have a reduced teaching load at their schools. Each semester has an 

overarching theme: (1) concepts and concept formation in mathematics; (2) reasoning, proofs and 

proving; (3) models and modelling. These themes were chosen both because they are significant to 

upper secondary mathematics education in Denmark, as is spelled out in the national curriculum 

documents, and because they epitomise key aspects of the eight mathematical competencies in the 

Danish KOM-project (Niss & Højgaard, 2011), which constitutes the theoretical foundation of the 

maths counsellor programme. The teachers’ work in each semester is structured in terms of three 

different phases: (1) to identify (i.e., detect and select) students with genuine learning difficulties in 

mathematics; (2) to diagnose the learning difficulties of the student(s) identified; and finally (3) 

undertaking intervention according to the diagnosis arrived at with respect to the individual student.  

At the very beginning of each semester, the teachers are equipped with a theme-specific detection 

test, consisting of questions and tasks for the students in relevant classes at their schools. As will be 

exemplified below, these tests are developed by us and are informed by research literature regarding 

the specific theme. The purpose of the test is to assist the teachers in detecting students with 

potential learning difficulties in mathematics. Usually, each teacher detects several such students, 

some of whom are selected for being offered maths counselling with the aim of rectifying or 

reducing the observed difficulties during the semester. This typically leads to the identification of 1-

4 students per class in need of, and also interested in, receiving counselling. When speaking of 

mathematics specific learning difficulties, we rely on our previous definition given in (Jankvist & 

Niss, 2015, p. 260), i.e. “those seemingly unsurmountable obstacles and impediments – stumbling 

blocks – which some students encounter in their attempt to learn the subject. These stumbling 

blocks include, but are not limited to, a wide range of misconceptions, misinterpretations, 

misguided procedures, inadequate beliefs etc. with regard to established notions of mathematics. 

We do not include general learning disabilities, cognitive or affective disorders and the like.” The 

purpose of the counselling is not to motivate unmotivated students, but to assist those who work 

hard in mathematics on a daily basis but do not succeed.  

In the diagnosing phase, the participating teachers – strongly assisted by the research literature they 

read as part of the programme (see Jankvist & Niss, 2015) – employ self-constructed tasks, 



interviews, etc., to come to grips with the nature and origin of the students’ mathematics specific 

learning difficulties. Taking the diagnosis as the point of departure and with support from the 

research literature and supervision by us, the teachers design and implement an intervention scheme 

for the students selected. The intervention scheme also includes steps which enable the counsellors 

to “measure” in what respects and to what extent the intervention has worked as anticipated for the 

selected students. For each semester, groups of 2-3 teachers write up a report. After the completion 

of the third semester, all three reports are combined into one, along with an introductory chapter. 

This final report forms the basis for a final oral exam at the university. The teachers who pass 

receive a diploma as certified maths counsellor. 

What is a detection test – and what is it not? 

A detection test, as designed for the Danish “maths counsellor” programme, is a set of maths 

questions to be answered by upper secondary student classes (grades 10-12) within a time frame of 

60-90 minutes without time pressure.  The questions are short, both in their formulation and in the 

sense that they neither require lengthy procedures or computations nor longwinded explanations. 

Moreover, the questions do not involve conceptually complex or technically involved mathematics 

beyond standard upper secondary school mathematics. However, the questions are usually not 

routine questions either. On the contrary, many of them are deliberately posed in such a way that 

they break the “didactical contract” of upper secondary mathematics and require students to think 

and act independently. Danish upper secondary school takes three years and students usually enter at 

the age of 16 after having completed ten years of mandatory comprehensive primary and lower 

secondary schooling. Upper secondary students can choose to have mathematics for one, two or 

three years; three years being the advanced level. Danish upper secondary school covers three 

streams: general, technical, and business.  

The primary purpose of a detection test is to be one among several instruments for detecting 

students possessing genuine learning difficulties in mathematics, within the relevant theme of the 

programme. So, the focus is not primarily on detecting the difficulties themselves – even though the 

tests do have something to offer to that end as well, because the questions in a detection test are 

composed such that wrong answers, individually or in combination with others, may suggest the 

potential presence of particular kinds of learning difficulties with a student giving these responses. 

As mentioned, a detection test is not meant to stand alone. When it comes to detecting students with 

learning difficulties, other sources of information, e.g. the teacher’s prior knowledge of the students 

have to be taken into account as well. More precisely, a detection test may be seen as having three 

different roles. Firstly, in cases when the test, within a certain area or theme, points out students 

who by the teacher/counsellor were already suspected to have difficulties within that area, the role 

of the detection test is to strengthen the teacher’s observations. Secondly, in cases when the test 

singles out students who were not already detected by the teacher, the test serves to amplify and 

sharpen the teacher’s attention and to supplement his or her own observations of the students. 

Thirdly, it is also a purpose of the detection test to provide an initial support in pointing out the 

specific sub-domains within the test’s theme, in which a detected student displays difficulties. Of 

course, students’ test responses may not only indicate difficulties within particular mathematical 

topics; students’ response patterns may also suggest overarching difficulties of a more principal or 



general nature. Thus, this third role of a detection test then typically is to provide inspiration for the 

following “diagnosis” (cf. later sections). 

It is important to keep in mind that a detection test is not meant to be a fair test of the students’ 

attainment levels in the subject of mathematics, neither when it comes to content knowledge, skills, 

and proficiency, nor when it comes to mathematical competence at large or to inventiveness or 

special mathematical talent. Due to the fact that detection tests are designed with a different purpose 

in mind, several important aspects of the usual handling of mathematics – e.g. familiarity with 

concepts and facts, computational skills, or proficiency in solving standard routine tasks – are not in 

focus of the tests. Similarly, the test cannot be used as a screening test in the usual sense, attempting 

to chart students’ possession of various mathematical competencies. However, employed on a larger 

population of students, e.g. a year group in a given school, the test may of course be used as a 

screening test for the potential presence of mathematics specific learning difficulties pertaining the 

theme of the test, within this population, but the test is still much more focused than a general 

screening test for attainment level or competencies.  

Even though the test contributes to singling out students with potential learning difficulties, it 

cannot determine, in itself, whether a given student actually possesses such difficulties. It is 

certainly  possible to encounter poorly performing students whose erroneous answers are not due to 

mathematics specific difficulties, but to ill-will and shoddy job, lack of accept of the didactical 

contract with or in the test (e.g. because the test is not supposed to influence teachers’ marks, or 

because the questions are of a different nature than usually encountered by the students), a bad day 

on the time of testing, or maybe to much more general learning difficulties (or disabilities) that 

manifest themselves in several subjects, not only in mathematics. To determine whether a student 

detected by the test actually possesses mathematics specific difficulties, supplementary means must 

be applied as well, not least the teacher’s knowledge of the student. 

Beside the fact that the test, for a student who has been “detected” by it, may provide important 

indications for a subsequent diagnosis of mathematics specific difficulties, the test is not a 

diagnostic test. It requires an independent diagnostic process to uncover the specific nature of 

observed learning difficulties as well as the sources actually responsible for them. Oftentimes, 

preliminary hypotheses concerning the nature of the difficulties, and what may have caused them, 

must be supplemented with – or even replaced by – other hypotheses as the diagnosis proceeds. This 

may be due to much more deeply rooted difficulties than the ones observed at first, e.g. regarding 

more fundamental mathematical conceptions and beliefs than those in focus of the detection test. 

An illustrative example of algebraic equations and equation solving 

As mentioned above, in each semester of the programme the maths counsellors are equipped with a 

detection test related to the theme of the semester. Hence, detection test 1 concerns mathematical 

concepts and concept formation (we intent to discuss detection tests 2 and 3 in subsequent 

publications). This test consists of some 57 questions (and sub-questions) on selected topics 

relevant for Danish upper secondary school. These include: concepts of number (including fractions, 

decimals, negative numbers, irrational numbers); percent; algebraic expressions and 

transformations; equations (first and second degree, with different types of numbers as coefficients 

and solutions, and with the unknown on both sides of the equal sign); simple functions and aspects 



of the coordinate system; and finally a selection of mathematical conventions such as: different 

symbolic notations for fractions; the equal sign; the inequality sign; minus and negative numbers. 

Out of the 57 questions (with sub-questions) around ten questions concern equations and equation 

solving. In the following we shall focus on examples of this. 

As suggested by various researchers (see e.g. Kieran, 2007), students’ difficulties in solving 

algebraic equations are of two rather distinct kinds. The first kind is related to transformation of 

equations – and algebraic expressions – by means of permissible operations, eventually leading to 

solutions. This not only involves knowing and understanding the scope and legality of the 

operations at issue, it is also to do with the nature and structure of the number domains implicated, 

the meaning of the equal sign, and the arithmetic operations involved, etc. The second kind of 

difficulty is to do with what an equation actually is, and what it means for an object to be a solution 

to an equation. Detection test 1 includes the following questions, among others: [17] Are there any 

values of a such that a2 = 2a? [18] Are there any values of b such that 4b = 4 + b? [20] What is the 

solution(s) to the equation: 3x – x = 2x? [25] Is x = 0 a solution to the equation: 3x – x = 2x? [35a] 

Solve the equation: 3x + 20 = x + 64. [36a] Solve the equation: –6x = 24. [37] For what x do we 

have 38x + 72 = 38x? Our purpose here is to illustrate two things: what the maths counsellor may 

learn from using the test on a larger population of students; and what the maths counsellor may 

learn about a single student from his or her answers to the test questions. 

When a maths counsellor gives the detection test to a group of students, perhaps a larger cohort of 

students – say a class or a year group – certain patterns are likely to reveal themselves. For example 

questions 17 and 18 may tell us something about the students’ algebraic understanding, e.g. the 

students’ perception of how variables may and may not be denoted (anything other than x is often 

rejected as a variable). Questions 35a and 36a address the first kind of difficulty of solving algebraic 

equations, namely the operational aspect in relation to the number domains involved. Question 35a 

is an example of what Filloy and Rojano (1989) call a “non-arithmetical equation”, referring to the 

fact that the unknown appears on both sides of the equal sign. Question 36a may give rise to 

difficulties due to the appearance of the negative coefficient and division by a negative number, but 

also the situation of having to accept a negative number as a solution. On the one hand, questions 

17, 20, and 25 may tell us about the second kind of difficulty mentioned above, i.e. knowing what a 

solution to an equation means, as well as about the consequences of the fact that an equation may 

have infinitely many solutions. On the other hand, they may also tell us something about the 

students’ conception of equality in relation to equations and equation solving. From extensive 

experience, we know that Danish students have difficulties with equations that have either no 

solutions or any number as a solution. Question 37 addresses another aspect of the second kind of 

difficulty. Despite the fact that the vast majority of students are not able to correctly answer question 

20, a large number of students will say that 0 is indeed a solution to the same equation in question 

25. More interesting, perhaps, are those students who are able to answer that all numbers satisfy the 

equation 3x – x = 2x, but still answer “no” to 0 being a solution. This may have to do with a belief 

that solutions are positive integers or be an aspect of more fundamental difficulties with 0. 

To illustrate what an overview of a large student population may reveal, we provide table 1, which 

displays a binary (“correct-incorrect”) coding of 676 Danish upper secondary students’ responses 

from 2012 and 2013 (from all three levels and streams). For the 405 1st year students participating in 



the study we may confirm that questions 20 and 37 are indeed difficult ones, since 92.8% and 

85.4%, respectively, cannot answer them correctly. 

As an illustration of two maths counsellors’ use of the test in regard to equations and equation 

solving, we present the story of student Å (Christensen, 2016). Student Å followed the mathematics 

programme at intermediate level at a general upper secondary school. The two maths counsellors 

spotted student Å at the beginning of Year 1, and then worked with her for three consecutive 

semesters, while they themselves were enrolled in the maths counsellor programme. In relation to 

the above questions on equations, student Å answered incorrectly on both questions 17 and 18 

(“no”), she left question 20 unanswered but answered question 25 incorrectly (“no”), and left 

questions 35, 36, and 37 unanswered. The two maths counsellors initially interpreted this as if she 

had difficulties with the transformation of algebraic equations and with algebraic expressions in 

general, since she also gave incorrect answers to: [6] What is (a / b) ∙ (b / a)? (Where neither a nor b 

is 0.) (Å: “a2 / b2”.) and [50] If a = b is then b = a? (Å: “no.”).  

 [17] [18] [20] [25] [35] [36] [37] 

1st year (405) 148 285 376 193 168 149 346 

Error rate (%) 36.5 70.4 92.8 47.7 41.5 36.8 85.4 

2nd year (196) 45 166 172 87 54 44 139 

Error rate (%) 23.0 84.7 87.8 44.3 27.6 22.5 70.9 

3rd year (75) 12 64 49 25 25 18 43 

Error rate (%) 16.0 85.3 65.3 33.3 33.3 24.0 57.3 

Table 1: Binary coding of 676 student answers to selected questions from detection test 1 (coding by 

Morten Elkjær Hansen as part of his master’s thesis at Aarhus University, 2016) 

Based on interviews which confirmed that student Å most certainly had difficulties in solving 

algebraic equations, and handling algebraic expressions in general, the two maths counsellors 

designed a series of small interventions focusing on solving various equations, arithmetic as well as 

algebraic ones, etc. (Filloy & Rojano, 1989). Soon, however, the maths counsellors began to suspect 

that Å’s difficulties had indeed deeper roots. Student Å found that negative numbers as well as 

fractions were “ugly”, and on one occasion she uttered “0 that’s not a number!” Sometimes student 

Å had difficulty at distinguishing the operations of addition and multiplication. When trying to find 

the difference between two numbers, she counted on her fingers. When having to find how many 

times 8 divides 24, she answered “four” by counting “8, 12, 16, 24”, and even double checked the 

result by repeating the same count. Having to perform the division 24/6, she eventually gave up and 

replied “I don’t know when the numbers are so big.” It turned out that student Å had fundamental 

difficulties with the concept of number, including understanding of numbers, number domains and 

handling of numbers. She appeared only to be on safe ground when operating with small natural 

numbers, where calculations can be performed on her fingers. Student Å’s difficulties extended to 

her (in)ability to correctly apply basic mathematical terms. Thus, on a later occasion she used the 

term “diameter” (of a pizza) as just another unit along with centimeter and millimeter. 



Upon revealing the depth of student Å’s difficulties and acknowledging these to be the cause of her 

symptomatic difficulties with equation solving, the obvious question becomes whether the detection 

test might have provided us with some indications of this. In hindsight, even if there were several 

questions that Å left unanswered, the ones she answered erroneously do seem to corroborate her 

subsequently revealed learning difficulties: [7] Is the number – a positive or negative or is it not 

possible to decide this? (Å: “negative”). [13] Which number is larger: 13/3 or 13/4? (Å: “13/4”). 

[15a] What is x + 0? (Å: “0x”). [26] Round off 148.72 + 51.351 to an integer. (Å: “149 + 51 = 

191”). [27] Which of the following fractions are equal: 1/4, 4/16, 4/12, 2/8? (Å: “4/12 and 2/8”). 

[52] If a < b is b > a? (Å: ”no”). [53] Is (a – 1) / (b + 1) = (a / b) – 1?  (Å: ”yes”). 55. Is (a + 3) / (a 

+ 4) = 3/4?  (Å: ”yes”). 56. Is (a – 1) / (b – 1) = a / b?  (Å: ”yes”). In total, the occurrence of the 

above erroneous answers, together with the responses to the previous questions on equations, 

indicates the presence of a manifest learning difficulty syndrome with student Å. 

The revelation of mathematics specific learning difficulty “syndromes” 

We now return to our research question, i.e. in what respect and to what extent do detection tests 

allow for the detection of students with mathematics specific learning difficulties – here exemplified 

by concepts and concept formation regarding equations and equation solving? As we saw in the case 

of student Å, she most certainly was detected to possess the potential learning difficulties as 

suggested by the test. Clearly, the counsellors’ first hypothesis concerning Å’s difficulties regarding 

concepts and concept formation was insufficient. However, we should keep in mind that this was 

the first time ever that these counsellors used the instrument of an indirect detection test. Once the 

maths counsellors become accustomed to the instrument and skilled in using it, they tell us that they 

are able to make much more accurate initial hypotheses – or even preliminary “diagnoses”. Indeed, 

having experienced a case like student Å, our two maths counsellors are able to make much more 

qualified initial hypotheses concerning students’ difficulties. Seeing the answers to the questions 

above on numbers, conventions, etc., these maths counsellors will no longer suspect a student 

“merely” to have difficulties with solving first degree equations; they will see this as a likely 

symptom of more deeply rooted and fundamental difficulties.  

Indirect tests, such as the detection test outlined above, may mislead the interpreter of test outcomes 

in several ways. In the case of student Å we saw that the maths counsellors at first mistook the 

student’s apparent difficulties for her real, more fundamental difficulties. Another example, which 

we have also seen time and again, is where students are perfectly able to solve algebraic equations 

in an instrumental manner, but do not understand the relational aspects of the operations they 

perform or the very meaning of the solutions they arrive at (for references, see Jankvist & Niss, 

2015). This is to say that if the aim is to “train monkeys” to find solutions to equations, then this is 

certainly possible. Our aim with the indirect detection test is to go deeper, since “our” object of 

learning is more complex than to mechanically obtain a solution. Our aim is to pave the way for 

drawing conclusions that are much broader than what the test questions ask, taken at face value, e.g. 

we insert “spot probes” into aspects of students’ mastery of numbers and algebraic expressions and 

attempt to come up with hypotheses concerning their concept of number in general: if a student 

comes up with this and that erroneous answer, (s)he most likely possesses such and such learning 

difficulties; or if, on the contrary, the student can give correct answers on this particular set of 



questions, then it is fair to assume that (s)he has actually grasped, in a relational manner, something 

significant about the entities involved. 

As illustrated above, an indirect test such as a detection test may function both on an individual 

student level and on larger populations. For example, in the case of student Å we noticed that she 

answered incorrectly to question 15 and question 50 (cf. above). This we interpret as an indication 

of student Å not believing 0 to be a number and possibly possessing misconceptions of equality. But 

how special are these misconceptions for a 1st year student like Å? The coding among the 405 1st 

year students displayed in table 1 revealed an error rate of 18.3 for question 15 and 13.6 for question 

50. In addition, question 14, asking what 0 ∙ x is, which student Å answered correctly, has an error 

rate of 18.8 among the 405 1st year students. This is to say that if questions 14 and 15 are taken as 

markers of difficulties with the number 0, and if the population of the 405 students is representative, 

then it might be expected that more than one sixth of the students in a class at the beginning of Year 

1 will have the number 0 as a “stumbling block” in some sense. The indirect detection test may 

suggest the presence of syndromes, on an individual level as well as on the level of populations. 
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We discuss how a theory based design for students’ production of video-tutorials explaining 

problem solving activities in a first year calculus course can support the students’ conceptual 

learning. We focus on the limit concept and show how the production of tutorials can facilitate the 

students’ interactions and reflections and at the same time provide a rich source for analyzing their 

learning difficulties in relation to key concepts. The theory based design of students’ productions of 

tutorials and the following analyses can inform and support the development and implementation of 

the learning environment in order to facilitate better the students’ conceptual learning.          

Keywords: Limit concept, calculus, student produced video-tutorials, student-student interactions, 
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Introduction and research questions 

The many papers in the literature of mathematics education devoted to calculus signify the 

difficulties with the teaching and learning of calculus with the limit concept as one of the 

fundamental challenges (Rasmussen & Borba, 2014). In this paper we present and discuss a theory 

based design and its implementation for students’ productions of tutorials aimed at supporting the 

students’ learning of the limit concept. The research was related to a teaching experiment in a first 

year calculus course at Roskilde University, where the students produced tutorials with the app 

Explain Everything or similar apps1. Building on theories explaining general learning difficulties 

with mathematical concepts such as the notion of students’ concepts images (Vinner & Dreyfus, 

1989) and Sfard’s (1991) model for formation of mathematical concepts and the importance of 

communication in the learning of mathematics (Sfard, 2008) a didactic tutorial activity was 

designed. The purpose was to get the students to express their images of key mathematical concepts 

in dialogues with their fellow students and to support their concept formation process in particularly 

with respect to their use of symbolic representations and their reification of key concepts such as the 

derivative, integral and limit concepts as mathematical objects. The activity was designed and 

implemented as an assignment; namely to produce in small groups video tutorials explaining the 

group’s solution to selected exercises and the mathematical basis hereof, see figure 1. In the 

assignment specific requirements for the workflow of the students’ production were given in order 

to support the didactic purpose. The tutorials were used as a resource by the students at the course 

and in preparing for the final.   

In the design and implementation of the experiment the basic idea was to use the digital tutorial 

genre to create a theory directed learning environment that encouraged the students to communicate 

with each other about mathematical theory, concepts and techniques. The tutorial genre mediated 

                                                 

1 The pedagogical set up was developed in collaboration with Maja Bødtcher-Hansen, University of Copenhagen.  



student-student interactions and hereby supported students’ reflections on key mathematical 

concepts. The didactical assumption was that by focusing the students’ attention on the production 

of tutorials, aimed at supporting their fellow students’ learning, it would be possible to create 

situations where small groups of collaborating students would activate and express their own 

understandings and images of the mathematical concepts in focus. In addition, the digital tutorials 

could be (and was) used by students for their own retention of the problem solving techniques and 

their mathematical foundation – particular in preparing for the final. Furthermore, re-viewing and 

discussing the tutorials could support the students’ reflections on their conceptual learning or be 

used as a basis for common reflections. 

With respect to the scope and focus of the working group Implementation of Research Findings in 

Mathematics Education (see the introduction to TWG23), the implementation aspect of this paper 

and further related work is the design and organization in the classroom of the digital tutorial in 

creating a learning environment in which research findings on students’ concept formation and the 

importance of communication are brought to use in the teaching of a first year calculus course. We 

are developing our practice of mathematics teaching through interplay with research – and in this 

process we are also engaged with research, so in the present paper, implementation of research 

results and research are intertwined.  

We audio recorded the students’ reflections during their work with the tutorials. The transcripts of 

these records, the tutorials, the students’ performance at the course and observations during the 

course form the empirical basis for addressing our three didactical research questions (RQ): 

1. In what sense and degree can a learning environment focusing on the students’ productions 

of tutorials and other digital products with subject matter content support the students’ 

formation of key concepts in calculus? 

2. Which learning difficulties related to the key concepts in calculus can be revealed and 

theoretical explained through analyses of such student activities and products?   

3. How can the findings from such analyses be used to further develop the learning 

environment and the way in which the students’ products are used in the calculus course?      

In this paper we address the three RQs focusing on the limit concept.  

The context of the experiment 

The experiment was performed at the calculus course in the natural science bachelor program at 

Roskilde University. There were 32 first year students in the course, which was taught in English 

using a typical American calculus textbook (Adams & Essex, 2013). During the previous few years, 

it had become evident that the students’ had problems explaining and applying the concepts and 

methods of calculus in their subsequent courses. One possible explanation for the increasing 

difficulties for the students in developing their conceptual learning in the calculus course could be 

changes in their prerequisites concerning key mathematical methods and concepts from high school, 

which are fundamental for calculus such as algebra, variable, function and the limit concept. CAS 

and graphing software for calculators and computers are used intensively in mathematics teaching at 

high school in Denmark and students learn instrumented techniques to solve standard problems by 

means of such tools. Similar experiences are reported in other educational systems. Barbé et al. 



(2005) have analyzed the situation in Spanish high schools, in particular the incoherence in the 

mathematical organizations of the theory of limits at high school level. Similar incoherencies have 

been found with other key elements of upper secondary level calculus in Denmark and American 

textbooks for first year calculus courses at the university level, due to the elimination of the 

topological parts of mathematical analysis (Winsløw 2015, pp. 200-203). In general, the extended 

use of it-instrumented techniques, in particular CAS-based techniques, poses challenges for the 

teaching of calculus in high school and at introductory courses at university entrance level. Gücler 

(2014, p.4) addresses the role of the teacher in students’ learning of the limit concept in such a 

teaching practice and pinpoints the importance of the teacher in challenging the students to consider 

limits both from a process and an object perspective in different mathematical contexts. In 

particular, the students need to communicate their conceptual understanding in order to really 

experience both of these perspectives and typically they will need specific support in order to grasp 

the idea of the limit of a function as a mathematical object.  

Our approach to this challenge is to experiment with the learning environment so as to make the 

students produce and publish their own mathematical products in the form of tutorials in the digital 

genre through the use of various app’s and video-recordings with tablets. The students’ products 

combined oral and written explanations and presentations of their mathematical task and its content 

matter with visual and dynamical elements.   

Implementation of the experiment: mediatized presentations and assessment 

The students’ fabrications of the mediatized tutorials were connected to their usual homework of 

sets of traditional problems and exercises. During the course, the students handed in three sets of 

homework that each consisted of between 10 to 21 standard problems and exercises from the text 

book. The students were allowed to discuss the solutions to the exercises with each other, but they 

handed in an individual presentation of solutions to the exercises. In order to participate in the final, 

a student had to have all three homework sets approved by the teacher. After the deadline for 

handing in a homework set, the exercises of the set were distributed between the students who in 

small groups produced a video tutorial of a solution to one of the exercises using the app Explain 

Everything or by other means. The video assignments were accompanied by a set of requirements 

for the product and a specific work flow which the students had to follow. The instructions given to 

the students can be seen in figure 1. 

Each student also participated in a project work in which the students worked in groups with 

different subjects from the text book that were not covered in class. Each group wrote a technical 

report of two pages, which was supplemented by various video and/or other visual and oral digital 

products.  

Finally, the assessment criteria were changed. The written test towards the end of the course was 

replaced by an oral test. The oral examination consisted of two elements: (1) a 12-15 minutes group 

presentation of the group’s project work. Every student was required to participate actively in the 

presentation of his/hers project work; (2) an individual examination of 8-10 minutes following the 

group presentation. After the presentation of the project work, the group left the examination room 

and hereafter each student was called back in for the individual examination. Each student drew by 

chance one of the three homework sets of exercises, and made a 5-6 minutes presentation of 



selected parts of the subject matter covered by the exercises in the set. The presentation by the 

student was followed by 4-5 minutes of questioning in the remaining parts of the course and/or 

homework sets.  

 

Figure 1: Assignment, product requirement and workflow for video production. ‘Tim’ in step 4 of the 
work flow refers to the teaching assistant. The students were requested to perform a quality test 
through his approval before they continued to step 5  
 

The alignment of the requirements for the students’ work during the course and the final was an 

important aspect of the design of the new learning environment. The oral communication skills 

which were need for the final were trained through the student-student interactions in the design 

phase of the video productions as well as in the actual fabrication of the videos of the homework 

exercises and the mediatized parts of the project work. The mediatized products of the project report 

were directly aligned with the first part of the final, and the video tutorials were directly aligned 

with the second part of the final. The bank of video tutorials of the total amount of exercises in the 

portfolio sets that were produced by the students during the course helped the students prepare for 

the second part of the oral examination. The students carefully designed tutorials that explained 



clearly and in depth how to solve the exercises, because they were to be used by their fellow 

students in their preparation for the final.  

Analyzing the students’ reflections on the limit concept    

The students’ tutorials were examined during the course in order to identify those which were rich 

enough to be analyzed for answering RQ 2 with respect to the limit concept. Among them, a few 

were selected for discussions with the students in the classroom. Later, the material might be used 

for analyses that focus on other key concepts. Here, we illustrate with one case how we have 

analysed the students’ work with the tutorials for answering RQ 2 focusing on the limit concept. 

Guided by the theories, we looked for indicators of students’ image concept, of students revealing a 

conceptual understanding, and of students using a process oriented conception when we analysed 

the data. The data is transcripts of the audio recordings of one group of students while they 

produced their first  tutorial of an exercise from the first homework set. The students’ video is also 

included in our analysis. 

The students’ objective was to explain the limit concept using the exercise of finding the limit: 
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To begin with, the students observed that the limit cannot be found simply by inserting x=3 in the 

expression, since the denominator is zero for x=3. They mentioned the technique of factorization in 

order to handle this challenge. This technique is used in several examples in the text book. During 

their work, the students had software for graphical and CAS analysis at their disposal. However, 

before implementing this technique they began to reflect on the meaning of the limit concept. The 

students realized that the video should be aimed at “all the students that are struggling with 

calculus”, as student 2 phrased it. Accordingly, they took on the challenge of explaining the limit 

concept in their tutorial. Their dialogue went as follows:    

S1: Wait a second and now I think I’m lost a little bit. What is this limit thing actually 

doing? 

S2: We have to watch the limit, so we have to watch the value that our function is 

approaching, when it’s, when the axis approach …[S2 draws a graph of the 

function on the computer.] 

S1:  Ah, yeah so we can see here, that’s true. Okay trace, so we can see here, so we 

take x value 3, eeh.. to here, so it’s pretty close to 0.! 

S1:  Makes a lot of sense. We can also zoom in! 

S1: I think you just say that a limit is a number that is (inaudible) by. We have a value 

that is approaching a number ... right? 

S2:  A variable that is approaching a number? 

S1:  We have a function. We have variables in a function that is getting approached by 

a number. .. It’s like we’re getting infinitely close, we’re getting infinitely close to 

a number in the function without reaching it. That’s a limit. 

Here we see that there is a close interplay between, on the one hand, the students’ understanding of 

the particular problem in hand and their ideas and images for the limit concept in general, and on the 



other hand, the challenge of producing an explanatory tutorial for their fellow students. The 

situation forces the students to activate and verbalize their images of the limit concept. It becomes 

clear for the students that their understanding is not sufficiently developed for explaining the limit 

concept clearly in their own words in the tutorial. In the process of writing the manuscript for their 

tutorial the students consulted the text book of the definition of the limit concept. The dialogue 

continued as follows:  

S1:  yeah, okay, but let’s first answer the first one. ... What’s an introduction to the 

topic. I think an introduction would just be like “A limit is an.”! 

S2:  value that 

S1:  it’s actually like… 

S2:  a value or number, maybe a number. It’s a number that… 

S1:  yeah it is a number that is getting approached, but is never reached!  

S2:  it can be reached, it can be reached. I just. You don’t have to say if it’s reached or 

defined or undefined, you just say that it’s a number that the function approaches 

as x approaches. As x gets closer and closer to the c. [Referring to the notation in 

the textbook]   

S1:  but I mean it doesn’t reach the limit, that’s the idea. 

S2:  it has… it could. It can because you can write, because that’s only the... 

S1:  it’s still the number it’s going towards but… 

S2:  you can, you can say limit of x when x approaches 2, it’s (over) the limit. 

S1:  yeah okay, but the limit is numbered, but it never reaches that number, that’s not 

the idea. The limit is just taking it to the limit. 

S2:  okay! 

The students are getting into a deep discussion of how to understand the limit concept. Student 1 is 

quite persistent in his process-based thinking of a limit, and he has difficulties with accepting that 

the limit of a function can actually be reached. Student 2, however, switches to a more object-based 

thinking in their discussion of how they should introduce the limit concept in their tutorial. In some 

of her utterances she is getting close to formulating the definition of a limit in her own words, and 

she seems to be aware of the fact that the value of the function can be forced arbitrary close to its 

limit in a certain point x=c by choosing x to be sufficiently close – but not equal – to c.      

After a while student 1 begins to switch into a more object-based thinking of limits. He says: 

S1:  a limit is a number that is being. A limit is a value, you have (on there), the y axis, 

when you’re approaching a number on the x axis…. But is it mathematically 

correct to say that? It’s like if you have a function, and you go towards the 

number.  

In their tutorial the students explain in detail doing the algebraic manipulation by hand how to get to 

the identity:  
)3)(3(
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They explain in the tutorial how the limit of the given expression can be evaluated by substituting 3 

for x in “the redefined function” and that this yields the result 0. The students also explain that the 



given function is not continues for x equal to 3: “It has a hole in its graph for x equal to 3, while the 

redefined function is continues in this point and has the value 0”.  

However, the crucial mathematical argument is not stated or explained explicitly in their tutorial; 

namely that since the two expressions are equivalent for all real value of x ≠3, then 
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Discussion and some initial conclusions  

Focusing on the limit concept, our findings in relation to the three RQs are:  

Ad (1): The learning environment encourages the students to articulate and communicate their 

understanding of key concepts such as the limit concept in various situations and forms of 

representations. As illustrated in the analysis presented, in the process of producing the tutorial, the 

students engaged in dialogues about the limit concept using their own language. In their tutorial they 

used oral, written and visual forms of expressions in communicating their conceptual understanding 

and the techniques they used in solving their problem. The crucial didactical feature of the learning 

environment is the focus on the students’ productions of the tutorials aimed at their fellow students. 

Together with the prescribed work flow and the requirements specified in figure 1, the focus on the 

productions of the tutorials, encouraged and enabled the students to express and reflect on their own 

conceptual understanding. In general, from analyzing the students’ dialogues during their production 

of their tutorial it is evident that only when the students began to work on the video production they 

became fully aware of what their task really was about, how the technique they used could be 

explained, and why their results were correct. 

Ad (2): From the analysis it is clear that the students found it very difficult to really understand and 

use the formal definition of the concept of a limit of a function from the text. Especially student 1 

insisted on understanding the limit concept as a process or actually as two connected processes. He 

did not focus on the quality of the limit of a function, and he emphasized wrongly that the limit is a 

number which will not be reached by the function. This phenomenon can be understood by means 

of the concept of students’ concepts images (Vinner & Dreyfus, 1989). Their research explains and 

evidences that formal concept definition only become meaningful to students to the extent in which 

they are unfolded and concretized by personal experiences. The phenomenon can be further 

analyzed by means of the process – object duality of mathematical concepts (Sfard, 1991).  

In the tutorial, the students explain how to use the technique of factorization to find the limit of the 

given function. They reached a new expression for the function, which is equivalent to the given 

expression for all real values of the independent variable x except for x=3. Only the new expression 

is defined for x=3 and can therefore be evaluated in x=3, which yields 0. However, in the tutorial, 

the students did not really explain why the limit for x → 3 have to be the same for the two 

expressions since they are equal for all values of x except for x=3. Güçler (2013, 2014) found and 

analyzed similar difficulties in students’ learning of the limit concept.      

Ad (3): In general, analyses of the students’ productions of the tutorials and the tutorials themselves 

allow pinpointing learning difficulties related to key concepts in calculus such as the limit concept, 

which are theoretically explainable. The analyses can provide ideas for variation of problems to be 



dealt with in the tutorials in order to invoke and challenge the students’ different concept images of 

the key concepts in calculus. Such analyses can inform the development of the learning environment 

in order for the theories to be used in the practice of teaching for identifying and help overcoming 

students’ learning difficulties. Moreover, anchored to the students’ experiences with the tutorial, 

theories can help students develop a sound meta-learning related to the formation of mathematical 

concepts.        

Also, the tutorials can be used in whole class teaching as a point of departure for discussing the 

relations between the techniques used to solve the different types of problems addressed and the 

mathematical theory explaining them and hereby contribute to the development of the mathematical 

organization in the calculus course.    
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The goal of this article is to present and theorize our more successful and less successful attempts 

to create and sustain problem-solving forums, in which exploratory discourse takes place. The main 

argument is that many implementation-related phenomena that we have encountered when working 

with seven high-school classes for one or two school years can be characterized and explained with 

the aid of conceptual tools provided by Rogers’ Theory of Diffusion of Innovation. The most 

successful process of forming an online forum in one of the classes is presented in some detail, and 

the parallel processes in the rest of the classes are presented in the form of an aggregated 

summary. Implications for future design-based implementation research are drawn.   
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Introduction 

This article presents an implementation aspect of a research project entitled “Heuristic and 

engagement aspects of learning through long-term collaborative mathematical problem solving”1. 

The main research goal of the project (on-going until September 2017) is to produce a model of 

learning through mathematical problem solving, which would be attentive to cognitive, socio-

affective and contextual aspects of this activity. In particular, the model is supposed to attend to 

interactions between variations in heuristic behaviors (Koichu, Berman & Moore, 2006; Koichu, 

2010) and socio-affective engagement structures (Goldin et al., 2011) activated when high-school 

students collaboratively cope with challenging mathematics problems for relatively long time.  

An implementation aspect of the project consists of designing and sustaining a special learning 

environment, in which long-term problem solving might be investigated. The intended environment 

comprised of a particular combination of problem-solving lessons in a classroom and out-of-

classroom work supported by online asynchronous discussion forums. Its design was strongly 

informed by past research on affordances of online learning environments. Past research tells us that 

students in online environments can actively participate in solving complex problems for 2-3 weeks 

almost without teacher interventions (Moss & Beatty, 2006) and that some of those students who 

tend to be silent in a classroom can actively participate in online discussions (Schwarz & Asterhan, 

2011). In addition, there is evidence that online discussions enable students to meaningfully use 

their mathematical knowledge, enhance self-regulation skills and support knowledge construction 

(Nason & Woodruff, 2003; Tarja-Ritta & Järvelä, 2005; Stahl, 2009).   

Schwarz and Asterhan (2011) attribute the benefits of online discussions to their unique traits, such 

as: fostering divergent rather than linear interactions, enabling flexible time schedules of 

                                                 

1 Selected findings of the project are reported in Lachmy & Koichu (2014), Koichu (2015ab), Keller and Koichu (in 

press). 



participation in the discussions over relatively long periods of time, encouraging explicit and 

accurate expression of the ideas in writing. Koichu (2015ab) argues that many affordances of an 

online problem-solving forum stem from its fundamental characteristics of being a choice-affluent 

environment, that is, an environment, in which the students are empowered to make informed 

choices of: a challenge to be dealt with, a way of dealing with the challenge, a mode of interaction, 

an extent of collaboration, and an agent to learn from. In brief, past research on online collaborative 

problem solving presents many evidence-based cases of successfully working online forums.  

However, little is known from the professional literature about how to put the forums into work and 

sustain them. Our experience in the aforementioned project taught us that this enterprise is truly 

challenging. The goal of this article is to make sense and theorize our more successful and less 

successful attempts to create and sustain problem-solving forums, in which exploratory rather than 

expository problem-solving discourse (this distinction is due to Stahl, 2009) takes place. The main 

argument is that many implementation-related phenomena that we have encountered when working 

with seven high-school classes (grades 10 and 11) can be characterized and explained with the aid 

of conceptual tools provided by Roger’s (2003) Theory of Diffusion of Innovation. 

Conceptual framework    

Approach: Design-Based Implementation Research (DBIR) 

Werner (2004) refers to implementation research as the systematic study of the implementation of 

innovations. Fishman, Penuel, Allen, Cheng and Sabelli (2013) point out that this type of research 

encompasses studies of fidelity, of variations in implementations as well as studies of conditions 

under which programs can be implemented effectively. They further refer to implementation 

research and to design-based research as antecedents of a new, emerging research model, which they 

name Design-Based Implementation Research (DBIR). The core principles of DBIR are as follows:  

 (1) a focus on persistent problems of practice from multiple stakeholders’ perspectives; (2) a 

commitment to iterative, collaborative design; (3) a concern with developing theory and 

knowledge related to both classroom learning and implementation through systematic inquiry; 

and (4) a concern with developing capacity for sustaining change in systems. (Fishman, Penuel, 

Allen, Cheng and Sabelli, 2013, pp. 136-137) 

In addition, DBIR calls for breaking down barriers that isolate those who design and study 

innovations and those who study the diffusion of innovations. We find the DBIR concept and 

principles well-adjusted to the needs of our project.  

Vocabulary: Selected elements of the theory of diffusion of innovations 

The notion innovation is frequently used in the literature on implementation research as a self-

explanatory one (Fishman et al., 2013). However, there exists a branch of the professional literature 

that explicitly focuses on innovations and the processes of their diffusion. In particular, Rodgers 

(2003) defines innovation as “an idea, practice, or object that is perceived as new by an individual 

or other unit of adoption. It matters little, so far as human behavior is concerned, whether or not an 

idea is ‘objectively’ new as measured by the lapse of time since its first use or discovery” (p. 11). In 

our case, the idea of stretching the boundaries of a classroom by means of an online problem-

solving forum was an innovation because it was new to the students and the teachers.    



Rodger’s (2003) theory of diffusion of innovations meticulously characterizes the innovation-

decision process, in which individuals (or other decision-making units) decide whether to accept an 

innovation or not. In particular, Rodgers distinguishes five stages of the process: knowledge, 

persuasion, decision, implementation and confirmation. The stages are briefly presented below.     

At the knowledge stage, potential innovation adopters are exposed to the innovation’s existence and 

obtain some information about how it functions. Sometimes individuals become aware of an 

innovation by accident, and sometimes they actively look for it in order to fulfill particular needs. It 

is also possible that the needs are formed as a result of one’s exposure to an innovation.  

At the persuasion stage, an individual forms a favorable or unfavorable attitude towards an 

innovation. This stage presumes affective involvement with the innovation. In particular, the 

individuals may mentally apply the new idea to their present or anticipated future situation. They 

seek to answer such questions as “what are the innovation’s advantages and disadvantages in my 

situation?”, and seek the answer mostly from their near-peers, whose opinions based on their 

personal engagement with an innovation, are the most convincing. There is a discrepancy between 

forming a favorable attitude towards an innovation and an actual decision to adopt it. Adoption of 

an innovation can be influenced by a cue-to-action, an event that crystallizes an attitude into overt 

behavioral change. 

At the decision stage, an individual adopts (i.e., makes full use) or rejects an innovation. Any 

decision is not final however. The rejection can occur even after a prior decision to adopt; in 

Rodgers’ terms, this phenomenon is called discontinuance. The theory distinguishes between active 

and passive rejection. The former type of rejection consists of considering adoption of the 

innovation and then deciding not to adopt it. The latter one consists of never “really” considering 

the use of the innovation. The decision stage frequently includes a small-scope trial. The actual 

sequencing of the three stages presented so far can alter. Namely, both knowledge–persuasion–

decision and knowledge–decision–persuasion sequences are possible. 

At the implementation stage, an individual puts an innovation into systematic use. Even though the 

decision has been made, the adopters may still feel a certain degree of uncertainty about the 

consequences of the innovation. In addition, problems of how exactly to use the innovation may 

emerge. Sometimes the adopters change or modify (in Rodgers’ terms, re-invent) the innovation at 

this stage. The implementation stage can be lengthy, but it ends when the idea that has once been 

innovative becomes institutionalized and regularized in the adopters’ normal functioning. 

Finally, at the confirmation stage, an individual constantly seeks reinforcement for the decision to 

adopt or reject an innovation that has already been made. As a result of positive or negative 

messages about the innovation, the decision can be reversed. Rodgers points out that the change 

agents (i.e., those who influenced one’s decision to adopt an innovation) have responsibility of 

providing supportive messages to the individuals who have previously adopted the innovation. 

Methodological aspects of the project 

Participants and the project’s activity 

Two experienced mathematics teachers and two of their 10th grade classes took part in the first year 

of the project (2013-2014); five more teachers and their corresponding five classes joined the 



project during its second year (2014-2015). Each participating teacher acted in the project as a 

member of the research group and took part in the meetings of the group. In addition, each teacher 

worked in contact with an additional member of the group who was responsible for the 

technological support and documentation of the activity. Mathematics in all participating classes 

was studied for five hours a week, in accordance with the Israeli high-level curriculum (see Leikin 

& Berman, 2016, for details). For the concerns of this article, it is enough to mention that geometry 

was studied two hours a week and that its study included systematic work on proving tasks. 

We planned that each participating in the project class would be engaged, at least three times during 

a school year, in the following activity. The students cope with a series of preparatory tasks during a 

90-minute lesson and are offered an especially challenging geometry problem at the end of the 

lesson. They then engage, for 5-10 days, in solving the problem from home in a closed (that is, 

available only to the students of a participating class and the members of the research group) online 

forum. Different technological platforms, including Google+ and WhatsApp, were tried in different 

classes. When the problem is solved or, alternatively, when the students give up, a 90-minute lesson 

is conducted in the classroom in order to get closure. The lesson consists of whole-class and small-

group discussions, during which the students share their experiences with the problem.  

Documentation of the project 

Forty-two meetings of the research group were audiotaped (about 100 hours) and, in addition, 

documented in the protocols of the meetings (more than 100 pages). The documents produced by 

the group and all relevant email exchange were stored. Every member of the group was required to 

keep a diary. The diaries were for writing anything their authors deemed important for the project, 

including their thoughts and feelings in relation to the project’s events. The diaries were stored in 

shared Google Drive of the group and were available for reading and commenting by the members. 

In addition, 14 lessons were videotaped, the content of the forums was stored (more than 3000 

posts), interviews with students and teachers were conducted (about 15 interviews), and the 

students’ written feedback on different aspects of the project was collected.    

The story of NK’s class, which is presented below in some detail, is produced using narrative 

inquiry methodological tradition. As Clandinin and Caine (2008) explain, “Narrative inquiry is 

marked by its emphasis on relational engagement between researcher and research participants” (p. 

542). This approach was chosen because we (hereafter, BK and NK) had been active members of 

the processes under exploration; in particular, NK was a mathematics teacher of the class. An 

aggregated summary of the stories in the rest of the classes is produced using a general inductive 

approach (Thomas, 2006), which enables researchers “to condense extensive and varied raw text 

data into a brief summary format” (p. 238).  

Findings 

A (success) story of NK’s class 

The main events at the knowledge phase of the project in NK’s class consisted of: (1) a conversation 

between NK and BK following BK’s observation of one of NK’s lessons; (2) a conversation 

between NK and her students. Because of the first conversation, NK decided to take part in the 

project mainly because the idea to stretch the boundaries of a classroom by means of an online 

forum resonated well with NK’s constant need to enrich her teaching repertoire in order to create 



valuable learning opportunities for her students. In Rodgers’ terms, NK acted as a venturesome 

innovator who is able to cope with high degree of uncertainty about an innovation, and BK acted as 

a change agent. In her conversation with the students, NK acted as a change agent, and the students 

were potential innovation-adopters to be persuaded. NK argued that developing problem-solving 

skills was a strong benefit of participating in the project, and appealed to the students’ curiosity to 

try something new and be a part of an interesting initiative. The students’ reaction to the information 

about the project was favorable, though not exactly for the reasons that NK had presented. 

The first mathematical problem of the project is presented in Figure 1. It is representative of most of 

the problems of the project. In particular, it looked similar to geometry problems the students were 

familiar with from classwork and homework. As such, the problem “invited” the students to 

approach it by means of mathematical ideas that worked well in the past. For instance, the students 

might think of including the angles, whose equality is to be proved, in a pair of triangles and attempt 

proving their congruence by finding some equal elements. However, such a general plan was 

insufficient; something else (e.g., a clever auxiliary construction) should have been invented. 

Nine-Square Problem: There is a net of nine congruent squares  

(see the drawing). Prove that the two angles denoted 

in the drawing are equal.  

 

Figure 1: The first problem of the project 

When the problem was uploaded to the Google+ forum, three students worked on it. Their three-

hour-long brainstorming session was unsuccessful. As a result, the forum was non-active during the 

next two days.  The following day NK met the students at school and asked: “Why did you stop 

solving the problem? It is not too difficult”. The students showed NK their hand-made drafts as 

evidence that they had tried. NK asked the students to upload their drafts to the forum and continue 

solving the problem together. That evening eight students entered the forum, cooperated and 

eventually solved the problem. Two solutions to the problem by the active participants of the forum 

and an additional solution by a student who was a silent observer were presented at the mathematics 

lesson following the forum. The students’ voluntarily expressed their suggestions as to how to 

further run and improve the forum by the end of the lesson, 

In Rodger’s terms, the first three students acted as venturesome innovators. Rodgers points out that 

this category of adopters is important for launching a new idea, but they have little influence on 

other individuals’ decision to adopt or reject the idea. The conversation between NK and the 

students in school was crucially important as a cue-to-action for eight students, who acted as early 

adopters. Rodgers characterized this category of individuals as respectable, that is, well-integrated 

members of a local community whose opinion about the innovation matters for the potential 

adopters. The mathematics lesson, in which these eight students shared their positive experience at 

the forum with the rest of the class, was another crucially important cue-to-action. 

The next two problems of the project were approached on the forum by about the same group of 

students. The students learned to share their half-baked ideas, and even developed some rules 

related to publishing the full solutions at the forum. In brief, they agreed that a student who obtained 



the full solution should not publish it early, in order to not “spoil the fun” for others. The forum was 

indeed exploratory rather expository in nature. Three months later, collaborative problem solving at 

the forum became a well-established practice for six students; most of their classmates joined the 

forum occasionally and constituted the early majority. It seems that each student has decided how 

and to which extend to use the forum. The implementation stage (three to eight month from the 

beginning of the project) was characterized by gradual two-directional diffusion of social and socio-

mathematical norms developed in the forum and in the lessons. In particular, there were several 

forum-like lessons initiated by the students (see Keller & Koichu, in press, for details). 

The evidence of confirmation of the students’ decision to adopt the innovation came from the 

following sequence of events. As mentioned, the Google+ forum flourished for several months, but 

it we have not yet mentioned that then it was deserted. NK inquired with the students about this fact 

and discovered that the activity moved from the Google+ to WhatsApp, a popular social network in 

Israel since about 2014. The students granted NK access to their WhatsApp forum, and we were 

happy to find there many autonomous problem-solving discussions of exploratory nature. The 

WhatsApp forum flourished in NK’s classroom until the students’ graduation in 2016. 

An aggregated summary of seven stories          

An aggregated summary of the conduct of the project in all participating classes, by Rodgers’ 

phases, is presented in Table 1.  

 NK class AP class AH class ES class RN class OG class LA class 

Knowledge + + + + + + + + + + + + + + 

Persuasion + + + + + + + + + + - + 

Decision Accept Passive R Accept Passive R Accept  Active R 

Implementation + + + + + + +   

Confirmation + +       

Table 1: The implemented stages of the project in seven classes  

The sign “+ +” in the table means that the stage is fully realized; “+” means that the stage is partially 

realized (e.g., the forum was active only as a trial or only few students were active); “-” means that 

there were no conditions for realizing the stage; “Active R” and “Passive R” stand for active and 

passive rejection, respectively. An empty cell means that the project did not arrive at that stage. 

As Table 1 tells us, only NK’s class went through all five stages, up to the point when using the 

online forums for problem solving stopped being an innovation and became a routine. 

Implementation of the project’s idea at the scope comparative to NK’ class occurred in one other 

class, and partial implementation – in three classes. In two classes the project did not reach the 

implementation stage, despite of much effort made by the teachers and the research team.  

Concluding remarks   

Recalling Tolstoy’s seminal assertion, happy families are all alike; every unhappy family is 

unhappy in its own way, we can argue that there is a unique story behind each cell of Table 1. 



Unfortunately, we cannot tell these stories here due to the space constraints. In brief, sometimes 

school conditions or classroom norms were inappropriate for realizing the project’s idea, sometimes 

a particular cue-to-action event did not happen at the right time or was not appropriately designed, 

and sometimes our decisions and actions as a research group were far from being optimal. We have 

also observed, more than once, the phenomena of discontinuance and of passive rejection for which 

we do not have convincing explanations, despite the extended data set in our possession.  

We intend to continue the aforementioned project, and one of the lessons learned so far is that the 

DBIR concept and theories like the Rodgers’ theory of diffusion of innovation should be taken 

seriously. Either detailed or aggregative analysis of implementation of the project idea is helpful for 

us as a tool for refining the roadmap of the project. In addition, we now better understand that 

creating conditions for implementation of an innovative pedagogical idea in a school reality should 

be given full attention prior to delving into a pursuit for “traditional” research questions, such as 

questions on cognition and affect in mathematical problem solving that have been the main research 

questions of the project. Based on the accumulated experience, we call for reporting and analysing 

not only those cases where an innovative idea is being fully implemented, but also those case where 

the implementation was partial or did not occur as planned. We conclude by suggesting that 

systematic attention to implementation issues, by means of DBIR, may have not only practical, but 

also fundamental theoretical significance in mathematics education.                    
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From theory through collaboration into practice: Designing a 

problem- solving curriculum for grade 6 students 
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Teachers are continuously confronted with instructional endorsements, such as the inclusion of 

problem solving in school mathematics. However, adoption of problem solving is still not a reality. 

One reason for it is the lack of practical teaching materials based on research findings to achieve 

the goals stated in the standards. In the context of this reform agenda, collaborative work between 

educational researchers and practitioners in a real setting working on issues of everyday practice is 

crucial in order to overcome the gap between theory and practice. In this paper, I focus on such 

theory based problem solving curriculum for grade 6 students that was developed using design- 

based research. At the end, I discuss factors inhibiting the implementation of the curriculum.  

Keywords: Word problems, material development, mathematics activities, problem solving.  

Introduction  

The (inter-)national educational standards (e.g., KMK, 2003; NCTM, 2000) have strongly endorsed 

the inclusion of problem solving in school mathematics. Empirical studies, however, portray a 

different picture. Students are often unable to solve problem tasks (e.g., Schoenfeld, 1985). In 

addition, quality analyses in the German school system contend to a poor problem solving culture. 

As reported in Kuzle and Gebel (2016), problem solving tasks got rarely introduced. When this was 

the case, they were primarily done by the teachers; mostly routine tasks dominated the lessons, and 

problem solving strategies were explicitly applied in one third of examples only. The biggest 

problem reported by the school’s teachers was the lack of practical teaching resources to achieve the 

goals stated in the standards (Kuzle & Gebel, 2016). In the context of this reform agenda, the 

development of materials for students and teachers is of great importance for overcoming the gap 

between theory and practice (Jahn, 2014). One urban school recognized this deficit and set as a goal 

promoting problem solving instruction centered around curriculum material, developed through 

collaborative work between educational researchers and practitioners.  

Here I report on a small part of SymPa1-project (Systematical and material based development of 

problem solving competence) focusing on collaboration between practitioners and researchers with 

the goal of developing a problem solving curriculum for grade 6 students using design-based 

research (DBR). The guiding question is: What factors inhibit implementation of research-based 

problem solving curriculum in practice? In the following sections I outline relevant theoretical and 

methodological underpinnings used to design a problem solving curriculum, before showing how 

these got implemented, and report on its evaluation (initial DBR-cycle). As a result of evaluation, I 

discuss the curricular redesign that might allow more effective implementation in practice. 

                                                 

1 SymPa stands for „Systematischer und materialgestützter Problemlösekompetenzaufbau“. Inga Gebel (researcher) and 

Christian Conradi (practitioner) initiated and participated in the project likewise. 



Theoretical foundation guiding the design process 

Plethora of research on problem solving undergoing since the 1970s identified several pivotal areas 

for a problem solving curriculum. I outline here only a small portion of this research that was crucial 

for the project based on German standards’ conception of problem solving (KMK, 2003). 

Problem solving competence   

Problem solving competence relates to cognitive (here heuristic), motivational and volitional 

knowledge, skills and actions of an individual required for independent and effective dealing with 

mathematical problems (Bruder, 2002; Kuzle & Gebel, 2016). Accordingly, students should a) learn 

approaches (heuristics) for solving mathematical problems and how to apply them appropriately in a 

given situation, b) develop reflectivity for own actions, and c) develop willingness to work hard (cf. 

Bruder, 2002; KMK, 2003). As problem solving competence encompasses so many different facets, 

problem solving curriculum should account for the following research areas: (a) teaching 

approaches and concepts on problem solving, (b) theories of self-regulated learning and self-

regulation in problem solving, and (c) theories of motivation which are outlined below.  

Teaching approaches and concepts on problem solving in combination with self-regulation 

There are at least seven practices for problem solving curriculum that researchers (e.g., Kilpatrick, 

1985; Pólya, 1945/1973; Schoenfeld, 1985) have claimed to be important for helping students grow 

in their problem solving ability: (1) osmosis (give lots of problems), (2) give “good” problems, (3) 

memorization (teach specific or general heuristic strategies (heurisms)), (4) imitation (model 

problem solving), (5) cooperation (limit teacher input by having students work in small groups), (6) 

reflection (promote metacognition by asking metacognitive questions or encouraging students to be 

reflective), and (7) highlight multiple solutions. In the recent years, Bruder (2002) developed a 

problem solving teaching concept focusing around Lompscher’s (1975) idea of  “flexibility of 

thought”. Flexibility of thought is expressed by one’ ability to  

1. reduce a problem to its essentials or to visualize it by using visual and structuring aids, such 

as informative figures, tables, solution graphs or equations (reduction).  

2. reverse trains of thought or reproduce these in reverse, such as by working backwards 

(reversibility). 

3. simultaneously mind several aspects of a given problem or to easily recognize any 

dependences and vary them in a targeted manner (e.g., by composing and decomposing 

geometric figures and objects, by working systematically) (minding of aspects). 

4. change assumptions, criteria or aspects in order to find a solution, such as by working 

forwards and backwards simultaneously or by analyzing different cases. Such ability 

prevents “getting stuck” and allows new approaches and insights (change of aspects). 

5. transfer an acquired procedure into another context or into a very different one by using 

analogies for instance (transferring). 

These typical manifestations of mental agility can be related to analyses of heuristic approaches by 

Pólya (1945/1973). Untrained problem solvers, however, are often unable to access the above 

outlined flexibility qualities consciously. Moreover, not only the knowledge of different heuristics 

(flexibility of thought) is needed when problem solving, but also self-regulatory abilities which 

evolve gradually through a 5-phase model (Zimmerman, 2002). Problem solving can be trained by 



learning heuristics corresponding to these aspects of intellectual flexibility in combination with self-

regulation, which according to Bruder (2002) and Bruder and Collet (2011) develops through the 

following five-phase concept: 

1. Intuitive familiarization: This phase builds on Pólya’s (1945/1973) model, in which a 

teacher serves as a role model when introducing a problem to students. Thus, the teacher 

moderates behaviors typical for the problem by engaging in self-questioning pertaining to 

different phases of the problem solving process (before, during, and after). For example 

questions such as, “What is the problem asking for?” “What information am I given?” “Is 

there anything I don’t understand?” “Am I headed in the right direction?” may help guide the 

students (Kuzle & Bruder, 2016). At this point the heurism in focus is not specified. 

2. Explicit strategy acquisition: During this phase the students get explicitly introduced to the 

heurism in focus on the basis of a reflection from the first phase. Here the particularities of 

the heurism get discussed and it gets a name (exemplification). Here prototypical problems 

get used for introducing a heurism in focus, so that the students can more easily recognize its 

main ideas and more easily remember their specific steps for future problem solving. 

3. Productive practice phase: During this phase the students practice solving the problems 

using the heurism in focus. Here is important that the problems do not reproduce type 

problems, bur rather expand the possibilities from the first two phases. In addition, 

differentiation should be a guiding concept during this phase, so that students can choose at 

what cognitive level they want to work and adapt the observed learning behavior. 

4. Context expansion: In this phase the students should practice the use of heurism in focus 

independent of a mathematical context. In that way, the students learn to flexibly, 

unconsciously and independently of a context use the heurism in focus.  

5. Awareness of own problem solving model: The aim of the teaching concept is that the 

problem solving model of the students gets expanded, so that they are in a position to solve 

problems better using different heurisms. Awareness of own problem solving model can be 

induced by having students reflect on and document their problem solving process.  

Lastly, students’ willingness to work hard is a major factor for the successful problem solving 

process. Without an effort from the learners, there will be no successful learning. For that reason, 

the criteria such as, understandable and clear problem, age-appropriate choice of context, and 

visible competence growth (Bruder, 2002) are crucial when designing problem solving curriculum. 

To summarize: the problem solving curriculum was developed around the operationalization of the 

terminology “problem solving competence”. This included the teaching concept of problem solving 

by Bruder (2002) in combination with Zimmerman’s (2002) self-regulation model taking into 

consideration the criteria for motivating tasks (Bruder, 2002).  

Curriculum development 

The problem solving curriculum was developed in collaboration between the two researchers 

(author and young researcher) and one practitioner (teacher from the project school). More 

concretely, the researcher team developed the curriculum based on the outlined theories and 

school’s contextual factors (see below), which were discussed up-front. Curriculum materials (e.g., 

problems, textual parts, figures, colors) were either separately developed by the researcher team and 



discussed afterwards with the teacher or the entire team met together and developed them. The final 

decision about the problem solving curriculum (e.g., content, problems) was met by the teacher. 

Enactment 

For the design of curriculum contextual factors played a great role, in which theoretical ideas had to 

be operationalized. Students of 6th grade were chosen to participate in the project lasting one school 

quarter (ca. 16 lessons, 1 lesson = 45 min). The implementation of the curriculum took place during 

two parallel phases (see Table 1). During the first DBR-cycle 13 students participated. Teacher A 

initiated the project, had previous experience in problem solving (e.g., attended professional 

development courses on problem solving, read literature on it, and implemented problem solving 

tasks occasionally in his teaching practices). The second DBR-cycle started parallel to the first 

DBR-cycle, and was led by another mathematics teacher. In total 12 students participated. Teacher 

B had practically no experience with problem solving or teaching problem solving. 

1st DBR-cycle 

every 14 days (8 meetings), Fridays, double 

period, teacher A 

2nd DBR-cycle 

weekly (17 meetings), Mondays and Tuesdays, 

single periods, teacher B 

Table 1: Parallel enactment cycles 

With respect to heurisms, focus laid on those heurisms prescribed by the school’s own curriculum, 

namely heuristic auxiliary tools (informative figure, table, solution graph), heuristic strategies 

(working systematically, working forwards, working backwards), and heuristic principles 

(composing and decomposing). Thus, all flexibility qualities were addressed. With respect to 

mathematical content, problems covered the content areas of 5th and 6th grade mathematics 

(operations with natural numbers and fractions, combinatorics, geometric and numeric patterns, 

measurement pertaining to 2- and 3-dimensional figures). Based on the project time frame, each 

heurism was covered within two lessons, but followed the above underlined problem solving 

concept. For one exemplarily operationalization with references to theoretical base see Figure 1. 

During the implementation phase data collection took place on three different levels: student level, 

teacher level and classroom level. With respect to the student level, data from student textbooks 

(intermediate reflections, final reflection) and their workbooks (student productions) was collected. 

With respect to the teacher level, data from continuous communication with the teachers (e-mail, 

telephone calls), teacher textbook and semi-structured interview at the end of the project was 

collected. Concretely, continuous communication allowed the researcher team to support the 

teachers during the implementation phase with respect to pedagogical and/or methodological 

questions (e.g., discussion of different solutions, cooperative methods), by answering questions of 

content nature (e.g., questions about particular heurism), and through flexible and stepwise redesign 

of the curriculum after each lesson. Lastly, with respect to the classroom level, observations allowed 

for analysis of student-teacher interaction, and students’ interaction with the curriculum.  



 

Curriculum on the heuristic auxiliary tool of table Theoretical foundation 

2.2	Table	
2.2.1	Coin	problem	I	

Probi	wants	to	buy	a	bar	of	chocolate	for	27	cents.	He	has	only	10-,	5-,	and	2-cent	

coins.	In	how	many	different	ways	can	Profi	buy	the	chocolate?	

	

	

	

	

	

What	is	a	table?			

Tables	are	useful	heuristic	auxiliary	tools	when	trying	to	structure,	reduce	and	focus	

the	information	in	problem	tasks.	They	are	well	suited	for	documenting	different	

approaches	or	different	possible	solutions,	and	record	all	possible	cases	of	a	solution	

without	losing	track.		
	

Example	

	

	

	

	

	
	

2.2.2	Usage	of	a	table	
	

	

Write	a	letter	to	Probi,	in	which	you	explain	him	how	you	have	solved	the	

problem	using	the	table.		
	

2.2.3	Choice	for	outfits	
Probi	was	invited	to	Probi’s	garden	party.	He	is	standing	in	front	of	his	wardrobe,	and	

doesn’t	know	what	he	should	wear.		

	

	

	

a) How	many	different	possibilities	does	Profi	have	for	his	outfit?	List	them	all.		
b) How	can	a	table	be	helpful	when	solving	the	above	problem?	

	

2.2.4	Table	instead	of	informative	figure		
	

	

	

Explain	Probi	how	you	solved	the	problem.	Which	approach	do	you	prefer?	Why?

Profi,	I	still	don’t	understand	how	you	approached	the	problem	in	the	

example.		

Wozu	dient	die	Tabelle	da?	

Probi,	here	I	want	to	show	you	that	problems	can	be	solved	with	

different	heuristic	auxiliary	tools.	For	example,	I	solved	here	“The	

Age	problem“	(2.1.3)	using	a	table.		

I	solved	now	the	“Sliding	task“	using	a	table.	Probi,	how	did	I	do	it?		

Hmmm…	

27	Cents	per	chocolate	

Mmmh	chocolate!	How	can	I	combine	my	

coins,	so	that	I	don’t	get	any	change?		

I	wanna	wear	my	favorite	jeans	in	any	case.		

I	am	missing	then	only	a	T-shirt,	a	hat,	and	a	pair	of	

shoes.	

Uiii,	I	have	a	lot	of	possibilities	for	my	outfit.	

 

In the phase of intuitive familiarization, 

students solve a representative problem for 

the heurism in focus together with the 

teacher, who serves as a moderator. Here 

the imitation of teachers’ behavior takes 

place through self-questioning.  The 

problem represents the students’ first 

encounter with the heurism in focus. 

In the phase of explicit strategy acquisition, 

the heurism in focus gets formally 

introduced through a short student-centered 

information text and an example.  

In what follows, at least three problems of 

different cognitive level are presented that 

serve as a productive practice phase. This 

allows for differentiation, where each 

student can solve as many problems as he 

or she can. In addition, problems from 

different mathematical content areas are 

covered, to allow for transfer (context 

expansion phase), which pertains to the 

fourth phase of the teaching concept.  

In addition, the heurisms are interrelated, 

so it is important that the students 

comprehend this. The last task allows 

students to make this connection by 

comparing the two heurisms and reflect on 

it. 
 

Figure 1: A sample page from the problem solving curriculum on the heuristic auxiliary tool of table 

The problems focused on contexts that are motivating and appropriate for young students. In 

addition two figures were introduced to support students’ willingness to work hard; they could 

identify with Probi (shape of a question), who asks questions and gets stuck. Profi (shape of an 

exclamation mark) offers then support to students, who illustrates a professional problem solver. 

Evaluation 

Qualitative-content analysis was used to analyze the collected qualitative data as outlined in Patton 

(2002). This method is particularly suitable for research activities, in which the knowledge is low 

and a study has more of an exploratory character. Thereby, the aim was to systematically analyze the 



qualitative data and produce a category system by focusing on factors inhibiting the implementation 

of the curriculum. The deductive analysis was performed based on the theoretical foundation, which 

was then refined in the inductive analysis by emerging issues and additional codes. The situations 

were interpreted as inhibiting when they allowed for a limited implementation of the curriculum 

only as reported explicitly by teachers and students and/or was observed by reviewing the collected 

data. As a result four categories were produced (see Table 2, for more detail see Kuzle & Gebel, 

2016). The category system was then used to interpret the results of the study with respect to the 

research question. All data got analyzed by the two researchers independently.  

Category Description Subcategory 

Language All language-based comments that influenced 

the understanding of the problem were assigned 

to the language category. 

Problem solving terminology 

Figure names 

Problem enumeration 

Level of 

performance 

Barriers influencing the level of performance 

during problem solving process (e.g., content 

barriers, subjective barriers) were assigned to 

the level of performance category. 

Motivation and differentiation 

Curricular difficulties 

Increased level of performance 

Learning 

pedagogies 

The evaluations of the curriculum in terms of 

the didactic ideas about learning how to solve 

problems are listed in the learning pedagogies 

category.  

Communication ability 

Reflective ability 

School and 

personal 

influences 

Any feedback that aimed at external factors 

influencing the implementation was assigned to 

the school and personal influences category. 

Teacher attitude 

Professionalism 

Organization 

Table 2: Four content categories inhibiting implementation of the problem solving curriculum 

Table 2 shows that also school and personal influences, which were not part of the design process, 

influence the extent to which the curriculum gets implemented. Thus, teachers also inhibit 

successful implementation of the curriculum, despite being part of the design process. I focus on 

this category by giving different subcategory examples since this factor was most surprising.  

Figure 2 shows student’s work solving one problem where the heuristic auxiliary tool of informative 

figure was to be used. Instead of representing a graphical illustration of the situation to be resolved 

from which the solution can be “read” (informative figure), it represents a sorting of information. 

Hence, the student work is a reflection of teacher’s B lack of knowledge of problem solving, despite 

this problem being discussed in the teacher manual, which she glanced only once (professionalism). 

This was seen in all students’ notes. Moreover, the analysis of students’ workbooks revealed that 

teacher B avoided introducing problem solving terminology and allowed students to solve problems 

as they wished (teacher attitude). She explained that she did not want to burden them with formal 

terminology and constraint their problem solving process.  

 



 

Figure 2: Teacher’s professionalism reflected in a sample page from one student’s workbook 

Also teacher B criticized heavily the name of the figures in the curriculum (Profi, Probi), which was 

reflected in students’ final reflection, where they urged for the change of figure names. Thus, 

teacher’s negative attitude about a design element transferred negatively onto the students. Such 

behavior was not observed with the students led by teacher A, who questioned the chosen names, 

but never criticized them during his instruction. Teacher B in comparison to teacher A was not part 

of the design team, but was assigned to implement the curriculum due to organizational school 

context. The case of teacher B shows that negative attitude and lack of professional behavior 

inhibited successful implementation of the curriculum. Hence, teacher as an inhibiting factor should 

not be neglected during the design and implementation process. 

Conclusion 

Problem solving must gain more importance in school mathematics. Although several teaching 

concepts and practices are known (e.g., Bruder, 2002; Kilpatrick, 1985; Pólya, 1945/1973; 

Schoenfeld, 1985), these get rarely implemented. Moreover, curriculum based on existing and 

empirically tested problem solving pedagogies is non-existent. To overcome this gap SymPa-project 

was grounded. Teachers participating in the project reported improvement in students’ problem 

solving competences with respect to deliberate and mindful use of different heurisms when problem 

solving. In addition, the teachers not participating in the project, reported students using these 

heurisms in regular mathematics classes. Hence, it was possible to develop curriculum that met the 

local demands with the aim of supporting a systematical development of problem solving 

competence. However, different objective and subjective factors inhibited full-implementation of 

the curriculum. With respect to the former (language, level of performance, learning pedagogies), 

changes done in the re-design phase of the DBR-cycle will shed light to which extent these were 

enough for successful implementation in the upcoming phases of enactment. With respect to the 

latter (school and personal influences), it became clear that the curriculum alone does not guarantee 

the implementation of the teaching concept. Substantial knowledge base of the content and 

pedagogical ideas seem necessary to teach in accordance with the theoretical foundation. 

Confidence and experience in teaching problem solving played a crucial role likewise. Likewise 

school organizational factors should not be ignored. Since the teachers were assigned to teach the 

problem solving lessons and received no compensation for the participating in the project, a lack of 

motivation may develop, which influences the willingness to teach, the lesson quality and with it the 

students’ acceptance of the curriculum.  

In this paper I demonstrated that DBR-paradigm allows creating novel teaching environments in 

which theory and practice were not detached from one another, but rather complemented each other. 

Here the efforts were made to design, use and do research on problem solving curriculum in a real 



setting. This promoted adoption of the innovation – problem solving curriculum – which became an 

official part of that school’s curriculum. Moreover, close collaboration during the design and 

enactment phase, and the re-design of the materials by the researchers as a result of teachers’ 

feedback allowed them to develop a sense of ownership for the designed curriculum. Future work 

should use similar methodologies to ensure implementation of research into practice, adoption of 

research into practice, which would then allow research on implementation projects. These 

components may build a fundamental step to overcome the gap between theory and practice. 
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“There is nothing so practical as a good theory”. The statement from Kurt Lewin is frequently 

cited, also in mathematics education. The statement invites for and requires close cooperation 

between different agents, whatever their specific relation to practice and theory is. It is not a 

straightforward endeavour. One reason is that the term theory as well as the term practice may very 

well be given different meanings by different agents. This variation is, in our view, to be considered 

in “implementation research” and Lewin’s statement ought to be qualified by two questions: “Who 

cares about a good theory?” and “What makes a good theory good for whom?”  

This paper explores the variation of how theory is perceived by mathematics teachers and by 

mathematics researchers involved in a developmental project on early intervention in mathematics 

education in Denmark. The paper exemplifies how agents’ different work conditions and work 

requirements seem to constitute qualitatively different needs for theoretical constructs, despite some 

common interests.  

Keywords: Early intervention programs, teaching principles, theoretical constructs. 

Background for the early mathematics intervention project 

We noticed a long tradition of integrating early mathematics intervention programs into compulsory 

education practice like, e.g. Mathematics Recovery (MR) (Wright, 2006; Wright et al, 2007) and 

Extending Mathematical Understanding Intervention Program (EMU) (Gervasoni, 2016), in 

Australia, Ireland, the UK and the USA. A similar tradition exists in Denmark for early reading 

intervention programs, as such programs are implemented at a regular basis in all schools in 

Denmark. Either as part of a municipal policy or a matter of choice, schools launched early (from 

the first grade) intervention processes in reading to support individual children, who show signs of 

reading difficulties.  

At the ministry level in Denmark concerns were raised about pupils failing at mathematics in the 

National Official Guidelines in the 2003 National Mathematics Curriculum from the Ministry of 

Education (UVM, 2003). In 2004 the need to support failing pupils in mathematics in the first 

school years was emphasised (Mortimore et al.) and the national official guidelines to the revised 

2009 national curriculum (UVM, 2009) described, for the first time, the issues in detail. Still, no 

intentions of integrating programs for early mathematics intervention into compulsory education 

practice were seen in Denmark until recently (Lindenskov, 2007).  

In 2009 the material Early Intervention in Mathematics [Danish: Tidlig Indsats i Matematik, TIM], 

written to primary school mathematics teachers was published and used in some places. Just before, 

in 2007 local politicians and school authorities in the municipality of Frederiksberg in the capital 

area, decided to give priority to mathematics teaching and learning in their 9 public schools in the 

period 2007-2013. Priority was given to a development project on early mathematics intervention 



for their 9 schools in collaboration with the researchers Lena Lindenskov and Peter Weng. It soon 

became clear that the existing intervention framework and written materials solely focused on 

numbers and arithmetic, which were insufficient to comply with the Danish Mathematics Education 

Philosophy and Curriculum. Also, approaches in the existing intervention framework and written 

materials were insufficiently inquiry and problem based to correspond with the curriculum. Finally, 

teachers’ freedom and responsibility to adapt materials to their own students were too limited in the 

existing frameworks and materials.  

With this background a research-based developmental project with four design cycles was prepared 

in order to develop a Danish program for early intervention in mathematics that would fit into the 

Danish Mathematics Education Philosophy and Curriculum. The private Danish fund Egmont 

showed interest in a Danish early mathematics intervention program (personal communication), and 

together Egmont, Frederiksberg Municipality and Aarhus University assured the budget for this 

project. The project was named Early Mathematics Intervention at Frederiksberg with the Danish 

abbreviation TMF [Danish: Tidlig Matematikindsats Frederiksberg].   

Perceptions of what is good theory – by mathematics school teachers 

Our research question is, what is a good theory for whom - teachers as well as for researchers? Our 

analyses draw on our communication with the 18 teachers involved in the design cycles of the 

project. In the following these teachers are called pilot teachers. All pilot teachers were chosen by 

their school principal as among the most qualified and motivated mathematics teachers at the 

school. Some also were ‘Mathematics Counsellors’ with a one-year diploma course. 

It is the use of theoretical constructs in the four cycles, which is analysed in the following. We 

analyse interactions between teachers and researchers.  The data come from written materials and 

recorded minutes and notes from seminars1, training sessions, coaching sessions and e-mails 

Generally, Danish teachers have a relatively high self-confidence and a strong wish to influence. It 

is shown, for instance, that Danish teachers, more than British teachers, prioritise their students’ 

personal development and see their students’ mathematical development as a means for personal 

development (Kelly, Pratt, Dorf & Hohmann, 2013). Because of the way the 18 pilot teachers were 

chosen by their principals, we anticipated that the teachers would be involved, to a high degree, in 

the project’s four design cycles. The specific choice of mathematical and other aspects for the 

framework and written materials for the early intervention was actually made in dialectic processes 

involving the researchers and the 18 pilot teachers. Further descriptions of the cycles are found in 

Lindenskov & Weng (2014).  

                                                 

1 Mathematics Recovery Programme (MR) is a source of inspiration for the developmental project, see Wright et al., 2007. This is 

why we included a teacher seminar with Ms. Noreen O'Loughlin from Mary Immaculate College, University of Limerick focusing 

both on some hypotheses and issues in MR and on specific concerns at Frederiksberg.   

 



The framework and materials developed through four design cycles 

(1) From January 2009 to September 2009, Weng and Lindenskov developed the first draft material, 

based on theory, empirical results and their knowledge about mathematics in life and in primary and 

lower secondary schools in Denmark. They initially doubted whether the teachers would find it 

relevant to study the rationales and theory behind the choice of mathematical areas, materials and 

evaluating and teaching principles. That is why only a few theoretical constructs and justifications 

were in the first draft communicated to the teachers.    

But, as the structure and each part of the draft material were critically explored and discussed during 

the teacher training sessions from 14 - 18 September 2009, this expectation of the teachers’ 

perceptions of their needs for theory was wrong. The teachers endorsed the underlying ideas, but 

actually asked for further explanation of rationales and theoretical constructs. The teachers also 

asked for an extensive introduction to the program as such. The time teachers were expected to use 

in the development processes did not include reading articles, so the researchers presented articles 

orally and provided printed extracts or copies of some articles as handouts. The main printed 

materials were newly developed diagnostic test materials and the problem solving materials to be 

used with their students, plus general introduction and justification for the choice of mathematical 

areas and instruction approach. 

At the end of the week, the teachers suggested that measurement as a mathematical area and the use 

of measurements in other mathematical areas should be expanded in the next draft.      

(2) Lindenskov and Weng developed a second draft of material based on the pilot teacher feedback 

and feedback from the research assistant. This meant that for more mathematics areas further 

justification for and explanation of rationales and theoretical constructs were included. The second 

draft was sent to each school October 2009 for experimenting. Each pilot teacher tried out specific 

parts of the material in the fall of 2009. The distribution of the parts to each school was decided 

through discussions among all pilot teachers. Each pilot teacher was requested to try out two or 

three activities with as many pupils as possible. The age of the pupils was not important. If possible, 

more material was to be attempted. The pilot teachers were given a specific task in order to evaluate 

the materials: they were asked to document in as much detail as possible - by writing in premade 

tables - how each mathematics task and each mathematics and attitude question led to pupil-teacher 

conversations which could indicate the pupil’s thinking. The experiments were concluded with a 

seminar on 3 December 2009, where each pilot teacher presented results. Anything that had 

particularly surprised the teachers was also presented and some common concerns were then 

discussed. It was put forward that the pages with descriptions of justifications and theoretical 

constructs were helpful, ‘or else we do not know why the chosen mathematical areas, concepts and 

competences are important to focus on.’ 

(3) Based on these results Weng and Lindenskov developed the third draft material and introduced it 

at a seminar on 28 January 2010. Justifications and theory were included for all mathematical areas. 

In the following months, each pilot teacher tried out parts of the material with a number of pupils. 

This time all the pupils were in the second grade. The aim was to allow the pilot teacher to 

experience the structure of the material and to practice pupil-teacher conversation. Peter Weng 



visited and coached every teacher once and the teachers were invited to contact the researchers at 

any time during the pilot study.  

At a midway seminar on 9 March 2010, the teachers described their general impression as positive 

and generally considered the material adequate. Several pilot teachers said they found it motivating 

to work with the material together with the pupils and that they had heard from the pupils’ ordinary 

mathematics teachers that the intervention seemed to have a positive impact on the pupils’ learning 

process.  

The individual schools’ prioritization of subjects was also discussed: how to decide between pupils’ 

participation in a class excursion or a TMF session? 

At the seminar a representative from the Egmont Foundation was present, as the Foundation had 

decided to fund the project.  In the developmental project, the choice of pupils was left to the 

schools and the criteria differed between schools. The Egmont representative was particularly 

interested in the discussions on ethical issues: Whether pupils with very weak home support should 

be chosen over pupils with better support from home, who would probably benefit more? It is well 

known from research that socioeconomic factors are important for pupils’ learning and 

development. Maybe particular pupils need this intervention the most, but are they really the ones 

chosen?  

Issues regarding the scope and range of the material were discussed, for instance how to prioritise 

between presentations of many mathematical aspects or assuring success in fewer mathematical 

areas. The risk that the material put severe strain on teachers, especially when they were unfamiliar 

with it, was also discussed. To illustrate this discussion, we have listed three pilot teacher transcripts 

and one researcher transcript below:  

Teacher 1: I feel pinned down by the material. I feel like, ‘Now I must do this, then I must do 

that,’ and you have to look for concrete material yourself. It is very restraining. 

While I look for extra material, I give the pupils small tasks on the computer to 

work with, OK. 

Teacher 2: The material could be constraining. But the material is important as a database of 

ideas. The material gives me ideas. It supports my own inspiration process and it 

helps me to include everything in my practice.  

Teacher 3: The material is useful, when I prepare the intervention sessions.  

Researcher Weng:  

Try to think about the material as something that provides you with opportunities 

and inspiration. We invite you to a flexible adaptation to specific pupils.   

(According to the minutes, authors’translation) 

The final seminar on 27 May 2010 discussed organisational and psychological issues in detail. The 

teachers wanted organisational and psychological aspects of individual pupils’ learning and 

instruction to be emphasised as equally as the mathematical aspects.  



Also the teachers again asked for more geometry and measurement in future versions, as well as a 

compiled list of recommended materials, but they did not mention any further need for justification 

and theory. (According to the minutes, authors’ translation) 

(4) The fourth draft was developed by 12 August 2010 and was to be used from 2010 onwards in the 

regular TMF for individual second grade pupils in all of Frederiksberg’s public schools. The 

research assistant, Tina Kjær, examined the material and ensured that the teachers’ suggestions were 

taken into account. Strongly supported by the pilot teachers’ feedback, organisational and 

psychological aspects of individual pupils’ learning and instruction were included as just as 

important as mathematical aspects.  

Example of how researchers’ theoretical understanding is communicated to 

teachers  

As an example of how the researchers communicated their theoretical understanding underpinning 

the developmental project to the pilot teachers, we have chosen the mathematics area “Basic 

Strategies for Numbers in Addition and Subtraction”. The table below shows in the left column four 

of the theoretical constructs chosen by the researchers to underpin the project. The right column 

shows how the constructs were being communicated and discussed between researchers and 

teachers. The right column consists of citations from the final written materials, which was 

published in 2013 and meant to be studied and discussed among teachers involved in intervention 

projects. 

 

Researchers’ choice of theoretical constructs 

and justifications 

Citations from the published intervention 

materials (Lindenskov & Weng, 2013)  

Relational understanding (RU) and instrumental 

understanding (IU): Although IU in its own 

context is often easier to understand and gives 

correct answers with less knowledge involved, 

RU is more adaptable to new tasks and easier to 

remember. 

(Skemp, 1976/2006).  

When the pupil experiences a productive 

development in his/her basic strategies in 

addition and subtraction, it opens the pupil’s 

possibilities of becoming capable in doing 

relevant addition and subtraction and to use it in 

many contexts. Also, potentially this experience 

will contribute to another highly relevant math 

competence: good estimating skills for big 

numbers. 

Constructivist teachers’ primary activity is 

communicating with students. In the 

constructivist view, teachers should continually 

make a conscious attempt to “see” both their 

own and the children’s actions from the 

children’s points of view. 

(Cobb & Steffe, 1983).  

Some teachers might, for the last decades, have 

misunderstood the core of constructivism. Some 

teachers might have been inclined not to 

interfere when the pupils calculated and 

developed their calculation skills and strategies. 

Some teachers might have believed that the 

pupils by themselves would develop at the pace 

that was most optimal for them individually. But 

we know, it is a risky affair.  



Pupils who engage in strategy development 

decisively perform better in the long run than 

pupils who do not.  

(Ostad, 2008). 

 

 

 

  

Pupils, who from an early age, start developing 

his/her strategies, tend to continuously improve 

existing strategies and increase the number of 

strategies. In contrast, pupils, who stick to their 

strategies, tend not to start improving them until 

later on. It is shown that pupils, who stop 

developing their strategies, will toil hard and 

will still lag behind.  

 

Strategies, strategy development and teaching 

strategies should be the core of fundamental 

mathematics instruction and learning.  

(Ostad, 2013).   

 

 

Do not just present materials for the students to 

acquire new further learning. Let the pupil use 

materials and activities in order to consolidate 

what is almost or recently learnt as a means to 

improve the pupil’s self-confidence and realistic 

self-perception of addition and subtraction skills. 

We recommend that the teacher talk with the 

pupil about his/her strategies, i.e. by regularly 

asking how long this strategy has been used, if 

the strategy leads to the right results, if the pupil 

uses other strategies, too, or thinks other 

strategies could be used. Appropriate further 

learning may well be about strategy 

development.      

 

Conclusion 

This paper has shed light on what is a good theory for whom - teachers as well as researchers, how 

to explain theory and justifications to the pilot teachers in a meaningful way and how to develop 

material in collaboration between researchers and teachers? During the four development phases the 

pilot teachers endorsed the underlying ideas of the intervention project and asked for the rationale 

behind every included aspect to be explicitly communicated. They encouraged more extensive 

introduction and to expand the included measurement aspects into two measurement aspects.      

The teachers explicitly endorsed the theoretical construct and justifications in the material, as they 

said it helped them to acknowledge many opportunities to help the pupils and to identify pupils’ 

potentials and motivation while exploring and developing their mathematical needs. The teachers 

appreciated that the material gave a firm frame and at the same time invited and inspired the 

teachers to adapt and further expand the materials to the specific learning situations with the pupils. 

The teachers recommended the material to be expanded with more mathematical concepts and 

competences, which are considered relevant in the Nordic contexts (Dalvang & Lunde, 2006; Niss 

& Højgaard, 2011) and by the teachers as potentially troublesome for the weaker pupils, and to 

expand the materials on measurements and part-whole.  



The teachers asked for further ideas and materials which could be used as they were or could be 

adapted in order to fit their own pupils’ needs and motivations. The teachers did not suggest more 

clarified theoretical constructs and justifications underpinning the program than were communicated 

to them already. 

For the educational researcher the task was to find and select theoretical constructs to underpin the 

intervention and communicate these to the teachers, as it is further described in Lindenskov et al 

(2016). It could not be communicated as in scientific journals, but as justified practical advices. 

Both theorists and practitioners care for theory, but in very different ways. 
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In this paper we draw upon examples from a recently published systematic literature review (Ryve 

et al., 2015) on productive classroom practice to contribute to the research on the nature of 

theories for action in mathematics education. By relating the results from the review to theories and 

literature on educational policy research, professional development research and implementation 

research we construct a framework for categorizing theories aiming at supporting teachers’ actions 

in mathematical classroom practices. 

Keywords: Theoretical frameworks, theories for actions, mathematical classroom practice. 

Introduction 

The development of frameworks and theories1 that aim at guiding the actions of teachers have 

rendered much recent attention in educational research (e.g., McKenney & Reeves, 2012; Ruthven, 

Laborde, Leach, & Tiberghien, 2009). Within research areas such as curriculum material (Davis & 

Krajcik, 2005), planning and implementing whole-class discussions of cognitively demanding tasks  

(Smith & Stein, 2011), professional developments programs (Borko, 2004; Desimone, 2009), and 

improvement of mathematical instructions at scale (Cobb & Jackson, 2012) cumulative work has 

been conducted to establish theories for action. Further, frameworks for supporting teachers’ actions 

and thinking such as curriculum materials, theories and models have been put forward as essential 

components of effective professional development (Cobb & Jackson, 2012) and for establishing 

productive mathematical classroom practices (Franke, Kazemi, & Battey, 2007). However, we need 

to know more about how theories should be designed to facilitate implementation; to be used and do 

real work in supporting and constructing teachers’ actions (McKenney & Reeves, 2012). In this 

paper we relate result from a recently published systematic literature review (Ryve et al., 2015) on 

productive classroom practice to literature on educational policy, professional development and 

implementation research in order to construct a framework for understanding and facilitating the 

implementation of theories and research results aiming at supporting teachers’ mathematical 

classroom practices. 

Relevant research 

The approach of the present study is based on the assumption that ‘theory matters’ for teachers, to 

enhance their ability to develop rich mathematical classroom practice (Charalambous & Hill, 2012). 

                                                 

1 There are many ways to denote theories serving the purpose of guiding actions and this is further discussed below. 



For instance, by adopting and making use of theoretical tools teachers are supposed to enhance their 

ability to establish productive routines in their classroom practice (Franke et al., 2007), develop and 

continuously adjust a learning trajectory and the means to support that trajectory (Cobb, Confrey, 

Lehrer, & Schauble, 2003), become more sensitive to notice instructional opportunities in the 

moment and be methodical without being mechanical. However, Burkhardt and Schoenfeld (2003) 

argue that most theories that have been applied to education are quite broad, lacking the specificity 

that helps teachers to guide and understand the design and analysis of learning activities. Cobb et al. 

(2003) adhere to this view, claiming “General philosophical orientations to educational matters – 

such as constructivism – are important to educational practice, but they often fail to provide detailed 

guidance in organizing instruction” (p. 10). So, there is this dilemma; theoretical constructs are 

supposed to enhance teachers’ capacity to teach but, to do such work, theories need to be of a 

certain kind. 

Perspectives on theories 

diSessa and Cobb (2004) detail the nature of different theories relevant for research in mathematics 

education. They distinguish between grand theories, orienting frameworks, frameworks for action, 

domain-specific instructional theories and ontological innovations. Skinner’s behaviourist theory 

provides an example of a grand theory. Even if grand theories have a prominent position in 

educational research, they appear to be too general to provide guidance for explaining and 

supporting the learning of mathematics. Orienting frameworks, such as constructivism (Von 

Glasersfeld, 1995) or communities of practice (Lave & Wenger, 1991), provide general support for 

specifying issues of learning, teaching and instructional design whereas frameworks for actions 

concern analytical constructs of a more or less general prescriptive character (diSessa & Cobb, 

2004). Domain-specific instructional theories are also of a prescriptive nature as they are typically 

specific to a domain or even learning trajectory of certain content and the means by which this 

trajectory can be supported. An ontological innovation is descriptive in nature. It is about 

developing analytical categories by which aspect of a phenomenon can be discerned. The 

framework of Socio-mathematical norms (Yackel & Cobb, 1996) exemplifies an ontological 

innovation.  

diSessa and Cobb’s (2004) categorization not only labels the nature of different frameworks, it also 

points to the descriptive, explanatory, predictive and prescriptive purposes of different theories. 

Firstly, theories could be used to describe the world and many theories and frameworks within 

mathematics education serve such a purpose. The contribution to research in engaging in describing 

or characterizing objects or processes as certain phenomena could be understood in terms of new or 

unconventional lenses for viewing the world. Secondly, a further purpose of theories is to explain 

relations between phenomena and as mentioned above this purpose is often stressed as absolutely 

central for theories. A prerequisite for explaining those relations is to explicitly characterize each 

phenomenon. Therefore, theories used for explanatory purposes build upon or encompasses 

descriptive theoretical contributions. Thirdly, in a similar vein predictive theories necessitate 

explanations and clear descriptions of phenomena. Predictions include foreseeing effects of certain 

actions under certain conditions. Finally, prescriptive theories are used to identify and articulate 

productive ways to make decisions and performing actions. This kind of theory integrates 

descriptive, explanatory and predictive knowledge to guide actors in constructing and establishing 



interventions. Within design research prescriptive theories are often denoted design principles but 

neither the term nor the nature of those design principles are settled (Ruthven et al., 2009).  

Theories for action 

In this paper we are particularly interested in theories for actions and what McKenney and Reeves 

(2012) denote the prescriptive role of theories. Both the characteristics of theories of actions and 

prescriptive theories and ways of denoting them are not settled in educational research as indicated 

above (cf. McKenney & Reeves, 2012). As becomes apparent in (Ruthven et al., 2009), the relation 

between the terms used to denote theories for action is not just connected to neutral ways of 

denoting the same phenomenon but instead accentuates particular features and characteristics of 

such prescriptive theories. For instance, Ruthven et al. (2009) shortly muse about the relation 

between the design tools they introduce and design principles. They suggest that the conceptual set 

up of grand theories, intermediate frameworks and design tools introduced in Ruthven et al. (2009) 

stresses theoretical underpinnings for sensitizing researchers to critical issues while design 

principles from US often prescribe certain course of actions and are typically more loosely anchored 

in theoretical perspectives. One may ask, should theories for actions prescribe and sensitize teacher? 

In general, the development and understanding of design principles is weakly developed and in 

summarizing the most urgent issues for educational design research McKenney and Reeves (2012) 

suggest “a worthy challenge facing educational design researchers is to further the development of 

predictive and prescriptive theories” (p. 212). We want to add to this research. 

Method 

The design was framed by a ten-step process for systematic literature reviews (Gough, Oliver, & 

Thomas, 2013): (1) Need, (2) Review questions, (3) Scope, (4) Search, (5) Screen, (6) Code, (7) 

Map, (8) Appraise, (9) Synthesize, and (10) Communicate. In the project we engaged in processes 

1-7 and 10. Our review questions were: (a) What characterizes research on classroom teaching 

practices, teaching approaches and teaching methods in mathematics? (b) What characterizes 

research on teachers’ instructional strategies used to establish classroom practices in mathematics? 

and (c) What does research tell about teaching for the learning of mathematical competencies?  

We searched in title, keywords and abstract in Web of Science2. Search strings3 were iteratively 

developed while reading some abstracts. In total, we had 622 hits that we screened for relevance 

according to our scope defined by our inclusion criteria4. The screening was made in two steps 

based on: (1) title, keywords, and journal name, and (2) abstracts. Uncertain cases were discussed 

and decided upon collectively among the three researchers. After the two screening steps, 242 

articles remained potentially relevant for the scope of the review. Simultaneously as the screening of 

                                                 

2 We searched Web of Science Core Collection as a way to focus on high-quality journal articles. We limited our search 

to the year span 2008-2014 and to the document types “article” and “review”.  

3 See Appendix A in Ryve et al. (2015) for the exact search strings. 
4 For an article to be included in the review, the article must be: (1) about mathematics 

teaching/learning/education, (2) related to compulsory school (grade 1-9), and (3) about the teacher’s role.  

 



abstracts, the articles that remained relevant were coded on Object of study, Method, Number of 

participants, Context, Results, and Implications for practice. When needed, we also read other parts 

of the articles apart from the abstract. 201 articles remained relevant for the review based on the 

inclusion criteria. The next step of the mapping was to structure and characterize trends and 

interests within the discourse of research in mathematics education that focus on teaching methods, 

classroom practice and teacher’s role in classroom practice. Therefore, we looked closer at the 

abstracts of the 201 articles, categorizing them in relation to object of study. See Ryve et al. (2015) 

for detailed descriptions of steps and rationales in the processes. 

Results 

 

 

 

 

 

 

 

 

 

 

Of the 201 articles, we found 168 to be structured according to an analytical relationship between an 

outcome variable and a design variable. In the remaining 33, the object of study did not follow such 

a structure. The design variables we distinguished are gathered in the left column of the matrix 

(Figure 1), while the outcome variables we found are categorized in the top row of the matrix. In 

elaborating on the mapping we intend not to go through the entire mapping. We highlight and 

provide examples on some specific findings, which we then follow up on in the discussion. In the 

discussion we construct a new framework, to be used for categorizing theories to be implemented in 

mathematics classroom practices. On this account, and due to space limitation, we are not backing 

up all claims and findings by references from the mapping. 

Elaborating on theories within the mapping 

Student knowledge 

Our review reveals a clear bias towards research that focuses students' product knowledge. 

Mathematical products relate to conventions, symbol systems, concepts and calculation techniques 

of mathematics. Looking at studies that emphasized a product view of mathematics and those 

emphasizing a process view we also notice a methodological difference. In the product view 

knowledge is expressed in the language of mathematical products and students understanding are 

profiled and ordered in accordance to the mathematics itself. Connected to such a conceptualization 

of knowledge, students’ performances are often measured by standardized tests (Desimone, Smith, 

Student knowledge 

Processes 

(Proc) 

Products 

(Prod) 

Student attributes 

(SA) 

Practice (P) 

(Teaching 
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Teaching approaches (TA) 8  
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Learning material (LM) 2 7 5 14 

Background variables (BV) 2 34 1 16 
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Figure 1. Categories and analytical relationships of the mapping 



& Phillips, 2013). In the process view, qualities and progressions are not explicitly elaborated on. 

These frameworks are descriptive in nature, specifying a set of analytical categories, which is used 

to sensitizing (Ruthven et al., 2009) the analyst on some certain characteristics of, for instance, 

students’ ability to communicate and reason in and with mathematics. 

Interactional strategies  

Studies belonging to this category explicitly refer to teachers’ moves and actions. The teacher takes 

an active role in these studies; how he/she acts in interaction with the students, is central to the 

investigation. The focus is on how teachers communicate and engage with their students, and what 

role the communication and engagement play in students’ learning of mathematics. It could be 

about, for instance, how a teacher uses gestures and questions (Shein, 2012) and follow up on 

students’ ideas in order to develop the mathematical classroom practice (Akkus, 2013).  

Teaching approaches  

Teaching approaches refer to studies taking a broad perspective on classroom teaching in 

mathematics. The teachers’ actions and interactional behavior are not the main object of 

investigation. The teacher may be important, but it is the more general and overall structures of 

teaching that are the object of study. In our review we found different examples of teaching 

approaches, such as technology-based teaching, mathematical games, problem-based teaching, and 

contrasting ways of using textbooks in mathematics teaching. 

Learning material (task design) 

Some studies focus on how a specific artifact or design principle can support or challenge students’ 

learning in mathematics. In these studies, the teacher takes a passive role. Focus is on the students' 

interaction with the learning material and the role of the teacher is basically to execute the lesson. 

Studies belonging to this category may investigate the role of visualization or simulation in the 

learning of mathematics (David & Tomaz, 2012). In this group we also include issues of task 

design; types and sequences of tasks (Hattikudur & Alibali, 2010) and instructions for solving 

mathematics tasks (Orosco, 2014). 

Background variables  

Several studies did not connect classroom practice and students’ learning to any didactical design 

variable. These were studies giving accounts of personal attributes such as teachers’ beliefs, 

attitudes and knowledge in order to explain classroom practice and students’ performance. 

Characterization 

In 33 articles of the articles, the object of study did not follow the structure of an analytical 

relationship between two didactical variables. In this group of studies, to describe a certain practice 

or teaching approach is the focus in itself. The goal is to provide descriptive accounts of analytical 

categories of a teaching/learning phenomenon, which can be used to sensitizing researchers and 

teachers to critical issues of the phenomenon in question (Ruthven et al., 2009). It may concern the 

characterization of curriculum material (Sherin & Drake, 2009), the orchestration of math-talk with 

interactive whiteboards (Beauchamp, Kennewell, Tanner, & Jones, 2010), mapping the mathematics 

in classroom discourse (Herbel-Eisenmann & Otten, 2011), or profiling students’ understanding or 

strategies of specific subject matter content (Wagner & Davis, 2010).  



Discussion 

By relating the results of our mapping to literature on educational policy, professional development 

and implementation research we construct a framework for understanding and facilitating the 

implementation of theories and research results aiming at supporting teachers’ mathematical 

classroom practices. 

In studying the papers it is apparent that teachers are ascribed different roles in different research 

studies. While quite a few studies within the category of learning material position teachers as 

administrators of tasks and computer programs other studies highlight the role of expert and 

orchestrator of classroom practices. Within the latter categories of articles, the role of teachers is 

central in asking questions, explaining content and acting formatively to support and challenge 

students’ mathematical thinking. In understanding the implementation of theories and results aimed 

at improving classroom practices and students’ mathematical learning it seems essential to consider 

how theories construct the role of teachers in classrooms. 

Ruthven et al. (2009) notice the distinction between theories that prescribe teachers’ actions and 

theories that aims at sensitizing teachers to essential aspects of classroom practices. In a similar 

vein, while some theories and studies in our review are clearly prescriptive towards teachers (e.g., 

theories belonging to Instructional strategies and Learning material) and what they should do in 

classroom practices, others aims at sensitizing and empowering teachers (theories belonging to the 

Characterization category). We are not normative about these different ways and suggest that both 

could be productive for different teachers in different context. Further, we hypothesize that these 

two strands are correlated with research methodologies in that many studies within mathematics 

education taking an educational design perspective aims at empowering teachers while studies 

taking a stricter experimental approach prescribe and praise clear prescriptive instructions. 

However, to what extent and in which ways theories prescribe or sensitize teachers seem relevant 

to consider for anybody collaborating with teachers. 

Cobb and Jackson (2012) stress that tools and frameworks within educational policies play a 

prominent role. When it comes to designing and using tools Cobb and Jackson suggest that it is 

important that the tools can be used by agents immediately in that they are easy to access, but at the 

same time harmonize with the planned reorganization of the practices. In addition, in developing 

frameworks, theories and tools it is essential to consider the amount and type of learning that are 

required for teachers to develop in order to use them in an appropriate and reliable way. Of course, 

such using requires good mathematical knowledge for teaching (Ball, Thames, & Phelps, 2008). 

However, there is also reason to believe that certain types of frameworks are easier then other to use 

and apply in a mathematical teaching practice. For instance, in our survey we notice how the 

product perspective dominates research focusing on student knowledge. That the product 

perspective has a long tradition in the field is probably the major reason for this. However, taking a 

closer look to the mapping we can also understand this dominance as if there is a higher degree of 

transparency in how to use product knowledge theories compared to process-knowledge theories. 

From this we learn that, in implementing theories to school practice, we need to consider how user-

friendly, accessible and transparent different types of theories are to teachers. In other words, we 

need taking into account to what extent and which kind of teacher learning is necessary for 

productively implementing theories or frameworks to mathematical classroom practices? 



Desimone’s (2009) put forward coherence as a critical feature of professional development 

programs. The concept of coherence refers to the relation between the PDP and teachers’ knowledge 

and beliefs. This raises questions about the extent to which theories should be coherent with 

teachers’ knowledge and beliefs. In other words, should theories strengthen teachers’ knowledge 

and beliefs or should it challenge their knowledge and beliefs? Should theories aim at strengthening 

classroom practice or should theories aim at reorganizing classroom practices (Cobb & Jackson, 

2012)? The reorganization of practice could include working with new types of mathematical 

problems, new roles for students and teachers, and the establishment of new classrooms. Hence, in 

examining and choosing theories, frameworks and models, mathematics educational researchers 

working with teachers should consider whether the aim is to strengthen or reorganize ongoing 

practices and, consequently, consider how frameworks are supportive for such endeavors. 

To conclude, as a complement to categorize theories for actions in terms of content areas we suggest 

it is productive for researchers working with teachers to consider theories in terms of: the 

positioning of teachers in classroom practices; the positioning of the teacher as a receiver of the 

theory; the amount and type of teachers’ learning required; and if theories primarily function to 

strengthen or to reorganize practices.   
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In this paper we investigate the role of the local supervisor when implementing a mathematics 

teacher training program based on Action Learning (Misfeldt et al. 2014, Plauborg et al. 2007). 

Using data from interviews of teachers, local supervisors and school managers we examine the 

arising expectations on the local supervisor and how these expectations influence the program’s 

ability to support teachers in their professional development. We do so by using Clarke’s (2009) 

Situational Analysis and Arcform notation (Allsopp 2013) to map the actors’ relation to the 

supervisor. We see that the local supervisor is caught in a tension between expectations from the 

Action Learning method and the school managers. This hinders schools in anchoring Action 

Learning as a teacher training method and thereby benefitting its full potential. 

Keywords: Teacher training, Action Learning, theory and practice, Arcform.   

Implementing teacher capacity building through collaboration 

A crucial aspect of a number of initiatives to improve mathematics education is the ability for 

teachers to collaboratively question and improve their own teaching (Stigler 1998), sometimes 

involving resource persons such as researchers or teacher educators. For such in-service training or 

capacity building to be efficient and scalable it is important that they are anchored in the school 

organization and not solely dependent on enthusiasts. Initiatives like Lesson Studies and 

development of own practice (alone or in collaboration with researchers), are examples that requires 

systemic and organizational attention (Lewis, Perry & Murata 2006). Systematic approaches often 

mean that teachers take on certain roles in relation to each other’s practice in order to maintain 

initiatives. Such structures and roles that connect in-service training to practice and build directly on 

the school organization and culture are important. Research has found that it is very difficult to 

make sustainable changes with teacher training initiatives (Shear, Gallagher & Patell, 2011; 

Henriksen et. al 2011), and Maurer (2010) has estimated that 70% of teacher training projects fail in 

changing teachers’ practices within the given time frame of the project. This is a major challenge to 

the mainstream implementation of research findings in mathematics education. According to 

research literature the difficulties with changing teacher practice through in service training are 

associated with a lack of connection between training programs and teachers’ existing practices 

(Fixsen et. al. 2005) as well as with the fact that teacher training programs often lack a focus on 

establishing active, collegial relations among teachers, which are crucial in order to build 

sustainable development (Hargreaves 2000, Sølberg, Bundsgaard & Højgaard 2013). When trying to 

address these concerns certain employees often take on certain roles towards their colleagues in the 

sense that they advocate for, manage and nurture certain projects. In this paper we explore this 

challenge by investigating a case where the distance between training activities and day-to-day 

teaching is very small and where the collegial relations are supported in a direct fashion. We do so 

by describing an Action Learning case as it has been implemented in a Danish municipality.  



Context 

In 2012 a municipality in Denmark launched a teachers training program aimed at developing 

teaching practices and enabling schools in the municipality to develop teacher competencies 

independently from external resources. The training program involved every school in the 

municipality and a total of 3500 participating teachers. The program consisted of a combination of a 

summer university in which teachers where given thematic lectures on a variety of subject-specific 

and pedagogical topics (implemented at 80% of the schools) and a method called Action Learning 

(implemented at approximately 20 % of the schools). Action Learning is a teacher-training program 

developed as an alternative to traditional course based in-service training. It draws on inspiration 

from Action Research in that it is based on an assumption that solutions to practical problems 

require practical understandings, which must be gained though iterative attempts to solve the actual 

problem (Plauborg et. al. 2007). The “action” in Action Learning refers to a pedagogical or 

didactical intervention that address real classroom issues as the individual teacher experiences 

them. While the “problem” is defined by the individual teacher the intervention is developed 

collaboratively by a group of teachers engaging in a so-called “team-conversation”. Local 

supervisors from each school were designated the responsibility to facilitate professional 

discussions among the teachers in the team conversations. The local supervisors were teachers from 

the school who had a mathematics supervisor education, and who provided didactical support on a 

daily basis. The local supervisors also had the responsibility of anchoring the collaborations among 

the teachers at the schools to enable their ongoing professional development. The characteristics of 

Action Learning therefore seem to counter many of the challenges identified in the research 

literature about teacher training programs; active collegial teams are established, the team 

conversations are facilitated by the local supervisor in order to maintain an academic focus in the 

conversations and the starting point is the teachers’ existing practices. In this context these 

initiatives however relied heavily on the local supervisors who were designated a key part in 

facilitating the team conversations and in anchoring team collaboration at the schools. In our 

research we therefore investigate the expectations arising to the local supervisors in the 

implementation of Action Learning and their possibilities meet these expectations (for further 

information about the program see the full evaluation report (Misfeldt et al. 2014).  

Method 

Our research draws on interviews of key actors in the training program from two schools, namely 

the participating teachers, local supervisors and school managers. We interviewed 6 teachers, 2 

local supervisors and 2 school leaders coming from 2 different schools. Our interviews explored the 

actors’ experiences of the training program and their understandings of the role of the local 

supervisor in the program. We also collected documents and literature that describes the Action 

Learning Method and documents from the municipality describing how Action Learning was to be 

carried out. All of these sources were considered with the goal of identifying how the role of the 

supervisor was perceived. We analyzed this data by using Clarke’s Situational Analysis (Clarke 

2009). Situational Analysis is rooted in Grounded Theory, but modified according to postmodern 

assumptions that “boundaries are open and porous; negotiations are fluid and usually ongoing” 

(Clarke 2009). There is no a priori assumption that human actors are of greater importance than 

either non-human or discursive actors (Clarke 2009), which allows us to view the Action Learning 



concept as an actor in itself. In Situational Analysis, Situational Maps provide a methodological 

approach to organize and visualize empirical data by foregrounding situations (Clarke 2009). We 

initially processed our data by using a sub type of Clarke's Situational Maps: Relational maps (den 

Outer 2013). Like other situational maps these aim at foregrounding situations rather than individual 

actors or their actions by mapping all actors (human as well as non-human and discursive) that 

occur in any situation, but go further than this by showing relations between actors. Relational maps 

use a type of network notation where actors are represented by labeled nodes and relations are 

represented by un-labeled lines drawn between the actors/nodes.       

We drew our relational maps while reading our transcribed interviews and other relevant 

documents. We began by listing the relevant actors that appeared in our data and their relation to 

each other. We produced many versions of some maps, modifying them as some actors and relations 

grew in prominence in our analysis. The messy nature in our data was easily overviewed with the 

simple structure of relational maps and thus they played an important part in opening up our data 

and thereby prompted our analyses. However, beyond a certain point they seemed to counteract 

rather than support overview. Clarke stresses that though situational maps are useful tools for 

beginning analyses, they are not necessarily an appropriate end-product of analysis (Clarke 2003, 

563). We experienced two related problems: Firstly, it was difficult to draw some types of relations 

between actors and secondly they became difficult to understand/interpret, especially when 

returning to the analyses after several weeks. To overcome this limitation of our relational maps, we 

chose to visualize the situations through Arcform notation (Allsopp 2013). Like relational maps, 

Arcform maps do not visualize our data, but rather the results of our ongoing analysis. Arcform 

maps differ from most relational maps, but resemble many network notations by supporting 

direction and labels on relations (arcs). Thus relations like “local supervisors coach teachers” are 

clearly visible as an arc labeled “coach” pointing from an actor node labeled “local supervisors” to 

another actor node labeled “teachers”. However, Arcform also differs from most other network 

notations by allowing arcs to point from or to other arcs. In this way more complex relations like 

“teachers see local supervisors as coaches” can be drawn as shown in Figure 2.  

 

 

 

Figure 1. The sentence “Teachers see local supervisors as coaches” expressed in Arcform. 

 



Results 

As our analysis progressed it became clear that the actors in our data articulated their relation to the 

local supervisor quite differently, and that they had different conceptions of the main job of the 

supervisors in the action learning project. Though these actors were all engaged in the same project 

at the same school, their ways of participating and their relation to the supervisor was rather 

different and seemed at first glance to be related to their role in the school outside the project. 

Besides being a part of a project, the actors were respectively also teachers, supervisors and school 

managers, and this fact seemed to be of importance. Our maps also revealed that this meant that the 

actors had different expectations on the supervisor and that these expectations could intersect with 

problematic consequences. In order to refine our analysis of these preliminary results we decided to 

use a notion of cultural logics developed by Nielsen (2012), which we will introduce below.  

In a study on teachers’ learning from collaboration in teams, Nielsen develops a view of teacher 

collaborations as having a dynamic stability (Nielsen 2012). It is dynamic because it involves 

numerous ongoing activities that are oriented towards one or more objectives. It is stable because it 

involves a perceived regularity in actors’ actions suggesting a stable understanding underlying these 

activities. Such logics effect peoples’ objectives and can be difficult for externals to change, 

because they reflect the every-day phenomena which are experienced as urgent by the actors 

involved. For example, although teachers most likely find the learning processes of students an 

important objective to orient their collaboration towards, so too may they find the practicalities that 

make a well-settled lesson (Nielsen 2012). In situations where there are multiple cultural logics we 

can expect actors sometimes to be caught in a tension between these logics.  

The notion of cultural logics is highly useful in our context as the Action Learning training program 

is a project in which several actors’, who occupy diverse positions, participate. Viewed this way the 

role of the supervisor is at risk of being caught in a tension between multiple cultural logics. As the 

local supervisor is a key actor in implementing and anchoring the Action Learning method, such 

tensions and their implications are of particular interest in this study. We identified three dominant 

logics. We refer to these as the workplace logic, the curriculum logic and the project logic. The 

cultural logics are characterized by situations in which certain aspects of the training program are 

foregrounded over others which translate into a set of expectations on the local supervisor. In brief 

the logics translate in to the following expectations:  

 In the workplace logic the supervisors are expected to manage the project and to avoid 

delays in the project.  

 In the curriculum logic the supervisors are expected to be willing and able to guide the 

teachers academically in their professional development.  

 In the project logic the supervisors are expected to initiate and support the teachers’ 

professional development in a coaching-manner where an equal relation between supervisor 

and teacher is crucial.  

The map below illustrates how the role of the supervisor is formed by the different cultural logics.  



 

 

Figure 2. An Arcform map showing how two actors (school managers and teachers) see local 

supervisors as three different roles (project managers, academic beacons and (equal) coaches) with 

three different cultural logics (workplace logic, curriculum logic and project logic).  

The goal in the project logic are progress and development of the school, while the curriculum logic 

foregrounds the quality of teaching. Though these logics can be complementary, our mapping 

revealed that the supervisors are faced with a tension due to a collision between the project logic 

and the workplace logic. In the following two sections we will therefore further describe the 

dynamic stabilities of the two latter cultural logics and unfold the tension emerging from here.  

The project logic 

The project logic concerns the cultural logic of the Action Learning training program as it occurs in 

documents describing the Action Learning concept and the expectations to the role of the 

supervisors emerging from it. In the Action Learning concept, the primary priority is the 

competence development of the teachers participating. In this, the supervisors are first and foremost 

expected to have the will to develop the school and the teachers and to do so as an equal coach 

rather than as a managerial authority. The supervisor is expected to initiate the Action Learning 

collaboration and to support the teachers in their development - not to lead/manage them. This is 

crucial as it is an acknowledgement that it is the teachers themselves who are experts on their own 

practices – the role of the local supervisor is therefore to facilitate conversations that creates the best 

setting for this knowledge to be shared (Plauborg et. al. 2007). The statement below from a local 

supervisor illustrates her view of the Action Learning project suggesting that she embraces the 

project logic and that she is capable of seeing the potentials in the method.  

Local supervisor: (…) there were some 3rd grade teachers who said: “We have already tried 

this method. Why do we have to go through it again?” And my argument 

was that even though we have tried the method before, it is not implemented 

at our school. We don’t use it as a method as things are now. 



The statement indicates that the supervisor views competence development as ongoing and Action 

Learning as a way to enable such ongoing developments. She therefore argues to her colleagues that 

Action Learning is not a syllabus which you only have to read once and then move on – rather, 

Action learning is a concept that involves specific ways of collaborating which are not implemented 

at the school. The statement thereby demonstrates a will to develop the school that resonates with 

the expectations embedded in the Action Learning concept. It also tells us that the supervisor has the 

skill needed to spot and to articulate that the crux is to integrate Action Learning as a way of 

collaborating.  

The workplace logic 

The workplace logic concerns the main objective of the training program from the school managers’ 

view and their expectations to the local supervisors’ role in the project. From the interviews with 

school managers the training program appears as a project among many other projects in which the 

main priority is to safely navigate the school through it and to avoid any delays. Though the school 

managers presumably also have an interest in developing the competencies of their teacher staff, 

safely getting through the project appears as the dominant cultural logic. Interviews with school 

managers show that this logic translates into an expectation that the local supervisors will be 

managers of the project due to high trust of the professionalism of the supervisors. The statement 

below from a school manager illustrates how the supervisor is referred to through the workplace 

logic.   

School manager: I highly trust my supervisor’s skills. Our supervisor is very professional and 

she is currently going through a pre-leader course. (…) and I thought that 

she therefore was better qualified to manage the project than I was. 

In what appear as an acknowledgement of a supervisor’s skills, this supervisor is given the 

responsibility to manage the project. At this particular school a group of teachers refused to 

participate in the training program due to short notice and discomfort about having to be observed 

as a part of the project. As the school managers had distributed the responsibility to manage the 

project, this became an issue for the local supervisor to handle. Consequently, the supervisor was 

obliged to “persuade”, as she puts it, another group of teachers to participate in the project.  

Local Supervisor: I didn’t lure them but… I just told them that it wasn’t optional. They just 

had to do it, you know.   

As the responsibility of managing the project was designated to the supervisor through the 

workplace logic, these project management issues become a task for the supervisor to handle. This 

implies that the supervisor is required to draw on a formal leadership mandate by reminding the 

teachers that participation in the project is mandatory. As the supervisor describes in the following 

excerpt, this incident resulted in an uncertainty among the teachers about the role of the supervisor:  

Local Supervisor: I think that this made it very unclear for the teachers what my part in this 

project was. Am I here to check if they are doing a bad job? Will I go to my 

manager and say: “That teacher does a bad job. She is really bad at teaching 

math”. Or whatever it might be.  

The supervisor’s task of managing the project is not necessarily problematic in itself. But as a group 

of teachers refuse to participate in the training program, this is an issue that becomes a task for the 

supervisor to handle. In order to handle this issue, the supervisor is obliged to find another group of 



teachers that are willing to participate. As no other teachers were willing to participate in the project 

the local supervisor was obliged to emphasize to a specific group of teachers that they were obliged 

to participate as this was necessary for the Action Learning project to carry on.  

Implementing research findings in practice – emerging problems and prospects 

Our analyses have identified three cultural logics, two of which we have unfolded above. Each of 

these cultural logics produces a certain set of expectation to the supervisor in terms of how he or she 

adequately should participate in the project. What becomes evident from our analyses is that the 

local supervisors are met by mutually exclusive expectations as a consequence of these logics; the 

project logic expects the supervisor to support the teachers as an equal peer whereas the workplace 

logic expects the supervisor to manage the project as a superior. This has at least two consequences. 

Firstly, the supervisor’s delegated management role triggers an uncertainty among the teachers of 

the intentions of the supervisor and raises the questions of whose errands he or she is running. Is the 

supervisor’s main task to support the teachers in their professional development or to monitor their 

work on behalf of the management? This uncertainty makes it difficult to draw on the supervisor as 

an equal facilitator. A key component in the Action Learning concept is the joint observations of 

each teacher’s practice, which subsequently are meant to be the starting point for a conversation 

aiming to develop the teachers’ understandings of their own practices. Such an uncertainty among 

the teachers in respect of the supervisor’s role represents a substantial barrier in creating a safe 

environment in which the teachers can learn from their own practices. Secondly, the coexisting 

logics cause a tension on the supervisor as he or she is expected to fill many roles at the same time. 

Each of the cultural logics influence the actors’ expectations to the role of the supervisor according 

to their own dynamic stability, thus tying the supervisor to different, incompatible priorities at the 

same time. As the potential for anchoring the Action Learning concept is closely connected to the 

role of the supervisor, there seem to be little chance that the supervisors are capable to do so under 

such difficult circumstances.  

Our analysis also points to more general issues related to implementation of research findings in 

practice. Though Action Learning addresses what seem to be the main challenges in gaining long-

term results from teacher training programs, the different expectations arising on the local 

supervisor complicates the implementation and the anchoring of the training program. The training 

program investigated in this paper exemplifies how many actors are at play in a school setting and 

that each participating actor may have different agendas in and around such projects. Though this 

perhaps is no surprise, our research suggests that difficulties in implementing research informed 

training programs can be the result of the differing actors’ agendas outside the project. In Action 

Learning, as in many other training approaches, some actors are of immense importance in order to 

harvest the potential results of research informed approaches. The professional development of 

teachers involves and affects many others than the participating teachers and enters the professional 

lives of actors, which may have different priorities, agendas and available resources. A main 

problem about the issues identified in our research is that the co-existing cultural logics and the 

expectations arising to the supervisor thereof largely remain tacit. Though different agendas and the 

effects of such cannot be eliminated by simply making them explicit, an increased awareness and 

joint management of expectations would most likely be a step towards overcoming such hurdles. 
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An approach that has shown to give pre-service teachers rich opportunities for learning to teach 

mathematics is through a cycle of enactment and investigation. An important part of the cycle is 

rehearsal where novices rehearse their plans for enacting particular instructional activity in front of 

their peer pre-service teachers. The peers and the course instructor take part in the rehearsal as 

students, and every participant can stop the activity for discussion on different aspects in teaching. 

We build on the approach developed for pre-service teachers, and work on the adoption and 

development of the approach for work with in-service teachers in Norway. This paper reports from a 

pilot that was implemented with a group of in-service teachers. Our research question concerns 

interactions between in-service teachers and course instructors during the rehearsals and in-service 

teachers´ opportunities for learning in rehearsals. 

Keywords: Rehearsals, in-service teachers, ambitious teaching. 

Introduction  

The aim of mathematics instruction is development of broad mathematical proficiency characterized 

by conceptual understanding, procedural fluency, adaptive reasoning, strategic competance and 

productive disposition to mathematics (Kilpatrick, Swafford, & Findell, 2001). This ambitious goal 

leads to a more demanding, and thus ambitious, conception of mathematics teaching. In this paper 

we aim to add to the existing knowledge base about how teacher education can support in-service 

mathematics teachers to learn the work of ambitious mathematics teaching.  

In the Mastering Ambitious Mathematics Teaching (MAM) project we develop a course for in-service 

mathematics teachers in Norway. In designing our intervention, we take our lead from the Learning 

in, from, and for Teaching Practice (LTP) teacher education project (see Kazemi & Hubbard, 2008; 

Kazemi, Lampert, & Franke, 2009; Lampert et al., 2010; Lampert et al., 2013; Kazemi & Wæge, 

2015). Central in the LTP-practice based approach is work with specifically designed instructional 

activities (IAs) in a cycle of enactment and investigation. A key innovative feature of the design is 

the use of public rehearsals. In a rehearsal, the pre-service teacher is responsible for teaching an IA 

to a group of peer pre-service teachers acting as students, with the course instructor offering guidance.  

This paper reports on our work on rehearsals with in-service teachers in a pilot study. We ask: What 

characterizes the interactions between in-service teachers and course instructors during the rehearsals 

in the study, and in what ways might rehearsals support in-service teacher´s learning of ambitious 

teaching? 



Rehearsals within a cycle of enactment  

Ambitious teaching entails mathematical meaning making, identity building and creating equitable 

learning experiences for children. It requires teachers to engage deeply with children’s thinking - by 

eliciting, observing, interpreting and responding to student reasoning, language and arguments. 

Attending to students’ experiences and designing instruction to enable each child to do rigorous 

academic work in school is also a central principle of the approach (Lampert et al., 2013).  

In their work on ambitious mathematics teaching, Lampert et al. (2010) build on the study of 

Leinhardt and Steele (2005) who identified some routines skilled teachers used in leading 

instructional dialogues and argued that expressing the routines explicit make them teachable for 

course instructors. Lampert et al. (2010) use the notion “routines” to denote well-developed practices 

which have shown useful in teaching, which respect the complexity in mathematics, mathematics 

teaching and learning. They argue that focus on learning to use these routines/practices can provide 

novices an opportunity to hold something constant in a process of further learning to teach. The 

teaching practices that are central in ambitious teaching include aiming toward a mathematical goal, 

eliciting and responding to students’ mathematical ideas, orienting students to each other’s ideas, 

setting and maintaining expectations for student performance, positioning students competently, 

assessing students’ understanding, and using mathematical representations (Kazemi et al., 2009; see 

also Hunter & Anthony, 2012). Teachers who are novices in teaching mathematics ambitiously need 

to learn to enact the practices in their teaching. They also need to develop the mathematical 

knowledge needed to teach ambitiously at a particular grade.  

Grossmann, Hammerness and McDonald (2009) argue for incorporation of “pedagogies of 

enactment” and use of “approximations of practice” in teacher education in order to help pre-service 

teachers develop knowledge, skills and professional identities as teachers. As a type of approximation 

to practice, Grossmann, Compton at al. (2009) suggest use of rehearsals where novices rehearse a 

particular instructional activity in front of a group of peers. Kazemi, Lampert and Franke (2009) 

develop instructional activities (IAs) that are designed to be “containers” for the practices, principles 

and mathematical knowledge that novice teachers need to learn and be able to use in interaction with 

students (see Kazemi & Wæge (2015) for descriptions of the IAs). The structure of the IAs offers the 

novices a scaffold in eliciting and responding to student thinking and understanding. The novice 

teachers learn to teach IAs – through repeated investigation, discussion, rehearsal, enactment and 

observation. Each cycle of enactment and investigation consists of six stages (Lampert et al., 2013), 

as illustrated in Figure 1:  

 

Figure 1: Cycle of enactment and investigation 



In stage four of the cycle, selected novice teachers publicly rehearse their plans for enacting an IA in 

front of their peers and with feedback from the course instructor. During the rehearsal, the course 

instructor or a peer may stop action to ask questions or suggest possible alternative courses of action. 

The course instructor may also act as a student, by asking and answering questions or by making 

errors that students are likely to make (Lampert et al., 2013). Rehearsals within repeated cycles of 

enactments and investigation can be considered as an approximation of ambitious teaching.  

Lampert et al. (2013) argue that a rehearsal is an important setting for building novices motivation 

and commitment to teach ambitiously (p. 239-240). They analyzed 90 rehearsals of IAs by pre-service 

teachers. The study revealed that rehearsals not only allow pre-service teachers to work on routine 

aspects of ambitious teaching, but also to attend to more complex aspects of it. The study also showed 

that rehearsals give the pre-service teachers an opportunity to learn the principles of ambitious 

teaching while the course instructor guide their progress.  

Design of course 

The course consisted of seven sessions (each four hours in length) during a period of four months. 

The sessions were held in a fifth grade classroom of an elementary school1.  

Session 1: The in-service teachers (ISTs) were introduced to the principles and practices central to 

ambitious teaching and the instructional activities they would work on during the course.  

Session 2-6: In these sessions ISTs were divided into three teams of 4-5, and the teams worked 

together in planning, rehearsing, enacting, and debriefing course tasks: 1) Teams of ISTs came to 

class prepared to teach an IA; 2) Teams of ISTs rehearsed the IA under supervision of a course 

instructor (CI); 3) ISTs observed one of the CIs teach the subsequent session’s focal IA to the whole 

group of fifth graders. This was part of the preparation for the following session; 4) One IST from 

each team taught a small group of fifth graders the IA that they had come to class prepared to teach. 

A CI also observed the enactments; 5) After a break, ISTs met in their teams to do a collective analysis 

of the day´s enactment with their CI; 6) Each team debriefed what they had learned; 7) The CIs 

prepared the class for the following session’s focal IA and, as part of that, shared some reflective 

comments on the whole group lesson that was taught.   

Session 7: The last session was devoted to concluding discussions and try outs. 

Method  

Participants and data 

There were 14 in-service mathematics teachers from three different elementary schools participating 

in the pilot study. The three schools are partner schools of the Norwegian Centre for Mathematics 

Education. Some of the ISTs in the study had only a few years of experience as mathematics teachers, 

while others were experienced teachers. A group of six course instructors (including both authors) 

                                                 

1 Due to practical reasons we had to make some changes to the cycles of enactment and investigation proposed by Lampert 

et al. (2013) and illustrated in Figure 1. 

 



from the Centre participated in the study. The course instructors had little experience in leading 

rehearsals. 

Rehearsals were carried out in three teams at five of the sessions. All rehearsals were videotaped, but 

two of the recordings were damaged. Our data is therefore consisting of 13 recordings. Each recording 

is about 25 minutes.  

Coding and data analysis 

A rehearsal consists of parts where an IST is teaching the activity, and parts where IST(s) and CI 

interact. We denote the interactions between IST(s) and CI during the rehearsal as CI/IST exchanges. 

To understand what characterizes the CI/IST exchanges during rehearsals, we take a CI/IST exchange 

as the unit of analysis and we analyze: 1) the substance of exchanges between CIs and ISTs, and 2) 

the structure of exchanges between teacher CIs and ISTs. In our analysis we used a priori codes 

adopted from Lampert et al. (2013). Table 1 shows a list of the substance codes and Table 2 shows a 

list of the structure codes that we built our analysis on. We used Studiocode video-analysis software 

which allowed for detailed coding of the rehearsals. For each rehearsal, we created a timeline for each 

video-recorded to capture the substance and structure of exchanges. Coding the video directly allowed 

for both verbal and visual cues to be considered, such as written representation, gesturing, and 

movements. 

Results 

Substance of  CI/IST exchanges 

In Table 1 we present an overview of frequency of the various substance codes in all CI/IST 

exchanges in the data2. The most frequent codes in our data are representation, student thinking, 

content goals and elicit and respond. These codes were also among the most frequent in the rehearsals 

by pre-service teachers analyzed by Lampert et. al (2013).  

Substance codes 

Description % of all 

exchanges 

assessing understand. 

Assessing what a student knows and understands about the 

mathematics  

16,1 

attending to IA 

Drawing attention to the structural aspects of the IA, particularly to help 

novice teachers´ understanding the entire IA 

23,1 

body/voice use Attending to how one uses body and voice while teaching 0 

closing the IA Bringing the IA to an end 3,5 

content goals Attending to the specific mathematical content goals of the lesson 31,5 

elicit and respond Eliciting, interpreting, responding to student mathematical work or talk      31,5 

launching the IA Introducing and beginning student engagement with the IA 5,6 

manage space Attending to issues of classroom space while engaging students 0,7 

manage timing Moving through the lesson in a way that manages timing and pacing 3,5 

                                                 

2 Due to the complexity of CI/IST exchanges, an exchange can be coded by several substance codes. As a consequence, 

the percentages do not sum to 100%. 



mathematics 

Working on and understanding the mathematical content, particularly 

for IST learning 

22,4 

orienting students Orienting students toward each other´s mathematical ideas 7,0 

process goals Attending to the specific mathematical process goals of the lesson 16,1 

representation 

Representing mathematical ideas in writing and making connections 

between talk and representation 

39,2 

student engagement Managing the intellectual and behavioral engagement of students 12,6 

student error Surfacing and responding to student errors 4,9 

student thinking Attending to the details of student mathematical thinking      32,9 

Table 1: Substance codes: description and frequency as percentage of all CI/IST exchanges in the data 

Many of the CI/IST exchanges involved more than one substance code, and the same combination of 

substance codes were frequently found together across different exchanges. For example, student 

thinking, elicit and respond and representation appear repeatedly in the same exchange. The 

combination of content goal and representation is also very common, in many cases together with 

mathematics. The frequency and the combination of the codes indicate that the main substance in 

CI/IST exchanges consist of  

1) attending, representation, eliciting and responding to student thinking 

2) content goals and representation of mathematical ideas in the activity 

 

The following example is representative of the first category above: 

Example 1. The IST who is teaching during the rehearsal shows the image of three groups of eight 

dots and asks the “students” how they see it. One of the other ISTs in the team suggest an answer. 

IST2:            I see eight times three. In the first group I saw 

four plus four, eight. I have eight three times. 

IST:               [Circles three groups of eight. See Figure 2.] So 

first you have one times eight, so one times eight, 

so one times eight. [Writes 1x8+1x8+1x8=3x8.] 

Some other suggestions? 

CI:             Can we stop for a moment? Hmm, this is not so easy. 

The student presents her thinking rather 

imprecisely, and now we need to illustrate it on the image and also write it 

symbolically. We lose the part about seeing eight as four plus four in the way you 

represent her thinking. Can we try to represent her idea more accurately?  

IST:                I can circle four and four… 



IST3:         But just in the first group. She said that she saw it in the first group and then just 

multiplied by three. And it is not clear whether she thinks eight times three or three 

times eight, she says both.3 

IST:               Yes, right. I tried to make “eight times three or three times eight” clearer by leading 

to one times eight, and so on. Because it is three times eight.  

CI:             Maybe you can ask the student how she would represent it? Or, if you find her 

explanation too vague, you can ask her to say more? 

The IST2 (who plays the role of the student) says that she sees eight as four plus four and she says 

“eight times three”. Later she says “eight three times” which is more in accordance with the image 

and the convention. The IST takes no notice of the first parts of the utterance, and he grabs hold of 

the last part which is more in line with his goal.  The CI´s first question is about attending to and 

representation of student thinking. The IST simplifies and changes the student´s contribution through 

the visual and symbolic representation. Further on, he asks for other suggestions and thus indicates 

that the discussion is finished. The CI´s second utterance explicitly addresses eliciting and 

responding. 

The combination of content goals and representation of mathematical ideas in the activity appear 

also often within exchanges in our data, and the combination is illustrated in the following example: 

Example 2. The IST´s goal is to use a string of problems to discuss multiplication by ten, hundred 

and thousand with the students. He starts by four times three, and asks the students for a story that 

would fit the arithmetic problem. A student (one of the ISTs) suggests four groups of three apples, 

and the IST draws the illustration as shown in Figure 3. 

CI: Are you planning to use money in the 

discussion? Your illustration reminds 

me of money. 

IST:               Yes, I have been thinking about it. Money can be useful here, when we discuss 

multiplication by ten, hundred. One can use tenths and talk about 12 tenths in the 

next step. Same with hundreds. But, another story came up. 

CI: As a teacher, you have decided what the content goal is, and you have been thinking 

about what representation would be appropriate. You can ask about a story with 

money from the start to get the representation you want in the discussion. 

These kinds of exchanges, where representation and the content goal are combined, appear frequently 

in the data. In Example 2, the main substance discussed is the type of representation that could be 

appropriate for a given content goal and how to introduce it. In some other exchanges in the data that 

are coded with these two codes, the discussion is on ways to represent mathematical ideas so that the 

representation emphasizes the the relations that are targeted in the activity.  

                                                 

3 In Norway, when the multiplication is interpreted as equivalent groups, the meaning of “eight times three” is eight 

groups of three. 



Structure of CI/IST Exchanges 

The structure codes used in our analyses are the same as those used by Lampert et. al. (2013). Table 

2 shows the description and frequency of the various codes in our data. Similarly as with substance 

codes, an exchange can be coded using several structure codes. For instance, In Example 2 above, the 

exchange starts by “CI facilitates discussion” and develops to “CI gives directive feedback”.  

Table 2: Structure codes: description and frequency as percentage of all CI/IST exchanges in the data 

Considering the structure of the rehearsals, the analysis shows that half of all CI/IST exchanges in 

our data can be characterized as discussions facilitated by CI (at least partly, in cases where several 

structure codes are used in the same exchange). In rehearsals analyzed by Lampert et. al. (2013), the 

code “CI facilitates discussion” is the least frequently appearing code, whereas “directive feedback” 

is the most frequent. This indicates that the structures of the rehearsals in the two studies are quite 

different. One reason can be that our study concerns in-service teachers while Lampert et al. (2013) 

report from their work with pre-service teachers. In-service teachers have more experience with 

teaching than pre-service teachers, and it is reasonable to expect that their skills in teaching and their 

identity as mathematics teachers are more developed. A consequence can be that both in-service 

teachers and course instructors working with them might feel more comfortable in discussions than 

with CI giving directive/evaluative feedback or scaffolding enactment.  

Discussion 

Further work with in-service teachers and further data collection will take place in the coming year, 

and the results presented here are preliminary. However, the pilot study has already yielded a number 

of valuable insights. The study shows that the interactions between ISTs and CIs during rehearsals 

are mainly in form of discussions on some central principles and practices of ambitions mathematics 

teaching - using mathematical representations, aiming toward a mathematical goal, attending to 

student thinking and eliciting and responding to students’ mathematical ideas. More specifically, we 

have found that multiple substance and structure codes are present within individual rehearsal 

exchanges, indicating that rehearsals offer in-service teachers the environment and opportunity to 

work simultaneously on a variety of aspects of practice.  

Structure-codes 

Description % of all 

exchanges 

CI facilitates 

discussion 

CI lead a discussion and reflection raised by CI or ISTs 50,4 

CI gives directive 

feedback 

CI suggests new move or think aloud about possible next move 35,7 

CI gives evaluative 

feedback 

CI make evaluative comment 7,7 

CI scaffolds 

enactment 

CI takes the role of teacher or student, scaffolding the enactment by 

either increasing or reducing the complexity 

23,1 



The study of Lampert et. al (2013) shows that rehearsals give opportunities for pre-service teachers 

to learn to enact principles, practices and knowledge entailed in ambitious teaching. The findings in 

our study indicate that rehearsals function as an approximation of ambitious teaching in work with 

in-service teachers too, even though the structure of rehearsals is different. 
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Problem solving is one of the skills that is expected to develop in children who learn mathematics. 

To do this, school mathematics curriculum worldwide has incorporated this skill for teachers to 

promote it in classrooms. Though research results show what should be made, these have been 

parceled and make difficult an effective incorporation of the skill, its promotion and students’ 

learning in schools. Therefore, the following work presents a professional development strategy 

that incorporate diverse research results related to the promotion of problem solving in math class. 

This allows to achieve a professional development complex system whose main axis is the school 

teacher. 

Keywords: Problem solving, math curriculum, professional development.  

Introduction 

In Chile, the General Law of Education states that “students develop knowledge, skills and attitudes 

that allow them to understand and use basic mathematical concepts and procedures, related to 

numbers and geometric forms, in everyday problems solving, and to value the contribution of 

mathematics to understand and act in the world”, (article 29, section f). However, in the Curricular 

Study Programs of Chilean Mathematical Education there is no concrete proposal for teachers to 

promote such skills and attitudes in the classroom. Then, this poster shows one way to develop and 

include the problem solving in the Chilean Curriculum National of Math Education. To do this, is 

necessary to know what is needed for a successful curricular proposal implementation in math. The 

NCTM (2014) suggests the following points to implement a successful curricular development 

proposal: a) Teachers need to have a professional development of high quality to maximize the 

efficacy of the materials and activities they propose in the curriculum, since even the best textbooks 

and resources can be misinterpreted or misused. b) Collaboration among teachers throughout the 

school year may result in appropriate adjustments and activities adaptations for dosing topics to 

address the strengths and weaknesses of each student. For this reason, along with thinking about the 

curricular development proposal, a professional development proposal that supports teachers to 

incorporate in a better form the new requirements that are demanded need to be thought. On the 

other hand, Marrongelle, Sztajn and Smith (2013) indicate that the characteristics that make more 

effective a professional development program are: to be performed regularly and connected to 

practice; to be focused on students learning; to be directed to the teaching of a content; to be aligned 

with objectives of the school; and to build strong links among teachers. Considering the perspective 

mentioned above, in the following parts will be described the process for the implementation and 

the incorporation the PS in the curriculum. 



Methodology 

The project aims to impact the: instructional practices of participant teachers related to the delivery 

of opportunities to develop skills in the students, focused in problem solving; teachers’ skills to 

solve problems; teachers’ skills to modify and adjust activities to promote the development of skills 

in their students; students’ skills to solve problems; students' skills to represent, report, discuss, 

argue and explain mathematically. For this purpose, a proposal for curricular development that was 

adapted to the reality of the Chilean school system in Mathematics Education was designed. The 

project includes two main stages. In the first one a proposal for curricular development based on a 

literature review was designed, based on the Chilean curricular framework. The proposal included 

classroom activities for students, instructional methodologies for teachers and an annual curriculum 

integration plan for each participating school. In the second one, there was implemented a 

pedagogical technical support model in order to teachers appropriate the activities and methodology 

to be performed later in the classroom. The curricular development proposal will be implemented in 

4 schools, which compromised their participation of teachers and students from 1st to 4th grade and 

the time necessary to do so. It had a population of 24 teachers and 600 students from 1st to 4to 

grade in total. 

Discussion and conclusions 

The project is still being conducted, but there are preliminary results on its implementation. In the 

stage 1 of the proposal design was observed that while the curricular proposals from countries such 

as Singapore or Finland have among their curricular objectives to promotion of mathematical skills 

as the problems solving, the curricular resources available for teachers in those countries do not 

guarantee by their own, the skill promotion and not the acquisition of teachers’ instructional 

practices. Again, research results corroborate the lack of professional development strategies that 

allow the skills acquisition by teachers (Bunyi, 2013). Given this lack and the need of the Chilean 

teachers in terms of mathematical knowledge, as well as in pedagogical skills to promote 

mathematical skills and attitudes towards it in classrooms, it is that the strategy of weekly and 

monthly support was crucial, both for the acquisition of pedagogical skills and mathematical 

knowledge.  
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TWG24 made its first appearance as a new Thematic Working Group at CERME10, focusing on 

representations of mathematical concepts or mathematical objects because of their constituting an 

“integral part of the doing of mathematics” (Presmeg, 2002) and thus an important part of 

teaching and learning mathematics. Indeed, representation has been a crucial topic in research, for 

instance, in PME groups, in a special issue of ESM, in a special issue of ZDM, in ICME 13 in 2016. 

In the group’s “Call for papers” the term representations referred to thinking tools for doing 

mathematics encompassing graphs, tables, diagrams, formulas, symbols, texts, concrete models, 

and, in a broader sense, even gestures, videos, sounds etc.  

Keywords: Representation, visualization, imagine, visual-spatial abilities, visual-spatial image. 

Introduction 

This Thematic Working Group explicitly welcomed papers from a variety of different theoretical 

approaches and methodological frameworks addressing the role of representations of different types 

in teaching and learning processes, in particular those involving visualization (considered here as 

defined by Arcavi (2003)). In TWG24 there were 24 participants (authors, co-authors, and some 

other participants), from 13 countries (these included Chile, Denmark, Finland, France, Germany, 

Italy, Mexico, The Netherlands, Portugal, Sweden, Switzerland, Turkey, the UK) with 16 accepted 

papers and 2 accepted posters. The most part of the 16 papers, were empirical studies (related to 

primary and secondary school). The 2 posters reporting empirical studies conducted at the primary 

and secondary school levels. The poster concerning primary school described what students learn in 

mathematics lessons when different representations of fraction are used; and the poster concerning 

secondary school described how a variety of multi-sensory activities allowed 14 year old students to 

familiarise with some pivotal mathematical concepts such as prime and irrational numbers. The 

structure of the timeslots was designed in order to stimulate interaction and collaboration among 

participants: all participants were asked to read all papers, and prepare reaction-questions to two 

papers in particular that had been assigned ahead of time by the TWG leaders. After a 10-minute 

presentation by the presenting author, the prepared questions were posed and a general discussion 

was initiated and conducted for 25 minutes: first the authors of the paper would reply to the 

reaction-questions, then there was a discussion on issues related to the general list of questions 

designed for TWG24’s call for papers. Posters were also allocated a few minutes of presentation 

time within the working group, and a short follow-up discussion took place after each of them. The 

last session was completely devoted to summing up the main issues that had emerged from the 



group discussions. One of these was that certain key words, present in the literature on 

representations and visualization in mathematics education, were not being used consistently by the 

participants. Therefore a list was put together with the suggestion for the upcoming CERME of 

making explicit the definitions used in each study. Among these (in alphabetical order): figure, 

gesture, mental imagery, metaphor, representation (including the distinction between internal and 

external), sign, symbol, visualization, visual-spatial abilities, visual-spatial image.  

Gestures and representations 

The group agreed on the following: gestures can be considered as a way to create temporary external 

visualizations of internal imagery or structures, to explain or communicate thinking; movement 

involved in the gesture can connect physical properties and theoretical properties; different kinds of 

artifacts affording (or fostering) the use of gestures can be involved (such as the movement within 

dynamic geometry software). The importance of gestures in the context of representations in 

mathematics education was evident in TWG24, because many of the papers presented included a 

focus on gestures. Okumus and Hollebrands investigated how middle school students created 3–

dimensional objects from 2–dimensional figures using an extrusion method, and they identified 

students’ strategies for forming 3–dimensional objects with a focus on their gestural signs. The 

paper by Joffredo-Le Brun, Morellato, Sensevy, and Quilio focused on the relation between gestures 

and (other kinds of) representations (and metaphors), through the analysis of an extract from a 

lesson proposed in primary school during which the students work on the notion of difference, 

introduced with the help of several systems of representation. Ferrara and Ferrari also considered the 

relation between gestures and (other kinds of) representations, presenting the diagrammatic activity 

of secondary school students exploring motion through graphing technology, which captures a pair 

of space-time graphs on a single Cartesian plane. Indeed, the use of computers and technology was 

another transversal theme present in many papers and group discussions. 

Technology and representations 

TWG24 discussed the issue of how technology can change the dynamics of teaching-learning by 

offering specific kinds of representations. The paper by Okumus and Hollebrands presented findings 

from a study conducted during a summer enrichment program, in which students used 

manipulatives and a dynamic geometry program (Cabri 3D). Miragliotta and Baccaglini-Frank 

presented analyses of excerpts from a set of activities designed and proposed within the context of a 

2D dynamic geometry software (Geogebra) for a group of 9th grade students. Schreiber and Klose 

focused on the role of artifacts and different forms and modes of representation when learning 

mathematics at primary school level, through an interactive approach, in which mathematical audio-

podcasts were produced. A perspective on teachers’competencies in the context of multimedia-

based representations was presented by Ollesch, Grünig, Dörfler and Vogel. Their study described 

findings from a project in which they used video-vignettes in order to assess the competencies of 

mathematics teachers for multimedia use in mathematics lessons. Taking a closer look into how 

technology can change the dynamics of teaching-learning by offering specific kinds of 

representations, a study by Garcia Moreno-Esteva, White, Wood, and Black showed how eye 

movement can be tracked and used as a window to cognitive processes involved with use of 

representations in mathematical activities.  



Theoretical frameworks used in the papers and posters presented 

Several different theoretical frameworks were referred to in the papers and posters presented: 

Arzarello's Semiotic Bundle theory (Bini; Robotti); Balacheff’s theoretical notion of 

epistemological validity (Hoyos); Bartolini Bussi and Mariotti’s Theory of Semiotic Mediation 

(Okumus and Hollebrands; Robotti; Schou; Schreiber and Klose); cognitive psychological 

approaches, applied in the problem solving context, such as Bayes’ (Böcherer-Linder and Andreas 

Eichler); or Vergnaud’s framework, (Serrazina and Rodrigues); Duval’s registers of representation 

and theory of apprehension (Miragliotta and Baccaglini-Frank; Robotti; Hoyos, Bini); Enactivism 

(Ferrara and Ferrari; Soto-Andrade and Diaz-Rojas); Fischbein’s Theory of Figural Concepts 

(Miragliotta and Baccaglini-Frank); Goldin’s definition of representation (Sveider); the Joint Action 

Theory in Didactics (JATD) (Joffredo-Le Brun, Morellato, Sensevy and Quilio); Lakoff and 

Núñez’s conceptual metaphors (Finesilver); Mishra & Koehler’s Technological Pedagogical and 

Content Knowledge (TPACK) (Ollesch, Grünig, Dörfler and Vogel); psychological approaches such 

as Bruner's approach (Ott; Finesilver); or Ainsworth’s approach (Böcherer-Linder and Eichler; 

Ollesch, Grünig, Dörfler and Vogel); Krutetskii's approach (Olgun and Ader); Tall and Vinner’s 

Concept Image and Concept Definition (Schou); 

According to these, the authors developed different kinds of empirical studies: intervention studies 

(short term and long term studies; with attention to the teacher’s role or focused on learners); and 

observation studies (observing learners in different educational settings; observing teachers; 

observing classroom processes). In one case, a paper attempted to make some steps forward in 

elaborating a new theoretical framework emerging at the intersection between cognitive psychology 

and mathematics education (Miragliotta and Baccaglini-Frank). In another paper, Ferrara and Ferrari 

conceive mathematical thinking as a place of events instead of objects, and they bring forth 

inventive and speculative possibilities for learners to encounter and problematize spatio-temporal 

relationships, rather than seeing them as ways of being mistaken.  

Concluding remarks 

We conclude this summary with the two questions, from the general list, that seemed to arise the 

greatest interest of the participants, and sketch out the main comments advanced by the Working 

Group. 

What aspects of the use of different types of representation, imagery and visualization are effective 

in mathematical problem solving at various levels? 

Participants of TWG24 suggested that a representation does not stand alone, and it cannot be 

separated from how it is used. Thus, it is important to take into account interaction between the 

individual and the representation (both its external as well as its internal – though difficult to access 

– component) and between representations and context in which they are used (Joffredo-Le Brun, 

Hoyos, Schou). Moreover, representations are used within a social context, partly (but not only), for 

communication of ideas; it is important to encourage learners to express themselves using their own 

representational strategies, and appreciate multiple representations of information and of their ideas 

(Finesilver; Olgun and Ader; Robotti; Okumus). Through a careful and appropriate use of 

representations it is possible to increase positive affect towards mathematics and inclusion (Soto-

Andrade and Diaz-Rojas; Robotti). However, there is a tension between the advantages of flexible 



representation (and specific useful reps) and pushing students to use representations, which do not 

come naturally to them (Finesilver).  

How can teachers help learners to make connections between visual and symbolic representations 

of the same mathematical notions (mathematical object)?  

In response to this question participants of TWG24 suggested that there are certain registers of signs 

that are considered conventional (by teachers), and others which are less conventional. Indeed, 

teachers may be less familiar with the various alternative ways of representing, and either not accept 

alternatives as legitimate (e.g. drawing), or not be conscious of how they are being used (e.g. 

gestures) (e.g.: Bini; Olgun and Ader; Ollesch, Gruenig, Doerfler and Vogel; Schou). Finally, in 

various occasions, the group discussed the issue of low achievers and use of representations both by 

them and by teachers involved in their education processes. These discussions were fueled 

especially by the papers by Finesilver and by Robotti. In her paper Finesilver drew on qualitative 

data from problem-solving interviews with very low-attaining secondary school students, focusing 

on the visuospatial organization of elements in four types of non-standard student-created and co-

created representations. She discussed these four types of representations in terms of relationships 

between representation type, scenario, calculation success, and the students’ developing 

understanding of multiplication and division concepts. On the other hand, Robotti presented a 

didactical sequence involving the use of various artifacts, introduced by the teacher, to solve tasks 

on fractions. She analyzed how the representations, fostered by the artifacts, produced by the 

students, and then picked up by the teacher, contributed to students’ development of mathematical 

meanings around the notion of fraction.  
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In this paper, we refer to the efficiency of different visualizations for mathematical problem solving. 

Particularly, we investigate how set relations that are potentially important in probability are made 

transparent by two different visualizations, i.e. the tree diagram and the unit square. In this paper, 

we use these two visualizations as representations of statistical information. First, we analyze 

theoretically the quality of visualizing set relations by tree diagrams and unit squares. Second, we 

briefly report a published study with students of mathematics education (n = 148) where the unit 

square outperformed the tree diagram when the perception of subset relations was regarded. A main 

focus of this paper is a replication of the aforementioned study with n = 58 undergraduate students. 

Finally, we discuss the significance of our results, specifically for the teaching and learning of 

conditional probabilities. 

Keywords: Representation of statistical information, set relations, tree diagram, unit square. 

Introduction 

In mathematics education, it is widely accepted that representations and visualizations could have a 

considerable impact on students’ learning. For example, Duval claims that visualizations of 

mathematical concepts are “at the core of understanding in mathematics” (Duval, 2002, p. 312). 

However, research in mathematics education and cognitive psychology gave evidence that 

visualization does not necessarily foster students’ understanding. For this reason, a crucial question 

in research in mathematics education is to identify the one of potentially different visualizations that 

is most efficient referring to students’ learning. We refer to this question concerning competing 

visualizations aiming to support students’ learning in statistics and probability, but also in fractions. 

The transparency of set relations plays a crucial role in probability (Böcherer-Linder & Eichler, 

2017), but is also important in many other domains of mathematics education, such as the teaching 

and learning of fractions.  

Theoretical framework 

In the context of Bayesian reasoning, research in cognitive psychology has shown that the 

transparency of set relations in the visualization of statistical information impacts on the performance 

in tasks concerning the Bayes’ rule: “any manipulation that increases the transparency of the nested-

sets relation should increase correct responding” (Sloman, Over, Slovak, & Stibel, 2003, p. 302). 



 

Figure 1: Nested sets of the Bayesian situation of a medical diagnosis visualized by an Euler diagram 

(cf. Binder, Krauss & Bruckmaier, 2015). 

Proponents of this point of view, called nested-sets account, attribute the difficulties of Bayesian 

reasoning to the fact that some sets of events are nested (Lesage, Navarrete, & Neys, 2013; Sloman 

et al., 2003). For the example of a medical diagnosis, Figure 1 illustrates the nested-sets situation. 

“Transparency of set relations” means that it is easy to see, how many elements are in the sets and 

how the sets relate. The cognitive model into which the nested-sets account has been incorporated is 

the dual process theory (Barbey & Sloman, 2007): Representing the statistical information in a 

standard probability format (without visualization) obscures the nested-sets structure of the problem 

and, therefore, triggers the associative system which may lead to biases. Representing the statistical 

information with natural frequencies and / or appropriate visualizations in contrast trigger the rule-

based system because nested sets relations are made transparent, enabling people to reason 

consciously and according to the logic of set inclusion (Barbey & Sloman, 2007). For the design of 

effective visualizations, proponents of the nested-sets account claim that visualizations are helpful to 

the extent that they make the nested set structure of the problem transparent (Barbey & Sloman, 2007; 

Sloman et al., 2003). There are different competing visualizations that claim to visualize efficiently 

set relations or situations that necessitates applying Bayes’ rule and it is an open question which 

visualizations are the most efficient and which properties explain these visualizations’ efficiencies. 

In this paper, we investigate how set relations are made transparent by two competing different 

visualizations, i.e. the tree diagram and the unit square. We use these two visualizations as 

representations of statistical information (Venn diagrams are not considered in this paper because we 

focus on the visualization of statistical information and Venn diagrams are pure set representations 

but not representations of statistical information). First, we analyze theoretically the quality of 

visualizing set relations by tree diagrams and unit squares. Second, we briefly refer to a published 

study (Böcherer-Linder & Eichler, 2017; n = 148 undergraduate students) where we investigate 

whether the tree diagram or the unit square is more efficient to support the perception of subset 

relations. Since we used a new approach to explain the effectiveness of visualizations of the Bayes’ 

rule, we conducted a replication study (n = 58 undergraduate students) which results are in the main 

focus of this paper. Finally, we discuss the significance of our results, specifically for the teaching 

and learning of conditional probabilities. 

 



Visualizing set relations 

“A flower girl is selling red and white roses and carnations.” We use this situation as an example to 

illustrate how the tree diagram and the unit square visualize set relations. In this situation, we have 

sets (for example the set of all roses) and subsets (for example the subset of all red roses) and subset 

relations (for example the red flowers among the roses). If we attribute some numerical values to the 

number of roses and carnations, the situation can be visualized by showing absolute numbers in the 

tree diagram and the unit square: 

Figure 2: Representing statistical information with the tree diagram and the unit square 

Both, the tree diagram and the unit square can be seen as nested-sets representations. In the tree 

diagram, the logical relations between sets and subsets are visualized by lines. The subsets are on a 

lower level than the sets in the tree and the branches connect the subsets with the sets. For example 

the subset “red roses” is on a lower level than the set “roses” and the branch connecting “red roses” 

and “roses” visualizes the relation between both sets. The tree implies a hierarchical structure which 

means that subsets are always on a lower level than sets. Therefore, only those subset relations that 

are in line with the hierarchy are salient. For example, the subset relation of “roses among the red 

flowers” where the “roses” are the subset and all the “red flowers” are the including set is not 

visualized by a branch in the tree and thus, is not transparent. 

In the unit square, subset relations are visualized by areas being embedded in other areas. For example 

the subset of “white roses” is represented by a partial area of the rectangle that represents all roses. 

In contrast to the tree diagram, the unit square implies no hierarchy. That means that subset relations 

can be grasped vertically (e.g. “white roses among the roses”) as well as horizontally (e.g. “roses 

among the red flowers”). Therefore, all subset relations that are possible in this situation are 

transparent in the unit square. 

Because of these differences in the properties of the two visualizations, we expected a difference 

between the tree diagram and the unit square when the perception of different subset relations is 

regarded. Therefore we hypothesized: 

If the subset-relation is not in line with the hierarchy of the tree diagram, the unit square is more 

efficient to make the subset-relation transparent (hypothesis 1). If the subset-relation is in line with 



the hierarchy of the tree diagram, there is no significant difference between the unit square and the 

tree diagram (hypothesis 2). 

Method 

The method in our first study and the replication study was the same. In the first study, we 

administered a questionnaire to 148 students who were enrolled in a course of mathematics education. 

In the second study, the test was administered to 58 students who were also enrolled in a course of 

mathematics education. In both studies, we asked the students (among other questions concerning 

conditional probabilities) in one task that we indicate below to calculate proportions and to indicate 

the result in form of fractions: 

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =  
#subset

#set
 

In this way, we could analyze if the right subsets and right sets have been grasped from the 

visualization. The questionnaire had two versions, one showing tree diagrams, the other showing unit 

squares to represent the statistical information. The rest of the test-items remained constant and the 

participants were randomly assigned to one of the two groups. Thus, any potential difference in the 

results could directly be attributed to the influence of the visualizations. 

To assess the influence of representation on the perception of subset relations we designed test-items 

that each addressed structurally different subset relations. In Figure 3, we show the questions that 

were accompanied by either the tree diagram or the unit square shown above. Note that the item (d) 

addresses a subset relation that is not in line with the hierarchy of the tree diagram and therefore a 

higher performance for the unit square was expected. The items a, b, c and e address subset relations 

that are in line with the hierarchy of the tree diagram and therefore no significant difference between 

the tree diagram and the unit square was expected. We rated correct answers with 1 and incorrect 

answers with 0. 

Flowers: A flower girl is selling red and white roses and carnations. Altogether, she has 120 flowers. 

Calculate the following proportions. Indicate the results in form of fractions. 

The proportion of  

a) red carnations among all carnations. 

b) white roses among all flowers. 

c) white flowers among all flowers. 

d) carnations among the red flowers. 

e) roses among all flowers. 

Figure 3: Items to assess the perception of subset relations 

Results 

Figure 4 shows on the left side the results that we reported in Böcherer-Linder and Eichler (2017). 

As we hypothesized in this study, the unit square (M = 0.66, SD = 0.44) was more efficient than the 

tree diagram (M = 0.38, SD = 0.48) for the item (d) that addressed a subset relation that is not in line 

with the hierarchy of the tree diagram. The difference for the item (d) was significant (t (146) = 3.579, 



p <.001) with an effect size of d = .58. In the replication study there is again a significant difference 

referring the item (d) that addressed a subset relation that is not in line with the hierarchy of the tree 

diagram (unit square: M = 0.63, SD = 0.43; tree: M = 0.31, SD = 0.39; t(54) = 3.101, p<0.01, d =.82). 

Thus, we replicated our result referring hypothesis 1. Further, it is interesting that the ratios of correct 

answers are very similar in the original study and the replication study. However, there are also 

unexpected differences for the items (b) and (c).  

 

Results of the first study, n = 148 

 

Results of the replication study, n = 58 

 

Figure 4: Participants performance in the first study (left side) and in the replication study 

 

In our first study, we investigated also the differences in the other four items that addressed subset 

relations within the hierarchy of the tree diagram. For these items a t-test for the accumulated score 

referring to these four items (α = .739) yielded no significant difference between the tree diagram (M 

= 3.46, SD = 1.023) and the unit square (M = 3.46, SD = 1.036), t (146) = 0.000, p = 1.000. In the 

same way none of the items yielded a significant difference between the unit square and the tree 

diagram when investigated individually. Thus, there was no reason to reject our hypothesis 2 in our 

first study. However, we could not replicate these results in the second study. When the items were 

regarded individually, a t-test yielded significant differences for item (b) (p<0.05) and (c) (p<0.01). 

Also, the accumulated score referring to all four items (α = .634) yielded a significant difference 

between the tree diagram (M = 3.01, SD = 1.11) and the unit square (M = 3.67, SD = 0.52), t (54) = 

2.762, p = 0.008). 

In the first study, the mean values of correct answers for the tree diagram were almost equal for all 

of the four items a, b, c and e addressing subset relations that were in line with the hierarchy of the 

tree diagram (88%, 85%, 86%, 86%). In contrast, in the second study for every item differences 

appeared. However, the performance for item (d) was lower for both visualizations. This might 

indicate that the subset relation (d) is more difficult to perceive than the other subset relations and 

that the visualization with the unit square is more helpful in this case. 



Discussion of the results 

For the situation of the flower girl, our results show a very clear effect in favor of the unit square. 

This was the case in the first study and, with very similar results, in our replication study. 

Nevertheless, we suggest for future research to prove this effect also for other contexts. In another 

study with 143 students of electrical engineering, we replicated the effect for subset relations that are 

not in line with the hierarchy of the tree diagram for two more different contexts. It is further desirable 

to investigate the effect of those subset relations used in the items a, b, c and e in more depth. This is 

especially the case since our results for this kind of items seems to be ambiguous. The replication 

study yielded significant differences referring to the efficiency of the tree diagram and the unit square 

in supporting students solutions in tasks where the subset relations are in line with the hierarchy of 

the tree diagram. Although this result was not expected and we further hypothesize that this result 

will not be replicated in further studies, it agrees with our overall hypothesis, i.e. the supremacy of 

the unit square to visualize situations in which the Bayes’ rule has to be applied.  

There are further aspects that that could be investigated in more detail. For example, there is the 

question of the order in the sequence in the tree diagram. It might be interesting to study the effect of 

the transposed order (roses / carnation on a lower level than red / white) and to compare it with a 

rotated unit square (roses / carnation arranged vertically and red / white arranged horizontally). This 

setting could be clarified if the hierarchy of the tree actually is the reason for the results in our study. 

Moreover for the context of Bayesian reasoning, the results of Binder et al. (2015, p.6) suggest an 

advantage of the 2×2-table compared to the tree diagram, although no statistical difference between 

2×2-tables and tree diagrams was reported. Thus, it is an open question if 2x2-tables are equally 

efficient than unit squares to make subset relations transparent or if there is an additional effect of the 

unit square due to the redundant geometrical and numerical representation.  

Finally, there are further possibilities for visualizing set relations. One of these possibilities that was 

used in mathematics teaching is the double tree (Wassner, 2004). Thus, it could be interesting if a 

specific version of the tree diagram is able to decrease the weakness of the tree diagram to identify 

appropriately set relations. 

Implications 

The main result of our research seems nearly trivial: Visualizations have to visualize the main aspects 

of a mathematical concept if they aim to support students’ understanding of this concept. 

Accordingly, a subset relation must be transparent when the aim of the visualization is to represent 

subset relations. However, it is by no means at all trivial to identify the crucial aspects of a 

mathematical concept. Actually, the tree diagram is very prominent in statistics education research 

(Veaux, Velleman, & Bock, 2012) and also psychological research (Binder, Krauss, & Bruckmaier, 

2015) for visualizing Bayesian situation that necessitates applying Bayes’ rule. However, our research 

gave evidence that – compared to the unit square - the tree diagram is not efficient to visualize the set 

relation that is crucial to understand the structure of a Bayesian situation since it requires a subset 

relation that is not in line with the hierarchy of the tree diagram. 

Our results have firstly some consequences if statistics education is regarded. Sloman et al. (2003) 

expressed that bringing out nested set structure has been identified as being important for the 

improvement in Bayesian reasoning tasks. Thus, restricted to teaching and learning probability, our 



results imply to reconsider the role of the tree diagram to support students’ learning referring to 

probability and Bayesian reasoning. This would be a considerable shift in statistics education (c.f. 

e.g. (Gigerenzer, 2014; Wassner & Martignon, 2002). A little bit more globally, it could be considered 

if proportions, and in particular proportions of proportions could be appropriately visualized by a unit 

square to emphasize the connection between proportions of proportions and conditional probabilities. 

Thus, the unit square could potentially be understood as a visual connection between fractions and 

probabilities. 

More generally, our results imply to focus the discussion of visualizations on the structure of 

visualization and on its relation to the structure of the represented mathematical concept. While the 

superiority of visualizations is a consensus in mathematics education as we outlined in the 

introduction, it is a crucial objective to find out which visualization best fits to a mathematical 

concept, especially in situations where several competing visualizations exist as it is the case for 

Bayesian reasoning situations. For example, Binder et al. (2015) show that the tree diagram supports 

Bayesian reasoning compared to pure symbolic representation, whereas our results imply that the 

required subset relation is not transparent in the tree diagram. Indeed, in recent research, the unit 

square outperformed the tree diagram in Bayesian reasoning tasks (Böcherer-Linder & Eichler, 2017; 

Böcherer-Linder, Eichler & Vogel, in press). Therefore an ongoing task of educational research 

should be to precisely identify the relation of a visualization and its structure and the mathematical 

concept and its structure. One main message of our paper is that this relation is not sufficiently 

investigated, but could considerably impact on students’ learning. 

References 

Barbey, A. K., & Sloman, S. A. (2007). Base-rate respect: From ecological rationality to dual 

processes. The Behavioral and brain sciences, 30(3), 241-54; discussion 255-97. 

doi:10.1017/S0140525X07001653  

Binder, K., Krauss, S., & Bruckmaier, G. (2015). Effects of visualizing statistical information - an 

empirical study on tree diagrams and 2 × 2 tables. Frontiers in psychology, 6, 1186. 

doi:10.3389/fpsyg.2015.01186  

Böcherer-Linder, K., & Eichler, A. (2017). The Impact of Visualizing Nested Sets. An Empirical 

Study on Tree Diagrams and Unit Squares. Frontiers in Psychology, 7(1186), 241. 

https://doi.org/10.3389/fpsyg.2016.02026  

Böcherer-Linder, K., Eichler, A., & Vogel, M. (in press). The impact of visualization on flexible 

Bayesian reasoning. Avances de Investicación en Educación Matemática - AEIM. 

Duval, R. (2002). Representation, vision and visualization: Cognitive functions in mathematical 

thinking. Basic issues for learning. In F. Hitt (Ed.), Representations and mathematics 

visualization. Papers presented in this Working Group of PME-NA, 1998-2002 (pp. 311–336). 

Mexico: Cinestav - IPN. 

Gigerenzer, G. (2014). How I Got Started: Teaching Physicians and Judges Risk Literacy. Applied 

Cognitive Psychology, 28(4), 612–614. doi:10.1002/acp.2980  



Lesage, E., Navarrete, G., & Neys, W. de. (2013). Evolutionary modules and Bayesian facilitation: 

The role of general cognitive resources. Thinking & Reasoning, 19(1), 27–53. 

doi:10.1080/13546783.2012.713177  

Sloman, S. A., Over, D., Slovak, L., & Stibel, J. M. (2003). Frequency illusions and other fallacies. 

Organizational Behavior and Human Decision Processes, 91(2), 296–309. doi:10.1016/S0749-

5978(03)00021-9  

Veaux, R. D. de, Velleman, P. F., & Bock, D. E. (2012). Intro stats (3. ed., international ed., 

technology update). Boston Mass. u.a.: Pearson/Addison-Wesley. 

Wassner, C. (2004). Förderung Bayesianischen Denkens. Kognitionspsychologische Grundlagen 

und didaktische Analysen [Promoting Bayesian Reasoning. Principles of Cognitive Psychology 

and Didactical Analyses]. Hildesheim: Franzbecker. 

Wassner, C., & Martignon, L. (2002). Teaching decision making and statistical thinking with 

natural frequencies. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on 

Teaching Statistics. Cape Town (South Africa): International Association for Statistics 

Education. Retrieved from http://iase-web.org/documents/papers/icots6/10_52_ma.pdf  

http://iase-web.org/documents/papers/icots6/10_52_ma.pdf


Enactive metaphors in mathematical problem solving   

  Daniela Diaz-Rojas1 and Jorge Soto-Andrade2 

1University of Chile, CIAE, Santiago, Chile; diazr.daniela@gmail.com  

 2 University of Chile, CIAE, Faculty of Science, Mathematics Department, Santiago, Chile; 

sotoandrade@uchile.cl    

  

We are interested in exploring the role of enactive metaphoring in mathematical thinking, 

especially in the context of problem posing and solving, not only as a means to foster and enhance 

the learner’s ability to think mathematically but also as a mean to alleviate the cognitive abuse that 

the teaching of mathematics has turned out to be for most children and adolescents in the world. 

We present some illustrative examples to this end besides describing our theoretical framework. 

Keywords:  Metaphors, enaction, representation, visualisation, cognitive bullying. 

Introduction 

Our concern in this paper is the role of metaphor, more precisely enactive metaphor, in the teaching 

and learning of mathematics, particularly in mathematical thinking arising in, or triggered by, 

problem posing and solving. Fostering mathematical thinking in the classroom is a widespread aim 

in mathematics education indeed (OECD, 2014), but in our viewpoint we have a much more severe 

and dramatic issue to address: not only mathematical thinking is not fostered in our classrooms 

(Chilean and worldwide), but mathematics has turned out to be a tool of torture for millions of 

children, who cannot escape from it. This has been recently acknowledged as “cognitive bullying” 

or “cognitive abuse” in the English literature (Watson, 2008; Johnston-Wilder & Lee, 2010). a 

practice that is “at best marginally productive and at worst emotionally damaging” (Watson, 2008: 

p. 165). We thus echo Tillich’s famous statement: “the fatal pedagogical error is to throw answers 

like stones at the heads of those who have not yet asked the questions”. To tackle this complex and 

systemic problem, a multidisciplinary approach is most wanted, where a first diagnosis emerges: 

traditional (and abusive) teaching of mathematics tends to thwart cognitive brain mechanisms 

installed during millions of years of evolution, that we would need on the contrary to recognise, 

appreciate and tap into in the context of learning, to wit: metaphorising, enacting, collaborating…   

Our main hypothesis is that practice of metaphorising, especially enactive metaphorising, in the 

classroom, might be a fundamental means to contribute to alleviating this situation of cognitive 

abuse towards students without forsaking their access to mathematical thinking, but on the contrary 

fostering it. It is our hypothesis that the way a mathematical situation is metaphorised and enacted 

by the learners strongly determines the ideas and insights that may emerge in them and may help to 

bridge the gap between the “mathematically gifted” and those apparently not so gifted or 

mathematically oriented. A big challenge is then trying to figure out under which conditions 

enaction and metaphorising, more precisely enactive metaphorising, impact on mathematical 

thinking processes as hypothesised above.           



We intend here to pursue our recent research on metaphorising and enacting (Diaz-Rojas & Soto-

Andrade, 2015, 2016; Soto-Andrade, 2015). Our earlier work on metaphor in the learning of 

mathematics was presented already in CERME5 (Soto-Andrade, 2007).      

In this paper we focus on some examples and case studies that illustrate the role that metaphorising 

and enacting may play in the spectrum of mathematical thinking elicited by problem posing and 

solving. The contextual background of our case studies involves a variety of learners in Chile: 

prospective secondary math teachers, in service primary and secondary math teachers, first year 

university students majoring in social sciences and humanities, undergraduate and graduate students 

in mathematics, primary and secondary students.   

Research questions   

Which is the role of metaphorising and enacting in mathematical problem posing and solving at 

various levels? To which extent do they influence mathematical thinking elicited by the problematic 

situation, in particular moving amongst various mathematical registers of representation to change 

the problem?   Do they shape our understanding of the processes involved, notably the relation 

between problem and learner, emotional overtones included? 

How does the interplay between affect and metaphoring helps in alleviating cognitive bullying in 

the teaching of mathematics, and even lead to enjoyment of learning and doing mathematics? 

Theoretical framework and state of the art  

Metaphorising in cognitive science and mathematics education. 

Widespread agreement has been reached in cognitive science that our ordinary conceptual system, 

in terms of which we both think and act, is fundamentally metaphorical in nature (Gibbs, 2008; 

Johnson & Lakoff, 2003). In mathematics education proper it has been progressively recognized 

during the last decades (English, 1997; Lakoff & Núñez, 2000; Sfard, 2009; Soto-Andrade, 2007, 

2014, and many others) that metaphors are not just rhetorical devices, but powerful cognitive tools, 

that help us in grasping or even building new concepts, as well as in solving problems in an 

efficient and friendly way. See Soto-Andrade (2014) for a recent survey. We may visualize  

(conceptual) metaphors (Lakoff  & Núñez, 2000) as mappings from a more down-to-earth “source 

domain” into a more abstract “target domain”, carrying the inferential structure of the former into 

that of the latter.   For the learning of mathematics we emphasize the  “poietic” role of metaphor 

that brings concepts into existence, through “reification” (Sfard, 2009). In view, here lies the main 

difference between representation and metaphor: we re-present something given beforehand but we  

metaphorise to try to fathom something unknown or a concept not yet constructed. For instance, we 

construct the concept of probability when, studying a symmetric random walk on the integers (a 

frog jumping on a row of stones in a pond), we see the walker splitting into 2 equal halves instead 

of going equally likely right or left (Soto-Andrade, 2007, 2015). In what follows we will use 

metaphorical language as a meta-language to describe cognitive or didactic theories of interest to 

us, since – we claim –  a theory is essentially the unfolding of a metaphor (Soto-Andrade, 2014). 

Enaction in cognitive science and mathematics education     

Varela metaphorized enaction as the laying down of a path in walking (Varela, 1987, p. 63), as in 

Machado’s famous poem, when he introduced the enactive approach in cognitive science (Varela, 



Thompson, & Rosch, 1991).  In his own words: “The world is not something that is given to us but 

something we engage in by moving, touching, breathing, and eating. This is what I call cognition as 

enaction since enaction connotes this bringing forth by concrete handling” (loc. cit). Less radical 

enaction in mathematics education may be traced back to Bruner (1966), inspired by Dewey’s 

“learning by doing” (Dewey, 1997), who characterised enactive, iconic and symbolic modes of 

representation. For recent significant theoretical and practical developments see Proulx  (2013). In 

what follows we are especially interested in enactive metaphors, where the learner is whole bodily 

engaged, as opposed to “sitting metaphors” in the sense of Gallagher and Lindgren (2015).    

(A)didactic situations and didactic contract 

The theory of didactical situations (Brousseau & Warfield, 2014) might be described as the 

unfolding of the emergence metaphor in math education: mathematical concepts we intend to teach 

should emerge in a suitable challenging situation the learner is enmeshed in, as the only means to 

“save his life”. No real learning is possible if mathematical concepts are airborne from Olympus. 

Such a situation is called a didactic situation, because of the didactical intent of the teacher who set 

it up. It becomes an adidactic situation when the teacher definitely steps back to let the learners 

interact on their own with the setting, with no hope of fathoming beforehand her didactical design 

or the mathematical content she is aiming at. Key metaphors are likely to emerge, as sparking 

voltaic arcs, in and among the learners, when enough “didactical tension” is built up in an adidactic 

situation for them. The notion of didactical contract (Brousseau, Sarrazy, & Novotna, 2014) is also 

of interest to us, in the context of the teacher-student relation. It is in fact a keen metaphoric 

description of the mainly implicit and unspoken mutual expectations, beliefs and commitments 

regarding the actions and reactions of the partners involved in a didactic or adidactic situation.   

Affect in mathematical problem solving 

The role of affect in mathematical problem solving is often neglected in spite of its significant 

incidence in learner’s performance (Mason, Burton, & Stacey, 2003; Hannula, 2014). Here we are 

specially concerned by the role of negative emotions that trigger a learner’s emergent metaphorising 

that can transform a problem that is a tool of cognitive bullying into a friendlier one. The outcome 

of this may be, for most learners, a positive feeling of liberation from the Procrustean bed of 

arithmetic and algebra, for instance (see example 2 below). 

Methodology and experimental background   

Our research includes an experimental facet, where our methodology mainly relies on qualitative 

approaches, to wit: Case Studies (Stake, 1995), Participant Observation techniques and 

Ethnographic methods (Spradley, 1980).   

In all, 4 cohorts of learners have been involved in our teaching and learning according to our 

metaphoric and enactivist approach from 2014 to 2016.  They include prospective secondary school 

physics and mathematics teachers in a one-semester course in number theory at the University of 

Chile; students in a one semester first year mathematics course in the social sciences and humanities 

option of the Baccalaureate Programme of the same University; in service primary and secondary 

school teachers engaged in one week professional development workshop in the South of Chile, in 

service primary school teachers engaged in a 15 month professional  development programme 

(mathematics option) at the University of Chile at Santiago; graduate students working towards a 



Ph. D. in Didactics of Mathematics, at the Catholic University of Valparaiso (UCV),  most of them 

secondary school math teachers holding a Master in Didactics of Mathematics. They were chosen 

because they constituted a broad spectrum of learners we had access to while performing our usual 

teaching duties at the University of Chile, besides some invited workshops elsewhere, with whom 

our overarching approach could be tested.  Learners, working most of the time in (random or 

spontaneous) groups of 2 to 4, were observed by the teacher or facilitator and an assistant, the latter 

assuming the role of participant observer or ethnographer (Spradley, 1980; Brewer & Firmin, 2006).  

Among aspects observed were: level of participation, questions and answers, horizontal (peer) 

interaction, emergence of metaphors, especially idiosyncratic ones, spontaneously or under 

prompting, gestural language of learners and teacher, expression and explicit acknowledgement of 

affective reactions from the learners. Snapshots of their written output in problem solving activities 

were taken and videos of their enacting moments were recorded. 

Illustrative examples and case studies   

We present and discuss here two paradigmatic examples, in geometry and arithmetics, that we have 

come across during our teaching at the University of Chile, to illustrating important aspects of our 

theoretical perspective, often neglected in usual approaches. The case of randomness has been dealt 

elsewhere (Diaz-Rojas & Soto-Andrade, 2015).  Our geometrical example deals with the exterior 

angles of a polygon and their sum: a typical geometrical notion often abusively and gratuitously 

introduced, with no context or motivation.  In arithmetic, we recall the consecutive sums of positive 

integers problem, thoroughly discussed in the literature (e.g. Mason et al., 2003)       

Example 1.  The sum of the exterior angles of a polygon 

We have observed that almost every in service and prospective secondary mathematics school 

teacher in our country, after introducing exterior angles coming out of the blue after inner angles 

and explaining them in terms of the latter, calculates dutifully their sum from the sum of the inner 

angles, that  depends on the number of sides of the polygon. Doing a bit of algebra they finally wind 

up discovering that the sum of all exterior angles is 360o, independently of the number of sides!  

Surprising! This traditional way to “get into” the task  (Proulx, 2013), is not very appealing for most 

students, that experience it as “blind calculation” (a case for cognitive bullying). When trying to 

fathom out exterior angles of a polygon however a first thing to do – from our perspective – would 

be to metaphorise it, to get into the task in a more transparent way. Not just reciting its formal 

definition, of course.  Among the metaphors emerging amongst the learners we work with, the most 

frequent are “a polygon is an enclosure between crossing sticks” (most popular among primary 

school teachers) and “a polygon is a closed path, made out of straight segments”.  Enacting the first 

metaphor triggers the idea of manipulating the sticks, as to make clearly visible the exterior angles 

first and then shifting them parallel to themselves to get smaller and smaller homothetic polygons. 

In this way teachers see that the sum of all exterior angles is 360o, instead of blindly calculating.   

Enaction of the metaphor "polygons are closed paths" by the learners themselves, literally lying 

down a polygonal path in walking, enables them to immediately “see” that the sum of the polygon’s 

exterior angles corresponds to a complete revolution (Diaz-Rojas & Soto-Andrade, 2015). In this 

way they realise that exterior angles, not inner angles, are the convenient data for the walker to 

inflect or bend his path as wanted. Analogously for the sum of all acute angles of a pointed star…    

We noticed that metaphorising a polygon is an unusual challenge, almost a violation of the 



didactical contract, for both students and teachers. But once they feel they are allowed to, even     

prompted to, metaphors begin to arise, shyly at first. The enactive metaphoric approach conveys 

here a completely different experience of mathematics than the traditional one, including the role of 

gestures, movements and, more broadly embodiment, in the learning of mathematics, particularly in 

problem solving (Libedinsky & Soto-Andrade, 2015). 

Example 2.   Which numbers are consecutive sums?  Just an arithmetic problem? 

The question is: Which numbers are sums of a string of consecutive (positive) integers. An 

unexpected question to many learners, however familiar with Gauss well known trick to sum 1 + 2 

+ …+ 100 in a wink.  From our perspective it is interesting to observe how easily this question (or 

any question) emerges in the learners, once their attention is drawn to this sort of sums. Our 

hypothesis is that learners’ reaction here is heavily dependent on their previous schooling and the 

amount of cognitive abuse they have endured. As a typical example we recall an informal short 

meeting to chat about "the mathematical experience" with a class of 12th graders from a Waldorf 

school, to whom we told about consecutive sums (just what they are), period. After a few seconds, a 

girl said: Which series of numbers do you obtain that way?  We claim than in usual problem solving 

this is an often neglected aspect: enactively letting questions emerge instead of asking them…   

Another often neglected aspect in problem solving is the affective reaction a problem elicits in the 

learner. This sort of arithmetic problem quite often triggers a feeling of distaste, especially in 

adolescents. This negative emotion may have the immediate positive effect of stimulating the 

learner to metaphorise, to transform the problem into a more attractive or friendly one, i. e. a 

creative reaction!  This is very rarely observed in our prospective teachers and Ph. D. students. 

Apparently didactical contract weights heavily here: learners are not supposed to transform or 

metaphorise the problems they receive, nor are they supposed to like or dislike mathematical objects 

or procedures, just to understand them or not.   

We observed that every learner tackled the problem arithmetically first, doing some experimenting 

(some calculating small consecutive sums, others following the opposite path: checking whether 2, 

3, 4, 5, etc. might be consecutive sums). Some got a closed formula for a consecutive sum but did 

not see what numbers are so obtained. Those who checked numbers one by one arrived quickly to 

the (surprising) conjecture that powers of 2 cannot be reached.  In fact they re-traced Mason et al. 

(2003). The proof of the conjecture remained elusive until some noticed that powers of 2 do not 

have odd divisors and so devised an algebraic proof of the conjecture. The fact that conversely a 

number which is not a power of two must be a consecutive sum remained in the shadow for 45 

minutes or so.  At his point, we asked prospective teachers whether they liked the way we were 

tackling and solving the problem. Two of them said that the conjecture was interesting and that they 

understood the algebraic procedure but that they were not very happy about it. Fernanda said that 

she was not fond of this algebraic yoga, although she was able to carry it out. For Enrique this 

algebraic approach was easy but he was unhappy because he had noticed (giving private lessons to 

secondary school students) that for most students algebraic calculations are not appealing at all. So 

both were motivated to look for different, may be geometric, approaches.    

For Ph. D. students, didactical contract played in the opposite direction: after working on 

metaphorising some months before, when asked now whether they were satisfied with their 

discovery regarding powers of 2, several students thought about metaphorising the problem, looking 



at the numbers as quantities of dots arranged in clever ways.  Andrea, an insightful female student, 

drew a trapezoidal house with a slanted roof  (of slope 1) and so transformed the problem to a 

question about the area of this trapezoid. Some tried to remember the area formula, but others, like 

three clever prospective teachers, saw by rearrangement or compensation that their trapezoid could 

be turned into a rectangle with the same base. But then they realised that this worked only “half of 

the time”:  for an odd basis! In that case the area has an obvious odd divisor.  For the even case, 

some conjectured that they could get a two-step horizontal roof, each step of equal length     and so 

the idea emerged of slicing vertically the trapezoid into two “halves” of equal base and putting one 

on top of the other.  Some went into distinguishing the cases: half base odd or even. But others had 

the idea of putting one “half trapezoid” topsy-turvy on top of the other, getting in this way a 

rectangle of odd height and half base. Then, a prospective teacher had the idea of borrowing from 

scratch a copy of the original trapezium and coupling both to obtain a rectangle with either odd base 

or odd height and whose area is twice the original one! The proof of the converse conjecture was 

left open. Regarding liking or disliking, graduate students at UCV were more enthusiastic about the 

geometric approach than prospective secondary teachers. Roughly two thirds of the latter said that 

they did not feel confortable with geometry so that they preferred calculating algebraically! In fact 

even when trying to think in geometric terms, they quickly reverted to algebraic calculation. On the 

other hand  happy visualizers realised that the trapezium area may have any value in the continuous 

case but not in the discrete one, because something pops up that has no continuous analogue: Parity! 

A surprising fact for them, who knew, from their laptop screens, that the discrete models the 

continuum well. The question remained open as to whether we can see geometrically that the area 

of a rectangular trapezium cannot be the volume of a hypercube.    

From our perspective this is an emblematic example of the possible “unfolding” of an “arithmetic” 

problem that that can be solved by some algebraic yoga (that many students do not appreciate at all) 

but can also be metaphorised as a geometric problem, more appealing to others. This metaphorising 

"prompts" us to jump naturally into the continuous world and get some inspiration there. We realise 

also the hard way that there is a tricky property of discrete shapes with no analogue in the 

continuous world: parity! Discrete lengths, areas or volumes may be odd or even, although 

asymptotically however parity vanishes… Remarkably, even insightful discussions of this problem 

found in the literature (e. g. Mason et al., 2003) remain confined in the arithmetic-algebraic realm, 

not taking advantage of the avenues and possible generalisations that metaphorisation may open up.   

Discussion  

We have shown several important aspects of the role of metaphorising and enacting in mathematical 

thinking elicited by problem posing and solving.  First, we have seen that the way we metaphorise 

and enact determines the ideas and insights we may have when tackling a problem. Then, how 

metaphorisation triggered by distaste of the problem may allow the learners to move from one realm 

to another, instead of remaining confined in just one. By so doing, they may take advantage of 

different intuitions and handlings, eventually much friendlier to them, that enhance their 

mathematical thinking and also alleviate the cognitive abuse they have been exposed to. Indeed, an 

acknowledged negative affective reaction to a proposed problem may trigger creative 

metaphorisation to change it. In this way metaphorisation appears as a means to empower students 

to transform an unappealing problem given to them, something especially relevant for adolescents 



who otherwise have the feeling of being abused by being forced to follow prescribed rules to solve 

nonsensical tasks (Watson, 2008). Also visualization appears as concatenation of metaphors: In the 

case of consecutive sums: “numbers are quantities”, “summing is putting together”, “factorizing is 

rearranging to form a rectangle” etc. Furthermore, it appears that usual problem solving, as found in 

the literature, tends to neglect, the important role of metaphorisation and enaction, as a learner’s 

first reaction when tackling a problem that looks opaque to him or her. Not only because this may 

allow the learner to solve an otherwise unyielding problem but also because it may allow him or her 

not just to solve the problem but to “see” a solution, turning a hitherto blind calculation into 

pellucid insight.  Finally the enactive and metaphoric perspective reshapes our understanding of the 

relation between problem and learner in problem posing and solving, that appears as a quite more 

circular and entangled process than usually acknowledged, where each one codetermines the other. 
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Diagrams and mathematical events: Encountering spatio-temporal 

relationships with graphing technology 
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This paper presents the diagrammatic activity of some secondary school students exploring motion 

through graphing technology, which captures a pair of space-time graphs on a single Cartesian 

plane. Focus is on a written task about the connections between two imaginary movements and 

(between) the corresponding graphs. Drawing on a vision that conceives mathematical thinking as a 

place of events instead of objects, we discuss three unexpected diagrams for how they bring forth 

inventive and speculative possibilities for learners to encounter and problematize spatio-temporal 

relationships, rather than seeing them as ways of being mistaken. 

Keywords: Graphing technology, movement, diagram, event, problematic.  

Introduction 

In this paper, we deal with the issue of how students might learn about a representational system in 

which temporospatial relationships are the ground for the mathematical doing. Our interests are also 

in how visual, proprioceptive and kinaesthetic aspects of experiencing these relationships might move 

the learning of mathematics in unexpected and unconventional directions. We follow here de Freitas 

(2013) in rethinking mathematics as the place of events, instead of objects, where creativity and 

contingency prevail and the problematic—rather than the axiomatic—better capture the vitality of 

mathematical activity. The idea is that deduction “moves from the problem to the ideal accidents and 

events that condition the problem and form the cases that resolve it.” (Smith 2006, p. 145). Thus, 

mathematics is concerned with the occurrence of events more than with the existence of objects, and 

attention is on the material encounters with the mathematical.  

In this perspective, we present an activity that was carried out with grade 9 students working with 

graphing motion technology to study function. In particular, the technology requires that two remote 

controllers of the Nintendo Wii game console (Wiimotes) are moved at the same time in front of a 

sensor bar, and it displays two space-time graphs on the same Cartesian plane. In the graphs, space is 

given by the distance of each controller from the bar. Thus, the software captures the movement of 

the Wiimotes over time. Our focus is on a written task that asks the students, divided into groups, to 

draw a space-time graph related via movement to a given graph. The task is called “Rob and Bob”. 

In it, Rob and Bob are the names of two little robots that are imagined to be moving the controllers 

in front of the sensor. The graph associated to Rob’s movement is given on paper, together with the 

instructions with which Bob is supposed to be moving with respect to Rob. The students are expected 

to complete the task adding Bob’s graph on the Cartesian plane. We will discuss how three different 

graphs are presented as solutions to the task from different groups, and we will develop how we think 

that these are significant in terms of the novel mathematical meanings that the students are 

articulating. In the meanwhile, we will also draw attention to aspects of the experience with the 

technology that might support this novelty, raising issues about the role of perception on the one side, 

and about the features of the technology on the other side.   



Theoretical highlights 

The representational system we refer to in this paper is the (space-time) Cartesian plane, which our 

students encounter through activity with the technology. However, we want to trouble traditional 

ideational assumptions that conceive such system as inhabited by mathematical figures or functions 

that, in their essence, are representations (particular instantiations or attributes, concrete instances) of 

some form, inert, transcendent, abstract and disembodied. In fact, claims de Freitas (2013), “the 

process of instantiation fails to capture the creative and material act of individuation that is entailed 

when we do mathematics.” (p. 586). We instead embrace an animate vision of the mathematical 

drawing/creation or act of drawing/creation of a figure or a function as event-structured, full of 

potentiality, temporality and movement, immanent, contingent to material circumstances, and 

incidentally subject to transformation. This positions us in the broad discussion on the theorising 

about the embodied nature of mathematics thinking and learning, which attempts to look at 

knowledge in non-representational ways and to overcome body/mind Cartesianisms (see e.g. 

Nemirovsky et al., 2013; Sinclair, 2014; Ferrara, 2015; Roth, 2016). According to this view, learning 

is much more about encountering concepts than about recognizing concepts. Cutler & MacKenzie 

(2011) might argue that thus the challenge is to treat learning as an ontological rather than an 

epistemological problem, staying away, we would add, from opposing the mathematical and the 

physical. The issue of representations is crucial here. As Sinclair (2014) points out, it is not that 

“symbols, diagrams, programming languages and even gestures” (and any other system, we would 

add) “do not at times function to re-present mathematical concepts and relations”, rather “they are 

inevitably bound up with bodies and discourses and thus potentially poised to open up new 

meanings.” (p. 174, emphasis in the original). Our own reading of this makes sense as regards our 

commitment to a mobile view of mathematics and mathematical doing that tries to escape concrete 

versus abstract and matter versus thought divides (Ferrara & Ferrari, 2016). In Ferrara (2015), these 

divides are challenged through a vision of perception and creation in/of mathematics for which 

perceiving is conceiving, thinking is acting and creating is learning. The work of philosopher Gilles 

Châtelet (1987, 1993/2000) on inventive diagramming was provocative to us in considering the 

centrality of mobility or virtuality to bridging the physical and the mathematical. The virtual is the 

necessary link between the two realms. Roth (2016) also draws on Châtelet to underline how one way 

of thinking about dynamic systems is just in terms of the virtual. We can better understand this if we 

take the examples that Châtelet (1987) makes about historical contributions of new ideas by Leibniz 

and Abel. Leibniz theorised differential calculus thinking of points as if they were alive, as powers 

of explosion (“puissances d’explosion”), while Abel saw the curve not as fixed but in terms of its 

power of receiving intersections (“comme puissance à recevoir des intersections”). The virtual 

restores concepts to mobility, granting them inventive force and power. For de Freitas (2014), 

Châtelet shows us “how we might study a particular practice for how its lines of flight flourish and 

act generatively in unfolding new intensive dimensions.” (p. 290, emphasis in the original). The 

virtual is that which nourishes encounters with mathematics, linking the concrete and the abstract and 

allowing recoding the indeterminate contours of the sensible and the intelligible. This has to do with 

the potentiality or virtuality that is always entailed in perception: “We never just register visual 

information from that which is in front of our eyes: we see potentiality, relationality, mobility, 

occurrence. Students are not seeing an object; they are seeing an event” (de Freitas, 2014, p. 298).  



In this paper, we take this perspective to look at the students’ mathematical encounters with spatio-

temporal relationships, focussing on the material and virtual dimensions of these encounters.  

Method and activity 

The activity, which is the focus of this paper, is part of a classroom-based intervention (Stylianides 

& Stylianides, 2013) aimed at introducing the concept of function through the use of graphing 

technology. The wider research had the main purpose of investigating how learners might articulate 

meanings for functional relationships through modelling motion, and how their embodied activity 

with the technology might affect these meanings. A class of 30 grade 9 students and their regular 

mathematics teacher participated in the study, which lasted for a period of about three months with 

weekly sessions. During this time, the students worked on individual tasks, in groups of three people 

and in pairs of groups, taking part in class discussions. The authors were both present in the classroom 

and two cameras were used to film the mathematical activity of the students during all the sessions. 

Data for the research analyses are based on the films and students’ written productions and 

diagrammatic activity. A microethnographic methodology (e.g. Streeck & Mehus, 2005) is essentially 

chosen for studying interactions and discourse in the classroom through strands of semiotic and 

representational activity over short periods of time, drawing attention to the material circumstances 

of the mathematical events. 

The technology the students used in the case we consider here is WiiGraph, an interactive software 

application, which leverages two Wiimotes to display the space-time graphs of two users moving the 

remote controllers in front of a sensor bar. WiiGraph provides several challenges and composite 

operations, including shape tracing, maze traversal and ratio resolution. Choosing the plain 

visualisation (Line), the software captures the distances of the controllers over time and two graphs 

appear, in real time and with different colours, on a single Cartesian plane. Figure 1 shows a case of 

this type of visualisation for a 30-second default time and two students who move the controllers. 

  

Figure 1: The graphical system in Line and two students moving 

Visual and bodily (especially proprioceptive and kinaesthetic) interactions partake in the students’ 

encounters with the graphical system in relation to experiencing spatial and temporal aspects with the 

technology. We will not refer to other types of graphical activity, since this is the one of interest in 

the case of Rob and Bob.  

The task was given in a written form to the class during the second session and did not imply direct 

use of the technological devices. In the first session, the students explored Line and its graphical 

potential, became acquainted with the devices and started discussing about pairs of functions (for 

example, horizontal or slanted straight lines), with graphs originating in real time and projected on an 

interactive whiteboard. The activity of Rob and Bob was designed with the purpose of unfolding the 



slope/speed relation (early insights emerged out of class discussion in the first session), and how it 

may reveal relationships between two space-time graphs (functions). 

Rob and Bob 

The task was faced by the students divided into groups of three people, and followed by a class 

discussion led by one of the authors. It focuses on an imaginary experience with WiiGraph in which 

two little robots move (the controllers) in front of the sensor bar, but only the graph associated to one 

robot’s movement is given (Figure 2a). The text of the task is the following: 

Rob and Bob are two little robots, which can be taught to move in front of the sensor very precisely. 

Suppose that, in response to Rob’s movement, WiiGraph produces the line below (Figure 2a). 

Imagine that Bob also moved: it started together with Rob, at the same distance from the sensor, 

but moved at a double speed and in the opposite direction. 

• Which graph would WiiGraph show for Bob’s movement? 

• Did Rob and Bob meet again after the start? 

Justify your answers. 

The task has an unconventional nature with respect to the representational system offered by the 

technology, because it does not ask the students to merely reason on the model to motion, or motion 

to model, shift. Instead, information about the missing graph is given in terms of the relationships 

between the two robots’ movements (“double speed”, “opposite direction”), so that the students are 

moved to think about the relationships between the two graphs (double slope with opposite sign), 

through their perceptual and bodily experience with the tool. In addition, the simultaneity of the two 

movements, which by the way recalls the usual way of using the tool, is embedded in information 

about the starting instant/point (“it started together with Rob”, “at the same distance”).  

  
a b 

Figure 2: (a) The given graph, (b) The expected solution to the task given by one group 

The given graph is that of a piecewise function made up of four pieces, which capture alternate ways 

of moving by Rob: stepping further from the sensor for the first five seconds, stopping for the next 

fifteen seconds, returning to the starting position in other five seconds, and stopping for the last five 

seconds (Rob keeps constant speed in each time interval). We expected the students to complete the 

Cartesian plane drawing a graph like the one in Figure 2b. It is the graph of a piecewise function again 

made up of four pieces, defined on the same sequence of time intervals as the given graph. These 

pieces correspond to four ways of moving by Bob: getting close to the sensor for the first five seconds, 

stopping for the next fifteen seconds, returning to the starting position in five more seconds, and 

stopping for the last five seconds (however, Bob is supposed to cover double space with respect to 



Rob, according to the constraint of moving at a double speed. Of course, this is true when he moves, 

and trivially when he does not, since the distance covered is null).  

Instead of looking at the expected graph as the correct one and speaking of difference in terms of 

being mistaken, we dwell on different unexpected solutions emerged from the groups about their 

potential to bring forth new relational possibilities for the two robots’ movements as well as for the 

pair of graphs. In the next section, we take these solutions as the problematic actualizations of the 

mathematical events that the groups encounter in solving the task. It is this idea of novelty that speaks 

directly to inventive mathematics and makes students alive to their engaging with the task.  

Graphs and discussion 

The groups worked on the task for half of the time, then they took part in a collective discussion in 

which their graphical solutions were compared. Only one group drew the expected solution (Figure 

2b), while eight out of ten created one of the three unexpected lines shown in Figure 3 (For the sake 

of ease, we refer these lines to three graphs labelled with numbers 1, 2 and 3).   

   
a b c 

Figure 3: Unexpected solutions — (a) graph 1, (b) graph 2 and (c) graph 3  

The three graphs added for Bob’s movement have some similarity. They all show that taking into 

account information about opposite direction and capture it visually in the diagram is not an issue for 

the students. Each added graph is made up of four pieces, which embed the opposite way of moving 

with respect to Rob: first getting close, then returning to the start (first a decreasing piece, then an 

increasing piece). Not even slope is an issue: the double speed of movement is double slope in the 

three diagrams. However, the duration of Bob’s movement is problematic for the students. In fact, 

while there is correspondence between ways of moving there is no embodiment of duration: there is 

no correspondence between time intervals in which both robots either move or stand still. The lengths 

of the horizontal pieces are different from each graph to the other, and the constraint for Bob to move 

at a double speed with respect to Rob is no longer preserved. Thus, the problematics of duration 

evolved along various accidental threads for the students, driven by their perceptual and bodily 

engagement with the task. These broke with causal connections and direct determination, opening up 

to speculative and inventive investments and to a generative movement, implicating the perturbation 

of spatio-temporal relationships. For example, in the case of graphs 1 and 3 (Figures 3a and 3c), some 

encountered the event for which Bob already stands still while Rob is still moving and, later, Bob 

moves towards the starting position while Rob is still standing still. Some groups introduced the new 

event in which the second robot stops just after fifteen seconds, in the very middle of the experience 

with WiiGraph, and ideally disappears from the view of the sensor, so that the second graph might 

accidentally stop in the middle of the diagram (Figure 3a). Almost all the students engaged with the 

kinaesthetic question of Rob and Bob always covering the same space, no matter the time spent, as 



shown in the three diagrams. These threads are actualized through the groups’ written explanations, 

then during class discussion. Types of explanation are the following:  

Graph 1: “The line we represented is half of Rob’s line. The lines are steeper because speed is 

doubled and Bob moved faster than Rob and in the opposite way. The graph ends at 15 because 

Bob, moving at a double speed, stopped at half of 30.” 

Graph 2: “The two configurations are different from each other, indeed slopes also change since 

times change: Rob is slower. So, covering the same space in different time, there will be a higher 

steepness.” 

Graph 3: “Bob goes at a double speed with respect to Rob, so it finishes “the lap” before Rob. The 

rest of the way it stood still and at the end it met Rob. Speed changes between the ways of Bob and 

Rob, indeed Bob has to cover the same space backwards using half of the time.” 

The logical equivalence between double speed as double distance in the same time and as the same 

distance in half of the time is lost, and the problematic of covering a fixed space in less time drives 

students’ perception and visualisation in the diagramming of the missing graph. Graph 1 (Figure 3a) 

is the most coherent in respect to the axiomatic way of reasoning about double speed but at once the 

most incoherent in relation to kinaesthetic actions with the technology. Briefly speaking, it is nothing 

but a temporal shrinking of the given graph. Instead, graph 3 (Figure 3c) is in line with the usage of 

WiiGraph, because it embraces all the thirty seconds of the modelling process. The same occurs in 

the case of graph 2 (Figure 3b), which is particular though, since it struggles to depict the simultaneity 

of the two robots’ movements. In the discussion, different students actualize in different ways the 

problematics that sustain the mathematical events that occurred in solving the task. Below, Lorenzo, 

Luigi, Giulio and Oliver bring forth in the discourse the issues of duration and simultaneity of 

movements, of moving at a double speed and of covering the same space, issues that are entangled in 

their diagrammatic and written activity. Lorenzo speaks about graph 1 (Figure 3a), Luigi and Giulio 

refer to graph 2 (Figure 3b), while Oliver argues about graph 3 (Figure 3c).   

Lorenzo:  ’Cause, moving at a double speed, distance remained constant, even though it was 

the opposite, but maybe, if Rob performed a movement in 10 seconds, Bob 

performed it in 5 seconds because speed was double. 

Luigi:  For me, hem, the graph took up the same time because, moving simultaneously, 

maybe, at the time they were moving, it took less time for one than for the other 

one to cover the same space, to move in the same space, but then one stood still 

until the other one also did move again, so both graphs last for 30 seconds. (...) 

Giulio:  For me, it [the graph] finished at 30, ’cause it’s not that Rob [Bob] could know 

Bob’s [Rob’s] movement in advance, so it [the graph] cannot finish at 15, it [Bob] 

has to wait for it [Rob] to perform the same but opposite movement, ’cause we did 

see Bob’s graph (miming it in the air) but if they move simultaneously, it means 

that one cannot anticipate the movements, so it cannot finish at 15 seconds. (...) 

Giulio:  We depicted slope at 2,5 seconds but then we stood still until 20 seconds, ’cause 

anyway it’s true that time is halved, but Bob doesn't know what Rob will do later, 

so it has to wait for it. 



Researcher:  Did you say that time is halved? 

Giulio:  Yes, ’cause it [Bob] does things in half of the time, it’s true, however it’s not that 

he can know what it [Rob] will do later, hem, ’cause we do know it, but if they 

move simultaneously...  

Oliver:  Bob does our graph with the movements with which it’s been set up, and then, in 

the end, it’s not that it waits for Rob, it goes on just as it likes and wants, then at a 

certain point, when movements are finished, it stops and the line keeps straight for 

the rest of the time. 

Researcher:  Are you saying that time is halved? 

Oliver:  Yes, because of the double speed. (...) 

Lorenzo:  Indeed, for explaining a little the graph, I said that if there’s a distance to cover, and 

that distance is 50 kilometres and you go at a speed of 50 kilometres per hour, it 

takes you 1 hour to cover that distance. Instead, if you go at 100 kilometres per hour 

it takes you 30 [minutes].  

Giulio: Yes, for me he’s right about the first piece, but then if you stand still, so speed is 

null, zero times two is always zero and so speed has to be equal in the positions in 

which it stands still, for me. 

Discourse with the researcher unfolds the event-nature of unexpected threads traversed in solving the 

task. We see how the students inscribe themselves into the temporality of imaginary situations with 

the robots. The ways of perceiving this temporality are different for different (groups of) students: 

some imagine that one robot has to “wait for” the other to know what to do (Giulio, Luigi); for others, 

coordination is not needed (Oliver) or considered (Lorenzo). Time is duration and simultaneity of 

movements: both aspects become problematic for learners. Both are crucial in making sense with 

WiiGraph of time as the independent variable in space-time functions.   

Conclusive remarks 

In this paper we have discussed some unexpected graphical solutions to a given diagramming task 

based on modelling motion through the use of Wii graphing technology. We have focused not on how 

these solutions were incorrect with respect to the expected diagram, but on ways in which they 

brought forth new possibilities for the students to encounter spatio-temporal relationships. In so 

doing, we looked at visual, proprioceptive and kinaesthetic aspects of experiencing the technology as 

that which sustained the occurrence of new mathematical events in the classroom, bringing into being 

problematic perturbations of the given situation, like shrunk graphs as well as not coordinated 

movements and fixed paths, which break with the conventional visualization and activity of the 

representational system in use. The written, the diagrammatic, the discursive and the bodily, as the 

groups attempted to grapple with the task (to make sense of it), have to be seen as that which animated 

the task without ever exhausting it or fully determining it. The temporality of the events speaks 

directly to the material contingency of learning: the students are dynamically affected by the 

diagrammatic activity while telling stories of motion related to graphing technology.  
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Visuospatial representations of quantities and their relations are widely used to support the 

understanding of basic arithmetic, including multiplicative relationships. These include drawn 

imagery and concrete manipulatives. This paper defines four particular configurations of 

nonstandard representation according to the spatial organization of their visual elements. These are: 

unit containers, unit arrays, array-container blends, and number containers, all of which have been 

observed to support developing multiplicative thinking, allowing low-attaining students to work with 

the equal-groups structures of natural number multiplication- and division-based tasks. Student-

created examples are discussed, and pedagogical and diagnostic implications considered.  

Keywords: Visuospatial representation, multiplicative thinking, arithmetic, low attainment.  

In their early encounters with quantitative relationships, children become aware of concepts such as 

conservation of number, counting, etc., through interactions with collections of objects. For example, 

addition as the joining of collections and subtraction as removing a subset of objects from a collection 

– in which the ordering of individual objects is unimportant – can be considered conceptual 

‘grounding metaphors’ (Lakoff & Núñez, 2000). Various models of children’s arithmetical problem-

solving development indicate a broadly similar progression from early concrete/enactive-based 

reasoning, to imagic/iconic, to abstract/symbolic reasoning (e.g. Bruner, 1974; Piaget, 1952). Within 

this broad outline, the actual external representations of learners’ thinking during problem-solving 

include many possible sub-varieties (e.g., sets of actual objects, pictures of objects, tally marks in 

different configurations, dot arrays, etc.), and many possible categorizations of these for analytical 

purposes. The construction of appropriate analytical frameworks is necessary for the discerning of 

inter-individual differences and intra-individual trajectories (Meira, 1995; Voutsina, 2012). This is 

particularly the case when studying atypically-developing learners (Fletcher et al., 1998).  

This aim of this paper is to share one aspect from the qualitative analytical framework for student- 

and co-created visuospatial data used in Finesilver (2014), delineating four particular types of 

visuospatial representation and demonstrating their use with selected examples. The project took an 

essentially grounded analytical approach, and so whilst this paper does not report results as such, a 

sample of research data is included with brief description of the process. 

Theoretical background 

To understand multiplication and division represents a significant qualitative change in learners' 

thinking compared to understanding addition and subtraction (Nunes & Bryant, 1996). These authors, 

amongst others, have recommended a replications model of multiplication, which is highly relevant 

both to counting-based strategies and to unitary drawn or modelled representations of multiplicative 

relationships. A central concept for considering this particular aspect of representation is spatial 

structuring: 



We define spatial structuring as the mental act of constructing an organization or form for an object 

or set of objects. The process [. . .] includes establishing units, establishing relationships between 

units [. . .] and recognizing that a subset of the objects, if repeated properly, can generate the whole 

set (the repeating subset forming a composite unit). (Battista & Clements, 1996, p.282)  

There are two main forms of spatial structuring with which unitary visuospatial representations of 

multiplicative relationships emphasise their replicatory structure: by creating some kind of boundary 

to separate groups of units from each other, or by organising them in a pattern based on regular 

spacings. These two organisational strategies roughly correspond to Lakoff and Núñez's (2000) 

grounding metaphors Arithmetic as Object Collection/Construction, and to two of the common 

unitary configuration types I introduce below, Unit containers and Unit arrays (see Figures 1Figures 

2). 

Creating container configurations – i.e. visible boundaries within which the individual units of each 

group may be in any configuration – is particularly intuitive. Research that includes container 

representations (or equivalent) has been mainly focused on young children and their intuitive concrete 

models, such as sharing items (e.g. Carruthers & Worthington, 2006; Kouba, 1989). Rectangular 

array configurations, in which the groups are structured and defined by a configuration of all units in 

regular rows and columns – are also widely used in educational contexts. Research including array 

representations generally focuses on older children, grid arrays, and involves content such as 

rectangular area measurement; however, dot arrays have been shown as a powerful tool for supporting 

work in multiplication (Barmby et al., 2009; Harries & Barmby, 2007; Izsák, 2005; Matney & 

Daugherty, 2013), and, less frequently, division (Jacob & Mulligan, 2014). No prior studies were 

found that included both container and array representations, focused on the secondary age group and 

allowed freedom of representational strategy across multiple interviews and tasks. 

Data 

The data discussed below, including all examples, derive from a larger research project using 

microgenetic methodology to elicit and study emerging and developing multiplicative structure in 

low-attaining students’ visuospatial representations within a flexible context (Finesilver, 2014).  

There were thirteen participants, aged 11-15, attending mainstream schools in London, and identified 

by their teachers, educational histories, and initial sifting assessments as particularly numerically 

weak compared to their peers. Although having complex individual etiologies and patterns of 

arithmetical issues, they had in common difficulties experienced at the particular stage of moving 

from additive to multiplicative thinking (as highlighted by Nunes and Bryant, above).  

The representations were produced during individual or paired problem-solving interviews carried 

out by the author (four per participant). Participants worked on tasks based within two multiplicative 

scenarios chosen for their ease and likelihood of visuospatial representation. These were ‘Biscuits’ 

(numbers of biscuits shared between numbers of children) and ‘Passengers’ (numbers of different-

sized vehicles required to transport numbers of passengers). There were also some calculations 

presented symbolically with no scenario. The representational media available were multilink cubes, 

coloured pens and paper. Some representations were co-created by student and researcher at 

‘cognitive snapshot’ points (Schoenfeld, Smith, & Arcavi, 1993), i.e. when a participant was unable 

to proceed further independently, and support was given in the form of a minimal ‘nudge’ prompt; 



(e.g. ringing or counting a group aloud). Due to project methodology, support cannot be easily 

quantified (especially gestural interaction) and is not attempted in this paper. Documentation was via 

audio recording, photographs, scans of students’ papers, and field notes. 

Four key types of representational configuration 

Over 200 visuospatial representations were collected (exact figures cannot be given as participants 

re-appropriated whole and parts of prior representations for subsequent tasks and expansions). The 

great majority were found to group into four types; inclusion criteria, as defined below, were allowed 

to emerge, then refined, as part of a grounded analytical process. The most common types, (unit) 

containers and arrays, will be familiar. A smaller substantial proportion combined both container and 

array elements, and a further type emerged which I call Number Containers. (There is only space to 

include a few examples here; more will be included in this paper’s accompanying presentation, or see 

Finesilver (2014) for a complete set.)  

Unit Containers (UC) 

Criteria: Groups of two or more units enclosed by visible boundaries. Includes representations where 

units are aligned in rows and/or columns, but these do not represent divisor/quotient or 

multiplier/multiplicand. 

 
 

 
  

Figures 1(a-d): Examples of Unit Containers 

Overall, this was the most common type (106 instances); eleven of the cohort chose to draw unit 

containers at some point while working on a task, although some much more frequently, and even the 

least able could sometimes use them independently. For the students with the severest arithmetical 

difficulties (e.g. dyscalculia), who could not make any start independently, visuospatial prompts were 

provided, e.g. drawing a set of circles (“plates”) for ‘Biscuits’. UCs were for the most part drawn, 

often with various scenario-based decorative elements, but some made use of mixed-mode, mixed-

media representations with cubes or other physical units placed in drawn containers (see Figure 1d). 

Unit Array (UA) 

Criteria: Groups of two or more units aligned in rows and columns, where number of units in the 

rows/columns represents divisor/quotient or multiplier/multiplicand. 

    

Figures 2(a-d): Examples of Unit Arrays 



Plain unit arrays (of dots, tally marks, etc.) were used frequently (47 instances), the majority being 

produced independently by nine of the cohort, and an almost exclusive choice for three participants. 

All were drawn, and none constructed with cubes. (This may be surprising, as it is easy and visually 

effective to produce cube arrays. However, in general it was the arithmetically weakest students who 

made greatest use of concrete media, and that group also tended to prefer container representations.)  

With a shift of perspective between vertical and horizontal structure, a learner may see that both rows 

and columns are formed of a set of equal groups, which underlies the commutative principle. This 

was independently noticed by some participants; e.g. on being asked to work out 28 biscuits shared 

between four people followed by 28 shared between seven, some re-used the same array, while others 

produced both 4×7 and 7×4, only realizing the equivalence after completion. 

Array-Container Blend (ACB) 

Criteria: Unit array representation with additional containing rings, where number of units in each 

row/column/container represents divisor/quotient or multiplier/multiplicand.  

    

Figures 3(a-d): Examples of Array-Container Blends 

While 47 instances of successful ACB use were collected, many of these were co-created and/or 

drawn during one particular task (see below); however, 27 were otherwise produced independently 

by participants. These were used mainly in ‘Passengers’ and the bare tasks, usually (although not 

always) with each row or column being counted out then ringed before proceeding to the next. Taking 

the additional time and effort to superimpose rings onto an array was thus clearly considered 

advantageous for certain participants on certain tasks. One student in particular began with a strong 

preference for plain dot arrays, but once she had seen an ACB, switched almost exclusively to that 

representation type for subsequent tasks.  

In one particular (and uncharacteristic) task on multiplicative relationships, students were directly 

encouraged to produce an ACB which had both rows and columns ringed. A certain behaviour was 

observed with this representation type alone: some students independently looked back at it during 

later tasks and interviews for reference, in some cases ‘bookmarking’ it. As the numbers involved 

were different to those in their current task, and they only took a brief look, I suggest the images were 

functioning as an instant visual reminder of the commutative property of multiplicative structures.  

Number Containers (NC) 

Criteria: Container representation with numerals (rather than unit marks) representing the number 

in each group written inside, or close by, each container. 



 

 

   

Figures 4(a-d): Examples of Number Containers 

Unlike the previous three configuration types, NCs were not found in the literature or theorized prior 

to fieldwork, and some students introduced them spontaneously. Having observed their successful 

use, I included them in some later interactive support occasions, but of the 30 instances collected 

(from 9 participants), 22 were entirely independent. This change from unitary (iconic) to non-unitary 

(partially symbolic) representation is very significant cognitive step. Note, however, that some 

participants still chose to incorporate decorative elements from the task scenario (i.e. the vehicles 

were still depicted, although individual passengers were not).  

Discussion 

Students’ use of the four types of representational configuration 

Unit container representations allowed those students with the greatest 

arithmetical difficulties to create manipulable simulacra of imaginable 

scenarios, with as much visual resemblance as they preferred, to carry out 

organized sharing and grouping distributions and record their thinking. Unit 

array representations (with or without rings) allowed those students with a 

grasp of equal-groups structures, but who were not yet confident working 

symbolically, to perceive and make use of replicatory patterns spatially 

structured along two dimensions. However, the split between participants 

choosing to include container and/or array structuring elements also indicated 

personal preferences as a separate factor to arithmetical ability. (This has 

potential for further investigation, involving testing participants’ visual pattern recognition). 

While some individuals displayed firm preferences for container- or array-based forms throughout, 

others’ representational strategy choices changed over the course of interviews, and sometimes intra-

task. For example, Figure 5 shows a student’s representation for calculating the number of 7-seater 

vehicles needed for 21 passengers, starting with a container resembling a car, then immediately 

discarding decorative elements and containers, in transition towards an array format.  

Increasing the quantities within tasks (for those students judged likely to cope with the challenge) 

sometimes resulted in strategic change, in particular the introduction of number symbols. However, 

the general persistence of container elements surrounding those symbols (i.e. Number Containers) is 

striking. As seen in Figures 4b and 4d, non-mathematically-functional decorative elements (bus 

wheels, aeroplane wings) were included inconsistently. From a purely calculation-based viewpoint, 

students using NCs might as well be using plain columns of numbers – therefore the container 

elements clearly fulfil some other, non-enumerative, yet important, function. I suggest containers 

forms are a powerful visuospatial/perceptual phenomenon relating to equal-groups number structures 

and relationships, which persists later than might be expected. It is reasonable to expect that as 

 

Figure 5: 

Transitional 

representation 



confidence is gained, the containers begin to disappear (but could be retrieved as a reassuring strategy 

at times of low confidence – for example, when tasks increase in difficulty). 

Obviously, all types of representational configuration were used to a great extent for the enumeration 

of quantities, and for the visuospatial organization of these quantities so that the correct set of objects 

(units or groups) could be enumerated. However, it is worth noting that the representations created 

were not immediately rendered useless once a task solution was found. Students completed 

visuospatial patterns when an incomplete pattern would have been sufficient to obtain an answer; 

they sometimes added further organizational (or decorative) detail after giving an answer. 

Occasionally they even created a whole new representation to record their working retrospectively, 

or to help them explain an exciting discovery they had just made about numerical relationships (e.g. 

the commutative principle). The fact that these representational activities were important to the 

students for their own sake (i.e. not just for obtaining the answer in a single task) suggests that they 

can be an important part of these students’ developing arithmetical reasoning, and their real and 

perceived agency in this development.  

Representational configurations and developing multiplicative thinking 

Representations of mathematical objects […] can be seen as concretizations of abstract 

mathematical concepts and at the same time as representations of real objects. (Wittmann, 2005, 

p.18)  

The four related types of representational configuration defined and discussed above integrate 

numerical and spatial concepts to form visuospatial mathematical objects that allow such a dual role: 

concretizing numerical relationships and representing real-life objects referred to in scenario tasks.  

Whilst all four types represent equal-groups arithmetical structures, they do not fall along a single 

line of progression (see Figure 6, below). In the same way that concrete representations (e.g. modelled 

with cubes) are not necessarily less mature than iconic ones (e.g. drawn images), different types of 

configuration have different affordances which may be relevant at certain points. Number Containers, 

being non-unitary, are a clear progression from Unit Containers in terms of calculation, by requiring 

step-counting or repeated addition rather than unitary counting. However, Unit Arrays better 

instantiate the two-dimensional, reversible, nature of multiplicative relationships, whilst the ringing 

of rows or columns in ACBs could link procedural and static conceptions of multiplication/division.  

The analysis of a set of relatively open-ended, student-generated, qualitative data based on their use 

of four key types of representational configuration highlighted a particular aspect of these students’ 

late- and slow-developing multiplicative thinking: the many small adjustments that together can 

indicate a gradual change of focus of attention from units to groups, all happening within what is 

often considered to be a single stage of ‘counting-based strategies’. Whether a task is multiplication- 

or division-based, there is a total quantity which is made up of, or can be separated into, equal groups. 

In terms of enumeration, the most basic strategies involve counting without any awareness of the 

repeating structure, while the more advanced ones make use of it. In terms of representational 

strategy, the most basic involve manipulating concrete or drawn units individually, to seeing and 

using visuospatial repeating patterns of units, to manipulating component groups as though they were 

units, to – eventually – focusing on these groups as new, composite units.  



An individual’s progress in this move from units to groups as main focus may be diagnosable via 

their representational strategic choices, along various possible trajectories (see Figure 6). (The 

bracketed items are likely or potential subsequent steps which, however, did not feature in the project 

from which this data derives.) 

 

Figure 6: Potential developmental trajectories through representation types 

Regarding this change of focus, there is a particular point of interest in ACBs: although they are still 

unitary representations (i.e. every unit is visibly present and countable), the visual and enactive 

emphasis on ringed subgroups serves to shift the student’s level of visual focus, drawing attention 

away from the units and towards the groups. Thus, it encourages the possibility of seeing containers 

(enclosing well-aligned sets) as the new ‘units’ for manipulation. Meanwhile, with NCs, the replacing 

of (iconic) units with (symbolic) numbers is not only important for its progression toward standard 

notation, but as another part of this change of focus from units to groups – the change from using one 

mark to stand for one thing, to using one mark to stand for a collection of many things.  

Even from a small sample of students it is clear that their patterns of capability, difficulty, and the 

representations which work best for them, are complex, interrelating, and individual. There is no 

single ideal path through from, for example, dealing out a pile of physical items to a set of actual 

present people, and carrying out a fully symbolic division calculation. However, from a 

teaching/learning perspective it appears important that at no stage is the leap too wide or too hasty, 

and that there are visual links when moving from more intuitive to more abstract representational 

strategies. From an analytical perspective, I suggest that tracking students’ use of these four key 

representational configuration types in their arithmetical problem-solving (both in their initial choice 

of type, and in the emerging and developing spatial organization of elements within representations) 

may be beneficial in further study of the progression from additive to multiplicative thinking.  
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We present a mathematical and computational analysis, partially based on machine learning 

techniques, of the visual scan-paths obtained during a graph interpretation task which allows us to 

identify when the problem solver succeeds in solving the problem with a fair degree of accuracy, and 

helps to understand the visual-cognitive processes at work during the problem solving task. 

Keywords: Graph interpretation, eye-tracking, machine learning, mathematics education, gaze 

metrics  

As a way of introduction: About the task and machine learning 

Eye-tracking is quickly becoming an established technique for investigating cognitive processes 

involved in the learning of mathematics and other subjects (Lai, et al., 2013). Unfortunately, the 

analysis of eye-tracking data is difficult and laborious, often involving frame by frame analysis 

(Garcia Moreno-Esteva, Hannula & Toivanen, 2016). We partially overcome this difficulty here, with 

the use of machine learning and other mathematical techniques. Using a desktop eye tracking system, 

children completed a mathematics problem that incorporated a bar graph. The visual scan-paths and 

the accuracy of the response are analyzed in order to understand how a child “reads a graph”.  We are 

trying to gather from our data and its analysis, a story of what happens when several children are 

confronted with such a task.  What do they look at?  Do the gaze patterns influence the success or 

accuracy when responding to the task? With this information we may be able to more reliably infer 

the cognitive processes completed by children.  

The problem-solving task 

In Brisbane, Australia, a group of 113 children (mean age 8.67 years), all in the second half of year 3 

in school, completed the graph problem solving task. As part of a larger project, children completed 

a series of eye tracking tasks (reading, mathematics) in a quiet room near their classroom. The 

mathematics tasks included odd-even judgement, magnitude comparison, and problem solving tasks: 

interpreting a bar graph and navigating a coordinate grid. The focus of this presentation is the graph 

problem solving task. This task was designed based on the Grade 3 Australian Curriculum 

Mathematics where Grade 3 children are expected to be interpreting and comparing data displays 

(ACARA, 2016). A similar graph interpretation task features in a Grade 3 Australian standardized 

achievement test. The children were shown the following: a) a bar-chart, where the height of each bar 

indicated a the number of hours worked by Sarah during a given week; b) a labeled coordinate system, 

where the x-axis had the week number labels, and the y-axis had numbers corresponding to hours; c) 

a sentence indicating Sarah’s hourly wage; d) another sentence indicating the task to completed 

related to Sarah’s wages in Week 3. Curcio (2010) describes a sequential framework for children's 



data comprehension, this framework includes; understanding, interpretation and prediction with 

data. The current graph task required each child to understand and interpret: reading the question and 

basic details of the graph (understanding), and then reading between the different elements of 

information (interpretation) in order to complete the computation and arrive at the correct solution 

for Sarah’s Week 3 earnings. A Tobii eye-tracker operating at 300 Hz recorded the locus of focus of 

their eyes throughout the activity - including the initial understanding, and steps involved in 

interpretation.  The threshold for fixations was set at 100 ms (Tobii Technology, 2014). It was hoped 

that the eye tracking information (fixations and saccades) might shed light on the different cognitive 

steps involved in the task. Initial qualitative evaluations of the eye movements demonstrated children 

who did not progress past the first understanding stage, as they did not identify the question being 

asked or relevant information on the graph. Other children were able to understand the task and 

progressed to specific interpretation of relevant information - with a variety of behaviors 

demonstrated. For example, some children had high numbers of fixations and saccades around 

relevant areas, whereas others had fewer and longer fixations on relevant areas. These initial 

qualitative observations were systematically investigated using machine learning techniques. 

The data included 113 visual scan-paths (for purposes of the forthcoming discussion, the inputs), and 

113 answers (the outputs), considered as correct (1) or incorrect (0). The visual scan-paths consisted 

of sequences of pairs, each pair including the duration of a fixation in milliseconds (ms), and the 

location of the fixation.  The visual scan-path information can be visualized as a video (or a static 

picture) in which the fixations appear as a sequence or red dots that have a size proportional to the 

duration of the fixation, and which are connected by lines to neighboring fixations.   

After inspecting the visual scan-path videos, it was evident that it would be difficult to disentangle 

patterns of visual processing that might reveal cognitive processing of different children. It was 

decided that further mathematical/computational analysis of the data might provide further insight.  

Since the nature of the input data is sequential, classifying the visual scan-paths and test results (inputs 

and outputs) with a Markov model based machine learning technique was selected as an appropriate 

analytic method. 

A word about machine learning techniques 

The proprietary algorithm (Mathematica’s Classify function) was used to do the machine learning 

analyses, using a Markov model method (Wolfram Language and System Documentation Center, 

2016).  In this analysis you select a subset of the sample (input – visual scan-path - and output – result 

- data) to analyze (classify) with the machine learning algorithm. From that analysis a classifier is 

then used on all the inputs (visual scan-paths) to predict the outputs (0 or 1, incorrect or correct).  The 

predicted outputs from the classifier are then compared to the real outputs, and the percentage of 

correctly classified outputs can be calculated (some examples are provided in subsequent sections).   

Our research question 

Our research question is simply, what can we learn or infer about cognitive processes related to the 

graph interpretation task described with mathematical/computational/machine learning based 

analysis techniques of the eye-tracking data, and maybe, could these techniques be of further help in 

analyzing the data pertaining to other well defined mathematics problem solving tasks? 



Our techniques are general, in that they can easily be applied to other eye-tracking data consisting of 

a sequence of fixations given by the coordinates and the durations of the fixations as inputs, and a set 

of two or even more categories as outputs.  We hope to make the programs available to other 

researchers wanting to undertake this kind of analyses at a later stage or our research. 

The analyses and corresponding results 

In this section we will describe three kinds of analysis for which we obtained encouraging results.  

Other possible analyses will be discussed in a later section pertaining to directions of future work. 

We partitioned the visual stimulus (the graph on the screen; Figure 1) into areas of interest (AOIs), 

where the most critical areas of interest are labeled as A1 (wage information), A2 (week number), A3 

(week 3 bar), and A4 (number region containing the number of hours corresponding to week 3), and 

other areas of interest which are less critical, or irrelevant, are labeled with letters B and C and a 

number, respectively.  In addition, we labelled the whitespace around the critical areas as ZZ.   

 

Figure 1: partition of the task sheet into areas of interest (AOI’s). 

As a result, data items look like the following: 

{{227, A1}, {563, B2}, {267, C2},  … , {287, C2}, {517, A1}, {1443, A3}} -> 1, 

Figure 2: a typical data item with pairs of elements corresponding to durations in milliseconds 

(numbers) and AOI’s (letter and number juxtaposed) of the fixations, and the result after an arrow. 

In the example above, the first fixation occurred on area of interest A1 and lasted 227 ms, the second 

one on AOI B2, with a duration of 563 ms, and so on.  At the end the arrow with a 1 after it indicates 

that the child solved the problem correctly. 

Finding a small and highly representative subset of data (developing a training set) 

In order to find small and highly representative sets of data items corresponding to correctly and 

incorrectly solved instances of the task, we tried to find the smallest subsets of data items (henceforth 

called training sets) on which we could generate classifiers that predicted outcomes with a high 

degree of accuracy.  After a building classifiers based on randomly selected subsets of data items, we 

could generate a classifier that correctly predicted up to 75% of the test results, and this was using 

only four data items in the training set (3.5% of the sample). It would have been impossible to test all 

sets of four data items out of 113 (there are 6,438,740 such combinations) so we made a number of 



classifying testing runs for randomly selected subsets of size 4, and chose some of those sets which 

yielded classifiers with a high prediction rating.  We then inspected the videos of some of these sets 

and tried to observe what might have been visually outstanding in these.  Our prediction rate is 

marginally better than human experts can do after training on very large data sets. In the world of 

machine learning, a rating of 75% with a training set of size 3.5% is an extremely good result in what 

is called supervised learning (since the training set we found is so small, this is called semi-supervised 

learning (for machine learning principles, consult Hastie, Tibshirani & Friedman, 2009).   

From this inspection, we detected parameters to investigate further with machine learning and other 

techniques, including sequencing, duration and number of fixations and other more elaborate metrics. 

Analysis type 1: the order of fixations in the sequence – does it matter or not? 

One question we had was whether the order of fixations in the sequence matters, or whether there is 

something else at work.  Some literature in psychology indicates that the order of fixations affects 

certain cognitive function such as memory (e.g. Bochynska, & Laeng, 2015; Rinaldi, Brugger, 

Bockisch, Bertolini, Girelli, 2015).  First, we tested overall order, building a classifier using the entire 

sample data.  Its predictive rate is over 99% (using this technique we get only one mismatch between 

predicted and real outputs, due to a faulty item which we were able to locate through the application 

of the classifier itself). We then permuted the order of the fixation duration and AOI pairs at random 

in the visual scan-paths, and passed the permuted input data through the classifier we obtained using 

the entire sample.  Even with the permuted data, we obtain a classification rate which is over 97%.  

From this we cautiously concluded that the order of the fixations in the sequence has little impact on 

whether the child responds to the question accurately.   

As an additional check, we investigated whether the order of fixations within critical AOIs mattered.  

If this were occurring, it might distinguish understanding and interpretation of the graphical 

information (Curcio, 2010).  In order to study this, we extracted just the pairs of elements 

corresponding to critical elements, and eliminated the rest of the data elements.  With these modified 

data items, we built a classifier, using training sets of size 13 (approximately 11% of the sample size), 

and passed the rest of the modified data items through the classifier. This resulted in a prediction rate 

of up to 66%, which is good but not nearly as good as we had hoped.  This indicates that the order in 

which students inspect critical areas might be of some importance, and it deserves further study. This 

also led us to a different form of analysis (type 3), even though much more needs to be done than we 

did here. 

Analysis type 2: number of fixations and duration of engagement on task 

The number of fixations and their duration (see figure 3) for the subjects is extremely revealing even 

though the analysis is less complex.  These fixation duration profiles could be interpreted like a simple 

fingerprint of student engagement and ability.  Our analysis of the number of fixations and their 

duration gives a clear indication that visual scan-paths can be quite revealing about what the students 

can or actually do. To state the results briefly, children who respond correctly take a short amount of 

time (under 30 000 ms) to provide and answer and have a smaller number of fixations (mean of 69) 

than children who respond incorrectly.  Most of the children who respond incorrectly take at least 35 

000 ms to respond or have more than 69 fixations.  The statistically significant duration averages for 

children who respond correctly and those who do not are 30 000 ms and 35 000 ms respectively, and 



69 fixations vs 77 fixations respectively.  Interestingly, a few children (34 out of 113) who take a 

short amount of time and have a small number of fixations, typical of children with a correct response, 

provided an incorrect response.  In most of these cases children had gathered the correct information 

from the graph but had made a calculation error.  There are 17 children for which we have not yet 

determined an adequate explanation of their performance.  Had those children read the graph 

incorrectly?  Had they understood the task? When interpreting the graph and performing the 

computation, did concepts become confused?  We found that these 17 children completed the task 

very quickly relative to the other participants, with a mean response time of approximately 25 000 

ms. This information leads us to speculate that these children may not have been fully engaged in the 

task or in some respect confused or wandering. In summary, we can pick out, in each case, the children 

according to their response from a quantitative analysis by looking just at the duration of their 

engagement and the number of fixations during their involvement in the task.  In the future, we plan 

to do an Artificial Intelligence based cluster analysis of the number and duration of fixation profiles 

only, hoping that they will separate out into four categories: those of children who respond correctly, 

those of children who do not read the graph correctly, those of children who read the graph correctly 

but miscalculate, and those of children who “do something else”.  There is interest and possibly a 

growing body of work around this topic, whether it is possible to classify gaze patterns according to 

the state of mind of the participant subject. It is definitively one of our goals in this and future research 

(e.g., Horrey, Lesch, Garabet, Simmons, Maikkala, 2017). 

 

Figure 3: number of fixations and duration profiles of successful child (blue) and unsuccessful child 

(orange) – the x-axis is the number of fixations, the y-axis is time, the duration of fixations, in ms 

Analysis type 3: duration ratios and frequency ratios 

From viewing the videos it appeared that children who get the problem right seem to spend a 

substantial amount of time looking at critical data, and seem to look at such data more frequently.  

These parameters were assessed quantitatively, making a distinction between the importance of the 

area of interest (e.g. A, B, C), and not between the areas themselves (e.g. A1, A2, A3 etc.).  Thus, we 

measured the total amount of time a subject spent looking at critical AOI’s (with labels Ax), and non 

critical areas (Bx, Cx, and ZZ), and also measured the frequency with which a subject inspected an 

AOI labeled with A, B, C, or ZZ.  The total duration of fixations on areas A, B, C, ZZ became DA, 

DB, DC, and DZZ, and the we considered the ratio DA/(DB+DC+DZZ).  We then computed the 

means of this ratio for the students who successfully solved the problem and for those who did not. 

The means were used to compute a threshold value and make predictions as to who would 



successfully solve the problem or not.  The same approach was used for frequencies (call the total 

frequency on A-critical areas FA, FB for B-critical areas, FC for C-critical areas, and FZZ).  We 

computed an analogous ratio where the quantities FA, FB, FC and FZZ were weighted by coefficients 

1, .5, .25, and 0, respectively.  The rationale for using weights in the case of frequencies is to account 

for the fact that looking at less critical AOI’s, for example, whitespace (ZZ), can easily occur as a 

result of distraction while inspecting the graph or while moving from a fixation in an important area 

to another one, and therefore, they are overrepresented and should carry a smaller weight in the 

frequency count.  We acknowledge there are alternative approaches that could be used. 

With the two thresholds used in combination one can predict the results with an accuracy of 77%.  

The thresholds were combined in such a way that if a child spent both, enough time on critical areas, 

and looked at them frequently enough, the result would be success, and otherwise, it would result in 

an incorrect response.  So it seems that both these parameters are indicative of a child’s ability to 

successfully solve the graph interpretation task.  A post-hoc statistical analysis was done on the means 

obtained for the duration ratio and the frequency ratio to show that they differ in a statistically 

significant way.  Assuming a normal distribution of the duration ratios, the means of children who 

were successful and unsuccessful were 1.13 and .76, with a standard deviation of .43 and .42 

respectively.  These means are statistically significantly different p << .001.  Similarly, having tested 

for the normal distribution of frequency ratios the means are 1.81 and 1.33, with standard deviations 

of .53 and .54, and p << .001, showing again a very significant difference. 

A note about validity and reliability 

The results discussed here would need to be validated with further experimentation.  For example, do 

the results hold if the experiments are repeated with systematic variations, changing the height of the 

bars, the number of the week, and the salary for Sarah?  Similarly, do the results remain invariant 

cross-culturally?  We have thought of replicating the experiments, with children of the same age 

and/or background knowledge, in different English speaking countries and in different cultures with 

different languages.  This work remains to be done.  The reliability of these results is given in as 

much as the calculations are straightforward and easy to check, and the data is clean data as provided 

by a commercially tested device.  It is hoped that in the future, a functional version of the paper can 

be republished in a way that the reader can verify the programs and use the programs with his/her 

own data. 

Conclusions and direction of future work 

In this report we have discussed the kind of visual processes that might be at work when a child is 

solving a graph interpretation task, a discussion derived from a machine learning analysis of eye-

tracking data collected during the problem solving sessions.  It would seem that there is strong 

evidence to support the claim that the order of the fixations during the problem solving session plays 

almost no role in the child’s ability to succeed in the problem solving task.  It would also seem that 

the amount of time and the number of times spent looking at areas where there is information which 

is critical for the solution of the problem relative to the amount of time and frequency of glances at 

other areas is definitively an important indicator of a child’s ability to successfully complete the task.   

As to how these results would affect teaching practices, one could conclude that it is important that 



the teacher directs the student attention to what the critical information might be, where it might be 

located, and how to use it when teaching how to interpret graphs of this sort.  

There are many other measures that can be studied (or have been studied, but are not reported here).  

We mention just a few, without further explanation: string edit analysis, lag analysis, cluster analysis, 

longest common sequence analysis.  The limit in how to analyze gaze tracking data is our imagination. 
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The purpose of this work is to revisit from an epistemic and semiotic point of view the use of 

technological tools for solving problems of optimization accomplished by in-service secondary 

teachers participating in an online course intended for their professional development. This 

approach allowed to analyze teacher limitations on operational resolutions, and drew hypothesis 

about difficulties for experiencing processes of reflection on their own resolution without the 

implementation of adequate collaboration tools for working between them or by themselves and at a 

distance.  

Keywords: Epistemic and semiotic framework, teaching and learning of mathematics at distance, 

resolution of optimization problems using technological tools, online teacher professional 

development in mathematics.  

Theoretical frame 

In the work that it is presented here it is reviewed new data on the resolution of in-service secondary 

teachers using mathematics technology (GEOGEBRA in this case) to solve optimization problems. 

These teachers were participating in an online course for their professional development, mainly in 

relation with the incorporation of mathematics technology into their practice, but primary they were 

learning to use technology and learning to do mathematics with technology(i). In this context, it has 

been important to know teachers’ strategies during the resolution of complex mathematical tasks 

using technology, because these allowed to identify the mathematical resources displayed by 

teachers, as well as their understanding of the content that were at stake. 

Is in relation with the teacher (or student) understanding of the mathematics content at stake that 

this paper deals with the role of representations in mathematics teaching and learning, because in 

according with Duval (1994), “there couldn’t be understanding of the content represented without 

coordination of the representation registers, regardless of the representation register used. Because 

the peculiarity of mathematics in relation to other disciplines is that the objects studied are not 

accessible independently of the use of language, figures, schemas, symbols(ii)…” (Duval, 1994, 

p.12) 

Moreover, school optimization problems in general are designed for the modelling of real situations. 

However, the mathematical representations that come into play (e.g. formulas, graphs or symbols, 

and the treatments or operations carried out with them) obey a set of rules and operative principles 

within a context of mathematical theories previously established. Thus, when a statement is made in 

mathematical terms, the validity or not of such statement comes into play, and this within a well-

defined theoretical context (Habermas 1999, quoted in Balacheff 2010, p. 5/36). Balacheff 

expresses this complexity of mathematical work as follows: “mathematical ideas are about 



mathematical ideas; they exist in a closed ‘world’ difficult to accept but difficult to escape” (Idem, 

p. 5/36).     

Finally, it is from the perspective of determining the domain of epistemological validity(iii) of the 

computing devices for human learning (Balacheff, 1994), that Balacheff & Sutherland (1994) have 

found a way to characterize a computational learning environment with reference to a given field of 

knowledge, but also the forms of analysis that make sense of the differences between distinct 

computational environments, as well as its potential contribution, specific to the enterprise of 

teaching and learning of mathematics. 

Therefore, for the sake of the work that is being presented here it is worth to be mentioned that in 

order to specifically analyze what the teachers were mathematically doing when solving the 

optimization problems with the technological tools (see more in Hoyos 2016), it was only possible 

using Balacheff and colleagues’ theoretical notion of epistemological validity (e.g. Balacheff 1994-

2004; Balacheff and Sutherland, 1994), and Duval’s work on the coordination of representation 

registers of mathematics, specifically of graphs (Duval, 1994). These authors have illustrated the 

different contributions certain software has in different virtual learning environments (Balacheff et 

al, 1994-2010), and here it is noteworthy not only that the teacher (or student) learns to recognize 

those different register of representations (Duval, 1994) that are put in play by distinct 

computational devices or digital tools, but also the need of the coordination of representation 

registers than an appropriate use of computational devices involves when the validation of a 

solution is in question.   

Collection of data and analysis 

The data that are going to be showed here were part of performances of the in-service secondary 

mathematics teachers participating in certain online courses implemented by the MAyTE (an 

acronym for Mathematics and Technology) team (Hoyos, 2009-2012). These data are presented here 

for identifying what these teachers accomplished specifically for their mathematics learning during 

the six-month of online training courses they were participating into. In the MAyTE team’s courses, 

the mathematical activities were developed around an understanding of concepts, learning 

procedures or mathematical techniques that relied mainly on asking participants in the program for 

the resolution of some specific mathematical problems, while only providing a brief list of 

instructions and explanatory text on the mathematical content. In this context, these courses 

generally did not include tutorial indications related to the mathematical resolution of the tasks 

requested.  

It is noteworthy to emphasize here that it was possible until now to analyze the means or the 

strategies that participant teachers displayed using GEOGEBRA to solve the problems or learning 

situations provided by the MAyTE team by applying the constructs of epistemological and 

didactical validity of computational environments. Briefly, in the online MAyTE program (see 

Hoyos, 2012), the activities consisted of using digital tools that were freely available on the Internet 

to solve math problems. The mathematical content was approached synthetically through a capsule 

of the content, and the digital tools for solving the mathematical problems consisted of a variety of 

mathematical software, particularly software of dynamic geometry (SDG). Next it is described one 

of the prototypical math problems to be solved by the teachers participating in the program, the 



practical context in which it was proposed and how the teachers finally managed to solve the tasks 

involved. Two of the selected optimization problems that teachers should solve are as follows: 

1) A refinery can process 12,000 barrels of oil per day and it can produce Premium [high octane] 

and Magna [unleaded] gasoline. To meet the demand, the refinery must produce at least 2200 

barrels of Premium and 1500 of Magna. The distribution center for the Premium is 30 km from 

the refinery and the Magna distribution center is from 10 km. The transportation capacity of the 

refinery is 180,000 barrels/km per day (This means that 180,000 barrels are transported 1 

kilometer per day). If the benefit is 20 pesos per barrel of Premium and 10 pesos per barrel of 

Magna, how many barrels of gasoline should be produced daily to maximize the benefit? 

2) A certain animal fodder is a mixture of two food products, namely A and B. Each kilogram 

of A has 100 units of protein, 18 of fat, and 400 of carbohydrates. The kilogram of B has 200 

units of protein, 2 of fats, and 300 of carbohydrates. The aim is to make bags with a mixture of A 

and B products, each of which should contain at least 500 units of proteins, 18 of fats, and 1500 

of carbohydrates. If the kilogram of A costs 3 pesos and the one of B costs 4 pesos, determine the 

number of kilograms for each of these products that must contain each bag of food so that the 

cost is minimal. (Week 8, Task 1. Geometry and Algebra Course. Specialization MAyTE, Hoyos 

et al., 2009-2012). 

Most teachers’ solutions to these problems were based on the identification and formulation of 

several algebraic expressions that modeled the given actual situation, and they were accorded to the 

data provided; as well as doing a graphical representation using GEOGEBRA, based on the 

algebraic expressions that firstly were elicited. Such procedures were needed to determine the 

region of feasibility and the coordinates of the points from which it was possible to obtain the 

maximum or the minimum cost, depending on the initial conditions of each problem. The solution 

that is going to be showed here (a data table and a graph in GEOGEBRA) was taken from the 

documents the teachers uploaded to the platform, and were evidence of a solution strategy 

composed of these elements: translation from the initial conditions to algebraic expressions, and 

representing the data through the software GEOGEBRA. Therefore, the teachers obtained a 

representation of the feasibility region from which the value of maximum benefit should be 

deducted (in the case of the first problem). In their graph, the feasibility region was shaded, and the 

problem in all cases was still unsolved after the graphic was made, because a point (with 

coordinates (x,y)) needs to be found by means of exploration and through calculating the values of 

the function of two variables f(x,y), and that in the region of feasibility (for attaining or not the 

benefit maximum for Problem 1 or the minimal cost for Problem 2). 

Next it is shown that the teacher solution starts by constructing a table to organize the information 

of the data included in the text of the problem, and immediately afterwards it refers to the graph 

included in his solution. 

T1 [One of Participant Teachers]: 

If the benefit is 20 pesos per barrel Premium and 10 pesos per barrel Magna. How many barrels 

of gasoline must be produced each day for maximum benefit? 



 

 Minimum 

Production 

Distance Benefit 

Premium (y)  2200 30 20 

Magna (x) 1500 10 10 

Solution: 

According to the problem data, inequalities are the following 

x + y ≤ 12,000 

10x + 30y ≤ 180,000 

x ≥ 1500 

y ≥ 2,200 

Where x is the number of barrels of Premium, y the number of barrels of Magna, the function 

that gets the maximum benefit is 

f(x)=20x+10y 

To obtain the benefit maximum, it should be drawn the graph of the following functions using 

‘geogebra’ 

x+y=12,000 

10x+30y=180,000 

x=1,500, y=2,200 

To find the value of x and y that maximizes f(x) function, we take the points that meet the initial 

conditions of the problem. Using the graph, you can see that the solution set is drawn within the 

limits of the lines and the shaded region. 

In the graph, we can see that the points A, B, C, D, E, and F are some of the points that are 

possible solutions, but points C and D are not feasible, so substituting each of these points in the 

function to maximize the number of barrels of Premium gasoline, the solution obtained is 

x=9,800. And the number of barrels of Magna is: y= 2,200. 

Giving a maximum benefit for f(x) = 218,000 bpd 

The reader should note that the image of GEOGEBRA showing the representation of the feasibility 

region is part of the teacher’s solution and it shall be inserted here. 

Also it should be noted that seeing the image, in first place it must be considered that in T1’s 

solution there is a mistake related to the notation that the teacher T1 chose, by which instead of 

denoting the function of two variables as f(x,y), the dependence of the function f was only indicated 

on a single variable, insofar as writing “f(x) = 20x + 10y” to refer to the function from which the 

maximum benefit will be established. Note that T1, after having adequately defined the region of 

points that satisfied the initial conditions, ended by not carrying out an exploration of the values in 

the region of feasibility, question that would bring T1 to obtain the requested maximum value.   



 

Moreover, what is perhaps most interesting is to note that for the computer learning environment in 

question, in this case constructed mainly for exploration and use of GEOGEBRA and for the 

conversion of mathematical representations (Duval, 1994) required to solve the problem, an 

epistemological change in the conditions of the teacher (or student) is raised (Balacheff, 1994-2010) 

linked to the use of the software in the situation or problem proposed, and to the mathematical 

complexity of the task involved. A sign of this could be that a real graph of a function in two 

variables should be represented in a three-dimensional space. The difficulty then in the problem of 

optimization posed resides in that for solving the situation in question it is also required reflection, 

specifically when following the suggestions included in the capsule of content. These suggestions 

appeared beneath to the text of the problem: (i) to draw lines parallel to the axis and intersecting 

inside the feasibility region, and (ii) to explore the variability of the values of the benefit function 

f(x, y) within the feasibility region and/or on points of the indicated parallel lines, which would 

allow to calculate the maximum value requested in Problem 1.  

Of course, there is another way to solve this problem, for example, by associating any point within 

the feasibility region to the value of the benefit function, such exploration could thus be carried out 

directly using GEOGEBRA, starting by dragging the point over the feasibility region and verifying 

the increase or decrease as the chosen point were varying. Moreover, this type of exploration would 

also help to reduce or eliminate the confusion T1 had concerning the double variability upon which 

the function f was dependent. For example, for point E with coordinates (2507.66, 6006.86) the 

value of the function f(x,y) equals 110,222 approximately.  And it can be proven that the value of 

maximum benefit is f(x,y) = 149,924.05 when the approximate values for x and y are x = 2993.81, 

and y = 9004.79. 

Briefly, to finally arrive to solve a problem posed in a classical school context of optimization 

problem solving, the teacher (or student) shall find that there is a very close relationship between the 

modeling of a real situation, the use and treatment of mathematical representations that come into 

play and the coordination of the representation registers in use. Thus, a possible trajectory for the 

resolution of such problems could consists of: (a) surpassing the initial difficulty of the formulation 

of a series of mathematical statements that model the real situation by the usage of mathematical 



representations to model the actual situation; (b) advancing to get a diagram where the possible 

solution could be found by putting into play certain digital tools (in this case GEOGEBRA inherent 

digital tools) for the mathematical treatment or the conversion of such representations (Duval, 

1994); (c) formulating a new mathematical statement, namely the possible mathematical solution to 

the posed problem. However, it is noteworthy that from a mathematical point of view the teacher (or 

student) having passed by (a), (b) and (c) has not yet concluded with the mathematical task in 

question, mainly because in the mathematics ‘world’ it is always necessary to carry out the 

validation of any mathematical statement last obtained or formulated (Balacheff, 2010, p. 19/36). 

Conclusions 

Because the difficulty to solve resides in to reflect on at least one of the three following 

possibilities: (i) on f as a function of two variables and that its graph would then be in R3 and not in 

R2, while plotting the region of feasibility is being carried out in R2; or, (ii) to reflect on the sense 

of the instructions and/or suggestions given at the end of the text of the problem, suggestions that 

concerned with the construction of parallel lines to explore the maximum value of the function f; or, 

(iii) on the possibility of carrying out an exploration using GEOGEBRA, starting by dragging a point 

over the feasibility region and verifying the increase or decrease of the function f as the chosen point 

was varying; it is worth to see that all of them are entirely relied on a necessity of feedback or 

teacher (or student) control of their activity within the software (see Balacheff & Sutherland, 1994, 

p. 15). But this control usually is relied on the coordination of the representation registers or on the 

comprehension of the mathematical content in question, which is usually not accessed directly by 

working alone within the software and at a distance. 

Briefly, in a trajectory to finally arrive to solve a problem posed in a classical school context of 

optimization problem solving, the teacher (or student) shall find that there is a very close 

relationship between real situation modeling, the use and treatment of mathematical representations 

that come into play and the coordination of the representation registers in use. Therefore, the 

principal results in the analysis that has been instrumented here are as follows: 

(1) The learning environment was in part defined using a computational device (in this case 

GEOGEBRA) as a procedural tool for the conversion, use and treatment of the different 

mathematical representations (Duval, 1994), in this case the equations and graphs that came 

into play in the given situation of optimization; 

(2) However, to transit from a procedural context where a possible solution was found to a 

theoretical one to validate it, an epistemological change is required (Balacheff, 2010, p. 

6/36). In this case, it consisted in instrumenting reflective tools, which are not automatically 

available within GEOGEBRA by itself. 

Therefore, this work has allowed to advance a hypothesis of necessity of digital collaboration 

according to specific participant’s (teacher or student) activity, a support to accomplish the 

epistemological change already mentioned. It would be included in the computational device, or 

otherwise it would be provided by tutorial intervention (e.g. Soury-Lavergne, 1997).      

These final remarks mean it is not enough to have access to mathematics technology and/or Internet 

free resources to achieve expertise or comprehension of certain mathematical content addressed. Yet 



perhaps what is most interesting is that the analysis from this epistemic and semiotic perspective 

sheds light on how to move forward by correcting the design, incorporating elements missing in the 

programs reviewed, instrumenting teaching guides (or constructing hypothetical learning 

trajectories) or working with digital materials as collaborative tools that could promote exploration 

and reflective thinking to be applied in the solution of certain mathematical tasks, as those that were 

showed now in the situations under study. In other words, in the same way that social interactions 

do not in principle have an impact on learning but rather depend on the content and forms of 

interaction chosen, the use of Internet digital tools and computational devices will have an impact 

on teachers and teaching (or students and learning) when instrumentalization of Internet resources 

had been exercised to gain knowledge, or to teachers (or students) get control of the activity within 

the software (Balacheff & Sutherland, 1994, p. 15), specially by themselves. 

Notes 

(i) Both modes are at the beginning of the incorporation of innovation at the school, according to the PURIA model. 

Following this model implies that teachers should experiment with the mentioned modes to advance toward successfully 

incorporating technology into classrooms (Zbiek and Hollebrands, 2008; Hoyos 2009-2012). 

Briefly, the PURIA model consists of five stages named the Play, Use, Recommend, Incorporate, and Assess modes: 

“When [teachers are] first introduced to a CAS… they play around with it and try out its facilities… Then they realize 

they can use it meaningfully for their own work… In time, they find themselves recommending it to their students, albeit 

essentially as a checking tool and in a piecemeal fashion at this stage. Only when they have observed students using the 

software to good effect they feel confident in incorporating it more directly in their lessons… Finally, they feel they 

should assess their students’ use of the CAS, at which point it becomes firmly established in the teaching and learning 

process” (Beaudin & Bowers 1997, p.7). 

(ii) French is the original language of this quote: “il ne peut pas y avoir de compréhension du contenu représenté sans une 

coordination des registres de représentation, quel que soit le registre de représentation utilisé. Car la particularité des 

mathématiques par rapport aux autres disciples est que les objets étudiés ne sont pas accessibles indépendamment du 

recours à un langage, à des figures, à des schémas, à des symboles…” (Duval, 1994, p.12) 

(iii) The domain of epistemological validity of a computational environment is characterized by at least four dimensions: 

(1) the set of problems that the device can propose; (2) the nature of the tools and objects that provide its formal 

structure; (3) the nature of the phenomenology that is displayed on the interface that is accessed directly by the user; and 

(4) the kind of control available for users in the computational environment with the feedback that the latter provides 

(Balacheff & Sutherland, 1994, p. 15).  
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Our study is based on a national research project called Arithmetic and Cooperation at Elementary 

school (ACE). The main objective of this research is the designing of a curriculum for first grade 

students. This communication focuses on the analysis of an extract from a lesson proposed by this 

curriculum. During this lesson, the students work on the notion of difference, which is introduced 

with the help of several systems of representation. These systems are already known by the students. 

The analysis of the extract shows that the past and future situations can be related to each other. 

We point out that the students’ continuity of experience can produce knowledge growth. This 

growth specifically occurs when the teacher’s uttering activity directs the students’ actions while 

they use the systems of representation. This uttering activity allows a reshaping / remodeling 

/modification of former knowledge through the systems of representation.  

Keywords: Elementary school mathematics, continuity of education, semiotic representation.  

This paper focuses on the continuity of epistemic experience in mathematics. We argue that systems 

of representation constitute a prominent way of achieving such continuity. We sketch the role of a 

specific system of representation (the number line) to build of the number sense at first grade. This 

research is based a larger French national research, arithmetic and cooperation at Elementary School 

(ACE). It offers a complete arithmetic program to 6-7 year-old-students (First grade). The 

conception of this curriculum relies on available scientific knowledge in different areas (Cognitive 

Neuroscience, Science of Education, Developmental Psychology and Didactics of Mathematics). A 

specific part of the conception of the curriculum is built within what we call a cooperative 

engineering (Sensevy, Forest, Quilio, Morales, 2011; Morales, Sensevy, & Forest, in press). This 

engineering consists of two spheres. The sphere 1 gathers a multi categorical team (PhD, teachers of 

study classes, researchers, teacher’s trainers, pedagogical advisors) and the sphere 2 is constituted 

by 120 experimental classes. In the first year of the experiment (2011-2012), the sphere 1 designed 

the mathematical situations of the curriculum. These situations were implemented in the « study 

classes », and redesigned on line in the course of the implementation process. The first year of the 

experiment, the sphere 1 designed eleven modules corresponding to forty-five sessions. The second 

year of this experiment, this curriculum has been implemented in 60 experimental classes (versus 60 

control classes) and in 120 experimental classes (versus 120 control classes) the third year (2013-

2014). The experimental classes' involvement in this curriculum and their feedbacks allowed 

numerous improvements of the initial design proposed by the research team situations. 

This cooperation between researchers and teachers showed a willingness to create a didactic 

continuity in student’s experience through the use of representation of the number systems that are 

present in the progression throughout the year. We assume that in the joint action between students 



and teacher, the systems of representation may authorize the continuity of the student’s experience. 

But, how precisely this can be built in joint action between teacher and students?  Here we can rely 

on Dewey's conception of continuity. “The principle of continuity of experience means that every 

experience both takes up something from those which have gone before and modifies in some way 

the quality of those which come after” (Dewey, 1998, p.27).  

The Joint Action Theory in Didactics  

Our analyses will build on the Joint Action Theory in Didactics (JATD) originated in comparative 

approach in didactics (Sensevy, 2011; Sensevy, Gruson, & Forest, 2015; Ligozat, 2009; Tiberghien 

& Malkoun, 2009; Venturini & Amade-Escot, 2013). Among the theoretical tools provided by the 

“JATD”, we use mainly the contract/milieu dialectics and the reticence/ expression dialectics. When 

facing a new problem, students are confronted to what we call to a milieu (Brousseau, 1997; 

Sensevy & Tiberghien, 2015), as the epistemic structure. This milieu can be seen as the state of 

problem, what "has to be known" (Sensevy et al, 2015). Students have to face a rather enigmatic set 

of elements that they have to relate in order to build a system of meanings, in the knowing of what 

has to be known » (Sensevy, Gruson, & Forest, 2015). For example, for someone who has to do 

something with a representational system, the milieu is a specific symbolic organization of the 

system of representations itself. The milieu offered opportunities of enquiry, in which students have 

to connect elements of knowledge. They deal with this milieu by relying on the knowledge built in 

the preceding didactic joint action, the didactic contract, what "is already known". This relationship 

between contract and milieu is a dialectal one, because the understanding of a given milieu depends 

on the nature of the contract that guides the student's efforts. 

In order to enable the student to learn, teacher enacts strategies to engage student’s action. 

Interactions between teacher and students are determined by the didactic contract (Brousseau, 

1997). In fact, the teacher knows the knowledge that students will have to learn. But he must not tell 

directly all what he knows. Thus, he has to make choices, in his teaching, about the equilibrium 

between saying/showing (expression) and remaining tacit/hiding (reticence). This is the reticence-

expression dialectics. The two dialectics (contract-milieu and reticence-expression) are entangled, in 

that expression or reticence can be oriented to "contract " ("what is already-there"), or "milieu " 

("what has to be known"). 

The research on the using of manipulatives and representations focus on the necessity of enabling 

the students to rely first on manipulative and concrete “objects”, then to study iconic (analogical) 

representations of numbers (Bass, 2015; Schmittau, 2005, Davydov, 1975) then to write down 

equations in canonical form. This process seems very close to the tradition in Chinese textbooks 

(Bartolini Bussi et al., 2011; Sun, 2011; Ding & Li, 2014) and can be thought of as “concreteness 

fading” (McNeil et al., 2012; Fyfe et al., 2014). In this communication, we will try to show how in 

the new situation in which the notion of the difference (subtraction) is introduced, the systems of 

representation of number can guarantee a kind of continuity of experience. In fact, the “translational 

principle for representations systems” in a representational game (Morales, Sensevy & Forest, 2016) 

can allow students to understand the concept of the difference between two numbers.   



Methodology  

To discuss these questions, we focus on a specific moment of teacher’s practice in a study class, 

with an experimented teacher, who belongs to the research team (sphere1). The data were collected 

in december 2013, in a first grade classroom of a French primary school. The twenty five students of 

this classroom were aged 6-7. This study follows a qualitative approach.  

In this extract, the students collectively search the difference between two additive writings with 

two terms. In this communication, we focus on the introduction of a new piece of knowledge, the 

notion of difference between two numbers. In the preceding sessions, the students orally compared 

the production of two hands ads (students showed a number on the two hands, the statement) and a 

launch of two six-sided dice. The statement wins if it was bigger (in some cases smaller) than the 

two-dice throw. Then, students compared the two additions with two terms in reference to the 

situation of the “Statements” (fingers and dice).  The result of this comparison was written in the 

form of a quality or an inequality with the mathematical signs « =, ≠, >, < ». These two additions 

were represented in two number lines to solve or prove the comparison, as we can see below (figure 

1).  

 

Figure 1: An example of comparison between 2 + 4 and 5 + 3 on the number line 

The choice of this extract is motivated by the following reason: this extract shows how the 

continuity of student’s experience could be developed through the use the systems of representation. 

This extract can be considered as a mesoscopic level of the description, the pivotal level (Sensevy et 

al., 2015), which allows relationship between what preceded and what is going to follow. So, we 

can analyze the didactic transactions hic et nunc. We can characterize and describe the motives and 

the forms that directed teacher and students ‘action. This description can show the teacher’s 

strategies to make the didactic time forward.  

Analyze 

Presentation 

This part of the curriculum “ACE” is organized around a connected series of situations. The initial 

situation of this curriculum is the situation of the “Statements game” (fingers and dice). One die 

(marked with standard dot patterns for 1-6) is about to be thrown. Beforehand, the students use their 

fingers to make a “statement” (for example, a student shows two fingers on her right hand, and three 

fingers on her left hand). The die is thrown. The students compare their statement with what is 

indicated by the die. If the sums are equal, the pupils have won. After this oral comparison, students 

compare an addition (two terms ≤ 5 with a number ≤ 6). The progressive complexification of the 

situation guides students to increasingly rich comparisons: the number of hands (students) is 

increased, so the number and the nature of dice (1 to 10 dice are played with), the rules of the game 

are changed (for example a pupil no longer wins because he has the same number as in the 



statement, but because he has a lower or higher number). These connected situations should allow 

the students to build a real mathematical experience, particularly in the handling of representation 

and symbolic writing systems, as we will show in what follows.  A number line is also introduced 

on which students represent the numbers. Indeed, the students manipulated a concrete object (the 

fingers) and they translate fingers by an iconic (analogical) representation of number (the number 

line) and wrote down equation in canonical form (2 + 4 = 6). For example, a student shows two 

fingers on his left hand and four fingers on his right hand, then she draws these numbers on a 

number line: 

 

And she writes down this addition: 2 + 4 = 6 

To understand various properties of numbers, students had to compare different representations of 

the same mathematical reality to become progressively able to recognize the differences and the 

similarities between these representations.  

Since the beginning of the year, students acquired knowledge related to compare numbers. This 

comparison is performed first orally with the production of «two or three hands ads" and a launch of 

six-sided die. Then, students compared an addition in two or three terms with a throw of dice. They 

used the mathematical signs « =, ≠ <, > » (for example, to compare 3 + 1 et 5, students write 3 + 1 < 

5). This situation become more complex when students have to compare two additions in two terms. 

Finally, students deal with the question of the subtraction on the basis of the comparison between 

two additions, in the continuity of the previous situations. The study is accompanied by the use of 

the number line.  

The students have built a semiotic knowledge to represent the comparison between two numbers. 

The number is seen as a measurement. It refers to "the quantity of fingers" in two hands. The 

number line shows the number like a length measurement. This ancient knowledge is the didactic 

contract, the habits of action with which teacher and students are going to approach the new 

knowledge, the difference between two numbers. The extract of the session that we chose 

introduces the difference between two numbers from the comparison of two additions and the terms 

“larger than and smaller than”. The difference is a gap between two numbers, two length 

measurements. Four episodes will be analyzed. Here is a synoptic view of this analyzer. 

Episodes Content 

Episode 1 Presentation of the instructions by the teacher 

Episode 2 

 

a) Comparison, looking for the difference between “1 + 3” and “1 + 1”. b) Proposal of 

two students: (tdp 15) “1 + 3” is larger than “1 + 1”.  c) Proposal of another student: 

the difference between “1 + 3” and ”1 + 1” is 3. 

Episode 3 a) The difference (tdp 53). b) Introduction of the two hands by the teacher to confirm 

the difference 3.   

Episode 4 Introduction of the number line by the teacher to search the difference between “1 + 

3” and “1 + 1” (tdp 68). 

 
Table 1: Extract division 

 



We abstract the four episodes and provide a short analysis.  

Search for the difference between two numbers (episode 1, 2 3)  

The teacher asks the students to look for the difference between “1 + 3” and “1 + 1”. He presents the 

instructions like this: 

   Teacher: Today, we are going to begin a new game. It is always a game with statements. 

But today what we are going to make, it is to compare ours statements. We look 

for which is the larger statement, the smaller statement but that I would know how 

much more and how much less (…) we are going to find, this calls in fact the 

difference.  

Actually, the students meet difficulties to find the difference between “1 + 3” and “1 + 1. They 

compare the two numbers and look for the larger number or the smaller number with the term-by-

term strategy or by computing. They do not focus on "difference". Confronted to the difficulties of 

the students, the teacher suggests to illustrate « the two additions “1 + 3” and “1 + 1” » by a 

statement with both hands. The following picture (figure two) shows such a statement comparison. 

 

 

Figure 2: Translation of “1 + 3” and “1 + 1” by two statements  

Unfortunately, this translation between the mathematical symbolic writing and the hands statements 

in a game of representation does not bring the students to produce an adequate answer. "The 

semiotic habit" of the contract, which considers fingers as instruments to compare numbers, 

impedes a new designation of numbers, the difference. 

Using the number line 

Therefore, the teacher introduces in a milieu two number lines on which students have to represent 

both additive writings. A student writes a first bridge above the first interval of the number line 

(hence representing the number "1") and a second bridge above three intervals (between the second 

and a fourth graduation, hence representing the number "3"). He writes down above these bridges 

the numbers 1 and 3. Then, he draws below the number line a bridge of four intervals and writes 

down the sum number (4). 

   Teacher: It is good the statement makes four as Neil shows us. On the second line, what are you going to 

draw?  

On the second number line, the same student draws two consecutive bridges and a bridge of two 

intervals, signifying the sum number (2)  



 

 

Figure 3: the representation of “1 + 3” and “1 + 1” on the number lines 

Teacher:  What do you see in the two number lines? Do you see if the 1+3 is largest than 1+1?  

The students provide answers different answers: “three", "four" and "two". The teacher asks one 

student to show how he knows that his statement is largest.  

Student:  because here is the two [He slides his finger from the third graduation (number "2") on the first 

number line to the third graduation (number "2") of the second number line] It’s a part of four… 

 

 

The student draws a bridge between the second and the fourth graduation on the first number line.   

 

Figure 4: Representation of the difference on the number line 

The teacher's expression encourages a translation between the symbolic writing and the number line. 

But, in the same time, she’s reticent because she doesn’t say how to draw these additions on the 

number lines. The teacher thus refers to the preceding contract. She just says: “What do you see in 

the two number lines? Do you see if the 1+3 is largest than 1+1?” This question can be seen as a 

‘‘milieu-oriented situation’. The action of the student is moved toward the effective representation 

of the difference on the two number lines. But, though this expression, the teacher is reticent 

because she remains silent when the student searches the difference. She indicates where the student 

must look but the research stays under the responsibility of the student. The number line affords to 

show concretely the gap between the two numbers, the difference between the two length bounded 

by the bridges, the sum of the two additions. The students investigate an instrument, the number 

line, on which they know already how to play (in the situation of comparison). By using this 

instrument, they achieve not yet explored potentialities of this semiotic system. In particular, the 

number line shows a number included in another.  

Results  

The students investigate different systems of representation to find the difference between two 

numbers: symbolic writing, concrete representation with the hands, number line. All these 



representations are known by the students. First, the symbolic writing is translated by statements on 

the two hands. Then these statements are translated into two number lines in what we may call a 

translation game, which is a particular representational game (Sensevy, 2011; Morales, Sensevy & 

Forest, in press). The preceding semiotic knowledge is "re-experienced" by the students. In this way, 

we can say that the systems of representation are instrumental (Dewey, 1938/1998) in that they 

allow investigating new knowledge. The semiotic habits are accommodated in a new situation, a 

new knowledge, allowing the continuity of experience. However, the re-experience of a semiotic 

system for introducing a new knowledge requires a subtle enunciative work for the teacher, given 

that the different strategic systems in teacher’s action can be a contract oriented or a milieu-oriented 

transactional activity. In this communication, we have shown how the expression-reticence game of 

this teacher enable her to introduce in the milieu a system of representation (the number line) 

already known by the students (contract) in order to understand new properties of this system (then 

considered as a milieu). This teacher's strategy enables the students to investigate the difference 

between two numbers while leaving them the responsibility of this enquiry (Dewey, 1938/1998).  

Discussion and conclusion 

However, these results ask to be worked. It is necessary to explore on a long duration this continuity 

of the experience of the students in mathematics through the systems of representation (Joffredo-Le 

Brun, 2016). In particular, it is necessary to note that such continuity can be built only through a real 

epistemic continuity of the knowledges within the curriculum. The design of such a curriculum has 

to be performed through the effective experience of the teachers, within an iterative process, as it is 

the case in the ACE research. 
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We propose a theoretical interpretation of visuo-spatial abilities, as classified in the field of 

Cognitive Psychology, in the domain of Euclidean Geometry. In this interpretation we make use of 

Fischbein’s theory of figural concepts and of Duval’s cognitive apprehensions. Our interpretation 

lays the foundations for a new theoretical framework that we propose as a tool for qualitative 

analysis of students’ processes of visualization as they carry out geometrical activities. In 

particular, we present analyses of excerpts from a set of activities designed and proposed in a 

didactical intervention aimed at strengthening visuo-spatial abilities of a group of students 

identified as the weakest from a selected 9th grade class of an Italian high school.  

Keywords: Geometric reasoning, spatial thinking, visualization, visuo-spatial abilities. 

Introduction 

Research in the domain of visualization and spatial thinking has pursued several purposes: 

understanding the different imaginative strategies used by students (Owens, 1999); studying the 

effects of teaching practices, aimed at encouraging processes of visualization (Presmeg, 2006); 

developing theoretical constructs, useful for the interpretation of students’ perception of geometric 

shapes and how this perception improves in learning geometry (Duval, 1995; Fischbein, 1993, 

Mariotti, 2005). Some ideas in this field have been developed from the psychological studies on 

mental imagery. Since the advent of Cognitive Psychology and contemporary Neuroscience, 

researchers have been elaborating models to describe processes related to visualizing and using 

mental imagery, and they have listed sets of visuo-spatial abilities involved (e.g., Cornoldi & 

Vecchi, 2004). However, a shared definition of these abilities does not exist yet. Nor have the fields 

of Mathematics Education and Cognitive Psychology been able to elaborate common grounds to 

study visualization processes, in which they are both interested. 

In this paper we propose a theoretical interpretation of visuo-spatial abilities, as classified in the 

field of Cognitive Psychology, in the domain of reasoning in Euclidean Geometry, that was 

developed as part of a study that has been recently carried out (Miragliotta, 2016; Miragliotta, 

Baccaglini-Frank & Tomasi, submitted). The study had two main objectives: on the one hand, we 

attempted to give a theoretical analysis of some visuo-spatial abilities in the context of learning 

Euclidean Geometry; on the other hand, we used such theoretical interpretation to study the effects 

of a set of activities proposed (for the most part) using a Dynamic Geometry Environment (DGE) in 

terms of strengthening the students’ visuo-spatial abilities (as it is widely accepted that DGEs yield 

great potential in fostering processes such as visualization, as well as in mediating, in general, the 

learning of geometry: e.g., Mariotti, 2005; Baccaglini-Frank, 2010; Leung, Baccaglini-Frank & 

Mariotti, 2013). In this paper we will concentrate on the description of theoretical analysis of the 



visuo-spatial abilities considered and on its power as a tool for qualitative analysis of students’ 

behavior as they carry out geometrical activities. As an example of how the framework can be used, 

we will analyze an excerpt taken from a question (not involving the use of any DGE) of the post-

intervention interview of a student from the group of students identified as the weakest of the Italian 

high school class of involved in the study. Since for what we present in this paper the role of the 

DGE is marginal, and space quite constrained, we will not discuss visualization in a DGE.  

Theoretical background 

According to Clements and Battista (1992), spatial reasoning “consists of the set of cognitive 

processes by which mental representation for spatial objects, relationships, and transformations are 

constructed and manipulated” (ibid., p.420). Referring to Kosslyn (1983), these authors observe that 

geometrical reasoning requires spatial reasoning, which includes four classes of image processing: 

generating an image; inspecting an image to answer questions about it; transforming and operating 

on an image; maintaining an image in the service of some other mental operation. In particular we 

are interested in processes involving two-dimensional geometric objects.  

From the perspective of Cognitive Psychology, generating and processing mental images take place 

within a complex process of acquisition and use of cognitive abilities, including those denoted 

visuo-spatial abilities. A list of these appears in Cornoldi and Vecchi (2004, p. 16). We elaborated 

our theoretical interpretation starting from the following set of abilities: visual organization, the 

ability to organize incomplete, not perfectly visible or fragmented patterns; planned visual scanning, 

the ability to scan a visual configuration rapidly and efficiently to reach a particular goal; spatial 

orientation, the ability to perceive and recall a particular spatial orientation or be able to orient 

oneself generally in space; visual reconstructive ability, the ability to reconstruct a pattern (by 

drawing or using elements provided) on the basis of a given model; imagery generation ability, the 

ability to generate vivid visuo-spatial mental images quickly; imagery manipulation ability, the 

ability to manipulate a visuospatial mental image in order to transform or evaluate it; spatial 

sequential short-term memory, the ability to remember a sequence of different locations; visuo-

spatial simultaneous short-term memory, the ability to remember different locations presented 

simultaneously; visual memory, the ability to remember visual information; long-term spatial 

memory, the ability to maintain spatial information over long periods of time. 

To interpret how these general cognitive abilities might come into play during reasoning in the 

specific context of Euclidean Geometry, we referred to theoretical constructs elaborated in 

mathematics education to this purpose. 

Fischbein’s theory of figural concepts  

The Theory of figural concepts (Fischbein, 1993) describes geometrical figures as follows:  

A geometrical figure may, then, be described as having intrinsically conceptual properties. 

Nevertheless, a geometrical figure is not a mere concept. It is an image, a visual image. It 

possesses a property which usual concepts do not possess, namely, it includes the mental 

representation of space property. […] all the geometrical figures represent mental constructs 

which possess, simultaneously, conceptual and figural properties. (ibid., pp. 141-142). 



According to Fischbein figural concepts “reflect spatial properties (shape, position, magnitude), and 

at the same time, possess conceptual qualities - like ideality, abstractness, generality, perfection” 

(ibid., p. 143); a geometrical figure is made up of two fundamental components: the figural 

component and the conceptual component. From the developmental point of view, initially the 

visual aspect is dominant, and gradually the role of formal constraints becomes more important, 

until the construction of figural concept is reached (Mariotti, 2005).  

Duval’s types of cognitive apprehension 

Today the importance of visualization in mathematics is widely recognized. Since several studies 

have addressed visualization in different ways, we clarify that our interpretation is in line with the 

definition given by Arcavi (2003).  

Visualization is the ability, the process and the product of creation, interpretation, use of and 

reflection upon pictures, images, diagrams, in our minds, on paper or with technological tools, 

with the purpose of depicting and communicating information, thinking about and developing 

previously unknown ideas and advancing understandings. (ibid., p. 217, emphasis added) 

Peculiarities of visualization in geometry have been highlighted by Duval (1995) in describing 

different approaches to dealing with geometric figures: cognitive apprehension stresses that “there 

are several ways of looking at a drawing or a visual stimulus array” (ibid., p. 143). Duval speaks of 

four cognitive apprehensions. Perceptual apprehension responds to the laws of figural organization 

and identification of form, and helps to “recognize something (shape, representation of a thing,…) 

in a plane or in depth” (ibid., p. 145) at first glance. In a perceived figure we can also recognize sub-

figures that do not depend on its construction. Sequential apprehension “is required whenever one 

must construct a figure or describe its construction” (ibid., p. 146). Here the sub-figures emerge in a 

specific order, depending on the geometrical construction, on technical constraints of the instrument 

used and on mathematical properties. Furthermore, Duval (1995, p. 146) claims that “mathematical 

properties represented in a drawing cannot be determined through perceptual apprehension”, indeed, 

“a drawing without denomination or hypothesis is an ambiguous representation”. So, indications 

given through speech help us to identify properties of a perceived geometrical figure, thanks to the 

discursive apprehension. Here we are in the domain of deductive reasoning. The apprehension that 

has a heuristic function in problem solving is the operative apprehension. This apprehension 

depends on different ways of modifying a figure that happen only within the figural register and that 

are independent from mathematical knowledge.  

Each type of apprehension seems to be related to different cognitive processes that could be 

accomplished through the coordination of different visuo-spatial abilities as we hypothesise below. 

Grounding for a new visuo-spatial abilities framework   

While maintaining the classification proposed by Cognitive Psychology, we selected a subset of 

visuo-spatial abilities and provided an interpretation in the specific context of geometrical 

reasoning. We used the Theory of Figural Concepts to interpret the terms “model” and “image” as 

follows: image is the figural component of a geometric figure; model is a synonym of figural 

concept in which image and concept realize their dialectic. Since our interpretation aims at being a 



stronger lens for analyzing students’ processes than the visuo-spatial abilities as described in the 

Cognitive Psychology literature, there is not always a one-to-one correspondence with such abilities. 

 Visual organization is the ability to recognize figural concepts from incomplete or not 

perfectly visible representations. 

Visual organization seems to be an ability that intervenes in tasks that require the recognition of 

figures within another figure, or in the recognition of a simple figure within a more complex figure. 

This ability echoes Duval’s perceptual apprehension. 

 Visual scanning is the ability to recognize the properties of a figure starting from its 

representation. 

This representation can be static or dynamic. It depends on the task and on the context in which it is 

proposed. For example, in the case of a dynamic figure in a DGE, visual scanning is involved in the 

recognition of properties that are invariant under dragging (see Leung et al., 2013). This ability 

echoes Duval’s perceptual apprehension, but we also recognize in this ability some aspects of his 

sequential and discursive apprehension. For example, when observing a quadrilateral obtained 

through steps of a specific construction starting from two perpendicular lines, we can notice that 

quadrilateral seems to have a right angle. However, to recognize the property “having a right angle” 

only observing the figure on the screen, one needs to look at its written geometrical construction and 

deduce that the point one vertex is at the intersection of two perpendicular lines. 

 Visual reconstructive ability is the ability to reconstruct, in a given representation, the figural 

component of a figural concept, starting from written or verbal instructions, or staring from 

partial representations.  

For instance, the reconstruction could be realized following a sequence of construction steps given 

explicitly, using appropriate tools (ruler and compass, primitives in DGE, …), otherwise it could be 

realized planning these construction steps. It involves the ability to correctly visualize the 

relationships between the elementary figural units involved (such as points on lines, perpendicular 

lines) following the steps of a geometric construction or creating a new construction. This ability 

echoes Duval’s sequential apprehension and his discursive apprehension. The visual reconstructive 

ability seems to intervene, for example, when carrying out the construction steps of a known 

geometric figure; when completing the steps of an incomplete construction; when following the 

steps of a given geometric construction. 

 Imagery generation ability is the ability to instantly mentally reproduce the figural 

component of a figural concept recovering it from memory or generating it anew. 

This ability seems to intervene when one is asked to visualize a geometric concept, for example, 

while imagining a a sequence of construction steps. Coupled with long-term spatial memory, this 

ability seems to be involved in the retrieval of the prototypes (that is, in Kosslyn’s terms, a “stored 

model of a shape”) of geometric shapes and of their properties. Coupled with spatial sequential 

short-term memory, it seems to intervene in the identification of particular geometric loci. 

 Imagery manipulation ability is the ability to use the properties of a figural concept or to 

manipulate figural aspects of a figural concept, taking into account the theoretical 

relationships between elementary figural units of which it is composed.  



This ability is involved in tasks that require mental manipulation of a figure in order to transform it 

into a new one. This ability echoes Duval’s operative apprehension, but also differs from it. The 

mental manipulations on figure are tightly connected to the figure’s conceptual component. Indeed, 

to manipulate a figure maintaining given properties, strong conceptual control over it is required, as 

highlighted also by Arcavi (2003), who emphasizes, as well, the high cognitive demand involved: 

Seeing the unseen may refer to the development and use of an intervening conceptual structure 

which enables us to see through the same visual display. (ibid, p. 234)  

When visualization acts upon conceptually rich images (or in Fischbein’s words when there are 

intervening conceptual structures), the cognitive demand is certainly high. (ibid, p.235). 

 Spatial sequential short-term memory: this ability seems to be present in various processes 

of geometric reasoning; here we consider it, in particular, as the ability to remember 

different configurations assumed by the figural component of a figural concept during an 

observed or imagined manipulation. 

 Long-term spatial memory in our interpretation this refers, in particular, to the ability to 

maintain in long-term memory the figural components of a figural concept. 

The last two abilities are involved in solving geometric tasks and are always used in combination 

with other visuo-spatial abilities. For example, combined with the imagery generation ability, 

spatial sequential short-term memory seems to be involved in tasks that require recognizing a 

particular geometrical locus. Combined with the imagery manipulation ability, spatial sequential 

short-term memory seems to be involved in tasks that require remembering the configurations 

assumed by a figure during an imagined manipulation. 

When a solver faces a geometrical problem, s/he interacts with visual or mental images in different 

ways; a process that seems to occur frequently is imagining the consequence of a (mental) 

manipulation of the figure. Such process can be carried out through the use of the various abilities 

listed above that expert solvers combine in an immediate and automatic way. So consider this as an 

ability in its own right, that we will call geometric prediction, intending the identification of certain 

properties or configurations of a new figure, arising from a process of manipulation. This process 

appears to be coherent with respect to the notion of anticipatory image (Piaget & Inhelder, 1966), 

which suggests an ability to make predictions, orienting both perception and imagination, in the 

presence of a specific goal. 

Visuo-spatial abilities framework as a tool of analysis 

In this section we use the framework to analyze  an excerpt taken from a question of the post-

intervention interview of a student; he was part of a group of students in the 9th grade (students aged 

14-15) class of an Italian scientific high school (Applied Science option), identified through a pre-

test as having low performance on geometry tasks heavily involving visualization processes; the 

teaching intervention lasted five lessons and had been carried out using open problems, mostly 

proposed in the DGE GeoGebra. The post-intervention interview involved tasks both in the context 

of a DGE and with only pen and paper (if requested by the student). In the excerpt the student is 

solving a task proposed outside the DGE setting. The analysis has the aim of showing the power of 



the framework in identifying the proposed visuo-spatial abilities and showing how they can come 

into play, shedding light onto visualization processes. 

Activity: the student is given the following task and allowed to use paper and pencil: 

Imagine a quadrilateral. Focus on the midpoint of each side. Trace the segments that join the 

midpoints of consecutive sides. What can you tell me about the figure that is formed? 

Below is an excerpt describing what the student says [and does]. 

 Student: It is a quadrilateral, which… which looks like a rhombus, so to speak. [Initially he 

closes his eyes. Then he places four finger tips (two thumbs and two indexes) on 

the desk to form what looks like a square, and then, moving along two parallel 

lines in opposite directions, a non-square rectangle. He drags his fingers back and 

forth between these two positions.] If quadrilateral is a square it forms a rhombus 

with congruent diagonals, but if is a random figure…I mean, it depends on the 

figure. It changes depending on how the points are placed. 

Interviewer: Draw it. What are you drawing? 

Student: Four scattered points. [He draws (freehand) a 

quadrilateral with different sides, as shown in 

Figure 1]  

Interviewer: Can you say more about the figure that is 

formed? 

Student: It is a quadrilateral. Mmm…it is a parallelogram! 

In addition to what the student says, the excerpt is interesting also 

for what he does, which gives further insight into visuo-spatial abilities he may be using. After the 

first answer, he keeps his eyes closed and moves his fingers on the desk. This seems to suggest that 

a purely mental process is taking place, and the gesture on the desk seems to be a windows onto this 

process. In order to answer the question, first of all, we would say the student is using the imagery 

generation ability for imagining the first configuration. To this end he needs to recall a prototype of 

the quadrilateral that is as general as possible (this involves the imagery generation ability and long-

term spatial memory); then he needs to visualize the required elementary figural units (imagery 

generation ability) and go through the steps of the construction (imagery reconstructive ability). 

Now, the student’s use of his fingers on the desk is an extremely insightful window onto processes 

he could be enacting. Our interpretation is that he is using the imagery manipulation ability, helping 

himself with an external image (the quadrilateral with vertexes at his four finger tips) that he can act 

upon. What is visible of this manipulation are the positions (and their continuous change) of the 

vertexes. As he moves his fingers (forming what look like various rectangles) he is using geometric 

prediction, possibly aided by visual scanning, to visualize the quadrilateral with vertexes at the 

midpoints of the sides of the manipulated quadrilateral. This interpretation is supported by the fact 

that the student moves his fingers on his desk seamlessly, he never lifts them up from the surface, 

and then he selects a position which is coherent with respect to the configuration that he wants to 

(mentally) observe, and starts to move fingers again. The student seems to be able to manipulate the 

figure in a manner that goes beyond the kind of transformation described by operative 

 

Figure 1 The student’s drawing 



apprehension. Indeed, the manipulation recalls much more dragging of the vertices, as can be 

accomplished in a DGE. This cognitive effect could have been promoted by the kind of problems 

proposed within the DGE during the activity sessions. The student seems to be looking for extra 

external support for his imagery manipulation and geometric prediction abilities. 

Moreover, this excerpt is very interesting because of what the student then decides to draw on the 

sheet of paper when invited to so do. Although he has only mentioned the case in which the 

quadrilateral is a square and realized with his fingers various cases of it being a rectangle, he draws 

a much more general convex quadrilateral. This behavior supports our previous hypothesis that the 

student seems to need external support for his imagery manipulation and geometric prediction 

abilities. On paper it is as if he gains confidence, possibly because the cognitive load from the 

conceptual control he would need to exercise over the general figure is lowered this way. Once he 

sees the general quadrilateral and sketches the midpoint quadrilateral he recognizes (visual scanning 

and conceptual control) a parallelogram.  

Conclusion 

The fields of Mathematics Education and Cognitive Psychology share various research interests; 

one of these is the identification and classification of strategies and processes involved in 

visualization. According to Cognitive Psychology, generating and processing mental images take 

place within a complex process of acquisition and use of abilities, including those denoted visuo-

spatial abilities. Attempting to interpret visuo-spatial abilities in the context of geometrical 

reasoning could be beneficial to both fields. In our attempt to give a theoretical interpretation of 

some visuo-spatial abilities in the context of learning Euclidean Geometry, we used theoretical 

constructs from the field of Mathematics Education, which led to the introduction of an ability 

different from the basic visuo-spatial ones, geometric prediction, and they also led to highlighting 

the fundamental contribution, in solving geometric tasks, of geometric conceptual control over 

figures.  

This interpretation, which can be seen as groundwork for a new theoretical framework, has allowed 

us to: (1) design an educational intervention aimed at strengthening visuo-spatial abilities of a group 

of students identified as the weakest in a selected class; (2) gain insight, through qualitative 

analysis, into students’ geometrical reasoning. We believe that this kind of research can provide new 

insight into students’ difficulties in learning Geometry, and be used to design educational material 

for strengthening students’ visuo-spatial abilities. 
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In this research study, we investigated how middle school students created 3–dimensional objects 

from 2–dimensional figures using an extrusion method. In a summer enrichment program, students 

used manipulatives and a dynamic geometry program (Cabri 3D). We identified students’ strategies 

for forming 3–dimensional objects with a focus on their gestural signs. The results demonstrated that 

they most often employed dynamic–pointwise and dynamic–objectwise gestures to demonstrate the 

lateral faces or edges of 3–dimensional objects. Also, students linked their gestural signs and the 

Segment tool of Cabri 3D to indicate their reasoning.  

Keywords: Gestural signs, 3–dimensional objects, extrusion, middle school students. 

Introduction 

Gestural signs are important to understand how students make sense of mathematical problems 

(Arzarello, 2006; Bartolini Bussi & Baccaglini–Frank, 2015; Radford, 2009). Signs (e.g., verbal or 

oral texts) are characterized as “something which stands to somebody for something in some respect 

or capacity” (Pierce 1932; 2.228). Also, students produce signs using an artifact such as 

manipulatives. Bartolini Bussi and Mariotti (2008) refer to signs that are produced using an artifact 

or any action related to the use of it as artifact signs. Students reason about tasks with the use of an 

artifact and exploit mathematical signs (e.g., mathematical definitions, proofs). Research studies 

address that students link artifact and mathematical signs employing gestures (Bartolini Bussi & 

Baccaglini–Frank, 2015; Maschietto & Bartolini Bussi, 2009). Gestures that are interwoven with 

other sets of signs facilitate mathematical communication between students (Arzarello, Paola, 

Robutti, & Sabena, 2009; Bartolini Bussi & Baccaglini–Frank, 2015; Radford & Sabena, 2015). In 

the current study, with a focus on students’ gestural signs, our research question is: “In what ways do 

middle school students relate the features of 2–dimensional figures and 3–dimensional solids that are 

created using an extrusion method?” 

Theoretical framework: Semiotic mediation 

Semiotic mediation “sees knowledge–construction as a consequence of instrumented activity where 

signs emerge and evolve within social interaction” (Mariotti, 2009, p.428). In a cultural learning 

environment, students use an artifact or a set of artifacts during a semiotic activity, so a piece of 

mathematical knowledge is mediated. The teacher is aware of the affordances (and constraints) of the 

artifact and assists students in using the artifact as a tool of semiotic mediation. In other words, 

students produce artifact and mathematical signs (or hybrid signs), so personal signs transformed into 

the mathematics culture’s signs (Bartolini Bussi & Mariotti, 2008).  

A student may exploit personal signs that may be unclear for others. Having the role of cultural 

mediator, such signs become meaningful for others under the teacher’s supervision. For example, 



Bartolini Bussi and Baccaglini–Frank (2015) addressed that a preschooler used a non–existing Italian 

word “quadratizzato” referring to the movement of a programmable robot that made turns in a circular 

motion. The researchers translated it into English with another non–existing word as “squarized O.” 

They identified children’s and a student teacher’s turning gesture and spiral arrows with reference to 

the word “quadratizzato.” The personal sign linked artifact and mathematical signs, and became a 

meaningful sign in the mathematics culture. The researchers characterized it as a pivot sign. 

Pivot signs “may refer both to the activity with the artifact; in particular they may refer to specific 

instrumented actions, but also to natural language, and to the mathematical domain” (Bartolini Bussi 

& Mariotti, 2008, p. 757). They link artifact and mathematical signs or an artifact/mathematical sign 

may become a pivot sign (Bartolini Bussi & Baccaglini–Frank, 2015; Bartolini Bussi & Mariotti, 

2008). Suppose a student is given a rectangular card and asked to draw the container he should order 

to hold the stack of the identical rectangular cards until it reaches a certain height. The student may 

produce a mathematical sign and draw a rectangular prism denoting its edge lengths. On the other 

hand, he may illustrate the stack of objects and draw a deck of rectangular cards (pivot signs). The 

deck of cards links the rectangular cards (artifact signs) and the rectangular prism (mathematical 

sign).  

Research studies demonstrated that students’ gestural signs were intertwined with other sets of signs 

such as verbal signs (Radford & Sabena, 2015; Sabena, 2008). For example, Sabena (2008) 

characterized high school students’ production of signs while they were engaged in tasks about 

derivative of functions. Sabena found that students emphasized the dynamic character of derivatives 

employing gestural signs with other sets of signs. Also, previous research indicated that students’ 

gestural signs linked artifact and mathematical signs (Bartolini Bussi & Baccaglini–Frank, 2015; 

Maschietto & Bartolini Bussi, 2009). Bartolini Bussi, Boni, Ferri, and Garuti (1999) characterized 

the geneses of students’ gestures as pointwise or global (objectwise) with a focus on artifacts (gears) 

students used. Maschietto and Soury-Lavergne (2013) addressed that artifacts created for the same 

mathematical topic resulted in exploiting different signs. Primary school students were given to a 

hands-on tool (gear train of five wheels) and its digital counterpart for learning the place values of 

numbers. Students employed different gestural signs with the use of each artifact because they had 

different semiotic potentials. For example, students employed gestures to start the turning mechanism 

of the wheels using the hands-on tool and denoted these gestures in their written texts. The decimal 

values were explored in the counterpart digital artifact by mouse clicks. So, using a set of artifacts 

gives students an opportunity for mathematical learning. 

Methods 

The research design was a case study in which the data were collected from a bounded system – a 

summer enrichment program that took place in a state in the southeastern United States (Stake, 1995). 

The unit of analysis was semiotic activities. The participants of this research study were selected from 

a group of rising seventh and eighth grade students (three boys, five girls) attending a summer 

enrichment program that aimed at promoting students’ thinking in different STEM (Science, 

Technology, Engineering and Mathematics) areas. A five–day instructional unit was planned. Eight 

middle school students (three rising seventh grade students, five rising eighth grade students) 

participated in the research study. Their ages ranged from twelve to fourteen.  



On the first day of the program, students were given a spatial ability test and an open–ended survey 

that indicated their experience with geometry, computers, games, etc. The participants were 

characterized by these instruments and students with different spatial abilities were paired up. On the 

second and third days of the program, students created 3–dimensional objects from 2–dimensional 

figures using an extrusion method (e.g., stacking identical circular cards on top of each other and 

forming a cylinder). Students were given worksheets and they answered the questions in pairs. In the 

semiotic activities, they were asked to identify containers (3–dimensional objects) that would hold 

the stack of identical objects or objects decreasing in size (e.g., coins with a different radius). They 

used manipulatives and a dynamic geometry program, Cabri 3D. Students were provided pre–image 

and image figures in pre–constructed Cabri 3D sketches and manipulatives. They were asked to drag 

objects in Cabri 3D sketches and make an observation. Afterwards, they identified the resultant 3–

dimensional objects for holding the stack of 2–dimensional figures. Students formed right and oblique 

prisms, cylinders, pyramids and cones.  

Prior to the summer enrichment program, a pilot study was conducted. Students were allowed to use 

the Trajectory tool of Cabri 3D that allowed tracing points and objects. However, at times, they traced 

the objects and Cabri 3D showed the answer. Based on the feedback from the pilot study the 

Trajectory tool was disabled from the menu bar. However, the teacher activated the Trajectory tool 

on his computer that was hooked up the projector during he generated a whole-class discussion. 

Data included videorecordings of four dyads during each class session including whole class 

discussions, and students’ written and oral responses to the tasks. Also, a program that recorded the 

computer screen when students used Cabri 3D was used. The researchers watched the videos of 

students while they worked on the semiotic activities in groups. Their computer screen recordings 

were watched synchronously. Some screenshots and students’ gestures were inserted into the 

verbatim transcripts. 

We focused on students’ written/oral responses to semiotic activities and their use of artifacts 

(manipulatives and Cabri 3D). Students’ artifact, pivot and mathematical signs were identified. In the 

current research study, we analyzed students’ strategies for forming 3–dimensional objects from 2–

dimensional figures with a focus on their gestures. Students’ gestural signs were categorized as static 

and dynamic taking into account how they were employed. If students’ static or dynamic gesture 

signified an object, it was identified as objectwise. If the gesture stood for a point or a set of points, 

then we categorized it as pointwise gesture. Four gestural signs were identified: objectwise –dynamic, 

objectwise –static, pointwise –dynamic, and pointwise –static. 

Results 

We identified students’ strategies for forming 3–dimensional objects from 2–dimensional figures 

with a focus on their gestural signs. Students’ gestures that linked artifact and mathematical signs 

were characterized as pivot signs. Also, students produced other sets of signs that were characterized 

as pivot signs (e.g., graphical signs, verbal signs). However, we give students’ strategies in which 

gestural signs were characterized. 

Some students suggested 3–dimensional objects (containers) that allowed no extra space and focused 

on the exact fit. Students employed objectwise–dynamic gestures to demonstrate lateral surfaces of 



solids. For example, Charlotte emphasized that the container for identical triangular cards would be 

a triangular prism. She employed an objectwise–dynamic gesture as shown in Figure 1 and said:  

Charlotte:  …because the prism is gonna come around the edges of the triangles. 

  

Figure 1: Charlotte makes an objectwise–dynamic gesture to denote the triangular prism 

Some students focused on geometric objects in the artifact and suggested solids based on how the 

geometric shapes were stacked on top of each other. They interpreted artifact signs and employed 

static or dynamic gestures to indicate the resultant 3–dimensional objects and focused on the parts of 

the given artifact. For example, Vince had difficulty identifying the container (rectangular pyramid) 

for rectangular cards decreasing in size. He kept the height almost in the middle and positioned the 

rectangle. Afterwards, he employed an objectwise–static gesture to demonstrate the container as 

shown in Figure 3. He said: 

Vince: For this one, I was trying to figure out so if it is – it is coming– it is going like that 

(makes an objectwise–static gesture as shown in Figure 2). As it decreases it’s going 

like this, it’s going like that. Do you see? It’s going inward like that.  

 

Figure 2: Vince makes an objectwise–static gesture to demonstrate the rectangles decreasing in size 

Students connected the geometric shape on the bottom and top in the given artifact producing a 

gestural sign. They most often made a pointwise–dynamic gesture and connected the pre–image and 

image points. For example, Sloane identified the resultant object for holding the stack of identical 

circles employing a pointwise–dynamic gesture. She posited: 

Sloane: Because there is a circle on the top and the bottom and that makes a cylinder. 

Because there is like a straight line right here kinda (Figure 3). 

  



Figure 3: Sloane makes a pointwise–dynamic gesture to denote a cylinder 

 On the other hand, some students made hybrid or objectwise–dynamic gestures to demonstrate 

the 3–dimensional objects. Virginia denoted the top and bottom of the cylinder with a static–

objectwise gesture. Then, she made an objectwise–dynamic gesture and demonstrated the lateral faces 

of the cylinder as shown in Figure 4. She said: 

Virginia: Because basically the same reason as the triangular one (triangular prism). If you 

place a figure on the top and the bottom, and you connect them, you would create 

a cylinder (Figure 4), which is basically just a 3–dimensional flat version. 

  

Figure 4: Virginia’s objectwise–dynamic gesture for denoting the lateral faces of a cylinder 

Students’ gestural signs resulted in using the Segment tool of Cabri 3D. On the one hand, some 

students connected pre–image and image points using the Segment tool to demonstrate their thinking 

(e.g., Figure 5). On the other hand, with the prompt of the teacher, some students used the Segment 

tool and connected pre–image and image points to demonstrate the 3–dimensional objects. 

 

Figure 5. Vince connects pre–image and image points 

During the whole-class discussion, the teacher exploited the semiotic potentials of Cabri 3D. For 

example, he activated the Trajectory tool and described the 3–dimensional as a collection of two-

dimensional objects (Figure 6). He made a stacking action employing an objectwise-dynamic gesture 

to demonstrate the extrusion (Figures 6). He said: “continuously, I am adding more and more 

[triangular cards], right?” and emphasized the continuous motion of stacking the figures on top of 

each other. 

           

Figure 6. The teacher activates the Trajectory tool of Cabri 3D and makes a stacking action 



Some students used a metaphor and referred to a real–life object or entity to describe the shape of the 

3–dimensional objects for holding the stack of 2–dimensional figures. For example, Vince made a 

connection between the given artifact and a daily life object with which he was familiar. He used a 

metaphor and made a pointwise–dynamic gesture to denote a CD container. He posited: 

Vince: Like a CD. Do you have like a… It’s kind of a thing when you… It’s like a plastic 

you put on CD’s and you put a nob to stack all the CD’s. It’s like that.”  

We identified objectwise–static gestures during students demonstrated the top and bottom of 

geometric objects or a cone/rectangular pyramid. On the other hand, students most often employed 

objectwise/pointwise–dynamic gestures. Their gestures signified the lateral faces or edges of 3–

dimensional objects. 

The aforementioned strategies were not disjointed from each other. We identified that students 

(during group work or whole–class discussion) used multiple strategies to support their claims. For 

example, Sloane and Stan had difficulty naming 3–dimensional objects. The researcher having the 

role of cultural mediator handed the artifact to them and elicited their thinking about the resultant 3–

dimensional object for holding the stack of identical triangular cards. Sloane said:  

Sloane:  Just imagine there are a bunch of triangles in the middle. And then it’d be like (she 

makes a gesture as shown in Figure 7). It’d have like a longer length on the outside 

probably be slanted but I don’t know… I don’t know. It’s kind of like a roof to a 

house. And, I think it would be like a 3D trapezoid. That’s kind of how I see it. 

       

Figure 7. Sloane makes a pointwise–dynamic gesture to denote a triangular prism 

Sloane thought of the 3–dimensional object as a collection of 2–dimensional figures. Then, she 

produced a pivot sign making a pointwise–dynamic gesture and connected the vertices of the top and 

bottom triangles. After her gesture, she used a ”roof to a house” metaphor to describe the 3–

dimensional object (triangular prism). She had difficulty naming the object and called the resultant 

object a 3–dimensional trapezoid producing an invented signifier. In her reasoning, Sloane used three 

strategies: focusing on the collection of figures, connecting pre–image and image figures, and using 

a metaphor. A pointwise–dynamic gesture was employed during she connected pre–image and image 

figures. 

Discussion and implications 

In the current study, we identified students’ strategies for forming 3–dimensional objects from 2 –

dimensional figures producing gestural signs. Students employed gestures frequently to demonstrate 

extrusion of objects. Similar to what Bartolini Bussi et al. (1999) found, students made 

objectwise/pointwise and dynamic/static gestures. Students’ gestures linked artifact and mathematical 



signs, and were characterized as pivot signs. Similarly, Bartolini Bussi and Baccaglini–Frank (2015) 

identified gestural signs that linked artifact and mathematical signs. Students’ gestural signs were 

intertwined with other sets of signs such as metaphors. For example, students produced gestural signs 

and a used a metaphor when they had difficulty naming an object. Researchers found that gestures 

facilitated communication between students and teachers (Bartolini Bussi & Baccaglini–Frank, 2015; 

Arzarello et al., 2009; Radford, 2009; Radford & Sabena, 2015; Sabena, 2008). Gestures facilitate 

communication, in particular when students produce an invented signifier (Bartolini Bussi & 

Baccaglini–Frank, 2015). 

Students’ strategies for forming 3–dimensional objects were associated with each other. When 

students reasoned about the extrusion activities, they used multiple strategies and defended their 

conjectures about the resultant 3–dimensional objects. Students used the Segment tool of Cabri 3D 

and connected pre-image and image points to demonstrate 3–dimensional objects. On the other hand, 

some students used the Segment tool with the prompt of the teacher. Students should be given an 

opportunity to interact with an artifact in a longer period, so they become more comfortable using it 

and exploit mathematical knowledge. 

In Cabri 3D, when a transformation is made, one can see initial objects/points (pre-image) and 

transformed points/objects (image). We enabled students to see pre-image and image figures in pre-

constructed sketches and hands–on tools. New research may demonstrate how students’ approaches 

may differ if they are not provided pre-image figures to identify 3–dimensional objects using an 

extrusion method. 

We were unable to built hands-on tools in which rectangles/circles decrease in size to demonstrate a 

rectangular pyramid and cone. Students most often used Cabri 3D and changed the height of objects 

during semiotic activities. They interpreted artifact signs and produced mathematical signs. However, 

students most often exploited gestural signs during they used hands-on tools. As Maschietto and 

Soury-Lavergne (2013) emphasize, counterpart artifacts lead to a co-emerging of signs and using a 

variety of artifacts that have different semiotic potentials gives students an opportunity for 

mathematical learning.  
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The main purpose of this study was to examine preservice mathematics teachers’ types of 

mathematical thinking and to investigate whether there are any differences between different types 

of thinkers based on their problem solving performances, use of representations and visual-spatial 

abilities. The sample of the study consisted of 113 preservice mathematics teachers in a private and 

four public universities. The results showed that although problem solving performances were 

similar for each type of mathematical thinking, preservice teachers who adopted harmonic and 

geometric types of mathematical thinking preferred to use schematic representations more than 

analytic thinkers in their problem solving processes. The findings provided an insight about 

preservice teachers’ preferences for a visual approach and the implications of these preferences for 

teacher education programs were discussed. 

Keywords: Types of mathematical thinking, use of representations, visual-spatial abilities, word 

problems. 

Introduction 

Problem solving has an important role in mathematics and lies in the focus of almost every math 

curriculum (Van De Walle, Karp, & Bay-Williams, 2010). According to the American National 

Council of Teachers of Mathematics “one of the most significant aims of mathematics teaching and 

learning is to develop students’ problem solving ability” (Deliyianni, Monoyiou, Elia, Georgiou, & 

Zannettou, 2009, p. 96). Understanding of problem solving process includes identifying, exploring, 

implementing, and using visual images, which is related with visualization (Deliyianni et al., 2009). 

With the rise of constructivism, the importance of the role of visualization in the learning process 

was emphasized more. The role of visualization in mathematical problem solving is investigated 

through three main constructs. These are mathematical thinking in terms of predisposition of 

visualization in problem solving, the use of visual-spatial representations and visual-spatial abilities. 

Studies on visualization in mathematics often linked it with mathematical thinking. In a problem 

solving context, three types of mathematical thinking were suggested according to disposition of 

visualization (Krutetskii, 1976): the analytic type, the harmonic type, and the geometric type. 

Students who embrace the analytic thinking style do not feel the need to benefit from visual 

supports and also they do not have enough strength for the use of visual components. For geometric 

thinkers it is the contrary. They make use of visual-pictorial components and verbal-logical 

components have poor influence on their reasoning. The reasoning of harmonic thinker students 

includes both verbal-logical components and visual-pictorial components and their preferences can 

change according to the problems that they face.  



Teachers’ mathematical beliefs and learning experiences affect their mathematical thinking and 

visual approaches (Presmeg & Balderas-Cañas, 2001). Their thinking styles and use of visuality 

have an impact on their teaching (Presmeg, 1986b). Therefore preservice teachers’ approaches 

towards different types of mathematical thinking and visual-spatial representations could be an 

important component of teacher education programs. This necessitates a careful study of the 

interrelations among teachers’ visualization, mathematical thinking and problem solving 

performance before focusing on how these can be supported through teacher education programs.  

The main purpose of the study was to investigate preservice teachers’ preferences of problem 

solving strategies and how their mathematical thinking (analytic, harmonic or geometric types) 

might affect the visualization process in mathematical word problem solving. Considering the 

purpose, this study aimed to explore whether there is a significant difference in preservice teachers’ 

mathematical word problem solving performance, use of visual-spatial representations (pictorial or 

schematic), and levels of visual-spatial abilities based on their types of mathematical thinking.  

Method 

Participants were selected by convenient sampling. The study was conducted with senior preservice 

teachers from one private and four state universities in İstanbul and Ankara, Turkey. 113 students 

were involved in the study and they were enrolled in Primary Mathematics Education (n = 91) and 

Secondary School Mathematics Education (n = 32) programs.  

The data were collected with the implementation of two instruments; the Mathematical Processing 

Instrument (MPI) and the Spatial Ability Tests (SAT) during the second semester of the 2015-2016 

academic year. The MPI, which was developed by Presmeg (1985) and adapted to Turkish by 

Taşova (2011), was used to measure participants’ types of mathematical thinking, use of visual-

spatial representations, and mathematical word problem solving performances. In order to measure 

preservice teachers’ levels of visual-spatial abilities, SAT developed by Ekstrom and colleagues 

(1976) and adapted to Turkish by Delialioğlu (1996) were used.  

The MPI was developed for the first time by Krutetskii (1976) to measure students’ preferences of 

the use of visual methods. Then Suwarsano (1982) designed the instrument with the same name for 

elementary school students. According to Presmeg (1995), the instrument that was designed by 

Suwarsono (1982) was not convenient for teachers. Thus she arranged the instrument in three 

sections according to fieldwork in which both students and teachers participated. With the new 

arrangement, the instrument took its final form that consists of three sections. In this study, since 

participants were pre-service teachers, Section B and Section C of the MPI that were designed as 

appropriate for teachers was used. 

The MPI has two parts: a test that consists of 18 mathematical word problems and a questionnaire 

that includes a list of possible solutions for each problem. According to participants’ responses on 

the test section of MPI, four different scores were generated. These were mathematical word 

problem solving performance, pictorial representation score, schematic representation score and 

visual-spatial representation score. The first score was the total number of problems solved 

correctly. The others were the total number of times that students reported using the specified type 

of representation. We used van Garderen and Montague (2003)’s coding for the classification of the 

representations. As shown in Figure 1, if preservice teachers “reported or drew an image of objects 



or persons referred to in the problem” (van Garderen & Montague, 2003, p. 248), the representation 

was scored as primarily pictorial and if they “drew a diagram, showed the spatial relations between 

objects in a problem, or reported a spatial image of the relations expressed in the problem” (van 

Garderen & Montague, 2003, p. 248), the representation was scored as primarily schematic. Visual-

spatial representation score was the summation of pictorial and schematic representations score.  

C-2: If the elapsed time since noon (12:00) is accounted for 1 in 3 of the remaining time to 

midnight, what time is it now? 

 
 

             a pictorial representation        a schematic representation 

  

Figure 1: Examples for preservice teachers’ pictorial and schematic representations  

According to participants’ responses on the questionnaire of the MPI, visualizing mathematical 

scores were generated. In this score, without taking into consideration whether the students solved 

the problem correctly, if the participant chose only a visual problem solving strategy for a problem, 

2 points were given. For the responses that did not include a visual problem solving strategy 0 

points were given. For the responses including both visual and nonvisual strategies, 1 point was 

given. Therefore the possible minimum and maximum scores for preservice mathematical teachers’ 

visualizing mathematical scores were 0 and 36 respectively. In order to group preservice teachers 

based on their mathematical thinking, participants’ visualizing mathematical scores were used. 

The SAT involves spatial orientation and spatial visualization tests. A person’s SAT score was the 

summation of his or her spatial orientation test score and spatial visualization test score. A person’s 

spatial orientation test score was obtained from the Card Rotation Test and the Cube Comparison 

Test. A person’s spatial visualization test score was obtained from the Paper Folding Test and the 

Surface Development Test. 

Results 

In Table 1, descriptive statistics results of participants’ scores for mathematical word problem 

solving performance, use of representations, and the SAT are presented.  

Participants’ Scores Range Mean Std. Deviation 

Mathematical Word Problem Solving Performance 7 - 18 14.89 2.28 

Schematic Representations Score 2 - 19 8.07 3.23 

Pictorial Representations Score 0 - 3 .95 .90 

Visual-Spatial Representations Score 2 - 20 9.02 3.29 

Visualizing Mathematical Score 5 - 28 13.97 4.73 

The SAT Scores 81 - 260 172.80 48.22 

Table 1: Descriptive statistics results for the variables 

In particular, the participants used totally 1047 visual-spatial representations, of which 925 were 

schematic and 122 were pictorial. Although all participants used schematic representations in their 

problem solving processes, pictorial representations were rarely used by preservice teachers. The 



results also showed that especially for five specific problems, participants did not prefer a visual 

method for the solutions. 

Preservice teachers’ types of mathematical thinking 

In the literature, there were different methods suggested for the classification of analytic, harmonic 

and geometric thinking. For example Richardson (1977) determined the groups according to 

percentages as the first 15% segment of the distribution was analytic type, the last 15% segment of 

the distribution was geometric type, and others were harmonic type. Galindo-Morales (1994) 

determined the groups according to prearranged visualizing mathematical scores. Such as who had 

22 points and above was a geometric thinker. In Taşova (2011)’s study, the range of visualizing 

mathematical scores was divided into three equal intervals. However, data from this study 

necessitated considerations upon the classification method. Results showed that for 5 specific 

problems preservice teachers did not tend to use any representations and also they did not select a 

visual solution in the questionnaire section. A participant with a visualizing mathematical score of 

18, which is half of the maximum score, preferred a visual method in at least 9 of the remaining 13 

problems. Under these circumstances, such a participant who preferred visual methods over 

nonvisual methods in approximately 70% of the remaining problems needed to be classified as a 

geometric thinker.  

Due to the considerations mentioned in the previous paragraph, a new approach was adopted for the 

classification of types of mathematical thinking. The mean visualizing mathematical score was used 

while deciding on the center of the interval for the harmonic type and the intervals for all three types 

were found by taking the standard deviation of the scores into consideration. The minimum and 

maximum scores of the type of harmonic thinking were assigned by the half of the standard 

deviation of the preservice teachers’ visualizing mathematical score around its mean. According to 

this classification, the number of people grouped for each type of mathematical thinking was 34 

(30%) for the analytic type, 48 (43%) for the harmonic type and 31 (27%) for the geometric type.  

Investigation of group differences 

A Kruskal-Wallis H test was run to determine whether there were any differences in mathematical 

word problem solving performance between three groups of preservice teachers having different 

types of mathematical thinking. The results revealed that the distributions of mathematical word 

problem solving performance scores for each group with different types of mathematical thinking 

were similar. The medians of mathematical word problem solving scores were not significantly 

different among the analytic type (mean rank = 15.5), the harmonic type (mean rank = 15), and the 

geometric type (mean rank = 15), χ2(2) = 14.468, p = .24.  

In order to determine whether there were any differences in the use of schematic, pictorial, and 

visual-spatial representations between three groups for types of mathematical thinking a Kruskal-

Wallis H test was run. The results revealed that mean ranks of schematic representation scores and 

visual-spatial representation scores were significantly different between the groups. As a result of 

post hoc analysis, it was discovered there were statistically significant differences in preservice 

teachers’ schematic representation scores and visual-spatial representation scores between the 

analytic type (mean rank = 6) and the harmonic type (mean rank = 8) (p = .01) and the analytic type 

and the geometric type (mean rank = 9) (p = .01). On the other hand, there were no significant 



differences in schematic representation scores and visual-spatial representation scores between the 

geometric type and the harmonic type (p > .05). The results revealed that mean ranks of pictorial 

representation scores between the analytic type (mean rank = .5), the harmonic type (mean rank = 

1), and the geometric type (mean rank = 1) were not significantly different, (χ2(2) = 2.281, p = .32).  

One-way ANOVA test was run to investigate any differences between the SAT scores of groups of 

participants with different types of mathematical thinking. Shapiro-Wilk test was used to determine 

the normality of the distribution and the results showed participants’ SAT scores were normally 

distributed (p > .05). Levene's Test of Homogeneity of Variance was used to investigate the 

homogeneity of the variances. A homogeneity of variances was discovered (p > .05). However, the 

SAT scores from the three groups, the analytic type (M = 161.83, SD = 50.1), geometric type (M = 

179.02, SD = 43.62) and harmonic type (M = 174.57, SD = 45.57) did not differ significantly (F (2, 

97) = 1.233, p = .30). 

Discussion 

In this section, a discussion of the group differences among types of mathematical thinking 

according to mathematical word problem solving performance, the use of visual-spatial 

representations, and levels of visual-spatial abilities is presented. 

The structure of mathematical thinking adopted by preservice teachers  

The findings showed that 30% of the preservice teachers were analytic type, 43% of preservice 

teachers were harmonic type, and 27% of preservice teachers were geometric type. The slightly high 

proportion of the trend for the harmonic type was consistent with the literature. Hacıömeroğlu and 

Hacıömeroğlu (2013) found that most of preservice teachers adopted the harmonic type of 

mathematical thinking. Taşova’s findings (2011) supported that the harmonic type of thinking was 

the most commonly adopted by preservice teachers whereas the least percent of the preservice 

teachers were geometric thinkers. In the current study, these differences were not clearly seen and 

the classification method could be the reason for it. Hacıömeroğlu and Hacıömeroğlu (2013) found 

that senior preservice teachers used visual methods more than juniors. Therefore they related this 

difference with seniors’ experiences through teaching mathematics and practicum courses. Since 

participants of the current study were also seniors and the data collection was done close to end of 

the second term, their final year experiences may have had an impact on their preferences.   

Mathematical word problem solving performance according to types of mathematical 

thinking 

Results showed that there was no significant difference among groups with analytic, harmonic, and 

geometric types of mathematical thinking in terms of problem solving performance. While the 

findings were supported by some studies (Kolloffel, 2012; Suwarsono, 1982) there were some 

conflicts in the literature. While Lean and Clements (1981) suggested that the preference had a 

significant effect on performance and students who preferred nonvisual strategies outperformed 

visualizers, Moses (1977) claimed that visual solution methods guide college students to more 

effective solutions. These controversial findings in the literature might be caused by sample 

selection. The studies applied the same instrument with some adjustments to different groups such 

as elementary school students, college students, and teachers. The participants’ individual 



differences like how they were taught, grade level, courses they were enrolled also could be factors 

influencing this relationship. In terms of performance, Presmeg (1986a, 1986b) suggested that there 

were internal and external factors, which could make a group superior compared to others. She 

discussed that textbooks and teachers’ teaching styles emphasized nonvisual methods. Therefore 

this situation could favor for analytic thinkers. It could be also that school exams might constrain 

students’ use of visual methods, which could take more time for solutions (Presmeg, 1986a). 

However with the educational developments the role of visualization and its importance in problem 

solving was recognized (Deliyianni et al., 2009). Visual approaches were included in both teacher 

education programs and curriculums. Therefore preservice teachers could be experienced with both 

visual and nonvisual approaches during their methods courses and school practices. These 

experiences through university life may reduce the influence of these internal or external factors on 

performance.   

Use of visual-spatial representations according to types of mathematical thinking 

The results showed significant differences in the use of schematic representations and visual-spatial 

representations among groups with different types of mathematical thinking while no difference was 

found in the use of pictorial representations. Preservice teachers did not tend to use pictorial 

representations as much as elementary or high school level students did as the previous studies 

suggested (van Garderen & Montegue, 2003). The frequency and the variance of preservice 

teachers’ pictorial representations scores were very low. The rare use of pictorial representations by 

participants may be one reason for not observing significant differences between the groups. 

In the current study harmonic thinkers and geometric thinkers had similar preferences for use of 

representations in problem solving whereas analytic thinkers were separated from the others by 

using fewer representations. These findings were different from Sevimli and Delice’s study (2011). 

They found that analytic thinkers and harmonic thinkers had similar preferences for use of 

representations and their use of representations were significantly less frequent than geometric 

thinkers. There might be two reasons for the differences in these findings. One of them was the 

mathematical context of the studies. Sevimli and Delice (2011) carried out their study on a specific 

topic: definite integrals. They discussed that in calculus courses students were mainly taught 

nonvisual methods and algebraic expressions. The context of definite integral and how it is taught 

can lead the students to using algebraic solutions. On the other hand word problems that were used 

in this study might have promote preservice teachers to use representations in solutions. 

The second reason could be that the participants did not express all problem solving procedures in 

their mind on the paper in the current study. For the context of working on definite integrals, 

although representations were not preferred by preservice teachers during the problem solving 

processes, when they used it might be a difficult procedure to operate representations in mind. The 

context requires specific graphical representations that include complex processes (Sevimli & 

Delice, 2011) and they could push the preservice teachers for operation on paper. However the 

representations that were used in solutions of word problems could be formed in mind. They did not 

have a complex structure as much as graphical representations that used in integral context. Further 

studies could be conducted for different mathematical contexts. Researchers might prefer interviews 

in data collection processes to detect representations that people construct in their mind. 



Levels of visual-spatial abilities according to types of mathematical thinking 

The findings of the current study did not show statistically significant differences in preservice 

teachers’ visual-spatial abilities in terms of types of mathematical thinking. Taşova (2011) 

suggested that geometric thinkers were more successful in visual-spatial ability tests than analytic or 

harmonic thinkers. However he did not run a statistical analysis to compare the groups for types of 

mathematical thinking in terms of their levels of visual-spatial abilities. There are various other 

studies that documented no significant relationship between people’s visual-spatial abilities and 

their preferences for visual or nonvisual methods (Hagarty & Kozhevnikov, 1999; Moses, 1977; 

Lean & Clements, 1981; Suwarsono, 1982). Krutetskii (1976) suggested that there were many other 

factors, which effects people’s preferences like learning experiences. Therefore further studies could 

investigate such factors beyond focusing only on peoples’ visual-spatial abilities. 
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Multimedia-based representations play a major role in mathematics and mathematics education. 

Consequently, they are important with regard to teaching purposes, as they are supposed to be useful 

to represent mathematical structures and processes in different ways. Within the presented project 

we developed an instrument by using video-vignettes in order to assess the competencies of 

mathematics teachers for multimedia use in mathematics lessons. For coping with complexity we 

reduced the instrument’s focus on two facets: cognitive load and mutual supplement of multimedia 

representations. As the work is still in progress, we here focus on the project’s theoretical background 

as well as on the development of the assessment instrument based on video-vignettes. 

Keywords: Multimedia-based mathematical representations, technological pedagogical content 

knowledge, assessing teachers’ competencies, video-vignettes, secondary school mathematics. 

Introduction 

Since mathematical objects are conceptual and invisible, the meaning of representations plays a major 

role in mathematics and mathematics education. The necessity of representations for the fundamental 

understanding of mathematical concepts has already been postulated by Duval (2006). Therefore, it 

is of importance that students work with multiple representations of the mathematical content early 

on. Doing so they can benefit from complementary expressions and viewpoints of the subject matter 

and are able to improve and deepen their understanding (Ainsworth, 1999). However, as a teacher it 

is insufficient to simply present multiple representations to the students. It is necessary that the 

students build and understand the connections between different representations and gain a coherent 

mental model (Seufert, 2003). Schnotz and Bannert (1999) illustrate the interaction between 

descriptional and depictional representations in their integrated model of information processing. 

According to their work, these two different kinds of representations complement each other in a 

synergetic way to form a mental model of the represented content. With the construction of a mental 

model through multiple representations, students also gain in cognitive flexibility (Spiro, Coulson, 

Feltovich, & Anderson, 1988). According to Mayer (1997) students can also achieve better results 

when learning with multiple representations, however, there is practical as well as empirical evidence 

that this is not always the case in classroom instruction. A teacher’s knowledge about multiple 

mathematical representations and their kind of use in the classroom can obviously not be neglected.  

In this paper we first establish the theoretical background for the use of multiple, dynamically linked 

representations in mathematics education and the related professional competencies required of 

teachers in this context. After that we describe the development of a test instrument to assess these 

competencies from a particular theoretical point of view. 



Theoretical background 

Especially multimedia can offer possibilities to develop and implement learning environments 

containing multiple mathematical representations. When working with multimedia-based 

representations, mathematics teachers should, among many other things, know the benefits and 

pitfalls of (dynamically) linking multiple representations while also being aware of the cognitive load 

generated by them. Therefore a variety of technological knowledge, skills and competencies must be 

combined with pedagogical knowledge and content knowledge of the subject matter. 

Linking multiple mathematical representations 

Computer-applets based on multimedia representations are not only suitable to illustrate both 

descriptional and depictorial representations (Schnotz & Bannert, 1999) at the same time, but they 

are also useful to establish a dynamic link between them. That way it is possible to present even more 

information about the mathematical content than the representations could provide without being 

linked to each other (Kaput, 1989). The dynamic linking and the mutual supplement of the different 

representations provide different approaches to the mathematical content, especially because of the 

automatic translation of effects when changing one representation. Providing different approaches 

could cause synergetic effects on the construction of coherent knowledge structures (Seufert, 2003). 

Moreover, the automatic translation between unrelated representations could decrease the cognitive 

load of the learner and leaves more capacities for the process of understanding (Ainsworth, 1999). 

Especially in the subject of mathematics, multimedia-based representations are appropriate to 

demonstrate the character of mathematical processes (Vogel, Girwidz, & Engel, 2007). 

However, there are also disadvantages that come along with multimedia-based representations. As 

much as they can encourage a deeper understanding, they could also lead to misconceptions 

(Hadjidemetriou & Williams, 2002), if they are misleading with regard to their external arrangement. 

Likewise too many multiple dynamical representations could cause a heavy extraneous cognitive 

load, so that the students do not have any capacity for the intended germane load (Chandler & Sweller, 

1991). If the extraneous cognitive load gets too heavy, students often tend to split their attention (split-

attention-effect) and focus on one form of representation only (Brünken & Leutner, 2001). Hence 

reducing the extraneous cognitive load is of high importance when using multiple dynamic 

representations in mathematics teaching. 

In his work, Mayer (2009) gives different principles that should be considered in constructing 

multiple dynamic representations: The coherence principle, for example, states that people learn 

better when irrelevant material is excluded. Particularly regarding the mutual supplement of multiple 

representations these principles are a good guideline for constructing effective multimedia-based 

mathematical learning environments. 

Technological pedagogical content knowledge 

Apparently, the profitable use of multimedia-based representations in mathematics lessons is not only 

a question of mathematics education, but concerns didactics of mathematics and psychology as an 

interdisciplinary field of multimedia learning. Certainly, teachers first have to decide from a 

mathematical point of view whether the mathematical content is adequate for the use of multimedia 

and which aspects of the content should be presented within this use of multimedia. In the second 

step it is important to implement the mathematical content into a computer-applet with regard to 



available pedagogical and psychological insights of multimedia learning. The technological 

pedagogical content knowledge, that is needed for the profitable use of multimedia-based 

representations, is an “emerge of knowledge that goes beyond all three ‘core’ components (content 

knowledge, pedagogical knowledge and technological knowledge)” (Koehler & Mishra, 2009, p. 66) 

and requires extensive knowledge about all the aspects of multimedia learning. The TPACK-

framework (Koehler & Mishra, 2009) extends the taxonomy of Shulman (1986) by adding technology 

knowledge which results in three new intersections: technological content knowledge, technological 

pedagogical knowledge and technological pedagogical content knowledge (TPACK). 

Accordingly, the complexity of competencies needed to use multimedia-based representations in an 

effective way in mathematics lessons is high. Beyond their mathematical content knowledge teachers 

need an extensive knowledge about the media and technology they want to use as well as its chances 

and difficulties for multimedia learning. Consequently, teachers are confronted with new challenges 

(Koehler & Mishra, 2009) and need to develop the competencies to identify the chances and 

difficulties that go hand in hand with the use of multimedia-based representations (Spanhel, 1999). 

However, according to Koehler and Mishra (2009) many of the teachers do not feel prepared for the 

use of modern technologies to present these kinds of representations. 

TPACK in context of multimedia learning in mathematics education 

The internet provides many existing computer-applets which mathematics teachers could use in their 

lessons (for example see www.geogebra.org/materials). The question is if a chosen applet supports 

or prohibits the understanding of mathematical concepts and processes and how to determine its 

benefit. As far as we know there are no criteria given for evaluating an applet with regard to both 

mathematical and psychological aspects of multimedia learning. While several studies investigated 

the effect of multimedia-based representations on learning outcome in general, there is still little 

known on how to evaluate applets with interdisciplinary criteria of multimedia learning. Also it is 

little known about the competencies mathematics teachers need for an effective use of multimedia-

based representations in their classrooms. 

Hence it is the research goal of this study to develop a test instrument to assess competencies 

regarding the technological pedagogical content knowledge (TPACK, cf. Koehler & Mishra, 2009) 

and the interdisciplinary aspects of multimedia learning in mathematics education. 

Assessing mathematics teachers’ competencies in using multimedia-based 

mathematical representations by video-vignettes 

As functional and geometrical thinking build an essential base for the understanding of mathematics 

and elementary functions as well as geometry also play a major role in the german curriculum of 

secondary schools (Kultusministerkonferenz, 2012) we decided to focus on these two mathematical 

contents when starting to develop the intended test instrument. These contents deeply involve the 

understanding of their dynamic aspects (for instance while studying covariance of functions, 

transformations of geometric figures or whole families of functions or geometric objects), so 

multimedia-based representations could be an appropriate tool in teaching functional and geometrical 

thinking. Functional thinking includes mainly three aspects of functions: aspect of assignment, aspect 

of covariance and view as a whole (cf. Vollrath, 1989). Especially for handling the aspect of 

covariance dynamic representations are an appropriate tool, because changes in one variable and their 



effects can be directly visualized in other representations. Also for acquiring geometrical thinking, 

multimedia-based representations can be helpful: Geometrical thinking is based on the understanding 

of geometrical terms and conceptions (Ulfig & Neubrand, 2013). Young children already develop an 

understanding for geometrical terms, but mostly ignore the similarities (Heinze, 2002). For example 

they are not able to understand that a square is a special representative of rectangles. With dynamic 

representations it is possible to illustrate not just one example of a geometrical object, but to construct 

a whole class of objects by using the dynamic transformation (Kittel, 2009). 

On base of our theoretical considerations it is necessary to investigate also psychological aspects 

beyond the mathematical ones. According to an intensive literature review, we determined eight 

facets of psychological aspects of multimedia learning as basis for the test instrument: relation to the 

content (e.g. Spanhel, 1999), efficacy of the use of multimedia (.e.g. Mandl, Gruber, & Renkl, 2002), 

limitations of the representations (e.g. Mandl et al., 2002), misconceptions (e.g. Mayer, 2009), 

cognitive load (e.g. Chandler & Sweller, 1991), individual promotion of the learners (Wauters, 

Desmet, & van den Noortgate, 2010), mutual supplement of multiple representations (e.g. Mayer, 

2009) und simplifying (mathematical) content (e.g. Kittel, 2009). Within the development of the test 

instrument we conducted a multistage expert-rating in order to validate, but also to empirically 

support a selection of two of these eight facets for purposes of reducing complexity in this first 

approach. This process will be described more detailed later on. 

Video-vignettes and their construction 

Since video-vignettes are assumed to be an effective way of measuring teachers’ competencies 

(Blomberg, Stürmer, & Seidel, 2011), we developed, for the time being, a pool of 36 video-vignettes, 

that show various situations during mathematics lessons using multimedia-based representations. 

Video-vignettes are short sequences of a classroom situation that show critical problems: to evaluate 

these situations the observing person needs special competencies (Rehm & Bölsterli, 2014). Figure 1 

shows an example of a script for a video-vignette related to the psychological facet mutual supplement 

of multiple representations. 

The vignettes are constructed with a closed-ended question type. Multiple statements have to be rated 

on a scale from one to six according to its appropriateness for the presented situation. An example of 

statements is shown in Figure 2. 

After the development of 36 vignettes, they have been validated in a multistage expert-rating. 

Validation of the constructed video-vignettes 

First the constructed vignettes were evaluated by nine experts in a semi-standardized qualitative 

interview. The aim of these interviews was to assure the relevance and the clarity of the presented 

situations in the vignettes. Afterwards the vignettes were rated by 104 experts in a quantitative 

interview. The aim here was to reassure the evaluation of the qualitative interviews as well as to 

analyze the distribution of the answers on the scale from one to six of each statement. Moreover, the 

experts could give comments on each of the vignettes. The answers and the comments of the experts 

from the quantitative rating were analyzed regarding four criteria: focus regarding the mathematical 

content of secondary school, distribution of the answers to the statements, relevance for school and 

clarity of the vignette and comments of the experts. 



 

Figure 1: Example of a script for a video-vignette according to the psychological facet mutual 

supplement of multiple representations 

Based on the multi-stage expert rating and psychometric properties of the instrument we chose the 

most appropriate vignettes and determined the two psychological facets of multimedia learning 

cognitive load and mutual supplement of multimedia representations as the focus for the final test 

instrument. Cognitive load refers to the trichotomy from Chandler and Sweller (1991): intrinsic 

cognitive load, extraneous cognitive load and germane cognitive load (cf. section theoretical 

background). So the aim is to explore if prospective teachers can estimate the cognitive load. The 

mutual supplement of multimedia representations refers to the interaction between two or more forms 

of representations of the same issue (cf. section theoretical background; Ainsworth, 1999; Kaput, 

1989). Using these interactions between different forms of representations could involve many 

chances, but also risks. For example, it is important to link the different representations to gain an 

understanding of coherence (Seufert, 2003). However, as mentioned above different forms of 

representations could also cause the split-attention-effect (Brünken & Leutner, 2001). 

 



 

Figure 2: Example of statements for the vignette from Figure 1 

Assessment 

After the reduction of the vignettes as well as the reduction of the psychological facets, we revised 

and adapted five vignettes for each of the psychological facets as well as six to seven items for each 

vignette. The formulation of the items was parallelized between the vignettes in order to assure that 

the important aspects of each of the psychological facets are tested. 

These ten vignettes were again validated in a pilot study and as the results were promising, they were 

used in the final assessment. In this assessment we also included covariates to prove the discriminant 

validity of the test instrument: pedagogical knowledge and content knowledge. Preliminary results 

with 261 prospective teachers in Baden-Württemberg already show evidence for the discriminant 

validity of the test instrument: As expected from the TPACK-framework (Koehler & Mishra, 2009) 

the test score of the developed vignettes shows a weak correlation with the two constructs 

pedagogical knowledge (r = .17, p = .01) and content knowledge (r = .29, p < .001). Furthermore we 

could prove expected correlations with the educational progress of the prospective teachers (r = .14, 

p = .03) as well as the number of attended courses addressing the use of computers in mathematics 

lessons (r = .17, p = .03). 

Discussion and outlook 

The research goal was to develop a test instrument in order to assess the competencies mathematics 

secondary teachers need for an effective use of multimedia-based representations in mathematics 

lessons. Therefore, we considered both mathematical and psychological aspects of multimedia 

learning and developed a test instrument for the mathematical contents of functions and geometry as 

well as for the psychological facets cognitive load and mutual supplement of multiple representations. 

With the conducted multistage expert-rating and the preliminary results of the assessment we could 

confirm the validity of the test instrument. 

At the moment, we conduct an assessment with the final test instrument in order to research the 

development of the previously described competencies during the practical phase of the studies of 

prospective teachers. Moreover, the test instrument will be complemented with further mathematical 

content: algebra and stochastics. At the current stage of the project, new vignettes are developed for 

these two subjects which will supplement the current test instrument. The new test instrument will 



then be able to test a wide range of mathematical content knowledge combined with knowledge about 

the psychological aspects of multimedia learning. 
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Representations are essential for mathematical understanding. In particular, graphic representations 

are taught as tools for solving word problems. However, not only do children often have difficulties 

in using them, but there is also a complete absence of research into whether or not children’s own 

graphic productions actually represent the key mathematical elements of word problems. My project, 

therefore, focuses on this gap by developing a theoretical model and an analysis tool to categorise 

and map the drawings. This is based on primary school children’s drawings, which have been 

identified as graphic representations of word problems. 

Keywords: Graphic representations, visualisation, word problems, analysis tool, elementary school 

students. 

Introduction 

For doing mathematics, the use of external representations is essential. Without them it is virtually 

impossible to discuss or gain insight into mathematical problems (Dörfler, 2008; Hoffmann, 2005). 

In external representations mathematical patterns may be apparent and can be analysed. They are also 

important in the mathematical learning process. Bruner (1966) explains the power of external 

representations for learning “as its capacity, in the hands of a learner, to connect matters that, on the 

surface, seem quite separate” (p. 48). Accordingly, representation is quoted as a process standard in 

several standards and curricula (e.g. NCTM, 2000).  

Within a range of external representations, graphic representations allow certain aspects of space to 

be mapped onto specific elements of content (Stern, Aprea & Ebner, 2003). They can be defined as a 

“data structure in which information is indexed by two-dimensional location” (Larkin & Simon, 1987, 

p. 68). Every element of a graphic representation contains information not only to do with its own 

location, but also nearby elements. Graphic representations, therefore, constitute a key tool for 

problem solving (Polya, 1967).  

Nevertheless, it is often reported that children have difficulties in using graphic representations as a 

tool for problem solving (Fagnant & Vlassis, 2013; van Essen & Hamaker, 1990). In some studies, it 

is shown that the use of graphic representations can be trained (e.g. Fagnant & Vlassis, 2013; 

Diezmann, 2002). However, there is a lack of research into the actual extent to which children’s 

individual drawings represent key mathematical aspects of a given word problem. This study (Ott, 

2016) aims to make a contribution to this gap. 

Research interest 

This research focuses on self-generated children’s drawings for word problems. It addresses the main 

question as to what extent these drawings represent the mathematical structure of the word problem. 

More specifically, two research questions are defined: 

1) Which features are key in drawings for word problems?  

2) How do they manifest themselves in children’s drawings for word problems?  



Finally, the study aims to design an analysis tool for children’s word problem drawings, based on 

theory and split into various categories. 

Methods 

Data collection 

A paper and pencil test was given to two first grade and two second grade classes in two German 

primary schools. 42 first graders and 35 second graders participated in the test. The average age of 

the first graders was 6 years and 4 months, whilst the average age of the second graders was 7 years. 

By pure chance, there were 35 girls and 42 boys. 

The test was conducted at the end of the school year’s first half. At that time, the first and second 

graders could solve addition and subtraction tasks in the number ranges up to 20 and 100 respectively. 

The first graders had experience in drawings for equations and finding equations to match drawings. 

Students of one second grade class (N=19) had additional experience in drawing sketches for word 

problems.  

  
 

Dana’s representation Ole’s representation Rike’s representation 

 

 

 

Gabi’s representation Nadine’s representation Simon’s representation 

Figure 1: Children’s drawings for the tower-item (Ott, 2016) 

The test consisted of six word problems based on schoolbook tasks. The level of difficulty differed, 

in accordance with how much the verbal texts implicitly suggested objects and hence ways of drawing 

(Ott, 2015, 2016). Testing took place on two successive days, three test items a day. The instructor 

read the items out aloud to the students, who were then requested to draw their thoughts on a plain 

sheet of paper, so as to be understood afterwards by the instructor. Figure 1 shows six examples of 

children’s drawings for the following word problem: Once upon a time there was a king who wanted 

to have a tower of 11 meters in height. The tower was built over the course of several years. Every 

year, the workers built 2 meters. How long did it take for the tower to be built? 



Analysis 

The children’s 438 individual depictions from the test have been used both to develop a theory of 

drawings for word problems and also an analysis tool, based on various categories. To this end, the 

drawings have been analysed via a combination of qualitative content analysis (Mayring, 2010) and 

theoretical coding (Strauss & Corbin, 1996). Developing a theory and the design of an analysis tool 

took place simultaneously in an iterative process according to representation theories. 

Results 

The analysis of the children’s drawings revealed as key either for a draft of a theory or an analysis 

tool the following three features: The mathematical structure, the mathematical matching and the 

degree of abstraction. In analysing the drawings, it is important to differentiate between these 

features, details of which are presented below.  

Mathematical structure 

Theory 

A mathematical structure may be defined by set theory: An amorphous set is structured by defining 

relations and operations between its elements (Rinkens, 1973). This definition is used to identify both 

the mathematical structure of word problems and also of graphic representations. 

Word problems are verbal descriptions of situations with a focus on mathematical relations 

(Veschaffel, Greer & de Corte, 2000). They can be characterised as “descriptional” (Schnotz, 2014, 

p. 47) representations. Information is presented sequentially with the quantities and nouns being 

related to each other by verbs and prepositions. Thus, structural information is integrated into the text 

and the word problem is thus given a mathematical structure. Accordingly, the verbs and prepositions 

serve as relational symbols (Schnotz, 2014, p. 47), without which the quantities and nouns would be 

unrelated – this applies equally to the elements of an amorphous set. Because of the verbal 

construction with verbs and prepositions as relational symbols, a relationship between the quantities 

will be defined. Consequently, a structure is given to the quantities and nouns. In the word problem 

presented here, the quantities and nouns “tower”, “11 meters”, “year(s)” and “2 meters” are related 

by the verbs and prepositions “of”, “built” and the adverbial phrase “every year”.  

For a sound graphic representation, it is necessary to identify key objects in the text, e.g. quantities, 

objects or people mentioned, that are relevant and necessary for the mathematical structure. To 

achieve this, structurally relevant objects signs (Peirce, 1965) need to be invented, which can be 

regarded not only as physically analogous to the objects but also symbolic. Graphic representations 

can be characterised as “depictional” (Schnotz, 2014, p. 47). Compared with word problems, graphic 

representations do not include relational symbols. Indeed, a structure is given to the signs for 

structurally relevant objects by mapping them to certain aspects of space. To this end, the signs for 

structurally relevant objects have to be set out on the sheet in such a way that the arrangement 

represents the word problem’s verbally described relationships. Such graphic representations have 

the character of diagrams (Dörfler, 2006). For instance, in Simon’s graphic representation (Figure 1) 

the signs for structurally relevant objects “1J”, “1 Halbes”, “2”, “1” and the rectangles are arranged 

in vertical columns side by side.  

Analysis tool 



Six categories of how the mathematical structure appears in children’s drawings for word problems 

are identified: A representation is  

 non-graphic if it consists only of calculations or texts;  

 off the text if it possesses graphic elements, but there is no link to the text with regard to the 

content; 

 illustrative if it possesses graphic elements with a link to the text but no structurally relevant 

objects are represented;  

 object-related if it possesses graphic elements with a link to the text and structurally relevant 

objects are represented although relations between them are not identifiable in the 

arrangement; 

 implicitly diagrammatic if it possesses graphic elements with a link to the text, structurally 

relevant objects are represented and relations between them are identifiable in the 

arrangement; the relations are not explicitly emphasised; 

 explicitly diagrammatic if it possesses graphic elements with a link to the text, structurally 

relevant objects are represented and relations between them are identifiable in the 

arrangement; the relations are explicitly emphasised. 

 

Figure 2: Analysis tool for the mathematical structure 

In contrast to text analysis, such as the qualitative content analysis (Mayring 2010), it is impossible 

to analyse units step by step in a drawing. The analysis tool introduced here, therefore, arranges the 

categories in a decision tree guided by key questions, which lead to category definitions. The 

categorisation of a child’s drawing takes place step by step in a strictly dichotomous procedure. Only 

if a question has to be answered with ‘no’, will the drawing be classified into the associated category. 

As long as questions can be answered with ‘yes’, the categorisation process is not yet finished. This 

way, each of the children’s drawings can be clearly categorised. In Figure 2 we can see the decision 

tree. 

We will now categorise the children’s drawings shown in Figure 1. Dana’s solution is an example of 

a non-graphic representation. It consists of text and a calculation but no graphic elements. Ole’s 



drawing is an example of a representation that is off the text. A stick figure with a speech bubble is 

drawn, which contains the answer. The drawing contains no link to the problem’s content. In contrast, 

Rike’s graphic representation with a castle and hearts contains a link to the text, because a tower as 

part of a castle is drawn. Gabi’s representation of a tower also comprises graphic elements with a link 

to the text. The tower is subdivided into 11 rectangles, which could represent the 11 meters that are 

structurally relevant objects. Relations are not identifiable in this representation and hence it is an 

example of an object-related representation. Nadine and Simon’s representations are both graphic 

with links to the text and structurally relevant objects, e.g. the tower. Nadine’s representation is a 

sequence of pictures. In each picture, one can see the height of the tower in a given year. Thus, the 

relations between the meters and the years are identifiable and the representation is, therefore, 

diagrammatic. The relation is not explicitly emphasised and the representation is, therefore, an 

example of an implicitly diagrammatic representation. In Simon’s drawing, the height of every tower 

section is shown in one tower only. Next to every section of the tower, one can find the years 

necessary for the work to be completed. Thus, the relation between meters and years is not only 

apparent but also emphasised and it is, therefore, an example of an explicitly diagrammatic 

representation.  

Mathematical matching 

Theory 

In a representational system (Palmer, 1978) the correspondences between the represented and the 

representing “world” (p. 262) are important. In regard to the mathematical structure, this idea is used 

to define how a word problem is matched with a graphic representation. If there is a match, they are 

“informationally equivalent” (Palmer, 1978, p. 270).  

We call a relation of text and drawing a mathematical matching if the word problem and the graphic 

representation are informationally equivalent on both object and relational levels. Accordingly, if 

there is a match between the quantities and nouns on the text side and the signs for the structurally 

relevant objects on the graphic side (object level), and if there is a match between the verbs and 

prepositions on the text side and the arrangement of the signs for the structurally relevant objects on 

the graphic side (relational level), then there exists a complete matching between the word problem 

and the graphic representation.  

Analysis tool 

The matching between word problems and graphic representations is analysed with regard to the 

mathematical structure. Only object-related, implicitly or explicitly diagrammatic representations are, 

therefore, analysed (see above). Representations of the other categories do not contain elements of a 

mathematical structure and accordingly there is no matching between them and the word problem.  

For analysing the match between the quantities and signs for structurally relevant objects, it is useful 

to distinguish between the measured value and the measuring unit. Numbers can also be considered 

as discrete quantities (Müller & Wittmann, 1984). For analysing the match between verbs and 

prepositions and the arrangement of signs for structurally relevant objects, we have to consider the 

operations of the word problems. 



The variation of match between graphic representations and word problems with regard to the 

measured value, the measuring unit and the operations can be scaled (Mayring, 2010). The match 

can be complete, partial or non-existent. If it is non-existent, the quantities or operations graphically 

represented are other than those given in the word problem, e.g. an addition instead of a 

multiplication. It is also possible, that the quantities and operations are not apparent in the graphic 

representation. They are without compliance. In the analysis tool the possibilities are arranged in a 

3x4 matrix, where each matching can be marked with a cross. Arithmetically, 64 combinations are 

possible (see Figure 3a). 

In Simon’s representation (see Figure 1), measured values (11 and 2) are apparent as well as 

measuring units (meters and years) and the operations (addition of meters and years, meters per year). 

In Nadine’s drawing each measured value and operation are also apparent. With regard to the 

measuring units, only meters are identifiable. In Gabi’s representation the operations are without 

compliance. With regard to the measured values, only the 11 is apparent. So far as measuring units 

are concerned, only the meters are identifiable in the squares.  

 

 

a b 

Figure 3: Analysis tool for the a) mathematical matching, b) degree of abstraction 

Degree of abstraction 

Theory 

Children’s drawings for word problems are realistic to a greater or lesser extent. For analysing this, 

the idea of abstraction is used, which can be defined as a focusing of attention on certain aspects 

(Peschek, 1988). This idea is used to define the degree of abstraction.  

We characterise the degree of abstraction in a graphic representation as being the degree of focusing 

on representation of the word problem’s mathematical aspects (Ott, 2015). The foundations for the 

mathematical structure of a graphic representation are the structurally relevant objects (see above), 

that are important in defining the degree of abstraction, for which two indicators are identified:  

1) Focus on the structurally relevant objects in the graphic representation - no objects other than 

the structurally relevant objects are drawn.  

2) Focus on the mathematically relevant qualities of the structurally relevant objects - the signs 

for structurally relevant objects are not decorated and represent only the mathematically 

relevant qualities. 



Analysis tool 

Given that the degree of abstraction becomes apparent when focusing on the structurally relevant 

objects and their mathematically relevant qualities, only object-related, implicitly or explicitly 

diagrammatic representations are analysed (see above). Representations of the other categories do 

not contain structurally relevant objects and they are in themselves, therefore, not abstract. 

Both of the indicators for the degree of abstraction can be pronounced ‘low’ or ‘high’. 

Consequentially, it is possible to distinguish four categories for the degree of abstraction: High-high 

or low-low if each indicator is identified as high or low respectively, and high-low or low-high if one 

indicator is identified as low and the other as high. In the analysis tool the possibilities are arranged 

in a 2x2 matrix (Figure 3b). Both indicators have to be regarded separately in analysing a child’s 

drawing, which is then classified in the category that fits both results.  

In Simon’s representation (Figure 1) the focus on both structurally relevant objects and their 

mathematically relevant qualities are high, contrary to Nadine’s representation. Here, signs for other 

objects are drawn such as people and the tower decorated with battlements as a structurally relevant 

object. In Gabi’s representation, the focus on the structurally relevant objects is high, because only 

the floors of the tower are drawn, which are decorated with colour and squares.  

Conclusion 

This study has focused on the main question of the extent to which children’s drawings for word 

problems represent the actual mathematical structure. For this purpose, the mathematical structure, 

the mathematical matching and the degree of abstraction have been identified as substantial features 

of such graphic representations. Children’s drawings for word problems vary greatly in the way they 

are depicted. In the analysis tool, the extent of the substantial features’ occurrence in children’s 

drawings has been modelled, so that each drawing can be clearly categorised. The analysis tool has 

been tested with an inter-rater reliability of K=0.81. It could, therefore, be applied in further research. 

In the second part of the research presented here it has been used in an intervention study looking at 

graphic representations of word problems (Ott, 2016). 
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The design analysis of an inclusive educational sequence concerning the teaching and learning of 

fractions (Robotti, et al., 2015) is the focus of this work. Referring to the principles of Universal 

Design for Learning, developed by the Centre for Applied Special Technology to reduce barriers in 

learning, we analyse the design of the educational sequence focussing on fractions and devoted to 

classes where students with certifications of mathematical learning disabilities (MLD) were present. 

From the point of view of mathematics education, we refer to the theory of semiotic mediation 

(Bartolini-Bussi, Mariotti, 1998) in order to clarify the cognitive role of artefacts taken into account 

in class activities. In particular, the use of artefacts to solve tasks produces representations that 

contribute to develop of mathematical meanings aimed in the teaching activity. 

Keywords: Mathematical learning disabilities, Universal Design for Learning, fraction, number line, 

artefact. 

Introduction and conceptual framework 

The focus of this paper is the analysis of an inclusive educational sequence concerning the teaching 

and learning of fractions already described in detail in CERME9 (Robotti, et al., 2015). In the paper 

presented in CERME9 we discussed how, in the context of Semiotic Mediation (Bartolini, Mariotti, 

2008), the choice of particular artifacts and the design of tasks related to their use, allowed students 

to grasp different meanings of fraction. Now, I would like to discuss why that educational sequence 

was "inclusive" for learners with certifications of mathematical learning disabilities (MLD) or 

difficulties in math or with low achievement in math. To this aim, I will refer to the theoretical 

framework of Universal Design for Learning (UDL) and I will analyse how the design of the activities 

follows the guidelines and principles of UDL in order to reduce barriers in learning. Therefore, the 

rationale for referring both theoretical frameworks is to consider learning difficulties in a context of 

math education: if the Semiotic Mediation framework allowed us to design a structured educational 

sequence for teaching and learning different of meanings of fraction (for this, see CERME9 

proceedings), the UDL framework, allowed us to design and analyse those tasks in order to be 

inclusive for MLD students, students with difficulties or with low achievements. Even if there isn't 

consensus on definition and identification of MLD students (Karagiannakis, et al.,  2014) and the 

inclusivity (Ianes, 2006) is not a construct used consistently across different fields (education, 

society...) or in different countries, in this research work, we considered as "inclusive educational 

activities" the educational activities, developed in the context of the class, which face to the special 

needs of MLD students including dyscalculic students, students with difficulties in math and students 

with low achievement in math. In other words, according to the UDL framework, we consider 

“inclusive educational activities” those that meet the needs of all students of the class. UDL is based 

on a set of principles and guidelines that have been elaborated to increase access to curriculum for all 

the students, including those with disabilities. These principles and guidelines have a general valence 

and they are devoted to various application contexts. In this paper we refer to the context of math 



education. At the core of UDL is the belief that there are three networks in our brain that support 

learning: (i) The Knowledge/Recognition Networks, which are involved in identifying and 

interpreting sound, light, taste, smell, and touch. They are essential to learning because students are 

expected to comprehend a text, interpret formulas, identify cause/effect relationships, etc. UDL states 

that it is possible to support the knowledge/recognition networks providing Multiple Means of 

Representation (1° principle) to give learners various ways of acquiring information and knowledge. 

This principle has three supporting guidelines: provide options for Perception; provide options for 

Language, Mathematical expression, and symbols; provide options for Comprehension; (ii) The 

Strategic Networks, which are involved in planning, executing, and monitoring actions and skills. In 

learning, they occur, for example, to solve a problem, use an artefact, take notes and listen to a lecture. 

UDL states that it is possible to support the Strategic networks providing Multiple Means of Action 

and Expression (2° principle) to give learners alternatives for demonstrating what they know. This 

principle has three supporting guidelines: provide options for Physical action; provide options for 

Expressive skills and fluency; provide options for Executive function; (iii) The Affective Networks, 

which are responsible for establishing priorities and interests. UDL states that it is possible to support 

the Affective networks providing Multiple Means of Engagements (3° principle) to stimulate interest 

and motivation for learning. This principle has three supporting guidelines: provide options for 

Physical action Recruiting interest; provide options for Physical action Sustaining effort and 

persistence; provide options for Physical action Self-regulation. According to UDL frameworks, 

representations seem to be “the ways [to] perceive and comprehend information”, produced by visual 

or auditory means, or contained in a printed text. Therefore, UDL considers representations as signs 

of different nature (visual, auditory, kinaesthetic…) produced by different means (or artefacts). In the 

Theory of Semiotic Mediation, Bartolini and Martiotti state that: “[…] any representation comes to 

life because of a human construction that makes it possible, in other words any representation is 

supported by an artefact” (Bartolini, Mariotti, 2008, p. 747). Even if the difficulty in articulating an 

accurate definition for the term “representation” is recognized in math education, we want to stress 

that, in his theoretical framework Duval states the importance of connections both within and amongst 

different representational registers as absolutely fundamental to deep understanding of mathematics 

(Duval, 1999). According to this, Arcavi (2003) stresses the essential role of visual representations in 

the learning of mathematics and he defines “visualization, as both the product and the process of 

creation, interpretation and reflection upon pictures and images, …” (Arcavi, 2003, p. 215). 

Visualization, visual representations and more general representations were taken into account in our 

analysis presented in CERME 9 discussion. As described in that analysis, the teaching of the notion 

of fraction is a quite delicate issue, which requires insightful ways of structuring didactical activities. 

In that occasion, we stressed how the importance of spatial processes, performed on the base of spatial 

skills, can be important in mathematical performances where explicit or implicit visualization is 

required, as in the case of learning of fractions. Therefore, the visual non-verbal, the kinaesthetic-

tactile and the auditory channels were considered as preferential for designing inclusive educational 

activities concerning fractions. Finally, Goldin (1992) outlined a unified model for the psychology of 

mathematics learning, which incorporated cognitive and affective attributes of visualization as 

essential components in systems of representation in mathematical problem solving processes. From 

the above considerations, we can observe that, even in the domain of math education, the aspects 

related to multiple means of representations and their relations, multiple means of action and 



expression and multiple means of engagement are taken into account. For this reason, we use the 

three principles of UDL to analyse the design of an educational sequence about fractions whose 

purpose was to be inclusive (in the UDL sense), that is to say, to meet the needs of all learners of the 

classes, even MLD students. Moreover, we will adopt the framework of Semiotic Mediation to 

analyse the role of the artefacts in the educational sequence in order to reach the aimed educational 

goals. More in detail, we will show how the design of the different tasks, requiring actions on 

artefacts, can be interpreted through the three principles of the UDL to analyse the efficacy both of 

construction of meanings for the notion of fraction and of inclusion for MLD students. 

An example of inclusive educational sequence  

I will briefly recall the main activities characterising the educational sequence concerning fractions, 

described in details in TWG13 of CERME 9 (Robotti & al., 2015), which was carried out in 22 classes 

(nine 5th grade classes, six 4th grade classes, and seven 3rd grade classes) involving around 400 

students, of which 20 were certified MLD students (Robotti & al., 2016): (1) Partitioning of the A4 

sheet of paper (named “placemat”). (2) Partitioning of a strip of squared paper: given a certain unit 

of measure (number of squares) on the strip, position a fraction on that strip (1/2 or 1/3 or 1/4, ….); 

given different units of measure on different strips, on each strip a same fraction is represented (1/2); 

chosen an appropriate unit of measure on the strip, different fractions are represented on that strip 

(e.g., 1/3 and 1/5). (3) Placing fractions on the number line. (4) Placing coloured tags, labelled with 

fractions, on a “string on the wall”.  

The learning difficulties concerning fractions seem to be due, among other things, to the lack of 

connection between different meanings of fraction (Charalambous, Pitta-Pantazi, 2005) and to the 

fact that only some of them are fostered (e.g. the meaning of "part/whole"), (Pantziara, Philippou, 

2011). Moreover, some visual representations are favoured (such that of the pizza) even if they could 

hinder the learning of the different meanings of fraction (Fandiño Pinilla, 2007). The main learning 

difficulties identified in Italian national assessment (INVALSI tests) are related to: managing the 

meaning of the “equal” sign (for instance, What does it means obtaining “equal parts” of the whole?); 

switching from a fraction to the unit that has generated it; managing equivalent fractions; ordering 

fractions on a straight-line even without transform them to decimal numbers. In the following, I will 

discuss how principles and guidelines of UDL can be effectively used to analyse the design of the 

tasks, which allow overcoming these difficulties. The analysis of actions required by tasks on the 

artefacts, will show how the educational aims and the aims of inclusion were achieved. 

The artefact  “placemat” 

The “placemat” is a A4 sheet of paper that, at the beginning of the sequence will be in white colour 

but that, in the following, will be coloured. The mathematical meanings to be mediated by the 

“placemat” are: 1) construction of fractional units starting from a given unit of measure (the A4 sheet 

of paper) by folding and cutting out the A4 sheet of paper; 2) equivalence between fractional units, 

by folding or cutting the fractional units in order to show the equivalence between the surfaces. This 

allows to overcome the difficulty related to the interpretation of “equal parts of the whole” as 

“congruent fractional units” instead of “equivalent fractional units” (see above); 3) sum of fractional 

units in order to obtain the given unit of measure (in this case, the A4 sheet of paper). This can be 

realized covering the A4 sheet with different fractional units. This allows to come back to the unit of 



measure starting from the fractional units. According to Guideline 1 of first Principle of UDL, 

learning is difficult if information is imperceptible to the learner, or when information is presented in 

formats that require extra effort for him/her (for example, decoding the text “one half” or decoding 

arithmetical expressions “1/2” for a dyslexic student). To reduce barriers to learning, it is important 

to ensure that key information are equally perceptible to all learners. For this reason we provided the 

same information through different modalities (e.g., through the possibility of touching and 

manipulating the pieces of A4 sheet, through vision of their drawing on the notebook, through hearing 

or reading an arithmetical expression). In other words, through different forms of representation 

(Guideline 2, Principle 1). Moreover, the colour, which characterises fractional units later on, plays 

the role of support to long-term memory for students with learning disabilities or simply students with 

math impairment. Once the information are made accessible, our educational sequence aims to help 

students transform them into useable knowledge. As pointed out by the Guideline 3 of the first 

Principle of UDL, this depends upon “information processing skills” like: selecting useful 

information, integrating new information with prior knowledge, strategic categorization and active 

memorization. Individuals differ greatly in their skills in information processing, but effective design 

of task and presentation of information in accessible ways can provide the scaffolds necessary to 

ensure that all learners are able to process information. Therefore, we designed educational activities 

in which students have to act on the artefact, in order to produce representations (for instance, by 

cutting or folding different pieces of paper referring to the same fractional unit in order to show the 

equivalence of their surfaces or choosing appropriate fractional units to cover the A4 sheet in order 

to show that the sum of appropriate fractional units gives the unit of measure 1), and they have to put 

the obtained representations into relation. Indeed, the actions, performed by students on the artefacts, 

produce situated signs (representations) through which students, with the help of teacher’s mediation, 

construct the mathematical meanings aimed for (in that case, equivalent fractions or 2/8+3/4=1). In 

order to help students remember the mathematical meanings described, the teacher asks students to: 

reproduce on the note-book the operations performed with the artefact; write down the content of the 

class discussions; write texts in which the processes developed in the activity are explicitly linked to 

knowledge. This allows recalling and using knowledge in the future and it provides options for 

expression and communication. As a matter of fact, it is well known that there is no medium of 

expression that is equally suited for all learners and for all kinds of communication. This means that, 

according to the second Principle of UDL, students with learning disabilities may excel, for example, 

in interpretation of drawing data (e.g., the drawing of “placemat” covered by different coloured 

fractional units), but they may falter when asked to read data provided in a table or in arithmetical 

expression (e.g. 1= 2/8+3/4). 

The artefact  “strip of squared paper” 

The strip of squared paper is a strip with squares of 1 cm, 10 cm high and approximately 1 m long. 

In the strip there are some integer numbers (0, 1, 2, 3, …) and fractions are constructed. The 

mathematical meanings mediated by the “strip of squared paper” are: 1) Fraction as operator on a 

given unit of measure: once a unit of measure is considered, the teacher asks students to place on the 

strip a given fractional unit and then a given fraction (equal o more than 1); Comparison, by means 

of a perceptive strategy, of fractional units that should be positioned on different strips of paper; 3) 

Relationship between a fractional unit and a chosen unit of measure: considering different units of 

measure on different strips, the teacher asks to place the same fractional unit (for instance, ½) on all 



the strips; 4) Ordering fractional units: considering on a strip an appropriate unit of measure (given 

by the l.m.d. of the denominators), the teacher asks to place different fractional units. This allows 

students to compare them in a concrete way; 5) Equivalence between fractions: considering on a strip 

a given unit of measure, the teacher asks to place different fractions. Among them there are some 

equivalent fractions. We note that some mathematical meanings concerning fraction, such as 

equivalent fractions or comparison of fractions, are already presented in previous activities with the 

artefact “placemat”. Once again, the first principle of the UDL is used in this educational sequence 

providing different means of representation (that is, different artefacts through which representations 

can be performed). In this activity, the students produce different representations: linguistic signs 

associated to the name of the fraction expressed in verbal language (“One half”), in verbal visual 

language (the writing “One half”) and arithmetical language (“1/2”). The teacher institutionalizes the 

relationship between the different signs in terms of rational numbers. Thus, the construction of 

meaning related to the notion of rational number, is based on both the interplay between different 

types of semiotic representations, according to the first principle of UDL, and by different actions on 

artefacts producing those representations, according to the second principle of UDL. Moreover, we 

note that the colour, perceptive option already provided in the A4 sheet of paper, is used with the 

same aim also in the activities with strip of squared paper. Thus, the fractional units constructed on 

the strip are coloured with the same colour of the respective fractional units constructed by A4 sheet 

of paper. Therefore, the colour assumes the role of a support for memory and also of an artefact, 

which allows students to link the meaning of fractional unit constructed with the “placemat” (fraction 

as a part of a whole) with the meaning of fractional unit constructed by the strip of paper (fraction as 

operator). Moreover, we have taken into account different strips where different units of measure 

have been considered and where have been represented a given fractional units. The strips are put one 

beside the other (proving option for physical actions, as called for by the second principle of UDL) 

and the relationship between unit of measure and fractional units becomes perceptively evident, 

reifying Guideline 1 (provide options for perception) of the first principle of the UDL. In order to link 

the meaning of fraction as part of a whole and as an operator to the meaning of rational number on a 

number line, we need to switch from the artefact “strip of squared paper” to the artefact “number 

line”. For this reason, the teacher asks the students to represent, on the same strip different fractional 

units: 1/8, 1/6, ¼, 1/3 and ½. Thus,, in order to represent all fractional units on the same strip, students 

need to find a suitable graphic strategy that maintains the colour without superposing different colours 

on the strip. They adopt coloured notches. Positioning on single strip different fractions makes the 

ordering of fractions exactly like that of the other perceptively evident numbers. Here the semiotic 

potential of the artefact “strip of squared paper” associated to the tasks proposed by the teacher 

becomes evident, playing a key role in fostering identification of fractions as rational number on the 

number line. I will show this in the following session. 

The artefact “number line”  

The number line is drawn by students on their note-book. It is a number line of positive numbers 

starting from the point 0 and it is presented as the natural "crushing" of the paper strip. Therefore, on 

the number line, students place fractions without transforming them into decimal numbers. The 

mathematical meanings supported by the “number line” and the tasks proposed are similar to those 

proposed in activities with the artefact "paper strip". This allows all students to find continuity both 

between the artifacts proposed and the construction of the aimed for mathematical meanings.  



The artefact  “string” on the wall 

The artefact "string on the wall" consists of a string in nylon whose ends are fixed to two adjacent 

walls of the class (such as a wire for drying clothes). On it, students hang some tags labelled with 

fractions (in this case, tags are coloured accordingly with the colour used in previous activities) or 

natural numbers (in this case tags are white). The string simulates the number line starting from zero, 

which is placed at the left end and the position of the unit is made to vary dynamically sliding the 

corresponding labelled tag attached with a clothes’ peg. In this case, however, the positions of the 

other tags do not vary dynamically at the same time or automatically as a consequence of the new 

placement of the unit: their motion requires a specific action in order for the numbers on the line to 

maintain the desired mathematical relationships. Tags are made so that they can be hung in "clusters" 

to ensure that tags corresponding to equivalent fractions have the same position on the string. The 

mathematical meanings supported by the “string” are: 1) Ordering of fractional units or fractions: 

once the unit of measure has been defined, by positioning the tag labelled with "1", the tags labelled 

with fractions need to be hung in the correct position; 2) Equivalent fractions: since their tags 

correspond to the same position on the string, they are hanging as "clusters" and they represent classes 

of equivalence. Students named them "caterpillars" whose first tag (corresponding to the irreducible 

fraction) was called "head of the class"; 3) Density of the numerical set Q: "enlarging" the unit of 

measure, that is to say increasing the distance between the tag corresponding to 0 and that 

corresponding to 1, it is possible to hang on the strip more and more fractions. This operation, repeated 

many times, allows constructing a mental image connected to the idea of infinity. We note that, when 

tags on the strip become numerous, one needs to "enlarge" their position to make room for other tags. 

This action on the string is a situated sign used by the teacher to introduce the idea of density in the 

set Q. Therefore, the representations of fraction on the string (tags labelled with fractions), their 

position on the string and the action performed on the tags are in line with the first principle of the 

UDL according to which different forms of representation are needed in order to capture information 

and transform them into knowledge. The colour of tags, the position of tags on the string, the dynamic 

position of tag labelled with “1” on the string, recall actions and representations performed in 

previously activities. Once again, this allows linking different representations and actions to the same 

mathematical meaning, by supporting long-term memory. According to the principles of the UDL, 

this contributes to making mathematical meanings accessible to the students. 

Discussion and concluding remarks 

The first principle of UDL (Providing Multiple Means of Representation) and the related guidelines 

provide useful references in order to choose artefacts and define tasks which allow overcoming 

obstacles and difficulties in understanding some of the different meanings of fractions (part of a 

whole, measure and operator). In order to provide different means of representation, we considered 

different artefacts: the “placemat”, the strip of squared paper, the drawing number line and the 

“string” on the wall for “hanging out” fractions. Each of them allows students to produce different 

semiotic representations: pieces of paper as fractional units, coloured sections of the strip as fractions 

or fractional units, points on the number line, coloured tags labelled with fraction hanging on the 

string. We note that these representations are of different nature: physical, visual or symbolic. Thus, 

following the Semiotic Mediation Theory, each artefact allows students to produce situated signs (for 

example, the sign “enlarge” the tags’ position on the string), which will be interpreted as mathematical 



signs by the teacher’s mediation (in the case above, the sign is used by the teacher to introduce the 

idea of density in the set Q) . The aim is to single out mathematical aspects relevant to the activity 

and make them accessible to all students through representations; this should allow them to use those 

mathematical aspects in future. To reach this aim, the design of educational activity (presentation of 

information, choice of the artefact on which students can act, task design in large sense…) is essential 

to ensure that all learners have access to knowledge. We note that in our educational sequence about 

fractions, learners construct mathematical meanings (for instance, the meaning of equivalent 

fractions) acting on different artefacts (A4 sheet, strip of paper, number line and “strip on the wall”) 

and different representations carried out by those artefacts (fractional units of paper, coloured part of 

the strip, point on the line and coloured tags composing a "caterpillar"). According to the first 

principle of the UDL, we state that this is not yet sufficient to ensure the construction of the 

mathematical meaning, that is to say of usable knowledge (for example, the meaning of equivalent 

fractions). It is necessary that these different representations be put in relation with each other (for 

example, two equivalent fractions correspond to the same point on the number line or on the “strip” 

on the wall because they have the same surface extension as a sheet of A4 paper). Moreover, it is 

necessary that they be always available to learners during the whole teaching sequence. Thus, 

according to the second principle of the UDL (Providing Multiple Means of Action and Expression), 

the action performed by students on different artefacts allows to put into relation different 

representations associated to the same notion (such as, equivalent fraction) or associated to different 

meaning of fraction (such as “a part of the whole”, in the case of placemat, or “fraction as operator”, 

in the case of strip of paper). The third principle of the UDL (Providing multiple means for 

engagement) supports the engagement of students in the arithmetic activity concerning fractions. It 

suggests options to challenge all students, appropriately. Designing activity where a “real” situation 

requiring a solution was the starting point. As a matter of fact, acquiring new information must be 

received by the student as a necessity to deal with the challenge posed by the activity. Thus, since the 

narrative aspect is very important in primary school teaching, the work with the “placemat” started 

with a letter, sent by a pizzaiolo (pizza chef), where he asks students to realize coloured placemats 

for his restaurant. The need to make placemats according to the pizzaiolo’s requests was, for primary 

school children, a stimulus to take in information and to process them in order to get new knowledge 

useful for the activity's aim. To create conditions for the students’ self regulation and self assessment 

in the activity we asked students to work in pairs or in small groups and to compare, by the class 

discussion, the results of work with the other groups.  
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The use of manipulatives in upper secondary education is not common, although they hold learning 

potential in contributing to students’ conceptualizing and establishing of relations. In this case study 

it is investigated how the concept of recursive sequences as a description of growth can be seen in 

the written reflections from students having engaged in activities with manipulatives like matches and 

LEGO® and with only minor teacher interference. The analysis of students’ answers is carried out 

by a combination of Radford’s Theory of Objectification and Peirce’s Theory of Signs. By 

interpreting the type of signs, the kind of arguing and the nature of the words used by students in 

various activities involving manipulatives, it is possible to acquire knowledge of the significance of 

the manipulatives in students’ conceptualizing. 

Keywords: Upper secondary mathematics education, manipulatives, semiotics, conceptualizing, 

objectification. 

Introduction 

For centuries manipulatives have been used in mathematics education as a pedagogical means for 

learning at all levels. A visit to the Institute of Mathematics at the University of Göttingen, Germany 

reveals an entire floor display of manipulatives used in university teaching (Stewart, Mühlhausen, & 

Miyazaki, 1993). Today the use of manipulatives is still common in primary and lower secondary 

school as a way of making the teaching concrete and meaningful. On higher levels where deduction 

and generalisation are important issues, manipulatives are rarely seen and research on their use is 

scarce (Bartolini & Martignone, 2014). Previous studies show that manipulatives can help students 

perform algebraic reflections and actions in pattern-generalizing tasks in primary and lower 

secondary school by joint student-teacher interaction (Radford, 2008). Here it will be investigated 

how the use of manipulatives can be seen in student reflections on the concept of growth in this upper 

secondary education. 

Theoretical framework 

Generalisation depends on symbolization (Otte, 2006) and many teachers use symbolic 

representations extensively without connecting them to other representations thereby preventing their 

students the chance to explore or reflect on these relations (Steinbring, 2005). The use of 

manipulatives is an alternative way of bringing in abstraction and generalisation in teaching, 

enhancing the development of mathematical knowledge (Mitchelmore, 2002). In his Theory of 

Objectification, Radford (2013, p. 26) states: “Learning […] is the noticing of something that is 

revealed in the emerging intention projected onto the signs […] in the course of practical concrete 

activity […] and is hence transformed into knowledge.” 

A semiotic analysis of the representations and the communication about these representations, i.e. the 

signs the students produce, is used to investigate the mathematical knowledge developed. Each 



observation of student work is treated as a semiotic bundle, a system of signs produced by a student 

or a group of students while they solve a problem or discuss a mathematical question. (Arzarello, 

Paola, Robutti, & Sabena, 2009). 

Presmeg et al. (2016) demonstrate the usefulness of Peirce’s semiotics in analyzing students’ work 

with representations. Peirce defines: 

A sign, or representamen, is something, which stands to somebody or something in some respect 

or capacity. It addresses somebody, that is, creates in the mind of that person an equivalent sign, 

or perhaps a more developed sign. That sign which it creates I call the interpretant of the first sign. 

The sign stands for something, its object. [Peirce 1965, 2.228, italics in original]  

A sign to Peirce thus consists of a triad (representamen – object – sign). Each of these can be 

interpreted in terms of his categories (of which there are three: “possibility, existence and law”). Here 

I use in particular two trichotomies: icon, index and symbol referring to how the sign stands for its 

object, and the token-type distinction (omitting quali-sign).  

An icon is a sign that shares a likeness with the object it represents either as an image, a diagram or 

a metaphor. An image has a resemblance or a simple quality in common with the object – a drawing 

of a real thing; a diagram is a sign representing relations, e.g., 
  x

2 + y2 = r2  represents the points of a 

circle. A metaphor represents a parallelism where the character of one sign is expressed in a law-like 

manner in the other, like when a symptom, fever, of illness is seen as an increased temperature at a 

thermometer. An index is related to the object it represents by either a causal connection or by ‘a 

purposeful act of connecting the signs’ like using ‘f’ as the name of a certain mathematical function. 

Finally a symbol is connected to its object by habit or law, e.g. designating π to refer to the ratio 

between the circumference and the diameter of a circle.  

The token-type distinction applies to the sign alone. A token refers to the sign itself; consider the letter 

‘e’, this letter appears many times – as a token – on this page. It is also possible to refer to ‘e’ as a 

general – as a type, stating that ‘e’ appears a particular number of times on this page.  

A thorough explanation of Peirce’s trichotomies of signs is offered in (Short, 2007) whereas 

mathematical examples can be found in (Otte, 2006) and  (Sáenz-Ludlow & Kadunz, 2015).  

The teaching design rests on the Theory of Didactical Situations, TDS (Brousseau, 2006). The 

epistemological foundation of TDS is that new knowledge is obtained in two steps: first as personal 

knowledge connaissance in working with a given problem and second as formal, scientific knowledge 

savoir, which can be share with and understood by others.  

TDS distinguishes between didactical situations where the teacher participates, and a-didactical 

situations where students engage in activities on their own. Devolution, where the teacher introduces 

and hands over the problem, validation and institutionalisation, where the ideas and results are tested 

and then related to the scientific knowledge of the solution, are all didactical situations. The main 

focus of this case study is, however, the a-didactical situation where students interact with the milieu, 

which contains the tools that the students have at their disposal (symbolic or material as well as the 

other students in the group). An important issue in designing the milieu is to ensure that it provides 

feedback on how the students progress in order to solve the problem. 



Within this framework the study will try to answer the question: How does the use of manipulatives 

in teaching reflect in students’ answers about growth, exemplified by recursive sequences?  

Method 

The case study considers one lesson (100 min.) of a ten-week teaching sequence about differential 

equations in an upper secondary mathematics class with 25 students. The aim of the lesson was to 

enhance the students’ understanding of the concept “growth” using recursive sequences. After a short 

devolution where the purpose of the lesson, describing the growth of certain patterns, and the milieu 

containing worksheets and manipulatives like matches and LEGO® were introduced, the students 

worked in groups of 4 for 60 min. During this period teacher intervention was very sparse. Figure 1 

shows an example of an activity/worksheet. As preparation for the validation and institutionalisation 

the students were asked to share results, ideas and reflections with their fellow group members in a 

logbook prompted by questions given by the teacher. Part of the logbook writing was done in class 

and the rest at home using a Google Docs document shared by the group members. The empirical 

data consists of the logbooks and field notes from classroom observations.  

The logbook entries were analysed through a qualitative content analysis (Hsieh & Shannon, 2005) 

for words indicating the concept of growth, like ‘grow’ and ‘rise’ (coded with underscore in the 

statements). In addition, words referring to the manipulatives (coded in bold) were noted. 

To describe the patterns and how they evolved, the students introduced a ‘sequence of signs’. They 

explained each sign and how they came on to it, and they used the sign as a starting point for the next 

sign they introduced. In order to examine the knowledge obtained by the students during the teaching 

sequence, data was analysed with respect to (1) the type of sign, applying Peirce’s categories, (2) how 

the use of manipulatives show, according to the nature of the marked words, and (3) mathematical 

reasoning, according to Radford’s definition of generalizing patterns (Radford, 2008). 

The sequence of figures shown is made of matches. The first is 

made of 3 matches, the second of 5 matches etc. The sequence can 

be continued with figure no. 5, 6, 7, 8 …  

Build and describe the next figures and tell how many matches you need to build them. 

Figure no. 2 has been made by adding matches to figure no. 1 in a specific way. Figure no. 2 has been made from no. 3 

etc. Explain how you move from one figure to the next in the sequence. Describe the pattern for adding new matches. 

Explain how this pattern affects the number of matches, you need, to go from one figure to the next in the sequence. That 

is how can the number of matches in one figure be found from the number of matches in the previous figure? 

If you want to know how many matches you need to build figure no. 37 it is rather time consuming to build and count 

the number. Use the pattern you have described above to predict how many matches you need for figure no. 37. 

Figure 1: An example of an activity 

Results 

In this section, we will look at two logbook entries and one episode observed in class that show how 

the use of manipulatives contributes to obtaining knowledge of growth. 



Figure 2 shows the first logbook entry on the question: Choose the pattern from one of the activities 

and explain how the pattern developed. Use drawings/pictures/symbols describing the growth. 

For a start we observed how the number of matches grew. We found that there was a rise on two 

matches in every step. You can almost say that in each step a new triangle is mirrored on to the 

right side of the figure. 

 

Figure no. 

 

No. of  matches 

Rise in number 

We decided to make a formula to calculate the numbers of matches in figure no. 37. As the number 

rises with 2 for each figure, 2 is a constant and has to be multiplied by the figure no. But then the 

number is one too little. Therefore we add another constant in the formula namely +1. 

The formula can then be written: The number of matches in the figure = the number of matches 

the figure grows with * figure number + 1. 

We also considered other ways of describing the growth after having discussed our results in class. 

Here we noticed the constant rise with 2. This was the constant change between the earlier and the 

next figure. Therefore we could write down the relations: 

 

Figure 2: A logbook entry with marked words 

The semiotic bundle in figure 2 shows how the students, based on the pattern they have built of 

matches, introduce three signs: a table inclusive a drawing of the pattern, a ‘formula’ written in words 

and a list of the first four terms of the recursive sequence describing the pattern. On figure 3 one can 

see how any one sign evolves from a previous sign. The photo on the left shows the pattern build of 

matches. 

 

Figure 3: Signs introduced by the first group 

The students begin by describing what they notice in the pattern they have built from matches, and 

they draw the pattern as the first line in a table. There is no explanation on the rest of the table but 

   

T (1) = 3

T (2) = T (1)+ 2

T (3) = T (2)+ 2

T (4) = T (3)+ 2



my interpretation is that this is ‘a conditioned reflex’ as the students have made many tables like this 

with an independent variable (figure no.) and a dependent variable (no. of matches) when working 

with growth as a continuous function. The table is iconic: the previous text indicates that the students 

partly take it diagrammatic as it describes the relation between two subsequent figures. It also works 

in part as an image as the drawn pattern looks like the pattern made of matches.  

In the table, the students also state the difference between two subsequent figures and this number is 

used for producing the next sign, a ‘formula’, from which they can calculate the number of matches 

in figure no. 37. The students notice that the increase is constant 2, which leads them to the first term 

of the expression. Using Radford’s definition of pattern generalization (Radford, 2008) we see that 

they use naïve inductions for producing their formula. Instead of arguing for the y-intercept, they 

guess and test the value. The formula itself is a partial translation of the previous arguments to a semi-

mathematical language. This sign is partly diagrammatic stating a relation between the figure number 

and the number of matches and containing the symbols ‘+’ and ‘*’. It is interesting that the students 

do not finish the translation to a conventional formula (e.g. ) introducing indices f and 

x. Most groups did at this stage. Instead they keep the original iconical terms ‘figure no.’ and ‘no. of 

matches’ closely related to the manipulatives. 

Finally, after a validation and institutionalisation where the idea of explaining growth as a recursive 

sequence was discussed, the students decide to include this view as, not mentioning the important 

issue, though, that every new term is built on the previous term. They introduce an index T to stand 

for the number of matches but do not find a general expression using the symbol n for the figure 

number like  seen in other logbook entries. 

We see that the signs used for representing the object Growth include various kinds of icons as well 

as indices and symbols. In many of the icons there is a close link to the use of manipulatives i.e. the 

way the students obtain their ‘data’ and how they explain relations in the pattern. The manipulatives 

are not clearly visible in their reasoning, though. As a result of the analysis we may conclude that the 

understanding of growth for this group of students now includes some very concrete conceptions 

based on activities with manipulatives (matches), and these are pointing towards a more abstract 

understanding that has not yet been reached. The relations produced indicate that they take the pattern 

as a token. They have not yet reached the stage of considering the pattern as a type in order to produce 

general relations. 

In some of the worksheets the use of manipulatives were not explicitly mentioned but replaced by 

drawings of squares, dots etc. Some groups, though, were using the manipulatives mentally, which 

in figure 4 is shown as a mixture of the terms ‘squares’/’LEGO® blocks’ in their explanations.  

[…] In other words, the figure consists of a typical tower of LEGO® blocks where each level is 2 

broader than the previous so that one unit is sticking out on each side. Therefore the number of 

extra squares in the figure rises for every figure because the bottom is 2 squares bigger every 

time. You start with . That is the first LEGO® block. […] 

Figure 4: Logbook entry showing the use of mentally evoked manipulatives 

 

   f (x) = 2 × x +1

   T(n) = T(n-1) + 2

   T (1) = 1



The group has not built this pattern physically, but in the context of other activities with manipulatives 

they use a mental picture made of LEGO®. Figure 5 shows the squares from the worksheet and the 

mentally evoked manipulatives. Like in the entry in figure 2, the text indicates that the iconic sign is 

partly diagrammatic as it describes the relation between two subsequent figures and at the same time 

works as an image as the drawn pattern looks like the pattern made of LEGO® blocks, which the 

students have evoked in their mind.  

 

Figure 5: Alternating between to signs 

As in figure 3, this group bring in various words describing growth; several terms refer to the 

manipulatives thereby showing the importance of the artefacts in the learning process.  

The last example does not directly refer to the manipulatives from the activities but shows how a 

student seizes the idea of applying a concrete artefact in explaining a mathematical concept. The 

episode happened during the validation of the results from the activities described above. During the 

discussion it became obvious that many students had great difficulties with this new and different 

way of looking at the concept of growth. Their prior knowledge, connected to continuous functions, 

seemed very persistent. During the discussion one of the students reacted: 

“No, no. We talk about the growth, the change – not the actual number. Look… [she jumps up from 

her chair, looks around and grabs a pile of books from the neighbouring table] …If we start with, say 

1 book, [she puts one book on the table] and then in the first step we put 2 books on top of it, and 

then in the next step 2 more books and 2 more books and so on. [For every step she places 2 books 

on top of the stack on the table, see figure 6]. It doesn’t matter if there are 1 or 3 or 5 books in the 

pile. The important thing is that it grows with two books every time. The difference is two.“ 

 

 

Figure 6: The pile of books holds many interpretations of a sign on Growth. 

The student makes use of concrete artefacts in order to explain to her peers how to understand growth. 

She applies what is easily accessible in a classroom: books! As a representation of growth, the sign 

contain qualities of all three kinds of icons: the growing stable of books is an image, the relation of 

adding two more books in each step is a diagram, and by insisting on seeing the difference in each 

step (two more books every time) instead of the height of the stable, it becomes a metaphor. The 

student clearly states that this is just one way of visualizing how something grows. From the many 

different words used to indicate growth she demonstrates a wide understanding. It is an example of 

how manipulatives can be used as visualising a challenging concept rather than a starting point for 

general, symbolic expressions, which we saw in the logbook entries.  



Discussion and conclusion 

The case study demonstrates how the use of manipulatives shows in students’ answers and reflections 

when describing a mathematical activity, e.g. building of patterns. By using concrete artefacts they 

are able to describe how patterns develop and translate this description to an expression of how the 

number of parts in each figure of the pattern grows. In the logbook entry (figure 2) the students use 

an intermediate stage mixing words and symbols, not reaching the final stage expressing the formula 

in formal mathematical language. Other groups, not considered here, argue for an algebraic 

expression. 

Students use various words referring to different aspects of growth. Some are everyday language e.g. 

sticking out, broader, bigger, grow, rise and extra; whereas others are mathematical terms like add, 

multiply, change, growth etc. Often the everyday language is linked with the manipulatives, and the 

words might not have been evoked in a purely abstract context without the artefacts present. The 

semiotic analysis reveals that the signs introduced by students are predominantly iconic, many of 

these images. (Otte, 2006) argues “[…] iconic representations and perceptions are essential to 

introduce anything new into mathematical discourse”, and he notices, “Mathematics teachers very 

often dislike iconic representations and perceptions, believing them to be confusing and not 

controllable with respect to their impact” (Otte, 1983). This case study shows how students benefit 

from the use of artefacts by bringing in numerous iconic representations.  

While figure 3 shows that very simple patterns can be visualized as drawings without actual physical 

materials, classroom observations, not treated here, reveal that patterns in 3D demand the use of actual 

building blocks. In both cases students use the names of the manipulative i.e. “matches” or “LEGO®”. 

Even when the physical artefact is not needed, students can apply a mental image of the artefact in 

their mathematical reasoning. 

In former research results about the use of manipulatives in lower secondary education, Radford 

(2008) emphasizes the importance of joined-labour between students and teacher. In this study, the 

students were expected to be much more self-reliant as they were soon to end their upper secondary 

education, hence the use of a-didactical situations. The results, though, show that even students in the 

last year of upper secondary school need guidance in order to make their procedures and ideas 

converging with the mathematics curriculum as stated in the Theory of Objectification (Radford, 

2008).  

There are reasons to be somewhat cautious of the results. Using Peirce’s categories of the relationship 

between object and sign is complicated as Presmeg, Radford, Roth, and Kadunz (2016) state: “the 

distinctions are subtle because they depend on the interpretation of the learner”. They continue: “the 

distinctions may be useful to researchers or teachers for the purpose of identifying the subtlety of a 

learner’s mathematical conceptions if differences in interpretation are taken into account.” Thus, there 

are reasons to be careful in the interpretation. Earlier work of, among others, Radford (2000) shows 

comparable results indicating that the result of this case study is veridical. The semiotic analysis is 

based on students’ statements, and it cannot always be taken for granted that students are conscious 

about the precise meaning of the words they use. The fact, though, that the analysis of most logbook 

entries share the features exemplified here indicates that the approach used in this study is rather 

robust with respect to the lack of carefulness in student language.  



The results points towards several areas worth further investigation. In his study Radford (2008) 

shows how students can be led to algebraic generalisation, introducing mathematical symbols for 

unknown quantities. This can be taken further by studying how students make sense in already 

evolved algebraic expression, and whether manipulatives can be supportive. In upper secondary 

education students are presented with a large number of such algebraic expressions, which they are 

expected to manipulate and use but often fail to understand. Another interesting aspect is the 

significance of prior knowledge. In figure 2 we saw how the students were led to look at the relation 

between a figure number in the pattern and the total amount of matches in that figure resulting in a 

functional expression. This behaviour was even more apparent in other entries, not shown here, and 

could very well originate from their knowledge of continuous functions. Although prior knowledge 

often helps students in new contexts, it can also prevent them from going in the desired direction.  
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This paper focuses on the role of artifacts and different forms and modes of representation when 

learning mathematics at primary school level. This will be exemplified alongside the use of an 

interactive approach, in which mathematical audio-podcasts are produced. Audio-podcasts are a 

communication tool that generally focuses on oral means of representation. During the production 

process of mathematical audio-podcasts however, the students use different forms and modes of 

representation as well as produce and use different artifacts. With regard to this, field experiences 

will be shared.   

Keywords: Mathematical audio-podcasts, artifacts, forms and modes of representation.  

Artifacts and different representations 

The role of artifacts for mathematical learning is of great importance. Artifacts generally encompass 

objects that are produced by human beings and are materially present and durable. A learning artifact 

in particular, refers to an object developed by students, which displays their knowledge (Kafai, 2006). 

Besides artifacts that are material in nature, there are virtual ones that comprise of tools of the 

information and communication technologies. Different artifacts support different forms of 

representation and have a great influence on cognitive development (Bartolini Bussi & Mariotti, 

2008).  

The education standards for teaching mathematics also emphasise the transfer of various modes of 

representations, since they enable students to communicate their mathematical ideas and 

understanding as well as support the modeling and interpretation of mathematical phenomena 

(NCTM, 2000). Kress (2010) defines ‘mode’ as  

a socially shaped and culturally given resource for making meaning. Image, writing, layout, music, gesture, 

speech, moving image, soundtrack and 3D objects are examples of modes used in representation and 

communication. [...] Modes offer different potentials for making meaning. These differing potentials have 

a fundamental effect on the choice(s) of mode in specific instances of communication. (p. 79) 

Therefore, being able to use different modes of representation during a mathematics lesson is a central 

aspect and supporting competence across all school levels. The mathematical register in the classroom 

also comprises of the multiple semiotic modes: 

Language, mathematical expressions, and visual diagrams, as well as the gestures and actions of 

participants in the classroom, together construct meaning. (Schleppegrell, 2007, p. 142) 

With regards to the role of written representation for mathematical learning, working with the 

products of students’ writings has been common practice for some time now (Morgan, 1998).  In the 

project ‘Math-Chat’ (Schreiber, 2013b), the use of written representations is the main means in the 



problem solving process and focus of the analysis. In primary school, written-based communication 

is often used in the case of reflections and documentations of the students’ learning processes, for 

example, in journals referred to as ‘journal writing’ (Borasi & Rose, 1989); and also after having 

solved math problems. Thus, writing is often considered “an activity that is in itself conductive to 

learning” (Morgan, 1998, p. 2). In this sense, it is assumed that writing might help students organise 

their thoughts by externalising them in a written form. This strategy of ‘writing to learn’ has to be 

distinguished from ‘writing to communicate’. The tool ‘writing to learn’ enables students to become 

more active learners by questioning and reflecting on information, whereas ‘writing to communicate’ 

aims to demonstrate their learning in different forms of written assignments (Meiers, 2007).  

It is oral communication that generally provides the participation in mathematical discussions and 

conversations, aiding with the understanding of mathematical signs (Meiers, 2010). Apart from 

speaking and explaining, mathematical learning also requires the acquisition of skills, such as 

listening, questioning, defining and proving (Ontario Ministry of Education, 2006). Pertaining to 

mathematical interaction and communication processes, research on mathematical didactics has 

attributed an increasing importance to the use of gestures (e.g. Goldin-Meadow, 2003; Huth, 2014). 

Kendon (2004) defines ‘gesture’ as “a name for visible action when it is used as utterance or as a part 

of an utterance“ (p. 7). Gestures that are used in accompaniment with speech represent the same 

components of the expressions uttered. As such, gestures and spoken language can be seen as 

inseparable and interdependent modes of the same language system (Huth & Schreiber, 2017).  

To further explain the interwoven use of oral and written communication in a medial and conceptual 

manner, the linguistic model of orality and writtenness by Koch and Oesterreicher (1985) and well 

explained by Fetzer as the “two dimensions of orality and writtenness” (2007, p. 79; translated by the 

authors: „Zwei Dimensionen von Mündlichkeit und Schriftlichkeit“) is used. Koch and Oesterreicher 

(1985) have developed a model of communication that distinguishes between medial phonic and 

medial graphic communication and between communicative immediacy and communicative distance. 

The medial phonic and the medial graphic realisation of communication are dichotomous, whereas 

the conceptual realisation can be placed on a scale between the communicative immediacy and the 

communicative distance (Figure 4; Schreiber, 2013a).   

Considering the example of a personal talk, it is not only medially phonic, as there is an emotional 

closeness to the dialogue partner and thus, also conceptually oral. Although writing in a diary is 

medially graphic, it is conceptually oral, informal and characterised by its ‘closeness’ to the reader. 

An administrative directive, in contrast, is medially graphic and also conceptually an example for 

communicative distance. In this case, the language is strictly formal. 

This paper will refer to ‘forms’ of representation when pertaining to Koch and Oesterreicher’s 

linguistic model of orality and writtenness and ‘modes’ of representation when used according to 

Kress and Schleppegrell’s definitions as mentioned above.  



Audio-podcasts for mathematics 

Audio-Podcasts, which we use as learning artifacts in school, primarily 

focus on the aspect of orality, as the process of creating an audio-

podcast produces an oral product. Schreiber (2013a) developed 

‘PriMaPodcasts’ to serve as tool, in which oral and written forms of 

representation are alternated and interwoven permanently. 

‘PriMaPodcast’ is the coined term for a mathematical audio-podcast 

produced by primary school students. The students undergo a process 

in which they develop specific mathematical content in stages up to a 

point where a version of the explanation is ready to be published on 

the internet (Figure 1). The different forms of representation, the 

medial and conceptual realisations as well as the use of artifacts will 

be presented by illustrating each production step below. For more 

information on the aims, the production steps, the audio files and the 

scripts, please visit our blog (www.uni-giessen.de/primapodcast-bili/). Before giving insights into the 

production process, three aims of the mathematical audio-podcasts will be described: 

Learning: The exclusive use of oral representations can support learning. This can be brought forth 

when learners have to deal with one specific topic in depth and are required to refrain from using any 

written or graphical representations, thus, solely relying on oral means of communication. 

Diagnosis: A teacher gains insight into a learner’s mathematical concept and understanding by 

listening to the learner’s recorded utterances. The spontaneous and planned recordings can be 

analysed during and after the production process. 

Research: As mathematics is a written and graphically based science, focusing on oral 

representations is an interesting area for research. Therefore, using the recordings, the aim is to 

investigate to what extent learners use mathematical language to express their workings. 

The focus of this paper will be on the last aim. This will be illustrated in the following. The production 

process will be depicted through excerpts from an empirical example. These consist of recordings 

and documentations that were produced at a bilingual school in Offenbach am Main, Germany. The 

selected study sample is from a dissertation project (Klose, 2015) and it consists of fourth graders 

that were taught mathematics bilingually (German/English) since first grade. Within the scope of the 

research project, the students’ task was to produce a podcast in English. The empirical examples were 

transcribed and analysed by means of the interaction analysis (Krummheuer & Naujok, 1999). 

Excerpts of the transcribed utterances and scripts will be presented and commented thereafter. All 

citations of the transcripts are marked in angle brackets <like this>. 

Production steps 

In step 1 (‘Unexpected Recording’), a small group of students is unexpectedly confronted with the 

mathematical question ‘What is symmetry?’. The students record their responses with a voice 

recorder. Hence, in this step, the focus is on oral communication and representation. The medial 

realisation of the recording is phonic and conceptually oral as seen in the following. 

In this example, the students answer the questions as follows:  

Figure 1: Process of production of 

PriMaPodcasts 

http://www.uni-giessen.de/primapodcast-bili/


ur speaker: statement: 

01 Student 1: what is symmetry (4s) o k a y . I think eh symmetry uhm there are symmetry 

lines/ . . uhm . and < miss brand had talk about it 

02 Student 2:                                                 < and 

03 Student 2: I think uhm in symmetry/ we have symmetry lines and uhm there are . uhm  . 

. uhm . there are . . 

04 Student 1: (whispers) symmetrical% (4s) I think there are (the thumb, index and middle 

finger of the right hand, which is open and facing upwards, are being spread 

apart and then joined to meet in the middle) forms % . uhm # 

05 Student 2: # y yes 

06 Student 1:  < (speaks softly) that are symmetrical and% 

07 Student 2:  < there are forms that what you can do in three d and in two d (...)          

In this excerpt, both students express their mathematical ways of thinking by speaking out aloud. The 

students associate the term ‘symmetry’ with ‘symmetry lines’ as seen in <ur01> and <ur03>. Student 

1 remembers in <ur01> that her mathematics teacher had mentioned symmetry in class before. 

Furthermore, they relate ‘symmetry’ to “forms” <ur04> and “forms that what you can do in three d 

and in two d” <ur07>. As early as seen in this excerpt as well as later on, gestures are already going 

into action. This step not only prompts the students to think about the topic, but also supports them 

to clarify and organise their thoughts and reflect on specific content (Pimm, 1987). 

In step 2 (‘Script I’), the students research their topic 

and create a script. They are free to decide the format, 

structure and amount of detail they wish to include. In 

order to gather information, they are given different 

resources, such as the internet, textbooks and 

worksheets. They also have the possibility to use 

concrete material. Thus, different artifacts can serve as 

basis for oral communication and written-graphical 

representation.  

The students of the empirical example were inspired 

by the work material and referred to various 

approaches of line symmetry. In particular, student 2 used the geoboard and drawings (Figure 2) to 

support her with the activities related to line symmetry. In their script, they explain ‘symmetry’ 

through the approach of folding (Figure 3). 

 

Figure 3: Script I, folding as an approach to explain line symmetry 

The students continue by mentioning ‘drawing’ and ‘reflecting’. The writing activity itself may be 

considered a tool for ‘writing to learn’. Dealing with different artifacts and resources, this writing 

underlies the principle of connecting what has been read, viewed, heard and experienced with what 

Figure 2: Script I, Student 2’s drawing as an approach to 

explain line symmetry 



the students have understood so far (Meiers, 2007). The medial realisation of the script is graphic and 

its linguistic conception is - depending on the kind of script - a rather informal written type. 

In step 3 (‘Podcast - First Version’), oral representation is essential, as the students are required to 

read the assigned parts of the script aloud for the recording of the first podcast version. Up to this 

stage, the team works independently: The students make their own decisions concerning the 

mathematical matter and their performances without any intervention from the instructor. The medial 

realisation of the recording is phonic and its linguistic conception is a more formal spoken type. 

fv speaker: statement: 

01 Student 2: what is symmetry there are axis symmetry reflection symmetry and partition 

symmetry there are symmetrical shapes 

02 Student 1: symmetrical shapes are shapes that you can fold in the middle and then both 

sides are the same 

03 Student 2: you can draw symmetrical shapes with faces . vertices and edges 

04 Student 1: edges are the lines and vertices are the places where they come together faces 

are the places in between the edges and in German we call them flächen 

06 Student 2:  you can make symmetrical shapes in two d and three d 

07 Student 1:  examples for symmetrical shapes are a square a circle a triangle a hexagon a 

pentagon and a trapezoid 

08 Student 2:  s some some shapes have got more than one m mirror line 

In step 4 (‘Editorial Meeting’), the small group of students receives feedback from their peers and the 

instructor. They use this to reflect on their work in terms of content, style and language use. At this 

point, the instructor poses specific script-related questions and asks for more precise explanations. 

Again, different artifacts, such as the script, the audio files and objects and especially the students’ 

written products, support the discussion and serve as basis for better clarifications in oral 

communication.   

In the presented empirical example, the different types of symmetry were correctly named and 

distinguished. For this purpose, various kinds of materials were used. By means of their drawing 

(Figure 2) the phrase ‘line of symmetry’ was introduced. Several locations to draw the line of 

symmetry were discussed. Thereby, the instructor’s focus shifted from 3D towards the symmetry of 

2D shapes. Together with the other group, they reviewed and checked how many lines of symmetry 

a circle, quadrilaterals and different types of triangles could have. 

In step 5 (‘Script II’), the students start to improve their first script in small groups. The students have 

the opportunity to use the same material and artifacts again. They may discuss and share their 

knowledge before writing down a second script. Thus, oral communication serves as basis for written 

representation. The writing activity of creating a second script may be linked to the strategy of 

‘writing to communicate’ (Meiers, 2007). Since the second script serves as basis for the final podcast 

version, the learners decide on the content they wish to present to the audience. The script is medially 

graphic and conceptually rather an elaborated written type since the students clearly want to present 

their knowledge accurately and in a structured manner. 

In the empirical example, the students took up most of the suggestions given during the editorial 

meeting as they tried to differentiate more distinctively between the different types of symmetry. 



This, however, appeared to be challenging, as they focused on 3D shapes again and listed some of 

their properties instead of looking at 2D shapes.   

In step 6 (‘PriMaPodcast’), they record a final podcast version based on the second script. This will 

be published on the internet. Again, written representation serves as basis for the oral form of 

representation. Hence, the recording is medially phonic and conceptually more of an elaborated type. 

pr speaker: statement: 

01  Student 2: what is symmetry. there are line symmetry reflection symmetry and rotation 

symmetry . there are symmetrical shapes 

02  Student 1: symmetrical shapes are shapes that you can fold in the middle and then both  

sides are the same . that’s line symmetry 

03  Student 2: rotation symmetry is when you have a symmetrical shape and you rotate it a 

little bit and then the shape the shape looks the same as it was before 

04 Student 1: reflection symmetry is almost the same like line symmetry but you have to 

put a mirror in the middle of the shape\ 

05 Student 1: you can draw symmetrical shapes with faces vertices and edges 

06 Student 2:  examples for symmetrical shapes are a square a circle a triangle and in three 

d a sphere a pieramid and a cube 

07  Student 1:  you can make symmetrical shapes in two d and three d 

08  Student 2: almost all shapes have got more than one line of symmetry 

As described in the production process, the students’ products can be classified into Koch and 

Oesterreicher’s model as follows (Figure 4):  

 

Figure 4: Model of writtenness and orality; (Fetzer, 2007, p. 79/ Schreiber, 2013a) 

Conclusion 

The use of artifacts and various representations in the mathematics classroom is of high relevance. 

The interactive approach of producing PriMaPodcasts follows this assumption by comprising various 

modes and forms of representation. The aim is to produce a learning artifact; a final product of oral 

nature. Publishing the final version on an online blog serves as an exceptional motivation for the 

students. In the process, they undergo various stages, in which they can expand their knowledge 

through discussions and learn different approaches to present them. Mathematical concepts and 

language competences can be strengthened as shown by the empirical example.  



Field experience 

So far, mathematical audio-podcasts have been used in different areas of teacher education. Firstly, 

we produced audio-podcasts for mathematics with students at primary school level. Besides German 

podcasts, some students also produced mathematical audio-podcasts in various other mother tongues 

(e.g. Russian and Turkish) as well as different languages of instruction (e.g. English and Spanish) in 

bilingual schools.  

Secondly, students who are studying to become primary or secondary school teachers, created 

mathematical audio-podcasts. Moreover, they supervised the production of the mathematical podcasts 

of school students. It is important for the university students to have gone through the steps 

themselves prior, so as to understand the production procedure clearly. Hence, they gain a better 

understanding of how demanding it can be for younger learners to explain a concept without any 

preparation and solely using orality. The deepening of mathematical content and its reflection are 

another focus of the audio-podcasts. The university students become aware of the increase in 

knowledge and are able to internalise and reflect on already learnt content. Content knowledge ranges 

from secondary school mathematics to areas covered during university lectures. 

Thirdly, the idea of mathematical audio-podcasts serves as research method. As part of a PhD project, 

the use of mathematical language in bilingual learning settings will be investigated further. The 

overall interest lies in the question of how bilingually taught learners use the language of mathematics 

in both their target languages (English and German) when asked to present mathematical content 

(Klose, 2015). 
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In this communication, we discuss the role of representations in the development of conceptual 

knowledge of 2nd grade students involved in additive quantitative reasoning through the analysis of 

the resolutions of two tasks that present transformation problems. Starting to discuss what is meant 

by additive quantitative reasoning and mathematical representation, we present after some empirical 

results in the context of a teaching experiment developed in a public school. The results show the 

difficulties with the inverse reasoning present in both situations proposed to students. Most students 

preferably use the symbolic representation, using also the written language as a way to express the 

meaning attributed to its resolution. The iconic representation was used only by a pair of students. 

Representations have assumed a dual role, that of being the means of understanding the students' 

thinking, and also supporting the development of their mathematical thinking. 

Keywords: Mathematical representations, transformation problems, additive quantitative reasoning, 

inversion. 

Introduction 

This paper is part of the Project “Adaptive thinking and flexible computation: Critical issues” being 

developed by the Schools of Education of Lisboa, Setúbal and Portalegre. Its main goal is to discuss 

the role of representations in the development of 2nd grade students’ conceptual knowledge that is 

present in different levels of understanding of numerical operations/relations when they solved two 

tasks. These were conceived with the aim to develop quantitative additive reasoning, as a means of 

understanding this same reasoning. The tasks present transformation problems included in the classes 

of search of initial state (Vergnaud, 2009). They are the last ones of a sequence of six tasks that was 

applied in the context of a teaching experiment developed in a public school in Lisbon. The empirical 

data analysis focused on representations aims to discuss the inferences we make in the reasoning of 

the students but also their role in the development of students' reasoning. 

Mathematical representations and quantitative reasoning 

Quantitative reasoning, within the additive structure, focuses mainly on relations between quantities 

(Thompson, 1993), being that the problems of transformation aimed at finding the initial state have 

increased cognitive complexity for 2nd grade students by requiring an inverse reasoning (Vergnaud, 

2009). The representations are interconnected with the reasoning given the relevance of their role in 

the understanding of students’ reasoning (NCTM, 2000). But, the representations also assume an 

important role in students’ learning, constituting cognitive means with which they develop their 

mathematical thinking (NCTM, 2000; Ponte & Serrazina, 2000). In a broad sense, a representation is 

a setting that can represent something somehow (Goldin, 2008). The term “representation” refers both 

to the process of representing and the result of this process. In mathematics education, representations 

are privileged tools for students express their mathematical ideas, still working as helpers in the 

construction of new knowledge (NCTM, 2000). However, a mathematical representation cannot be 



understood or interpreted in isolation, since only makes sense when part of a more comprehensive 

and structured system in which different representations are related (Goldin & Shteingold, 2001).  

According to Stylianou (2010), the way as representations are used in classroom has impact in 

students learning and this largely depends on the role of the teacher, using “student-generated work 

as a launching point for discussions” (p. 339). This idea is reinforced by Ponte and Serrazina (2000) 

when they say that how mathematical ideas are represented influences profoundly the way they are 

understood and used. For example, according to Vergnaud (2009), the inverse transformation can be 

represented by two symbolic representations -- the algebraic one and the arrow diagram -- 

considering, however, that while the algebraic representation is not suitable for children in elementary 

school, using the diagram representation the teacher can help students connect, immediately, the 

different components of the relationship, namely the direct and inverse transformations, giving 

meaning to the temporal motion go forward and backward. 

 

 

 

Figure 1: Arrow diagram (Vergnaud, 2009, p. 87) 

Figure 1 presents a representative diagram of subtracting 7 to the final state in the situation "John has 

just won 7 marbles in playing with Meredith; now he has 11 marbles; how many marbles did he have 

before playing?" (Vergnaud, 2009, pp. 86-87). However, while recognizing the importance of this 

representation, the author states that children need several examples of the inverse transformation in 

order to be able to effectively understand it. "Several kinds of awareness are needed: you lose what 

you have just won; or you win what you have just lost; you go backwards as many steps as you have 

gone forwards and reciprocally" (p. 87). 

For Ponte and Serrazina (2000), the main forms of representation used in the primary education are: 

(i) the oral and written language; (ii) symbolic representations, like numbers or the signs of the four 

operations and the equal sign; (iii) iconic representations, like figures or graphics; and (iv) active 

representations, like manipulative materials or other objects. It is through the analysis of the 

representations used by students that the teacher can become aware of their thinking and help them 

in the construction of own representations in mathematical language. 

NCTM (2000) also emphasizes the role of idiosyncratic representations constructed by students when 

they are solving problems and investigating mathematical ideas, in that it can help them in 

understanding and solving problems and provide "meaningful ways to record a solution method and 

to describe the method to others" (p. 68). Observing these representations, teachers and researchers 

can understand the ways of interpreting and reasoning of students. 

Methodology 

This study follows a qualitative approach within an interpretive paradigm. Its methodology of design 

research is part of a perspective of learning design, in order to produce local theories of teaching and 

learning sequences that are resources and references available to inform the practices of teachers and 

researchers (Gravemeijer, 2015). 

The data were collected in a second grade classroom (7-8 years old), with 26 students, of a public 

primary school in Lisboa. The Project team defined a sequence of tasks with the aim to develop the 

11 

-7 

+7 

 



calculation flexibility in addition and subtraction problems. The process of tasks elaboration included 

previous testing of some (namely the ones focused in this paper), through clinical interviews 

(Hunting, 1997) with students of the same grade. It is a technique that is directed by the researcher 

and seeks a description of the ways of thinking of respondents. The task sequence was previously 

discussed and analyzed with the classroom teacher having been made minor adjustments. Classroom 

teacher explored the task sequence with her students (a task every week). During their schooling the 

empty number line had been used regularly both by the teacher and students.  

The data collection was made through participant observation of the authors of this paper, which drew 

up field notes and supported by video recording, subsequently transcribed. The written records of the 

students were also collected. All these data were analyzed and triangulated. By ethical reasons, the 

students’ names were changed to ensure confidentiality. 

In this communication we analyze two tasks (Figure 2), proposed to the students in the same class 

(given the similarity between them) and presented on the same sheet of paper, with space for the 

respective resolution. 

Game of marbles I 

Ana and Luís played a game of marbles together. At the beginning both had the same number 

of marbles. 

Ana won 3 marbles from Luís and had 7 at the end of the game. 

How many did Luís have at the end of the game, knowing that he did not win marbles? 

Game of marbles II 

Ana and Luís made a game of marbles.  

Ana won 6 marbles from Luís and had 10 marbles at the end of the game. 

Luís won nothing and had 3 marbles at the end of the game.  

Compare the number of marbles of Ana and Luis before the game and at the end of the game. 

Figure 2: Performed tasks 

These were the last ones of the sequence solved by students. With the previous exploration of the 

other tasks, students had already worked the relationship between wins and losses over a marbles 

game, realizing that what a player wins, the other loses. All the tasks were first solved in pairs. In this 

class, after all pairs had solved the two tasks, the teacher promoted a collective discussion with whole 

class, from six pairs resolutions (three on each task) who presented their work on the blackboard. 

Exploring the tasks 

In this section we present and discuss some examples of tasks’ resolutions. Their choice was made 

taking into account the diversity of representations presented by the different pairs and being 

representative of what happened in class. 

Game of marbles I 

The resolution of Alexandre and Rosa shows the inversion of reasoning as a critical aspect. Thus, 

they took first 10 marbles for both players from the sum of 3 ("Ana won 3 marbles") with 7, not 

mobilizing an inverse reasoning to determine the initial number of marbles.  



 

__________________ 

7   10   10 – 3 = 7 

                                                                                                Luís 

 

Ana    _________________ 

        10                               13 

                 10 + 3 = 13 

Figure 3: Alexandre's diagram for Game of marbles I 

Alexandre's diagram (Figure 3) represents the wins and losses of marbles as they are thought by the 

pair of students. But, when asked by the teacher they erased all they did and made it again on their 

worksheets (this diagram was seen in the video records). The new representation (Figure 4) reveals 

the necessary inversion to find the initial number of marbles. They got it for Ana, but they seem to 

forget that both players had at the beginning the same number, as in Luis’ allusive representation, 

they retired 3 marbles from 7. 

 

Figure 4: New Alexandre's diagram for Game of marbles I 

Vítor and Joana can reverse the reasoning to the case of Ana but they show a lack of understanding 

of the situation alluding to Luís (Figure 5). 

 

 

Figure 5: Vítor's diagram for Game of marbles I 

This diagram helped the children's thinking in the sense that it respects the temporal order of the 

game: the initial marbles on the left and the final ones on the right side. However, they did not look 

again for the initial situation, that is, if Ana won, Luís has to have less at the end of the game. 

Rui and António used symbolic representations presenting a number line with two curve lines that 

represent the inversion of addition and subtraction (Figure 6). Like the anterior pair, they reversed 

their reasoning to Ana but they assumed the same situation to the player Luís, stating that he won 7 

marbles at the end of the game. Here the term "won" means the absolute number of marbles at the 

end of the game and not a quantitative difference. The distinction between the quantitative difference 

and the result of an arithmetical operation is a critical aspect that emerges from this resolution. 

At the end Luis had 4 

marbles 

+3 

-3 



 

Figure 6: Rui's diagram for Game of marbles I 

The word "because" explains the inversion used to determine the number of initial marbles, justifying 

it with the inverse relationship between addition and subtraction. The order in which they placed the 

operations shows the inverse reasoning process: first, they determined the initial number of marbles 

(the initial state), and after they confirmed the resultant final state with the inverse relationship. 

Tiago and João used a table disposition (Figure 7), with columns for each of the two players and the 

lines for the different moments of the game, the top line to the beginning of the game and the bottom 

to the end. 

 

 

 

 

 

Figure 7: Tiago's diagram for Game of marbles I 

It was the only pair in the class, which established the difference between the final numbers of 

marbles, although not required, focusing on the difference as an additive comparison of quantities. It 

seems that the representation used allowed them to manage two data at the same time, the quantity of 

marbles and the transformation after game. 

Game of marbles II 

Alexandre and Rosa read the problem. Immediately, Alexandre said: "Luís started with 9 and Ana 

started with 4." Once Alexandre had understood the previous problem when the teacher questioned 

their resolution, as mentioned before, here he already coped well with the unknown initial state, 

solving mentally the problem, through an inverse reasoning. 

On the diagram's lines (Figure 8), the numbers are placed in ascending order, getting the initial 

number of marbles on the right for Luís and on the left for Ana. Their answer is focused on the 

absolute amount of marbles of Ana at the end of the game and not on the comparison. 

 At the end, Luis won 7 

because 

Luís ended up with one 
both 

difference 

the same 



 

 

 

 

 

Figure 8: Alexandre's diagram for Game of marbles II 

Vítor and Joana used the line representation (Figure 9), adopting the temporal criterion as they did in 

the previous task, putting the initial marbles on the left and the final ones on the right side and at this 

time they got the right solution. 

 

Figure 9: Vítor's diagram for Game of marbles II 

Rui used an iconic representation of Ana's marbles: first, the six marbles won from Luís; then the 

initial 4 marbles (probably counting them until the total 10); and finally the three final marbles of 

Luís. He was not able to reverse his thinking in order to determine the initial marbles of Luís. 

 

 

 

 

 

 

Figure 10: Rui's diagram for Game of marbles II 

Tiago surrounded the numbers to assign their meaning, recording the player and the time of the game 

to which they relate (Figure 11) and respecting also the temporal order of the game. 

R: Ana won the game with 10 

marbles. 

Conclusion: we discover that 

Luís loses and Ana wins. 

Ana won 



 

Figure 11: Tiago's diagram for Game of marbles II 

Tiago focused the additive comparison of the resultant final states, recording that "the difference is 7 

at the end". 

Final remarks 

The inverse transformation is a critical aspect in solving the tasks (Vergnaud, 2009). Thus, the first 

representations used by Alexandre in Game of marbles I show a reasoning associated with 

prototypical situations of addition asking for final states and not initial ones. Students seem to cope 

more easily with this kind of transformation in the second task after having understood the inversion 

involved in Game of marbles I. For this understanding the teacher’s questions seem to have been 

fundamental. 

An example is the case of Alexandre and, although he did not fully solve the first problem, managed 

to overcome the obstacle of inversion in the second task solving it mentally very fast. Despite the 

inherent difficulty of the inverse transformation, the productions of the students in the class reveal a 

widespread understanding of an aspect of inverse thinking: what a player wins, the other loses. 

Students seem to have essentially privileged two forms of representation (Ponte & Serrazina, 2000): 

the written language and symbolic representations. Just a pair of students used the iconic 

representation in support of symbolic representation (Rui and António). Among the symbolic 

representations used, there was a predominance of horizontal dispositions of the calculations, 

although the use of the empty number line also had had a significant expression, helping to think 

about the transformations involved in problems. We should stress that empty number line had been 

used by these students and her teacher since the first grade. Thus, the curved lines, which represented 

the transformation, supported the thought around the wins and losses, as well the temporal motion. 

The table disposition also seems to have helped the students (Tiago and João) to structure and relate 

the various elements of the problem: the two players and the two time points of the game.  

Analyzing student productions, we can infer different levels of quantitative additive reasoning. While 

most learners focused on the absolute amounts of marbles, Tiago focused on quantitative difference 

as a quantitative result of comparing two quantities additively to find the relative change (Thompson, 

1993). So, for the majority of students, the notion of difference as an additive comparison of quantities 

is a problematic aspect. 

Luis got 3 marbles 

and Ana got 10, 

the difference is 7 

at the end. 



The representations used by the students had a dual role. On the one hand, they were windows to 

interpret their reasoning. On the other hand, they were scaffolds that helped to think mathematically 

demanding situations, taking into account their ages. It should be stressed that the teacher’s role, 

making questions, not giving answers, while students were doing their work was also essential. As 

stated by Vergnaud (2009), the development of a conceptual field involves not only situations and 

schemes but also symbolic tools of representation. 
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Introduction and theoretical framework: Before the box 

This poster is about the experience of an “on field” project started in 2014 with a group of 28 14-

y.o. students attending to the first year (9th grade) of Liceo Scientifico and a 10cm cube cardboard 

box containing a collection of items that led to a two weeks journey through the focal points in the 

act of doing mathematics, which are the new entries of the high school approach to the subject, such 

as proofs, their necessity in mathematics and the related use of a proper symbolic language. 

It has been conceived as a starter for the study of high school mathematics, but it also proved an 

effective strategy to boost students’ learning motivation and long-term knowledge retention about 

the subject as a whole. 

As Raymond Duval points out, “the goal of teaching mathematics, at primary and secondary level, 

is neither to train future mathematicians nor to give students tools, which can only possibly be 

useful to them many years later, but rather to contribute to the general development of their 

capacities of reasoning, analysis and visualization” (Duval, 2006, p. 105). Taking this perspective, I 

wanted to investigate the effectiveness of a multi-sensory approach, which is quite frequent for 

lower grades but isn’t a common practice for secondary mathematics teaching and learning, through 

the means of Arzarello’s semiotic bundle theory, widening the semiotic system horizon “to contain 

gestures, instruments, institutional and personal practices and, in general, extra-linguistic means of 

expression” (Arzarello, 2006). 

The project had a double goal: from a research point of view, I aimed at focusing on the “cognitive 

functioning underlying the various mathematical processes” (Duval, 2006, p. 104) and exploring the 

efficacy of “a rich semiotic bundle with a variety of semiotic sets” (Arzarello, 2006) to foster 

students’ understanding of some pivotal mathematical concepts. From a didactic point of view I 

wanted to verify that this approach, which took its strength from “a gradually growing and 

multimodal cognitive environment” (Arzarello, 2006) could help students in building up long 

lasting memories connected to the practice of mathematics through the act of giving “personal 

meanings to mathematical objects” (D’Amore, 2003, p. 19). 

Methodology: Inside and Outside the box 

The study explores how students answered to questions and problems prompted by the 12 items in 

the box, during the first two weeks of the school year (approximately 10 hours of teaching). Data 

has been collected by the teacher through classroom observation and assessment of the assigned 

homework. 



 

The content of the box, described in detail in a multimedia presentation, varied from tactile objects 

like the piece of string which triggered the ice-breaker kinaesthetic activity The Magic Knot (Can 

you tie a knot in a string without letting go of the two ends?) to a paper cut with an extract from a 

1742 letter from Christian Goldbach to Leonhard Euler which lead to the unveiling of The 

Goldbach mystery (What is the Goldbach conjecture? And why is it a conjecture and not a 

theorem?). 

A good example to illustrate how the notion of semiotic bundle can be used to 

decode the activities of students solving a mathematical problem is The mystery of 

the four triangles (Can you build exactly 4 equilateral triangles using six 

toothpicks of equal length?). Searching for the answer to this problem students 

came up with the wrong construction seen in fig.1.               Figure 1 

Discussing this solution, they brought into play an articulate semiotic bundle made up of:  

 gesture: manipulating the toothpicks to build the solution 

 speech: discussing why the construction in the figure is wrong 

 written signs: drawing other possible solutions 

 arithmetic representation: figuring out that the slanted toothpicks in Figure 1 weren’t long 

enough to play as diagonals of the square 

 geometric representation: figuring out that the triangles in Figure 1 couldn’t be equilateral 

Expanding the semiotic bundle from gesture to arithmetic representation, they became gradually 

aware that the construction couldn’t be solved in two dimensional space and it eventually helped 

them to elaborate the correct solution. 

Conclusions: Beyond the box 

The described case shows how the use of a full range of different types of representation (verbal, 

gesture and iconic exemplification) has been a key point in the procedure of developing the 

meaning of the mathematical objects involved. In the following school years (14-15 and 15-16), this 

class group attested in two synergic ways how successful this opening experience has been: on one 

hand, they proved to remember vividly the content delivered through the box and on the other they 

become more metacognitively aware of the importance of creating a range of different 

representations in order to have access to a mathematical concept or problem. 
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Introduction 

During the past years the mathematics education community as well as the educational research of 

teaching and learning have seen representations as a useful tool for communicating information and 

understanding (e.g. Lesh, Cramer, Doerr, Post, & Zawojewski, 2003; NCTM, 2000). NCTM (2000) 

advocates students to “create and use representations to organize, record, and communicate 

mathematical ideas; select, apply, and translate among mathematical representations to solve 

problems…” (NCTM 2000, p. 64). In the present study, ‘representations’ refers to Goldins (2002) 

definition that a representation can represent something else, for example, symbolic expressions, 

drawings, written words or diagrams. Different representations can be used to shed light onto 

different aspects of a complex mathematical concept or relationship (e.g. Cai, 2005; Cathcart, 

Pothier, Vance, & Bezuk, 2006). For example, when learning about parts of a whole, teachers and 

students can use a manipulative representation, as sectors of a circle or as pieces of a rectangle.  

Purpose 

The aim of the present study is twofold. Firstly, investigate how teachers and students use 

representations of fractions focusing on finding a fraction regarding either part- whole or part of set 

aspect. This would for instance entail examination of which type of representation, how they are 

used and in which order they are used. Secondly to examine what students learn in mathematics 

lessons, regarding representations of fractions.  

Hypothesis 

The hypothesis is that a more frequent use of different representations, by either teachers and or 

students, will enhance the students’ knowledge of fraction as part of a set or part of a whole. This is 

in line with what have been suggested by Cai (2005); Cathcart, Pothier, Vance, and Bezuk, (2006) 

concerning different representations. 

Method 

The collection of data consists of two parts, (a) video recordings of lessons and (b) pre- and post-

tests (“RB2 or RB3 Diamant” which is part of the Swedish National Agency for Education's test 

materials).Video recordings enable data to be analyzed repeatedly and seen by other researchers in 

order to contribute to the study. Data will be analyzed with respect to variation theory (see for 

instance Marton, 2015). The pre- and post-test are a measurement to document effects of using 

representations of fractions during the mathematics lessons. To examine group differences between 

pre- and posttest repeated measure ANOVA is used.  



Participants 

Ten primary school teachers and approximate 250 students in Sweden, New Zealand, and 

Singapore, respectively, will be part of the present study. 
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